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Dr. Roberto Molowny Horas

Tutor:
Dr. Javier Retana Alumbreros

September 2018





i

Acknowledgements

All human endeavours are collaborative, we all grow when surrounded by the
ones we love and admire. This thesis carries, directly or indirectly, the imprint of
many people that have shared with me parts of this journey. Academically, I am
extremely grateful to Roberto and Miguel, for their help and advice throughout
these years. At CREAF-UAB, I would like to thank the whole team for such a
great atmosphere, and in particular Pep Piñol, Raúl Garcı́a-Valdés, Jordi Martı́nez-
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Abstract

Organisms survive, thrive and reproduce by interacting with individuals
of their own and of other species. Biotic interactions are extremely diverse
in type, magnitude, or spatiotemporal scale, and give rise to ecological net-
works with complex topologies and dynamics. Such networks of ecological
interactions have been shown to possess non-random structural properties
that enhance their resilience and robustness to perturbations, and thus are
key elements for understanding the response of species to external forcing
such as environmental change or habitat loss.

Despite the importance of interaction networks in studies of ecological
communities, and due in part to their sheer variability, ecological interactions
are notoriously difficult to document and quantify in a comprehensive fash-
ion. Therefore, historically, studies of ecological networks have focused on
the most easily observable types of interactions, those between predators and
their prey, or more generally speaking, between consumers and resources. In
the last decades, studies of mutualistic networks have also risen to promi-
nence and have demonstrated, for example, that food webs and mutualistic
networks have markedly different topologies and this has both ecological and
evolutionary consequences for the species involved. One of the main chal-
lenges of contemporary community ecology is to expand our understanding
of networks of a single interaction type to a more realistic view of ecological
communities, by considering how different interactions mutually influence
community structure and functioning. In order to tackle this challenge, a first
step is to lay down overarching theoretical hypotheses about such complex
networks.

In this thesis I approach this general objective and analyse a series of
fundamental questions about ecological networks. After a general intro-
duction, first I synthesise current methodologies for developing theoretical
network models. I find that three main conceptual approaches have been
used, and discuss their relative strengths, weaknesses, and potential uses.
Second, I study whether species persistence in model communities is influ-
enced by the frequency and distribution of the different interaction types.
The prevalence of positive interactions within a community is shown to be
key for species-poor communities, whereas in more speciose communities,
different combinations of interactions can occur without affecting species
persistence in a significant way. Furthermore, networks with randomly dis-
tributed interactions show less species persistence than structured networks.
If community structure is important for species persistence, it follows that
other community-level patterns should also be affected by it. In the fourth
chapter, I focus on Species Abundance Distributions (SADs), one of the most
studied patterns in community ecology, and ask whether their shape varies
in a consistent way for the different trophic guilds of a community. I com-
pare theoretical expectations with SADs from empirical datasets, and find
that SADs of plant communities are significantly less even and more skewed
than SADs from mammal ones. Among mammal trophic guilds, there are
no significant differences in the evenness or skewness of their SADs. These
first chapters deal with the structure and dynamics of closed communities,
aiming to establish baseline hypotheses. In the fifth chapter, I incorporate
another degree of complexity, namely the spatial perspective. Specifically, I
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analyse how interaction effects are propagated in space, such that interactions
occurring in a local community may influence other communities connected
to it by means of dispersing or foraging individuals. Given the novelty of this
analysis and the long tradition of food web models, in this chapter I focus on
trophic communities as a simplified model system. I find that the distribution
of net effects of a species over another across the metacommunity is signifi-
cantly different if the local communities are connected by dispersal, foraging,
or a mixture of both. In the sixth chapter, I tackle the long-standing question
of the variability of species interactions across environmental gradients. For
approaching this question, I recover the distinction, originally proposed by
G.E. Hutchinson, about scenopoetic and bionomic environmental factors, i.e.
non-resource and resource factors. By recognizing that these two types of
environmental factors have different effects on species fitness and on the im-
portance of species’ pairwise interactions, I analyse the prevalence of positive
and negative interactions in model communities across a two-dimensional
environmental gradient with one resource and one non-resource factor. I
find that, according to the expectations, positive interactions respond to the
non-resource factor, whereas negative interactions vary across the two axis
of the gradient, with consequences for average persistence time and species
diversity across the combined gradient.
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1. Introduction

1.1 Community Ecology

Humans have always marveled at the diversity of life forms on Earth. This
fascination is reflected in the multitude of ways in which nature is represented
and studied in the different branches of human knowledge. Some enjoy looking
at the finest detail of the life histories of species and populations. To some of us,
life forms are inherently self-organized into larger-scale structures that display
their own rules and meaning; thus we look at a forest and see, indeed, a tight
entanglement of individuals that cannot possibly thrive without the surrounding
web of other species. Individual details, while extremely important, are embebbed
into entities that posses their own ecological, aesthetical and etical relevance:
ecological communities. While the Clementsian extreme view of communities
as full-fledged, delimited entities capable of evolution and reproduction has
long been abandoned, it is obvious that associations of individuals do generate
predictable sets of processes and patterns, and the main concern of community
ecology is with the discovery and understanding of these general processes and
patterns. Community ecology is the discipline most directly concerned with
the temporal and spatial scales at which individuals interact with each other.
Processes intrinsic to this scale are generated by individual-level behaviours, that
shape interaction patterns. Whatever the mechanisms by which such community-
level patterns are driven, they feedback and influence individual life histories
and, in turn, also biogeographic and macroecologic processes, such that the study
of community ecology has an important relevance on its own and also plays a
key role in understanding the emergence of global patterns from lower-scale
processes.

Intuitively, an ecological community can be defined simply as a set of individ-
uals that interact with each other. This broad picture needs to be refined when
addressing the systematic study of these entities. For example, how do we define
the set of species that constitutes a community? What are the spatial and temporal
limits of a given community? In the first chapter of this thesis, for example, we
will encounter a community located on a small islet, in which a top predator is a
bird of prey that can easily travel dozens of kilometers in a single journey and is
thus not constrained by the territory of the islet, whereas other species are sessile
or limited to ranges of a few hundreds of meters. Why would I include this top
predator as part of the island community, when it clearly has a broader range than
the rest of the species? And, looking at this question from another point of view,
why would I not consider as part of this community other species outside the islet
that are also preyed upon by this predator?

The answer, as almost always in ecology, is that no fixed rules are applicable
to all cases. Communities, despite their inherent structure and identity, are not
organisms with closed physical boundaries to the outside world, and therefore,
their spatiotemporal borders are extremely variable and are usually chosen ad-
hoc by the investigators studying them. A great deal of studies in community
ecology deal with so-called horizontal communities. These are simply communities
composed of organisms of similar characteristics, usually in terms of taxonomical
relatedness. Thus, it is very easy to find studies about the grassland communities
of a steppe, or about the arthropod communities present on the canopy of tropical

2



1.2. Communities as ecological networks

trees. Such focus on certain groups of related species is necessary in order to
understand in detail certain ecological processes and patterns, such as niche
differentiation and coexistence among similar species. It is also very convenient
in terms of experimental design, as it allows investigators to concentrate efforts
on a small part of the enormous diversity present in every habitat. Studies on
horizontal communities are at the core of classic community ecology, and we have
learnt much about how species coexist with each other when resources are limited,
about how species are positioned along environmental gradients, and about many
other ecologically relevant questions.

Notwithstanding the importance and validity of the abstraction of horizontal
communities, it is clear that they are somehow incomplete communities, if we
recall the broad definition of community sketched above. No one can doubt that,
in natural settings, the group of e.g. grassland species is interacting in many
ways with other guilds: they are consumed by arthropod or mammal herbivores
differentially, they may be pollinated by other sets of species, they may be affected
by stamping of big animals or be fertilized by their dung. All in all, communities
are more than disjointed taxonomic guilds, and their dynamics are influenced
by the whole set of interactions occurring among their constituent species. The
role of interspecific interactions is, then, key for understanding and predicting
important ecological processes at this scale. It is this vision that has given rise
to another long-standing branch of community ecology that has at its core the
study of the interactions between different guilds or species within a community:
the study of ecological networks. This thesis deals with complex communities
represented as networks of interacting species, so I will give a brief overview
of network theory in general and applied to ecological communities, and later
introduce the specific questions addressed in this thesis.

1.2 Communities as ecological networks

1.2.1 Network theory

Network theory is a branch of applied mathematics that studies the relations
between discrete entities, and the emergent properties and structures from these
relations. Network theory is generally considered a subset of graph theory, with
the main difference between them being that graph theory is more focused on the
abstract behaviour of graph classes, whereas network theory is mainly applied to
empirical systems and, thus, puts a strong emphasis on the dynamics of the system
and its relationship with its structure. The first study that laid the foundation of
graph theory is the famous problem of the Seven Bridges of Königsberg formulated
and solved negatively by Euler in 1736, and graph theory developed steadily from
that initial study. The application of graph theory to complex networks and their
dynamics has grown enormously in, specially, the last decades of the 20th century,
up to the point that nowadays the study of complex networks is an integral part of
a multitude of scientific fields, from social and economic sciences, applied physics
or robotics, to virtually every branch of biological sciences. Here I will provide
very brief definitions of concepts that will be useful for understanding ecological

3



1. Introduction

networks in general and the investigations of this thesis in particular. It is not my
intention to provide a comprehensive introduction to network theory (the reader
is referred to Newman (2010) and Barabási and Pósfai (2016) for overviews on
that general topic), but rather to review the basics from which ecological networks
can be understood and analyzed.

Starting with the building blocks of networks, we may define a graph as a
pair of sets G = (V ,E), where V = {v1,v2, ...,vn} is the set of nodes of the graph,
and E is the set of edges, or links, of the graph connecting pairs of nodes. The
set E can be any subset of all ordered pairs of V , such that E ∈ V ⊗ V . Graphs
can be either directed or undirected depeding on whether their constituent links
are directional, i.e. whether [vi ,vj] ∈ E implies [vj ,vi] ∈ E (Fig. 1.1). Further,
simple graphs are antirreflexive, meaning that a node cannot be linked to itself,
i.e. [vi ,vj] ∈ E implies i , j.

Such a simple configuration can be easily extended by considering weighted
or quantitative links. By incorporating weights, a weighted graph is a quadruple
G = (V ,E,W ,f ), where V and E are the sets of nodes and edges defined above,
W = {w1,w2, ...,wn} is a set of weights such thatwi ∈R, and f : E→W is a mapping
assigning weights to edges.

Intuitively, we say that two nodes vi and vj are adjacent to each other, or
connected, if they are joined by an edge e = {vi ,vj}. Similarly, two edges are
adjacent if they are incident to at least one node.

The most basic structural property of a node is its degree. It is defined simply
as the number of links incident to it. In directed graphs, one may distinguish
in-degree, the number of links incident to a node, from out-degree, the number of
links incident from it.

Figure 1.1: An undirected (a), a directed (b), and a weighted undirected (c) graph. From Boccaletti
et al. (2006)

The shortest path connecting two nodes vi and vj is defined as the path with
the shortest number of edges that connects them. This quantity, Lmin, is also
called the distance between two nodes. For weighted graphs, this definition may
be refined to consider edge weight, such that the shortest path is the one that
minimizes the summed weight of the edges connecting the two nodes.
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1.2. Communities as ecological networks

A graph, in the context of network theory, is termed a network, and we will use
this term hereafter. A network is said to be complex when it possesses topological
features that are neither random nor completely regular. These features refer
to properties of the network as a whole, and three of the most widely studied
features of network are their degree distribution, their average path length and
their clustering coefficient.

The degree distribution of a network is the probability distribution of the
degrees of the network nodes. It is an important property of complex networks,
as the degree distributions of random networks differs systematically from that of
empirical networks of different types (Barabási and Albert, 1999). While randomly
assembled networks display Poisson degree distributions, many real networks
are best represented as having power-law degree distributions. This means that
in real networks, most nodes are typically connected to only a few other nodes
(i.e. have a low degree), whereas a small number of nodes are highly connected.
Networks with power-law degree distributions are alternatively called scale-free
networks (Fig. 1.2).

The average path length of a network is the average of the shortest paths
between each pair of network nodes. It is given by

L =
1

S(S − 1)

∑
i,j=1,S;i,j

Lmin(i, j) (1.1)

and gives a measure of connectedness between any pair of nodes. Both random
and scale-free networks display characteristically short average path lengths
(Montoya and Solé, 2002).

Another important topological property is the clustering coefficient. It mea-
sures the degree to which the neighbours of a given node are linked together.
Given a node i with degree di , its local clustering coefficient is defined as

Cv(i) =
2Ei

ki(ki − 1)
(1.2)

where Ei is the number of links between the ki neighbors of node i. The
clustering coefficient of the network is the average over all S nodes:

Cv =
1
S

S∑
i=1

cv(i) (1.3)

When considering network topology, networks without any differentiation
between nodes, where each node can in principle interact with any other node,
are called unipartite. Another common type of ecological networks is that which
represents two disjoint groups that interact with each other but not with members
of the same group (for example, a network with a group of plant species and a
separate group of pollinators, Fig. 1.3). Such networks are called bipartite.

Several other network properties are widely used in the context of ecological
networks. Here I will mention three of them. First, the connectance of a network
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1. Introduction

Figure 1.2: Degree distributions from random (green) and scale-free networks (purple) in natural
(a) and logarithmic (b) axes. The hubs present in scale-free networks are evident in the network
depiction (d). From Barabási and Pósfai (2016)

is the proportion of realized links with respect to the potential number of links
in the network. It is defined in different ways depending on the assumptions
about the feasible links of the network. Four variations are possible regarding the
directedness of the network and the feasibility of self-loops. The most general case
is a directed network where self-loops are allowed. In that case, the set of potential
links is simply Lp = S2 for a network of S nodes. If self-loops are not allowed,
the set of potential links is Lp = S2 − S, whereas if the network is undirected, the
number of potential links halves, i.e. Lp = S2/2. Therefore, an undirected network
with no self-loops has Lp = (S2 − S)/2 potential links. The general definition of
connectance is

C =
L
Lp

(1.4)
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1.2. Communities as ecological networks

Figure 1.3: A bipartite network, in which nodes 1-5 and nodes 6-10 form sets that do not have
within-group links. The network is also nested: the diet of consumer 8 is a subset of that of
consumer 7, which in turn is a subset of that of consumer 6. From Ings et al. (2009)

where L is the number of realized links.
The above definitions of the set of potential links imply that, aside from the

consideration of self-loops, all links between any pair of species are potentially
feasible.

Another topological property widely studied, modularity is the tendency of
the network to display modules highly connected within but largely disconnected
from each other. The detection of modules, or clusters, in networks is an active
area of research, and a closed definition of modularity depends on the expected
number of modules and their link distribution. As an example, Fortuna et al.
(2010) defined modularity as

M =
NM∑
s=1

 lsL −
(
ds
2L

)2 (1.5)

Lastly, nestedness is a property of bipartite networks by which nodes with low
degree are connected to a subset of the nodes linked by nodes with high degree
(Fig. 1.3).

Aside from these general definitions, it is important to mention the matrix
representation of networks. Intuitively, by defining a matrix A of dimensions S ∗S,
its entries ai,j may represent the existence (or weight) of a link between nodes i
and j. Such matrix is called the adjacency matrix. If the network is undirected,
its adjacency matrix is symmetric, i.e. ai,j = aj,i

Aundirected =

0 1 0
1 0 1
0 1 0


where ai,j = 1 if a link exists between nodes i and j, and ai,j = 0 otherwise. If

the network is directed, the possibility exists that ai,j , aj,i , so that an example
matrix can be

Adirected =

0 1 0
0 0 0
1 1 0


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1. Introduction

The convention for directed networks is that adjacency matrices represent the
interaction originating in column j and affecting row i, so that in the previous
example, there is a link from node 2 to node 1, but not the other way around.

1.2.2 Ecological networks: brief history, recent developments
and open questions

The general definitions outlined above can be applied to ecological systems seam-
lessly by defining individuals, species or guilds as nodes, and the biotic inter-
actions among them as the edges or links connecting them. Indeed, natural
historians and early ecologists had recognized the network nature of ecological
communities long before the recent developments on complex networks. The
brief historical review that follows draws primarily from the works by Bersier
(2007) and Ings and Hawes (2018), and the reader is referred to these studies for
consulting primary references.

The first documented observations about the interactions of species can be
traced back to Ancient Greece, where mutualistic relationships were observed
by Herodotus, Theophrastus and Aristotle. In turn, the arab scholar Al-Jahiz is
believed to have introduced the concept of food chain in his Book of the Animals,
in the 9th-century. In the early Enlightenment the documented study of the
natural world began to gain back attention, although admittedly on a secondary
position with respect to mathematics, physics, chemistry or astronomy, disciplines
that constituted the main focus of the Scientific Revolution. Observations about
empirical food chains are documented by van Leeuwenhoek and Linnaeus, but it
would be Alexander von Humboldt in the 19th-century, throughout all his works,
the first and most influential proponent of a view of nature that emphasized
the complex web of relationships between species, looking at nature as a “living
whole”. The first representation of a full network of trophic interactions dates
from 1880, and was made by the italian scientist Lorenzo Camerano.

After these and other seminal contributions, the 20th-century saw the confir-
mation of network-oriented approaches to ecological issues. The ecologist Charles
Elton developed many important concepts, such as the “pyramid of numbers”
by which abundances decreased along the food chain, and established the terms
food chain and food cycle. After his seminal works, the network representation
of trophic relationships became a common framework for studying ecological
communities. By this point, trophic relationships were already the most studied
interactions in ecological communities. Trophic interactions are ubiquitous in
nature, they are usually the easiest to document and, unlike other interactions,
can be used to outline the fluxes of biomass and energy in a given community. It
is, therefore, not surprising that they took, and still maintain, such a predominant
role in studies of ecological networks. The figure of Raymond Lindeman also
stands out in the first half of the 20th century, with his work “The trophic dynamic
aspect of ecology”, in which he studied for the first time the quantitative fluxes
and feedbacks between the biotic and abiotic components of an entire ecosystem,
the Cedar Bog Lake in Minnesota (Lindeman, 1942). As Ings and Hawes (2018)
note, limnology had a prominent position on these early developments, and many
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1.2. Communities as ecological networks

temperate lakes were the first ecosystems to be thoroughly sampled and studied.
In parallel to these insights from natural systems, the mathematical founda-

tions for studying the dynamics of ecological interactions were being developed.
The mathematician Alfred J. Lotka proposed in 1920 a set of equations for the
population dynamics of a pair of predator and prey species, that explained the
apparent oscillations observed in plant-herbivore systems (Lotka, 1920). In an
independent contribution another mathematician, Vito Volterra, derived similar
equations following observations of fish catches in the Adriatic Sea (Volterra,
1928). The general form of these equations is

dx
dt = αx − βxy
dy
dt = δxy −γy

(1.6)

where x is the number of prey, y is the number of predators, α is the growth
rate of the prey, β the predation rate coefficient, δ the predator’s growth rate,
and γ its mortality rate. In this model, both species modulate their abundances
in response to the other (Fig. 1.4), and the non-trivial solution to the system,
formulated as with eq. 1.6 is stable and periodic. The Lotka-Volterra set of
equations implies a series of assumptions about the underlying biological system.
First, they are an example of a mean-field system, thus assuming an homogeneous
habitat in which individuals are interacting without constraints or variations.
Prey populations in the absence of the predator display exponential growth (i.e.,
if y = 0, the variation in prey density is given by αx), and the predator depends
entirely on the prey population. Furthermore, predators do not satiate, in that
they respond instantaneously to increases in prey population. Importantly, all
α,β,δ,γ coefficients are constant, thus assuming no other sources of variation.

Figure 1.4: Lotka-Volterra equations generate stable population dynamics in which densities of
the prey and the predator species are both dependent on each other.

In the context of dynamical systems, the stability of the system can be ap-
proached by analysing how the system responds to very small perturbations off
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a steady state. This is done by calculating the eigenvalues of the system, values
that encapsulate the response of the system to such a small perturbation around
the equilibrium. The mathematics behind the calculation and interpretation of
eigenvalues have been thoroughly developed, and the interested reader may find
innumerable derivations of it. In the context of ecological networks, the book Food
Webs by Kevin McCann (2011) gives a well-balanced introduction to the study of
dynamical systems. The important message is that the eigenvalues of a dynamical
system (in particular, the maximum eigenvalue) are informative about the stability
of the system. Positive eigenvalues will imply that the system is locally unstable,
whereas negative eigenvalues mean that the system is locally stable around that
particular equilibrium.

Despite the initial insights from 2-species model systems, many ecologists
were, as we have seen, much more interested on the notion of stability of whole
communities or ecosystems. The first conceptual treatments of community sta-
bility can be traced back to Eugene Odum, who suggested that in a community,
the number of alternative paths a quantum of energy has for going from primary
producers to top predators is a measure of the stability of the community. This
notion that the more links an ecological network had, the more stable it was (or,
in other words, that “complexity begets stability”), was the prevalent opinion
up until the early 70s. Robert MacArthur, in another highly influential study,
analyzed the stability of complete food webs in a semi-quantitative way. He ar-
rived to the hypothesis that community stability increases by either increasing the
number of species in a community, or the connectance of the associated food web
(MacArthur, 1955).

The complexity-stability dichotomy of ecological communities entered a new
dimension after the seminal work of Robert May (May, 1972), who used for
the first time mathematical models of idealized communities to assess the local
stability of systems with an indeterminate number of species modelled with Lotka-
Volterra dynamics. He found that, in randomly assembled networks with normally
distributed interaction strengths, the dynamical systems remain locally stable if

α
√
SC < 1 (1.7)

where α is the average interaction strength, S is the number of species, and
C is the connectance of the network in the form L/S2. The interpretation is that
an increase in either mean interaction strength of the system, species richness,
or number of links, would rapidly tend to destabilize the system. Crucially, May
was of course aware of the limitations of his approach: the assembled networks
possessed no structure whatsoever, pairwise interaction strength was assumed
to be a constant, stochastic parameter, and the definition of stability involved
infinitesimally small perturbations from an equilibrium state, as given by the
eigenvalues of the system. Nevertheless, regardless such obvious limitations,
May’s work was the first quantitative derivation about the expected stability
of arbitrarily large ecological communities, and not only so, but it also was a
frontal attack on the common wisdom championed by MacArthur (who passed
away way too early, in 1972) and many others by that time. The debates and
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number of studies triggered by May’s results are countless, both in the camps of
the theoreticians and the empiricists. From that moment onwards, the study of
ecological networks started to gain even more attention and took many different
parallel paths. An important line of research, that did not start with May’s results
but definitely gained attention after them, follows the estimation of interaction
strengths both in theoretical studies of functional responses (Holling, 1965) and
empirical estimations (Bender et al., 1984).

Robert Paine showed in 1966 that the effects of removing a top predator
could propagate throughout the whole ecological network, eventually altering
the richness of the community (Paine, 1966). This striking result led to the
denomination of keystone species to those species with a disproportionate influence
in the overall structure and dynamics of the community. He continued to be
interested in measuring the impacts of one species over another and on the
overall community, a theme that came together with the theoretical importance of
interaction strength proposed by May. Theoretical metrics of interaction strength
represent changes in different per capita or population-level parameters (Laska
and Wootton, 1998) but such metrics are, importantly, not generally equivalent to
what is measured in experimental studies (e.g. Bender et al. 1984). Paine observed
that descriptions of food webs that failed to account for estimates of interaction
strengths were not enough in order to link the structure of food webs with their
dynamical behaviour (Paine, 1992).

However, obtaining empirical estimates of all interaction strengths in a given
network is so far unfeasible even for moderately rich communities, given the
complexity of the combinations and feedbacks of effects between the different
species involved. This divide between theoretical models and empirical estimates
of interaction strengths is still one of the main unresolved problems in network
ecology. Theoretically, it has been shown that, within the framework of local
stability analyses and for networks considering only trophic interactions, stability
is enhanced when a majority of interactions are comparatively weak and only a
few are comparatively strong (McCann et al., 1998; Berlow, 1999). Incidentally, a
recent article showed this pattern to hold in a set of empirical food webs (Jacquet
et al., 2016).

Aside from the studies on theoretical and empirical interaction strength, and
its importance on community stability, another strong source of discussion arising
from May’s results is the role that non-random structural patterns played in
conferring stability to empirical networks. The first empirical food webs to be
collected and analysed for structural regularities approach in the late 70s, in
particular in a seminal book by Joel Cohen (1978). An early focus of studies on
food web structure was the role of connectance, given its relationship to theoretical
stability (eqn. 1.7). Early efforts tested, for example, the potential invariance of
the relationship between number of links and number of species L/S, as a means
of corroborating May’s criterion (see Pascual and Dunne 2006 for details).

The early compilations of empirical food webs, however, were not even close
to be complete descriptions of their systems, and had important flaws such as
differential level of node taxonomic aggregation. Newly collected data in the early
1990s (Polis, 1991; Martinez, 1991) showed that network metrics and relationships
outlined with earlier food webs were in many cases artifacts of the poorly collected
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data (Pascual and Dunne, 2006), and this realisation triggered a reorientation
of efforts and development of new hypotheses and ideas concerning food web
structure. Among them, an important theoretical model of food web structure, the
niche model (Williams and Martinez, 2000), proved able to generate food webs
with realistic structural patterns out of a single niche axis in which all consumer
species are sorted. More recently, species-level traits and their distribution have
proven to be important in characterizing food web structure, as shown for example
by Laigle et al. (2018).

In parallel to these more recent developments on food webs, studies on other
types of interactions started to emerge in the late 20th century. The first attempt
at characterizing a network of positive interactions was made by Pedro Jordano
(1987), who studied patterns of connectance and interaction strength in plant-
pollinator and plant-seed disperser networks. From his seminal study, a whole
field of research opened up, and the study of bipartite mutualistic networks has
produced many insights regarding the structure and dynamics of these communi-
ties (Vázquez et al., 2009; Bascompte and Jordano, 2013). In particular, bipartite
mutualistic networks have been shown to be generally nested, and this nested-
ness is an important feature for their stability, as opposed to food webs, which
are thought to be comparatively less nested and more modular (Thébault and
Fontaine, 2010).

It is now sufficiently clear that, in any case, mutualistic interactions are struc-
tured in a non-random fashion in empirical bipartite networks, and this structure
has important consequences for their dynamics. Regarding the study of interac-
tion strengths in mutualistic networks, the functional responses of mutualism are
much less studied than those of predator-prey interactions (Holland et al., 2002),
and a novel line of research focused on estimating the net impact of a species
over another by using as a surrogate their interaction frequency (Vázquez et al.,
2005). This approximation is likely dependent on the specific type of mutualism
considered. For example, in a study analysing plant-hummingbird networks,
Vizentin-Bugoni et al. (2014) showed that trait-matching was more important for
structuring these ecological networks than abundances alone. In further studies,
interaction frequency itself has been found to be well approximated by the abun-
dances of the interacting species (Vázquez et al., 2007). This methodology for
estimating population-level short-term impacts is thus promising for mutualistic
networks in which no other quantitative effects are available. Importantly, the
approximation hinges on interactions being stochastic, with no trait-mediated
selection of interaction partner or frequency. In that sense, it may also serve as a
baseline against which to compare the effect of traits in specifying interactions
(Poisot et al., 2015).

All in all, the knowledge about the structure and dynamics of single-interaction
ecological networks has increased enormously in the last few decades. A funda-
mental question that we may ask is the extent to which these varied insights are
applicable to empirical, complex communities. Despite the convenient distinction
between interaction types commonly made for studying ecological networks, com-
munities are composed of individuals interacting in many different ways, with
varying intensities and at different spatial and temporal scales.

We know now that, at the very least, both predator-prey and mutualistic in-
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teractions are highly structured in empirical communities. We lack, however, a
general framework for ecological networks in which different interaction types
are integrated, and where the combined structure of the network can be anal-
ysed. This integration, of course, will have important implications for community
dynamics: for example, including non-trophic interactions onto food webs has
already been shown to importantly alter their stability patterns (Kéfi et al., 2012,
2016), or their robustness to secondary extinctions (Pocock et al., 2012). This
change of scope about ecological communities may also trigger novel questions
about their structure and dynamics. It may seem surprising on a first look, but we
currently do not know how the different interaction types are distributed in em-
pirical communities generally. Actually, given the difficulty of compiling different
interaction types in a systematic way for any relatively rich community, it becomes
clear that approaching such a fundamental question requires important observa-
tional and experimental efforts. In that sense, a general theoretical framework for
multiple interactions networks may help develop targeted hypothesis about em-
pirical communities, from which to build observational or experimental studies.
Related important questions concern the role of spatial patterns or environmental
gradients in shaping the combined structure of ecological networks. For example,
does the spatial structure of the different interaction types vary? How does this
influence the spatial propagation of effects? Does the relative importance of the
different interaction types vary across environmental gradients?

In single-interaction networks, the role of space in shaping their structure
and stability has been recognised as a key factor, e.g. by analysing how different
communities are connected by dispersal and the implications for the overall
metacommunity (Leibold et al., 2004), or how network structure varies with
spatial scale (Galiana et al., 2018).

In order to integrate recent advances on multiple interactions networks with
the spatially explicit framework of metacommunity ecology, some issues need to
be resolved before a proper multiple interaction metacommunity framework is
developed. For example, what is the nature of the connections between spatially
separated communities? Mobile species are capable of displacements in order to
look for food sources (antagonism, mutualism), or in order to establish themselves
in another territory (dispersal). It is important to know if there is a relationship
between the movement capacity of a given species and its tendency to engage in
different interaction types. It is also important to develop theory on the spatial
propagation of interaction effects: how do the different types of interaction prop-
agate in space? Are some interaction types more likely to have a greater impact
on the overall community than others? Or is the effect only related to the relative
magnitude of the interaction, and the centrality of the species involved?

Some of these questions have been barely explored even in metacommunities
of single interaction types. Most metacommunity studies follow the long-standing
history of horizontal communities and consider how competitive guilds are con-
nected in space, and only recently is metacommunity theory being expanded to
account for mulitrophic networks (McCann et al., 2005; Fahimipour and Hein,
2014; Gravel et al., 2016b). It is therefore necessary to strenghten the foundations
of metacommunity theory before integrating it with the paradigm of multiple
interactions networks.
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From a more general point of view, one can also ask whether the structure and
dynamics of ecological networks vary across different types of gradients, and if
so, what are the factors and processes driving this variability. The variability of
ecological interactions across environmental gradients has been studied under
different subfields of community ecology, from the point of view of horizontal
communities (mainly plants: the Stress Gradient Theory, see e.g. Maestre et al.
2009) and theoretical food webs with competitive interactions (Environmental
Stress Models, see Menge and Sutherland 1987). Stress Gradient Theory focuses on
evaluating the response of communities to variations in environmental stress, and
does so by studying plant communities which, as stated by theory and empirical
observations, may exhibit variations in the relative importance of competitive ver-
sus facilitative interactions as stress increases (Callaway and Walker, 1997). This
theory, however, is currently not applicable to multitrophic communities, despite
recent attempts to test its validity for higher trophic levels (Barrio et al., 2013).
Environmental Stress Models, in turn, were developed to predict the differential
role of top-down and bottom-up processes in food webs across gradients of envi-
ronmental stress. While theoretically comprehensive, their difficulty of testing
has prevented further developments except for localised, targeted systems (e.g.
Cheng and Grosholz 2016; Daleo et al. 2015). In any case, none of these theories
incorporates the whole array of interactions potentially occurring in nature, and a
further issue is that the different types of environmental gradient that mediate
ecological processes are usually taken together, without differentiating the dif-
ferent environmental components that may affect interactions and demographic
processes. Therefore, we are still far from a general theory on ecological networks
and their variability across environmental gradients.

1.3 Objectives

In my thesis I addressed fundamental unresolved questions about ecological
networks in general. Chapters 2 and 3 deal explicitly with networks of multiple
interaction types, and the rest of the thesis explores fundamental questions for
which more simple model systems are used, in order to focus on the specific
questions at hand before adding the complexity of multiple interactions. The
following general objectives constitute the main chapters of the thesis:

• To review and synthethise current methodologies for modelling multi-
ple interactions in ecology

First, I aimed to synthesize and organize the growing literature on this
type of networks, while at the same time laying down some methodological
foundations for future theoretical studies on the subject.

• To understand how the frequency and distribution of the different inter-
actions drive species persistence

Second, I developed a general theoretical model in which I tackle several
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key issues about network structure and dynamics. I aimed at deriving gen-
eral hypotheses about the persistence of species in complex networks with
realistic structural patterns.

• To know how Species Abundance Distributions are influenced by the
structure of multitrophic communities

Third, I looked at a classic pattern from horizontal community ecology,
the Species Abundance Distribution, from a network perspective. In order
to understand how the frequency and/or distribution of interaction types
influences the distribution of abundances in a given community, first it
is necessary to develop theoretical expectations about its distribution on
more simple networks, for example food webs. I drew from the extensive
literature on food webs and trophic relationships in general to derive basic
hypothesis about the variation of Species Abundance Distributions across
trophic guilds.

• To advance in the understanding of interaction effects in space

Fourth, I studied the role of space in propagating interaction effects. As
with the previous chapters, no general hypotheses exist about the spatial
propagation of interaction impacts, so in order to provide baseline expecta-
tions and for our study to be comparable to previous efforts, I focused on the
effect of trophic interactions and how they propagate when species disperse
or forage in a set of spatially connected communities.

• To explore whether environmental factors drive the frequency of differ-
ent types of interactions

Fifth, I studied how interactions are likely to vary across environmental
gradients. This issue has been explored independently in different subfields
of community ecology, but the conclusions obtained have been largely over-
looked in other fields. I recovered the classic differentiation in environmental
factors first proposed by Hutchinson and delve in how gradients in different
types of environmental factors may drive variations in the prevalence of dif-
ferent interaction types and other community properties. Given the paucity
of studies and theory in this question, I took the same approximation as
in chapters four and five, and resorted to basic horizontal communities, in
order to provide general foundations from which ideas about more complex
communities can be developed.
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2. Multiple Interactions Networks

Abstract

Ecological communities are defined by species interacting dynamically in a given
location at a given time, and can be conveniently represented as networks of
interactions. Pairwise interactions can be ascribed to one of five main types,
depending on their outcome for the species involved: amensalism, antagonism
(including predation, parasitism and disease), commensalism, competition or
mutualism. While most studies have dealt so far with networks involving one
single type of interaction at a time, often focusing on a specific clade and/or
guild, recent studies are being developed that consider networks with more than
one interaction type and across several levels of biological organisation. We
review these developments and suggest that three main frameworks are in use
to investigate the properties of multiple interactions networks: ‘expanded food-
webs’, ‘multilayer networks’ and ‘equal footing networks’. They differ on how
interactions are classified and implemented in mathematical models, and on
whether the effect of different interaction types is expressed in the same units. We
analyse the mathematical and ecological assumptions of these three approaches,
and identify some of the questions that can be addressed with each one of them.
Since the overwhelming majority of studies on multiple interactions are theoretical
and use artificially generated data, we also provide recommendations for the
incorporation of field data in such studies.

2.1 Community ecology and network theory

Ecological communities should be defined not only by lists of co-occurring species,
but also by the myriad of interactions taking place among them. A convenient
way to include information about both species composition and their interactions
is to represent communities as networks in which species are nodes connected
by links representing biotic interactions. Network analyses can provide insights
into community local stability (Allesina and Tang, 2012) and robustness to ex-
tinctions (Riede et al., 2011), the degree of specialization of individual species
or guilds (Dorado et al., 2011), the impact of invasive species or climate change
on established communities (Lopezaraiza-Mikel et al., 2007) and, more generally,
on any question in which pairwise interactions relate to community patterns and
processes.

Networks can accommodate different types of data, depending on the nature
of the links between species (e.g., qualitative, quantitative, static, dynamic), the
temporal and spatial resolution of the community, the level of aggregation of
the nodes (e.g., individuals, species, trophic guilds), or the specific objectives of
the study. A common simplification is to study networks of a single interaction
type, e.g., trophic (McCann, 2011) or mutualistic (Bascompte and Jordano, 2013),
assuming (often implicitly) that the effect of other interactions on community dy-
namics is negligible compared to the ones analysed. Such an assumption is usually
unavoidable given the lack of comparable data on different interaction types, but it
is becoming increasingly clear that the effects of interactions not accounted for in
analyses of single-interaction networks (including indirect ones; but see Cazelles
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et al. 2016) might be significant for species persistence (Soliveres et al., 2015; Kéfi
et al., 2016) and community structure (Sander et al., 2015; Golubski et al., 2016).
Furthermore, analyses of interaction networks of a single type often yield differen-
tial results regarding the factors that drive their stability. For example, among the
factors reported to stabilize food webs are high modularity and low connectance
(Thébault and Fontaine, 2010), correlation in pairwise interaction strengths (Tang
et al., 2014), trophic coherence (Johnson et al., 2014), a preponderance of weak
(McCann et al., 1998) and asymmetrical interactions (Bascompte et al., 2006),
degree distributions broader than those of random graphs (Allesina et al., 2015),
or the appearance of generalist consumers coupling resources with different in-
teraction strengths (Rip et al., 2010). On the other hand, mutualistic networks
are thought to be more stable when highly nested and connected (Thébault and
Fontaine, 2010; Lever et al., 2014), when there are demographic responses to
interactions (Lee, 2015), or when mutualistic interactions are relatively strong
(Rohr et al., 2014). The persistence and resilience of communities defined with
multiple interaction types, however, will additionally likely be influenced at least
by (1) the proportion of the different interaction types, (2) the relative strength
of pairwise interactions both within and among interaction types, and (3) the
structural properties of each sub-network and the overall aggregated network.

The study of single-interaction networks in ecology has progressed enormously
in the last decades, both theoretically and empirically. In parallel, the analysis
of multiple interactions networks has also advanced in other fields of study (Boc-
caletti et al., 2014). This novel paradigm has only recently started to be applied to
ecological studies, with several examples of new conceptual developments being
forged together with applications of old concepts to new problems (Table 2.1). De-
spite the relatively small number of studies using multiple interactions networks
in ecology, the research objectives and methodologies that have been addressed
are extremely diverse, and a synthesis of recent developments is timely. Here, we
identify three main approaches for the design and analysis of ecological multiple
interactions networks. These approaches have been used in theoretical and empir-
ical studies without an explicit recognition of their conceptual underpinnings. We
define them explicitly, examine their underlying ecological assumptions, the type
of questions best addressed with each approach, and provide recommendations
for the integration of empirical data.

2.2 Multiple interactions networks in ecology

Probably, the first study of ecological networks explicitly considering different
interaction types was the classic study by May (1972), in which he assembled in-
teraction matrices with random coefficients from a Gaussian distribution N∼ (0,σ )
, thereby allowing for negative and positive pairwise interactions to be consid-
ered. May’s results showed that in theoretical communities assembled randomly,
complexity (measured as connectance and species richness) was inversely related
to the local stability of the system. But natural communities are highly complex,
diverse and, nonetheless, seem to persist. After that seminal study, there has been
a flurry of studies trying to uncover the processes and structural patterns that
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2. Multiple Interactions Networks

confer stability to empirical communities (e.g. Saint-Béat et al. 2015). However,
comparable data on different interaction types is extremely difficult to acquire,
and the focus for most of the second half of the 20th century has been on how
competitive and antagonistic interactions drive population and community pat-
terns (e.g. Connell 1961; Paine 1966). As predator-prey interactions are easiest
to observe and document in the field, the analysis of empirical networks relied
almost entirely on food webs for a few decades. Pioneering works by Jordano
(1987), or Fonseca and Ganade (1996), amongst others, paved the way for the
study of mutualistic networks, but the first studies considering more than one
interaction type in the same network only appeared in the last decade (Table 2.1).

Developing a theoretical framework for multiple interactions networks in-
volves the integration of a variety of interaction types and effects, direct and
indirect, taking place at different temporal and spatial scales. In this review,
we propose two main criteria for classifying such frameworks. The first is the
classification system applied to interactions (Abrams, 1987). Interactions can be
defined based on the effect they produce on each member or, alternatively, on
the mechanism by which the interaction is produced. Regarding effects, each
interactor can be affected positively, negatively, or not affected at all by a pairwise
interaction, regardless of the actual mechanisms by which the effect occurs. For
example, a (-,-) interaction, defined as competition, could actually be realized
through mechanisms as different as territorial, chemical or consumptive compe-
tition (Schoener, 1983). By defining all interactions with respect to the effect on
each member (0,-,+), every effect-based classification is complete, in the sense that
no interaction, however idiosyncratic, is left unclassified. Regarding mechanisms,
interactions are defined according to the mechanism by which they take place,
regardless of the effect on the interacting species. Thus, consumptive compe-
tition would be defined as an interaction in which each member is affected by
consumption of a common limited set of resources, territorial competition would
represent limitations on the available space for each interactor, and so on. A
virtually unlimited number of interaction categories can be theoretically defined
under this scheme, depending on the questions addressed.

The second criterion distinguishes network analyses based on whether the
strengths of different interaction types have common units (i.e., their effects are
comparable, acting upon the same population property) or not. This criterion
only applies to classification schemes based on effects as, by definition, strengths
of interactions acting explicitly through different mechanisms have different
units, and are thus not amenable to being homogenized. For example, chemical
competition between two plant species may be reflected on the mortality rates
of the interacting populations, while a mutualistic interaction between a plant
species and a seed disperser bird may affect the dispersal rate of the plant and the
population growth rate of the bird. In an effect-based classification with the same
units for every interaction, on the contrary, these and every other interaction could
be taken to affect a single property (e.g. long-term population size), and hence
would be comparable. Based on the two criteria proposed here, we distinguish
three conceptual frameworks, already found in the literature, to construct and
analyse multiple interactions networks: expanded food webs, multilayer networks,
and equal footing networks (Fig. 2.1).

20



2.3.
E

xp
and

ed
Food

W
ebs

Table 2.1: Studies considering networks of more than one interac-
tion type. Analyses of small network modules (<5 species) are not
included

Study Framework Type of clas-
sification

Interaction
types stud-
ied

Interaction
strength

Type of data Main findings

Arditi
et al.
2005

Expanded
food web

Mechanism-
based

+ and – mod-
ifications to
trophic inter-
actions

Model coeffi-
cient

Synthetic Communities with posi-
tive non-trophic interac-
tions tend to incorporate
almost all available nutri-
ents

Lafferty
et al.
2006

Expanded
food web

Mechanism-
based

Predator-
prey and
several
parasitic
interactions

Binary Empirical
data from
four food
webs con-
taining
parasites

Links involving parasites
are a majority in food
webs, and their inclusion
modifies structural met-
rics

Goudard
and
Loreau
2008

Expanded
food web

Mechanism-
based

+ and – mod-
ifications to
trophic inter-
actions

Model coeffi-
cient

Synthetic Interaction webs that in-
clude trophic and non-
trophic interactions are ex-
pected to have a lower
local richness, biomass,
and production than food
webs that include only
trophic interactions

Lafferty
et al.
2008

Expanded
food web

Mechanism-
based

Predator-
prey and
several
parasitic
interactions

N.A. N.A. Lines of research to in-
tegrate parasitic interac-
tions into food webs

Kéfi et al.
2012

Expanded
food web

Mechanism-
based

N.A. N.A. N.A. Conceptual framework
for including non-trophic
interactions in food web
studies.
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Study Framework Type of clas-
sification

Interaction
types stud-
ied

Interaction
strength

Type of data Main findings

Donadi
et al.
2013

Expanded
food web

Mechanism-
based

Effects of
allogenic
ecosystem
engineers

Measurements
of clorophyll
content in
sediment

Empirical ex-
periment

Facilitation of ecosystem-
engineering cockles in
benthic primary produc-
ers on intertidal flats

Majdi
et al.
2014

Expanded
food web

Mechanism-
based

Effects of
predators
(flatworms)
on litter
decompo-
sition and
community
assembly

Carbon con-
tent in leafs,
biomass
of differ-
ent guilds,
sediment
content

Empirical ex-
periment

Flatworms have signifi-
cant effects on the vari-
ables measured, overrid-
ing direct trophic effects

Sanders
et al.
2014

Expanded
food web

Mechanism-
based

Different
effects of
ecosystem
engineers

N.A. N.A. Integration of ecosystem
engineering effects into
food web analyses

Bachelot
et al.
2015

Expanded
food web

Mechanism-
based

Antagonistic,
competitive,
mutualistic

Model coeffi-
cient

Synthetic Under certain conditions,
a balance of different inter-
action types increases per-
sistence of plant species
interacting with mycor-
rhizal fungi and predators

Kéfi et al.
2016

Multilayer
network
analysed
as an ex-
panded
food web
model

Mechanism-
based

Trophic and
several non-
trophic types

Frequency of
interaction
between
species of
the modelled
guilds

Field sur-
veys for
species iden-
tification
and expert
knowl-
edge for
interaction
assignment

Species are organized in
clusters of interaction pat-
terns, and this patterning
enhances community per-
sistence and robustness
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Study Framework Type of clas-
sification

Interaction
types stud-
ied

Interaction
strength

Type of data Main findings

Fontaine
et al.
2011

Multilayer
network

N.A. N.A. N.A. N.A. Conceptual study on the
consequences and chal-
lenges of merging two sub-
networks

Pocock
et al.
2012

Multilayer
network

Mechanism-
based

Trophic,
mutualistic
of several
types and
parasitic

Interaction
frequency

Field sur-
veys and
published
studies for
assigning
interactions

Different sub-networks
varied in their robustness
to random extinctions of
plants

Evans
et al.
2013

Multilayer
network

Mechanism-
based

Trophic,
mutualistic
of several
types and
parasitic

Interaction
frequency

Field sur-
veys and
published
studies for
assigning
interactions

Habitats of an agro-
ecosystem contribute
differentially to species
and interaction diversity

Kéfi et al.
2015

Multilayer
network

Mechanism-
based

Trophic,
positive
non-trophic
and negative
non-trophic

Binary Field sur-
veys for
species iden-
tification
and expert
knowl-
edge for
interaction
assignment

Non-trophic interac-
tions are more than
twice as abundant than
trophic ones, and show
non-random structure
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Study Framework Type of clas-
sification

Interaction
types stud-
ied

Interaction
strength

Type of data Main findings

Sander
et al.
2015

Multilayer
network

Effect-based
(tatoosh
island and
doñana
networks),
Mechanism-
based (nor-
wood net-
work, which
differenti-
ates her-
bivory and
parasitism)

Three net-
works with
different
types

Binary Different for
each dataset

Accounting for different
interaction types can
improve groupings of
species in interaction
networks

Dáttilo
et al.
2016

Multilayer
network

Mechanism-
based

Different
types of
mutualistic
interactions

Binary Field sur-
veys for
qualitative
interactions

Multiple types of mutual-
ism do not increase com-
munity robustness, but a
few species contribute dis-
proportionally to network
structure.

Gracia-
Lázaro
et al.
2018

Multilayer
network

Effect-based Competition
(intra-layer)
and mu-
tualism
(inter-layer)

Model coeffi-
cients

Adjacency
matrices
from sev-
eral plant-
pollinator
empirical
networks

The intensity of mutu-
alism and competition
jointly influences species
persistence

Pilosof
et al.
2017

Multilayer
network

N.A. N.A. N.A. N.A. Framework and examples
for applying multilayer
networks to ecological
questions
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Study Framework Type of clas-
sification

Interaction
types stud-
ied

Interaction
strength

Type of data Main findings

Bastolla
et al.
2009

Equal
footing
network

Effect-based Competition
and mutual-
ism

Model coeffi-
cient

Synthetic Nested structure of mu-
tualist networks increases
community size

Melián
et al.
2009

Multilayer
network
flattened
to an
equal
footing
model

Effect-based Antagonistic
and mutu-
alistic sub-
networks

Binary and
relative
interaction
frequency
(depen-
dence)

Aggregated
network
from several
studies

Empirical distributions
of interaction type and
strength generate more
diversity than that of
random networks

Almaraz
and Oro
2011

Equal
footing
network

Effect-based Negative in-
teractions

Model coeffi-
cient

Abundance
time-series

Body size effectively pre-
dicts the amount of popu-
lation variance explained
by interspecific interac-
tions

Allesina
and Tang
2012

Equal
footing
network

Effect-based Single in-
teraction
networks
and a mix-
ture of
competi-
tion and
mutualism

Model coeffi-
cient

Synthetic Predator-prey networks
are the only ones that
can be arbitrarily large
and stable; other types
increase their stability
by decreasing average
interaction strength

Mougi
and
Kondoh
2012

Equal
footing
network

Effect-based Antagonistic
and mutual-
istic

Model coeffi-
cient

Synthetic Mixing antagonistic and
mutualistic interactions
and increasing complexity
stabilizes model commu-
nities
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Study Framework Type of clas-
sification

Interaction
types stud-
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Interaction
strength

Type of data Main findings

Mougi
and
Kondoh
2014

Equal
footing
network

Effect-based Antagonistic,
competitive
and mutual-
istic

Model coeffi-
cient

Synthetic Moderate mixing of the
three interaction types,
and food web structure in
hybrid communities, pro-
mote stability

Sauve
et al.
2014

Equal
footing
network

Effect-based Antagonistic
and mutual-
istic

Model coeffi-
cient

Synthetic Connectance and diver-
sity of mutualistic sub-
network enhance overall
stability; the reverse for
antagonistic sub-network

Suweis
et al.
2014

Equal
footing
network

Effect-based Antagonistic
and mutual-
istic

Model coeffi-
cient

Synthetic Interaction mixing per se
does not stabilize model
communities; rather, the
apparent stability comes
from the ’constant interac-
tion effort’ hypothesis

Kondoh
and
Mougi
2015

Equal
footing
network

Effect-based Antagonistic
and mutual-
istic

Model coeffi-
cient

Synthetic Stability is enhanced by
mixing interaction types
for communities with dif-
ferent proportions of con-
stant and mixed interac-
tion effort

Lurgi
et al.
2016

Equal
footing
network

Effect-based Antagonistic,
mutualistic

Model coeffi-
cient

Synthetic Increasing levels of plant-
animal mutualistic inter-
actions generally result in
comparatively more stable
communities
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Study Framework Type of clas-
sification

Interaction
types stud-
ied

Interaction
strength

Type of data Main findings

Mougi
2016a

Equal
footing
network

Effect-based Antagonistic,
mutualistic,
competitive,
amensalistic,
commensal-
istic

Model coeffi-
cient

Synthetic A mix of unilateral inter-
actions (i.e. commensal-
istic and amensalistic) in-
creases local stability

Mougi
2016b

Equal
footing
network

Effect-based Antagonistic
and mutual-
istic

Model coeffi-
cient

Synthetic Adaptive shifting of inter-
action partners in hybrid
antagonistic-mutualistic
communities increases
local stability

Sauve
et al.
2016

Multilayer
network
flattened
to an
equal
footing
model

Effect-based Pollination
and her-
bivory

Binary and
species’
preference

Field sur-
veys and
published
studies for
assigning
interactions

Empirical patterns of in-
teractions promote local
stability, but results differ
when considering binary
or quantitative networks

Sellman
et al.
2016

Equal
footing
network

Effect-based Antagonistic
and mutual-
istic

Model coeffi-
cient

Synthetic The frequency of func-
tional extinctions is
higher in mixed than
single-type interaction
networks
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2.3 Expanded Food Webs

Food webs (networks of trophic interactions) represent the net flow of biomass or
energy among individuals (Lindeman, 1942; Paine, 1966; Pimm, 1982; Moore and
de Ruiter, 2012) and, more often than not, their constituent interactions are among
the easiest to observe empirically. The study by Arditi et al. (2005) was probably
the first in addressing the influence of other types of interactions in a large-scale
food web framework. They assumed that non-trophic interactions affected the
net interaction strength of consumer-resource relationships, modifying the net
biomass flow from resources to consumers. The same idea was also addressed by
Goudard and Loreau (2008) and, recently, Kéfi et al. (2012) expanded it to allow
non-trophic interactions to influence any parameter of a food web dynamic model.
These studies share the assumption that over the food web structure, there are
other relationships that modify and constrain the resulting network by acting
upon specific non-trophic ecological mechanisms.

As a minimal example, consider a general population dynamics model in
which each species within a set S is parameterized only by an intrinsic growth
rate term and a coefficient for its effect over each of the remaining species:

dNx

dt
=

rx +
∑
y∈S

axyNy

Nx (2.1)

where Nx is the abundance of species x, rx its intrinsic growth rate, and axy
the interaction coefficient of species y over x . With the framework proposed by
Kéfi et al. (2012), each growth rate can be potentially influenced by a non-trophic
interaction and, more generally, trait-mediated indirect interactions (Peacor and
Werner, 1997) can be incorporated by modifying interaction strength parameters.
Hence:

rx∝r0
x +

∑
y∈S,y,x

qxyNy (2.2)

axy∝a0
xy +

∑
z∈S,z,x,z,y

pxyzNz (2.3)

where qxy represents the per capita influence of species y on the growth rate of
species x, independent of their trophic interaction coefficients, and pxyz represents
the per capita influence of species z on the interaction coefficient between species
x and y.

Focusing on the biomass flow of the network, expanded food webs have the
advantage that models complying with the principles of mass and energy con-
servation can be easily developed. As non-trophic interactions can influence any
parameter of the dynamic model, the framework can accommodate detailed mech-
anisms of interactions taken from empirical observations or ecological hypotheses;
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for example, the differential role of mutualistic interactions over different vital
rates (Stachowicz, 2001). But not only vital rates can be modified: trait-mediated
indirect interactions have been shown to have important effects on different eco-
logical processes Golubski et al. (2016). As shown in Eq. 3, they can be seamlessly
incorporated in this approach, since interaction strengths are usually constant
parameters, just like demographic rates. The potential level of detail achievable
with this framework, on the other hand, entails an unavoidable trade-off: for
models involving just a few species, a vast number of parameters would have to be
accounted for in order to have a complete model Golubski and Abrams (2011). For
a food web of S species modelled after Eqs. 1-3, a full accounting of trophic inter-
actions would yield S2 interaction parameters plus S intrinsic growth parameters.
Considering non-trophic influences over these basic parameters would add up to
S∗ (S − 1)qxy terms and either S2∗ (S − 2) or 2

(
S2∗ (S − 2)

)
pxyz terms depending on

the symmetry of interactions, i.e. whether x→ y = y→ x or not. In the simplest
scenario of symmetric interactions, a total of S3 parameters need to be accounted
for. Further parameters would be needed if more sophisticated functional forms
were to be considered (see, e.g., the Aire Island case study).

Note that similar approaches could be developed to take any other interaction
type as the base of community structure. For example, for well-resolved mutual-
istic networks in which a certain plant species is consumed by another species,
the effect of predation could be added to the mutualistic network by making the
plant’s mortality rate a function of the predator’s abundance.

Figure 2.1: Three approaches for constructing and analyzing networks with multiple interaction
types. In the first panel, solid lines represent trophic interactions, dotted lines non-trophic ones.
Note that frugivory and pollination have both trophic and non-trophic components. In the second
and third panels, solid lines represent antagonistic interactions, dashed lines mutualistic ones
and dotted-dashed lines commensalistic ones. Data for building the network taken from the Aire
Island community (see the Aire Island case study).

Multilayer Networks

The concept of networks formed by different types of interactions (edges, more
generally, connecting two individual nodes of the network) was first developed
in the first decades of the 20th century in the field of social sciences, for charac-
terizing social interaction networks with different types of relationships between

29



2. Multiple Interactions Networks

individuals. Nevertheless, it is only in the last few years that the idea has been
properly defined mathematically, given a consistent terminology, and applied to
a wide variety of research objectives in, for example, engineering, economical or
social networks (see the reviews by Boccaletti et al. 2014 and Kivelä et al. 2014 to
learn more about the history, methodology and applications of the paradigm).

The basic principle is that nodes within a network can be linked in different
ways or in different contexts, so that the overall network contains two or more
layers that represent different link types or other aspects of variation. Nodes
can be connected to nodes of the same layer (intra-layer links) or to nodes of
different layers (inter-layer links). Such multidimensional object is called - in it
most general definition - a multilayer network. An ecological community in which
different species interact in a discrete number of ways is a very intuitive example
of such a network Pilosof et al. (2017) each interaction type would constitute a
different layer within the ’interaction type’ aspect, and other potential layering
aspects could be time (i.e. the realization of the network in different sampling
campaigns) or site (different sampling plots).

Mathematically, a multilayer network consists on a quadrupletM = (VM ,EM ,V ,L)
. Its elements are, first, a sequence of sets of elementary layers {La}da=1 , where
d is the number of layering aspects. The full set of nodes of the network, V ,
does not include the information about which node belongs to which layer, so a
further set of node-layer tuples encodes this information: Vm⊆V × L1 × · · · × Ld .
These node-layer tuples, i.e. the instances of a node in a given layer, are called
’state nodes’. Lastly, Em⊆VM × VM is the set of intra-layer and inter-layer links.
This minimal definition is expanded in the reviews by Kivelä et al. (2014) and
Pilosof et al. (2017). When designing multiple interactions networks, d≥1 , as at
least the layering relative to interaction type will be present; also, links may be
constrained to ’diagonal coupling’, i.e. the situation in which a node will only
be connected to itself in different layers. Representations where layers are not
interaction types but some other grouping of the community are also possible (Ap-
pendix 2.2). For modelling the dynamics of multilayer networks, any dynamical
model representing species interactions may be used in which sub-networks are
represented by sets of equations and, depending on the design, auxiliary equations
may be used to connect the different state nodes of a given entity, or state nodes of
different entities in different layers. The inter-layer links of a multilayer network
make this framework particularly versatile, as these may represent any kind of
relationship between layers (see Fig. A.2.2.3 for a definition of the different types
of links in multilayer networks, and their matrix representation). For example, a
link coupling the same plant species in pollination and herbivory sub-networks
may represent the effect that consumption of reproductive organs by herbivores
has in the interactions between the plant and its pollinators. Inter-layer links
may also represent a coupling between layers with different temporal or spatial
scales, thereby explicitly accounting for the temporal or spatial dimension of the
networks. Note that this framework may accommodate networks with markedly
different structures. For example, networks where virtually all links are intra-
layer and the opposite, networks in which virtually all links are inter-layer, are
both multilayer networks; also, networks whose nodes are present in every layer

30



2.3. Expanded Food Webs

or in just one of them can fall under this framework.
Multilayer networks have been explored in a few studies of multiple interac-

tions networks (Table 2.1), but their applicability in ecology goes far beyond these
studies. For example, they have been successfully applied to reconstruct super
(phylogenetic) trees von Haeseler (2012), to study temporal and spatial variability
in network structure, or to the analysis of ecological processes at different scales
Pilosof et al. (2017) . Despite the potential of the multilayer framework for mod-
elling ecological dynamics within and across layers, most studies listed in Table
2.1 have only analysed static structural patterns, with the only exceptions being
the studies by Stella et al. (2016), who studied the dynamics of parasite spreading
in multilayer ecological networks of varying structures, and by Gracia-Lázaro
et al. (2018), on the influence of inter-layer mutualistic interactions over layers of
competitive interactions. In general, ecological studies on multilayer networks are
starting to show that interactions other than predator-prey ones are also highly
structured (Melián et al., 2009; Kéfi et al., 2015) and this topological structure has
important consequences for different community properties (Pocock et al., 2012;
Evans et al., 2013; Kéfi et al., 2016).

As this approach has been developed mostly in theoretical physics and most
reserachers in ecology may not be familiar with its terminology, a brief note is
needed here. Following the definitions from Kivelä et al. (2014), a multilayer
network is the most general object representing networks with multiple layering
aspects and connections among layers. Although we focus on networks where
the only layering aspect is interaction type and are diagonally-coupled, (termed
‘multiplex’ networks or ‘edge-coloured multigraphs’ in Kivelä et al. 2014), we
acknowledge that multiple interactions networks can also include other layering
aspects and more complex patterns of inter-layer links. Therefore we adopt the
more general term of multilayer networks in our review (Box 2). We will also
use indistinctly the ‘layer’ and ‘sub-network’ terms to refer to a layer of specific
interaction types in this framework.

Equal Footing Networks

Regardless of the specific characteristics or vital rates of an organism potentially
modified by a pairwise interaction, its effects can be summed up as influencing
either (1) individual fitness, (2) population size, or (3) population growth rate
(Abrams, 1987). This view of interactions as aggregating effects over general
individual or population-level parameters is the conceptual basis behind ’equal
footing networks’, with the main consequence that pairwise interactions of any
type can be measured and compared ’on equal footing’.

A minimal population dynamics model can be represented as in Eq. 1. The
main difference with the expanded food webs is that here, trophic and non-trophic
interactions influence the intrinsic growth rate through the interaction terms of
the adjacency matrix

[
axy

]
, instead of being modelled through auxiliary equations

2-3. Therefore, the adjacency matrix may include all pairwise combinations
{(0,0),(0,+),(0,-),(+,-),(+,+),(-,-)} (Fig. A.2.2.4 ).
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Being a more general approach than expanded food webs, numerical models
of equal footing networks are more scalable. Following Eq. 1, each species can be
modelled by a single equation, and S2 + S parameters are required for a complete
model of S species. This generality through the integration of fundamentally
different interaction mechanisms in the adjacency matrix hinders the level of
biological realism that can be achieved, in contrast with expanded food webs.
By manipulating the signs of the adjacency matrix, different proportions of in-
teraction types can be generated, but the effect of varying these proportions on
community stability is an open question. Mougi and Kondoh (2012) showed that,
under certain conditions, local stability is enhanced for theoretical communities
mixing antagonism and mutualism, as opposed to communities with a single in-
teraction type. Their a priori conditions were that 1) mutualisms and antagonisms
have, in total, the same effect over population growth rates and 2) for any species,
the net effect of a given interaction decreases with increasing numbers of links
of the same type. Two subsequent studies debated their conclusions: (Suweis
et al., 2014) stated that these conditions, and not the mixing of interaction types,
were the factors that stabilized their models, whereas (Kondoh and Mougi, 2015)
partially relaxed their initial assumptions and still found increasing stability
with interaction mixing. Recently, the methodology developed in (Mougi and
Kondoh, 2012) has been expanded to assess the role of commensalism and amen-
salism Mougi (2016a) and the potential switching of interactions Mougi (2016b),
finding that separately accounting for these factors (unidirectional interactions
and interaction switching) also increases local stability. The evaluation of equal
footing networks through local stability analyses (for review see Table 2.1) is
methodologically equivalent to the analysis of single-interaction networks. Hence,
it is a natural approach for comparing networks of single and multiple interac-
tion types without resorting to specific interaction mechanisms. In the studies
already published (Table 2.1), different studies have considered different sets of
interaction types and modelling assumptions, so that no integrative conclusions
can be obtained at this point. Nevertheless, an emerging trend seems to be that
networks with more than one interaction type and where different interactions
are structured non-randomly are more locally stable than their single-interaction,
non-structured counterparts.

The equal footing framework can be thought of as a particular type of multi-
layer network, in which the interaction layers are ’flattened’ in a single network,
so that inter-layer links disappear, and each node is simultaneously affected by
all interactions. This flattening is possible when three conditions are met: state
nodes of the same node in the different layers of a multilayer network represent
the same physical entity (as opposed to transportation networks, for example,
where state nodes might represent bus or train stations of the same city), layers
are diagonally-coupled, and all interactions in the different layers are expressed
in the same units. This last condition is probably the most general, and in fact it
represents our second criterion for distinguishing among frameworks. It allows
the possibility of flattening multilayer networks in which there is link overlap
among layers, as the overall effect will be a function of all layer-specific effects.
We believe that these restrictive conditions, and the prevalence of equal footing
networks in the theoretical studies listed in Table 2.1, merit the consideration
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of this framework as separated from the more general multilayer networks. The
study by Melián et al. (2009) provides an example of a multilayer dataset flattened
to an equal footing dynamic model.
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Box 1: Choosing a multiple interaction network methodology
What constitutes a ’realistic’ representation of an ecological community? The answer
is likely contingent on many factors, including the type of community being studied,
the availability of empirical data and/or the ease to obtain it through observational
or experimental studies. Although these factors, as well as research objectives and
ecological assumptions, vary widely among studies, we propose a series of general
guidelines for helping decide which multiple interactions framework is more appro-
priate for analyzing different types of data and questions (Fig. 2.1).

The first dichotomy is whether the study involves structural and/or dynamical
analyses (in this context, dynamical analyses refer to model-based projections of, at
least, species abundances or biomass). In the first case, countless studies have anal-
ysed network structure based on lists of species and presence/absence of interactions
between them. An excellent example of a structural analysis of a multiple interaction
network is the comprehensive study of the Chilean rocky shore intertidal community
by Kéfi et al. (2015). We suggest, for such analyses, arranging data according to the
multilayer framework, which provides a versatile representation of the network and
for which there is a well established, wide set of diagnostic metrics (Pilosof et al.,
2017).

When values of biomass/abundance and interaction strengths are sampled or
estimated (for example, based on allometric relationships, as in e.g. Kéfi et al. (2016),
community dynamics can be modelled. In these cases, the influence of the parameter-
ization on the results obtained should be appropriately gauged against null models,
but this topic is out of the scope of our study.

If interactions are classified in terms of their effect over a certain population
parameter, either equal footing or multilayer networks are the appropriate modelling
frameworks for analyzing dynamical systems. In this situation, choosing one ap-
proach over the other depends crucially on our second general criterion, i.e. the units
in which interaction strengths are represented. Other factors may also play a role,
for example the presence of multilink overlap (see case study), the complexity of
inter-layer links, or whether the dynamics of single-interaction sub-networks may be
of interest when considered as separate entities. Generalizing, if it is of any interest
to consider interaction types separately (for example, if different interaction types
are modelled through different functional forms and with different units) or there are
complex inter-layer connections, multilayer networks should be used. If, on the other
hand, the interest lies in the overall dynamics of the whole system, equal footing
networks might be preferable.

The other branch of the flow chart in Fig. 2.2 represents the situation where
estimates of interaction strength are classified according to the mechanism they act
upon. In this case, if the community consists of relatively few species or functional
groups, each interaction can be modelled in detail, and the number of parameters
might still be manageable: expanded food webs provide the most appropriate frame-
work for such situations. Modelling the dynamics of a higher number of species,
on the other hand, usually implies less mechanistic knowledge of the interactions
within the community, and therefore interactions can be grouped in layers of a multi-
layer network that represent specific families of mechanisms. Notwithstanding these
guidelines, as before, other factors may play a role (e.g. the inclusion of interaction
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modifiers, as in the case study). In all cases, selecting an appropriate framework will
ultimately depend on the data at hand, the objectives of the study and the judgement
and familiarity of the researchers with the different methodologies.

Figure 2.2: Diagram for choosing a multiple interaction network methodology, to be read
starting from the upper left diamond box.

Acquisition and aggregation of empirical data

Collecting data on the presence and strength of pairwise interactions in nature is
notoriously difficult, even for the most easily observed interactions (Jordano 2016).
It follows that interaction networks tend to be markedly under-sampled (Chacoff
et al., 2012), and the proportion of type II errors, i.e. existing interactions that are
not observed, is rarely known (Olesen et al., 2011; Morales-Castilla et al., 2015;
Gravel et al., 2016a). In turn, quantifying the strength of observed interactions is
also a long-standing challenge even for single interaction networks (Berlow et al.,
2004). Several interaction strength indices have been developed by theoretical
ecologists, but these are usually disconnected from the set of metrics obtained in
field or manipulative studies (Wootton and Emmerson, 2005). Furthermore, very
few pairwise interaction types have been extensively studied and their functional
forms analysed (e.g. Holland et al. 2002; Novak and Wootton 2008), while the
existence and/or dynamics of the vast majority of interactions in nature remain un-
known. Thus, designing and implementing programs for collecting reliable data
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on multiple interaction types is presently one of the biggest challenges for commu-
nity ecologists, up to the point that we are aware of just a handful of prominent
examples in the literature. For example, Melián et al. (2009) aggregated data from
several studies on pollination, seed dispersal and herbivory carried out between
1981-1984 in the Doñana Biological Reserve, in southern Spain. With that data,
they constructed a network of 390 species and 798 interactions. Parasitic species
and links, in addition to predator-prey interactions, were sampled by Hechinger
et al. (2011) in food webs of three estuaries in the North American Pacific coast, in
a dataset that included 314 species and 11270 interactions. In the study by Pocock
et al. (2012), several interaction types were concurrently sampled in different
habitats of an agro-ecosystem in the UK, obtaining a network of 560 species and
1501 interactions. Finally, two networks of intertidal communities have been
collected recently: Sander et al. (2015) obtained 1898 interactions between 110
taxa from the intertidal middle zone of Tatoosh Island based on observations and
natural history of the species, and Kéfi et al. (2015) took advantage of decades
of work conducted on the marine rocky intertidal communities of the central
Chilean coast to reconstruct its qualitative community network based on field
observations and expert knowledge. Their network includes 104 species and 4754
interactions.

From these examples, one can distinguish two main strategies for constructing
empirical multiple interactions networks: aggregating data from different sources
of a given community in order to reconstruct the community network a posteriori
(as in Melián et al. 2009; Hechinger et al. 2011; Kéfi et al. 2015 and Sander et al.
2015), or designing an integrated sampling program for a given set of previously
defined interaction types, thus obtaining a realization of the network where all
interactions are mostly co-occurring in space and time (as in Pocock et al. 2012).
In the first approach, one may assemble information from studies conducted with
different objectives and sampling methodologies and over different time periods,
so that the aggregated network can potentially include a large fraction of the
realized interactions, but these may or may not co-occur in time and/or space.
Differential sampling efforts across studies will be unavoidable, and a posteriori
analyses should be considered to minimize over or under-representation of certain
clades and interactions. In the second approach, as fieldwork is likely to be
conducted in tight time periods and in parallel for the different interaction types,
sampling will potentially be more limited. On the other hand, this concurrent
sampling is a more realistic snapshot of the co-occurring interactions in the
sampling period, and importantly, fieldwork can be designed a priori to assign a
near-homogeneous effort to different interaction types (but a posteriori corrections
such as sample-based rarefaction are also advised; see Pocock et al. 2012 and
references therein). A non-exhaustive list of factors to account for the design of
field campaigns is provided in Table 2.2, but a more comprehensive analysis of
sampling strategies for multiple interactions networks is needed.

Regarding the key issue of estimating empirical interaction strengths, it is
often necessary to conduct manipulative experiments for obtaining reliable func-
tional forms and interaction strength coefficients. Such experiments, however, are
very context and clade-specific, and usually pose increased costs and logistical
difficulties over field observations. For these reasons, a growing line of research is
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Table 2.2: List of factors to consider in the design of sampling campaigns for multiple interaction
types. These factors are general and independent from the framework chosen to represent the
obtained network.

Factor Examples of relevant questions
Temporal
scale

Single sampling campaign or periodic samples? What is the time scale of the
interactions to be sampled? Are all/certain interaction types expected to vary
along the sampling period?

Spatial scale What is the spatial scale of the interactions to be sampled? Are all/certain
interaction types expected to vary spatially?

Habitat
type(s)

How many habitat types will be sampled? How does sampling effort vary across
habitats? Which interaction types are expected to be prevalent in each habitat
type?

Interaction
types

Which interaction types are expected to be sampled? Which sampling method-
ologies are applied to capture them? How does the proportion of forbidden
links vary among interaction types?

Field and ex-
perimental
observations

Are experimental observations needed for observing specific interaction types
(e.g. for estimating the prevalence of parasitism, or the number of flowers visited
by a given pollinator)? How is effort distributed among field and experimental
observations?

Natural
history of
species

Do species in the community have varying activity periods or phenologies? Are
there significant differences in mobility, behaviour, and other traits relevant to
the probability of observing an interaction?

Movement
capacity

Will network include permanent species or also transient ones? How is a
permanent species defined?

being developed for, given minimal information, inferring the presence (Morales-
Castilla et al., 2015; Deyle et al., 2016) and strength (Novak and Wootton, 2008;
Berlow et al., 2009; Vázquez et al., 2012) of biotic interactions. Specifically, an
interaction strength proxy that may be applicable to different types of interactions
is the frequency of occurrence of an interaction. Poisot et al. (2015) proposed a
general framework for integrating dynamic interaction strengths in dynamical
models, taking into account the long-held idea that the net impact of a species
over another can be described as a function of two components: the frequency
of interaction and the per interaction effect (Vázquez et al., 2005). Thereby, the
relative role of density-mediated and trait-mediated effects on direct interactions
can be explicitly analysed. So far, it has been hypothesized that the net impact of
mutualistic plant-pollinator interactions can be approximated by their frequency
for both sides of the interaction (Vázquez et al., 2005, 2012) and, in addition,
that the asymmetry among interaction strengths is well explained in some cases
solely by species’ relative abundances (for quantitative bipartite networks, as
in Vázquez et al. 2007). These ideas converge towards a unified neutral view
of ecological interactions: interactions can be approximated as being the result
of random encounters among individuals, whose probability is mediated by the
relative abundances of the populations involved (Araújo and Rozenfeld, 2014;
Canard et al., 2012, 2014; Cazelles et al., 2016). The frequency of interactions
will naturally equal the net impact of a population over another, since per capita
interaction strength will not vary with other factors (traits, environmental condi-
tions). Further research is needed to test the robustness of (1) species abundance
as a proxy for interaction frequency, and (2) interaction frequency as a proxy for
interaction strength.
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Box 2: Definitions of key terms
The approach used for classifying interactions does not only have methodological
consequences: it is above all constrained by the very definition of interaction. Hence,
it is important to be clear and explicit about the definitions used.

The ones we use in this study for direct and indirect interactions are taken
directly from Abrams (1987). These definitions can be applied both to effect-based
and mechanism-based classifications, and though we define indirect interactions for
completeness, we mainly focus on direct interactions.

For effect-based classifications, existing definitions are complete, as they cover
the full spectrum of possible combinations of interactions in what can be described
as the biotic interaction space (Araújo and Rozenfeld, 2014). New terms have been
introduced with time, e.g. expanding the definition of (+,-) interactions originally
described as being mainly characterized by predation to, first, contramensalism
(Arthur and Mitchell, 1989) and later, antagonism (Sousa, 1993).

Within mechanism-based classifications the situation is somewhat more convo-
luted. In such studies, it is commonplace to study trophic and non-trophic inter-
actions separately. Although defining these terms is apparently trivial, we have
encountered very different implicit meanings of what constitutes a non-trophic in-
teraction in the literature. For example, in the studies by Arditi et al. (2005) and
Goudard and Loreau (2008), non-trophic interactions are defined as modifiers of
trophic interactions. Prasad and Snyder (2010) consider non-trophic interactions
to be ‘driven by one species changing the behaviour but not the density of another
species’. Finally, Kéfi et al. (2012) interprets non-trophic interactions as being all
other interactions than feeding ones, including the non-trophic components of pair-
wise interactions such as pollination or frugivory. We adopt the latter definition, as
it more clearly fits within a simple generalizable framework, although it requires
certain interactions to be split in their trophic and non-trophic components. Lastly,
effect-based and mechanism-based classifications need not be mutually exclusive
(Abrams, 1987): it is common for effect-based interaction classes to be divided accord-
ing to specific ecological mechanisms, e.g. mutualisms can be divided by considering
whether there is a trophic component in them or not, etc.

Interaction A change in some characteristic of a population mediated by properties
or actions by individuals of other population.

Direct interaction Interaction in which the effect occurs either through direct phys-
ical contact or through a third set of entities produced by one of the two
interactors.

Indirect interaction Interaction in which the effect occurs as a result of other effects
produced by one interactor on some population property of a third set of
entities; and the third set of entities is not produced by any of the interactors.

Trophic interaction In the context of mechanism-based classifications, an interac-
tion (or component of one) that involves direct exchange of energy (biomass)
between the two individuals.
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Non-trophic interaction In the context of mechanism-based classifications, an inter-
action (or component of one) that does not involve exchange of energy (biomass)
between the two interacting individuals.

Single-interaction network Ecological network in which one interaction type is
considered. Classic examples are food webs or plant-pollinator networks.

Multiple interaction network Ecological network with more than one interaction
type. This umbrella term includes any topology and/or classification of interac-
tions.

Expanded food web Multiple interaction network in which consumer-resource inter-
actions form the basic structure of the network. Other interactions are termed
“non-trophic” interactions and may affect any parameter of the dynamic model.

Multilayer network Network with different types of connections between nodes. In
an ecological context, different network layers commonly represent different
interaction types. If there is only one layering aspect and nodes are diagonally-
coupled, that type of multilayer network is termed multiplex.

Equal footing network Multiple interaction network in which all interaction types
are expressed in the same units, i.e. influence the same parameter of the
dynamic model.

The Aire Island case study

The expanded food web, multilayer and equal footing frameworks for building
multiple interactions networks offer complementary insights for the study of eco-
logical communities, and each one is best suited to different types of studies and
objectives (Box 1). Here, to demonstrate the diversity of ecological questions that
can be addressed with multiple interactions networks, we analyse an empirical
community under the lenses of each one of the approaches described. Specifically,
we ask:

1. what is the influence of non-trophic interactions on the local abundances of
all species? (expanded food web approach);

2. which species serve as “hubs” for linking species through interaction sub-
networks and in the overall network? (multilayer network approach);

3. does the strength of different interaction types influences local community
stability?(equal footing approach).

The community examined is located on the Aire Island, a small islet located
SE off the coast of Menorca (Balearic Islands, Spain) with an area of around
342500 m². Almost the entire surface of this relatively flat islet is exposed to
the effect of the sea. Therefore, most vegetation is halophilous (i.e. thrives in
saline environments) except in areas sheltered from wind and sea, where typical
Mediterranean species appear, such as Pistacia lentiscus (Pérez-Mellado et al.,
2006). Our examples are based on a subset of the ecological community of this
islet.
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A remarkable set of interactions has been unveiled in the Aire Island between
the dead horse arum (Helicodiceros muscivorus), its associated insect pollinators
(Diptera, genus Calliphora and Lucilia), and the Balearic lizard, Podarcis lilfordi.
The Balearic lizard is an omnivorous lacertid of medium size, endemic to the
Balearic Islands. It has been shown to bask on the spathe of Helicodiceros mus-
civorus ’ flowers, and to feed on the pollinating flies attracted by the intense
odour produced by the plant. In addition to this negative effect of Podarcis lil-
fordi on Helicodiceros muscivorus through consumption of potential pollinators,
it is itself an effective seed disperser of the plant: Podarcis lilfordi consumes ripe
fruits of Helicodiceros muscivorus routinely, and seeds dispersed by the lizard
show a significantly higher probability of germination than non-consumed seeds
(Pérez-Mellado et al., 2006). Podarcis lilfordi is also an effective pollinator of other
species at Aire Island. Particularly, high loads of pollen from Pistacia lentiscus and
Crithmum maritimum have been found in lizard’s bodies in previous studies on
the same community (Pérez-Mellado et al., 2000). Due to the scarcity of natural
predators, Podarcis lilfordi reaches high densities in the islet (Pérez-Mellado et al.,
2008). Its main predator is probably the Eurasian Kestrel (Falco tinnunculus),
that does not nest on the islet but visits it frequently. Lastly, the appearance of
Helicodiceros muscivorus is related to the percentage of soil covered by Suaeda Vera,
an hallophylous shrub of the Chenopodiaceae family, suggesting facilitation by
the shrub on the development of Helicodiceros muscivorus (Pérez-Mellado et al.,
2006). The interaction network formed by these 7 species (or guild, in the case
of the Diptera) spans 3 trophic levels, and includes antagonistic, mutualistic and
commensalistic interactions. In the following equations and figures, S refers to the
whole set of species, and species are denoted by their initials or silhouettes. When
available, we use empirical data for parameter estimates. Whenever empirically
derived estimates are unavailable, as these examples are only to illustrate the
approaches, we assign values based on our judgements of plausibility.

Expanded food webs: Influence of non-trophic interactions in
equilibrium abundances

The main strength of the expanded food webs is the inclusion of detailed, mecha-
nistic, non-trophic interactions in the general food web structure. We investigated
their influence in the resulting abundance patterns of the community, compared
to a standard food web model.

The continuous-time model for the expanded food web considers only three
ecological processes: growth, mortality, and pairwise interactions, which can be
trophic or non-trophic. Trophic interactions can, themselves, be modified by the
presence of a third species. The main equations are of the form:

dNx

dt
= rxNx −mxN 2

x +
∑

y∈S,y,x
axyNxNy (2.4)

where rx is the short-term per capita growth rate, mx is the per capita mortality
rate (that, multiplied byN 2

x , acts as a self-limitation term) and axy are the pairwise
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trophic interaction coefficients (the partial derivative of the per capita growth rate
of species x with respect to the density of species y ).

Several non-trophic interactions are included on top of this general structure,
affecting either rx , mx or axy . As an example, the modification of the mortality
rate is modelled with a saturating function (Kéfi et al., 2012)

mx
(
Ny

)
=
mNTI
x Ny +m0

xN
0
y

Ny +N 0
y

(2.5)

The function varies between a basal value m0
x when Ny = 0 , i.e. in the absence

of non-trophic interactions, and mNTI
x when the non-trophic interaction is highest.

The same equation was used to model non-trophic interactions influencing the
other parameters of Eq. 6 (growth rates rx and interaction coefficients axy ).
For modelling the Aire Island community, we assumed that (1) all mutualistic
interactions positively affect short-term growth rates, i.e. rNTI

x > r0
x for Helicodiceros

muscivorus, Podarcis lilfordi, Diptera, Pistacia lentiscus and Crithmum maritimum;
(2) the presence of Suaeda vera increases the survival probability of Helicodiceros
muscivorus seedlings by providing a favorable microhabitat, thus decreasing the
mortality rate of the facilitated plant, i.e. mNTI

HM < m0
HM ; and (3) increases in

abundance of Helicodiceros muscivorus increased the magnitude of the predator-
prey interaction between Podarcis lilfordi and the Diptera species, i.e. aNTI

PL,DP >

a0
PL,DP and aNTI

DP,PL < a
0
DP,PL.

The complete parameterizations of the expanded food web model and the equal
footing model are included in Appendix 2.1. We found significant differences in
abundances at equilibrium for all species except Suaeda vera, depending on the
set of interactions considered (Fig. 2.3). We define equilibrium as the steady state
reached after a sufficient number of time steps (2500 in our case). Non-trophic
interactions in the Aire Island community are all positive, and accordingly, all
populations increase in equilibrium abundance when engaging in non-trophic
interactions. The only organism that conceivably could be negatively affected by
the inclusion of non-trophic interactions are the Diptera, given that the magnitude
of the Podarcis lilfordi - Diptera antagonism is enhanced by higher abundance of
Helicodiceros muscivorus. With the parameterization chosen, however, the positive
influence of the Diptera – Helicodiceros muscivorus mutualism outweighs this
increase (Fig. 2.3, note the increase in Diptera abundance when non-trophic
interactions are considered). Note that this is the only approach in which we
explicitly model the influence of Helicodiceros muscivorus populations in the
predator-prey interaction between the Diptera species and Podarcis lilfordi.

Multilayer networks: Importance of each species in structuring
the network

The role of the different species in structuring a given community has been ex-
tensively assessed for single-interaction networks (Coux et al., 2016) and for
multilayer networks in other fields (Solé-ribalta et al., 2014; De Domenico et al.,
2015). For the multilayer framework, several metrics have been adapted directly
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Figure 2.3: Equilibrium abundances of the Aire Island community when considering trophic
interactions, or trophic and non-trophic ones. Boxplots with different letters are significantly
different according to Wilcoxon rank-sum tests (CM: W = 38176000, p < 0.05; DP: W = 63730000,
p < 0.05; FT: W = 38512000, p < 0.05; HM: W = 57170000, p < 0.05; PL: W = 42005000, p < 0.05;
PLe: W = 38454000, p < 0.05; SV: W = 31595000, p = 0.059).

from single-interaction networks and others have been defined taking into ac-
count the multidimensional nature of the multilayer approach (De Domenico
et al., 2015). Among these novel metrics, the concept of multidegree is a multidi-
mensional extension of the degree of a single-interaction network, that may help
uncover important, well-connected species in each sub-network and in the overall
structure. Here we calculate multidegrees as defined in Boccaletti et al. (2014),
where formal definitions are provided.

For understanding the concept of multidegrees, we first need to define the
multilinks of the network. Multilinks (or multiedges) are links connecting two
nodes in a combination of layers. For example, the Aire Island network has three
interaction types. A multilink of the form (1,0,0) exists between two species if
these species are connected in the first layer and not in the second or third one.
One can see thus that the number of potential multilinks between any two species
in a general network with M layers is 2M . The multidegrees mix of species i are its
number of multilinks of type x, and its aggregation, mi , is the overall multidegree
as considered e.g. in Stella et al. (2016).

Given three layers representing interaction types {antagonism, commensalism,
mutualism}, the multilinks for the Aire Island network are:

42



2.3. Expanded Food Webs

m0 = {0,0,0}
m1 = {0,0,1}
m2 = {0,1,0}
m3 = {0,1,1}
m4 = {1,0,0}
m5 = {1,0,1}
m6 = {1,1,0}
m7 = {1,1,1}

where m0 is the null multilink, representing the situation in which two species
are not connected in any layer, and subsequently, m7 represents a multilink
whereby two species are connected in the three layers. The number of shared mul-
tilinks between any two species can be represented by multi-adjacency matrices.
The multi-adjacency matrices of the Aire Island community are:

Am0 =



FT PL DP HM SV PLe CM
0 0 1 1 1 1 1
0 0 0 0 1 0 0
1 0 0 0 1 1 1
1 0 0 0 0 1 1
1 1 1 0 0 1 1
1 0 1 1 1 0 1
1 0 1 1 1 1 0



FT
PL
DP
HM
SV
PLe
CM

Am1 =



FT PL DP HM SV PLe CM
0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 0 1 0 0 0
0 1 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0



FT
PL
DP
HM
SV
PLe
CM

Am2 =



FT PL DP HM SV PLe CM
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



FT
PL
DP
HM
SV
PLe
CM
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Am4 =



FT PL DP HM SV PLe CM
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



FT
PL
DP
HM
SV
PLe
CM

Am3 = Am5 = Am6 = Am7 = 0

The multidegrees of the seven species of the community are the number of
multilinks incident to them (Table 2.3). These metrics show that Podarcis lilfordi
is the most connected species, overall and both in the mutualist and antagonist
sub-networks. Helicodiceros muscivorus and Diptera are the following species
in multidegree, and their links also span two layers. All other species are rep-
resented only in one layer, and are only connected to Podarcis lilfordi, inviting
the interpretation that the Balearic lizard has a disproportionate importance in
structuring the community. In our small community, these results are visually
evident, but the multidegree concept can be very useful in highly populated net-
works, where the importance of different species across layers is not obvious from
visual inspection of the data. Note that by decomposing the overall multidegree
into the contributions of each multilink we are able to evaluate the potential
link overlap of any pair of species in any combination of layers. In our simple
example, however, there is no overlap, a reasonable assumption when considering
an effect-based classification of interactions over a single population parameter,
since the potential partial positive and negative effects of a species over another
are aggregated in order to calculate the net effect and the associated interaction
type. For example, looking again at the Podarcis – Helicodiceros interaction, the
net direct effect of the lizard over the plant could be decomposed in, at least, 1)
a negative effect due to the consumption of fruits (i.e. the trophic part of the
pairwise interaction), 2) another negative effect due to the predation of poten-
tial Diptera pollinators, 3) the positive effect on seed dispersal, and 4) a further
positive effect on survival of seeds that have been dispersed by Podarcis lilfordi
as opposed to seeds that germinate naturally. In the absence of more detailed
experiments, and as suggested by Pérez-Mellado et al. (2006), we considered the
overall effect of Podarcis lilfordi over Helicodiceros muscivorus to be positive. Link
overlap in interactions can be expected when two species interact in different
ways, for example due to varying ecologies of life stages, and more generally when
the temporal dimension is included in the analyses.
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Table 2.3: Multidegrees of the seven species of the Aire Island multilayer network. Note that the
trivial m0 multilink represents no connections, so it is not considered for calculating the overall
multidegree m.

m0 m1 m2 m3 m4 m5 m6 m7 m
Falco tinnunculus 5 0 0 0 1 0 0 0 1
Podarcis lilfordi 1 3 0 0 2 0 0 0 5
Diptera 4 1 0 0 1 0 0 0 2
Helicodiceros mus-
civorus

3 2 1 0 0 0 0 0 3

Suaeda vera 5 0 1 0 0 0 0 0 1
Pistacia lentiscus 5 1 0 0 0 0 0 0 1
Crithmum maritimum 5 1 0 0 0 0 0 0 1

Equal footing networks: Influence of the magnitude of
mutualistic and antagonistic interactions on community
stability

For assessing the effect of the strength of different interaction types on the over-
all stability of the network, we modelled the community using the equal foot-
ing framework. We used the continuous-time logistic equations proposed by
Garcı́a-Algarra et al. (2014), in which all extrinsic effects – environmental, biotic
interactions – fall on the intrinsic growth rate rx :

dNx

dt
= rxNx (2.6)

where

rx = r0
x +

∑
y∈S,y,x

axyNy −

βx + cx
∑

y∈S,y,x
axyNy

Nx (2.7)

The rightmost term of Eq.9 represents the self-limitation term. In the absence
of pairwise interactions, the parameter βx controls self-limitation, and cx is a pro-
portionality constant. Pairwise interaction coefficients axy were assumed constant.
For assessing the relative influence of different interaction types on community
stability, we varied the relative magnitude of facilitative (commensalistic and mu-
tualistic interactions) and antagonistic coefficients and analysed the resulting local
stability patterns of the system by examining the sign of the leading eigenvalue of
the associated Jacobian matrix (Fig. 2.4 and Fig. A.2.3.2 ).

Parameterizations with weak antagonistic interactions were virtually all sta-
ble (19991 out of 20000 replicates), regardless of the magnitude of facilitative
interaction strength (Fig. 2.4, groups a and b). Communities parameterized with
strong antagonistic interactions (group c in Fig. 2.4), on the other hand, were
mostly unstable, with only 20 out of 10000 replicates having a leading eigenvalue
< 0. All unstable communities were also unfeasible in that either key species
went extinct or some species grew unbounded despite the self-limitation term of
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2. Multiple Interactions Networks

Eq. 9. Interaction strength magnitudes were chosen arbitrarily, in the absence of
empirical data, but patterns were robust to variations of +- 2 orders of magnitude.
Our results therefore suggest that increasing antagonist interaction strengths for
this particular community would lead to instability. Bear in mind, though, that
local stability analyses are only an approximation of ecological stability, as they
only apply to closed systems in equilibrium. If accepting this assumption, local
instability in the Aire Island community could be interpreted as being triggered
by increased per capita antagonistic interaction strengths. These could appear,
for example, if sexual dimorphism in Podarcis lilfordi led to higher predation of
females by birds, thus exerting a higher influence on population growth rate. This,
however, does not seem to be case, since the only dimorphism reported in Aire
Island is the slightly larger body size of males (Pérez-Mellado et al., 2000); hence,
no differential predation is expected.
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Figure 2.4: Distribution of antagonistic and mutualistic interaction strengths and the leading
eigenvalue of the resulting system. In the scatterplot, grey circles are systems with leading
eigenvalue ¡ 0, and black circles are systems with leading eigenvalue ¿ 0. Group a) is the group
of simulations with weak antagonistic and facilitative interactions; group b) are simulations
with weak antagonistic and strong facilitative interactions; group c) are simulations with strong
antagonistic and weak facilitative interactions. Within group c) only eigenvalue magnitudes close
to 0 are shown, due to the extreme variability of the raw data (with values up to 1099 ). The
rest of the data is shown in Fig. A.2.3.2 . For reference, a grid is drawn representing the z = 0
plane. Lower panels show the density distribution, for each group, of the logarithm of antagonist
interaction strengths (solid lines) and the logarithm of facilitative interaction strengths (dashed
lines).

2.4 Lessons from the case study

In the Aire Island, the ecological community studied is structured around Po-
darcis lilfordi, due to its high density and its key role as omnivorous feeder as
well as seed disperser and pollinator of several plant species. This species and
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Helicodiceros muscivorus are the ones most connected in the network, as shown by
the multidegree analysis. Non-trophic interactions are key for correctly projecting
population abundances, supporting empirical observations of the importance of
facilitation between plant species (Pérez-Mellado et al., 2006) and effective seed
dispersal by Podarcis lilfordi (Pérez-Mellado et al., 2000). We posit that the role of
non-trophic interactions, as modelled in the expanded food web approach, will
vary among communities and studies, but it is essential to integrate them in food
web analyses, particularly for fine-scale and well-studied systems. Lastly, with
the equal footing approach, we have shown that if we assume all interactions to
influence intrinsic growth rates, the strength of antagonistic interactions controls
the local stability of the network by potentially driving Podarcis lilfordi or the
Diptera pollinators to extinction. Specifically, even if no local extinctions occur,
the variability on the Podarcis abundances driven by an increase in antagonistic
interaction strengths can destabilize the community, due to its central position on
the network (as shown by the multidegree analysis). Positive interactions, in turn,
can vary in magnitude without significant effects on local stability.

The results shown here, however, are merely to exemplify the application of the
three methodologies on different ecological questions. Different methodologies
evaluating the same problem may yield varying results; for example, equilib-
rium abundances of stable simulations obtained with the equal footing approach
(Fig. A.2.3.1 ) vary significantly from those obtained with the expanded food webs
(Fig. 2.3). Choosing an appropriate formulation is not an exact science, as it
involves a balance between available spatiotemporal data on species and interac-
tions, natural history knowledge of the system, parsimony of the mathematical
model, and objectives of the study (Box 1). In this particular community, in which
the number of species is limited and the main interactions and mechanisms are
relatively well-known, we advocate for more in-depth analyses based on expanded
food webs, that may be parameterized with the results of manipulative studies
of, e.g. localised removal of certain species or seed dispersal experiments for
obtaining estimates of interaction strength.

2.5 Network ecology moving forward

Communities are comprised of individuals of different species interacting dynam-
ically, and the wide variety of interactions any species engages in is key to its
survival and thriving. Incorporating the effects of multiple interaction types in
network analyses provides a more complete picture of community dynamics than
relying on networks of a single interaction type. We have shown that frameworks
for the study of multiple interactions networks are sufficiently mature and can
accommodate a wide variety of research objectives and types of empirical data.
We hope that the improved understanding of these frameworks, and the explicit
recognition of their relative limitations and advantages, will lead to designing
field studies that adequately capture the variety of interactions in communities,
thus going beyond traditional approaches focusing on single interactions and
often single clades. Questions in community ecology that remain unanswered
can be addressed with a multiple interactions networks approach to the analysis
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of ecological communities. For example, we have little knowledge regarding the
proportion among different types of interactions in real communities, whether
this proportion is constant, whether it varies with any intrinsic or extrinsic factor,
or whether it is related to community stability. Furthermore, it is unclear whether
the trophic position of a species is related to the type of interactions it is more
likely to be engaged in. Likewise, we have little knowledge of whether a species
deemed important in a given sub-network will generally have such a role in sub-
networks of other interaction types. Because observation of interaction strength
in natural systems is extremely difficult to document, integration of empirical
data and modelling frameworks requires that consistent interaction strength prox-
ies be designed and tested. The neutral interactions hypothesis is a promising
starting point for providing a metric applicable to all interaction types, but it
needs to be tested for different communities and interaction types. On the other
hand, the application of expanded food webs models to specific communities
can trigger the design of manipulative studies to assess the functional forms and
dynamics of non-trophic interactions, most of which remain unknown despite
their importance.

These and other related questions are fundamental in order to understand the
response of ecological communities to perturbations such as climate change or
habitat loss. In summary, the development of theoretical models, such as the ones
presented here, needs to be contrasted with multipe field or experimental studies
for different community types.
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The effect of multiple biotic interaction types
on species persistence 3
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3. Persistence and biotic interactions

Abstract

No species can persist in isolation from other species, but how biotic interactions
affect species persistence is still a matter of inquiry. Is persistence more likely
in communities with higher proportion of competing species, or in communities
with more positive interactions? How do different components of community
structure mediate this relationship? We address these questions using a novel
simulation framework that generates realistic communities with varying numbers
of species and different proportions of biotic interaction types within and across
trophic levels. We show that when communities have fewer species, persistence is
more likely if positive interactions—such as mutualism and commensalism—are
prevalent. In species-rich communities, the disproportionate effect of positive
interactions on persistence is diluted and different combinations of biotic interac-
tion types can coexist without affecting persistence significantly. We present the
first theoretical examination of how multiple-interaction networks with varying
architectures relate to local species persistence, and provide insight about the
underlying causes of stability in communities.

3.1 Introduction

Persistence of multicellular organisms depends on interactions with other organ-
isms, whether they be in the form of energy intake, use of habitats created by other
species, assistance in reproduction by directed dispersal of genetic material, or
countless other examples (Bascompte and Jordano, 2007). Ecological communities
can be represented as networks, whereby species or guilds are nodes connected by
links representing interactions (Proulx et al., 2005). Pairwise direct interactions
can have positive, negative or neutral effects on the species involved, and this
classification gives rise to five general types of interactions: amensalism (-,0),
antagonism (+,-), commensalism (+,0), competition (-,-) and mutualism (+,+).
Despite the wealth of empirical observations of biological interactions in nature,
there still exists limited understanding of the frequency with which different
types of biotic interactions occur in communities, and the consequences for com-
munity structure and functioning. For example, is the frequency of interaction
types in communities related to overall persistence of species locally? Does the
structure of the different interaction types play a role in increasing the odds of
species persistence? Answering these and other questions has been hampered
by difficulties in simultaneously sampling different interaction types in natural
systems. Consequently, most studies have been based on observations of single
interaction types within networks, which obviously has limited the ability to
generalize beyond particular cases.

This fundamental gap in the understanding of ecological networks has been
largely acknowledged (Strauss and Irwin, 2004; Agrawal et al., 2007; Ings et al.,
2009; Fontaine et al., 2011), and there is increasing evidence that accounting for
different interaction types generates novel insights on the structure and dynam-
ics of ecological communities (Pilosof et al., 2017; Garcı́a-Callejas et al., 2018b).
Analyses of networks with multiple interaction types have already been applied,
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for example, to investigate the distribution of the different interaction types and
its relationship with species traits (Kéfi et al., 2015, 2016) or the robustness of
communities to local extinctions and habitat loss (Pocock et al., 2012; Evans et al.,
2013). Recent studies have also focused on investigating the relationship between
the diversity of interaction types and several facets of community stability, often
reaching different conclusions over this relationship. For example, it has been
proposed that 1) mixing of interaction types generally increases local stability
of model communities (Mougi and Kondoh, 2012, 2014; Kondoh and Mougi,
2015), 2) mixing of interaction types generally decreases local stability of model
communities or increases the number of functional extinctions (Suweis et al.,
2014; Sellman et al., 2016), or 3) structural factors of the different sub-networks
enhance or decrease their stability (Melián et al., 2009; Sauve et al., 2014, 2016).
The conflicting results over this fundamental question can be explained by the
sheer diversity of modeling assumptions, structural constraints, and varying sets
of interaction types included in the studies. For example, several studies (Melián
et al., 2009; Sauve et al., 2014, 2016) analyzed communities consisting of only
antagonistic and mutualistic interactions in which a central group of species
(usually plants) is the guild connecting the mutualistic (e.g. plant-pollinator) and
antagonistic (e.g. plant-herbivore) networks. Other studies considered model
communities with only basic rules about food web structure (Mougi and Kon-
doh, 2012; Suweis et al., 2014). A common feature of most studies is that, with
the exception of Mougi (2016a), their models did not consider the five general
interaction types concurrently. However, Mougi (2016a) only analyzed random
interaction matrices in his model, making his conclusions difficult to contrast
with those of other studies that assumed stronger structural constraints. The role
of species richness in mediating community stability also has been extensively
studied in single-interaction networks, and analytical derivations have been pro-
duced for idealized conditions in mutualism-competitition networks (Allesina
and Tang, 2012). In most cases, theory shows that increasing richness decreases
local stability of random networks, but it is unclear how species richness mediates
different facets of stability in networks with more complex structures and varying
proportions of interaction types.

All in all, while approaches assessing the local stability of random interaction
networks have important heuristic value (Allesina and Tang, 2012; Allesina et al.,
2015), such randomly assembled networks lack key structural patterns found in
real communities (Jacquet et al., 2016). Furthermore, local stability analyses have
little concordance with non-equilibrium dynamics of real systems (Pimm, 1982;
Chen and Cohen, 2001), which limits their predictive ability. The equilibrium
assumption is further ingrained in most interaction models by assuming that
interactions occur with a constant strength coefficient. This assumption is widely
used for convenience despite repeated claims against its realism (Abrams, 1980,
2001; Hernández, 1998; Holland and Deangelis, 2009). Here we address all the
above-mentioned shortcomings and investigate whether the frequencies of the
five biotic interaction types affect persistence of species in communities with
varying species richness. We generate model networks informed by empirical
observations on distributions of species abundances across trophic levels, link
topology, and develop a measure of the impact that a species has over another
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based not on static interaction coefficients, but on species abundances and their
associated frequency of interaction. With this model design, and by performing a
comprehensive set of simulations, we ask the following questions: 1) Is species
persistence affected by the frequency of the different interaction types in model
communities? If so, does community richness mediate this relationship? 2) Which
types of biotic interactions are more likely to be lost, as species go locally extinct?
Lastly, given the unfeasibility of validating our predictions with empirical data,
we indirectly test the validity of our model by asking: 3) does our model generates
community-level patterns consistent with those of empirical networks?

3.2 Methods

We designed a dynamic network model accounting for the five possible types of
pairwise interactions (antagonism, amensalism, commensalism, competition, and
mutualism), whereby the impact of a species over another is characterized by the
abundances of the species involved. Accounting for different interaction types
meant that a trophic level distribution of species had to be specified a priori, as
we expected different interaction types to be distributed unevenly across trophic
levels. Furthermore, the modeling of pairwise interactions in our model is closely
linked to the abundances of the interacting species, so we imposed non-random
initial abundance values. In particular, we assembled our model communities
with three assumptions:

1) The initial Species Abundance Distribution of the overall community follows
a hollow curve.

2) The initial abundances of the different trophic levels vary with a power-law
scaling.

3) The distribution of interaction types within and across trophic levels is
non-random.

In the following sections, we describe these assumptions and the methodology
for incorporating them in the community assembly process. Then, we specify
the implementation of the dynamic interactions model and the simulations per-
formed. The main response variable obtained from our simulations is the ratio
of persistent species in our model networks. Thus, in the context of the present
study, we define community persistence as the ratio between initial (denominator)
and final (numerator) number of species in a simulated community. Persistence
values can therefore range from 0 (all initial species have died out by the end
of the simulation) to 1 (all species show positive abundances at the end of the
simulation).

1) Abundance distribution of the overall community

Each species within a model community was assigned an initial abundance by
drawing random samples from a gambin distribution. The gambin is a distribution
with a single free parameter that provides a similar or better fit to empirical SADs
than classic choices such as the lognormal or the logseries (Matthews et al., 2014).
A value of α = 2 was given to generate the initial SADs.
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2) Abundance scaling across trophic levels

Species were distributed among four trophic levels (a basal one consisting on
primary producers and three consumer levels), which is a number commonly
found in empirical communities (Ulanowicz et al., 2014). Assignment of species
into each trophic level was made following the findings of Hatton et al. (2015),
who showed that for herbivore-predator trophic guilds, biomass distribution
follows a power law with exponent 0.75. These authors generalized the scaling
rule to the abundance of species at each trophic level since, for most predator-prey
couplings, weak relationships between body mass and community biomass were
found. As a starting working hypothesis for the simulations, we extended Hatton’s
et al (2015) scaling rule to the four trophic levels considered.

3) Distribution of interaction types within communities

The different types of biotic interactions are unlikely to be uniformly distributed
in nature. Yet little is known regarding the varying proportion of interaction
types within communities or trophic levels (Dodds, 1997), let alone about changes
in such proportions across communities, or the effects of varying proportions of
interaction types on mechanisms of community assembly.

A first step towards examining the frequency distribution of the different
interaction types in a community with several discrete trophic levels is to consider
the sign matrix of the community, S, assuming that interaction signs are kept
constant within the spatial and temporal limits of the study, and with varying
abundances. We hypothesize that the relative frequency of each interaction
type in S will be influenced by the number of species in the different trophic
levels, as different interaction types will have different probabilities of occurring
among species belonging to the same or different trophic levels. In order to
check this working hypothesis, we undertook an extensive survey of literature on
biotic interactions and compiled the extent to which the five general interaction
types (amensalism, antagonism, commensalism, competition, mutualism) are
documented to occur between species of the same, adjacent, or non-adjacent
trophic levels. Specifically, we performed a search in the Web of Science for studies
published from 1991 to 2015, including the terms “ecology” AND “interaction”
AND “interaction type” (see also Morales-Castilla et al. 2015). We reviewed
studies documenting direct pairwise interactions and annotated the trophic level
of the species involved. For competition, antagonism (predation OR herbivory),
and mutualism, we included ca. 100 papers. For commensalism and amensalism
the list of suitable studies was more reduced (67 studies on commensalism and
only 12 on amensalism). We constrained the results by discarding interactions
involving microorganisms, fungi, parasites or parasitoids, owing to the overall
difficulty of classifying these groups into clear cut trophic levels. The list of
selected studies is available as online supplementary material in the published
article, see section Chapter references for the full reference. The resulting relative
frequencies (Fig. 3.1) were incorporated as a last constraint in the model in the
form of probabilities of pairwise interactions taking place within a single trophic
level, adjacent, or other trophic levels.
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For estimating the number of links of each species, we followed the constant
connectance hypothesis (Martinez, 1992). Thus, we assumed no variation in con-
nectance levels with initial community size, imposing C = 0.5 for every simulation,
where connectance is defined as the ratio between realized and potential interac-
tions in the network. This value was chosen so that specific connectances of the
different interaction types (see Appendix 3.4) ranged between 0.07 and 0.2, values
consistent with empirical estimates of mutualistic and antagonistic connectance
(Thébault and Fontaine, 2010).

With the probabilities of interaction occurrence across trophic levels (Fig.
3.1) and connectance values of the network, we constructed the sign matrices
of our model communities stochastically: for each link, first its interaction type
is selected; second, the trophic levels affected by that interaction are chosen
according to the probabilities of interaction occurrence; and third, the specific
species are randomly chosen. This process ensures that, on average, sign matrices
will reflect the probabilities of Fig. 3.1, while allowing for an intrinsic component
of variability in each particular matrix. The full community assembly process is
explained in detail in Appendix 3.1.

Figure 3.1: relative frequency of trophic levels involved in pairwise interactions for each in-
teraction type. When the trophic level of the interacting species was not explicitly alluded to,
we assumed that 1) species of the same taxonomic group belong to the same trophic level (e.g.
isopods), 2) omnivory represents feeding on both “adjacent” and “other” trophic levels, 3) pol-
linators and seed dispersers are “adjacent” to plants. Namensalism = 12, Nantagonism = 135 (123 of
adjacent trophic levels, 10 of other, 2 of same), Ncommensalism = 65 (44 of same trophic level, 20 of
adjacent, 1 of other), Ncompetition = 97 (95 of same trophic level, 2 of adjacent), Nmutualism = 113
(94 of adjacent trophic levels, 11 of same, 9 of other).
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A framework for modeling dynamic interactions

The realization and outcome of direct pairwise interactions is dependent on three
classes of mechanisms (Poisot et al., 2015): First, the frequency of stochastic
encounters of individuals mediated by their relative abundances. Second, the
matching of traits between individuals that establish contact. Third, other factors
such as environmental constraints or the influence of higher order interactions
with other species. Hence, empirical measurements of interactions show a high
degree of variability explained, partly, by density-dependent mechanisms (Aizen
et al., 2014), by trait matching (Santamarı́a and Rodrı́guez-Gironés, 2007) or by
environmental factors (Mazı́a et al., 2016; Poisot et al., 2017). This inherent vari-
ability on both the sign and the strength of interactions has hardly been explored
in community dynamic models, even if the assumption of static interaction sign
and strength is known to be unrealistic (Abrams, 1980, 2001; Hernández, 1998;
Holland and Deangelis, 2009). The importance of each mechanism in explaining
observed patterns of interaction strengths is currently under debate. In plant-
pollinator networks, for example, the net impact of a species over another is
significantly related to the frequency of interaction (Vázquez et al., 2005, 2012),
and to the abundances of the interacting species (Vázquez et al., 2007), but not in
all cases. A neutral model of interactions can also reproduce structural patterns
observed in empirical food webs (Canard et al., 2012). On the other hand, trait-
matching has been shown to accurately reproduce network structure in different
types of networks (Eklöf et al., 2013), and also outperforms neutral interaction
frequency for predicting network structure in some empirical networks (Vizentin-
Bugoni et al., 2014; Sazatornil et al., 2016). However, another recent study showed
that while abundances and traits can predict network structural patterns, they
were not generally able to predict the realization of specific interactions in a
plant-pollinator network (Olito and Fox, 2014). Finally, higher-order influences
on interaction occurrence and strength, in particular environmental forcing, are a
main focus of Stress Gradient Theory (Maestre et al., 2009) and Environmental
Stress Models (Menge and Sutherland, 1987), but an integration of these frame-
works with the recent advances on multi-trophic, multiple interactions networks
is still lacking.

We modeled the impact of a species over another by considering the first of
these three mechanisms, i.e. the stochastic encounters between individuals of
two populations driven by their abundances. This process is the only one that
can be generalized to any interaction and community type without considering
further, specific assumptions about trait distributions or the role of environmental
covariates. Thus, in our modeling framework, the impact of a species over another
is only dependent on the frequency of interaction between the two species, which
in turn depends on their net abundances. As our approach is fundamentally
different to that of models with static interaction strength coefficients, we refer to
the interaction strength in our model as species impact (a population-level effect,
Vázquez et al. 2012).

In formulating species impact, we followed Poisot et al. (2015) and considered
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it a product of interaction frequency by an interaction strength term:

Ii,j = IFi,j ∗ ISi,j (3.1)

The IF function derives the net frequency of interactions between two popula-
tions in a given time interval from their local abundances. We assume that (1) the
maximum potential interaction frequency will equal the population density of
the least abundant species, and (2) interaction frequency saturates asymptotically,
as one or both abundances increase. It takes the form:

IFi,j =min(Ni ,Nj)
1

1 + e−a(max(Ni ,Nj )−x0)
(3.2)

The a parameter adjusts the saturating behavior of the function (i.e. its steep-
ness), so that a higher value of a implies that the IF function saturates at lower
abundances of both populations, i.e. interactions are comparatively more common.
Parameter x0 indicates the abscissa of the midpoint for the logistic part of the
function, and was kept for reference.

The IS function (for interaction strength) models the sign and strength of
per capita interactions of species j over species i. This function was defined just
as the sign of the pairwise interaction times a scaling factor for differentiating
interaction types. For example, a scaling of 1 indicates that the maximum effect
of species j over species i is of the same order of magnitude as the population
growth rate. Therefore, we defined the IS function simply as:

ISi,j = si,j ∗ kt (3.3)

where si,j is the sign of the effect of species j over species i, and kt is the scaling
factor for an interaction of type t.

We incorporated Eq. 3.1 to a population dynamics model based on the recent
extensions to the logistic growth equation by Garcı́a-Algarra et al. (2014). Their
formulation averts a known divergent behavior of the r-k classic form of the
logistic equation and is sufficiently simple while being able to reproduce the
complexity of more elaborate models in terms of fixed points and stabillity of the
dynamics. Consider a community of n species. The model has the form:

dNi
dt

= riNi (3.4)

whereby all extrinsic effects – environmental, biotic interactions – fall on the
intrinsic growth rate ri . This allows the comparison between the strength of
different interactions, i.e. it is an example of an equal footing network (Garcı́a-
Callejas et al., 2018b). The effective growth rate is modeled as:

ri = r0
i +

n∑
j=1,j,i

Ii,j − (αi + ci
n∑

j=1,j,i

Ii,j)Ni (3.5)
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where r0
i is the intrinsic growth rate, αi is the friction term that regulates the

asymptotic behavior of the function, ci is a proportionality constant, and Ii,j is the
impact function from Eq. 3.1.

Simulations

We generated theoretical communities with 20,40, and 60 initial numbers of
species that corresponded to overall abundances of around 2395, 4640 and 6850
individuals, respectively. For each richness level, we defined six types of com-
munities according to the frequency with which the different interaction types
occurred: equal ratio type with relative frequency of 0.2 for every interaction type;
and five types in which each of the interaction types was the most prevalent (with
frequencies of 0.4 for the prevalent type and 0.15 for the others). We projected the
dynamics of 1000 replicates for each of these combination of factors, ending up
with 3 ∗ 6 ∗ 1000 = 18000 simulated communities. For each replicate, aside from
the inherent stochasticity of the assembly process, we drew the intrinsic growth
rates and saturation terms of each species (r0

i and αi from eq. 3.5) randomly
from an interval of potential values (Table A.3.1.4), ensuring that primary pro-
ducers have intrinsic growth rates r0

i > 0 and consumers r0
i < 0. Introducing these

stochastic components on the assembly process and parameterization enabled
us to test the robustness of the model to small variations in its initial conditions.
The full parameterization of the model, alongside with further details about its
implementation and numerical solving, is given in Appendix 3.1. Preliminary
tests showed that most simulated communities reached a stable abundance dis-
tribution after 2500 or less time steps but, conservatively, we ran our dynamic
model for 5000 time steps. In order to be more confident on the time steps chosen,
we also tested whether there were significant differences between the resulting
persistence patterns after 5000 and 10000 time steps. As no significant differences
were found, we considered 5000 time steps to be an appropriate time frame for
our simulations.

We also performed additional simulations in order to test the influence of the
imposed structural constraints in our results. In these simulations we relaxed, one
by one, the three constraints of the community assembly process (see Appendix
3.3 for more details).

3.3 Results

Is species persistence influenced by the frequency of the
different interaction types? If so, does community richness
mediate this relationship?

Model communities with a higher proportion of positive interactions (mutualism
and, to a lesser extent, commensalism) tended to have higher species persis-
tence than any other community type (Fig. 3.2, results of statistical tests in
Table A.3.2.1 and Table A.3.2.2). The effect of positive interactions on persistence
was strongest for species-poor communities, and decreased consistently as the
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numbers of species in the communities increased. Although average species per-
sistence converged to around 88% as richness increased, there was significant
variation between the persistence of species belonging to the different trophic
levels (Fig. A.3.2.1): in communities with low initial richness, the second and
third trophic levels saw more extinctions than the first, while species on the fourth
trophic level did not show a uniform behavior, and were more dependent on
variations in the relative frequency of interaction types. This general pattern was
reversed in more speciose communities, in which species of all higher trophic
levels showed more persistence than the basal ones, for all community types.

Supplementary simulations (Appendix 3.3) showed that persistence values are
further influenced by the community structural patterns imposed. The removal
of both the abundance scaling across trophic levels and the distribution of inter-
action types across trophic levels had a significant negative effect on persistence.
Sampling species abundances from a uniform SAD instead of a skewed one, on
the other hand, increased overall persistence.

Figure 3.2: Persistence values of the simulated communities at the end of the simulations. Vertical
axis represents the relative frequency of a given persistence value in the pool of replicates (1000
replicates for every combination of initial richness and initial frequency of interaction types).
All resulting pairs of persistence distributions but one are significantly different according to
Kruskal-Wallis rank tests (Table A.3.2.1) and post-hoc Dunn’s tests (Table A.3.2.2).

Which types of biotic interactions are more likely to be lost, as
species go extinct?

In our model, local extinctions have structural consequences for the remaining
network: when a species goes extinct, its interactions disappear as well and are
not replaced. The initial and final frequencies of the different interaction types
were significantly different in most cases (Fig. 3.3, results of statistical tests in Ta-
ble A.3.2.3). Amensalism and competition tended to decrease in relative frequency
with respect to initial levels, while mutualism tended to increase. Antagonism and
commensalism responded differently for varying levels of community richness.
Antagonistic interactions decreased in frequency only in communities with 20
initial species, while in communities with 60 species, they increased; the opposite
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was observed for commensalism, which increased in species-poor communities
but decreased with high species richness.

Figure 3.3: Initial and final frequency of each interaction type in each community parameterization
(rows: richness levels, columns: interaction frequencies levels). Each dot represents a single
simulation, color code is the same as Fig. 3.2. Upper left symbols in each panel represent the
significance of the difference in initial and final ratios according to Wilcoxon signed rank paired
tests, in black for the whole set of simulations, and colored for the simulations with high ratio of
the respective type (n.s.: p-value ¿ 0.05, *: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001.
See Table A.3.2.3 for details.

Does our model reflect structural patterns observed in empirical
networks?

Focusing on the structural features listed by Jacquet et al. (2016), we checked
three features observed in empirical networks: the distribution of interaction
strengths (species impacts in our scheme), their variation in magnitude with
trophic level, and the correlation of antagonistic pairwise interaction impacts.
The distribution of species impacts in our model communities (Ii,j in Eq. 3.1) was
positively skewed in all cases, with communities with high proportion of negative
interactions being the most skewed (Fig. 3.4, Table A.3.2.4). The magnitude
of species impact decreased consistently with increasing trophic level (Fig. 3.4,
Table A.3.2.5 and Table A.3.2.6). Lastly, there was a significant negative correlation
in the values of pairwise species impact for antagonistic interactions (Fig. 3.4,
Wilcoxon signed-rank tests, V = 0, p < 0.001 in all cases).
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Figure 3.4: Structural patterns observed in our model, at the initial and final steps of the simu-
lations. Data shown corresponds to simulations with an initial richness of 60 species and equal
probability of occurrence for every interaction type. a) Skewed distribution of species impacts.
b) Decrease in average impact per trophic level (error bars represent an interval of one standard
deviation centered in the mean). c) Correlation of species impact among pairs of species. In this
panel, the only interactions accounted for are antagonistic ones.

3.4 Discussion

Our simulations indicate, primarily, that positive interactions are key for maintain-
ing species persistence, particularly in species-poor communities. For understand-
ing the outcomes of our model and in order to place them in a general context,
we first evaluate the role and implications of modeling interaction impacts based
on species abundances and interaction frequencies. Secondly we analyze the
combined influence of other community-level factors.

Species persistence and pairwise direct interactions

All other things being equal, the number of interactions every species has with
other species (i.e., their degree) is expected to increase with increasing number
of species in the community. This is exactly what we recorded in our model
communities: by keeping network connectance constant, we obtained average
degrees of 9.5 for communities of 20 species, and degrees of 19.5 and 29.5 for
communities of 40 and 60 species, respectively (values not far from the empirical
estimates obtained by Kéfi et al. (2015), who reported an overall connectance of
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0.47 for a community of 104 species, and thus a mean overall degree of 24.2).
Given such a scenario, in species-poor communities the dynamics of a species will
directly depend on only a handful of pairwise interactions. In such cases, a single
interaction with high impact will have a disproportionate direct effect on species
dynamics and, by extension, the prevalence of negative or positive interaction
types will be an important driver of persistence at the community level.

The direct impact of interactions in communities is not only dependent on their
numbers, but also on the abundances of the interacting species. Considering a
skewed SAD (Species Abundance Distribution) of the overall community, as in our
main simulations, the percentage of rare species (e.g. these with < 10 individuals)
increases and then stabilizes with increasing richness, while the percentage of
very abundant species (e.g. with ¿ 100 individuals) decreases (Table A.3.2.7). In
species-poor communities, thus, a higher proportion of interactions will involve
very abundant species, increasing the probability of comparatively strong direct
impacts on species dynamics. As richness increases, more interactions will take
place between comparatively rare species. The average impact per interaction will
decrease accordingly (Fig. A.3.2.2), with the effect that average persistence will
increase regardless of the distribution of interaction types.

An important consequence of the differential effect of interaction types on
species persistence is that species engaging in a high number of direct positive
interactions will tend to persist and maintain their interactions, whereas species
with a high number of direct negative interactions will tend to go extinct more
frequently and, thus, their associated interactions will be lost, increasing the over-
all ratio of positive interactions (Fig. 3.3). This reasoning is, however, contingent
on the modeling assumption that there is no interaction rewiring. Keeping in
mind this strong assumption, if these results hold, natural assemblages should
be filtered to maintain a relatively high ratio of direct positive interactions, in
particular in species-poor communities, and species with a high degree of nega-
tive interactions will be rare and, in any case, have otherwise strong life-history
traits that allow them to persist. Note that, throughout the study, we limit our
discussion to the role of direct interactions. The importance of indirect or net
effects for understanding community patterns is well established (e.g. Montoya
et al. 2009), and the mechanisms proposed here for linking species interactions,
abundance and persistence, would be improved by accounting for the role of
these higher-order effects. However, in model networks, net effects are commonly
analyzed by calculating the negative of the inverse Jacobian matrix (Novak et al.,
2016). The formulation of our model, without static interaction coefficients and,
potentially without attaining static equilibria, limits the applicability of analyses
based on Jacobian matrices. Therefore, we opted not for calculating net effects
and leave their analyses in our framework for future studies.

By explicitly modeling species impacts based on species abundances and in-
teraction frequencies, our interpretation of species persistence and community
dynamics differs fundamentally from that of other theoretical models of multiple
interactions (e.g. Mougi and Kondoh 2012). Furthermore, our response factor,
species persistence, also differs from the common local stability analyses per-
formed in the majority of theoretical network studies. Despite these fundamental
differences, some common trends seem to surface. Much like our finding that the

63



3. Persistence and biotic interactions

frequency of interaction types is less important in speciose communities, in the
study by Mougi and Kondoh (2012) increasing richness allowed for high local
stability regardless of the proportion of positive to negative interactions (but see
Suweis et al. 2014). With a completely different methodology, built on individual-
based models, Lurgi et al. (2016) further found that increasing the proportion
of mutualistic links increased overall stability in their model. Yet another, more
general interaction model showed that positive interactions tend to become domi-
nant in interaction networks as a consequence of spontaneous self-organization
(Jain and Krishna, 2001). Overall, these independent lines of evidence point to
the combined importance of positive interactions and community size on stability
patterns in a broad sense.

The relationship between species richness, abundances and interaction types
may shed light on other general questions in community ecology, aside from the
comparison with previous theoretical models.

First, in line with empirical findings from plant communities in stressful en-
vironments (Soliveres and Maestre, 2014; Cavieres and Badano, 2009), we have
shown that a high ratio of positive to negative interactions significantly increases
species persistence, particularly in communities with low initial richness. By
the explicit consideration of four discrete trophic levels, we show that a prepon-
derance of positive interactions is particularly important for the persistence of
intermediate consumers (Fig. A.3.2.1), upper panels). These species are preyed
upon by top predators and also subject to competition (both direct as modeled
and indirect as a result of resource consumption) and amensalism. Hence, they
are potentially the most benefited from engaging in mutualisms with species from
adjacent trophic levels. As mutualistic interactions are most prevalent across
adjacent trophic levels (Fig. 3.1), intermediate species will be the ones showing a
highest degree of these positive interactions. Note that we did not model compe-
tition for resources at the basal trophic level, and all our communities included
a fourth trophic level of top predators. Thus, these latter species, not subject to
predation (aside from a very small probability of intraguild predation, Fig. 3.1),
are likely to have a strong top-down influence on the persistence of intermediate
species.

Second, our findings contribute to reframing the debate on whether pairwise
interactions are stronger in richer communities. On the one hand, the hypothesis
of a gradient on pairwise interaction strength with latitude has been generally
supported on empirical grounds (Schemske et al. 2009, but see Moles and Ollerton
2016), but it is unclear whether or how this pattern is affected by the richness of
the analyzed communities. On the other hand, we have shown that if interaction
impacts are neutral (i.e. driven solely by species abundances), then species impact
will generally decrease with increasing richness. This theoretical result has been
partially supported in a recent study that found that, on islands whose size granted
a certain environmental stability, the strength of competitive and antagonistic
interactions decreased with island size and richness (Schoener et al., 2016). Clearly,
an array of factors can cause deviations from neutrality in interaction strengths
(IS function in eq. 3.1), and hence the neutral interactions hypothesis should be
viewed as a baseline for estimating species impacts when no other information is
available. Such neutral estimations have already been applied for plant-pollinator
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networks (Vázquez et al., 2012) or in sampling campaigns of multiple interactions
networks (Pocock et al., 2012).

Emerging community structure further enhances persistence

Components of community structure, such as species diversity or different network-
level metrics, have been regarded as key factors in previous modeling studies
(Sauve et al., 2014, 2016), where accounting for empirically informed values gen-
erally enhances stability metrics. Such theoretical results are, however, difficult to
validate, since empirical data on communities with varying structural patterns is
extremely scarce. As an alternative for testing the adequacy of our model, we ana-
lyzed whether our model communities displayed properties comparable to those
found in empirical networks. Recently, Jacquet et al. (2016) showed that empirical
food webs possess three structural characteristics that clearly differentiate them
from random counterparts: first, they display the classic skewed distribution of
interaction strengths, whereby there are very few strong interactions and a major-
ity of weak ones (McCann et al., 1998). Secondly, empirical food webs show strong
pairwise correlations in interaction strengths, in line with theoretical findings
(Tang et al., 2014). Thirdly, interaction strengths are not evenly distributed across
trophic levels; rather, average interaction strength tends to decrease with trophic
level. In our model, the skewed distribution of species impacts and their “pyra-
midal” arrangement are observed and maintained throughout the community
dynamics (Fig. 3.4, panels A and B). On the other hand, the pairwise correla-
tions generated in our model communities (Fig. 3.4, panel C) are significantly
different from zero but smaller than those reported by Tang et al. (2014). Such
disparity may be due to the lack of trait-matching mechanisms in our model, as
trait-matching may give rise to increasingly specialized and correlated pairwise
interactions (Santamarı́a and Rodrı́guez-Gironés, 2007).

The three patterns outlined by Jacquet et al. (2016), i.e. skewed distribution
of impacts, pairwise correlations in interaction strength, and decrease of species
impacts with increasing trophic level, are already present at the beginning of
the simulations (Fig. 3.4), so they arise from the structural constraints of our
community assembly process. It is therefore informative to analyze the dynamics
of the model without these constraints, namely 1) a skewed Species Abundance
Distribution of the overall community, 2) a sublinear scaling of overall abundances
with increasing trophic level, and 3) a non-random distribution of links across
trophic levels, for each interaction type (Fig. 3.1).

Relaxing these constraints does not modify the main qualitative patterns of
our results, i.e. positive interactions and, to a lesser extent, increasing richness,
have a positive effect on persistence (Fig. A.3.3.1), but quantitative outcomes vary.
The effect of removing the second and third constraints on species persistence
is negative, while removing the first constraint has a generally positive effect
on persistence. This effect is particularly strong for upper trophic levels, where
average persistence varies widely depending on the assembly constraints imposed
(Fig. A.3.3.2). These results invite the interpretation that community structure,
both in terms of the topology of the different interaction types and the distribution
of species abundances across trophic levels, is a key factor for maintaining high
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levels of persistence. Despite their recorded importance, understanding of these
factors in empirical communities is still limited. Further empirical work is needed
to evaluate the generality of the abundance scaling law (Hatton et al., 2015) for
multiple trophic levels and community types, and, importantly, to understand
its underlying mechanisms. Regarding the distribution of interaction types, our
approach was to assign probabilities of occurrence based in empirical observa-
tions. This methodology is biased towards the most studied interaction types
(antagonism, competition and mutualism), and towards easily observed organisms
and interactions, thereby failing to account for functionally important yet rarely
considered organisms, such as microorganisms, parasites or parasitoids. It has
been shown, for example, that accounting for parasites when analyzing food webs
significantly modifies network structural patterns (Lafferty et al., 2006), so the
interaction probabilities obtained here should be taken as broad estimates. De-
spite these shortcomings, evidence is increasing theoretically and empirically that
link topology is key not only for consumer-resource, but for all interaction types
(Pocock et al., 2012; Evans et al., 2013; Kéfi et al., 2015, 2016; Sauve et al., 2016).
Due to the difficulty in obtaining reliable estimates of multiple interactions at
once in empirical communities (Garcı́a-Callejas et al., 2018b), we currently do not
know whether the distribution and topology of interaction types is homogeneous
across communities or how it is influenced by habitat type or environmental
factors.

The significant variation in persistence ratios with structural patterns shown
here suggests that theoretical studies relying on idealized communities (e.g. to-
tally mixed interactions and/or random distributions of biomass across trophic
guilds) are likely to miss key mechanisms for maintaining species persistence.
Rather, future studies on multiple interactions networks should take into account
the variability of community-level factors present in natural assemblages, like in-
teraction frequencies and distribution, or abundance scalings across trophic levels.
Our model is a first step in that direction, but it is important to note that the in-
sights obtained are, of course, contingent on the assumptions made. In particular,
important features of the model are the constant connectance hypothesis and the
implementation of dynamic interaction impacts. Furthermore, we assumed that
the degree of a species is independent of its relative abundance in the community.
While none of these assumptions hold completely true in nature, they represent
convenient starting hypotheses for modeling complex ecological communities,
because ecological interpretations can be drawn when empirical systems deviate
from these assumptions (Banašek-Richter et al., 2009). Further investigation on
the differential functional form of the different interaction types, e.g. as outlined
for mutualism by Holland et al. (2002), and on interaction rewiring (Valdovinos
et al., 2010; Mougi, 2016b), will also help refine the conclusions obtained here.
Aside from these potential developments, our results can be used to establish
baseline predictions on the dynamics of natural communities across gradients of
richness or other factors. In that regard, the sensitivity of species-poor commu-
nities to interaction diversity is of particular interest: as these communities are
particularly endangered by anthropogenic drivers of ecosystem change (Cavieres
and Badano, 2009), it is paramount to evaluate this theoretical result and its
potential consequences for management and conservation schemes.
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3.5 Conclusions

To understand how the persistence of species is influenced by the complex net-
works of interactions in which they are inserted, it is important to develop models
that account for the diversity of interactions present in nature, and that incorpo-
rate realistic constraints to the structure of these networks. By developing one
of such models, we found that species’ local persistence is not explained by a
single axis of variation in network properties, but rather is contingent on the
interaction of several structural factors: the diversity and distribution of biotic
interactions, the size of the community, and the distribution of species abun-
dances across trophic levels. In particular, we found that a high prevalence of
positive interactions can lead to increased persistence of species in communities
with low richness, whereas speciose communities can sustain varying ratios of
interaction types without significant decreases in average persistence. Although
simulation studies are, by definition, affected by a number of simplifying assump-
tions, we found that our simulated networks have emerging features also present
in empirical networks, suggesting that our modeling framework captures part of
the mechanisms that maintain the richness and diversity of natural assemblages.
The insights from network models, such as ours, are one of the complementary
ways in which ecologists approach the understanding of local species persistence,
and should prove valuable in developing a robust predictive framework for its
variation across different types of gradients.
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Abstract

Species Abundance Distributions (SADs) are one of the strongest generalizations
in community ecology, but their variation across trophic levels remains largely
unexplored. I study the variation in SAD metrics across trophic guilds in model
and empirical communities. First, I use a theoretical model that allows tracking
the variations in abundances across trophic levels, accounting for variations in
species richness and network connectance. Second, I compare the empirical SADs
of 226 terrestrial plant communities and 497 mammal communities comprising
species grouped in three general trophic guilds (herbivores, omnivores, and carni-
vores). I analyze the differences in evenness and skewness of the empirical SADs
across the different trophic guilds, controlling for species richness, spatial and
temporal resolution of the sampling. In model communities, evenness is highest
for herbivores, and decreases in omnivore and carnivore guilds. The richness and
connectance of the community network are also negatively correlated with guild
evenness. In empirical datasets, plant communities are significantly less even
and more skewed than mammal ones. There are no significant differences in SAD
metrics between the different mammal guilds, but carnivores are comparatively
rare (i.e. have a higher proportion of species than individuals), whereas omnivores
are comparatively more common. Species richness has a positive effect on both
evenness and skewness, and spatial and temporal extent have negative effects on
evenness and do not affect skewness. I argue that the difference between plant
and mammal guilds can be related to higher niche availability in animals than
in plants, that decreases the importance of competitive exclusion in mammal
guilds. As no systematic differences were found between the SADs of mammal
herbivores, omnivores, and carnivores, this may indicate similar niche availability,
when averaged across habitat types, for the different animal trophic guilds.

4.1 Introduction

Most species, in any ecological community, are comparatively rare, and only a
few of them are very abundant. This empirical observation is one of the few true
universal laws in ecology, a pattern that is observed in all kinds of communities
and guilds, from small arthropods (Basset and Kitching, 1991) to tropical trees
(He et al., 1997). The Species Abundance Distribution (SAD) describes precisely
this variation in species abundances within a given assemblage.

The information contained in SADs, aside from its theoretical interest in un-
derstanding community dynamics (Hillebrand et al., 2008), can be of interest for
conservation and management (Matthews and Whittaker, 2015) or for estimating
ecosystem functions such as primary productivity (Wilsey and Potvin, 2000). It is
therefore important to understand which are the main axes of variability in SAD
shape across guilds, and what are the ecological processes underlying this variabil-
ity. So far, important efforts have been devoted to understand variation in species
abundances across enviromental gradients (Ulrich et al., 2016; Passy, 2016), levels
of disturbance (Komonen and Elo, 2017), spatiotemporal scales (Borda-de-Água
et al., 2012), or multiple factors combined (Arellano et al., 2017). Intrinsic dif-
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ferences in species-level traits among the species that make up the community
will also be reflected in the SAD. For example, core and satellite species of an
ecosystem are likely to differ in their intrinsic abundances regardless of other
factors (Magurran and Henderson, 2003), and the degree of trophic or habitat
specialization of different species may also be related to their relative abundances
(Labra et al., 2005; Matthews and Whittaker, 2015).

Despite these many advances, in the debates on the mechanisms that shape
SADs, virtually all theories and hypothesis that relate SAD shape to ecological
processes at the local scale refer to horizontal communities, i.e. communities of
a single trophic level. Thus, these theories emphasize the role of either neutral
dispersal and drift (Hubbell, 2001) or horizontal selection (Vellend, 2016). But
natural communities form a complex network of species linked by different types
of biotic interactions both horizontally (within a given trophic guild) and vertically
(across trophic guilds, Fig. 4.1). The influence of the interaction topology on the
abundance patterns of the different guilds of a community has, to my knowledge,
never been explored systematically.

Figure 4.1: A schematic ecological community with three disjoint trophic guilds. The areas within
the ellipses represent the domain of horizontal community ecology that is the subject of most SAD
studies, focusing on intra-guild interactions (dashed grey lines) and assuming that interactions
with other guilds (full grey lines) are negligible. In this study, I focus on how interactions across
guilds drive variations in SAD metrics.

In complex, multitrophic ecological communities, trophic guilds (sensu Fauth
et al. 1996) differ in fundamental properties that can potentially be reflected in
their associated abundace distributions. First, several studies have demonstrated
that basic descriptors, such as biomass or species richness, vary predictably with
trophic level. For example, richness pyramids have been shown to be widespread
in empirical food webs from different ecosystem and taxonomic types, particularly
in marine habitats (Turney and Buddle, 2016). Another distribution, that of
biomass across trophic guilds, also has a long history in ecology, starting with the
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seminal studies by Lindeman (1942) or Odum (1957). Focusing on the relationship
between two adjacent trophic levels, Hatton et al. (2015) showed that the biomass
of empirical guilds of herbivores and their associated predators scales generally
with a power-law of exponent 3/4. They also showed that, in their data, the
relationship between mean body mass and community biomass is non-significant
for most of the functional groups they studied. As such, if body mass varies in a
similar fashion in different trophic levels, the scaling in biomass should also be
reflected in a scaling on number of individuals at each trophic level, as foretold
by Ramón Margalef (1980).

Other patterns associated to the distribution of abundances, such as species
rarity or the degree of dominance, can potentially vary across different trophic
guilds, but empirical evidence is scarce. In a study of macroinvertebrate commu-
nities, predators showed a higher proportion of species than of individuals in the
overall community (Spencer, 2000), pointing to a higher rarity in predator species.
Furthermore, Spencer (2000) showed that predator and non-predator species did
not vary significantly in the ratios of dominance of the most abundant species.
More recently, Dornelas et al. (2011) showed that relative dominance decreased
consistently with increasing richness in communities of freshwater fish.

Overall, these lines of evidence suggest a complex, combined influence of
the richness and trophic position of a guild on its abundance patterns. In a first
approximation, the number of different resources available to a given trophic
guild and the partition of these resources among its constituent species (Tokeshi,
1990; Sugihara et al., 2003) will ultimately drive the guild’s SAD. As the trophic
interactions among guilds are encoded in the topological structure of the commu-
nity food web, this structure is likely to play a role in modulating SAD variability
across guilds.

Analyzing abundance distributions in communities comprising several trophic
guilds is complicated further by a number of factors. For example, movement
capacity generally increases with trophic position (McCann et al., 2005), and
in turn, it significantly influences SADs and their variation with sampled area
(Borda-de-Água et al., 2017). Therefore, different trophic guilds in the same
community will likely require varying sampling areas in order to obtain their
abundance patterns in a consistent fashion (see also Holt et al. 1999). Another
issue that needs to be considered when comparing trophic guilds of different
communities is precisely how to divide species among guilds in a general way.
Broad categories such as herbivores/omnivores/carnivores provide groupings
applicable to communities of different ecosystem types, but are likely to be too
general, lumping together species with very different ecologies. On the other
hand, clearly defined guilds for a given community type (e.g. sap-feeding insects
in salt marsh grasses) will be too specific to allow comparisons with guilds from
other ecosystem types. Therefore, a robust analysis of the role of trophic guild
in SAD metrics needs to control for (1) the variations in richness across guilds,
(2) the spatial and temporal extent of the data collection, and (3) the process of
defining trophic guilds in a general and informative way.

Here I approach the general question of whether SAD metrics vary predictably
across trophic guilds, in two complementary ways. First, I combine a model of
food web structure with niche apportionment schemes for studying how SADs of
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different trophic guilds vary in model communities with varying network struc-
tures. Second, I analyze SAD patterns of two well-resolved datasets on community
abundances of plants (Phillips and Miller, 2002) and mammals (Thibault et al.,
2011). I compare SAD patterns of plant communities and three mammal trophic
guilds, controlling for guild richness, spatial and temporal extent of the data
collection.

4.2 Methods

The relationship between SAD properties and trophic guild: A
theoretical model

Analyses of species abundance distributions are based, on their first stage, on
the grouping of species that are supposed to share certain properties of interest,
such as taxonomic relatedness, spatial location or resource use (Fauth et al., 1996).
As a starting point, I focus on the role of the different trophic guilds in a local
multi-trophic community. Intuitively, the variability in number of individuals
between species of a given trophic guild will depend on inter-specific variation in
both species-level traits and resource use. Assuming, as a working hypothesis, that
the main difference between species within a guild is in their competitive ability
to acquire resources, it can be hypothesized that the degree of resource overlap
between the species will play an important role in determining their variations in
abundance (Sugihara et al., 2003).

This intuitive, qualitative hypothesis can be more precisely formulated by com-
bining models of network structure and resource partitioning schemes. Consider
a single herbivore that is preyed upon by a number of predators. All else being
equal, the partition of the prey resource will be driven by the competitive ability
of these predators, and will be reflected in their own abundances (an energetic
view of abundance, Isaac et al. 2013). When an arbitrary number of resources
can be exploted by the species of the trophic guild, the specialization level of the
species will influence the degree of exploitative competition between the guild’s
species, and indirectly its distribution of abundances. In network terminology, the
level of specialization of a species is given by its degree, the number of interactions
in which it engages, and indirectly, by the connectance of the network, the ratio of
realized to potential interactions in it.

For testing the expectation that abundance distributions will vary with the
level of specialization of the trophic guilds, and thus with network connectance,
I generated food webs with varying connectance and richness values. Then,
I grouped their constituent species in trophic guilds, calculated the expected
abundances of each species according to a resource apportionment model, and
compared the resulting distribution of abundances of the different guilds. There
is a long tradition of resource partitioning models along a single axis, and here I
implemented the Random Fraction model, which has been shown to fit empirical
datasets reasonably well (Tokeshi, 1990). In this scheme, the resource is divided
sequentially into fractions, until each consumer is given a fraction of the available
resource. At each step, the fraction that is divided is randomly chosen, so that ei-
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ther the biggest fraction could be divided, leading to more equitable distributions,
or the smallest fraction, leading to a bigger share for a single species. This scheme
generates dominance hierarchies intermediate between a purely dominance pre-
emption scheme, in which dominant species always gets the higher share of the
resource, and a dominance decay scheme, in which resources are distributed most
equitably (Tokeshi, 1990).

Food webs were generated using a modified version of the niche model (Williams
and Martinez, 2000). The original niche model takes a single niche axis in which
all species are placed to generate trophic links allowing for a certain degree of
intraguild predation (the original formulation is given in Williams and Martinez
2000, and its particularities with respect to other food web models are explored,
for example, in Dunne 2006). The network topologies generated with it are similar
in terms of goodness-of-fit to those from more complex models (Williams and
Martinez, 2008), so it remains an appropriate model for generating food web
structures in the absence of detailed information on trait structure (Gravel et al.,
2016a). One of its limitations, however, is the systematic underestimation of the
proportion of primary producers and herbivores compared to empirical food webs.
In this study, I imposed a minimum fraction of 0.2 of primary producers in the
generated food webs. Furthermore, I removed all directed cycles from the web, in
order to make the propagation of biomass across species feasible. For each cycle
(i.e. a series of nodes and links that eventually form a closed chain), I selected
one of its constituent links randomly and assigned the resource to be a basal
species. These two modifications to the original model are likely to modify some
emergent properties of the network structure, but the resulting connectance of
the generated food webs is maintained, and the proportion of primary producers
and herbivores is increased with respect to the original formulation. I grouped the
species in primary producers, herbivores (i.e. species whose only feeding sources
are primary producers), omnivores (species that feed in both primary producers
and other species), and carnivores (species that do not feed on primary producers).

In order to obtain the abundances of the species in the food web, the abun-
dances of the basal species need to be specified beforehand, as this model repre-
sents a static bottom-up approach. I generated basal abundances from a Weibull
distribution with scale = 4.7 and shape = (0.15,0.2), derived as the average best fit
from the 226 sites of the GENTRY dataset (see datasets section).

I considered three levels of species richness (50, 100, and 200 species), and
three levels of network connectance (0.1, 0.2, and 0.3). For each combination of
richness and connectance, I generated 1000 networks and quantified the evenness
and skewness of the SAD of the different trophic guilds (see next section).

I analyzed the variability of SAD metrics with connectance, species richness
and trophic guild by using regression models. In particular, I used linear mixed-
effect models (R package “lme4”, Bates et al. 2015) with richness, connectance,
and trophic guild as fixed effects, and replicate (e.g. the 1000 simulated networks
for each combination of richness and connectance) as a random effect. As I am not
interested in predictions from this model, but rather in the effect of the different
predictors, I did not perform model selection procedures.
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Metrics for quantifying Species Abundance Distributions

Methodologically, the comparison of SADs is still an unresolved problem in
community ecology: there is no standard method for comparing SAD shape of
guilds with arbitrary numbers of species or individuals, with most comparisons
being qualitative (McGill et al., 2007) or being made between relatively similar
communities that don’t differ much in richness or size (e.g. samples from polluted
and unpolluted habitats, Matthews and Whittaker 2015). In order to assess the
variability between SADs in a general way, robust metrics need to be developed
that are independent of number of species and individuals, i.e. that reflect solely
the variability in the shape of the distribution. In this study, I assess the variability
in SAD shape through two complementary metrics, that quantify the evenness
and the skewness of the distribution.

Evenness is defined after the “Hill number” of species diversity, also known
as the effective number of species (Jost, 2006). This diversity metric represents
how many equally-abundant species would give the observed mean proportional
species abundance (Tuomisto, 2012). The evenness metric derived from the
effective number of species has a series of desirable properties, summarized
in Smith and Wilson (1996). It is also conceptually similar to the variance of a
distribution, but the evenness metric has the advantage of having a clear ecological
meaning. The skewness metric is simply a robust version of the third moment of
a statistical distribution (Brys et al., 2004). Throughout this study, I apply these
metrics to the natural abundances of both the simulated and compiled data.

Empirical SAD patterns across trophic guilds

Datasets

I analysed two datasets that report species abundances at different sites along with
the spatial and temporal effort from each site. Gentry’s Forest Transect Dataset
(GENTRY, Phillips and Miller 2002) compiles observations from 226 sites of 0.1
ha in temperate and tropical forests across the globe. At each site, Gentry and
collaborators collected the abundance of all plant species with stem diameters at
breast height equal to or exceeding 2.5 cm. The second dataset is the Mammal
Community Database (MCDB, Thibault et al. 2011), which provides abundances
of 660 mammal species in 940 sites, alongside detailed information about the
sampling and context of the local community. Rank-abundance curves of one
GENTRY site and four MCDB sites are shown in Fig. 4.2.

Another global dataset on mammal foraging habits (Wilman et al., 2014)
was used to derive trophic guild categorizations for every species in the MCDB
dataset. I assigned each species to one among three general trophic guilds: (1)
herbivores (including folivores, granivores, frugivores, and nectarivores); (2)
omnivores, and (3) carnivores (feeding on invertebrates, vertebrates, fish, and
carrion). Herbivores and carnivores are species that have at least a 70% of their
diet from plant or animal origin, respectively, and species whose diet is < 70%
herbivore or carnivore are labelled omnivores. While more detailed trophic guild
distinctions are possible, the representativeness of the different categories varies
drastically (e.g. there are only 22 mainly frugi/nectarivore species versus 324
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foli/granivore ones). In a basic categorization such as the one presented here, the
three trophic guilds are well represented (374 herbivores, 145 omnivores, 179
carnivores).

Figure 4.2: Rank-abundance curves for five sites of the empirical datasets. The leftmost panel
shows a curve from a GENTRY site, the other four are sampling sites of the MCDB dataset.

Statistical analyses

I calculated the evenness and skewness metrics of each guild at sites in which
there are at least three species of that guild, in order to avoid potential biases
(for example, a guild of a single species is completely even, or a guild of two
species is never skewed). The variation of the SAD metrics with trophic guild
was analyzed via statistical models. Evenness values are bounded within the
interval [0,1], so a beta regression is an appropriate choice for modelling such
bounded data, given the flexibility of the beta distribution. I transformed the
evenness values in order to obtain data without proper zeroes and ones, i.e.
bounded in (0,1), following Smithson and Verkuilen (2006), and applied a beta
regression with trophic guild, species richness, temporal extent and spatial extent
as predictors. In particular, I used the R implementation of the GAMLSS family
of models (Rigby and Stasinopoulos, 2005), which allows probability density
functions to be specified by any number of parameters, themselves functions of
the independent variables. I modelled the evenness probability density function
with two parameters µ and σ , named the location and scale parameters. These
parameters are related to the parameterization of the beta distribution in terms of
two shape parameters α and β in the following way:
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µ =
α

α + β
(4.1)

σ =
1

α + β + 1
(4.2)

The mean and variance of the beta distribution in terms of µ and σ is:

ŷ = µ (4.3)

var = σ2 ∗µ ∗ (1−µ) (4.4)

For the final model, I selected the link functions of µ and σ , and the final set
of predictors, via AIC model selection.

Skewness presented a clearly bimodal distribution, with peaks at 0 and 1.
Due to the difficulty of modelling such continuous bimodal data, I opted for
categorizing the response into three levels of skewness: highly negative, low
skewness, and highly positive, represented by the intervals [-1,-0.5), [-0.5,0.5],
and (0.5,1]. This response was modelled via a multinomial regression with the
same set of predictors as the evenness metric, and AIC model selection was also
performed to obtain the final set of predictors.

For the MCDB dataset, it is common to observe species from two or more
trophic guilds at the same site (Fig. 4.2). It is therefore possible to calculate the
rarity of each guild as the difference between its proportion of individuals and its
proportion of species in the local communities (Spencer, 2000). Furthermore, to
complement this calculation, I obtained the relative dominance value of each guild
at each site, measured as the abundance of the most abundant species divided by
the summed abundances of its guild (Spencer, 2000; Dornelas et al., 2011).

4.3 Results

Theoretical model

Evenness and skewness metrics show contrasting responses to variations in trophic
guild, richness and connectance (Tables 4.1 and 4.2, see Fig. 4.3 for a subset of the
results). After a high increase in evenness from primary producers to herbivores,
the metric decreases on average with trophic guild. Likewise, richness displays a
negative relationship with evennes, whereas connectance shows a more complex
relationship, with minimum overall evenness observed at intermediate levels of
connectance (Table 4.1). Skewness, in turn, displays almost opposite trends: it
increases with increasing trophic position, richness, and connectance (Table 4.2).
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Figure 4.3: Evenness and skewness values for the trophic guilds of simulated networks. In this
figure, each dot represents one realization of a network with richness = 100 and connectance =
0.2. Note that the abundances predicted by the model correspond to the three consumer levels,
whereas abundances of primary producers are inputs to the model, and are shown for reference.
Black circles represent the centroid of the two-dimensional distributions.

Table 4.1: Estimated regression parameters, standard errors, t-statistic values and p-values for
the mixed effect model evenness ∼ richness + connectance + trophic guild + random(replicate) of the
theoretical model. σreplicate is 5.3 ∗ 10−8, and the r2 of the model is 0.4

Variable Estimate Std. Error df t value p-value
(Intercept) 0.41 1.848 ∗ 10−3 2.63 ∗ 104 221.871 < 0.05
richness-100 -0.091 1.72 ∗ 10−3 2.63 ∗ 104 -53.237 < 0.05
richness-200 -0.155 1.72 ∗ 10−3 2.63 ∗ 104 -89.997 < 0.05
connectance-0.2 -0.007 1.7 ∗ 10−3 2.63 ∗ 104 -4.351 < 0.05
connectance-0.3 0.007 1.73 ∗ 10−3 2.63 ∗ 104 3.773 < 0.05
trophic.guild-omnivores -0.079 1.7 ∗ 10−3 2.63 ∗ 104 -46.453 < 0.05
trophic.guild-carnivores -0.167 1.73 ∗ 10−3 2.63 ∗ 104 -96.437 < 0.05

Table 4.2: Estimated regression parameters, standard errors, t-statistic values and p-values for the
mixed-effects model skewness ∼ richness + connectance + trophic guild + random(replicate) of the
theoretical model. σreplicate is 0.0032, and the r2 of the model is 0.24

Variable Estimate Std. Error df t value p-value
(Intercept) 0.561 3.65 ∗ 10−3 1.9 ∗ 104 153.603 < 0.05
richness-100 0.117 3.39 ∗ 10−3 2.5 ∗ 104 34.574 < 0.05
richness-200 0.177 3.4 ∗ 10−3 2.5 ∗ 104 51.957 < 0.05
connectance-0.2 0.019 3.36 ∗ 10−3 2.53 ∗ 104 5.674 < 0.05
connectance-0.3 0.0048 3.42 ∗ 10−3 2.53 ∗ 104 1.414 0.157
trophic.guild-omnivores 0.086 3.36 ∗ 10−3 2.53 ∗ 104 25.739 < 0.05
trophic.guild-carnivores 0.253 3.43 ∗ 10−3 2.54 ∗ 104 73.909 < 0.05

Empirical datasets

The statistical model for evenness included all the original predictors (trophic
guild, richness, spatial extent and temporal extent, Table 4.3). Plant guilds were
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the less even ones overall, showing significant differences with all other guilds
(panel (a) of Fig. 4.4, Table A.4.1.1). Among mammal guilds, herbivores show
the highest average evenness, after which it further decreases with increasing
trophic rank, although the differences are non-significant (Table A.4.1.1). This
overall pattern of a significant increase from primary producers to consumers
followed by a sustained decrease is qualitatively similar to the patterns obtained
with the theoretical model, although the evenness values of the theoretical model
are much lower than those of the empirical datasets (compare Figs. 4.3 and 4.4).
Richness has a positive effect on evenness, while also decreasing its variability
(compare the sign of µ and σ richness parameters), whereas increasing temporal
and spatial extent has a negative effect on mean evenness, and no effect on its
variability (Table 4.3).

Figure 4.4: Density distributions of evenness (a) and skewness (b) values of the guilds studied,
and the combined distribution of both metrics (panel c, cf. the theoretical results of Fig 4.3).

The final model for skewness included trophic guild and richness as the only
predictors. Again, there were significant differences between plant and mammal
guilds in their average skewness (Table 4.4). Plant and mammal guilds were
different mainly when considering low and positive skewness levels, where plants
showed the highest average skewness, followed by a drop in all mammal guilds,
which showed no statistical differences (Fig. 4.4, Table A.4.1.2). Again, a similar
qualitative trend is observed in the theoretical model (Fig. 4.3). The effect of
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Table 4.3: statistical model coefficients for the evenness of the empirical datasets. See the main
text for explanation of the µ and σ parameters. The r2 of the overall model is 0.39

Variable Estimate Std. Error t value p-value
µ link function: cloglog
(Intercept) -0.509 0.039 -12.824 < 0.05
trophic.guild-herbivores 0.8681 0.055 15.882 < 0.05
trophic.guild-omnivores 0.753 0.062 11.975 < 0.05
trophic.guild-carnivores 0.711 0.069 10.382 < 0.05
spatial.extent −7.8 ∗ 10−7 3.1 ∗ 10−7 -2.481 < 0.05
temporal.extent −3.8 ∗ 10−3 1.3 ∗ 10−3 -2.914 < 0.05
richness 3.2 ∗ 10−3 2.6 ∗ 10−4 12.126 < 0.05
σ link function: logit
(Intercept) -0.98 0.106 -9.273 < 0.05
trophic.guild-herbivores 0.969 0.117 8.251 < 0.05
trophic.guild-omnivores 0.461 0.135 3.407 < 0.05
trophic.guild-carnivores 0.819 0.143 5.709 < 0.05
spatial.extent −1.4 ∗ 10−7 3.9 ∗ 10−7 -0.359 0.719
temporal.extent −6.1 ∗ 10−4 1.5 ∗ 10−3 -0.401 0.688
richness −3.1 ∗ 10−3 8.6 ∗ 10−4 -3.624 < 0.05

richness is positive, but only significant for the variation between low and highly
positive skewness values (Table 4.4).

Table 4.4: statistical model coefficients for the skewness of the empirical datasets. The r2 of the
model is 0.15

Variable category Estimate Std. Error z score p-value
(Intercept) (0.5,1] -0.038 0.268 -0.143 0.88

[-1,-0.5) -5.773 0.688 -8.39 < 0.05
trophic.guildherbivores (0.5,1] -0.882 0.276 -3.198 < 0.05

[-1,-0.5) 3.138 0.478 6.571 < 0.05
trophic.guildomnivores (0.5,1] -1.492 0.342 -4.362 < 0.05

[-1,-0.5) 2.322 0.788 2.946 < 0.05
trophic.guildcarnivores (0.5,1] -0.832 0.327 -2.548 < 0.05

[-1,-0.5) 4.354 0.492 8.854 < 0.05
richness (0.5,1] 0.012 0.003 4.427 < 0.05

[-1,-0.5) -0.314 0.224 -1.397 0.16

The three mammal trophic guilds show similar negative correlations between
dominance and richness (panel (a) of Fig. 4.5, Pearson’s ρ: -0.62 for herbivores,
-0.66 for omnivores, -0.64 for carnivores). Regarding the relative rarity of the
different guilds (panel (b) of Fig. 4.5), herbivores have the same proportion
of species than of individuals in local communities (Wilcoxon signed-rank test,
W = 131422,p = 0.14, Table A.4.1.3), whereas omnivores are comparatively more
common (i.e. there are higher relative numbers of omnivore individuals than
species, W = 162226,p < 0.05) and carnivores are rarer (there are more carnivore
species than individuals, W = 18772,p < 0.05).
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Figure 4.5: Patterns of dominance, and the proportion of species and individuals of the mammal
guilds across sampling sites, where each point is a sampling site. Dominance (upper panel) is
defined as the number of individuals of the most abundant species in the guild relative to all
individuals from that guild. Minimum and maximum potential dominances are represented by
solid curves. The maximum level of richness shown here, for visibility, is 20 species. The lower
panel shows the proportion of individuals of a given guild against the proportion of species of the
same guild, and the x=y line is shown for visibility. Grey-colored dots in both panels represent
average values.

4.4 Discussion

In local communities, the division of species in trophic guilds is informative with
regards to the distribution of interactions and biomass flows in the community
(Lindeman, 1942; Kéfi et al., 2016), but everything else being equal, it is unclear
wheter SAD metrics are influenced by the trophic position of a guild in the local
community. Here I have shown that there are significant differences between the
local SADs of terrestrial plant guilds (primary producers) and different guilds
of terrestrial mammals, with plant SADs being less even and more skewed than
mammal ones. Furthermore, the empirical relationship between SAD metrics
and trophic guild is also mediated by species richness and the spatiotemporal
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extent of the sample. A theoretical model combining network structure and niche
apportionment schemes shows qualitatively similar trends in the variability of
SAD shape across trophic guilds.

There are several potential ways of generating theoretical predictions about the
variability of SAD metrics with trophic guild. Recent extensions to the theory of
island biogeography (Holt, 2009; Gravel et al., 2011) make explicit the differences
and feedbacks between species in discrete food chains, and could potentially be
extended to predict the variability in species abundances across trophic levels.
The model presented here, in turn, is meant to explore the role of local community
structure in communities with a fixed number of species and no dynamic migra-
tion. In particular, the main question behind it is to explore whether variations in
community structure (represented by species richness and network connectance)
influence SAD shape of the increasing trophic guilds in model food webs.

I have shown that, given the assumptions of the model, evenness is highest
(and skewness lowest) for herbivore species, and decreases for omnivore and
carnivore guilds. Furthermore, community structure has significant impacts on
both metrics: both richness and connectance have generally negative effects on
guild evenness, and positive effects on the skewness of the SAD. With increasing
richness or connectance, there is an associated increase in the number of trophic
links for each species (its degree), so the general explanation for these patterns is
that, under random fraction apportionment of resources, higher levels of resource
overlap of the species within a given trophic guild drive higher heterogeneity
in abundance distributions. Other niche apportionment schemes are likely to
display different abundance patterns. For example, the dominance preemption
scheme tends to produce highly heterogeneous distribution of resources and
greater dominance levels than the random fraction apportionment. On the other
hand, the dominance decay scheme will generate increasingly even abundance
distributions with increasing richness or connectance (Tokeshi, 1990).

The empirical datasets analyzed here differ from the theoretical model in
several fundamental aspects. Importantly, these datasets are likely to represent
open communities, in which both core and transient species are observed, which
has important implications for the associated SAD (Magurran and Henderson,
2003). Furthermore, they are not derived from entire communities sampled
across trophic guilds, but are rather a compilation in which species are classified
afterwards into broad guilds (see Methods). Therefore, analogies between the
theoretical results and the empirical patterns should be approached with caution,
due to these important confounding factors. However, the qualitatively similar
variation of SAD metrics with trophic guild observed in theoretical (Fig. 4.3)
and empirical data (Fig. 4.4) could also be due to empirical guilds displaying,
on average, mechanisms of niche apportionment similar to the ones modelled.
If we assume as a working hypothesis that some degree of niche preemption by
dominant species takes place (Sugihara et al., 2003), the lower evenness and higher
skewness observed in terrestrial plant communities relative to mammal ones may
be explained by differences in the set of resources available to the different guilds.
In particular, competitive exclusion may be higher in plant communities, leading
to higher dominance of a few species, due to the comparatively small set of
resources for which plants compete (light, water, and essential nutrients, Austin
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and Smith 1990). Mammal guilds, in turn, may potentially have a wider variety
of resources available. For example, mammal herbivores, as classified in this
study and according to the EltonTraits database used to categorize trophic guilds
(Wilman et al., 2014), can feed mainly on either seeds, fruits, nectar, pollen,
and a large list of other plant parts. Therefore, a high degree of specialization
within a guild may reduce the importance of competition and, subsequently, the
relative differences in abundance between species (Sugihara et al., 2003). Such
high specialization in trophic guilds is commonly observed in ecological networks
(Dunne et al., 2002; Gravel et al., 2011).

Other complementary reasons for explaining the variation in SAD metrics
between plants and mammals may exist. For example, differences in traits such
as movement potential, which can make rare mobile mammal species harder to
document, or unavoidable sampling inconsistencies between studies. It may also
be the case that plant species are able to maintain lower densities for longer periods
than mammal species, thus being more easily observed. Empirical estimates of
minimum viable populations indicate that some plant populations may be viable
with sizes of < 1000 individuals (Nantel et al., 1996), a number much lower than
standard estimates for vertebrates, which range in a few thousands of individuals
for their viability (Reed et al., 2003). Therefore, there may simply be more rare
plant species than mammals’. Niche differentiation may also be invoked to explain
the relative homogeneity in SAD metrics between mammal guilds. As it is the
case with herbivores, both omnivore and carnivore guilds may utilize a wide set
of resources that may, generally, prevent a high degree of competitive exclusion.

Mammal guilds also show a negative correlation between dominance and guild
richness, suggesting that richer guilds may be generally more even via a decrease
in relative dominance, a result in accordance with previous studies (Spencer,
2000; Dornelas et al., 2011). This results contrast with the theoretical model, in
which evenness and richness are negatively correlated (Table 4.1). In empirical
communities, the positive richness-evenness relationship may be due to the higher
habitat complexity observed in richer communities (Hurlbert, 2004), a factor not
included in the model that may lead to more diverse sets of resources and thus less
importance of competitive exclusion. However, a negative relationship between
richness and evenness has also been documented in different trophic guilds of
grassland ecosystems (Bock et al., 2007). These contrasting results emphasize the
need for controlled observations across different ecosystem types and productivity
gradients. The only significant difference between mammal guilds found in
this study is the relative rarity of carnivore species compared to those of other
guilds, which also corroborates earlier results by Spencer (2000) on invertebrate
communities. Overall, these broad-scale results will undoubtedly vary across
habitat types, depending on the specific sets of resources available to each guild,
and on the local environmental conditions, which may have contrasting effects on
the different trophic guilds (Voigt et al., 2003).

All the results presented here assume that trophic interactions are the main
driver of variation in species abundances across guilds. In the theoretical results,
bottom-up energy flows from trophic interactions are the only ones considered,
and the mammal communities were grouped considering only a general trophic
guild classification of the species. This approximation is clearly a simplification
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of the complex networks of interactions observed in nature, which may generate
strong top-down or indirect feedbacks (Menge, 1995; Montoya et al., 2009). The
persistence and abundance of all species in a community is further influenced by
the whole set of interactions in which they engage, among other factors (Pocock
et al., 2012; Garcı́a-Callejas et al., 2018a). However, the distribution and frequency
of most non-trophic interactions in empirical communities is not known, so no
hypothesis can be formulated at this point regarding their influence on local SADs.
In communities in which non-trophic interactions are known, functional guilds
can be differentiated by accounting for the set of all interactions in which they
engage rather than just trophic ones (Sander et al., 2015; Kéfi et al., 2016); this
functional grouping may further reduce intraguild functional variability and thus
increase across-guild differences, better reflecting differences in SAD shape across
guilds. On the other hand, there is virtually an unlimited number of functional
guilds in nature, and establishing a general, cohesive, and manageable set of
functional guilds that can be applied to group every potential community seems
unfeasible for the time being. Therefore, grouping by trophic guild represents
a compromise between generality (as every community can be divided in such
manner) and intraguild versus across-guild variability. In any case, the variability
in SAD metrics across trophic guilds of a community, and its relationship with
other factors, would be better explored with dedicated sampling campaigns of
different trophic guilds in multi-trophic communities, in which properties such as
trophic specialization can also be tracked. This could be carried out, for example,
in pond mesocosms in which most species are confined to the pond habitat, or for
terrestrial habitats, in small islands where complete censuses of different trophic
guilds are feasible.

The existence of an intrinsic variability in SAD shape across functional guilds
has important consequences for both fundamental and applied community ecol-
ogy. In theoretical models, the contributions of intraguild and interguild inter-
actions need to be integrated in a general mechanistic framework, in order for
their relative importance to be estimated. This shift from intraguild, competi-
tive interactions to multi-trophic, community scale thinking is a necessary step
forward in theoretical community ecology (Chesson and Kuang, 2008; Godoy
et al., 2018; Seibold et al., 2018). Empirical analyses of SADs would also benefit
from incorporating information about the communities that harbor the guilds
under study. In studies analyzing intraguild drivers of SAD shape, the community
context of the study should be used to establish null expectations of interguild
influence, for example, based on network structural patterns. If the guilds under
study are not functionally homogeneous (e.g. taxonomic assemblages sensu Fauth
et al. 1996) deriving mechanistic explanations about SAD shape is usually not
possible, due to interspecific differences in resource use, trophic position, etc. In
such descriptive studies, therefore, the community context is unnecessary. Meta-
analyses of Species Abundance Distributions have shown great disparity regarding
the most appropriate statistical models for fitting SADs (Ulrich and Gotelli, 2010;
Baldridge et al., 2016). If the results presented here hold, accounting for this null
expectation may help clarify which statistical models are best suited to fit each set
of data.
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4.5 Conclusions

Species Abundance Distributions have many axes of variability. Here I have
showed that intrinsic differences exist between the SAD of terrestrial plant and
mammal communities. Plant communities are significantly less even and more
skewed than mammal ones, and there are no significant differences in either
metric between the mammal trophic guilds considered. This result may arise from
differences in niche availability for the different guilds, following the hypothesis
that higher niche availability implies a higher evenness in species abundances.
Although these results are derived from extensive datasets controlling for several
factors, targeted studies are needed to further confirm this pattern and test it in
a variety of systems. This prospective line of research would shed new light on
both theoretical and applied analyses of Species Abundance Distributions, and
would help in the integration of classic horizontal community ecology patterns in
the context of communities encompassing multiple trophic levels and interaction
types.
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5. Spatial propagation of interactions

Abstract

The effects of pairwise interactions have indirect consequences that reverberate
throughout the whole ecosystem. In particular, interaction effects may propagate
in a spatial dimension, to localities connected by organismal movement. Here we
study the propagation of interaction net effects with a spatially explicit metacom-
munity model, when local sites are connected by dispersal, foraging, or by both
modes of movement. We show that direct and net effects of pairwise interactions
are more likely to be of different sign when foraging behaviours across localities
are prevalent. Further, the effect of a species over another in the local community
does not necessarily correspond to its effect at the metacommunity scale: this
correspondence is again mediated by the type of movement mode across localities.
The networks of net effects are in all cases fully connected, which means that
every species in the model metacommunity has a non-zero influence in every other
species, but network quantitative modularity differs with movement mode. Lastly,
the magnitude of net effects between any two species strongly decays with the
distance between them, specially with the number of indirect connections linking
them. These theoretical results strengthen the importance of considering indirect
effects across species at both the local and regional scale, point to the differences
between modes of organismal movement across locations, and thus open novel
avenues for the study of interaction effects in spatially explicit settings.

5.1 Introduction

Ecological communities are complex systems in which species interact with each
other through a multitude of pathways. The effect of a species on the rest of the
ecosystem is generally difficult to predict and quantify, and likely depends on
factors such as the number and magnitude of interactions in which it engages
(Zhao et al., 2016), or the structure of the overall network, that may enhance or
decrease the propagation of the initial direct effects (Polis, 1994). Trophic cascades
are striking examples of interaction effects propagating through food chains:
changes in the occurrence, strength or outcome of a certain trophic interaction
often have a significant top-down influence on the rest of the community (Schmitz
et al., 2000).

Just as the spreading of disease (Balcan et al., 2009) or information (Barthélemy,
2011) in other types of complex networks, the propagation of interaction effects
across ecological networks has an obvious spatial dimension: interaction cascades
often link organisms that are spatially disconnected. Thus, we may define a spatial
cascade as a set of indirect interactions that spread in a spatial dimension, poten-
tially linking disconnected species. Spatial cascades thus defined are ubiquitous in
nature, as in for example the connection of different regions by migratory animals
(Springer et al., 2018) or, on a more local scale, the flow of dispersing individuals
between separated locations (Leibold et al., 2004). Spatial cascades may occur
between different locations of a single habitat type. For example, predator species
may consume bird eggs from nests of different forest patches (Chalfoun et al.,
2002), with potential feedbacks for the bird populations and associated resources.

88



5.1. Introduction

The connections across different habitats by flows of nutrients or organisms have
also been well documented (Polis et al., 1997). Focusing on the flow of organisms,
just to note two prominent examples, Estes et al. (1998) documented how otter
predation by killer whales in the open North Pacific triggered an increase in
the biomass of sea urchins in the nearshore habitat of the Aleutian archipelago,
ultimately driving a strong decline in kelp density. More recently, Knight et al.
(2005) showed that the presence of predatory fish in ponds reduced the number of
adult dragonflies in the surrounding area, which resulted in a significant increase
in pollinator density and subsequent reproductive success of terrestrial plants, as
compared to areas close to ponds without fish predation.

In a spatially explicit consideration of interaction cascades, unlike strictly de-
fined trophic cascades (Ripple et al., 2016), both bottom-up and top-down effects
may be involved, and these effects will likely differ in magnitude depending on
the type of spatial flux or the trophic level of the connecting species (Allen and
Wesner, 2016). For example, variations in the magnitude of plant dispersal be-
tween neighbouring locations will trigger bottom-up community-level responses
on all sites (Christian, 2001). On the other hand, predators foraging on spatially
disconnected patches may induce top-down indirect effects that may propagate
across patches, either through consumptive effects that spread down the local
trophic chains (Polis et al., 1997) or by non-consumptive effects on prey species
(Orrock et al., 2008).

Overall, despite the growing number of studies documenting spatial prop-
agation of interaction effects, the concept of spatial cascades has not yet been
rigurously explored and generalized. For example, there are currently no theo-
retical hypothesis on the decay of interaction effects with spatial distance, or on
whether different modes of movement generate similar or different patterns of
effect propagation.

The net interaction effect between any two interacting species is, conceptually,
the sum of their direct effects from pairwise interactions and indirect effects
mediated by other species or entities (Abrams, 1987). The direct effects of a species
over another can be formulated in several ways (Berlow et al., 2004), but generally
involve the effects over some property of interest at the population level, such as
short-term growth rate (Abrams, 1987). Indirect effects, in turn, involve all effects
between two species that do not occur via direct interactions. Indirect effects may
occur between species that interact directly or not, via the propagation of effects
over the ecological network. These effects have been classified as being triggered
by changes in the abundance of the intermediary species (density-mediated indirect
interactions) or by these intermediary species modifying the context of a direct
interaction (see e.g. Wootton 2002 for further definitions and examples). It has
been repeatedly shown that indirect effects may be as strong, or even stronger,
than direct effects, up to the point of switching interaction net effects from positive
to negative or viceversa (e.g. Menge 1995). Therefore, analyzing how net effects
are structured in complex communities, and their importance relative to direct
effects, is an important step towards understanding and predicting the dynamics
of ecological assemblages (Montoya et al., 2009).

The metacommunity concept (Leibold and Chase, 2018) provides a compre-
hensive theoretical framework for studying the propagation of interaction net
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effects in a spatially explicit setting. In virtually all metacommunity studies we are
aware of, it is assumed that species connect the local communities via dispersal,
i.e. the permanent establishment of individuals on a different territory from their
birthplace. Dispersal, however, is not the only process by which species can link
spatially disconnected patches. Foraging, the active search for food of a mobile in-
dividual, may link the trophic chain of its reproductive area with other, potentially
disconnected communities in which the individual acquires varying fractions of
its diet (McCann et al., 2005). If foraging species are based on a central site, which
may well be their reproductive area, their foraging effort and associated effects on
local communities generally decay with distance, in what is termed Central-place
foraging, (Orians, 1979). Just as with dispersal, the spatiotemporal dynamics of
foraging are extremely varied, with variation in home ranges spanning several or-
ders of magnitude (as an indicator, Swihart et al. 1988 showed that home range in
23 species of mammals varied from 0.05 to 2285 ha). Of course, both foraging and
dispersal modes of movement occur in nature and are not independent from each
other, but as a first approximation, we may expect spatial cascades triggered by
each movement type to display different properties and effects on the connected
local communities (Fig. 5.1). For example, in two simple food chains connected
by a dispersing species, the net flow of individuals from one community to the
other will benefit the predators of the dispersing species, and in turn, adversely
affect its prey. On the other hand, if the same species connects the two food webs
by foraging sporadically on the second location, it will trigger a negative effect up
the trophic chain of that location, and will benefit species on which the preyed
species feeds.

Here we study how net effects are propagated in space when local food webs
are connected by dispersal, foraging, or a combination of both movement types,
using model metacommunities. In particular, we ask the following questions: (1)
What is the distribution of signs and magnitudes of net effects in communities
connected by dispersal, foraging, or a mixture of both? (2) Are networks of net
effects similar in structure to networks of direct effects? (3) Does the magnitude
of the net effects between any two species decay with increasing distance between
them?
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Figure 5.1: Interaction matrices and net effect matrices for two simple configurations. In both
cases, a linear food chain is represented at two locations (1 and 2). In the dispersal configuration,
species B disperses from the first location to the second. In the second configuration, species B
preys on species C on both locations. Green links represent positive effects, red negative. Solid
arrows represent direct effects, dashed arrows expected indirect effects. For clarity, in the food
chains we display only the indirect effects arising directly from species B at location 1. Darker
shades in the matrices indicate stronger effects. The matrices can be read as with the following
example: in the foraging configuration, the direct effect of B in location 1 over C in location 2
is given by locating the column that indicates species B at location 1 (the second column of the
matrix), and the row indicating species C at location 2 (seventh row).

5.2 Methods

We developed a spatially explicit metacommunity model in which local trophic
communities are connected through 1) dispersal, 2) foraging, or 3) both. The
dynamics of the system are given by a general Lotka-Volterra implementation,
following Gravel et al. (2016b), and for each configuration we ran numerical
simulations and recorded both the direct effect and the net effect between each
pair of species in the metacommunity, as well as a set of network metrics for
characterizing potential differences in metacommunity structure.

Quantification of direct and net effects

In theoretical analyses of ecological networks, the Jacobian matrix of the system
(also called community matrix) is widely used to describe the direct effects between
each pair of species at equilibrium. In its most common implementation, it
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represents the effect in one species’ growth rate respect to small changes in
another species’ abundance (Berlow et al., 2004; Novak et al., 2016). Consider a
general population dynamics model of S species present in n local sites, in which
the population density of species i at site x over time is given by

dNix
dt

=Nixfix(N1·, ...,NS·) (5.1)

where Nix is the density of species i in site x, and fix(N1·, ...,NS·) its growth rate,
potentially influenced by any other species present in any of the n sites (repre-
sented by the · notation). In this general case, the elements of the metacommunity
Jacobian matrix C are

cix,jy =
δ(
dN ∗ix
dt )

δN ∗jy
=
δ[N ∗ixfix(N

∗
1·, ...,N

∗
S·)]

δN ∗jy
(5.2)

where N ∗ix represents the steady state density of species i at site x. The net
effect of species j at y over species i at x, in turn, is the sum of its direct effects
and all indirect effects between the two species evaluated at steady state (Bender
et al., 1984; Montoya et al., 2009; Novak et al., 2016). These can be calculated as
the negative of the elements of the inverse Jacobian, i.e. −(c−1)ix,jy . Specifically,
the coefficients −(c−1)ix,jy represent the net effect of an increase in species j’s
population growth rate on the density of species i, when all species respond to
direct effects (Novak et al., 2016).

The model

The dynamics of the community are modelled with a general Lotka-Volterra
implementation, following Gravel et al. (2016b). Considering a set of S species
present at n locations, the dynamics of species i at location x is given by:

dNix
dt

=Nix(mix +
∑
y∈n

∑
j∈S

bix,jyNjy) +∆Nix (5.3)

where mix is the intrinsic growth rate of species i at location x, Nix its abun-
dance, ∆Nix is the net migration balance, and bix,jy is the per capita effect of
species j at location y on species i at location x. This parameter encapsulates the
effect of foraging to/from other locations, and it represents a basic situation in
which species i forages from its reproductive area x to other locations. Specifically,
we assume that a foraging species allocates a fraction f of its foraging efforts
to communities outside its reproductive location, which implies that the effort
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allocated to feeding in its local community is 1 − f . We incorporate this in our
model as follows:

bix,jy =



(1− f )αix,jy if x = y
f

|nix|
αix,jy if x , y,αix,jy > 0

f

|njy |
αix,jy otherwise

(5.4)

The first situation corresponds to the effect of predation from the same location,
in which case the interspecific interaction coefficient αix,jy is weighted by the
relative effort dedicated to foraging within its home location (1− f ). The second
situation represents foraging of species i at location x on species j at location
y. The net foraging effort f is equally divided among all locations reachable by
species i from location x (the set given by nix, which has a cardinality of |nix|).
The last situation is the opposite, where species i at location x is preyed upon by
species j at location y. In this case, f is divided among all locations reachable by
species j from location y. Note that this situation represents an equal division of
foraging effort among all reachable locations.

Dispersal among different locations, in turn, is represented simply by the net
variation in species densities between reachable locations, modelled by passive
diffusion with dispersal coefficient d (Gravel et al., 2016b):

∆Nix =
∑
y∈nix

dixy
|nix|

(Nix −Niy) (5.5)

Thus, as it is the case with foraging, dispersal effort d is divided equally among
all patches reachable by species i on location x.

Parameterization and simulations

We considered predator-prey interactions, but the approach could easily be gener-
alized to other types of interactions. The structure of local communities, i.e. who
interacts with whom, is determined according to the niche model (Williams and
Martinez, 2000), ensuring that there were no disconnected species. We further
assumed that the niche axis obtained from the niche model is linearly correlated
with the foraging and dispersal distance of the different species, such that the
species with lowest niche values could only forage or disperse to adjacent com-
munities. Interaction coefficients α at the regional scale are drawn from a normal
distribution N (0.25,0.1), with the sign structure given by the niche assembly
model. We introduced a small amount of spatial heterogeneity by drawing local
coefficients from a normal deviate with mean centered on the corresponding
regional coefficients and standard deviation of 0.1.

Local communities were placed along a single dimension space, which ends
were connected together in order to (1) maximize potential path lengths between
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non-connected communities, and (2) prevent edge effects of communities at the
end of the linear chain. We fixed the maximum dispersal and foraging distances
to two cells away from the species’ home location in order to avoid excessive pa-
rameterization and for better comparing the net effects of the different movement
types.

With this setting, we simulated the dynamics of 15 species at 10 local com-
munities. The number of species and size of the landscape correspond to a
meta-adjacency matrix of 15 ∗ 10 = 150 rows. This size was chosen in order for
the numerical calculation of the Jacobian matrices to be computationally feasible.
Although a relatively small species richness and number of patches, it is sufficient
to explore spatial distances and patch lengths of over 5 units.

We generated three sets of simulations: only dispersal, in which we set the
dispersal coefficient d = 0.5, and the foraging coefficient f = 0 for every species;
only foraging, with d = 0 and f = 0.5; and dispersal and foraging, with d = 0.5
and f = 0.5.

We run 100 random topologies from each configuration, and for each replicate
we obtained numerically the direct and net interaction coefficients between each
pair of populations in the metacommunity, which could then be (1) qualitatively
compared and (2) analyzed with regards to the distance between the interacting
populations. We also computed basic quantitative descriptors of the direct and net
effects networks at equlibrium: the connectance of the metacommunity networks;
their average path length, i.e. the average of the shortest path lengths between any
pair of populations in the metacommunity; and their modularity, which measures
the tendency for nodes to be grouped into distinct modules (Newman, 2006).
Here, we calculate a weighted version of modularity that considers both positive
and negative link weights, as implemented in the R igraph package (Csardi and
Nepusz, 2006).

5.3 Results

What is the distribution of signs and magnitudes of net effects
in communities connected by dispersal, foraging, or a mixture
of both?

Net effects (i.e. elements −(c−1)ix,jy described above) are mainly of equal sign as
direct effects (i.e. elements cix,jy of the Jacobian matrix) when local communities
are connected by dispersal (Table 5.1), whereas in foraging and mixed modes of
movement, sign switches occur in around 50% of pairwise interactions. In all
simulations, however, the ratio of positive to negative net effects is maintained at
values close to 1, meaning a similar number of positive and negative net effects
for all configurations.

The three modes of movement displayed distinctly different net effects signa-
tures on interactions occurring both within the same location (intra-patch) and
across different locations (inter-patch) (Fig. 5.2). Intraspecific effects are generally
positive across locations in the dispersal configuration, and also positive in the
local food webs (upper panel of Fig. 5.2). This trend is blurred for foraging and
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Table 5.1: Summary metrics of the simulations performed. For each simulation, we group the
results by location, i.e. whether the interaction occurs between species of the same (intra-) or
different (inter-) patch. We show the ratio of positive to negative net effects, and the relative
frequency of pairwise interactions that switch sign from direct to net effect.

movement mode location +/- ratio sign switches
+ to - - to +

dispersal intra-patch 0.95 0.07 0.33
inter-patch 1.03 0.002 0

foraging intra-patch 1.02 0.51 0.47
inter-patch 0.97 0.42 0.41

dispersal and foraging intra-patch 1.02 0.52 0.57
inter-patch 1.02 0.48 0.49

mixed movement modes, where intraspecific effects are more variable and have
a higher frequency of negative magnitudes (Fig. 5.2 middle and lower panels).
Net effects are also generally of the same sign in local patches and across patches
when communities are connected by dispersal (orange points on the upper panel
of Fig. 5.2). Again, this trend is diluted when foraging is accounted for, in which
case intra-patch and inter-patch net effects display any combination of positive
and negative signs, with no clear trend. Although here we analyze the results for
d = 0.5 and f = 0.5, the distinctiveness of the dispersal and foraging patterns is
maintained across a range of d and f values (Appendix 5.1).

Figure 5.2: Distribution of intra and inter-patch net effects in the three configurations. Shaded
quadrants are those where a sign switch occur between intra and inter-patch effects.
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Are networks of net effects similar in structure to networks of
direct effects?

There exist non-zero net effects between virtually every species in the model
metacommunities, as expressed by net effect networks having connectances and
path lengths of 1 in all cases (Fig. 5.3). In contrast, direct effect networks are
obviously not fully connected, displaying intra-patch connectances at steady state
of 0.38 on average and inter-patch connectances between 0.01 (dispersal only)
and 0.1 (dispersal and foraging). Weighted modularity is also much higher in
the direct effects networks than in the net effects ones, as expected. However,
the modularity of the net effects networks also shows a decreasing trend from
dispersal only networks to dispersal and foraging ones (Fig. 5.3).

Figure 5.3: Network metrics of the metacommunities at equilibrium. Dark shades represent
networks of direct effects, light shades networks of net effects.

Does the magnitude of the net effects between any two species
decay with increasing distance between them?

The magnitude of spatial cascades is influenced by the length of its associated
food chain. Net effects between any pair of species decrease in magnitude with
the spatial distance between the two species (i.e. the distance between their home
locations, assuming that connected locations are at distance 1 from each other).
This decrease is even sharper when the distance metric considered is the path
length between the two species, i.e. the number of connections separating them
(Fig. 5.4). This result is observed in the three movement modes, although the
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decay rate is generally highest for foraging configurations. The trend is also robust
to variations on dispersal and foraging rates (Appendix 5.1).

Figure 5.4: Net effect between species pairs as a function of a) spatial distance between patches,
b) average path length between species. Values are averaged over all replicates, and error bars
represent averages +/- one standard deviation.

5.4 Discussion

The importance of indirect effects, including trophic cascades, in driving ecosys-
tem dynamics and structure is well established in theory (Abrams, 1992; Wootton,
2002; Gravel et al., 2010; Mayfield and Stouffer, 2017) and on the field (Menge,
1995; Peacor and Werner, 1997; Moya-Laraño and Wise, 2007; Barbosa et al., 2017;
Trussell et al., 2017). The propagation of these effects across space has however
not been studied systematically, despite many scattered observations of spatially
explicit trophic cascades (Polis et al., 1997; Estes et al., 1998; Knight et al., 2005;
Casini et al., 2012; Springer et al., 2018). Here we lay down basic tenets on how
interaction effects are propagated in space depending on whether species connect
different local communities via dispersal, foraging, or both modes of movement.
We show that model metacommunities with populations connected by dispersal
and foraging differ on (1) the proportion of pairwise interactions that switch sign
between their direct and net effects, and (2) the sign and magnitudes of net effects
on the local patch and across patches. Furthermore, the networks of net effects
are markedly different from the direct effect ones, in all cases. Last, we observed
that, in most cases, the magnitude of net effects between any two populations
decays significantly with the distance between the two populations. In particular,
the strongest decay occurs when distance is measured as the number of spatial
connections necesary for linking the two populations.

Indirect effects may generate unexpected net interaction outcomes between
pairs of species. For example, Montoya et al. (2009) analyzed a set of well-resolved
empirical food webs and showed that the influence of indirect effects induced
a switch in interaction signs from direct to net effect for approximately 40%
of species pairs. Using a similar approach, we show that net effects between
populations of spatially disconnected communities may also be primarily driven
by indirect feedbacks, as for example, cases in which a species foraging on a

97



5. Spatial propagation of interactions

secondary location indirectly benefits its prey on this second location by altering
the dynamics of the whole food web. This theoretical possibility has, to our
knowledge, not been tested in empirical systems.

The “signatures” of net effects produced by dispersal, foraging, or mixed modes
of movement across localities are clearly different from each other (Amarasekare,
2008) even though we imposed equal maximum dispersal and foraging distances,
and after accounting for different values of dispersal and foraging rates (Appendix
5.1). In the dispersal scenario, the almost complete concordance between the sign
of intra- and inter-patch net effects points to a relatively homogeneous role of
species at local and regional scales. Therefore, in natural systems with the same
species pool connected mainly by dispersal, a local evaluation of the influence
of the dispersing species may offer insights for the whole metacommunity. In
the foraging or mixed modes, however, interspecific net effects derived from the
populations of the same and different locations often switch signs, without show-
ing any clear trend (middle and lower panels of Fig. 5.2). Therefore, within the
assumptions of our model, when foraging is a prevalent mode of movement across
locations, interspecific effects between any two species cannot be extrapolated
from the local to the regional scale. In other words, a consumer that decreases a
prey locally may have a positive effect on the same prey at the regional scale. Note,
however, that our baseline scenario represents communities within an homoge-
neous habitat, the same species pool in all locations, with no density-dependent
movement modes, no active selection or other types of heterogeneity. Furthermore,
we deliberately chose dispersal and foraging modes of movement with identical
maximum distances and temporal dynamics, in order to highlight their intrinsic
differences. In reality, of course, both dispersal and foraging have extremely vari-
able spatiotemporal scales. Foraging, in general, happens much faster than local
demographic dynamics, which has led to characterize its effects as spatial coupling
of local communities (Massol et al., 2011). This spatial coupling is thought to
dampen population oscillations at lower trophic levels (McCann et al., 2005). The
effects of dispersal, on the other hand, occur on temporal scales comparable to
those of local dynamics, favouring different types of coexistence relationships,
such as source-sink dynamics. The relative scales of foraging and dispersal are
very heterogeneous, so that the spatial signal of interaction cascades will likely
be correlated, in general, with these movement-related traits. In our model, we
restricted the maximum dispersal and foraging rates to two cells away from the
local community, and different values will presumably alter the net effect decay
with spatial distance (Fig. 5.3 left panel). Interestingly, the decay of net effects
with path length (Fig. 5.3, right panel) did not vary strongly with increases in
maximum movement rates in our model (d and f , see Appendix 5.1). This result
suggests that indirect effects may dampen the propagation of strong interactions
across space, at least in environments with similar habitats and species pools.

Networks of net effects are fully connected (Fig. 5.3), meaning that every
species has a non-zero influence in every other species of the metacommunity,
through direct and/or indirect pathways. The number of connections between
local communities increases from dispersal to foraging modes, and is maximal
when both modes are combined. This is reflected in the weighted modularity of
the net effects networks, which tends to decrease along that axis. In the simple
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metacommunities modelled here, these structural patterns of the net effect net-
works are mostly confirmatory, but such analyses, when feasible, should provide
novel insights into the structure and dynamics of more complex communities and
metacommunities.

Dispersal generally represents unidirectional organismal movement across
localities, with no associated direct movement of material. Foraging, on the other
hand, involves a processing of organic material from the foraged location to the
home location (Gounand et al., 2018). This two-way coupling has consequences
for the role of the different locations as demographic sources or sinks (Gravel et al.,
2010). In general, although here we have focused on movements of organisms
across localities, the physical transfer of material often plays a key role in the
structure and dynamics of the local communities (Polis et al., 1997). For example,
the nutrients accumulated by Pacific salmon in open waters are transported to
freshwaters during the spawning season, indirectly affecting terrestrial plants and
animal populations (Naiman et al., 2002; Levi et al., 2012). The integration of these
ecological subsidies with organismal movement is well develeoped theoretically in
the framework of metaecosystem theory (Loreau et al., 2003; Gounand et al., 2018).
We have provided a first approach to the explicit modelling of foraging behaviours
in metacommunities, but its coupling with material transfers will expand and
refine the results presented here. In a related question, most empirical studies
on ecological subsidies are focused on transfers between different habitats, which
usually involve specialized interactions (e.g. the consumption of Pacific salmon by
grizzly bears) or species with life stages in different habitats, such as arthropods
with aquatic larval stages that, in their adult form, switch to a predator role in
terrestrial habitats. We, in turn, modelled communities with a small amount of
spatial heterogeneity but the same pool of species and interactions on each patch.
It is likely that interactions connecting different habitats are more specialized
and have greater indirect effects than the general foraging interactions modelled
here (in what has been called keystone interactions, Helfield and Naiman 2006).
This specificity is likely to alter both the structure of the overall meta-network
(Fig. 5.3) and the distance decay curves observed in our model system (Fig. 5.4).
For example, Knight et al. (2005) showed how predatory fish could have strong
net effects on terrestrial plants through a series of specialized interactions, even
though the number of links separating these species is four (fish-dragonfly larvae-
dragonfly adults-insect pollinators-plants).

Spatial patterns of net effects can also vary from our baseline expectations
depending on the distances covered by the foraging or dispersing species. In-
tercontinental migrations are an extreme example of this, where strong coupled
effects occur between species separated by thousands of kilometers (Alerstam
and Bäckman, 2018). Further, such migratory movements connect localities at
different moments in time, rather than continuously. The effect of such temporal
decoupling may provoke strong oscillatory dynamics between systems (Springer
et al., 2018), although in general, the stability dynamics associated with migra-
tions have received little attention to date. Overall, the interplay between the
rates and distances of dispersal and foraging, and their relationship to the spatial
decay of net effects, clearly needs more attention in theoretical models and empir-
ical studies. For example, experimental mesocosms allowing spatial movement
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of certain species among them may be used to test the differential influence of
foraging and dispersal on local dynamics.

5.5 Conclusions

We have provided a theoretical basis to the study of spatial propagation of indirect
effects across ecosystems. We have shown that the net effect patterns generated
by dispersal and foraging movements are clearly different. Furthermore, the
structure of the metacommunity networks is markedly different depending on
whether one considers direct interactions or net effects between species. The
decay of net effect magnitude with distance, in our model, is the only result
common to all simulations performed. These results may shed light on the spread
of interaction effects in patches of the same habitat type, such as forest patches
inserted in agricultural or urban areas. Furthermore, they represent a baseline
case for developing more complex scenarios, such as the effects of interaction
spread (1) across different habitat types and species pools, or (2) when material
fluxes are accounted for.
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Abstract

Environmental variations are a driving force behind virtually all ecological pat-
terns. Different types of environmental gradients are bound to trigger differential
responses at the species and community level, but this variability among envi-
ronmental factors has been largely overlooked in current community ecology
paradigms. We argue that the distinction between resource and non-resource fac-
tors, originally proposed by Evelyn G. Hutchinson, provides a convenient way to
classify environmental factors, as these two types have different effects on ecologi-
cal interactions and emergent community properties. Using a community model
with environmental variability on a resource and a non-resource factor, we show
that the intensity of competitive interactions is driven jointly by variations in both
gradients, whereas facilitation intensity is driven solely by the non-resource factor.
Likewise, species richness and persistence times of species are mainly driven by
variations in the non-resource factor. These results, derived for simple model
communities, suggest the possibility that these two broad types of environmental
gradients trigger different bottom-up and top-down feedbacks in more complex
communities.

6.1 Introduction

Understanding how environmental factors influence ecological processes is one of
the main goals of ecology, and is becoming increasingly relevant in the context
of the ongoing global change (Vitousek, 1994). Environmental factors influence
directly or indirectly virtually every biological process on Earth, and can be ex-
tremely varied in their physical characteristics, magnitude, spatial and temporal
scale. Furthermore, individuals may interact and respond to their physical en-
vironment in very different ways: sessile primary producers acquire inorganic
nutrients from their surrounding environment and can often modify their local mi-
croclimate, whereas animals are able to move or alter their behaviour in response
to environmental variations. Despite the enormous variability in environmental
variables and species responses, different environmental factors are commonly
lumped together when studying ecological processes across observed gradients, in
what are termed “(environmental) stress gradients” (e.g. Hart and Marshall 2013).

As a consequence of this common simplification of environmental factors,
there is no overarching theory predicting how different facets of the environment
will influence ecological processes at different levels of organization. Developing,
or as we will suggest here, recovering a simple but comprehensive “taxonomy”
of environmental factors is a key step towards such a theory. To our knowledge,
only a handful of studies have attempted to derive a systematic characterization
of environmental factors. For example, Menge and Sutherland (1987) made the
distinction between physical and physiological stress types, that differ on whether
low values of the factor at hand influence survival. Although their classification is
readily applicable to any species and gradient, it is not informative about which
factors may drive variations in pairwise interactions or resource consumption,
which are key processes for maintaining species coexistence.
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In the context of niche theory, Evelyn G. Hutchinson (1978) proposed the dis-
tinction between scenopoetic and bionomic variables that shape the n-dimensional
environmental niche of a given species. Scenopoetic variables are, literally, “scene-
setting” factors, abiotic conditions that cannot be consumed, whereas bionomic
variables are those consumed by the species or guild in question, thus altering
their local dynamics. This distinction has been acknowledged, with a different
terminology, in studies of vegetation composition across gradients (Austin and
Smith, 1990). In addition, the stress gradient hypothesis, in its general form, posits
that variations in stress levels will drive variations in the intensity of competitive
and facilitative interactions among primary producers, with positive interactions
becoming more prevalent under harsh conditions (Bertness and Callaway, 1994).
A few studies have explored how this hypothesis might be improved by distin-
guishing resource (i.e. bionomic) and non-resource (scenopoetic) environmental
factors. For example, a recent study suggested varying outcomes of pairwise
interactions under gradients of different types of factors (Maestre et al., 2009),
whereas a compilation of empirical data showed similar shifts towards facilitative
interactions across gradients of different stress types (He et al., 2013). Despite
these recent developments, most empirical tests of the stress gradient hypothesis
do not explicitly consider the implications of studying resource, non-resource,
or combined gradients. Furthermore, this diversity of factors has thus far been
left out of other influential frameworks in community ecology, such as Tilman’s
resource ratio theory (Tilman, 1980; Miller et al., 2005), environmental stress
models (Menge and Sutherland, 1987), or Chesson’s coexistence theory (Chesson,
2000).

We propose to reintegrate the fundamental distinction between environmental
factors coined by Hutchinson (1978) into current ecological paradigms. Hutchin-
son’s categorisation provides a simple dichotomy for environmental factor types
that is relevant for evaluating physiological responses, and most importantly, the
outcome of direct pairwise interactions and other community-level responses to
environmental gradients. Maintaining the terminology that has recently been
developed under the umbrella of the stress gradient theory, we propose to keep
the name of resource and non-resource environmental factors for bionomic and
scenopoetic variables respectively (Fig. 6.1).

While at the individual level most species will display varying physiological
response curves for specific factors regardless of their resource or non-resource
quality, the distinction between these categories becomes important when looking
at the differences of these response curves between species. As such, we may
expect responses to resource factors to be nested for groups of species, while
responses to non-resource factors will likely tend to have different optima for
different species of a guild (Austin and Smith, 1990).

Looking at community-level responses, we hypothesize that variation in re-
source factors will directly drive exploitative competition within species of the
same trophic guild, whereas variation in non-resource factors will, instead, drive
changes in the intensity and importance of facilitation, and only indirectly will
affect competition. These pairwise effects will, in turn, drive different outcomes
for species persistence or diversity, among other properties, across different types
of gradients.
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Here we test these hypotheses using a community model in which we incorpo-
rate gradients of resource and non-resource environmental factors. In particular,
we ask: (1) does the intensity of competitive and facilitative interactions vary
across a combined resource and non-resource environmental gradient? (2) how
are species diversity and persistence affected by environmental variation? (3)
does the presence of benefactor species increase species diversity and persistence
in our model communities? In the following sections, we briefly expand on the
two types of environmental factors proposed, and then we discuss our modelling
experiment.

6.1.1 Non-resource environmental factors

Non-resource factors are the scenopoetic variables of Hutchinson (1978), not
consumed by individuals, and thus not subjected to depletion. These factors have
a direct physiological impact on all individuals, and many of them are expected
to have broad spatial structures (Soberón, 2007). Response curves may show
different optima for different species, and are unimodal (Austin and Smith, 1990).
There are two main ways in which species can alter these factors: first, sessile
species may passively generate microhabitats with different conditions from those
of the surrounding area. Second, some mobile species are considered ecosystem
engineers, species that actively modify their surrounding physical environment
thus generating different conditions.

By varying their surrounding environment, sessile species and ecosystem
engineers generate environmental conditions that allow the establishment of
other individuals that would not be able to thrive otherwise. Thus, facilitative
interactions are commonly found to increase in intensity with increasing stress
from non-resource factors such as temperature or wind exposure (e.g. Fajardo
and McIntire 2011). By definition, as these factors are not subject to consumption,
non-resource gradients will not directly drive variations in competition intensity
(although by excluding less adapted individuals, overall competition intensity is
often reduced in sites with high non-resource stress).

6.1.2 Resource environmental factors

This category includes all factors that are consumed by the species or guild under
study. When referring to terrestrial plants, the set of resources is limited to light
and space, water, carbon dioxide, oxygen, and essential nutrients (Austin and
Smith, 1990). Each of these resources, in turn, has different spatiotemporal dy-
namics. Conceptually, feeding sources of consumer species may be considered as
resource factors, but these resources are highly dynamic and consumers are often
able to switch between different preys, whereas abiotic resources are generally not
interchangeable.

Gradients in resource factors will drive variations in exploitative competition
when different individuals utilise the same resource. On the other hand, these
factors are generally not subject to facilitation, and therefore, the intensity of
pairwise facilitation should in general not vary when the only source of environ-
mental variation is a resource factor. As discussed in Maestre et al. (2009), the
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case of water availability is more complex than this baseline expectation, as water
availability is highly correlated with temperature levels, and may be subject to
facilitation under some circumstances (see Discussion).

Figure 6.1: A two dimensional environmental gradient. In this example, the non-resource factor
is soil ph, and the resource factor is available direct sunlight. Considering a plant species with
optimal fitness at basic ph levels and high levels of direct sunlight, the environmental gradients
show different combinations of factors: (a) suitable light and ph levels may be found in open
areas or forest gaps on basic soils, (b) peat bogs are highly acidic environments, but otherwise
suitable regarding light levels, (c) closed canopies under basic soils may have too low light levels,
(d) understoreys of pine forests have both low light levels and acidic soils.

6.2 Methods

Modelling community responses to a combined gradient

The basic tenets presented above apply, all else being equal, to gradients of only
one factor at a time. However, it is harder to derive conceptual predictions about
variations across combined gradients of both types. Using a simple community
model, we analysed whether variations in two environmental factors, a resource
and a non-resource one, drive variations in different patterns of a horizontal
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community (composed of a single trophic guild). We generated a pool of species
with varying demographic responses to non-resource stress factors, following
the functional responses discussed in Maestre et al. (2009), in which species
vary their survival and growth rates according to the level of non-resource stress
(Appendix 6.1). The two extreme cases in this framework are, on the one hand,
stress-tolerant species, that are able to maintain comparatively high survival rates
under high stress levels, but display lower growth rates in the absence of stress;
and competitive species on the other hand, that show high growth rates under
benign conditions but also higher sensitivity in both survival and growth rates to
non-resource stress.

In our model setting, environmental variability is represented by a two-
dimensional lattice, in which each cell has a combination of resource and non-
resource environmental factors (Fig. A.6.1.1). The resource factor is represented
as the carrying capacity of the cell, and all species are assumed to belong to the
same trophic guild (sensu Fauth et al. 1996), whose only limiting factor is that
resource. The non-resource factor is homogeneous and constant in a given cell.
Both gradients are linear.

Species randomly colonize with equal probability any given cell of the lattice,
and survive and grow according to their specific functional responses (Fig. A.6.1.2).
A fraction of species is able to facilitate the survival of heterospecifics, by enhanc-
ing their survival probability in the face of high levels of non-resource stress.
The intensity of each facilitation event is given by the biomass of the benefited
individual, that would have otherwise not survived.

Individuals in a cell are able to grow up to the level where their aggregated
biomass equals the carrying capacity of the cell, i.e. the level of resource factor.
Competition occurs when the growth of one or more individuals is hampered due
to the presence of another individual, and its intensity is given by the amount of
expected growth that was impeded by the competitive exclusion.

With this simple setting, we modelled how species interact and persist through
time in each combination of the two gradients. After an initial warm-up period of
100 timesteps, to allow each cell to be colonised, we recorded for 500 timesteps
every facilitative and competitive interaction, the effective number of species at
each cell (also known as “Hill number” or “true diversity”, Tuomisto 2012), and
the average persistence time of species at each cell. To evaluate the response
of these metrics to the environmental gradients, we fitted generalised additive
models (GAMs) to the results from our simulations. Generalised additive models
use smoothing functions to model nonlinear relationships, providing a flexible
nonparametric model (Wood, 2017). Given the strong nonlinearities observed
in our responses, we fitted GAMs with adaptive smoothing terms, that are able
to model responses where the degree of smoothness vary over the range of the
covariates (Wood, 2017).

We also performed simulations with the same parameterization but not al-
lowing for facilitation, and compared the distributions of competition intensity,
species diversity, and persistence times in the two sets of simulations, using
Wilcoxon signed-rank tests.
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6.3 Results

Does the intensity of competitive and facilitative interactions
vary across a combined resource and non-resource
environmental gradient?

The intensity of competition and facilitation strongly varies across the combined
environmental gradient (Fig. 6.2, Table 6.1). Competition intensity increases with
increasing resource stress (Fig. 6.2, panel a) and with decreasing non-resource
stress (Fig. 6.2, panel b), and the interaction between resource and non-resource
stress is also statistically significant (Table 6.1). Facilitation intensity, in turn, is
only significantly influenced by non-resource stress (Table 6.1, Fig. 6.2, panel c
and d). In absence of stress, there is no facilitation, as every species has a survival
probability of 1 (Fig. A.6.1.2). Then, as non-resource stress increases, facilitation
intensity displays a concave parabolic shape: it is high and very variable for
low levels of stress, lowest for intermediate levels, and consistently high and
comparatively less variable for high stress levels.
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Table 6.1: Results of the Generalised Additive Models fitted to the simulation results. REML = Restricted maximum likelihood. For parametric coefficients,
their estimates, standard errors, and t-statistic are given, whereas for smooth terms, we report their estimated degrees of freedom (edf), and their F-statistic.

Response REML r2 Deviance Covariates Estimate Std.Error t edf F p-value

facilitation
intensity

-1376.2 0.528 53.1%
intercept 0.674 6.3 ∗ 10−3 106.56 - - < 0.05
resource −4.8 ∗ 10−5 1 ∗ 10−4 -0.465 - - 0.642
s(non-resource) - - - 14.16 167.5 < 0.05

competition
intensity

-5459.3 0.967 96.7%

intercept 0.108 5.2 ∗ 10−4 208.4 - - < 0.05
s(resource) - - - 3.28 7405 < 0.05
s(non-resource) - - - 12.53 1813.5 < 0.05
s(resource*non-resource) - - - 25 262.4 < 0.05

persistence times 7451.8 0.986 98.6%
intercept 26.18 0.217 120.71 - - < 0.05
resource 2.2 ∗ 10−3 3.5 ∗ 10−3 -0.625 - - 0.532
s(non-resource) - - - 14.29 10741 < 0.05

effective number
of species

4127.2 0.922 92.2%
intercept 4.828 0.057 83.92 - - < 0.05
resource -0.016 9.4 ∗ 10−4 -16.64 - - < 0.05
s(non-resource) - - - 10.36 2355 < 0.05
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Table 6.2: Results of the Wilcoxon signed-rank tests for differences in competition intensity, species
diversity, and average persistence times between communities with and without facilitation. Test
on competition intensity is two-tailed, reflecting our lack of previous hypotheses on the intensity of
competitive effects between the two sets of simulations. Tests on species diversity and persistence
are one-tailed, with the alternative hypothesis being greater values of both metrics when facilitation
is allowed. In bold, highest median values of each quantity.

median - facilitation median - no facilitation V p-value
competition
intensity

0.059 0.050 1229233 < 0.05

persistence time 15.47 12.369 2401500 < 0.05
effective number
of species

2.374 2.067 2600200 < 0.05

How are species diversity and persistence affected by the
environmental variation?

The effective number of species at each cell drops rapidly with even slight increases
in non-resource stress (Fig. 6.2, panel f), and also shows a decreasing trend,
although less steep, with increasing resource stress (Fig. 6.2, panel e). Average
persistence time, in turn, also decreases very sharply with non-resource stress
(Fig. 6.2, panel h), but is unaffected by resource stress (table 6.1, Fig. 6.2, panel g).

Does the presence of benefactor species increase species
diversity and persistence in our model communities?

Both species diversity and persistence times are significantly higher in simulations
with facilitation (Table 6.2, Fig. A.6.1.4).
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Figure 6.2: Variation of community-level properties across a resource and a non-resource gradient.
For variables selected as significant by the GAM models (Table 6.1), model fits are superimposed
as blue curves.
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6.4 Discussion

We modelled the response of species ranging from pure competitors to pure stress-
tolerance within a two-dimensional environmental gradient combining a resource
and non-resource factor. The two types of environmental factors have contrasting
influences on (1) the intensity of pairwise interactions and (2) the diversity of
species in the community and their average persistence times.

The intensity of competitive interactions clearly increases with increasing
levels of resource stress, as expected. However, it also increases for decreasing
levels of non-resource stress. This is due to the positive correlation observed
between mortality rates and non-resource stress, that releases resources and
decreases effective competition at highly stressful environments.

Facilitation is, again as we hypothesised, clearly driven by variations in the
non-resource factor. The response observed is, however, more complex than the
standard expectations derived from the stress-gradient hypothesis, that predicts
either an increasing importance of facilitation with increasing stress, or an increase
followed by a collapse in facilitation levels at very high stress levels (le Roux and
McGeoch, 2010). The idea behind this latter version of the theory is that in
extremely harsh environments, the facilitation effect of nurse plants is severely
hampered (Michalet et al., 2006). This reasoning, however, only applies to non-
resource factors, as species do not compete for them; if the environmental gradient
includes resource factors, net interaction effect may switch from positive to neutral
or negative (Smit et al., 2007; Michalet et al., 2014). In our simulations, we first
observed, as expected, no facilitation in the absence of non-resource stress. As
soon as there is a certain environmental impact on competitive species, however,
facilitation sharply increases, while at the same time showing a high variability.
We argue that this unexpected variability is due to priority effects, in which the
order of arrival of species to a location is an important factor for the subsequent
dynamics of the local community (Fukami, 2015). In our model, all species have
the same probability of colonizing any cell of the grid: if the first colonizers are
facilitators, follow-up colonizers will likely experience some degree of facilitation
as long as stress levels are not null. On the other hand, facilitation will be residual
if the early colonizers are able to thrive in the location but do not facilitate the
establishment of other species. Following the environmental gradient, If non-
resource stress increases, stress-tolerant species will be progressively selected for,
and competitive species will only persist when facilitators are present. At very
high stress levels, survival probability is extremely low for all species, so most
surviving individuals are subject to a certain degree of facilitation. It is important
to note that, in our model, facilitation capacity does not decrease with increasing
stress, as may occur for example in grazing gradients (Smit et al., 2007). We also
note that we explicitly modelled locations with unlimited potential colonizers
from the same regional species pool, in order to isolate effects arising directly from
environmental constraints on response curves, and discard species-pool effects
(e.g. Pärtel et al. 1996).

In this first approximation to the concurrent modelling of resource and non-
resource environmental gradients, we defined a single resource factor as a carrying
capacity, and did not account for more complex relationships that allow facilita-
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tion of resource factors. For example, it is well established that, although species
compete for water in stressful environments, nurse species can facilitate water
acquisition by heterospecifics under different circumstances, listed in Maestre
et al. (2009): by lifting water from belowground, by providing shade that retains
moisture, and, again as a byproduct of shade provision, by modifying water-
relations of the understorey species. Aside from the important example of water,
it is nevertheless clear that most resource factors shared by species of a certain
guild (i.e. light, space, nutrients) are generally not facilitated by species of that
guild, and hence the prevalence and intensity of facilitation should, in most cases,
conform to the hypothesis laid out here.

Species diversity and persistence are highly sensitive to variations in the non-
resource factor, and this is mainly due to the shape of the physiological responses
to non-resource stress that we modelled (Fig. A.6.1.2). Less steep declines in
survival or growth probability would smooth the responses to increasing stress.
We carried out additional simulations (not shown here) and observed that higher
variation between purely competitive and purely stress-tolerant species did indeed
increase the steepness of the diversity and persistence responses. Nevertheless,
the overall trends were qualitatively robust to the different parameterizations,
and should hold as long as competitive species are comparatively more sensitive
to stress.

Despite facilitation being present at high levels of non-resource stress, species
diversity and persistence time both decrease consistently across the non-resource
gradient: the negative effects on growth and survival across the species pool are
stronger than the benefits of facilitation by stress-tolerant species. Facilitation
does, however, increase competition intensity, species diversity and persistence
times overall (Table 6.2), with its strongest influence occurring at low to moderate
levels of non-resource stress (Fig. A.6.1.4).

In our model, we considered a single non-resource environmental factor and
a single resource that is utilised equally by all species and does not deplete. Of
course, the picture is much more complex in natural systems, where species
consume several resources with varying efficiencies (Chapin et al., 1987) and
may display contrasting physiological response curves to different non-resource
factors (Austin and Gaywood, 1994). Furthermore, we are considering here hor-
izontal communities, and the responses discussed will likely be more complex
for multi-trophic communities and involve direct and indirect effects on com-
munity properties (Menge and Sutherland, 1987; Bruno et al., 2003). We expect
that in communities comprising several guilds and potentially different types of
interactions among species, variations in non-resource factors will (1) directly
affect all species regardless of their position in the community, and (2) those
effects will not be homogeneous. In particular, it is expected that species up in the
trophic chain will be comparatively more sensitive to environmental variability
(Voigt et al., 2003). Therefore, as a first hypothesis, we suggest that non-resource
environmental gradients will trigger both direct effects on all trophic guilds and
also significant top-down indirect effects on community structure and dynamics.
In turn, variations in resource factors can be expected to affect more significantly
lower trophic levels, since species of higher trophic levels get most of their nu-
trients from direct consumption of organic matter from lower trophic levels. As
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such, we hypothesize that the most important effect on community structure and
dynamics across non-resource environmental gradients will be through bottom-up
control.

Despite the simplicity of our model, we have clearly shown that the two general
types of resource and non-resource environmental factors differentially influence
biotic interactions, species richness and persistence in model communities. Several
fundamental questions arise from these results. The spatial scale of different
environmental gradients, for example, should interact with the spatial signal of
the different interaction types (Araújo and Rozenfeld, 2014) to influence large-
scale persistence and diversity patterns. Even at local scales, integrating the
different aspects of environmental variability with established frameworks such
as the resource ratio theory or modern coexistence theory should bring novel
insights for the influence of environmental gradients on ecological communities.
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We live in a time in which global environmental changes are occurring at
unprecedented scales and speeds (Pachauri et al., 2015). Individual species and
whole ecological assemblages face systemic risks from a variety of stressors, includ-
ing the loss and fragmentation of suitable habitat, alterations in the temperature
and precipitation regimes, pollution, or an increase in the rate of colonization of
human-borne potentially invasive species (Vitousek, 1994). Given the scale and
magnitude of the human alteration of the environment, it is urgent to develop
mitigating measures at all levels, from actions in local habitats to coordinated
worldwide socioeconomic efforts that bring us closer to a harmonious coexistence
with the non-human world. In order to move towards this admittedly utopian ob-
jective, we need the strongest possible scientific understanding of how ecological
species and communities are structured, and how they function. In a testimony to
the complexity of the natural world, our knowledge of ecological communities is
still limited, despite decades of continued work by generations of naturalists and
ecologists. In particular, we do not know whether pairwise interactions between
individuals are structured in order to enhance community stability sensu lato.
When certain interactions are considered in isolation, e.g. trophic or mutual-
istic ones, theoretical (Williams and Martinez, 2000) and empirical (Thébault
and Fontaine, 2010) studies have shown that interactions are indeed distributed
non-randomly. However, species in ecological communities display a wide array
of interaction types and mechanisms, and we are only starting to gain a broad
understanding of how the different interactions combine in natural systems (Kéfi
et al., 2015), and its implications for ecological processes (Pocock et al., 2012).

In this thesis, I have explored several fundamental questions about networks
of ecological interactions, their structure and dynamics in different contexts.
In the following paragraphs, I discuss some of the main findings of the thesis
and potential lines of work arising from them, in light of the current literature
knowledge.

There are only a handful of empirical datasets that account for multiple inter-
action types in ecological communities (chapter 2). It is therefore only logical that
most studies that analyse these complex networks are theoretical in nature, but
even restricting ourselves to theoretical models for building and analyzing multi-
ple interactions networks, the diversity of approaches and objectives is already
substantial. I have shown that, on a conceptual level, this diversity of modelling
strategies boils down to three types of approaches (chapter 2). This conceptualiza-
tion may help researchers design theoretical studies with a clearer understanding
of the limitations and strengths of the methodologies used. For example, not
all interaction types occur in the same spatial and temporal scales. Models that
lump together interaction effects in a single parameter and do not differentiate
spatiotemporal patterns (such as the model developed in chapter 3) should be very
explicit about these limitations, and in any case, should be considered baseline
models, potentially useful for (1) guide further, more targeted theoretical and
empirical work, and (2) comparison against more realistic models. Looking at the
broad picture, one may ask whether the increase in model complexity and data col-
lection programs necessary for accounting for different interaction types is worth
it, i.e. if it significantly improves our understanding of ecological communities.
Although the field is still young, and all conclusions are based on highly idealized
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models or on very specific, likely incomplete datasets, current results suggest that,
indeed, integrating the variety of interactions present in nature into the study of
ecological networks produces novel insights and unexpected outcomes, regarding
for example the patterns of secondary extinctions in networks (Pocock et al., 2012;
Evans et al., 2013), the functional groupings in communities (Kéfi et al., 2016),
or, as shown in chapter 3, the persistence of species in their local communities.
It remains to be seen, however, if a truly consistent program of data collection
across different community types and environmental gradients is feasible, or how
more modest experiments such as microcosms can be designed for taking full
advantage of this view of ecological communities.

As stated above, before we can extract robust conclusions from empirical
data, we may advance our understanding of multiple interaction networks by
developing general, overarching models and theories. With that objective in mind,
I developed the model of chapter 3, and in its design, I brought together a series
of separate insights about interaction networks. In particular, the way in which
interactions are quantified is based on the assumption that the abundance of the
interacting species is related to their interaction frequency: the more abundant
the two species are, the more will they interact. Interaction frequency is, in turn,
taken as a measure of the impact of one species over another. This assumption
has been corroborated for a number of plant-pollination networks (Vázquez et al.,
2005, 2007, 2012), but it probably does not hold generally for all interaction types,
and it explicitly neglects specialization in ecological interactions. Nevertheless, it
represents a robust approach for integrating with a single currency the effects of
disparate interaction types in dynamic models.

The results from chapter 3 open different avenues for future research. The
most straightforward extension would be the development of experimental or
observational studies for testing some of the results: in particular, it would be
feasible to test whether species-poor communities tend to have a higher preva-
lence of positive interactions, as suggested by our theoretical results, and how are
these interactions distributed. The assumption that interactions are distributed
non-randomly proved key for maintaining high levels of persistence: even in
species-poor communities, interactions should maintain a certain structure. Such
targeted empirical work could also start to unveil the frequency and structure of
less studied interactions. Amensalism and commensalism have been shown in
another recent study to improve community stability when accounted for (Mougi,
2016a), but they are clearly underrepresented in the literature. Another theoreti-
cal outcome from that chapter that would require further study is the observed
relationship between the frequency of occurrence of the different interaction types
and their connectance values (Appendix 3.4). As long as the set of feasible poten-
tial links varies for the different types of interaction, frequency of occurrence and
connectance will not be equivalent. I believe that the calculation of connectance
relative to fully connected networks should be approached with caution, as there
are countless examples in which many of the potential interactions are forbidden
because of, for example, non-overlapping activity in time or space (Yang and
Rudolf, 2010; Osorio et al., 2018). In any case, it is unlikely that in multitrophic
networks, the set of, say, potential mutualisms, would be the whole network.
When evaluating more thoroughly structural metrics of multiple interactions
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networks, these details should not be overlooked. Note that, throughout chapter
3, I have purposely concentrated on species abundances and already established
interactions. Trait-based approaches for inferring interactions (Morales-Castilla
et al., 2015; Bartomeus et al., 2016) and community structure (Laigle et al., 2018)
also show great promise, but they are difficult to generalize to different types of
communities and habitats. It is probably not possible to derive a set of traits from
which to predict the occurrence of different interactions, applicable across trophic
levels and habitat types. But perhaps it is feasible to ask whether, in a general
way, traits that are known to influence trophic interactions are also important
in mediating other interaction types (e.g. are species of similar body sizes more
likely to compete with each other?).

The only “trait” included in the model of chapter 3 is the trophic level of
each species. From this separation of species into trophic levels, I found that
the persistence values in different trophic levels were markedly different in the
simulated communities (Fig. A.3.2.1). This result prompted the question that
would end up shaping chapter 4: if persistence levels in complex communities are
affected by interaction type frequencies and network structure, other community-
level patterns should also be affected. This question points to a more general
feature of ecological thinking, discussed in chapter 4. Community ecology has,
historically and for several reasons, concerned itself with communities of a single
functional guild, whereas analyses of ecological networks followed a parallel
path in which functional distinction among species is assumed seamlessly. Many
highly influential theories in community ecology have been framed in terms of
competition for resources within a certain guild (e.g. Tilman’s resource ratio
theory, Chesson’s modern coexistence theory), and only recently the frame is
expanding in order to account for interactions among functional guilds (Chesson
and Kuang, 2008; Godoy et al., 2018; Seibold et al., 2018). An implicit objective of
chapter 4 was to advance in this expansion of classic community ecology patterns
into multi-trophic communities with potentially complex network structures. The
most important message from chapter 4 is that context matter, and many factors
interact when trying to elaborate how patterns vary across trophic guilds. We
are not yet even close to a conceptual theory of community ecology of complex
ecological networks, but this and the aforementioned studies are steps towards
that goal.

In chapter 5, I delved deeper in that overarching objective of advancing com-
munity ecology for multi-trophic communities, this time focusing on the spatial
dimension of interactions. Metacommunity theory has provided very important
insights in the functioning and dynamics of spatially-connected communities.
Again, most of this framework has revolved around two key assumptions: commu-
nities are horizontal, comprised of a single guild of species that compete among
them, and these discrete communities are conected by dispersing individuals.
After almost two decades of work, recent studies started to expand the paradigm
of metacommunity ecology in different ways, e.g. considering more complex
communities or integrating different forms of individual and material connec-
tions between communities. We opted for combining both extensions to classic
metacommunity theory, and found that, as could be intuitively expected, when
species forage into different patches, interaction dynamics clearly differ from the
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dispersal case. Spatial effects are propagated generally up to four or five links
in the metacommunities of our general model, an insight that, if it holds, could
have conservation implications for instance for evaluating the regional impact of
species introduced in a limited number of localities.

Arising from the model of chapter 3, a prominent question we faced was
how could we generate frequencies and topologies of interaction types that were
realistic, or at least approaching some degree of realism. We ended up doing a
literature review on how the different interaction types occurred across different
trophic levels, but this is only an ad-hoc solution for that particular study. In
order for studies on multiple interactions to advance, robust knowledge on the
frequency and topology of different interactions across environmental gradients
and community types is sorely needed. This prompted the research of chapter
6, which matured in a fairly different way from that original idea. Originally,
we expected to generate predictions of interaction frequencies in communities
based on environmental or other constraints (imagine a world map with regions
differentiated by the prevalence of the different interaction types, e.g. mutualism-
dominated communities or predation-dominated ones). This, however, proved too
demanding given the limited time frame of a Ph.D. project and the absolute lack
of data. I resorted to study horizontal communities, and quite early realized what
is now the core idea from chapter 6: that environmental factors are very different
from one another and this differentiation should be better reflected in studies of
ecological patterns across gradients. In that chapter, I only hint at what the effects
of different gradients could trigger in more complex communities, but this line of
research is potentially among the most important ones arising from the Ph.D.

A common theme to all chapters is the reliance on simulation methodologies
to infer ecological insights applicable beyond the simple systems modelled. Nu-
merical simulations allow a greater degree of model flexibility and complexity
than analytical derivations, but of course it is harder to pinpoint the importance
of the different model parameters, given their higher number and the difficulty of
performing exhaustive sensitivity analyses. An important strength of simulation
methods is that they allow the explicit inclusion of stochasticity on the model
system, as I have tried to include in all the models developed. Interactions and
functional relations in ecological communities are probabilistic in nature, rather
than fixed, and I tried to keep that in mind in all the outcomes of the thesis. Given
the nature of the questions asked in this thesis, I was not able to test most of
the theoretical predictions against empirical data. This divide between theory
and empiricism is a long-standing problem in ecology, perhaps more so than in
other disciplines, and is discussed in detail in each chapter. It was my intention,
however, to develop theoretical models with an eye on potential follow-up tests
in natural systems. Therefore, in the following section, I advance in more de-
tail how the chapters in this thesis could be complemented by experimental or
observational studies.

Empirical observations, experiments, and applications

The adequate sampling of ecological networks is a key issue in community ecology
(Jordano, 2016), with important consequences for assessing the functional role of
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species within a network or the relative prevalence of rare and weakly-interacting
species. In chapter 2, we discuss the main strategies employed so far for collating
networks with multiple interaction types. These can be summarized as follows:
a first alternative is to join together data from different sources and generate an
inferred network; a second alternative is to develop comprehensive sampling pro-
grams of different functional groups and interaction types of specific communities.
In both cases, the conceptual and logistic problems are potentially important. For
example, when mixing data from different sources, one must make sure that there
are no biases associated with the spatiotemporal extent of the sampling, or at least,
incorporate these dimensions in the analysis (see chapter 4). This is particularly
important for functional groups which are likely to have very different home
ranges and dispersal distances.

Perhaps the most straightforward way of sampling complete networks is to
resort to artificial mesocosms or natural communities with relatively few species
or interactions (e.g. the Aire Island in chapter 2, or the core interactions in a
mediterranean forest community studied by Sunyer et al. 2016). However, in all
these scenarios there remains the issue of correctly documenting and quantifying
direct interactions of different types, a discussion that has developed indepen-
dently in food web studies (Berlow et al., 2004; Wootton and Emmerson, 2005;
Novak and Wootton, 2010), networks of competitive interactions within a single
trophic level (Freckleton et al., 2009; Hart et al., 2018), and mutualistic networks,
mainly plant-pollinator ones (Vázquez et al., 2005, 2007; Holland et al., 2002).
Virtually no empirical study that I am aware of has quantified the importance
of one-way interactions (amensalism and commensalism) or has compared the
relative importance of different interaction types in a single multi-trophic commu-
nity, although recent calls for integrating multi-trophic approaches in community
ecology are appearing: alongside this thesis, see for example Seibold et al. (2018).
An adequate sampling, in communities across environmental gradients, of (1)
abundances and traits such as body size of species from key functional guilds,
including parasites/parasitoids (Lafferty et al., 2006), (2) interaction frequencies
and/or per capita strengths, is the golden standard to which we should move
forward. Such data, when appropriately replicated, could easily corroborate or
refute many of the ideas presented in chapters 2, 3, 4, and 6 of this thesis. As
stated above, one way to approach this challenging program is through the use of
artificial mesocosms, which allow the deployment of many types of experimental
designs with appropriate control types, for example varying environmental or
nutrient-input gradients (Moss et al., 2004), community assembly (Chase, 2007;
Jiang and Patel, 2008), or colonization rates (Fahimipour and Hein, 2014). By
establishing pond mesocosms along, for example, a warming gradient and a
complementary nutrient-input gradient, the effects of the environment on interac-
tion importance could be measured (chapter 6), and the short-term persistence
of species (chapter 3) as well as the distribution of abundances of the different
trophic guilds (chapter 4) could be quantified.

The spatial propagation of interactions in metacommunities connected by
dispersal and foraging would require slightly more elaborate experimental de-
signs. In particular, foraging requires species dwelling at a reproductive site that
eventually move to feed in other localities. In order to test the differential effects of
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a foraging species in its home location and in other local communities, long-term
experiments relative to the generation times of the species should be set up, and if
artificial mesocosms were to be used, the different localities should be connected
by a matrix allowing movement at least in a linear fashion. Furthermore, local
communities should be set so as to prevent the establishment of the forager species
in sites other than its home site. For example, predatory fish with specific needs
for their reproductive sites could be introduced in mesocosms engineered with the
appropriate characteristics for their breeding, while at the same time connecting
these home mesocosms to other ones in which fish could eventually forage but
not breed.

All these proposals are at this moment speculative, but feasible given appropri-
ate projects and time frames. In the more general topic of how the insights from
this thesis and its potential follow-ups could benefit applied ecology, it is relevant
to note that the spatial scales in which ecologists define ecological communities
and metacommunities are coherent with the scales at which local conservation and
restoration projects are carried out. For example, quoting Wainwright et al. (2017):
“Community ecology theory has particular relevance to restoration because it
describes the processes that underlie the assembly, maintenance of diversity and
functioning of ecological communities, which are often the focus of restoration
projects”.

Insights on species persistence (chapter 3), the distribution of species abun-
dances (chapter 4) and their spatiotemporal variation are key for preserving
ecosystem functioning and diversity. In particular, a network perspective to con-
servation and restoration ecology is urgently needed. As Harvey et al. (2017)
notes, species interactions must be taken into account when assessing conser-
vation priorities, due to the interdependencies and feedbacks that arise from
direct and indirect interactions. Often, as it has been shown previously (Menge,
1995; Suttle et al., 2007; Montoya et al., 2009) and in chapter 5 of this thesis, the
net effect of interactions can reverse the expectations from direct interactions or
from environmental constraints. Thus, preserving interactions appears to be as
important as preserving keystone species, in order to maintain both community
structure and function (Wang and Brose, 2018). In turn, the variability of interac-
tion occurrence and outcome along environmental gradients is still hardly known
(Poisot et al., 2017), and more empirical work is necessary on a variety of systems
and interactions.

Throughout this thesis, I have stated the need for more directed, long-term
empirical efforts in order to improve our basic knowledge of ecological communi-
ties and their mechanisms. Maintaining a balance and a healthy dialogue between
theoretical research and applied ecology is by all means necessary if we are to
help mitigate the current biodiversity crisis. Hopefully this thesis will contribute
to that objective.

Conclusions

• Chapter 2:

– There is a high diversity of objectives and methodologies for studying
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7. General discussion and conclusions

ecological networks with multiple interaction types. Despite this vari-
ability, most theoretical approaches can be reduced to three conceptual
methodologies. Multilayer networks are the most general one, and
the other two methodologies can be seen as special cases of multilayer
networks, that focus on different aspects of the interaction network.

– The three methodologies proposed are best suited to different types of
interaction data, and to different objectives. The single most important
issue we face in the study of multiple interactions networks is the lack
of robust data for a variety of communities and habitat types.

• Chapter 3:

– In model communities, species persistence is highly influenced by
the frequency and distribution of interaction types. In particular, the
prevalence of positive interactions is significantly related to persistence
in species-poor communities. In richer communities, this relationship
is diluted, and different combinations of interaction frequencies are
able to maintain high levels of persistence.

– Structural properties of the model networks are also important for
species persistence, in the sense that more structured communities
are more persistent. Furthermore, the simulated communities display
emergent structural properties also found in empirical food webs.

• Chapter 4:

– The distribution of abundances varies between guilds of terrestrial
plants and mammals. In particular, abundances of terrestrial plants
tend to be significantly less even and more skewed than those of mam-
mals. Variations in competitive exclusion among guilds due to differ-
ences in niche availability may partly explain these trends.

– The patterns among consumer guilds are qualitatively similar to those
predicted by simple theoretical models, and are mediated by other
interacting factors such as the richness of the guild under study, the
temporal and the spatial extent of the data acquisition scheme.

• Chapter 5:

– The spatial propagation of interaction effects across local communities
has a different signature depending on whether localities are connected
by dispersing or foraging organisms. When local communities are
connected by foraging, the net effects between any pair of species are
much less predictable from local dynamics than in the dispersal case.

– The spatial decay of interaction effects follows a similar curve regardless
of the type of movement between communities. Most interactions have
a net effect on species up to five links away from the interacting pair,
but rarely more.

• Chapter 6:
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– Environmental factors have different effects on species dynamics and
interactions depending on whether they are consumed by species (re-
source factors) or not (non-resource factors). In particular, variations in
non-resource factors drive gradients in facilitation intensity, whereas
resource factors are the main driver of gradients in competition inten-
sity. Other properties at the community level are also affected by these
environmental gradients: species diversity and persistence times are
mainly driven by variations in non-resource factors, with small effects
from resource factors.

– The distinction between resource and non-resource factors is likely
to be even more important for communities with several functional
or trophic guids, as different factors affect differentialy the different
guilds and potentially generate complex bottom-up and/or top-down
dynamics.
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Appendix 2.1: Chapter 2 - Case study
model parameterizations and
procedure

Expanded Food Web

The model is of the form:

dNx
dt

= rxNx −mxN 2
x +

∑
y∈S,y,x

axyNxNy (7.1)

where S is the set of species. Non-trophic interactions (NTI) may affect the
growth rate rx, mortality rate mx or interaction strength axy terms. The ones
included in our model are, respectively:

growth rates

rCM =
rNT ICM NP L + r0

CMN
0
P L

NP L +N 0
P L

(7.2)

rDP =
rNT IDP NHM + r0

DPN
0
HM

NHM +N 0
HM

(7.3)

rP L =
rNT IP L (NCM +NHM +NP Le) + r0

P L(N 0
CM +N 0

HM +N 0
P Le)

(NCM +NHM +NP Le) + (N 0
CM +N 0

HM +N 0
P Le)

(7.4)

rP Le =
rNT IP Le NP L + r0

P LeN
0
P L

NP L +N 0
P L

(7.5)

mortality rates

mHM =
mNT IHM NSV +m0

HMN
0
SV

NSV +N 0
SV

(7.6)
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Appendix 2.1: Chapter 2 - Model parameterizations

interaction terms

aP L,DP =
aNT IP L,DPNHM + a0

P L,DPN
0
HM

NHM +N 0
HM

(7.7)

aDP ,P L =
aNT IDP ,P LNHM + a0

DP ,P LN
0
HM

NHM +N 0
HM

(7.8)

We performed two sets of simulations, with and without non-trophic interac-
tions (NTI henceforth). In the simulation without NTI, we assumed that Podarcis
lilfordi (PL) consumed seeds of Helicodiceros muscivorus (HM), Pistacia lentiscus
(Ple) and Chritmum maritimum (CM); these interactions were modelled as mu-
tualisms in the NTI simulation, with the presence of PL individuals increasing
the growth rate of each associated plant species. Each simulation was replicated
100000 times for 2500 timesteps. In the main text we report the aggregated results
of the 100000 replicates. Each parameter was assigned a minimum and maximum
value, and in each replicate parameter values were taken randomly from these
intervals.

Parameter ranges for the simulation without NTIs:
Growth and mortality rates:

rFT = [−0.01,−0.001]
rP L = [0.01,0.1]
rDP = [0.4,0.6]
rSV = [0.05,0.15]
rHM = [0.15,0.25]
rP Le = [0.05,0.15]
rCM = [0.15,0.25]
mFT = [0.0001,0.0015]
mP L = [0.0001,0.0015]
mDP = [0.0005,0.0015]
mSV = [0.0005,0.0015]
mHM = [0.0005,0.0015]
mP Le = [0.0002,0.0004]
mCM = [0.00005,0.00015]

Interaction coefficients , 0:
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aFT ,P L = [10−6,10−4]

aP L,FT = [−10−2,−10−4]

aP L,DP = [10−4,10−2]

aP L,HM = [10−6,10−4]

aP L,P Le = [10−7,10−5]

aP L,CM = [10−7,10−5]

aDP ,P L = [−10−5,−10−7]

aDP ,HM = [10−6,10−4]

aHM,P L = [−10−6,−10−8]

aHM,DP = [−10−6,−10−8]

aP Le,P L = [−10−6,−10−8]

aCM,P L = [−10−6,−10−8]

Initial abundances:

NFT = 8
NP L = 5000
NDP = 200
NSV = 5000
NHM = 5000
NP Le = 200
NCM = 5000

Parameter ranges for the simulation with NTIs. Parameters without superscript
are not affected by NTIs. Parameters with superscript 0 indicate values in the
absence of NTI, i.e. when one of the interacting species is not present. Parameters
with superscript NTI indicate the maximum value that the parameter can reach
with NTI:
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Appendix 2.1: Chapter 2 - Model parameterizations

rFT = [−0.01,−0.001]

r0
P L = [0.01,0.1]

rNT IP L = [0.15,0.25]

r0
DP = [0.65,0.75]

rNT IDP = [0.4,0.6]
rSV = [0.05,0.15]

r0
HM = [0.15,0.25]

rNT IHM = [0.45,0.55]

r0
P Le = [0.05,0.15]

rNT IP Le = [0.15,0.25]

r0
CM = [0.15,0.25]

rNCMT I = [0.35,0.45]
mFT = [0.0001,0.0015]
mP L = [0.0001,0.0015]
mDP = [0.0005,0.0015]
mSV = [0.0005,0.0015]

m0
HM = [0.0005,0.0015]

mNHMT I = [0.00005,0.00015]
mP Le = [0.0002,0.0004]
mCM = [0.00005,0.00015]

In this simulation, only the interactions PL-DP and FT-PL are considered
trophic. Therefore, we report only a values for these. The FT-PL interaction
is not affected by any third species, but the PL-DP interaction is mediated by
the presence of HM plants: a higher abundance of HM flowers increases the
probabilities that an interaction takes place, therefore increasing its net outcome.

aFT ,P L = [10−6,10−4]

aP L,FT = [−10−2,−10−4]

a0
P L,DP = [10−7,10−5]

aNPL,DP T I = [10−4,10−2]

a0
DP ,P L = [−10−5,−10−7]

aNDP ,P LT I = [−10−2,−10−4]

The N0 parameters in previous equations represent a typical average abun-
dance of the non-trophic interactor. These values were taken, when possible, from
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Pérez-Mellado et al. (2000, 2006). Diptera densities were approximated based on
Braack and Retief (1986):

N 0
P L = 2189

N 0
DP = 150

N 0
SV = 3000

N 0
HM = 7187

N 0
P Le = 187

N 0
CM = 10000

Equal Footing Network

The model is of the form:

dNx

dt
= rxNx (7.9)

where

rx = r0
x +

∑
y∈S,y,x

axyNy −

βx + cx
∑

y∈S,y,x
axyNy

Nx (7.10)

As with the Expanded Food Web model, we constrained each free parameter
to a given range and simulated 100000 times the system for 2500 time steps,
assigning a random value to each parameter within its range. Here we varied
the strength of the antagonistic and facilitative interactions (commensalistic and
mutualistic) and checked the stability of the resulting network by means of a local
stability analysis.

rFT = [−0.01,−0.001]
rP L = [0.01,0.1]
rDP = [0.4,0.6]
rSV = [0.05,0.15]
rHM = [0.15,0.25]
rP Le = [0.05,0.15]
rCM = [0.15,0.25]

βx = [10−5,10−4]∀x
cx = 10−3∀x
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Appendix 2.1: Chapter 2 - Model parameterizations

Interaction strengths

1. Weak interactions

aFT ,P L = [10−7,10−5]

aP L,FT = [−10−5,−10−7]

aP L,DP = [10−7,10−5]

aP L,HM = [10−7,10−5]

aP L,P Le = [10−7,10−5]

aP L,CM = [10−7,10−5]

aDP ,P L = [−10−5,−10−7]

aDP ,HM = [10−7,10−5]

aHM,P L = [10−7,10−5]

aHM,DP = [10−7,10−5]

aP Le,P L = [10−7,−10−5]

aCM,P L = [10−7,−10−5]

2. Strong antagonisms

aFT ,P L = [10−4,10−2]

aP L,FT = [−10−2,−10−4]

aP L,DP = [10−4,10−2]

aP L,HM = [10−7,10−5]

aP L,P Le = [10−7,10−5]

aP L,CM = [10−7,10−5]

aDP ,P L = [−10−2,−10−4]

aDP ,HM = [10−7,10−5]

aHM,P L = [10−7,10−5]

aHM,DP = [10−7,10−5]

aP Le,P L = [10−7,−10−5]

aCM,P L = [10−7,−10−5]

3. Strong facilitation
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aFT ,P L = [10−7,10−5]

aP L,FT = [−10−5,−10−7]

aP L,DP = [10−7,10−5]

aP L,HM = [10−4,10−2]

aP L,P Le = [10−4,10−2]

aP L,CM = [10−4,10−2]

aDP ,P L = [−10−5,−10−7]

aDP ,HM = [10−4,10−2]

aHM,P L = [10−4,10−2]

aHM,DP = [10−4,10−2]

aP Le,P L = [10−4,−10−2]

aCM,P L = [10−4,−10−2]
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Appendix 2.2: Chapter 2 - Adjacency
matrices and multilayer
representations

Networks with static interaction strength coefficients can be represented con-
sistently through adjacency matrices. Here we show, for the three frameworks
presented, the adjacency matrices representing the Aire Island community. We
also discuss alternative representations of ecological networks in the multilayer
framework.

Expanded Food Webs

In the formulation used, we modelled four ecological mechanisms: trophic inter-
actions, nontrophic interactions that affect growth rate, and nontrophic interac-
tions that affect mortality rate, as well as interaction modifiers. The three first
mechanisms are represented by one adjacency matrix. Interaction modifiers rep-
resent the effect of one species on a given interaction, so that in a community of N
species, N potential interaction modifiers matrices could exist. In the matrices (Fig.
A.2.2.1) we adhere to the definitions adopted in Chapter 2, in that we consider
the feeding element of mutualisms as trophic interactions, while the subsequent
benefits for the plant species are considered as non-trophic interactions.
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Appendix 2.2: Chapter 2 - Adjacency matrices

Figure A.2.2.1: Adjacency matrices of the Expanded food web of the Aire Island community. In
the trophic adjacency matrix, signs indicate effects of species in columns over species in rows.
In the nontrophic matrices, signs indicate the effect of species in columns over the growth and
mortality rates of the species in rows, respectively. In the interaction modifier matrix, the whole
matrix represents the effects of Helicodiceros muscivorus (leftmost silhouette) over the community
trophic interactions. The positive signs indicate that the presence of the dead horse arum increases
the absolute magnitude of the Podarcis lilfordi – Diptera interaction. As this is the only interaction
modifier considered in the community, the other six interaction modifier matrices are not shown.

Multilayer Networks

Representing multiple interaction types with multilayer
networks

Due to the flexibility of the multilayer framework, it is often possible to design
representations of the same network with different layering dimensions (see
section 2.4 of Kivelä et al. (2014), where they frame the discussion in terms of node-
coloured and edge-coloured graphs). In the context of ecological networks with
different interaction types, different layers usually represent different interaction
types, but another option is to separate layers by taxonomic groups, so that
intra-layer links represent these within a given guild and inter-layer links are
between-guild interactions (Fig. A.2.2.2, cf. Fig. 2.3). In the first representation,
emphasis is given to the sub-networks of different interaction types, and their
structure and dynamics can be tracked separatedly. In the second one, the guild
structure of the community is the priority, and it is a natural representation for
analyzing patterns of interactions of the different guilds or differences in within-
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guild and between-guild interactions. In terms of network structure, the first
representation is potentially node-aligned, i.e. all nodes can appear in all layers,
and there is at least one intra-layer link for each layer. The second representation,
however, is layer-disjoint, i.e. a node exists at most in one layer, and there can exist
layers without any intra-layer links. In that sense, thus, the guild representation
does not connect subnetworks, but sets of entities. We have found no explicit
examples of the guild representation in ecological studies, but empirical datasets
such as the one compiled by (Pocock et al., 2012) can be looked at in both ways of
representation.

Figure A.2.2.2: A multilayer representation of the Aire Island community where layers represent
functional guilds. Note how in this representation, only one intra-layer link exists, that of the
commensalist relationship between Suaeda vera and Helicodiceros muscivorus. In each interaction,
an arrow tip indicates a non-neutral effect over a species.

Adjacency matrices of multiplex networks

Multilayer networks can be represented consistently as rank − 2(d + 1) adjacency
tensors, where d is the number of aspects or dimensions of the network (Kivelä
et al., 2014). The tensorial representation is only valid for node-aligned networks,
i.e. networks in which all nodes are represented in all layers. While this constraint
can be relaxed (see Kivelä et al. 2014 for details), multilayer networks can also be
represented through so-called supra-adjacency matrices, whereby one loses some
information about the aspects (due to the “flattening” of the network) but one
can represent networks that are not node-aligned and, importantly, use standard
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Appendix 2.2: Chapter 2 - Adjacency matrices

matrix algebra to analyze network structure. These supra-adjacency matrices
represent in the same structure the three types of links potentially present in
multilayer networks: intra-layer links in the diagonal blocks, coupling links in
the diagonal elements of the off-diagonal blocks, and inter-layer links in the
off-diagonal elements of the off-diagonal blocks (Fig. A.2.2.3). The distinction
between coupling and inter-layer links is that coupling links are connecting the
same node in different layers, while inter-layer links connect different nodes
in different layers. The Aire Island multilayer network, where each layer is an
interaction type, is not node-aligned (i.e. not all nodes are present in all layers),
hence the supra-adjacency matrix is not square and not all coupling links are
realized (Fig. A.2.2.4).

Figure A.2.2.3: An example of supra-adjacency matrix showing the placement of intra-layer,
coupling and inter-layer links. In this setting, the network consists of four nodes (S1-S4) interacting
in three different ways (I1-I3). All four species are represented in the three sub-networks, so that
the network is node-aligned. Blocks are slightly separated for visibility
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Figure A.2.2.4: Supra-adjacency matrix of the Aire Island multilayer network. The (+,-) block
represents the antagonist subnetwork, (+,0) the commensalist one and (+,+) the mutualist one.
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Appendix 2.3: Chapter 2 -
Supplementary results

Figure A.2.3.1: Equilibrium abundances of the Aire Island community obtained with the equal
footing approach (cf. Fig. 2.3). Each box represents the distribution of abundances for each species
from the 19991 simulations with leading eigenvalue ¡ 0. Simulations with strong antagonistic
interactions are not shown since a vast majority of them were unstable. Letters above boxplots
indicate significant differences according to Wilcoxon signed-rank tests (CM: W = 19, p ¡ 0.05; DP:
W = 12405, p ¡ 0.05; FT: W = 50107000, p = 0.794; HM: W = 58732, p ¡ 0.05; PL: W = 49102000, p
¡ 0.05; PLe: W = 14983000, p ¡ 0.05; SV: W = 49815000, p = 0.649)
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Appendix 2.3: Chapter 2 - Supplementary results

Figure A.2.3.2: Distribution of the leading eigenvalues of unstable communities modelled with
the equal footing approach and not shown in Fig. 2.4. In that figure only leading eigenvalues close
to 0 where shown for visibility, here, all remaining values have been log-scaled.
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Appendix 3.1: Chapter 3 - Model
parameterization and
implementation

Model parameterization

The parameters of the model from Chapter 3 refer to properties of 1) the whole
community, 2) the strength of each interaction type, or 3) species performance.
In the tables, the following abbreviations are used: AM = amensalism, AN =
antagonism, CM = commensalism, CP = competition, M = mutualism.

Table A.3.1.1: Community-level parameters.

Initial number of species {20, 40, 60}
Initial Interaction Type Ratio {{AM = 0.2, AN = 0.2, CM = 0.2, CP = 0.2, M

= 0.2}, {AM = 0.4, AN = 0.15, CM = 0.15, CP
= O.15, M = 0.15}, {AM = 0.15, AN = 0.4,
CM = 0.15, CP = O.15, M = 0.15}, {AM =
0.15, AN = 0.15, CM = 0.4, CP = O.15, M =
0.15}, {AM = 0.15, AN = 0.15, CM = 0.15, CP
= O.4, M = 0.15}, {AM = 0.15, AN = 0.15,
CM = 0.15, CP = O.15, M = 0.4}}

Overall connectance 0.5
Initial SAD Gambin
Initial SAD parameters α = 2
Number of discrete trophic
levels

4

Trophic level abundance
scaling exponent

0.75

Abundance of basal trophic
level

100 ∗ initial number of species
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Appendix 3.1: Chapter 3 - Model parameterization

Table A.3.1.2: Probabilities of occurrence of each
interaction type (Fig. 3.1 of chapter 3). The com-
plete list of studies included can be found at the on-
line supplementary material of the published article:
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2465

Interaction Trophic levels Prob

Amensalism same 1
Amensalism adjacent 0
Amensalism other 0
Antagonism same 0.015
Antagonism adjacent 0.918
Antagonism other 0.067
Commensalism same 0.661
Commensalism adjacent 0.292
Commensalism other 0.047
Competition same 0.979
Competition adjacent 0.021
Competition other 0
Mutualism same 0.048
Mutualism adjacent 0.854
Mutualism other 0.098

The range of k parameters was chosen so that antagonistic interactions had a
greater effect than other types, as they usually result in the death of the prey. In
the same vein, the a parameter is an order of magnitude smaller for antagonistic
interactions due to assumed defense mechanisms by resource species. The x0
parameter does not have a specific ecological meaning in the context of our study,
so we chose to keep it constant.

Table A.3.1.3: Interaction-level parameters.

k {AM = 0.1, AN = 0.5, CM = 0.1, CP = 0.1, M
= 0.1}

a {AM = 0.01, AN = 0.001, CM = 0.01, CP =
0.01, M = 0.01}

x0 1

142



Basal species were assumed to have positive intrinsic growth rates, as opposed
to species in higher trophic levels. Other parameters were in the range used by
Garcı́a-Algarra et al. (2014), the initial formulation of Eq. (3.5) in Chapter 3.

Table A.3.1.4: Species-level parameters.

r basal species: (0,0.08)
consumers: (-0.08,0)

c 0.001
α (1 ∗ 10-5,1 ∗ 10-4)

Model implementation

The model is developed in R 3.0 (R Core Team, 2018), and makes use, mainly,
of the package deSolve (Soetaert et al., 2012) and the package suite tidyverse
(www.tidyverse.org) for generation and treatment of results. Here we show how
communities are assembled in terms of 1) their distribution of abundances and
trophic levels, and 2) their interaction networks. In the last section, we expand on
how model parameters are selected for solving the dynamical system.

Figure A.3.1.1: Conceptual diagram of the model, showing 20 model species and two interaction
types (solid and dashed lines). Abundances are proportional to the size of the node. The process
depicted is replicated 1000 times for each configuration of species richness and frequency of
interaction types.

Community assembly process

1. Abundance and trophic level structure

The initial abundances of species and its (discrete) trophic level (first and second
box of Fig. A.3.1.1) are calculated by a function named AssignTrophicLevel.
This function is able generate communities of any number of species and discrete
trophic levels, with different initial SADs, and with or without abundance scaling
with trophic level. We will show the workflow of this function by “building” a
community with the following parameters, similar to the model communities
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analyzed in chapter 3:

# number of species

num.sp <- 40

# number of discrete trophic levels

trophic.levels <- 4

# SAD parameters

abundance.distribution <- "gambin"

gambin.alpha <- 2

gambin.maxoctave <- 8

# include abundance scaling with trophic level

scaling.law.tl <- TRUE

# with exponent 3/4

scaling.exponent.tl <- 0.75

# aggregated abundance of the basal trophic level, necessary for the scaling

basal.abundance <- num.sp * 100

The first task is to calculate the aggregated abundances of each trophic level, ac-
cording to the scaling. We added a small white noise term ε ∼N (0, abundance/10)
to introduce an element of small variability:

trophic.level.abundance <- numeric(trophic.levels)

trophic.level.abundance[1] <- basal.abundance

# calculate abundance for each trophic level

# including a white noise term with mean = 0 and sd = abundance/10

if(length(trophic.level.abundance) > 1){
for(i.trophic.level in 2:trophic.levels){
trophic.level.abundance[i.trophic.level] <-

trophic.level.abundance[i.trophic.level - 1]ˆscaling.exponent.tl

trophic.level.abundance[i.trophic.level] <-

trophic.level.abundance[i.trophic.level] +

rnorm(n = 1,mean = 0,sd = trophic.level.abundance[i.trophic.level]/10)

}
}

This gives the following abundances (rounded to integer) for the four trophic
levels defined:

[1] 4000 489 112 34

Next, the abundance of each species is drawn from the distribution specified,
in this case, a discrete gambin with α = 2. We developed a function GenerateProb-

Numbers to incorporate this functionality in our model. Further details on how
the function deals with the transformation from octaves to actual abundances can
be checked in the documentation and code of the function.
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abundance.list <- DGC::GenerateProbNumbers(times = num.sp,

dist = abundance.distribution,

cum.sum = sum(trophic.level.abundance),

gambin.alpha = gambin.alpha,

gambin.maxoctave = gambin.maxoctave)

returns the following abundance distribution:

Figure A.3.1.2: Abundance distribution for a community of 40 species generated with the parame-
terization of the main simulations.

At this stage, species have initial abundances but are not assigned to trophic
levels. The next piece of R code assigns species to trophic levels ensuring that the
aggregated abundances of a trophic level are consisten with the scaling already
calculated. Again, a certain tolerance is allowed, so that abundances will not need
to exactly follow the expected scaling.

# create the dataframe

tl.results <- data.frame(species = c(1:length(abundance.list)),

abundance = sort(abundance.list,decreasing = T),

trophic.level = 0)

# the most abundant species will always be at the basal level

tl.results$trophic.level[1] <- 1

for(i.tl in trophic.levels:1){

# iterative process: add species until a trophic level is "filled".

# For convenience I start in the upper trophic level,

# since it will be the most difficult to fill
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# (few species will have such low abundances)

if(i.tl == 1){
my.abund <- tl.results$abundance[1]

}else{
my.abund <- 0

}

# certain tolerance, it does not need to be exact

tl.tolerance <- trophic.level.abundance[i.tl]*0.1

my.sp <- 0

# while the abundance of the i.tl trophic level is not within the tolerance levels,

# keep adding species

while(length(my.sp) != 0 &

findInterval(my.abund,c(trophic.level.abundance[i.tl] - tl.tolerance,

trophic.level.abundance[i.tl] + tl.tolerance)) != 1){

# potential species

my.sp <- which(tl.results$trophic.level == 0 &

tl.results$abundance + my.abund <

(trophic.level.abundance[i.tl] + tl.tolerance))

# sample from the potential species pool

if(length(my.sp)>0){
my.sp <- ifelse(length(my.sp) == 1,my.sp,sample(my.sp,size = 1))

my.abund <- my.abund + tl.results$abundance[tl.results$species == my.sp]

tl.results$trophic.level[tl.results$species == my.sp] <- i.tl

}# if

}# while

}# for i.tl

# if any species remains unassigned, randomly assign it to the 1st or 2nd trophic levels

if(sum(tl.results$trophic.level == 0) > 0){
tl.results$trophic.level[tl.results$trophic.level == 0] <-

sample(1:2,size = sum(tl.results$trophic.level == 0),replace = T)

}

The obtained model community looks like this:

species abundance trophic.level

1 1 1676.620271 1

2 2 874.111429 1

3 3 383.063086 1

4 4 275.592134 1

5 5 246.110064 1

6 6 211.205096 1
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7 7 153.851103 2

8 8 118.274729 1

9 9 107.833539 2

10 10 97.232796 2

11 11 58.662382 1

12 12 55.807177 2

13 13 53.431286 2

14 14 50.988303 2

15 15 35.071829 2

16 16 32.799469 3

17 17 32.632668 1

18 18 29.118406 2

19 19 28.265496 1

20 20 27.696220 2

21 21 26.767967 3

22 22 23.981084 2

23 23 22.095900 3

24 24 21.646918 1

25 25 14.770477 2

26 26 12.470659 2

27 27 12.385128 3

28 28 11.899331 2

29 29 11.529057 2

30 30 9.390576 2

31 31 9.270894 4

32 32 8.353354 4

33 33 7.347363 4

34 34 6.604980 4

35 35 5.828236 3

36 36 4.154809 1

37 37 4.148890 4

38 38 4.046894 2

39 39 4.019357 2

40 40 3.991716 3

2. Building the network of interactions

The sign matrix of the community, as used in this study, is a square matrix
containing the sign of the effects of every species upon every other species of
the community. These signs can be either -1, 0, or 1. For constructing such a
matrix, we need different information: first, the list of species and their trophic
levels; second, the connectance of the network; third, the frequencies of the five
interaction types; fourth, the probabilities for each interaction type to occur in
same, adjacent or other trophic levels. This information is passed to the function
GenerateSignMatrix. In this example, we use the species list calculated above,
and specify an equal ratio of interaction types, alongside a connectance of 0.5.
Furthermore, we use the probabilities of interaction ocurrence across trophic
levels shown in Fig. 3.1 of chapter 3.

Due to the cumbersomeness of the GenerateSignMatrix function, here we
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summarize its general idea, and leave the reader the option to consult the complete
function in the Github repository of David Garcı́a Callejas (http://github.com/
DavidGarciaCallejas/DGC). First, the function obtains the maximum number
of links that can potentially be assigned to each interaction type (bear in mind
that some combinations of links across trophic levels may have zero probability of
occurring, e.g. amensalism between adjacent or other trophic levels. Therefore,
the set of potential amensalistic links is much more reduced than the set of, say,
potential mutualistic links. Appendix 2.4 delves further into this idea and its
implications). Second, the function obtains the overall number of links to be actu-
ally assigned, based on network connectance. Lastly, it instantiates each of these
links by 1) drawing an interaction type according to the probabilities specified, in
this case (0.2, 0.2, 0.2, 0.2, 0.2); 2) drawing the trophic levels involved according
to the probabilities of occurrence across trophic levels (Fig. 3.1 of chapter 3); 3)
randomly selecting one of the potential links with these characteristics not yet
“filled”. Note that, as the process of selecting links is stochastic, the realized fre-
quencies of interaction types will not equal the expected ones, and the same will
happen with the probabilities of occurrence across trophic levels. With the above
parameters, a realization of a sign matrix may present the following summarized
information:

• Number of interactions of each of the five interaction types:

competition amensalism antagonism mutualism commensalism

80 70 90 69 81

no.interaction

390

• Realized frequency of each of the five interaction types:

[1] 0.2051282 0.1794872 0.2307692 0.1769231 0.2076923

• Realized overall network connectance:

[1] 0.5

• Connectance of every interaction type relative to its set of available links:

competition amensalism antagonism mutualism commensalism

0.14209591 0.30837004 0.11538462 0.08846154 0.10384615

• Realized ratios of interaction occurrence across trophic levels (cf. Table
A.3.1.2):
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# A tibble: 10 x 4

# Groups: type [5]

type trophic.level n relative.frequency

<chr> <chr> <int> <dbl>

1 amensalism same 70 1.00

2 antagonism adjacent 168 0.933

3 antagonism other 8 0.0440

4 antagonism same 4 0.0220

5 commensalism adjacent 24 0.296

6 commensalism other 3 0.0370

7 commensalism same 54 0.667

8 competition same 160 1.00

9 mutualism adjacent 128 0.928

10 mutualism other 10 0.0720

Parameter selection and system solving

Community-level parameters and interaction parameters are fixed in the model
(Tables A.3.1.1, A.3.1.2, A.3.1.3) but the realized interaction matrix is different in
each realization. Species-level parameters r0 and α are specified as an interval of
potential values (Table A.3.1.4), and each realization draws a random value for
each species from these intervals.

### min and max parameter values

min.r0 <- -0.08

max.r0 <- 0.08

min.c0 <- 0.001

max.c0 <- 0.001

min.alpha <- 1e-05

max.alpha <- 1e-04

# extinction threshold

extinction.threshold <- 0.001

# scale factor: competition, amensalism, antagonism, mutualism, commensalism

scale.factor <- c(0.1, 0.1, 0.5, 0.1, 0.1)

# parameter ’a’ of the IF function competition, amensalism, antagonism,

# mutualism, commensalism

IF.success.rate <- c(0.01, 0.01, 0.001, 0.01, 0.01)

# extra parameter of the logistic

x0 <- 1

# create list of parameters for the dynamic equations model

param.list <- list()

# if trophic.level > 1, r<0

param.list$r0 <- sapply(tl.results$trophic.level, FUN = function(x) ifelse(x >

1, runif(1, min.r0, 0), runif(1, 0, max.r0)))
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param.list$c0 <- runif(num.sp, min.c0, max.c0)

param.list$alpha <- runif(num.sp, min.alpha, max.alpha)

param.list$sign.matrix <- sign.matrix

param.list$interaction.types <- InteractionTypes(sign.matrix)

param.list$scale.factor <- scale.factor

param.list$IF.success <- IF.success.rate

param.list$x0 <- x0

param.list$extinction.threshold <- extinction.threshold

The system is solved numerically with a Range-Kutta approximation, using
the deSolve package.

dynamics <- ode(y = tl.results$abundance, times = time.steps, func = network.model,

parms = param.list, method = "rk4")

Figure A.3.1.3: Dynamics of the abundances of a 40-species community, up to 5000 timesteps.
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Here we present the results of the statistical tests associated with Fig. 3.2,Fig. 3.3,
and Fig. 3.4 of Chapter 3. In addition, we show how persistence values, i.e. Fig. 3.2
of Chapter 3, vary across trophic levels (Fig. A.3.2.1), and how average species
impact vary with increasing species richness A.3.2.1). In the following tables, the
following abbreviations are used referring to simulations with varying interaction
frequencies: ER = Equal ratio among interaction types, HAM = High amensalism,
HAN = High antagonism, HCM = High commensalism, HCP = High competition,
HM = High mutualism.

1. Differences between persistence levels across simulations
(Fig. Fig. 3.2 of Chapter 3)

We tested whether the distributions of persistence values for each category of
interaction frequency were different or not. For that, we grouped the observations
according to the initial richness of the simulations and, for each level of initial
richness, we performed a Kruskal-Wallis rank test for differences in the distribu-
tions of persistence across the six levels of interaction frequencies (Table A.3.2.1).
Kruskal-Wallis test are non-parametric tests appropriate for testing whether sets
of samples originate from the same distribution. These tests showed significant
differences between persistence distributions within each richness level, so we
performed post-hoc Dunn tests for the difference between every pair of distribu-
tions, again within each richness level (Table A.3.2.2). P-values were adjusted with
the Bonferroni correction. All pairs of distributions were significantly different
except that of the “equal ratio” and “high antagonism” simulations with 40 initial
species.

Table A.3.2.1: Kruskal-Wallis rank tests for differences between
pairs of persistence distributions.

Initial richness χ2 Df p-value

20 1430.6 5 < 0.001
40 1349.6 5 < 0.001
60 552.69 5 < 0.001
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Table A.3.2.2: Pair-wise post-hoc Dunn’s test comparisons for every
pair of simulations.

Pair Initial richness Z statistic p-value

ER - HAM 20 7.657 < 0.001
ER - HAM 40 8.388 < 0.001
ER - HAM 60 8.589 < 0.001
ER - HAN 20 3.909 < 0.001
ER - HAN 40 0.559 1
ER - HAN 60 4.019 < 0.001
ER - HCM 20 -7.388 < 0.001
ER - HCM 40 -8.674 < 0.001
ER - HCM 60 -3.971 < 0.001
ER - HCP 20 13.56 < 0.001
ER - HCP 40 12.89 < 0.001
ER - HCP 60 12.04 < 0.001
ER - HM 20 -20.09 < 0.001
ER - HM 40 -19.21 < 0.001
ER - HM 60 -7.414 < 0.001
HAM - HAN 20 -3.749 0.0013
HAM - HAN 40 -7.829 < 0.001
HAM - HAN 60 -4.569 < 0.001
HAM - HCM 20 -15.045 < 0.001
HAM - HCM 40 -17.062 < 0.001
HAM - HCM 60 -12.56 < 0.001
HAM - HCP 20 5.903 < 0.001
HAM - HCP 40 4.497 < 0.001
HAM - HCP 60 3.452 0.0042
HAM - HM 20 -27.75 < 0.001
HAM - HM 40 -27.59 < 0.001
HAM - HM 60 -16.004 < 0.001
HAN - HCM 20 -11.297 < 0.001
HAN - HCM 40 -9.233 < 0.001
HAN - HCM 60 -7.991 < 0.001
HAN - HCP 20 9.651 < 0.001
HAN - HCP 40 12.33 < 0.001
HAN - HCP 60 8.021 < 0.001
HAN - HM 20 -24.01 < 0.001
HAN - HM 40 -19.77 < 0.001
HAN - HM 60 -11.43 < 0.001
HCM - HCP 20 20.95 < 0.001
HCM - HCP 40 24.56 < 0.001
HCM - HCP 60 16.01 < 0.001
HCM - HM 20 -12.71 < 0.001
HCM - HM 40 -10.53 < 0.001
HCM - HM 60 -3.44 0.0043
HCP - HM 20 -33.66 < 0.001
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Pair Initial richness Z statistic p-value

HCP - HM 40 -32.09 < 0.001
HCP - HM 60 -19.46 < 0.001

2. Differences between the initial and final frequencies of
interaction (Fig. 3.3 of Chapter 3)

For testing the difference between the initial and final frequency of each interac-
tion type, we performed Wilcoxon paired signed-rank tests for each combination
of initial richness and level of interaction frequency. These tests allow a non-
parametric analysis of the difference between paired samples. In our case, each
paired sample was the initial and final frequency of a given interaction type. In
particular, for each replicate of each simulation, we calculated whether the mean
rank of the initial-final differences was either less, different or greater than zero.
These alternative hypotheses were selected based on a preliminary inspection of
the data.

Table A.3.2.3: Wilcoxon paired signed-rank tests for testing differ-
ences between the initial and final frequency of each interaction
type (Fig. 3.3). The interaction type column refers to the set of
interactions analysed. For example, “amensalism” refers to the
ratio of amensalistic interactions in all simulations, e.g. the whole
set of points from the upper-left panel, while “amensalism - HAM”
refers to the set of amensalistic interactions in the simulation with
high initial amensalism, e.g. the set of blue points in the upper-left
panel. The p-values listed here correspond to the graphical legend
of Fig. 3.3.

Initial richness Interaction type alternative hypothesis Statistic P-value

20 amensalism initial > final 10268730 < 0.001
20 antagonism initial > final 11714319 < 0.001
20 commensalism initial < final 6224456 < 0.001
20 competition initial > final 12883361 < 0.001
20 mutualism initial < final 2776289 < 0.001
20 amensalism - HAM initial > final 270371 < 0.01
20 antagonism - HAN initial > final 325119 < 0.001
20 commensalism - HCM initial < final 111677 < 0.001
20 competition - HCP initial > final 369222 < 0.001
20 mutualism - HM initial < final 14319 < 0.001
40 amensalism initial > final 12107905 < 0.001
40 antagonism initial != final 9150881 0.084
40 commensalism initial < final 7655927 < 0.001
40 competition initial > final 13361816 < 0.001
40 mutualism initial < final 2669916 < 0.001
40 amensalism - HAM initial > final 288792 < 0.001
40 antagonism - HAN initial != final 238615 0.249
40 commensalism - HCM initial < final 178367 < 0.001
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Initial richness Interaction type alternative hypothesis Statistic P-value

40 competition - HCP initial > final 274399 < 0.01
40 mutualism - HM initial < final 2259 < 0.001
60 amensalism initial > final 16351320 < 0.001
60 antagonism initial < final 2340004 < 0.001
60 commensalism initial > final 11596381 < 0.001
60 competition initial > final 16700652 < 0.001
60 mutualism initial < final 579985 < 0.001
60 amensalism - HAM initial > final 449342 < 0.01
60 antagonism - HAN initial < final 33262 < 0.001
60 commensalism - HCM initial > final 352325 < 0.001
60 competition - HCP initial > final 412015 < 0.001
60 mutualism - HM initial < final 137 < 0.001

3. Structural patterns of the model communities (Fig. 3.4 of
Chapter 3)

We checked the skewness of the distribution of species impacts by calculating
the Pearson’s moment coefficient of skewness for every simulation (Table A.3.2.4).
Furthermore, we analyzed the differences between distributions of species impact
per trophic level. For that, we performed a Kruskal-Wallis test followed by post-
hoc Dunn tests, in a similar vein to the tests of section 1. In this case, all pairs of
species impacts distributions were significantly different.

Table A.3.2.4: Pearson’s moment coefficient of skewness of the
distribution of net species impacts per simulation type (in panel a
of Fig. 3.4 of Chapter 3, the simulation with 60 species and equal
ratio between interactions is depicted

Initial richness Frequency of interaction types Skewness

20 Equal ratio 12.6
20 High amensalism 22.1
20 High antagonism 18.7
20 High commensalism 7.7
20 High competition 24.1
20 High mutualism 8.9
40 Equal ratio 11.2
40 High amensalism 20.2
40 High antagonism 20.2
40 High commensalism 8.9
40 High competition 19.8
40 High mutualism 11.5
60 Equal ratio 14.7
60 High amensalism 20.3
60 High antagonism 15.0
60 High commensalism 10.3
60 High competition 18.3
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Initial richness Frequency of interaction types Skewness

60 High mutualism 15.0

Table A.3.2.5: Kruskal-Wallis rank tests for two-tail differences
between average impact per trophic level (in panel b of Fig. 3.4 of
Chapter 3, the simulation with 60 species and equal ratio between
interactions is depicted)

Initial richness Frequency of interaction type s χ2 Df p-value

20 Equal ratio 43360.4 3 < 0.001
20 High amensalism 38160.2 3 < 0.001
20 High antagonism 51881.4 3 < 0.001
20 High commensalism 43279.1 3 < 0.001
20 High competition 42625.5 3 < 0.001
20 High mutualism 48095.8 3 < 0.001
40 Equal ratio 65136.7 3 < 0.001
40 High amensalism 57615.3 3 < 0.001
40 High antagonism 112336.0 3 < 0.001
40 High commensalism 66019.0 3 < 0.001
40 High competition 57758.8 3 < 0.001
40 High mutualism 71763.3 3 < 0.001
60 Equal ratio 99168.1 3 < 0.001
60 High amensalism 73536.4 3 < 0.001
60 High antagonism 210780.8 3 < 0.001
60 High commensalism 81705.7 3 < 0.001
60 High competition 83325.2 3 < 0.001
60 High mutualism 92851.8 3 < 0.001

Table A.3.2.6: Pair-wise post-hoc Dunn’s test comparisons of the
results of table A.3.2.5, for difference in average impact per trophic
level. For each combination of initial richness and interaction
frequencies, average impact values of every pair of trophic levels
are compared

Initial richness Frequency of interaction types Trophic level pair Z statistic p-value

20 Equal ratio 1-2 113.5 < 0.001
20 Equal ratio 1-3 155.5 < 0.001
20 Equal ratio 1-4 145.4 < 0.001
20 Equal ratio 2-3 76.1 < 0.001
20 Equal ratio 2-4 91.4 < 0.001
20 Equal ratio 3-4 34.2 < 0.001
20 High amensalism 1-2 108.4 < 0.001
20 High amensalism 1-3 147.2 < 0.001
20 High amensalism 1-4 129.6 < 0.001
20 High amensalism 2-3 71.9 < 0.001
20 High amensalism 2-4 80.8 < 0.001
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Initial richness Frequency of interaction types Trophic level pair Z statistic p-value

20 High amensalism 3-4 29.2 < 0.001
20 High antagonism 1-2 131.4 < 0.001
20 High antagonism 1-3 170.1 < 0.001
20 High antagonism 1-4 160.2 < 0.001
20 High antagonism 2-3 77.3 < 0.001
20 High antagonism 2-4 97.9 < 0.001
20 High antagonism 3-4 40.6 < 0.001
20 High commensalism 1-2 120.5 < 0.001
20 High commensalism 1-3 157.7 < 0.001
20 High commensalism 1-4 138.7 < 0.001
20 High commensalism 2-3 73.2 < 0.001
20 High commensalism 2-4 83.4 < 0.001
20 High commensalism 3-4 30.6 < 0.001
20 High competition 1-2 112.8 < 0.001
20 High competition 1-3 154.5 < 0.001
20 High competition 1-4 135.9 < 0.001
20 High competition 2-3 76.7 < 0.001
20 High competition 2-4 85.6 < 0.001
20 High competition 3-4 30.2 < 0.001
20 High mutualism 1-2 112.3 < 0.001
20 High mutualism 1-3 170.6 < 0.001
20 High mutualism 1-4 158.5 < 0.001
20 High mutualism 2-3 89.3 < 0.001
20 High mutualism 2-4 103.5 < 0.001
20 High mutualism 3-4 38.4 < 0.001
40 Equal ratio 1-2 154.2 < 0.001
40 Equal ratio 1-3 169.5 < 0.001
40 Equal ratio 1-4 174.7 < 0.001
40 Equal ratio 2-3 77.3 < 0.001
40 Equal ratio 2-4 114.1 < 0.001
40 Equal ratio 3-4 54.9 < 0.001
40 High amensalism 1-2 148.3 < 0.001
40 High amensalism 1-3 154.0 < 0.001
40 High amensalism 1-4 160.7 < 0.001
40 High amensalism 2-3 68.9 < 0.001
40 High amensalism 2-4 104.6 < 0.001
40 High amensalism 3-4 51.0 < 0.001
40 High antagonism 1-2 218.2 < 0.001
40 High antagonism 1-3 220.1 < 0.001
40 High antagonism 1-4 231.5 < 0.001
40 High antagonism 2-3 83.9 < 0.001
40 High antagonism 2-4 138.9 < 0.001
40 High antagonism 3-4 71.5 < 0.001
40 High commensalism 1-2 155.5 < 0.001
40 High commensalism 1-3 176.5 < 0.001
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Initial richness Frequency of interaction types Trophic level pair Z statistic p-value

40 High commensalism 1-4 169.3 < 0.001
40 High commensalism 2-3 82.5 < 0.001
40 High commensalism 2-4 108.7 < 0.001
40 High commensalism 3-4 47.8 < 0.001
40 High competition 1-2 146.7 < 0.001
40 High competition 1-3 152.7 < 0.001
40 High competition 1-4 157.9 < 0.001
40 High competition 2-3 70.2 < 0.001
40 High competition 2-4 103.3 < 0.001
40 High competition 3-4 48.5 < 0.001
40 High mutualism 1-2 140.5 < 0.001
40 High mutualism 1-3 190.6 < 0.001
40 High mutualism 1-4 195.2 < 0.001
40 High mutualism 2-3 99.7 < 0.001
40 High mutualism 2-4 135.4 < 0.001
40 High mutualism 3-4 61.1 < 0.001
60 Equal ratio 1-2 204.15 < 0.001
60 Equal ratio 1-3 194.8 < 0.001
60 Equal ratio 1-4 202.5 < 0.001
60 Equal ratio 2-3 86.9 < 0.001
60 Equal ratio 2-4 133.1 < 0.001
60 Equal ratio 3-4 66.6 < 0.001
60 High amensalism 1-2 174.8 < 0.001
60 High amensalism 1-3 163.0 < 0.001
60 High amensalism 1-4 172.1 < 0.001
60 High amensalism 2-3 74.6 < 0.001
60 High amensalism 2-4 115.6 < 0.001
60 High amensalism 3-4 58.4 < 0.001
60 High antagonism 1-2 337.6 < 0.001
60 High antagonism 1-3 267.2 < 0.001
60 High antagonism 1-4 287.2 < 0.001
60 High antagonism 2-3 82.8 < 0.001
60 High antagonism 2-4 161.8 < 0.001
60 High antagonism 3-4 91.2 < 0.001
60 High commensalism 1-2 182.9 < 0.001
60 High commensalism 1-3 178.4 < 0.001
60 High commensalism 1-4 182.8 < 0.001
60 High commensalism 2-3 82.4 < 0.001
60 High commensalism 2-4 121.8 < 0.001
60 High commensalism 3-4 59.7 < 0.001
60 High competition 1-2 190.0 < 0.001
60 High competition 1-3 164.7 < 0.001
60 High competition 1-4 182.3 < 0.001
60 High competition 2-3 72.9 < 0.001
60 High competition 2-4 121.9 < 0.001
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Initial richness Frequency of interaction types Trophic level pair Z statistic p-value

60 High competition 3-4 63.5 < 0.001
60 High mutualism 1-2 173.3 < 0.001
60 High mutualism 1-3 203.3 < 0.001
60 High mutualism 1-4 212.3 < 0.001
60 High mutualism 2-3 103.8 < 0.001
60 High mutualism 2-4 146.6 < 0.001
60 High mutualism 3-4 67.2 < 0.001

Table A.3.2.7: Ratio of species with < 10 individuals and with >
100 individuals averaged over 100 assembled model communities.

Initial richness Ratio abundant species Ratio rare species

20 0.265 0.155
40 0.218 0.231
60 0.218 0.209

4. Additional figures

Figure A.3.2.1: Persistence values of the main simulations grouped by initial richness, interaction
frequencies, and trophic level. The line inside the boxes represents the median values, lower and
upper hinges correspond to the first and third quantiles and whiskers extend to the smallest/largest
value no further than 1.5 times the inter-quartile range. Bars and symbols above the boxplots
represent the outcome of Wilcoxon signed-rank tests (corrected for multiple comparisons with the
Bonferroni correction) for the difference between pairs of groups (N.S: not significant, * p < 0.05,
** p < 0.01, *** p < 0.001).
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Figure A.3.2.2: Average pairwise species impact in model communities grouped by initial richness
and interaction frequencies. Error bars represent standard error.
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Appendix 3.3: Chapter 3 - Additional
simulations and sensitivity analyses

Additional simulations

In order to evaluate the importance of the structural constraints imposed to our
model communities, we performed a series of additional simulations in which
we sequentally removed one of the three constraints evaluated. Here we briefly
explain the details of each set of simulations.

1 - Uniform initial SAD: We relaxed the requisite of a skewed Species Abun-
dance Distribution by the start of the simulations. We allowed species abundances
to be randomly drawn from a uniform distribution with the only constraint that
the summed value of abundances at each trophic level be lower than the initial
number of species times 100.

2 - No trophic level scaling: In the main set of simulations, the overall initial
abundance across trophic levels follows a power law with exponent 0.75 (see
Methods in Chapter 3). We removed this scaling in this set of simulations and
allowed trophic levels to be similar in initial abundances.

3 - No interaction structure: Here, we removed the distribution of interactions
within and across trophic levels (Fig. 3.2 of Chapter 3). We only retained the topol-
ogy of antagonistic interactions, in order not to obtain unrealistic configurations
of basal species consuming predators. All other interaction types had the same
probability of occurrence across same, adjacent or other trophic levels.

We performed these three sets of simulations for a subset of the initial richness
and interaction frequency configurations, due to limitations in computing power.
Specifically, we analyzed communities with initial richness of 20 and 40 species,
and frequencies of equal ratio of interactions, high competition and high mutu-
alism (an intermediate configuration and the ones displaying the most different
behaviour). For each community type, we show the values of 1000 replicates.
Here we replicate, for these configurations, Fig. 3.2, Fig. 3.3, Fig. 3.4 of Chapter 3,
and Fig. A.3.2.1 of Appendix 3.2.
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Figure A.3.3.1: Persistence ratios of the additional simulations. C.f. Fig. 3.2 of Chapter 3.
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Figure A.3.3.2: Persistence ratios of the four different trophic levels for the additional simulations.
C.f. Appendix 3.2: Fig. A.3.2.1
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Figure A.3.3.3: Species impact and correlation patterns at the end of the additional simulations.
C.f. Fig. 3.3 of Chapter 3.
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Sensitivity analysis

We performed a partial sensitivity analysis on one of the parameters of the model
in order to test its qualitative trends. The parameter selected is the scale factor
k, that modulates the relative scale of a given per capita interaction: a higher k
implies a higher per capita impact, up to the point that k = 1 produces per capita
interactions that have the same order of magnitude as the intrinsic growth rates.

The motivation behind this parameter is to differentiate interactions by their
per capita impact. For example, a single predator-prey interaction will generally
have a higher per capita impact than any other single interaction, due to the death
of the prey individual. Of course, there are exceptions to this scheme, so we
checked the behaviour of our model by producing a small set of simulations with
varying sets of k values.

A set of k values specifies the scaling factor for each of the five interaction
types, e.g.:

k = (kamensalism, kantagonism, kcommensalism, kcompetition, kmutualism)

The main simulations represent the hypothesis stated above, i.e. that antago-
nisms will generally have a higher per capita impact:

kmain = (0.1,0.5,0.1,0.1,0.1)

We generated three more sets of k values for this sensitivity analysis, thus
obtaining a gradient from complete homogeneity in per capita impact (k1) to the
initial parameterization (k4):

k1 = (0.2,0.2,0.2,0.2,0.2)
k2 = (0.167,0.3,0.167,0.167,0.167)
k3 = (0.133,0.4,0.133,0.133,0.133)
k4 = kmain

We tested the effect of the different sets of k in the dynamics of model commu-
nities with 20 species and three different configurations of interaction frequencies:
an equal ratio of interactions, a high ratio of competition, and a high ratio of
mutualism. We generated 500 replicates of each combination of initial richness,
interaction frequencies and set of k values. Computational constraints prevented
us from testing the effect of k over the complete set of community configurations,
but the categories selected are representative of the whole set: communities with
20 species are, as shown in e.g. 3.2, the most sensitive to variations in the model
parameters; in addition, the three configurations of interaction frequencies se-
lected represent two extremes and an intermediate situation in regards to expected
persistence. Therefore, we are moderately confident that the results from this
sensitivity analysis can be representative of other configurations.
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The results of the sensitivity analysis show that homogeneous k values across
interaction types tend to increase persistence levels, for every configuration,
and the differences between configurations are statistically significant in most
cases (Fig. A.3.3.4). Statistical comparisons across groups were analyzed by
performing Bonferroni-corrected pairwise Wilcoxon signed-rank tests on each
pair of persistence values. It is also apparent that, regardless the set of k values
chosen, communities with high proportion of mutualisms show the highest levels
of persistence, while communities with high proportion of competition show
the lowest levels. Therefore, the qualitative trends of the main simulations are
maintained across different sets of interaction scaling factors.

Figure A.3.3.4: Distribution of persistence values for 500 replicates of model communities
parameterized with different sets of values for the scaling factor k. The x axis represents the
different sets of values considered (see text). Bars above the boxplot represent the significance of
each pairwise comparison (Wilcoxon signed-rank tests; * indicates p < 0.05, ** p < 0.01, *** p <
0.001
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Appendix 3.4: Chapter 3 - Network
assembly, connectance, and
interaction type ratio

Any set of interaction rules that prevents a pair of species from interacting modi-
fies the connectance of the interaction network by an adjustment on the number
of potentially feasible links. Connectance measured relative to a fully-connected
network only makes sense if every pairwise interaction is potentially feasible.
Otherwise, connectance should be computed relative to the potential number of
links given the assembly contraints of the network. Linkage rules will vary among
interaction types, so that in a multi-interaction network the potential number of
links will be different for each sub-network.

Hence, specifying type-specific connectances and linkage rules, the probability
that a given link is of a certain type can be obtained. For the sake of brevity, we
name this set of probabilities the Interaction Type Ratio (ITR henceforth, where
if a subscript is given, it indicates the probability of a certain interaction type).
In the following example we demonstrate the difference between assuming a
single value of connectance and setting type-specific connectances for network
assembly, given the linkage probabilities of Fig. 3.1. These linkage probabilities
can be summarised qualitatively in that for commensalism and mutualism, every
pairwise link is allowed, while amensalism can only occur between species of the
same trophic level, antagonism does not occur in a bottom-up fashion (i.e. where
the species from the lower level benefits to the expense of a species of an upper
level), and competition only occurs between species of the same or adjacent levels.

Assume a network with N = 20 nodes. If no link is structurally forbidden
when we consider the overall network, the potential number of links is:

S =N (N − 1)/2 = 190

Furthermore, imposing an overall connectance C = 0.2 and equal ITR, i.e.
IT Rx = 0.2 for every interaction type x, yields the following number of realised
links:

L = C ∗ S = 38,Lx ≈ 8

With these numbers, we may calculate the specific connectances of every
interaction type for this particular network. Take as an example a community
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generated with the constraints and parameterization stated in chapter 3 and in
Appendix 3.1 (e.g. four discrete trophic levels, abundance scaling across trophic
levels, 2000 individuals at the basal trophic level). The linkage rules can be
expressed mathematically to obtain the number of potential links per interaction
type. The scaling constraints predict that, on average, the distribution of the N
species in the T = 4 trophic levels will be {N1 = 7,N2 = 6,N3 = 4,N4 = 3}. Then:

Samensalism =
T∑
i=1

Ni(Ni − 1)
2

= 49

Santagonism =N (N − 1)/2 = 190

Scommensalism =N (N − 1)/2 = 190

Scompetition =
T∑
i=1

Ni(Ni − 1)
2

+
T−1∑
j=1

Nj ∗Nj−1 = 123

Smutualism =N (N − 1)/2 = 190

Hence, the type-specific connectances are:

Camensalism = Lamensalism/Samensalism = 0.163
Cantagonism = Lantagonism/Santagonism = 0.042

Ccommensalism = Lcommensalism/Scommensalism = 0.042
Ccompetition = Lcompetition/Scompetition = 0.065

Cmutualism = Lmutualism/Smutualism = 0.042

By definition, type-specific connectances will be lower than the overall con-
nectance. Only in the unrealistic scenario of networks with a single interaction
type, its specific connectance will equal the overall connectance, while all the other
types will have a specific connectance of zero. As overall connectance increases,
more links are realised for each interaction type, and type-specific connectances
will increase in turn. Fig. A.3.4.1 shows the variation in type-specific connectances
as overall connectance increases for networks in which interactions are realised
with equal probability for each interaction type.

Note how the ratio between type-specific connectance and overall connectance
varies with the type of interaction. This is a direct consequence of the linkage
rules that define the set of potential links available to each interaction type:
smaller sets of potential links necessarily yield higher connectances for the same
number of realised links. Also, given the set of linkage rules chosen, it is not
possible to obtain networks of IT Rx = 0.2,∀x and overall connectance on the
range of C ≥ 0.6. In this case, this is due to the fact that amensalistic interactions
occurr only between species of the same trophic level, and assuming that any
two species cannot interact in more than one way, these links can potentially be
‘filled’ by any other interaction type.Therefore, an upper limit to the amensalistic
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Figure A.3.4.1: relationship between overall connectance and a) specific connectances of each
type, b) ITR. Black line in panel a) shows the y=x line

realised interactions is imposed not only by its ITR, but also by the occurrence of
other interaction types. Once this limit is reached for amensalistic interactions,
other interaction types, however, still maintain part of their potential link space
unoccupied, and therefore can keep increasing in number of links, connectance
and, hence, ITR.

If, instead of imposing a constant ITR, we assemble networks with fixed specific
connectances, the overall connectance and ITR will vary accordingly. As in the
example above, assume a network with N = 20 nodes, the same linkage rules and,
therefore, same potential number of links per interaction type. In this case, setting
Cx = 0.2∀x yields the following approximate number of links:

Lamensalism = Camensalism ∗ Samensalism = 9
Lantagonism = Cantagonism ∗ Santagonism = 38

Lcommensalism = Ccommensalism ∗ Scommensalism = 38
Lcompetition = Ccompetition ∗ Scompetition = 25

Lmutualism = Cmutualism ∗ Smutualism = 38

L =
∑
x

Lx = 148

and ITR:

IT Ramensalism = Lamensalism/L = 0.06
IT Rantagonism = Lantagonism/L = 0.257

IT Rcommensalism = Lcommensalism/L = 0.257
IT Rcompetition = Lcompetition/L = 0.166

IT Rmutualism = Lmutualism/L = 0.257
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Not surprisingly, ITRs are not equivalent to specific connectances, given that
the potential link set is different for each interaction type. The value of overall
connectance for this network is:

C =
∑
xLx
S

= 0.78

As specific connectance values increase, overall connectance quickly reaches 1
(Fig. A.3.4.2). Once this threshold is crossed, increases in specific connectance
are no longer reflected in the assembled network, and in fact, an increasing
number of links cannot be realised. Therefore, assuming that most interactions
are allowed (i.e. not structurally forbidden), as in the linkage rules used here,
specific connectances as low as ≈ 0.25 for every interaction type already fill the
entire set of potential links. These numbers apply to binary connectances, that
consider only the presence or absence of a given interaction. If quantitative
interactions are available, weighted connectances can be obtained, and these will
better reflect the effective number of links (Ulanowicz et al., 2014).

Figure A.3.4.2: relationship between specific connectances and overall connectance, assuming
equal specific connectances for each interaction type. Black line shows the y=x line. Note that axes
are switched with respect to Fig. A.3.4.1, for reflecting the behaviour of the overall connectance.
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Supplementary results

Supplementary tables

Table A.4.1.1: Differences in evenness between pairs of trophic guilds in the empirical datasets, as
given by the beta regression detailed in Table 4.3 of chapter 4.

contrast Estimate Std. Error df z ratio p-value
plants - herbivores -0.868 0.054 Inf -15.882 < 0.05
plants - omnivores -0.753 0.063 Inf -11.975 < 0.05
plants - carnivores -0.712 0.069 Inf -10.382 < 0.05
herbivores - omnivores 0.115 0.05 Inf 2.315 0.0947
herbivores - carnivores 0.157 0.061 Inf 2.567 0.0503
omnivores - carnivores 0.042 0.068 Inf 0.614 0.927
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Table A.4.1.2: Differences in skewness between pairs of trophic guilds in the empirical datasets, as
given by the multinomial regression detailed in Table 4.2 of chapter 4.

contrast Estimate Std. Error df t ratio p-value
category = [-0.5,0.5]:
plants - herbivores -0.216 0.066 10 -3.269 < 0.05
plants - omnivores -0.343 0.072 10 -4.761 < 0.05
plants - carnivores -0.205 0.078 10 -2.623 < 0.05
herbivores - omnivores -0.126 0.047 10 -2.666 0.0930
herbivores - carnivores 0.011 0.053 10 0.215 0.9963
omnivores - carnivores 0.138 0.063 10 2.195 0.1898
category = (0.5,1]:
plants - herbivores 0.216 0.066 10 3.269 < 0.05
plants - omnivores 0.343 0.072 10 4.762 < 0.05
plants - carnivores 0.205 0.078 10 2.623 0.0994
herbivores - omnivores 0.127 0.047 10 2.666 0.0930
herbivores - carnivores -0.011 0.053 10 -0.215 0.9963
omnivores - carnivores -0.138 0.063 10 -2.195 0.1899
category = [-1,-0.5):
plants - herbivores −5.4 ∗ 10−6 3 ∗ 10−5 10 -0.179 0.9978
plants - omnivores −2.8 ∗ 10−6 1.6 ∗ 10−5 10 -0.174 0.9980
plants - carnivores −1.8 ∗ 10−5 1 ∗ 10−4 10 -0.178 0.9979
herbivores - omnivores 2.6 ∗ 10−6 1.5 ∗ 10−5 10 0.176 0.9979
herbivores - carnivores −1.3 ∗ 10−5 7.4 ∗ 10−5 10 -0.177 0.9979
omnivores - carnivores −1.5 ∗ 10−5 8.8 ∗ 10−5 10 -0.178 0.9979

Table A.4.1.3: Differences between the proportion of species and individuals of the mammal
trophic guilds, analyzed via Wilcoxon signed-rank paired tests.

trophic guild mean sp s.d. sp mean ind s.d. ind W p-value
herbivores 0.623 0.216 0.607 0.324 131422 0.144
omnivores 0.330 0.198 0.408 0.313 162226 < 0.05
carnivores 0.305 0.179 0.211 0.244 18772 < 0.05
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Supplementary figures

Figure A.4.1.1: Skewness levels observed in empirical datasets
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Supplementary results

Here we show the response of the studied metrics in relationship to variability in
the dispersal and foraging rates (d and f , which are both fixed to 0.5 in the main
simulations). We performed supplementary simulations in which we varied both
rates in the interval [0.25,0.75]. In the simulations accounting for both dispersal
and foraging, we also simulated communities with high values of dispersal rates
and low foraging rates, and viceversa.

The ratio of positive to negative interactions (left panel of Fig. A.5.1.1) varies
from 0.94 to 1.05, with the highest variability being observed in the inter-patch
effects of the dispersal simulation and the intra-patch effects of the foraging one.
The magnitude of the net effects is much more variable for intra-patch effects than
for inter-patch ones (middle panel of Fig. A.5.1.1), with its average value being in
all cases relatively close to zero, which invites the interpretation that, regardless
of the parameterization chosen, positive and negative net effects tend to mirror
each other in number and also in magnitude. The number of pairwise interactions
that switch sign from direct to net effect (right panel of Fig. A.5.1.1) is lowest in
the dispersal simulations, but these also show the highest variability, in the local,
intra-patch, interactions. Simulations with foraging and with both movement
types are less variable and, in all cases, the frequency of sign switches between
populations of different locations is lower than the frequency of switches between
populations of the same location.

The variations in d and f are reflected in the relationship between the magni-
tude of intra and inter-patch net effects (Fig. 5.2). In the dispersal simulations, an
increase in d trigger an increase in inter-patch net effects relative to intra-patch
ones (Fig. A.5.1.2, three upper panels). In the foraging configuration, higher inter-
patch foraging triggers a higher variability in both intra-patch and inter-patch
effects, with no apparent directionality, whereas low f values clearly reduce the
magnitude of inter-patch effects, as expected. The simulations with both dispersal
and foraging show a mixture of the patterns described above; it is worth noting
that even a small addition of foraging is able to scatter the packed configuration
of dispersal-only net effects of the upper panels of Fig. A.5.1.2.

The spatial decay of net effects is quite similar across parameterizations (Fig.
A.5.1.3 and Fig. A.5.1.4). Interestingly, for high values of inter-patch dispersal
or foraging, the spatial cascades do not generally increase in length or in the
magnitude of the effect at a given length (compare middle and right panels of
Fig. A.5.1.3 and Fig. A.5.1.4). On the other hand, low values of d or f do induce
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Figure A.5.1.1: Variability in a) ratio of positive to negative net effects, b) mean net effect magni-
tude, and c) relative frequency of sign switches between direct and net effects, for varying dispersal
and foraging rates. Grey points represent the metrics for the values of the main simulations (d =
0.5, f = 0.5) .

lower net effects across the spatial cascades generated (compare middle and left
panels of Fig. A.5.1.3 and Fig. A.5.1.4, note the variation in vertical axis). This
asymmetrical effect could be due to the design and parameterization of the model
or reflect an underlying ecological process of effect dampening at high direct
interaction strengths.
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Figure A.5.1.2: Variability in across and within-patch pairwise net effects for different dispersal
and foraging rates (cf Fig. 5.2 of chapter 5). In the panels, “d” is the dispersal rate, “f” foraging
rate, “low” indicates a value of 0.25, “intermediate” 0.5, and “high” 0.75. Note that “intermediate”
values correspond to the parameterization of the main simulations.
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Figure A.5.1.3: Variability in the relationship between net effect and spatial distance for different
dispersal and foraging rates (cf panel a of Fig. 5.3 in chapter 5). Panel legend as in Fig. A.5.1.2
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Figure A.5.1.4: Variability in the relationship between net effect and average path length for
different dispersal and foraging rates (cf. panel (b) of Fig. 5.3 in chapter 5). Panel legend as in Fig.
A.5.1.2
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Physiological response curves and
additional results

We modelled the physiological response of species to a non-resource environ-
mental factor following the conceptual hypothesis of Maestre et al. (2009), who
assumed that plant species are ordered on a continuum ranging from pure com-
petitors to pure stress-tolerants. Species were able to randomly colonize locations
alongside an environmental gradient with varying levels of both non-resource and
resource environmental factors (Fig. A.6.1.1). Competitive species survive and
grow best in optimal conditions, but are very sensitive to environmental stress.
Stress-tolerant species, on the other hand, maintain moderate levels of survival
and growth for higher stress levels.

For implementing this framework, we derived a flexible function able to
reproduce different functional responses. The function is

P (x) =
k ∗ p0 ∗ er1x

k + p0 ∗ er1x−1 − c(e
r2x−1) (7.11)

where P(x) is the response variable, that in our scenario corresponds to survival
or growth probability. The parameterisation we obtained for the species at the
ends of the continuum, mimicking Fig. 1 of Maestre et al. (2009), is given in Table
A.6.1.1. With that parameterisation at the extreme behaviours, we generated 20
response curves for model species (Fig. A.6.1.2), such that the transition between
pure competitors and pure stress tolerant species is smooth, and all species have
maximum survival probability in the absence of environmental stress.

Table A.6.1.1: Parameterisation of 7.11 for purely competitive and purely stress-tolerant species.
Intermediate species have parameters within these ranges in all cases.

survival growth
stress-tolerant competitor stress-tolerant competitor

k 1 0.1 0.7 0.1
p0 1 1 0.7 1
r1 0.1 0.01 0.1 0.05
r2 1 0.85 0.5 0.5
c 3 ∗ 10−5 3 ∗ 10−4 5 ∗ 10−3 0.05
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Figure A.6.1.1: A series of locations with linearly varying conditions of a resource factor (repre-
sented by circle size) and non-resource factor (from light to dark blue). The grid represented in
this figure is of size 20*20, whereas the one used in the model is of size 50*50.

Figure A.6.1.2: Physiological response curves of 20 modelled species to a single non-resource
environmental factor. Probabilities of survival (left panel) and growth (right panel) are modelled,
and species range from purely stress-tolerant (dark blue curves) to purely competitive (yellow
curves). Stress-tolerant species maintain a high probability of survival under a higher range of
environmental stress, and also keep a moderate growth probability for longer than competitive
species. The latter, on the other hand, are very sensitive to environmental stress, but grow better
than stress-tolerant species under ideal conditions. These functional responses are adapted from
Fig. 1 of Maestre et al. (2009)
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Figure A.6.1.3: Variation in community-level properties across the two dimensional gradient. As
we are not interested in absolute values but rather in trends of variation, values in all panels are
normalised, ranging from 0 (minimum values, dark blue) to 1 (maximum values, yellow).

Figure A.6.1.4: Distribution of the net differences between simulations with or without facilitation.
Bright colours indicate high values of a metric in the simulations with facilitation relative to the
ones without facilitation, and viceversa for darker shades. Note that the colour scales in the three
panels are not equivalent; this is due to the different ranges of the differences among metrics.
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Harder. 2014. When mutualism goes bad: Density-dependent impacts of intro-
duced bees on plant reproduction. New Phytologist 204:322–328.

Alerstam, T., and J. Bäckman. 2018. Ecology of animal migration. Current Biology
28:R968–R972.

Allen, D. C., and J. S. Wesner. 2016. Comparing effects of resource and consumer
fluxes into recipient food webs using meta-analysis. Ecology 97:594–604.

Allesina, S., J. Grilli, G. Barabás, S. Tang, J. Aljadeff, and A. Maritan. 2015. Pre-
dicting the stability of large structured food webs. Nature communications
6:7842.

Allesina, S., and S. Tang. 2012. Stability criteria for complex ecosystems. Nature
483:205–8.

Almaraz, P., and D. Oro. 2011. Size-mediated non-trophic interactions and stochas-
tic predation drive assembly and dynamics in a seabird community. Ecology
92:1948–1958.

Amarasekare, P. 2008. Spatial Dynamics of Foodwebs. Annual Review of Ecology,
Evolution, and Systematics 39:479–500.

185



Bibliography
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Fontaine, C., P. R. Guimarães Jr., S. Kéfi, N. Loeuille, J. Memmott, W. H. van der
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coherence determines food-web stability. Proceedings of the National Academy
of Sciences 111:17923–17928.

Jordano, P. 1987. Patterns of Mutualistic Interactions in Pollination and Seed
Dispersal: Connectance, Dependence Asymmetries, and Coevolution. The
American Naturalist 129:657–677.

———. 2016. Sampling networks of ecological interactions. Functional Ecology
30:1883–1893.

Jost, L. 2006. Entropy and diversity. Oikos 113:363–375.

Kéfi, S., E. L. Berlow, E. A. Wieters, L. N. Joppa, S. A. Wood, U. Brose, and S. A.
Navarrete. 2015. Network structure beyond food webs: Mapping non-trophic
and trophic interactions on Chilean rocky shores. Ecology 96:291–303.
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Pärtel, M., M. Zobel, K. Zobel, and E. van der Maarel. 1996. The Species Pool and
Its Relation to Species Richness: Evidence from Estonian Plant Communities.
Oikos 75:111–117.

Pascual, M., and J. A. Dunne, eds. 2006. Ecological Networks: Linking Structure to
Dynamics in Food Webs. Santa Fe Institute studies in the sciences of complexity.
Oxford University Press, Oxford ; New York. OCLC: ocm60312026.

Passy, S. I. 2016. Abundance Inequality in Freshwater Communities Has an
Ecological Origin. The American Naturalist 187:502–516.

Peacor, S. D., and E. E. Werner. 1997. Trait-Mediated Indirect Interactions in a
Simple Aquatic Food Web. Ecology 78:1146–1156.
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Sanders, D., C. G. Jones, E. Thébault, T. J. Bouma, T. van der Heide, J. van Belzen,
and S. Barot. 2014. Integrating ecosystem engineering and food webs. Oikos
123:513–524.

Santamarı́a, L., and M. A. Rodrı́guez-Gironés. 2007. Linkage rules for plant-
pollinator networks: Trait complementarity or exploitation barriers? PLoS
Biology 5:0354–0362.

Sauve, A. M. C., C. Fontaine, and E. Thébault. 2014. Structure-stability relation-
ships in networks combining mutualistic and antagonistic interactions. Oikos
123:378–384.
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