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Abstract

Gene regulation orchestrates the development of different cell types and organs
from the same genetic blueprint. While the basic mode of gene regulation is
driven by transcription factors, there are a variety of other mechanisms that de-
termine the amount of RNA produced per genes. In this work we first investigate
specifically intron retention as a mode of alternative splicing that alters the cellu-
lar transcriptomes. As a model, we use hematopoiesis. We compare intron reten-
tion in different stages of human and mouse B-cell development to granulocyte
differentiation. We further explore expression and binding patterns of splicing
regulatory factors. Second, we investigate the role of lncRNAs in the transdif-
ferentiation of B-cell related lymphoma cells to macrophages. We specifically
explore the role of a set of upregulated lncRNAs during this process. We deplete
their expression during transdifferentiation with CRISPR/Cas9 to identify poten-
tial genes that retard or block the process and therefore are crucial for changing
cell identity.

Resum

La regulació gènica determina el desenvolupament dels diferents tipus cel·lulars,
teixits i òrgans. Tot i que el mode bàsic de regulació és dirigit per factors de
transcripció, existeixen una gran varietat de mecanismes que contribueixen a de-
terminar la quantitat de RNA produı̈da pels gens. En aquest treball, investiguem
en primer lloc la retenció d’introns com un tipus d’splicing alternatiu que altera
el transcriptome cel·lular. Com a model biològic, ens centrem en la hematopo-
esi. Comparem la retenció d’introns en diferents estadis del desenvolupament
de limfòcits B en humà i ratolı́ amb la retenció durant la diferenciació del gra-
nulòcits. Estudiem també el patró d’expressió i d’unió (binding) dels factors
de regulació de l’splicing. En segon lloc, investiguem el paper dels RNA llargs
no codificants (long non coding RNAs, lncRNAs) en la transdiferenciació de
limfòcits B a macròfags. En particular, el paper d’aquells lncRNAs que son re-
gulats positivament durant aquest procés. Reduı̈m la seva expressió durant la
transdiferenciació mitjançant la tècnica CRISPR/Cas9 amb l’objectiu d’identi-
ficar gens amb el potencial de retardar o de bloquejar el procés i que, en con-
seqüència, pugui jugar un paper crucial en el canvi de la identitat cel·lular.
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Chapter 1

INTRODUCTION

1.1 From heritable traits towards genomics

The way how complex multicellular eukaryotic organisms develop and maintain
the integrity of their organs and tissues puzzled generations of scientists in the
past. The quest for the underlying blueprint was tightly bound to the develop-
ment of methods to study small structures not visible to the eye. The first prove
of discrete heritable traits and along with that the foundation of modern genetics
was set by Mendel with his experiments on peas (Mendel, 1866). At the end of
the 19th century, it was clear that chromosomes carry those heritable traits but
their molecular structure remained elusive. While ribonucleic acid (RNA) was
already known as ”nuclein” and suspected to be the template for proteins synthe-
sis (Caspersson and Schultz, 1939), it took until the middle of the 20th century
until the desoxyribonucleic acid (DNA) was found to be the molecular under-
pinning of the chromosomes that carry those heritable traits (Avery et al., 1944,
Hershey and Chase, 1952). With the development of crystallographic methods,
the double stranded sugar backbone structure of DNA has been revealed and a
model for replication was postulated (Watson and Crick, 1953). All pieces were
put together as the central dogma of molecular biology that postulated an in-
formation flow from DNA, as information storage, to RNA, as a messenger, to
proteins, as the building blocks of all living structures (Crick, 1958). From there
on, molecular genetics took over with its rapid development and improvement of
methods like gel electrophoresis to separate charged RNA and DNA molecules
by size, chain-termination sequencing to determine the sequence of the DNA
bases (Sanger et al., 1977) and polymer chain reaction to amplify nucleic acid
sequences (Mullis et al., 1986).
With this toolbox on hand, scientists subsequently discovered the mechanisms
and enzymes involved in DNA replication, RNA transcription and maturation as
well as the translation into proteins. The way how these processes are timed for
a specific gene were partially known for some well-studied genes or even sim-
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ple signalling cascades but in its enormous complexity seemed overwhelming.
While the nucleotide sequence for an increasing number of protein coding genes
was determined, scientists believed knowing the entire sequence of a complex
genome, as the human one, would solve the puzzle of how e.g. transcriptions
factors find their target gene to recruit the transcription machinery to the lo-
cus. With the beginning of the 1990s, the human genome project was funded as
a worldwide collaborative effort to sequence the entire human genome and fin-
ished in 2003 with the first human genome published (Lander et al., 2001, Venter
et al., 2001, IHGSC, 2004). This started a new era of genomic sciences, where
genes could be studied globally taking their surrounding genomic sequences in
consideration.

1.2 New sequencing techniques pushed the boundaries

Against the expectations that having the whole sequence of human DNA would
answer the key question of how genotypes unfold into phenotypes and how that
happens in a temporal controlled manner during development, it was just the
bare beginning of answering that question. Individual differences between the
sequences of two individuals as short as single nucleotide polymorphisms (SNP)
matter as the sequence units of DNA expressed at a given time in a given tissue
in a given individual do. Microarrays spotted with oligonucleotides designed
to bind previously selected genes (Taub et al., 1983) helped to scale expression
analysis for genomes but failed to find genes that were not described before. Fur-
thermore, SNP arrays were used for known mutations but could not widen the
spectrum of observed SNPs. On the other hand, Sanger sequencing, used for the
first human reference genome, required over a decade and employing sequencing
centers around the world. It was not cost and time efficient enough to continue
to produce more genomes for other human individuals or other species. New
highly parallelized sequencing techniques were closing this gap by providing
millions of short reads from a single sequencing run of one machine in less than
24 hours. From such short but overlapping reads, genomes and transcripts could
be assembled with newly developed computational tools to provide new refer-
ence genomes in a more rapid way and to complement microarray approaches
by allowing to find new transcripts and sequence alterations (Margulies et al.,
2005, Bentley et al., 2008, Schuster, 2008).
In order to understand the information encoded in the DNA with the basic se-
quence known and new high throughput techniques on hand, the Encyclopedia
of DNA Elements (ENCODE) project found about 80% of the genome to be bio-
chemically active (The ENCODE Project Consortium, 2012). The before spec-
ulated number of human genes could be refined with every release of the GEN-
CODE annotation with the latest version (GENCODE v28) containing 58,381
genes of which 19,901 are protein coding, down from speculations of up to 100k
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protein coding genes in the past (Fields et al., 1994, Liang et al., 2000). Besides
those advances in the annotation of genetic elements, whole genome sequencing,
used to determine the DNA sequence of an individual, came down to 1,000 USD
(Illumina 10x sequencer) to allow for cost-efficient personalized treatment of pa-
tients. Furthermore, combining high throughput short read sequencing immuno-
precipitation and bead pull down protocols allowed to study epigenetic modifi-
cations and chromatin conformation (Dekker et al., 2002, Johnson et al, 2007,
Lieberman-Aiden et al., 2009, de Wit and de Laat, 2012).

1.3 Sequential layers of gene expression regulation

While the first model of gene regulation, by other gene products, was proposed
by François Jacob and Jacques Monod in the 1960s, multiple regulatory levels
that affect timing and amount of a given gene product were discovered.
At the level of DNA organization in the nucleus, sequence stretches were found
to stay in particular regions named chromosome territories where active genes re-
side on the surface of the territories, whereas suppressed genes are sequestrated
on the inside (de Wit and de Laat, 2012, Dostie and Bickmore, 2012, Ethier et
al., 2012, Vaquerizas et al., 2012). Genes with high expression have been found
to colocalize in foci called transcription factories and thereby are coregulated
(Razin et al., 2011, Dai and Dai, 2012).
On top of that, the occupation of DNA with histone proteins and their side tail
modification matter for transcriptional activity. While actively transcribed genes
were found to have a nucleosome free promoter region (Yuan et al., 2005, Lai
and Pugh, 2017), the histone side tail modifications, known as the histone code,
follow specific patterns along the transcript. For example, while H3K27ac is
found on active promoters, H3K9m3 is found along repressed genes (Allfrey et
al., 1964, Jenuwein and Allis, 2001).
About 2600 known human transcription factors act as a further layer of regula-
tion by either binding to enhancer or promoter regions in relative proximity of
the gene (Babu et al., 2004). Acting in various combinations with each other
allows specific regulation for each gene (Brivanlou and Darnell, 2002). Besides
recruiting the transcription machinery, they were found to interact with the hi-
stone code by bringing histone acetyltransferases or histone deacetylase on site
(Narlikar et al., 2002). Besides modulation of their synthesis, they are regulated
by localisation and activation, e.g. phosphorylation (Whiteside and Goodbourn,
1993, Weigel and Moore, 2007).
Further downstream and by far the best-studied process of gene regulation is the
transcription initiation and elongation process with the RNA polymerase II as
the core molecule and a multitude of co-regulators. Already during the synthesis
of the RNA, maturation starts along the nascent strand for the majority of tran-
scripts (Beyer and Osheim, 1988, Kotovic et al., 2003, Lacadie and Rosbash,
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2005, Listerman et al., 2006, Dye et al., 2006, Pandya-Jones and Black, 2009,
Ameur et al., 2011, Khodor et al., 2011, Vargas et al., 2011, Khodor et al., 2012,
Tilgner et al., 2012). During the process of removing introns from the immature
transcript, alterations in the exon composition can be introduced, referred to as
alternative splicing (Wang and Burge, 2008). This part of the regulation will
be detailed on in the next section. Furthermore, the regulation of transcripts by
non-coding RNAs will be addressed in an upcoming section.
When the protein coding mRNA is capped and polyadenylated, it is ready for
export into the cytoplasm, through the nuclear core complex. Besides nuclear
export factors being involved the regulation of export, it has been shown that
RNA modifications like ubiquitylation play a role in translocation to the cyto-
plasm (Durairaj et al., 2009). Finally, besides the rate of production, the stability
of a transcript also impacts the steady state abundance at a given time. Besides
non-coding RNAs, a complex interplay of RNA binding proteins, e.g. binding
AU rich elements, determines the half-life of a transcript by stabilizing it or la-
belling it for degradation (Wu and Brewer, 2012).

1.4 Alternative splicing

All structures and tissues of complex multicellular organisms are built from
proteins in a time controlled manner. For development and maintenance of
structures, transcript maturation is a crucial regulatory step, where introns are
removed and exons are joined together. By alternative splicing (AS) multiple
transcripts can be derived from one gene for about 95% of all mammalian
protein coding genes (Johnson et al., 2003, Pan et al., 2008, Barash et al., 2010).
The functional spectrum of alternative exon composition can be as dramatic
as for the FAS receptor, where membrane anchored and decoy receptors have
opposing functions (Cascino et al., 1995). In general, alternative exons were
found to be coiled structures on the protein surface that do not disrupt its overall
structure (Wang et al., 2005, Romero et al., 2006). The finding that AS is more
abundant in immune and neuronal related genes, suggests that it contributes to
temporal and spatially complex regulation patterns (Modrek and Lee, 2002).
The underlying mechanism for splicing, which makes it robust and reproducible
for the majority of the events during normal maturation of an mRNA transcript,
relies on a well-conserved machinery among eukaryotic organisms. The spliceo-
some is a conglomerate of the five sub-complexes, consisting of the snRNAs U1,
U2, U4, U5, U6 and associated proteins. Additional regulatory proteins bind
transiently. All steps from detection of the splice sites to exon-exon joining are
fulfilled by the spliceosome with its transition states (Nilsen, 2003, Jurica and
Moore, 2003, Wang and Burge, 2008, Wahl et al., 2009, Hegele et al., 2012).
For initiation of a splicing event, exon-intron boundaries are recognized as the
potential splice sites. As initial step U1 snRNP binds to the 5’ splice site by
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base pairing. Then, U2AF pairs with the polypyrimidine tract of the 3’ splice
site and non-snRNP factors like SF1/mBBP bind at the branchpoint (Madhani
and Guthrie, 1994). In two consecutive nucleophilic attacks exons are joined
together and the intron lariat is released (Hang et al., 2015). In eukaryotes there
are two principal modes of splicing, exon and intron definition (Robberson et
al., 1990, Berget, 1995, Fox-Walsh et al., 2005).
Exon definition is the preferential method, when introns are longer than approx-
imately 250 bp, while intron definition is used if introns are short. From a steric
standpoint it allows the complex to form faster and be more reproducible as ends
to be joined are more proximate to each other (De Conti et al., 2013). In higher
eukaryotes exon definition is dominant as introns are usually much longer than
exons (Zhang 1998, Sakharkar et al., 2005). In contrast, in lower eukaryotes like
yeast, where introns are usually below 100 bp, but also Drosophila melanogaster
with about 50% of all introns below 100 bp, intron definition is the dominant
mode of splicing (Lang and Spritz, 1983, Berget, 1995).
Regarding the core splicing machinery, one crucial aspect that influences
alternative splicing is the strength of the splice site, which means how much the
exon-intron junction sequence diverges from the consensus sequence. Strong
splice sites with perfect sequence conservation usually lead to constitutive splic-
ing. Due to lower affinity for junction binding, splice-component recruitment
of the splicing machinery is lower for weak splice sites and therefore the usage
of the splice site is lower as well. However, the processing outcome is very
dependent on the cellular context (Kornblihtt et al., 2013).
For weak splice sites, trans-acting factors play a crucial role in making the
decision whether the exon is included or excluded. The two major groups
of them are Serine/Arginine-rich (SR) proteins and heterogeneous nuclear
ribonucleoprotein (hnRNP) proteins. Furthermore, there are tissue-specific
factors like PTB15, NOVA16 and FOX (Jelen et al., 2007, Lee et al., 2009,
Kafasla et al., 2012). Independent of the protein family to which they belong;
these factors can activate or inhibit a certain splicing decisions. Most of them
actually fulfil both functions, depending on the location where they bind and the
interplay with other factors (Ule et al., 2006). In an approach to characterize
the binding patterns of those transient splicing factors, cis-regulatory sequences
were determined. Those sequences can lie either in exons or introns. They are
classified into enhancers or silencers, which results in the following nomencla-
ture: exonic splicing enhancer (ESE), exonic splicing silencer (ESS), intronic
splicing enhancer (ISE), intronic splicing silencer (ISS) (Kornblihtt et al., 2013)
(Figure 1.1).
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Figure 1.1: Splicing regulatory elements can be found either in exons or introns. Ex-
onic splicing enhancers (ESE) and exonic splicing silencers (ESS) are found in exons,
while intronic splicing enhancers (ISE) and intronic splicing silencers (ISS) are found in
introns. (adapted from Wang and Burge, 2008)

Systematic analysis of splicing events has revealed five major types of alternative
splicing events in cassette exons. Either the whole exon is skipped, in contrast to
the canonical inclusion, or alternative 5’ or 3’ splice sites are used for the exon
(Figure 1.2). Additionally, exons can be included mutually exclusive and introns
can be retained in the mature mRNA (Black, 2003, Matlin et al., 2005, Sammeth
et al., 2008, Pan et al., 2008). Two further options to generate alternative
transcripts are the usage of an alternative transcription start or polyadenylation
site.

Figure 1.2: Types of alternative splicing events in cassette exons. (adapted from
Cartegni et al., 2002)

While the occurrence of alternative splicing was initially studied mechanistically,
over time more and more examples appeared where AS is assumed to be a major
contribution to cellular development and the occurrence of disease. However,
due to technical limitations, those examples were mostly observations of a small
number of genes. With technological improvements in sequencing (next gener-
ation sequencing), genome wide methods became available and affordable. Due
to its sensitivity, next generation sequencing allowed a detection of a multitude
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of AS events across higher vertebrates. Taking the conclusion from those studies
together, they can be summed up as the following: Dynamic changes in alter-
native splicing unfold in development and cell differentiation in many genes at
the same time in a coordinated fashion. Specific RNA binding proteins orches-
trate those splicing programs. Interestingly, some genes affected by AS maintain
stable expression profiles, while the relative isoform contribution changes. Co-
ordinated splicing networks are cell type- and region-specific, e.g. differences
have been observed between cerebral cortex and hippocampus in the brain or
cardiomyocytes and cardiac fibroblasts in the heart. Tissues with repetitively ob-
served AS patterns encompass neuronal tissues, muscle tissue and blood among
others (Baralle and Giudice, 2017).

1.5 Intron retention

1.5.1 Mechanistic aspects of IR

As a subtype of alternative splicing, intron retention (IR) was documented to
happen in a 2-5% fraction of human genes in the beginning of the 2000s (Clark
and Thanaraj, 2002, Kan et al., 2002). Besides that, it was also described early
in plants, especially arabidopsis thaliana (Ner-Gaon et al., 2004). In contrast to
other types of alternative splicing, IR has initially been expected to be a form of
mis-splicing that needs to be handled by nuclear sequestration or nonsense me-
diated decay in order to prevent the production of potentially harmful proteins
(Jaillon et al., 2008, Roy and Irimia, 2008, Gudipati et al., 2012). However, later
studies revealed that IR can actually self-regulate the transcript abundance of a
given gene, the export of the transcript to the cytoplasm as well as the maturation
of mRNA on demand (Lareau et al., 2007, Moran et al., 2008, Cuenca-Bono et
al., 2011, Wong et al., 2013, Palazzo et al., 2013, Boothby et al., 2013).
In general, introns are considered to be retained if they are, unlike other introns
within the transcript, not removed from the pre-mRNA but remain in the se-
quence of the mature mRNA. Those introns were described to be shorter, have a
higher GC content and a lower splice site strength than other introns not affected
by IR (Braunschweig et al., 2014). Furthermore, retained introns frequently con-
tain one or more PTCs in their sequence that trigger degradation by nonsense
mediated decay (Maquat, 2004). In addition, associations between IR and re-
duced expression levels of splicing factors, RNA polymerase II occupancies and
epigenetic changes were observed (Wong et al., 2013, Braunschweig et al., 2014,
Guo et al., 2014, Gascard et al., 2015, Wong et al., 2017, Middleton et al., 2017).
A comparative analysis of 2,567 mRNA sequencing datasets found SR protein
binding sites to be enriched in introns with high IR values, suggesting SR pro-
teins to be involved in the recruitment of spliceosomal components. While there
were approximately 15,000 introns found to be retained in at least one dataset,

7



retention for each of them was limited to fewer than 7% of all samples (Middle-
ton et al., 2017).

1.5.2 IR in animals

In the animal kingdom IR was predominantly described in higher vertebrates
affecting a variety of functions. Autoregulation of gene expression is one of
the most recurring, affecting even splicing-related genes themselves. SR pro-
teins were found to contain ultraconserved regions between human and mouse.
For SRSF1 and SRSF2, they fall into intronic 3’ untranslated region that are
retained and thereby target the messenger RNAs for degradation (Lareau et al.,
2007). In human and mouse granulocyte development, the nuclear lamina pro-
tein LMNB1 is affected by IR. As a consequence of decreasing expression, the
lamina structure has less reinforcement and the nucleus folds into the granulo-
cyte typical lobes in return (Wong et al., 2013). In neuronal tissue presynaptic
proteins are transcribed in neurons and non-neuronal cells. Binding of PTBP1
to retained 3’ terminal introns however prevents export of these transcripts to
the cytoplasm and instead leads to nuclear degradation of the transcripts in non-
neuronal cells (Yap et al., 2012). Similarly, PABPN1 auto-regulates its expres-
sion levels to maintain homeostasis in human cells. PABPN1 binds an adenosine
rich region in its 3’ untranslated region that causes the retention of the 3’-terminal
intron, which in turn induces degradation by the nuclear exosome (Bergeron et
al., 2015). In neuronal differentiation, IR retaining transcripts were suspected to
lower the abundance of proteins enriched for non-physiologically relevant pro-
cesses (Braunschweig et al., 2014).
Dosage compensation is another process where IR was found to contribute to
in drosophila melanogaster. While complete splicing of Male-specific lethal
2 (Msl-2) in male flies promotes physiologically normal expression of the X-
chromosome, IR in Msl-2 prevents its own translation in female flies (Zhou et
al., 1995, Bashaw and Baker, 1995). Another interesting function of IR in neu-
ronal cells is to provide localization information for the mRNA. Intron retaining
mRNAs were found to contain ID elements (a class of SINE retrotransposon)
guiding them for dendritic localization (Buckley et al., 2011). Besides the afore-
mentioned SR rich proteins that regulate their own expression and thereby impact
splicing in general, the heterogeneous nuclear ribonucleoprotein hnRNPLL was
described to affect alternative splicing during T-cell activation (Cho et al., 2014).
Enrichment of protein diversity, often associated with alternative splicing, has
been linked to IR recently as well. For the calcium-activated big potassium
(BKCa) channel, removal of an intron retaining variant altered localisation and
intrinsic firing properties of hippocampal neurons (Bell et al., 2008, Bell et
al., 2010). Furthermore, in drosophila melanogaster a retained intron causes a
readthrough into non-coding DNA and thereby produces the novel protein Noble
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from the rieske iron sulphur protein locus (Gontijo et al., 2011).

1.5.3 IR in plants

Contrary to animals, IR is the most frequent form of alternative splicing in plants
(Wong et al., 2015). In the model species Arabidopsis thaliana a dominance of
IR of up to 64% of all splicing events was observed (Ner-Gaon et al., 2004,
Wang and Brendel, 2006, Kalyna et al., 2012). Similar to animals, retained in-
trons are short and rich in GC, however, introns are shorter in plants in general
(Ner-Gaon et al., 2004, Galante et al., 2004, Sakabe and de Souza, 2007, Braun-
schweig et al., 2014). Like in animals the relatively small lengths of those introns
suggests intron definition as dominant mode of splice site recognition (Lim and
Burge, 2001, Amit et al., 2012, Reddy et al., 2012). Steric hindrance was one
hypothesized reason for the high abundance of IR in plants (Wang and Brendel,
2006). Experimental findings that animal introns are not accurately spliced in
plants and vice versa indicates that the mechanisms are not conserved between
the two kingdoms (Reddy et al., 2012). As the major plant model organism Ara-
bidopsis thaliana is probably the best studied plant, thus, IR was described to
regulate several physiological processes in Arabidopsis thaliana. At low tem-
peratures, starch accumulation is promoted by IR dependent expression regula-
tion of IDD14 (Seo et al., 2011). Furthermore, an intron retaining variant of
the circadian rhythm related gene CCA1 links circadian rhythms to tempera-
ture adaptation (Seo et al., 2012). In Arabidopsis thaliana roots, intron-retaining
transcripts of ZIF2 are more efficiently translated and thereby increase toler-
ance to higher abundance of zinc in the soil (Remy et al., 2014). Interestingly,
in Marsilea vestita, a heterosporous fern, transcripts with retained introns were
sequestrated in the nucleus during gametophyte development. In the sense of
priming, those transcripts could be spliced for rapid production of proteins upon
physiological requirements. Depletion of those transcripts with siRNA interfer-
ence demonstrated that no alteration of gametophyte development was observed
unless those intron-retaining transcripts were needed during progression of de-
velopment (Boothby et al., 2013).
Direct comparison of described functions of IR in plants and animals revealed
that in both kingdoms IR is used to produce transcript isoforms with new func-
tions (Bell et al., 2008, Bell et al., 2010, Gontijo et al., 2011, Seo et al., 2011,
Seo et al., 2012, Rocchi et al., 2012, Khaladkar et al., 2013, Remy et al., 2014) as
well as it does regulate genes by sequestration or induced degradation of intron
retaining transcripts (Lareau et al., 2007, Yap et al., 2012, Filichkin and Mock-
ler, 2012, Wong et al., 2013, Braunschweig et al., 2014, Bergeron et al., 2015)
and primed expression of transcripts that are spliced on demand (Moran et al.,
2008, Boothby et al., 2013). However, functions in dosages compensation of sex
chromosomes (Zhou et al., 1995, Bashaw and Baker, 1995), tags for localisation
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of transcripts (Buckley et al., 2011) and association with the surrounding of ex-
ons, prone to exclusion (Cho et al., 2014), were solely described for the animal
kingdom.
Besides animals and plants, IR was also reported in unicellular organisms such as
Saccharomyces cerevisiae, Plasmodium, Capsaspora owczarzaki, and Tetrahy-
mena thermophila (Hossain et al., 2011, Xiong et al., 2012, Sebé-Pedrós et al.,
2013, Lunghi et al., 2015).

1.5.4 IR in disease

Like alternative splicing in general, IR is also associated with disease, most im-
portantly with cancer. In a variety of cancer types including bladder, colon,
endometrium, head and neck, kidney, liver, lung, prostate, stomach, rectum and
thyroid tumors as well as acute myeloid leukemia, IR was reported to be higher
than in healthy tissue (Lu et al., 2003, Solomon et al., 2003, Comstock et al.,
2009, Ren et al., 2012, Masood et al., 2012, Eswaran et al., 2013, Zhang et al.,
2014, Simon et al., 2014, Dvinge and Bradley, 2015, Jung et al., 2015). In breast
and lung cancer, IR is even one of the dominant forms of alternative splicing
with 2,038 genes affected in breast cancer and 2,340 in lung cancer (Eswaran et
al., 2013, Zhang et al., 2014). In agreement with IR features in healthy tissue, IR
was associated with a 3’ bias, weak splice sites and high GC content in cancer
(Zhang et al., 2014, Dvinge and Bradley, 2015). Contrary to normal cells, where
splicing factors were reported to be expressed at lower levels, splicing factor ex-
pression was not altered in lung cancer samples compared to healthy lung tissue
(Zhang et al., 2014). In breast cancers splicing factor expression was even found
to be upregulated (Shapiro et al., 2011).
Besides cancer, IR was also found in other disease like Xeroderma pigmentosum
(Saredi et al., 2012), Late infantile neuronal ceroid lipofuscinosis (Cartault et
al., 2011), Autoimmune polyendocrine syndrome type 1 (Maselli et al., 2014),
Netherton Syndrome (Zhang et al., 2013), Amyotrophic lateral sclerosis (Lacroix
et al., 2012), Inflammatory bowel disease (Flomen and Makoff, 2011) and My-
otonic Dystrophy type 2 (Häsler et al., 2011). However, if IR in those disease is
a side effect or a driver of disease progression remains to be investigated.

1.6 Long non-coding RNAs

While the abundance of genes was estimated to be about 100,000 in the mid
1980s, based on the size of a typical gene and the human genome, only a fraction
of protein coding genes, relative to this number, could be confirmed by the hu-
man genome project. First estimates were ranging around 31,000 protein coding
genes in 2001 and were reduced to 22,287 protein coding genes in 2004 (Lan-
der et al., 2001, International Human Genome Sequencing Consortium, 2004)
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and further down to 19,901 in the most current release of the GENCODE an-
notation (v28, www.gencodegenes.org). This counterintuitive reduction of com-
plexity in the coding genome was opposed by the noncoding. In the same way
as the estimates of protein coding genes decrease, the number of genes that are
transcribed but not translated increased. The Functional Annotation of Mam-
malian cDNA (FANTOM) project found approximately 10,000 non coding tran-
scripts from distinct loci in its 3rd phase (Carninci et al., 2005), while in phase
5 the number increased to 27,919 long noncoding RNAs (lncRNAs) (Hon et al.,
2008). Those findings were confirmed by the Encyclopedia of DNA Elements
(ENCODE) project that found about 80% of the genome to be biochemically
active (The ENCODE Project Consortium, 2012).

1.6.1 Classification of lncRNAs

In an attempt to distinguish lncRNAs from the multitude of short RNAs such
as microRNAs (miRNAs), small interfering RNAs (siRNAs), Piwi-interacting
RNAs (piRNAs) and small nucleolar RNAs (snoRNAs) a minimum length
cutoff was set to 200 bp (Rinn and Chang, 2012, Ma et al., 2013, Knoll et al.,
2015). While structural features as 5’ capping, splicing and polyadenylation
emphasise similarities to mRNAs, lncRNAs distinguish from protein coding
genes by short (<100 codons) or entirely lacking open reading frames (ORF)
(Carninci et al., 2005, Morris and Mattick, 2014).
A further subclassification of lncRNAs was based on their relative position
towards neighboring protein coding genes and divided them into 5 categories
(Figure 1.3) (Carninci et al., 2005, Morris and Mattick, 2014, Devaux et al.,
2015, Lorenzen and Thum, 2016). Sense lncRNAs are transcribed from the
same stand as a protein coding gene, they structurally overlap with a fraction
of introns and/or exons. In contrast, antisense lncRNAs overlap with protein
coding genes as well but are transcribed from the opposite strand. Bidirectional
lncRNAs are transcribed from the opposite strand of the nearby protein coding
gene, like antisense lncRNAs, but do not overlap. They, however, remain in the
proximity of <1 kb from the nearest protein coding gene. Intronic lncRNAs
are entirely transcribed from within an intron of a protein coding gene whereas
the most abundant form of lncRNAs, intergenic lncRNAs, are spaced between
protein coding genes.
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Figure 1.3: Different types of lncRNA classified by their relative position to nearby
protein coding genes (adapted from https://mcmanuslab.ucsf.edu/node/251)

1.6.2 Discovery and properties of lncRNAs

Detection of lncRNAs is more challenging than it is for protein coding genes, as
on average lncRNAs have 10-fold lower expression levels (Ravasi et al., 2006,
Cabili et al., 2011). In addition, the majority of lncRNAs ( 80%) have a more
tissue restricted expression relative to protein coding genes ( 20%) (Cabili et al.,
2011). A further challenge for discovery of novel lncRNAs is the restricted ex-
pression in specific developmental stages (Yan et al., 2013). This specificity sug-
gests that lncRNAs are important in shaping cell type and developmental specific
transcriptomes (Knoll et al., 2015). Therefore, only lncRNAs with higher and
broader expression levels are known since long. The first discovered lncRNA,
H19, was thought to be protein coding at the time of discovery in the mid 1980s
(Pachnis et al., 1984). Xist, a very prominent lncRNA important for sex determi-
nation that is also highly expressed, was discovered in 1991 (Borsani et al., 1991,
Brown et al., 1991, Brockdorff et al., 1991). Hybridization to tailing arrays al-
lowed to study lncRNAs in a broader, parallelized fashion, but was limited to
prior knowledge regarding the oligo design (Martin and Wang, 2011). The true
blooming of the field happened with commonly available deep transcriptome
wide RNA sequencing, where no prior information was needed and sensitivity
was further increased (Wang et al., 2009, Guttman et al., 2010). An additional
benefit of RNA-seq was to gain further information about the transcript structure
of lncRNAs. Whereas 98% of them were found to be spliced, only 25% had
multiple isoforms (Derrien et al., 2012). Furthermore, it was shown that lncR-
NAs are shorter than protein coding genes on average (median, 592 vs. 2,453
bp) but exons (median, 149 vs. 132 bp) as well as introns (median, 2,280 vs.
1,602 bp) are longer (Derrien et al., 2012). Comparison of lncRNA expression
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in 11 species and 8 tissue types found 11,000 primate specific lncRNAs. How-
ever, only 2,500 were conserved at sequence and expression level, suggesting a
more rapid evolution compared to protein coding genes (Necsulea et al., 2014).
Interestingly, lncRNAs of 9 tissues from 6 mammals clustered by tissue and not
by species. Furthermore, lncRNAs conserved between mammals had higher se-
quence conservation in promoters and exons, were more proximate to protein
coding genes, had fewer repetitive elements, were more often single-exonic tran-
scripts and enriched in tissue-specific functions than younger lncRNAs (Washietl
et al., 2014).

1.6.3 Mechanisms of lncRNAs function

While the number of annotated human lncRNAs is steadily increasing, the ma-
jority remains functionally uncharacterized (Mercer et al., 2009, Dinger et al.,
2009). Recent efforts to functionally catalogue lncRNAs in databases provided
functional associations for 294 lncRNAs (183 human lncRNAs) in the LncR-
NAdb database and 363 human lncRNAs in LncRNAWiki (Amaral et al., 2011,
Quek et al., 2014, Ma et al., 2015). Their functions vary widely from transcrip-
tional regulation over splicing regulation and translational control to scaffolding
in protein complexes (Ma et al., 2015).
By far, most lncRNAs with known function fall in the category of transcription
regulation. One mode of action is to directly regulate one specific target gene. As
an example, ncRNA-CCND1 mediates the repression of cyclin D1 by recruiting
the RNA binding protein TLS, which inhibits the activity of the transcription fac-
tor CREBBP and the histone acetyltransferase p300 at the cyclin D1 locus (Wang
et al., 2008). Another example is the lncRNA Evf-2 that functions as transcrip-
tional coactivator of Dlx5 by recruiting the transcription factor Dlx2 to the Dlx5
locus (Feng et al., 2006). The other mode is to regulate groups of genes or entire
chromosomes as in the case of Xist. During early embryonic stem cell differen-
tiation Xist is expressed from the X chromosome to be silenced. Its expression
is followed by the loss of active chromatin marks like H3K9ac and H3K4me and
an induction of repressive marks as H3K27me3, H3K9me and H4K20me1. In
consequence, the marked chromosome is entirely inactivated with an overall lack
of transcription (Wutz and Gribnau, 2007).
In splicing, lncRNAs can interfere with the splicing machinery at a given exon
or intron to change the splicing outcome. The lncRNA ZEB2-AS1, for example,
is in antisense direction to ZEB2, overlapping the 5’ splice site of an intron in
the 5’UTR of ZEB2. Upon ZEB2-AS1 expression, the 5’ splice site is not acces-
sible and in turn the intron is retained (Beltran et al., 2008). In a similar way, the
antisense lncRNA Rev-ErbAa2 affects splicing of ErbAa2 (Munroe and Lazar,
1991).
Indirectly, ZEB2-AS1 also affects translation as the related intron in the 5’UTR
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contains an internal ribosome entry site that is necessary for efficient translation.
In a broader way, translation control was discovered in neurons, where mRNA
needs to be translated to maintain synaptic plasticity. Here, the expression of the
lncRNA BC1 was linked with translational repression to control dopamine D2
receptor-mediated transmission (Centonze et al., 2007).
Besides directly regulating biological processes, lncRNAs also fulfil structural
functions. As scaffolds, they bring protein coding genes together to form com-
plexes (Spitale et al., 2011, Rinn and Chang, 2012). One well-known example
is the lncRNA TERC, which, as a RNA scaffold, assembles the telomerase com-
plex (Zappulla and Cech, 2006). HOTAIR, another classic example of a lncRNA
scaffold, can bind the polycomb group protein PRC2 in its 5’ region and the hi-
stone demethylase LSD1 in its 3’ region to silence the HOXD locus by H3K27
methylation and H3K4me2 demethylation (Rinn et al., 2007, Tsai et al., 2010).
Further examples are ANRIL that brings PRC2 in proximity to PRC1 (Yap et al.,
2010, Kotake et al., 2011) and Kcnq1ot1 that tethers PRC2 to G9a (Pandey et
al., 2008)

1.6.4 LncRNAs in disease

As for functions of lncRNAs in normal development, only a small fraction of
lncRNAs is investigated in their contribution to the onset and progression of dis-
ease. However, the amount of studies that link alteration in lncRNA expression
to disease states is steadily increasing. Most reported associations were found in
cancer, where dozens of lncRNAs have been reported to alter expression (Tsai et
al., 2011, Rinn and Chang, 2012). Those lncRNAs were found to be regulated
by tumor suppressors like p53, MYC, and NF-kB (Guttman et al., 2009, Huarte
et al., 2010, Hung et al., 2011). Furthermore, lncRNAs with cyclic expression
during normal cell cycle were found to have altered expression patterns in can-
cer cells (Hung et al., 2011). In human breast cancer about 25% of the patients
have the lncRNA HOTAIR overexpressed, which is a predictor for metastatic risk
and survival chances (Gupta et al., 2010). In vitro it could be demonstrated that
overexpression of HOTAIR drives metastasis formation by rearranging PRC2
occupancy pattern to resemble embryonic fibroblasts. This helps cells to mimic
morphological properties of the anatomic sites of invasion (Gupta et al., 2010).
Similar alterations in HOTAIR expression were also found in colon and liver
cancers (Kogo et al., 2011, Yang et al., 2011). Another study found extensive
alterations in lncRNA expression in prostate cancer, where the lncRNA PCAT-1
was identified as a marker for prognosis outcome. Due to their secondary struc-
ture, lncRNAs are stable in human body fluids, which allows for non-invasive
and cost efficient testing (Prensner et al., 2011). The aforementioned lncRNA
ANRIL, that has scaffolding functions, has been associated with both cancer
and cardiovascular diseases (Burd et al., 2010). Besides ANRIL, several other
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lncRNAs were found to be involved in heart failure, cardiac autophagy and my-
ocardial infarction (Lorenzen and Thum, 2016).
In kidney disease, Xist and Neat1 were associated with membranous nephropa-
thy (Huang et al., 2014) whereas in diabetes mellitus MALAT1 upregulation in
endothelial cells, subjected to high glucose treatment, was associated with up-
regulated expression of genes that regulate inflammation like SAA3, TNF and
IL-6 (Puthanveetil et al., 2015).
As the brain is one of the tissues with the highest amount of lncRNAs ex-
pressed, there were various instances of neurological disorders and diseases
linked to lncRNAs dysregulation (Briggs et al., 2015). In schizophrenia re-
cent evidence suggests that defects in regulation of the lncRNA GOMAFU cause
aberrant splicing of the mediator molecule DISC1 and the receptor tyrosine ki-
nase ERRB4 (Barry et al., 2014). Interestingly, GOMAFU forms a ribonucleo-
protein complex in the nucleus with the splicing factors SRSF1, SF-1, and QKI,
which could be the dysregulated mechanism in schizophrenia. An association
of GOMAFU with schizophrenia risk was shown by several studies indepen-
dently, however, without mechanistic insights (Takahashi et al., 2003, Di Chiara
et al., 2004, Albertson et al., 2006, Michelhaugh et al., 2011, Spadaro et al.,
2015). In neurons, differentiated in vitro, it could be shown that downregulation
of GOMAFU indeed causes splicing defects in DISC1 and ERRB4 that mimic
those seen in schizophrenia patients (Barry et al., 2014). Besides schizophrenia,
lncRNAs were also found in other neurologic diseases such as ADS, AD and
neuropathic pain (Briggs et al., 2015).

1.7 CRISPR

1.7.1 CRISPR discovery

Probably the most impactful innovation in recent biology, next after high
throughput sequencing methods, is the development of the CRISPR/Cas9 gene
editing system. Originally, Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) were found in bacteria and archaea (Barrangou, 2015), where
they function as an adaptive immune system. In the spacer region between the
repeats, short foreign DNA fragments from previous exposure to e.g. viruses
and plasmids were found (Mojica et al., 2000, Pourcel et al., 2005, Mojica et al.,
2005, Bolotin et al., 2005, Barrangou et al., 2007, Marraffini and Sontheimer,
2008, Marraffini and Sontheimer, 2010). CRISPR-associated system (Cas) pro-
teins utilize this foreign genetic information to recognize and cut new encounters
of foreign DNA or RNA, depending on the Cas protein (Mohanraju et al., 2016).
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1.7.2 Development of CRISPR/Cas9

The CRISPR system of Streptococcus pyogenes containing a CRISPR RNA (cr-
RNA) and trans-activating CRISPR RNA (tracrRNA) was further simplified to
a single guide RNA (sgRNA) that works together with the endonuclease Cas9.
With replacing the guide region, essentially any DNA stretch can be targeted to
induce double strand breaks (Jinek et al., 2012). However, optimal performance
is limited to DNA stretches with certain sequence properties, e.g. GC content.
The system was rapidly utilized to modify human cells (Cong et al., 2013, Mali
et al., 2013) and most common model organisms (Gratz et al., 2013, Friedland
et al., 2013, Jiang et al., 2013, Wang et al., 2013).

1.7.3 CRISPR and previous methods

When researchers aimed to suppress gene expression before CRISPR was avail-
able, the method of choice was RNA interference (RNAi), where, instead of
knocking out a gene from the genome, its transcripts were targeted. While it
was easy and cheap to target several genes or screen whole genomes, the ef-
fect was limited to a couple of days and instead of depleting gene expression,
RNA abundances were only reduced. Transcription activator-like effector nucle-
ases (TALENs), which emerged after RNAi, affected DNA with full disruption
of gene expression. However, for each target a specific protein needed to be
produced, which made the procedure less cost efficient than RNAi and CRISPR.

1.7.4 Increased accessibility and alternative CRISPR applications

Advancement in CRISPR development made it easier for researchers to apply
the technology and explore new applications. Predefined CRISPR libraries are
now commercially available to target the entire coding genome in human and
mouse (Shalem et al., 2014). Furthermore, there are the alternative applications
CRISPRi that allow a transient knockdown, as with RNAi, and CRISPRa for ac-
tivation. For those applications a catalytically dead version of Cas9 (dCas9) is
used that does not induce DNA cleavage but instead allows to deliver proteins
to defined genomic loci (Qi et al., 2013). Bringing transcription factors or chro-
matin remodelling factors to a site of interest allows to activate or repress genes
in a non-invasive manner. These methods allow to find and study regulatory ele-
ments, like enhancers, that would suffer less from induced frameshifts resulting
from double-strand-break repair used to disrupt protein coding gene function. In
the first study performed that uses CRISPRi, 98,000 sgRNAs were designed to
target a 1.29 Mb sized region around GATA1 and MYC (Fulco et al., 2016). Nine
distal enhancers affecting proliferation of K562 cells through GATA1 and MYC
expression regulation were identified. A further, smaller scale study targeted 15
super enhancers with 241 sgRNAs (Xie et al., 2017). CRISPRi and CRISPRa
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were also used to study lncRNAs (Liu et al., 2017, Joung et al., 2017).
Another interesting approach to target lncRNAs is to entirely remove their pro-
moter region. This method would help to avoid a collision of endogenous reg-
ulation with imposed one. A screen employing such a paired design identified
51 lncRNAs that affect cancer cell growth (Zhu et al., 2016). Recent advance-
ments have been made to simplify the delivery of paired guide RNAs (pgRNAs)
fully scalable from single locus studies to complex libraries targeting thousands
of regions (Aparicio-Prat et al., 2015). The Double Excision CRISPR Knockout
(DECKO) plasmid allows cloning of both sgRNAs in a single 165 bp oligonu-
cleotide. But also the design of paired guides has been made simpler. With
CRISPETa a pipeline for flexible and scalable pgRNA design, guide pairs for
any number of target regions can be designed in parallel (Pulido-Quetglas et
al., 2017). During the designing procedure CRISPETa compares them against a
pre-computed off-target database. Furthermore, pre-designed libraries for differ-
ent classes of protein coding and non-coding elements are available for human,
mouse, zebrafish, Drosophila melanogaster and Caenorhabditis elegans.

1.8 Blood cell development

During hematopoiesis all blood cell types are generated from multipotent
hematopoietic stem cells (HSC) found in the bone marrow (Morrison et al.,
1995). In an asymmetric division, they renew themself but also produce precur-
sor cells that lose the potential to self-renew. However, still being multipotent,
they can give rise to different daughter cell types (Morrison and Kimble,
2006). The first major branching point appears with the separation into the
common myeloid and common lymphoid progenitor cells (Figure 1.4). Towards
terminally differentiated cell types like erythrocytes, macrophages or T-cells
precursors lose the potential for different fates but gain specific morphological
and functional properties.

Differentiated blood cells are classified into red blood cells, white blood cells
and platelets. While lymphoid progenitors give only rise to a subgroup of
white blood cells (B-cells, T-cells and natural killer cells), myeloid progenitors
produce all subtypes. The above classification is based on the function of the
cells. Erythrocytes (red blood cells) are the most abundant cell type in blood,
responsible for its characteristic red color. As they are highly enriched with
hemoglobin, their main purpose is the distribution of oxygen in the organism.
Megakaryocyte-derived thrombocytes (platelets), lost the cell nucleus like
erythrocytes. Their main function is to aggregate in cluts to stop bleeding after
blood vessel injuries (Machlus et al., 2014). All remaining blood cell types
are classified as white blood cells and fulfil functions in innate and adaptive
immunity.
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Figure 1.4: Hematopoietic cells differentiate from multipotent stem cells in the bone
marrow to differentiated cell types released to blood (adapted from OpenStax Anatomy
and Physiology Textbook Version 8.25)

1.8.1 The role of transcription factors in hematopoiesis

While growth factors like interleukins (IL) and colony-stimulating factors (CSF)
deliver signals between cells to stimulate the differentiation and proliferation of
a certain cell type, transcription factors are the executors, who take the signal
and shape the transcriptome and thereby the morphology of the cell (Ketley and
Newland, 1997, Nakajima, 2011). C/EBPa, from the CCAAT-enhancer-binding
protein family, is one of the key transcription factors for hematopoiesis. To-
gether with PU.1, it primes cells for myeloid differentiation and directs them
further into the monocyte/granulocyte branch (Ohlsson et al., 2016, Pundhir et
al., 2018). This is not a binary process where expressed or not expressed discrim-
inates fates, the expression level matters as well for decisions. In HSCs, C/EBPa
is expressed at low levels but upon depletion was shown to not just induce prolif-
eration, but also trigger a loss of self-renewal (Ye et al., 2013, Hasemann et al.,
2014). Furthermore, a high expression level of PU.1 is needed for the myeloid
lineage, while low PU.1 levels lead to lymphoid cell development (Fiedler and
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Brunner, 2012).
An indication that transcription factors not just direct cells into fates, but are
actually required for their identity was given by the knockout of Pax5 in ma-
ture B-cells, which allowed them to dedifferentiate into uncommitted progen-
itors (Cobaleda et al., 2007). Enforced C/EBPa expression in B-cells boosted
reprogramming into induced pluripotent stem cells along the same lines (Bueno
et al., 2016).
The NF-kB protein complex is another crucial transcription regulator for
hematopoiesis. Its activity is especially important in late hematopoietic devel-
opment for almost all cell types, including erythrocytes, macrophages, dendritic
cells, granulocytes, NK-cells, B and T-cells (Bottero et al., 2006). The function
of NF-kB signalling is buffered by its different subunits to some extent. While
mice deficient in p100 have reduced numbers of follicular B cells, a lack of cRel
results in defects in germinal center B cells differentiation (Gerondakis et al.,
1999). The lack of either p100, p105 or RelB results in an entire loss of marginal
zone B-cells (Cariappa et al., 2000, Weih et al., 2001). A loss of multiple sub-
units has more severe consequences, e.g. the lack of p105 and p100 locks B-cells
at an early stage of development in peripheral lymphoid organs, while the loss
of p105 and p65 results in no lymphocytes in peripheral lymphoid organs at all
(Horwitz et al., 1997, Gerondakis et al., 1999). Importantly, NF-kB signalling is
not just crucial for differentiation but also for both B-cell activation and survival
(Gerondakis and Siebenlist, 2010).

1.8.2 Intron retention in hematopoietic development

As briefly mentioned in the intron retention section, IR was observed in mam-
malian blood cell development. Actually, to our knowledge, blood together with
neuronal tissue has the highest amount of publications reporting IR in mammals.
So far it is mainly described to change during development in the terminal differ-
entiation of myeloid cells. Specifically, it increases during terminal erythrocyte
and granulocyte differentiation (Wong et al., 2013, Pimentel et al., 2016, Ed-
wards et al., 2016). In granulocytes it was associated with a change in nuclear
morphology induced by intron retention in the transcript of the lamina protein
LMNB1 (Wong et al., 2013). For terminal erythropoiesis both publications found
an association of genes affected by IR to splicing and iron homeostasis (Pimentel
et al., 2016, Edwards et al., 2016). While iron homeostasis is essential for ery-
thropoiesis, no functional mechanism indicating IR to be crucial for erythrocyte
development could be shown, however. In contrast to increasing IR in termi-
nal erythrocyte and granulocyte differentiation, progression from earlier stage
megakaryocyte-erythrocyte progenitors to megakaryocytes and erythrocytes re-
vealed a decrease in IR levels for most introns (Edwards et al., 2016). While so
far there are no reports about IR changes in lymphoid differentiation, an increase
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in IR was observed after T-cell activation (Ni et al., 2016). In addition, a change
in IR levels was associated with the RNA binding protein hnRNPLL (Cho et al.,
2014).

1.8.3 LncRNAs in hematopoietic development

Although only a minority of the known lncRNAs are functionally characterized
in mammals so far, some of them were found to be important for hematopoi-
etic cell differentiation and function. In hematopoietic stem cells it has been
shown that expression of the lncRNA H19 is important to suppress the insulin-
like growth factor 1 (Igf1) and its receptor Igf1r to keep the HSCs in their qui-
escent state (Keniry et al., 2012, Venkatraman et al., 2013). In a manuscript
identifying 323 novel lncRNAs in HSCs, two more lncRNAs (LncHSC-1 and
LncHSC-2) were found to impact HSC self-renewal (Luo et al., 2015). Further
down the differentiation tree into the myeloid lineage, lncRNAs, fulfilling regu-
latory functions, were found in many sub-branches. In macrophages the lncRNA
lincRNA-Cox2 was found to modulate the expression of immune response genes
during inflammatory response (Carpenter et al., 2013) while, lnc-DC, exclusively
expressed in dendritic cells, was found to impair normal dendritic cell differenti-
ation upon depletion (Wang et al., 2014). Furthermore, HOX antisense intergenic
RNA myeloid 1 (HOTAIRM1) was found to activate the HOX genes HOXA1
and HOXA4 important for granulocyte differentiation (Zhang et al., 2009) while
LincRNA-EPS was found prevent apoptosis during terminal differentiation of
erythroblasts (Hu et al., 2011). Similar to intron retention, less lncRNAs are
described for the lymphoid branch. While in type 2 helper T-cells (Th2) the
lncRNA Linc-MAF-4 recruits LSD1 and EZH2 to the promoter of MAF and
thereby represses it, which in turn skews T-cell differentiation toward the Th2
phenotype (Ranzani et al., 2015), less is known about lncRNA function in B-
cells.
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Chapter 2

INTRON RETENTION IN
BLOOD CELLS

Intron retention (IR) is a potential mechanism between transcription and
translation to alter the outcome of gene expression in a temporal and quantitative
manner. So far, IR was observed in a wide set of tissues of multiple vertebrate
species in a relatively low fraction of all transcribed genes (Braunschweig et
al., 2014). However, most publications to date found higher levels of IR in
developmental processes and differentiation, especially in neuronal tissues and
blood (Wong et al., 2013, Pimentel et al., 2016, Edwards et al., 2016, Middleton
et al., 2017). While differential IR was associated with blood cell differentiation
for granulocytes, erythrocytes and megakaryocytes, a general overview, of how
much the different cell types are affected compared to each other, is missing.
Furthermore, it is unclear if IR preferentially affects the myeloid branch to
which all of the aforementioned cells belong, or if it is also present in the
lymphoid branch. In this part of the thesis we are going to address the following
questions:

1. How do differentiated blood cell types compare in IR levels?

2. Are there branches of hematopoietic development with differential IR not
characterized?

3. Which cell type specific processes and properties are affected by IR?
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4. How do splicing modulators relate to IR events?
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Intron retention is tightly associated with regulation 
of splicing factors and proliferative activity during 
B-cell development.
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Chapter 3

LNCRNAS IN
TRANSDIFFERENTIATION

Similarly to the role of AS, the role of the non coding genome during differenti-
ation in the hematopoietic lineage is poorly characterized. In this context, deep
transcriptome sequencing that greatly facilitated the exploration of alternative
splicing events also advanced the exploration of the non-coding genome. In
principle, every de novo annotation study in a cell type or process slightly off
the well explored cell culture path finds a couple to hundreds of new non-coding
transcripts. In recent annotations of the human genome about 15,000 long
non-coding RNAs (lncRNAs) are reported, however, less than 5% of them
are functionally characterized (Amaral et al., 2011, Quek et al., 2014, Ma et
al., 2015, https://www.gencodegenes.org/stats/current.html). One challenge in
genomics today, with steadily increasing numbers of new transcripts, is to scale
approaches for functional characterization of those transcripts. This section of
the thesis aims to develop a CRISPR/Cas9-based workflow to delete basically
any stretch of genomic DNA (<5 kb) for many sites in parallel, and to apply it
specifically to differentiation in the hematopoietic lineage. More specifically in
this section of the thesis we are going to focus on the following technical and
biological aspects:

1. Development of a method for CRISPR/Cas9 screening with paired guide
RNAs to excise any set of regulatory regions in the genome
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2. Development of a method for efficient quantification of the sequencing
output of paired guide screens

3. Exploration of lncRNA and protein coding gene expression patterns during
transdifferentiation of (B-cell like) BLaER1 cells to macrophages

4. Disruption of lncRNA and protein coding gene expression by CRISPR
knockout and monitoring the effect on transdifferentiation
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Screening for novel regulators that affect speed and        
efficiency of transdifferentiation from B-cell like      
BLaER1 cells to macrophages with CRISPR/Cas9.  

Sebastian Ullrich, Carme Arnan, Alexandre Esteban, Ramil Nurtdinov, Sílvia Pérez-Lluch,          
Rory Johnson, Roderic Guigó.  

Introduction

The hematopoietic system has been widely used to understand differentiation processes of            
pluripotent cells into differentiated cells due to its accessibility for experimental investigation.            
Initially, it was believed that transcription factors guide cells in a stepwise process into              
determined fates by altering their transcriptome (Morrison et al., 1995, Kondo et al., 1997,              
Akashi et al., 2000a, Akashi et al., 2000b, Chao et al., 2008, Doulatov et al., 2010, Notta et                  
al., 2011). However, recently with the use of single cell data it was demonstrated that those                
transitions are more fluid than initially expected (Velten et al., 2017). 
Furthermore, it was shown that those transitions can not just occur down the hematopoietic              
differentiation tree but also, by induction, from one branch to another. Either expression of              
raf/ras oncogenes or an activated form of the M-CSF receptor (M-CSFR) could            
transdifferentiate cells already committed to B-cell differentiation (lymphoid lineage) to          
closely related macrophages (myeloid lineage) with, however, low efficiency (Klinken et al.,            
1988, Borzillo et al., 1990).  
In later work, it could be demonstrated that a single transcription factor C/EBPa induced by               
estradiol was sufficient to transdifferentiate murine B-cells into macrophages with 100%           
efficiency within 2-3 days (Xie et al., 2004, Bussmann et al., 2009). During the              
transdifferentiation process, it is crucial to shut down the B-cell related expression program             
and activate the macrophage related. Along these lines, it was found that PU.1, a downstream               
transcription factor activated by C/EBPa, however, needed for both B-cells and macrophages            
(Schebesta et al., 2002), is a major determinant for shaping the transcriptome in one direction               
or the other (DeKoter and Singh, 2000). More recently in a screening of human lymphoma               
and leukemia B-cell lines, the lymphoblastic leukemia B-cell line BLaER1 was found to             
transdifferentiate to macrophages upon induced activation of C/EBPa within 5-7 days (Rapino            
et al., 2013). While transdifferentiation happens efficiently in both mouse and human, it             
remains elusive what causes the differences in the speed of transdifferentiation and which             
downstream targets of C/EBPa and PU.1 are essential for transdifferentiation. 
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In the following, we identified genes with peaking or increasing expression profiles during the              
course of transdifferentiation in human. We created a library with guide pairs for             
CRISPR/Cas9 excision of 163 lncRNA transcription start sites and coding regions in the             
initial exons of 939 protein coding genes from the above selected genes. Out of the targeted                
genes, we identified 28 candidate genes potentially affecting transdifferentiation. 
 

Results 
 
Selection of lncRNAs and protein coding genes with activated expression pattern 
 
In principle, lineage specific key transcription factors drive differentiation processes by           
regulating a wide set of downstream genes to change cellular properties. However, it requires              
experimental interference to understand which of those genes are essential for speed and             
efficiency of the differentiation. To study the downstream regulatory network in a well             
established differentiation setup, we chose the transdifferentiation model of B-cell like           
lymphoma cells to macrophages that leads to nearly 100% efficient conversion to            
macrophages. For induction of the process, a Burkitt Lymphoma derived cell line BLaER1             
was created that stably expresses a fusion protein of CEBPa with an estrogen receptor              
hormone binding domain. When β-estradiol is added to the cell, it binds to the fusion protein                
and induces its translocation into the nucleus where it induces the transcriptional program             
leading to macrophage properties and morphology (Figure 1a). In addition, a supply of IL-3              
and M-CSF in the culture medium is needed but not sufficient to stimulate             
transdifferentiation.  
During the 7 day period needed in human cells for the transdifferentiation changes in the cell                
population to occur, they can be monitored by flow cytometry. CD19, a cell surface molecule               
found on B-cells, decreases its abundance, while MAC1, a cell surface marker for             
macrophage identification, increases it (Figure 1b).  
To investigate the transcriptomic transformation during transdifferentiation, we performed         
RNA-seq of the cells at 12 time points throughout the process in two biological replicates. In                
principle, we assumed that there are two types of interesting expression profiles that we want               
to investigate further. On the one hand, genes that are peaking in their expression throughout               
the process with a potential role in transforming cells into a transition state before turning               
into macrophages. On the other hand, genes that are upregulated with potential functions for              
the new transcriptomic identity. We determined subsets of lncRNAs (rep1 n=642, rep2            
n=536) and protein coding genes (rep1 n=4804, rep2 n=4552) with minimum peak            
expression values as well as expression changes outlined in the methods section. Especially,             
to select genes that peak early in the process, we clustered them with k-means clustering in                
sufficiently large subclusters (16 lncRNA clusters and 36 protein coding clusters) (Figure            
S1). From genes with an overlap in the temporal shape of expression between the replicates,               
we selected 163 lncRNAs and 939 protein coding genes for targeting with CRISPR/Cas9             
(Figure 1c and 1e). Peaking lncRNAs had their highest median expression at 36 hours with               
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1.6 FPKM, while upregulated lncRNAs had a higher median expression of 2.79 FPKM at the               
terminal time point (Figure 1d). For protein coding genes where overall expression is higher,              
we also found that peaking genes had a lower median expression at peak than upregulated at                
7 days (18.79 FPKM, 23.98 FPKM respectively) (Figure 1f). 
 
Design of the library and screening 
 
With the shortlisted lncRNAs and protein coding genes, we used CRISPETa           
(Pulido-Quetglas et al., 2017) to design paired guide RNAs (pgRNAs) to target the TSS              
region for lncRNAs and exonic regions for protein coding genes (Figure 2a). For each gene               
we designed 10 guide pairs. In addition to the targets, we designed guide pairs for               
(rat-CEBPa, human-CEBPa, SPI1, ITGAM, eGFP and mCherry), each of them targeted with            
50 guide pairs. As negative controls, we designed 10 guide pairs each for 100 intergenic               
regions. Then we ordered a library of about 12,000 oligonucleotides of 165 bp in size               
containing both pgRNAs. The library was cloned into the plasmid pDECKO (Figure 2b). 
For performing the experiment, we infected BLaER1 cells, stably expressing Cas9, with the             
pDECKO lentiviral library at a low lentiviral dose (Figure 2c). After 20 days of selection for                
cells containing the plasmid, we induced the transdifferentiation by adding β-estradiol, IL-3            
and M-CSF. After 3 and 6 days (respectively), we FACS sorted cells into populations that               
were differentiated (high) or retarded (low), regarding their expression of the B-cell and             
macrophage specific surface markers (CD19 and Mac1 respectively). We performed the           
experiment in two biological replicates (Figure S2). Due to slightly different distributions of             
the cells in the two experiments, the gates from FACS sorting differ, especially for the               
differentiated sub-population. 
After extraction of the genomic DNA from each fraction, we performed two PCR steps in               
order to amplify the integrated pDECKO plasmid. In the first PCR step, we added staggered               
oligos to avoid the same bases being read for the constant region during illumina sequencing               
to minimize technical issues during base calling (Figure 2d and 2e). In the second PCR step,                
we added Illumina barcoded oligos. We then pooled the libraries to have about 20 million               
reads per sorted subfraction and sequenced on the Illumina platform. 
 
Paired guide quantification pipeline with adjustable matching precision  
 
Unlike for sgRNA screens, quanitification of the sequenced pgRNAs is not that            
straightforward, as pairing needs to be kept, while single guide designs were used in multiple               
guide pairs for a given target gene. In particular, for developing a pipeline that efficiently               
quantifies the representation of each pair, we needed to address two major issues. The first               
issue was, due to repetitive structures in the plasmid, that primers for amplification needed to               
be placed about 100 bp away from pgRNA1, which resulted in poor quality of the sequences                
derived from the end of the 150 bp reads. Thus, the pipeline needed to be adjustable to                 
mismatches resulting from the poor read quality, in order to get sufficient numbers of reads               
for having enough statistical power to detect targets with as weak effects as it would be                
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expected from lncRNAs with low expression. The use of staggered oligos made the             
quantification less straightforward, as the position inside the sequenced reads was not fixed.             
However, it was needed to minimize technical issues during sequencing. To maximize the             
quantification outcome, we located a 4 bp constant sequence upstream of the pgRNAs, in the               
expected region in the reads and extracted the pgRNA lying after it. We then merged both                
pgRNAs, while pgRNA1 from the reverse strand was reverse complemented to have both             
sequences in the same orientation (Figure 3a). For mapping with STAR mapper (the most              
widely used mapper for RNA-seq samples), we created an artificial chromosome for each             
guide pair from the guide design provided by CRISPETa and mapped the merged reads              
against it. Due to the low memory footprint of the artificial genome, this quantification              
strategy can be applied even on mobile computers with moderate specifications (minimum            
requirements: single core CPU, 4GB RAM, 10GB disk space). From the resulting BAM files              
generated by STAR, we aggregated the mapped reads to count tables containing the             
representation of each guide pair in the analyzed sample.  
Running the pipeline without allowing for any mismatches, we could only make use of about               
25 to 30% of the reads. Hence, we investigated how many mismatches are tolerated without               
resulting into too many reads to multiple guide pairs (Figure S3a). Allowing for one more               
mismatch each resulted in a steep increase of mapped reads until a saturation point is reached                
between 10-15 mismatches, depending on the sample. For further analysis, we allowed for a              
maximum of 13 mismatches to stay below 1% of multi-mapped reads for all samples of both                
replicates (Figure S3c). Spearman correlation values of 0.95 - 1.00 between samples mapped             
with zero mismatches, compared with up to 13 mismatches, justified the usage of the              
quantification data with substantially more reads and therefore higher statistical power           
(Figure S3b). For the samples used in further analysis, we started with 20 to 35 million reads,                 
of which we mapped on average 57% for replicate 1 and 62% for replicate 2 (Figure 3b and                  
S3c). Clustering of Spearman correlation values for both replicates of all samples used for              
further analysis resulted in aggregation of the replicates from samples with retarded cells by              
time (D3_low and D6_low) (Figure 3c). Differences in the distributions of transdifferentiated            
cells and therefore different gate settings for FACS sorting resulted in clustering by replicate              
(Figure 3c and S2). Inspecting the representation of guide pairs at the time when              
transdifferentiation was induced resulted in a relatively low dynamic range of the distribution             
within the technical limitations that was similar to the initial representation of the plasmid              
library amplified (Figure 3d). In contrast, during the course of transdifferentiation (3 and 6              
days), a small fraction of guide pairs gets enriched while most others get depleted (Figure               
3d). 
 
Identification of lncRNAs and protein coding genes that retard transdifferentiation  
 
With the counts from both replicates (for 3 and 6 days each), we computed the differentiation                
retarding effect (DRE), which is the ratio of normalized counts from the sub population with               
retarded retention (low) divided by the counts from the transdifferentiated population (high).            
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DRE values > 1 indicate that disrupting the correct expression of the targeted gene reduces               
the efficiency in which cells transdifferentiate from BLaER1 cells to macrophages.  
As a sanity check, we compared DRE values between both replicates. For rat-CEBPa, which              
we used as one of the positive controls, we observe DRE values > 1 for all tested guide pairs.                   
Furthermore, DRE values correlate between the biological replicates (r=0.41, Spearman)          
(Figure 4a). Due to high sequence conservation between human and rat, rat-CEBPa targets             
the rat CEBPa estrogen-receptor fusion-protein DNA sequence as well as the intrinsic            
human-CEBPa. pgRNAs targeting mCherry (as a negative control) are not expected to affect             
transdifferentiation. In both replicates only few (3 out of 50) have DRE values >1 (Figure               
4a). Along the same lines, the majority of a set of 1000 pgRNA, designed to target 100                 
intergenic regions, had very low DRE values (Figure 4a). For both, mCherry and intergenic              
regions, we did not observe positive correlations between the replicates (0.005, 0.008,            
Spearman), which makes it more likely that unexpectedly high DRE values come from             
random virus  integration and other methodological limitations. 
To visually inspect the change from 3 to 6 days and the separation between positive and                
negative controls, we plotted the average count distribution of both replicates for the retarded              
fraction against the differentiated fraction (Figure 4b). CEBPa, as a positive control (green),             
visually separates well from negative ones, targeting intergenic regions (red). The diagonal,            
which represents equal distribution between transdifferentiated cells and retarded ones, is           
covered by pgRNA guide pairs at 3 days after induction of the experiment. With further               
progress, after 6 days, most intergenic targets shifted towards higher cell proportions in             
transdifferentiated fractions. As a consequence, separation between positive and negative          
controls increases. 
In order to find potential targets affecting the transdifferentiation, we selected all guide pairs              
with DRE values (mean of both replicates) in the highest decile (for 3 days DRE > 1.89, 6                  
days DRE > 0.44) (Figure 4c). For 3 and 6 days separately, we required potential targets to                 
have at least 2 identical pgRNA pairs in that upper decile for both replicates. For the 3 day (6                   
day) time point this resulted in 18 (50) lncRNAs and 86 (135) protein coding genes.               
Comparing the distribution for all pgRNAs of all selected targets with positive and negative              
controls revealed significant differences between their distributions (both sided t-test) (Figure           
4d). 
Finally, we compared the potential targets with the output of MAGeCK, a tool to analyse               
CRISPR screening experiments, and overlapped the initially selected targets with ones that            
had at least a p-value < 0.05 from the MAGeCK output (both time points were treated                
separately) (Figure 4e). 
Overall, we observed stronger effects for protein coding genes, but nevertheless, after careful             
inspection of all targets, we suspect that LINC00847 and RP11-84C10.2 are the lncRNA with              
the highest potential to affect transdifferentiation efficiency. For protein coding genes, we            
hypothesize that FURIN, CEACAM1 and NFE2 have potential on actively impacting           
transdifferentiation efficiency. FURIN is an amino acid cleaving enzyme that processes           
pre-proteins in major proteins and thereby activates them (Wise et al., 1990, Kiefer et al.,               
1991). The cell-cell adhesion molecule CEACAM1 was found to have regulatory functions in             
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T-cells and could potentially be important for the adhesion of macrophages at sites of              
infection (Nagaishi et al., 2006). The transcription factor NFE2 was found to be essential for               
regulating erythroid and megakaryocytic maturation and differentiation, but also impacts the           
renewal of hematopoietic stem cells (Shivdasani 2001, Gasiorek and Blank 2015, Di Tullio et              
al., 2017).  
 

Discussion 
 
Questioning which noncoding and coding genes impact the efficiency of transdifferentiation           
from B-cell like BLaER1 cells to macrophages, we selected about 1,100 potential target             
genes and screened for retardation of transdifferentiation at an intermediate time point (3             
days) of the process and closer towards the end (6 days). While the initial idea was to use                  
predominantly non-coding target genes, the lack of lncRNAs changing expression and being            
expressed at least at one time point above a considerable level (>1 RPKM) led us to target                 
85% percent protein coding genes to take full advantage of the oligonucleotide library size.  
With no established strategy for quantification of the sequencing output available for a paired              
guide design, we developed a pipeline easy to run on moderate hardware that maps the reads                
against the screening library with adjustable tolerance for mismatching nucleotides. However,           
due to limitations of the plasmid design, especially pgRNA1 falls in a suboptimal end region               
of the read sequence resulting in up to 70% of read loss.  
In general, the library complexity was high at the beginning of the experiment and decreased               
towards the end as expected. That effect could be caused by the impairment of              
transdifferentiation and the higher proliferative potential of the lymphoma derived BLaER1           
cells, compared to quiescent macrophages. In addition, DRE values were highly affected by             
insertion effects of the virus, delivering the pgRNA pairs. This was not very obvious in               
CEBPa where, due to its central importance, all guide pairs had high DRE values and               
correlated quite well. However, for SPI1 and more obvious for IL3RA, the latter was not               
designed as a control initially, only a fraction of the guide pairs showed a retarding effect,                
while others had lower DRE values than pgRNA pairs targeting intergenic regions. Also,             
reproducibility between replicates was lower for both. Even more for the potential targets,             
where we in some cases observed very high DRE values for one guide design that could not                 
be reproduced in the second replicate and vice versa for hits in the second replicate. In those                 
cases, we observed binary effects of one design working very well, while all others did not                
show a retarding effect on transdifferentiation. We believe that these results stem from the              
disruptive effect of virus integration into the human genome. Therefore, for targets being             
selected, we required them to have at least two designs with DRE values among the top 10%                 
for the given time point for both biological replicates to be selected. By requiring them, in                
addition, to come from the same pgRNA pair, we assumed this to be an indication of a                 
working design. As a supplemental strategy for analyzing the data, we used MAGeCK             
implemented merely to quantify CRISPR screens performed with sgRNAs. While we could            
not derive positive hits form MAGeCK considering commonly used cutoffs of 0.01 or 0.05              
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for p-values corrected for multiple testing, as only controls surpassed that level, we saw some               
indications for potential targets inspecting the qq-plots for targets sheering out from the             
expected p-value distribution. Among them were FURIN, CEACAM1 and NFE2, which we            
consider the most promising targets, but unfortunately no lncRNAs. A drawback regarding            
MAGeCK seems to us that reproducibility of guide designs between the replicates was not              
given as much weight as we would have wanted. For that reason, we used the combined                
strategy, taking from the top of the DRE value distribution and intersecting with MAGeCK              
output. 
As the refinement of the positive targets needs further validation, we are planning on              
retesting the selected targets individually to reach further conclusions on their           
transdifferentiation retarding potential.  
 

Methods 
 
Experimental methods 
 
Library cloning 
A ssDNA library composed by 12,000 oligos of 165 nt was purchased from Twist              
Biosciences. The library was amplified to obtain dsDNA using emulsion PCR as described in              
Schütze et al., 2011, and cloned into pDECKO_mCherry vector (Addgene 78534) following            
the 2 cloning steps described in Aparicio-Prat et al., 2015. ENDURA electrocompetent cells             
(Bionova Scientifica) were used to ensure high efficiency transformation and avoid           
recombination errors. Several transformations were done in parallel and for the 1st step of              
cloning (intermediate plasmid) about 486,450 bacterial colonies were collected and processed           
together in a maxiprep. To eliminate the background (empty plasmid), we took advantage of              
that insert-1 (in the intermediate plasmid) contains unique restriction sites (EcoRI and            
BamHI) which are not present in the original backbone. Digesting the intermediate plasmid             
resulted in a linear product that we could distinguish from the circular empty backbone and               
purify it in a gel. For the 2nd step of cloning, 50 ng of BsmbI-digested intermediate plasmid                 
was mixed with 1 ul annealed Insert-2 (diluted 1:20) and 1 ul of T4 DNA ligase (Thermo                 
Scientific) and incubated for 4h at 22ºC. Several transformations with ENDURA           
electrocompetent cells were done in parallel and for the 2nd step of cloning (final plasmid)               
more than 107,650 bacterial colonies were collected and processed together in a maxiprep.             
The final maxiprep library was deep sequenced to check for the quality and representation of               
the different constructs. 
 
Cell culture and lentivirus production 
Human BLaER1 cells (Rapino et al. 2013) were kindly provided by Thomas Graf (CRG,              
Barcelona) and grown in RPMI medium (Invitrogen) supplemented with 10%          
heat-inactivated foetal bovine serum (FBS), 2 mM L-glutamine, and 100 U/ml penicillin G             
sodium (Rapino et al. 2013). BLaER1 cells were first infected with a plasmid containing              
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Cas9 fused to BFP and blasticidin resistance (Addgene 78545), selected for more than 5 days               
with blasticidin (15 µg/ml) and sorted using a BD FACS Aria instrument. These cells, stably               
expressing Cas9 were then infected with the pDECKO library. For lentivirus production, we             
performed 80 co-transfections of HeK293T virus packaging cells with 3 ug of the             
pDECKO_mCherry plasmid library and 2.25 ug of the packaging plasmid pVsVg (Addgene            
8484) and 750 ng of psPAX2 (Addgene 12260) using Lipofectamine 2000 (according to             
manufacturer's protocol). Transfection media was changed on the following day to RPMI. In             
total, 400 ml of viral supernatant was collected 48h post transfection and used for overnight               
infection of 90x10E6 BLaER1-Cas9 cells at a density of 250.000 cells/ml. The percentage of              
infection was checked as the percentage of mCherry+ cells with a Fortesa cell cytometer.              
Infection rate ranged between 2%-4%. Cells were selected with puromycine (2 ug/ml) and             
blasticidine (20 ug/ml) for 18-19 days. 15 million of the BLaER1-Cas9 library infected cells              
were induced for transdifferentiation into macrophages. After incubation for 3 days/6 days, as             
described previously (Rapino et al. 2013), they were collected for FACS sorting. 
 
FACS sorting 
30x10E6 cells were counted and resuspended in 300 ul PBS+3% FBS in the presence of FcR                
Block reagent. Cells were incubated for 10 minutes and 5 ul of the anti-CD19 antibody               
conjugated with BV510 (562947, Becton Dickinson) and 5 ul of anti-MAC1 antibody            
conjugated with PE-Cy7 (25-0118-41, Labclinics) were added. Cells were incubated for 30            
minutes, washed with PBS and resuspended in 2 ml of PBS+3%FBS. Topro-3 was added as a                
viability marker. Cells were sorted in a BD FACS Aria instrument. 
 
Sample processing for sequencing 
Genomic DNA was extracted from the FACS sorted cells with the GeneJET Genomic DNA              
purification kit (Thermo Scientific). A first PCR step was done by Phusion polymerase             
(Thermo Fisher) using 500 ng of genomic DNA and staggered oligos (Table S1) with the               
presence of 6% DMSO, annealing temperature of 60ºC and a total of 20 cycles of               
amplification. Up to 6 PCR reactions were combined, the amplicons were gel-purified and 2              
ng was used as a template for a second PCR. For the second PCR step, we used Illumina                  
barcoded oligos (Table S2), an annealing temperature of 60ºC and a total of 8 cycles of                
amplification. Samples were purified with Agencourt Ampure beads (Beckman Coulter),          
quantified with a Qubit fluorometer (Thermo Scientific) and checked for quality in a             
Bioanalyzer (Agilent) prior to be sequenced in an Illumina Hiseq 2500 (150-paired end             
sequencing). 
 
 
Computational methods  
 
Target gene selection from transcriptomics data 
The selection of target genes for the CRISPR screen was based on RNA-seq data sampled at                
12 time points (0h, 3h, 6h, 9h, 12h, 18h, 24h, 36h, 48h, 72h, 120h, 168h) during                
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transdifferentiation of human BLaER1 cells to macrophages. Two biological replicates were           
analyzed separately. Resulting target genes were overlapped between the two replicates. For            
both protein coding genes and lncRNAs GENCODE annotation v22 was used as gene model.  
The 19,814 protein coding genes from gencode v22 were filtered for a minimum average              
expression of at least 1 FPKM and at least 4x fold change between highest and lowest                
expression value along the temporal profile, resulting in 4,804 genes for replicate 1 and 4,552               
for replicate 2 remaining. Those genes were clustered separately for each replicate into 36              
expression profiles with k-means clustering in R. All profiles with peaking or increasing             
expression were pooled within each replicate and then intersected between the replicates,            
resulting in 939 genes used for screening.  
For long non-coding RNAs the biotypes: processed transcript, 3prime overlapping ncrna,           
sense intronic, antisense, macro lncRNA, lincRNA, non-coding and sense overlapping were           
selected from gencode v22 resulting in 14,855 lncRNAs. They were filtered to be non              
overlapping and 5 kb from other genes on the same strand and 50 bp on the opposite strand in                   
their TSS. Furthermore, they were required to have a minimum average expression of 0.1              
FPKM, a minimum of 1 FPKM at any of the time points and at least a two fold change                   
between minimum and maximum expression, resulting in 642 lncRNAs for replicate 1 and             
536 for replicate 2. Those lncRNAs were clustered separately for each replicate into 16              
expression profiles (due to lower gene count over protein coding genes) with k-means             
clustering in R. All profiles with peaking or increasing expression were pooled within each              
replicate and then intersected between the replicates, resulting in 163 lncRNAs used for             
screening.  
 
Guide RNA design 
CRISPETa (Pulido-Quetglas et al., 2017) was used to design gRNA pairs. For protein coding              
genes, the exonic region was targeted, while for lncRNAs the promoter/TSS region was             
targeted. 
 
Creation of an artificial genome 
Based on the initial pgRNA library with two guides per target, a concatenated 41 bp sequence                
of the two pgRNAs (pgRNA1 21 bp, pgRNA2 20bp) was created and converted into FASTA               
format. STAR mapper (2.4.2a) was used to index the genome with adjusting the standard              
settings by the following parameter for small genomes:  
 
--genomeSAindexNbases 6 
 
In the resulting genome, each pgRNA pair represented one out of 11,666 chromosomes with              
a length of 41 bp. 
 
Extraction of pgRNA guide regions from Illumina reads 
Dynamic trimming of Illumina reads was done in perl by pattern matching the insertion site               
of the pgRNAs in the plasmid sequence (“ACCG” for pgRNA1 in the window of 15-55 bp of                 
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read2, “AAAC” for pgRNA2 in the window of 100-150 bp of read1). The extracted 20 bp                
fastq sequences for the pgRNA2 were reverse complemented and concatenated to the 21 bp              
fastq sequences for the pgRNA1. Fusion reads with fewer than 20 bp sequence length were               
filtered out.  
 
Mapping of index reads against the artificial genome 
Mapping was performed with STAR version 2.4.2a with the following parameters: 
 
STAR --runMode alignReads --runThreadN 8 --genomeDir /users/resources/genome       
--readFilesCommand zcat --readFilesIn pgRNA1_pgRNA2.fastq.gz --alignIntronMax     
1 --outSAMtype BAM SortedByCoordinate --outSAMunmapped Within      
--limitBAMsortRAM 3000000000 --outFilterMultimapNmax 1    
--outFilterMismatchNmax 11 --outFilterMatchNmin 30    
--outFilterMatchNminOverLread 0.1 --outFilterMismatchNoverLmax 0.9    
--outFilterScoreMinOverLread 0.1  
 
Due to the various PCR amplifications and the limitations with the position within the 150 bp                
reads, especially for pgRNA2, we adjusted the mapping parameters to allow for a maximum              
of 13 mismatches within the 41 bp sequence. After a previous parameter scanning within a               
range of 0-25 mismatches, we chose a maximum of 13 mismatches to stay below 1%               
multimaps within the mapped libraries. The count for each guide pair within the mapped              
libraries was aggregated from the BAM files with samtools.  
 
Analysis of the read counts 
The count tables generated from the BAM files were filtered for guide pairs having at least 5                 
counts in the initial sample at t=0h, to ensure a minimum representation at the beginning of                
the experiment. For both biological replicates, the ratio of the FACS sorted retarded (low)              
over differentiated fraction (high) was computed for both 3d and 6d. From the distribution of               
ratios form each of the 12k guide pairs, all guide designs found above the 90th percentile                
were selected. Guide pairs for which both biological replicates of each time point had at least                
2 guide designs for a given target above these 90th percentile were overlapped with a run of                 
MAGeCK v0.5.7 (Li et al., 2014) for both timepoints separately. MAGeCK was run in its test                
mode, where significant targets are estimated from prequalified count tales. For the merge             
with the previous by ratio selected targets a FDR < 0.25 was required.  
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Table S1: Staggered Oligos 
 
Stag0nt_F TTCAGACGTGTGCTCTTCCGATCTGTGGAAAGGACGAAACACCg 

Stag1nt_F TTCAGACGTGTGCTCTTCCGATCT​H​GTGGAAAGGACGAAACACCg 

Stag2nt_F TTCAGACGTGTGCTCTTCCGATCT​HM​GTGGAAAGGACGAAACACCg 

Stag3nt_F TTCAGACGTGTGCTCTTCCGATCT​HMM​GTGGAAAGGACGAAACACCg 

Stag4nt_F TTCAGACGTGTGCTCTTCCGATCT​NNMM​GTGGAAAGGACGAAACACCg 

Stag5nt_F TTCAGACGTGTGCTCTTCCGATCT​NNMMC​GTGGAAAGGACGAAACACCg 

Stag0nt_R CCCTACACGACGCTCTTCCGATCTcaagatctagttacgccaagcttAAA 

Stag1nt_R CCCTACACGACGCTCTTCCGATCT​D​caagatctagttacgccaagcttAAA 

Stag2nt_R CCCTACACGACGCTCTTCCGATCT​DK​caagatctagttacgccaagcttAAA 

Stag3nt_R CCCTACACGACGCTCTTCCGATCT​DKK​caagatctagttacgccaagcttAAA 

Stag4nt_R CCCTACACGACGCTCTTCCGATCT​NNKT​caagatctagttacgccaagcttAAA 

Stag5nt_R CCCTACACGACGCTCTTCCGATCT​NNBBT​caagatctagttacgccaagcttAAA 
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Table S2: Illumina Oligos ​(barcode in bracket). 
 

TS-HT-D5x-96-f 
AATGATACGGCGACCACCGAGATCTACAC(ttggcaga) 
ACACTCTTTCCCTACACG ACGCTCTTC 

TS-HT-D7x-r 
CAAGCAGAAGACGGCATACGAGAT(xxxxxxxx) 
GTGACTGGAGTTCAGACG TGTGCTCTTC 

Replicate 1 Barcodes Barcode sequence 

TS-HT-D7x-6-r CTGAGGTT 

TS-HT-D7x-12-r CGGTTGGT 

TS-HT-D7x-60-r TGACCAGC 

TS-HT-D7x-18-r CCGGTTCT 

TS-HT-D7x-24-r AATGCAAT 

TS-HT-D7x-17-r GCTCCAGT 

TS-HT-D7x-55-r TTAGTTGC 

TS-HT-D7x-67-r TCAGATAC 

TS-HT-D7x-62-r TTCAAGCC 

TS-HT-D7x-64-r GACTAACC 

TS-HT-D7x-79-r CAGAGAGA 

Replicate 2 Barcodes Barcode sequence 

TS-HT-D7x-1-r CGTTGGTT 

TS-HT-D7x-9-r TGGTTCTT 

TS-HT-D7x10-r GTCTTCTT 

TS-HT-D7x-22-r GAACCGAT 

TS-HT-D7x-32-r ACTTACGG 

TS-HT-D7x-43-r CTTGATAG 

TS-HT-D7x-61-r GCAACGCC 

TS-HT-D7x-78-r TCGAACGA 

TS-HT-D7x-80-r GCCATTCA 

TS-HT-D7x-82-r CCTGCTCA 

TS-HT-D7x-93-r GTCGCGAA 
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Figure 1. Transdifferentiation of B-cell like BLaER1 cells into macrophages is accompanied by a dynamic transcriptomic remodelling 
of the cells. (a) B-cell like BLaER1 lymphocytes transdifferentiate to macrophages in the presence of Interleukin 3 (IL-3) and 
Macrophage colony-stimulating factor (M-CSF) upon β-estradiol induced release of CEBPa to the nucleus. (b) Flow cytometric analysis 
of cell surface markers at 0, 3 and 7 days after induced transdifferentiation. CD19 was used as a marker for B-cell identity and MAC1 as 
a marker for macrophage identity. BLaER1 cells reside in the lower right corner with high CD19 and low MAC1 abundance and vice 
versa for macrophages. (c) Merged clusters (k-means, 16 initial clusters) of lncRNA (n=163) expression profiles with peaking and 
upregulated expression during transdifferentiation. FPKM values were log10 transformed before the normalisation by z-score. (d) Log10 
transformed expression profiles of the 163 lncRNAs. (e) Merged clusters (k-means, 36 initial clusters) of protein coding gene (n=939) 
expression profiles with peaking and upregulated expression during transdifferentiation. FPKM values were log10 transformed before 
the normalisation by z-score. (f) Log10 transformed expression profiles of the 939 protein coding genes. 
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DNA	
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Figure 2. pDECKO CRISPR Library . (a) Library composition. (b) pDECKO vector scheme. (c) General workflow of the experiment. 
BLaER1 Cas9 BFP+ cells were low infected with lentiviral pDECKO library. Cells were double selected with antibiotics for 20 days and 
differentiated to macrophages for 3 days and 6 days. Cells were labelled with specific antibodies against surface markers CD19 (for 
lymphocytes) and Mac-1 (for macrophages). High, intermediate and low differentiated populations were monitored and harvested by FACS 
sorting. (d) Cell processing and deep sequencing. Genomic DNA of cells was extracted and PCR amplified in 2 steps. The 1st PCR step 
was done with specific staggered oligos and the 2nd PCR step was done with Illumina oligos that introduce a barcode for pooling several 
samples. Barcodes were sequenced with 150 bp paired-end Illumina sequencing. (e) Scheme of oligo binding sites in the pDECKO 
construct.  
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Figure 3. Adjusted quantification procedure for efficient quantification of paired pgRNA screen. (a) Schematic flow diagram displaying 
the steps from pgRNA FASTQ sequences to count tables per guide pair. In short, pgRNA sequences are extracted from FASTQ 
sequences by finding the proximal conserved plasmid sequence. pgRNA2 is reverse complemented (only needed for paired end 
sequencing) and merged with pgRNA1. Both are mapped as one sequence to the merged expected sequences converted into artificial 
chromosomes with STAR mapper. Count tables are generated from BAM files by aggregation. (b) Read counts from the samples used 
for accessing targets that affect transdifferentiation efficiency. Initial read counts per sample range between 20 to 35 million reads of 
which on average 55% were mapped against perfect library sequences with not more than 13 mismatches. Counts represent the average 
of both replicates. (c) Spearman correlation of both replicates for the samples used for accessing targets that affect transdifferentiation 
efficiency. (d) Ranked distribution of counts per pgRNA guide pair in the control samples at 0, 3 and 6 days that contain all cells 
independent of B-cell and macrophage marker abundance. 
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Figure 4. Identification of lncRNAs and protein coding genes that retard transdifferentiation (a) Correlations of differentiation 
retarding effect (DRE) between replicates for three controls after 6 days of transdifferentiation induction. Rat CEBPa serves as 
positive while mCherry and a set of targeted intergenic regions (scramble) serve as negative controls. DRE is the ratio of reads 
from retarded versus transdifferentiated fractions. Spearman correlation values are stated above. (b) Scatterplot of log10 
transformed counts in retarded versus differentiated fractions. Guide pairs targeting CEBPa in green and intergenic in red. (c) 
Distribution of DRE values. Highest decile is marked by dashed red line. Values are means of both replicates. (d) Comparison of 
DRE from guide pairs targeting lncRNAs and protein coding genes of the highest decile with controls. Values are means of both 
replicates. (e) RRA scores (Measure of effect strength, aggregate over all guides for each target) for all targets computed by 
mageck. Targets with at least two identical guide pairs in highest decile for both biological replicates are highlighted.  
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b	

a	

Supplementary Figure 1. Clusters of lncRNAs and protein coding genes with similar expression characteristics 
during transdifferentiation of BLeAR1 cells to macrophages. (a) lncRNAs clustered into 16 expression profiles by 
k-means clustering. (b) Protein coding genes clustered into 36 expression profiles by k-means clustering. FPKM 
values were log10 transformed and normalized by z-transformation. 
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Supplementary Figure 2. Flow cytometric analysis of transdifferentiating cells. Replicate 
1 and 2 were FACS sorted after 3 and 6 days of transdifferentiation. Samples were taken 
from the color coded gates in order to collect several fractions in different states of 
transdifferentiation. Gates were adjusted to the shape of the cell clouds. CD19 was used as 
B-cell lineage marker and MAC1 for macrophages. 
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Supplementary Figure 3. Statistics on quantification of pgRNA representation in the screening. (a) Uniquely mapped, multi-mapped 
and unmapped reads as a function of allowed mismatches during quantification of the sequenced samples in a range of 0 to 26 
mismatches. (b) Spearman correlations of guide pair quantification between runs allowing for up to 13 mismatches and only allowing 
perfect matches. Values for identical samples were ranging between 0.95 and 1. (c) Detailed mapping statistics for both replicates in 
the quantification runs allowing for up to 13 mismatches.  
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Supplementary Figure 4. QQ-plots of target genes depleted by CRISPR/Cas9. QQ-plots 
are based on p-values generated by MAGeCK v0.5.7 (Li et al., 2014). MAGeCK was run in 
test mode comparing read counts of pgRNA pairs from differentiated versus undifferentiated 
fractions. Targets with fewer than two guide pairs, indicated as working by MAGeCK were 
removed. Samples collected after 3 days (upper panel) or 6 days (lower panel) of 
transdifferentiation. 
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Chapter 4

IHEC CONTRIBUTION

During the work in the core processing team for RNA-seq data in the Blueprint
Epigenome consortia, I got involved in the IHEC umbrella organisation that,
among other goals, aims to unify approaches to epigenetic data production, pro-
cessing and analysis (Stunnenberg et al., 2016). As transcriptomic data is always
a relevant complementation of ChIP-seq and DNA methylation data, we aimed
to also find a unified approach for RNA-seq. The idea was, if all international
members process their data in a unified way, data is comparable between cen-
ters, which facilitates the exchange of data without the requirement of local re-
processing. As a consequence, it would not just save researchers time but also
avoid redundant computational costs and storage space. Furthermore, we aimed
to provide the guidelines and processing pipelines to the community to use as a
general standard.
In the framework of the quality standards sub-group, I was responsible for the
RNA-seq data. I aggregated a set of more than 60 measures to the five most pre-
dictive ones, to characterize a transcriptomic data set in regard to most common
biases causing poor quality data. Together with Sitanshu Gakkhar, I provided
guidelines about how to compute the metrics and a bash script for computing
them on any given BAM file.
Together with Emilio Palumbo, we merged the metrics computation into modular
containerized integrative pipeline that can be executed in various computational
environments to produce identical results.
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RNA sequencing quality control metrics definition 
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This document aims to define the RNA Sequencing Quality Control Core Metrics and how to 
compute them. In general we highly recommend using only chastity passed reads. 
 
1. Input RNA quality  
 
The quality of the input sample RNA material is crucial for obtaining meaningful estimates for gene 
expression. As a wieldy used measure the RNA integrity number (RIN) indicates the degradation 
status of a given RNA sample. GTEx (www.gtexportal.org/) suggests a threshold for primary 
samples of 6 (range: 0 – 10) For samples coming from cell culture higher values should be expected 
(above 8). 
 
2. Genomic contamination  
 
Besides degradation of the input material, RNA samples can have remaining DNA molecules due to 
problems in the purification procedure. Those contaminations can be evaluated by the amount of 
reads from intergenic regions. The suggested measure “proportion of intergenic reads” is 
calculated as the following: 
 

number of mapped reads not overlaping with any transcript coordinates (including introns) +/− L

number of all mapped reads per sample
 

 
 L : Overhang extending transcript region by +/-500bp 
 
Limitations mostly depend on the used annotation and are therefore prone to bias by novel 
transcripts. As a common standard we recommend to use the provided BED file derived from 
gencode annotation version 22 http://www.gencodegenes.org/releases/22.html  
 
3. Library enrichment (riboZero, polyA+)  
 
Ribosomal RNAs are highly abundant in most cells and would take a high fraction of the sequenced 
reads if they were not removed, resulting in a low representation of less abundant transcripts. No 
matter if cells are enriched for polyadenylated tails or specifically depleted for ribosomal RNAs, 
levels of ribosomal RNAs should be very low in the resulting libraries. In order to access successful 
depletion we recommend to use the “fraction of reads mapping to ribosomal genes” as measure.  
 
 

number of reads mapped to ribosomal genes
number of mapped reads to the entire genome

 

 
We recommend using the Fasta files (humRibosomal.fa, hum5SrDNA.fa) provided within Illumina 
iGenomes for the corresponding genome assembly. 
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http://support.illumina.com/sequencing/sequencing_software/igenome.html 
 
4. Library amplification/diversity  
 
Most common library preparation procedures include PCR amplification steps of the fragments to 
increase the amount of material for the sequencing process. Over-amplification can occur when the 
number of cycles is high and the input material had a low RNA concentration. Resulting libraries 
have a low diversity of fragments whereas duplicates with identical start and end positions are 
abundant. We suggest using the “fraction of reads flagged as duplicates” as measure for library 
diversity, which is computed as the following:  
 
 

number of mapped reads∗ with the same start and end position as any other read from the same sample

number of all mapped reads per sample
 

 
* read pairs in the case of paired end data 

 
5. Mappability 
 
The amount of reads of a RNA sequencing sample that can be mapped to the genome of the given 
species can be biased by a variety of factors from contamination by RNA or DNA of other samples 
coming from different organisms to errors during base calling. As a measure of those biases we 
suggest to use the “proportion of mapped reads“ which is computed as the following: 
 
 

number of all mapped reads per sample

number of all reads in the provided sample fastq library file
 

 
The amount of added spike-ins can account for significant amount of reads not being mapped if not 
added to the genome towards which mapping is done.  
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Chapter 5

DISCUSSION

This work comprises the investigation of two different aspects of alternative gene
regulation during hematopoiesis - intron retention in mature mRNA and regula-
tory lncRNAs. As results and pitfalls of both parts were discussed before in
the relevant sections each, this discussion aims to integrate the observations of
our work into the current research landscape and to give an outlook on future
prospects.
The most important aims of modern genetics/genomics are to understand how
information is translated from the DNA blueprint to complex phenotypes on an
organismic scale and to dissect all information carrying genetic elements on the
small scale. Furthermore, how these gene regulatory processes unfold in de-
velopment and differentiation and what are the causes if something goes wrong
along the lines, leading to disease and aging. Those functional pieces do not just
comprise genes that create morphological structures, when translated to proteins,
but also non-coding genes that contribute to protein complex formation and gene
regulation. Besides those transcribed elements there are many more structural
elements like enhancers and promoters that are themselves only subtypes of reg-
ulatory sequences in the DNA. Furthermore, there are regions of the genome
biochemically modified like CpG islands and regions that contain information
for transcripts to be bound by RNA binding proteins, e.g. in splicing regulatory
elements within introns.
In order to gain a fundamental understanding of such regulatory structures and
processes, large consortia have been formed to collect and analyse data. And in-
deed, their work led to a significant gain of information about the layers in which
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information is encoded in the DNA sequence in the past two decades. The hu-
man genome project, together with similar projects for other organisms, provided
the basic sequence layer of the DNA. Based on that, projects such as ENCODE
and FANTOM cataloged functional elements (Kawai et al., 2001, Birney et al.,
2007, Djebali et al., 2012, Dunham et al., 2012). Which finally led to steadily
updated gene annotations by e.g. GENCODE (Harrow et al., 2006, Harrow et al.,
2012). In addition, FANTOM aimed to get transcriptomics data of as many cell
types as possible, complemented by the human body map (HBM) project. The
genotype tissue expression (GTEx) project aimed to get tissue expression data
like the HBM project, but from different individuals to take genomic variations
into account that allowed to find expression and splicing quantitative trait loci
(eQTLs, sQTLs) (Li et al., 2017, Tan et al., 2017). In addition to genotype and
transcriptomic data, projects like Roadmap (Bernstein et al., 2010), Blueprint
Epigenome project (Adams et al., 2012), DEEP (Perner et al., 2014, Wallner et
al., 2016) and ENCODE gathered epigenomic data on a variety of primary and
cell cultured cells.
What all the projects have in common is that they provide a valuable resource of
information for the community; their limitation is, however, that they are mostly
descriptive, taking a static snapshot from the cell type or tissue they sample.
This limitation has been adjusted for in newer phases of ENCODE and FAN-
TOM as well as in the Blueprint Epigenome project, where differentiation and
developmental processes were traced. The value of taking time into considera-
tion in this data becomes obvious, when comparing to other work that continues
to find new transcript isoforms and not yet annotated lncRNAs, when a stimulus
is provided to cells or they follow a differentiation path.
Regarding the first project presented in the thesis, focusing on intron retention,
a background level of IR has been observed that is largely conserved in many
vertebrate species (Braunschweig et al., 2014, Middleton et al., 2017). However,
those retention events might not contribute much to regulation, as they appear
to be rather static in their processing. Again, in those cases findings are mostly
descriptive and valuable as a resource, but do not provide clues about biological
consequences of IR. On the contrary, several other papers found IR shaping the
transcriptomes of developing cells in brain and blood cell differentiation (Wong
et al., 2013, Pimentel et al., 2016, Edwards et al., 2016). In blood cell differ-
entiation observations were limited to the myeloid lineage. In our analysis, we
found IR to appear in some branches of hematopoietic development not previ-
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ously explored, including lymphoid cells development. In B-cells we observed
an increase of IR from the bone marrow residing precursor to marginal zone B-
cells, found in secondary lymphoid organs. Cells that undergo affinity maturation
in the germinal center reaction displayed a sharp decline of IR. Increasing prolif-
eration of those cells that undergo affinity maturation is strongly anti-correlated
to the change in IR. Similarly, we observed negative correlations between prolif-
eration and IR for granulocytes. In agreement with our observations in B-cells,
differentiating to plasma cells we observed a loss of IR for monocytes differen-
tiating towards terminally differentiated macrophages and dendritic cells.
On the contrary, erythrocytes and granulocytes displayed an increase of IR to-
wards terminally differentiated stages of development.
It is important to mention that blood cells are rather easy to take samples from,
compared to other mammalian tissues, as they are not adherent and do not ag-
gregate to complex tissues morphologies. For that reason, the occurrence of IR
during development and differentiation in other tissues is probably even less un-
derstood and potentially hides further clues about the biological relevance of IR.
In the past, approaches have been made to experimentally dissect complex tis-
sues with laser micro dissection or to computationally deconvolute the acquired
data with linear models, with limitations on both sides (Simone et al., 1998, Zhao
and Simon, 2010). A promising new avenue, for developmental processes and
tissues hard to sample form, is three dimensional cell culture, where cells grow
to complex shapes in a matrix-like culture medium. With this method, organs
have been regrown in vitro as less complex smaller models. Among them, mod-
els for liver, the nervous, and the gastrointestinal system have been established
(Dedhia et al., 2016, Bijsmans et al., 2017, Di Lullo and Kriegstein, 2017).
For lncRNAs, the second project in the thesis, it is even more true that the func-
tional characterization lags behind the discovery of new lncRNAs. Currently,
the human genome annotations contain more than 15,000 lncRNAs (GENCODE
v28), from which only a small fraction is functionally explored (<5%) and with
almost every deep transcriptomic study, exploring a new biological process, more
lncRNAs are added. One of the major limitations is the throughput, in which
lncRNAs can be screened in developmental and differentiation processes that
they potentially affect. Whole organism knockouts (Zan et al., 2003), previously
used to characterize the function of genes, are time-consuming to establish for
mammalian model organisms, like mice, and can not be scaled for parallel in-
vestigation of hundreds to thousands of novel transcripts. The other approach,
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culturing cells in vitro, scales well for bigger sets of transcripts to investigate, but
has limitations for delivering the perturbation. Short hairpin RNAs (shRNAs) as
well as short interfering RNAs (siRNAs), used to deplete transcripts of interest,
have limitations for infection/transfection efficiency, as well as for knockdown
strength and duration.
A game changer for such screening efforts was the reengineering of the bacte-
rial pathogen defence system CRISPR to target and disrupt any genomic locus.
CRISPR is now becoming the standard for knockout screening, with libraries tar-
geting the entire coding genome of humans and the most used model organisms
being commercially available. Targeting non-coding genes is, however, still in
its early phase, as a frame shift inducing double strand break is not sufficient to
disrupt their function, more often based on their secondary structure. The key
for targeting such transcripts is to remove fragments of the genome entirely, ei-
ther the whole transcript or the promoter/TSS region, which is more practical for
transcripts spanning genomic regions larger than 5 kilobases. Along those lines,
the work presented in the second project within the thesis manuscript provides
a simple way to set up and perform such CRISPR screens. With the presented
method, lncRNA or enhancers can be targeted, employing commonly available
tools like CRISPETa (Pulido-Quetglas et al., 2017), for designing guide RNA
pairs and the pDECKO plasmid (Aparicio-Prat et al., 2015), for inserting them
into the cell to be screened.
As a proof of concept, we applied the method to screen for potential regulators
involved in reshaping the transcriptome during transdifferentiation of B-cell like
BLaER1 cells to macrophages. We identified a set of 34 genes, consisting of
lncRNAs and protein coding genes that we plan to validate further. A method
similar to ours has been provided by Zhu et al. 2016. While they commercially
provide the pooled library for the 671 lncRNAs, we believe that our method is
easier to adapt for any set of genetic elements in any organism of interest. Fur-
thermore, we developed an efficient pipeline to quantify the sequencing output
of such pooled screens on average office hardware.
A further interesting direction regarding screening functional genomic elements
are the methods CRISPRi and CRISPRa (Liu et al., 2017, Joung et al., 2017).
In both methods the catalytic subunit of the cleavage enzyme is mutated and
instead genomic targeting is used to deliver activating or deactivating proteins
like histone remodelers to increase or repress expression/accessibility (Qi et al.,
2013). However, all the methods that bring guide RNAs into cells by virus infec-
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tion have the limitation that integration into the genome happens at random sites,
causing false positive hits, when functional genomic structures are disrupted.
The workaround so far was to screen with multiple guide designs (also to adjust
for off target effects) in multiple biological or technical replicates. An interest-
ing direction for further development would be the site specific integration of the
plasmids as outlined by Recchia et al. in 2004. And in addition, to implement
automated methods for screening organoid arrays with CRISPR methods, to tar-
get biological structures less accessible in the past.
As it was already indicated by previous work, the distinct layers of gene regula-
tion like epigenetic remodelling, transcription factor activation and recruitment,
lncRNAs function and alternative splicing are all interconnected. In this sense,
the overall goal for understanding how complex organisms are build form genetic
information would be to integrate all that layers to a global model.
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Chapter 6

CONCLUSIONS

By investigating intron processing in cells of the hematopoietic lineage and
screening for novel regulators that affect timing and efficiency of B-cell like
BLaER1 cells transdifferentiating into functional macrophages, we reached the
following conclusions:

• Retained introns alter the transcriptomes of cell types in both branches of
hematopoietic differentiation, myeloid and lymphoid, with neutrophiles,
B-cells and monocytes being most affected. Terminally differentiated and
precursor cells are affected alike.

• In B-cells we observed that intron retention increases from early precur-
sors in the bone marrow towards maturated cells, found in the blood and
lymphoid organs. Follicular and marginal zone B-cells extracted from
spleen had the highest intron retention values.

• Germinal center B-cells, undergoing affinity maturation, display a sharp
decline in intron retention that reduces even further in antibody producing
plasma cells. Memory B-cells, also derived from germinal center cells,
regain high retention patterns.

• Genes enriched for introns with high differential IR during B-cell differ-
entiation were almost exclusively associated with GO categories related to
pre-mRNA processing and splicing.
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• Developmental stages of B-cells highly impacted by intron retention were
the most proliferative inactive stages. We also observed these negative
correlation of IR and proliferation in granulocyte differentiation.

• For the majority of SR and hnRNP genes we observed a reduced expres-
sion in developmental stages with high IR. Several of those splicing reg-
ulators had an significant enrichment of binding sites in the introns with
highest differential retention.

• For the introns with the highest differential IR we observed significantly
higher sequence conservation among placentalia compared to introns with
lower differential IR levels.

• During human BLaER1 to macrophage transdifferentiation we identified
a set of 163 lncRNAs and 939 protein coding genes that have either a
peaking or increasing expression pattern.

• Targeting the TSS (lncRNAs) or the coding sequences (protein coding
genes) of those regulated genes led to a set of 28 potential regulators that
may affect the efficiency of the transdifferentiation process.
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