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A tot allò que som i podem ser encara. 
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Abstract 

Understanding the molecular basis of human inherited disease is a 

challenging task due to the complexity of mapping the genotype to 

the phenotype. The study of diseases running in families has shown 

that the inheritance of certain variants confers disease susceptibility. 

However, not all carriers of such pathogenic variants express the 

clinical symptoms, a phenomenon known as reduced penetrance. 

This thesis has investigated a potential mechanism of genetic 

modification for the penetrance of a missense BMPR2 mutation in 

heritable pulmonary arterial hypertension (HPAH) by applying 

genetic linkage analysis to a large multiplex family. We have 

identified a candidate region for a modifier in the distal promoter 

region of the FIGN gene supported by lung-specific regulatory 

activity and risk factors associated with blood pressure. Taken 

together, these results suggest that common regulatory variants may 

have an important role in determining the penetrance of pathogenic 

coding variants. This thesis also provides a resource to integrate 

genome-wide position-specific scores routinely used in variant 

prioritization.  
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Resum  
 

Comprendre la base molecular de les malalties humanes hereditàries 

és un gran repte degut a la complexitat de les relacions entre genotip 

i fenotip. L’estudi de malalties de transmissió familiar ha demostrat 

que el fet d’heretar certes variants genètiques confereix una major 

susceptibilitat de patir aquestes malalties. No obstant això, no tots els 

portadors d’aquestes variants patogèniques expressen la 

simptomatologia clínica, un fenomen anomenat penetrància reduïda. 

Aquesta tesi s’ha centrat en investigar un possible mecanisme de 

modificació genètica de la penetrància d’una mutació del gen BMPR2 

en hipertensió arterial pulmonar hereditària. A tal efecte, hem utilitzat 

l’anàlisi per lligament genètic aplicat a una gran família 

multigeneracional amb múltiples portadors de la mutació, una fracció 

dels quals estan afectats per la malaltia. Hem identificat una regió 

candidata pel modificador en una regió promotora distant del gen 

FIGN, amb evidència d’activitat reguladora específica al pulmó i 

amb factors de risc associats a pressió sanguínia. Analitzats 

conjuntament, aquests resultats suggereixen que les variants 

reguladores comunes poden tenir un paper important en la 

penetrància de les variants patogèniques i codificants. Aquesta tesi 

també proporciona un recurs per integrar les puntuacions genòmiques 

específiques per posició, habitualment utilitzades per a la priorització 

de variants genètiques. 
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Taking one-hour walk around my home town Olot, in the northeast 

of Catalonia, is enough for any curious mind to gain interest in natural 

science. This region is indeed an European hotspot for biodiversity, 

result of being a volcanic region and a transition territory for 

Pyrenean, Mediterranean and continental ecosystems. If you 

combine this with a particularly rainy weather and a mountainous 

territory, it is easy to understand the local devotion to meteorology 

and biology. And as a child, I was not an exception to such interest. 

I still keep the notebook where I used to write down the daily 

measurements from a precarious weather station. Later, as a teenager, 

I also became interested in robotics and with time, I organized a 

summer educational robotic course for kids that would become my 

first salary. Because of this, I probably end up studying 

biotechnology, which mixes a bit of the two worlds. Without the 

driving force of such curiosity, this thesis would not be a reality.  

 

My first contact with human genetics was the reading of a newspaper 

article forecasting the future achievements that the completion of the 

Human Genome Project would entail. The article offered an overly 

optimistic view about the immediate endless applications to 

healthcare. A remote memory from this article came to my mind 

when after several years battling against a supposed Graves’ disease, 

I was diagnosed with pituitary resistance to thyroid hormone, a rare 

genetic disease with mild consequences under proper treatment. By 

that time, my endocrinologist encouraged me to participate in a 

research project to identify the underlying genetic cause, but it was 
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suddenly cancelled due to the budget cuts on the healthcare system. 

Although this study is still pending, it undeniably raised my interest 

towards the understanding of the genomic architecture of diseases. 

 

Learning bioinformatics was another step to feed such vital interest, 

as this discipline has revolutionized the way in which data is analysed 

and how genetic counselling is practiced. The advent of new genetic 

tools also shows that the current knowledge on human genetic disease 

it is far from complete and many questions need still to be addressed. 

The big challenge ahead encouraged me to focus this thesis on 

reduced penetrance, a phenomenon that has been known for long, it 

has a major impact in human genetics, but it is still poorly 

understood. The project was ambitious and risky, but this is what 

basic science should be all about, pushing the boundaries of 

knowledge, even when you are unsure to go in the right direction. 

The findings reported in this thesis are a modest contribution for 

understanding reduced penetrance, as they have not yet been 

followed up by functional in vivo confirmatory assays. Still, in words 

of the Dutch painter Vincent Van Gogh “great things are done by a 

series of small things brought together”. And the different pieces are 

being collected right now. 

 

 

Pau Puigdevall Costa 
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1. INTRODUCTION 
 
1.1. Historical review of genetics and genomics 
 
1.1.1. Genetic disorders: from Ancient Greece to Mendel 

What are genetic disorders? How a genetic condition can be 

inherited? If a genetic disorder runs in my family, what are the 

chances that my offspring and I develop the condition? It is highly 

likely that the reader has heard these questions or personally 

formulated them to a doctor at least once in life. This need for 

responses regarding disease it is not exclusive from our time. 

 

Genetic inheritance has been traditionally a main area of scientific 

and philosophical study, fascination and concern over centuries. The 

“likeliness” among related individuals had generated many theories 

in which science, pseudoscience and eventually, beliefs and religion 

had mixed to provide answers to insightful questions. Documented 

contributions on the subject are already present in ancient Greek 

literature starting from Pythagoras, who around 530 BC proposed the 

spermism theory. He suggested that all hereditary information was 

stored within the male body as a library where all the instructions to 

build a new organism are placed. 

 

Almost two centuries after, Aristotle updated this view. He proposed 

that heredity information was transmitted in form of messages by 

observing systematically how traits were inherited within families. 

Aristotle was also the first to understand the complexity behind 

inheritance in De Generatione animalum, the so-called foundational 
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book for human genetics (Figure 1). For instance, in the passage 

below, he remarked that certain traits could keep hidden among 

family generations and manifest later in progeny. 

 

“And from deformed [parents] deformed [offspring] comes 

to be, just as lame come to be from lame and blind from blind, 

and in general they resemble often the features that are 

against nature, and have inborn signs, such as growths and 

scars. Some of such features have even been transmitted 

through three [generations]: for instance, someone who had 

a mark on his arm and his son was born without it, but his 

grandson had black in the same place, but in a blurred way. 

Such things happen rarely, and for the most part offspring 

with the body-parts intact come to be from mutilated parents, 

and nothing has been settled definitely about them. And they 

[the offspring] resemble the parents or their ancestors further 

away and sometimes nothing like that. And they can also 

transmit [features] through several generations: for instance, 

in Sicily a woman committed adultery with a man from 

Ethiopia – for the daughter did not become an Ethiopian, but 

her daughter [of the daughter] did.”  

     

Generation of Animals (350 BC), Aristotle  

HA VII 6, 585b28-586a4 

 

Aristotle presumed the existence of encoded information, but he did 

not clarify the code identity, neither how it translated into function. 

In fact, these incipient observations would not be partially resolved 

after two millennia. Pre-Mendelian theories were essentially 

reformulations of Greek literature, whose discussion ended up in a 

scientific blind alley. Proof of that is the homunculus preformation 
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theory in the sixteenth century (Figure 1). It presupposed that the 

code and de-encryption were distributed all at once. This theory 

assumed that each male contained in his sperm the tiny body of his 

descendants following an infinite loop, being the development a mere 

consequence of its expansion. The preformation theory became 

hegemonic among medieval Christians as it fitted the beliefs of the 

fervent religious society of the moment. 

 

 

 

 

 

 

 

 

 

 

Figure 1. “Homunculus” representation (left) and hardcover of “De 

Generatione Animualum” from Aristotles (right). Homunculus figure: Nicolas 

Hartsoeker in 1694. Hardcover of “De Generatione Animalum” from Aristotle: 

edited by H.J Drossart Lulofs (Oxford, 2005). 

 

1.1.2. Mendelian theory of inheritance 

This period of scientific regression was surpassed thanks to notable 

scientific contributions during the nineteenth century. Among the 

most important findings, the Augustinian friar Gregor Mendel led 

several discoveries that supposed the first step towards the creation 

of genetics as a discipline. Contemporary to Mendel, extensive 
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experiments with plant hybridization were conducted by botanists 

such as Linnaeus. In these studies, heredity was studied indirectly 

using hybridizations and backcrosses, although no conceptual 

implications were formulated before Mendel.  By the same time, 

Darwin published the Origin of Species by Means of Natural 

Selection in 1859, a theory of evolution that represented an 

unprecedented scientific revolution in biology. After that, Darwin 

struggled to propose a theory of heredity that supported the theory of 

evolution. He tried to explain how variance was generated and 

maintained over generations. However, the pangenesis theory that he 

proposed in the Variation of Animals and Plants Under 

Domestication (1867) was not consistent enough.  

 

Nonetheless, Mendel had already proposed a theory that resolved this 

issue in 1865, but went completely unnoticed to the scientific 

community. Mendel identified discrete units of heredity passing 

between generations in his experiments on plant hybridization. These 

observations led to the formulation of the Mendelian laws of 

inheritance: the law of segregation of genes, the law of independent 

assortment and the law of dominance. Mendel theory was 

independently replicated thrice in 1900 by Hugo de Vries, Carl 

Correns and Erich von Tschermak-Seysenegg. Not much later, 

Bateson coined the term “genetics” for the first time to refer to the 

study of heredity and variation in 1905 (Mukherjee, 2016). In parallel 

to Mendel discoveries and with a completely different approach, 

Galton focused on the inheritance of quantitative traits, which was 
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extensively covered by the high impact book Heredity Talent and 

Character, published in 1865. 

 

1.1.3. The dawn of molecular genetics 

After the presentation of the Mendel and Galton theories, the field of 

genetics experienced a big boost with successive achievements in the 

following years. This is the case of the germ-plasm theory formulated 

by Weismann in 1883, the chromosomal theory of heredity (Sutton 

1903), the formulation of the Hardy-Weinberg law (Hardy 1908) and 

the observation of genetic linkage and crossing over on sex-linked 

traits of Drosophila melanogaster (Morgan 1910) (Figure 2). This 

finding was essential to understand why certain traits were 

transmitted together contradicting the Mendel law of independent 

assortment. This discovery is also at the conceptual core of the 

genetic linkage analysis technique, of major relevance within the 

scope of this thesis. The post-Mendel era ended with the first 

transformation experiments (Griffith 1928) and the identification of 

the DNA as the carrier of genetic information (Avery 1944). 

 

In parallel, first findings regarding human traits based on Mendelian 

theories were described. For instance, a Mendelian mode of 

inheritance was identified in alkaptonuria, in different inborn errors 

of metabolism (Garrod 1902) and in the ABO blood groups 

discovered by Landsteiner in 1900. Both authors suggested that a 

familial component was behind the segregation of these traits.   
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Figure 2. Two-generation crosses of Drosophila melanogaster. Two traits are 

linked (black body and vestigial; grey body and long, being the former the double 

recessive). F0: A black vestigial male is crossed with a grey long female. F1: Grey 

F1 female is back-crossed with the black vestigial male. F2: Four different 

genotypes are observed in offspring, being the non-recombinant the 83% and the 

recombinant the 17%. From: Evolution and genetics. Morgan, 1925. 

 

It would not be until fifty years later, though, that the elucidation of 

the DNA double helix structure would be published (Watson and 

Crick 1953) thanks to the support of the X-ray diffraction images 

provided by Rosalind Franklin. The observation of the DNA was a 

key event to build the hypothesis for DNA replication and 

transmission. During this period, not only replication, transcription 

and translation were described, but also the genetic code was 

disclosed (1961-1963) and the so-called “central dogma of molecular 
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biology” was proposed by Francis Crick in 1956. This dogma states 

that once the information is transferred from DNA and RNA into a 

protein, it cannot be transferred back to RNA or DNA (Figure 3). 

 

 

Figure 3. The central dogma of molecular biology (Crick, 1956) 

 

To achieve these advances, many microorganisms were used as 

model organisms. Simultaneously, new techniques in biochemistry 

and molecular genetics, like gel electrophoresis (Smithies 1955), 

were implemented. The new discoveries facilitated the observation 

of amino acid sequences, being the insulin the first one elucidated 

(Sanger 1952). Not only sequences were elucidated, but also certain 

mutations causing amino acids substitutions, deletions and 

frameshifts.  

 

The emergence of this knowledge evolved jointly with the study of 

human inherited disease. Although medical genetics did not exist as 

a scientific field by that time, certain diseases such as 

hemoglobinopathies were studied from the genetics perspective. 

Sickle cell anemia was soon claimed to be a molecular disease 

(Pauling et al. 1949). During the 1950’s, many metabolic diseases 

(methemoglobinemia, glycogen storage disease) were found to be 



 

8 

 

associated with genetic enzyme defects in structure, which in turn 

were caused by genetic mutations. With the advent of cytogenetics, 

the human diploid chromosome number was correctly fixed at 46 

(Tjio and A. 1956). This technique started to be applied on prenatal 

diagnosis with the amniocentesis test. Not much later, the molecular 

basis of Down syndrome, a trisomy on chromosome 21, was unveiled 

by Lejeune in 1959, together with the Klinefelter (Jacobs and Strong 

1959) and Turner (Ford 1959) syndromes. To recompile all the 

information being generated, a catalogue of all known Mendelian 

diseases was created by McKusick in 1966. Since then, it has been 

updated periodically with literature data, giving rise to the current 

database Online Mendelian Inheritance in Man (OMIM) that 

includes about 3,500 genes associated with monogenic disease. 

 

1.1.4. The genomics era 

The so-called genomics period is considered to start with the HindII 

restriction enzyme finding (Smith and Welcox 1970), a milestone 

event for cloning techniques. Briefly after, the first recombinant 

DNA molecule was generated successfully (Jackson, Symons, and 

Berg 1972). Progressive advances on nucleic acid labelling and on 

Sanger sequencing techniques allowed the DNA sequencing of 

increasingly longer fragments. This happened jointly with the reverse 

transcriptase discovery (Baltimore 1970). Hence, only five years 

after sequencing the first gene, the bacteriophage MS2 coat protein 

(Jou et al. 1972), the entire genome of the bacteriophage Φ-X174 was 

sequenced (Sanger et al. 1977). The whole process was further 

optimized with the incorporation of the polymerase chain reaction 
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(K.Mullis et al. 1986) that enabled an exponential amplification of 

target DNA, a limiting factor until the moment. 

 

It was during this 70’s decade that human genetics consolidated itself 

as a scientific field (McKusick 1975). At the beginning of the decade, 

many diseases were known to be genetic and the mode of inheritance 

unravelled, but the identity of the causal genetic elements was not 

established. New techniques already enabled the isolation and the 

sequencing of genes, as well the identification of DNA base pairs 

alterations contributing to disease. However, the chromosomal 

location of disease genes was still unknown. This bottleneck was 

partially solved by Botstein and Davis in 1978, who considered the 

linkage among DNA polymorphisms as a tool for gene mapping. This 

idea was especially suitable for genetic diseases segregating in 

families and led to the birth of genetic linkage analysis. This 

technique reduced enormously the gene search space as it provided 

specific chromosomal regions conferring disease susceptibility.  In 

this sense, a proposal to build a genetic map of the human genome 

was raised (Botstein et al. 1980) as a valuable tool to systematically 

search for disease genes. Shortly after, a mapped region in 

chromosome 4 was related to Huntington’s disease (Gusella et al. 

1983). Despite this, the identification of the disease gene was not an 

automatic process as the detected regions had to be fragmented, 

isolated, cloned, sequenced, analysed and further validated in 

patients. For instance, the Huntington gene would not be identified 

until ten years later (Gusella et al. 1993), as it happened with cystic 

fibrosis (Riordan et al. 1989).  
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1.1.5. The Human Genome Project 

The slow and effortful task of isolating one by one every disease-

causing gene raised the question of whether sequencing the whole 

genome would be a faster approach. It was not the unique reason. The 

one-gene one-disease approach was questioned as many forms of 

cancer and common human disorders could not be explained by a 

single-gene mutation, but a combination of them. Consequently, a 

scientific consensus appeared in favour of sequencing a reference for 

the whole genome. This reference genome was envisioned as a 

template for gene annotation, where the precise location of genes was 

known beforehand and to where mutated counterparts of affected 

patients could be compared with. The project was also expected to 

identify many new disease-causing genes that could be later used as 

druggable targets for monogenic disorders. This possibility was of 

major interest in a moment in which drug target discovery was 

strongly limiting (Penrod, Cowper-Sal-Lari, and Moore 2011).  

 

Launched in 1989, the Human Genome Project was led by the 

National Institutes of Health (NIH) from United States and funded by 

a public international consortium. In 1992, the Institute for Genomic 

Research, a private foundation later converted to the Celera company, 

competed with the NIH to be the first to supply the sequence 

undertaking different sequencing strategies. After several years of a 

sequencing race, they both published a first draft at the same time 

(Lander et al. 2001) (Venter et al. 2001). 
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These drafts had a major impact among the scientific community 

since for the first time, the whole sequence of human DNA could be 

accessed. Nevertheless, the capacity of reading the encoded 

information did not necessarily entail the ability to interpret it.  

 

1.1.6. The sequencing revolution 

After the final completion of the human genome sequence in 2004 

(International Human Genome Sequencing Consortium 2004), 

genomic sequencing experienced an exponential growth. Only in the 

three forthcoming years, the whole sequences of many different 

species were achieved, including mouse (Waterston et al. 2002), rat 

(Gibbs et al. 2004), chicken (International Chicken Genome 

Sequencing Consortium 2004), dog (Lindblad-Toh et al. 2005), 

chimpanzee (Mikkelsen et al. 2005), sea urchin (Erica Sodergren, 

George M. Winstock 2006) and macaque (Richard A. Gibbs 2007). 

By the same time, the first personal human genomes were sequenced, 

underscoring the considerable reduction in time and sequencing costs 

fuelled by the massive parallel DNA sequencing technology 

(Metzker 2010). For instance, the first human genome cost around 1 

billion $ and took almost a decade to be fully completed. In 2017, the 

cost fell to 1,121 $ according to the National Human Genome 

Research Institute (NHGRI), with further reductions still coming on 

the way. This reduction outperforms by several orders of magnitude 

the technological improvements anticipated by the Moore’s law 

(Figure 4). 
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Figure 4. Average annual sequencing cost per genome in the last two decades. 

Reprinted from: NHGRI, 2018. 

 

This scenario represented a shift on research as the bottleneck moved 

from data production to the analysis capacity. This raised the need 

for creating platforms and databases to store the increasing amounts 

of DNA and RNA data regarding genotypes and phenotypes, such as 

dbGAP or EGA, as well to deposit first human genetic variation 

studies (Boyd and Silk 2007). 

 

The appearance of high-throughput technologies has generated a 

sequencing revolution, by allowing the detection and sequencing of 

molecule fragments massively in parallel. In this breakthrough, two 

main techniques have been applied: genotyping microarrays and 

next-generation DNA sequencing techniques (NGS). 
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The genotyping microarrays permit the genome-wide identification 

of a large fraction of polymorphisms by taking advantage of DNA 

hybridization and fluorescence microscopy.  The microarrays chips 

are designed to contain immobilized allele-specific oligonucleotide 

probes to which fragmented nucleotide sequences from an individual 

attach, being previously labelled with fluorescent dyes. The 

hybridization signal is then processed and analysed to determine 

which SNP genotype is present at each position. There are two major 

microarray manufacturers, Illumina and Affymetrix, which produces 

microarrays chips encompassing up to 4.3 and 10 million of variants, 

respectively.  Genotyping microarrays have provided the input data 

for genetic linkage analysis and genome-wide association studies 

(GWASs).  

 

The NGS techniques comprise the different deep DNA sequencing 

methods from Illumina, Roche 454, Ion Torrent and SOLiD. They 

are mostly based on the short-read sequencing strategy, in which 

millions of small DNA fragments are generated, amplified and then 

sequenced in parallel, multiple times and in an automated process. 

This strategy provides a supporting depth for almost any position of 

the human genome, including rare variants not observed before and 

absent from genotyping arrays. The sequenced fragments, known as 

reads, are mapped to the human reference genome using 

bioinformatic tools. 

 

The advance in genomics has opened unprecedented possibilities for 

understanding the genetic contribution to health and disease. A 
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depiction of the genomic research achievements and future 

challenges (Figure 5) was summarized in five main steps reflecting 

the expected chronological transition from the genome biology 

comprehension to the clinical treatment (Green and Guyer 2011). In 

this transition, the first essential contributions belong to the genomic 

catalogues, which have provided valuable data on genetic variation, 

functional annotation of genomic elements, RNAs and proteins, 

among other “omics”.  

 

 

Figure 5. Transition of genomic research from the study of genome biology to 

effectiveness on clinics. The density plots indicate the level of accomplishment. 

Reprinted from: Green et al., 2011. 
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The outcome from these large catalogues and the improvement of the 

sequencing technology have provided a better knowledge on the 

biology of genomes. Advances on human genetics have also opened 

the doors to evolutionary studies, including the study of the genetic 

diversity of populations, historical migrations and estimations of the 

origin of modern humans in Africa about 200,000 to 400,000 years 

ago (Hublin et al. 2018). 

 

1.1.7. Genome editing 

Nowadays, there is a pressing need to understand the genome in a 

level of detail that helps to develop more precise and personalized 

clinical treatment for disease. During previous decades, the approach 

was limited to a few monogenic disorders with extreme phenotypes. 

Genomics has enabled to move one step further by creating 

catalogues with millions of rare and common germline variants, 

whose clinical interpretation gives insightful clues on the underlying 

mechanism of genetic diseases. The most immediate benefit from 

these resources is the improvement in genetic counselling, which 

even in the absence of treatment represent a first step towards 

effectiveness on healthcare. Even so, many challenges stand ahead 

on diagnostics of rare and complex diseases. The room for 

improvement on medical genetics resides in the missing heritability 

of complex diseases, the still unknown genetic variation across 

human population and a better tracking of individual phenotypes. To 

disentangle that, a better comprehension of non-coding regions, gene 

regulation, gene-interaction networks, protein-protein interactions, 

triggers and environmental exposures are needed. 
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For many decades, genetic diseases did not have any viable drug 

treatment to alleviate or remove the symptoms, being still today a 

problem for many of them. In such cases, the only solution is to alter 

intentionally the human genome of progeny by negative eugenics, 

terminating pregnancy or using preimplantation genetic diagnosis to 

select healthy embryos. In the 90’s decade, gene therapy was 

presented as a promising field and an alternative to previous drastic 

approaches. Initially, it comprised the usage of viruses to deliver 

genes in nonreproductive cells and projected the usage of germ-line 

cells in future. The biotechnological death of Jesse Gelsinger in 1999 

halted all the clinical trials and running initiatives. It was not until 

fifteen years later than a successful gene therapy would be reported 

in the treatment for haemophilia (High et al. 2014) .  

 

The most promising field currently under research is genome editing. 

It started by the discovery of a bacterial immune system that cuts viral 

DNA at specific sites (Figure 6). It is composed by two elements, 

RNA encoded in the bacterial genome that recognize viral DNA 

(CRISPR) and a bacterial protein (Cas9) that cuts the viral molecule 

after recognition (Jinek et al. 2012). The proper control of this system 

enables for the first time to modify any genome at precise locations 

in a clean way, opening gene therapy to treatment. For instance, a 

recent study using CRISPR/Cas9 in human embryos, corrected a 

pathogenic mutation in MYBPC3 gene causing hypertrophic 

cardiomyopathy (Ma et al. 2017). The future success of this work, 

however, resides in the reduction of mosaicism and the undesired 

activity of this system. 
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Figure 6. CRISPR/Cas9 is part of the bacterial immune system against 

viruses. CRISPR is part of the bacterial genome, usually from previous viral 

infections, that recognize viral DNA. This recognition activates Cas9 protein to cut 

the viral DNA. Reprinted from: Wikipedia.  

 

 

The genome editing relies mainly on the robustness of genetic 

counselling. This restricts any potential intervention to three 

principles: highly penetrant disease-causing mutations (≈100%), 

extraordinary suffering or short-term incompatibility with life and 

justifiable interventions (Mukherjee, 2016). The fast growth and 

optimization of the CRISPR system suggests that the edition of 

genomes will be a reality by next decade, if not before. It urges an 

ethical debate on society to set up the clinical limits of genome 

editing. 
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1.2. Human genetic variation 
 

1.2.1. Origin and types of genetic variation 

After publishing the Origin of Species by Means of Natural Selection, 

Darwin concentrated all his efforts on identifying the driving force 

that generated the genetic variation within species.  The existence of 

this variation was indispensable to provide the substrate for natural 

selection to occur. Although Darwin exhaustively searched for an 

answer, he did not reach a plausible explanation during his lifetime. 

 

Genetic variation is mainly generated by the inherent errors of 

polymerase enzymes in the process of DNA replication, which occurs 

at a rate of about 1 every 100,000 nucleotides. These changes are 

transmitted to the offspring when the DNA repair processes, mainly 

the mismatch repair and the proofreading system, cannot correct the 

errors in germ-line cells (Figure 7). These errors are mainly induced 

by the mispairing of wobbles and the mispairing of the non-

tautomeric chemical forms of bases (Pray, 2008). Additionally, 

spontaneous lesions to DNA can take place due to the action of 

certain mutagens such as alkylating and intercalating agents or 

ultraviolet light (Griffiths, 1999).  
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Figure 7. Possible outcomes of DNA repair. An unrepaired mistake in DNA 

synthesis lead to point mutations. Reprinted from: Griffiths, 1999.  

 

Genetic variation is classified in two main groups according to the 

number of base pairs they affect.  Thus, we distinguish point 

mutations and structural variants (Table 1). Point-mutations are 

classified in three subgroups: substitutions (also known as single 

nucleotide polymorphisms, SNPs), small insertions and small 

deletions, that summed account up to 99.9% of known human genetic 

variants (Auton et al. 2015). 

 

Structural variants comprise gross alterations of DNA (>1kb) 

including chromosomal aberrations (inversions, deletions, 

duplications and translocations) and copy number variants. The latter 

group includes genetic rearrangements with locus tandem 

duplications, as well as big expansions of a trinucleotide repeat. The 

number of identified structural variants is remarkably small 

compared to SNPs. Still, they affect a bigger portion of the genome.  
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Table 1. Class and types of DNA mutation. Adapted from images in: Clancy, 

2008, VCFtools poster, yourgenome.org and dbVAR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the narrow sense, mutations are the ultimate source of genetic 

variation. However, there are processes such as recombination, 

migration, inbreeding and assortative mating that shape the level and 

pattern of variation. For instance, homologous recombination 

increase variation by reshuffling the DNA from parental homologous 

chromosomes during meiosis. This generates a unique combination 

of variants for each individual. In the case of migrations, the 

introduction of genes from one population into another shifts the 
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original allele frequency. This also takes place with non-random 

mating, that occurs when individuals choose close relatives as mates 

(inbreeding) or because they resemble each other at a particular locus 

(assortative mating). 

 

1.2.2. Building a catalogue of human genetic variation 

High-throughput DNA sequencing technologies have enabled the  

sequencing of genomes and exomes at an unprecedented pace. The 

data outcome from this technology, jointly with microarray chips, is 

the main source of information about human genetic variation 

currently available.  

 

Shortly after the publication of the first human genome, the need for 

building a deep catalogue of human genetic variation was projected. 

It included a limited sample of individuals with the aim to be 

representative for population genetics. In this sense, the sampling 

strategy of the 1000 Human Genomes Project did not select 

individuals with a particular phenotype, but conversely, self-declared 

healthy individuals. Other important goals for the project were the 

identification of different sources of variation, the estimation of allele 

frequencies, the characterization of LD patterns and the phasing of 

haplotypes. Secondarily, the catalogue was created to improve the 

human reference sequence, to better study the regions under selection 

and to support evolutionary studies on different populations. 

 

Massive sequencing was used for the completion of the 1,000 Human 

Genome Project (Auton et al. 2015), which represented a 
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breakthrough on the knowledge of human genetics. It was the first 

catalogue that aimed to describe any kind of variation anywhere from 

the genome with a minor allele frequency as low as 1%, among 2,504 

individuals from 26 populations. The project revealed 88 million 

variants phased onto high-quality haplotypes, being 84.7 of them 

SNPs, 3.6 small insertions-deletions and only 60,000 structural 

variants.  

 

Although the number of novel SNPs in the project grew 

exponentially, the class with a higher proportion of novel variants 

corresponded to the insertions and deletions ranging from 10kb to 

10bp (>70%), highlighting the room for better characterizing such 

variation type (Figure 8). Interestingly, the newly discovered variants 

differed among populations, variant types and allele frequencies 

(Altshuler et al. 2010). For instance, novel SNPs were mainly 

population-specific (84%), while already seen SNPs where shared 

across all populations (56%). In contrast to SNPs, most of the novel 

structural variants were generally observed in all populations, 

highlighting the lack of characterization of this type of variation. The 

pilot phase also included the result from an exome sequencing project 

with an increased depth of coverage and sample size that enabled the 

discovery of novel variants private to certain populations or even to 

specific individuals (Figure 9). This enrichment showed the need for 

even larger sequencing projects as much of the rare variation was 

predicted to remain unknown. 
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Figure 8. Size distribution and novelty of variants discovered in the pilot phase 

of 1000 Human Genome Project. In red, deletions respect to the human genome 

reference; in blue, SNPs; and in green, insertions or duplications. Purple line: 

Fraction of novel variants relative to existing databases (dbSNP, dbVAR, dbRIP, 

among others). Reprinted from: Altshuler, 2010.  

 

The very first effort that put together a large amount of sequencing 

data to produce a deep catalogue of variants associated with disease 

was the National Heart, Lung and Blood Institute Exome Sequencing 

Project (NHLB-ESP), which sequenced 6,500 exomes 

(http://evs.gs.washington.edu/EVS/). The goal of this project was to 

discover novel genes implicated on heart, lung and blood disorders. 

http://evs.gs.washington.edu/EVS/
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Figure 9. Fraction of novel variants in each allele frequency. Novelty was 

determined in comparison to previously described variation in databases (dbSNP 

and dbVAR). LC: low coverage, EX: exon. Reprinted from: Altshuler, 2010.  

 

The recent publication of the Exome Aggregation Consortium 

(ExAC), an analysis of protein-coding variation in 60,706 humans, 

and the Genome Aggregation Database (gnomAD), an analysis of 

121,216 exomes and 15,136 genomes, has supposed a step further on 

the study of human genetic variation (Lek et al. 2016). Even more 

recently, the US National Institute of Health reported that the Trans-

Omics for Precision Medicine (TOPMed) program achieved the 

sequencing of >130,000 whole genomes by July 2018. In the case of 

ExAC, the call set exceeded by nearly one order of magnitude 

previous exome databases. This increase was sufficient to study 

regions of the genome depleted for variation and to detect mutational 

recurrence in general population. Moreover, it provided better 

resolution on the analysis of very-low frequency variants globally 
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and for all populations (Figure 10). The analysis identified more than 

7 million coding variants, including 300,000 indels. This observation 

represents in practice one variant every eight nucleotide bases of the 

exome.  

 

Figure 10. Population structures of recent large-sequencing projects and 

novelty proportion from ExAC alleles. Left: ExAC is one order of magnitude 

larger in size than previous data sets for all studied populations. Right: Most of the 

variants are novel and rare, being singletons the most abundant class of human 

genetic variation. Reprinted from: Lek et al., 2016.  

 

Again, most of the newly discovered variants (99%) were low-

frequency variants (MAF<1%) and 54% of them were singletons, 

SNPs only observed in the allele of one individual (Figure 10). This 

indicates that even ExAC is not large enough to observe all coding 

non-lethal variation in human. 

 

With the current world human population, 7,6 billion in 2018 (NU 

World Population Prospects, 2017), it is hypothesized that almost 

every position in the genome can mutate or have mutated in the past, 

as the rarest mutational rates are predicted to be in the order of 10-9 
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(Samocha et al. 2014). Although this sequencing effort seems 

unattainable, mutational recurrence and high fractions of variation 

are already visible in coding-regions, suggesting that larger sample 

sizes, deep coverage and incremental improvements on the 

sequencing technology will provide an almost complete picture on 

missing variation. 

 

Current databases of variation are experiencing an exponential 

growth of entries. The most paradigmatic example is the NCBI 

dbSNP database for short genetic variation. In less than three years, 

it has increased the number of variants from 62 to 660 million (build 

151, March 2018). Similarly, the dbVAR database for human 

genomic structural variation (>50 bp) contains 5.2 million variant 

regions and 34.6 million variant calls by November, 2017. Two major 

conclusions are observed from this exponential increase. Firstly, 

there is a large abundance of rare and private SNPs in databases, 

which accounts for the largest part of novel variants. This is likely to 

continue in the forthcoming years as more individuals are sequenced. 

Secondly, there is a strong need to better characterize structural 

variation (SV), notably on the rare variation class. Only then, we will 

be able to explain if the lower discovery rate of SV in relation to SNP 

is certain or contrarily, shotgun techniques are inappropriate to detect 

rare SV. The nanopore technology (Jain et al. 2018) is called to be a 

sequencing breakthrough, as it will provide longer reads that will 

better cover the highly repetitive regions of the genome leading to an 

enhanced representation of the reference version. 
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1.3. Functional genomics 
 
The clinical value of the human variation catalogues resides in the 

functional interpretation of the data. Although many protein-coding 

genes have been identified, only a small fraction of the reported 

variation falls within those regions. At the current pace of sequencing 

and variant discovery, it is currently unachievable to experimentally 

test the effect of each new variant to the phenotype. Instead, the 

challenge is to evaluate bioinformatically whether variation at 

specific genetic positions is neutral or exhibit a functional role 

(Mahmood et al. 2017). To that purpose, different projects have 

recently created large resources of functional genomics data, 

including transcriptomics and epigenomics, to have a better 

knowledge of regulatory regions, genome organization and 

expression variability in tissues. These resources are the result of 

applying many new techniques aimed to map RNA expression levels 

and identify the methylation patterns, the histone modifications and 

the chromatin accessibility of the genome. These elements also give 

insight on mechanisms frequently involved in human disease. Below, 

we describe three widely-used resources in functional genomics 

analysis. 

 

 

1.3.1. The Encyclopaedia of DNA elements (ENCODE) 

The Encyclopaedia of DNA elements (ENCODE) (Dunham et al. 

2012) aimed to characterize the biochemical activity at a genome-

wide scale (Kellis et al. 2014). The results revealed pervasive activity 

on many regions of the genome, including non-coding and non-
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conserved regions, mostly occurring in a specific cell type manner. 

For instance, from the total 2.9 million of open chromatin regions, 

only 3,700 are observed in all cell types (Maher 2012).  This has 

raised the question on what can be considered functional fostering a 

debate between the genetic, the biochemical and the evolutionary 

approaches (Doolittle 2013). Still, the ENCODE major contribution 

resides in the identification of genomic elements showing molecular 

characteristics that may be used as a starting point for studying 

cellular processes and disease. 

 

The ENCODE provides a catalogue of RNA transcripts, genomic 

regions bound by transcription factors, genomic regions occupied by 

nucleosomes, histone modifications and open chromatin regions. 

These signatures can describe how the genome packages, regulates 

and reads the information in different cell types (Maher 2012). The 

ENCODE project involved the usage of several techniques and 

approaches (Figure 11). The current last version (V4) provides 

genomics annotations at an integrative and at ground-level. Below, 

we shortly describe the nine different sources of ground-level 

annotation, directly obtained from the specific experimental data. 
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Figure 11. ENCODE functional and regulatory elements. Reprinted from: 

Encode Consortium.  

 

 

a) Open chromatin: it provides a peak profile for the enzyme DNase 

I hypersensitive sites (DHS) (Song and Crawford 2010). By August 

2018, DNA-seq data for 151 cell lines assays was available.  

 

b) Histone mark enrichment: it provides a peak profile for the 

regions enriched on particular histone marks, including H3K4me3, 

H3K9ac, H3K27ac, among others. The experimental data is 

produced by the chromatin immunoprecipitation technique (ChIP-

seq), which uses specific antibodies to bind to a protein, which in turn 

is bound to DNA. The capture of the protein-DNA crosslink allows 

the identification of the region where the DNA bounds (Furey 2012). 

By August 2018, 414 cell lines were assayed for histone marks. 
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c) Transcription factor (TF) binding: ChIP-seq can be specifically 

addressed to identify the DNA regions where TF binds in living cells. 

The binding is usually presented as sequence motifs of 6 to 25 

nucleotides positions.  By August 2018, the ENCODE Factorbook 

resource hosted information up to 167 TFs. 

 

d) Gene expression: it provides the expression levels of genes and 

non-coding transcripts annotated by GENCODE using RNA-seq 

(Wang, Gerstein, and Snyder 2009). The assay included information 

of total RNA-seq, small RNA-seq, polyA RNA-seq, siRNA-seq, 

microRNA-seq, among others.  

 

e) Promoter activity profiling: the RNA Annotation and Mapping 

of Promoters for Analysis of Gene Expression (RAMPAGE) tool 

quantifies the gene expression and identifies the promoter locations 

(Batut and Gingeras 2013). By August 2018, only 28 RAMPAGE 

cell-lines assays were available. 

 

f) RNA binding protein occupancy: it uses enhanced CLIP-seq data 

(UV crosslinking and immunoprecipitation of ribonucleoprotein 

complexes) to determine the binding sites where RNA-binding 

proteins (RBPs) interact (Van Nostrand et al. 2016). By August 2018, 

there was only data for two cell-lines encompassing 355 assays. 

 

g) DNA methylation: it includes the genome-wide methylation state 

of CpG dinucleotides. By August 2018, 87 cell-line were assayed by 
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DNA methylation arrays and only 11 by whole-genome bisulfite 

sequencing.  

 

h) Three-dimensional chromatin interactions: it informs about the 

genome-wide long-range chromatin interactions between regulatory 

regions such as promoters or distal enhancers mediated by specific 

target proteins. The chosen technique is the chromatin interaction 

analysis with paired-end tag sequencing (ChiA-PET), which uses an 

intermediate step of ChIP to enrich the number of interactions (Li et 

al. 2017). By August 2018, only 55 ChiA-PET cell-line assays were 

available. 

 

i) Topologically associating domain: it provides information about 

the three-dimensional architecture of the genomes by displaying the 

topologically associated domains (TAD) and the cell-specific A and 

B compartments, which are respectively associated with open and 

closed chromatin (Fortin and Hansen 2015). 

 

The jointly interpretation of the different signals (integrated-level 

annotation) is especially meaningful when the different patterns 

agree with the underlying biology. For instance, this happens when 

the open chromatin boundaries coincide with histone modifications 

or when the gene expression correlates with the binding of certain 

transcription factors at promoter regions. The outcome of the 

ENCODE has provided evidence for transcription, regulatory 

elements, chromatin structure and histone modifications, indicating 
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far more complexity than anticipated on gene regulation 

mechanisms. 

 

Some critics have argued about the implications and the value of the 

ENCODE data. One of the most controversial ENCODE statements, 

that was refuted shortly after, hold that above the 80% of the genome 

have signatures of functionality. This percentage is unconceivable 

since it assumes that most of the genome (70%) can be functional, 

even being non-conserved, tolerating any type of mutation (Graur et 

al. 2013). This statement was based on an unappropriated definition 

of functionality, which confounded the pervasive activity expected 

from junk DNA with causality and presented as functional a lot of 

elements that just reflected biological activity (Eddy 2013). 

Moreover, the statement was based on unbalanced selection of 

sensitivity over specificity and it did not take into account the 

magnitude of the effect of the biochemical activity (Graur et al. 

2013). Others have criticised the arbitrary choice of the cell lines and 

the transcription factors for analysis and the lack of negative controls 

in the assays. Despite these issues and the incompleteness of the data, 

ENCODE remains as one of the most widely used resources in 

functional genomics. 

 

 

1.3.2. The Genotype-Tissue Expression (GTEx) project 

The GTEx project (Aguet et al. 2017) was created to answer a key 

question that emerged from the ENCODE data: How human variation 

could affect the activity of regulatory elements in the genome? The 
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answer was again oriented towards deciphering the molecular 

consequences of the genetic variation. 

 

The GTEx project generated a catalogue of functional data that 

provides information on the gene regulatory mechanisms by 

correlating the observed genotypes with tissue-specific gene 

expression levels of the same individuals.  This approach helps with 

the identification of genetic variants that are associated with 

expression changes and also determines the magnitude of such 

association.  Variants that are highly associated with gene expression 

changes, are called expression quantitative trait loci (eQTLs). 

Depending on the distance from the gene, we distinguish cis-eQTLs 

(local action, within <1Mb from the gene transcription start site) from 

trans-eQTLS (distal) effects.  

 

The study design involved the collection of multiple human tissues 

(Figure 12) from donors that were genotyped by a reference panel 

developed from the 1000 Genomes Project, and had their RNA 

sequenced. The GTEx is a pioneering project due to the protocols 

followed with data collection. A wide-scale sampling of 

histologically normal organs and tissues was obtained from donors 

with a healthy clinical history in the post-mortem interval. In the v7 

release, data from 714 donors and 53 tissues was published, aiming 

to reach 1,000 individuals at the last phase. As for the data analysis, 

a linear model was applied correcting the expression associated with 

ancestry, age, genotyping platform and other unknown covariates.  
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Figure 12. Representation of the 44 tissues and cell lines included in the GTEx 

release v6p. The numbers in grey: cis-eQTLs/trans-eQTLS for each tissue. 

Between parenthesis the tissue sample size. Reprinted from: (Aguet et al. 2017) 

 

The results from GTEx identified 341,316 cis-eQTLS from 31,403 

genes and lincRNA in 48 tissues, affecting either most of tissues or 

only a small fraction of them. Identified trans-eQTLs were mainly 

tissue-specific and tended to overlap enhancer regions, although the 
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available data remained underpowered to detect most of them (Aguet 

et al. 2017). Both numbers are expected to grow, as the sample size 

from GTEx increases.  

 

Apart from cis-eQTLs, the effect of local regulatory variation was 

quantified by the allele specific expression (ASE). This technique is 

applied to heterozygous variant sites to elucidate the difference on 

expression levels attributable to each allele. 88% of the testable genes 

in GTEx showed significant allelic imbalance, highlighting again the 

predominant effects of local regulation in gene expression. As for 

complex disease associations, half of the reported GWAS overlapped 

GTEx eQTLs. Interestingly, the phenotypic impact was higher in 

genes with cis-eQTLs shared across tissues. Those genes had 

substantially less loss-of-function mutations, indicating the action of 

purifying selection. A future step on GTEx prospects is the 

combination of gene expression data with molecular measurements 

from epigenomics and proteomics (Stranger et al. 2017). 

 

The genotypes from GTEx individuals are not publicly available in 

order to preserve the donor identity and due to the nature of the 

consent agreement. They can only be downloaded from the dbGAP 

repository under authorized access.  

 

1.3.3. The NIH RoadMap Epigenomics Mapping 

Consortium  

The Roadmap Epigenomics Mapping Consortium (REMC) is a 

public resource from the National Institutes of Health (NIH) of the 
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United States that contains high-throughput data on the functional 

elements that regulate gene expression in a cell. The epigenome 

provides information about the structural patterns in which DNA is 

methylated and how histones are modified.  Also, it informs about 

the chromatin accessibility and the location of regulatory elements 

such as promoters and enhancers.  

 

The project was created due to the lack of an integrative systematic 

analysis of the epigenomic landscape and to go further from existing 

annotations. Unlike the ENCODE project that catalogued cell-lines 

grown in culture, the REMC project focused on samples directly 

extracted from ex-vivo primary human tissues (Romanoski et al. 

2015). Thus, the REMC aimed to build a high-resolution map of 

regulatory elements that could be used as a reference for 

understanding cellular circuitry, lineage specification and ultimately 

human disease (Figure 13).  

 

Some of the techniques employed in the REMC were already used in 

ENCODE: ChiP, DNA digestion by DNaseI, bisulfite treatment or 

RNA profiling, as well as short-read sequencing. Two novel 

techniques were introduced: methylated DNA immunoprecipitation 

(MeDIP) and methylation sensitive restriction enzyme digestion 

(MRE). With MeDIP, the DNA is cut by sonication and 

immunoprecipitated with a specific antibody to measure the 

methylation enrichment of the fraction. It is combined with 

microarrays to be applied genome-wide (Mohn et al. 2009). As for 
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MRE, it uses restriction enzymes sensible to different DNA 

methylation states that generate fragments to be later studied. 

 

Figure 13. Illustration of the sampling protocol and the techniques used in the 

production of the reference epigenome from the RoadMap Epigenomics 

Project. It includes embryonic and adult tissues, from healthy and diseased 

individuals. Reprinted from: Roadmap Epigenomics Consortium et al., 2015 

 

The publication of the first human epigenomes led to several findings 

(Roadmap Epigenomics Consortium et al. 2015). The main 

highlights are discussed below: 

 

- The structural organization of the genome is fundamental to 

understand its regulatory elements. The binding of 

transcription factors to DNA enhancers remodels the 

chromatin state. In specific tissues, the activated enhancers 

are enriched in sequences to which lineage-determining and 
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signal-dependent transcription factors bind. This reflects the 

importance of transcription factors in expression-specific 

stages to determine the cell development through changes on 

the gene expression (Tsankov et al. 2015).  

 

- Chromatin remodelling is crucial for DNA accessibility and 

the binding of transcription factors. For instance, the histone 

marks correlate with different levels of DNA methylation and 

accessibility; and also predict the RNA expression. One of the 

best-known examples of histone modification is the one at 

histone H3 affecting the amino-acid residue lysine 27 (K27). 

The modification can either be an addiction of an acetyl group 

(H3K27ac) or one trimethylation (H3K27me3). The former 

case correlates with major transcriptional activity, while the 

latter is linked to transcriptional repression (Ziller et al. 2015). 

 

- Large regions of the chromosomes present domains of 

distinct epigenomic signatures that correlate with 

transcriptional activity. Also, the enhancers shared across 

tissues are enriched for common gene functions working as 

coordinated regulated modules.   

 

- The comparison of the epigenomics signatures among healthy 

and diseased cells is essential to understand the drivers of 

human disease. Many GWAS associations located at non-

coding regions have been studied in the context of specific 

cell-types. This has revealed that they mainly fall in regions 
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enriched in tissue-specific regulatory regions (Maurano et al. 

2012).  

 

- Long-ranging interactions through the action of distal 

enhancers implies large chromatin reorganization in space 

and time. This has also been observed during stem-cell 

differentiation (Dixon et al. 2015).  

 

- Haplotype-specific differences on histone modification and 

chromatin architecture correlate with the allele specific 

expression across many tissues (Leung et al. 2015) .  These 

differences could be associated with mutations that disrupt 

the transcription factor binding sites or long-range 

interactions. 

 

- High-resolution microscopy will be used in the future to 

produce live imaging of the chromatin remodelling in space 

and time, with the assistance of systems biology. 

 

The REMC resource provides an averaged epigenetic map from a 

population of cells extracted from a particular cell-line in a tissue, 

rather than a single cell map of that tissue. Although this restricts any 

stochastic variability estimation within the same cell-type, the 

objective of the project is to determine the epigenome of the entire 

collection of cell types in human body and also to monitor the ageing 

and environmental effects to predict its dynamic landscape. As a 

novel resource, the REMC also promotes the development of better 

protocols for producing the data, its fast dissemination and seeks the 

standardization of the analytical tools. 
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The ENCODE, GTEx and REMC projects, jointly with the last 

catalogue of human variation, have supposed a major breakthrough 

in the functional genomics field. The unprecedented number of 

putatively DNA regions involved in the regulation of gene expression 

and chromatin organization, provide a comprehensive picture of the 

information encoded in the genome. This is of major value for 

understanding the impact of human variation. 

 

 

1.4. Clinical interpretation of human genetic 
variation 
 

1.4.1. The variant annotation process 

The identification of variants associated with a disease requires an 

accurate assessment of pathogenicity. The recent and extensive use 

of genome-wide sequencing techniques has supposed a dramatic shift 

in clinical genetics due to the exponential growth in variant 

discovery. The limitation is no longer the generation of the 

sequencing data, but its analysis and interpretation (Salgado, 

Bellgard, et al. 2016). Most of the newly discovered variants are rare 

in the population or even private to certain families, but not all of 

them show deleterious effects, complicating their classification 

among neutral, functional or pathogenic categories. This uncertainty 

opens an interpretative gap between the identification of variants and 

their clinical annotation (Cutting 2014) and it is likely to keep 

growing.  
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Variant annotation is the process that evaluates the functional 

significance of variants by associating different sources of 

information with them. The final goal is to predict the involvement 

of a variant in a trait or in a disease. The localization of variants at 

the genomic level is the key step in annotation, but many more 

features are incorporated. Examples of that are the measures of 

population allele frequency, sequence conservation, predictions of 

constraint, fitness and mutation tolerance, as well experimental 

evidence of their impact.  

 

1.4.2. Variant localization and nomenclature  

Predicting the impact of variants on DNA, mRNA and protein levels 

is complex. Depending on the variant position we mainly distinguish 

variants falling in coding and non-coding regions, being the former 

under strong purifying selection as they have greater impact on 

protein function and are more likely to lead to phenotype changes 

(Tennessen et al. 2012). Still, as mentioned before, a lot of regulatory 

regions, including 5’ and 3’UTR, promoters, transcription factor 

binding sites and splicing positions in introns, can have a functional 

role by influencing the level, timing and tissue specificity of gene 

expression (Lonsdale et al. 2013) (Mohammadi et al. 2016). 

 

Among coding SNPs, we distinguish between synonymous and non-

synonymous variants with respect to the genetic code. Synonymous 

SNPs modify the DNA sequence, but they specify the same amino 

acid as in the original codon. Although they have often been 

misinterpreted as a neutral or a silent kind of variation, synonymous 
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variants can be in fact noisy or neutral depending on their ultimate 

effect. The effect of noisy synonymous variants can be observed with 

the creation and deletion of splicing sites, the mRNA folding, the 

microRNA binding or with the translation efficiency (Mueller et al. 

2015) (Plotkin and Kudla 2011) .  

 

On the other hand, non-synonymous SNPs change the original codon 

causing a different protein sequence. Depending on the downstream 

consequence from these changes, we distinguish missense and 

nonsense variants. A missense variant is a point mutation that 

changes the translation of the codon into a different amino acid, 

including the shift of a stop codon into another residue causing 

protein elongation. With a nonsense SNP, a termination codon is 

generated. Despite the protein change, not all non-synonymous SNPs 

show a deleterious effect (Tang and Thomas 2016) (Yngvadottir et 

al. 2008). For instance, loss of function (LoF) variants are clearly 

enriched on rare variants rather than missense ones (MacArthur et al. 

2012). 

 

Insertions and deletions (indels) in the coding region can lead to 

frameshift (FS) mutations if their size is not multiple of three. These 

FS variants typically lead to premature stop codon and putatively 

activate the nonsense-mediated RNA decay (Lin et al. 2017). 

However, they are not always processed, as indels that cluster 

towards the end of a protein can avoid the surveillance system. FS 

are also enriched on genes under relaxed selection, as those related to 

olfactory receptor activity (Hu and Ng 2012). 
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The consistent description of variant localization requires following 

a specific nomenclature. The Human Genome Variation Society 

(HGVS) nomenclature is recommended to unambiguously describe 

sequence variants (den Dunnen et al. 2016). Still, this nomenclature 

has limitations to describe consequences outside coding regions and 

should be regarded as a mere prediction (Salgado, Bellgard, et al. 

2016), particularly when describing mutations at RNA level. 

 

 

1.4.3. Position-based variant annotation 

One of the most essential steps in annotation is to map the genetic 

position of a variant respect to the coding regions of a reference 

genome. Although it may seem a straightforward step, it is not a 

perfectly resolved point and many tangential aspects gain importance 

when looked in detail. Classifying variants in relation to coding 

sequences is highly dependent on the knowledge we have about such 

regions. Current annotations are strongly biased to the transcript set 

choice. For instance, two widely-used transcripts sets such as 

REFSEQ (O’Leary et al. 2016) and ENSEMBL (Zerbino et al. 2018) 

notably differ among them since they respond to different building 

criteria (McCarthy et al. 2014). REFSEQ is a non-redundant curated 

resource that only includes genetic features with experimental 

evidence. On the contrary, ENSEMBL incorporates more exhaustive 

information from several sources. Thus, the transcript set only 

contains 65,648 transcripts in RefSeq – NCBI Homo Sapiens 

Annotation Release 109, while 261,276 are included in ENSEMBL 

release 93. The consequence of this imbalance is that a large number 
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of variants are only coding in ENSEMBL. In addition, both transcript 

sets are also subject to modifications, as periodical updates can cause 

substantial changes with time. Owing to these differences, it is 

recommended the usage of consensus coding sequences (CCDS), a 

dataset created to have an identical annotation of protein coding 

genes (Salgado, Bellgard, et al. 2016).  

 

Another major component of the position-based variant annotations 

is the software tool used to retrieve or estimate the functional impact 

of variants. Such software tools are built following different 

algorithms and they report the results as a system of categories 

organized hierarchically. This ontology is not uniform among 

different software programs and, despite being equivalent under a 

fraction of the cases, this leads to certain disagreement between 

predicted annotations. The annotation category with the most 

deleterious consequences on genes is the loss-of-function (LoF) 

variant, which indicates gene product loss and a potential impact on 

phenotypes. This category encompasses frameshift indels, stop-gain 

and stop-loss variants, as well as some splicing mutations. Other 

categories with expected milder effects are the synonymous variant 

and the non-frameshift indels. 

 

In McCarthy et al. 2014, they observed large differences on LoF 

variant annotations results, either when using different software 

tools, ANNOVAR (Wang, Li, and Hakonarson 2010) and VEP 

(McLaren et al. 2016),   on the same transcript set (64% agreement); 

or when using different transcript sets, REFSEQ and ENSEMBL 
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(44%) with the same annotation tool. According to these results, the 

choice of the transcription set produced the major discordance on 

annotation. The choice was shown to be a compromise between 

minimizing the number of false positives (REFSEQ) or maximizing 

the detection of potential LoF variants (ENSEMBL). As for the 

disagreement on the annotation software tools, three major reasons 

were given. First, even when using the same transcript set, not all the 

predictions were based on the same transcript. Thus, while one tool 

reported only the most severe annotation for a variant, the other 

informed about all the possible annotations given the different 

transcripts of a gene for that same variant. Second, certain annotation 

categories such as splicing showed high discrepancies due to the 

different definitions considered for each tool in regard to splicing site 

positions. Third, the tools used different precedence rules that lead to 

different annotations, even when reporting exactly the same variant 

at the same transcript. All these differences highlight a large room for 

improvement and the need for standardization in the field.  

1.4.4. Other annotations at variant, gene and pathway level 

Beyond the position-based approach, many different types of 

annotations have been developed (Torkamani et al. 2011). The 

population characteristics, such as allele frequencies or LD patterns, 

have been extensively used as a surrogate for variant functionality 

(Zhu et al. 2011). This frequency is computed from large-scale 

sequencing projects, such as ExAC, gnomAD, 1000 Human Genome 

Project or TopMed, and should ideally match the population origin 

from the queried sample. 
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In the same line, the sequence conservation across species is used to 

detect regions under negative purifying selection (Siepel et al. 2005). 

This is measured using a model of neutral evolution in which 

sequences that are more conserved than expected are likely to have a 

functional role (Choi et al. 2012). Therefore, the higher is this 

conservation, the most chances than a variant shows deleterious 

effects on protein function, being not a definitive proof for 

pathogenicity. 

 

Other annotation strategies make use of computational predictive 

models to evaluate the functionality of variants. These models 

include features such as fitness, deleteriousness, sequence homology, 

functional domains or physicochemical changes of amino acid 

residues. Many predictors have been developed to assess the 

pathogenicity of variants: SIFT (Sim et al. 2012), PolyPhen2 

(Adzhubei et al. 2010), UMD-Predictor (Salgado, Desvignes, et al. 

2016), among others. All these approaches can be summarized into 

genome-wide position scores that estimate the constraint or the 

impact of particular variants for different metrics, being highly useful 

for annotation. These scores are defined within a range of values that 

reflect a fitness gradient regarding the functional consequence of 

variants (Gulko et al. 2015). Variants that reduce the fitness of an 

organism are called deleterious and they are expected to be under the 

effect of purifying selection. Only under special circumstances and 

beyond the capacity of many predictors, a variant can become 

advantageous and increase the fitness. In the table below (Table 2) 

we describe a set of genome-wide examples scores. 
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Table 2. Example of genome-wide position scores used in annotation. 

Score Description Range of values Reference 

Minor Allele 

frequency 

(MAF) 

ExAC: 60,706 exomes 

1000 Human Genome 

Project: 2,504 genomes 

GnomAD: 15,496 genomes 

& 123,316 exomes 

TopMed: 62,784 genomes 

(package release)  

From 0 (non-

observed) to 0.5. 

ExAC: (Lek et al. 

2016) 

1000 Human 

Genome Project: 

(Altshuler et al. 

2010) 

GnomAD: 

http://gnomad.broa

dinstitute.org/ 

TopMed:  

https://nhlbiwgs.org

/ 

 

phastCons Scores derived from a 

multiple alignment of the 

human genome to other 

vertebrate species. 

From 0 (non-

conserved) to 1 

(conserved) 

 

(Siepel et al. 2005) 

phyloP  

 

Phylogenetic p-values 

(phyloP) scores under a null 

hypothesis of neutral 

evolution. They are derived 

from a multiple alignment 

of the human genome to 

other vertebrate species. 

Score>0, 

conservation 

Score>3: It measures 

slow evolution  

Score<0, acceleration 

Fast evolution  

(Pollard et al. 2010) 

fitcons Fitness consequences of 

functional annotation. It 

integrates the data from 

several functional assays: 

ChIP-Seq data, DNase I 

peaks, chromatin states, 

normalized RNA-seq data 

as well as CDS annotation. 

 

From 0 (non-

selective pressure) to 

1 (strong selective 

pressure indicating 

function). 

(Gulko et al. 2015) 

CADD 

scores 

Combined Annotation 

Dependent Depletion 

(CADD) scores indicate 

deleteriousness of SNVs 

using scores from several 

sources: phastCons, GERP, 

phyloP, SIFT and PolyPhen. 

PHRED scores: from 

1 (neutral) to 99 

(highly-deleterious). 

PHRED>10 = Top 

10% most deleterious 

variants. 

PHRED>20 = Top 

1% (threshold for 

pathogenicity) 

(Kircher 2014) 

http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
https://nhlbiwgs.org/
https://nhlbiwgs.org/
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MCAP 

scores 

Mendelian Clinically 

Applicable Pathogenicity 

(MCAP) scores. It classifies 

the pathogenicity of rare 

missense variants. It 

integrates data from SIFT, 

PolyPhen-2 and CADD.  

 

From 0 (benign) to 1 

(pathogenic). 

 

Threshold=0.025 to 

separate likely benign 

from pathogenic 

variants. 

(Jagadeesh et al. 

2016) 

Linsight It measures the probability 

of negative selection on 

noncoding sites 

(deleteriousness). The 

scores can be used to 

quantify the evolutionary 

constraint on regulatory 

sequences. 

From 0 (non-

deleterious) to 1 

(deleterious). 

(Huang, Gulko, and 

Siepel 2017) 

 

Other annotations make use of the variants associated with clinical 

phenotypes encompassed in several databases such as OMIM 

(Amberger and Hamosh 2017), the GWAS catalog (MacArthur et al. 

2017)⁠ or ClinVar (Landrum et al. 2018). Such an approach is limited 

by previous knowledge, false positives and it is uncompleted for 

many conditions. 

 

Apart from the clinical phenotype, molecular measurements are also 

used to annotate variants. As explained in the previous chapter, the 

gene expression and protein levels, as well the epigenetics signatures 

are normally used as surrogates for functionality. A limitation of this 

method is that the tissue showing the disease expressivity, which is 

not always identifiable, must match the same tissue in molecular data.  

 

The current annotations are limited when the disease risk implies 

several loci. Some risk assessments try to predict the collective effect 
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of variants making assumptions on how they interact, by modelling 

the variant effect sizes, frequencies and the disease incidence and 

prevalence (Torkamani et al. 2011). Similarly, pathway-based 

annotations are confounded by biochemical reactions full of 

compensatory mechanisms due to genetic epistasis (Jin et al. 2014). 

In other cases, when biological processes are not well known, co-

expression and network inference techniques are used to predict 

potential effects on the phenotype (Wu et al. 2008). Other limitations 

include the difficulty of addressing context-specific perturbations 

such as environmental effects or the comorbidities reflecting a 

complex disease architecture.  

 

The annotation process can also be challenging when upstream steps 

concerning sequencing data introduce variability. It is not negligible 

the effect on annotation of sequencing technologies platforms and the 

pre-processing pipeline steps involving genome mappers 

(Thankaswamy-Kosalai, Sen, and Nookaew 2017), the identification 

of technical duplicates and the assessment of variant quality (Regier 

et al. 2018). For instance, the identification of short tandem repeats 

or copy number variants is underpowered with short-read sequencing 

techniques. Also, the choice of the variant caller may strongly affect 

the annotation of some variants, as a fraction of them will be false 

positives, technological artefacts annotated as real variants, or true 

negatives, true variants discarded as artefacts. 

 

In summary, rather than viewing annotation as a fully reproducible 

automatic step, we should be aware of the many decisions that can 
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affect its outcome.  The simple choice of a particular transcript set 

makes a substantial difference having downstream implications. It is 

important to be aware of this and to perform annotation in a 

consistent, accurate and reproducible manner, especially when it 

concerns to research and clinical use.  

 

 
1.4.5. Variant filtration and prioritization 

The variant annotation is the process of describing the nature and the 

effect of the DNA alteration produced by a variant (Eilbeck, Quinlan, 

and Yandell 2017), providing an assessment of their functionality. 

The variant filtration step aims to reduce the number of annotated 

variants that could be potentially associated with a trait, by using 

different filtering criteria such as the frequency variant threshold or 

the mode of inheritance (Dashti and Gamieldien 2017). When the 

filtering efforts reduce the number of likely functional variants to a 

few candidates, then it follows the variant prioritization step, a 

ranking process for those variants that are most likely to damage gene 

function and eventually trigger the disease. At this step, variants are 

evaluated using all the biomedical contextualizing information at 

hand.  

 

Variant prioritization is mostly applied on a case-by-case approach, 

rather than with a fixed strategy of invariable steps. Here we describe 

a general variant filtration and prioritization scheme for families 

(Figure 14). One possible initial step consists of applying a particular 

mode of inheritance (MOI), which determines the model of 

Mendelian segregation that a variant must follow within an affected 
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family. The MOI discards all the variants that follow a different 

segregation model than the specified. A second step can be filtering 

variants by location using a transcript set. If this criterion fails to 

provide variants of interest, subsequent analysis with regulatory 

regions and synonymous variants are reconsidered. A third filtering 

step may consider an estimated threshold for minor allele frequency. 

This threshold usually excludes common variants, which cannot be 

pathogenic. The allelic frequency at which the threshold is fixed can 

be estimated by taking into account the disease prevalence and the 

mode of inheritance (Salgado, Bellgard, et al. 2016). A fourth step 

could use the predictors for fitness, deleteriousness, pathogenicity 

and conservation as extended evidence for variants. The researchers 

should be aware about the high discrepancies among predictors and 

understand the strengths and limitations of each approach. Finally, 

the last step of variant prioritization may require further exploration 

of the functional activity of the remaining candidates. 

 

The results from filtering and prioritization are not a definitive 

evidence for pathogenicity. Other classes of genetic and experimental 

evidence are needed to implicate a variant to disease. In this sense, it 

is important to distinguish the terms “associated”, “damaging” and 

“pathogenic” to describe the filtered-in variants. A variant is 

associated with a disease when it is enriched in cases versus controls; 

and it is damaging when disrupts the coding protein, interferes with 

its function or diminishes the gene expression. Still, this does not 

imply evidence for causality. This term only applies to pathogenic 

variants with a mechanistically contribution to disease (MacArthur et 
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al. 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Flowchart of a possible variant filtration and prioritization 

pipeline. Adapted from Salgado et al. 2016. 

 

 

One of the most critical steps in clinical research is variant 

interpretation, which evaluates the potential causality of prioritized 

variants to disease phenotype, mainly based on expertise assessment 

and literature review (Eilbeck et al. 2017). The exponential growth 

of genetic data has also increased the complexity of variant 

interpretation, evidencing the need for consensus within the 

community. In order to assess objectively the pathogenicity evidence, 

it is strongly recommended to follow the most updated standards and 
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guidelines for variant interpretation from the American College of 

Medical Genetics (ACMG) (Richards et al. 2015). These guidelines 

provide a classification system for the clinical significance of variants 

relevant to Mendelian disease, which encompasses five categories: 

benign, likely benign, uncertain significance, likely pathogenic and 

pathogenic. The term likely establishes a 90% certainty threshold of 

a variant either being benign or pathogenic. This system of categories 

and classes follows a set of scoring rules based on objective and 

subjective criteria. For instance, in the pathogenic category, the 

evidence is ranked in four classes of evidence: supporting (i.e. variant 

present in a reputable source), moderate (i.e. variant absent in 

population databases), strong (i.e. functional studies show a 

deleterious effect) and very strong (null variant in a gene with 

previously reported LoF mechanism of disease). The classification 

system is consistent in all individuals, as pathogenicity assessment is 

invariable for each variant. These guidelines are limited by the 

heterogeneity and the rareness of disease, being not possible to 

provide quantitative evaluations for all variants. This fact explains 

the major abundance of variants of uncertain significance (VUS) in 

databases. The ACMG classification have been recently adopted by 

the ClinVar and OMIM resources, which in addition present other 

informative categories. For example, ClinVar incorporates the risk 

factor variants contributing to complex disease. 

 

The guidelines for investigating the causality of sequence variants 

extend the recommendations in five areas: the study design, the 

implication at gene-level and at variant-level, the publications and 
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databases; and the clinical diagnosis (MacArthur et al. 2014). The 

most important considerations from this publication are discussed 

below. 

 

The study design is highly conditioned to the expected genomic 

architecture of the disease (See Section 4) and the analytical methods 

must be adapted accordingly. To avoid reporting false-positives, large 

sample sizes are required. Still, one large family may be enough to 

discover a disease-causing variant by using the power of segregation. 

 

As for the gene-level, several requirements are demanded. In any 

study, the first deleterious variants to investigate are those found in 

previously reported genes. In the case of new genes being reported, 

evidence must replicate in unrelated individuals. Also, it is required 

the development of a statistical framework to give insights on the 

gene burden. This approach requires the creation of a null model with 

whom to compare the expected number of loss-of-function mutations 

in a certain gene. As already demanded in the last step for variant 

prioritization, the usage of functional data is also essential to report 

gene contribution to disease. At variant-level, the statistical support 

for association and co-segregation are essential. However, the 

bioinformatics predictors on function and conservation cannot be 

considered evidence for pathogenicity, although being informative 

for deleteriousness. The implication of a variant in a pathogenic 

mechanism requires validation results through phenotype 

recapitulation and the wild-type rescue in an animal model. 
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The deposit of genotype and phenotype data from any published 

study is needed to guarantee the integrity, the reproducibility and the 

compliance with the scientific good practices. The technical 

conditions of the deposit must always comply with the ethical 

approval and the patient consent. As for the implications of 

pathogenic findings in the clinical setting, a widespread claim to 

proceed with caution is demanded, particularly when certain drug 

targets may be actionable for patients.    

 

The implication of variants to disease is promoting the development 

of benchmarking tools to validate the clinical findings. Still, all these 

approaches rely on our understanding of disease: the definition, the 

classification and the genetic architecture.   

 

 

1.5. Human disease 
 
1.5.1. Disease definition and classification 

What is a disease? There is not even consensus among physicians to 

that answer. Disease comes from the Old French “desaise” word, 

which literally means lack of ease. In general terms, a disease is an 

abnormal condition of an organism that impairs body functions. 

However, its definition is highly-context dependent, as it is created 

in relation to people (Scully 2004). Social and cultural components 

such as class, gender, ethnic group, but also economical or historical 

reasons can completely alter its meaning. Thus, disease is often used 

as a condition that causes pain, dysfunction, distress, social problems 

or death, including emotions. Even though, not all authors accept this 
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definition. According to the World Health Organization (WHO), 

disease and health are not antonyms, as the latter comprises a bigger 

scope. In the Preamble of the Constitution of WHO adopted in 1946, 

they considered health as “the state of complete physical, mental and 

social well-being and not merely the absence of disease or infirmity”. 

Remarkably, this definition has not been amended since then, but 

discussion on the term keeps taking place. A disease also underlies a 

relative mismatch between an organism and the environment, 

reinforcing the context-dependence of the definition (McKusick 

1975). Other authors consider disease as a significant deviation from 

the normal phenotype (Coleman and Tsongalis, 2017). This deviation 

can be observed through systematic analysis of patient symptoms or 

signs measurements. 

 

Classification of diseases is a system of categories to which abnormal 

function is assigned according to an established criterion. Many 

different criteria exist, being the nosology the discipline that 

addresses this question.  Historically, diseases have been classified 

by clinical symptoms or by the organ they affect. The contemporary 

classification to define the syndromic phenotype depends mainly on 

observational skills and on laboratory tests. This procedure is limited 

by a lack of sensitivity and specificity, as the disease cannot be 

predicted before is manifested and additionally, it can be confounded 

in the presence of comorbidity (Loscalzo, Kohane, and Barabasi 

2007).  These limitations are linked to the insufficient information 

currently available on basal elements to fully understand disease 
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(Kim 2006). The aetiology and pathogenesis have been raised as 

alternative classifiers, although for most diseases they are unknown.  

 

The most general classification based on aetiology divides diseases 

in two groups according to their communicability. Thus, diseases 

caused by infective agents such as bacteria, viruses or parasites are 

distinguished from the rest, a non-homogenous group including 

genetic, heritable and acquired, physiological and nutritional 

diseases. Another classification takes into account the molecular 

origin of diseases categorizing them among genetic or exogenous, 

which in a certain manner reflects the traditional genetics versus 

nurture dilemma. In this classification, exogenous diseases comprise 

infections, intoxications and nutritional problems, while genetics 

considers any change in germinal or somatic cell lines. Nonetheless, 

the international standard diagnostic classification in medicine is the 

WHO International Statistical Classification of Diseases and Related 

Health Problems Tenth Revision (ICD-10), which translates 

diagnoses and other health problems from words to alphanumeric 

codes. The purpose of ICD is to build a systematic tool that records, 

interprets and compares morbidity and mortality data collected in 

different countries at different times.  

 

The definition of disease is extremely important when studying the 

underlying genetic mechanism for diagnosis. A general definition, 

including a wide range of disease subtypes, is meaningless from this 

perspective, as different underlying causes encompasses genetic 

heterogeneity. For instance, blindness should never aggregate 
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information on cataracts, corneal defects or retinitis pigmentosa 

when being studied (Mitchell 2012).  

 

1.5.2. Genetic disease 

A genetic disease is caused by one or more alterations in the DNA 

sequence affecting particular genes or due to chromosomal 

abnormalities. Following this broad-sense definition, all non-

communicable diseases are indeed genetic, as DNA is directly or 

indirectly the ultimate cause triggering a disorder. Genetic diseases 

are not necessarily transmitted across generations in families, as they 

can be observed exclusively in one individual, in forms of de-novo or 

somatic mutations. When referring to the passing of genetic 

characteristics from one generation to another, we talk about 

heredity. It is not straightforward to determine if a certain genetic 

disease segregates within a family. Disease inheritance implies that 

related individuals are affected by the same condition due to the 

segregation of germ-line cell mutations. Consequently, an extended 

family history is usually required for genetic diagnosis. 

  

Another term of main importance is disease heritability, which 

applies to the proportion of the disease expressivity that is explained 

by genetic factors and ranges from 0 (genes do not contribute to 

disease) to 1 (genes are the only reason for disease). To estimate this 

parameter, four different methods are used  (Tenesa and Haley 2013), 

including the twin method (Table 3). This method compares the 

phenotypic resemblance among monozygotic and dizygotic twins, 

which respectively share 100% and 50% of their genome. Indirectly, 
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disease heritability provides a measure of the contribution of the 

environment to disease. Genetic diseases can be highly heritable and 

at the same time be poorly inherited. This means that they can be 

mostly driven by genes, but at the same time the exact combination 

of genes to cause the disease can be hardly transmitted. The 

heritability and inheritance of a disease are highly dependent on the 

disease itself and even under specific genomic architectures, different 

subtypes of the same disease can differ. 

 

Table 3. Heritability estimates of traits and disease-related phenotypes from 

twin studies. Reprinted from: (Van Dongen et al. 2012) 
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1.5.3. Inherited disease 

Human inherited disease is classified according to the genetic 

contributors that cause the condition. Many examples of inherited 

disease are governed by individual genes (monogenic disease), while 

others are the result from polygenic contributions and environmental 

exposures (multifactorial or complex disease). Also, certain diseases 

have been linked to mitochondrial genes (Chinnery and Hudson 

2013). The two former models have been traditionally used to 

classify diseases in a categorical way according to two main 

paradigms: a rare variant in a causal gene as the main contributor to 

Mendelian disease and common variants in many genes acting as risk 

factors ruling common disease (Figure 15). 

 

 

 

 

Figure 15. Genetic and environmental contributions to monogenic (A) and 

complex (B) disorders. Reprinted from: (Manolio, Brooks, and Collins 2008) 
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1.5.3.1. Monogenic disease 

Monogenic (also called Mendelian) disorders are the simplest 

category of human inherited disease. By definition, they are caused 

by the dysfunction of a single gene with large effects on disease 

outcome. They typically segregate within families following a 

Mendelian mode of inheritance (MOI), which can present different 

forms (Figure 16). Depending on the chromosome where the disease 

locus is located, we distinguish autosomal and X-linked disorders, 

and depending on the pattern of inheritance, they can be either 

dominant or recessive, having respectively one or two copies of the 

disease-causing mutation. In the autosomal recessive inheritance, we 

distinguish the homozygous and the heterozygous form. In the former 

case, the two recessive alleles in trans are the same and they are 

located at the same position of the locus. In the latter, also known as 

compound heterozygosity, the two alleles are located at the same 

locus, but at different positions causing the genetic disease in a 

double heterozygous state. This shows that two unrelated alleles in 

the same locus can be defective in combination. The disease-causing 

mutations can also appear de-novo as a result of a genetic alteration 

in the parental germ line cells, which may prompt the observation of 

affected individuals from unaffected parents.  

 

The inheritance of a trait may also be caused by mutations in the 

mitochondrial genome. This non-mendelian inheritance follows an 

uniparental transmission, as the disease-causing mutations can only 

be inherited from the maternal line. This is explained by the fact that 

mitochondria are exclusively inherited from the oocytes.  
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It is estimated that above 10,000 human inherited diseases are 

monogenic (WHO) and show low or extremely low prevalence on 

population (Table 4). Consequently, they are also known as rare 

diseases. When considered collectively, they affect 1 in 50 

individuals having a remarkable impact on morbidity, mortality and 

healthcare cost (Boycott et al. 2015).  

 

The severity and the impact of monogenic disease on individual 

fitness are highly dependent on the deleterious effect of the DNA 

change. In monogenic disorders, the causal variant usually alters the 

protein-coding sequence or changes crucial regulatory sequences that 

affect protein structure, function or abundance. In those cases, the 

disease status is determined by the required gene dosage to achieve 

normal function (Rice and McLysaght 2017), the allele dominancy 

and the disease penetrance (Cooper et al. 2013). For instance, certain 

diseases are triggered by the loss of function of one of the alleles, 

being insufficient the expression of the other functional copy to show 

the normal phenotype (haploinsufficiency). In other cases, the 

disrupted allele interferes with the wild-type allele impeding the 

normal function (dominant-negative effect).  

 

The variants underlying monogenic disease that reduce the 

reproductive fitness of carriers are under strong purifying selection 

(Dudley et al. 2012). Even though, they can be maintained in 

population due to the existing mutation-selection balance (Reich and 

Lander 2001) as a result of mutational recurrence, heterozygosity 

tolerance and disruptive environmental changes. 
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Mendelian 

inheritance 

 

Pattern 

 

Disease example 

 

Autosomal 

dominant 

 

 

 

 

 

Huntington’s disease 

(Myers 2004) 

 

Autosomal 

recessive 

homozygous 

 

 

 

 

 

Cystic fibrosis 

 (Cutting 2015)  

 

Autosomal 

recessive 

heterozygous 

 

 

 

 

 

Hemochromatosis 

(Rossi et al. 2000) 

 

 

X-linked 

 

 

 

 

 

Rett syndrome 

(Weaving et al. 2005) 

 

 

De novo 

 

 

 

 

Autism spectrum 

disorders 

(Ronemus et al. 2014) 

 

Mitochondrial 

 

 

 

 

Leber’s hereditary optic 

neuropathy 

(Man, Turnbull, and 

Chinnery 2002) 

Figure 16. Modes of inheritance in Mendelian disease.    
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Thus, in exceptional cases, the heterozygous carriers of these causal 

variants can have a selective advantage over wild-type homozygotes 

when they confer resistance towards lethal infectious disease, as 

observed in sickle cell anaemia with malaria, in cystic fibrosis with 

cholera or in Tay-Sachs disease with tuberculosis (Withrock et al. 

2015). In this sense, the equilibrium shifts an allelic spectrum from 

removal or nearly removal to intermediate frequencies in population. 

 

There are cases in which the best predictors for disease, given a 

certain genotype, are the age of onset (Huntington’s disease) or the 

diet (phenylketonuria). 

 

Table 4. Examples of the variability on rare disease prevalence. Adapted from: 

Orphanet, 2017. (* Data originally not-available) 

 
 

Mendelian disease 

Estimated 

prevalence per 

100,000 people 

Number of 

surveyed cases / 

families 

Heritable pulmonary arterial 

hypertension 

0.08 * 

Cystic fibrosis 7.4 * 

Huntington’s disease 2.7 * 

Familial hyperthyroidism 

due to mutations in TSH 

receptor 

* 28 families 

Acute intermittent porphyria 0.54 * 

Sickle cell anemia 22 * 

Prata-Libéral-Gonçalves 

syndrome 

* 2 cases 
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Monogenic diseases were the first to be studied in human genetics 

(Sections 1.1.3 and 1.1.4). The cases of study were mainly the 

affected families whose disease inheritance pattern could be traced 

back properly. The development of genetic linkage analysis as a 

statistical method (Section 1.6), the creation of recombination maps 

and the expansion of genotyping tools fostered the golden age of 

disease-causing gene discovery. Still, the completion of this 

discovery has not finished as the growth of rare variants is likely to 

continue, bringing new pathogenic variants into analysis. The 

existent knowledge makes monogenic disease the best candidate for 

future applications of gene editing techniques. Still, major limitations 

in genetic counselling need to be resolved to become potential future 

treatments (Section 5). 

 

The worldwide research contributions on rare diseases are collected 

in different databases. OMIM is the reference database to consult 

information on monogenic disease  (Amberger and Hamosh 2017). It 

currently hosts 5,098 single gene disorders and traits generated by 

3,485 gene mutations (release: January 2018). The lack of 

correspondence between the number of disorders and mutations is 

given by the fact that gene mutations can cause more than one 

phenotype. Also, the same disease can be explained by different 

mutations in the same causal gene, being cystic fibrosis the 

paradigmatic example of that (Cutting 2015). 
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1.5.3.2. Complex disease 

There are many diseases that even having a genetic component, they 

are not likely to be explained by a single genetic cause. Complex or 

multifactorial disorders, such as hypertension, Alzheimer’s disease, 

obesity or diabetes, are caused by the combination of multiple genes 

with lifestyle and environmental factors (Craig, 2008).  They are 

normally observed as unrelated cases in population, but certain 

subtypes tend to segregate within families without showing patterns 

of Mendelian inheritance. In these cases, the risk to develop a certain 

condition usually increases with the proximity to an affected relative 

(Mitchell 2012). Nevertheless, this genetic liability is insufficient to 

diagnose the disease. The incidence of common diseases increases 

with aging, accounting also for an important fraction of mortality, 

morbidity and health care expenditure (Lupski et al. 2011). 

 

The study of complex diseases has always been a matter for dispute 

among Mendelians and biometricians (Plomin, Haworth, and Davis 

2009). Fisher resolved partially this debate in 1918 by suggesting that 

complex traits are caused by the involvement of multiple genes of 

small effect, which generate a continuous distribution per trait in 

population. According to this polygenic framework, the disease 

condition is just observed at the extremes of normally distributed 

traits (Figure 17). Hence, the major challenge is to use the right 

quantitative descriptor for disease and also to set up the proper 

threshold to differentiate affected cases from healthy controls. 
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Figure 17. The quantitative perspective of complex disease from phenotypic 

and genotypic viewpoints. This perspective regards complex disease as the 

extremes of a continuous distribution measured by a particular phenotypic score. 

a) GWAS classical case-control study. b) Extreme selection alternative strategy. c) 

Phenotype quantitative dimension study. Adapted from: (Plomin et al. 2009) 

 

Complex diseases have been mainly studied from the common 

disease – common variant (CD-CV) hypothesis, that considers 

disease as the result of the contribution of many common variants 

(MAF>1%). By definition, common variants cannot show high 

penetrance on a deleterious trait as this would imply a large degree 

of affection in population (Bush and Moore 2012). Still, many 

complex diseases appear after the reproductive age and consequently, 

these variants are under very weak purifying selection, favouring 

their increase in population frequency (Spataro et al. 2017) (Wright 

et al. 2003). Another explanation for common variants to contribute 
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to complex disease is the balancing selection observed when the 

heterozygous state confers an advantage under certain circumstances 

(Pierre and Génin 2014). Moreover, changes in the direction of 

selection can trigger antagonist pleiotropy, in which harmful variants 

in old ages have shown beneficial at early ages (Rodríguez et al. 

2017). Nevertheless, it exists an inverse correlation between the allele 

frequency of highly deleterious variants and the population 

prevalence. Consequently, the CD-CV hypothesis (Hemminki, 

Försti, and Bermejo 2008) only applies to variants of small effect 

(additive or regressive) that collectively impacts on interconnected 

biochemical pathways and non-linear networks that regulates 

homeostasis. Many combinatorial interactions within the cell, jointly 

with environmental exposures, is what finally determines the disease 

onset. As the number of possible variant combinations is enormously 

large, every individual is considered to be unique in that sense. 

 

The genetic architecture that suggests the CD-CV hypothesis cannot 

be properly addressed by genetic linkage analysis due to the low 

power to detect variants of modest effect (Manolio et al. 2009) ⁠. 

Instead, genome-wide association studies (GWASs) have been 

extensively used during the last decade.  

 

GWASs compare the allele frequencies of common variants between 

a large set of cases versus controls. They are based on the idea that if 

a variant predisposes to disease, then it is expected to be enriched in 

cases (Visscher et al. 2017). GWASs mainly rely on the accumulation 

of recombination and natural genetic diversity in population to use 
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linkage disequilibrium (LD) blocks, SNPs that non-randomly 

correlate among them, to perform the association tests. The statistical 

power of a GWAS is affected by the sample, the variant effect size 

and the frequency of the disease-causing genetic variants. 

Statistically, one GWAS fits a model for each SNP to test the null 

hypothesis of no association with the phenotype. To reduce the 

number of false positives, GWASs are corrected for population 

stratification, familial relatedness and multiple testing (Pearson TA 

and Manolio TA 2008). 

 

The association studies have been successful in identifying many loci 

contributing to complex diseases in cases such as type 2 diabetes 

(Fuchsberger et al. 2016) ⁠, inflammatory bowel disease (De Lange et 

al. 2017) or blood pressure (Warren et al. 2017). In 2010, in response 

to the large growth of GWAS data, it was created the NHGRI-EBI 

GWAS Catalog (MacArthur et al. 2017), a curated resource with 

more than 3,500 published GWASs (September 2018). 

 

Despite this advance, it is not straightforward to predict disease risk 

only from GWAS results. The identified variants in genotyping chips 

usually tag other causal SNPs in LD. In addition, many GWAS 

signals  (>80%) fall in non-coding regions (Tak and Farnham 2015), 

suggesting that changes on gene expression through regulation rather 

than protein structure modifications are behind a large fraction of 

these findings (Lowe and Reddy 2015). Yet, the most important 

limitation on complex disease is the small capacity from GWAS 

findings to explain the observed phenotypic variability due to 
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additive genetic factors, known as the missing heritability problem. 

This is mainly attributed to the large fraction of yet unknown 

common variants of small effect (Manolio et al. 2009).  

 

Other explanations have argued that current heritability estimates are 

inflated as they were originally calculated from familial clustering 

without adjusting for the environment (Muñoz et al. 2016). Also, 

some authors suggest that structural variation must account for a 

large fraction of unexplained heritability, as recently observed in 

schizophrenia and autism (Stankiewicz and Lupski 2010). Epistasis 

could be another confounder for GWAS, as association studies 

cannot deal with the synergistic and antagonistic effects of genetic 

interactions. GWASs have discovered many new loci contributing to 

complex disease during last years.  This is mean to continue, as future 

studies will better account for population diversity, will endow larger 

sample sizes and will properly address structural variation and 

environmental exposures (Murcray, Lewinger, and Gauderman 

2009). Still, filling the gap of unexplained heritability will probably 

require the exploration of new hypothesis such as the one described 

as “common disease – rare variants” (CD-RV).  

 

The CD-RV suggests that complex disease is caused by rare variants 

of large effect (Bomba, Walter, and Soranzo 2017), instead of 

common variants with tiny contribution. The genome of an individual 

includes many different types of mutational burden, but just a few 

may be responsible for the traits, mainly involving highly-penetrant 

variants that emerged in recent history in the family or clan, from 
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parents or de-novo (Lupski et al. 2011). Although many loci can 

confer subtle susceptibility risks to complex disease, medically 

actionable alleles are restricted to the rare variation according to the 

CD-RV hypothesis. In addition, the complexity of common disease 

would be explained by the high heterogeneity of these recent 

mutations observed in individuals (Figure 18). Under this scenario, 

GWAS would omit all this rare variation as a consequence of the 

microarray chip design. Even in the cases where causal rare variants 

were tagged by common variants in LD (Sun et al. 2011), their signal 

would get diluted in population studies. In other words, if the causal 

variants were mean to be rare or even private to certain individuals 

or families (Lupski et al. 2011), looking for shared susceptibility in 

groups that do not share such variants becomes worthless.  Therefore, 

using data from whole genome sequencing would be a better 

approach for explaining more heritability and perform fine-mapping 

of causal variants (Wu et al. 2017), although the cost increases 

exponentially. Similarly, the concept of common disease has been 

put in quarantine (Maher 2008), as what we see as the same disease 

in unrelated population, might only be a collection of shared 

symptoms with different genetic backgrounds.  
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Figure 18. Heatmap and multi-generation pedigree showing the relationship 

among the age and frequency of variants with their effect size in disease. 

Recent mutations tend to show higher effect on the individual’s genetic risk as 

suggested by the CD-RV hypothesis. Image extracted from: (Lupski et al. 2011) 

 

1.5.3.3. New perspectives on the genetic architecture of 

disease 

Some authors have argued that the distinction among monogenic and 

complex disease is just a mere representation and that genetic 

diseases follow a continuum among those two extremes (Dipple and 

McCabe 2000). Regarding this architecture, all disease categories are 

explained by a spectrum of variants ranging from ancestral, recent or 

de-novo origin. This conceptual framework considers that the effect 

of a variant decreases as the number of variants needed to explain the 
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disease increases. It is accepted that the allelic architecture varies 

among traits depending on the number, type, effect size and the 

frequency of variants conferring susceptibility (Manolio et al. 2009). 

A continuum space among both categories would also provide 

insights on the missing heritability problem. Using the allele 

frequency as a surrogate for the effect size (Figure 19), we can 

distinguish several levels of variant rareness ranging from low-

frequencies (0.5-5%) to extremely rare (10-7). This variant space can 

be operational for many variants of moderate penetrance effect, being 

sufficiently rare not to be present in chip arrays. This architecture 

would reduce significantly the number of variants needed to explain 

current estimates of heritability.  

 

This variant spectrum would also be relevant to understand the 

contribution of modifier genes in digenic or oligogenic inheritance, 

in which they account for much of the observed variability. Most of 

the Mendelian diseases share genetic features of complex disease, 

reinforcing the idea of a continuum. Different phenomena such as 

clinical heterogeneity, variable expressivity, reduced penetrance, 

incomplete dominance or even codominance precludes the 

observation of an expected phenotype from a given genotype  

(Cooper et al. 2013). In such cases, the identification of modifiers 

would be strongly important to better understand the genetic 

architecture of rare disease. For instance, in widely studied cases of 

cystic fibrosis caused by the CFTR gene (Ivanov et al. 2018), there is 

a large variation on the clinical expressivity depending on the 
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underlying pathogenic mutation. This also reveals different 

molecular mechanisms potentially driven by locus heterogeneity. 

 

Figure 19. Allelic spectrum of human inherited disease. The two classical 

genetic categories of disease (Mendelian disease and complex disease) are 

represented, respectively, in the top-left and bottom-right corners. Linkage analysis 

and genome-wide association studies have been respectively the conventional tools 

to discover the contributing loci in each category. In between, there is an allelic 

spectrum of low-frequency variants with intermediate effect that must account for 

digenic and oligogenic inheritance, where most of allelic architectures would be 

located. Reprinted from: (Manolio et al. 2009) 

 

Observing different genetic architectures is already possible in 

certain cases of common disease that have been extensively studied 

by GWAS (Timpson et al. 2017). These findings fit with this 

continuum transition hypothesis among Mendelian and complex 

diseases. For example, type I and type 2 diabetes mellitus differ in 

the number of loci, the allele frequency and the effect size (Figure 

20a). Similarly, vitamin D shows an oligogenic structure (few loci 
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with large effects) and LDL cholesterol an omnigenic one (>50 loci 

with a broad distribution of effect sizes) (Figure 20b). 

 

 

 

Figure 20. Large GWAS reveals different genomic architectures for different 

complex diseases and complex traits. (a) Genome-wide significant SNVs for type 

1 and type 2 diabetes mellitus. Larger effects to disease risk (higher odds ratio) are 

observed in type 1, which also accumulates more rare variants (<0.1 minor allele 

frequency, MAF). (b) Genome-wide significant SNVs for the two biochemical 

traits, vitamin D and LDL cholesterol. Vitamin D is associated with few genetic 

variants, with relatively large effects. Reprinted from: (Timpson et al. 2017) 

 

The next steps for unravelling the genetic architecture of disease are 

now focusing on the information provided by large sequencing 

efforts, jointly with different sources of functional data to better 

assess the impact of known loci. The main challenge is to integrate 

the disease risk information from common and rare disease to 

perform better genetic counselling in families and individuals.  
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1.6. Reduced penetrance in human disease 
 
1.6.1. Penetrance as a path from genotype to phenotype 

During the last decades, research efforts in clinical genomics have 

led to a notable growth of scientific literature about the genetic 

underpinnings of human disease. This growth has boosted the 

number of pathogenic variants associated with rare disease in 

databases such as OMIM, ClinVar or the Human Gene Mutation 

Database (HGMD) (Stenson et al. 2017). Although the pathogenicity 

of many of these variants is still considered valid for genetic 

counselling, an important fraction of them have been recently 

reclassified as harmless or benign thanks to the completion of the 

ExAC and gnomAD projects. These genetic studies have provided an 

unprecedented level of resolution for the allele frequency of human 

mutations highlighting the incongruity of annotating relatively 

frequent variants as lethal. This disagreement has revealed an 

apparent abundance of false positives in the aforementioned 

databases (Hayden 2016).  

 

Penetrance is a concept that establishes the connection between 

genotypes and phenotypes or, in a narrow sense, between genotypes 

and diseases. The penetrance is measured as the proportion of 

individuals showing a disease phenotype divided by the number of 

carriers of the disease-causing mutation, also referred to as causal 

genotype. Statistically speaking, the penetrance is the conditional 

probability P(x|g) that an individual with a given genotype expresses 

the phenotype x (Ott, 1985). When all individuals carrying the causal 

genotype are affected, we talk about complete penetrance. On the 
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contrary, when only a fraction of carriers exhibits the disease 

symptoms, we refer to reduced or incomplete penetrance (Figure 21). 

One of the best-known examples of reduced penetrance is the 

phenylketonuria disease, which is caused by mutations in the PAH 

gene that inactivate the phenylalanine hydrolase enzyme. This 

metabolism dysfunction increases the concentration of phenylalanine 

to toxic levels in brain causing irreversible mental disability, which 

can be avoided with an appropriate diet, thereby reducing its 

penetrance (Blau, Van Spronsen, and Levy 2010). Reduced 

penetrance can also be observed because of germ line mosaicism, 

different age at disease onset or inaccurate classification of clinical 

symptoms (Hung et al. 2011). However, in the vast majority of 

disorders, the mechanisms ruling reduced penetrance remain 

unknown (Zlotogora 2003).  

 

Although reduced penetrance is easily detected with disorders 

following an autosomal mode of inheritance, it can also occur with 

the recessive mode, in which higher allele frequencies are tolerated 

(Cooper et al. 2013). The mutations in the GJA3 gene for congenital 

cataracts (Burdon et al. 2008) and in the HFE gene for 

hemochromatosis (Beutler 2003) are, respectively, examples for both 

modes of inheritance.  

 

The phenomenon of reduced penetrance has been traditionally 

established as one of the main confounders in the analysis of simple 

and complex disease to the point of questioning the effectiveness of 

genetic counselling (Holtzman; and Marteau 2000). Nevertheless, 
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this phenomenon has remained underestimated during decades as 

only individuals and families affected by diseases have been 

considered for analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Complete and reduced penetrance in diseases with recessive and 

dominant mode of inheritance. Genotypes: Wild-type (+) and mutated alleles 

(m). Phenotypes: Healthy (white) and affected individuals (black).  

 

 

Most of the pathogenic mutations were incorporated in databases 

ignoring if the same genotypes were present in asymptomatic 

individuals. This lack of healthy controls generated an ascertainment 

bias in genetic studies. The large-scale genotyping and sequencing 

methods have partially resolved this issue by reversing genetics. It is 

now possible to assess the impact of a given genotype to a phenotype, 

instead of identifying a causal genotype given a disease (Xue et al. 

2012). With this new paradigm, reduced penetrance has emerged as 

a widespread phenomenon in human inherited disease. In this sense, 
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the efforts to estimate its magnitude are essential to evaluate 

individual disease risks. 

 

The classical approach to estimate the penetrance of a disease 

comprised all those cases reported in literature, often implying 

different mutations from the same causal gene. Nowadays, this 

strategy has shifted as penetrance is considered to be a function of 

the specific mutation or the genotype involved (Shawky 2014). 

Several studies have focused only on severe childhood disorders to 

estimate penetrance as the age of onset and the symptomatology are 

more tightly controlled. An study with 104 unrelated individuals 

encompassing only 448 paediatric diseases and 437 causal genes 

showed that on average each genome harbours 2.8 pathogenic 

mutations, ranging from 0 to 7 mutations (Bell et al. 2011). Another 

publication followed a strict protocol to identify individuals resilient 

to lethal mutations (Chen et al. 2016). In this effort, the considered 

panel for mendelian disorders (>6000, OMIM) was strongly reduced 

since diseases annotated with incomplete penetrance or unknown 

severity were filtered out, remaining only 584 rare disorders. This 

outlines than many reported Mendelian variants are substantially less 

penetrant than previously assumed (Flannick et al. 2013). 

 

Other contributions have directly examined large cohorts to estimate 

the disease penetrance. For instance, with the estimation of 

penetrance for prion disease variants (Minikel et al. 2016), a basic 

principle was applied: fully penetrant causal genotypes cannot be 

more common in population than the prevalence of the disease they 
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cause. Following such approach, an excess of pathogenic variants in 

controls with the expectation of these variants being fully penetrant 

reveals the presence of either likely benign or low penetrance 

variants. The revaluation of the prion disease variants showed an 

spectrum of penetrance from <0.1 to ~100% (Minikel et al. 2016). 

These results may indicate that variants associated with reduced 

penetrance follow a risk continuum rather than a dichotomy of 

pathogenic versus benign, blurring the distinction between 

monogenic and complex disease (Sidransky 2006).  

 

Another method to estimate penetrance is to directly calculate the 

mutational burden of reportedly pathogenic variants from control 

datasets. Only in the pilot phase of the 1000 Human Genome Project, 

between 0 and 8 highly damaging HGMD mutations (0-1 in 

homozygosity) were carried by each individual (Xue et al. 2012). At 

an more advanced phase, individuals were estimated to carry on 

average 24 to 30 ClinVar variants implicated in rare disease (Auton 

et al. 2015). This estimation was also performed using exome-

sequencing in the ExAC project. 22,765 variants previously reported 

as pathogenic in ClinVar and HGMD were searched in the exomes of 

the 60,706 individuals. On average, 5.8 pathogenic variants were 

harboured per exome after filtering for false positives (>1% allele 

frequency in at least one continental population), with 0.89 variants 

falling in known autosomal disease genes and 2 in autosomal 

recessive ones (Lek et al. 2016). These results implausibly suggest 

that most of the individuals should have a rare mendelian disorder, 

strengthening the idea that reduce penetrance is the norm, rather than 
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the exception in human genetics (Cooper et al. 2013). 

 

The concept of penetrance is strongly imbricated with clinical 

expressivity, which is a different function of disease condition. The 

idea of penetrance is based on a binary output: the presence or not of 

a disease associated with a causal genotype. On the contrary, the 

clinical expressivity reflects the degree of variation of the disease 

phenotype. This is basically a range of signs and symptoms 

overlapping a trait distribution. A priori, all cases with a certain 

degree of expressivity are considered penetrant, but at low levels, it 

is difficult to determine if a variant is penetrant or not. This is usually 

represented as a trait distribution with a threshold for disease onset 

(Figure 22).  

 

 

Figure 22. Clinical expressivity overlaps the trait distribution, being the 

disease only penetrant above a certain threshold of abnormal function. 

 

The deleterious effect of pathogenic mutations is not always observed 

in all carrier individuals, and when it is manifested, it does not affect 

in the same way (Lobo 2008). Thus, patients with the same 



 

82 

 

pathogenic mutation can show differences on penetrance, as in  

retinoblastoma (J. William Harbour 2001), Huntington’s disease 

(Quarrell et al. 2007), breast cancer (Gareth et al. 2008) or heritable 

pulmonary arterial hypertension (James White and Morrell 2012); or 

they can show large differences on the disease symptoms and 

severity, reflecting variable expressivity. This is the case of the FBN1 

mutations in Marfan syndrome (Arslan-Kirchner et al. 2010), which 

can range from mild symptoms to life-threating complications. Many 

other diseases, such as neurofibromatosis (Sabbagh et al. 2009) or 

holoprosencephaly (Collins et al. 1993) show variable expressivity. 

The differences in penetrance and expressivity are caused by several 

factors which respond to the molecular basis of each disease. Both 

phenomena are closely related, and they are likely to share common 

mechanisms (Ahluwalia et al. 2009) (van Heyningen and Yeyati 

2004) (Zlotogora 2003).  

 

1.6.2. The molecular basis of reduced penetrance 

Understanding the reason why healthy individuals can tolerate a 

burden of pathogenic variants without suffering from disease is a 

challenge. Many of those variants have an impact on the biochemical 

function of genes, but this does not necessarily translate into an effect 

on health status (Xue et al. 2012). Additionally, the observation of 

protein-coding gene knockouts in population also provide evidence 

that the loss of certain genes is compatible with life (Lek et al. 2016), 

highlighting the complexity underlying the concept of penetrance.  

 

Many disorders lack specific information on the molecular basis of 
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penetrance, implying a poor predictive power of genotypes for 

phenotypes, and therefore, impeding genetic counselling. Still, recent 

efforts have elucidated some of these mechanisms by explaining 

reduced penetrance as a combination of genetic, environmental and 

lifestyle factors. There are at least eight mechanisms proposed to 

modulate penetrance, including the type and molecular context of 

mutations, the patient characteristics such as age or sex; or the 

environmental conditions, such as diet or exposure to contaminants 

and pathogens. Below, we introduce the different mechanisms 

proposed in a review article about reduced penetrance (Cooper et al. 

2013). Noteworthy, some of the distinguished categories overlap and 

could be interchangeably classified (Figure 23).    

 

1.6.2.1. Mutation type 

Many disorders are caused by pathogenic mutations identified in 

more than one gene, indicating the existence of locus heterogeneity. 

In those cases, the average penetrance of mutations differs among 

genes, as well within the same gene. For instance, the average 

penetrance for breast cancer at the age of 70 years is 65% for BRCA1 

gene mutations and 45% for BRCA2 gene (Antoniou et al. 2003). 

Likewise, the mutation Arg1699Gln in BRCA1 is associated with 

strongly reduced penetrance (24%) compared to the average 

penetrance in that same gene (Spurdle et al. 2012).  
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Figure 23. Mechanisms of reduced penetrance. Adapted from: Cooper et al., 

2013 

 

The impact of mutations on the protein-coding sequence is also 

important to determine its penetrance. Different consequences on 

disease manifestation have been observed from missense, truncating, 

splicing and even null mutations. An example of a disease influenced 

by the type of mutation is heritable pulmonary arterial hypertension 

(HPAH), discussed in the Results section. In this case, the missense 

mutations observed in BMPR2 are linked to stronger severity and 

lower age of onset than the truncating variants in that same gene 

(Austin et al. 2009). The detrimental effect of missense variants is 

explained by the dominant-negative effect on the receptor structures, 

which does not occur with the truncated proteins. Also, the 

localization of the mutations within different domains of the protein 

structure is sometimes decisive on penetrance, as observed in prion 

disease (Minikel et al. 2016). Finally, the clinical penetrance of 

recessive disorders strongly depends on the nature of the mutation in 

the other haplotype copy, enhancing or rescuing the detrimental effect 
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when the alleles are different. 

 

1.6.2.2. Modifier effects 

Many variants are insufficient to cause the disease alone, as they are 

conditionally pathogenic. This means they need to segregate with 

other genetic variants or occur under certain environments to 

manifest the disease. The modifier factors of penetrance can arise at 

the variant, gene or environmental level or as a combination of them. 

 

Variant modifiers in cis and trans 

Regulatory variants can alter the penetrance of pathogenic mutations 

by altering the expression of the genes carrying such mutations. They 

can act either in a local or a distant way, both encompassing cis-acting 

and trans-acting factors (Rockman and Kruglyak 2006).  

 

The regulatory variants acting in cis can exert a modulating effect on 

penetrance by changing the expression of the allele copy harbouring 

the pathogenic mutation. The allelic imbalance (Figure 24) that 

favours the expression of the dysfunctional allele over the wild-type 

one, reduces the dosage of functional gene product causing higher 

penetrance and higher disease risk (Lappalainen et al. 2011). For 

instance, an intronic enhancer SNP (rs2596623) in the thyroid 

hormone receptor β (THRB) gene stimulates over-expression of the 

pathogenic Arg338Trp pituitary-specific isoform of the receptor (TR 

β2), leading to the phenotype of pituitary cell-specific resistance to 

thyroid hormone (Alberobello et al. 2011). This example shows that 

this mechanism is likely to manifest in a tissue-specific fashion. 
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Figure 24. The cis-regulation of a gene can modulate the penetrance of 

pathogenic mutations. Reprinted from: Castel et al. 2017. 

 

The level of penetrance in cis-regulation depends on four factors: the 

functional importance and the dosage-sensitivity of a gene, the type 

of the pathogenic mutation impairing the same gene; and the effect 

size of the cis-regulation on expression. The relevance for this 

mechanism in human disease is demonstrated by the action of 

purifying selection on reducing the haplotype combinations of 

regulatory and coding variants associated with higher penetrance in 

general population (Castel et al. 2017). Likewise, the datasets with 

affected individuals are enriched in haplotypes associated with higher 

disease risk, lower functional dosage and lower fitness.  

 

Other examples of regulatory variants acting in cis comprise intronic 

mutations modifying gene splicing. These variants can lead to 

aberrant splicing by creating cryptic acceptors and donors, by 

disrupting the wild-type existing ones or by breaking enhancer and 

silencer regions. Other regulatory regions such as 5’UTR, 3’UTR and 

non-coding regions are candidates to harbour regulatory variants with 

modifying effects on penetrance. 
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As for trans-acting variants, many examples support this mechanism 

despite being less characterized. For instance, two unlinked SNPs 

from the TF and HFE genes are shown to cause an increased risk for 

Alzheimer disease  (Kauwe et al. 2010). More examples will be 

displayed in the gene modifier section. 

 

Modifier genes  

Many disorders, once described as monogenic disease, are not 

genetically as simple as they were initially described (Dipple and 

McCabe 2000). This is partially explained by unlinked modifier 

genes (Steinberg and Sebastiani 2012) that influence the penetrance, 

the dominance and the expressivity of the majority of inherited 

diseases. The action of modifiers genes can also influence the risk 

and the age of onset for diseases with primarily responsible genes. 

This modification can act at any level influencing a trait, from 

transcription to intermediate phenotypes affecting both molecular 

and cellular levels.  

 

Different models of modification have been proposed based on the 

idea that modifier genes may change the threshold for the trait or the 

disease expression (Nadeau 2001). Modifier genes can be protective 

when they reduce penetrance by moving this threshold to the right 

(Figure 25a) or confer susceptibility and higher penetrance by 

moving the threshold to the left. If this susceptibility contribution is 

high enough, it can even change the heterozygotes phenotype 

generating a dominance modification (Figure 25b). Likewise, 

modifiers can also shift the trait distribution of pathogenic carriers to 
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more (or less) extreme phenotypes modifying the clinical 

expressivity (Figure 25c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Models of modification for penetrance (a), dominance (b) and 

expressivity (c). Reprinted from: (Nadeau 2001) 

 

Many examples of unlinked modifier genes through digenic or 

oligogenic inheritance are reported in inherited disease. In digenic 

inheritance, mutations compromising two functional genes are 

required for explaining complete penetrance. This concept should not 

be confounded with mutation coinheritance, which takes place when 
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one of the two mutations can independently lead to the disease 

phenotype. The digenic interaction is observed in cases where 

different genes encode different subunits of the same multimeric 

protein, an oligomeric protein complex or two proteins that interact 

functionally with each other (Cooper et al. 2013). This inheritance 

can also be detected in functional pairs such as receptor/ligand or 

transcription factor/transcription factor binding site. In other 

scenarios without functional pairing, the digenic interaction can 

occur at the regulatory, biosynthetic or degradative level. 

Haemochromatosis is a disease example of digenic inheritance 

implying mutations at the HFE and CYBRD1 genes (Constantine et 

al. 2009).  

 

In oligogenic inheritance, multiple genes are required to be mutated 

to manifest the disease, blurring the frontiers between monogenic and 

complex disease. The gene mutations contributing to this inheritance 

have a net functional loss or gain effect on the phenotype onset. 

Consequently, the difficulty in understanding oligogenic inheritance 

resides in the interpretation of how these genes interact to modulate 

the clinical penetrance. The Bardet-Biedl syndrome follows an 

oligogenic inheritance, as a list of 17 genes are known to contribute 

to the penetrance and expressivity of the disease (Badano et al. 2006). 

 

Gene-environment interaction 

Environmental factors can modify the penetrance and the 

expressivity of pathogenic mutations. These factors adopt many 

different forms, including the diet (Ramachandrappa and Farooqi 
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2011) or other activities such as smoking, alcohol intake, drugs or 

physical activity (Hunter 2005). Also, life episodes with exposition 

to certain pathogens or sun light, as well as living traumatic 

experiences or living at high altitude can respectively modulate the 

penetrance for infectious disease (Bach 2002), melanoma (Scherer 

and Kumar 2010), psychological disorders (Uher 2014) and oxygen-

depending traits (Astrom et al. 2003). Environmental factors can also 

interact differently depending on the sex (Hunter 2005). The most 

compelling evidence for environmental influence is found in cancer 

susceptibility, particularly in those cases of lung cancer where 

individuals that do not smoke have significantly less risk to develop 

the disease (Brennan, Hainaut, and Boffetta 2011). The known gene-

environment interactions are based on suspected models of exposure, 

but much more cases of monogenic disease will be elucidated as the 

ability to identify and measure such interactions is improved 

(Aschard et al. 2012). 

 

1.6.2.3. Gene expression level 

Gene expression levels show inter-individual differences because of 

the action of cis/trans-acting factors, the environmental interactions, 

and the presence of stochastic variability. As observed previously 

with variant modifiers, the differential allelic expression may boost 

either the effects of the deleterious or the wild-type allele in 

autosomal dominant inheritance, increasing or reducing the clinical 

penetrance. For instance, the penetrance for pulmonary arterial 

hypertension disease caused by BMPR2 mutations partially depends 

on the level of expression of the wild-type BMPR2 allele (Hamid et 
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al. 2009).  

 

Some splicing mutations can generate truncated transcripts, but a 

fraction of wild-type production can be retained due to the binding 

affinity competition for the spliceosome. The different levels of gene 

expression in individuals can translate this phenomenon into different 

levels of penetrance. In the same line, alternative splicing may 

underly cases of reduced penetrance by a similar mechanism (Cogan 

et al. 2012). 

 

1.6.2.4. Allele dosage 

The penetrance of mutations depends on their genomic context, but 

also on the allele dosage. This explains why some mutations exhibit 

low penetrance in heterozygosity and much more severe expressivity 

and penetrance in homozygosity. For example, changes on the allele 

dosage due to mutations in the PKD1 gene are associated with the 

initiation of the polycystic kidney disease, theoretically described as 

an autosomal dominant disorder (Rossetti et al. 2009). 

 

1.6.2.5. Copy number variation 

Structural variation is implicated in many disorders and encompasses 

the highest number of polymorphic genomic positions in the human 

genome (Sudmant et al. 2015). Copy number variants (CNVs) is a 

class of structural variation that contributes to disease susceptibility 

by gaining or losing genome regions ranging from 50 bp up to 3 Mb 

(MacDonald et al. 2014), including entire sequences of genes. 

Recently, CNVs are gaining importance in the study of the genetic 
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architecture of psychiatric (Bassett, Scherer, and Brzustowicz 2010) 

and development disorders (Marshall and Scherer 2012). 

 

In this context, the estimates for penetrance are predicted from the 

CNV size, the genomic location and the context variants (Carvill and 

Mefford 2013). Still, they present high heterogeneity even when the 

same disease is considered. CNVs can modulate penetrance by 

altering the gene dosage or by interfering the immediate regulatory 

regions (Shawky 2014). In general, CNVs reduce the penetrance of a 

pathogenic mutation by providing in cis an extra wild-type copy of 

the causal gene. This genetic robustness is comparable to the 

functional redundancy and compensation dosage observed from 

homologous genes (Hsiao and Vitkup 2008).  An example of CNV 

ameliorating effects is observed in spinal muscular atrophy, where 

multiple copies of the SMN2 gene partially compensates the severity 

associated with the loss of the SMN1 gene (Wirth et al. 2006). 

 

1.6.2.6. Sex 

Certain disorders are more likely to manifest in a sex-specific manner 

due to the differential gene regulation between males and females, 

especially involving sex steroid-responsive genes (Dimas et al. 

2012). For instance, oestrogens levels in females contribute to higher 

penetrance for hereditary pulmonary arterial hypertension (Austin et 

al. 2009). Another mechanism in which sex modulates penetrance is 

through genomic imprinting. With this phenomenon, an epigenetic 

modification silences the expression of either the maternal or the 

paternal allele, which essentially may correspond either to the mutant 
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or the wild-type copy. Depending on which copy is silenced, the risk 

for the disease is increased or decreased. 

 

1.6.2.7. Age of onset 

Many carriers with germline pathogenic mutations do not express 

disease at birth, but they can manifest it during lifetime, increasing 

the risk for carriers with the aging. The age of onset can vary 

considerably, not only among mutations causing the same disease, 

but also with mutations from the same gene or even when considering 

the same mutation. The best example to illustrate the relevance of the 

age of onset in the phenomenon of penetrance is Huntington’s 

disease. In this disorder, most of the carriers only show the condition 

after midlife with an average onset at 40 years (Myers 2004), ranging 

from almost zero penetrance in youth to almost complete penetrance 

in old age. 

 

The age-dependent effect on penetrance implies that an individual 

shifts its trait distribution towards an extreme phenotype during the 

lifetime. For certain disorders, this is supported by the different levels 

of expressivity observed among symptomatic carriers, asymptomatic 

carriers and healthy non-carriers individuals (Milanesi et al. 2013).  

The age of onset effect is usually represented with the cumulative 

penetrance curves, which reflects the probability of a carrier to be 

affected at a specific age (Figure 26). 
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Figure 26. Age-dependent penetrance curve for Huntington’s disease with a 

cohort of carriers with the 36-39 CAG triplet repeats in IT15 gene. Reprinted 

from: (Quarrell et al. 2007) 

 

1.6.2.8. Epigenetic modification 

DNA methylation, histone modification and miRNA expression are 

different epigenetic mechanisms that could modulate penetrance by 

indirectly changing the gene expression (Wolffe and Matzke 1999). 

The role of epigenetics in disease was initially observed in 

monozygotic twin studies that showed discordant phenotypes 

(Gordon et al. 2012). Following this approach, DNA methylation has 

explained the observed reduced penetrance with the IL4 gene in 

familial asthma (Soto-Ramírez et al. 2013) and other disorders 

affected by X-inactivation, like the ABCD1 gene in familial 

adrenoleukodystrophy (Wang et al. 2013). 
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Reduced penetrance emerges from the complex relationship between 

the genotype and the phenotype. The prediction of the variant 

pathogenicity is a challenging task as reduced penetrance variants can 

easily be confounded with benign variants complicating genetic 

counselling. Still, reduced penetrance should not be regarded only as 

a problem. Further research on the mechanisms of reduced 

penetrance can provide insights into new therapeutic strategies if we 

are able to mimic the resilient effects of asymptomatic carriers on 

symptomatic ones.   

 

 

1.7. Genetic linkage analysis 
 
Linkage analysis is a statistical genetics approach which was largely 

adopted at the dawn of clinical genetics to map loci involved in 

Mendelian disease. The development of genotyping microarrays 

increased the number of markers initially available and enhanced the 

statistical power of the technique. Although this technique has been 

progressively replaced by variant discovery and filtering approaches 

using short-read sequencing, it is emerging again as a powerful tool 

to detect variants responsible for disease using family-based 

strategies (Ott, Wang, and Leal 2015). Apart from being a low-cost 

option with genotyping microarrays, genetic linkage provides a 

model framework with statistical evidence of the variant contribution 

to disease susceptibility. Even more importantly, it can account for 

reduced penetrance, an overlooked phenomenon in variant filtering 

pipelines. 
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1.7.1. Genetic linkage and recombination 

We refer to genetic linkage as the phenomenon by which loci located 

in a single chromosome are inherited together contradicting the 

Mendel’s law of independent assortment. The genetic linkage is 

observed when the alleles from a certain haplotype are passed as 

intact groups through generations. For early geneticists, these groups 

were interpreted as the genetic equivalents of chromosomes, as 

different loci were observed to follow a linear order (Ott, 1999). 

However, this joint segregation is not observed for all the loci of a 

chromosome, as the phenomenon of recombination occurs. 

 

In meiosis cell division, homologous chromosomes pair up and some 

physical contacts defined as chiasmata are formed between 

chromatids. These contacts allow the formation of the cross-bridged 

Holliday structure, whose resolution leads again to linear molecules, 

but with an exchange of genetic material between chromatids of 

parental chromosomes. The last meiosis step produces four sperm 

cells, corresponding to the two chromatids for each chromosome. In 

a model of a single crossover, two of these gametes are recombinant 

and two non-recombinants (Figure 27).  

 

The probability of a recombination occurring between two loci is 

measured by the recombination fraction (θ). It reflects the proportion 

of recombinant haplotypes that a doubly heterozygous parent can 

produce. In absence of chromatid interference, which assumes that 

crossovers are random and independent among them, this 

recombination fraction ranges from a maximum of 50% for unlinked 
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loci to 0% for tightly linked ones. The maximum of 50% is obtained 

from considering two loci placed at the extremes of a chromosome 

with only one crossover being observed. In this hypothetical 

situation, only two gametes out of four are recombinant. The 

recombination fraction varies depending on the sex of the parental 

gametes and the region of the genome (Lenormand and Dutheil 

2005), especially regarding the pseudoautosomal regions (PAR), 

where the sex chromosomes X and Y have homologous sequences 

that can recombine in meiosis.   

 

 

 

Figure 27. Model of single crossover in meiosis and computation of the 

recombination frequency (θ). 

 

Crossovers occur semi-randomly along a chromosome, as their 

distribution is usually biased towards recombination hotspots regions 

(Székvölgyi, Ohta, and Nicolas 2015). The presence of a crossover 

indicates that is highly unlikely that another crossover is formed in 

the immediate vicinity. In the case of such small distances among two 
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loci, the recombination fraction is used as a measure for genetic 

distance in centimorgan (cM), being 1 cM equivalent to 1% of 

recombination fraction. This has allowed the creation of genetic maps 

encompassing the expected number of crossovers among the loci of 

a single chromosome (Botstein et al. 1980). These maps are based on 

the idea that two distant loci are more likely to recombine that those 

that are closer in a single chromosome. 

 

The evolutionary meaning of recombination is hypothesized to be a 

source of variability for natural selection. In this line, the meiosis 

exchanges are shown to be a hallmark for mammalians, contributing 

as a major determinant on haplotype diversity within populations 

(Dumont 2017). 

 

Genetic linkage uses these two phenomena, recombination and 

linkage, to identify regions associated with monogenic disease. The 

linkage technique is based on the idea that a pathogenic mutation 

appears de-novo in an individual at an unknown location and 

segregates through a limited number of family generations. In this 

segregation, the recombination events statistically tend to occur more 

closely to the disease locus reducing progressively its extension up 

to 100 kb (Weiss and Clark 2002). Using genetic markers, it is 

possible to search the hypothetical region corresponding to the 

disease locus using the identical by descent (IBD) approach, in which 

two affected individuals share identical alleles from a common 

ancestor (Figure 28). This approach distinguishes genetic linkage 

from association studies, which are based on a much higher number 
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of generations and follows the identical by state (IBS) approach, in 

which two affected individuals have the same alleles, but not 

necessarily due to a common ancestor.  

 

This gene mapping approach cannot be always applied 

straightforwardly, as many factors need to be arranged. For instance, 

not all the recombination events are informative for linkage and many 

different approaches, algorithms and implementations have been 

proposed so far. In the next subsections, we will briefly describe the 

most important aspects and the existing tools for genetic linkage. 

 

Figure 28. Conceptual core of IBD-based genetic linkage analysis. 

 

1.7.2. The fundamental aspects of linkage analysis 

Conceptually, linkage analysis study the joint transmission of a 

phenotypic character (i.e. disease) and genetic markers. To conduct a 

proper analysis, though, several requirements are needed. 
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One key aspect is the availability of genetic markers with a genome-

wide uniform distribution. The informativeness of markers increases 

when they encompass multiple alleles, being variable number tandem 

repeat (VNTR) and short tandem repeats (STR) the most convenient 

markers for linkage. Still, the most used genetic markers are single 

nucleotide polymorphisms (SNPs), available in the order of millions 

at low cost in microarray chips. When adopting SNPs as markers, it 

is possible to include the population allele frequencies from human 

variations catalogues, such as the 1000 Human Genome Projects, to 

enhance linkage power detection. The linkage programs also require 

as input a genetic map, which contains the ordering and the genetic 

distances of markers in chromosomes.  

 

Another basic component of linkage are the kinship relations 

encompassed in family pedigrees, which include founder and non-

founder members, distinguished by the absence or the presence of 

parents in the pedigree. It is also common to attach the phenotypic 

information in pedigrees, which can adopt qualitative (affected – 

unaffected) or quantitative traits following a continuous distribution.  

This phenotyping step is challenging as symptoms for diagnoses are 

not always so clear due to different clinical expressivity. In most 

cases, however, the only solution is to use phenotypes that are 

expected to correlate with disease and presumably with the action of 

a gene. In any case, it is preferred to use quantitative trait linkage 

analysis when possible, as it encloses a definition closer to the 

underlying disease mechanism. 
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Before running a linkage analysis, it is necessary to perform different 

quality controls on genotyping data to minimize errors and 

inconsistencies. Using the family information, it is common to detect 

mendelian inconsistencies, but also pedigree problems such as 

swapped samples, adoption or false paternity (Neale, Neale, and 

Sullivan 2002). 

 

Linkage analysis provides a genome-wide level of significance to 

determine the involvement of a variant in disease susceptibility by 

using the LOD score method proposed by Morton in 1950. This test 

evaluates the probability that a genetic marker cosegregates with the 

disease over the null hypothesis that it will occur by chance in the 

pedigree. In general, as closer the marker is from the disease allele, 

the stronger will be the cosegregation, and on the contrary, the further 

is located, the most chances that a recombination breaks this 

relationship.  

 

The LOD score is the log likelihood of obtaining the test data (X) 

when the locus responsible for the disease maps at a given genetic 

distance to the marker (H1, linkage hypothesis, θ<0.5), divided by the 

likelihood of observing the same data if the marker and the disease 

are not linked (H0, null hypothesis of free recombination, θ=0.5). 

 

𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 = 𝑍 = log10 (
𝑃(𝑋|𝜃 < 0.5)

𝑃(𝑋|𝜃 = 0.5)
) 
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To compute the LOD score, linkage programs use genetic distances 

that are translated into recombination fractions using map functions. 

As discussed above, for small distances and absence of interference, 

the appropriate map function establishes that genetic distances are 

equivalent to recombination fraction (x=θ, Morgan’s map function). 

Moreover, in those small intervals, recombination fractions are 

additive. However, when multiple crossovers occur, they are no 

longer additive and other map functions are required to correct for 

these differences, such as the Haldane or the Kosabi functions. In 

practice, the linkage programs look at different values of 

recombination fraction (θ) to maximize the LOD score in a step of 

maximum likelihood estimation (MLE). The value of recombination 

fraction that maximizes the LOD score (θ’) is then applied.  

 

In Figure 29 we represent how the LOD score is calculated in a 

linkage analysis among a disease locus and a genetic marker with 

known phase. In the example, we assume that the penetrance is 

complete, there is no chromatid interference and the disease follows 

an autosomal dominant mode of inheritance. 
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Figure 29. Example of the application of the LOD scores method in a 

pedigree of two-generations. 

 

 

In the example above, the LOD score is calculated analytically due 

to the simplicty of the example. In real situations, different factors 

such as reduced penetrance, population allele frequency, missing 

information,  larger pedigree sizes and multiple generations make this 

task too complex to be computed in this way. To overcome this 

complexity, different algorithms encompassing different strategies 

have been implemented in the linkage programs to compute the LOD 

score (Table 5). 
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Table 5. Summary of the main existing algorithms and their main features. 

Adapted from: Course on gene mapping: Linkage analysis by E.Sobel.  

(* Programs used in the Results section.) 

 

 

LOD scores are interpreted from the perspective of an hypothesis test. 

Generally, a positive LOD score indicates evidence in favor of 

linkage and negative scores, evidence for free recombination. 

However, a more stringent criteria is used to determine if linkage 

really exists. The maximum of the LOD score is conventially used as 

the measure for accepting or rejecting the null hypothesis of no-

linkage, using a critical threshold of 3.3 LOD score units. This 

threshold is accepted to convey an adequate genomewide 

significance level that minimizes the number of false-positives when 

rejecting the null hypothesis of free recombination. Moreover, this 

Algorithm Size 

restriction 

Solution Programs Increase with 

the number of 

individuals 

Increase 

with 

markers 

Missing 

data 

effect 

Elson-

Stewart 

~8 loci Exact 

 

Fastlink 

Linkage 

Mendel 

Vitesse 

Linear Exponential Severe 

Lander-

Green 

Aprox. 24 

bits 

(complexity) 

Exact 

 

Allegro 

GeneHunter 

Mendel* 

Merlin* 

Exponential 

 

Linear Modest 

Markov 

Chain – 

Monte 

Carlo 

>1000 

individuals 

>1000 loci 

Aprox. Loki 

SimWalk2 

Morgan* 

Linear Linear Mild 
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threshold is robust to a moderate practice of multiple testing. Still, 

for any positive result to be confirmed, it is a good practice to pursue 

other linkage tests for robustness, like selecting another set of 

markers or using other linkage programs if possible. Ideally, the 

positive linkage hit should be replicated in other families, although 

the low prevalence of certain diseases makes this suggestion difficult 

to be accomplished. 

 

The results of a linkage analysis usually point to a locus or a region, 

rather than a specific variant. In fact, the regions showing significant 

linkage can expand more than 1 Mb and can contain more than one 

gene, so further filtering is always needed to identify pathogenic 

variants. Still, it unquestionably reduces the number of the candidate 

variants to follow up.  

 

The power to detect linkage depends mainly on the magnitude of the 

variant contribution to the disease phenotype, but there are other 

factors that are also important. This includes the pedigree size and 

structure, and the marker informativeness for linkage, which is 

indirectly measured by their heterozygosity. In addition, the distance 

of markers to the disease locus and the genetic heterogeneity should 

be considered. Other factors such as genotyping errors, misdiagnoses 

in phenotyping or the usage of incorrect parameter models can 

compromise the power to detect linkage. The penetrance function and 

the phenocopies rates (discussed in Section 6.4) can dramatically 

modify the LOD score. 
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The genetic linkage technique presents limitations in studying 

complex traits, as it assumes the absence of epistasis and does not 

account for environmental interactions. On the other hand, it enables 

the identification of disease-causing genes by incorporating several 

parameters into a model of inheritance, including penetrance. 

 
1.7.3. Types of genetic linkage analysis 

There are two main types of genetic linkage analysis: parametric and 

nonparametric linkage, also known as model-free linkage (Strauch et 

al. 2003). In linkage, the nonparametric tests are not equivalent to 

statistical distribution free tests. They simply refer to tests that do not 

need the specification of parameters for an hypothetical mode of 

inheritance.  

 

1.7.3.1. Parametric linkage 

Parametric linkage analysis relies on the specification of a list of 

parameters including the disease mode of inheritance (dominant or 

recessive), the disease gene frequency, which refers to the frequency 

of the sought allele causing the disease; the disease penetrance and 

the phenocopies rate. These parameters are chosen according to a 

hypothesis of how genotypes influence the phenotype. However, 

misspecifications on this model reduces the power for linkage 

detection. Two main parametric linkage tools can be used: two-point 

and multipoint linkage methods. 

 

With two-point linkage analysis, the position of a disease-related 

locus is tested one marker at a time. Theoretically, this method is less 

powerful than multipoint linkage and it is widely used as a quick 
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evaluation of linkage. In spite of that, the two-point method is more 

flexible than multipoint as the recombination fraction is not 

constrained by neighbouring markers. For this reason, it is associated 

with a reduced computational cost and it does not present restrictions 

on pedigree size. Two-point linkage is highly sensitive, at the cost of 

generating a higher proportion of false positives. Consequently, two-

point linkage results should be always followed up by multipoint 

linkage for robustness. Mendel (Lange et al. 2013) and Pseudomarker 

(Gertz et al. 2014) are the two-point linkage programs used in this 

thesis. 

 

In multipoint linkage analysis, the position of a disease-related locus 

is tested along multiple markers, three or more, at a time. In this way, 

it addresses the allele transmission by considering short-range 

haplotypes. To that purpose, a correctly ordered genetic marker map 

is required. Multipoint linkage is more powerful and robust than two-

point, but it is constrained by the pedigree size and the number of 

markers, easily reaching unfeasible computational scenarios. Two 

main algorithms are used to compute likelihoods in multipoint, the 

Elston-Stewart and the Lander-Green (Table 5). The first one scales 

exponentially with the number of markers and linearly with the 

number of individuals, while the latter performs in the opposite way.  

Linkage complexity is measured in bits and computed according to 

the number of founders (f) and non-founders (n) present in a 

pedigree, as follows: 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑏𝑖𝑡𝑠) = 2𝑛 − 𝑓 
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There is a maximum level of complexity that the Lander-Green 

algorithm can hold, also dependent on the software implementation. 

For instance, the algorithm is limited to 24 bits in Merlin (Abecasis 

et al. 2002). Above this threshold, a pruning step on the pedigree is 

required to be able to run the analysis. Merlin  and Morgan (Wijsman, 

Rothstein, and Thompson 2006) are the two multipoint linkage 

programs that have been used in this thesis. 

 

1.7.3.2. Nonparametric linkage 

The nonparametric linkage (NPL) does not require the specification 

of a model, since it is based on the concept of identity by descent 

(ibd). This method only uses information from affected individuals 

and produces robust results at the cost of losing information 

regarding unaffected individuals (Strauch et al. 2003). The 

parameter-free approach is useful when the mode of inheritance is 

unknown. Still, the “affected-only” strategy will be always limited in 

terms of statistical power in comparison to parametric linkage. 

Moreover, model-free linkage is usually equivalent to parametric 

linkage (Strauch et al. 2003), as shown by the statistically 

equivalence among certain NPL tests and parametric recessive 

models (Knapp, Seuchter, and Baur 1994). 

 

Nonparametric linkage is build on descent graphs that represent the 

inheritance vectors among affected individuals. The method 

evaluates if there is more IBD sharing among affected individuals 

that it would be expected under the free recombination hypothesis. 

Several implementations from Whittermore and Halpern have been 
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widely used: NPL-pairs and NPL-all statistics. In the former case, it 

measures for specific positions, the degree of IBD allele sharing with 

pairs of affected, while in the latter, it measures the IBD allele sharing 

across all the affected individual at the same time. These 

implementations can be coupled with other methods to analyse IBD 

sharing in many small families (Linear Kong and Cox) or in a few 

large families (Exponential Kong and Cox). All of these 

implementations are available in the Merlin program. 

 

The nonparametric tests present a major inconvenient regarding the 

high computational cost of large pedigreees. Also, its performance is 

time-consuming when it comes to the evaluation of significance. 

 

1.7.4. Modelling reduced penetrance in parametric linkage  

In many individuals, the phenotype does not exhibit the underlying 

genotype being necessary to account for reduced penetrance. 

Parametric linkage analysis is in fact the only genetic tool that can 

deal with reduced penetrance, as it is a necessary parameter of the 

linkage model. The phenomenon of reduced penetrance implies 

uncertainty in the disease onset, which may be the result of the action 

of gene-gene and/or gene-environment interactions.  

 

In the models, penetrance is modelled as the phenotype risk given by 

some genotype, being usually expressed as a vector for each of the 

genotype components. Likewise, the penetrance can be interpreted in 

a narrow-sense, referring only to disease; or in a wide-sense, by 

considering all the possible phenotypes. The usage of the narrow or 
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the wide-sense definition depends on the linkage program. In the 

examples below (Table 6-8), we express how a fully penetrant 

disease with a disease allele D and a wild-type allele d would be 

expressed in a recessive and a dominant disorder: 

 

Table 6. Narrow-sense penetrance example. Complete penetrance for each mode 

of inheritance (recessive and dominant) is displayed. Accordingly, for the recessive 

MOI, all the D/D homozygotes are affected, while in the dominant MOI, all the 

heterozygotes and all the D/D homozygotes are affected. 

 

d/d D/d D/D MOI 

0 0 1 recessive 

0 1 1 dominant 

 

 

 

Table 7. Wide-sense penetrance (recessive example). The penetrance is specified 

for each of the phenotypes in a recessive MOI: for affected individuals is equivalent 

to Table 6 (row 1), for unaffected individuals is 1-P(affected) and for unknown 

individuals is 1, as the penetrance is the union of the affected and unaffected 

penetrance (Ott, 1999).  

 

d/d D/d D/D Phenotype 

0 0 1 affected 

1 1 0 unaffected 

1 1 1 unknown 
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Table 8. Wide-sense penetrance (dominant example). The penetrance is 

specified for each of the phenotypes in a dominant MOI: for affected individuals is 

equivalent to Table 6 (row 2), for unaffected individuals is 1-P(affected) and for 

unknown individuals is 1, as the penetrance is the union of the affected and 

unaffected penetrance (Ott, 1999). 

 

d/d D/d D/D Phenotype 

0 1 1 affected 

1 0 0 unaffected 

1 1 1 unknown 

 

From the examples above, we can observe that the difference among 

the mode of inheritance in fully penetrant disease is basically the 

penetrance of heterozygotes. Additionally, when defining the 

penetrance for unknown individuals, it should be noted that the 

“unknown” phenotype is the union of the phenotypes “affected” and 

“unaffected”, so it is always equal to 1. In linkage analysis, it is 

common to perform a nonparametric test if the penetrance for a 

disease is unknown. This can be achieved by setting a small 

penetrance for affected individuals, which indirectly turns unaffected 

individuals into non-informative individuals for linkage. 

 

Not only the individuals carrying the at-risk genotypes (D/d and D/D) 

can express the disease. There are individuals carrying protective 

genotypes that express the disease due to the action of genes at other 

loci or due to unknown environmental factors. These sporadic cases 

are known as phenocopies and they imply that the non-susceptible 

genotypes show a non-zero penetrance. Below, it is shown an 
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example (Table 9) with phenocopies (bold) and reduced penetrance 

(italics). 

 

Table 9. Narrow-sense penetrance example with phenocopies. It is possible to 

observe a small fraction of phenocopies as 1% of individuals with protective 

genotypes (d/d homozygotes) are affected. Also, in both recessive and dominant 

MOI, reduced penetrance is observed, as penetrance do not reach 100% penetrance 

neither for the D/D homozygotes in a recessive MOI, nor for the heterozygotes and 

D/D homozygotes in a dominant MOI. 

 

d/d D/d D/D MOI 

0.01 0.01 0.83 recessive 

0.01 0.83 0.83 dominant 

 

In linkage tests, it is common to account for phenocopies even when 

it is not evident that they actually exist. The inclusion of phenocopies 

maximizes the power to detect linkage when they exist, but they do 

not generate false positives when they do not exist (Strauch et al. 

2003). The term phenocopy rate is widely-used to designate the 

penetrance of phenocopies for a certain disease, which refers to the 

non-zero penetrance of the protective genotypes (Ott, 1999). When 

phenocopies exist, it is possible to compute the penetrance ratio (g/f) 

by dividing the penetrance associated with genetic cases (g) and the 

penetrance associated with phenocopies (f). This penetrance ratio is 

analogous to the risk ratio in association studies. When the ratio is 

high, it is indicative that the disease phenotype can be easily 

discriminated by the underlying causal genotypes (Ott et al. 2015). 
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The consequence of reduced penetrance in linkage analysis is a loss 

of power that implies smaller values of LOD score. Moreover, when 

selecting smaller values of penetrance in a model, it is required to 

have larger sets of data to reach at least the same statistical power 

(Ott, 1999). 

One of the issues to account for penetrance in parametric linkage is 

indeed to estimate its value, which can be done through segregation 

analysis, directly from pedigree data or by building penetrance curves 

to account for the age-of-onset. 

When the penetrance changes according to a certain covariate, such 

as age or sex, it is common practice to build liability classes. For each 

class, a different penetrance vector is defined, and the likelihoods are 

computed with respect to those parameters (Table 10).  

Table 10. Age liability classes for the Charcot Marie-Tooth disease. Adapted 

from: Ott, 1999. Only the penetrance for affected individuals is displayed (narrow-

sense). The penetrance for the disease reaches 80% penetrance by age 80, being 

only 18% at age 40. Also, the penetrance for the phenocopies increase to 10% by 

age 80, while they are unobserved before 60. 

d/d D/d D/D (age liability 

classes) 

0 0.02 0.02 age<20 

0 0.18 0.18 age<40 

0.05 0.55 0.55 age<60 

0.1 0.8 0.8 age<80 
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In summary, linkage analysis is a technique that has been now used 

for more than two decades in genetics. Parametric linkage can 

account for the phenomenon of reduced penetrance and phenocopies. 

Both phenomena are of major importance in the identification of 

variants and modifiers associated with disorders, but they have been 

widely omitted in common variant filtering pipelines. Because of 

that, genetic linkage can be used before and after sequencing to 

account for them, especially regarding their growing importance in 

the genomic architecture of disease.  
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2. OBJECTIVES 
 

 

- Develop a computational pipeline to search for genetic 

modifiers of reduced penetrance from microarray genotyping 

data.  

 

- Apply the pipeline on a particular disease-case study of 

reduced penetrance: heritable pulmonary arterial 

hypertension (HPAH). 

 

- Develop a resource to facilitate the integration of genome-

wide specific scores in the context of genomic analysis. 
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4. DISCUSSION

4.1. A pipeline to study reduced penetrance 

The practice of genetic diagnosis and counselling requires a full 

understanding and accountability of the genetic contribution to 

inherited disease. For this purpose, variant discovery and 

interpretation plays a fundamental role, yet current techniques often 

lead to uncertain results. This uncertainty mainly arises from 

biological phenomena such as genetic heterogeneity, pleiotropy, 

epistasis or composite phenotypes (Wright et al. 2018). One of the 

major impediments in mapping the genetic component of inherited 

disease is reduced penetrance, which hampers the genetic counselling 

of non-symptomatic patients carrying pathogenic mutations. 

Although the phenomenon of reduced penetrance has been described 

for many decades, the observation of disease-causing variants at a 

large scale in healthy populations has revealed the need for better 

characterizing the mechanisms by which it manifests. There are no 

standardized procedures to study reduced penetrance, as it is likely to 

be dependent on the underlying mechanism of the pathogenic 

mutations. Recent efforts have tried to analyse the phenomenon from 

a population perspective, either by studying a cis-regulatory 

mechanism involving common variation (Castel et al. 2017) or by 

refining penetrance estimates of rare variants in large datasets 

(Wright et al. 2018). 
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In the latter case, higher penetrance estimates were observed for 

family-related carriers when compared to unrelated carriers in large 

cohorts (Wright et al. 2018). This observation suggests the existence 

of different disease mechanisms between individuals that are 

identical by descent (IBD) and identical by state (IBS). Such a higher 

degree of affection in related individuals could be explained by the 

cis-inheritance of the genetic modifier and its corresponding 

pathogenic mutation, which would be more unlikely to co-occur in 

population. Despite (Castel et al. 2017) shows a significant depletion 

of haplotype combinations leading to higher penetrance in the 

population, and conversely, an enrichment in disease cohorts, the 

penetrance differences between the detrimental and the neutral 

combinations remain small. 

 

In this thesis, we have provided a strategy to identify genetic 

modifiers for the penetrance of disease-causing variants segregating 

in large families. We have run a model for genetic linkage analysis 

that assumes a genetic modification accounting for complete 

penetrance. The utility of our strategy relies in the compliance of 

several aspects that we proceed to discuss here below. 

 

Aspects to consider before genetic linkage analysis 

Any study on reduced penetrance should begin with the re-evaluation 

of the pathogenicity of the variant under study. This can be achieved 

by following the guidelines for variant interpretation from the 

American College of Medical Genetics (ACMG) (Richards et al. 

2015). In the PAH family case-study, the BMPR2 missense variant 
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(p.Arg491Gln) accomplishes the strongest criteria to be considered a 

pathogenic mutation: it is absent in population databases, it is a null 

variant located at a gene where loss of function is a known 

mechanism of disease; and other mutations in BMPR2 have been 

reported to be deleterious in mouse models (Frump et al. 2016).  

 

Another necessary step is the estimation of the penetrance for the 

pathogenic variant. This can be achieved by aggregating all the 

individuals that carry this mutation in large population-based studies 

and from whom health records or systematic clinical phenotyping are 

available. In practice, if the variant is extremely rare in population, 

this estimation is restricted to one family, which should be large 

enough to minimize ascertainment biases. As for HPAH, the 

penetrance within the family (36.4%) approximately doubles the 

average BMPR2 penetrance (James White and Morrell 2012). 

Although the same variant has been reported in at least 6 independent 

PAH family cases (Deng et al. 2000) (Sankelo et al. 2005) (Pfarr et 

al. 2011) and also as a de-novo mutation in the idiopathic form of the 

disease (Machado et al. 2009) (Pfarr et al. 2013), we do not have 

penetrance data to be compared with. The penetrance differences 

between the p.Arg491Gln mutation in the reported family and other 

BMPR2 mutations can be informative of the underlying disease 

mechanism. For instance, we know that this mutation has a dominant-

negative effect on the formation of the receptor, being more impairing 

than other mutations causing haploinsufficiency (Rudarakanchana et 

al. 2002). Other models also suggest that the action of non-sense 

mediated mRNA decay (NMD) may reduce the penetrance of 
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BMPR2 variants (Frump et al. 2016). In general, rare variants located 

in genes showing a high probability of being loss-of-function 

intolerant (pLI) are likely to be more penetrant and pathogenic than 

those located in low pLI genes (Wright et al. 2018). 

 

Accurate and up to date phenotyping data are fundamental for 

maximizing the statistical power to detect genetic modifiers of 

reduced penetrance. It is a common practice to use the affected and 

healthy qualitative traits in pedigrees. This classification is based on 

symptomatology and it may be biased for a fraction of cases, 

particularly when diagnosis is not straightforward. In general, it is 

better to adopt quantitative traits, as they correlate better with the 

underlying mechanism of disease and may account for the 

expressivity differences observed among the asymptomatic non-

carriers, the asymptomatic carriers and the symptomatic carriers. 

Moreover, a quantitative trait may distinguish better those carrier 

individuals having a late onset of the disease. This late disease onset 

needs to be accounted in linkage using liability classes or other 

strategies, as it can reduce the ability to detect significant LOD 

scores. In addition to that, it is important to have a detailed 

understanding of the phenotype definition. Only for hypertension, 

three components of blood pressure can be reported (systolic, 

diastolic and pulse pressure), potentially involving different loci 

(Dubay et al. 1993) .   

 

Aspects to consider during genetic linkage analysis 

After these initial steps, we applied genetic linkage analysis aiming 
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to account for complete penetrance when distinguishing affected 

carriers from unaffected ones. However, this technique requires a 

hypothesis for genetic modification and several considerations 

regarding the input family data and linkage parameters. 

 

Traditionally, linkage analysis has lumped together families affected 

by the same disease, assuming it was monogenic and without 

considering if the underlying pathogenic variants were the same in 

each case. Using a SNP genotyping array as input data, this allelic 

heterogeneity does not affect linkage as the rare pathogenic variants 

are not included in the chips. In this manner, linkage detects only the 

relationship between loci, not alleles, through the common variants 

that indirectly tag the causal variant by linkage disequilibrium (Ott et 

al. 2015) 

 

A completely different scenario encompasses the search for 

penetrance modifiers. It has been shown for many disorders, 

including HPAH, that several mechanisms can modulate the 

penetrance of the same disease leading to locus heterogeneity (West 

et al. 2008). This phenomenon usually involves the participation of 

common variation, which may underly different mechanisms 

depending on the identity of the primary mutation. In this context, 

only the families sharing the same pathogenic variant are likely to 

share the same modifier and consequently, they are the only ones that 

might be informative for linkage. In this thesis, we have only studied 

one family affected by HPAH, but its large size (5 generations, 22 

carriers) is highly informative for searching a genetic modifier. 
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Parametric linkage analysis can take as input a model that assumes 

the participation of at least two genetic elements, knowing 

beforehand the condition of the carrier status. The mechanism may 

involve either a variant from a gene with independent and additive 

contribution to pathogenicity (digenic interaction), or a modifier that 

modulates the penetrance of the known pathogenic mutation (two-hit 

mechanism). In the former possibility, this variant is pathogenic and 

unlinked to the first one, while in the latter it is unlikely to be 

pathogenic and can exert its effect in cis or through downstream 

interaction with the molecular pathogenic mechanism.  

 

The fact that at least one of the pathogenic mutations from the 

proposed mechanisms is known reveals that the phenocopies rate 

should be non-zero in a hypothetical digenic interaction. In this case, 

the identification of a second locus is usually limited by low 

penetrance, as this reduce the statistical power for detecting linkage 

of both loci, either by using single-locus analysis with phenocopies 

or by applying two-locus analysis (Strauch et al. 2003). For instance, 

in HPAH, we could not detect any locus, not even the known BMPR2 

one, when modelling for such digenic interaction. 

  

Assuming a two-hit mechanism, we looked for a second variant that 

confers susceptibility and that could account for complete penetrance 

in combination with the pathogenic BMPR2 mutation. In this context, 

a single-locus analysis is a better approach than a two-locus, as less 

parameters need to be estimated reducing misspecification errors. In 

a two-hit mechanism, the normal phenotyping is modified by 
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labelling asymptomatic non-carriers as individuals with unknown 

phenotype, asymptomatic carriers as healthy, and symptomatic 

carriers as affected. In this way, we force the model to look for the 

variants that distinguish healthy and affected carriers. If the genetic 

modifier is suspected to be under locus heterogeneity, which is highly 

likely when common variation is behind modulation, it is advisable 

to set a 1-2% of phenocopies rate to maximize the power of linkage 

detection (Strauch et al. 2000). The two-hit mechanism is by 

definition a susceptibility model, but it can be transformed into a 

protective model by switching to the parameters of the modifier 

alternative allele. 

 

The search for penetrance modifiers can be performed via two-point 

or multipoint linkage analysis. Generally, the multipoint strategy is 

preferable since analysing multiple markers at a time is more 

powerful, except when the genotypes of the causal variant are 

available with the sequencing data (Ott et al. 2015). The performance 

of linkage analysis is enhanced by the addition of population allele 

frequencies, which is probably the more used type of genomic scores. 

 

The value of our study resides in the identification of a candidate 

regulatory region that putatively modifies the penetrance of the 

pathogenic BMPR2 variant through a two-hit mechanism in HPAH. 

According to this linkage model, the mechanism is composed by two 

allele copies of a common regulatory variant from the FIGN distal 

promoter and the rare pathogenic mutation in BMPR2, separated by 

38 Mb in chromosome 2. This mechanism indicates a possible 
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downstream interaction of the two genes, rather than a mechanism 

involving BMPR2 and its promoter region. This observation would 

partially explain why several tests analysing the gene expression 

modification by promoter variants in BMPR2 do not correlate with 

the clinical manifestation of PAH (Song 2018). 

 

Aspects to consider after genetic linkage analysis 

A limitation for the linkage results is that they provide a candidate 

region, usually encompassing several genes in the annotation, rather 

than a specific variant. In this thesis, we have characterized the 

candidate region using different functional genomics data, some of 

them with tissue-specific information, to narrow down the possible 

location of the modifier. Still, further efforts are required to decipher 

and validate the exact identity and mechanism of action of the genetic 

modifier. 

 

Whole genome sequencing (WGS) 

The complete characterization of the linkage findings requires the 

sequencing of the candidate region to evaluate all the possible 

candidate variants within the region. As the region of interest is 

usually large (>1Mb), it is generally cheaper to sequence the whole 

genome instead. In that effort, it is of main importance to follow the 

best practices for variant pre-processing (Regier et al. 2018) and for 

variant calling (i.e. GATK caller ‡), to minimize the generation of 

technical errors.  

_____________ 

‡ https://software.broadinstitute.org/gatk/best-practices/ 

https://software.broadinstitute.org/gatk/best-practices/
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Because the cost of WGS is still limiting for relatively large sample 

sizes, it is usually important to choose appropriately which 

individuals should undergo sequencing. In large families with 

reduced penetrance, this strategy should preferentially select carrier 

individuals, both affected and healthy. Again, the phenotype of 

unaffected carriers should be regarded with caution due to possible 

late onset. 

 

Traditional filtering approaches applied to WGS data aiming to find 

rare pathogenic variants are inappropriate to identify common 

regulatory variation modulating penetrance. As an alternative, the 

WGS data can be analysed using two-point genetic linkage analysis, 

taking advantage of the family-based analysis, the LOD score 

statistical assessment and the prior knowledge on the inheritance 

model. Moreover, if a candidate region has been found previously, 

this strongly reduces the number of variants to follow up.  

 

Allelic heterogeneity in WGS data has a negative effect in the 

analysis, since all the potentially causal variants are evaluated and 

this interferes with the different linkage signals. Still, there are 

methods such as the collapse haplotype pattern (CHP) that analyse 

them by aggregation. In the studies of reduced penetrance with WGS 

data, allelic heterogeneity does not compromise the linkage 

performance as only families carrying the same pathogenic mutation 

should be considered. On the other hand, locus heterogeneity will still 

be present, causing a fraction of carrier individuals to remain 

uninformative. 
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Using genomic scores for variant prioritization. 

The linkage results reduce again the number of variants that 

potentially map the modifier, but a list of candidates remain requiring 

further prioritization. In this context, genomic scores constitute a 

valuable resource to annotate and interpret variation by using 

information on conservation, constraint, fitness and mutation 

tolerance (Kircher 2014). These scores attempt to fill the gap between 

the data from high-throughput biochemical assays and the prediction 

of function by integrating statistical and machine-learning methods 

(Huang et al. 2017). Genomic scores may encode a single type of 

information, such as conservation or minor allele frequency, or 

combine multiple sources of information. 

 

Using such data, however, may become difficult due to the 

heterogeneity of formats and the large size of the resources. In this 

thesis, we have developed the GenomicScores package (Puigdevall 

and Castelo 2018) to overcome such difficulties. This tool enables a 

common access point for the different existing resources and it also 

reduces the memory requirements of the data through lossy 

compression, while preserving its scientific integrity. Moreover, 

because it runs on top of R, it can be readily integrated into existing 

R workflows for the analysis of genetics and genomics data. 

 

The compression proposed for genomic scores represents a simple 

and straightforward solution to store, manage and analyse big 

volumes of data associated to genetic variants. The advent of 

precision and personalized medicine in the next years will lead to a 
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further growth of genome sequencing and molecular profiling and, at 

the same time, the associated costs will be reduced. This will shift the 

limiting steps from data production to data storage and analysis, 

requiring further research on compression techniques for genomic 

data to meet the necessities of future clinical research. 

 

Fine haplotype reconstruction 

In parallel with variant prioritization using genomic scores, the 

haplotype reconstruction is another important step to understand the 

mechanism of penetrance modulation. It consists in the determination 

of the parental origin of variants by placing them in the corresponding 

phase. The haplotype provides context information of the functional 

consequence of DNA variants and might be also helpful to identify 

the genetic modifiers when acting in cis. Haplotype phasing with 

computational methods can be obtained either from short-read 

sequencing or from the SNP genotyping arrays. There are two main 

methods for phasing: familial methods, that reconstruct haplotypes at 

a long range driven by the mendelian constraints imposed by the 

familial relatedness; and LD-based methods, which are useful for 

short-range phasing of unrelated individuals (Faux and Druet 2017).  

 

In HPAH, we have used five different programs for phasing: Merlin 

(Abecasis et al. 2002), Beagle (Altshuler et al. 2010), Simwalk2 

(Sobel and Lange 1996) and the duoHMM method from Shapeit2 

(O’Connell et al. 2014). Still, these methods present inaccuracies due 

to limited reference panels or missing information in families. The 

new advent of long-read nanopore sequencing is expected to 
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substantially improve the haplotype phasing as it encompasses a low 

degree of uncertainty in reconstruction (Ammar et al. 2015). 

 

Functional validation of genetic modifiers 

Results from computational pipelines on genotyping data still require 

further experimental confirmatory evidence for the contribution of 

genetic variants to disease. These computational tools are still limited 

by the inaccuracies and incompleteness of the existing data to 

interpret specific tissue biological contexts (Cox 2015). To overcome 

such limitations and to test the hypothesis of genetic modification, 

the prioritized variants should be validated by functional assays in-

vivo. These targeted assays evaluate the genotype-phenotype 

correlation by generating patient-derived models like cell cultures or 

animal models, and by rescuing the phenotype with the wild-type 

version of the gene (Rodenburg 2018).  The generation of such 

models has been enhanced by the rapid development and simplicity 

of the CRISPR/Cas9 technology (Inui et al. 2014). 

 

The utility of an animal model resides in how well the animal 

phenotype recapitulates the disease in the human phenotype. For that 

purpose, it is important to have a robust phenotyping system to 

interpret precisely the effects of genetic manipulation (Cox 2015). As 

for HPAH, BMPR2 defective mouse lines have been produced before 

(Ciuclan et al. 2011) (Frank et al. 2008) and a defined protocol for 

histological evaluation of pulmonary vascular remodelling is 

available (Frump et al. 2016). 
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An hypothetical functional in-vivo assay of the proposed two-hit 

mechanism for HPAH should ideally comprise three mouse types: a 

single mutant with the p.Arg491Gln BMPR2 pathogenic mutation 

and two double mutants with the same BMPR2 mutation with either 

one or two allele copies of the genetic modifier. If the putative genetic 

modifier was not homologous in the FIGN mouse promoter, an 

alternative would be the generation of two other mouse models. In 

this case, a genetic construct should overexpress or diminish FIGN 

expression to mimic the effects of the modifier to the pathogenic 

mutation. These models would reveal then whether the level of FIGN 

transcription modulates HPAH penetrance among BMPR2 mutation 

carriers. 

 

Open questions in reduced penetrance 

The study of disorders of reduced penetrance is complex because the 

mechanisms behind this phenomenon are diverse and mostly 

unknown. Its definition inherently depends on how precisely 

clinicians can diagnose a certain condition and how true is the 

assumption on the monogenic nature of the studied phenotype. 

Moreover, the concept of penetrance, although clinically relevant, it 

has not a biological meaning per se, as it is an outcome from the 

interaction of several biological phenomenon such as variable 

expressivity, composite phenotypes, pleiotropy and epistasis. This 

means that the observed estimates for penetrance are in general non-

informative for the underlying biological mechanisms.  

 

The pipeline discussed here represents an attempt to address a very 
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specific case of reduced penetrance. The proposed framework 

integrates old and new techniques to maximize the power to detect a 

genetic modifier. Still, many questions remain open due to the 

unknown genetic architecture of traits and diseases.  

 

For instance, the idea of continuity among monogenic and complex 

disorders blurs the differences among genetic modifiers and risk 

factors. In our HPAH findings, we can observe a local enrichment of 

GWAS SNPs associated with blood pressure within the candidate 

region. This raises the question whether modifiers and risk factors 

inform about the same biological process in spite of using different 

tools.  

 

Another critical issue is the phenomenon of locus heterogeneity 

concerning genetic modifiers. A myriad of common variants may 

influence the disease onset with the difficulty of detection and 

counselling that this entails. The problem is that the identity of such 

modifiers may not only change across families, but also across 

individuals from the same family, complicating even more the 

elucidation of reduced penetrance mechanisms. 

 

Yet, studying reduced penetrance can help to elucidate the genotype-

phenotype path and understand why there are carriers that develop a 

condition, while others remain healthy or show late onset. This 

information is expected not only to benefit the practice of genetic 

counselling, but also to reveal the mechanisms of disease providing 

new targets for potential future treatments. 
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5. CONCLUSIONS

1. We have developed a pipeline based on genetic linkage

analysis to search for genetic modifiers of reduced penetrance

accounting for the uncertainty of the age of onset and the

locus heterogeneity.

2. We have identified a candidate region (2q24.2-q24.3)

associated with PAH susceptibility among BMPR2 mutation

carriers using the previous developed pipeline.

3. We have obtained evidence for the enrichment of the

candidate region on risk factors associated with blood

pressure and other cardiorespiratory traits.

4. We have obtained evidence for the impact of common

variation on distal regulatory elements affecting the

expression of FIGN gene in the same enriched region.

5. We have developed GenomicScores, a tool that enables a fast

and efficient access to genomewide position-specific scores

to be used in variant prioritization and other genetic analysis

workflows.



6. ANNEX

6.1. Supplemental Material from Chapter 3.2 

Puigdevall P, Castelo R. GenomicScores: seamless 
access to genomewide position-specific scores from R 
and Bioconductor. Bioinformatics. 2018 Sep 
15;34(18):3208–10. DOI: 10.1093/bioinformatics/
bty311

https://academic.oup.com/bioinformatics/article/34/18/3208/4987140
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