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Summary 

In industrialised economies large amounts of chemicals are produced and released into 

the environment. The accumulation of these chemicals in the ecosystem and the 

consequent exposure of human individuals to them are suspected of causing adverse 

effects on human health.  For the so-called EDCs (Endocrine Disrupting Compounds) 

these effects include interference with hormonal regulation.  REACH (Registration, 

Evaluation, Authorisation, and Restriction of Chemicals) and 3R (Replacement, 

Reduction and Refinement) principles have been proposed by the ECHA (European 

Chemicals Agency) and EFSA (European Food Safety Authority), respectively, in order 

to regulate the production and use of such chemicals. Both principles address the 

protection of human health and the environment through a better and earlier identification 

of the intrinsic properties of chemical substances. Simultaneously they aim to provide an 

alternative to animal testing by development of in-vitro and in-silico tools, incorporation 

of integrated assessment and testing approaches (IATAs), etc. The early identification of 

chemical-induced adverse effects poses several challenges.  These include complexities 

inherent to the biological systems affected, complex mechanisms around structure, 

stability and solubility of the chemicals themselves, and the complex responses of 

organisms to exposure at various life stages and time scales. Emerging high-throughput 

analyses, OMICS and several in-silico tools such as PBPK (Physiologically based 

pharmacokinetic), PD (Pharmacodynamics), Systems Biology (SB) and AOPs (Adverse 

outcome pathways) offer opportunities to understand more of the biological complexity 

and multilevel connectivity. Along with the development of new tools and techniques in 

toxicological research, it is necessary to have a continuous re-evaluation of existing data, 

data curation, data integration, and knowledge-based translation of the integral results to 

implications that might able to solve many current challenges in this field. However, there 

is a paucity of research that integrates in-vitro, in-vivo, and several in-silico models into 

platforms that directly tie the results of the new data driven approaches in with predictive 

adverse outcomes models.  

The objective of the current thesis was to develop an Integrative Systems Toxicology 

Framework enabling to understand the adverse effects of chemicals on a biological system 

quantitatively. It should comprise exposure, subsequent molecular and physiological 

alterations, molecular and cellular response as well as the ultimate adverse effect. The 

platform should be aiming for mechanistic understanding of any chemical’s interaction 

with living systems, more than for the conventional empirical end points and animal based 

testing. The intended approach should integrate all the approaches that are presently used 

to address parts of the overall problem, such as chemical exposures, physiology, 

pharmacokinetics, pharmacodynamics, and biological response.  

In chapter I, the literature is reviewed with the aim of identifying proposed mechanisms 

of action of EDCs, which included the interactions of chemicals with molecular receptors, 
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enzymes, proteins, gene-expression regulation and epigenetics thereby affecting the 

biological system, during and after the window of exposure. This chapter also investigates 

the normal endogenous pathways pertaining to the relevant hormones as this should aid 

in understanding the physiology dependent action of the corresponding EDCs. Then, the 

EDCs classified based on their target organs, the hormones of which they disrupt the 

action, the targets of those hormones, and the consequent adverse outcomes (response). 

Finally, a grouping strategy is proposed that is based on similar adverse outcomes.  This 

chapter addresses many complications for the quantitative risk assessment, like multiple 

mechanisms, delayed response (time lag between exposure to adverse outcomes), 

dynamic interactions involving crosstalk and common mechanisms (complex 

mechanisms), and transgenerational effects. Finally, an integrative risk assessment 

framework is proposed connecting external exposure, internal exposure, and biological 

effects to the adverse outcomes. This framework includes the use of a PBPK model, a PD 

(pharmacodynamics) model and the coupling of these two models.  

Chapter II includes the development and validation of a PBPK model in adult for Di-2-

ethylhexyl phthalate (DEHP) and Flutamide, both categorized as EDCs. The model for 

DEHP includes four DEHP metabolites namely mono-(2-ethylhexyl) phthalate (MEHP), 

5-OH MEHP, 2-ethyl-5-carboxypentyl phthalate (5-cx MEPP) and 5-oxo MEHP. An 

IVIVE (in-vitro in-vivo extrapolation) tool was successfully used in connection with the 

PBPK model to derive in-vivo kinetics from in-vitro studies using biologically 

appropriate scaling. A local parametric sensitivity analysis was performed and the 

statistical distributions of the most uncertain yet influential parameters were determined 

by Monte Carlo simulations of model uncertainty. Then the model was evaluated against 

published independent data on plasma and urine concentrations of DEHP metabolites for 

different dosing scenarios. 

The development of the flutamide PBPK model includes bottom-up, top-down and cross-

species extrapolation approaches. First, the model is developed for rat and then it is 

extrapolated to the human. Evaluated against experimentally observed data addressing 7 

compartments, the rat model performed fairly: for most tissues the median values 

predicted by the model were less than a factor of 10 away from the average experimental 

values. The extrapolation of the model to predict flutamide kinetics in humans for two 

different scenarios of dosing (single and multiple) was also in good agreement with the 

observed data. 

Chapter III focuses on the development of a Pregnancy PBPK (P-PBPK) model for 

Bisphenol-A (BPA) that includes the foetus as a sub compartment into the model 

structure. First, the adult PBPK model is developed and validated with the human BPA 

toxicokinetic data. This validated human PBPK model is then extended to become a P-

PBPK model which includes the physiological changes during pregnancy and the foetus 

sub-model. The developed P-PBPK model is in concordance with biomonitoring data and 

shows that BPA readily transfers to foetal serum and amniotic fluid after maternal 
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exposure. De-conjugation of BPA-conjugate (BPAG) in placenta and foetus causes 

increased BPA exposure in early foetal life. Importantly, free BPA in the foetal 

compartment are more in steady state and persist even as the maternal level of BPA 

declines. The mid-gestational period was found to be critical, as during this time the 

concentration of BPA in the foetus was relatively high.  Moreover, this period is also 

considered as critical for the foetus’ body development.   

Chapter IV builds an in-silico replica simulation of the biological system’s behaviour.  It 

reconstructs the biochemical information on components’ communication into 

mathematical equations. It includes the development and validation of a systems biology 

model for ROS (reactive active oxygen species). First, we build the models ab initio, 

starting from the physiology of the response to oxidative stress.  Subsequently, we 

increase the complexity of the network step by step. Adding every new level of 

complexity in a domino approach enables us to identify design principles of ROS 

management. It demonstrates that both mitochondrial recovery and mitophagy may avert 

ROS-induced cell death. The model is validated against several independent in-vitro data 

sets. 

Chapter V includes the integrative systems toxicology approach. This involves two cases:  

1) PBPK coupled PD with a mechanistic pathway model (similar to AOP).  Perfluoro 

octane sulfonic acid (PFOS) was selected as a case study to illustrate the ways to 

incorporate systems biological modeling in the field of toxicology via a 

Pharmacodynamics-coupled tissue dosimetry model (PBPK/PD). A PBPK and a 

mechanistic system pathway model are simulated individually in order to generate the 

component models. Subsequently the integrated PBPK/PD coupled mechanistic model 

(systems toxicology) was used for simulations. QIVIVE along with PBPK was used to 

evaluate the performance of the model using in-vitro data.  

2) PBPK coupled PD with the detailed ROS systems biology model taking the case study 

for the flutamide. The previously developed flutamide PBPK (chapter 2) and ROS 

systems biology models were used to develop integrative systems toxicology. This 

integral model is used to predict the hepatotoxicity of flutamide, illustrating the wider 

application of integrative systems toxicology in the field of the Human health risk 

assessments.   
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Resum 

En una economia industrialitzada, es produeixen i alliberen al medi ambient una gran 

quantitat de productes químics orgànics. Les acumulacions d'aquestes substàncies 

químiques en l'ecosistema i la seva posterior exposició per part dels humans es sospita 

que pot causar efectes adversos sobre la seva salut. Per regular la producció de productes 

químics i els seus usos per es proposa el principi REACH (Registre, Avaluació, 

Autorització i Restricció de Productes Químics) i 3R (Substitució, Reducció i 

Refinament) part de l'ECHA i l'EFSA, respectivament. Ambdós principis tenen per 

objectiu millorar de la protecció de la salut humana i el medi ambient a través de la 

identificació primerenca de les propietats intrínseques de les substàncies químiques. 

Simultàniament, també es proposa una alternativa a les proves amb animals mitjançant el 

desenvolupament d'eines in vivo i in-silico i la incorporació d'enfocaments integrats 

d'avaluació i assaig (IATA), etc. Les primeres identificacions d'efectes adversos induïts 

químicament plantegen diversos reptes com; una complexitat de l'herència dins del 

sistema biològic i el mecanisme complex del químic o les respostes complexes de 

l'organisme sobre diferents escales de vida o escales de temps. L'anàlisi d'alta producció 

emergent, OMIQUES i diverses eines in-silico com PBPK, PD, biologia de sistemes i 

AOP ofereixen l'oportunitat d'entendre la complexitat biològica i la seva connectivitat 

multinivell. Juntament amb el desenvolupament de noves eines i tècniques en recerca 

toxicològica, és necessari tenir una reavaluació contínua de les dades existents, la curació, 

la integració de dades i la traducció basada en el coneixement que puguin resoldre molts 

reptes actuals en aquest camp. A més, hi ha una escassa recerca que integra in-vitro, in-

vivo i diversos models in-silico en una sola plataforma per lligar directament el resultat a 

un model predictiu de resultats adversos. 

L'objectiu d’aquesta tesi va ser desenvolupar un marc de toxicologia de Sistemes Integrats 

per comprendre quantitativament els efectes adversos de les substàncies químiques en un 

sistema biològic, des de la seva exposició a alteracions moleculars i fisiològiques 

posteriors, mitjançant la integració d'exposició interna-resposta molecular/cel·lular a 

l'efecte advers. Això es va orientar a la comprensió mecanística de la interacció química 

amb sistemes vivents versus punts finals empírics convencionals i proves basades en 

animals. Aquest enfocament integra tot l'esdeveniment, com exposicions químiques, 

fisiologia, farmacocinètica, farmacodinàmica i resposta biològica. 

En el capítol I, es va fer una revisió de la literatura per comprendre els mecanismes d'acció 

dels En el capítol I, es va fer una revisió de la literatura per comprendre els mecanismes 

d'acció dels DE  que inclouen la interacció de substàncies químiques amb receptors 

moleculars, enzims, proteïnes, mecanismes reguladors de gens o procés epigenètic que 

afecten el sistema biològic, incloent l'exposició. Aquest capítol també investiga la via 

endògena normal de l'hormona per comprendre l'acció dels DE dependent de la fisiologia. 

A continuació, es va realitzar la classificació dels DE a partir dels seus òrgans diana, 
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hormones, biomolècula (objectiu) i resultats adversos (resposta). Finalment, es va 

proposar una estratègia d'agrupació basada en resultats adversos similars. En aquest 

capítol es van abordar molts desafiaments, com ara múltiples mecanismes, resposta 

tardana (retard temporal entre exposició a resultats adversos), interaccions dinàmiques 

que impliquen interferències i mecanismes comuns (mecanismes complexos), efectes 

transgeneracionals, etc. en l'avaluació de riscos quantitatius. Finalment, es va proposar un 

marc d'avaluació de riscos integradors que consisteix en l'exposició exposició interna-

efecte biològic als resultats adversos. Això inclou l'ús del model PBPK, PD (model de 

farmacodinàmica) i l'acoblament d'aquests dos models. 

El capítol II inclou el desenvolupament i validació del model PBPK en adults per Di(2-

etilhexil) ftalat i quatre metabòlits, és a dir, mono- (2-etilhexil) ftalat (MEHP), 5-OH 

MEHP, 2-etil-5-carboxpentil ftalat (5-cx MEPP) i 5-oxo MEHP. S'ha utilitzat amb èxit 

una eina IVIVE en connexió amb un PBPK a cinètica in vivo derivada d'estudis in vitro 

que utilitzen un escalat biològicament apropiat. Es va realitzar una anàlisi de sensibilitat 

paramètrica local i es van distribuir estadísticament els paràmetres més incerts però 

influents per a les simulacions de Monte Carlo per a l'anàlisi de models d'incertesa. A 

continuació, es va avaluar el model contra les dades independents publicades sobre 

concentracions plasmàtiques i d'orina de metabòlits DEHP per a diferents escenaris de 

dosificació. 

El capítol II inclou el desenvolupament i validació del model PBPK en adults per Di(2-

etilhexil) ftalat i quatre metabòlits, és a dir, mono- (2-etilhexil) ftalat (MEHP), 5-OH 

MEHP, 2-etil-5-carboxpentil ftalat (5-cx MEPP) i 5-oxo MEHP. S'ha utilitzat amb èxit 

una eina IVIVE en connexió amb un PBPK a cinètica in vivo derivada d'estudis in vitro 

que utilitzen un escalat biològicament apropiat. Es va realitzar una anàlisi de sensibilitat 

paramètrica local i es van distribuir estadísticament els paràmetres més incerts però 

influents per a les simulacions de Monte Carlo per a l'anàlisi de models d'incertesa. A 

continuació, es va avaluar el model contra les dades independents publicades sobre 

concentracions plasmàtiques i d'orina de metabòlits DEHP per a diferents escenaris de 

dosificació. 

El desenvolupament del model PBPK de flutamida inclou un enfocament d'extrapolació 

de baix datl, de dalt a baix i d'espècies transversals. Primer, el model es va desenvolupar 

a les rates i després es va extrapolar als humans. El model de rata es va avaluar en 

comparació amb les dades observades experimentalment en 7 compartiments i el model 

es va realitzar de manera equitativa: els valors previstos pel model mitjà eren menys d'un 

factor de 10 fora del valor experimental mitjà per a la majoria dels teixits. L'extrapolació 

del model per predir la cinètica de la flutamida en humans per a dos escenaris diferents 

de dosificació (sola i múltiple) també va estar en consens amb les dades observades. 

El capítol III es va centrar en el desenvolupament d'un model PBPK per a BPA en dones 

embarassades que incloïa el cos del fetus com a sub compartiment en l'estructura del 
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model. En primer lloc, es va desenvolupar i validar el model PBPK adult amb les dades 

toxicocinètics BPA humans. Aquest model PBPK humà validat es va estendre per 

desenvolupar un model P-PBPK que incloïa els canvis fisiològics durant l'embaràs i el 

submodel del fetus. El model P-PBPK desenvolupat està en concordança amb dades de 

biomonitorització i va demostrar que BPA es transferia fàcilment al sèrum fetal i al líquid 

amniòtic després de l'exposició de la mare. Desconjugació en la placenta i el cos del fetus 

causant una major exposició a BPA en la vida primària fetal. És important destacar que 

el BPA lliure al compartiment fetal és més estable i continua fins i tot quan el nivell 

matern de BPA disminueix. Es va trobar que el període de gestació mitjana era molt crític, 

ja que durant aquest temps, la concentració de BPA al fetus era relativament alta; a més, 

aquest període també es considera crític per al desenvolupament del fetus. 

El capítol IV il·lustra la simulació de la rèplica in-silico del comportament del sistema 

biològic reconstruint la informació d'emergència biològica i la comunicació dels seus 

components en equacions matemàtiques. Va incloure el desenvolupament i validació d'un 

model de biologia de sistemes per a ROS (espècies reactives d'oxigen actiu). En aquest 

primer hem construït els nostres models ab initio, partint de la fisiologia de la resposta a 

l'estrès oxidatiu i augmentant la complexitat de la xarxa de manera progressiva. Es va 

sumar un nou nivell de complexitat en un enfocament de domini el que ens va permetre 

identificar principis de disseny de la gestió de ROS. Es va demostrar que tant la 

recuperació mitocondrial com la mitofàgia podrien evitar la mort cel·lular induïda per 

ROS. El model es va validar amb les dades in-vitro. 

El capítol V va incloure l'enfocament integrat de la toxicologia de sistemes. Això implica 

dos casos: 

 1) PBPK acoblat PD amb model de via mecànica (similar a AOP); S'ha seleccionat l'àcid 

perfluoro octano-sulfònic (PFOS) com a estudi de cas per il·lustrar les maneres 

d'incorporar l'ús del model biològic del sistema en el camp de la toxicologia mitjançant 

el model de dosimetria tissular unida a la farmacodinàmica (PBPK / PD). Un PBPK i un 

model de via mecanitzada del sistema simulat individualment per obtenir el model base. 

Posteriorment es va realitzar la simulació del model mecanicista integrat PBPK / PD 

(toxicologia dels sistemes). QIVIVE juntament amb PBPK s'utilitza per avaluar el 

rendiment del model utilitzant dades in-vitro.  

2) PBPK acoblat PD amb el model detallat de biologia de sistemes ROS prenent l'estudi 

de cas per al flutamida. El model de flutamida PBPK desenvolupat prèviament (capítol 

2) i ROS es va utilitzar per desenvolupar la toxicologia dels sistemes integradors. Aquest 

model s'utilitza per predir l'hepatotoxicitat del flutamida, que il·lustra la aplicació més 

àmplia de la toxicologia dels sistemes integradors en el camp de les avaluacions del risc 

de salut humana. 
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  Resumen 

En las economías industrializadas, se producen y liberan grandes cantidades de sustancias 

químicas en el medio ambiente. Se sospecha que la acumulación de estos químicos en el 

ecosistema, y la consiguiente exposición humana a los mismos, causan efectos adversos 

en la salud. Para los llamados EDC (Compuestos Disruptores Endocrinos) estos efectos 

se centran en la interferencia con la regulación hormonal. La ECHA (Agencia Europea 

de Sustancias y Mezclas Químicas) y la EFSA (Autoridad Europea de Seguridad 

Alimentaria) han propuesto los principios REACH (Reglamento de Registro, Evaluación, 

Autorización y Restricción de Sustancias Químicas) y 3R (Reemplazo, Reducción y 

Refinamiento), respectivamente, para regular la producción y uso de tales químicos. 

Ambos principios abordan la protección de la salud humana y el medio ambiente a través 

de una identificación mejor y más temprana de las propiedades intrínsecas de las 

sustancias químicas. Al mismo tiempo, su objetivo es proporcionar una alternativa a las 

pruebas en animales mediante el desarrollo de herramientas tales como pruebas in-vitro e 

in-silico, la incorporación de enfoques integrados de evaluación y prueba (IATA), 

etcétera. La identificación temprana de los efectos adversos inducidos por productos 

químicos plantea varios desafíos. Estos incluyen complejidades inherentes a los sistemas 

biológicos afectados, mecanismos complejos alrededor de la estructura, estabilidad y 

solubilidad de los mismos químicos, y las respuestas complejas de los organismos a la 

exposición en varias etapas de la vida y escalas de tiempo. Los análisis emergentes de alto 

rendimiento, OMICS, así como varias herramientas in-silico tales como PBPK, PD, 

Biología de Sistemas y AOP ofrecen oportunidades para comprender más la complejidad 

biológica y la conectividad a varios niveles. Junto con el desarrollo de nuevas 

herramientas y técnicas en investigación toxicológica es necesario realizar una 

reevaluación, conservación e integración de los datos existentes y su traducción, basada 

en el conocimiento de los resultados integrales a las implicaciones que podrían resolver 

muchos desafíos actuales en este campo. Sin embargo, hay pocas investigaciones que 

integren diferentes modelos in-vitro, in-vivo e in-silico en plataformas que vinculen 

directamente los resultados de los nuevos enfoques basados en datos con modelos 

predictivos de resultados adversos. 

El objetivo de la tesis actual ha sido desarrollar un Marco de Toxicología de Sistemas 

Integrados que permitiera comprender cuantitativamente los efectos adversos de los 

productos químicos en un sistema biológico. Éste debe comprender la exposición, las 

alteraciones moleculares y fisiológicas posteriores, la respuesta molecular y celular, y el 

efecto adverso final. La plataforma debe centrarse en la comprensión mecanística de la 

interacción de cualquier químico con los sistemas vivos, más que en los puntos finales 

empíricos convencionales y pruebas basadas en animales. El rumbo previsto debe integrar 

todos los enfoques que se utilizan actualmente para abordar partes del problema general, 

como la exposición química, fisiología, farmacocinética, farmacodinámica y respuesta 

biológica. 
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En el capítulo I se revisa la literatura con el objetivo de identificar los mecanismos de 

acción propuestos de los EDC, incluyendo las interacciones de sustancias químicas con 

receptores moleculares, enzimas, proteínas y regulación de expresión génica y 

epigenética, afectando así al sistema biológico, durante y después de la ventana de 

exposición. Este capítulo también investiga las vías endógenas normales seguidas por las 

hormonas más relevantes para comprender la acción dependiente de la fisiología de los 

EDC correspondientes. Luego, los EDC se clasifican en función de sus órganos diana 

(aquellos cuyas hormonas interrumpen la acción), los objetivos de esas hormonas y los 

consiguientes resultados adversos (respuesta). Finalmente, se propone una estrategia de 

agrupación que se basa en resultados adversos similares. Este capítulo aborda muchas 

complicaciones para la evaluación de riesgos cuantitativos, como mecanismos múltiples, 

respuesta retrasada (retraso de tiempo entre la exposición a resultados adversos), 

interacciones dinámicas que involucran interferencias y mecanismos comunes 

(mecanismos complejos), y efectos transgeneracionales. Finalmente, se propone un marco 

integrador de evaluación de riesgos que conecta el exposoma, la exposición interna y 

efectos biológicos a los resultados adversos. Este marco incluye el uso de un modelo 

PBPK y un modelo PD (farmacodinámico), así como el acoplamiento de ambos. 

El Capítulo II incluye el desarrollo y la validación de un modelo de PBPK en adultos para 

Di-2-etilhexil ftalato (DEHP) y Flutamida, ambos clasificados como EDC. El modelo 

para DEHP incluye cuatro metabolitos DEHP (mono- (2-etilhexil) ftalato (MEHP), 5-OH 

MEHP, 2-etil-5-carboxipentil ftalato (5-cx MEPP) y 5-oxo MEHP). A partir de estudios 

in-vitro utilizando escamas biológicamente apropiadas, se derivó la cinética in-vivo 

utilizando una herramienta IVIVE en conexión con el modelo PBPK. Se realizó un 

análisis de sensibilidad paramétrica local y las distribuciones estadísticas de los 

parámetros influyentes más inciertos se determinaron mediante simulaciones de Monte 

Carlo. El modelo fue entonces evaluado con datos independientes sobre concentraciones 

plasmáticas y urinarias de metabolitos de DEHP para diferentes escenarios de 

dosificación. El desarrollo del modelo de flutamida PBPK incluye enfoques de 

extrapolación de abajo hacia arriba, de arriba hacia abajo y de especies cruzadas. Primero, 

el modelo se desarrolló para ratas y luego se extrapoló a humanos. Evaluado en 

comparación con los datos observados experimentalmente en 7 compartimentos, el 

modelo de rata se comportó de manera equitativa: para la mayoría de los tejidos, los 

valores medios previstos por el modelo estaban a menos de un factor de 10 de los valores 

experimentales promedio. La extrapolación del modelo para predecir la cinética de la 

flutamida en humanos para dos escenarios diferentes de dosificación (individual y 

múltiple) también fue similar a los datos observados.  

El Capítulo III se enfoca en el desarrollo de un modelo de PBPK durante el embarazo (P-

PBPK) para BPA que incluye al feto como un compartimento secundario en la estructura 

del modelo. En primer lugar, el modelo de PBPK para adultos se desarrolla y valida con 

los datos toxicocinéticos de BPA humano. Este modelo validado de PBPK se amplía para 

convertirse en un modelo P-PBPK que incluye los cambios fisiológicos durante el 
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embarazo y el sub-modelo del feto. El modelo P-PBPK desarrollado está en concordancia 

con los datos de biomonitoreo y muestra que el BPA se transfiere fácilmente al suero fetal 

y al líquido amniótico después de la exposición materna. El desacoplamiento del BPA 

conjugado (BPAG) en la placenta y el feto causa una mayor exposición al BPA en la vida 

fetal temprana. Es importante destacar que el BPA libre en el compartimento fetal se 

encuentra más estable y persiste incluso cuando el nivel materno de BPA disminuye. Se 

descubrió que el período de la mitad de la gestación era crítico, ya que durante este tiempo 

la concentración de BPA en el feto era relativamente alta. Además, este período también 

se considera crítico para el desarrollo del cuerpo del feto.  

El Capítulo IV construye una simulación de réplica in-silico del comportamiento del 

sistema biológico. Reconstruye la información bioquímica sobre la comunicación de los 

componentes en ecuaciones matemáticas, incluyendo el desarrollo y la validación de un 

modelo de sistemas biológicos para ROS (Especies Reactivas de Oxígeno). Primero, se 

construyeron los modelos ab initio, a partir de la fisiología de la respuesta al estrés 

oxidativo. Posteriormente, se aumentó la complejidad de la red paso a paso. Cada nuevo 

nivel de complejidad fue agregado siguiendo un efecto dominó que permitió identificar 

los principios de diseño para la gestión de ROS. Los resultados demuestran que tanto la 

recuperación mitocondrial como la mitofagia pueden evitar la muerte celular inducida por 

ROS. El modelo se validó con varios conjuntos de datos in-vitro independientes.  

El capítulo V se enfoca en la toxicología de sistemas integradores. Esto implica dos casos: 

1) PD acoplado a PBPK con un modelo mecanístico (similar a AOP). El ácido perfluoro 

octanosulfónico (PFOS) se seleccionó como caso de estudio para ilustrar las formas de 

incorporar modelos de sistemas biológicos en el campo de la toxicología a través de un 

modelo de dosimetría de tejidos acoplado a farmacodinámica (PBPK / PD). Un PBPK y 

un modelo de vía de sistema mecanicista se simularon individualmente para generar los 

modelos de componentes. Posteriormente, se utilizó el modelo mecánico acoplado PBPK 

/ PD (toxicología de sistemas) para llevar a cabo diferentes simulaciones. Para evaluar el 

rendimiento del modelo utilizando datos in-vitro se utilizó QIVIVE acoplado al PBPK. 

2) PD acoplado a PBPK con el modelo ROS,  tomando como caso de estudio la flutamida. 

Los modelos PBPK de sistemas biológicos para flutamida desarrollados previamente 

(capítulo 2) y ROS se utilizaron para desarrollar la toxicología integrada de sistemas. Este 

modelo integral se utilizó para predecir la hepatotoxicidad de la flutamida, alcanzando la 

aplicación más amplia de la toxicología de sistemas integradores en el campo de las 

evaluaciones de riesgos para la salud humana. 
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Samenvatting 

In de meeste industrielanden worden grote hoeveelheden chemicaliën geproduceerd en 

los gelaten in de omgeving.  Men verdenkt de ophoping van deze chemicaliën in het 

ecosysteem en de daardoor veroorzaakte blootstelling van mensen aan die chemicaliën, 

ervan negatieve effecten te hebben op de menselijk gezondheid.  Wat de zogenaamde 

EDCs (endocrien systeem verstorende verbindingen) betreft, betreffen deze effecten de 

verstoring van hormoonregulatie.  REACH (Registratie, Evaluatie, Autorisering en 

beperking van CHemicaliën) en 3V (Vervanging, Vermindering, en Verfijning) 

beginselen zijn respectievelijk voorgesteld door de ECHA (Europese Chemicaliën 

Agentschap) en de EFSA (Europese Voedsel Veiligheid Autoriteit) om productie en 

gebruik van zulke chemicaliën aan banden te leggen.  Beide beginselen gaan over de 

bescherming van de menselijke gezondheid en de omgeving door een betere en vroegere 

vaststelling van wat de intrinsieke eigenschappen zijn van chemische stoffen. 

Tegelijkertijd richten zij zich op het bieden van een alternatief voor dierproeven door in 

vitro en in silico methodes te ontwikkelen, door geïntegreerde beoordeling en 

testbenaderingen (zogenaamde IATAs) mee te nemen, enzovoort.  Het tijdig opmerken 

van schadelijke effecten van chemicaliën gaat gepaard aan verscheidene uitdagingen.  Zo 

geven de complexiteiten die inherent zijn aan de getroffen biologische systemen, de 

complexe mechanismen rond structuur, stabiliteit, en oplosbaarheid van de chemicaliën 

zelf, alsook de complexe reacties van organismen in verschillende levensstadia en op 

verschillende tijdschalen, problemen.  De hoge-doorvoer analyses die opduiken, de -

ooms, alsmede verschillende in silico methodes zoals PBPK (in fysiologie gefundeerde 

farmacokinetiek), PD (farmacodynamiek), systeembiologie, en AOPs (paden met 

schadelijke werking) bieden de gelegenheid meer te begrijpen van de biologische 

complexiteit en de meerlagige verbondenheid.  Het is noodzakelijk om, tezamen met het 

ontwikkelen van nieuwe methodes en technieken voor toxicologisch onderzoek, 

bestaande gegevens te her-evalueren, te verbeteren qua opbouw en consistentie, te 

integreren, en dan op basis van kennis de integrale resultaten hiervan te implementeren in 

potentiële oplossingen van de vele problemen op dit gebied.  Er heerst echter een schaarste 

aan onderzoek dat in vitro, in vivo en in silico modellen tot platformen integreert an dat 

de resultaten van de nieuwe gegevens-gedreven benaderingen in direct verband brengt 

met modellen die schadelijke werkingen voorspellen.  

Dit proefschrift beoogt een integratieve systeemtoxicologie methodiek te ontwikkelen die 

ons in staat stelt om de schadelijke effecten van chemicaliën op een biologische systeem 

getalsmatig te begrijpen.  Deze methodiek dient zich meer te richten op het begrijpen van 

de mechanismen volgens welke een chemische stof ingrijpt op levende systemen, dan op 

de conventionele proefondervindelijke eindpunten en dierproeven.  De bedoelde 

benadering dient alle huidige echelons, zoals chemische blootstelling, fysiologie, 

farmacokinetiek, farmacodynamiek en biologische reactie, mee te nemen. 
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In hoofdstuk I wordt de wetenschappelijke literatuur doorgenomen op reeds voorgestelde 

werkingsmechanismen van EDCs die de interacties van chemicaliën met moleculaire 

sensoren, enzymen, eiwitten, regulatie van genexpressie, en epigenetica bevatten die op 

het biologische systeem aangrijpen, tijdens en na de blootstellingsperiode.  Dit hoofdstuk 

onderzoekt ook de normale, endogene paden die de relevante hormonen betreffen, omdat 

kennisname hiervan het begrip van de fysiologische werking van de overeenkomstige 

EDCs zou kunnen bevorderen.  Dan groepeert het hoofdstuk de EDCs op basis van de 

organen waarop ze aangrijpen, de hormonen waarvan ze de werking verstoren, de 

aangrijpingspunten van die hormonen, en de daaruit volgende schadelijke effecten 

(reacties).  Tenslotte wordt een ordeningstrategie voorgesteld die gebaseerd is op 

overeenkomstige schadelijke effecten.   Dit hoofdstuk bespreekt vele complicaties die de 

quantitatieve risicoanalyse vergezellen, zoals meervoudige mechanismen, vertraagde 

reacties (tijdsverschil tussen blootstelling en ongewenste effecten), dynamische 

interacties die lopen via kruisverbanden en gemeenschappelijke mechanismen (complexe 

mechanismen), en effecten die over generaties heen reiken. Tenslotte wordt een 

integratieve risicoanalyse voorgesteld die het exposoom, de inwendige blootstelling, en 

de biologische effecten verbindt aan de schadelijke effecten.  Deze benadering maakt 

gebruik van een PBPK model, van een PD (farmacodynamisch) model en van het 

aaneenschakelen van deze twee modellen. 

Hoofdstuk II bevat de ontwikkeling en validering van een PBPK model in een 

volwassene, voor di-2-ethylhexyl fthalaat (DEHP) and flutamide, beiden thuishorend in 

de categorie EDC.  Het DEHP model bevat vier afbraakproducten van DHEP, te weten 

mono-(2-ethylhexyl) fthalaat (MEHP), 5-OH MEHP, 2-ethyl-5-carboxypentyl fthalaat 

(5-cx MEPP) and 5-oxo MEHP.  Een in-vitro naar in-vivo extrapolatie (IVIVE) methode 

wordt er met succes bij gebruikt om in vivo kinetiek af te leiden uit in vitro studies onder 

gebruikmaking van de van toepassing zijnde biologische schalen.  Een plaatselijke 

parametergevoeligheidsanalyse wordt uitgevoerd door middel van Monte Carlo 

simulaties van de onzekerheden in het model.  Vervolgens werd het model geëvalueerd 

ten opzichte van gepubliceerde onafhankelijke gegevens betreffende plasma en urine 

concentraties van afbraakproducten van DEHP, en dit voor verscheidene 

doseringsscenarios. 

De ontwikkeling van het flutamide PBPK model omvat extrapolatiebenaderingen van 

onder af, van boven af, alsook vanuit het midden.  Eerst wordt het model ontwikkeld voor 

de rat om vervolgens geëxtrapoleerd te worden naar de mens.  Waar het beoordeeld wordt 

aan de hand van experimenteel waargenomen gegevens aangaande 7 compartimenten, 

voldoet het rattemodel redelijk:  voor de meeste weefsels wijken de door het model 

voorspelde middenwaardes minder dan een factor 10 af van het experimentele 

gemiddelde.  Resultaten van de extrapolatie van het model naar het voorspellen van 

flutamide kinetiek in mens voor twee doseerscenarios (enkel- en meervoudig) bleken ook 

goed in overeenstemming met de experimentele waarnemingen. 
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Hoofdstuk III legt de nadruk op de ontwikkeling van een zangerschaps PBPK (P-PBPK) 

model voor bis-fenol A (BPA) dat de foetus als een subcompartiment beschouwt in de 

modelstructuur.  Eerst wordt het volwassen PBPK model ontwikkeld en gevalideerd aan 

de hand van menselijke toxicokinetische gegevens over BPA.  Dit gevalideerde 

menselijke PBPK model wordt dan uitgebreid tot een P-PBPK model dat de fysiologische 

veranderingen accomodeert die optreden tijdens de zwangerschap alsmede het submodel 

van de foetus.  Het hierbij ontwikkelde P-PBPK model blijkt in overeenstemming te zijn 

met biologische waarnemingen en laat zien dat na blootstelling van de moeder aan BPA 

deze stof gemakkelijk overgaat naar foetaal bloed en amnionvloeistof.  De-conjugatie van 

het BPAconjugaat in placenta en foetus leidt tot verhoogde blootstelling aan BPA 

gedurende het foetale leven.  Het is van belang dat vrij BPA in het foetale compartiment 

meer in steady state is en blijft, ook als het maternale BPA niveau daalt.  De periode 

halverwege de zwangerschap wordt kritiek bevonden, omdat in deze tijd de concentratie 

van BPA in de foetus relatief hoog is.  Bovendien wordt deze periode beschouwd als 

kritiek voor de ontwikkeling van het foetale lichaam. 

Hoofdstuk IV bouwt een simulatie van het gedrag van een in silico kopie van het 

biologische systeem.  Het reconstrueert in wiskundige vergelijkingen de biochemische 

informatie aangaande de communicatie tussen componenten.  Het neemt de ontwikkeling 

en validering van een systeembiologisch model van ROS (reactieve zuurstofsubstanties) 

in beschouwing.  Eerst bouwen we de modellen ab initio, beginnend bij de fysiologie van 

het reageren op oxidatieve verstoring.  Vervolgens verhogen we stap voor stap de 

complexiteit van het netwerk.  Door in een dominobenadering elk nieuw 

complexiteitsniveau toe te voegen kunnen we  beginselen bepalen van hoe het systeem 

omgaat met ROS.  Dit laat zien dat zowel mitochondrieel herstel als mitofagie  ROS-

geïnduceerde celdood kunnen afwenden.  Het model wordt gevalideerd aan de hand van 

verscheidene groepen van in vitro gegevens. 

Hoofdstuk V  bevat de integratieve systeemtoxicologie aanpak.  Het neemt twee gevallen 

in beschouwing: 

1) Aan PBPK gekoppelde PD met een mechanistisch padenmodel (vergelijkbaar 

met AOP).    Perfluoro octaan sulfonzuur (PFOS) wordt als voorbeeld genomen 

om de manieren  waarop systeembiologisch modelleren ingebouwd wordt in het 

toxicologieveld via een aan farmacodynamiek gekoppeld 

weefseldosimetriemodel (PBPK/PD) uit te werken.  Een PBPK model en een 

mechanistisch systeempad model worden elk op zich gesimuleerd om de 

deelmodellen te maken.  Vervolgens wordt het aan het geïntegreerde PBPK/PD 

gekoppelde mechanistische model gebruikt voor simulaties. QIVIVE 

(Quantitatieve in-vitro naar in-vivo extrapolatie) tezamen met PBPK wordt 

gebruikt om de  prestaties van het model te  qualificeren aan de hand van in vitro 

gegevens. 

2) Aan PBPK gekoppelde PD met het gedetailleerde ROS systeembiologie model 

in een voorbeeldstudie van flutamide.  Het eerder (in Hoofdstuk II) ontwikkelde 
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flutamide PBPK model en ROS systeembiologiemodellen worden hier 

gehanteerd bij de ontwikkeling van integratieve systeemtoxicologie.  Het 

resulterende integrale model wordt gebruikt om de levertoxiciteit van flutamide 

te voorspellen, daarmee de bredere toepasbaarheid van integratieve 

systeemtoxicologie bij de beoordeling van risicos voor de menselijk gezondheid 

illustrerend. 
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Introduction 

1.  Endocrine disruptors/Environmental chemicals and human 

health 

Many organic chemicals are produced and released into the environment. The 

accumulations of these products in the ecosystem are suspected to cause adverse effects 

on human’s health. Human health and wealth benefits greatly from activities that require 

new (bio) chemical compounds or more of existing ones. These compounds leach into 

environments, from where they may be taken up into humans, animals or plants.  Even 

without this, animals and plants naturally contain compounds such as hormones.  All these 

compounds may enter humans through nutrition or other contact with their environments 

and interact with the complex chemical reaction and signalling networks through which 

human bodies and minds function.  This may throw these networks off balance, a bit for 

some, but more for other human individuals, depending on gender, genome sequence, or 

life style. USEPA defined EDCs as an exogenous agent that interferes with synthesis, 

secretion, transport, metabolism, binding action, or elimination of natural blood-borne 

hormones that are present in the body and are responsible for homeostasis, reproduction, 

and developmental process (Kavlock et al., 1996). 

Quantitative prediction of endocrine disruptor adverse effect on human health poses a 

large number of challenges particularly due to involvement of hundreds of chemicals and 

their metabolites, as well as their associated pattern of exposure, retention time in body, 

generation of toxic metabolites and their wide range action via multiple mechanisms 

(Ohtake et al. 2003; Welshons et al., 2003; Vandenberg et al., 2013). The advancement 

in current analytical methods of in-vitro, high throughput screening, genomics, 

proteomics and metabolomics have led to generate a huge amount of data on toxicological 

profile. In parallel to this, recently development of systems biology and multiscale 

modeling has increased the understanding of physiological endogenous pathway and 

impacts of toxicant on the temporal behaviour of cell, tissue and whole organ system. 

In the new EU Framework Programme for Research and Innovation (Horizon 2020), the 

European Food Safety Agency (EFSA) has identified this area of risk assessment as a 

priority for development oriented innovations. This thesis will also promote wider 

Spanish Strategy for Science and Technological Innovation (2013-2020) by promoting 

the competitiveness. 

2. From classical dose response to Integrative Systems Toxicology  

The study of toxicology has been focused on quantifying/predicting chemical-induced 

adverse effects to the biological system. The major challenge in predicting adverse effects 

of chemicals on the human health are; the inheritance complexity within the biological 

system and chemical’s complex mechanism and, the complex responses of organism over 

different life stage or time scales. Systems Toxicology is an area, which integrates classic 
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toxicology (empirical fitting of dose-response curve) with the quantitative analysis of 

molecular and functional changes that occurs across multiple levels of biological 

organization (Sturla et al. 2014). The fact that adverse effects cannot be predicted 

individually by animal testing or in-vitro testing or existing modeling methodologies was 

the first step on the road of the concept of integrative systems toxicology. An integrative 

system approach to predict the adverse effects on human health can be described as 

“viewing the problem in it’s entirely as an interconnected system of component operations 

and functions” and therefore recognizing the full complexity of predicting adverse effects 

on human health. A Systems Toxicology is aimed at mechanistic understanding of 

chemical’s interaction with living systems versus conventional empirical end points and 

animal based testing. Several Systems toxicology-modeling approaches have been 

developed to predict the adverse effects of drugs/chemicals on human health 

(Bloomingdale et al., 2017). Information regarding the body physiology, 

pharmacokinetics, pharmacodynamics, chemical exposures, inter-individual variability 

and covariates relating to toxicity are the integral part of systems toxicology. 

The classical toxicology involves empirical fitting of external dose (not internal dose) and 

response (end points) as the basis for the dose-response assessment. This approach lacks 

the mechanistic understanding of the influence of body physiology onto the chemical’s 

fate and the biological changes at the molecular and functional levels due to chemical 

interaction with biological target. Later these process are described as Pharmacokinetics 

(PK) i.e. “what body does to the drug/chemical” and Pharmacodynamics (PD) “what 

drug/chemical does to the body” respectively. Pharmacokinetics encompasses the four 

elements absorption, distribution; metabolism and elimination (ADME) that describes the 

fate of the chemical inside the body. Pharmacodynamics describes the interactions of 

drugs with biological targets and consequently observed effects.  

There are successive development of several pharmacokinetics model describing 

absorption, distribution, metabolism and elimination of drugs/chemical. Major types of 

pharmacokinetic models are Non-compartment Analysis (NCA) and compartment 

physiological analysis (Jusko, 2013). NCA empirically fits experimental data on the time 

course of plasma drug concentrations. This allows to measure elimination and volume of 

distribution of chemical inside the body (Gabrielsson and Weiner, 2012).  Compartment 

models can be semi-mechanistic adding improved insights into distribution properties of 

drugs and physiological properties of organisms. Physiologically-based (PB) 

Pharmacokinetics (PK), (PBPK) models are systems models where the body is divided 

into several compartments corresponding to each organ. Organs are connected with each 

other via the blood circulatory system. The parameters in the model are assigned using 

physiological measurements (blood flow, organ sizes) and resolved by direct analysis of 

plasma concentrations and tissue transport, binding, and metabolic properties (Jusko, 

2013). Integration of a dynamic change in physiological states related with Age, disease 

and pregnancy into the PBPK lead to development of person/population specific PBPK 

model.  
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Pharmacodynamic (PD) models are empirically fitting of tissue dose and response. PD 

models are majorly categorized into two types; one is direct effect model that assumes 

chemical effects are directly proportional to receptor occupancy (i.e. linear transduction), 

and other is the indirect effect model in which response is due to chemicals indirect effect 

to the synthesis or degradation of a response variable (Jusko and Ko, 1994).  

Both pharmacokinetics and pharmacodynamics can be developed individually and linked 

together which often referred as PBPK/PD models (Timchalk et al., 2002; Foxenberg et 

al., 2011). PBPK describes the internal concentrations rather than external exposure. And 

the key metabolites and their linkage to PD provides a more accurate dose-response 

relationship. Such integrated PBPK/PD can be able to simultaneously describe chemical 

ADME at the whole‐body level and the resulting drug effect at the cellular or tissue scale 

(Kuepfer et al., 2016).  PBPK/PD has long been used for route‐to‐route and species‐to‐

species extrapolations and in vitro‐to‐in vivo extrapolation (IVIVE) (El-Masri, 2013). 

QIVIVE (quantitative in-vitro in-vivo extrapolation) along with PBPK/PD is used to 

predict the in-vivo adverse effects based on in-vitro dose response data (Bell et al., 2018; 

Bessems et al., 2015). However, this model has limitation of not taking into account the 

process of molecular initiating events (MIEs) to adverse effects and very often, the 

endpoints are specifically remained single explanatory biomarker. To address this 

challenges the concept of adverse outcomes pathways (AOPs) and systems toxicology 

have been developed. Recently, the concept of AOP has been drawn upon a systems 

biology approach. AOP is defined as “A linear sequence of events commencing with 

initial interaction(s) of a stressor with a biomolecule within an organism that causes a 

perturbation in its biology (i.e., molecular initiating event, MIE), which can progress 

through a dependent series of intermediate key events (KEs) and culminate in an adverse 

outcome (AO) considered relevant to risk assessment or regulatory decision-

making” (Ankley et al., 2010).  AOPs do not, however, address the question of what dose 

of chemical will cause sufficient perturbation to drive the pathways to the adverse 

outcomes (Ankley et al., 2010). In contrast, Systems toxicology quantifies the effect of 

chemical’s interaction to biological systems across the cellular and multi-tissue level and 

the observed toxicological effects relevant to the exposure amount of chemical (Sturla et 

al., 2014). These biological model systems could be comprised of linear signalling 

pathways such as AOPs to a detailed complex biological pathways (Systems biology). 

Systems biology comprises genomics, metabolomics, and proteomics rationalizing the 

functional interaction of biological components in a time-dependent fashion (Aderem, 

2005; Kitano, 2002). Coupling  a PBPK/PD model and Systems biology together can form 

a mechanistic framework that enhances the understanding both of biology and of adverse 

effects due to chemically induced perturbation to the biological systems (Bhattacharya et 

al., 2012; Gim et al., 2010).  

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



INTRODUCTION 
 

20 

 

3.  Components of Integrative Systems Toxicology and their 

modelling approach 

An essential part of this section is to discuss more about the basic molecular, biochemical 

and cellular processes responsible for diseases caused by exposure to chemical or physical 

substances. 

Several systems toxicology-modelling approaches have been developed to predict 

the adverse effects of chemicals on human health. Here we briefly review PBPK, PD, 

AOPs/Systems biology modelling approaches, since these three are the integral part in 

the development of integrative systems toxicology models. 

3.1. PBPK (Physiologically Based PharmacoKinetics) Models 

Physiologically based pharmacokinetic (PBPK) models consist of a series of 

mathematical representations of biological tissues and physiological processes in the body 

of target species aimed at describing the absorption, distribution, metabolism, and 

excretion of chemicals (Fàbrega et al., 2016). When a chemical substances enter the 

organism, it is usually distributed to various tissues and organs by blood flow (Nestorov, 

2007). Following its distribution in tissues, the substance can bind to various proteins and 

receptors, undergo metabolism, or can be eliminated unchanged. The concentration vs. 

time profiles of the xenobiotic in different tissues, or the amount of metabolites formed, 

is often used as surrogate markers of its internal dose or biological activity (Andersen et 

al., 2005). In a sense, PBPK modelling is an integrated systems approach to both 

understanding the pharmacokinetic behaviour of compounds and predicting concentration 

vs time profiles in plasma and tissues (Bois et al. 2010).  

The biological response results from the interaction between the toxicant and the target 

tissue. For this reason, models that can predict the target tissue concentration of the 

toxicologically-active chemical species (parent compound or metabolite) are especially 

useful and have been applied in the “exposure–dose–response” paradigm. The internal 

dose metrics (sometime also referred as biological effective dose) replaces the external 

exposure dose in the derivation of the quantitative dose-response relationship, with the 

intent of reducing the uncertainty inherent in human health risk assessments based on 

external exposure dose estimation.  
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Fig 1. PBPK model structure and approach, representing the model developmental 

approach and the required parameters input. BM: Body mass; BSA: Body surface area; 

MW: Molecular weight; Ko/w : octanol:water partition coefficient; Fu: Fractional unbound 

concentrations; B:P: blood to plasma ratio; MSP: microsomal protein. 

3.1.1. Approaches to building PBPK models 

Building a PBPK model requires gathering a considerable amount of data which can be 

categorised in three groups, namely: the model structure, which refers to the arrangement 

of tissues and organs included in the model; the system's data (physiological, anatomical, 

biochemical data) and chemical-specific data (physicochemical) (see Figure 2.1). The 

transport of xenobiotics (chemicals) in several tissues is determined by two different 

approaches: (i) permeability limited (also called as flow limited), and (ii) perfusion 

limited (also called as diffusion limited), (Bois and Paxman, 1992; Gerlowski and Jain, 

1983).  
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Permeability-rate –limited Model: This model is also called diffusion limited and could 

be applied when the distribution of the substance to a tissue is rate-limited by the drug's 

permeability across the tissue membrane. That condition is more common with polar 

compounds and large molecular structures. Consequently, the related PBPK models may 

exhibit different degrees of complexity. 

Perfusion-rate-limited Model: This model is also called flow limited kinetics and could 

be applied when the tissue membrane presents no barrier to distribution. Here, each tissue 

is considered to be a well-stirred compartment in which the substance distribution is 

simply limited by blood flow. Thus, the chemical will be delivered to the tissue via the 

blood, and is assumed to mix throughout the volume of that compartment immediately 

and completely and normally partition coefficient is used for the distribution of chemical. 

Concentrations in the flow limited compartments generally estimated by applying the 

following equation: 

               
dCi

dt
=

Qi ∗(Ca−
Ci

Ki:p 
)

Vi
                                                                                            (1) 

Where Ci is the concentration in the tissue i (nM), Qi is the blood flow in the tissue i (L/h), 

Ca is the arterial concentration (nM), Ki:p is the partition coefficient of tissue i, and Vi is 

the volume of the tissue i (L). 

      3.1.2 Model Parameterization:  

There are two approaches of PBPK model building or parameterization: bottom-up and 

top-down. In bottom-up approach, model parameterization is done based on in- 

silico prediction or in-vitro understanding of chemical-related ADME mechanisms. It 

mainly depends on tools for translation of in-vitro data to in-vivo such as IVIVE (in vitro- 

in vivo extrapolation) and several in-silico tools such as QSAR, in a sense its purely 

predictive model. In contrast top-down approaches rely on estimation of model parameter 

by fitting to the observed experimental data. Model parameterization requires two specific 

parameters namely; System’s and Chemical’s specific input parameters.  

System –specific parameters: This comprises of both physiological parameters and 

biochemical parameters.  

Physiological parameters:   These parameters are species specific constant. These 

incudes tissues/organs volume (or weight) and tissues blood flow rate which are specific 

to the species of interest. These parameters are used to develop species specific PBPK 

models, the most common being rat, mouse, dog and human.  Physiological parameters 

for developing such models are routinely available in the literatures (Abduljalil et al., 

2012; Brown et al., 1997; Sisson et al., 1959; Valentin, 2002).  

Biochemical parameters  
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Biochemical parameters are the hybrid parameters which depend on both chemical and 

physiology. Among biochemical parameters, chemicals metabolism is considered to be 

very important parameters, which are generally derived from in-vitro data using IVIVE 

methodology. The schema of IVIVE has been provided in the figure 2. 

IVIVE generally involves the scaling of in-vitro Vmax parameter was done based on 

microsomal protein content per gram tissue and weight of tissue per kg body weight. 

Vmax was scaled to in-vivo per kg BW from in-vitro cell line studies by using the 

following equation: 

𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑣𝑜 = (𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 ∗ 𝑀𝑃𝑃𝐺𝑇 ∗ 𝑉𝑡𝑖𝑠𝑠𝑢𝑒)/𝐵𝑊 .75                        (2)

        

Where, 𝑉𝑚𝑎𝑥 = Maximum metabolic capacity in per gram of microsomal protein, 

𝑀𝑃𝑃𝐺𝑇 = the microsomal protein per gram of tissue, Vtissue = the total tissue weight in 

gram, and BW =is the whole body weight in kg. 

 

Fig. 2: Illustration of Hierarchical structure model approach for metabolic IVIVE scaling. 

 

Chemical-specific parameters 

It can be derived by in vivo or in vitro experiment. However, in certain cases when we 

lack these data, various in-silico approaches can be useful. Among Physicochemical 
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parameters partition coefficient is considered one of the most important parameters. It 

describes the distribution of the chemical between plasma and different organ. There are 

various tissue composition based algorithm methods to generate partition coefficient data  

(Poulin and Krishnan, 1996, 1995; Schmitt, 2008; Peyret et al., 2010; Yun et al., 2014). 

Tissue composition based algorithm methods for calculating partition coefficients few of 

them are explained here;  

METHOD I    (Poulin and Krishnan, 1996, 1995) 

𝑃𝑡:𝑃 =
(( 𝑃𝑜:𝑤 ∗ (𝑉𝑛𝑙𝑡 + 0.3 ∗ 𝑉𝑝ℎ𝑡)) + 1 ( 𝑉𝑤𝑡 + 0.7 ∗ 𝑉𝑝ℎ𝑡))

( 𝑃𝑜:𝑤 ∗ (𝑉𝑛𝑙𝑝 + 0.3 ∗ 𝑉𝑝ℎ𝑝)) + 1 ( 𝑉𝑤𝑝 + 0.7 ∗ 𝑉𝑝ℎ𝑝)
  ∗

𝑓𝑢𝑝

𝑓𝑢𝑡
 

𝑃𝑡:𝑃𝑎𝑑𝑖𝑝𝑜𝑠𝑒 =
(( 𝐷𝑜:𝑤 ∗ (𝑉𝑛𝑙𝑡 + 0.3 ∗ 𝑉𝑝ℎ𝑡)) + 1 ( 𝑉𝑤𝑡 + 0.7 ∗ 𝑉𝑝ℎ𝑡))

( 𝐷𝑜:𝑤 ∗ (𝑉𝑛𝑙𝑝 + 0.3 ∗ 𝑉𝑝ℎ𝑝)) + 1 ( 𝑉𝑤𝑝 + 0.7 ∗ 𝑉𝑝ℎ𝑝)
  ∗

𝑓𝑢𝑝

1
 

Where,  

Pt:P = tissue plasma partition coefficient 

Po:w = octanol water partition coefficient 

Vnlt  = fractional volume of neutral lipid in tissue 

Vpht = fractional volume of phospholipid in tissue 

Vnlp = fractional volume of neutral lipid in plasma 

Vphp = fractional volume of phospholipid in plasma 

fup = fractional unbound concentration in plasma 

fut = fractional unbound concentration in tissue 

Do:w = olive water partition coefficient 

Note: have to take antilog as octanol water partition coefficient always given in log value. 

fut value, we can calculate by applying formula of  = 1/(1+((1-fup)/fup)*RA)) 

RA is the ratio of albumin concentration found in tissue over plasma 

RA equals 0.15, whereas for nonadipose tissue, RA equal 0.5 (Ellmerer et al., 2000; 

Poulin and Theil, 2002). 

METHOD II: Schmitt Walter  (Schmitt, 2008) 

𝑓𝑢 =
𝐶𝑢

𝐶𝑡𝑜𝑡𝑎𝑙
   

𝐾𝑡:𝑝 = (
𝐹𝑖𝑛𝑡

𝑓𝑢
𝑖𝑛𝑡

+
𝐹𝑐𝑒𝑙𝑙

𝑓𝑢
𝑐𝑒𝑙𝑙

) ∗ 𝑓𝑢
𝑝
 

Where, 

𝐹𝑖𝑛𝑡 = fractional content of interstitial fluid in tissue or volume fraction of interstitial  
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𝐹𝑐𝑒𝑙𝑙 = fractional content of cell in tissue or volume fraction of cellular 

𝑓𝑢
𝑖𝑛𝑡 = unbound fraction in interstitial fluid 

𝑓𝑢
𝑐𝑒𝑙𝑙 = unbound fraction in cell 

𝑓𝑢
𝑝
 = unbound fraction in plasma 

 

Calculation of unbound fraction in interstitial space 𝒇𝒖
𝒊𝒏𝒕 

Assumption = interstitial fluid is very similar with plasma 

Therefore, unbound fraction of interstitium estimated from unbound fraction in plasma 

 
1

𝑓𝑢
𝑖𝑛𝑡 = 𝐹𝑤

𝑖𝑛𝑡 +
𝐹𝑝

𝑖𝑛𝑡

𝐹𝑝
𝑝𝑙 ∗ (

1

𝑓𝑢
𝑝𝑙 − 𝐹𝑤

𝑝𝑙
) 

Where, 

𝐹𝑤
𝑖𝑛𝑡 = fractional water content in interstitial  

 𝐹𝑝
𝑖𝑛𝑡 = fractional protein content in interstitial  

𝐹𝑤
𝑝𝑙

 = fractional water content in plasma 

𝐹𝑝
𝑝𝑙

 = fractional protein content in plasma 

𝐹𝑝
𝑖𝑛𝑡

𝐹𝑝
𝑝𝑙  = 0.37  

Calculation of unbound fraction in cellular space 𝑓𝑢
𝑐𝑒𝑙𝑙 

1

𝑓𝑢
𝑐𝑒𝑙𝑙

= 𝐹𝑤 + 𝐾𝑛𝑙 ∗ 𝐹𝑛𝑙 + 𝐾𝑛𝑝𝑙 ∗ 𝐹𝑛𝑝𝑙 + 𝐾𝑎𝑝𝑙 ∗ 𝐹𝑎𝑝𝑙 + 𝐾𝑝 ∗ 𝐹𝑃  

Where,  

Fw = fractional content of water in cell 

Knl = water: neutral lipid partition coefficient  

Fnl = fractional neutral lipid in cellular space 

Knpl = water: neutral phospholipid partition coefficient 

Fnpl = fractional neutral phospholipid in cellular space 

Kapl = water: acidic phospholipid partition coefficient  

Fapl = fractional content of acidic phospholipid in cell 

Kp = water: protein partition coefficient  

FP = fractional content of protein in cell 

Calculation of 𝐊𝐧𝐥  

Do:w(pH) = Po:w ∗  (
1−α

1+10pH−pKa + α) , for acid  
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Do:w(pH) = Po:w ∗  (
1−α

1+10pKa−pH + α), for bases  

Calculation of  𝐊𝐧𝐩𝐥 

Dpl:w = 1.294 + .304 ∗ logP      (Yun et al., 2014)      

If Dpl:w is not there, we can use Po:w value which is close to that  

Here Dpl:w is equivalent to Knpl 

Calculation of 𝐊𝐚𝐩𝐥 

Kapl = Knpl ∗ (
1

1+10pH−Pka + 20 ∗ (1 −
1

1+10pH−Pka))   , for acids 

Kapl = Knpl ∗ (
1

1+10Pka−pH + 0.05 ∗ (1 −
1

1+10Pka−pH))   , for base  

Calculation of 𝐊𝐩 

Kp = 0.163 + 0.021 ∗ knpl , protein: water partition coefficient  

3.2. Pharmacodynamics Model/Dynamic System Analysis 

The interaction of a drug molecule with a receptor causes the initiation of a sequence of 

molecular events resulting in a pharmacodynamic or pharmacologic response. The term 

pharmacodynamics refers to the relationship between drug concentrations at the site of 

action (receptor) and pharmacologic response, including the biochemical and 

physiological effects that influence the interaction of drug with the receptor. 

[𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙] + [𝑇𝑎𝑟𝑔𝑒𝑡 ] ⟺ [𝐷𝑟𝑢𝑔 − 𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑥] ⟶ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

The well-known modified Hill equations are used to describe the drug receptor 

interactions empirically as follows:  

Simple Emax model 

This model was originally derived from the classical theory of drug-receptor interaction.  

       𝐸 = 𝐸0 + 
𝐸𝑚𝑎𝑥 ∗ 𝐶(𝑡)

𝐸𝐶50 + 𝐶(𝑡)
 

Where, Emax is the maximum response, EC50 is the concentration at which 50% of Emax 

occurs and E0 is the baseline response. C (t) is the effective chemical concentration i.e. 

concentration at the target site. 
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Sigmoid Emax model: 

This model is a generalization of Emax model.   

𝐸 =
𝐸𝑚𝑎𝑥 ∗ 𝐶(𝑡)𝛾

𝐸𝐶50 + 𝐶(𝑡)𝛾
 

Emax, EC50 and E0 and γ represents the sigmodicity factor or Hill factor, γ=1 for simple 

Emax model and if γ>1 for steeper curve and γ<1 for smoother curve.  

Indirect response model 

The indirect response models basically assume that the biological response is due to either 

inhibition or stimulation of the production or degradation as a function of target chemical 

concentration.  

𝑑𝑅

𝑑𝑡
= 𝐾𝑖𝑛 

0 ∗ 𝑓(𝑡) − 𝐾𝑜𝑢𝑡 ∗ 𝑓(𝑡) ∗ 𝑅 

Where,  Kin
0
   is zero order constant for production of response, Kout is first order constant 

for loss of response, R0 is the basal physiological concentration of response variable. 

𝑓(𝑡) is the function that describe the inhibition or stimulation of response variable 

synthesis or degradation.  

𝑓(𝑡) =  𝑆(𝑡) = 1 +
𝑆𝑚𝑎𝑥∗𝐶𝑡

𝑆𝐶50+𝐶𝑡
   ; Stimulatory function  

𝑓(𝑡) =  𝐼(𝑡) =  1 −
𝐼𝑚𝑎𝑥∗𝐶𝑖

𝐼𝐶50+𝐶𝑖
   ; Inhibitory function  

Smax/ Imax is the maximum Stimulatory/inhibitory response, Ci is the concentration at the 

target site, SC50/IC50 is the stimulatory/inhibitory concentration require to produce half 

maximum response. 

There are basically four type of response models:  
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Fig 3. Four type of indirect pharmacodynamic response models. Model I and IV shows 

inhibition of a response as a result of inhibition of production and stimulation of 

degradation respectively. Whereas model II and III shows stimulation of a response as a 

result of inhibition of rate of degradation, and stimulation of rate of synthesis of a response 

variables respectively (Mager et al., 2003) 

Model I 

It describes the inhibition of the production rate of response variable (Kin).  

 

𝑑𝑅

𝑑𝑡
= 𝐾𝑖𝑛

0 ∗ 𝐼(𝑡) − 𝐾𝑜𝑢𝑡 ∗ 𝑅 

Model II 

It describes inhibition of the degradation rate of response variable (Kout).  

𝑑𝑅

𝑑𝑡
= 𝐾𝑖𝑛

0 − 𝐾𝑜𝑢𝑡 ∗ 𝐼(𝑡) ∗ 𝑅 

Both Model I and II leads to higher concentration of the response variable.  

Model III 
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It describes the stimulation of the production rate of response variable (Kin).  

𝑑𝑅

𝑑𝑡
= 𝐾𝑖𝑛

0 ∗ 𝑆(𝑡) − 𝐾𝑜𝑢𝑡 ∗ 𝑅 

Model IV 

It describes the stimulation of the degradation rate of response variable (Kin).  

𝑑𝑅

𝑑𝑡
= 𝐾𝑖𝑛

0 − 𝐾𝑜𝑢𝑡 ∗ 𝑆(𝑡) 

 

3.3. QIVIVE 

QIVIVE (Quantitative in-vitro to in-vivo extrapolation) is a technique used for the 

translation of an in-vitro dose-response (DR) to in-vivo dose- response (DR). The 

reconstruction of in-vivo DR from the in-vitro studies involves the linear interpolation of 

transduction kinetics of signaling pathway. It assumes that the in-vitro data reflecting DR 

after target cell exposure, and the in-vitro derived dose-response model must have target 

cell exposure in input to be consistent. Such in vivo target cell (or by extension target 

organ) exposure, if not measured. So that is obtained by PBPK modeling. This can be 

done for animals or for humans, or both to help inter-species extrapolation: 

A PBPK model along with the QIVIVE has been used to determine the oral equivalent 

doses corresponding to in-vitro doses. If the determined oral equivalent doses are relevant 

to the environmental exposure levels, then the response was classified as adverse effect 

(Rouquié et al., 2015).  
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Fig 4. Describes the schema for QIVIVE approach where double lines represent equality 

assumptions and arrow represents flow of information.  

3.4. AOPs 

An AOP describes a sequence of events commencing with initial interaction(s) of a 

stressor with a biomolecule within an organism that causes a perturbation in its biology 

(i.e., molecular initiating event, MIE), which can progress through a dependent series of 

intermediate key events (KEs) and culminate in an adverse outcome (AO) considered 

relevant to risk assessment or regulatory decision-making (Ankley et al., 2010; OECD, 

2018, 2016).  

A molecular initiating event is “A specialised type of key event that represents the initial 

point of chemical/stressor interaction at the molecular level within the organism that 

results in a perturbation that starts the AOP” (OECD, 2018, 2016). 

A key event is “A change in biological or physiological state that is both measurable and 

essential to the progression of a defined biological perturbation leading to a specific 

adverse outcome” (OECD, 2018, 2016). 

A key event relationship is “A scientifically-based relationship that connects one key 

event to another, defines a causal and predictive relationship between the upstream and 

downstream event, and thereby facilitates inference or extrapolation of the state of the 

downstream key event from the known, measured, or predicted state of the upstream key 

event” (OECD, 2018, 2016). 
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Fig 5. Schematic of AOP network describing the dose response linking the signal 

transduction pathway, as a series of key events due to chemically induced activation or 

inhibition of biological target (MIEs), to the adverse effects (https://aopwiki.org/).  

3.5. Systems Biology (SBs) 

Systems biology provides a platform for integrating multiple components and interactions 

underlying cell, organ, and organism processes in health and disease (Arrell and Terzic, 

2010). It describes the functional interaction of biological components in a time-

dependent fashion that uses genomics, metabolomics, and proteomics data (Aderem, 

2005; Kitano, 2002). Understanding the biomolecular mechanisms are of great interest to 

identify the toxicological effects at the advanced stage. Systems biology has long been of 

great interest in studying the adverse effects on human health which basically involves 

linking perturbation (result of a chemical interactions with biological target) on the 

normal biological network to adverse outcome response (Arrell and Terzic, 2010; Auffray 

et al., 2009; Hood et al., 2004; Kell, 2006).  

4.  Integrative Systems Toxicology  

Currently, there is a paucity of research that integrates all of these above described 

methods and directly ties the results to a predictive adverse outcomes model. Compared 

to the traditional dose-response model integrative systems toxicology model implements 

a more complex structure, as shown in figure 6. In figure 6, Module 1 focuses on the 

pharmacokinetics describing relationship between the chemical exposures to the plasma 

concentrations. And this also includes the distribution of chemical to the target tissues 

(Plasma tissue kinetics; PTK) also called biological effective dose; Module 2 captures the 

interactions of this biological effective dose with a target receptors (proteins, genes or 

metabolites) and their intrinsic activity. Module 3 links this perturbation (intrinsic 

activity) to the signal transduction pathway linking whole biological network (in case of 

Systems biology models) or simple linear pathway model (in case of AOPs). 
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Fig 6. Schematic of integration of several approaches leading to the integrative systems 

toxicology model. PBPK comprising of both the PK (pharmacokinetics) and PTK 

(plasma-tissue kinetics) describing the time course of chemical concentration at plasma 

and tissue. PD is the pharmacodynamics describing the interaction of target tissue dose 

and biological ligand. Systems toxicology (ST) links the downstream pathway of 

biological network as a result of perturbed endogenous molecule.  
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Hypotheses 

Along with the development of new tools and techniques in toxicological research, it is 

necessary to continuous re-evaluation, curation, and integration of existing data, and 

knowledge-based translation that might be able to solve many current challenges in this 

field. 

Integration of knowledge from a complete pipeline of systems biology into a holistic yet 

mechanistic framework will enhance the understanding of both biology and adverse 

effects due to chemically-induced toxicity to human health.  The pipeline includes in vivo, 

in vitro, and in silico data resulting both from genomics and from more targeted studies. 

Prediction of Adverse effects of various chemicals on human health may be improved if 

the time course concentrations of those chemicals in the human body are well known. In 

silico tools are cheap, quick and reliable techniques to estimate the body burdens of 

chemicals, being a serious alternative to in vivo or in vitro investigations. PBPK/PD 

models may simulate and predict the distribution and accumulation of environmental 

toxicants in the human body. Therefore, they may be a good alternative to biological 

monitoring of environmental chemicals. 

Integration of wide range of in silico tools (QSAR, PBPK/PD, AOP, systems biology 

models etc.) and databases (OMICS, epidemiological and exposure data), under the 

umbrella of Integrative Systems toxicology would improve the prediction of chemical-

induced adverse effects on human health. This integrative approach would lead to 

mechanistic understanding of adverse effects vs conventional empirical end points and 

animal based testing. 

Mechanistic understanding of the system as a compendium of interconnected processes 

would lead to a better integrative in-silico predictive model. It comprises of the chemical 

exposures to their biological target interactions and subsequently the molecular and 

functional changes that occurs at the multiple level of biological system. 

In a mechanism-based modelling approach it is easy to integrate dynamic physiological 

changes that occur at life stages. This would allow to develop population and organ 

specific predictive models. To generate similar predictions without modelling, e.g. based 

on in experiments only, would be extremely difficult. Overall by improving the toxicity 

prediction this integrative approach of systems toxicology might also minimize the need 

of animal testing, reducing the cost and time of toxicity tests.   
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General Objective 

Development of an Integrative Systems Toxicology framework should enable one to 

understand quantitatively the adverse effects of chemicals on a biological system from 

the information on the exposure of the system to the sequence of molecular and 

physiological alteration, through the integration of exposome-internal exposure- 

molecular/cellular response with adverse effect. 

Specific Objectives 

1. To review the detailed toxic pathway for the Endocrine disruptors and their 

classifications based on target organs and their mode of action. Thereby designing 

principals/framework for the development of the next generation of PBPK/PD –

Systems Biology models. 

2. Development and Validation of an adult internal dosimetry model (PBPK). 

3. Integration of dynamic physiology in the development of PBPK for special 

populations (Pregnant mother and fetus) 

4. Parametrization of PBPK and Systems Biology models using QSAR and in-vitro 

data. 

5. Development and validation of AOPs and Systems Biology Models. 

6. To accommodate toxicity prediction of chemicals, by improving mechanistic 

understanding of chemical effects in dynamic-model-AOPs, through the use of 

molecular biology and systems toxicology approaches.  

7. Coupling PBPK and PD models (AOPs & SB) to develop integrative systems 

toxicology.  

8. Sensitivity and uncertainty analysis of the developed models. 
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Review on Crosstalk and common mechanisms of 

endocrine disruptors: scaffolding to improve PBPK / PD 

models of EDC mixtures  

Abstract 

Endocrine disruptor compounds (EDCs) are environment chemicals that cause harmful 

effects through multiple mechanisms, interfering with hormone systems resulting in 

alteration of homeostasis, reproduction and developmental effects. Many of these EDCs 

have concurrent exposure with crosstalk and common mechanisms which may lead to 

dynamic interactions. To carry out risk assessment of EDCs' mixtures, it is important to 

know the detailed toxic pathway as well as possible crosstalk with receptors and other 

factors, like critical window of exposure. In this review, we summarize the major 

mechanisms of actions of EDCs with the different/same target organs as they interfere 

with the corresponding hormone pathway by altering synthesis, metabolism, binding and 

cellular action. To show the impact of EDCs on life stage development, a case study on 

female fertility is reported on. Based on this summarized discussion, Major groups of 

EDCs are classified based on their target organ, mode of action and potential risk. Finally, 

a conceptual model of pharmacodynamic interaction is proposed that integrates the 

crosstalk and common mechanisms that modulate estrogen level into the predictive 

mixture dosimetry model. This review will provide new insight for EDCs' risk assessment 

and can be used to develop next generation PBPK/PD models for EDC mixture analysis. 

Highlights 

•EDC mechanism involves multiple targets interfering with hormone synthesis, 

metabolism and their biological action. 

•Toxicodynamic interactions like crosstalk and common mechanisms are very important 

for elucidating the effect of EDC mixture. 

•Window of exposure plays an important role in assessing the risk for developmental and 

reproductive disorders. 

•In silico risk prediction can be improved by integrating toxicodynamic interactions of 

EDCs. 

Key words: Endocrine disrupting compounds (EDCs), Toxicity mechanism, Mixture 

interaction, Common mechanism, Crosstalk, PBPK/PD models 
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Abbreviations: 3MC: 3-methylcholanthrene 

5α-R: 5 alpha reductase 

ACTH: adrenocorticotropic 

hormone 

Ahr: aryl hydrocarbon 

receptor 

Ahrr: aryl hydrocarbon 

receptor repressor 

AKT: serine/threonine kinase 

AMH: anti-mullerian 

hormone 

AMPO: ammonium 

Perflurooctane 

ARC: arucate cell 

Arnt: aryl nuclear 

translocator 

AVPV: anteroventral 

periventricular nucleus 

BAX: BCL2 associated 

protein 

BCL2: apoptosis regulator 

BMP: bone 

morphogenetic protein 

BPA: bisphenol A 

CAR: constitutive androstane 

receptor 

CREB: cAMP response-

element–binding protein 

Cx43: connexin X 43 

CYP1A1: cytochrome 

enzyme A 

CYP1B1: cytochrome 

enzyme B 

CYP19A: aromatase enzyme 

CYP450scc: cytochrome 

p450 side chain cleavage 

DBT: dibutylin 

DEHP: diethylhexyl 

phthalate 

DTCs: dithioarbamate 

chemicals 

ERE: estrogen response 

element 

E2: estrogen 

FAK: focal adhesion kinase 

Fas- membrane protein 

FasL: fas ligand 

Figla: factor in the germline 

alpha 

FOXO3: forkhead box 

proteins 

FSH: follicle stimulating 

hormone 

GATA4: transcription factor 

GDF: growth differentiation 

factor 

GH: growth hormone 

 

GJA1: gap junction alpha 

protein 

GnRH: gonadotropin 

releasing hormone 

GVBD: germinal vesicle 

migration and breakdown 

HAT: histone acetyl-

transferase 

HPA- hypothalamus pituitary 

adrenal axis 

HDAC: histone deacetylases 

HMT: histone methyl 

transferase 

HPOA: hypothalamus 

preoptic nucleus 

HSDs: hydroxysteroid 

dehydrogenases 

HSP90: heat shock protein 90 

IGF-1: insulin growth factor 

IGFR: insulin growth factor 

recptor 

Igf2r: insulin like growth 

factor 2 

INH: inhibin 

IP3-DAG: inositol 

triphosphate- diacyglycerol 

LH: luteinizing hormone 

LHR: luteinizing hormone 

receptor 

LHX8: LIM homeobox 8 

LXR: liver X receptor 

LXR: liver X receptor 

MAPK: mitogen activated 

protein kinase 

MEHP: mono (2-ethylhexyl) 

phthalate 

MMP2: metalloproteinase 2 

NCoA: nuclear coactivator 

NCoR: nuclear corepressor 
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NF-kB: nuclear factor k B 

NOBOX: newborn ovary 

homeobox 

NR: notch receptor 

p160/SRC:  steroid receptor 

coactivator 

P23:  protein 23 

P4: progesterone 

PR: progesterone receptor 

PBPK/PD : Physiological 

based 

Pharmacokinetics/Pharmaco

dynamics modeling  

PBR: peripheral type 

Benzodiazepine receptor 

PCBs: polychlorinated 

biphenyl 

PCDDs: polychlorinated 

dibenzodioxins 

Peg3: paternal express gene 3 

PEPCK: 

phosphoenolpyruvate 

carboxykinase 

PFASs: poly-fluorinated 

alkyl substances  

PI3: phosphatidylinositol 3-

kinase 

PMG: primordial germ cell 

PPARs: peroxisome 

proliferator activated 

receptors 

PTEN: phosphatase and 

tensin homolog 

PXR: pregnane X receptor 

RIP140: receptor interacting 

protein 

ROS: reactive oxygen species 

RXR: retinoid X receptor 

SDM: sexual dimorphism 

SF:1-steroidogenesis factor 1 

SHBG: steroid hormone 

binding globulin 

SMRT: silencing mediator 

for retinoid or thyroid-

hormone receptors 

Sohlh2: spermatogenesis and 

oogenesis helix-loop-helix 2 

SREBP 2: sterol Response 

Element Binding Protein 2 

SREBP1c : sterol Response 

Element Binding Protein 1c 

StAR: steroid acute 

regulatory protein 

SUG 1: suppressor for gal 1 

SULTs:  sulphotransferase 

enzyme 

TAT: tyrosine 

aminotransferase 

TBG: thyroid binding 

globulin 

TBT: tributyltin 

TCDD: 2,3,7,8-

tetrachlorodibenzo-p-dioxin 

TCPOBOP: 1, 4-bis- [2-(3, 

5,-dichloropyridyloxy)] 

benzene

 

1. Introduction 

The U.S. EPA defines endocrine disruptor compounds (EDCs) as exogenous agents that 

interfere with synthesis, secretion, transport, metabolism, binding action, or elimination 

of natural blood-borne hormones that are present in the body and are responsible for 

homeostasis, reproduction, and developmental process (Kavlock et al., 1996). The WHO 

extended this definition linking EDCs to adverse health outcomes in an intact organism, 

or its progeny or subpopulation (WHO, 2002). The Endocrine Society describes EDCs as 

chemicals that interfere with any aspect of hormone action (Gore et al., 2014). EDCs can 

be found in daily use products such as detergents, food cans, plastic bottles, children toys, 

flame retardants, cosmetics, and processed food (Clarkson, 1995; Rudel and Perovich, 

2010). EDCs interfere with hormone kinetics and its dynamics causing alteration in 

hormone level or expression of hormone responsive element (Crisp et al., 1998). 
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The aim of hormones is to execute its specific task on specific time with specific amount. 

There are many studies which link hormone alteration to different disease outcomes. For 

example, low testosterone and SHBG levels are the early biomarker for the risk of 

metabolic syndrome (Kupelian et al., 2006); alteration of E2, ERα, PR and the aromatase 

enzyme is strongly linked with endometriosis and infertility (Kitawaki et al., 2002); 

alteration in FSH, LH, inhibin B, and testosterone level is associated with decreased 

sperm quality (Meeker et al., 2006). Earlier assumption that EDCs and hormones would 

yield the same responses in different cell lines or tissues was found wrong. Now it is well 

known that EDCs have cell and tissue-specific responses (Lackey et al., 2001). Even at 

very low concentrations, EDCs can produce significant endocrine disruptive action (Vom 

Saal and Hughs, 2005; Vandenberg et al., 2012) which challenges classical dose response 

curve at significantly high doses. Further, EDCs show disparate response at different life-

stage dependent physiological concentrations of hormone, challenging current risk 

assessment methodologies which are not in consonance with life-stage changes 

(Welshons et al., 2003; Vandenberg et al., 2013). For instance, a study from Ohtake et al. 

(2003) showed that EDCs can produce a contrary response based on physiological stage 

of prepuberty and puberty. The interference of EDCs with developmental stages 

(prenatal-postnatal-early childhood-adulthood) and reproductive stages showed time of 

exposure as an important factor to determine its potency as well as developmental effect 

(Haimes, 2009; Gore et al., 2014). For example, there is a strong relationship of EDC 

exposure affecting HPG axis system and alteration in the age of female puberty showing 

developmental effect (Wang et al., 2005; Euling et al., 2008). The biological marker like 

enzyme expression and hormone level can help in assessing developmental risk by 

knowing the detailed mode of action of EDCs (Rockett et al., 2003). 

Humans are subject to continuous and simultaneous exposure to EDCs via its surrounding 

environment and bioaccumulation becomes inevitable in many cases, which might cause 

permanent damage following physiological adaptation failure (Vandenberg et al., 2013). 

Several studies showed that chemicals at the individual level have no observed effect level 

(NOEL), when exposed simultaneously as a mixture show adverse effect disproving the 

concept of NOEL and taking more attention towards mixture studies (Rajapakse et al., 

2002; Silva et al., 2002). The successive use of the PBPK model in the field of toxicology 

is commendable since it has great advantage of predicting internal tissue dose by 

integrating experimental data (both in vivo and in vitro) and extrapolation across species 

(Caldwell et al., 2012). However, the level of biomarker of exposure (internal tissue dose) 

is, in many case, not sufficient to predict the toxicity of chemicals and additionally the 

effect of chemical mixture for certain response deemed to have toxicodynamic 

interaction. Moreover, many biological responses are the convergence of multiple 

signaling pathways, which eventually become vulnerable to multiple targets of EDCs. 

Incorporation of the relationship between the exposure at the sites of action and the 

response generated can extend the PBPK model to PBPK/PD (Nestorov, 2007). The 

objective of this review (summarized in Fig. 1) is to understand the mechanism of actions 

of EDCs which includes interaction of chemicals with molecular receptor, enzymes, 
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proteins, gene regulatory mechanism or epigenetic process thus affecting biological 

system, including window of exposure. Besides, this review also investigates the normal 

endogenous pathway of hormone sidewise to better understand the physiology dependent 

EDCs' action. The last part of the review includes an example showing common as well 

as crosstalk mechanism of EDC mixture affecting estrogen kinetics. Improved 

understanding of common as well as crosstalk mode of action and categorization of 

chemicals based on similar adverse outcomes may provide better scaffolding for 

integration of pharmacokinetics and pharmacodynamics into predictive mixture 

toxicological model of EDCs. 

 

 

 

Fig.1. Effects of EDCs on hormone action at different level. 

Enzyme responsible for hormone synthesis, HR- hormone, P- hormone binding protein, 

R- receptor, D- degradation of hormone and its receptor, HRE- hormone response 

element.  

2. Molecular mechanism of EDCs actions on the endocrine system 

In general, individual EDCs can affect the endocrine system accounting their synthesis to 

metabolism; receptor mediated action, various signalling pathways and crosstalk 

signalling between receptors. In this section, a summarized review of EDCs' effects on 

major hormones namely thyroid and steroids (corticosteroid and gonadal) is provided. 

2.1. EDCs affecting thyroid hormone action 

Thyroid hormones (THs) are one of the integral parts of the hormone system required for 

normal brain and somatic development. It has been seen that EDCs can disrupt the 

function of the thyroid system possibly through multiple mechanisms such as synthesis, 

transport, and receptors like TR, Ahr, CAR, PPAR and RXR, mediated function for 

subsequent action and metabolism of hormone. Various chemicals affect homeostasis of 

hormones including perchlorates, PCBs, PCDDs and PCDFs (Zoeller, 2010). Perchlorates 

inhibit uptake of iodide into thyroid follicle (Clewell et al., 2004). PCBs, PCDDs and 

PCDFs that competitively bind with transthyretin impair transportation (Lans et al., 1994) 

and their affinity towards the Ahr receptor leads to increase metabolism of hormones 

(Poland and Knutson, 1982). 

The toxicology pathway of EDCs via Ahr is shown in Fig. 2; where Ahr receptor is present 

in the cytosol in conjugation with subunits like chaperon protein HSP90, regulatory 

Enzyme HR HR+P 

D 

 HR+R  HRE 

D 
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protein P23 and immunophilin like protein XAP2 (Perdew, 1988; Kazlauskas et al., 1999; 

Petrulis et al., 2000). Subsequently binding of EDCs with Ahr forms a complex followed 

by dissociation of Hsp90, P23 and XAP2 and translocation into the nucleus. In the 

nucleus, Ahr forms a heterodimer complex with Arnt which then binds with XRE causing 

increase in expression of CYP1A1 and UDPGT1A; and finally leads to increase in  

 

 
 

metabolism of thyroid hormone (Hankinson, 1994; Van Birgelen et al., 1995). 

Simultaneously, there is feedback inhibition of Ahr transactivation by Ahrr (Mimura et 

al., 1999). Qatanani et al. (2005) reported that EDCs' affinity towards CAR, can be 

another possible mechanism of metabolism of thyroid, that alters the UGTs and SULT 

mediated glucuronidation and sulfation of TH, respectively. 

 

Fig.2. Summary of molecular mechanism of EDCs binding with Ahr-. The binding of 

EDCs like dioxins with Ahr leads to translocation of receptor to nucleus from cytoplasm 

with dissociation of chaperons, forming Ahr-Arnt complex leading to induction of CYP 

enzyme, enhancing metabolism of endogenous hormone. 

BPA has been reported as an anti-thyroid agent that is mediated via multiple molecular 

mechanisms, mainly involved in altering receptor gene expression and dynamic stability. 

It decreases the TRα and TRβ mRNA levels and subsequently suppresses RXR gene 

expression which is a heterodimer partner of TR. Additionally, it can also inhibit the 

binding of T3 to TR by recruiting N-CoR (Moriyama et al., 2002; Iwamuro et al., 2006). 

The isoform of TR remains in dynamically equilibrium state between inactive and active 

forms to maintain the physiological action. The binding of EDCs with TR favors its 

inactive isoform (see Fig. 3) via recruitment of (N-CoR). Subsequently, increase in 

HDAC, HMT, and HDM levels induces the repression of target gene making TR inactive. 

In contrast, binding of thyroid to TR induces conformation changes and recruits 

coactivators of p160/SRC (steroid receptor coactivator). These coactivators have inherent 

histone acetylase activity that recruits complex like histone arginine methyltransferase 
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(HMT), HAT and chromatin remodeling complex and form active homodimer or 

heterodimer complex with RXR (Ahuja et al., 2003; Yoon et al., 2005; Flamant et al., 

2007). Juge-Aubry et al. (1995) mentioned that RXR was the common partner for both 

TRs and PPARs to form active heterodimers. Hence, the EDCs having affinity for PPARs 

or RXR could affect thyroid activity through crosstalk mechanism. 

 
Fig.3. EDCs affecting dynamic state of receptor. Unliganded thyroid receptor resides 

in nucleus in inactive state by recruiting NCoR and the ligand binding leads to active stage 

by recruiting NCoA. Binding of EDCs with thyroid receptor induced conformational 

changes by recruiting nuclear co-repressor facilitates inactive stage leads to inhibition of 

thyroid action.  

2.2. EDCs affecting steroid hormone 

2.2.1. EDCs affecting corticosteroid hormone action 

Among corticosteroid hormones, glucocorticoids such as cortisol are produced in 

response to stress and are an integral part of HPA axis involved in cellular homeostasis 

and different metabolic processes. The enzymes that are responsible for the biosynthesis 

of these hormones mainly involved CYPs, HSDs and steroid reductases (Miller, 1988). 

The molecular mechanisms involved in biosynthesis are transfer of cholesterol to inner 

mitochondrial membrane by regulatory protein StAR (Manna and Stocco, 2005) and 

conversion of cholesterol to pregnenolone by CYP11A or CYP450scc (Parker and 

Schimmer, 1995; Manna and Stocco, 2005). Subsequent action of CYP17A and HSD 

enzyme accomplishes the glucocorticoid synthesis. 

The interconversion of cortisol (active) to cortisone (inactive) involves two isoforms of 

11β-HSD namely 11β-HSD1 and 11β-HSD2 (Krozowski et al., 1999). This 

interconversion plays an important role in regulating central adiposity (Stewart et al., 

1999) and protecting developing fetus from glucocorticoid excess (Krozowski et al., 

1995). EDCs like PFASs, TBT, TPT and dithiocarbamates inhibit 11β-HSD2 isoform 

(Atanasov et al., 2003; Ohshima et al., 2005; Zhao et al., 2011), and their exposure during 

pregnancy stage has been found to alter normal fetus development. Wang et al. (2012) 

reported the role of BPA on increased expression of 11β-HSD1, which results in increased 

level of cortisol, lipoprotein lipase and PPAR-γ causing higher adipocyte differentiation. 

The expression of PEPCK and TAT, well characterized metabolic response of 
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glucocorticoid, was shown to be inhibited by DBT which decreases affinity of 

glucocorticoid towards its receptor (Gumy et al., 2008). Furthermore, one of the metabolic 

pathways of steroid involves PXR, a xenobiotic receptor which regulates CYP3A 

expression. Chemicals like phthalic acid and nonylphenol inhibit PXR degradation, thus 

enhancing CYP3A expression which leads to alteration in metabolism of steroid 

hormones (Masuyama et al., 2000, 2002). 

2.2.2. EDCs affecting gonadal hormone 

The effect of EDCs on the human reproductive system has been linked with infertility, 

mediated through a diverse mechanism that includes: altering gonadal steroidogenesis, 

affecting HPA axis and feed-back mechanism, altering receptor biology, crosstalk of 

receptor signaling, and direct organ toxicity. For the steroidogenesis, cholesterol is the 

main precursor which can be affected by the EDCs that alter receptor like PPARα and 

PXR which regulates transporter protein, such as translocator protein (TSPO) or 

peripheral type Benzodiazepine receptor (PBR) that transports cholesterol from the 

cytosol to the mitochondria (Hauet et al., 2005; Fan and Papadopoulos, 2012) and the 

metabolism of cholesterol by regulating transcription of rat CYP7A1 (cholesterol 7α-

hydroxylase) gene (Marrapodi and Chiang, 2000; Staudinger et al., 2001; Li et al., 2011). 

Moreover, the involvement of many supplementary pathways initiated via different 

receptors like GHR, IGF-1 and (RXR/TR) which regulate the function of steroidogenic 

enzyme and the affinity of EDCs towards these receptors, makes toxicity mechanism 

more complex (Chandrashekar and Bartke, 1993; Xu et al., 1995; Hull and Harvey, 2000; 

Manna et al., 2001; N'Diaye et al., 2002). In addition to that, the central system HPG axis 

which regulates gonadal cell plays an important role in normal reproductive development 

process. At the hypothalamic level, kisspeptin neurons express both, ligand KiSS-1 and 

its receptor GPR54 that regulates the release of GnRH in pituitary which in turn controls 

the expression of FSHR and LHR in gonadal cell. The kisspeptin neurons also express 

ER-α which is involved in feedback inhibition of GnRH in response to estrogen 

stimulation. This feed forward mechanism holds an important role during normal fertility 

cycle of pre-ovulatory to ovulatory phase (Roseweir and Millar, 2009; Silveira et al., 

2010; Hameed et al., 2011). It has been shown in rodent models that exposure of BPA 

affects HPG axis with different mechanisms depending on life stage of exposure; at 

prepubertal stage damages kisspeptin neuron and at puberty stage alters ERαmRNA 

expression (Ceccarelli et al., 2007; Patisaul et al., 2009). Xi et al. (2011) showed that the 

involvement of BPA on transcript levels of GnRH and FSH in the male and female pup 

via altering Kiss-1 mRNA expressions further supports the notion of multilevel 

mechanism of EDCs. 

Boberg et al. (2008) reported that exposure to phthalates causes the reduction of 

anogenital distance, sign of male infertility, via the reduction of leptin level which 

supports the concept of leptin regulation of LH and FSH via leptin-kisspeptin-GnRH 

pathway (Neurons et al., 1999; Luque et al., 2007). The leptin synthesis was also found 

to be inhibited by cadmium exposure (Stasenko et al., 2010). In addition to that the local 

gonadal enzyme CYP19A (aromatase) catalyses the androgen to estrogen conversion to 
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balance androgen-estrogen level which is the prerequisite for the normal fertility in both 

male and female (Simpson et al., 1994). Several studies have reported that TBT inhibition 

of aromatase enzyme in granulosa cell results in imposex affecting fertility (Saitoh et al., 

2001; Heidrich et al., 2001). Many studies have shown the EDCs' dual action in regard to 

estrogen level (Ohtake et al., 2003, 2007). For instance dioxin exposure at prepubertal 

stage, shows estrogenic activity via enhancing binding of ERα to ERE. However at 

pubertal stage, dioxin-receptor complex represses E2 bound ER function leading to 

antiestrogenic effects (Ohtake et al., 2003). In another study, Ohtake et al. (2007) reported 

the antiestrogenic activity of EDCs like TCDD and 3MC via activation of E3 ubiquitin 

ligase pathway that results in degradation of ERα and Ahr. In contrast to antiestrogenic 

activity, certain EDCs increase the bioavailability of estrogens via inhibiting principle of 

estrogen sulphotransferase (SULT1E1) enzyme which causes inactivation of E2 (Kester 

et al., 2002). 

The male sex hormone testosterone biosynthesis has been shown to be affected by TCDD 

and PFOA via different mechanisms of action that involve altering signaling pathway, 

regulating expression of enzyme or direct inhibition of enzyme involved in 

steroidogenesis (Fukuzawa et al., 2004; Lai et al., 2005a; Shi et al., 2009; Zhao et al., 

2010; Wan et al., 2011). Saunders et al. (1997) reported that exposure of pregnant mother 

to octylphenol, decreases the level of testosterone in the fetal rat testis via altering the 

expression of CYP17α-hydroxylase/C17–20 lyase and steroidogenesis factor 1 (SF-1) 

leading to reproductive developmental disorder. The local hormone like AMH 

responsible for sexual differentiation in fetus during embryogenesis also nurtures the 

testosterone by increasing prenatal proliferation of Leydig cells and maintains the 

prepubertal stage in male. In parallel, developmental exposure of BPA and PCBs is linked 

to decreased levels of AMH, LHR, and 17β HSD3 and reduced aromatase activity in the 

hypothalamus, affecting sexual maturation (Lee and Donahoe, 1993; Hany et al., 1999; 

Rey et al., 2003; Nanjappa et al., 2012). In addition to that, TBT or TPT is found to inhibit 

both 5α-R1 and 5α-R2 isoenzymes, responsible for production of active androgen 

(Svechnikov et al., 2010), affecting male sexual characterization (Doering et al., 2002). 

Castro et al. (2013) found similar results for BPA, reporting inhibition of both 5α 

reductases at their synthesis level. Simultaneous exposure of both chemicals (TBT and 

BPA) could lead to more impact on male fertility. Moreover, exposure to EDCs has shown 

to induce reproductive toxicity by damaging the integrity of blood testes barrier (BTB) in 

Sertoli cell that causes impairment in spermatogenesis (Cheng et al., 2011). 

EDCs like BPA, PFOS, DEHP and cadmium induced reproductive toxicity are found to 

be mediated via altering MAPK, PI3K/c-Src/FAK, p38 MAPK and ROS signaling 

pathway leading to alteration in synthesis and metabolism of different proteins like 

occludin, ZO-1, Cx43 and catenin affecting BTB integrity (Chitra et al., 2003; Sobarzo et 

al., 2006; Li et al., 2009; Siu et al., 2009; Cheng et al., 2011; Wong and Cheng, 2011; Qiu 

et al., 2013; Ansoumane et al., 2014). It has also been found that Sertoli cells have 

functional Ahr, responsible for TCDD dose-dependent toxicity that alters mRNA level of 

testin, aromatase, sertolin and MIS which are important for germ cell development (Lai 
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et al., 2005a, 2005b). Phthalates are well characterized as reproductive toxic agents that 

cause apoptosis of germ cell by activating caspase pathway which includes: activation of 

fas by increased expression of fasl (Richburg and Boekelheide, 1996; Lee et al., 1999; 

Richburg et al., 1999; Koji et al., 2001), accumulation of lipid in somatic cells via 

increased LXRα mRNA expression (Muczynski et al., 2012) and downregulation of both 

GJA1 and vocal adhesion molecule vinculin (VCL) by increasing MMP2 (Yao et al., 

2012). Subsequently, activation of NFkB via increased expression of TRAIL-R1(DRP4) 

and TRAIL-R2 (DRP5) leads to increased apoptosis of germ cell without modification of 

their proliferation (Giammona, 2002; Lambrot et al. 2009). Fig. 4 shows the mechanism 

of phthalates causing germ cell apoptosis in fetus. 

 
Fig. 4. Mechanism of phthalates causing germ cell apoptosis in fetus. Phthalate exposure 

at tissue level causes activation of caspase pathway which lead to apoptosis of germ cell 

through interaction and activation of receptor and gene at the cellular level. 

3. Effects of EDCs in different windows of exposure: case study on 

female fertility effects 

It has been shown that EDCs have disparate response at different life-stages, depending 

on the physiological concentrations of hormones (Ohtake et al., 2003). However, primary 

concerns for female fertility are exposure to EDCs at prenatal and postnatal stages, which 

are at higher risk of reproductive failure as well as metabolic disorder and hormonal 

disorders in their later life. EDCs can alter normal cellular and tissue development and 

function through their interference in developmental programming of the body (Schug et 

al., 2011). To study the life stage risk assessment on fertility, it is very important to know 

the detailed mechanism behind development of germ cell into mature oocyte. This 

involves complex and sequential biological network of signaling pathway. 

3.1. Physiology of development of germ cell into mature oocyte 

During epigenetic reprogramming of germ cell, at the very first step, involves DNA 

demethylation to regain differentiation totipotency which subsequently undergoes mitotic 

division without completing cytokinesis to the formation of germ cell cyst (Pepling and 

Spradling, 1998). Before birth, germ cells go through meiosis and arrest in diplotene 

phase of meiotic prophase until puberty comes. Meanwhile germ cell cyst undergoes 

apoptosis followed by surrounding of pregranulosa cell forming primordial follicles 
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(Borum, 1961; Pepling and Spradling, 2001). After forming primordial follicles, 

estrogens play a role in maintaining these follicles' pool by inhibiting oocyte nest 

breakdown through inhibition of BCL-2 gene transcription via both genomic and 

nongenomic pathways (Perillo et al., 2000; Chen et al., 2007, 2009). 

Moreover, additional pathways are also involved in the regulation of primordial follicles 

which involves Notch signaling, and KIT-KL pathway. Notch signaling activation 

involves expression of Jagged1 and Jagged2 (ligand), in germ cells and Notch2 (ligand), 

in granulosa cells to form a receptor ligand complex. The proteolytic cleavage of this 

complex by γ-secretase produces intracellular domain of Notch (NICD) which 

translocates into the nucleus and interacts with the CSL family to form the complex. This 

complex recruits histone acetylase and regulates the expression of LHX8, NOBOX, Figla 

and Sohlh2 involved in formation of primordial follicles (Baron, 2003; Shih and Wang, 

2007; Chen et al., 2014; Vanorny et al., 2014). KIT receptor expressed in oocyte and the 

KIT ligand that is present in both oocyte and primordial follicle, help in initiation and 

progression of follicular development (Parrott and Skinner, 1999) via the activation of the 

MAPK pathway (Jones and Pepling, 2013). GDF9 increases KIT ligand mRNA 

expression and thus promotes the progression of primary follicle development (Nilsson 

and Skinner, 2002). BMP4 and BMP7 play a major role in survival and growth of 

primordial follicle to primary follicle by decreasing KL and TGF-α expression 

respectively (Nilsson and Skinner, 2003; Lee et al., 2004). Cx43 expressed in both 

cumulus cell and granulosa cell plays an important role in paracrine signaling and gap 

junctional intercellular communication between cumulus cell and follicular cell providing 

follicular development and oocyte quality (Ackert et al., 2001; Gittens et al., 2005; Wang 

et al., 2009). BMP4, BMP7 and BMP15 downregulate Cx43 in human granulosa cell via 

smad pathway and thus decrease the gap junctional intercellular communication leading 

to prevention of premature luteinization (Chang et al., 2013; Chang et al., 2014a, 2014b). 

The interplay between paracrine hormones is very important for the transition of 

primordial follicle to primary follicle to become a mature oocyte. AMH inhibits 

primordial follicles to enter the pool of growing follicles (Durlinger et al., 1999) by 

decreasing expression of inhibin (Themmen and Themmen, 2009). Billiar et al. (2003) 

also reported the inhibition of expression of inhibin by the estrogen in pregranulosa and 

oocyte. Thus, estrogens play an important role in regulating inhibin and follicular 

development. The TGF-β signaling involves GATA-4 and Smad-3 coordination for 

activating the inhibin (Anttonen et al., 2006). Androgens play an important role in follicle 

development via increasing expression of, FOXO-3, GDF9 through PI3/AKT pathway, 

and, KIT/KL through genomic pathway during primordial follicle to primary follicle 

stage. Specifically, during the development of primary follicle to antral stage, it inhibits 

proapoptotic proteins and stimulates FSH mRNA expression, cAMP and p450scc through 

both genomic and nongenomic i.e. MAPK/ERK pathways which in turn stimulates 

aromatase enzyme (Prizant et al., 2014). FSH stimulates LHR expression, (Richards et 

al., 1976) inhibin B production (Lee et al., 1982), and induces aromatase activity in the 

granulosa cells, which results in more estradiol level (Short, 1962; Richards et al., 1976; 
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Hillier et al., 1981). Moreover, most FSH sensitive called dominant follicle produces the 

highest levels of inhibin B and estradiol which in turn causes feedback inhibition of FSH 

production, required for growth of remnant follicles (Hirshfield and Midgley, 1978). After 

selection of dominant follicle, subsequently progesterone causes germinal vesicle 

migration and breakdown (GVBD) for resumption of meiosis at puberty by activating p53 

and E2F transcription factor 1 (Garcia-reyero et al., 2015) leading to ovulation. The 

fertilization of ovum results in formation of zygote and matured follicle after releasing 

ovum called lutein cell which secretes VEGF. It prolongs the lutein cell function that 

maintains the progesterone level important for pregnancy development. VEGF function 

is regulated via PPARγ (Fraser et al., 2000; Kaczmarek et al., 2005). 

3.2. EDCs' interaction with target molecules and their pathway 

Exposure to Lindane, PCBs and PAHs to embryo has been linked with premature 

reproductive ageing by causing the apoptosis of germ cell through different pathways 

such as activation of caspase-3 and poly-ADP ribose polymerase cleavage (PPAR) by 

Lindane and activation of BAX via Ahr by PAHs (Ronnback and de Rooij, 1994; 

Matikainen et al., 2002; La Sala et al., 2009; Kee et al., 2010). Phthalate exposure induces 

primordial follicle recruitment via activation of PI3K/AKT pathway, resulting in 

premature ovarian follicle and infertility (Hannon et al., 2014). Previously, Castrillon et 

al. (2003) found development of premature oocyte follicle in FOXO3A knock out mouse 

which is regulated by the PTEN/PI3K/AKT pathway. Both, phthalates and BPA reduce 

the expression of LHX8, Nobox, Figla, and Sohlh2, involved in oocyte survival and 

follicular recruitment to form primordial follicle. In addition to this both compounds alter 

epigenetic reprogramming of Lhx8 by preventing DNA demethylation (Zhang et al., 

2012, 2014). However, BPA shows multiple mechanisms of action, altering 

steroidogenesis and proliferation of granulosa cell such as: induction of PPARγ causing 

downregulation of FSH-stimulated IGF-1, SF-1, GATA4, aromatase, and E2 

(Kwintkiewicz et al., 2010), decreases both StAR and P450scc mRNA impairing hormone 

production in the antral follicles (Peretz et al., 2011), and activates nongenomic pathway 

of estrogen via PKA and PKG pathways associated with phosphorylation of transcription 

factor CREB and the cell cycle regulator Rb (Bouskine et al., 2009). Additionally, BPA 

delayed maturation of oocyte by inhibiting resumption of meiosis via altering ER 

expression, following hypomethylation of imprinted gene Igf2r, Peg3, and GVBD, (Chao 

et al., 2012). On the other hand, other EDCs like methoxychlor inhibit follicular 

development by stimulating AMH (Uzumcu et al., 2006). This is further supported by the 

study of impairmaint of follicular development in neonates on exposure of estradiol 

benzoate found to be via increased expression of AMH (Ikeda et al., 2002). Moreover, 

Nagel et al. (1999) shown that BPA even at very low doses can affect sexual dimorphism 

of infants via its estrogenic action in brain, whereas in normal, prenatal estrogen forms 

complex with Alpha fetoprotein, protecting the female brain from defeminization and 

masculinization (Bakker et al., 2006). 

EDC contamination in the human follicular micro-environment is associated with a lower 

chance of an oocyte to develop into a top-quality embryo, leading to lowering in 
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fertilization rate (Petro et al., 2012). For instance, PCB exposure affects oocyte quality 

and competence via multiple mechanisms (altered microtubule organization, mRNA 

polyadenylation levels, redistribution of cortical granules, mitochondrial disorganization) 

which leads to polyspermy and transcript instability. It can also directly cause cumulus 

cell apoptosis which is communicator cell between oocyte and follicle mediated via Ahr 

signaling (Gandolfi et al., 2002; Brevini et al., 2005; Pocar et al., 2006). MEHP an 

endocrine disruptor inhibits embryonic genome activation (EGA) initiation and maternal-

effect genes resulting in the suppression of maternal-to-embryonic transition by 

generating ROS (Chu et al., 2013). 

Fig. 5 summarizes the life stage development of germ cell to oocyte and the possible 

targets of EDCs. In this turn, Fig. 6 explains the complex signaling pathway for life stage 

development of germ cell maturation to oocyte. 

 

 
Fig. 5. Life stage development of germ cell and the possible targets of EDCs. The germ 

cell, basis of future sexual life or transgenerational development, development of oocyte 

from germ cell starts at embryo stage. Exposure of EDCs to pregnant mother (F0) may 

cross placental barrier and affect embryonic germ cell in fetus (F1). This could lead to 

alteration in oocyte quality required for fertilization and transgenerational fetus 

development (F2). Every stage of development of germ cell to high quality oocyte, 

demands fine tune balance of endogenous level and interaction pathway. Categorizing 

development of germ in stages provides information on susceptible targets of EDCs 

during the journey of germ cell of fetus (F1) residing in mother embryo (F0) to high 

quality of oocyte, for development of transgenerational fetus (F2). 
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Fig. 6. Signaling pathway for life stage development of germ cell to zygote. The figure 

depicts the different signaling pathways' initiation via binding of endogenous molecule 

with receptors, which leads to inhibitory and stimulatory effects on signaling molecule 

following physiological demand for the development of germ cell into mature oocyte. 

4. Grouping strategy and conceptual model of PBPK/PD in assessing 

risk for chemical mixture 

4.1. Grouping strategy 

There are numerous classifications of EDCs reported in the literature based on different 

criteria like pathway of exposure, level of exposure, target hormones, adverse effects, and 

disease outcomes (Caserta et al., 2008; Wuttke et al., 2010; Craig et al., 2011; Schug et 

al., 2011; Casals-Casas and Desvergne, 2011; Vandenberg et al., 2012; Hampl et al., 

2014). Ongoing discussion of the risk assessment for chemical mixture (EFSA, 2013) 

needs new grouping strategy which clusters EDCs based on their similar adverse 

outcomes via independent, crosstalk and common interaction mechanism involving 

multiple organs and hormones. Similar prerequisite for cumulative risk assessment of 

chemical mixtures has been cited by EFSA (Kortenkamp, 2007; EFSA, 2013). This type 

of grouping strategy (based on similar adverse outcomes) could also help in making a 

decision on whether to go for dose addition or response addition method for mixture 

interaction study (Culleres et al., 2008). A detailed discussion on classification is beyond 

the scope of this review. However, a detailed classification for selected chemicals is 

provided in Table 1 of Annex 1. Classification of EDCs proposed in this review is based 

on target organs, hormones, biomolecule (MOA) and adverse outcomes, which can 
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provide basis for grouping strategy for mixture modeling. Proposed grouping strategy has 

been illustrated in Fig. 7 by giving a small example of four chemicals (BPA, TCDD, 

phthalates and PFOS). Some of these chemicals are categorized in one group for mixture 

study based on their similar adverse outcome including target organs like thyroid gland 

and Sertoli cell, and in another group with dissimilar mode of action (crosstalk) producing 

common adverse effect of altering thyroid action and decreasing sperm count, 

respectively. Similar grouping strategy has been followed in Fig. 9 for the chemicals 

affecting female fertility. 

 
Fig. 7. Endocrine disruptor's classification on the basis of mode of action for selected 

chemicals (BPA, TCDD, phthalates and PFOS), with different targets on thyroid and 

Sertoli cell with common adverse effect in respective cell. 

4.2. Conceptual model of PBPK/PD 

A chemical can alter hormone actions by targeting at the level of epigenetic-gene-

enzyme/receptor followed by endogenous intracellular signaling pathway (Grün and 

Blumberg, 2006; Cruz et al., 2014). Therefore, the mixture of chemicals producing similar 

adverse outcomes via entirely different modes of action can be categorized in one group 

in order to analyse the combination effect. Furthermore, timing and level of exposure are 

also important parameters which can make adverse effects temporary or permanent and 

have to be included for the risk assessments (Fenton, 2006; Buck Louis et al., 2008; 

Palanza et al., 2016). Based on methodologies (Fig. 7), we propose a conceptual model 

which brings the fate and the consequence of chemical mixture in the integrated risk 

assessment framework of exposome-internal exposure-biological effect to the adverse 

outcome (Fig. 8). 
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Fig. 8. Conceptual model of PBPK/PD in assessing risk for chemical mixture (ED-

endocrine disruptor exposure, C-concentration of ED in systemic circulation, I-

concentration of ED in target organ or tissue, DI-dynamic interaction). 

PBPK usually well describes the time course of tissue level exposure of chemicals relating 

environmental exposure by including their absorption, distribution, metabolism and 

excretion. At the cellular level, the interaction of chemicals with endogenous 

biomolecules and their pathways which are interrelated with each other results in 

initiation of an event that could lead to adverse outcomes which can be describe by PBPD 

model. The integrated PBPK/PD can describe the kinetic as well as dynamic interaction 

of EDCs giving time course effect of chemicals. 

At the dynamic level, integration of individual mechanisms to the dynamic interactions 

of mixture for assessing risk is still debatable (Lambert and Lipscomb, 2007; EFSA, 2013; 

Karri et al., 2016). Fig. 9 shows a small example of hypothetical schematic model that 

integrates individual modes of action based on their target molecule in a system based 

approach. It includes common, crosstalk as well as dissimilar modes of action based on 

their targets of common outcome. For instance, the dioxin-like chemicals, DBP, BPA, 

TOP and PAH-OH alter the estrogen action at different levels of peripheral as well as 

central mechanism. Their major targets include kisspeptin neuron, CYP19A (aromatase), 

SHBG, ER, Ahr, ERE CYPA1 and CYPB1 affecting estrogen and progesterone feed 

forward mechanism, consequently leading to risk of infertility. In fact, EDCs like DBP, 

BPA and TOP show similar mode of action via targeting CYP19A and SHBG. Dioxin-

like substances exhibit dual role such as “antiestrogenic” via Ahr dependent CYPB1 

mechanism and “estrogenic” via estrogen receptor showing crosstalk between ER and 

Ahr. PAH-OH and BPA can interact with other dioxin-like substances in respect to their 
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targets via crosstalk between Ahr and SULTE1 altering metabolism of estrogen. BPA, 

PAH-OH and other dioxin-like substance are able to simultaneously interfere with the 

endocrine system through multiple mechanisms. The mixture effects of these chemicals 

in system based model can be possible by considering estrogen, progesterone and ERE, 

as end point biomarker of infertility, and integrating available individual toxicological 

profile data into a dynamic mixture model of EDCs (PBPK/PD). 

 
Fig. 9. Schematic model for studying mixture effect in dynamic level. 

This figure contains the hypothetical mixture model of characterizing risk through 

detailed understanding of mode of chemicals' interaction with different biological 

components of the HPG pathways describing multiple mechanisms. 

5. Summary & future perspectives 

We have summarized the effects of endocrine disruptors on thyroid, adrenal, and sex 

hormones accounting their effects on synthesis, metabolisms and actions. Mixture of 

chemicals can simultaneously interfere with multiple endocrine pathways via multiple 

mechanisms making mixture effect more pronounced than individual. The EDCs acting 

on certain hormones via multiple mechanisms (central or peripheral) can be grouped for 

risk assessment of mixture of chemicals, according to their similar adverse outcomes. 

Most of the EDCs have nonmonotonic dose-response curve which is the major drawback 

when establishing a relationship between the exposure kinetics and elicited response 

(Vandenberg et al., 2012; Beausoleil et al., 2013; Yang et al., 2016). Additional 
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challenges like multiple mechanisms, delayed response (time lag between exposure to 

adverse outcomes), dynamic interaction involving crosstalk and common mechanisms, 

and transgenerational effect added more complexity in the quantitative risk assessment 

(Maffini et al., 2006; Matthiessen and Johnson, 2007; Rubin, 2011; Fowler et al., 2012). 

However, understanding the molecular mechanism of interaction of chemicals with 

endogenous molecules or pathways can explain the variability among chemicals for the 

same adverse effect (Filby et al., 2007). For instance, BPA shows complex dose-response 

curve in concentration dependent model which could be explained by the fact that it alters 

the gene expression through genomic as well as nongenomic pathways (Takayanagi et al., 

2006; Vandenberg et al., 2009; Vandenberg, 2014). Similarly, dioxin-like substances 

show dual response that can be explained by availability of endogenous hormone and 

their action. The potential dynamic interaction may lead to change in the response curve 

in case of mixture of chemical, which can be explained by understanding different types 

of mechanistic interactions like crosstalk or similar or dissimilar MOAs as it has been 

explained in this review. Similarly, understanding latency of exposure (i.e. lag time 

between exposure and response) is important as in the case of infertility disorder, which 

can only be detected after a certain age though exposure occurs at early stage of life. 

Lots of experiments have been done on individual EDCs but it is very hard to find mixture 

level studies. Selecting chemicals and then optimizing the dose for a selected mixture for 

carrying animal experiment is another difficult task. To know the potency of individual 

chemical in mixture due to their complex interaction behaviour at different levels, requires 

large combinatorial experimental design. Normally this kind of experiment requires a 

large number of animals which will be against the current ethical guideline of risk 

assessment (EU, 2010). However, tremendous development in in-vitro and in-silico 

techniques and emerging areas like omics, generating lots of toxicological data leads to 

new era of quantitative risk assessment (Knudsen et al., 2015). 

Incorporation of individual mechanism of chemicals into mixture model provides a 

platform for assessment of combined risk produced by mixture of chemicals. 

Understanding individual mechanism and implementing those mechanisms in system 

based approach will help us in the development of mixture model. This will provide better 

understanding of the risk produced by chemical mixture exposure and it will further assist 

in designing animal experiment and optimization of dose which will reduce the use of 

animals. The European Union (2011) suggested concentration addition method for 

cumulative risk assessment of chemicals with similar or dissimilar mechanisms of action 

by considering their common adverse outcomes. But response addition method for a 

common adverse effect is still not recommended. 

Categorization of chemicals in the same group according to similar adverse outcomes, 

accounting both similar as well as dissimilar mechanisms (crosstalk) of action may 

provide a sound basis for studying mixture toxicology. Based on this grouping strategy, 

addressing both kinetic and dynamic interactions of mixture and establishing a 

relationship between pharmacokinetic-pharmacodynamic-altered molecular events will 

give a better model to correlate the environment exposure with adverse outcomes. Finally, 
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integrating individual mode of action of each chemical with the help of mathematical 

equations into advanced tools such as PBPK/PD would enable the simultaneous 

assessment of EDC mixtures correlating concentration in various biological matrixes 

(blood, tissue, urine) with various end points (endocrine diseases). It will also help in 

finding the toxic equivalent dose of chemicals eliciting similar adverse effects. Similarly, 

timing and duration of exposure are important factors which need to be considered while 

assessing the risk. Integrating physiology of the human body at different life stages and 

respective modes of action of EDCs will help in building life stage dynamic models. For 

example, dividing life stage into prenatal-postnatal-puberty-menopause and incorporating 

susceptible gene or receptor or protein at different life stages targeted by EDCs and 

physiological data provide a model able to predict the risk of infertility in females by 

exposure to these chemicals in different stages of life. 
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2A. Development of a human physiologically based 

pharmacokinetic (PBPK) model for phthalates and its 

metabolites: A bottom up modeling approach 

Abstract: DEHP exposure to human comes from different sources such as food, diet, 

cosmetics, toys, medical products, and food wraps. Recently, DEHP and its metabolites 

were categorized as non-persistent endocrine disrupting compounds (EDCs) by the world 

health organization (WHO). Rat experimental studies have shown that phthalate and its 

metabolite(s) can cause hepatic, developmental and reproductive toxicity. In human, 

DEHP rapidly metabolizes into a toxic metabolite MEHP. This MEHP further 

metabolizes into the different chemical forms of 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP 

and phthalic acid. A simple DEHP pharmacokinetics model has been developed, but with 

a limited number of metabolites. A chemical like DEHP which is extensively metabolized 

deserves a detail metabolic kinetics study. A physiologically based pharmacokinetics 

(PBPK) model of DEHP considering all the major metabolites in human, has not been 

developed yet. The objective of this study is to develop a detailed human PBPK model 

for DEHP and its major metabolites by using a bottom-up modelling approach with the 

integration of in vitro metabolic data. We will use an in-vitro-in-vivo extrapolation 

(IVIVE) and a quantitative structure-activity relationship (QSAR) method for the 

parameterization of the model. Monte Carlo simulations were performed to estimate the 

impact of parametric uncertainty on the model predictions. First, the model was calibrated 

using a control human kinetic study that represents the time course of DEHP metabolites 

concentrations in both the blood and the urine. Then, the model was evaluated against the 

published independent data on different dosing scenarios. The results of model 

predictions for the DEHP metabolites in both the blood and the urine were well within 

the range of experimentally observed data. The model also captured the time course 

profile of the observed data, attesting to the model's predictive power. The current 

developed PBPK model can further be used for the prediction of the time course of 

chemical concentrations for the different exposure scenarios not only in the blood and the 

urine but also in the other compartments. Moreover, this model can also be used to explore 

different biomonitoring studies with respect to human health risk assessment and might 

be useful for integrative toxicological studies aimed at improving exposure-target tissue 

dose–response relationship. 

 Keywords: DEHP; MEHP; Pharmacokinetics; PBPK; Human health Risk 

assessment; IVIVE; Endocrine disruptors; human biomonitoring 
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1. Introduction  

Phthalates are ubiquitous environmental contaminants made up of dialkyl esters or alkyl 

and aryl esters of ortho-phthalic acid (1,2-dicarboxylic acid). Among Phthalates, Di-2-

ethylhexyl phthalate (DEHP) is the most important because of its large and widespread 

uses in industries as a plasticizer. It is found in food, cosmetics, toys, medical products 

and food packaging, mostly used as a plasticizer. The total dietary intake (TDI) of 50 

μg/kg BW/day limit has been set by the EFSA and the European chemical agency (ECHA) 

to assess the risk related to DEHP exposure (EFSA, 2015; ECHA, 2010). The total mean 

dietary intake of the DEHP in several cohorts studies estimated in the range of 0.42–11.67 

μg/kg bw/ day, which is far below the threshold set by the EFSA and the ECHA (Fromme 

et al., 2007; Dickson-Spillmann et al., 2009; Sioen et al., 2012; Heinemeyer et al., 2013; 

Martine et al., 2013; Martínez et al., 2017, 2018).  

DEHP has a short half-life and it does not accumulate inside the body (Krotz et al., 2012). 

DEHP completely metabolizes into a toxic metabolite mono-(2-ethylhexyl) phthalate 

(MEHP). This MEHP further metabolizes into different chemical forms like 5-hydroxy 

MEHP, 2- ethyl-5-carboxypentyl phthalate (5-Cx MEPP) and phthalic acid. 5-oxo MEHP 

is another metabolite result of the 5-OH MEHP metabolism. Temporal variability in 

phthalate exposure from the different sources and their ability to generate several forms 

of metabolites can lead to a stable microenvironment exposure of phthalates to internal 

organs. The microenvironment exposure of the DEHP over a long period of time lead to 

a pseudo-steady state concentration (Meeker et al., 2009). 

Currently, DEHP is of concern in its categorization as a non-persistent endocrine disruptor 

by the World Health Organization (WHO, 2010). Cobellis (2003) in his epidemiological 

study has shown the linkage between the exposure of DEHP and the prevalence of 

endometriosis in women. Other studies have also shown that environment relevant dose 

of phthalates alters estrous cycle, impaired oocyte maturation, decrease ovulation (Anas 

et al., 2003; Krisher, 2013; Hannon et al., 2014). DEHP and its toxic metabolite MEHP 

mainly alter the estrogen productions and its activity in granulosa cell, which are essential 

for the growth and secretion of the follicles, which might lead to infertility due to hypo-

estrogenic, polycystic ovary and anovulatory cycles (Davis et al., 1994; Lovekamp-Swan 

and Davis, 2003). Many hypotheses of phthalates effect on male reproductive toxicities 

were proposed based on the animal studies, please refer to the given reference for more 

information (Richburg and Boekelheide, 1996; Richburg et al., 1999; Lee et al., 1999; 

Koji et al., 2001; Shelby, 2006; Sharma et al., 2017a). Several cohort studies have shown 

a correlation between the high levels of DEHP in urine with significant reduction in 

plasma testosterone concentrations (Duty et al., 2005; Pan et al., 2006). 

Understanding the factors that govern the DEHP distribution and metabolisms within the 

quantitative framework of a physiologically based pharmacokinetic model is essential for 

better estimation of the physiological concentration of DEHP metabolites in the target 

tissues such as gonads. The Reliable Physiologically based Pharmacokinetic (PBPK) 
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model will be useful for establishing a suitable dose metric for targeted tissues (Fabrega 

et al., 2014), and exposure-dose-response relationship for the systems toxicology model 

(Sharma et al., 2017b, 2018). Since 1974, many pharmacokinetic analyses on DEHP and 

its metabolites have been conducted both in in-vitro and in-vivo (animal and humans) 

(Daniel and Bratt, 1974; Peck and Albro, 1982; Albro, 1986; Ito et al., 2005; Wittassek 

and Angerer, 2008; Choi et al., 2013). Several pharmacokinetic (PK) models have been 

developed accounting its major metabolites using simple compartmental approach (Koch 

et al., 2003, 2004, 2005, 2006; Lorber et al., 2010). Koch et al. (2003, 2004, 2005) 

experimentally examined several DEHP secondary metabolites concentration both in the 

blood and the urine describing their time course kinetics. A PK model developed by 

Lorber et al. (2010) has predicted the DEHP metabolites concentration both in the blood 

and urine which includes empirical fitting of the two key parameter against the 

experimental data namely; first is the fraction of chemicals available to pass through the 

metabolism; and the other is the rate of dissipation of these metabolites. However, It lacks 

the mechanistic metabolic kinetics (Michaelis-Menten reaction), considered the most 

important biotransformation process. Keys et al. (1999) and Cahill et al. (2003) developed 

a PBPK model of DEHP in both the rats and human, however, these models have not 

included all the metabolites and their kinetics, which might be due to insufficient data on 

the DEHP metabolic kinetics at that time. Recently, Choi et al. (2012) has reported on in 

vitro metabolic kinetics information on the DEHP and its metabolites both in the rat and 

human using hepatic cell line. To best of our knowledge, there is no published detailed 

target tissue dosimetry model (PBPK), which becomes essential for the chemical like 

DEHP that produces many metabolites (Daniel and Bratt, 1974; Ghosh et al., 2010). The 

purpose of this study is to develop a detailed PBPK model for the DEHP and its major 

metabolites for the adult human and its evaluation against the experimental data. A 

bottom-up modeling approach was used to develop the model. It includes the integration 

of in vitro metabolic and in silico data which uses IVIVE (in-vitro in-vivo extrapolation) 

and QSAR (Quantitative structure-activity relationship) tools. These tools led to creation 

of a PBPK model with minimal or no animal experiments, supporting the 3Rs strategies 

of minimizing the use of animal. An IVIVE tool has been successfully used in connection 

with a PBPK to derive the in-vivo kinetics from the in vitro studies using biologically 

appropriate scaling (Yoon et al., 2014; Martin et al., 2015). This work is part of two major 

EU projects, HEALS and EuroMix, where different aspects of in silico models and its 

applications in human biomonitoring are investigated (Martínez et al., 2017, 2018).  

This article describes the physiologically based pharmacokinetic (PBPK) model that 

predicts the time variant concentrations of DEHP metabolites such as MEHP 5-OH 

MEHP, 5-cx MEPP, and 5-oxo MEHP in plasma upon oral dosing of DEHP. The model 

was used to simulate the cumulative amount of the DEHP metabolites in urine. The in 

vitro human gut and hepatocyte DEHP metabolic kinetics data were scaled and integrated 

into the model (Choi et al., 2013). Experimentally observed human DEHP metabolites 

concentration both in the plasma and the urine are used to calibrate the PBPK model. 

Further model was evaluated against the independent data on DEHP kinetics for different 
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dosing scenarios (Anderson et al., 2011). Prior mean parameter values were obtained from 

the published literature or derived from the in-vitro and in-silico experiments, whilst 

accounting for uncertainties in the range of± 1 to ± 1.5 standard deviation. After 

sensitivity analysis the most uncertain parameter yet influential parameters were 

distributed statistically for Monte Carlo simulations. 

2. Models and Methods 

2.1 Overview of the modeling approach  

The model was coded as a set of ordinary differential equations, written in the GNU 

MCSim modeling language and solved by numerical integration using the R “deSolve” 

package (Bois and Maszle, 1997). Model parameters values were derived from in vitro 

and in-vivo experiments reported in the literature or using the in-silico approach. 

Sensitivity analysis of the model was done using the mean value of the parameters. After 

sensitivity analysis, the most uncertain yet influential parameters were distributed 

statistically for Monte Carlo simulations to estimate the impact on model predictions of 

uncertainty in all of the selected parameters (Bois et al., 2010; Fàbrega et al., 2016). 

Model equations are provided in Annex 2.  

The exchange of the chemicals between blood and tissue in each organ is described by 

flow limited processes i.e. we implement a perfusion rate-limited PBPK model (not 

permeability limited). The model comprises several compartments i.e. gut, liver, blood, 

fat, gonad and a compartment representing the rest of the body (Fig. 1). The gonad 

compartment was included in the model for its later use in DEHP reproductive toxicity 

assessment. The only metabolite MEHP was distributed to the given compartments, while 

other metabolites were confined to the blood compartment presuming their volume of 

distribution is equivalent to the plasma volume. All physiological parameters such as 

blood flows and tissue volumes used in the model were obtained from the published 

literature and are provided in Table A.1 of Annex 2. The partition coefficients and 

fractional unbound were obtained from the in-silico approach or literature are provided in 

Table 1. The calibration of the model was carried out against the human pharmacokinetic 

experimental data on both the plasma and the urine level of DEHP metabolites reported 

in Koch et al. (2004, 2005). This involves the plasma concentration data during the first 

8 h and the cumulative amount of metabolites in urine over 44 h following an oral dosing 

of 48.5 mg. Further evaluation of the developed PBPK model was done against the other 

independent pharmacokinetics study done by Anderson et al. (2011) for two different 

dosing scenarios. In this study, all major metabolites are considered namely; MEHP, 5-

OH MEHP, 5-CX MEPP, 5-Oxo MEHP and phthalic acid. All the metabolic parameters 

were derived from in vitro cell line study are provided in Table 1. 
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2.2. Pharmacokinetics of DEHP and its Metabolites  

The rate of metabolite formation is assumed to be equal to the rate of parent compound 

metabolism. DEHP metabolic pathway is provided in Fig. 2. DEHP metabolizes to 

MEHP, which metabolizes into different chemical forms such as 5-OH MEHP, 5cx-

MEPP, and 2cx-MEPP. Among them, 5-OH MEHP further metabolizes into 5-Oxo 

MEHP. All the metabolites excrete via urine. Absorption of DEHP from the gut to the 

liver was described by partition coefficient. Both DEHP and MEHP distributed to 

compartments such as liver, fat, plasma and gonads. However, due to inadequate data on 

the partition coefficients for metabolites other than MEHP, their distribution limited to 

the plasma compartment. And the volume of distribution of these metabolites has set 

equal to the plasma volume. 

Absorption  

Koch et al. (2005) in his study reported that DEHP is completely absorbed from the gut 

and rapidly metabolized into the MEHP in the liver. The distribution of DEHP from the 

gut to the plasma is described by its partition coefficient between them. The partition 

coefficient (gut: plasma) was estimated using QSAR approach of Poulin and Krishnan 

tissue composition method (Poulin and Krishnan, 1996, 1995; Poulin and Theil, 2000). 

The MEHP uptake from the gut the liver was described by the first order rate constant 

(Adachi et al., 2015). 
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Fig. 1. The figure represents a PBPK model for the DEHP and its metabolites. It includes 

mainly five compartments and clearance of chemical depends on both metabolism 

(mainly five metabolites) and urinary elimination. Following oral administration of 

DEHP (P), it readily metabolizes into MEHP (M1) and MEHP further metabolizes into 

5-OH MEHP (M2), 5-cx MEPP (M3) and phthalic acid (M5). 5-OH MEHP (M2) is 

further metabolizing into 5-oxo MEHP (M4), for detail metabolic scheme refers to Fig. 

2. The DEHP and MEHP are distributed to the given compartments. However other 

metabolites produced in guts and liver are transferred to blood compartments assuming 

their distribution in a single compartment. The metabolite phthalic acid (M5) was not 

utilized in this model for its further distribution to blood or its elimination (except for 

MEHP clearance, metabolic conversion to M5), as no data are available to calibrate its 

concentration in urine or blood.  

Distribution 

DEHP and MEHP was distributed to the several compartments using their partition 

coefficients estimated by in-silico or derived from the published literature and are 

provided in Table 2. DEHP partition coefficients were estimated using the QSAR 

approach based on tissue composition method (Poulin and Krishnan, 1996, 1995; Poulin 
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and Theil, 2000). A log ko/w of 7.6 was used to estimate the tissue: plasma partition 

coefficients. The MEHP partition coefficient values which was experimentally 

determined through vial –equilibration method by Keys et al. (2000) was used for the 

tissue distribution. Other metabolites distributions restricted to the blood compartment 

only, assuming their volume of distribution equivalent to the plasma volume. The 

metabolites formed in the liver transfer to the blood using first order uptake rate constants 

and these parameters were calibrated against the Koch et al. (2005) experimental data. 

Elimination  

Elimination of DEHP and its metabolites in urine was assumed to be directly proportional 

to its rate of clearance from the plasma. The model presumed that DEHP clearance solely 

depends on its metabolism into MEHP (Koch et al., 2004, 2005, 2006; Lorber et al., 

2010).  

The excretion rates for the MEHP and other metabolites were described by first-order rate 

equation. These excretion rates were obtained by using the relationship between the 

elimination rate constant and the chemical’s plasma half-life i.e. ratio of ln2 (0.693)/t1/2 

(half-life). The mean half-lives for MEHP, 5-OH MEHP and 5-CX MEPP and 5-oxo 

MEHP was estimated by Lorber et al. (2010) was used for the model parameterization. 

These parameters values were used for the model simulation and calibration against the 

reported time course concentration of chemicals in the plasma and cumulative excretion 

profile in the urine reported (Koch et al., 2005). The elimination rate constant for MEHP 

was measured using half-life reported by Mittermeier et al. (2016). 

2.3. In vitro intestinal and Hepatocyte metabolic studies  

Metabolism of the DEHP both in the liver and gut to MEHP, 5-OH MEHP, 5oxo-MEHP, 

5cx MEPP and phthalic acid was described by the Michaelis Menten equation provided 

in Eq. (2). This equation includes two important parameters namely Vmax (maximum 

velocity of metabolic reaction) and Km (affinity i.e. concentration at which reactions 

occurs at the half maximal rate). The in vitro intestinal and hepatic metabolic rates for 

several DEHP metabolites were reported in Choi et al. (2012) where the author has 

described mainly five metabolites (MEHP, 5-OH MEHP, 5oxo-MEHP, 5cx MEPP and 

phthalic acid) kinetic both in the microsomal and cytosol fraction of the intestine and the 

liver. A high intrinsic clearance rate i.e. ratio between Vmax and Km for the metabolic 

conversion of DEHP to MEHP in the cytosolic fraction of intestine and liver was observed 

(Choi et al., 2012). However, intrinsic clearance for other metabolites in cytosolic fraction 

was reported to be insignificant. The in-vitro in-vivo extrapolation (IVIVE) method, 

which involves scaling of in vitro Vmax value to in vivo utilizes physiological specific 

parameters such as tissue-specific microsomal protein content or cytosol protein, specific 

tissue volume and, body weight (Yoon et al., 2014) was used to derive the metabolic 

parameters. The Eq. (1) describes the scaling approach which is used to derive the Vmax 

value as an input for the PBPK model. The Michaelis constant i.e. Km for the five 

metabolites in the gut and liver were set equal to the reported in-vitro cell line study 

provided in Table 1. The reported Vmax in-vitro values the maximum rate of reaction, 

were scaled to the whole body PBPK using Eq. (1). The reported quantity of MSP in the 

liver, and the gut is 52.5 mg/g liver and 20.6 mg/g intestine respectively (Cubitt et al., 

2011). Mean value of 80.7 mg and 18 mg of cytosolic protein per gram of the liver and 
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the gut respectively are used for the IVIVE approach. In-vivo scaled Vmax values for 

each metabolite are provided in Table 2. The schema of metabolism is provided in Fig. 2. 

𝑉𝑚𝑎𝑥(𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑒/𝑙𝑖𝑣𝑒𝑟) = (𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑒/𝑙𝑖𝑣𝑒𝑟 ∗ 𝑀𝑃𝑃𝐺𝐺/𝑀𝑃𝑃𝐺𝐿/

𝐶𝑦𝑡𝑜𝑠𝑜𝑙𝑃𝐺𝐺/𝐶𝑦𝑡𝑜𝑠𝑜𝑙𝑃𝐺𝐿 ∗  𝑉𝑔𝑢𝑡/𝑉𝑙𝑖𝑣𝑒𝑟)/𝐵𝑊 .75      

Eq. (1) 

Where, 

Vmax is the maximum rate reactions value in the unit of µg/hr/kgBW.75; MPPGG is the 

microsomal protein per gram of gut; MPPGL is the microsomal protein per gram of liver; 

CytosolPGG is the cytosolic protein per gram of gut; CytosolPGL is the cytosolic protein 

per gram of liver  

Vgut and Vliver is the volume of gut and liver respectively 

 

dAmets

dt
=

Vmax∗Ct∗fu

km+Ct∗fu
                                                      Eq. (2)

            

Where, 

Ct is the corresponding concentration in tissue and fu is the fraction unbound constant.  

Vmax (µg/hr/whole body weight) is the maximum rate for the corresponding reactions; 

Km is the affinity constant concentration at which half of the Vmax occurs.  
dAmets

dt
  is the rate of production of metabolites 

Metabolic pathway  

 

Fig. 2. Represent the schematic metabolic pathway of DEHP in the human gut and liver. 

The productions of metabolites follow same structure in PBPK and were described using 
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Michaelis Menten equation. The corresponding re1, re2, re3, re4, and re5 represent the 

Michaelis-Menten metabolic reaction used in the model represented in the Eq. (2).  

2.4. In vivo Human Pharmacokinetics study 

In-vivo pharmacokinetics of DEHP and its metabolites are well characterized in several 

studies (Koch et al., 2006, 2005, 2004; Anderson et al., 2011; Lorber et al., 2010). Koch 

et al. (2004, 2005) studies involved the self-dosing of 48.5 mg of D4-DEHP by volunteer 

(n = 1). The volunteer aged 61, 175 cm tall and weighing 75 kg. Plasma concentrations 

for MEHP, 5−OH MEHP, 5-oxo MEHP and 5-Cx MEPP were measured at 2,4, 6 and 8.3 

h upon DEHP self-dosing. In the same study, urine samples were collected until 44 h and 

the cumulative amount of DEHP metabolites were reported. This study was accounted for 

the model calibration. Koch et al. (2005) monitored two metabolites namely 5-cx MEPP 

and 2cx MMHP in both plasma and urine. Koch et al. (2005) found 5−OH MEHP and 5-

cx MEPP as major metabolites in the urine and observed no dose-dependency. The 5-cx 

MEPP metabolite was not included in the current model since there is no data on its 

metabolic kinetics (rate of production).  

Anderson et al. (2011) analyzed DEHP pharmacokinetics in urine. For this analysis, two 

scenarios were considered: one at the high dose of 2.8 mg D4-DEHP and second at a low 

dose of 0.31 mg D4-DEHP. This pharmacokinetics study included 20 volunteers (10 

males and 10 females) of following characteristics aged greater than 18 years, BMI 

between 19 and 32 kg/m2 and body weight greater than 60 kg. The cumulative amount of 

DEHP metabolites concentration in urine was reported as a percentage of mole dosing. 

The cumulative DEHP metabolites urine data were used for evaluation of the developed 

model keeping all the model's parameters same except subject body characteristics such 

as BW and BMI. 

2.5. Sensitivity analysis  

 A Local sensitivity analysis was carried out for the PBPK model. The R package FME 

was used, which measures the alteration in model output for variable of interest by 

changing each parameter by 1 percentage up and down whilst keeping other ones 

constant. Detailed information about the functions of FME can be found in Soetaert and 

Petzoldt, (2010).  

𝑆𝑖, 𝑗 =  
𝜕𝑦𝑗

𝜕𝑝𝑖
∗

𝑉𝑝𝑖

𝑉𝑦𝑗
 

Where,  

𝑆𝑖, 𝑗 is the sensitivity of  parameter i for model variable j and is  normalized and 

dimensionless. 𝑦𝑗 is a model output variable (DEHP Metabolites time-plasma 

concentration profile) , 𝑝𝑖 is parameters involved in PBPK model, 𝑉𝑝𝑖 is the scaling of 

parameters 𝑝𝑖 and 𝑉𝑦𝑗 is the scaling of  variable 𝑦𝑗.  

These sensitivity functions collapsed into a summary of sensitivity values, which includes 

L1 norm, L2 norm, Mean, Min and Max. The magnitude of the time-averaged sensitivity 

values were used to rank the parameters.  
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Where 𝐿1 =  ∑
|𝑆𝑖𝑗|

𝑛
    and   𝐿2 =  √∑

(𝑆𝑖𝑗
2 )

𝑛
   

2.6. Model parameters  

Human physiological data, in vitro data and QSAR estimates, were used for the 

parameterization of the model. Only Pharmacokinetic specific parameters such as 

partition coefficients, metabolisms and elimination rate constant are selected for 

uncertainty analysis. Prior mean parameter values were obtained from in-silico, in-vitro 

and in-vivo experiments reported in the literature. The model parameters value is provided 

in Table 1. The model parameters are distributed lognormal in the range of ± 1 to ± 1.5 

standard deviations accounting uncertainty on model predictions. Monte Carlo 

simulations were performed to estimate the uncertainty produced by sampling one 

random value (out of its assigned distribution) for each selected parameter. The model 

was then run and its outputs (predictions) recorded. These two steps were iterated 20,000 

times, and the collected output values formed a random sample, for with we computed 

the mean, the SD, and any percentile of interest. 

Table 1. DEHP parameter values and statistical distributions 

Parameters Symbols Units Values or 

distributions 

References 

Molecular weight 

(DEHP) 

MW g/mole 391 - 

Molecular weight 

(D4-MEHP) 

MW g/mole 281 Anderson et al., 

(2011) 

Molecular weight 

(MEHP-OH) 

MW g/mole 297 Anderson et al., 

(2011) 

Molecular weight  

(D4-5-oxo 

MEHP)  

MW g/mole 295 Anderson et al., 

(2011) 

Molecular weight  

(D4-5-cx MEPP) 

MW g/mole 311 Anderson et al., 

(2011) 

Octanol:water 

partition 

coefficient  

LogKo:w   - 7.60 a - 

Partition coefficients 
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Gut/Plasma  K_gut_pla

sma  

 LN (12.86, 

1.1) b 

- 

Liver /Plasma K_liver_p

lasma  

- LN (10.16, 

1.1) b 

- 

Gonads/Plasma K_gonads

_plasma  

- LN (6.5, 1.1) b - 

Fat/Plasma K_fat_pla

sma  

- LN ( 188, 1.1) 

b 

- 

Rest of the 

body/Plasma 

K_restbod

y_plasma  

- LN ( 6.24, 

1.1) b* 

- 

Liver/ Plasma  K_liver_p

lasmaM1 

- LN ( 1.7, 1.1) (Keys et al., 

2000) 

Gonads/Plasma K_gonads

_plasmaM

1 

- LN (0.6, 1.1) (Keys et al., 

2000) 

Fat/Plasma K_fat_pla

smaM1 

- LN ( 0.12, 

1.1) 

(Keys et al., 

2000) 

Rest of the 

body/Plasma 

K_restbod

y_plasma

M1 

- LN (0.38, 1.1) Set to slow 

perfused organ 

(muscle) (Keys et 

al., 1999) 

Uptake rate of 5-

OHMEHP to 

blood 

KtM2 1/h LN ( .07, 1.5) Optimzed against 

data of koch et 

al.,( 2003, 2005) 

Uptake rate of 5-

oxo MEHP to the 

blood  

KtM4 1/h LN (0.08, 1.5) Optimized 

against data  koch 

et al.,( 2003, 

2005) 

Absorption and elimination parameters 

Unbound fraction 

in plasma for 

MEHP 

fup - 0.007 (Adachi et al., 

2015) 

Oral absorption 

rate 

Kgut 1/h LN (7, 1.5) (Adachi et al., 

2015) 
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Elimination rate 

constant (M1) 

KurineM1 1/h LN ( 0.35, 

1.1) c 

Calculated 

Elimination rate  

constant (M2) 

KurineM2 1/h LN (0.69, 

1.1) c 

Calculated   

Elimination rate  

constant  (M3) 

KurineM3 1/h LN (0.69, 

1.1) c 

Calculated 

Elimination rate  

constant  (M4) 

KurineM4 1/h LN (3.47, 

1.1) c 

Calculated 

Metabolic parameters for DEHP and its metabolites in gut 

DEHP to MEHP 

in intestinal MSP 

maximum 

reaction value 

Vmaxgut

M1 

µg/min/

mg 

MSP 

LN 

(0.11,1.1)d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

KmgutM1 µg/L 6956 (Choi et al., 2013) 

DEHP to MEHP 

in gut cytosol 

maximum 

reaction value 

Vmaxgut

M1cyt_in

vitro 

µg/min/

mg 

cytosol  

LN (0.312, 

1.1) d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

Kmgut_cy

tM1 

µg/L 7038 (Choi et al., 2013) 

MEHP to 5-OH 

MEHP maximum 

reaction value 

Vmaxgut

M2_invitr

o 

µg/min/

mg 

MSP 

LN (0.0012,    

1.1) d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

KmgutM2 µg/L 22508 (Choi et al., 2013) 

MEHP to 5-

carboxy MEPP 

maximum 

reaction value 

Vmaxgut

M3_invitr

o 

µg/min/

mg 

MSP 

0 (Choi et al., 2013) 

Conc. at half 

maximum value 

KmgutM3 µg/L 0 (Choi et al., 2013) 

MEHP-OH  to 5-

oxo MEHP 

maximum 

reaction value 

Vmaxgut

M4_invitr

o 

µg/min/

mg 

MSP 

LN ( 0.0012, 

1.5 ) d 

(Choi et al., 2013) 
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Conc. at half 

maximum value 

KmgutM4 µg/L 219076 (Choi et al., 2013) 

MEHP to phthalic 

acid  maximum 

reaction value 

Vmaxgut

M5_invitr

o 

µg/min/

mg 

MSP 

LN (0.285,    

1.1) d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

KmgutM5 µg/L 187652 (Choi et al., 2013) 

Metabolic parameters for DEHP and its metabolites in liver 

DEHP to MEHP 

in liver MSP 

maximum 

reaction value 

Vmaxliv

M1 

µg/min/

mg 

MSP 

LN (0.112, 

1.1 ) d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

KmlivM1 µg/L 11847.3 (Choi et al., 2013) 

DEHP to MEHP 

in liver  cytosol 

maximum 

reaction value 

Vmaxliv

M1cyt_in

vitro 

µg/min/

mg 

cytosol  

LN (0.036, 

1.1 ) d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

Kmliv_cyt

M1 

µg/L 2228.7 (Choi et al., 2013) 

MEHP to 5-OH 

MEHP maximum 

reaction value 

Vmaxliv

M2_invitr

o 

µg/min/

mg 

MSP 

LN ( 0.172,  

1.1) d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

KmlivM2 µg/L 7980.4 (Choi et al., 2013) 

MEHP to 5-

carboxy MEPP 

maximum 

reaction value 

Vmaxliv

M3_invitr

o 

µg/min/

mg 

MSP 

LN ( 0.0023, 

1.5 ) d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

KmlivM3 µg/L 1124 (Choi et al., 2013) 

MEHP-OH  to 5-

oxo MEHP 

maximum 

reaction value 

Vmaxliv

M4_invitr

o 

µg/min/

mg 

MSP 

LN ( 0.003, 

1.1) d 

(Choi et al., 2013) 
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a = value taken form PubChem 

b = partition coefficient calculated based on tissue composition method using (Poulin 

and Krishnan, 1996, 1995; Poulin and Theil, 2000) 

c = value is first estimated applying the following relationship i.e. elimination rate 

constant = 0.693/t1/2 

d = parameters value needs to scale to whole body weight prior to use in model  

 

3. Results and Discussions 

In this study, parameters such as partition coefficient, biochemical (metabolism), 

absorption, elimination as an input and target variables such as DEHP metabolites 

concentration as a model output, were considered to conduct sensitivity analysis and 

uncertainty analysis. The bottom- up approach was used to develop the PBPK model and 

all necessary parameters were derived from in-silico (QSAR), in vitro (metabolism) and 

published literature. The results are described and discussed in the following subsection.  

3.1. Sensitivity analysis results  

The local sensitivity analysis was carried out for all the kinetic parameters that were used 

in the development of the PBPK model. Human physiological parameters were included 

neither in the Monte Carlo model nor in the sensitivity analysis in view of their inherent 

variability. The sensitivity coefficient of parameters was estimated using the R FME 

package (Soetaert and Petzoldt, 2010) (described in Section 2.5), which uses the initial 

parameter value with allowable relative changes in that parameter, taking the parameters 

one by one. The results are provided in Table 2. It includes L1 and L2, norm, mean, 

minimum, maximum, and ranking. The table summarizes the statistics of the normalized 

and dimensionless parameter sensitivity results. The parameters were ranked based on the 

L1 value.  A higher value of L1 signifies a higher sensitivity of the model output to 

changes in the parameter. The biochemical parameters such as Vmax and Km value have 

very close sensitivity coefficient. The mean sensitivity coefficient of Vmax has the negative 

Conc. at half 

maximum value 

KmlivM4 µg/L 23,117.7 (Choi et al., 2013) 

MEHP to phthalic 

acid  maximum 

reaction value 

Vmaxliv

M5_invitr

o 

µg/min/

mg 

MSP 

LN (0.088, 

1.1 ) d 

(Choi et al., 2013) 

Conc. at half 

maximum value 

KmlivM5 µg/L 141315 (Choi et al., 2013) 
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effect and the Km has the positive effect on the model output. Hence in uncertainty 

analysis, instead of both Vmax and Km, only Vmax was distributed statistically as result 

of sensitivity shows that they are highly correlated with each other. The VmaxliverM2 

(metabolism of MEHP to MEHP−OH) is the most sensitive parameter (Rank 1) following 

partition coefficient of liver: plasma (Rank 3). The partition coefficient for the rest of the 

body and the metabolism of DEHP in the cytosol fraction of both gut and liver are under 

the rank of 10 which shows their high sensitivity compared to other parameters. The plots 

for sensitive analysis output i.e. mean sensitivity coefficient are provided in Fig. A.1 

(Annex 2). The summary statistics tables of parameters’ sensitivities for the output of 

DEHP metabolites concentration in plasma is provided in Tables A.5–A.8 (Annex 2). 

Table 2.  Summary statistics  of parameters’  sensitivities 

Parameters L1 L2 Mean Min Max Rank 

VmaxliverM2 0.61 0.01 -0.45 -3.40 1.00 1 

KmliverM2 0.60 0.01 0.44 -1.00 3.39 2 

K_liver_plasma 0.57 0.01 -0.57 -2.08 0.00 3 

VmaxliverM4 0.43 0.01 -0.36 -3.63 0.99 4 

KmliverM4 0.38 0.01 0.32 -0.99 3.39 5 

K_restbody_plasma 0.32 0.01 0.27 -0.92 3.85 6 

Vmaxgut_cytM1 0.30 0.00 -0.29 -8.86 0.54 7 

K_liver_plasmaM1 0.29 0.00 -0.14 -1.00 0.40 8 

Vmaxliver_cytM1 0.21 0.00 -0.21 -3.09 0.12 9 

Kmliver_cytM1 0.20 0.00 0.20 -0.12 3.04 10 

VmaxliverM3 0.19 0.00 0.08 -0.32 1.00 11 

KmliverM3 0.18 0.00 -0.07 -1.00 0.32 12 

KurineM3 0.17 0.00 -0.15 -2.79 1.00 13 

KtM2 0.17 0.00 0.05 -0.67 1.00 14 

KtM4 0.15 0.00 0.15 0.00 1.00 15 

Kmgut_cytM1 0.15 0.00 0.15 -0.30 6.45 16 

KurineM2 0.15 0.00 -0.13 -2.20 1.00 17 
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KurineM1 0.13 0.00 -0.03 -0.47 1.00 18 

VmaxgutM1 0.12 0.00 -0.12 -3.57 0.22 19 

KurineM4 0.10 0.00 -0.09 -1.13 0.98 20 

K_restbody_plasmaM1 0.09 0.00 -0.08 -0.71 0.20 21 

VmaxliverM1 0.08 0.00 -0.08 -1.18 0.05 22 

KmliverM1 0.08 0.00 0.08 -0.05 1.17 23 

kmgutM1 0.06 0.00 0.06 -0.12 2.59 24 

k_gut_plasma 0.05 0.00 0.05 0.00 0.37 25 

k_gonads_plasma 0.04 0.00 0.04 -0.04 1.59 26 

VmaxgutM2 0.03 0.00 0.03 -0.05 1.00 27 

KmgutM2 0.03 0.00 -0.03 -1.00 0.00 28 

Vplasmad 0.03 0.00 -0.03 -1.00 0.00 29 

KmliverM5 0.02 0.00 0.02 -0.06 0.10 30 

VmaxliverM5 0.02 0.00 -0.02 -0.10 0.03 31 

K_fat_plasmaM1 0.02 0.00 0.00 -0.10 0.74 32 

K_fat_plasma 0.01 0.00 -0.01 -0.23 0.08 33 

K_gonads_plasmaM1 0.01 0.00 0.01 -0.02 0.66 34 

VmaxgutM5 0.00 0.00 0.00 -0.03 0.03 35 

KmgutM5 0.00 0.00 0.00 -0.01 0.03 36 

VmaxgutM4 0.00 0.00 0.00 0.00 0.01 37 

KmgutM4 0.00 0.00 0.00 -0.01 0.00 38 

Table 2: Sensitivity results for both the rat and human PBPK model. It includes L1 and 

L2 norm, mean, minimum, maximum, and ranking. Ranking of parameter sensitivity 

coefficient was done based on L1 norm. 

3.2. PBPK model calibration results and its evaluation with independent data 

The time course of DEHP metabolites concentration in plasma and the cumulative amount 

in urine were predicted at the median, 2.5 and 97.5 percentiles and 20 random predictions. 

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



Chapter 2 
 

97 

 

PBPK model has accounted the parameter statistical distribution followed by sampling 

one random value (out of its assigned distribution) and performing Monte Carlo 

simulation reflecting uncertainty in the model. The model does not include any variability 

factor related to physiological parameters. For the metabolic uncertainties, only Vmax 

values were statistically distributed but not Km considering that they are highly correlated 

with each other. Single oral dose of 48.5 mg DEHP as an input and the observed 

concentration of metabolites both in the blood and urine as an output were used to 

calibrate the model. Most of the parameters were derived via either from in-silico 

(estimation of the partition coefficient) (Poulin and Krishnan, 1996, 1995; Poulin and 

Theil, 2000) or from in vitro such as, partition coefficient determined (Keys et al., 2000) 

and in vitro metabolic data (human hepatocyte and intestinal cell line) (Choi et al., 2013). 

The parameters such as elimination rate constants for the metabolites are derived using a 

mathematical relationship described in models and methods section. The absorption rates 

of metabolites (mass transfer) from the gut to the liver were set as one (complete mass 

transfer) except MEHP whose absorption rate constant was derived from the literature 

(Adachi et al., 2015). The mass transfer rate of metabolites from the liver to the blood 

was calibrated against the observed data (Koch et al., 2005). The model was developed 

using the parameters derived from in-silico, in vitro data, and previously published 

literature, and certain default parameter values, which needed to be calibrate. Instead of 

optimizing all the parameters very specifically to get a point to point prediction against 

the observed data rather we statistically distributed all the parameters in a range of 1–1.5 

± SD (standard deviation) providing range of predictions. Then the model was verified 

against the blood and urine metabolites concentration data reported by Koch et al. (2005), 

so that observed data for all metabolites fall within the range (2.5th –97.5th) of model 

predictions. The predictions of the DEHP metabolites concentration in blood and urine 

included their metabolic kinetics both in the gut and the liver described by Michaelis 

Menten equation. And the parameters such as Vmax and Km were estimated in vitro by 

Choi et al. (2013) were scaled to the whole body (based on organ weight) and integrated 

into the model. Fig. 3(a–d) represents the PBPK model predictions for plasma 

concentrations of four DEHP metabolites. It can be observed that the model predictions 

agree quite closely to the observed data. The cumulative excretion of DEHP metabolites 

is also adequately predicted by the model represented in Fig. 4(a–d) and Table 2. The 

recently reported in vitro metabolism data shows that the production rate of MEHP from 

the DEHP is very high (Choi et al., 2013). A similar trend of the kinetic profile was also 

reported by Koch et al. (2005) where he observed very low or undetectable DEHP blood 

concentration. Given the above facts, the clearance of DEHP is presumed to completely 

depend on its metabolic conversion to MEHP. The Fig. 3(a) shows that predicted Cmax 

(highest chemical plasma concentration) of the MEHP is slightly lower than the observed 

data even at 97.5 percentile simulation. However, the time course trend of chemical 

concentrations in plasma is similar to the observed data points. In addition to that, post-

Cmax, the predictability of the model are in close agreement with the observed points. 

The clearance of MEHP from the body includes both its metabolism and the urinary 

elimination. 

Fig. 3(b) represents the model predictions for MEHP−OH concentrations in blood at 2.5, 

50 (median) and 97.5th percentiles including 20 random simulations, and the observed 

data in green dots. The blood Cmax value for 5−OH MEHP is lower than MEHP and 5-

Cx MEPP and more than its metabolite 5-oxo MEHP. The observed data points at the 

terminal elimination are predicted at the lower boundary of the model, where almost all 
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chemicals are eliminated. All the observed blood data points are within the range of the 

model prediction (2.5, 50 and 97.5th percentiles). The observed production rate of 5−OH 

MEHP in gut and liver i.e. in vitro metabolism data (Vmax) is higher than the other 

metabolites (Choi et al., 2013). However, reported blood concentration by Koch et al. 

(2005) is less than 5-Cx MEPP, another metabolite. The reason for its lower blood plasma 

concentration is might be due to its higher volume of distribution than the other 

metabolites, the similar observation was noted previously by Lorber et al. (2010) during 

the calibration of the model. The other reasons might be its higher clearance to the urine 

and its further metabolism to 5-oxo MEHP. The production of 5−OH MEHP depends on 

the MEHP concentration in both the liver and the gut, and then its distribution to the 

blood. The transfer of 5−OH MEHP from the liver to blood was done using first order 

rate constant and is calibrated against the observed data. 5−OH MEHP clearance was 

done based on both its metabolism to the 5-oxo MEHP and the urinary elimination. The 

urinary elimination was described using first order using first order rate constant.  

Similarly, PBPK model predictions for 5-cx MEPP plasma concentrations as shown in 

Fig. 3(c), which is the metabolite of MEHP, appears to be in close agreement with the 

observed data points. The volume of distribution (Vd) was confined to the plasma 

compartment volume since the distribution of the compound is unknown. The production 

of 5-cx MEPP metabolite from the MEHP in the gut was reported to be null in the in vitro 

experiment (Choi et al., 2013). So, the concentration of 5-oxo MEPP only depends on its 

production in the liver from the MEHP. Its clearance was described using first order rate 

constant from the blood to urine.  

The model predictions for 5-oxo MEHP plasma concentrations as shown in Fig. 3(d), 

results from metabolism of 5−OH MEHP in both gut and liver, are in close agreements 

with the observed concentrations. All the observed data points are in compliance with the 

predicted range of percentile. Its production in gut and liver from the 5−OH MEHP is 

described using Michaelis Menten reaction. Its volume of distribution is confined to a 

single compartment of plasma volume. The urinary elimination was described using first 

order elimination rate from the systemic circulation. 
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Fig. 3. PBPK model prediction of DEHP metabolites plasma concentrations upon 48.5 

mg oral dosing in human. Red lines: median predictions; blue lines: 2.5 and 97.5 

percentiles; gray lines: 20 random simulations. (a) Represents MEHP plasma 

concentration. (b) Represents 5-hyroxy MEHP plasma concentration. (c) Represents 5-

carboxy MEPP plasma concentration. (d) Represents 5-oxo MEHP plasma concentration. 

The green dotes indicate the observed concentrations reported in (Lorber et al., 2010).  

Dose unit is converted to microgram prior to use as an input for the model.  

The four metabolites’ blood concentrations are not only in close agreement with the 

observed data points but also captured the time course profile. The Fig. 4(a–d), presented 

PBPK prediction of the cumulative amount (μg) urinary excretion of four metabolites for 

44h at median, 2.5 and 97.5 percentiles and for 20 random simulations. The simulated 

urinary amount of DEHP metabolites (cumulative amount) are also in compliance with 

the experimentally observed cumulative amount (Koch et al., 2005), results are provided 

in Table 2. It also summarizes the predicted vs observed metabolites elimination as a 

percent of applied dose in mole for three dosing scenarios based on Koch et al. (2005) 

study. The observed metabolites as a percentage of mole doses are within the range of 

predictions of the model not only for high dose (use for calibration) but also for other two 

independent dosing scenarios such as medium (2.15 mg) and low dose (0.35 mg). 
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Fig. 4. PBPK model predictions of DEHP metabolites amount in urine following 48.5 mg 

oral dose. Red lines: median predictions; blue lines: 2.5 and 97.5 percentiles; gray lines: 

20 random simulations. (a) Represents MEHP cumulative amount (µg) in urine. (b) 

Represents 5-hyroxy MEHP cumulative amount (µg) in urine. (c) Represents 5-carboxy 

MEPP cumulative amount (µg) in urine. (d) Represents 5-oxo MEHP cumulative amount 

(µg) in urine. Dose unit is converted to microgram prior to use as an input for the PBPK 

model. 

Table 3. Observed and PBPK predicted amount of DEHP (µg) 

metabolites in urine 

 Cumulative amount of Metabolites (µg)  of the 

D4-DEHP in urine  

 

Study 

involved 

Dose MEHP 5OH-

MEHP 

5cx-

MEPP 

5oxo-

MEHP 

Total 

dose in  

µg or 

percent 

Koch et 

al., 

(2005)  a 

48,500 2500 9000 7500 5000 23500  
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a = values are extracted from the graph presented in manuscript by Koch et al., 

(2005)  

Dose unit is converted to microgram prior to use as an input for the PBPK model. 

 

Present 

study 

2.5th -

97.5th 

(median) 

48,500 1548.2- 

3122.7 

(2230.5) 

3988.6- 

10148 

(6511) 

1585.4- 

7086 

(3397) 

1087- 

5497 

(2432) 

8209.2-

25853.7 

(14570.5)   

       

Metabolites of the D4-DEHP Dose as  percent of applied dose (mol) 

Koch et 

al., 

(2005) 

48,500 7.3 24.1 20.7 14.6 66.7 % 

Present 

study  

2.5th -

97.5th 

(median)  

48,500 4.4-8.9 

(6.4) 

10.8-

27.5 

(17.6) 

4.1-

18.3 

(8.8) 

3.0-

15.0 

(6.6) 

22.3-69.7 

(39.44) % 

Koch et 

al., 

(2005) 

2,150  4.3 22.7 19.4 13.0 59.4 % 

Present 

study  

2.5th -

97.5th 

(median) 

2,150  4.3-8.7 

(6.2) 

8.9-

23.3 

(14.6) 

4.3-

19.0 

(9.2) 

3.02-

15.3 

(6.7) 

20.52-

66.3 

(36.7) % 

Koch et 

al., 

(2005) 

350  6.2 23.1 15.5 17.3 62.1 % 

Present 

study  

2.5th -

97.5th 

(median) 

350  4.3-8.7 

(6.2) 

8.8-

23.2 

(14.5) 

4.3-

19.0 

(9.2) 

3.1-

15.3 

(6.8) 

20.5-66.2 

(36.7) % 
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Given that the model predictions fit the DEHP metabolites namely MEHP and other 

metabolites 5−OH MEHP, 5-cx MEPP and 5-oxo MEHP concentration in the blood and 

urine upon 48.5 mg of a single oral dose of DEHP. The structure of the model and the 

model parameters remained unchanged from their calibrated values, and the predicted 

percentage mole elimination data for four metabolites in urine were compared with the 

data reported in Anderson et al. (2011) for the evaluation of model credibility. The study 

included 20 subjects, 10 male, and 10 female, and their overall mean body weight was 

74.8 kg. The only additional change in the model is subject body weight. The present 

model does not include gender variability among 20 subjects, and the mean body weight 

was taken as an input for model simulation, as current model only accounted for the 

parametric uncertainty, not the variability. Two dosing scenarios namely high dose; a 

single oral dose of 2.8 mg DEHP and low dose; a single oral dose of 0.31 mg was used 

for the model simulations. The subject characteristic and dosing for respective studies are 

provided in Table A. (1–3). The predicted urinary data were converted into moles based 

on their molecular weight in order to standardize the exposure unit data. Then the relation; 

((predicted amounts of metabolites in urine (moles)/amounts dose (moles)) *100), is used 

to calculate the percentage molar eliminations on moles basis (Anderson et al., 2011; 

Koch et al., 2005). The detailed summarized tables are provided in Tables A.5–A.7. The 

PBPK predicted a range of metabolites elimination as a percentage of doses in mole 

reflecting the uncertainty in the model. The model output was compared with the observed 

experimental data. Table 3 summarizes the predicted vs observed percentage amount 

elimination of metabolites. The experimentally observed cumulative amount of all 

metabolites in the urine is well within the range of PBPK simulation (Table 4). 

Table 4. Fraction excretion value (mole percentage) for observed and PBPK 

predicted of DEHP metabolites 

 Metabolites of the D4-DEHP Dose (% mol elimination) 

Study 

involved  

Dose MEHP 5OH-

MEHP 

5cx-

MEPP 

5oxo-

MEHP 

Total molar 

elimination 

(%) 

Anderson 

et al., 

(2011) 

310µg 6.94 16.33 15.90 12.53 51.70 

Present 

study  

2.5th -

97.5th 

(median) 

310µg 4.3-8.7 

(6.3) 

8.8-22.9 

(14.6) 

4.3-18.5 

(9.2) 

3.0-15.2 

(6.8) 

20.4 -65.2 

(36.9) 

Anderson 

et al., 

(2011) 

2800µg 5.67 14.86 11.97 10.00 42.51 
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4. Conclusions and future work  

The results showed that the current developed model can able to predict the plasma and 

the cumulative urine concentration of the DEHP metabolites for the different exposure 

scenario. The current model included four metabolites and the generation of metabolites 

was described mechanistically using integrated physiological parameters and Michaelis-

Menten (M-M) parameters such as Vmax and Km derived from a human hepatic/intestine 

cell line. The sensitive analysis was done for all parameters and the metabolic parameters 

were found to be more sensitive than other parameters. Monte Carlo simulation was used 

accounting probabilistic information about pharmacokinetics parameters that estimated 

DEHP metabolites concentration in both the plasma and the urine at three percentile 

considering the uncertainty into the model. Some of the major strength of current 

predictive model over previously developed models for DEHP are: (1) it’s a detail PBPK 

model that predict the compound(s) or metabolite(s) concentration using the in vitro 

metabolism data with the application of IVIVE instead of using animal experimental data 

for its calibration or fitting, (2) production of metabolites was described using saturation 

kinetics (M-M equations) which retains its biological plausibility, (3) model can be 

individualized (personalized) for different populations by implementing the physiological 

variability into the model, (4) it can be used to predict the target tissue internal 

concentrations for further toxicodynamics study and human health risk assessments. The 

current developed model did not account for the 2-cx MEPP metabolite due to lack of in 

vitro metabolic data, considered to be another important metabolite for the biomonitoring 

study. The current PBPK model can be further extended for 2-cx MEPP, once the 

metabolic data are available. Detailed rat’s pharmacokinetic studies that include all 

metabolites could be very useful for further understanding metabolites tissue distribution. 

The current developed model can be applied in the biomonitoring and exposome studies 

for the human health risk assessment (Martínez et al., 2017, 2018). The developed model 

can be further extended for the development of an integrated PBPK/PD systems 

toxicology model (integrative systems toxicology) to establish the exposure-internal 

dose- response relationship (Sharma et al., 2017b) 
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2B. Development and evaluation of a harmonized whole 

body physiologically based pharmacokinetic (PBPK) model 

for flutamide in rats and its extrapolation to humans 

Abstract:   

By their definition, inadvertent exposure to endocrine disruptors Compounds (EDCs) 

intervenes with the endocrine signalling system, even at low dose. On the one hand, some 

EDCs are used as important pharmaceutical drugs that one would not want to dismiss.  

On the other hand, they thereby enter the human environment with subsequent 

implications for environmental toxicology. Flutamide, one of the top pharmaceutical 

products marketed all over the world for the treatment of prostate cancer, is also a 

pollutant. Its therapeutic action mainly depends on targeting the androgen receptors and 

inhibiting the androgen action that is essential for growth and survival of prostate tissue.  

Currently flutamide is of concern with respect to its categorization as an endocrine 

disruptor.  

In this chapters we show a developed physiologically based pharmacokinetic (PBPK) 

model of flutamide that could serve as a standard tool for its human risk assessment.  First 

we built the model for rat (where many parameters have been measured). The rat PBPK 

model was extrapolated to human where the re-parameterization involved human specific 

physiology and metabolism parameters.  Then the model was used to simulate different 

exposure scenarios and the results were compared against the observed data. Both 

uncertainty and sensitivity analysis were assessed.  

Since this new whole-body PBPK model can predict flutamide concentrations not only in 

plasma but also in various organs, the model may have clinical applications in efficacy 

and safety assessment of flutamide. The model can also be used for reverse dosimetry in 

the context of interpreting the available biomonitoring data to estimate the degree to 

which the population is currently being exposed, a way for the pharmaceutical companies 

to validate the estimated Permitted Daily Exposure (PDE) for flutamide. 

Highlights: 

 In-vitro metabolic kinetics was integrated into PBPK to characterize in-vivo 

kinetics.  

 PBPK model of flutamide was calibrated in rats. 

 PBPK model of flutamide was extrapolated to humans and validated. 

 The dose-dependent kinetics of flutamide was captured after single and multiple 

dose scenarios in humans. 
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1. Introduction  

Flutamide is one of the top pharmaceutical products marketed universally all over the 

world for the treatment of prostate cancer. Its therapeutic action mainly depends on its 

metabolite flutamide hydroxide, which is a competitive inhibitor of endogenous 

androgens for binding to their receptors in prostate (Brogden and Clissold 1989). Several 

rat studies revealed flutamide off target effects, such as decreased weight of the accessory 

gland, alteration in sex hormone levels in the male rat, and prolongation of the oestrous 

cycle in female rats (Shin et al. 2002; Toyoda et al. 2000a).  Miyata et al. (2002) have 

linked flutamide exposure to its endocrine related effects in rats.  Patients treated with 

flutamide at its therapeutic dose are always at a higher risk of liver toxicity (Brahm et al. 

2011; Tavakkoli et al. 2011), which is presumed to be its idiosyncratic adverse effect.  

Consequent to an OECD-guideline, repeated-dose, screening for endocrine disruptors 

compounds (EDCs), flutamide was listed as one of the EDCs (Toyoda et al. 2000b). 

Endocrine disruptor’s chemicals can elucidate toxicity even at low dose (Blumberg et al. 

2011). The estimated no observed effect level (NOEL) for flutamide is 0.25 mg/kg/day 

(Toyoda et al. 2000b). Mimicking endogenous hormones is considered to be one of the 

important mechanisms of EDCs.  

The current guideline set by European Medicines Agency (EMEA) requires that 

pharmaceutical companies relate the Permitted Daily Exposure (PDE) (EMEA 2014) of 

API (active pharmaceutical ingredients) to their specific toxicological end points. 

Residuals of active chemicals generated during the manufacturing cycle and exposure to 

humans via cross contaminated medicinal products should be considered for estimating 

the PDE (Hayes et al. 2016). Recently flutamide’s PDE of 0.025 mg/day was established 

as safe dose in the context of reproductive and development disorders end points 

(Zacharia 2017). Knowing the target tissue concentration and its further integration to the 

toxicodynamic model should help predict toxicological endpoints (Sharma et al. 2017a, 

2017b).  

Upon rapid absorption after oral administration, flutamide undergoes extensive hepatic 

first-pass metabolism in humans generating several metabolites (Katchen and Buxbaum 

1975). Flutamide metabolites differs between species due to different tissue distribution 

and different enzyme activities (Kobayashi et al., 2012). Liver CYP1A2 metabolizes 

flutamide to flutamide hydroxide (Flu-OH) (Radwanski et al. 1989; Shet et al. 1997; Sjo 

et al. 2009; Sjögren et al. 2014a). Other metabolites include 4-nitro-3-(trifluoromethyl)-

aniline (FLU-1) and 2-methyl-N-(4′-amino-3′ [trifluoromethyl] phenyl) propanamide 

(FLU-6) (Kobayashi et al., 2012; Wen et al., 2008). Wen et al. (2008) showed that 

NADPH: cytochrome P450 reductase (CPR) was involved in producing FLU-6 in liver 

by nitro reduction of flutamide, which enhances hepatocytes cytotoxicity. Complete 

elimination of flutamide and its metabolites takes 5 days according to an in-vivo human 

study (Katchen and Buxbaum 1975).  

PBPKs models have been applied successfully in toxicology and welcomed by 

pharmaceutical companies (Jones et al. 2015; Zhuang and Lu 2016). Not only do they 

estimate target tissue concentrations, but they also allow interspecies extrapolation, 

intraspecies dose interpolation, and exposure dose reconstruction. PBPK models are 

mathematical representations of compartments corresponding to the various physiological 

organs of the body, linked by the circulating blood system. Each compartment is described 
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by a tissue volume and blood flow rate that is specific to the species of interest. PBPK 

describes the bio-distribution (absorption, distribution, metabolism and elimination, 

referred as ADME) and generates time course profiles of chemicals inside the body. A 

semi-physiologically based biopharmaceutical model has been developed in human for 

the injectable flutamide hydroxide to estimate the local distribution of the chemical to 

prostate tissue (Sjögren et al., 2014a). However, to our knowledge there is no full scale 

PBPK model for flutamide, neither for rats nor for humans.   

This article presents physiologically based pharmacokinetic (PBPK) models predicting 

the time variant concentrations of flutamide in plasma and other organs upon oral dosing 

in rats and humans. The models were used to simulate single and multiple dose scenarios. 

The simulated data were compared against the data observed in plasma.  In the case of 

the human PBPK, data referring to the flutamide and its metabolite Flu-OH were taken 

into consideration. Both the bottom up and the top down approach were applied to the 

development of the model.  Prior mean parameter values were obtained either from the 

published literature or via in-silico or in-vitro and in-vivo experiments, whilst accounting 

for uncertainties in the range of ±1 to ±1.5 standard deviations. After a sensitivity analysis, 

the most uncertain yet influential parameters were distributed statistically for Monte Carlo 

simulations.  We conclude that the models should be suitable for the assessment of 

flutamide as endocrine disruptor. 

2. Material and Methods  

2.1. PBPK model development  

For both rat and human our PBPK model comprises nine compartments, i.e. gut, liver, 

plasma, lungs, kidney, fat, gonads, prostate and a compartment representing the rest of 

the body (Fig. 1). The model is flutamide-specific which includes prostate and gonads; 

flutamide is used in prostate cancer therapy. The exchange of the flutamide between blood 

and tissue in each organ is described by flow limited processes i.e. we implemented a 

perfusion rate-limited PBPK model (not permeability limited). This model works under 

the assumption that total chemical concentration in the tissue and in the plasma at steady 

state are in equilibrium with each other. First the model was developed in rats and then 

extrapolated to humans. Because for the animal models there are more data sets available 

remaining unmeasurable parameters can be fitted more readily to one group of data sets, 

whilst using remaining data sets for validation.  Accordingly, our strategy was to make 

an optimal model for rat and then extrapolate this to the human. Oral dosing is considered 

to be main route.  After an oral exposure, flutamide is rapidly absorbed by the system, in 

a process described using a first order rate constant. Plasma protein binding of flutamide 

and of its main metabolite (flutamide hydroxide; considered only for human model) was 

made to conform to the experimentally measured fixed ratio values. The fraction of 

chemical not bound to plasma proteins is the only fraction of a chemical that is available 

for transport into organs for metabolism and for clearance.  

Distribution parameters such as partition coefficients describe steady state ratios of the 

concentrations in the plasma and the different organs. Partition coefficients for different 

organs were derived from the detailed rat in-vivo studies (Asakawa et al., (1995a) using 

AUC (area under the curve) data.  The same partition coefficients were then used for both 

rat and human PBPK model development. Elimination pathways included both chemical 
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metabolism and its urinary excretion. The metabolism of the flutamide was described 

using the Michaelis-Menten and Hill equations.  Data from literature in-vitro cell line 

studies for both rat and human were scaled to respective in-vivo using IVIVE approach 

(in-vitro in-vivo extrapolation) (Howgate et al. 2006). Validation of the rat model 

included several in-vivo kinetic data sets for rat resolving 7 compartments, i.e. plasma, 

liver, lung, kidney, fat, gonads and prostate. For the validation of the human model, 

kinetic data sets for flutamide and its metabolite flutamide hydroxide in plasma 

(Radwanski et al. 1989) were used, as well as multiple dose scenario kinetic data sets 

(Radwanski et al. 1989). Concentrations of the chemical in any compartment were 

estimated by applying Eq. (1) without metabolism; however metabolic equation, Eq. (3), 

is included in the respective compartment responsible for metabolism of chemical. A 

more detailed model description including the equations used for each compartment is 

available in the Supplementary file (A). 

 

                     Eq. (1)
           

Here, Ci is the concentration in the tissue i (µg/L), Qi is the blood flow in the tissue i (L/h), 

Ca is the arterial concentration (ng/L), Ki:p is the partition coefficient of tissue i, and Vi is 

the volume of the tissue i (L).  The blood is considered to flow into a well-mixed 

extracellular compartment in the tissue where the drug is at partition equilibrium with the 

intracellular drug.  Should there be active drug efflux or influx pumping, this is rather a 

partition steady state where the partition coefficient becomes dependent on the cells’ 

energy state. 

 

 

Fig. 1: Minimal PBPK model structure for flutamide and its metabolite flutamide 

hydroxide. Six tissues, each with a concentration (C) of flutamide (and similarly for 

flutamide hydroxide) are connected through the blood (plasma).  Each compartment has 

a passive uptake from (as indicated near the beginning of each arrow, reactions re7, re9, 

re10,re12, re14, re21) and an active release (re6, re8, re11, re22, re13, re15) into the blood, 

but only the liver can metabolize (reaction re3, re4, re5) and destroy it in its cytosol. re18, 

Vi

pKi

Ci
CaQi

dt

dCi








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
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re19 corresponds to flutamide and its metabolite flu-OH protein binding. re16, re17 

corresponds to urinary excretion of flutamide and its metabolite flu-OH.  

2.2. PBPK Model parameterization 

PBPK model parameterization requires physiological parameters, physiochemical 

properties (fraction unbound and partition coefficient, estimated either by in silico or 

animal experimentation), and biochemical parameters such as for metabolism (Vmax and 

Km and other relevant kinetic constants). Our baseline model was for rat and we 

extrapolated this to the human by adapting the tissue volumes, blood flows through the 

tissues and the Vmax per unit microsomal protein, and the fraction of microsomal protein 

per organ on the basis of experimental data.  The partition coefficients were considered 

the same for rat and human. 

All the physiological parameters such as blood flow to tissue as a fraction of cardiac blood 

flow and tissue volume as a fraction of body weight for both rats and human are provided 

in Table A.1 and A.2 Supplementary Information (SI).  Chemical rate constants and 

metabolic parameters are provided in Table 1. We have estimated prostate volume and 

blood flow from the reported literature data, for humans (Inaba 1992; Sjögren et al. 

2014b) and for rats (Shimizu et al. 2015). As per requirement of PBPK, these data were 

converted into fraction of body weight and fraction of cardiac blood flow, respectively 

and are provided in Table A.1 and A.2 (SI)). The oral absorption process for the flutamide 

was described through a first order absorption rate constant 0.62 h-1  (Xu and Li 1998). 

The same absorption rate was taken for single and multiple oral doses simulations of the 

human PBPK model. 

We interpreted detailed rat in-vivo data reported in Asakawa et al. (1995) through a 

method introduced by Gallo et al. (1987) and effectively adapted by others (Lin et al. 

2016), This method uses the trapezoidal rule to derive tissue partition coefficients (Kpt) 

from the AUC (area under the curve) observed in in-vivo animal kinetic profile data of 

plasma and tissues (The corresponding excel file is provided as supplementary material) 

Ki:p =
AUCtissue(0−48)

AUCplasma(0−48)
                                                    Eq. (2) 

Where, AUC_tissue(0-48)  represents the area under the curve for the tissue 

concentration-time curves from 0 to 48 h. AUC_plasma(0-48)  represents the area under 

the curve for the plasma concentrations-time profile from 0 to 48 h. The values of partition 

coefficients for different organs used in our rat PBPK model are provided in Table 1. 

The average binding percentage of flutamide with plasma protein was reported for rats 

and human as 60.6 and 91.9 %, respectively (Asakawa et al. 1995a). The reported mean 

value of 95% for Flu-OH (flutamide hydroxide) for human was used to derive the fraction 

unbound for Flu-OH, which has also been previously used by Sjögren et al. (2014a) for 

the development of a semi physiologically based pharmacokinetic model. We assumed 

that intracellularly the same fraction of flutamide is bound to intracellular proteins. The 

fractional unbound (fu) for both flutamide and its metabolite flutamide hydroxide are 

provided in Table 1.  
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Flutamide metabolism is described as a saturable process utilizing the Michaelis-Menten 

equation (Eq.3) with parameters Vmax (maximum velocity of metabolic reaction) and 

Km (1/affinity, i.e. concentration at which reaction occurs at half maximal rate). The 

reported in-vitro Vmax values for the tissue microsomal fraction were scaled to in-vivo 

values using the IVIVE approach (Howgate et al. 2006), whereas Km values were kept 

the same as the in-vitro value. The in-vitro in-vivo extrapolation (IVIVE) approach 

utilizes physiological specific parameters such as tissue specific microsomal protein 

content, specific tissue volume and body weight described in Eq. (4) (Yoon et al., 2014).  

vAmets
=

Vmax∗Ct∗fu

Km+Ct∗fu
                                                                    Eq. (3) 

Where, Ct is the corresponding concentration in tissue and fu is the fraction 

unbound.  

 vAmets
  is the rate of production of metabolites.   

 

𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑣𝑜 = (𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 ∗ 𝑀𝑆𝑃𝑃𝐺𝑇 ∗ 𝑉𝑡𝑖𝑠𝑠𝑢𝑒)/𝐵𝑊 .75                                  Eq. (4) 

Where, MSPPGT is the microsomal protein per gram tissue; Vtissue is the volume of 

tissue; BW is the body weight and its power to .75 is to normalize the scaled Vmax for 

different body weight persons.  

The in-vitro data such as Vmax and Km for flutamide metabolism in rats were taken from 

Yuki Kobayashi et al. (2012). This study reported on flutamide metabolism in different 

tissue cell lines. The in vitro measured specific activity (Vmax) for liver, lung and kidney 

provided in Table 1 were scaled to whole body in order to obtain the in-vivo specific 

intrinsic clearance. For the development of the human PBPK model, the biochemical 

parameters such as Vmax and Km describing metabolism of flutamide into 3 different 

metabolites (Fig. 2) were taken from in-vitro hepatic cell line studies (Kobayashi et al., 

2012; Sjo et al., 2009; Wen et al., 2008); the corresponding values are provided in Table 

1. Eq. (3), basically involves the extrapolation of the specific activity from in-vitro 

measured to in-vivo whole body,  used for the both rat and human using species specific 

physiological data such as microsomal protein content of tissue, tissue volume and body 

weight provided in Table A. (1& 2) (SI). Our human PBPK model involves three 

metabolic reactions producing three different metabolites. However, only flutamide 

hydroxide, which is the major metabolite, was distributed to plasma from the liver site 

using the same partition coefficient to that of the parent compound. Due to lack of specific 

data on the generation of different metabolites, no metabolites were included in the 

current rat PBPK model.  However clearance of flutamide is considered in that model, 

including its metabolism in rat lung, rat liver and rat kidney as reported by Yuki 

Kobayashi et al., (2012) in in-vitro cell line studies. Elimination rate constants for both 

flutamide and flutamide hydroxide were visually optimized to fit the plasma data of 

human studies carried out by (Radwanski et al., 1989). The flutamide elimination rate 

constant was needed to optimize in order to match the observed data knowing the fact that 

there are some unknown flutamide catabolism pathways. 
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Figure2: Schema for human flutamide metabolism; Liver CYP1A2 metabolizes flutamide 

into flutamide hydroxide, main metabolite. Deacetylation of flutamide by 

carboxylesterase generates Flu-1. Reduction of aromatic nitro group into amino group by 

cytochrome reductase results in conversion of Flutamide to FLU-6.  

2.3. Sensitivity analysis 

A sensitivity analysis (i.e. not global) was carried out both for the rat and for the human 

PBPK model. The R package FME was used, which measures the alteration in model 

output for variable of interest by changing each parameter by 1% change up and down 

whilst keeping the other ones constant. Detailed information about the functions of FME 

can be found in Soetaert and Petzoldt (2010).  

 

𝑆𝑓𝑙𝑢𝑡𝑎𝑚𝑖𝑑𝑒, 𝑗(𝑡) =  
𝜕[𝑓𝑙𝑢𝑡𝑎𝑚𝑖𝑑𝑒(𝑡)]

𝜕𝑝𝑗
∗

𝑝𝑗

[𝑓𝑙𝑢𝑡𝑎𝑚𝑖𝑑𝑒(𝑡)]
=

𝜕ln [𝑓𝑙𝑢𝑡𝑎𝑚𝑖𝑑𝑒(𝑡)]

𝜕ln 𝑝𝑗
 

 Where,  

𝑆[𝑓𝑙𝑢𝑡𝑎𝑚𝑖𝑑𝑒(𝑡)], 𝑗 is the sensitivity of  the flutamide concentration  to any time-

independent parameter pj ,  normalized by both the model variable and the parameter 

value and thereby dimensionless. 𝑝𝑗 is any parameter of the PBPK model and  

[𝑓𝑙𝑢𝑡𝑎𝑚𝑖𝑑𝑒(𝑡)] is the scaling of  variable i.e. flutamide plasma concentration. 

These sensitivity functions collapsed into a summary of sensitivity values. The magnitude 

of the time-averaged sensitivity values were used to rank the parameters. This includes 

the absolute values of the sensitivity coefficients |S| i.e. flutamide(t) − flutamide(t)(pj) 

termed as least absolute deviation, the average of their squares S2 termed as least square 

FLU-OH = 2 hydroxy flutamide 

FLU-1 = 4-nitro-3-

( )-aniline 

FLU-6 = 2-methyl-N-(4′-amino-3′-

[trifluoromethyl]phenyl)propanam

ide 

CYP1= cytochrome P450 1A2 

CES2 = carboxy esterase CPR =  

NADPH: cytochrome P450 

reductase 
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error, and their average Smean (t), their lowest Smin and their highest value (Smax), where 

|S|norm(𝑡) = ∑
|𝑆𝑗(𝑡)|

𝑛𝑝

𝑛𝑝

𝑗=1
   and S2=  √∑

(𝑆𝑖𝑗
2 )

𝑛
  . 

There are two different time average S coefficients:  one takes the time average of the 

coefficients.  The other takes the sensitivity of the time average. 

The former is: 

1

𝑇
∙ ∑

𝜕ln [𝑓𝑙𝑢𝑡𝑎𝑚𝑖𝑑𝑒(𝑡)]

𝜕ln 𝑝𝑗

𝑡=𝑇

𝑡=0

 

The latter is: 

𝜕ln (
1
𝑇

∙ ∑ [𝑓𝑙𝑢𝑡𝑎𝑚𝑖𝑑𝑒(𝑡)]𝑡=𝑇
𝑡=0 )

𝜕ln 𝑝𝑗
=

1
𝑇

∙ 𝜕ln (𝐴𝑈𝐶)

𝜕ln 𝑝𝑗
 

2.4. Model Simulation  

The PBPK model was developed using ordinary differential equations describing the 

kinetics of flutamide.  The equations were written in the GNU MCSim modeling language 

(Bois and Maszle 1997) and solved by numerical integration with the GNU MCSim, using 

the R platform. And a priori information was taken from in vitro and in-vivo experiments 

reported in the literature. Sensitivity analysis considered mean values of parameters. 

Monte Carlo simulations were performed to estimate the impact on model predictions of 

uncertainty in all of the rate constants, the partition coefficients, and the Vmax of the 

metabolizing enzyme. MC simulation consisted of 15,000 iterations and each 

corresponded to simulation of the model equations with parameter set defined by a 

random sample from the probability distributions provided in Table 1. The model was 

considered to be fit, if all the observed data fell within the range of output simulation 

between the 2.5th and 97.5th percentile.  

2.5. Calibration and Evaluation of PBPK model  

First the calibration and then validation of the model was done using data on several 

compartments. Most of the data were taken from the in-vitro and in-vivo experiments. 

The unknown parameters prior values were first calibrated against the observed in-vivo 

data and the logarithms of their values were then assigned a normal distribution.  To 

validate the rat PBPK model, rat experimental data for different organs were used from 

the Asakawa et al., (1995a) study involving a single oral administration of flutamide at a 

dose 5 mg/kg. The mean weight of the rats was 250 gram. The time course profile of 

flutamide concentration in plasma and different organs were recorded at 0.5, 2, 8, 24 and 

48 h. The output concentrations data were expressed as the mean (µg/ml) ± SD. The units 

were converted into µg/L in order to make simulation output and observed data uniform. 

The kinetic profile for seven compartments, namely plasma, liver, lung, kidney, fat, 

gonads and prostate were used to evaluate the performance of the model.  
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An experimental human study by Radwanski et al., (1989) in which volunteers were orally 

administered 0.25 g of flutamide was used to evaluate the human PBPK model. The 

subject characteristics include mean weight, height and age of 89 kg, 180 cm and 66 year, 

respectively. The study involved two case scenarios:  One was administration of a single 

oral dose of 0.25 g and then measuring the time course profile of flutamide and its 

metabolite flutamide hydroxide in plasma at 0, 0.5, 1, 1.5, 2, 3, 4, 6 h and at 0, 0.5, 1, 1.5, 

2, 3, 4, 6, 8, 12, 16, 24 h, respectively. The second scenario included multiple dosing, i.e. 

on the first day a single oral dose of 0.25 g, then a dose of 0.25 g three times a day from 

the 2nd to the 8th day.  The observed concentration in plasma on the 6th and the 9th day 

were recorded for both flutamide and flutamide hydroxide. The data were expressed in 

mean (ng/ml) and CV.  

Table 1: Flutamide chemical and biochemical specific parameter values and its 

statistical distributions.  LN: LOG NORMAL   LN(a,b) means a = ln(mean) and b=sd 

in ln space 

Parameters Symbols Units Values or 

distributions 

References 

Partition 

coefficients 

   - 

Liver /Plasma Kpt:liver/plasma  LN (5.57, 1.5) a 

Lung /Plasma Kpt:lung/plasma   LN (1.65, 1.1) a 

Kidney/Plasma Kpt:kidney_plasma - LN (2.63, 1.5) a 

Fat/Plasma Kpt:fat_plasma - LN (2.78, 1.1) a 

gonads/Plasma Kpt:gonads_plasm

a 

- LN (1.7, 1.5)        a 

prostate/Plasma Kpt:prostate_plasm

a 

- LN (2.17, 1.1) a 

Rest of the 

body/Plasma 

Kpt:restbody_plas

ma 

- LN (5.57, 1.1) a 

Liver/ Plasma 

(FLU-OH) 

Kpt:liver_plasmaM

1 

- LN (5.57, 1.5) a 

     

Absorption and elimination parameters 

Unbound 

fraction in 

plasma 

(Flutamide) 

fu - 0.09 (Asakawa et 

al., 1995) 

Unbound 

fraction in 

plasma (Flu-

OH) 

fu1 - 0.05 Sjogren et al. 

(2014) 
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Oral absorption 

rate 

Kgut 1/h LN (0.64, 1.1) a 

Elimination rate Kurine 1/h LN (1.25, 1.5) optimized 

Elimination rate 

(FLU-OH) 

KurineM1 1/h LN (1.85, 1.5) optimized 

Metabolic parameters for human  

Flu to Flu-OH 

maximum 

reaction value 

VmaxlivM1_invitr

o 

µg/mi

n/mg 

MSP 

LN (0.079,1.1)b (Sjo et al., 

2009) 

Conc. at half 

maximum value 

KmliverM1 mg/L 1.113 (Sjo et al., 

2009) 

Flu to Flu-6 

maximum 

reaction value 

VmaxlivM2_invitr

o 

µg/mi

n/mg 

MSP 

LN (0.052, 1.1) 

b 

(Wen et al., 

2008) 

Conc. at half 

maximum value 

KmliverM2 mg/L 23.754 (Wen et al., 

2008) 

Flu to Flu-1 

maximum 

reaction value 

VmaxlivM3_invitr

o 

µg/mi

n/mg 

MSP 

LN (0.31, 1.1) b (Kobayashi et 

al., 2012) 

Conc. at half 

maximum value 

KmliverM3 mg/L 82.863 (Kobayashi et 

al., 2012) 

Metabolic parameters for rat  

Unbound 

fraction in 

plasma 

fu - LN ( 0.4,1.5)  (Asakawa et 

al., 1995) 

Flu metabolism 

in liver 

VmaxlivM1_inviro µg/mi

n/mg 

MSP 

LN ( 0.8,1.2) b (Kobayashi et 

al., 2012) 

Conc. at half 

maximum value 

KmliverM1 g/L 0.276  (Kobayashi et 

al., 2012) 

Flu metabolism 

in kidney 

VmaxkidM1_invitr

o 

µg/mi

n/mg 

MSP 

LN ( 0.75, 1.1) b (Kobayashi et 

al., 2012) 

Conc. at half 

maximum value 

KmkidneyM1 g/L 1.6 (Kobayashi et 

al., 2012) 

Flutamide 

metabolism in 

lung 

VmaxlungM1_invi

tro 

µg/mi

n/mg 

MSP 

LN ( 0.028, 1.1) 

b 

(Kobayashi et 

al., 2012) 

Conc. at half 

maximum value 

KmlungM1 g/L 0.193 (Kobayashi et 

al., 2012) 

Oral absorption 

rate 

Kgut 1/h LN (0.64, 1.1)  a 

Renal clearance  ClR       

L/h  

LN (0.07, 1.5) c   optimized 
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a derived from sources explained in parameterization section 2.2 and using same value 

in case of both rat and human PBPK model  

b parameters are scaled to whole body species prior to use in model 

c Rat glomeration filtration rate was considered  

 

3. Results  

3.1. Rat PBPK Model  

The rat PBPK model was used to simulate the experimental data obtained by Asakawa et 

al. (1995a) for seven different compartments after oral administration of 5 mg/kg to the 

rat. The model prediction results are presented in Fig.3 (a-g) for 20 random predictions; 

their median (red), and their two extremes corresponds to 2.5 and 97.5 percentiles (blue). 

The green points represent the experimentally observed mean concentrations, the black 

bars represents ±standard deviation. Overall, the experimental in-vivo time course 

concentrations for several organs Fig.3 (a-g) were adequately predicted by the model. In 

most of the compartments, model slightly under-predicted the rate of appearance i.e. 

initial observed experimental points are at or near the 97.5th of the modelling percentile. 

This indicates that model prediction uncertainty is still much higher than experimental 

uncertainty: the model uncertainty exceeds the experimental noise and it should therefore 

be possible to improve the model further by a more precise determination of its 

parameters. The under-prediction of initial time points by the model could be due to the 

under-estimation of the gut absorption rate constant parameter. This fact is further 

supported by the sensitivity results (Table 2), where the gut absorption rate constant 

parameter has high positive sensitivity coefficient among all other parameters. However, 

terminal experimental points are close to the predicted median line.  

The results also show that the flutamide concentrations in plasma (Fig.3a) were lower 

than in the other compartments. Fig.4 (a) shows the flutamide concentrations in various 

organs relative to the concentration in the prostate, again as a function of time.  An optimal 

drug against prostate cancer should have a much lower concentration in gonads and liver, 

i.e. in organs where this drug is suspected to have side effects than in prostate, where it is 

supposed to be active against the tumor.  And it should have a much lower concentration 

in liver, where it is removed by metabolism and where metabolic products may cause 

idiosyncratic liver damage.  None of this is true, neither for the model nor for the 

experimental results. Endocrine related adverse effects shown by flutamide are thought 

to be mediated by its action in gonads. Here PBPK model shows that flutamide 

concentrations in the gonad is higher than in the plasma, indicating importance of 

knowing target concentration and thus risk assessment based on tissue dosimetry model.  

Fig. 4 (b) shows the results of AUC as a function of time for plasma, liver, gonads and 

prostate. After an hour, these organs have had their 90% integral dose. This suggests that 

multiple low dose would be advantageous than high dosing once a day. With multiple 

dosing scenarios, one may able to maintain the therapeutic concentrations at target site 

with minimal exposure to off target organ such as gonads. In contrast single high dosing 

of flutamide could increase its non-target organs exposure where drug flushes out slowly 

(mean residence time is higher).  
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Figure 3: PBPK model predictions of flutamide concentration in various rat compartments 

following 5 mg/kg oral dose of flutamide. Blue lines: 2.5 and 97.5 percentiles; Gray lines: 

20 simulations chosen at random from the ensemble of 15000 models where the 

parameters were chosen at random within the confines of their log normal distribution 

parameterized as provided in Table 1. Red lines: median prediction taken from the 

ensemble of 15000 models; The green dots indicate the mean concentrations and black 

lines indicate the mean +/- sd reported in (Asakawa et al., (1995a).  For the fat 

compartment (e), the data for 48 h was not available. 
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Fig. 4 (a) shows the flutamide concentration as a function of time for plasma, liver, gonads 

and prostate in log scale, after an oral dosing of 5mg/kg body weight to the rats. 

 

 

Fig. 4 (b) shows the AUC as a function of time for plasma, liver, gonads and prostate, 

after an oral dosing of 5mg/kg body weight to the rats.  

3.2. Human PBPK model 

When simulating tissue concentrations for the human model, the partition coefficients 

parameters were kept the same than for rat model, whereas the rate constant for absorption 

was estimated by using the reported (Xu and Li 1998) absorption half-life of 1-2 hour. 

Fig.5 (A-B) represents the simulated time course of flutamide and its metabolite flutamide 
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hydroxide in plasma following a single oral dose of 0.25 g.  Remarkably, for this 

extrapolation from rat to human, the 2.5-97.5 percentile of the distribution of the 

modelling results still includes the experimental results. For flutamide itself, the variation 

in model prediction is now virtually equal to the experimental variability, suggesting that 

no further model improvement is called for. Here the experimental reproducibility should 

be enhanced if it is due to experimental error, or, if it is due to biological variability 

between individual humans, we therefore should move to individualized models.  For 

flutamide hydroxide the model variability is still a wee bit higher than the experimental 

variability; here some parameters need to be improved.  

Fig.5 (A) shows a small over-prediction by the model of the flutamide concentrations at 

early times after administration, as compared to the experimental results.  At early times, 

flutamide hydroxide is under-predicted. This suggests that the model underestimates 

flutamide catabolism to flutamide hydroxide. 

The flutamide concentrations decreased within 24 h to significantly lower levels. 

Therefore, we also simulated repeated dosing of the drug. All the parameters were kept 

same for the multiple dose scenario simulations, which involved 1st day single dose of 

0.25 g and then three times in day from 2nd to 8th day oral dose of 0.25 g and the results 

are presented in Fig.6 (A-B). Again, all the observed mean points are within the simulated 

range shows data agreement between simulated and observed. The increase in 

concentration of flutamide and flutamide for multiple oral doses was captured by the 

model which has been also observed in human experimental study.   

 

Fig 5: PBPK model predictions of flutamide (A) and flutamide hydroxide (B) 

concentrations in human plasma following a 0.25 g oral dose of flutamide. Red lines: 

median predictions; blue lines: 2.5 and 97.5 percentiles; gray lines: 20 random 

simulations. The green dots and black lines indicate the mean +/- sd concentrations 

reported in Radwanski et al. (1989). 

 

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



Chapter 2 
 

139 

 

  

Fig 6: PBPK model predictions of flutamide (A) and flutamide hydroxide (B) plasma 

concentration in human following a 0.25 g oral dose of flutamide at first day and then 

0.25 g three times a day on the 2nd to 8th day. Red line: median prediction; blue lines: 

2.5 and 97.5 percentiles; gray lines: 20 random simulations. The green dots and black 

lines indicate the mean +/- sd concentrations reported in Radwanski et al., (1989). 

A further simulation for 48 h after a single oral dose of 0.25 g for several compartments 

keeping all parameters equal is presented in Fig.7 (A-F). As expected, initially the liver 

gets a very high concentration of flutamide and then decreases very rapidly as liver 

actively metabolizes it. Flutamide concentrations into fat and gonads are much lower than 

in other compartments. Fig 7(D & E) kinetics profile shows that flutamide concentration 

in these two organs might have longer residence time. This observation should be further 

investigated, which might be very important as the endocrine effects of flutamide are 

mainly targeted to the gonads.  
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Fig 7: PBPK model predictions of flutamide concentration for 48hr in several human 

organs following a 0.25 g of single oral dose. Red lines: median predictions; blue lines: 

2.5 and 97.5 percentiles; gray lines: 20 random simulations.  

3.3. Parameter Sensitivity  

A sensitivity analysis was carried out for all the parameters that were used for the 

development of the PBPK model.  The summarized table results for the rat and human 

PBPK models are provided in Table 2. It includes |S| and |S2| norm, mean, minimum, 

maximum, and ranking. The table summarizes the statistics of the normalized and 

dimensionless parameter sensitivity results. Ranking of parameter sensitivity coefficient 

was done based on |S| that measures least absolute deviation of output (here flutamide 

plasma concentration) 

Sensitivity coefficients results for different parameters are provided in Table 2 (A-B). In 

turn Fig.8 (A-B) represents the mean sensitivity coefficients. As expected, the sensitivity 

coefficients of the flutamide concentrations to urine is negative: urine secretes the 

compound.  In humans, the flutamide level in plasma is modelled to be strongly 
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influenced by diuresis: its sensitivity coefficient is -1, meaning that a 10 % activation of 

urination should decrease the flutamide level by 10%.  Surprisingly, the sensitivity 

towards the gut activity is much smaller than expected in the rat model and even negative 

in the human. The latter finding suggests that the activation of flutamide uptake from the 

gut cause a decrease in the level of flutamide in the plasma. The explanation is that 

increased liver uptake of the flutamide activates flutamide degradation earlier; initially 

the plasma flutamide concentration is may be higher, but the drug is removed more 

quickly from the body by liver detoxification (first pass metabolic effect). Indeed, in the 

human the plasma flutamide concentration depends strongly on the drug detoxification 

reaction in liver, at a sensitivity coefficient of around -1. This shows that flutamide 

metabolism is an important process for determining the flutamide concentration in 

plasma. The mean sensitivity coefficient of Vmax is negative and Km is positive. This 

result suggests that adding these two parameters have opposite effect on flutamide 

concentration. Statistical distribution of both parameters simultaneously would result in 

compensation into the output variable i.e. flutamide plasma concentrations. Thus, we 

restricted probability distributions to Vmax only for the uncertainty analysis, so that it 

would not influence the output result. 

The expectation that the binding fraction to proteins (fu) has a negative control over the 

free plasma flutamide concentrations was expected because the binding will lower its free 

concentration.  Likewise one should expect that the partition coefficients exert negative 

control on the plasma flutamide concentrations. The sensitive coefficient at min and max 

of partition coefficients for liver, kidney exert negative effect or no effect (zero) on 

flutamide concentration (Table 2.(A)). Indeed, both the liver and the kidney causes 

clearance of flutamide; in other word, flutamide is not retained in these organs. But for 

the other tissues such as fat, gonads, lung and prostate, sensitivity coefficient ranges from 

negative to positive. This indicates that their partition coefficient exert a positive control 

on the flutamide concentration at the later times. It could be explained by the fact that 

drug might be retained for longer in these organs, as these are non-metabolizing organs. 

Accordingly to the results showed in Table 2 (B), the maximum sensitivity coefficient 

values are in this order: Rest of the body > Fat > gonads > lung > prostate. 

Table 2. (A)  Summary statistics  of parameters’  sensitivities  

Response variable: Flutamide Plasma concentrations in rat 

Parameters |S| |S2| Smean Smin Smax Rank 

kgut 1.826 0.134 0.3 -1.04 63.48 1 

fu 1.581 0.048 -1.579 -3.028 0.564 2 

kurine 1.076 0.033 -1.076 -2.199 0 3 

K_kidney_plasma 1.069 0.033 -1.069 -2.178 0 4 

K_restbody_plasma 0.742 0.023 0.607 -0.533 1.643 5 

KmliverM1 0.736 0.02 0.736 0 0.974 6 
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K_liver_plasma 0.616 0.017 -0.616 -0.96 0 7 

VmaxliverM1 0.409 0.011 -0.409 -0.542 0 8 

K_fat_plasma 0.142 0.004 0.116 -0.095 0.318 9 

K_gonads_plasma 0.008 0 0.006 -0.004 0.023 10 

K_lung_plasma 0.007 0 0.006 -0.009 0.015 11 

K_prostate_plasma 0.003 0 0.002 -0.006 0.005 12 

KmkidneyM1 0.002 0 0.002 -0.001 0.003 13 

VmaxkidneyM1 0.001 0 -0.001 -0.008 0.004 14 

KmlungM1 0 0 0 -0.002 0.001 15 

VmaxlungM1 0 0 0 0 0 16 

K_liver_plasmaM1 0 0 0 0 0 17 

 

Table 2. (B)  Summary statistics  of parameters’  sensitivities 

Response variable: Flutamide Plasma concentrations in human  

Parameters |S| |S2| Smean Smin Smax Rank 

k_liver_plasma 0.987 0.037 -0.987 -0.997 0 1 

vmaxliverM1 0.95 0.035 -0.95 -0.992 0 2 

kmliverM1 0.904 0.034 0.904 0 0.928 3 

k_restbody_plasma 0.513 0.021 -0.513 -0.721 0 4 

kurine 0.408 0.016 -0.408 -0.51 0 5 

kgut 0.348 0.02 -0.239 -1.126 1.006 6 

fu 0.294 0.014 -0.065 -0.837 0.798 7 

vmaxliverM3 0.053 0.002 -0.053 -0.057 0 8 

kmliverM3 0.053 0.002 0.053 0 0.057 9 

k_fat_plasma 0.051 0.002 -0.051 -0.071 0 10 
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vmaxliverM2 0.031 0.001 -0.031 -0.034 0 11 

kmliverM2 0.031 0.001 0.031 0 0.034 12 

k_lung_plasma 0.023 0.001 0.017 -0.024 0.051 13 

k_kidney_plasma 0.01 0.001 0.006 -0.048 0.032 14 

k_prostate_plasma 0.001 0 0.001 -0.004 0.005 15 

k_gonads_plasma 0 0 0 

-

0.00012  -0.0002 16 

k_liver_plasmaM1 0 0 0 0 0 17 

kurineM1 0 0 0 0 0 17 

fu1 0 0 0 0 0 17 

 

Table 2: Sensitivity results for both the rat and human PBPK model. It includes |S| and 

|S2| norm, mean, minimum, maximum, and ranking. Ranking of parameter sensitivity 

coefficient was done based on |S| that measures least absolute deviation of output (here 

flutamide plasma concentration) 
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Fig.8. Normalized sensitivity coefficients for the dependence of plasma flutamide 

concentration 24h after dosing on partition coefficient, Vmax’s and KM’s, as obtained 

from simulated time course data of flutamide for 24hr. (A), represents sensitivity 

coefficients for rat PBPK and (B), represents sensitivity coefficients for human PBPK.  

4. Discussion  

The present study is the first attempt to develop a two species (Rat and Humans) PBPK 

model simulating the concentrations of flutamide in various tissues following a single or 

repetitive oral dose.  The model was parameterized on the basis of species-specific 

physiological data, physicochemical data and independent biochemical data on 

metabolism such as in-vitro data for both rats and humans. The human model was made 

specific by inserting human specific data for enzyme activities, organ volumes and blood 

flow through each organ.  Partition coefficients were kept the same as for the rat model.  

Parameter uncertainties were handled by running multiple models with various values for 

each uncertain parameter in parallel. This led to uncertainties in the predicted dynamic 

behavior of flutamide concentrations in the various tissues. 

When comparing to dynamic distribution of flutamide over seven rat tissues, the model 

performed fairly: the median values predicted by the model were less than a factor of 10 

away from the average experimental value, for most tissues.  In other words, the 

robustness of the developed PBPK model for predicting flutamide levels in different 

compartments was substantial. Although the model pointed out high uncertainties in the 

predictions for some compartments (Fig.3), the observed concentrations were well 

captured by the predicted intervals (within uncertainty range). 

The uncertainty in the rat model predictions was about five times larger than the 

experimental uncertainty, when evaluated at the 2.5; 97.5 percentile.  Surprisingly, 

predictions for the human plasma levels, although requiring more uncertain steps in model 

formulation was actually better:  the median model values were mostly less than a factor 

of 4 away from the average experimental value, being the model uncertainty at par with 

the experimental uncertainty.  This suggests that further average model refinement makes 

no sense, because of limitations in the experimental values. 

The limitations in the apparent accuracy of the experimental values could be for either of 

two reasons: The experimental variability may be due to experimental error, or due to 

biological variation between individuals.  Inspecting the original experimental 

publications, we conclude that the latter explanation is the more likely one. This implies 

that rather than looking into improvement of the model or for improvement of the 

experimental methodology, one should begin to make the models in an individualized 

way. 

The extrapolation of the model to predicting flutamide kinetics in humans with two 

scenarios of dosing (single and multiple) (Fig. 5 and 6) were also in good agreement with 

the observed data. Moreover, the prediction of flutamide hydroxide and its agreement 

with observed data (Fig. 5B and 6B), confirmed that the metabolic kinetic for the 

production of metabolite in liver (flutamide hydroxide) and its distribution to the plasma 

was well captured. In the model, flutamide hydroxide was confined to liver and plasma, 
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not distributed over all the given compartments owing to the fact of not having data on its 

bio-distributions. In the worst case scenarios, it would be possible to distribute the 

flutamide hydroxide presuming its partition coefficient similar with its parent compound 

or using in-silico approach.  

The predictions of flutamide and its metabolite flutamide hydroxide kinetics in human 

plasma for different dose scenarios suggested that the dose dependency of flutamide 

kinetics was modelled correctly. This might enhance the model’s applicability 

optimization of doses regimens based on not only the parent compound (usual approach) 

but also its main metabolite flutamide hydroxide, presumably responsible for 

pharmacological effects. The current model could be useful for extrapolating low dose 

scenarios that are relevant for environmental exposure of flutamide as a result of 

pharmaceutical residuals as well as for verifying low dose animal testing endocrine 

effects.  

However additional research is required to better characterize the flutamide kinetics: the 

dose dependency that we implemented in the model is uncertain as flutamide is degraded 

by two different enzymes namely carboxylesterase and arylacetamide deacetylase 

depending on its concentration (Kobayashi et al., 2012; Watanabe et al., 2009).  It should 

also be useful to measure the kinetics of flutamide simultaneously in plasma and urine in 

case of the humans, as this should give an additional mode of model validation. Although 

in this study we have considered the metabolism of flutamide into three different 

metabolites (assuming hepatic clearance of flutamide), reported studies shows that 

flutamide can produce even more metabolites in humans, which could lead to a decrease 

in its own concentration. This would allow for the confirmation of the total observed 

clearance of flutamide (hepatic and renal) being faster experimentally than in the present 

model.  It also could allow the prediction of other important metabolites as a function of 

flutamide exposure in the PBPK model and reduce the uncertainties in parameters 

particularly associated with metabolism and elimination to which the predicted flutamide 

concentration is sensitive (Fig 8 and Table 2).  Additionally, capturing metabolic variation 

of flutamide due to variation in enzyme level at target metabolizing tissue (liver), 

correlating with genetic predisposition, and accounting for changes in CYP activity, could 

enhance our understanding at the level of a personalized PBPK model for flutamide.  

 The results of this study are promising for application of PBPK modeling in risk 

assessments of flutamide in human populations in the context of target tissue 

concentration. To date, no tool has been developed to predict in humans the chemical 

kinetics in plasma and more importantly tissues concentration along with time. Several 

future uses of the PBPK model of flutamide could be considered. Here the model could 

serve to relate the levels to which humans are exposed to the levels attained in various 

target organs, suspected to be involved in toxicity.  By in vitro tissue-specific cell line 

experiments one could then determine whether those levels should be expected to be toxic 

or tumorigenic for those tissues.  In other words, the current model could be used in a 

reverse dosimetry context to interpret the available in vitro biomonitoring data so as to 

estimate the degree to which the population is currently being exposed, an alternative 

solution to validate the estimated PDE for flutamide for the pharmaceutical companies.  

 An important issue for EDCs is their idiosyncrasies, i.e. the phenomenon that 

even if non-toxic for most of the human population, a fraction of the population may 
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suffer from exposure.  One of the origins of this idiosyncrasy may reside in inter-

individual differences based on genomic, nutritional or behavioral differences. Such 

idiosyncrasies are often thought to occur in the PD, i.e. in the effect the EDC has on the 

body.  We suspect that idiosyncrasies may also arise in the PBPK, by some individuals 

having strongly altered parameters in PD, such as modelled by our model.  In future work 

we shall account for mechanism in or model (or in extended versions thereof) that are 

affected by known SNPs in the human population.  These could reside in drug 

metabolism, or in drug pumping alterations. 

Physiologically specific in nature, the current PBPK model for flutamide could also be 

adapted to the context of a large human population by considering their metabolic and 

genetic diversity.  This could add explanations of otherwise unexpected sensitivities of 

small fractions of the population to flutamide and corresponding idiosyncrasies. 
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The development of a pregnancy PBPK Model for 

Bisphenol A and its evaluation with the available 

biomonitoring data 

Abstract 

Recent studies suggest universal fetal exposure to Bisphenol A (BPA) and its association 

with adverse birth outcomes. Estimation of the fetal plasma BPA concentration from the 

maternal plasma BPA would be highly useful to predict its associated risk to this specific 

population. The objective of current work is to develop a pregnancy–physiologically 

based pharmacokinetic (P-PBPK) model to predict the toxicokinetic profile of BPA in the 

fetus during gestational growth, and to evaluate the developed model using biomonitoring 

data obtained from different pregnancy cohort studies. To achieve this objective, first, the 

adult PBPK model was developed and validated with the human BPA toxicokinetic data. 

This validated human PBPK model was extended to develop a P-PBPK model, which 

included the physiological changes during pregnancy both in mother and in the fetus sub-

model. The developed model would be able to predict the BPA pharmacokinetics (PKs) 

in both mother and fetus. Transplacental BPA kinetics parameters for this study were 

taken from a previous pregnant mice study. Both oral and dermal exposure routes were 

included into the model to simulate total BPA internal exposure. The impact of 

conjugation and deconjugation of the BPA and its metabolites on fetal PKs was 

investigated. The developed P-PBPK model was evaluated against the observed BPA 

concentrations in cord blood, fetus liver and amniotic fluid considering maternal blood 

concentration as an exposure source. A range of maternal exposure dose for the oral and 

dermal routes was estimated, so that simulation concentration matched the observed 

highest and lowest mother plasma concentration in different cohorts' studies. The 

developed model could be used to address the concerns regarding possible adverse health 

effects in the fetus being exposed to BPA and might be useful in identifying critical 

windows of exposure during pregnancy. 

Highlights 

•Developed P-PBPK model for BPA can describe and predict the fetus toxicokinetic 

profiles based on mother’s exposure scenario. 

•Conjugation-deconjugation of BPA in placenta and fetus is a key issue for the fetal 

exposure to parent BPA. 

•Amniotic fluid BPA concentration can be a good biomarker for identifying the critical 

window of exposure in fetus. 

•Fetal exposure was characterized by a low but sustained basal BPA concentration due to 

their low metabolic activity. 

Keywords: Bisphenol A, Pregnancy-PBPK, Fetal exposure, Biomonitoring, Window of 

exposure 
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1. Introduction 

BPA is produced at over 2 billion pounds/year and is found in wide variety of dietary and 

non-dietary products. The dietary sources include both canned and non-canned foods 

categories ranging from “meat and meat products”, “vegetables and vegetable products”, 

and other packaged foods, and food handling consumer products like baby bottles, 

beverage containers etc. (WHO, 2010; EFSA, 2015). The non-dietary sources include 

medical devices, dental sealants, dust, thermal papers, toys and cosmetics (Mendum et 

al., 2011; EFSA, 2015). Although ingestion of the BPA from food or water is the 

predominant route of exposure (Lorber et al., 2015), there are other non-dietary routes, 

which also equally contributes to the total BPA exposure, such as inhalation of free BPA 

(concentrations in indoor and outdoor air), indirect ingestion (dust, soil, and toys), and 

dermal route (contact with thermal papers and application of dental treatment) (Myridakis 

et al., 2016). Recently reported studies have found relatively more contribution of the 

dermal route to overall internal BPA concentration than the oral route's exposure 

(Biedermann et al., 2010; Mielke et al., 2011). In addition, recent studies (De Coensel et 

al., 2009; Sungur et al., 2014) show that temperature has a major impact on the BPA 

migration level into water; an increase from 40 °C to 60 °C can lead to a 6–10 fold 

increase in the migration level. 

BPA and its metabolites have been detected in maternal blood, amniotic fluid, follicular 

fluid, placental tissue, umbilical cord blood, urine and breast milk (Schönfelder et al., 

2002; Ikezuki et al., 2002; Kuroda et al., 2003; Kuruto-Niwa et al., 2007; Lee et al., 2008; 

Zhang et al., 2011, 2013; Cao et al., 2012; Muna et al., 2013; Gerona et al., 2014; 

Teeguarden et al., 2016). In different rodents' studies, it has been seen that low dose of 

bisphenol exposure during the gestational period has effects on the fertility, brain 

development, and the behavioural changes in their later life stages, signify BPA 

pleiotropic effects (Palanza et al., 2002; Cabaton et al., 2013; Snijder et al., 2013; Harley 

et al., 2013). Rubin and Soto (2009) reviewed the prenatal BPA exposure and its effects 

on adipocytes differentiation, a major cause of obesity. U.S. Environmental Protection 

Agency (EPA) has declared the BPA as an endocrine-modifying chemical, which has 

been found to be reproductive, developmental, systemic toxicant, obesogenic and, weakly 

estrogenic (Moriyama et al., 2002; Rey et al., 2003; Patisaul et al., 2009; Xi et al., 2011; 

Wang et al., 2012; Vafeiadi et al., 2016; Sharma et al., 2017). 

Adult human studies have reported that BPA has a very short half-life. It rapidly detoxifies 

to nontoxic conjugate substance such as BPA-glucuronide (BPAG) and BPA-sulfate 

(BPAS), collectively called as BPA conjugates (BPA-C), by glucuronidation and 

sulfation metabolic process (Völkel et al., 2002; Teeguarden et al., 2015; Thayer et al., 

2015). However, in the case of the specific populations such as developing fetus, growing 

infants, and young children, whose chemical metabolizing systems are underdeveloped, 

even moderate exposure can lead to higher internal concentration of BPA (Divakaran et 

al., 2014). Moreover, the reactivation of these conjugates (deconjugation), BPAG and 

BPAS, by the fetal tissue and the placenta has been reported (Ginsberg and Rice, 2009; 

Muna et al., 2013), causing an increase in BPA internal exposure to the fetus. The recent 

human pharmacokinetics studies showed low amount of BPA plasma concentration even 

with the high oral dose, in contrast, exposure amount of BPA for the different cohorts are 

estimated to be very low against higher BPA plasma concentration obtained in 

biomonitoring studies (Völkel et al., 2005, 2002; Teeguarden et al., 2015; Thayer et al., 
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2015). Mielke and Gundert-Remy (2009) compared the observed biomonitoring data of 

Schönfelder et al. (2002) study against the model predicted plasma concentrations of BPA 

using the simple kinetic approach and physiological based pharmacokinetic (PBPK) 

model, and found 3000 fold lower difference between the model prediction and the 

observed biomonitoring data. This wide discrepancy between the pharmacokinetic 

models' prediction and the biomonitoring data could be due to physiological variation, 

genetic polymorphisms among populations, exposure variation and exclusion of non-oral 

routes of exposure. However, the possible contamination during sample collection and 

analysis could be one reason for this discrepancy (Longnecker et al., 2013; Ye et al., 2013) 

but it is beyond the scope of this paper. Functional polymorphism in glucuronidation 

enzyme responsible for the BPA metabolisms has been reported by Trdan Lusin et al. 

(2012). It has been found that BPA after dermal exposure has a longer half-life of 8 h as 

it bypass the first pass metabolism, and attains the steady state in blood by the 4th day, 

whereas single oral dose intake completely eliminates in 6–8 h and never reach steady 

state even with daily dosing (Biedermann et al., 2010; Mielke et al., 2011; Mielke and 

Gundert-Remy, 2012; Gundert-Remy et al., 2013). 

In recent years, use of physiologically based pharmacokinetic (PBPK) modeling has been 

quite popular in the human health risk assessment (Clewell and Clewell, 2008, 

Schuhmacher et al, 2014, Fabrega et al, 2015, Fabrega et al, 2016, Sharma et al, 2017). 

Previously, adult human, rat and monkey PBPK models have been developed for the BPA 

and its conjugates (Shin et al., 2004; Edginton and Ritter, 2009; Fisher et al., 2011; Yang 

et al., 2015, 2013; Yang and Fisher, 2015). The pregnancy physiologically-based 

pharmacokinetic (P-PBPK) models have long been used to estimate the exposure of the 

chemical to the fetus (Corley et al., 2003). The P-PBPK model for mice was previously 

developed (Kawamoto et al., 2007), which showed the potential exposure of BPA to the 

fetus. However, a P-PBPK model for the human has not yet been developed. The 

pharmacokinetic data for chemicals are often limited in specific populations of pregnant 

mother and fetus, due to the ethical and technical reason, which often lead to difficulties 

in building a kinetic model. However, the use of a physiological based pharmacokinetic 

model can simplify this complexity, based on its capability to predict the kinetics of 

chemical via a mechanistic understanding of its absorption, distribution, metabolisms, and 

elimination inside the body. The overall aim of this study was to improve the 

understanding of the chemical toxicokinetic relationship between the mother and the fetus 

by developing a P-PBPK model for the BPA and its conjugates. This would enable to 

predict the fetus plasma and organs BPA concentration by estimating the mother plasma 

BPA concentration and, thus helps in identifying the critical window(s) of exposure to the 

fetus during its gestational period of development. The conceptual model diagram is 

provided in Fig. 1 showing the study design undertaken for this work. The P-PBPK model 

development has followed following phases: a) development and validation of the adult 

PBPK model, b) extension of the developed adult PBPK model to a P-PBPK with the 

inclusions of dynamic physiological changes during the pregnancy and the prediction of 

chemical toxicokinetic profile in both mother and fetus compartment and c) evaluation of 

developed P-PBPK model against the biomonitoring data of available pregnant cohort 

population. An additional case study of this model has been recently published in 

Martínez et al. (2017), where simulation of prenatal BPA exposure via dietary intake of 

pregnant women recruited from Tarragona County was performed. 
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Fig. 1. A conceptual model for the development of P-PBPK model. It involves the 

development of the adult PBPK model and extension of this model to the P-PBPK model 

with the addition of placenta and fetus sub-compartment. MW = molecular weight, BMI 

= basal metabolic index, MSP = microsomal protein, K = partition coefficient and 

subscripts L = Liver, B = blood, b = brain, K = kidney, S = skin, R = rest organ, G = gut, 

Q = cardiac blood flow, P = placenta, F = fetus. 
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2. Methodology and parameterization 

Development of the P-PBPK model retains entire feature that used to describes the adult 

BPA and BPA-C (BPAG and BPAS) kinetics like partition coefficient for the organs, 

fraction unbound, metabolism (Vmax and Km) and elimination (urinary elimination). The 

physiological changes that occur during pregnancy like changes in plasma volume, fat 

volume, and amniotic fluid, placental and fetal growth are described as dynamic 

parameters that depend on the gestational period (Gentry et al., 2003; Abduljalil et al., 

2012). Besides the oral mode of exposure, dermal mode of exposure was included in the 

development of the pregnancy-PBPK model. The oral exposure was divided into three 

equal doses and dermal as a single dose. Considering the gestational growth physiology 

in the case of the pregnant mother and fetus, the development of a P-PBPK model has 

been described in the following section. The model was coded in the R (version 3.2.3), 

and model equations are provided in the supplementary material (Annex 3). 

2.1. General pregnancy-PBPK Model structure 

The basic structure of the P-PBPK model has been adapted from an adult model, which 

included plasma, liver, kidneys, fat, brain, skin and a rest of the body compartment for 

the remaining tissues. The placenta and the fetus compartments were added into the 

model. The fetus compartment is further extended to fetus sub-model considering liver, 

kidney, brain, and plasma as fetus sub-compartments. The fetus sub-model considered the 

fetus-specific metabolic processes and included important target organs for the prediction 

of internal target dosimetry. The physiological and metabolic parameters were applied for 

the fetus model as dynamic parameters of gestational period and chemical-specific 

parameters such as partition coefficient were kept similar to the adult human model in the 

case of both Mother and fetus organs. 

The source of exposure to the fetus was via unbound concentration of the chemical in the 

mother placenta, assuming only the mother directly exposed to the chemical. The 

placental-fetal unit assumes a bidirectional transfer process describing BPA and BPA-G 

transfer between mother placenta to fetus plasma and vice versa. The transfer rate was 

assumed as a simple diffusion process. Transport of chemical from fetal plasma into the 

fetal compartments like liver, kidney, brain, and rest of the body was assumed to be simple 

diffusion described by partition coefficient (same as of mother tissue). The amniotic fluid 

compartment was included in the current P-PBPK model. Transfer rates between the 

amniotic fluid compartment and the fetal body were described as a simple diffusion 

process. 

The elimination of BPA in the mother was assumed to be similar to adult human, which 

occurs via its rapid metabolism in the liver and intestine, subsequently excreted via urine. 

However, the clearance of BPA and its conjugates in the fetus was described with first 

order transfer rate from fetus plasma to mother plasma via the placenta. 

2.2. Gestational growth physiology model 

The dynamic physiological parameters for the pregnant mother that changes during the 

gestational period such as plasma volume, hematocrit percentage, the fetus and the 
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placental growth were accounted for the development of P-PBPK model. The increase in 

maternal body weight was accounted by considering the dynamic growth of mother's 

organ and fetus growth into the model. The volumes of liver, kidney, skin, brain, and gut 

of mother were calculated by taking constant fractions of the non-pregnant maternal body 

weight (Davies and Morris, 1993; Brown et al., 1997) provided in Table A.1. For the rest 

of the body compartment for pregnant mother and fetus was calculated by subtracting the 

sum of all organs volume from the total maternal and fetus body weight respectively. 

Additionally, the increased blood flow to the organs such as kidney, fat and placenta were 

considered to calculate the increase in maternal cardiac output (O'Flaherty et al., 1992; 

Gentry et al., 2003, 2002). All physiological parameters were considered as a function of 

gestational day and the model equations were adapted from different literature sources 

(Sisson et al., 1959; O'Flaherty et al., 1992; Gentry et al., 2003, 2002; (Clewell and 

Clewell, 2008); Abduljalil et al., 2012) and are provided in appendix-I. 

The fetus model was sub compartmentalized into liver, plasma, brain, amniotic fluid and 

rest of the body. Fetal body and mother placental volume was modelled by using Eqs. (1) 

and (2), respectively, described by Gentry et al. (2003). The quantity of amniotic fluid for 

the gestational day was calculated by applying polynomial Eq. (3), as described by 

Abduljalil et al. (2012). Fetal blood flow was defined as a function of fetal blood volume 

and is adapted from the Clewell et al. (1999). Fetus plasma blood flow to the individual 

organs was calculated using Eq. (5) that implies multiplication of the fetal cardiac output 

with a constant fraction of the fetal blood flows to those organs, which assumed to be 

same as mother, as described by Gentry et al. (2003). Blood plasma flow to the rest of 

body was derived by subtracting the sum of total blood plasma flow to the organ from the 

total fetal cardiac output. The dynamic growth of the fetus volume was calculated during 

its gestational growth using Eq. (1). The fetus growth data provided by Brown et al. 

(1997) and ICRP (2002) were used to calculate the fetus organ weight as a constant 

fraction of its body weight which is dynamic parameter described in Eq. (1). Thus the 

fetus organ volume was estimated by multiplying fetal body volume with constant 

fraction value of the organs described in Eq. (4). 

The fetus, placenta, and amniotic fluid growth kinetics were calculated by applying the 

following equations: 

𝑉_𝑓𝑒𝑡𝑢𝑠 = (3.779 ∗ exp(−16.081 ∗ (exp(−5.67e − 4 ∗ (GD ∗ 24)))) +  3.883 ∗
                      exp(−140.178 ∗ (exp(−7.01e − 4 ∗ (24 ∗ GD))))                                    (1)         

𝑉_𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 = 0.85 ∗  (exp(−9.434 ∗ exp(−5.23e − 4 ∗ (GD24))))                        (2) 

                     

𝑉𝑎𝑚𝑖𝑛𝑖𝑜𝑡𝑖𝑐𝑓𝑙𝑢𝑖𝑑 = 1.9648 ∗ (
GD

7
) − 1.2056 ∗ (

GD

7
)

2

+ 0.2064 ∗ (
GD

7
)

3

−  0.0061 ∗

                                   (GD/7)^4 +  0.00005 ∗  (GD/7)^5                                                       (3) 

Where, V_fetus = volume of fetus as a function of gestational day in L, GD = gestational 

day, V_placenta = volume of placenta in L, and V_aminitoic fluid = volume of aminiotic 

fluid in mL.  

The blood flow to the fetus organ was calculatd by using the following general equation: 
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𝑄organfetus = FQorganmother ∗ QCplasmafetus              (4)

                            

Where, 𝑄𝑜𝑟𝑔𝑎𝑛𝑓𝑒𝑡𝑢𝑠  = the blood flow to organ in L, 𝐹𝑄𝑜𝑔𝑟𝑎𝑛𝑚𝑜𝑡ℎ𝑒𝑟 = constant fraction 

of cardiac blood flow to organ in mother, and 𝑄𝐶𝑝𝑙𝑎𝑠𝑚𝑎𝑓𝑒𝑡𝑢𝑠 = the fetus cardiac output. 

The organ volume of the fetus was scaled by using the following general equation: 

𝑉𝑜𝑟𝑔𝑎𝑛𝑓𝑒𝑡𝑢𝑠 = 𝐹𝑜𝑟𝑔𝑎𝑛𝑓𝑒𝑡𝑢𝑠 ∗ 𝑉_ 𝑓𝑒𝑡𝑢𝑠               (5)

                                

Where, 𝑉𝑜𝑟𝑔𝑎𝑛𝑓𝑒𝑡𝑢𝑠 = the organ volume in L, 𝐹𝑜𝑟𝑔𝑎𝑛𝑓𝑒𝑡𝑢𝑠 = constant fraction of organ 

of fetus as a funciton of gestational day, and 𝑉_𝑓𝑒𝑡𝑢𝑠 = the total volume of fetus as a 

function of gestational day. 

All the physiological parameters are provided in the annex 3 (Table A.1). The dynamic 

growth pregnancy physiology equations are taken from previous studies (Gentry et al., 

2003; Abduljalil et al., 2012) summarized in Table 1. 

Table 1. Parameterization of pregnant mother and fetus physiology 

Mother Tissue volume 

Liver volume b V_Liver = FLiver ∗ BWinit    

Kidney Volume b V_Kidney = Fkidney ∗ BWinit  

Gut volumeb V_Gut = FGut ∗ BWinit  

Brain Volumeb V_Brain = FBrain ∗ BWinit  

Plasma volume c VPlasma = ( 2.50 − 0.0223GA + 0.0042 ∗ GA2 −
0.00007 ∗ GA3) ∗ BW  

Initial fat volumea V_Fatinit = BWInit ∗ Ffat  

Fat volume  a V_Fat =  BWInit ∗ (Ffat + 0.09 ∗ e−12.90995862 ∗
e−0.000797 ∗ GD ∗ 24)  

HCTc HCT = 39.1 − 0.0544 ∗ (GA ∗ 7) − 0.0021 ∗ (GA ∗
7)2   

Placenta Volumea V_placenta =  .85 ∗ (e−9.434∗e−5.23E−4∗GD∗24
)  
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Increase in Body weight of 

pregnant women as due to 

change in fat, placenta, 

feus and amniotic fluid 

weight 

BW = BWinit + ( VFat − VFatinit
) + V_placenta 

+ V_fetus + V_Aminiotic fluid 

Fetus tissue volume 

Fetus volume a V_fetus = 3.779 ∗ (e−16.08∗e−5.67∗e−4∗GD∗24
)

+ (e−140.78∗e−7.01∗e−4∗24∗GD
) 

Fetal plasma volume  b VPlasmafetus
= FPlasmafet

∗ Vfetus 

 

Fetus liver volume  b V_liver_fetus = Fliverfet ∗ V_fetus 

Fetus kidney volume  b V_kidney_fetus = Fkidneyfet ∗ V_fetus 

Fetus brain volume  b V_brain_fetus = Fbrainfet ∗ V_fetus 

Amniotic fluid volumec V_Aminiotic fluid
= 0 + 1.9648 ∗ GA − 1.2056
∗ GA2 + 0.2064 ∗ GA3 − 0.0061
∗ GA4 + 0.00005 ∗ GA5 

Fetus rest of body volume V_restbody_fetus 
= (0.92 ∗ V_fetus)
− (V_Plasma_fetus
+ V_liver_fetus + V_kidney_fetus
+ V_brain_fetus) 

Blood flow to mother tissue (L/h) 

Initial cardiac output for 

blood  b 
QC_Blood_init = QCC ∗ BWinit(.75) 

Adjust initial cardiac 

output for plasma flow b 
QC_Plasma_init = QCinit ∗ (1 − HCT) 

Plasma flow to liver b Q_Liver = F_QLiver ∗  QC_Plasma_init 

Plasma flow to gut b Q_Gut = F_QGut ∗  QC_Plasma_init 
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a = (Gentry et al., 2002), b =  standard scaling method for PBPK, c = (Abduljalil et al., 

2012) 

GD= Gestational day, GA = Gestational age in week 

 

2.3. BPA pharmacokinetics 

The conceptual schema has been provided in the Fig. 2 showing distribution of BPA and 

its metabolites in the body. 

 

Initial flow to fat  b Q_Fatinit = F_QFat ∗  QC_Plasma_init 

Changing flow to the fat a 
Q_Fat = Q_Fatinit ∗ (

VFat

VFatinit

) 

Blood flow to placentaa Q_Placenta_blood = 58.5 ∗ V_placenta 

Plasma flow to placenta Q_Placenta = Q_Placenta_blood ∗ (1 − HTC) 

Renal plasma flowc QKidney = 53 + 2.6616 ∗ GA − 0.0389 ∗ GA2 

Cardiac outputb QC = QC_init + (Q_Fat − Q_(Fat_init ) )
+ (QKidney − QKidney_int )
+    QPlacenta 

Blood flow to fetus (L/h) 

Cardiac output for  

fetusb 

QCblood_fetus = FQfetus ∗ V_Plasma_fetus 

Fetal cardiac output 

adjusted to plasmab 
Qplasma_fetus = QC_Blood_fetus ∗ ( 1 − HCTfetus) 

Fetal liver blood flow b QLiver_ fetus = FQLiver ∗ QC_Plasmafetus 

Fetal kidney blood flow b QKideny_ fetus = FQKidney ∗ QC_Plasmafetus 

Fetal brain blood flow b QBrain_ fetus = FQBrain ∗ QC_Plasmafetus 
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Fig. 2. The pharmacokinetics of BPA and its conjugates in both mother and fetus. The 

placental-fetal unit assumes a bidirectional transfer process of BPA and BPA-C 

describing the distribution of BPA and its metabolites in mother and fetus body. 

In the present P-PBPK model of BPA, physiological changes during pregnancy were 

included. Metabolism in pregnancy was introduced via scaling of the in-vitro Vmax for 

glucuronidation and sulfation, considering the pre-pregnancy body weight. The BPA 

metabolism data for the fetus was scaled using human in-vitro data and fetus microsomal 

protein content, and, growing fetus liver and body weight. Two metabolic kinetic 

parameters namely Vmax (maximum rate of reaction) and Km (affinity of the substrate 

for the enzyme), for mother and fetus, is taken from in-vitro studies and has been scaled 

to in-vivo. The pharmacokinetic data are provided in the annex 3 (Table A.2). 

2.3.1. Oral uptake and gut metabolism 

Generally, the oral ingestion of BPA through diet is considered as the major route of 

exposure (WHO, 2010). It is rapidly absorbed through the gut and maximum 

concentration in the blood achieves at 0.42–1 h. Studies have shown that oral 

bioavailability of BPA is very low, as it passes through first pass metabolism, in the 

intestine and liver, being completely absorbed from the gut (Völkel et al., 2005, 2002; 

Mielke and Gundert-Remy, 2012). 

Both BPA and BPAG uptake from the gut to the system was described by first order 

reaction, considering gastric emptying delay for BPA arrival to the gut (Kortejärvi et al., 

2007). The oral absorption rate of the BPA was optimized against the Yang et al. (2015) 

data. The data on uptake of BPAG from the intestine to the liver was taken from the 

previous study of Yang and Fisher (2015). 

Most of the oral administered BPA metabolizes into BPAG by intestinal UDPGT (Mazur 

et al., 2010; Trdan Lusin et al., 2012). The in-vitro in-vivo extrapolation (IVIVE) 

approach and saturation metabolism kinetic (Eq. (6)) were applied for describing BPA 

glucuronidation in the mother intestine (Cubitt et al., 2009; Yoon et al., 2014). The scaling 

of in-vitro Vmax parameter to in-vivo (IVIVE) was done applying Eq. (7) that used 

microsomal protein content per gram tissue and weight of tissue per kg body weight. For 

the scaling of Vmax, the amount of microsomal protein in the gut of 3 mg/g (MPPGG) 
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and the weight of human gut 30 g/kg body weight was taken into account (Yang and 

Fisher, 2015). 

The metabolism is described by using the following equation: 

𝑑𝐴𝑚𝑒𝑡

dt
=

Vmax∗Corgan∗fu

Km+Corgan∗fu 
              (6)

          

Where,  
dAmet

dt
  = the amount of metabolism produced with time, Vmax = the maximum 

metabolism rate, Km = the concentration of substrate required to attain 50 percent of its 

Vmax, Corgan = the concentration of substrate at target metabolism organ, and fu = 

fractional unbound.  

Vmax was scaled to in-vivo per kg BW from in-vitro cell line studies by using the 

following method: 

𝑉𝑚𝑎𝑥(𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑒) = (𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 ∗ 𝑀𝑃𝑃𝐺𝐺 ∗ 𝑉𝑔𝑢𝑡)/𝐵𝑊 .75                      (7)                 

       

Where, 𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 = in-vitro value of metabolic capacity in per gram of microsomal 

protein (intestinal cell line) , 𝑀𝑃𝑃𝐺𝐺 = microsomal protein per gram of gut , Vgut = total 

gut weight in gram, and BW =  whole body weight in kg. 

2.3.2. Dermal absorption and metabolism 

Recently published papers raised the issue of underestimation of BPA exposure via the 

dermal route given that BPA presence in materials that frequently comes in contact with 

the human skin (Biedermann et al., 2010; Lassen et al., 2011; Mendum et al., 2011). In-

vitro viable skin culture model experiments showed that the skin has potential to absorb 

and metabolize BPA into BPAG and BPAS (Kaddar et al., 2008; Zalko et al., 2011a). 

Recently, Mielke et al. (2011) published internal dosimetry model of BPA compared oral 

route with 90% absorption rate, with dermal route considering different reported 

absorption rates such as 10 (EU, 2003), 13 (Morck et al., 2010), 46 (Zalko et al., 2011b), 

and 60 (Biedermann et al., 2010) and showed importance of the dermal absorption for the 

estimation of BPA internal exposure level. 

In the present study, the dermal route of exposure was considered for the development of 

P-PBPK model. Considering the fact of wide variation of the absorption rate of BPA via 

skin, highest reported permeability coefficient (kas = 0.25 1/h), data for the adult model 

provided by Mielke et al. (2011) was used to develop the P-PBPK model. The following 

Eq. (8) was applied for calculating skin absorption: 

𝑑

𝑑𝑡
𝑠𝑘𝑖𝑛 = 𝑄𝑠𝑘𝑖𝑛 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 − 𝐶𝑠𝑘𝑖𝑛 ∗

𝑓𝑢

𝐾_𝑠𝑘𝑖𝑛_ 𝑝𝑙𝑎𝑠𝑚𝑎
)   + (𝐶𝑎𝑝𝑝_𝑠𝑘𝑖𝑛 − 𝑐𝑠𝑘𝑖𝑛/

                            𝐾_𝑠𝑘𝑖𝑛_ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒) ∗ 𝑡_𝑑𝑓 ∗ 𝑘𝑎𝑠 ∗ 𝐴/1000                                 (8)

                                                

Where, Qskin = the cardiac blood flow to skin, Cplasma = the plasma chemical 

concentration, fu = the fractional unbound, K_skin_ plasma = the plasma skin partition 
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coefficient, Capp_skin = the applied concentration of chemical to the skin surface, Cskin 

= the concentration of chemical in the skin compartment, K_skin_ vehicle = the vehicle 

skin partition coefficient, t_df = the time delay factor for absorption to reach to plasma, 

A = skin surface area and kas = the permeability rate constant. 

2.3.3. Metabolism in the adult liver 

Phase-II glucuronidation reaction is a major pathway in human for chemicals or drugs 

detoxification. The resulting conjugates of glucuronic acid to the chemicals increase its 

hydrophilicity and are generally considered to be pharmacologically inactive (Sperker et 

al., 1997b). BPA undergoes rapid metabolism to form glucuronidation and sulfation 

conjugates in the liver by uridine-diphospho-Glucoronide transferase (UDPGTs) and 

sulfotransferase (SULT) enzyme respectively (Kim et al., 2003; Hanioka et al., 2008; 

Hanioka et al., 2011). The reported values of Vmax and Km for glucuronidation from 

different in vitro studies show variability in glucuronidation (Elsby et al., 2001; Kuester 

and Sipes, 2007; Kurebayashi et al., 2010; Mazur et al., 2010; Trdan Lusin et al., 2012). 

In the present study, the rate of reaction for both glucuronidation and sulfation for the 

PBPK model was derived by IVIVE scaling approach. The current hepatic in-vitro cell 

line data were used for deriving maximum reaction velocity (Coughlin et al., 2012) using 

Eq. (9) that accounts microsomal protein value (32 mg/g of liver) and liver weight (2.6 

percentage of BW). The metabolism was described based on Michaelis-Menten equations 

using Eq. (6) and implemented into the current PBPK model. The fraction unbound in the 

microsomes was not accounted for in the calculation of the in vivo values. 

𝑉𝑚𝑎𝑥(𝑙𝑖𝑣𝑒𝑟) = (𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 ∗ 𝑀𝑃𝑃𝐺𝐿 ∗ 𝑉𝑙𝑖𝑣𝑒𝑟)/𝐵𝑊 .75                    (9)            

        

Where, 𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 = in-vitro value of metabolic capacity in per gram of microsomal 

protein (hepatic cell line), 𝑀𝑃𝑃𝐺𝐿 = the microsomal protein per gram of Liver, Vliver = 

the total liver weight in gram, and BW =the whole body weight in kg  

2.3.4. BPA metabolism in the human fetal liver 

Formation of the glucuronide conjugates involves following steps such as rate of supply 

of substrate (chemicals to be conjugate), the rate of formation and supply of the co-

substrate i.e., glucuronic acid, and the expression and the specific activity of the enzyme 

responsible for glucuronidation i.e., uridine-diphospho-Glucoronide transferase (UDP-

GTs). The concentrations (μmol/Kg wet weight) of UDPGLcUA were 59.4 ± 11.3 (fetal 

liver), 301 ± 119 (adult liver), 17.8 ± 1.8 (mid-term placenta) and 17.0 ± 1.7 (near term 

placenta) (Beach et al., 1978; Cappiello et al., 2000; Coughtrie et al., 1988; Kawade and 

Onishi, 1981). The above data shows that the UDPGLcUA is present in the human fetal 

liver at a 5-fold lower concentration than in the adult liver. Another study has shown that 

the activity of UDPGT was null at an early stage of the fetus, showing glucuronidation as 

a potential limiting factor in the human fetus (Strassburg et al., 2002). The expression of 

these two isoforms UGT2B15 and 2B7 are detectable in human fetal livers during the 

second trimester of pregnancy and has been stated to account for 18% of the values 

calculated in adults (Divakaran et al., 2014). 
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In the present study, the glucuronidation of BPA in the model was considered for the 

fetus. The scaling of Vmax in the case of the fetus liver has been done before by Gentry 

et al. (2003). However, Gentry method considers the fixed value of Vmax and uses fetus 

enzyme activity as a fraction of the adult value for the scaling method. For this study, 

similar to adult's scaling, the metabolism in the fetus liver was directly scaled from the in 

vitro hepatocyte data, considering the developmental changes in the fetus. The reported 

microsomal protein content per gram of fetus liver at the age of 9–22 gestational week 

was 10–16 mg (Pelkonen, 1973) and 26 mg (Pelkonen et al., 1973) in two different studies 

and for the scaling purpose 26 mg/g liver was taken presumably a realistic value at near 

term of pregnancy, when fetal metabolic capacity is matured. The liver weight for the 

fetus was provided as a dynamic parameter, which was scaled by taking constant fraction 

value of liver from ICRP (2002) data, (provided in the annex Table A.1) and its 

multiplication with growing fetus body (dynamic equation as a function of the gestational 

day). The concentration of microsomal fraction content per gram liver was assumed to be 

constant throughout the gestational day. This approach represents an increase in liver 

enzyme activity with the increase in the fetus liver and body weight. Thus the Vmax value 

increases with gestational age. The Vmax, maximum velocity reaction for BPA in the 

fetal liver was derived by using following equation: 

𝑉𝑚𝑎𝑥𝑓𝑒𝑡𝑢𝑠 = (𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 ∗ 𝑀𝑃𝑃𝐺𝐿𝑓𝑒𝑡𝑢𝑠 ∗ 𝑉𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠)/𝐵𝑊_𝑓𝑒𝑡𝑢𝑠.75              (10)                 

    

Where, 𝑉𝑚𝑎𝑥𝑓𝑒𝑡𝑢𝑠  = maximum metabolism rate of fetus liver, 𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 = reported 

in-vitro metabolism rate, 𝑀𝑃𝑃𝐺𝐿𝑓𝑒𝑡𝑢𝑠 = microsomal protein per gram of fetus liver, and 

𝑉𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠 = liver volume of fetus. 

2.3.5. Deglucuronidation in fetus compartment 

β-Glucuronidase is an enzyme, which deconjugates the glucuronide conjugate xenobiotics 

(Sperker et al., 1997a). There is evidence for a significant role of the β-Glucuronidase in 

the fetus, although the role has not been well understood so far in the fetus kinetic 

modeling. In the animal fetus development studies, it has been found that 

deglucoronidation activity is more than glucuronidation at the developmental stage 

(Mccance et al., 1949; Lucier and Sonawane, 1977). In contrast at near term, a fetus 

glucuronidation activity is higher than deconjugation (Corbel et al., 2015). Domoradzki 

et al. (2003) studies in the fetus rats at different gestational age showed deconjugation 

activity of 443 nmol/h/mgMSP at the age of 22 weeks showing the importance of 

deglucuronidation in the fetus. Moreover, glucuronide conjugate versus free BPA ratio in 

the placenta and fetus showed that β glucuronidase is present at high concentration in 

placenta and other various tissues in the fetus (Ginsberg and Rice, 2009). 

2.4. Fetoplacental BPA kinetics 

Placenta acts as a barrier against xenobiotics such as chemicals and drugs to protect the 

fetus from being exposed to them. Morck et al. (2010), in an ex vivo placental perfusion 

study showed that BPA can easily cross the human placenta. Further, Borrirukwisitsak et 

al. (2012) reported that due to its lipophilic nature, BPA can easily cross the placental 

barrier. The finding of free BPA in fetus plasma in human biomonitoring (Schönfelder et 

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



Chapter 3 
 

182 

 

al., 2002; Ikezuki et al., 2002; Kuroda et al., 2003; Lee et al., 2008; Zhang et al., 2013), 

showed evidence of transfer of BPA through the placenta. In contrast, very low level of 

BPAG in the fetus was found (Muna et al., 2013; Gerona et al., 2014) assuming due to 

the deglucuronidation in both placenta and fetus liver (Muna et al., 2013; Gerona et al., 

2014). In fact, Nishikawa et al. (2010) uterine perfusion experiments showed that small 

amount of BPAG is transferred to the fetus across the placenta showing very low 

bidirectional transfer of BPAG. 

The mother plasma and placenta partition coefficient value for BPA and BPAG were 

taken from a previous study of Csanády et al. (2002) and Kawamoto et al. (2007) 

respectively. In this model distribution of sulfation conjugate of BPA (BPAS) to the fetus 

compartment was not considered due to lack of data in placental transfer. The transfer 

rate constants for BPAG in this model were taken from the pregnant mice PBPK model 

and scaled to fetal body weight (Kawamoto et al., 2007), as there is no available human 

data. Additionally, the glucuronidation of BPA in placenta was described, considering 

Vmax and Km value from an in-vitro hepatic cell line (Coughlin et al., 2012). The in-vivo 

Vmax for the placenta was calculated using placenta microsomal content i.e., 11.3 mg/g 

(McLaughlin et al., 2000), placenta volume and the body weight. The scaling of Vmax 

for placenta glucuronidation was done using following equations: 

𝑉𝑚𝑎𝑥𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 = (𝑉𝑚𝑎𝑥𝑖𝑛𝑣𝑖𝑡𝑟𝑜 ∗ (𝑀𝑃𝑃𝐺𝑃) ∗ 𝑉_𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎)/𝐵𝑊 .75                            (11) 

    Where, 𝑉_𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 is the volume of placenta and it is a 

dynamic parameter, which depends on the Gestational day can be seen in equation 2. 

𝑀𝑃𝑃𝐺𝑃 is microsomal protein per gram of placenta. 

2.5. Amniotic fluid BPA kinetics 

The human biomonitoring data had reported the presence of BPA and BPAG 

concentration in amniotic fluid. The increase in free BPA concentration with the increase 

in the gestational period was observed, as from second trimester to the third trimester 

(Edlow et al., 2012). Ikezuki et al. (2002) reported the five-fold higher concentration of 

free BPA at an early stage of pregnancy in comparison to the late week of gestational. 

This phenomenon might be due to the low metabolic capacity of fetus organ as well as 

the low volume of amniotic fluid at an early stage of pregnancy. Further, the activity of 

beta-glucuronidase measured in amniotic fluid at early stage found to be higher than the 

later week of gestation. Whereas, glucuronidase activity is found to be higher in the later 

week of gestation (Matysek, 1980; Fetus et al., 1993). The above finding of increased 

activity in glucuronidase at an early stage of pregnancy could be some of the possible 

reasons for the increased level of free BPA at the early gestational age. 

2.6. Partition coefficient for pregnant mother and fetus organs 

The partition coefficient (PC) for liver, fat, brain, and skin were taken from the study done 

by Doerge et al., (2011) and Fisher et al. (2011). The placental and kidney partition 

coefficient for BPA were taken from Csanády et al. (2002) and the BPAS was not 

distributed to fetus tissues. However, to measure BPAG concentration in the fetus plasma, 

BPAG was distributed to maternal placenta using placenta partition coefficient taken from 
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the previous mice study (Kawamoto et al., 2007). For other fetus compartments, partition 

coefficients were kept similar to as mother's organs partition coefficients. The partition 

coefficients used in the P-PBPK model are provided in the annex 3 (Table A.2). 

2.7. Pregnancy cohort studies 

For this study, we have used 5 different pregnancy cohort studies that measure the BPA 

concentration in different matrices. Subject characterics are provided in the Table A.3, 

which was used as an input variable for the case specific scenario. Summary of the 

biomonitoring data is provided in the annex 3 (Table A.4). Schönfelder et al. (2002) 

studies included 37 samples of both mother and fetus plasma (umbilical cord) between 

the gestational age of 32 to 41 week. Pregnant women of age ranging from 22 to 44 years 

old were recruited from Berlin and samples were collected at Benjamin Franklin Medical 

Center. In another study by Aris (2014), which included 61 pregnant women recruited 

from the eastern township of Canada at delivery time and both mother plasma and fetal 

cord blood BPA was analyzed. 

Zhang et al. (2011) study included each 21 samples of human placental and fetal liver at 

the gestational age of 12.3–20 weeks and 11.3–22, respectively. Samples were obtained 

after elective pregnancy termination during 1998–2006 in the Greater Montreal area of 

Quebec. In addition, Cao et al. (2012) study included a large number of placenta and liver 

samples from the same population i.e. 128 and 28, respectively. In addition, Schönfelder 

et al. (2002) also studied placenta BPA concentration at the delivery time. Ikezuki et al. 

(2002) studied includes Japan population of each 37 women with an early and late 

pregnancy, where 37 maternal (late pregnancy) and 32 umbilical cord blood samples were 

collected at full-term delivery. In addition, 32 and 38 amniotic fluids samples were 

collected at 15–18 weeks gestation (early pregnancy) and at full-term (late pregnancy), 

respectively. 

3. Results 

3.1. Simulation and validation of adult human PBPK model 

Validation of the developed adult PBPK model was performed by comparing the model 

predictions with plasma data obtained from the human study by Thayer et al. (2015) in 

which volunteers were orally administered 100 μg/kg BW dose of deuterated BPA. These 

predictions were performed by taking into account only female volunteers, and their 

individual BMI and body weight. The exposure dose was normalized according to body 

weight and the fat content of individual volunteers was calculated based on body weight 

and BMI of the respective subject. Out of 14 subjects (male and female), only 7 female 

subjects were considered from Thayer's study and simulated time-plasma BPA data 

profile were validated against their observed data. The total duration of simulation was 

24 h. Fig. 3A, B and C depict the concentration–time profiles after single oral dosing of 

adult females (n = 7) for BPA (d6-BPA), and observations made by Thayer et al. (2015). 
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Fig. 3. Concentrations–time profiles after oral dosing of adult females (n = 7) with 100 

μg/kg of deuterated BPA (d6-BPA) (Thayer et al., 2015). A) Simulated individual (solid 

color lines) and observed individual plasma (dot points) d6-BPA concentrations; B) 

Simulated individual (solid color lines) and observed individual plasma (dot points) d6-

BPAG concentrations; C) Simulated individual (solid color lines) and observed individual 

plasma (dot points) d6-BPAS concentrations. Simulations of individual patients were 

performed using individual body weights and their fat content while keeping other model 

parameters constant. 

3.2. Simulation and evaluation of P-PBPK Model 

Most of the reported human biomonitoring data for the fetus is for BPA and generally, 

BPAG and BPAS studies are under-reported (Ikezuki et al., 2002; Schönfelder et al., 

2002; Kuroda et al., 2003; Lee et al., 2008; Zhang et al., 2013). Development of the 

present model includes BPAG and BPAS conjugates in the mother, whereas in the case 

of the fetus only BPAG has been accounted, which is the major metabolite produced in 

the mother. For this study, the distribution of BPA and BPAG from mother plasma to the 

placenta is described via partition coefficient. Following that transfer of both BPA and 

BPAG across the placenta was described as simple diffusion process between the placenta 

and fetus plasma. Human Biomonitoring data showed the presence of higher 

concentration of free BPA in the amniotic fluid in early pregnancy than compared to late 

pregnancy (Ikezuki et al., 2002; Edlow et al., 2012). The reason behind this difference 

could be the higher beta-glucuronidase activity in early and mid-gestational periods 

(Matysek, 1980). However, in the later week of gestation, as the fetus liver develops and 

matures that might increase the liver glucuronidation activity. 

Though there is a lack of glucuronidase data specific to the fetus deconjugation, 

presuming deconjugation process as an important toxicokinetic process, in the present P-
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PBPK model it was taken into account for the fetus compartment. The assumption has 

made that deconjugation of the BPAG to BPA was based on first-order rate transfer 

constant. The half-life of the chemicals is used to establish the rate of deconjugation 

estimated to be 0.35 h−1 (k = 0.693/t1/2).The same value is used in the case of both 

placental and fetus deconjugation for simplification. A similar approach has been used in 

the previous study (Lorber et al., 2010) for transfer of one metabolite to another, but it 

should be considered as worst case scenario and it shows clearly there is a need for proper 

studies to parameterise this process. These steps would result in increased level of free 

BPA in the fetus plasma. To maintain the cyclic deconjugation and conjugation reaction 

into the model, the available free BPA undergoes simultaneously for glucuronidation into 

the liver following distribution to the liver compartment to mimic the real biological 

phenomena. 

The lack of validation of a model for the estimated exposure (for respective cohort) 

against biomonitoring data for cohorts via PBPK model has been observed in the previous 

study by Mielke and Gundert-Remy (2009). Additionally, finding of differences in the 

biomonitoring data for free BPA concentration within the cohort and in between cohorts 

is observed in different biomonitoring studies (Ikezuki et al., 2002; Schönfelder et al., 

2002; Kuroda et al., 2003; Lee et al., 2008; Zhang et al., 2013). Several possible reasons 

can be put forward to explain this inconsistency among which underestimation of 

exposure levels and not considering other routes of exposure than oral has been 

questioned by researchers (Mielke et al., 2011). The timing of sampling is one of the 

major concern that has not been accounted in biomonitoring data, which can be another 

source of variability in biomonitoring data due to fast absorption and elimination of BPA 

that never reach steady state concentration even with multiple doses. In targeted human 

kinetic studies (Völkel et al., 2002; Thayer et al., 2015), the observation of Cmax 

(maximum concentration) and elimination half-life within 1–3 h of BPA exposure shows 

how crucial is the time of sampling. However variability due to the analytical method, 

contamination, source and route of exposure (EFSA, 2015; Longnecker et al., 2013; Ye 

et al., 2013), and importantly metabolic variation among population cannot be ruled out 

(Partosch et al., 2013; Nachman et al., 2014), which is beyond the scope of this 

manuscript. 

Another complexity with the prediction of concentration for such chemicals might be due 

to their narrow time interval between the Cmax (the highest concentration) and Cmin 

(minimum concentration after exposure of chemical during 24 h or before subsequent 

exposure of chemical) rising a question on observed biomonitoring data is because of 

high/low exposure or because of the schedule of sampling. Therefore evaluation of the 

developed model has two possibilities first; either by changing exposure dose for each 

biomonitoring study, second; by using two extreme exposure scenarios (low-high). In this 

study, it was assumed that sampled biomonitoring data can be from any point of the time-

concentration profile and the exposure dose was estimated for the observed high and low 

mother plasma concentration. This assumption seems conservative, but for the current 

scenario, this might be the best solution, instead of estimating exposure for each 

biomonitoring study. Exposure dose for the biomonitoring data was estimated by taking 

the reference of a previous study (Mielke et al., 2011). In the present study, the oral 

exposure was divided into three equal doses keeping dermal exposure as a single dose. 

Exposure dose for both the oral and dermal was estimated that matches the observed 

highest and lowest mother plasma concentration in different biomonitoring studies. This 
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was done by simply applying trial and error method, a similar method was used before 

for other environment chemicals (Loccisano et al., 2013). Then the estimated dose was 

used for the simulation of a model that predicts the fetus plasma and organs concentrations 

at the different gestational period. 

We have selected 5 different pregnancy cohort studies that measure the BPA 

concentration in different matrices. Two scenarios were selected for the simulation of 

PBPK model: one with the observed high mother plasma concentration population 

(Schönfelder et al., 2002), in turn dose of 44 μg/kg/BW thrice in a day (TID) oral dose 

and 20 μg/kg/BW single dermal exposure and other with the observed low mother plasma 

concentration (Ikezuki et al., 2002), in turn dose estimated to be 20 μg/kg/BW (TID) oral 

dose and 9 μg/kg/BW single dermal exposure. 

Since the BPA has a very short half-life, even with well-distributed dosing schedule, the 

BPA plasma concentration shows sharp elimination curve profile and did not arrive at the 

steady state; a similar observation has been made by Mielke et al. (2011). In order to cover 

all the simulated data points considering essential for comparisons against the observed 

biomonitoring data points which could be either result of random samples at any point of 

time not knowing the exact exposure time or exposure variability in sample subjects 

(VandeVoort et al., 2016). The model output data were summarized into boxplot for each 

gestational week, which included the range of value from higher to lower concentration. 

The simulation was done for different matrices and results were presented in different 

figures, a number from 4 to 7. Figs. 4 & 5 show the simulated results for mother and fetus 

BPA plasma concentration for the selected high and low dose exposure scenario 

respectively. Fig. 6 shows the simulation results for the BPA concentration in liver and 

placenta during the mid-gestational week and the results were compared with the 

biomonitoring data obtained from Zhang et al. (2011) study. Fig. 7 shows the BPA 

concentration in amniotic fluid. The amniotic fluid concentration of BPA by Ikezuki et 

al. (2002) was monitored at two stages, early and full term pregnancy. The low dose 

scenario was simulated for the Ikezuki et al. (2002) data on the concentration of BPA in 

mother and fetus plasma (Fig. 5) and amniotic fluid concentration (Fig. 7). The Fig. 7 

shows the predicted BPA concentration in amniotic fluid is well matched with the 

observed concentration. Moreover, the observed mother and fetus plasma concentration 

(mean ± SD) by Ikezuki et al. (2002) is within the range of simulated low dose exposure 

scenario (Fig. 8). 

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



Chapter 3 
 

187 

 

 

Fig. 4. Observed vs predicted mother plasma and fetus plasma of volunteer participated 

in Schönfelder et al. (2002) study for 32 to 41 week of GA; box plot containing mean (red 

diamond), median (horizontal line of boxplot), highest (upper bar of boxplot), lowest 

(lower bar of boxplot) value and observed value marked as green star. 

 

Fig. 5. Predicted mother plasma and fetus plasma for low dose scenario, estimated from 

the Ikezuki et al. (2002) mother plasma concentration, for 32 to 41 week of GA; box plot 
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containing mean (red diamond), median (horizontal line of boxplot), highest (upper bar 

of boxplot), and lowest (lower bar of boxplot) value. 

 

Fig. 6. Observed vs predicted placenta and fetal liver for higher exposure scenario for 11 

to 22 week of GA; box plot containing mean (red diamond), median (horizontal line of 

boxplot), highest (upper bar of boxplot), lowest (lower bar of boxplot) and observed value 

(Zhang et al., 2011) marked as green star. 
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Fig. 7. Simulated low dose exposure scenario for amniotic BPA concentration starting 

from early mid-gestational to late gestational period (blue line curve) vs. observed (mean 

± SD) concentration in Ikezuki et al. (2002) studied during 15–18 and 32–40 weeks of 

pregnancy (red error bar). 

 

Fig. 8. Simulated mean ± SD of BPA for two exposure scenario (high and low dose) for 

the period of 32–40 GA and the observed mean ± SD of BPA in different studies for both 

mother and fetus BPA plasma concentration. 

Fig. 8 shows the predicted mean ± SD for the high and low dose scenario vs. observed 

mean ± SD of different cohort studies for the period during 32–40 week of gestation. Most 

of the observed mean concentration was covered by a simulated scenario in case of mother 

plasma given the large range between Cmax and Cmin. However, in the case of the fetus 

some observed mean values were not in the range, which could be due to the various 

factors such as; variability in the gender of fetus previously reported as significant, 

metabolic variability due to polymorphism (not considered in this study) and process of 

deglucuronidation, which need proper in-vitro investigation for parameterization. 

4. Discussions 

The present study involved development and validation of the adult PBPK model and then 

an extension of this model to the pregnant mother to predict the toxicokinetic profile of 

BPA for both mother and fetus organs. Following the same parameterization of the 

previously developed model (Yang et al., 2015), in the present study, it was observed that 

results under predicts the free BPA and BPAS in plasma serum. The reason behind this 

could be the low absorption rate constant for free BPA, which leads to higher 

concentration available in the gut for the metabolism. The present adult model was 

slightly modified optimizing absorption rate constant and then the model was validated 
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against the Thayer et al. (2015) human experimental data. For the validation of the adult 

model, only female subjects were taken into consideration and the simulation for the 

individual subjects was done considering their physiological parameters such as body 

weight and body mass index. The adult pharmacokinetic results have shown that BPA has 

very fast absorption and elimination process (Schönfelder et al., 2002) as it undergoes 

first pass metabolism and rapidly converted into more polar compounds (glucuronide 

conjugates). Due to high metabolic activity for BPA, even higher or multiple doses has 

very less effect on time-concentration curve characteristic. However, variability in the 

BPA plasma concentration with respect to the time-concentration curve is much higher 

than inter-individual variation among subjects, showed plasma concentration is not only 

sensitive to dose but to time as well. The sudden drop in BPA concentration at peak is 

due to its higher metabolism rate, making a very sharp curve, which can be considered as 

benchmark characteristics of BPA. Even within a small fraction of the time, a large 

difference in BPA concentration was observed in this study. There were no significant 

changes in BPA plasma concentration observed among subjects, even individual fat 

content, calculated from body weight and BMI, has very little or no impact on plasma 

concentration. Although, some study has shown the genetic and gender variability in 

metabolism among the population (Hanioka et al., 2011). It has been reported that the 

concentration of BPA varies among different population cohorts such as male and female, 

pregnant and non-pregnant, adult, neonates, and children (Kim et al., 2003; Calafat et al., 

2005; Vandenberg et al., 2010; Zhang et al., 2013; Aris, 2014). Polymorphism has been 

found to be one of the important factors in metabolic variability (Trdan Lusin et al., 2012). 

However, there are very few data available on functional polymorphism among the 

population causing metabolic differences in BPA metabolism (Hanioka et al., 2011). In 

the present study, polymorphism variability has not been accounted, however, it cannot 

be ruled out. Further, the variation in biomonitoring data shows the need for considering 

different physiological states into the PBPK models. Some specific physiological 

parameter such as body weight, height, and dynamic physiological changes in the specific 

population such as pregnancy and fetus were accounted to capture variability. A number 

of P-PBPK models have been developed for various environmental chemicals in the past 

for the risk assessment application (O'Flaherty et al., 1992; Gentry et al., 2003, 2002; 

Loccisano et al., 2013). Similar approach has been taken for the current P-PBPK model. 

However, in the current model approach, the model has included detailed chemical 

metabolism concept in both mother and fetus considering their dynamic growth 

parameters in order to mimic the real physiological process during gestational period. 

The observed concentration in different cohorts during pregnancy was used for model 

evaluation. For instance, maternal blood concentration during pregnancy or at the delivery 

time was used for exposure estimation accounting both dermal and oral exposure. In the 

development of P-PBPK model, pregnancy growth dynamic equations were implemented 

into the model that mimics the physiology of pregnant mother, and the inclusion of the 

fetus compartment and its communication with the mother was done via placenta blood 

flow. The metabolism of the BPA in placenta and fetus liver is found to be key parameters 

for the understanding of fetal exposure to parent BPA. The human hepatocyte in-vitro 

data was scaled to calculate the fetus liver metabolic activity. For the scaling of Vmax, 

the reported fetus microsomal protein content was used in place of adult microsomal 

content. The deglucuronidation process for the fetus liver and amniotic fluid was applied 

into plasma compartment for the simplification of the model. The P-PBPK model 

predictions were compared with different sets of the BPA biomonitoring data available in 
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the literature. Simulation-matched study designs were used based on information in the 

original studies. 

In order to predict the BPA concentration in fetus plasma for various population studies, 

observed maternal BPA plasma concentration during pregnancy was used for exposure 

estimation accounting both dermal and oral exposure. The predicted exposure 

concentrations for two scenarios (high and low mother plasma concentration considering 

Schönfelder et al., 2002 and Ikezuki et al., 2002 studies respectively), were chosen and 

seems to be significantly higher than the generally estimated exposure. A similar 

observation about predicted and observed concentrations of these two references 

(Schönfelder et al. (2002) and Ikezuki et al. (2002)) were made in previous studies 

(Mielke and Gundert-Remy, 2009; Mielke and Gundert-Remy, 2012). The exposure 

scenarios used in this study are: high dose scenario with 44 μg/kg/BW thrice in a day 

(TID) oral dose and 20 μg/kg/BW single dermal exposure and, low dose scenario with 20 

μg/kg/BW (TID) thrice in a day (TID) oral dose and 9 μg/kg/BW single dermal exposure. 

A similar exposure dose was previously estimated by Mielke et al. (2011). However, in 

this study, the estimated dose is lower, given the fact that single oral dose was equally 

divided into three doses and lag time for dermal dose was included. The simulated results 

for mother and fetus plasma concentration for two exposure scenario showing median, 

mean, high and low value for each gestational week were presented in Figs. 4 and 5. Most 

of the biomonitoring observed data are within the simulated results represented in Fig. 8. 

Limited data availability for each gestational week is one of the limitations of the model 

validation. However, in some cases, fetus plasma of BPA was much higher (Fig. 4), which 

might be explained by gender difference observed previously (Schönfelder et al., 2002), 

which was not included in the present model. Considering the mean value for each 

simulated week shown in Figs. 4 and 5, fetus BPA mean concentration value is higher 

than the BPA in mother plasma, which could be explained by the fact that the elimination 

process in the fetus is not so effective and solely depends on diffusion of chemical back 

to mother plasma via placenta or to amniotic fluid. Additionally, the model predicted the 

Cmax and Cmin relatively higher value for the mother plasma than the fetus plasma 

concentration. 

Detailed biomonitoring sample of liver and placenta during 11 to 20 weeks of gestational 

has been reported (Zhang et al., 2011). It was observed that after the 17th week of 

gestational, free BPA concentration starts to decrease and appearance of BPAG in the 

liver, showing the development of the metabolic capacity of the fetus at this stage. To 

mimic this condition, metabolic activity in fetus liver and placenta was introduced at 17th 

gestational week. The simulated results for both fetus liver and placenta during mid-

gestational were compared with the biomonitoring study of Zhang et al. (2011) (Fig. 6). 

However, some observed data points were below the range of predicted value. An increase 

in metabolic capacity was observed with the increase in liver weight during the gestational 

development, which could explain the result of decreasing free BPA concentration. 

The recent biomonitoring data by Aris (2014) showed that BPA exposure to the fetus 

during the mid- gestational is very high ranging from LOD to 229 nM. This biomonitoring 

data shows that mid-gestational is a very critical window of exposure to the fetus. The 

developed P-PBPK model has also shown the higher BPA value during mid-gestational 

weeks compared to near term or at delivery. The reason of relatively higher exposure 
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could be the fetus volume, which is very less at mid-gestational, and also the metabolic 

capacity, which is presumably active after the 18th week of gestational. 

The pharmacokinetic differences for the fetus seem to be very dramatic as fetus metabolic 

capacity and organ physiology system are relatively immature at an early stage of fetal 

development. The faster chemical metabolism and elimination of the BPA by the maternal 

system ameliorate BPA kinetics in the fetus to a great degree. However, evidence of 

finding higher free BPA (Ikezuki et al., 2002; Schönfelder et al., 2002; Aris, 2014) in cord 

blood as compared to maternal blood in various populations indicates higher fetal 

exposure and sensitivity to BPA due to pharmacokinetic factors. 

The simulation of the model for BPA concentration in amniotic fluid during mid-gestation 

(Fig. 7) to near term showed the increasing concentration of the BPA with an increase in 

the gestational period. The BPA concentration increased until mid-gestational and then 

slowly started to decrease reaching to almost one and a half fold less than the observed 

mother plasma concentration. The predicted results are in agreement with observed data 

of Ikezuki et al. (2002), and have a linear relation with gestational time (less fluctuation 

in BPA concentration) suggesting amniotic fluid BPA concentration as a good biomarker 

for identifying the critical window of exposure to the fetus. The prediction of the 

concentration of free BPA in amniotic fluid was slightly less than reported biomonitoring 

data observed in late gestational. This could be due to the prediction of slightly high 

amniotic fluid volume than normally observed in the late gestational period. Factors such 

as local deconjugation in placenta, the lipophilicity of chemical, relatively higher 

deconjugation than conjugation in the fetal compartment can affect the propensity for 

chemicals to reach a higher concentration in the fetal compartment (Nachman et al., 

2014). 

The developed P-PBPK model is in concordance with biomonitoring data and showed 

that BPA readily transferred to fetal serum and amniotic fluid after mother's exposure. 

Even, fast metabolism and rapid excretion of BPA and BPA-C are unable to prevent the 

BPA fetal exposure. The transfer rates of BPA from the placenta to the fetal compartment 

varied considerably. Deconjugation in placenta and fetus body is of major concern at early 

fetal life, where metabolism capacity is low, causing an increased level of unconjugated 

BPA in the fetus. Importantly, free BPA in the fetal compartment are more in steady state 

and persists even as the maternal level of BPA declines. The consideration of mechanistic 

approach such as dynamic growth parameters and their governing equations, and model 

structure could be useful for the development of P-PBPK model for different chemicals. 

5. Conclusion 

The present study proposed and prospectively developed a P-PBPK model for BPA that 

describes and predicts the fetus blood and tissues concentrations time profiles based on 

the mother's exposure scenario. Detail metabolic toxicokinetics in mother and fetus was 

reviewed and included in the proposed model. Glucuronidation and deglucuronidation in 

both mother and fetus liver and placenta are found to be an important mechanism that 

alters BPA toxicokinetic profile. For the development of the model, a two-stage approach 

was employed: first the development and validation of the adult PBPK model against the 

kinetic data from control human experimental study and second extension of the adult 

model to the P-PBPK model and further evaluation with the available BPA biomonitoring 
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cohort studies. The prediction of higher concentration of BPA during the mid-gestational 

period in the amniotic fluid, placenta, and the fetus liver are in accordance with 

biomonitoring data, indicating mid-gestational period might be the critical window of 

exposure for the fetus. Due to the fast absorption and short half-life of BPA, it is showing 

extreme concentration variability with respect to time, which makes the task of prediction 

of biomonitoring data very difficult. This study considered two extreme dose scenarios 

(min-max) for the simulation and in turn plotting of simulated data under the box plot to 

capture all the data set that allows comparing with biomonitoring data. It has an 

assumption that biomonitoring sample can be from any time point. However, in order to 

address the issue of temporal variation of short life chemical, there is a need to have very 

control case studies dealing with the timing of exposure (food intake) and schedule of 

sampling. In this study, there are several data gaps identified, which need to be addressed 

to improve the model. For example, kinetics of BPA glucuronidation/sulfation and 

deglucoronidation/desulfation at the fetus level, and placental BPA conjugation and 

deconjugation, and metabolic variation due to functional polymorphism among the 

different population, are some of the major concern. 
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Dynamic networks of oxidative stress: From disease maps 

to design principles suggesting personalised therapies for 

Parkinson’s disease 

Abstract 

The regulatory network protecting the cell against oxidative stress is eminently complex.  

It surfaces in several disease maps, including that of Parkinson’s disease (PD).  How this 

molecular networking achieves its various functionalities was hitherto ununderstood.  

How a network of processes operating at the seconds-minutes time scale may cause a 

disease at the century time scale was likewise enigmatic. 

By computational analysis, we disentangle the reactive oxygen species (ROS) regulatory 

network into a hierarchy of subnetworks and show that each corresponds to a different 

functionality. In parallel with achieving an understanding of the design principles of the 

network we thereby obtained a detailed dynamic model of ROS management.  This model 

could fit two independent data sets from in vitro experiments performed in two different 

laboratories, at University Milano-Bicocca (Italy) and Maastricht University (the 

Netherlands).  

The resulting detailed model shows effective ROS-management for a prolonged time, 

followed by a sudden system’s collapse due to the loss of p62 protein required for 

mitophagy. Parkinson’s disease (PD) related conditions, e.g. lack of DJ-1 protein 

(encoded by Park7) or increased concentration of alfa-synuclein accelerated the system’s 

collapse under oxidative stress.  Analysing in silico various hypothetical interventions 

(e.g. addition of antioxidants or activation of Nrf2 signalling system by caffeine uptake) 

that may slow down the collapse of the system under oxidative stress, we show how 

recognition of the network’s design principles may help design personalised PD therapies.  

Keywords: 

Systems biology/dynamic modelling/oxidative stress/reactive oxygen 

species/Parkinson’s disease 
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1. Introduction 

Reactive Oxygen Species (ROS) are chemically reactive small molecules containing 

oxygen, such as superoxide anion, peroxides, hydroxyl radicals and singlet oxygen, 

generated in various intracellular processes: they may be (i) produced in the cytoplasm 

from redox reactions such as the Fenton reaction (1), (ii) released from the Endoplasmic 

Reticulum (2), (iii) formed from reactive nitrogen species (3) and, more commonly, (iv) 

generated when electrons escape from the Electron Transport Chain (ETC). Around 0.1-

2% of ETC electrons escape and form active radicals by single electron reduction (4).  

ROS play three main roles: (i) “killing” in the immune response (5), (ii) signalling in cell 

differentiation (6-12) and proliferation (13), and also (iii) damaging components leading 

to cell death (1). Indeed, oxygen radicals damage DNA and this leads to mutations.  They 

also oxidise various organic molecules including mitochondrial lipids, which leads to 

mitochondrial dysfunction and initiates a positive feedback loop leading to the 

propagation if not amplification of the active radicals.  

Excessive ROS may be removed enzymatically, e.g. by superoxide dismutase (14), or 

scavenged by various antioxidants (15). Should these processes fail, the removal of 

damaged mitochondria may be initiated (16-18). The latter is called mitoptosis as it averts 

cell death (19-23). Alternatively, damaged mitochondria may be recycled into undamaged 

mitochondria via mitochondria-derived vesicles (MDVs). All these processes appear to 

be coordinated by an ROS-induced signalling network, with rather complicated cross-talk 

mechanisms (24-26).   

More than the topology of a network such as that around ROS, it is its dynamic response 

to perturbations that determines the fitness of organisms and their cellular constituents.  

This response is determined by a sequel of nonlinear interactions producing the 

functionality that is absent from the components.  Disease then corresponds to failure of 

the network to produce that functionality and this failure can be produced by various 

combinations of component failures (see also Westerhoff and Alberghina book, Barabasi, 

2012).   

Mistuning of ROS management has been implicated in many diseases, including diabetes 

(27, 28), cancer (29) and neurodegenerative diseases (25, 26, 30). This is reflected in the 

recurrence of ROS management in several disease maps.  Any such disease map is based 

on extensive literature data mining and thorough curation by many experts.  It summarizes 

the substantial efforts of the scientific community at large with respect to the disease.  The 

map of Parkinson’s disease (PD) may serve as an example (Fujita et al, 2014).   

A network module through which many diseases overlap has been called a disease module 

(Barabasi, 2012). The ROS management network may constitute an example of such a 

disease module. Since a disease module is a dynamic network itself (44), it may be 

difficult to identify a single trigger and a unique scenario of its malfunction.  

Understanding the emergence of diseased behaviour in a disease module may be beyond 

the capacity of the naked human brain (45, 46): nonlinear interactions require more 

information for their specification than linear interactions do, the networks tend to consist 

of many components, and it is hard to foresee what comes from nonlinear interactions.  

Systems biology suggests a solution to this problem – to reconstruct the biological 
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behaviour in an in silico replica of the system. Biological emergence (47, 48) may be 

reconstructed by translating the information about how components communicate into 

mathematical equations (45, 49, 50). By integrating the resulting system of mathematical 

equations in a computer, one should be able to simulate the biological system’s behaviour. 

Whilst we hereby delegate our understanding of the system to the computer model, we 

may subsequently analyse the mathematical model and identify ‘design principles’ of the 

system.   The robustness of the operation of these design principles to perturbations 

associated with disease may then also be calculated and this may be used for 

computational medicine.  The present paper implements this approach with the aim of 

understanding the complexity of ROS management in the context of Parkinson’s disease 

(PD). 

Parkinson’s disease is the second (after Alzheimer’s disease) most prevalent 

neurodegenerative disorder, affecting 1-3% of the population over 65 years old. PD is 

characterized by symptomatic motor disorders related to lack of dopamine secretion by 

dopaminergic neurons (31). PD is associated with diverse genetic and environmental 

factors. On a growing list of recessive PD-related mutations (32), mutations in alfa-

synuclein (33), ubiquitin E3 ligase Parkin (34) and in Park 7 (DJ-1)  (35) are prominent. 

With respect to environment and nutrition, there is a positive correlation between PD risk 

and exposure to pesticides (36), and a negative correlation between PD and increased 

coffee consumption (37-40). On the anatomical level, the disease may be attributed to 

processes inside the dopaminergic neurons in the substantia nigra, to disruptions of inter-

cellular communication between neuronal and glial cells, to inflammation, or even to the 

pathogenic spread of unfolded alfa-synuclein or tau proteins between cells (41, 42).   

On the molecular level, the plethora of above mentioned factors associated with PD may 

converge to three main mechanisms underlying the lack of dopamine secretion: (i) a lack 

of substrates required to produce dopamine, e.g. lack of tyrosine in the case of 

parkinsonism in phenylketonuria (43), (ii) lack of ATP required to secrete dopamine and 

to maintain neuron functionality, which leads to shrinking and ultimately to neuron 

degeneration,(iii) an excess of ROS leading to mitochondrial damage, cytochrome c 

(CytC) release and apoptotic death of dopaminergic neurons. These three mechanisms 

may interlink in the ROS management disease module in a highly non-linear manner and 

network perturbations that correspond to disease may be triggered by various events. For 

example, such a perturbation may start with mitochondrial malfunctioning, when, due to 

genetic predisposition and/or a certain constellation of environmental factors, 

mitochondria start producing more ROS. In the absence of a negative genetic 

predisposition, mitochondria would be healthy initially, but excessive ROS may be a by-

product of pesticides detoxification. In either case, the increase of ROS generation would 

damage mitochondria further, thereby initiating a positive feed-back loop resulting in a 

further increase in this ROS production. Although the resulting oxidative stress would 

happen throughout the entire organism, dopaminergic neurons should suffer most, 

because, compared with other cells, they need more energy to secrete dopamine and 

maintain a higher level of oxidative phosphorylation, hence a higher activity of the ETC.  

In such cases it should be very hard to distinguish between cause and effect since the 

increased level of ROS could be both the triggering event and the consequence of many 

other events.  
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Yet one of the usual aims of Medicine is to establish ‘the cause’ of disease and to then 

remove that cause.  Approaches such as GWAS have met with limited success.  If single 

reproducible causes of the same network disease do not exist, how then should one go 

about identifying the ‘network causes’ that should be more robustly related to the disease?  

And how should one then approach the therapy of network diseases, i.e. how should one 

with, mostly molecular drugs, expect to redress the faltering network back to fulfilling its 

physiological functions properly?  And, would it then become possible to integrate 

pharmaceutical, nutritional and life-style therapies in a more rational way than has 

hitherto been possible? 

We will here approach these three challenges.  We will first construct a core model of 

ROS management.  We will then increase the complexity of this model by adding new 

details step-by-step. After each new step, we will use computational analysis to identify 

the ROS-management design principles arising with the complexification of the system 

in that step. We will hereby find a hierarchy of design principles, corresponding to a 

hierarchy of modes of operation of the ROS network.  This hierarchy enables the network 

to carry out its functions and is violated in disease.  We will discuss the results in the 

context of PD personalised medicine and the three above challenges.  

2. Methods 

Model diagrams (e.g. Figures 2(a-h)) were generated using CellDesigner (v4.0.1; Systems 

Biology Institute, http://celldesigner.org/index.html), a graphical front-end for creating 

process diagrams of biochemical networks in systems Biology Markup Language (28).  

CellDesigner-generated models were transferred to COPASI (v4.6, build 32) 

(www.copasi.org), which is another Systems Biology Markup Language-compliant 

programme, but with a wider variety of analysis options. For each reaction, a kinetic term 

can be included, detailing the mathematics underlying the interaction between the species 

(e.g. the description of ROS detailed model equations in Annex 4). A number of the 

parameter values used within the model were fitted to the known biological behaviour of 

the system, while maintaining these parameters within previously determined biologically 

realistic bounds. 

3. Results 

ROS-induced mitochondrial aging. Mitophagy helps protect mitochondria by 

providing stability (design principle 1, Model 1) 

Our proposed core (design principle 1A, model 1A) of the ROS network consists of 

healthy mitochondria, damaged mitochondria, and ROS. In this model, the concentration 

of healthy mitochondria is fixed, and damaged mitochondria are produced in a ROS 

dependent reaction (denoted by ‘re1’). Damaged mitochondria catalyse ROS generation 

(re2) and this additional ROS damages healthy mitochondria further, forming a positive 

feedback loop. The higher is the concentration of ROS, the higher is the mitochondrial 

damage and the higher will be ROS generation (Figure 1A). Our model allows two 

interpretations of what “healthy” and what “damaged” mitochondria mean: (i) the fraction 

of healthy and damaged mitochondria respectively in the total mitochondria pool, or (ii) 

the degree of damage in every mitochondrion assuming the population is homogeneous.  
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If indeed all mitochondria are interconnected and undergo continuous fusion and fission 

and constitute one big mitochondrion, both interpretations converge.  

On the basis of this network structure, we built a dynamic model 1A (model_1A). This 

model produced an explosion of both ROS and damaged mitochondria (Comparisons of 

models 1A-1C, Figure 1A).  

 

                                        

Fig 1A. Concentration of ROS and damaged mitochondria in model 1A. 

For simulation model 1A was used. Simulations strarts with initial conditions where the 

concentration of ROS was equal to 1 x 10-5 and the concentration of damaged 

mitochondria was eqal to 1 x 10-5. Time courses for ROS and Damaged Mitochondria 

were simulated. No steady state was observed. The concentration of both ROS and 

Damaged Mitochondria exponentially explodes. 

Paradoxically, the incorporation of both a so-called antioxidant response that removed 

ROS (re3), and of mitophagy, which removed damaged mitochondria with the help of 

p62 (re4) (see design 1B, model_1B) did not eliminate the compromised stability 

associated with this explosion (Compare models 1A-1C): A steady state was found only 

for a very precise balance between the rate at which the damaged mitochondria were 

removed (Figure 1B).  
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Fig 1B: Concentration of ROS and damaged mitochondria in model 1B  

For a very precise balance rate of mitophagy a steady state was achived for both ROS 

and damaged mitochondria.  

 

 

 

Fig 1B.1: Concentration of ROS and damaged mitochondria in model 1B  

For simulation model 1B was used.  The concentration of both ROS and damaged 

mitochondria exponentially explodes, upon 10 percent increase in ROS generation rate 

On the other hand, with a rate of ROS generation only slightly below the balancing rate, 

the concentration of damaged mitochondria would drop to 0 (Figure 1B.2, Model 1B-

ROS synt decreased 10%.cps): 
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Fig 1B.2: Concentration of ROS and damaged mitochondria in model 1B  

The concentration of both ROS and damaged mitochondria goes to zero, upon 10 

percent decrease in ROS generation rate. 

 

Moreover, when exposed to a sudden injection of ROS, the system maintained the new 

ROS concentration rather than returning homeostatically to the pre-existing steady state.  

Here it did adjust the concentration of damaged mitochondria (Figure 1B.3 ROS initial 

concentration was increased 10 fold. Model1Bs-ROS initial Increased 10 fold.cps ): 

 

Figure 1B.3: Concentration of ROS and damaged mitochondria in model 1B 

Transient perturbation of ROS upon increasing ROS initial concentration, both the ROS 

and damaged mitochondria attained new steady state. 

  

These results demonstrated that this model is both structurally and dynamically unstable.  

Taking into account random biological fluctuations, the system with both damaged and 

healthy mitochondria coexisting would not persist.  Ultimately, ROS synthesis would 

fluctuate below the threshold and system will become “perfect” with only healthy 

mitochondria, without any damaged mitochondria and without ROS. The rate of ROS 

generation and mitochondrial damage would then ultimately drop to zero as in Figure 

1B.2. 
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However, neither a complete absence of ROS nor perfectly healthy mitochondria may be 

realistic, nor the assumption that ROS be only produced by damaged mitochondria.  Most 

probably, also mitochondria not yet damaged by ROS produce superoxide anion, which 

is converted by superoxide dismutase to hydrogen peroxide.  Because of the presence of 

ferrous iron in the mitochondrial respiratory chain, the hydrogen peroxide is converted by 

the inorganic Fenton reaction to the highly reactive ROS hydroxyl. 

Thus, we added   a reaction of ROS generation by healthy mitochondria (Model 1B). 

Then, when ROS generation by damaged mitochondria was low because few of these 

mitochondria were left, ROS concentration was also low but not equal to 0 as it was still 

produced, be it at a lower rate, by the healthy mitochondria.  

ROSgeneration(t) =ROSsynCoeficient*([DamagedMitochondria(t)]+kbasalROS) 

First, we decreased total ROS generation proportionally by healthy and damaged 

mitochondria. In the reaction of ROS generation, where  

ROSgeneration(t) =ROSsynCoeficient*([DamagedMitochondria(t)]+kbasalROS), 

ROSsynCoefficient was decreased twice. Then the concentration of ROS and of damaged 

mitochondria deceased, and the concentration of healthy mitochondria increased, but 

reached new steady state. Thus, when ROS influx rate was decreased in a sustained 

manner, the ROS concentration and levels of healthy and damaged mitochondria changes 

but reach new steady again.   

Then we returned ROS generation back to the initial level and system came back to the 

initial steady state. This all shows that with the additional ROS influx the system had 

become stable (Figure 1B.4). 

 

Fig 1.B.4: ROS concentration and Impaired Mitochondria in the model of basal ROS 

generation ROS and the damaged mitochondira respond to transient decrease in ROS 

synthesis to 2 fold. Removing the transient decrease of ROS generation, systems able to 

recovered back to initial states. 
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However the stability was limited. When total ROS generation flux was increased 2 fold 

higher, the system would explode in terms of ROS concentration and levels of damaged 

mitochondria (Figure 1.B.5): 

 

Figure 1.B.5: ROS concentration and Impaired Mitochondria in the model 1b with basal 

ROS generation  

The concentration of both ROS and damaged mitochondria exponentially explodes, 

upon increased ROS generation flux 2 fold.  

In reality the cell has a limited capacity to synthesise new mitochondria and thereby to 

maintain the level of healthy mitochondria constant, hence independent of ROS damage. 

The sustained damage to mitochondria consequent to increased ROS should in reality 

work to decrease the pool of healthy mitochondria.  Accommodating this by making the 

pool of healthy mitochondria a variable rather than a constant we also added a reaction of 

mitochondrial synthesis (see design 1C) at a constant flux. We did this in order to maintain 

the possibility of the system reaching steady state.   

Then, when ROS generation by the healthy mitochondria was increased 2 fold, the system 

no longer exploded in terms of ROS levels and damaged mitochondria (Model 1C).   

This process of synthesis of new healthy mitochondria rather than a fixed level of heathy 

mitochondria sufficed to provide:  When we removed basal synthesis of ROS and basal 

mitochondrial aging, mitochondria and ROS did explode either when ROS generation 

was increased twice or decreased half (model 1C, Figure 1C.1 & 1C.2): 
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Figure 1C: Damaged mitochondria (1C.1) ROS concentration (1C.2) in the model of 

Basal Mitochondrial aging. ROS initial concentration was increased and decreased twice. 

The damaged mitochondria and the ROS are able to recovered back to its initial states. 

The model nither explodes nor goes to zero when ROS generation was increased or 

decrease twice.  

To summarize, comparative analysis of models 1A, 1B and 1C revealed that a reduction 

of the abundance of mitochondria with increased ROS should insure that stable steady 

states are achieved.  Thus, paradoxically, the, limited, removal of mitochondria may be 

essential to protect the cell (comparing models 1A-1C). We then subjected model 1C to 

a repetitive step-up of ROS generation.  This led to an almost proportional variation of 

the ROS concentration attained at the end of each step-up period (Fig. 3B) with the ROS 

influx rate, with little sustained effect on the level of damaged mitochondria, but leading 

to very high ROS levels at high challenges (Fig. 3f). 

We then used a dynamic challenge to study the properties of model 1C (Fig.2): a temporal 

step-up of ROS generation (Fig. 3A).  This showed an almost linear variation of the ROS 

concentration attained at the end of each step-up period (Fig. 3B), with little sustained 

effect on the level of damaged mitochondria, but leading to very high ROS levels at high 

challenges (Fig. 3f).  Stable steady states were reached however and this is what we 

identify as design principle 1: The limited synthesis of healthy mitochondria and the 

mitophagy together produce robust steady states. Thus, mitophagy might protect against 

PD by removing the potential time-bomb of explosive ROS generation inherent in the 

mitochondria.  And, failure of mitophagy or unlimited synthesis of healthy mitochondria 

should cause ROS related disease. 

The Keap1-Nrf2 module provides homeostasis through negative feed-back (design 

principle 2, Model 2)  
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We then added synthesis and degradation of p62 as well as the antioxidant response 

(design 1D on Figure 1D; Model 1D). For fixed rates constants of the p62 processes one 

can then balance synthesis and degradation in such a way that the steady state 

concentrations of p62 and antioxidant response would be identical to their concentrations 

in Model 1C and this is what we did. Then Model 1D and Model 1C would exhibit a very 

similar (not distinguishable) response to oxidative stress and we can therefore use Model 

1C as a representative model (so-called model 1) for design 1.  

Subsequently we increased the complexity by incorporating the Keap1-Nrf2 system, 

which is capable of modulating mitophagy (by changing the p62 concentration), as well 

as an antioxidant response (by changing the concentration of antioxidant response 

species). Keap1 is a ROS sensor that regulates Nrf2 degradation and intracellular 

localisation (25). When active, Keap1 binds to Nrf2 and both immobilises Nrf2 in the 

cytoplasm, and marks (through ubiquitination) Nrf2 for degradation. When ROS oxidize 

cysteine residues in the Keap1 molecule, Keap1 changes its conformation and becomes 

inactive. Nrf2 is a transcription factor that actively shuttles between nucleus and 

cytoplasm (24) and regulates the expression of p62 and genes responsible for an 

antioxidant response. The higher is the concentration of ROS, the less active is Keap1, 

and consequently, the more active nuclear Nrf2 should be. An elevated expression of p62 

(activation of mitophagy) and a higher antioxidant response should ensue. This dynamic 

networking will be called ‘design 2’ and simulated by model 2 (see Model 2 in Figure 2e, 

Model 2 in Figure 3. 

The addition of the Keap1-Nrf2 module changed the behaviour of the system 

qualitatively: upon an increase of ROS generation, the ROS concentration first increased 

but then decreased again, presumably due to the negative feed-back loop which activated 

the antioxidant response and mitophagy and enabled homeostatic dynamic adaptation 

(Figure 3C-E). By contrast, the dynamic response of model 1 to the temporal step-up of 

ROS generation (Fig. 3A) showed an almost linear variation of the ROS concentration 

attained at the end of each step-up period (see above and Figure 2B). In model 2, the curve 

showing the variation of ROS generation rate with ROS ‘steady state’ concentration was 

progressively less than linear, and less steep.  The transient oscillations obtained I Model 

2 after each step-up of ROS production, decreased in amplitude with increasing ROS 

production. 

This can be summarised in design principle 2: Addition of Nrf2-Keap1 feedback provides 

for the emergence of homeostatic adaptation. Thus, xenobiotics (like coffee) interfering 

with the Keap1-Nrf2 system may affect the response to oxidative stress by affecting 

homeostasis. 

NFkB by itself activates recovery of damaged mitochondria and reduces the liability 

to necrosis (design 3, Model 3) 

Mitophagy of damaged mitochondria averts excessive ROS generation thus preventing 

the cell from ROS-induced damage (corresponding to CytC release leading to apoptosis), 

but may lead to the loss of mitochondria.  Such a loss could lead to necrosis due to the 

consequent drop in ATP concentration. There is a physiological mechanism where, 

instead of being degraded in mitophagy, damaged mitochondria are repaired.  We 

incorporated this mechanism into the next model (see Model 3, Figure 2F; Model 3 in 
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Figure 3) where NFkB-signalling activates mitochondrial recovery. Here we kept the 

NFkB loop by itself insensitive to intracellular signals such as related to ROS levels; it 

just served to activate repair of impaired mitochondria.  Likewise we use a fixed first 

order rate constant for reaction 18 (making that rate strictly proportional to the level of 

impaired mitochondria. Upon the first increase in ROS generation, the activation of 

reaction 18 by the transiently increased level of damaged mitochondria was beneficial in 

keep the concentration of impaired mitochondria lower and more steady; the transient 

oscillations of Model 2 disappeared in this Model 3  (Figure 3D).  The ratio of impaired 

mitochondria to healthy mitochondria (Figure 3E) was higher however, due to a stronger 

reduction in the level of healthy mitochondria (Figure 3C). However, the protective role 

of reaction 18 disappeared with further increases in ROS production rate constant (Figure 

3).  

We investigated this paradox in more detail by applying a different time series of ROS 

production (Fig. 4A).  When we applied the first increase in ROS generation rate constant 

(at time zero in Figure 4A, setting up zone 1), reaction 18 helped to obtain strong 

homeostasis – the concentration of healthy mitochondria did not change significantly 

(zone 1 Figure 4 B); high ROS generation was compensated by the high rate of 

mitochondrial recovery. When ROS generation was brought back to the standard 

production rate (zone 2, Figure 4A), healthy mitochondria accumulated (Figure 4B). We 

might expect this to be advantageous. However, paradoxically, this brings a potential 

danger – when, healthy mitochondria are accumulated and ROS generation is suddenly 

increased (zone 3, Figure 4), because accumulated healthy mitochondria serve as a 

substrate for the production of damaged mitochondria. Because the concentration of 

substrate is high, there will be also a high rate of mitochondrial damage and ROS 

generation. This triggers a positive feed-back loop: ROS damage mitochondria and 

damaged mitochondria produce more ROS. When the concentration of damaged 

mitochondria accumulates faster than it can be utilised in mitophagy, a sharp peaks of 

damaged mitochondria and of ROS are observed (zone 3, Figure 4C&D). A vicious cycle 

fed by the high initial concentration of healthy mitochondria then leads to a collapse of 

the whole system. To avoid this mitochondrial catastrophe, the rate of reaction 18 should 

adapt to ROS concentrations. By other words, reaction 18 should be “democratic” and 

“listen” to other parts of the system: there should be little mitochondrial repair for low 

ROS concentration and higher mitochondrial repair for higher ROS concentrations. 

Design principle 3: NFkB signalling by itself prevents necrosis at high ROS levels by 

enabling the synthesis of healthy mitochondria from impaired mitochondria. However, 

the increased level of healthy mitochondria makes the cell liable to sudden increases of 

ROS and consequent catastrophes  

DJ-1 is a ROS sensor that coordinates Nrf2 and NFkB signalling so as to achieve 

almost perfect homeostasis (model 4). (Figure 3) 

DJ-1 protein is one of the sensors of ROS. When oxidised by ROS, the conformation of 

DJ-1 is changed. DJ-1 becomes active and modulates the activity of various pathways, 

including those around NFkB and Nrf2. To examine what functionality DJ-1 might 

contribute, we added the DJ-1 module to our model (Model 4A, Figure 5). Activated DJ-

1 activates the rate of mitochondrial recovery (reaction 18) via NFkB but now in a ROS 

dependent manner.  In addition, it activates both mitophagy and antioxidant response via 

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



Chapter 4 
 

217 

 

amplifying ROS-induces Nrf2-Keap1 signalling. This helps to adapt to the changes in 

ROS concentration and reach dynamic homeostasis. Although the concentration of 

healthy mitochondria was a bit lower in Model 4 as compared with Model 2 (Figure 3C), 

the concentration of impaired mitochondria (Figure 3D) and the ratio of impaired to 

healthy mitochondria in the total mitochondrial pool (Figure 3F) were substantially lower. 

Furthermore, the peak of ROS concentration (Figure 3E) and the steady state of ROS is 

much lower than in other models. Overall we can conclude that Model 4 is the most robust 

to the increases in ROS generation.  This optimal functioning of Model 4 was observed 

for realistic parameters obtained from the literature. 

Design principle 4: DJ-1 coordinates mitochondrial recovery and amplification of Nrf2 

signalling and helps to bring dynamic homeostasis close to perfect adaptation. Thus, 

mutations in DJ-1 could lead to PD in cases where the network is challenged by large 

perturbations. 

In vitro experiments for validation of the ROS-management model 

The model was fitted to two independent data sets from In vitro experiments performed 

in two different laboratories on different cell types. 

In vitro experiments of cell response to oxidative stress were performed on the human 

hepatoma cell line HepG2 exposed to menadione, a compound inducing ROS generation 

(51, 52). Time course transcriptomics data of cell response to oxidative stress were 

obtained.  

We added the module consisting of menadione to model 5.  The model was then converted 

into a Simulink representation and computation environment. Then parameters related to 

menadione module were adjusted in the way that the experimentally observed time-

dependent curve of ROS concentration was reproduced in the model simulations (Figure 

5A). Then we compared the behaviour of the antioxidant response in terms of p62, Bclxl, 

and NFkB simulated by the model with those obtained in our experiments. The model 

showed very good predictions for an antioxidant response, p62 increase and Bclxl (Figure 

5B).  

Then we added the module consisting of peroxide to detailed model parameters related to 

peroxide module were adjusted in the way that the experimentally observed time-

dependent peroxide data were reproduced in the model at three different dose levels 

(Figure 5C and 5D). We used one pulse and periodic peroxide additions both in model 

and in experiments. 

Detailed model of ROS management: Simulation of stress and distress (Figure 6) 

On the basis of literature information, we then further increased the resolution of the ROS 

management model (Model 5). Several additional species and interactions were added: 

Pink1, which affects mitochondrial functioning (54, 55) and activates Parkin E3 (56, 57), 

an ATP module, Keap1 ubiquitination of both Nrf2 and p62 marking the latter two for 

degradation, an mRNA layer for several proteins, as well as more details of NFkB 

signalling (58, 59).  
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Oxidative stress in model 5 was now simulated by consecutive pulses of increased rate of 

ROS generation, together forming a sine wave (Fig. 6a).  In the short term, model 5 

behaved similar to the much simpler model 4 (Figure 6 A-D) demonstrates homeostatic 

adaptation to stress. However, in contrast to model 4, model 5 exhibits a new emergent 

property.  This a collapse of the system in the long term. In Model 5, ultimately all 

mitochondria are lost (Figure 6D). As a result, all ATP is lost as well. The explanation is 

routed in the continuous loss of p62 that is the net non-linear effect of several reactions 

involved in p62 degradation when those reactions are affected by the mechanism involved 

in compensation to the increased ROS generation. This is a bi-stable system. If the rate of 

p62 synthesis remains above the ‘trash line’, then the system never collapses, but with 

insufficient p62 synthesis, the system will collapse, even after a long time.   

Model 5 allows to simulate how perturbations in various components of the ROS-

managing network affect the system’s dynamics and more in particular also the time when 

the system collapses. For example, activation of Nrf2 synthesis prolongs the time of 

system’s functioning (Figure 7A). This demonstrates that the activation of Nrf2 does not 

change the main trend of stress accumulation but can substantially delay the stress effect. 

Indeed, Nrf2 synthesis might be activated by different drugs or biologically active 

compounds, such as caffeine, and perhaps other components of coffee that fits well with 

the observation that drinking coffee correlates negatively with the PD progression (37).    

Design principle 5: Strong adaptation runs out with ageing. The system is robust to 

different perturbations (ROS generation, mitochondrial synthesis), because some parts of 

the network are more fragile (p62 synthesis).  

ROS-management model and the Parkinson’s disease map: Towards personalised 

PD medicine (Figure 7) 

At this moment, we have overlaid the detailed model 5 built ab initio, starting from the 

physiology of ROS management, over the Parkinson’s disease map rooted in literature 

and experimental data and integrating molecular mechanisms involved in PD 

development (71). All components of model 5 and their interconnections were found in 

the PD map. Thus, a subnetwork corresponding exactly to a detailed model 5 could be 

extracted from PD map. PD map is online and we have a sub-map there with the model.  

We have previously identified that the system’s fragility was concentrated in the reaction 

of p62 synthesis, and that a p62 perturbation may be associated with many cases of 

Parkinson’s disease. As reflected in the PD map, on the one hand, p62 may be sequestered 

by misfolded alfa-synuclein (33). On the other hand, synthesis of p62 is regulated by DJ-

1 via Nrf2-Keap1 signalling, and DJ-1 may be downregulated in some PD cases (35). 

Apart from p62, other components of the ROS-managing network are also perturbed in 

PD. The PD map allows to display various experimental subsets as a layer over the 

network diagram. The projection of the transcriptomics analysis of PD post-mortal 

substantia nigra onto the PD network. In supplemental material   shows that PD samples 

exhibit upregulation of keap1, and downregulation of Pink1,  VDAC1 and the above 

mentioned DJ-1 (shown in PD map; PD substantia nigra data sets at 

http://minerva.uni.lu/MapViewer/ ). p62 expression was upregulated in this data set. The 

latter may indicate the activation of mitophagy. The upregulation of p62 transcription is 
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found in experiment. Also in our model. We upregulate p62 synthesis as compensatory 

mechanism, but still it is not enough to compensate the loss of p62 protein in mitophagy. 

Using the PD map, we may identify several scenarios of PD development. In the present 

study we have chosen two of them, corresponding to two hypothetical patients: patient 1 

with a substantial increase of alfa-synuclein which is oxidised by ROS, forms aggregates 

and sequesters p62, and patient 2 with a decreased DJ-1 concentration.  

B. ATP concentrations time courses  

In steady state, without excessive ROS generation, both hypothetical patients behaved 

very similarly to the healthy situation (Figure 7). However, upon increase of ROS 

generation under oxidative stress, both PD-patients lost healthy mitochondria and ATP 

much earlier that what was predicted for the healthy case (Figure 7).  

From the previous chapter, we might expect that activation of Nrf2-Keap1 signalling (e.g. 

by caffeine and other coffee components) might be helpful to protect from oxidative 

stress. Our simulations confirm that PD-related collapse during oxidative stress might be 

delayed under coffee-based treatment (Figure 7). The activation of nrf2 signalling 

accompanying simultaneously the increase of ROS generation helps to protect from 

oxidative stress and helps even more if the Nrf2 system is activated prior to the increase 

of ROS generation (Figure 7).  

Design principle 6: preconditioning (pre-treatment by Nrf2 activation) may play PD 

protective role.  

Out simulations demonstrated as well, that patient 1 was affected by Nrf2 activation much 

stronger than patient 2 (Figure 7). This suggests that only a fraction of PD patients may 

benefit from a certain treatment (in this case coffee-induced nrf2 signalling). Taking into 

account the possibility to identify those patients for targeted personalised treatment, 

coffee – based PD medicine could be even more promising than what is inspired by 

population or randomised case studies where negative correlations between PD and coffee 

consumption were observed (37-40).    

Design principle 7: Inter-individual variations cause disease variability between 

individuals that provides a foundation for the development of personalised medicine.  

4. Discussion 

Our models demonstrated that both mitochondrial recovery and mitophagy may avert 

ROS-induced cell death. The fine-tuning and coordination of those processes are crucial. 

This is related to two paradoxes which we have identified and explained using dynamic 

models: (i) mitophagy saves mitochondria by making steady states stable (design 

principle 1) and (ii) a high rate of mitochondrial recovery is not always beneficial but 

harms the cell if ROS generation suddenly increases (design principle 3).  

Mitochondrial recovery and mitophagy should also be coordinated with an antioxidant 

response.  We have identified roles of Nrf2-Keap1 (design principle 2) and DJ-1 (design 

principle 4) in this coordination.  The Nrf2-Keap1 system works as ROS sensor and forms 

the first contour of the defence by activating antioxidant response and mitophagy (60). 
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DJ-1 is an additional ROS-sensor that amplifies the activity of Nrf2-Keap1 signalling and 

coordinates it with mitochondrial recovery (61). Our models predicted that DJ-1 

upregulation increases the cell’s robustness and downregulation makes the system more 

sensitive to oxidative stress. Indeed, some cancers are associated with upregulation of DJ-

1 (62), while some cases of neurodegeneration are related to DJ-1 downregulation (35). 

These are interesting examples where the same components are oppositely mistuned in 

opposing diseases: in cancer, the cell survives elevated ROS and in neurodegeneration, 

the cell dies from ROS. Taking into account that DJ-1 is localised mostly in the 

mitochondria, but Keap1 is localised in the cytoplasm, one could have foreseen the 

importance of adding a spatial aspect to the complexity of ROS-management. 

When we increased the resolution of model 4 to obtain model 5, we observed the 

emergence of dynamic homeostasis: several consecutive pulses of increased ROS 

generation (mild oxidative stress), “trained” ROS management system to deal with 

subsequent larger stresses (63). This may explain several paradoxes reported in the 

literature, for example, those related to the observations that antioxidants may exhibit a 

hormetic response (64) and, in some cases, that antioxidant therapies come with 

disappointing clinical experience (65).  

We have observed that consecutive pulses of increased ROS generation applied for a long 

time, can exhaust the adaptation and system ultimately collapses (design principle 5). A 

similar phenomenon of the accumulation of oxidative stress has been reported in the 

literature (66). In the terminology of Hans Seley, eustress (stress when the system can 

adapt) may convert into distress (the stress causing the collapse of the system) when the 

eustress persists for too long. Our modeling results are also compatible with publications 

(67, 68), demonstrating how the sequence of oxidative stress events may lead to the 

development of PD via the mechanism of a vicious cycle. For example, when rats were 

exposed to 3 pulses of paraquat (PQ) imitating the oxidative stress, the first addition of 

PQ had an observed effect, the second addition allowed the system almost perfectly to 

compensate for a stress (adaptation), and the third pulse of PQ addition caused again a 

larger effect (and ultimately perhaps system collapse) (3). Authors explained the 

phenomena by already existing mathematical models exhibiting bistability (67, 68). Our 

models may provide an additional interpretation: the first pulse of PQ leads to adaptation 

(eustress) via activation of antioxidants response and mitophagy that makes the system 

more tolerant to the consecutive mild stress, but the third pulse exceeds the protective 

potential and causes the collapse of the system (distress). 

Taken into account the stochastic difference between neurons (neurons are not identical 

and differ in concentrations of various proteins) we should not expect synchronized death 

of all neurons at once. Likewise, limited neuronal loss can be compensated for, at least to 

some extent. However, when damage accumulates and exceeds a certain threshold, the 

neurodegenerative pathology develops. This correlates well with clinical observations 

that there is a gradual age-related loss of dopaminergic neurons, but the first PD motor 

disorders appear only when already 50-70 % of dopaminergic neurons are lost (69).   

In several simulations, we observed that Nrf2 oscillated transiently (e.g. model 3). This 

correlates with literature data (70) showing that Nrf2 undergoes autonomous frequency-

modulated oscillations between cytoplasm and nucleus. Oscillations occurred (70) when 

cells were stimulated at physiological levels of activators, they decreased in period and 
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amplitude and then evoked a cytoprotective transcriptional response. According to the 

data shown in (24), Nrf2 is activated in cells without a change in total cellular Nrf2 protein 

concentration. In our models, there is also the conserved moiety of total Nrf2, an increase 

of nuclear localization of Nrf2 corresponds to an increase of Nrf2 activity. 

Our Model 5 is an interesting example where a slow aging process emerges from quick 

processes in the network. Apparently, minor differences in persons’ genomes (or 

expressomes) that do not affect unchallenged function may become crucial when 

challenged with oxidative stress.  

First, we have built our models ab initio, starting from the physiology of the response to 

oxidative stress and increasing the complexity of the network step by step. Adding every 

new level of complexity in a domino approach enabled us to identify design principles of 

ROS management. At the same time, our most complex model, which still comprised 

these design principles, became a blueprint model where the information accumulated in 

these maps may be projected.  This produced the ability to tuning this blueprint map into 

a patient-specific model. Overall, our calculations may serve as case studies connecting 

data-driven biomedical disease maps with systems biological dynamic models built ab 

initio, and as prove of concept showing how personalised medicine may benefit from this 

connection and how fundamental design principles study may face practical biomedical 

questions. 
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Figure 2. Network diagrams describing 5 principles (with 4 subprinciples for level 1) of ROS 

management.  Level 1, i.e any of the models 1, is comprised in level 2 (model 2) and level 2 in level 

3, etc., thereby forming a hierarchy of networks and corresponding models).  By co-determining 

level 5 functionality each of these corresponds to a subnetwork of ROS-associated disease. 
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(A) Model 1A. The simplest model.  Healthy Mitochondria damaged by ROS are converted into 

Impaired Mitochondria. Impaired Mitochondria produce ROS. (B) Model 1 B. Adding ROS and 

Impaired Mitochondria removal. The node called Aniox comprises the total pool of all antioxidant 

response, both metabolites (e.g. various antioxidants) and enzymes (e.g. superoxide dismutase) 

catalyzing ROS removal. P62 is required for mitophagy (removal of Impaired Mitochondria) and 

is removed together with the impaired mitochodnria in the process.  (C) Model 1 C. Adding 

synthesis of Healthy Mitochondria. The reaction where Healthy Mitochondria are constantly 

synthesized has been added. (D) Model 1 D. Adding synthesis and degradation of Antiox and p62 

species.  Aniox and p62 specie are constantly synthesized and degraded. Their synthesis and 

degradation rates are balance in the way to obtain steady state concentrations equal to ones in model 

1C. (E) Model 2. Adding keap1-Nrf2 signaling system.  Pink species (pink tile) represent Keap1 – 

Nrf2 module. Reactions 10 and 21 are two directions of the reversible transition of keap1 between 

active and non-active (oxidized) form. Reaction 11 and 22 are two directions of the reversible 

transition of Nrf2 between active and non-active (ubiquitinated, marked for degradation and 

localized in the cytoplasm) form. ROS catalyze reaction 10 and shift the equilibrium towards a 

higher rate of keap1 oxidation (deactivation); thus ROS inactivates keap1. Keap1 catalyzes reaction 

11 and shift the equilibrium towards the higher fraction of inactive Nrf2. When active, Nrf2 

activates the expression of p62 (reaction 6) and the antioxidant response (reaction 8).  (F) Model 3. 

Adding the NF-kB signaling system. The violet species (violet tile) represent NFkB signaling. 

Parkin activates NFkB signaling via IKK (reaction 14). NfkB activates the expression of Bclxl 

(reaction 16) and p62 (reaction 6). Bclxl activates the protection of mitochondria via biosynthesis 

(reaction 18). Parkin is removed together with p62 in mitophagy (G) Model 4. Adding DJ-1 sensor 

system. Red species (red tile) represent DJ1 regulatory module. DJ1 is a protein that may be present 

in two active (oxidized) and non-active conformations. DJ1 activation is the net effect of two 

reactions of protein conformation change: activation catalyzed by ROS (reaction 19) and 

deactivation (reaction 20). When active, DJ1 inhibits deactivation of Nrf2 (reaction 11) and also 

inhibits removal of NfkB signaling (reaction 15). (H) Model 5. Our most complete and detailed 

model of ROS management.  The resolution of the model was increased, e.g. the nucleus and 

cytoplasm compartmentalization were added: Pink1, that affects mitochondrial functioning and 

activates parkin E3, ATP module Keap1 ubiquitination of both Nrf2 and p62 marking them for 

degradation; mRNA layer for several proteins; more details of NFkB signalling.  In these diagrams 

SBGN notation is used, i.e. –o for stimulation, -| for inhibition and – for co-reaction  
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Figure 3     

The response of models 1-4 to a challenge of stepwise increased ROS generation.   

A. The stepwise increase in ROS generation (effected by increasing the ROS synthesis coefficient) 

that was used to examine the dynamic response of the ROS networks of higher complexity. The 
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step increase of the ROS generation consists of a doubling of the rate of ROS synthesis per 

impaired mitochondria (rate constant in reaction 4) every 11 days. 

B. The dependence of steady state concentration of ROS on the ROS synthesis coefficient (rate 

constant of the reaction 4).  The results of Model 2 and Model 3 overlap. 

C.  The Response of the concentration of Healthy Mitochondria in models 1-4 upon the step 

increase of ROS generation.  

The concentration of Healthy Mitochondria decreases with the step increase of ROS generation. 

The concentration of Healthy Mitochondria goes to the new steady state upon the increase in ROS 

synthesis coefficient. In model 1 (blue line) Healthy Mitochondria steady state concentration drops 

the most severely. In Model 2 (red line), model 3 (black line) and model 4 (green line) we observe 

homeostasis.  Healthy Mitochondria steady state concentration first decreases upon the increase of 

ROS synthesis but then recovers back to some extent. Model 4 performs stronger homeostasis than 

model 3 and model 2 has the strongest homeostasis of Healthy Mitochondria. 

D.  The Response of the concentration of Impaired Mitochondria in models 1-4 upon the step 

increase of ROS generation.  

The concentration of Impaired Mitochondria first increases upon the step increase of ROS 

generation. Then the concentration of Impaired Mitochondria goes to the new steady state. 

Paradoxically the increase of ROS generation helps to clear out damaged mitochondria (due to 

increased mitophagy). The strength of the capacity to clear out Impaired Mitochondria increases 

respectively from model 1 (blue line) to model 2 (red line), to model 3 (black line), and to model 4 

(pink line). 

E.  The Response of the ratio of Impaired/Healthy Mitochondria in models 1-4 upon the step 

increase of ROS generation.  

The ratio of Impaired/Healthy Mitochondria increases upon the step increase of ROS generation. 

In model 1 (blue line), the doubling of ROS generation results in the increase of Impaired/Healthy 

Mitochondria ratio twice as well. In model 2 (red line), model 3 (black line) and model 4 (green 

line) Impaired/Healthy Mitochondria ratio first increases twice and then drops back (homeostasis). 

In model 4, Impaired/Healthy Mitochondria ratio drops to the almost initial steady state level.  

F.  The Response of the ROS concentration in models 1-4 upon the step increase of ROS 

generation.  

ROS concentration increases upon the step increase of ROS generation. In model 1 (blue line), the 

doubling of ROS generation results in the increase of ROS concentration twice as well. In model 

2 (red line), model 3 (black line) and model 4 (green line) homeostasis; system counteracts 

perturbation and exhibit the tendency to decrease both ROS peak and ROS steady state 

concentration. Model 4 exhibit the strongest homeostasis.  
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Figure 4     

Fig NF-kB signaling: response of Model 3 to 2 consecutive pulses of increased ROS 

generation.  Red dotted lines correspond to the steady state levels maintained in the 

absence of the pulses 

(A) The causal variation of ROS production rate constant applied, which was 1 before time zero. 2 

long pulses of ROS generation were applied to model 3: zone 1 and zone 2. (B) The response in the 

concentration of Healthy Mitochondria to the 2 pulses of increased ROS generation. (C) The 

response in the concentration of ROS to the 2 pulses of increased ROS generation. (D) The response 

in the concentration of Impaired Mitochondria to the 2 pulses of increased ROS generation. 
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Fig.5A: Model validation.  (I) model 5’s dynamics of the relative ATP concentration upon the 

addition of peroxide at three different dose level with pulse treatment (Milano data). The light 

purple dots are the experimentally observed control data points. The red dots are experimentally 

observed data upon addition of peroxide to a cell culture and relative ATP concentration was 

determined. The ligh blue line is the predicted relative ATP concentration by the model.  
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Fig.5B: Model validation.  (I) model 5’s dynamics of the relative ATP concentration upon the 

addition of peroxide at three different dose level with repeated treatment (Milano data). The light 

blue dots are the experimentally observed control data points. The green dots are experimentally 

observed data upon addition of peroxide to a cell culture and relative ATP concentration was 

determined. The red line is the predicted relative ATP concentration by the model.  
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Fig.5C: Model validation.  Model 5’s dynamics of the change of ROS concentration upon the 

addition of menadione was fitted to experimental data. The light blue dots are the experimentally 

observed data points. 0.1M of menadione was added to a culture of HepG2 cells and total ROS 

concentration was determined. The blue line is the predicted ROS concentration by the model.  

 

Fig.5D: Model validation.  Model 5’s dynamics of the relative change of species such as 

Antioxidant mRNA expression, P62mRNA expression and BCLxL mRNA expression upon the 

addition of menadione was fitted to experimental data upon addition of 0.1M mendione into the 

cell culture. The green dots (experimentally observed) and line (model predicted) are corresponds 

to relative Antioxidant mRNA; blue dots (experimentally observed) and line (model predicted) are 
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corresponds to relative P62mRNA expression; red dots (experimentally observed) and line (model 

predicted) are corresponds to relative BCLxL mRNA expression.       

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 6. Simulations of the response to oxidative stress in simplified (A-B) and detailed (C-

D) models. 

Oxidative stress was simulated as oscillations of increased ROS generation (over the initial base 

line) (subgraph in A) 

A. The response of ROS concentration on the oscillatory increase of ROS generation. 

First pulses of increased ROS generation affected ROS concentration to a higher extent than 

consecutive pulses. 

B. The response of Healthy and Impaired Mitochondria concentration on the 

oscillatory increase of ROS generation. 

First pulses of increased ROS generation caused the decrease of Healthy and the increase of 

Impaired Mitochondria. However, the system counteracted this changes and the concentration 

of Healthy Mitochondria increases again while the concentration of Impaired Mitochondria 

decreases back.  

C. The response of ATP on the oscillatory increase of ROS generation in the detailed 

model in the short term. 

(c) 
(d) 
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First pulses of increased ROS generation caused the decrease of ATP concentrations. 

However, the system counteracted this changes and the concentration of ATP recovers back.  

D. The response of ATP and p62 on the oscillatory increase of ROS generation in the 

detailed model in the long term. 

Although the concentration of ATP is recovered in the short term, the system collapses and all 

ATP is lost in the long term because the damage (lost of p62) is accumulated.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Parkinson’s disease (PD) and personalized medicine.  (A). ATP concentrations time 

courses in a virtual patient 1 with increased alfa-synuclein and (B) in virtual patient 2 with a 

decreased DJ-1 concentration.  Both are compared to a healthy person. 
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Integrative Systems Toxicology models 

5A. Sharma, R. P., Schuhmacher. M., Kumar V., 2017. Developing 

Integrated PBPK/PD Coupled mechanistic pathway model (miRNA-

BDNF): an approach towards Systems toxicology, Toxicology Letters 

280:79-91. 
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5A. Developing an Integrated PBPK/PD Coupled 

mechanistic pathway model (miRNA-BDNF): an approach 

towards Systems Toxicology 

Abstract 

      Integration of a dynamic signal transduction pathway into the tissue dosimetry model is 

a major advancement in the area of computational toxicology. This paper illustrates the 

ways to incorporate existing systems biological models in the field of toxicology via its 

coupling to the Physiologically based Pharmacokinetics and Pharmacodynamics 

(PBPK/PD) model. This expansion framework of integrated PBPK/PD coupled 

mechanistic system pathway model can be identified as systems toxicology that describes 

the kinetics of both the chemicals and the biomolecules, help us to understand the dynamic 

and steady-state behaviors of molecular pathways under perturbed condition. The 

objective of this article is to illustrate a systems toxicology based approach by developing 

a PBPK/PD integrated with miRNA-BDNF pathway model and to demonstrate its 

application by taking a case study of PFOS mediated neurotoxicity. System dynamics 

involves miRNA-mediated BDNF regulation, which plays an important role in the control 

of neuronal cell proliferation, differentiation, and survivability.  

Key words: PBPK/PD, miRNA, BDNF, Neuroendocrine, System biology, PFOS 

 

 

 

Highlights 

 

 mi-RNA-based post-transcription regulations of BDNF was modeled and 

proposed. 
 The model simplifies the mechanistic features of BDNF induces cell 

survivability.  

 BDNF can be a good biomarker linking environmental exposure to neuronal 

disorders. 

 Integrated PBPK/PD for the PFOS induced neurotoxicity was proposed. 
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1. Introduction  

In the field of quantitative risk assessment, a journey of classical dose-response models 

is categorized into different classes for the better quantification and estimation of early 

possible risk (Andersen et al. 2005). These include –a) Physiological based 

pharmacokinetic and pharmacodynamic modeling (PBPK) for the quantification of 

internal biophase concentrations in different tissues, b) pharmacodynamics (PD) model 

quantifies the interactions of chemicals with target biomolecules c) Systems Biology 

describes the dynamic relationship of biological components for a robust physiological 

response. Perturbation of these biological components can be quantified through the 

integration of PBPK/PD model into the system biological models providing a predictive 

tool for measuring toxicological impact at the cellular and biomolecular level (Andersen 

et al. 2005; Gohlke et al. 2005; Zhao and Ricci 2010). 

The PBPK model in the area of dosimetry risk assessment has been widely accepted and 

applied and it is among the top priority tool recommended in the vision of toxicity testing 

in the 21st century (Andersen and Krewski, 2009). PBPK model has been extended to 

develop the PBPK/PD for certain pesticides (Timchalk et al., 2002; Foxenberg et al., 

2011). The integration of PD was generally done with the quantification of the response 

variable (biomarker) effect of an interaction of a chemical (biophase concentration 

estimated by PBPK) with a target biomolecule (mainly receptors). But it has a certain 

limitation such as lack of robust biology (biomarker relation to endpoint), and very often 

the endpoints are specifically remained single explanatory biomarker. Coupling of 

PBPK/PD model and system biology together can enlighten the effect of changes in key 

biomolecules considering the whole biological system. System biology comprising of 

genomics, metabolomics, and proteomics which rationalizes the functional interaction of 

biological components in a time-dependent fashion (Aderem, 2005; Kitano, 2002). Thus, 

it could be useful in systems toxicology for understanding the altered biological pathway 

due to chemical induced perturbation of certain key biomolecule in a system, illustrating 

differences from normal pathway (Arrell and Terzic, 2010; Auffray et al., 2009; Hood et 

al., 2004; Kell, 2006). Understanding the biomolecular mechanisms are of great interest 

to identify the toxicological effects at the very early stages of the disease (toxicological 

response). However, often we lack sufficient information to link chemically perturbed 

biological components (molecular biomarker) to an altered biological system. This lead 

to the use of the simplified dose-response model (simple PD) to predict the adverse 

outcome (disease) for a target chemical(Calabrese and Baldwin, 2003). In the field of 

toxicology, there is limited use of these system biology models (Waters et al., 2003). The 

wide use of systems toxicology in human environmental risk assessment has a time lag in 

comparison with pharmaceuticals science as it lacks experimental data, has complex 

interaction pathways of environmental chemicals than the target specific drugs, and low 

commercial priority of applied toxicological science. 

Recently use of the integrated PBPK/PD models in a field of environmental toxicology, 

enables development of a quantitative biologically based risk model which increases our 

understanding towards the relationship between tissue bio-phase concentration of 

chemicals and endogenous biomolecule (Timchalk et al., 2002; Foxenberg et al., 2011). 

Furthermore, signaling pathways could be used as an extension of  PBPK/PD, given 

dynamic interactions of chemicals with biological components are known, the first step 

towards systems toxicology (Bhattacharya et al., 2012; Gim et al., 2010). It has benefits 
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such as: easy to implement if the signaling pathway already developed, often data from 

the dose-response experiments for known biomolecules can be used, a good step to use 

Adverse Outcome Pathways (AOPs) knowledge to develop the generic PBPK/PD model 

for multi-species and multi-chemicals.  

Neuroendocrine or neurotrophins such as nerve growth factors, BDNF and neurotrophin-

3 are proteins, basically processed and secreted in constitutive and regulatory fashion in 

non-neuron, neurons and neuroendocrine cells (Lu, 2003; Mowla et al., 1999). Among 

them, BDNF is immensely expressed and extensively scattered than other neurotrophins, 

and play an important role in neuronal survival and differentiation (Boulle et al., 2012; 

Michael et al., 1997; Murer et al., 2001). BDNF binds with a Tropomyosin receptor kinase 

B (TrkB) presents on the neuronal cell surface causing sequential activation of following 

pathways such as  Mitogen-activated protein kinases (MAPKs), Extracellular-signal-

regulated kinase (ERK), and Protein kinase B (AKT) that are mainly involved in 

differentiation and survivability of neurons (Michael et al., 1997; Murer et al., 2001 

Bursac et al., 2010; Boulle et al., 2012). It has been seen that reduced BDNF protein and 

mRNA expression is linked with several neurological disorders such as Alzheimer’s and 

Parkinson’s (Bursac et al., 2010). Moreover, dopaminergic, GABAergic, cholinergic, and 

serotonergic neurons are known to require BDNF for their proper development and 

survival (Lipsky and Marini, 2007; Murer et al., 2001), signifies BDNF as an important 

biomarker for neurodevelopmental function. 

It has been reported that miRNA regulates the synthesis of BDNF via posttranscriptional 

modification of BDNFmRNA (Caputo et al., 2011; You et al., 2016). Muiños-Gimeno et 

al., (2011) reported the involvement of miRNA-22 associated panic disorders in the 

Spanish and North European population. Later, the transcriptomic analysis studied by Li 

et al., (2015) in SH-SY5Y cell line also found the involvement of miRNA-22 dependent 

decrease in the BDNF level and neuronal cell survivability. The miRNAs are turning out 

to be significant regulators of mRNAs and the related proteins. In this proposed study, 

miRNA (micro-RNA) regulated BDNF (Brain- derived neurotropic factor) and its effect 

on neuronal survivability mechanisms was selected for the development of the 

mechanistic base model. Perfluorooctanesulfonic acid (PFOS) was selected as a case 

study to illustrate the ways to incorporate the use of system biological model in the field 

of toxicology via Pharmacodynamic coupled tissue dosimetry model (PBPK/PD). 

1.1. Case studies on PFOS 

PFOS is well recognized among industrial chemicals that can easily cross the BBB (blood 

brain barrier) (Sato et al., 2009) and its exposure was related to several  developmental 

neurotoxicity effects (Johansson et al., 2008; Yang et al., 2015; Goudarzi et al., 2016; 

Vuong et al., 2016) . For instance, it was found that PFOS exposure to zebrafish causing 

an alteration in the expression of more than 40 different type of miRNAs allied with the 

developmental toxicities (L. Zhang et al., 2011). The several mechanisms were 

hypothesized for the PFOS causing development neurotoxicity disorders such as 

oxidative stress, altering neurotransmitters level and upregulation and downregulation of 

apoptotic and pro-survival factors from various animals and cell line studies (Long et al., 

2013; Chen et al., 2014; Yu et al., 2016). In a recent study, it was found that PFOS can 

decrease the neuronal cell survivability by altering the level of miRNA in human 

neuroblastoma cell line(Li et al., 2015). This could be an important mechanism of PFOS 
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as it has been seen that miRNAs regulate the proteins level by regulating their mRNAs 

expression level.  The purpose of our model is to test the hypothesis that PFOS perturbed 

the miRNA affecting neuronal survivability via regulating BDNF at mRNA level. The 

human dosimetry study has shown the longer residence time of PFOS inside the body and 

relatively higher concentration in the brain tissue than comparing to other perfluoroalkyl 

substances (PFASs) (Fabrega et al., 2014). Furthermore, its continuous exposure and 

potential to cross the BBB could put the humans at high risk of neurodevelopmental 

disorders which is in consonance with recently published paper related to neurotoxicity 

of PFOS (Yang et al., 2015; Vuong et al., 2016).  The PFOS PBPK model has been well 

developed previously by Fabrega et al., (2014) that predicts internal tissue dose. However, 

for a better understanding of toxicological mechanisms in the context of risk assessment, 

we would need one more step towards the systems toxicology. This gap could fill by 

coupling integrated PBPK/PD model into a mechanistic system model. 

The objective of this study was the development of a mechanistic pathway system 

(miRNA-BDNF mRNA- BDNF- cell survivability) model and coupling of above model 

with a PBPK/PD taking a case study of the PFOS induced neurotoxicity.  

2. Materials and Methods 

2.1. miRNA-mRNA-BDNF-cell survival mechanistic pathway (figure 1)  

Generally, miRNA post-transcriptionally regulates the protein molecule via binding at 

3´UTR of mRNA (Perruisseau-Carrier et al., 2011). It has been found that miRNA 

decreases the level of BDNF either via degradation of mRNA or facilitating ribosome 

induced silencing complex formation with mRNA (RISCm) (Bartel 2004; Djuranovic et 

al. 2011). The other mechanism involves miRNA inhibits the BDNF regulation by down

regulating the expression ofcyclic response element-binding protein (CREB) (Caputo et 

al. 2011;You et al. 2016).  

Nonetheless, the numbers of the regulatory pathways have been proposed (Zeng et al., 2

011; Sandhya et al., 2013; York, 2015). Moreover, a study on population affected with 

neuronal disorders showed an inverse relationship between miRNA and BDNF level (M

uiños-Gimeno et al., 2011) strengthens the evidence of regulation of BDNF via miRNA. 

BDNF dependent cell survival pathways can be extremely important from a regulatory 

perspective. The relationship between BDNF concentration and cell survival are quite 

well known via the dose-response curve obtained from the in-vitro cell line study 

(O’Leary and Hughes, 1998). Nevertheless, intermediate molecular signaling pathways 

are prevailed in-between the binding of BDNF with TrkB receptors to the effects on the 

neuronal cell. This involves activation of MAPK/ERK and AKT-PI3K pathways that 

increase the neuronal survival and differentiation process via increasing expression of 

CREB (Michael et al., 1997; Murer et al., 2001 Bursac et al., 2010; Boulle et al., 2012). 

The conceptual diagram is provided in figure 1. 
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2.1.1. miRNA regulatory BDNF pathway model 

The regulatory pathway of BDNF involves different intermediate biomolecules. 

However, in this study, the generic miRNA-BDNF pathway was adapted from the 

previously published work of Wang et al., (2010) to developed exclusively miRNA 

regulatory BDNF model. The whole pathways are modeled by applying mass balance 

equation based on reaction kinetics applying ordinary differential equations.  This allows 

the estimation of a biomolecule given the model parameter corresponds to the reaction 

rates. BDNF is the output of the miRNA-BDNF model, which was then used as an input 

for the estimation of neuronal survival.  The generic form of the system dynamic model 

is as follow: 
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Where ks is synthesis rate constant for the endogenous molecules, P is the concentration 

of an endogenous molecule, kd is the degradation rate constant, kout is the dissipation 

rate constant of P available for the synthesis of the subsequent endogenous molecule. 

Following this schematic, concentration of endogenous biomolecules is estimated by the 

following differential equation;  

d

dt
(P) = ks − Kd ∗ P − kout ∗ P         (1) 

 

2.1.2. BDNF - cell survival Emax model-  

To simplify the model, we have applied hills sigmoid equations to get the output of the 

neuronal survival by applying Emax and EC50 value of BDNF for neuronal cell survival 

from experimental data (O’Leary and Hughes, 1998).   The percentage of cell 

survivability with respect to BDNF concentration was estimated by the use of sigmoid 

Emax model applying the following equations; 

Cell survivablity = E0 + ((Emax ∗ Cn)/ (EC50 +  Cn))       (2) 

Where, Cell survivability = percentage of cell survivability as function of BDNF conc., 

Eo = baseline response, Emax = maximum response, C= BDNF concentration, EC50= 

concentration at which BDNF shows 50% response of Emax, n= hill coefficient 

This developed Emax model was integrated into indirect response model eq. (3) that 

provides the neuronal cell survivability as a function of time. More details on indirect 

response models can be found in Bonate, (2011). 

𝑑

𝑑𝑡
𝐶𝑒𝑙𝑙 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑏𝑙𝑖𝑡𝑦 = 𝑘𝑜𝑢𝑡_𝐵𝐷𝑁𝐹 ∗ 𝑐𝑒𝑙𝑙 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑏𝑙𝑖𝑡𝑦 − 𝑘𝑑 ∗

𝑐𝑒𝑙𝑙 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡)                                                                                           (3) 

Where,
d

dt
Cell survivability = percentage of cell survivability in the time domain, 

kout_BDNF is BDNF conc. assumed to be responsible for neuronal cell survivability, kd 

is the degradation rate of the neuronal cell. 

2.2. PFOS PBPK (a case study) 

The PBPK model of PFOS was adapted from the previously published model (Fabrega et 

al., 2014). The concentration of PFOS in a brain considered as the effective target dose 

(target tissue dosimetry), considering the brain as a target organ in relation to potential 

neurodevelopment deficit disorders. PBPK model generates time course of PFOS 

concentration in the brain, which is used as input for the mechanistic pathway model. At 

the end, integration of the PBPK model of PFOS into the mechanistic BDNF –cell 
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survivability model analyzes the perturbation of PFOS on the whole pathway results in 

decreased in neuronal cell survival rate. The conceptual model for this integration is 

provided in figure 2.  

 

Concentrations in the respective compartment (muscle, richly perfused, fat, kidney, Brain 

and liver) are estimated by applying the following equation: 

 

                                 (4)                                      

      

Where, Ci is the concentration in the tissue i (ng/L), Qi is the blood flow in the tissue i 

(L/h), Ca is the arterial concentration (ng/L), Ki: p is the partition coefficient of tissue i, 

and Vi is the volume of the tissue i (L). Detail description of PBPK model can be found 

in our other publications (Fabrega et al., 2014; Fàbrega et al., 2016). 

All the physiological, physicochemical parameters and model equations for the PBPK are 

provided in the Annex-5  

2.3. IVIVE for dose Equivalency 

In-vitro in-vivo extrapolation (IVIVE) method was used in order to estimate the oral 

equivalent dose from the given in-vitro dose. It has an assumption that the in-vitro area 

under the curve (AUC), calculated by multiplying dose with the total duration of 

exposure, would be similar with the AUC of target in-vivo organ (in this case Brain).  

Li et al., (2015) in-vitro studies on SH-SY5Y cell line was selected, where a decrease in 

neuronal cell survivability found to depend on miRNA and BDNF. In Li et al., an 

Vi

pKi

Ci
CaQi

dt

dCi











:
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experiment they used 12 in-vitro doses (6 doses each for 24hr and 48 hr) for that 

corresponding in vivo doses was determined. The assumption was made that in-vitro 

doses are equivalent to internal target concentration (brain). For the reconstructing 

equivalent oral dose, the AUC value was calculated for each in-vitro conc., based on their 

duration of treatment (In this case 24hr and 48 hr). The conceptual schematic for dose 

reconstruction is provided in figure 3. The calculated AUC was assumed to be equivalent 

with in-vivo AUC brain. Dose reconstruction approach has been used, so that the given 

equivalent oral dose will provide the AUC in the brain that matches the AUC for the 12 

different in-vitro doses (6 for 24hr and 6 for 48hr), a similar approach has been used in 

the previous study (Thiel et al., 2017). The oral equivalent doses were estimated to be 

way higher, as the PFOS concentration reaching to the brain was found to be relatively 

very low(Fabrega et al., 2014; Fàbrega et al., 2016). The estimated oral equivalent doses 

for the corresponding in-vitro doses are provided in Table 1. 

      

      Figure 3. Describes the schema for the estimation of in-vivo oral dose 

 

Table 1: oral equivalent dose calculated based on AUC extrapolation method 

in-vitro 

dose (µM) 

AUC_24 

(nM*hr) 

AUC_48 

(nM*hr) 

in-vivo dose 

(nM)(24hr) 

in-vivo dose 

(nM) (48hr) 

1 24000 48000 86925 130570 

10 240000 480000 896550 1362850 

50 1200000 2400000 4494910 6839718 

100 2400000 4800000 8992868 13685810 

150 3600000 7200000 13490820 20531899 

200 4800000 9600000 17988780 27378025 

      

 

 

 

AUCbrain = Time of exposure * Conc. in brain ≈ Time of exposure* in-

vitro conc. = AUCin vitro   

Applying PBPK reconstruction of 

dose    (reverse dosimetry) 

    In-vivo oral 

dose 
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2.4. Integrated PBPK/PD coupled miRNA-BDNF-cell survival pathway 

Coupling of PBPK to mechanistic miRNA-BDNF pathway model has been done with the 

integration of brain PFOS concentration as a target input that perturbs key component 

miRNA of the pathway. The interaction of the PFOS with the miRNA has done based on 

empirical evidence but the mechanism behind the interaction is still not clear. The 

coupling was done by applying stimulatory Emax model that assumes PFOS increase the 

concentration of miRNA via increasing their synthesis rate. Finally the output we 

measured as a percentage of neuronal survival rate considering two scenarios; with and 

without PFOS exposure. The conceptual diagram is provided in figure 4. 

The integration of PFOS into the BDNF pathway is done by indirect pharmacodynamic 

interaction model with the following equation; 

𝑑

𝑑𝑡
(𝑚𝑖𝑅𝑁𝐴) = 𝐾𝑖𝑛𝑚𝑖𝑅𝑁𝐴

∗  (1 +
𝐸𝑚𝑎𝑥∗𝐶

𝐸𝐶50+𝐶
) − 𝐾𝑜𝑢𝑡𝑚𝑖𝑅𝑁𝐴

∗ 𝑚𝑖𝑅𝑁𝐴0                       (5) 

Where, 𝐾𝑖𝑛𝑚𝑖𝑅𝑁𝐴
 = synthesis rate constant of miRNA, 𝐾𝑜𝑢𝑡𝑚𝑖𝑅𝑁𝐴

 = dissipation rate of 

miRNA, 𝑚𝑖𝑅𝑁𝐴0 = initial value of miRNA, Emax = maximum response for miRNA, C 

= brain concentration of PFOS, EC50 = concentration at which PFOS shows 50% 

response of Emax. 

 

Fig. 4. Represents the pharmacodynamics interaction of PFOS-miRNA and the 

consequent effect on neuronal survivability rate. 

2.5 Model parameterization  

The mi-RNA-mRNA-Protein pathway parameters were taken from the previously 

published model (Wang et al., 2010).  Specifically, BDNF protein synthesis rate was used 

instead of generic protein synthesis. There was no BDNFmRNA synthesis rate data 

available in the literature and for that generic BDNFmRNA rate constant was used. BDNF 

synthesis rate was taken from the Castillo et al., (1994) and  Menei et al., (1998). 

Furthermore, the synthesis rate was scaled accounting number of neuronal cells to the 

whole body per kg weight nmol/hr/kg(0.75). The degradation rate of BDNF was 
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parameterized from half- life by using the following relationship: degradation rate = 

Ln2/t1/ 2.  

For the quantification of neuronal survival against BDNF exposure, the required Emax 

and EC50 parameters for establishing sigmoid Emax model were taken from O’Leary and 

Hughes,(1998).  The Emax and EC50 values for the reaction are implemented as such as 

these parameters tend to have a similar trend across species (Mager et al., 2009). PBPK 

parameters for the PFOS were used from the previously published article (Fabrega et al., 

2014). The dynamic interaction data for the PFOS to miRNA, such as EC50 estimated 

from Li et al., (2015). All the parameters that were used for developing mechanistic model 

are provided in Table 2. All the model equations for the mechanistic and integrated 

PBPK/PD-mechanistic models are provided in the Annex-5  

Table 2. Scaled parameters for Coupled PBPK/PD mechanistic pathway model. 

Description  Parameter 

symbol 

Value  References 

BDNF synthesis 

rate 

Kin_BDNF 0.023 

nM/hr/kg 

0.75 

(Menei et al., 1998) 

BDNF 

dissipation rate 

Kout_BDNF 0.231hr-1 (Fukumitsu et al., 2006) 

Maximum BDNF 

effect on cell 

survival 

Emax 100 Assumed 

Half maximum 

concentration of 

BDNF for 

neuron 

survivability 

EC50_BDNF 

 

5 X10-3 nM (O’Leary and Hughes, 1998) 

Cell degradation 

constant 

Kd_cell 2.45 X 10-5 

hr-1 

(Clarke et al., 2000) 

Maximum PFOS 

effect on miRNA 

Emax_miRNA 2.4 Fixed as similar with 

maximum fold change(Li et 

al., 2015) 

Half maximum 

stimulatory 

concentration of 

PFOS for 

miRNA 

EC50_PFOS 1000 nM (Li et al., 2015) 
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Volume of 

cytoplasm 

V_cyt 4 X10-12 L (Bartlett and Davis, 2006) 

Volume of 

nucleus 

V_nucleus 4 X 10-13 L (Carlotti et al., 2000) 

Pri miRNA 

synthesis rate 

k_primiRNA 3.6 nM/hr (Pérez-Ortín et al., 2007) 

mRNA synthesis 

rate 

k_mRNA 0.36 nM/hr (Bartlett and Davis, 2006) 

Adjusted 

Coefficient of R 

promoting pri-

miRNA 

maturation 

R_miRNA 0.001 nM (Wang et al., 2010) 

pri-miRNA to 

pre-miRNA(n) 

catalyzed by R 

k_primiRNA-

premiRNA 

360 hr-1 (Wang et al., 2010) 

premiRNA 

transport rate 

T_premiRNA 180 hr-1 (Wang et al., 2010) 

Rate of 

premiRNA(c) 

conversion to 

dsmRNA 

k_premiRNA-

dsmRNA 

36 hr-1 (Ma et al., 2008) 

miRNA 

formation rate 

k_miRNA 36 hr-1 (Kohler and Schepartz, 

2001) 

miRNA-induced 

RISC formation 

rate 

k_RISC 108 hr-1 (Bartlett and Davis, 2006) 

mRNA-RISC 

complex 

formation rate 

k_[mRNA-

RISC] 

3.6 nM/hr (Haley and Zamore, 2004) 

mRNA cleavage 

rate 

kc_mRNA 25.27 hr-1 (Haley and Zamore, 2004) 

Dissociation rate 

of RISC complex 

kd_[mRNA-

RISC] 

3.6 hr-1 (Wang et al., 2010) 
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Rate of pri-

miRNA 

degradation 

d_primiRNA 0.9 hr-1 (Wang et al., 2010) 

Rate of pre-

miRNA(c) 

degradation 

d_premiRNA 0.9 hr-1 (Wang et al., 2010) 

Rate of dsRNA 

degradation 

d_dsRNA 3.96 hr-1 (Wang et al., 2010) 

Rate of miRNA 

degradation 

d_miRNA  0.9 hr-1  (Wang et al., 2010) 

Rate of RISC 

degradation  

d_RISC 0.36 hr-1 (Wang et al., 2010) 

Rate of mRNA-

bound RISC 

complex 

degradation 

d_[mRNA-

RISC] 

0.077 hr-1 (Wang et al., 2010) 

Rate of mRNA 

degradation 

d_mRNA  0.36 hr-1 (Wang et al., 2010) 

 

3. Results 

The simulation of the model is divided into two parts; first simulations of a PBPK and a 

mechanistic system pathway model individually to get the base model. Later simulation 

of integrated PBPK/PD coupled mechanistic model (systems toxicology) was done. The 

integration of Pharmacodynamic interaction between PFOS and target biomolecule was 

done by using indirect response model. The equivalent exposure doses for the PFOS were 

extrapolated from the in-vitro study of Li et al., (2015). Neuronal survivability was chosen 

as an end point biomarker for the model and mapping of in-vitro data (neuronal 

survivability) to in-vivo was done based on linear interpolation method. The PFOS PBPK 

model codes are provided by Fabrega et al., (2014) which was used in this paper to 

simulate PBPK model.  

The mechanistic system model simulations were performed for the miRNA-BDNF 

signaling pathway and the resulting time course of BDNF was recorded as model output. 

The output of the BDNF time course data was used for performing the simulation to get 

the percentage of cell survivability by applying indirect sigmoid response model. This 

part of simulation results recorded as the normal baseline value for the model.  The figure 

6 (base model of the mechanistic pathway) showed the baseline value of important 

endogenous biomolecules like miRNA, BDNF, RISC(RNA- induced silencing complex), 

RISCm (complex form between BDNFmRNA and RISC) and percentage of neuronal cell 

survivability. The mechanistic system model has optimized to achieve the maximum 

neuronal cell survivability steady state which is in compliance with experiment data given 
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by Gillespie et al., (2003). The model has been simulated for 20 days in order to achieve 

the steady state. The miRNA regulation of BDNF via forming a complex between RISC 

and BDNFmRNA called RISCm has been documented can be seen in the base model 

figure number 6 which is in compliance with Wang et al., (2010) model. This complex 

formation between RISC and BDNFmRNA was enhanced by the miRNA resulting in a 

decrease of BDNF protein synthesis. The RISC complex binds with the mRNA at the 3’ 

UTR and inhibits its further translation to protein. The base model also able to capture the 

phenomena of regulating BDNF protein by miRNA considered to be one of the important 

biological processes. The behavior of model curve for BDNF and cell survival are in a 

similar trend, which was also observed in in-vivo experiments (Rodríguez-Tébar et al., 

1992; O’Leary and Hughes, 1998; Fletcher et al., 2008). The model shows BDNF 

maintains cell survivability at the steady state level of around 95 percent. In Figure (6), a 

sudden drop in the cell survivability to 40 percent level could be explained considering 

the lag time in the attainment of BDNF steady state level. The simulation of the base 

model (Figure 6) shows that model able to retain the steady state for cell survivability at 

95% once BDNF attained a steady state.  A similar observation was reported by Gillespie 

et al., (2003) experimental study that survivability of neuron in presence and absence of 

BDNF were 90 percent and 40 percent respectively. 

The PBPK model simulation was carried out for the PFOS for the estimated oral 

equivalent dose (12 doses) given as a single dose. Figure 5 shows the simulation of the 

internal target tissue (brain) concentration of PFOS with 12 different dose levels 

providing different Cmax in dose dependent manner over the time period. The dose was 

given at the 240hr as shown in figure 6 when the mechanistic base model reaches steady 

state.  

The figure shows a simulation of the time course of PFOS concentration in the brain for 

each 12 different doses corresponding to in-vitro dose. The single oral dose was given at 

240hr. 
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Fig. 5.   Simulated brain concentrations of PFOS over the time period: This figure 

shows a simulation of the time course of PFOS concentration in the brain for each 12 

different doses corresponding to in-vitro dose. The single oral dose was given at 240hr. 

The coupling of PBPK into the mechanistic model was done by fitting in-vitro data, 

estimated from Li et al., (2015) study, via applying Emax sigmoid model. The developed 

coupled PBPK/PD-mechanistic model quantifies the dynamic of the endogenous 

biomolecular concentration of different species at the different level of PFOS exposure 

that perturb key components of the system (in the miRNA model). The interaction of the 

PFOS to the given pathway was modeled by implementing indirect sigmoid response 

model Eq. (5) for PFOS-miRNA interaction. Consequently, dynamic changes in miRNA 

level as a function of PFOS concentration over time was observed (figure 7). The PFOS 

alter the steady state of all biological components involved in the pathway via stimulating 

input of miRNA disturbing whole mechanistic pathway. The integrated model was 

simulated for 12 different in-vitro equivalent in-vivo doses describing the whole system 

as one unit rendering time course of endogenous concentration after exposure to 

environment chemicals distinct from normal condition (Base model).  

 

Fig. 6.  Mechanistic base models  

The figure shows simulated key biomolecules such as RISC, miRNA, RISCm, BDNF and 

percentage neuronal cell survivability.   
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 Fig.7. Simulated time vs miRNA level: Figure depicts simulated miRNA     

concentration after single oral dose of PFOS for 12 different dose levels. 

 

Fig. 8. Simulated time vs RISCm level. The figure shows the increase in RISCm level 

after single oral dose of PFOS for 12 different dose levels. 
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Fig. 9. Simulated time vs BDNF level. The figure depicts simulated BDNF concentration 

after single oral dose of PFOS for 12 different dose levels. 

 

 

Fig. 10. Simulated vs predicted neuronal cell survivability (percentage). The figure 

depicts simulated vs observed neuronal cell survivability (percentage) after single oral 

dose of PFOS for 12 different dose levels. 

The figure 7, 8, 9 and 10 shows the effect of a chemical on the endogenous biomolecule 

concentration (miRNA, RISCm, BDNF) and cell survivability (in percentage) 

respectively over the time period. Figure 7 illustrates the dose depended effects of PFOS 
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on miRNA level following single exposure to PFOS (dose given at 240hr). Figure 8 

illustrates the increase in the formation of the RISCm complex after the PFOS exposure. 

The increase of RISCm complex concentration is due to increase of miRNA level which 

can be considered as an indirect action of PFOS. The highest level of miRNA is observed 

at tmax (time point of Cmax) of PFOS and, with the elimination of PFOS from the system, 

shifting of miRNA level to steady state concentration at the level higher than baseline 

concentration was observed. Consequently, a decrease in the level of BDNF (figure 9) 

was noted as increase miRNA level facilitates the formation of the RISCm (figure 8), 

posttranscriptional regulatory mechanism of miRNA (explained in 2.1). With the increase 

in dose level, the difference between base steady state concentration and shifted steady 

state concentration was higher that can be seen in figure 7, 8, 9 and 10. Figure 10, 

illustrates the time vs neuronal survivability that describes the effect of PFOS over time 

as an end point biomarker.  

4. Discussion and Conclusions  

In this study, an attempt was made for the development of an integrated PBPK/PD 

coupled mechanistic model that allows assessing or characterizing the potential impact of 

environmental chemicals on a biological system. An Integrated PBPK/PD PFOS model 

and a mechanistic (miRNA-BDNF-neuronal survival) system model were evaluated 

individually. The generic mi-RNA model was adapted with a modification in BDNF as a 

target output protein. The regulation of BDNF involves several pathways among which 

miRNA-dependent pathway is an important one. The endogenous level of BDNF has an 

important effect on the survivability of neurons. For example principal hierarchy of 

BDNF signaling and consequently activation of MAPK/ERK/AKT pathway is well 

understood (Michael et al., 1997; Murer et al., 2001 Bursac et al., 2010; Boulle et al., 

2012), but how these events control cellular survival are not well understood. The reported 

relation between chemical exposure and significant changes in BDNF level, consequently 

neuronal adverse outcomes, made a plausible argument of considering BDNF as a good 

biomarker. To keep biological plausibility intact in our mathematical expression, we 

restrict our model to the miRNA-BDNF pathway, and later linking it to the cell 

survivability as a function of the time course of BDNF concentration by applying Emax 

model. The developed mechanistic model shows miRNA-dependent regulation of BDNF 

which is a natural phenomenon of this model retaining the regulatory mechanism of 

miRNA on BDNF. The mechanistic base model (figure 6) well predicted the percentage 

of cell survivability as a function of BDNF concentration. The PBPK model was used to 

estimate the internal target dose of chemicals. The output of PBPK in target organ is used 

as input for the mechanistic system model providing integrated coupled PBPK/PD-

mechanistic system model. This will describe the whole system as one unit rendering time 

course of endogenous biomolecules concentration and their steady state level with and 

without chemical exposure marking the difference between the normal and altered 

biology of the pathway.  

The integrated PBPK/PD- coupled mechanistic system model well describes the observed 

changes in endogenous molecules level during and after discontinuation of exposure to 

the chemical. It can predict the adverse effect of environment chemicals considering both; 

the nature of changes in the system (altered biology) with respect to normal biology, and, 

the capability of an endogenous molecule to retain homeostasis, mimicking the real in 

vivo physiological scenario. Therefore, this kind of model (integrated PBPK/PD- coupled 
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mechanistic system model) can predict risk in more quantitatively as well as 

mechanistically considering pharmacokinetic, pharmacodynamic and relative altered 

biology from normal biology pathway as a consequence of chemical exposure. The 

advantage of Coupled integrated PBPK/PD- mechanistic system model is; it provides 

more understanding towards risk not only based on the target tissue concentration but also 

their effect on the target molecule participating in the biological network. Integrated 

PBPK/PD coupled mechanistic model are able to predict endogenous molecule 

concentration involved in pathway over their time course as a function of chemical 

exposure, which was shown by current developed model as a case study for PFOS  

In summary, a molecular/cellular model that presented in this article mechanistically links 

BDNF involved in directed neuronal growth and neuronal survival, two distinct 

neurodevelopmental processes that use an overlapping molecular (that is genetic) 

machinery. The model does not provide further insights into which of these 

neurodevelopmental processes would be most relevant to the etiology of neurotoxicity, 

or where in the brain these processes are localized to selectively impact on neural 

circuitry. Although epigenetically regulation of BDNF (Lubin et al., 2008) in the brain by 

miRNA is very important were observed from literature in the theoretical network, it is 

unlikely that there would just be a single explanatory model that connects to BDNF on a 

molecular level and corresponding neuronal adverse outcomes. Rather, several etiological 

cascades contributing to neuronal adverse outcome are likely to exist. However, the 

currently developed model considered the following pathway for a series of signaling 

cascade biomolecules such as chemicals-miRNA-mRNA-RISCm-BDNF-neuronal 

survivability, previously described in the conceptual model (figure 2). For the currently 

selected pathway model predicts BDNF as a very sensitive endogenous species 

biomolecule, which maintains the cell survivability at steady state. Although, PFOS does 

not directly target BDNF in our model it still remains the sensitive target which could be 

due to its regulation is highly dependent on miRNA level. Comparison of figure 9 and 10 

allow us to see the decrease in neuronal survivability (figure 10) is highly sensitive 

towards BDNF level (figure 9). The model shows that BDNF regulation (miRNA based 

regulation) is very much important for neuronal cell survivability. This shows BDNF 

could be an interesting species (biomarker) which can link between both environmental 

exposure and neuronal adverse outcomes.  

There was an assumption of the existence of an empirical relation between the in-vitro 

toxicity to in-vivo toxicity (Wambaugh et al., 2013). Moreover, tools have been 

developed to translate in-vitro toxicity dose-response to predict the in-vivo toxicity by 

applying reverse dosimetry concept that provides equivalent in-vivo dose required to 

produce in-vitro toxicity, eventually validation of model was done by  comparing POD 

(point of departure) from predicted in vivo dose response with reported POD of chemicals 

(Abdullah et al., 2016; Forsby and Blaauboer, 2007; Louisse et al., 2016; Wambaugh et 

al., 2013).  In this case study of PFOS model (PBPK/PD coupled mechanistic model) due 

to lack of in-vivo data particularly for the following proposed mechanistic pathway, in 

worst case scenario we constrained to in-vitro data for qualitative or partial validation of 

the developed model. To check the performance of the developed PBPK/PD coupled 

mechanistic model, neuronal cell survivability was selected as an end point. Two 

approaches were used for this purpose; first reconstructing oral in-vivo equivalent dose 

for an in-vitro dose; second, response data are generated for identified in vivo doses by 

mapping in vitro toxicity data (in this case neuronal cell survivability). Figure 10 
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illustrates, the simulated response variable (% neuronal survivability), for dose equivalent 

to in-vitro conc., vs observed linear interpolated response variable. Although model could 

not able to predict all the observed data, however, most of them were within the simulated 

range. The simulated maximum % of neuronal cell survivability on the lower side was 

around 35%, which is higher than the experimental observation of around 16 to 20%. This 

could be possibly explained by several facts such as current model uses adaptability 

mechanism which lacks in the in-vitro system, only one pathway has been accounted, 

neglecting the possibility of several mechanisms, empirical estimation of PFOS-miRNA 

interaction and the inherent uncertainty in in-vitro data and model. 

The purpose of this work was to develop a simple model which combines 

pharmacokinetic model like PBPK predicting the internal tissue dosimetry and 

mechanistic system model via quantifying the Pharmacodynamic interaction of chemicals 

with key biomolecule components involved in the mechanistic system of biology.  The 

measurement of mi-RNA, mRNA, BDNF in the brain at different time points gives 

evidence in parallel changes and difference in between them; significantly improves the 

understanding of relation with neuronal adverse outcomes. Here in this model, the 

mechanistic pathway can be considered as an equivalent AOP pathway for neurotoxicity. 

However, this can be further extended by integrating identified new pathways responsible 

for neurotoxicity. There are many ways that model can be extended to increase its utility, 

but certainly, the mi-RNA-based post-transcription regulation of BDNF not limited to 

PFOS. The same concept can further be applied to other environmental chemicals altering 

the similar system. 

In this paper, we have partially validated our model, considering our objective of this 

paper is to focus on the illustration of tools that use simple integrated PBPK/PD-coupled 

mechanistic pathway model involving three main steps 1.Development of PBPK model, 

2. Development of mechanistic system model, 3. Couple PBPK with the mechanistic 

model by integrating PD model that quantify perturbed biomolecule (a component of the 

mechanistic model) as a result of chemical exposure. This step developed a new 

framework that could utilize the existing normal mechanistic pathways model and 

integrated PBPK/PD model, a step towards systems toxicology based models.      
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5B. All- in-One-Model for understanding ROS induced 

hepatotoxicity: From organ-specific pharmacokinetics of 

Flutamide to predicting its toxic-dynamics effects 

Abstract: 

Flutamide is a selective androgen receptor antagonist widely used for prostate cancer and 

is also an EDC (endocrine disrupting chemical). Flutamide treatment patients are at a risk 

of developing liver toxicity due to its idiosyncratic adverse effect. The  desired effects  

are  achieved  when  the  concentration  of  the  chemical  is  tuned  well.  So  as,  to 

minimize adverse actions off-target, it is necessary to consider (epi-) genetic 

heterogeneity of the population at  both  the  levels  of  kinetics  and  dynamics models.  

In vitro assays identified alterations of mitochondrial respiration and generation of 

reactive oxygen species as potential mechanisms underlying flutamide hepatotoxicity. 

This study details the application of integrative systems toxicology to determine whether 

these mechanisms could account for the liver toxicity observed in in-vivo and in-vitro 

assays.  Integrative systems toxicology included physiologically based pharmacokinetics 

simulation to estimate the internal exposure of the hepatic cell to flutamide and its 

metabolites. Then coupling of estimated tissue dose of flutamide and consequent 

perturbation in endogenous ROS was carried out using direct pharmacodynamics 

response models. This perturbation (changes in the ROS level) was dynamically linked to 

a systems biology model of ROS.  This integrative approach allowed us to predict several 

variables of ROS model such as antioxidant regulated genes, mitochondrial respiration 

and ATP level as a function of flutamide dosing.  

Keywords: PBPK, PD, Systems biology, ROS, Integrative systems toxicology 
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1. Introduction 

Flutamide is a selective androgen receptor antagonist. It exerts its action by inhibiting 

androgen binding to its receptor or by inhibiting its uptake in target tissue (prostrate).  It 

is used for the management of locally confined Stage B2-C and Stage D2 metastatic 

carcinoma of the prostate either alone or in combination with luteinizing hormone-

releasing hormone agonists (LHRH). Flutamide produces liver toxicity at its therapeutic 

dose and the rate of serious liver injury (patient death) is estimated to be 3 per 10,000 

users (Wysowski and Fourcroy, 1996). It shows a high incidence of hepatic side effects 

especially in women using the drug off-label for the treatment of polycystic ovarian 

disorder and hirsutism (Generali and Cada, 2014). The development of hepatotoxicity  

during flutamide treatment is  presumed to be its idiosyncratic adverse reaction (García 

Cortés et al., 2001; Gomez et al., 1992; Wysowski and Fourcroy, 1996).   

Idiosyncratic adverse effects are characterized by their delayed onset, occurrence in a 

unique, small proportion of individuals depending on their genetic background and other 

factors such as generation of reactive metabolites (Dieckhaus et al., 2002). Particularly in 

the case of liver idiosyncratic adverse reaction, the  role of variability between patients in 

the activity of metabolic enzymes in the  generation of oxidative stress and in the 

consequent mitochondrial dysfunction needs to be better understood (Andrade et al., 

2009; Boelsterli and Lim, 2007).  Hence, detailed pharmacokinetics of the responsible 

chemical as well as of other factors affecting the generation of reactive metabolites and 

their linking with a systems biology describing  molecular and functional changes due to 

perturbation and adaptation in biological pathways should be an useful approach towards 

understanding the causes of chemical-induced idiosyncratic liver toxicity (Kaplowitz, 

2005). 

Flutamide undergoes oxidative metabolism by CYP450 generating reactive metabolite(s) 

such as: flutamide hydroxide (Flu-OH), 4-nitro-3-(trifluoromethyl)-aniline (FLU-

1) and 2-methyl-N-(4′-amino-3′ [trifluoromethyl] phenyl) propanamide (FLU-6) 

(Katchen and Buxbaum 1975 ; Shet et al. 1997; Kobayashi et al. 2012; Toyoda et al. 2000; 

Wen et al. 2008). The reaction catalysed via CYP3A and CYP1A generates oxidative 

metabolites responsible for covalent binding to microsomal protein (Berson et al., 1993). 

Wen et al. (2008) reported that FLU-6 i.e. the product of nitro reduction of flutamide by 

NADPH: cytochrome P450 reductase (CPR) enhanced the hepatocyte cytotoxicity. it has 

been found that FLU induces the expression of CYP1A, CYP2B and CYP3A enzyme 

(Coe et al., 2006).  

Both in-vitro and in-vivo rat studies identified alterations of mitochondrial respiration and 

generation of Reactive Oxygen Species (ROS) as potential mechanisms underlying 

flutamide hepatotoxicity (Coe et al., 2007; Teppner et al., 2016). Moreover, an inhibitory 

effect of  flutamide hydroxide on mitochondrial respiration chain was reported (Teppner 

et al., 2016). This might be a contributing factor to the idiosyncratic adverse effect of 

flutamide due to metabolic variation among individuals. However, Flutamide dosing of 

800 mg/kg/day to CYP1A2 knockout mice showed no sign of hepatic toxicity, except in 

combination with glutathione depletion these mice developed hepatotoxicity (Matsuzaki 

et al., 2006), emphasizing the importance of glutathione mediated antioxidant defence 

mechanism. Flutamide treated Sod2+/− (mitochondrial superoxide dismutase)  mice were 
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more sensitive to hepatotoxicity than wild type (Kashimshetty et al., 2009). This may be 

important for genotypic variation in SOD2 and glutathione peroxidase (GPX1) in the 

human population. All these factors indicate that flutamide toxicity is multifactorial: 

various factors such as generation of the reactive oxygen species, inhibitions of 

mitochondrial respiration, and underlying mitochondrial abnormalities i.e. genotypic 

variation in SOD2 etc. all together can lead to hepatic toxicity. The additional 

mitochondrial effects of 2-hydroxyflutamide, compared with its parent drug, have been 

related to idiosyncratic DILI in flutamide-treated patients (Ball et al. 2016).  

Reactive oxygen species (ROS) are important intracellular signalling molecules produced 

via various processes particularly in redox inside the cell, viz. reactions involving leakage, 

such as  from the mitochondrial electron transfer chain and from peroxisomal processes., 

ROS released from mitochondria and endoplasmic reticulum engages in regulation so as 

to meet the energy demand through transcriptional changes allowing proliferation and 

differentiation of cell (Kanda et al., 2011; Li et al., 2013; Murphy, 2009; Zamkova et al., 

2013). The generated ROS detoxifies through antioxidant defence mechanisms such as 

the one involving Superoxide dismutase, catalase etc. (Espinosa-Diez et al., 2015).  The 

catabolism and metabolism of ROS run parallel to each other and imbalance of these 

process can cause intracellular cell damage (Jaeschke et al., 2012). 

Integrative systems toxicology comprising of PBPK, QIVIVE and Systems biology can 

be used to evaluate how flutamide induces hepatotoxicity integrating in-vitro, in-vivo and 

in-silico approaches. PBPK being mechanistic, it can be used to describe the time course 

of drug concentration at the cellular level in different species like rat, mice and human. 

QIVIVE is very useful in constructing in-vivo dose-response from the in-vitro data along 

with PBPK.  Systems biology model here in this case is the detailed ROS model that 

includes several processes viz. antioxidant defence mechanisms, mitophagy, autophagy 

and apoptosis etc. and their functional interactions across multiple levels of biological 

organization. This integrative framework would allow to investigate how in 

vivo exposure to drugs and their major metabolites induces ROS generation and 

consequently to predict their effect on endogenous molecule that may then lead to 

hepatocyte death. Hence, the objective of this study is to develop an integrative tool that 

describes both the kinetic and dynamic effects of Flutamide via coupling physiologically 

based pharmacokinetics of the drug (PBPK) to a systems biology model of ROS effects. 

To achieve this objective, two levels of hierarchy were used:  First both a PBPK model 

describing the drug-concentration time-course inside the body and a systems biology 

model describing ROS generation in liver, were made.  Second, the two models were 

coupled so as to predict Flutamide toxicity in liver at therapeutic doses. 

In this study, putative mechanisms of flutamide toxicity identified in several in-vivo and 

in vitro assays were evaluated for biological plausibility as the underlying drivers of 

observed liver injury using our new integrative systems toxicology approach. Further, 

PBPK and systems biology models were used independently to test the hypothesis that 

both variations in drug metabolism and variations in capability of antioxidant defence 

with consequent variations mitochondrial dysfunction and ATP depletion, constitute 

mechanisms of flutamide toxicity. The developed integrative systems toxicology model 

was used to explore how inter-patient variability impacted flutamide-induced liver 
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toxicity. This was done by creating virtual populations with variation in anthropometrics 

and biochemistry. 

2. Material and Methods 

2.1. Integrative systems toxicology overview  

Integrative systems toxicology is a multi-scale approach that includes study of chemicals' 

kinetics i.e. ADME (absorption, distribution, Metabolism and Elimination), and, their 

interactions (target dose) with a biological target. Then it arrives at a quantitative analysis 

of molecular and functional changes that occurs across multiple levels of biological 

organization. Here, integrative systems toxicology model has several interacting sub-

models: physiologically based pharmacokinetics (PBPK), pharmacodynamics (PD) and 

systems biology. Coupling of a target tissue dose quantified through PBPK with a 

biological target of ROS network (Systems biology model) is done by using 

pharmacodynamics model.  

Simulations for the current study were conducted in both rat and human model. First in-

vitro rat hepatocyte data were used to simulate the ROS SB model and results were 

compared with experimental data. The previously developed rat flutamide PBPK model 

was used to simulate the flutamide concentrations in plasma and liver using experimental 

dose. Then the integrative model was used to simulate the several components of the ROS 

network and the results were compared with in-vivo rat data to check the performance of 

the model. Then the model is used to investigate the susceptibility of flutamide- induced 

hepatotoxicity in humans by testing our underlying hypothesis. Models are developed in 

both R and COPASI.  

2.2. Model hypotheses and assumptions 

Four alternative hypotheses representing four putative mechanisms of actions were 

formulated in six different models. These hypotheses are as follows: 1) exposure to 

flutamide increases ROS levels in target organ. 2) Not only flutamide but also its 

metabolite flutamide hydroxide increases the ROS. 3) Metabolic activation of CYP1A2 

by flutamide leads to more ROS generation due to higher affinity for flutamide 

metabolites than for flutamide itself. 4) Functional variation in superoxide dismutase 2 

(SOD2) activities could greatly affect flutamide toxicity. Three models were created 

based on the first three hypotheses and rest three model were created by combining 

superoxide dismutase 2 variations factor (4th hypothesis) with each of the rest three 

hypotheses.    

The PK/PD link is made based on the assumption that flutamide levels in situ determine 

the increase in ROS synthesis.    

2.3. In-vivo and in-vitro information input to the model 
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Coe et al. (2006) through rat experimental study reported that flutamide induced a 10 fold 

change in CYP1A2 and a 7 fold change in NAD(P)H dehydrogenase, quinone 1(NQO1). 

The increase in CYP1A2 level was mediated through the  flutamide –induced Ahr 

activation (Coe et al. 2006). NQO1 is a cytoprotective gene which generally detoxifies 

ROS and thus protects cells against oxidative stress. The induction of NQO1 following 

an increase in oxidative stress was mediated through the KEAP1(Kelch Like ECH 

Associated Protein 1)/ Nrf2 (nuclear factor- erythroid-derived 2) like 2/ARE signalling 

pathway (Dinkova-Kostova et al., 2002). This observation was further supported by the 

two experiments; one involves experiment on HepG2 cell line which shows that both the 

flutamide and its metabolite flutamide hydroxide have capability to increase the 

superoxide (ROS) to a very high level (Ball et al., 2016); and the other, flutamide 

increases the Nrf2 regulated antioxidant genes (Coe et al. 2007). In another experiment 

of the in-vitro rat hepatocyte and the in-vivo rat, induction of Nrf2-regulated mRNA 

expression such as glutathione s transferase Π 1 (GSH Π 1), heme oxygenase 1 (HMOX1) 

and NAD(P)H:quinone oxidoreductase 1 (NQO1) was reported upon the exposure of 

flutamide (Teppner et al., 2016). Teppner et al. (2016) experiment involves estimation of 

both the flutamide plasma concentration and the Nrf2-regulated mRNA expression level 

in rats plasma for two different time points (3 hr and 24 hr) upon dosing of 500 mg/kg 

BW of flutamide. Simutanously he also measured the ATP level and Nrf2-regulated 

mRNA expression in two different time points following exposure of the flutamide to the 

rat in-vitro hepatocyte cell line. Ball et al. (2016) carried out the experiment on HepaG2 

cell line and observed that 2-Hydroxyfltuamide, metabolite of flutamide, significantly 

reduced the respiratory complex I in addition to its parent compound flutamide and thus 

increasing the probability of mitochondrial damage. Recently, Zhang et al. (2018) 

reported flutamide-induced hepatotoxicity by inhibiting the Nrf2/HO-1 pathway, in that 

they estimated the ATP content, flutamide-induced ROS generation and Nrf2 expression 

in human hepatocyte cell line for a dose ranging from 12.5 to 100µM. Majorly, Flutamide 

induced liver toxicity is manifested by loss of ATP and mitochondrial dysfunction, which 

is accompanied by several proposed mechanisms among them increase in oxidative stress 

was found to be critical.   

2.4. ROS SB model 

The SB ROS model represents the generation of reactive oxygen species in response to 

normal physiological stress.  It is fundamentally based on several design principles 

namely; ROS-induced mitochondrial aging, protection of mitochondria by providing 

stability; the Keap1-Nrf2 module, providing homeostasis by regulating antioxidant 

response elements (ARE); the NFκB  component as a survivability factor, helping in 

recovering damaged mitochondria; and  DJ-1, a ROS sensor that coordinates Nrf2 and 

NFκB. The model that has been developed and validated with experimental data 

previously (Kolodkin et al., 2018), will be used in this study.  

2.5. Flutamide PBPK model 

The previously developed and validated PBPK model was taken from Chapter 2.B 

(Sharma et al., 2018). This PBPK model comprises nine compartments, i.e. gut, liver, 

plasma, lungs, kidney, fat, gonads, prostate and a compartment representing the rest of 

the body. The exchange of the flutamide between blood and tissue in each organ is 
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described by flow limited processes under the assumption that at steady state the total 

chemical concentration in the tissue and in the plasma are in equilibrium with each other. 

Our previously developed rat model was used to simulate the (Teppner et al., 2016) rat 

experimental kinetic data obtained by Teppner et al. (2016). This experiment had involved 

administering the flutamide orally at 0.5 g/kg to six male F344 rats and estimating 

flutamide plasma concentration at 3 hr and 24 hr.  The PBPK model will here be used to 

predict the intracellular concentrations (target concentrations) for both flutamide and its 

metabolite as a function of time after oral administration of the drug.  This target/biophase 

concentration is the dose available to interact(s)/perturb the biological target(s)/systems. 

The computations were carried out for 15000 individual model instantiations. 

Instantiations differed in the value of one parameter at a time from the set of kinetic 

parameters marked in chapter 2B Table 1. Parameter values were drawn at random from 

log normal distributions about the mean with standard deviations of ±1.5.   

3. Results  

3.1.  Pharmacokinetics of flutamide in rat (PBPK model)  

The flutamide PBPK model reported in chapter 2B was used to simulate the time course 

of plasma and liver flutamide concentrations (Fig. 1& 2) for 24 hr.  The model input of 

the rats’ body weight ranged from 250 to 300 g and a flutamide oral dosing of 500 mg/kg 

body weight was considered, as reported in Teppner et al. (2016).  

 

Fig.1: Simulation of flutamide plasma concentrations in the rat after an oral dosing of 

0.50 g/kg BW. Blue lines: 2.5 and 97.5 percentiles of flutamide concentration distribution 

function estimated throught 15,000 iterations taking random values from the distribution 
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functions of the parameters. Gray lines: 20 simulations chosen at random from the 15,000 

iterations. Red line: median prediction.  The green dots indicate the experimental 

observed mean concentrations in the rat after an oral dosing of 0.5 mg/kg BW.  Black 

lines indicate the +/- sd reported in Teppner et al. (2016).   

The model of Sharma et al. (2018) over-predicted flutamide plasma concentrations at 

higher dose (Fig.1), possibly due to dose dependent CYP enzymes’ induction by the 

flutamide via Ahr activation (Coe et al., 2006). Coe et al reported a 10log[CYP1A2]  

increase in the range of 0.6 to 1.1 (i.e. a 4 to 13 fold change) for dosing in a range of 16 

to 500 mg/kg/day.  The current study involves simulation of flutamide concentration for 

500 mg/kg BW oral dosing to the rats, which is 100 times higher than the dosing of 5 

mg/kg on the basis of which the previous model (Sharma et al., 2018) was developed. The 

extrapolation of the model from a low dose to this much higher dose may lead to changes 

in dose dependent kinetics particularly in absorption and metabolism rates. For this 

reason, we here taken a high uncertainty (±2SD) for  the parameter value of the fraction 

absorbed by the gut, assuming high dosing might cause chemicals to be left unabsorbed.  

We also consider high uncertainty (±2SD) for metabolic parameters assuming there might 

be a dose dependent metabolic effect. Although there might be additional experimental 

uncertainties associated with the limited number of animals that could be sued per 

experimental time point, as well as gender and species variations and plain experimental 

error, with these minor modifications, the experimentally observed concentrations fell 

within the model’s output range. The model prediction could be improved taking into 

account the enzyme induction in IVIVE (scaling of metabolism data from in-vitro to in-

vivo).    

Then this model was used to simulate the flutamide concentrations inside the liver which 

is the target organ of interest in this study. Fig 2 represents the resulting flutamide liver 

concentrations in rats as a function of time after oral dosing. The flutamide concentration 

inside the liver was modelled to be higher than its plasma concentration, which is obvious 

as the chemical absorbed by the gut has to pass the liver through the portal vein before 

reaching the plasma. A similar trend was observed in the previous study (Sharma et al., 

2018; Chapter 2B). 
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Fig. 2: Simulation of flutamide liver concentrations in the rat after an oral dosing of 0.5 

mg/kg BW. Blue lines: 2.5 and 97.5 percentiles; Gray lines: 20 simulations chosen at 

random from the 15,000 iterations. Red line: median prediction.   

3.2. Pharmacokinetics of flutamide in human (PBPK model) 

The model built previously by Sharma et al. (2018) (Chapter2B) was used to predict the 

transport and distribution of flutamide in the human body.  This should also allow 

simulating flutamide dynamics in the particular target cells, e.g. hepatocytes. This model 

was used to simulate a multiple dose scenario, which involved 1st day single dose of 0.25 

g and then a dose of 0.25 g three times a day from the 2nd to the 8th day.  The results are 

presented for plasma both for flutamide and its metabolite flutamide hydroxide and liver 

in figures 3(A & B) and 4, respectively. The concentration in the liver was again 

approximately 10 to 15 times higher than the plasma flutamide concentrations. However, 

flutamide was rapidly cleared from the liver, as compared to the plasma. The output of 

this PBPK model, i.e. the flutamide concentration in the liver as a function of time, was 

used as an input to the integrative systems toxicology model.  
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Figure 3: PBPK model predictions of flutamide (A) and flutamide hydroxide (B) plasma 

concentration in human following a 0.25 g oral dose of flutamide on a first day and then 

0.25 g three times a day from the 2nd to 8th day. Red lines: median predictions; blue lines: 

2.5 and 97.5 percentiles; gray lines: 20 random simulations. The green dots and black 

lines indicate the mean +/- sd concentrations reported in Radwanski et al., (1989). 
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Figure.4: PBPK model predictions of flutamide liver concentration in human 

following a 0.25 g oral dose of flutamide on a first day and then 0.25 g doses three 

times a day from the 2nd to the 8th day. Red line: median prediction; blue lines: 2.5 

and 97.5 percentiles; gray lines: 20 random simulations. 

3.3. In-vitro experiments simulation (ROS SB model)  

In this section, our integration of the Flutamide PK model with the dynamic intracellular 

model of oxidative stress effect is documented. The rate constant for the induction of 

endogenous ROS was optimized against the observed in-vitro experimental data and was  

found to be close i.e. 1.2 X 10-4 hr-1 to the value reported by Leclerc et al. (2014). The 

PK-ROS (in-vitro) systems biology (SB) model was then used to simulate several 

components of ROS for various in-vitro concentrations of flutamide at different time 

points. Results are presented in figures (5-8). Superoxide (O2
•−) is considered to be the 

proximal mitochondrial ROS (Murphy, 2009). The experimentally observed 

mitochondrial superoxide (mitoSoX) and hydrogen peroxide (H2O2) levels were used to 

simulate the flutamide induced oxidative stress and to check the performance of the model 

(Fig 5). Flutamide concentrations ranging from 0.05 to 500 µM were used as an input for 

the model to simulate and the respective responses at 2, 6 and 24 hr were plotted with 

their means and standard deviations. The mean and standard deviation were calculated 

for the ensemble of 15000 instantiations of the same model, which were created based on 

a lognormal statistical distribution of two parameters, i.e. the flutamide-induced ROS 

synthesis rate constant, and the internal degradation rate constant of flutamide. The model 

suggested that at 500 µM concentration, ROS levels between 2h and 24 h should vary 

greatly (Fig. 5A & C; blue bar). This might be due to the fact that increase in ROS level 
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activates the Nrf2-KEAP1 which in turn regulates the ROS by increasing the synthesis of 

ARE (Kolodkin et al., 2018; Chapter 4).  

The model showed a good prediction of the experimental data. The simulated results of 

several doses at different time points showed increasing ATP depletion with the 

increasing concentration for initial time points. The simulated and observed ATP 

concentrations for the 300 µM dose were much lower that these concentrations for the 

lower doses ranging from 0.05 to 100 µM. At the dose of 300µM, the model predicted a 

high amount of ROS, which caused a massive depletion in ATP at initial time points. 

Comparing ATP level between figure 6.A and 6.C at 24hr one could see, the ATP started 

to recover. Eventually, after stopping the dosing, the ATP able to recovered back to its 

initial steady state magnitude after a 3 to 4 days approximately (data has not shown). 

Figure 7 shows the simulated vs experiment data on NQO1 and HOMOX1 leves at three 

different time points (2, 6 and 24hr) at 50 µM and 100 µM in-vitro concentrations.  The 

time dependent increase in the level of the Nrf2-regulated Antioxidant Response Element 

(ARE) (NQO1) can be observed. In figure 7B, initially there is increase in Nrf2-regulated 

HOMOX1 which then slowly decreased. Figure 7, the time dependent increase in 

concentration of of Nrf2 regulated NQO1 (Antioxidant response element) was observed. 

The synthesis of antioxidant elements involves the activation of the downstream 

signalling cascade loop (Nrf2-KEAP1-ARE) (Chapter 4). The time lag between the ROS 

induced Nrf2 activation and antioxidant response elements (ARE) activation peak 

concentration should be the time required for the system to find a new balance. In other 

words, this may be the time required to back regulate the ROS to a new steady state where 

the cells can maintain enough ATP and healthy mitochondria for their survival.  

Figure 8 represents the observed vs predicted relative expression of P62mRNA. The 

model predicts the minor time-dependent and flutamide dose-dependent increases in 

expression of P62mRNA observed experimentally.     
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Fig 5. Flutamide in-vitro concentrations-response relationship for relative ROS levels at 

three different time points computed for the in-vitro setting of  incubating cells from time 

zero onwards in a medium containing flutamide at various concentrations. A) corresponds 

to 2 hr, B) corresponds to 6 hr and C) corresponds to 24 hr. The PK-SB model simulated 

for various in-vitro concentrations (provided in the abscissa of the figure).  The results 

were compared against the corresponding experimental data reported in the literature. 

Blue bars indicate simulated data with the black bar representing ±SD which is calculated 

from the ensemble of 15000 models. The red bars are experimentally observed data 

relative mitoSoX (mitochondrial superoxide) at 2hr reported in (Ball et al., 2016)and 

relative H2O2 at 24 hr reported in (Zhang et al., 2018).   
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Fig 6. Flutamide in-vitro concentrations-response relationship for intra-hepatocyte ATP 

concentration at various time points after incubation from time zero in a medium 

containing flutamide at the concentration indicated A) corresponds to 2 hr, B) corresponds 

to 6 hr and C) corresponds to 24 hr. The PK-SB model was simulated for the various 

concentrations provided on the abscissa of the figure.  The calculated ATP concentrations 

relative to the one at zero dose (blue bars) are compared against the experimentally 

observed data reported in the literature (red and orange bars). The black lines represent 

±SD which is calculated from the ensemble of 15000 models. A) The red bars are  the 

experimentally observed data reported in Ball et al. (2016) (relative to the ATP 

concentration at 2hr), B) red bars  reported in Teppner et al. (2016) (relative to ATP at 

6hr) and (C) red and orange bars experimentally observed relative to [ATP] at 24hr as 

reported in Teppner et al. (2016) and Zhang et al. (2018) respectively.  
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Fig 7. Flutamide in-vitro concentrations-Response Bar-plot; A) relative NQO1 value at 

different time points (2, 6 and 24 hr) B) Relative Nrf2 value at different time points (2, 6 

and 24 hr). The PK-SB model was simulated for different doses (as indicated on the right-

hand side of the figure) and the results were compared against the experimentally 

observed data reported in the literature. Blue bar plots indicate simulated data with black 

bar representing ±SD, which was calculated from the ensemble of 15000 models. 

Gradient red color bars are experimentally observed data reported in (Teppner et al., 

2016).    
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Fig 8. Flutamide in vitro concentration-Response Bar-plot for relative P62mRNA level at 

different time points after cells’ incubation with flutamide. The PK-SB model was 

simulated for different flutamide concentrations (as indicated below the abscissa) and the 

results were compared against transcriptomic data (http://toxygates.nibiohn.go.jp/toxyga

tes/). Thin black lines indicate ±SD, which was calculated from the ensemble of 15,000 

model instantiations. The gradient red color bars present the experimentally derived 

expression data

3.4. Integrative systems toxicology  

Then, the validated PBPK model and ROS SB model were coupled with the aim of 

obtaining an integrative systems toxicology model. In the previous section, the ROS SB 

model was made flutamide-specific by introducing the rate constant for flutamide-

induced ROS synthesis externally and by comparing the output of the model against the 

experimental data (section 3.3).  In the present section the output of the PBPK models of 

sections 3.1 and 3.2, i.e. the cellular concentration of flutamide (in liver) was used as an 

input to the ROS model. In this section we examine whether this indeed allows us to 

predict dynamically the response variables of the ROS model as a function of flutamide 

dose. We used both rat- and human- specific PBPK model for this coupling to the SB 

model (the SB model was kept the same for both species), presuming that 

pharmacokinetic differences alone would already lead to the disparate response. Three 

main components of ROS SB, i.e. ATP, Nrf2 and Cytc were simulated in response to 

flutamide liver concentrations. ATP and Cytc levels were taken to represent to 
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mitochondrial function and cell survivability, respectively, whilst Nrf2 should 

corresponds to the antioxidant functionality.    

3.4.1. Integrative systems toxicology for rat 

Three main components of ROS SB, i.e. ATP, Nrf2 and Cytc in rat liver were simulated 

in response to oral dosing of rat with flutamide. The results are presented in Figure 9. 

Upon dosing of the flutamide at 0.5 g/kg BW, the Nrf2 protein level increased to its 

maximum level responding to an increase in ROS as a function of flutamide-induced ROS 

(Fig 9.A). As the flutamide concentration declined in the liver, the Nrf2 level also 

decreased until it reached its steady state level. However, in some model instantiations, 

flutamide-induced ROS caused an initially rather strong drop in the ATP level (lower blue 

line) which did not recover back to its basal steady state level in 24 hr, whilst the model 

simulation at median and 97.5th percentile recovered very fast (Fig 9.B). The ATP levels 

in the former case were low enough to be lethal.  Fig 9C represents the cytochrome C 

level.  Initially it went up, but very soon thereafter its level decreased. Cytochrome C 

generally indicates the cell apoptosis process, apoptosis being promoted by high levels. 

The level of Cytc predicted by the model showed no sign of apoptosis. The strong 

decrease in the cytochrome c level in some cells might block the electron transfer chain, 

cause an increased reduction of its bc1 complex and an increased ROS production by 

NADH dehydrogenase (Complex I).    Similar results were obtained by Teppner et al. 

(2016) in a rat experimental study These authors also measured the Nrf2 regulated genes 

where they observed a 94±40 fold change for NQO1. A highly expressed Nrf2 regulated 

gene suggests that there is a significant increase in the expression of the antioxidant genes 

that it regulates. Our model results (Fig 9D) showed a 10 to 100 fold increase in Nrf2 

expression (2.5-97.5 percentile). 
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Figure 9: PBPK/ROS SB (Integrative systems toxicology) model predictions of 

the effect of flutamide on various components of the ROS systems biology 

network in response to an administration of a 0.50 g/kg BW oral dose of flutamide 

to the rats; A) Nrf2 protein, B) ATP, C) Cytochrome c, D) Relative Nrf2 

expression, Red lines: median predictions; blue lines: 2.5 and 97.5 percentiles; 

gray lines: 20 random simulations.  

 

3.4.2. Integrative systems toxicology for the human 

The validated human PBPK model was used as an input function to the SB model. The 

same output response variables were simulated as in the case of rat. Here the dosing 

scenarios are the normal regimen that prostate cancer patients follow. This regimen 

includes a 250 mg oral dose thrice in day. The flutamide liver concentration was taken 

into account as a target organ concentrations predicted by PBPK model (see section 3.2, 

figure 4). The integrative systems toxicology model was simulated for the same dosing 

scenario as the PBPK had been. The results are presented in figure 10 (A to C). After 

administration of the flutamide, Nrf2 went up very quickly by some 5% and its tmax, i.e. 
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the time at which its highest concentration occurred and the drug’s tmax were very similar 

to each other. This shows shows that the homeostatic system’s initiation responds quickly 

to chemical-induced ROS. The maximum level of Nrf2 and particularly of the proteins 

that it induces should keep the ROS under balance by maximizing their detoxification 

(increased Nrf2 triggers the synthesis of antioxidant elements via Nrf2-KEAP1 pathway 

in our model (Chapter 4); data not shown here.  After stopping the administration of drug, 

the system quickly recovered its initial steady state.  This was true for all the response 

variables shown in figure 10.   

 

 

Figure 10: PBPK/ROS SB (Integrative systems toxicology) model predictions of 

effects of flutamide on the ROS systems biology network; A) NRF2 protein, B) 

ATP, C) Cytochrome c, in response to administration of a .25 g oral dose of 

flutamide on a first day and then .25 g three times a day from the 2nd to the 8th day 

to the humans. Red lines: median predictions; blue lines: 2.5 and 97.5 percentiles; 

gray lines: 20 random simulations.  
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3.4.3. Simulation results for several hypotheses  

In this section the results are presented of analyses of the four hypotheses described in 

section 2.2. The model structure was kept same. Six different submodels were created (A 

to F) based on these hypotheses. Model A presumes that only the parent compound 

flutamide is responsible for the generation of ROS in the system. Model B presumes that 

ROS is generated by both the flutamide and its metabolite flutamide hydroxide. Model C 

includes the metabolic activation of CYP1A2 in addition to Model B.  Furthermore, a 

SOD mutation was introduced into the ROS SB model in terms of a 50% knockdown of 

the antioxidant gene (a component of ROS SB). Then the model was run for the steady 

state and the initial state was updated. This SOD-mutation ROS-SB model was coupled 

with PBPK (flutamide) to create three more models i.e., D, E and F.  Model D includes 

the two factors functional variation (SOD mutation) SB model and flutamide induced 

ROS.  Model E includes the SOD mutation SB model + both flutamide and flutamide 

hydroxide induced ROS.  Model F includes SOD mutation, metabolic activation of 

flutamide metabolism by CYP1A2 and Ros induction by both flutamide and flutamide 

hydroxide.  

These models were designed to examine possible flutamide-induced idiosyncratic 

hepatotoxicity and to identify important contributing factors such as the functional 

variability in the human population of flutamide metabolism, the underlying 

mitochondrial functional variability. The simulated levels of healthy mitochondria and 

ATP subsequent to a usual therapeutic flutamide dose of 0.25 g of flutamide thrice in a 

day are presented in Figures 11 and 12.  If only flutamide induced ROS, its dosing should 

have no effect on the level of healthy mitochondria and ATP (Fig 11A and 12A 

respectively). When the effects of flutamide hydroxide were taken into consideration as 

well (model B), there was a significant drop in both mitochondria and ATP level (Fig 

11.B and 12.B). This drop ranged from an approximately 45 % to 2 % fold reduction in 

healthy mitochondria as compared to control (Fig 11.B). The significant drop was 

predicted for a 2.5th percentile indicating a low probability hence possible idiosyncrasy. 

The relative ATP levels for model B ranged from between 55 and 100 % of normal 

suggesting a somewhat lower ATP sensitivity than mitochondrial damage sensitivity. 

Adding the metabolic activation factor to the model i.e. flutamide inducing the CYP level 

which leads to production of more flutamide metabolites (in this case Flu-OH) causing a 

further increase in ROS production due to high affinity  of this metabolite towards ROS 

production than the affinity of the parent compound. This factor caused a slight further 

drop in the levels of both the mitochondria and ATP. (Figures 11C and 12C).  

By itself the hypotheses of a subpopulation with a mutation in the SOD2 enzyme had little 

impact on the mitochondrial damage (Fig. 11D) and the ATP depletion (Fig. 12D) caused 

by the flutamide parent compound. However, also including the metabolite (Flu-OH) and 

its effects on ROS production, caused a strong drop in both the healthy mitochondria (Fig. 

11E) and the ATP level (Fig. 12E), much stronger than in the case of wild type SOD2 

enzyme levels. Auto-induction of metabolism of flutamide slightly increased the chances 

of hepatotoxicity further (Figs 11C, 11F, 12C and 12F).  The depletion of both healthy 

mitochondria and ATP were highly significant in case of both model E and model F. 

Assuming each random simulation corresponded to a characteristic human individual, it 
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becomes important that only a  2.5th percentile of the populations showed signs of 

hepatotoxicity presuming a threshold of toxicity at 50%. Models E and F (both with SOD 

knockdown), compromised superoxide inactivation and enhanced the flutamide induced 

hepatotoxicity. Similar observations have been reported in rat studies with compromised 

superoxide dismutase activity (Kashimshetty et al., 2009).  

 

Figure 11: PBPK/ROS SB (Integrative systems toxicology) model predictions of the level 

of healthy mitochondria (‘Mito.’) as an effect of flutamide on the ROS systems biology 

network, following administration of  a .25 g oral dose of flutamide on a first day and 

then .25 g three times a day on the 2nd to 8th day, to  humans. Red lines: median 

predictions; blue lines: 2.5 and 97.5 percentiles; gray lines: 20 random simulations, 

predictions taken from the ensemble of 50000 instantiations.   Predictions are for six 

submodels such as A) flutamide induced ROS, B) ROS induced by both flutamide and its 

metabolites, C) Metabolic activation of CYP1A2 + flutamide and flutamide-OH induced 

ROS, D) Functional variation (SOD mutation) SB model + flutamide induced ROS, E) 

SOD mutation SB model + both flutamide and flutamide-OH induced ROS, and F) all 
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factors, i.e. SOD mutation + Metabolic activation + flutamide and flutamide hydroxide 

induced ROS. 

 

Figure 12: PBPK/ROS SB (Integrative systems toxicology) model predictions of relative 

ATP level as an effect of flutamide on the ROS systems biology network following 

administration of  a .25 g oral dose of flutamide on the first day followed by  .25 g three 

times a day on the 2nd to 8th day to the humans. Red line: median prediction; blue lines: 

2.5 and 97.5 percentiles; gray lines: 20 random simulations, predictions taken from the 

ensemble of 50000 models (instantiations). It includes several models such as A) 

flutamide induced ROS, B) flutamide and its metabolites induced ROS, C) Metabolic 

activation of CYP1A2 + flutamide and flutamide-OH induced ROS, D) Functional 

variation (SOD mutation) SB model + flutamide induced ROS, E) SOD mutation SB 

model + both flutamide and flutamide induced ROS, and F) including all factors, i.e. SOD 

mutation + metabolic activation + flutamide and flutamide hydroxide induced ROS. 
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4. Discussion 

The framework we developed for a PBPK-integrated systems toxicology of ROS (ROS-

IST) included the development and validation of two individual models namely a 

flutamide PBPK and a ROS-SB model. The integration of both models was then achieved 

by incorporating drug induced ROS synthesis via a linear pharmacodynamics reaction. 

We confirmed that the integration could be achieved:  our PBPK integrated ROS model 

enabled us to simulate how perturbations in various components of the ROS-managing 

network affected cell viability and toxicity as a function of oral flutamide dosing. This 

demonstrates that this whole framework constitutes a, possibly, first case of integrative 

systems toxicology.  

Integration of an in-vitro pharmacokinetic with a system biology model have been 

reported to predict the adverse effects of chemical (Leclerc et al., 2014). Similarly 

integration of genome scale metabolic networks (GSMNs), PBPK and metabolic gene 

regulation was proposed (Maldonado and Leoncikas, 2017). This approach could link 

Genetic polymorphism in thousands of metabolic enzyme genes mechanistically. General 

limitations or challenges of our approach include the use of simple pharmacodynamics 

rate equations to couple PBPK and ROS Systems biology model and  limit extents of 

validation because several additional experiments are required to confirm the results. 

Flutamide toxicity mainly involves a substantial induction of Nrf2- responsive genes, 

depletion of the ATP level, and mitochondrial dysfunction (Coe et al. 2007).  Our model 

showed a substantial induction of Nrf2 levels in case of both rat and human. However, 

the modelled level of the ATP did not decrease much and recovered quickly when the 

drug was eliminated from the body: There was an increase in NRF2 (antioxidant regulator 

gene) back regulating ROS. As the Nrf2-Keap1 system works as ROS sensor and forms 

the first contour of defense by activating antioxidant response and mitophagy (Chapter 

4).  This activation of Nrf2 signaling that accompanies the increase of ROS generation 

helps to protect against oxidative stress. Our model showed that NRF2 mediated 

antioxidant defense mechanism is important to protect the systems against the chemical 

induced ROS. It also showed that an antioxidant defense mechanism compromised in 

terms of a reduced function of super oxide dismutase, should be expected to cause 

significant drops in the level of healthy mitochondria and ATP level. The model predicted 

the trends established under many experimental conditions (Teppner et al., 2016). 

It has been observed that patients who develop hepatic toxicity symptoms during 

treatment, recover once they stop to take the medication (Brahm et al., 2011). This may 

correspond to our modeling results.  There might be other underlying process that the 

chemical-induced ROS, however. Some of these processes has been discussed and 

reported in the present study.  It seems likely that other processes may be added once their 

kinetic details become clearer.  Already, the model supported the hypotheses of 

involvement of multiple factors in the flutamide-induced hepatotoxicity. 

The results presented in this chapter may be of particular interest to the problem of 

idiosyncratic toxicity.  Because of financial limitations, clinical trials can only involve a 

limited number of individuals.  The statistics thereby are just able to predict average or 
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median behavior robustly, but not the outliers.   We propose that IST may help to fill this 

gap in the way illustrated here, i.e. by computing families of models, each of the many 

family members of which correspond to different sets of parameter values.  These 

computations of families of 15 000 members may then yield small subgroups that exhibit 

extreme, toxicity-related behavior.  Figures 9 and 11 may illustrate this best.  Where the 

median showed moderate changes in important cell properties, a 2.5 percentile showed 

much more drastic changes, drastic enough to lead to cell death.   It remains to be seen if 

in this way we can identify actual cases of idiosyncratic toxicity. 
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General discussion 

Endocrine disrupting chemicals (EDCs) are natural or anthropogenic substances in 

environment, food, or consumer products that can disrupt hormonal balances in humans 

and wildlife, and result in adverse health effects even at low dosage. There are several 

challenges in quantitative prediction of the EDCs-induced adverse effects on human 

health associated with their complex exposure, non-linear kinetics, metabolite(s), and 

their complex mechanism or the complex responses of organisms over different life stage 

or time scales. The ECHA and the EFSA mainly focus on the development of tools, 

alternative to animal testing, to improve the protection of human health and the 

environment through the better and earlier identification of the intrinsic properties of 

chemical substances. These involved development of novel in-vitro assays, in-silico tools 

and integrated assessment and testing approaches (IATAs) etc.   

In-silico techniques have been receiving attention as alternative methods to classical 

approaches. Emerging high-throughput analysis, OMICS and tools such as PBPK, PD, 

Systems biology models and AOPs offer an opportunity to understand the chemical fate 

inside the body, the biological complexities and their multilevel connectivity. The 

successive use of the PBPK model in the field of toxicology is commendable since it 

offers the great advantage of predicting internal tissue dose of compounds or metabolites 

by utilizing the data derived from the in-vitro and in-silico tool such as QSAR, without 

any animal experiments. The PBPK also allows cross species extrapolation, cross-route 

dose interpolation, age and population specific without the need of experimental analysis. 

This is of great advantage to the field of the environmental toxicology enabling to test the 

large amount of the organic chemicals, reducing the cost and the time of analysis.  

Many biological adverse effects emerge from perturbations of multiple signalling 

pathways. These signalling pathways involve nonlinear interactions consisting of many 

components which requires more information for their specification than linear 

interactions do, and it is hard to foresee what comes from nonlinear interactions. Systems 

biology suggests a solution to this problem – to reconstruct the biological behaviour in an 

in silico replica of the system. It is possible to reconstruct the biological emergence by 

translating the information about how components communicate into mathematical 

equations. By integrating and solving the resulting system of mathematical equations in 

a computer, one should be able to simulate the biological system’s behaviour. Basically, 

with the use of Systems biology models we could be able to solve the complex biological 

system. In parallel, the concepts of AOPs has been developed and elaborated as an 

approach to predict the adverse effects of the chemicals. It presumes that the biological 

system’s behaviour is the result of the events of the sequences of biological components’ 

interactions. This approach was developed to reduce the inherent biological complexity 

where the knowledge/data are lacking. Integration of a wide range of in silico tools 

(QSAR, PBPK/PD, AOP, systems biology models etc.), and databases (OMICS, 
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epidemiological and exposure data) can directly tie the results into a predictive adverse 

outcomes model. This integrative approach would lead to mechanistic understanding of 

adverse effects vs conventional empirical end points and animal based testing.   

The main objective of the thesis was to explore the use of the in-silico models such as 

PBPK, PD and Systems biology and to elaborate an integrated, harmonized and pragmatic 

methodology for the human health assessment mostly focusing on endocrine disrupting 

compounds (EDCs). Our case studies of integrative systems toxicology approaches were 

presented in 5 subsequent chapters, illustrating the potential of this innovative approach 

for human health risk assessment.  

Chapter 1 explored the possible EDCs and their effects on human health based on their 

modes of action. Grouping of EDCs was proposed based on their target organs, receptors, 

and similar adverse outcomes. Chapter I  also addressed the challenges in the quantitative 

risk assessment of such EDCs effects on human health such as multiple mechanisms of 

action, delayed responses (time lag between exposure to adverse outcomes), dynamic 

interactions involving crosstalk, and transgenerational effects. The transgenerational 

effects of EDCs were demonstrated via a case study of female fertility. The potential 

EDCs targets involved in life stage development from germ cell to zygote have been also 

identified. A conceptual model of PBPK/PD was proposed. This model involves an 

integrated risk assessment framework linking exposome-internal exposure-biological 

effect to the adverse outcome. This chapter showed the need for a dynamic model (AOPs 

or systems biology) in addition to the PBPK (a kinetic model) to have a complete and 

wider picture on predicting adverse effects of chemicals on biological systems.  

Chapter 2 included the development and validation of a PBPK model for two different 

chemicals including their metabolite(s). The First part included di (2-ethylhexyl) 

phthalate (DEHP), and the second part included Flutamide. Both chemicals are 

categorized as non-persistent Endocrine disruptors’ compounds. Two different 

approaches were used for the development of the PBPK model: 1) a bottom up approach 

and 2) a cross-species extrapolation.  

DEHP is metabolized into a toxic compound, mono-(2-ethylhexyl) phthalate (MEHP) and 

other metabolites. In this chapter, the DEHP PBPK model including its major metabolites 

was developed using in-vitro metabolic data. The IVIVE (in-vitro in-vivo extrapolation) 

approach was used to translate the in-vitro metabolic data into their in-vivo counterpart. 

The tissue composition QSAR method was used to determine the distribution of the 

compounds and their metabolites. Both uncertainty and sensitivity analysis were 

performed. To our knowledge this was the first PBPK model developed with detailed 

metabolic kinetics. The model was validated against independent experimental data on 

chemical/metabolite(s) plasma and urine concentrations. The similarity of the model 

prediction to the experimental data showed that the integration of the data derived from 

the in-vitro and the in-silico sources was well enough to predict the chemical’s kinetics. 
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The currently developed model was applied in both biomonitoring and exposome case 

studies for human health risk assessment (Martínez et al., 2017, 2018). Both studies were 

included in two major EU projects: HEALS and EuroMix.  

In the second part of the chapter 2, flutamide PBPK model was developed both for the rat 

and for human. First the rat PBPK model was developed and validated against 

experimental data on rats. Then the model was extrapolated to the human using human 

specific data for enzyme activities, organ volumes and blood flow through each organ, 

keeping the other parameters the same as for the rat PBPK. Parameter uncertainties were 

handled by running multiple models with various values for each uncertain parameter in 

parallel.  This led to quantitative assessment of uncertainties levels in the predicted 

dynamic behaviour of flutamide concentrations in the various tissues. The extrapolation 

of the model for predicting flutamide kinetics in humans were in a good agreement with 

the observed data. The metabolic data were found to be the most conducive parameters in 

the model, as they were not only determining the hepatic clearance of the chemicals, but 

also generating the metabolites. This indicates that metabolic studies are very important 

and it should be an integral part of a PBPK model.  

In general, this chapter showed that integration of an in vitro metabolic and an in silico 

data into a PBPK using IVIVE (in-vitro in-vivo extrapolation) and QSAR (Quantitative 

structure activity relationship) approaches could predict the kinetics with minimal or no 

animal experiments, supporting the 3Rs strategies of minimizing animal use. Since this 

new whole-body PBPK model can predict chemical’s concentrations not only in plasma 

but also in various organs, the model may have applications for safety assessment of these 

chemicals. Physiologically specific in nature, the current PBPK models could also be 

adapted to the context of a large human population by considering their metabolic 

variations and could be used for analysing the large human biomonitoring data. 

The integration of specific dynamic physiological data into the PBPK model enables to 

predict the chemical kinetics for a special group of a population. Chapter 3 demonstrated 

this by applying it to a case study on the development of a pregnancy PBPK model for 

Bisphenol A. Bisphenol A is an EDC which has been associated with the developmental 

effects on growing fetus, an association that has been experimentally proved in animal 

studies. In the development of the Pregnancy-PBPK model, pregnancy growth dynamic 

equations were implemented into the model that mimics the physiology of the pregnant 

mother. The inclusion of the fetus compartment and its communication with the mother 

was done via placenta blood flow. The currently developed model is able to predict the 

concentrations of chemicals in the fetus plasma, in the placenta, the in fetus liver, and in 

the amniotic fluid. Detailed metabolic kinetics of BPA conjugation and deconjugation 

was investigated in the fetus liver. Then performance of the model was checked using five 

different cohort studies. The prediction of higher concentrations of BPA during the mid-

gestational period in the amniotic fluid, placenta, and the fetus liver are in accordance 

with biomonitoring data, indicating that the mid-gestational period might be the critical 
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window of exposure for the fetus. To our knowledge this was the first Pregnancy PBPK 

model for BPA.  

Chapter 4 demonstrated the complex systems biology model of reconstructing the 

dynamic network of oxidative stress and its application in personalized therapies for 

Parkinson’s disease. It is based on seven design principles: design principle 1, ROS 

induces mitophagy and in turn provides stability to the system; design principle 2, Keap1-

Nrf2 module provides homeostasis to the system through negative feed-back; design 

principle 3, NFkB activates recovery of damaged mitochondria and prevents necrosis at 

high ROS level; design principle 4, DJ-1 coordinates mitochondrial recovery and 

amplification of NRF2 signalling and helps to bring dynamic homeostasis close to perfect 

adaptation; design principle 5, strong adaptation runs out with ageing; design principle 6, 

preconditioning (pre-treatment by NRF2 activation) may play Parkinson’s disease 

protective role; Design principle 7, inter-individual variations cause disease variability 

between individuals that provide a foundation for the development of personalized 

medicine. The model demonstrated that fine tuning the balance between mitochondrial 

recovery and mitophagy is crucial for the systems. The NRF2-KEAP pathway back 

regulates the ROS level and acts as ROS sensor and as the first important defense 

mechanism. DJ1 showed to be an additional ROS sensor. DJ1 upregulation increases the 

cell’s robustness, and DJ1 downregulation makes the system more sensitive to oxidative 

stress. The model was validated against the in-vitro experimental data on antioxidant 

response, p62, Bclxl and ATP consequent to the addition of menadione in the model. The 

model showed that chronic exposure to increased ROS generation can exhaust the 

adaptation so that the system ultimately collapses. The model also showed that mutations 

in DJ1 and alpha-Synuclein make the defense system weaker, so that the systems 

collapses more readily with the increased accumulation of ROS. This phenomenon 

showed that the inter-individual variability can be a susceptibility factor for development 

or progression of the disease. The current detailed model of ROS management could be 

very useful in studying the health effects of various types of environmental 

chemicals/EDCs generating ROS. One case study with flutamide is shown in chapter 5 

(part 2).  

Chapter 5, illustrated the integrative systems toxicology approach. It included the 

coupling of a PBPK model to AOPs/ systems biology model. The first part of the chapter 

included the integration of a PBPK model with a linear mechanistic pathway model 

(which could be viewed as an AOP) associated with the BDNF link neuronal 

survivability. The second part of the chapter, included the integration of PBPK (developed 

in chapter 2) with the ROS System biology model (chapter 4). The first part of this chapter 

illustrated the ways to systems biology models in the field of toxicology via 

Pharmacodynamics coupled tissue dosimetry model (PBPK/PD). This was shown by 

applying a case study on the PFOS-induced neurotoxicity. The integration of the model 

included three main steps. 1: Development of a PBPK model, 2: Development of a 

mechanistic system model, and 3: Coupling of the PBPK model with the mechanistic 
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model by using a Pharmacodynamics interaction model. The development of the coupled 

PBPK/PD-mechanistic model allowed to quantify the dynamics of the endogenous 

biomolecule concentrations of different species at the different levels of PFOS exposures 

which perturbed key components of the system (in the miRNA model). The interaction 

of the PFOS with the given pathway was modelled by implementing an indirect sigmoid 

response model. This integrated PBPK/PD coupled mechanistic system pathway model 

can be called a “Systems Toxicology” that describes the kinetics of both -the chemicals 

and – the biomolecules, helping us to understand the dynamic and steady-state behaviours 

of molecular pathways under perturbed conditions.  

The 2nd part of the chapter included the Integrative Systems Toxicology comprising of 

PBPK, QIVIVE and Systems Biology (integrating in-vitro, in-vivo and in-silico). This 

approach was used to evaluate the flutamide induced hepatotoxicity. PBPK was used to 

describe the time course of drug concentration at the cellular level. Then coupling of the 

estimated tissue dose of flutamide to consequent perturbation of endogenous ROS was 

achieved using direct pharmacodynamic response models. These perturbations (changes 

in the ROS level) were dynamically linked with a systems biology model of ROS.  This 

integrative approach allowed us to predict the behaviour of several components of the 

ROS management model, such as antioxidant regulated genes, mitochondrial respiration 

and ATP level as a function of flutamide dosing. The model showed a greater induction 

in NRF2 levels in case of both rats and humans. However, the level of the ATP did not 

decrease enough and quickly recovered when drug was eliminated from the body. When 

flutamide induced ROS, NRF2 was upregulated. The latter activated antioxidant regulator 

genes and ROS concentration was decreased. This helped the system recover.  For 

individuals with reduced superoxide dismutase activities, the extent of the perturbation 

was predicted to be a lot higher certainly to the extent of becoming toxic.  This led us to 

suggest relevance of our IST for the issue of idiosyncratic toxicity. 

We set out to devise a methodology to predict endocrine disruptive activities of 

compounds in the environment.  One of the issues here is the ultralow concentrations 

these compounds can have in the human environment.  Our results towards this 

idiosyncrasy plus the possibility to include PBPK-based tissue accumulation of such 

compounds, suggests that the IST methodology designed here may of use in EDC 

analyses. 
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    Conclusions  

The present work is a systematic study of different building blocks of a new Integrative 

Systems Toxicology framework aimed at understanding quantitatively the adverse effects 

of chemicals on a biological system, from its exposure to consequent molecular and 

physiological alterations, through the integration of exposome-internal exposure- 

molecular/cellular response with the adverse effect. The integrative systems toxicology 

models were developed; demonstrated with the example of integrated Science through the 

integration of multidisciplinary knowledge. We also showed its wider application in 

predicting adverse effects on human health. Integration of exposure, pharmacokinetics, 

pharmacodynamics, and systems biology also accomplished under this umbrella under 

the umbrella of integrative systems toxicology. The PBPK models were developed 

utilizing a bottom-up, a top-down and middle-out (mixed) approach. Different 

methodologies such as IVIVE, QSAR and cross-species extrapolation were used for the 

parametrization of the model. The integration of the in-vitro metabolic data into a PBPK 

model thorough an IVIVE model has improved the prediction of compound(s) or 

metabolite(s) time courses plasma concentrations. A population-specific PBPK model 

was developed with the implementation of dynamic physiological data on mother’ organs 

and fetus growth during pregnancy into the model as a mathematical equation. The 

Pregnancy-PBPK model credibility was evaluated using five different countries' cohort 

data for both the mother and the fetus. Further the model was applied to several cohort 

studies including the one from Tarragona County under several projects (HEALS, 

EUROMIX and Human Biomonitoring (HBM4EU)) in order to predict the mother and 

fetus internal target tissue concentrations of chemicals (Martínez et al., 2018, 2017).  

We demonstrated how the complexity of the biological system may be addressed via 

reconstruction of the mode of actions/biological behavior in an in-silico replica in a 

computer. Moreover, mechanistic understanding of the system as a compendium of 

interconnected processes has led us to the development of a better integrative in-silico 

predictive model. Integration of the wide range of in silico tools (QSAR, PBPK/PD, 

AOP/Systems biology etc.) and databases (OMICS, epidemiological and exposure data) 

has shown how to improve the prediction power of the model with minimal or no animal 

experiment data.  

Being a very mechanistic, the current models can serve as case studies connecting data-

driven biomedical disease maps with systems biological dynamic models. The integrated 

PBPK coupled ROS systems biology model is able to predict the adverse effects in a 

population associated with functional variability in enzymes related to defense 

mechanisms. We demonstrated how inter-individual variations cause toxicity variability 

between individuals which might provide a foundation for the development of 

personalised therapy.  

Physiology specific and mechanistic in nature, the approach of integrative systems 

toxicology developed in this thesis could also be adapted to the context of a large human 

population by considering their metabolic and genetic diversity. In future, research should 

be more focused on chemical metabolic variability, chemical transport system alteration 

or inherent functional biological variability, which will improve predictability of 

Integrative Systems Toxicology models targeting different groups of human population.  
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Chapter 1 

Integrating individual modes of action of each chemical by reconstructing it into 

mathematical equations and analysing it with advanced tools such as PBPK/PD should 

enable the simultaneous assessment of EDCs, correlating concentration in various 

biological matrixes (blood, tissue, urine) to various biological end points (diseases). 

Timing and duration of exposure are important factors, which need to be considered while 

assessing the risk. Integrating physiology of the human body at different life stages will 

help in building life stage dynamic models. Dividing life stage into several phases and 

incorporating susceptible genes (or receptor) or proteins in those life stages targeted by 

EDCs and physiological specific data could provide a model able to predict the adverse 

effects of EDCs in different stages of life. 

Chapter 2 

A PBPK model was successfully developed and validated for two EDCs, namely DEHP 

and Flutamide, and their metabolites in the plasma and urine were predicted for the first 

time in human. This model is also able to predict the concentration of EDCs in several 

organs of the body.  The model fortified with the in-vitro and in-silico data using the 

IVIVE approach has shown to be as good in predicting the kinetics of compound(s) or 

metabolites as animal experimental data, supporting the 3Rs strategies of minimizing 

animal use. The results of this study are promising for application of PBPK modeling in 

risk assessments of human populations in the context of target tissue concentrations. The 

current model could be used in a reverse dosimetry context to interpret the available 

biomonitoring data so as to estimate the degree to which the population is currently being 

exposed.  

Chapter 3 

A Pregnancy-PBPK (P-PBPK) model for Bisphenol A was developed for the first time. 

The advantage of a PBPK mechanistic model was demonstrated by successful 

development of the P-PBPK model through the integration of the dynamics of growth 

physiology specific to the pregnant women, into the model.  The developed P-PBPK 

model is able to predict the BPA concentration in the fetus blood and in the target organ 

by just knowing the amount of the BPA exposed to the mother. Glucuronidation and 

deglucuronidation in both the mother and the fetus liver and placenta, was found to be an 

important mechanism altering BPA toxicokinetic profile.  The model predicted a higher 

concentration of BPA during the mid-gestational period in the amniotic fluid, the 

placenta, and the fetus liver indicating that mid-gestational period might be the critical 

window of exposure for the fetus. 

Chapter 4 

A systems biology model of ROS was successfully developed and validated against in-

vitro experiments. The current model has demonstrated the role of oxidative stress and its 

wider application in the understanding of the complex biological systems should help to 

improve the human health predictions. Being a mechanistic model, the current model can 

serve as a case study connecting data-driven biomedical disease maps with systems 

biological dynamic models. We have also illustrated the concept that personalized 
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medicine may benefit from this connection and that fundamental design principles studies 

may help address practical biomedical questions. 

Chapter 5 

The developed integrative model of PBPK/PD coupled with mechanistic systems/AOP 

(neuronal adverse outcome) demonstrated the wider application of systems toxicology 

model for the study of PFOS neurotoxicity. The model was able to predict the endogenous 

molecule concentrations involved in AOP over their time course as a function of chemical 

exposure. With the combination of the mechanistic biological models and the target tissue 

dosimetry model (PBPK), the capability of predictions was improved significantly. We 

have also demonstrated the application of a QIVIVE along with PBPK to reconstruct the 

in vivo tissue-dose response from the in-vitro dose response. We demonstrated a novel 

approach to validate the in-vivo mechanistic models based on in-vitro dose response data, 

presuming linear interpolation of in-vitro response to an in-vivo response.  

A PBPK model coupled with a systems biology ROS model was successfully developed. 

The integrated PBPK-ROS coupled model allows to simulate how perturbations in 

various components of the ROS-managing network should be expected to affect the 

system’s dynamics. The model was also able to predict the in-vitro dose-response data for 

several important elements of oxidative stress such as p62, ATP, NQO1 and HOMOX1.  

The model was able to predict the dynamic behavior of several components of the ROS 

network underlying from mitochondrial function (ATP level) and antioxidant response to 

oxidative stress. The model showed no sign of hepatotoxicity with the normal dosage 

regimen of flutamide. However, model simulations of several hypotheses, e.g. the 

simulation where population variability was taken into account, identified multiple factors 

which might be responsible for the flutamide induced idiosyncratic hepatotoxicity. 

Among them, metabolite induced ROS and functional variability in the antioxidant 

defense mechanism are the most important factors. 
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Chapter 1: Supplementary information 

EDCs Glands Hormones Biophase action Risk factor References  

Alachlor  Peripheral  Estrogen and 

androgen  

PXR agonist  Decreased steroid 

hormone  

(Mikamo et 

al., 2003) 

 

Ammonium 

Perflurooctane 

(AMPO) 

Steroidogenic 

gland 

Steroid 

hormone 

PPAR agonist, 

downregulation 

of PBR and 

TPSO protein 

Affects steriodogenesis (Li et al., 

2011) 

Atarazine Leydig cell 

HPO axis 

 

Testosterone, 

estrogen 

Inhibits LH 

induced 

testosterone 

production, 

Inhibits 

hypothalamus 

induced 

production of LH 

and prolactin 

Reduced testosterone 

level, demasculanizatrion 

and feminization of male 

gonads, 

Premature reproductive 

senescense  

(Cooper et al., 

2000; 

Friedmann, 

2002; Hayes 

et al., 2011) 

BPA  Thyroid 

 

 

 

 

T3, T4 Upregulates TRα, 

TRβ mRNA 

RXR expression 

Recruit N-CoR 

Inhibit thyroid action 

Impair TR mediated 

transcription 

(Lans et al., 

1994) 

(Moriyama et 

al., 2002) 
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BPA Adrenal and 

adipose tissue 

Gonads 

Cortisol 

Steroid 

hormones 

Increases 11β 

HSD1, 

lipoprotein lipase 

and PPAR-γ 

mRNA 

expression  

Inhibits the 

CYP17A enzyme  

Aceleration of 

adipogenesis  

 

 

 

 

Inhibit steroidogenesis 

(Wang et al., 

2012) 

 

 

 

 

(Niwa et al., 

2001) 

BPA Leydig  

 

 

 

Pituitary  

 

 

Testosterone 

and estrogen, 

LH 

 

Testosterone   

Inhibits 5α 

reductase enzyme 

and aromatase 

activity 

Induced pituitary 

ERβ gene 

expression 

Affect both testosterone 

and estrogen level 

 

Decrease testosterone 

production 

(Castro et al., 

2013) 

 

(Akingbemi 

et al., 2004) 

BPA, Octyl 

phenol 

Leydig cell Testosterone Inhibition of 

coupling between 

cAMP and LH 

receptor 

Decreased testosterone 

level 

(Nikula et al., 

1999) 

BPA Hypothalamus GnRH, FSH 

and LH 

Reduced kiss 

fiber density at 

prepubertal  ERα 

mRNA during 

pubertal 

changing 

Decreased level of GnRH 

Infertility  

(Patisaul et al. 

2009; Xi et al. 

2011) 
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BPA Sertoli cell 

 

 

Testosterone  Redistribution of 

Occludin, ZO-1 

and Cx43 protein  

Perturbs the blood testis 

barrier(BTB) 

Inhibit spermatogenesis 

(Li et al., 

2009) 

BPA  Sertoli cell 

Antra follicle 

AMH 

Sex hormone 

Proliferation of 

leydig cell, 

Inhibited stAR 

and CYPssc 

mRNA 

Affect SDM 

Impair sex hormone 

production 

(Rey et al., 

2003) 

BPA Epididymis 

cell 

Sex hormone Induce oxidative 

stress 

Less sperm count (Ansoumane 

et al., 2014; 

Chitra et al., 

2003) 

BPA Gonadal cell Estrogen  Alter CREB, 

regulator Rb 

Alter  cell cycle 

 

(Bouskine et 

al., 2009) 

Cadmium and 

PCB mixture 

Gonadal cell Estrogen Recruit HSP90 

Potentiate the 

action of PCB  

Inhibit estrogenic action (Chang et al., 

2014) 

DEHP Sertoli cell Germ cell Upregulation  of 

N-cadherin and 

catenin 

Impairment of 

spermatogenesi 

(Sobarzo et 

al., 2006) 

Dibutyltin  liver cortisol Dowregulation of  

PEPCK and TAT 

expression 

Imbalance in glucose 

homeostasis 

 

(Gumy et al., 

2008) 

Dioxin Leydig cell Testosterone Inhibit hCG Decrease testosteone level (Lai et al., 

2005a) 

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



Annex 1 
 

342 

 

Stimulated 

CYP11A 

expression 

Dioxin  Ovary Estrogen ERE expression, 

ER degradation 

Increase proliferation (Ohtake et al., 

2003) 

Dithiocarbmates Adrenal  Cortisol Irreversible 

inhibit 11β HSD2 

Increase cortisol level (Atanasov et 

al., 2003) 

Enodsulfan Gonadal cell Andorgen 

and estrogen 

androgen 

receptor 

antagonist, ER 

transactivation, 

weak CYP19A 

inhibitor 

Altering estrogen and 

androgen action 

(Raun 

Andersen et 

al., 2002; 

Lemaire et 

al., 2004) 

Methoxychlor Gonadal cell Estrogen, 

androgen, 

AMH 

Alter genomic 

imprinting, 

stimulates AMH, 

PXR agonist , 

androgen 

receptor 

antagonist  

Affect male and female 

fertility 

(Mikamo et 

al., 2003; 

Lemaire et 

al., 2004; 

Uzumcu et 

al., 2006 ; 

Stouder and 

Paoloni-

Giacobino, 

2011) 
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Nonylphenol Liver, 

Gonadal cell 

Steroid 

hormone, 

 

Increase PXR 

interaction 

Increase level of 

coactivator like 

RIP140, SRC-1, 

increase CYP3A 

mRNA 

expression, 

Modulation of  

ER and AR  

Alter steroid hormone 

metabolism. 

Affecting oogenesis 

(Masuyama et 

al., 2000; Seo 

et al., 2006) 

Octyl phenol Fetal testis Steroid 

hormone 

Decreases   

CYP450, 17α 

hydroxylase/C17-

20 lyase and SF-

1 expressions  

Chances of Infertility  (Saunders et 

al., 1997) 

-OH PCBs, 

PCDDs, PCDFs 

Thyroid  T3, T4 Increases  thyroid 

hormone 

available in 

biophase 

Higher metabolic activity (Lans et al., 

1994) 

PAH  Estrogen  Sulphotransferase 

(SULT1E1) 

Increase bioavailblity of 

estrogen 

(Kester et al., 

2002) 

PCBs, PCDDs, 

PCDFs 

Thyroid, 

ovary, testis 

E2,TH,T, 

GC 

Ahr activation  

 

Increase metabolism of 

hormones 

 

(Poland & 

Knutson, 

1982;Birgelen 

et al., 1995)  
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PCB126 Adrenal Aldosterone Increases 

expression of 

AT1 receptor and 

CYP11B2 

Increase aldosterone level (Li et al., 

2004) 

PCB mixture   Fetal (HPOA) Estrogen Lowers   

aromatase 

activity 

Alter hormone 

homeostasis 

(Hany et al., 

1999) 

Perchlorates Thyroid T3, T4 Inhibits iodide 

transport 

Decrease production of 

thyroid hormone 

(Clewell et 

al., 2004) 

PFOA Liver Testosterone 

,insulin like 

hormone 

(IGF) 

Inhibits GHR, 

steriodogenic 

enzyme 

inhibition 

Decreased production of 

testosterone 

(Shi et al., 

2009; Wan et 

al., 2011) 

PFOA Testis  Testosterone  Lowers 3β HSD 

and 17β HSD3  

expression  

Reduction in testosterone 

synthesis 

(Zhao et al., 

2010) 

PFOS, cadmium  Sertoli cell, 

BTB 

Sex hormone  Activation of p38 

MAPK, 

Affecting TJ and 

GJ protein 

Decrease BTB integrity (Siu et al. 

2009; Qiu et 

al. 2013) 

Phthalates Thyroid T3, T4 PPAR and RXR 

agonist 

Disrupting TR-RXR  

Decrease thyroid action 

(Juge-Aubry 

et al., 1995) 

Phthalates, 

cadmium 

HPG axis FSH and LH Decreases 

PPARγ 

expreesion, 

Reduction of anogenital 

distance  

(Boberg et al., 

2008; 
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Inhibit leptin- 

kiss –GnRH 

pathway 

Stasenko et 

al., 2010) 

Phthalates Liver Steroid 

hormones 

Increases  PXR 

interaction with 

coactivator like 

RIP140, SRC-1  

Alter steroid hormone 

metabolism 

(Masuyama et 

al. 2000; 

2002) 

Sulfone 

metabolites of 

PCB 

Adrenal Cortisol Inhibit 

Mitochondrial 11 

β- hydroxylase 

Interact with GR 

Affecting 

Glucocorticoidhomeostasis  

 

(Johansson et 

al., 1998) 

 TBT, TPT Granulosa cell Estrogen and 

androgen 

Decreases 

aromatase 

enzyme 

expression 

Decreased E2 level (Heidrich et 

al., 2001; 

Saitoh et al., 

2001) 

TBT, TPT, 

PFASs   

Placenta Cortisol  Inhibits 11β 

HSD2  

Increase   cortisol level in 

fetus 

(Ohshima et 

al., 2005) 

TCPOBOP Thyroid T3, T4 Activation of 

CAR receptor 

Increase UGTs 

and SULTs 

expression 

Increase metabolism of 

thyroid hormone 

(Qatanani et 

al., 2005) 

TCDD Testis Androgen 

and estrogen 

Inhibits CYPscc 

& LHR 

expression by 

Affect sex hormone 

synthesis 

(Fukuzawa et 

al., 2004) 
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interacting with 

AHR 

TCDD Sertoli cell  AHR receptor 

CYP1A1 

induction 

Produced toxicity in sertoli 

cell 

(Lai et al., 

2005b) 

Tributyltin 

chloride  

Peripheral, 

placenta, 

ovary 

Testosterone 

, estrogen 

5α- reductase 

type I and II 

irreversible, 

Aromatase 

inhibitor, 

decrease estradiol 

serum level 

 

Prevent the action of 

testosterone, Decreased E2 

level, 

Impair reproductive cycle  

(Heidrich et 

al., 2001; 

Saitoh et al., 

2001; 

Doering et al., 

2002; Podratz 

et al., 2012) 

Vincozolin Gonadal cell Androgen PXR agonist, 

competative 

inhibitor of 

androgen, DNA 

methylation 

alteration  

Increase steroid hormone 

metabolsim, inhibit 

androgen action 

(Fang et al., 

2003; 

Mikamo et 

al., 2003) 
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Chapter 2: Supplementary information 

Table A.1: Physiological parameters   

Paramter  Symbol  Value  References  

Cardiac blood output QCC 4.8 

(L/h/kg) 

(Brown et al., 1997) 

(Davies and Morris, 1993) 

Fractional liver blood flow   FQliver 0.25  (Brown et al., 1997) 

Fractional kidney blood 

flow   

FQkidney 0.177 (Brown et al., 1997) 

Fractional fat blood flow FQfat 0.052 (Brown et al., 1997) 

Fractional skin blood flow FQskin 0.058 (Brown et al., 1997) 

Fractional gonads blood 

flow  

FQgonads 0.0002 (Brown et al., 1997) 

Constant Fraction of organs volume to body weight 

Fractional liver volume Fliver 0.026 (Brown et al., 1997) 

Fractional fat volume Ffat 0.187 (Brown et al., 1997) 

Fractional gonads volume Fgonads 0.0027 (Brown et al., 1997) 

Fractional plasma volume Fplasma 0.0428 (Davies and Morris, 1993) 

Fractional gut volume Fgut 0.016 (Brown et al., 1997) 

Haematocrit  HCT 0.45 (Davies and Morris, 1993) 

Microsomal protein in 

liver  

MSPL 52.5 (mg/g 

liver) 

(Godin et al., 2006) 

Microsomal protein in gut MSPG  20.6 (mg/g 

gut) 

(Cubitt et al., 2009) 

Cytosol protein in liver  CYTPL 80.7 (mg/g 

liver) 

(Gibbs et al., 1998) 

Cytosol protein in gut CYTPG 18 (mg/g 

gut) 

(Gibbs et al., 1998) 

 

Table A.2: Metabolites molecular weight  

molar mass of DEHP 391 g/mole 

Molar mass of MEHP 281 g/mole 

molar mass of MEHP-OH  297 g/mole 

5-oxo MEHP  295 g/mole 

5-cx MEPP 311 g/mole 

 

Table A.3: Subject weight and dose Amount in Koch et al., studies  
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Body weight  75 kg 

Dose  48500 µg 

 Dose  0.00124 moles 

 

Table A.4: Subject weight and dose amount in Anderson et al., (2011) study   

Body weight 60.1–96.6 kg 

Dose (low) 310 µg 

Dose (high) 2800 µg 

Dose (low) 7.92839E-06 moles 

Dose (high) 7.16113E-05 moles 
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Table  A.5  Summary statistics  of parameters’  sensitivities targeting only cplasmaM1 

Parameters  L1 L2 Mean Min Max 

k_gut_plasma 0.039453 0.001472 0.039453 0 0.040035 

k_liver_plasma 0.051789 0.001977 -0.05179 -0.23862 0 

k_gonads_plasma 5.56E-06 2.37E-07 4.51E-06 -1.55E-05 9.96E-06 

k_fat_plasma 4.49E-05 2.15E-06 -4.49E-05 -9.78E-05 1.85E-07 

k_restbody_plasma 0.001027 4.66E-05 0.00073 -0.0006 0.002011 

k_liver_plasmaM1 0.837297 0.031281 -0.8373 -0.99912 0 

k_gonads_plasmaM1 0.009357 0.00042 -0.00936 -0.01648 0 

k_fat_plasmaM1 0.056833 0.002537 -0.05683 -0.102 0 

k_restbody_plasmaM1 0.395788 0.018302 -0.39579 -0.70924 0 

vmaxgutM1 0.005837 0.000365 -0.00402 -0.00604 0.13498 

vmaxgut_cytM1 0.014574 0.000911 -0.01006 -0.01508 0.335963 

vmaxgutM2 5.17E-05 1.94E-06 -5.15E-05 -5.70E-05 1.59E-05 

vmaxgutM3 0 0 0 0 0 

vmaxgutM4 0 0 0 0 0 

vmaxgutM5 0.003274 0.000123 -0.00327 -0.00346 0 

kmgutM1 0.002752 0.000186 0.001855 -0.08176 0.002817 

kmgut_cytM1 0.006875 0.000465 0.004628 -0.20428 0.007036 

kmgutM2 0.000183 6.84E-06 0.000183 0 0.00019 

kmgutM3 0 0 0 0 0 

kmgutM4 0 0 0 0 0 

kmgutM5 0.003229 0.000121 0.003229 0 0.003415 

vmaxliverM1 0.000493 6.59E-05 -0.00015 -0.0007 0.038017 

vmaxliver_cytM1 0.001253 0.000169 -0.00038 -0.00179 0.098199 

vmaxliverM2 0.979128 0.038768 -0.97913 -1.49263 0 

vmaxliverM3 0.09024 0.00358 -0.09024 -0.13863 0 

vmaxliverM4 0 0 0 0 0 

vmaxliverM5 0.028495 0.001128 -0.0285 -0.04339 0 

kmliverM1 0.000492 6.53E-05 0.000153 -0.03777 0.000703 

kmliver_cytM1 0.001184 0.000161 0.000356 -0.09491 0.001684 

kmliverM2 0.971613 0.038483 0.971613 0 1.483151 

kmliverM3 0.085736 0.003409 0.085736 0 0.13291 

kmliverM4 0 0 0 0 0 

kmliverM5 0.028484 0.001127 0.028484 0 0.04337 

fracl2 0 0 0 0 0 
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Table A.6  Summary statistics  of parameters’  sensitivities targeting only cplasmaM2 

Parameters L1 L2 Mean Min Max 

k_gut_plasma 0.047123 0.001766 0.047123 0 0.051783 

k_liver_plasma 0.068659 0.002629 -0.06866 

-

0.24324 0 

k_gonads_plasma 2.41E-05 1.46E-06 2.26E-05 

-3.23E-

06 9.49E-05 

k_fat_plasma 0.000237 1.69E-05 -0.00024 

-

0.00146 2.98E-06 

k_restbody_plasma 0.005842 0.000397 0.005507 

-

0.00056 0.029542 

k_liver_plasmaM1 0.192444 0.007959 0.127031 

-

0.39701 0.286367 

k_gonads_plasmaM1 0.002122 0.000143 -0.00212 

-

0.01097 1.78E-08 

k_fat_plasmaM1 0.013053 0.000866 -0.01305 

-

0.06432 7.35E-09 

k_restbody_plasmaM1 0.086111 0.006066 -0.08611 

-

0.50726 2.19E-08 

vmaxgutM1 0.008849 0.00048 -0.00613 

-

0.01226 0.1407 

vmaxgut_cytM1 0.022085 0.001196 -0.01531 -0.0306 0.350028 

vmaxgutM2 7.14E-05 3.28E-06 6.80E-05 

-2.67E-

05 0.000233 

vmaxgutM3 0 0 0 0 0 

vmaxgutM4 1.80E-06 7.14E-08 -1.80E-06 

-2.87E-

06 0 

vmaxgutM5 0.00391 0.000148 -0.00391 

-

0.00443 0 

kmgutM1 0.00417 0.000244 0.002813 

-

0.09142 0.005703 

kmgut_cytM1 0.010424 0.00061 0.007024 

-

0.22819 0.014266 

kmgutM2 0.000101 4.14E-06 8.91E-05 

-

0.00018 0.000171 

kmgutM3 0 0 0 0 0 

fracl4 0 0 0 0 0 

KgutM2 0 0 0 0 0 

vplasmad 0 0 0 0 0 

kurineM1 0.352162 0.013983 -0.35216 -0.4713 0 

kurineM2 0 0 0 0 0 

kurineM3 0 0 0 0 0 

kurineM4 0 0 0 0 0 
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kmgutM4 1.63E-06 6.48E-08 1.63E-06 0 2.85E-06 

kmgutM5 0.003857 0.000146 0.003857 0 0.004374 

vmaxliverM1 0.001692 0.000114 -0.00114 

-

0.00493 0.042182 

vmaxliver_cytM1 0.004281 0.000291 -0.00289 

-

0.01247 0.109715 

vmaxliverM2 0.575947 0.02403 -0.22911 

-

0.90994 0.997044 

vmaxliverM3 0.132397 0.005447 -0.1324 

-

0.19792 0 

vmaxliverM4 1.934154 0.082937 -1.93415 

-

3.32217 0 

vmaxliverM5 0.041484 0.001701 -0.04148 

-

0.06145 0 

kmliverM1 0.001675 0.000113 0.001136 

-

0.04198 0.004879 

kmliver_cytM1 0.004034 0.000277 0.002717 

-

0.10695 0.011735 

kmliverM2 0.571164 0.023831 0.227702 

-

0.99675 0.903751 

kmliverM3 0.12679 0.005233 0.12679 0 0.191301 

kmliverM4 1.734801 0.075526 1.734801 0 3.087483 

kmliverM5 0.041469 0.0017 0.041469 0 0.061432 

fracl2 0.62405 0.024431 0.62405 0 0.999586 

fracl4 0 0 0 0 0 

KgutM2 5.00E-05 2.31E-06 -1.52E-05 

-5.57E-

05 0.000203 

vplasmad 0.998613 0.037216 -0.99861 -1 0 

kurineM1 0.079033 0.004594 -0.07903 

-

0.32283 0 

kurineM2 1.521062 0.061333 -1.52106 

-

2.19816 0 

kurineM3 0 0 0 0 0 

kurineM4 0 0 0 0 0 

 

Table A.7  Summary statistics  of parameters’  sensitivities targeting only cplasmaM3 

Parameters L1 L2 Mean Min Max 

k_gut_plasma 0.039169 0.001463 0.039169 0 0.040561 

k_liver_plasma 0.071252 0.002799 -0.07125 -0.23786 0 

k_gonads_plasma 5.83E-05 2.98E-06 5.72E-05 -1.59E-05 0.00014 

k_fat_plasma 0.000617 3.59E-05 -0.00062 -0.00205 2.33E-07 

k_restbody_plasma 0.015079 0.000838 0.01476 -0.00073 0.041091 

k_liver_plasmaM1 0.293557 0.012871 -0.03568 -0.65568 0.32037 
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k_gonads_plasmaM1 0.005368 0.000296 -0.00537 -0.01437 8.84E-08 

k_fat_plasmaM1 0.032743 0.001785 -0.03274 -0.08577 1.58E-09 

k_restbody_plasmaM1 0.223352 0.012786 -0.22335 -0.68659 2.63E-08 

vmaxgutM1 0.010665 0.000505 -0.00889 -0.01604 0.134555 

vmaxgut_cytM1 0.026612 0.001259 -0.02219 -0.04 0.334906 

vmaxgutM2 5.22E-05 1.97E-06 -5.20E-05 -5.83E-05 1.50E-05 

vmaxgutM3 0 0 0 0 0 

vmaxgutM4 0 0 0 0 0 

vmaxgutM5 0.003269 0.000123 -0.00327 -0.00348 0 

kmgutM1 0.004988 0.000246 0.004109 -0.08152 0.007447 

kmgut_cytM1 0.012479 0.000616 0.010277 -0.20368 0.018641 

kmgutM2 0.000182 6.81E-06 0.000182 0 0.00019 

kmgutM3 0 0 0 0 0 

kmgutM4 0 0 0 0 0 

kmgutM5 0.003224 0.000121 0.003224 0 0.003438 

vmaxliverM1 0.003584 0.000181 -0.00325 -0.00793 0.037904 

vmaxliver_cytM1 0.009062 0.00046 -0.00822 -0.02004 0.09791 

vmaxliverM2 1.842867 0.075004 -1.84287 -2.87949 0 

vmaxliverM3 0.825822 0.03091 0.825822 0 0.999673 

vmaxliverM4 0 0 0 0 0 

vmaxliverM5 0.053485 0.002176 -0.05348 -0.08349 0 

kmliverM1 0.003546 0.00018 0.003221 -0.03766 0.00784 

kmliver_cytM1 0.00853 0.000433 0.007737 -0.09463 0.018855 

kmliverM2 1.834113 0.074677 1.834113 0 2.868797 

kmliverM3 0.810976 0.030295 -0.81098 -0.99642 0 

kmliverM4 0 0 0 0 0 

kmliverM5 0.05347 0.002175 0.05347 0 0.08347 

fracl2 0 0 0 0 0 

fracl4 0 0 0 0 0 

KgutM2 0 0 0 0 0 

vplasmad 0 0 0 0 0 

kurineM1 0.18212 0.009045 -0.18212 -0.39819 0 

kurineM2 0 0 0 0 0 

kurineM3 1.757363 0.071287 -1.75736 -2.78849 0 

kurineM4 0 0 0 0 0 
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Table A.8  Summary statistics  of parameters’  sensitivities targeting only cplasmaM4 

Parameters L1 L2 Mean Min Max 

k_gut_plasma 0.04417 0.001667 0.04417 0 0.051443 

k_liver_plasma 0.068276 0.002655 -0.06828 -0.24073 0 

k_gonads_plasma 3.37E-05 1.91E-06 3.27E-05 -2.64E-06 0.000103 

k_fat_plasma 0.000365 2.41E-05 -0.00036 -0.00178 3.90E-06 

k_restbody_plasma 0.008695 0.000544 0.008401 -0.00058 0.032574 

k_liver_plasmaM1 0.214529 0.00921 0.070428 -0.53986 0.295537 

k_gonads_plasmaM1 0.003148 0.000196 -0.00315 -0.01243 0 

k_fat_plasmaM1 0.019177 0.001175 -0.01918 -0.07132 2.24E-09 

k_restbody_plasmaM1 0.131367 0.008551 -0.13137 -0.6067 0 

vmaxgutM1 0.009332 0.000491 -0.00688 -0.01293 0.141403 

vmaxgut_cytM1 0.023287 0.001225 -0.01718 -0.03227 0.351783 

vmaxgutM2 0.000107 1.79E-05 9.72E-05 -3.88E-05 0.010168 

vmaxgutM3 0 0 0 0 0 

vmaxgutM4 5.21E-05 1.70E-05 5.04E-05 -1.76E-06 0.009991 

vmaxgutM5 0.003679 0.00014 -0.00368 -0.00441 0 

kmgutM1 0.004391 0.000249 0.003161 -0.09171 0.006012 

kmgut_cytM1 0.010981 0.000622 0.007899 -0.22893 0.015042 

kmgutM2 0.00016 1.81E-05 5.02E-05 -0.01016 0.000177 

kmgutM3 0 0 0 0 0 

kmgutM4 5.20E-05 1.70E-05 -5.06E-05 -0.00999 1.56E-06 

kmgutM5 0.003629 0.000138 0.003629 0 0.004351 

vmaxliverM1 0.00218 0.000131 -0.00172 -0.00542 0.041706 

vmaxliver_cytM1 0.005517 0.000333 -0.00435 -0.01371 0.108469 

vmaxliverM2 0.620667 0.025837 -0.39684 -1.00276 0.988154 

vmaxliverM3 0.141021 0.005787 -0.14102 -0.20717 0 

vmaxliverM4 1.386633 0.059874 -1.09269 -2.61153 0.990101 

vmaxliverM5 0.044021 0.001802 -0.04402 -0.06426 0 

kmliverM1 0.002159 0.00013 0.001707 -0.0415 0.005365 

kmliver_cytM1 0.005198 0.000316 0.004092 -0.10572 0.012904 

kmliverM2 0.615761 0.025639 0.394001 -0.98668 0.996369 

kmliverM3 0.13556 0.005577 0.13556 0 0.200423 

kmliverM4 1.215283 0.053406 0.972995 -0.98908 2.380021 

kmliverM5 0.044006 0.001801 0.044006 0 0.064243 
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fracl2 0.398382 0.016858 -0.39838 -0.67029 0 

fracl4 0.998561 0.037214 0.998561 0 1 

KgutM2 4.03E-05 1.68E-06 -3.22E-05 -5.95E-05 0.000115 

vplasmad 0 0 0 0 0 

kurineM1 0.109411 0.00603 -0.10941 -0.36501 1.34E-09 

kurineM2 0 0 0 0 0 

kurineM3 0 0 0 0 0 

kurineM4 1.044303 0.039388 -1.0443 -1.13376 0 

 

 
Figure A.1 Sensitivity plot for all the parameters with target output 

of metabolites concentration in plasma  

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



Annex 2 
 

355 

 

Standard ordinary differential equations used in tissue 

dosimetry model (DEHP) 

 
𝑑

𝑑𝑡
(𝐴𝑔𝑢𝑡) = 𝑄𝑔𝑢𝑡 ∗ (𝑐𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 − 𝑐𝑔𝑢𝑡 ∗ 𝑓𝑢/𝑘_𝑔𝑢𝑡_𝑝𝑙𝑎𝑠𝑚𝑎) −  𝑅𝐴𝑀𝐺1 

− 𝑅𝐴𝑀𝐺1_𝑐𝑦𝑡   
 𝐴𝑔𝑢𝑡 is the amount of DEHP in gut 

 𝑄𝑔𝑢𝑡 is the blood flow to the gut 

 𝑐𝑔𝑢𝑡 is the concentration of chemical in gut 

 𝑓𝑢 is the plasma fractional unbound for DEHP 

 𝑘_𝑔𝑢𝑡_𝑝𝑙𝑎𝑠𝑚𝑎 is the gut plasma partition coefficient 

 𝑅𝐴𝑀𝐺1 is metabolism of DEHP into MEHP in microsomal fraction of gut 

 𝑅𝐴𝑀𝐺1_𝑐𝑦𝑡   is metabolism of DEHP into MEHP in cytosol fraction of gut 

 
𝑑

𝑑𝑡
(𝐴𝐿𝑖𝑣𝑒𝑟) = 𝑄𝑙𝑖𝑣𝑒𝑟 ∗ 𝑐𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 + (𝑄𝑔𝑢𝑡 ∗ 𝑐𝑔𝑢𝑡 ∗ (𝑓𝑢/ 𝑘_𝑙𝑖𝑣𝑒𝑟_𝑝𝑙𝑎𝑠𝑚𝑎))

− (𝑄𝑙𝑖𝑣𝑒𝑟 + 𝑄𝑔𝑢𝑡) ∗ 𝑐𝑙𝑖𝑣𝑒𝑟 ∗ (𝑓𝑢/ 𝑘_𝑙𝑖𝑣𝑒𝑟_𝑝𝑙𝑎𝑠𝑚𝑎) −  𝑅𝐴𝑀𝐿1
− 𝑅𝐴𝑀𝐿1_𝑐𝑦𝑡 

 𝐴𝐿𝑖𝑣𝑒𝑟 is the amount of DEHP in liver 

 𝑄𝑙𝑖𝑣𝑒𝑟 is the cardiac blood flow to liver 

 𝐶𝑝𝑙𝑎𝑠𝑚𝑎 is the plasma concentration of DEHP 

 𝐶𝑙𝑖𝑣𝑒𝑟 is the concentration of DEHP in liver 

 𝐾𝑙𝑖𝑣𝑒𝑟𝑝𝑙𝑎𝑠𝑚𝑎
 is the liver plasma partition coefficient  

 
𝑑

𝑑𝑡
(𝐴𝑓𝑎𝑡) = 𝑄𝑓𝑎𝑡 ∗ (𝑐𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −  𝑐𝑓𝑎𝑡 ∗ (𝑓𝑢/𝑘_𝑓𝑎𝑡_𝑝𝑙𝑎𝑠𝑚𝑎)) 

 𝐴𝑓𝑎𝑡 is the amount of chemical in fat 

 𝑄𝑓𝑎𝑡 is the blood flow to  fat 

 𝐾𝑓𝑎𝑡𝑝𝑙𝑎𝑠𝑚𝑎
 fat plasma partition coefficient 

 

𝑑

𝑑𝑡
(𝐴𝑔𝑜𝑛𝑎𝑑𝑠) = 𝑄𝑔𝑜𝑛𝑎𝑑𝑠 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −   𝐶𝑔𝑜𝑛𝑎𝑑𝑠 ∗ (

𝑓𝑢

𝐾𝑔𝑜𝑛𝑎𝑑𝑠𝑝𝑙𝑎𝑠𝑚𝑎

))  

 𝐴𝑔𝑜𝑛𝑎𝑑𝑠 is the amount of chemical in fat 

 𝑄𝑘𝑖𝑑𝑛𝑒𝑦 blood flow to gonads 

 𝐾𝑔𝑜𝑛𝑎𝑑𝑠𝑝𝑙𝑎𝑠𝑚𝑎
gonads plasma partition coefficient 

 
𝑑

𝑑𝑡
(𝐴𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦) = 𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦

∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −   𝐶𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 ∗ (
𝑓𝑢

𝐾𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑝𝑙𝑎𝑠𝑚𝑎

)) 

 𝐴𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 is the amount of chemical in rest of the body 

 𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 is the blood flow to  rest of the body 

 𝐾𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑝𝑙𝑎𝑠𝑚𝑎
restbody plasma partition coefficient 
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𝑑

𝑑𝑡
(𝐴𝑝𝑙𝑎𝑠𝑚𝑎) = 𝑄𝑓𝑎𝑡 ∗  𝑐𝑓𝑎𝑡 ∗ (

𝑓𝑢

𝑘𝑓𝑎𝑡𝑝𝑙𝑎𝑠𝑚𝑎

)

+ ((𝑄𝑙𝑖𝑣𝑒𝑟 +  𝑄𝑔𝑢𝑡) ∗ 𝑐𝑙𝑖𝑣𝑒𝑟 ∗ (
𝑓𝑢

𝑘𝑙𝑖𝑣𝑒𝑟𝑝𝑙𝑎𝑠𝑚𝑎

)) 

+ (𝑄𝑔𝑜𝑛𝑎𝑑𝑠 ∗ 𝑐𝑔𝑜𝑛𝑎𝑑𝑠 ∗ (
𝑓𝑢

𝑘𝑔𝑜𝑛𝑎𝑑𝑠𝑝𝑙𝑎𝑠𝑚𝑎

))

+ (𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 ∗ 𝑐𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 ∗ (
𝑓𝑢

𝑘𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑝𝑙𝑎𝑠𝑚𝑎

))

− (𝑄𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗  𝑐𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢) 

 𝐴𝑝𝑙𝑎𝑠𝑚𝑎 is the amount of chemical in plasma  

 𝑄𝑝𝑙𝑎𝑠𝑚𝑎  is the blood flow to  plasma 

 𝑄𝐶𝑝𝑙𝑎𝑠𝑚𝑎 cardiac output for plasma flow 

 
𝑑

𝑑𝑡
(𝐴𝑔𝑢𝑡𝑀1) = −𝑘𝑔𝑢𝑡 ∗ 𝐴𝑔𝑢𝑡𝑀1 +  𝑅𝐴𝑀𝐺1 +  𝑅𝐴𝑀𝐺1_𝑐𝑦𝑡 −  𝑅𝐴𝑀𝐺2 − 𝑅𝐴𝑀𝐺5 

𝑑

𝑑𝑡
(𝐴𝑔𝑢𝑡𝑀2) = 𝑅𝐴𝑀𝐺2 −  𝐾𝑔𝑢𝑡𝑀2 ∗ 𝐴𝑔𝑢𝑡𝑀2 − 𝑅𝐴𝑀𝐺4 

𝑑

𝑑𝑡
(𝐴𝑙𝑖𝑣𝑒𝑟𝑀1) =  𝑘𝑔𝑢𝑡 ∗ 𝐴𝑔𝑢𝑡𝑀1 +  𝑄𝑙𝑖𝑣𝑒𝑟

∗ (𝑐𝑝𝑙𝑎𝑠𝑚𝑎𝑀1 ∗ 𝑓𝑢𝑚 −  𝑐𝑙𝑖𝑣𝑒𝑟𝑀1 ∗ (
𝑓𝑢𝑚

𝑘𝑙𝑖𝑣𝑒𝑟𝑝𝑙𝑎𝑠𝑚𝑎𝑀1

)) +  𝑅𝐴𝑀𝐿1 

+  𝑅𝐴𝑀𝐿1𝑐𝑦𝑡 − 𝑅𝐴𝑀𝐿2 − 𝑅𝐴𝑀𝐿3 − 𝑅𝐴𝑀𝐿5 

𝑑

𝑑𝑡
(𝐴𝑙𝑖𝑣𝑒𝑟𝑀2) =   𝑅𝐴𝑀𝐿2 +  𝐾𝑔𝑢𝑡𝑀2 ∗ 𝐴𝑔𝑢𝑡𝑀2 −  𝑓𝑟𝑎𝑐𝑙2 ∗ 𝐴𝑙𝑖𝑣𝑒𝑟𝑀2 −  𝑅𝐴𝑀𝐿4 

 

𝑑

𝑑𝑡
(𝐴𝑓𝑎𝑡𝑀1) =  𝑄𝑓𝑎𝑡 ∗ (𝑐𝑝𝑙𝑎𝑠𝑚𝑎𝑀1 ∗ 𝑓𝑢𝑚 −  𝑐𝑓𝑎𝑡𝑀1 ∗ (

𝑓𝑢𝑚

𝑘𝑓𝑎𝑡𝑝𝑙𝑎𝑠𝑚𝑎𝑀1

)) 

 
𝑑

𝑑𝑡
(𝐴𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑀1)

=  𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 

∗ (𝑐𝑝𝑙𝑎𝑠𝑚𝑎𝑀1 ∗ 𝑓𝑢𝑚 −  𝑐𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑀1 ∗ (
𝑓𝑢𝑚

𝑘𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑝𝑙𝑎𝑠𝑚𝑎𝑀1

)) 
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𝑑

𝑑𝑡
(𝐴𝑝𝑙𝑎𝑠𝑚𝑎𝑀1)

=   𝑄𝑓𝑎𝑡 ∗  𝑐𝑓𝑎𝑡𝑀1 ∗ (
𝑓𝑢𝑚

𝑘𝑓𝑎𝑡𝑝𝑙𝑎𝑠𝑚𝑎𝑀1

) +  𝑄𝑙𝑖𝑣𝑒𝑟 ∗ 𝑐𝑙𝑖𝑣𝑒𝑟𝑀1

∗ (
𝑓𝑢𝑚

𝑘𝑙𝑖𝑣𝑒𝑟𝑝𝑙𝑎𝑠𝑚𝑎𝑀1

) + 𝑄𝑔𝑜𝑛𝑎𝑑𝑠 ∗ 𝑐𝑔𝑜𝑛𝑎𝑑𝑠𝑀1 ∗ (
𝑓𝑢𝑚

𝑘𝑔𝑜𝑛𝑎𝑑𝑠𝑝𝑙𝑎𝑠𝑚𝑎𝑀1

)

+ (𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 ∗ 𝑐𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑀1 ∗ (
𝑓𝑢𝑚

𝑘𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑝𝑙𝑎𝑠𝑚𝑎𝑀1

))

−  𝑄𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑐𝑝𝑙𝑎𝑠𝑚𝑎𝑀1 ∗ 𝑓𝑢𝑚 − 𝑘𝑢𝑟𝑖𝑛𝑒𝑀1 ∗ 𝐴𝑝𝑙𝑎𝑠𝑚𝑎𝑀1 

 

 
𝑑

𝑑𝑡
(𝐴𝑢𝑟𝑖𝑛𝑒𝑀1) =  𝑘𝑢𝑟𝑖𝑛𝑒𝑀1 ∗ 𝐴𝑝𝑙𝑎𝑠𝑚𝑎𝑀1 

𝑑

𝑑𝑡
(𝐴𝑀2)  =  𝑓𝑟𝑎𝑐𝑙2 ∗ 𝐴𝑙𝑖𝑣𝑒𝑟𝑀2 −  𝑘𝑢𝑟𝑖𝑛𝑒𝑀2 ∗ 𝐴𝑀2 

 
𝑑

𝑑𝑡
(𝐴𝑀3)  =  𝑅𝐴𝑀𝐿3 − 𝑘𝑢𝑟𝑖𝑛𝑒𝑀3 ∗ 𝐴𝑀3 

 
𝑑

𝑑𝑡
(𝐴𝑀4)  =  𝑓𝑟𝑎𝑐𝑙4 ∗ 𝑅𝐴𝑀𝐿4 +  𝑅𝐴𝑀𝐺4 −  𝑘𝑢𝑟𝑖𝑛𝑒𝑀4 ∗ 𝐴𝑀4 

 
𝑑

𝑑𝑡
(𝐴𝑢𝑟𝑖𝑛𝑒𝑀2)  =  𝑘𝑢𝑟𝑖𝑛𝑒𝑀2 ∗ 𝐴𝑀2 

 
𝑑

𝑑𝑡
(𝐴𝑢𝑟𝑖𝑛𝑒𝑀3)  =  𝑘𝑢𝑟𝑖𝑛𝑒𝑀3 ∗ 𝐴𝑀3 

 
𝑑

𝑑𝑡
(𝐴𝑢𝑟𝑖𝑛𝑒𝑀4)  =  𝑘𝑢𝑟𝑖𝑛𝑒𝑀4 ∗ 𝐴𝑀4 

 

𝑅𝐴𝑀𝐺1 =  𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀1 ∗ 𝑐𝑔𝑢𝑡 ∗ 𝑓𝑢/(𝑐𝑔𝑢𝑡 ∗ 𝑓𝑢 + 𝑘𝑚𝑔𝑢𝑡𝑀1) 

𝑅𝐴𝑀𝐺1_𝑐𝑦𝑡 =  𝑣𝑚𝑎𝑥𝑔𝑢𝑡_𝑐𝑦𝑡𝑀1 ∗ 𝑐𝑔𝑢𝑡 ∗ 𝑓𝑢/(𝑐𝑔𝑢𝑡 ∗ 𝑓𝑢 + 𝑘𝑚𝑔𝑢𝑡_𝑐𝑦𝑡𝑀1) 

𝑅𝐴𝑀𝐺2 =  𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀2 ∗ 𝑐𝑔𝑢𝑡𝑀1 ∗ 𝑓𝑢𝑚𝑖/(𝑐𝑔𝑢𝑡𝑀1 ∗ 𝑓𝑢𝑚𝑖 + 𝑘𝑚𝑔𝑢𝑡𝑀2) 

𝑅𝐴𝑀𝐺3 =  𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀3 ∗ 𝑐𝑔𝑢𝑡𝑀1 ∗ 𝑓𝑢𝑚𝑖/(𝑐𝑔𝑢𝑡𝑀1 ∗ 𝑓𝑢𝑚𝑖 + 𝑘𝑚𝑔𝑢𝑡𝑀3) 

𝑅𝐴𝑀𝐺4 =  𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀4 ∗ 𝑐𝑔𝑢𝑡𝑀2/(𝑐𝑔𝑢𝑡𝑀2 + 𝑘𝑚𝑔𝑢𝑡𝑀4) 

𝑅𝐴𝑀𝐺5 =  𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀5 ∗ 𝑐𝑔𝑢𝑡𝑀1 ∗ 𝑓𝑢𝑚𝑖/(𝑐𝑔𝑢𝑡𝑀1 ∗ 𝑓𝑢𝑚𝑖 + 𝑘𝑚𝑔𝑢𝑡𝑀5) 

𝑅𝐴𝑀𝐿1 =  𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀1 ∗ 𝑐𝑙𝑖𝑣𝑒𝑟 ∗ 𝑓𝑢/(𝑐𝑙𝑖𝑣𝑒𝑟 ∗ 𝑓𝑢 + 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀1) 

𝑅𝐴𝑀𝐿1_𝑐𝑦𝑡 =  𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟_𝑐𝑦𝑡𝑀1 ∗ 𝑐𝑙𝑖𝑣𝑒𝑟 ∗ 𝑓𝑢/(𝑐𝑙𝑖𝑣𝑒𝑟 ∗ 𝑓𝑢 + 𝑘𝑚𝑙𝑖𝑣𝑒𝑟_𝑐𝑦𝑡𝑀1) 

𝑅𝐴𝑀𝐿2 =  𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀2 ∗ 𝑐𝑙𝑖𝑣𝑒𝑟𝑀1 ∗ 𝑓𝑢𝑚𝑖/(𝑐𝑙𝑖𝑣𝑒𝑟𝑀1 ∗ 𝑓𝑢𝑚𝑖 + 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀2) 

𝑅𝐴𝑀𝐿3 =  𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀3 ∗ 𝑐𝑙𝑖𝑣𝑒𝑟𝑀1 ∗ 𝑓𝑢𝑚𝑖/(𝑐𝑙𝑖𝑣𝑒𝑟𝑀1 ∗ 𝑓𝑢𝑚𝑖 + 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀3) 

𝑅𝐴𝑀𝐿4 =  𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀4 ∗ 𝑐𝑙𝑖𝑣𝑒𝑟𝑀2/(𝑐𝑙𝑖𝑣𝑒𝑟𝑀2 +  𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀4) 

𝑅𝐴𝑀𝐿5 =  𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀5 ∗ 𝑐𝑙𝑖𝑣𝑒𝑟𝑀1 ∗ 𝑓𝑢𝑚𝑖/(𝑐𝑙𝑖𝑣𝑒𝑟𝑀1 ∗ 𝑓𝑢𝑚𝑖 + 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀5) 

 𝑅𝐴𝑀𝐺1 is metabolism of DEHP into MEHP in microsomal fraction of gut 
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 𝑅𝐴𝑀𝐺1_𝑐𝑦𝑡   is metabolism of DEHP into MEHP in cytosol fraction of gut 

 𝑅𝐴𝑀𝐺2 is metabolism of MEHP into MEHP-OH  in microsomal fraction of gut 

 𝑅𝐴𝑀𝐺3 is metabolism of MEHP into 5-carboxy MEPP  

 𝑅𝐴𝑀𝐺4 is metabolism of MEHP-OH into 5-oxo MEPP 

 𝑅𝐴𝑀𝐺5 is metabolism of MEHP into phthalic acid 

 𝑅𝐴𝑀𝐿1 is metabolism of DEHP into MEHP in microsomal fraction of liver 

 𝑅𝐴𝑀𝐿1_is metabolism of DEHP into MEHP in cytosol fraction of liver 

 𝑅𝐴𝑀𝐿2 is metabolism of MEHP into MEHP-OH   

 𝑅𝐴𝑀𝐿3 is metabolism of MEHP into 5-carboxy MEPP  

 𝑅𝐴𝑀𝐿4 is metabolism of  MEHP-OH into 5-oxo MEPP 

 𝑅𝐴𝑀𝐿5 is metabolism of MEHP into phthalic acid 

 𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀1 is the maximum metabolic rate of reaction in gut microsomes 

(DEHP to MEHP)  

 𝑣𝑚𝑎𝑥𝑔𝑢𝑡_𝑐𝑦𝑡𝑀1 is the maximum metabolic rate of reaction in gut cytosol 

(DEHP to MEHP) 

 𝑘𝑚𝑔𝑢𝑡𝑀1 is the concentration at which half maximum reaction occur 

(microsomal fraction) 

 𝑘𝑚𝑔𝑢𝑡𝑀1_𝑐𝑦𝑡𝑀1 is the concentration at which half maximum reaction occur 

(cytosol fraction) 

 𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀2 is the maximum metabolic rate of reaction for MEHP to  MEHP-

OH   

 𝑘𝑚𝑔𝑢𝑡𝑀2 is the concentration at which half maximum reaction occur (MEHP 

to  MEHP-OH) 

 𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀3  is the maximum metabolic rate of reaction for MEHP to 5-

carboxy MEPP 

 𝑘𝑚𝑔𝑢𝑡𝑀3 is the concentration at which half maximum reaction occur (MEHP 

to 5-carboxy MEPP) 

 𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀4  is the maximum metabolic rate of reaction for MEHP-OH to 5-

oxo MEPP 

 𝑘𝑚𝑔𝑢𝑡𝑀4 is the concentration at which half maximum reaction occur (MEHP-

OH to 5-oxo MEPP) 

 𝑣𝑚𝑎𝑥𝑔𝑢𝑡𝑀5  is the maximum metabolic rate of reaction for MEHP to phthalic 

acid 

 𝑘𝑚𝑔𝑢𝑡𝑀5 is the concentration at which half maximum reaction occur (MEHP 

to phthalic acid) 

 𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀1 is the maximum metabolic rate of reaction in liver microsomes 

(DEHP to MEHP)  

 𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟_𝑐𝑦𝑡𝑀1 is the maximum metabolic rate of reaction in liver cytosol 

(DEHP to MEHP) 

 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀1 is the concentration at which half maximum reaction occur 

(microsomal fraction) 
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 𝑘𝑚𝑙𝑖𝑣𝑒𝑟_𝑐𝑦𝑡𝑀1 is the concentration at which half maximum reaction occur 

(cytosol fraction) 

 𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀2 is the maximum metabolic rate of reaction for MEHP to  MEHP-

OH   

 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀2 is the concentration at which half maximum reaction occur (MEHP 

to  MEHP-OH) 

 𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀3  is the maximum metabolic rate of reaction for MEHP to 5-

carboxy MEPP 

 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀3 is the concentration at which half maximum reaction occur (MEHP 

to 5-carboxy MEPP) 

 𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀4  is the maximum metabolic rate of reaction for MEHP-OH to 5-

oxo MEPP 

 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀4 is the concentration at which half maximum reaction occur (MEHP-

OH to 5-oxo MEPP) 

 𝑣𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑀5  is the maximum metabolic rate of reaction for MEHP to phthalic 

acid 

 𝑘𝑚𝑙𝑖𝑣𝑒𝑟𝑀5 is the concentration at which half maximum reaction occur (MEHP 

to phthalic acid) 

 𝑓𝑢𝑚𝑖/𝑓𝑢𝑚 is the fractional unbound for the MEHP in plasma and microsomes 

are assume to be same 

Note: 

M1, M2, M3 and M4 corresponds to MEHP, 5-OH MEHP, 5-cx MEPP and 5-oxo 

MEHP, respectively. 

Kurine = urine elimination rate constant.  

A corresponds to amount.  

Amounts are converted to concentration by dividing with the respective volume of 

organs.  

Vmax has a unit of µg/hr/whole BW weight 
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Chapter 3: Supplementary information 

Standard ordinary differential equations used in tissue dosimetry model for the 

development of P-PBPK model of BPA 

𝑑

𝑑𝑡
(𝑠𝑡𝑜𝑚𝑎𝑐ℎ) = 𝑖𝑛𝑝𝑢𝑡1 − 𝐾 ∗ 𝐴𝑠𝑡𝑜𝑚𝑎𝑐ℎ − 𝐺𝐸 ∗ 𝐴𝑠𝑡𝑜𝑚𝑎𝑐ℎ 

 
𝑑

𝑑𝑡
(𝑠𝑡𝑜𝑚𝑎𝑐ℎ) is the rate of change of chemical amount in Stomach (nmol) 

 𝑖𝑛𝑝𝑢𝑡1is the oral dose exposure (nmol/day)  ;3 equal divided dose per day 

 K  is the absorption rate constant in the stomach (1/hr), 

 GE is the gastric emptying time  

 

𝑑

𝑑𝑡
(𝑔𝑢𝑡) = 𝐺𝐸 ∗ 𝐴𝑠𝑡𝑜𝑚𝑎𝑐ℎ − 𝑉𝑚𝑎𝑥𝑔𝑢𝑡𝑔𝑙𝑢 ∗ 𝐶𝑔𝑢𝑡 ∗ 𝑓𝑢/(𝐶𝑔𝑢𝑡 ∗ 𝑓𝑢 + 𝐾𝑚𝑔𝑢𝑡_𝑔𝑙𝑢)

− 𝐾1 ∗ 𝐴𝐺𝑢𝑡   

 𝑉𝑚𝑎𝑥𝑔𝑢𝑡_𝑔𝑙𝑢 is the scaled maximum rate of glucuronidation in gut ( nM/hr) 

 𝑐𝑔𝑢𝑡 is the concentration of chemical in gut 

 𝑓𝑢 is the plasma fractional unbound  

 𝐾𝑚𝑔𝑢𝑡_𝑔𝑙𝑢 is the concentration in nmol/liter to produce half maximum 

reaction 

 𝐾1 is uptake rate of chemical from oral to liver 

 

𝑑

𝑑𝑡
(𝐿𝑖𝑣𝑒𝑟) = 𝑄𝑙𝑖𝑣𝑒𝑟 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −   𝐶𝑙𝑖𝑣𝑒𝑟 ∗ (

𝑓𝑢

𝐾𝑙𝑖𝑣𝑒𝑟𝑝𝑙𝑎𝑠𝑚𝑎

)) +  𝐾1 ∗ 𝐴𝐺𝑢𝑡

− 𝑉𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑔𝑙𝑢 ∗ 𝐶𝑙𝑖𝑣𝑒𝑟 ∗
𝑓𝑢

𝐶𝑙𝑖𝑣𝑒𝑟 ∗ 𝑓𝑢 + 𝐾𝑚𝑙𝑖𝑣𝑒𝑟𝑔𝑙𝑢

− 𝑉𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟_𝑠𝑢𝑙𝑓 ∗ 𝐶𝑙𝑖𝑣𝑒𝑟 ∗ 𝑓𝑢/(𝐶𝑙𝑖𝑣𝑒𝑟 ∗ 𝑓𝑢 + 𝐾𝑚𝑙𝑖𝑣𝑒𝑟_𝑠𝑢𝑙𝑓)  

 𝑄𝑙𝑖𝑣𝑒𝑟 is the cardiac blood flow to liver 

 𝐶𝑝𝑙𝑎𝑠𝑚𝑎 is the plasma concentration of chemical 

 𝐶𝑙𝑖𝑣𝑒𝑟 is the concentration of chemical in liver 

 𝐾𝑙𝑖𝑣𝑒𝑟𝑝𝑙𝑎𝑠𝑚𝑎
 is the liver plasma partition coefficient  

 𝑉𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑔𝑙𝑢 is the maximal glucuronidation rate of chemical in liver  

 𝐾𝑚𝑙𝑖𝑣𝑒𝑟𝑔𝑙𝑢 is the concentration at which half maximal reaction occurs for 

glucuronidation in liver 

 𝑉𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟_𝑠𝑢𝑙𝑓 is the maximal sulfation  rate of chemical in liver 

 𝐾𝑚𝑙𝑖𝑣𝑒𝑟_𝑠𝑢𝑙𝑓 is the concentration at which half maximal reaction sulfation 

occurs in liver 
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𝑑

𝑑𝑡
(𝐵𝑟𝑎𝑖𝑛) = 𝑄𝑏𝑟𝑎𝑖𝑛 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −   𝐶𝑏𝑟𝑎𝑖𝑛 ∗ (

𝑓𝑢

𝐾𝑏𝑟𝑎𝑖𝑛𝑝𝑙𝑎𝑠𝑚𝑎

)) 

 𝑄𝑏𝑟𝑎𝑖𝑛 is the blood flow to  brain 

 𝐾𝑏𝑟𝑎𝑖𝑛𝑝𝑙𝑎𝑠𝑚𝑎
brain plasma partition coefficient 

 

𝑑

𝑑𝑡
(𝐾𝑖𝑑𝑛𝑒𝑦) = 𝑄𝐾𝑖𝑑𝑛𝑒𝑦 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −   𝐶𝑘𝑖𝑑𝑛𝑒𝑦 ∗ (

𝑓𝑢

𝐾𝑘𝑖𝑑𝑛𝑒𝑦𝑝𝑙𝑎𝑠𝑚𝑎

)) −

 𝐾𝑢𝑟𝑖𝑛𝑒 ∗ 𝐶𝑘𝑖𝑑𝑛𝑒𝑦  

 𝑄𝑘𝑖𝑑𝑛𝑒𝑦 blood flow to kidney  

 𝐾𝑘𝑖𝑑𝑛𝑒𝑦𝑝𝑙𝑎𝑠𝑚𝑎
kidney plasma partition coefficient 

 𝐾𝑢𝑟𝑖𝑛𝑒 is the excretion  rate of chemical to urine  

 

𝑑

𝑑𝑡
(𝑓𝑎𝑡) = 𝑄𝑓𝑎𝑡 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −   𝐶𝑓𝑎𝑡 ∗ (

𝑓𝑢

𝐾𝑓𝑎𝑡𝑝𝑙𝑎𝑠𝑚𝑎

)) 

 𝑄𝑓𝑎𝑡 blood flow to the fat 

 𝐾𝑓𝑎𝑡𝑝𝑙𝑎𝑠𝑚𝑎
fat plasma partition coefficient 

𝑑

𝑑𝑡
𝑠𝑘𝑖𝑛 = 𝑄𝑠𝑘𝑖𝑛 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 − 𝐶𝑠𝑘𝑖𝑛 ∗

𝑓𝑢

𝐾_𝑠𝑘𝑖𝑛_ 𝑝𝑙𝑎𝑠𝑚𝑎
)   

 𝑄𝑆𝑘𝑖𝑛 blood flow to the skin 

 𝐾_𝑠𝑘𝑖𝑛_ 𝑝𝑙𝑎𝑠𝑚𝑎 is the skin plasma partition coefficient 

 Cskin is the concentration of BPA in skin 

𝑑

𝑑𝑡
(𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦) = 𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −   𝐶𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 ∗ (

𝑓𝑢

𝐾𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑝𝑙𝑎𝑠𝑚𝑎

)) 

 𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 is the blood flow to  rest of the body 

 𝐾𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑝𝑙𝑎𝑠𝑚𝑎
restbody plasma partition coefficient 

 

UNIVERSITAT ROVIRA I VIRGILI 
INTEGRATIVE SYSTEMS TOXICOLOGY FOR HUMAN HEALTH 
Raju Prasad Sharma 
 



Annex 3 
 

363 

 

𝑑

𝑑𝑡
(𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎) = (𝑄𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 

∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢 −  𝐶𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 ∗ (
𝑓𝑢

𝐾𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎𝑝𝑙𝑎𝑠𝑚𝑎

))) − 𝐾𝑡1

∗ 𝐶𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 ∗ (
𝑓𝑢

𝐾𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎𝑝𝑙𝑎𝑠𝑚𝑎

) + 𝐾𝑡2 ∗ 𝐶𝑝𝑙𝑎𝑠𝑚𝑎𝑓𝑒𝑡𝑢𝑠 ∗ 𝑓𝑢  

−   𝑉𝑚𝑎𝑥𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎𝑔𝑙𝑢 ∗ 𝐶𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎

∗
𝑓𝑢

𝐶𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 ∗ 𝑓𝑢 + 𝐾𝑚𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎𝑔𝑙𝑢
+ 𝑘𝑑𝑒 ∗ 𝐶𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎  

 𝑄𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎  is the blood flow to  placenta 

 𝐶𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 is the concentration of chemical in placenta 

 𝐾_𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎_𝑝𝑙𝑎𝑠𝑚𝑎 placenta  plasma partition coefficient 

 𝐾_𝑡1 is the transfer rate of chemical to the fetus from placenta  

 𝐾_𝑡2 is the transfer of chemical to placenta from fetus 

 𝑉𝑚𝑎𝑥𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎_𝑔𝑙𝑢 is the glucuronidation of chemical in the placenta (similar 

with liver scaled assuming 10 percent of microsomal protein (MSP) in 

comparison to liver MSP) 

 𝐾𝑚𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎_𝑔𝑙𝑢 is the concentration of chemical producing half maximal 

reaction 

 𝐾𝑑𝑒  is the chemical deconjugation rate (BPAG to BPA) 

 

𝑑

𝑑𝑡
(𝑝𝑙𝑎𝑠𝑚𝑎) = 𝑄𝑓𝑎𝑡 ∗  𝐶𝑓𝑎𝑡 ∗ (

𝑓𝑢

𝐾𝑓𝑎𝑡𝑝𝑙𝑎𝑠𝑚𝑎

) +  𝑄𝑙𝑖𝑣𝑒𝑟 ∗ 𝐶𝑙𝑖𝑣𝑒𝑟 ∗ (
𝑓𝑢

𝐾𝑙𝑖𝑣𝑒𝑟𝑝𝑙𝑎𝑠𝑚𝑎

) 

+ (𝑄𝑏𝑟𝑎𝑖𝑛 ∗ 𝐶𝑏𝑟𝑎𝑖𝑛 ∗ (
𝑓𝑢

𝐾𝑏𝑟𝑎𝑖𝑛𝑝𝑙𝑎𝑠𝑚𝑎

))

+ (𝑄𝑘𝑖𝑑𝑛𝑒𝑦 ∗ 𝐶𝑘𝑖𝑑𝑛𝑒𝑦 ∗ (
𝑓𝑢

𝐾𝑘𝑖𝑑𝑛𝑒𝑦𝑝𝑙𝑎𝑠𝑚𝑎

)) 

+ (𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 ∗ 𝐶𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦 ∗ (
𝑓𝑢

𝐾𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦𝑝𝑙𝑎𝑠𝑚𝑎

)) 

− (𝑄𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗  𝐶𝑝𝑙𝑎𝑠𝑚𝑎 ∗ 𝑓𝑢) 

+  (𝑄𝑆𝑘𝑖𝑛 ∗  𝐶𝑠𝑘𝑖𝑛 ∗ (
𝑓𝑢

𝐾𝑠𝑘𝑖𝑛𝑝𝑙𝑎𝑠𝑚𝑎

)) 

+ 𝑄𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 ∗  𝐶𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 ∗ (𝑓𝑢/𝐾_𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎_𝑝𝑙𝑎𝑠𝑚𝑎) 

 𝑄𝑝𝑙𝑎𝑠𝑚𝑎  is the blood flow to  plasma 
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                                                       Fetus model equation 

𝑑

𝑑𝑡
𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠 = 𝑄𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎𝑓𝑒𝑡𝑢𝑠 ∗ 𝑓𝑢 − 𝐶𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠 ∗

(
𝑓𝑢

𝐾𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠𝑝𝑙𝑎𝑠𝑚𝑎

)) − 𝑉𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟𝑔𝑙𝑢𝑓𝑒𝑡𝑢𝑠
∗

𝐶𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠

𝐶𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠+𝐾𝑚𝑙𝑖𝑣𝑒𝑟𝑔𝑙𝑢
 +  𝑘𝑑𝑒 ∗ 𝐶𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠   

 𝑄𝑙𝑖𝑣𝑒𝑟_𝑓𝑒𝑡𝑢𝑠  is the blood flow to the fetal liver 

 𝐶𝑝𝑙𝑎𝑠𝑚𝑎𝑓𝑒𝑡𝑢𝑠 is the  chemical fetus plasma concentration 

 𝐶𝑙𝑖𝑣𝑒𝑟_𝑓𝑒𝑡𝑢𝑠is the liver chemical concentration  

 𝐾𝑙𝑖𝑣𝑒𝑟𝑓𝑒𝑡𝑢𝑠: 𝑝𝑙𝑎𝑠𝑚𝑎 is the fetus liver plasma concentration 

 𝑉𝑚𝑎𝑥𝑙𝑖𝑣𝑒𝑟_𝑔𝑙𝑢_𝑓𝑒𝑡𝑢𝑠 is the scaled maximum rate of reaction for chemical 

metabolism from in-vitro data considering fetal liver volume and fetus liver 

microsomal protein content 

 𝐾𝑚𝑙𝑖𝑣𝑒𝑟_glu is the concentration of substrate (chemical) producing half 

maximal reaction 

 𝐾𝑑𝑒  is the chemical deconjugation rate  

 

𝑑

𝑑𝑡
𝑓𝑒𝑡𝑢𝑠_𝑏𝑟𝑎𝑖𝑛 = 𝑄𝑏𝑟𝑎𝑖𝑛_𝑓𝑒𝑡𝑢𝑠 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎_𝑓𝑒𝑡𝑢𝑠 ∗ 𝑓𝑢 − 𝐶𝑏𝑟𝑎𝑖𝑛_𝑓𝑒𝑡𝑢𝑠

∗ (
𝑓𝑢

𝐾𝑏𝑟𝑎𝑖𝑛𝑓𝑒𝑡𝑢𝑠𝑝𝑙𝑎𝑠𝑚𝑎

) 

 Qbrain_fetus  is the blood flow to the fetal brain 

 Cbrain_fetusis the brain chemical  concentration  

𝑑

𝑑𝑡
𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦_𝑓𝑒𝑡𝑢𝑠 

= 𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦_𝑓𝑒𝑡𝑢𝑠 ∗ (𝐶𝑝𝑙𝑎𝑠𝑚𝑎_𝑓𝑒𝑡𝑢𝑠 ∗ 𝑓𝑢 − 𝐶𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦_𝑓𝑒𝑡𝑢𝑠

∗ (
𝑓𝑢

𝐾𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦_𝑓𝑒𝑡𝑢𝑠_𝑝𝑙𝑎𝑠𝑚𝑎
) 

 Qrestbody_fetus is the blood flow to the rest of the body  

 𝐶𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦_𝑓𝑒𝑡𝑢𝑠 is the concentration in rest of the body of fetus 

 

𝑑

𝑑𝑡
𝑎𝑚𝑛𝑖𝑜𝑡𝑖𝑐𝑓𝑙𝑢𝑖𝑑 = 𝐾_𝑡3 ∗ 𝐶𝑙𝑖𝑣𝑒𝑟_𝑓𝑒𝑡𝑢𝑠 ∗ 𝑓𝑢 −  𝐶𝑎𝑚𝑛𝑖𝑜𝑡𝑖𝑐𝑓𝑙𝑢𝑖𝑑 ∗ 𝐾_𝑡4  

 𝐾_t3 is chemical transfer rate from fetus to amniotic fluid 

 k_t4 is the chemical transfer rate from amniotic fluid to fetus 

 Camnioticfluidis the concentration of BPA in amniotic fluid 
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𝑑

𝑑𝑡
𝑝𝑙𝑎𝑠𝑚𝑎_𝑓𝑒𝑡𝑢𝑠

= (𝑄𝑙𝑖𝑣𝑒𝑟_𝑓𝑒𝑡𝑢𝑠 ∗ (𝐶𝑙𝑖𝑣𝑒𝑟_𝑓𝑒𝑡𝑢𝑠

∗ (𝑓𝑢/𝐾_𝑙𝑖𝑣𝑒𝑟_𝑓𝑒𝑡𝑢𝑠_𝑝𝑙𝑎𝑠𝑚𝑎)))  + (𝑄𝑏𝑟𝑎𝑖𝑛_𝑓𝑒𝑡𝑢𝑠 

∗  (𝐶𝑏𝑟𝑎𝑖𝑛_𝑓𝑒𝑡𝑢𝑠 ∗ (𝑓𝑢/𝐾_𝑏𝑟𝑎𝑖𝑛_𝑓𝑒𝑡𝑢𝑠_𝑝𝑙𝑎𝑠𝑚𝑎)))  

+  𝑄𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦_𝑓𝑒𝑡𝑢𝑠 ∗ (𝐶𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦_𝑓𝑒𝑡𝑢𝑠

∗ (𝑓𝑢/𝐾_𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦_𝑓𝑒𝑡𝑢𝑠_𝑝𝑙𝑎𝑠𝑚𝑎))  − (𝑄𝐶𝑝𝑙𝑎𝑠𝑚𝑎_𝑓𝑒𝑡𝑢𝑠

∗ 𝐶𝑝𝑙𝑎𝑠𝑚𝑎_𝑓𝑒𝑡𝑢𝑠 ∗ 𝑓𝑢) + (𝐾_𝑡1 ∗ 𝐶𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎

∗ (𝑓𝑢/𝐾_𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎_𝑝𝑙𝑎𝑠𝑚𝑎))  −  𝐾_𝑡2 ∗ 𝐶𝑝𝑙𝑎𝑠𝑚𝑎_𝑓𝑒𝑡𝑢𝑠 ∗ 𝑓𝑢  

+  𝐾𝑑𝑒 ∗ 𝐶𝑝𝑙𝑎𝑠𝑚𝑎_𝑓𝑒𝑡𝑢𝑠𝐵𝑃𝐴𝐺 

 

Equations for scaling physiological parameter for the fetus  

 

1. 𝐕_𝐟𝐞𝐭𝐮𝐬 = 3.779 ∗ (e−16.08∗e−5.67∗e−4∗GD∗24
) + (e−140.78∗e−7.01∗e−4∗24∗GD

) 

 𝐕_𝐟𝐞𝐭𝐮𝐬 = fetal volume     

 GD= Gestational day (T/24) 

 

 

2. 𝐕_𝐀𝐦𝐢𝐧𝐢𝐨𝐭𝐢𝐜 𝐟𝐥𝐮𝐢𝐝 = 0 + 1.9648 ∗ GA − 1.2056 ∗ GA2 + 0.2064 ∗ GA3 −

0.0061 ∗ GA4 + 0.00005 ∗ GA5 

 

3. 𝐕𝐛𝐥𝐝𝐟𝐞𝐭 = 𝐅𝐯𝐥𝐝𝐟𝐞𝐭 ∗ 𝐕𝐟𝐞𝐭 

 𝐕𝐛𝐥𝐝𝐟𝐞𝐭 = fetal blood volume in L    

 Fvldfet = fetal blood volume as a fraction of body weight, L/kg = 0.085 

 Vfet = fetal body weight in kg  

4. 𝐕𝐥𝐢𝐯𝐞𝐫𝐟𝐞𝐭 = 𝐅𝐥𝐢𝐯𝐞𝐫𝐟𝐞𝐭 ∗ 𝐕𝐟𝐞𝐭  

 𝐕𝐥𝐢𝐯𝐞𝐫𝐟𝐞𝐭 = fetal liver volume in L 

 Fliverfet = fetal liver volume as a fraction of body weight = 0.04    

(Valentin, 2002) 

 Vfet = fetal body weight in kg 

5. 𝐕𝐤𝐢𝐝𝐧𝐞𝐲𝐟𝐞𝐭 = 𝐅𝐤𝐢𝐝𝐧𝐞𝐲𝐟𝐞𝐭 ∗ 𝐕𝐟𝐞𝐭 

 𝐕𝐤𝐢𝐝𝐧𝐞𝐲𝐟𝐞𝐭 = fetal kidney volume in L 

 Fkidneyfet = fetal kidney volume as a fraction of body weight = 0.0072 

 Vfet = fetal body weight in kg 

6. 𝐕𝐛𝐫𝐚𝐢𝐧𝐟𝐞𝐭 = 𝐅𝐛𝐫𝐚𝐢𝐧𝐟𝐞𝐭 ∗ 𝐕𝐟𝐞𝐭 

 𝐕𝐛𝐫𝐚𝐢𝐧𝐟𝐞𝐭 = fetal brain volume in L  

 Fbrainfet = fetal brain volume as a fraction of body weight = 0.11 

 Vfet = fetal body weight 

 

7. 𝐐𝐟𝐞𝐭 = 𝐅𝐐𝐟𝐞𝐭 ∗ 𝐕𝐛𝐥𝐝𝐟𝐞𝐭       

 𝐐𝐟𝐞𝐭 = fetal cardiac output L/h 
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 FQfet = fetal cardiac output as fraction of blood weight in kg (L/h/Kg) = 54 

 Vbldfet = fetal blood volume in kg 

8. 𝐐𝐋𝐢𝐯 𝐟𝐞𝐭 = 𝐅𝐐𝐥𝐢𝐯𝐞𝐦
∗ 𝐐𝐟𝐞𝐭   

 𝐐𝐋𝐢𝐯 𝐟𝐞𝐭 = fetal liver flood flow in L/h 

 FQlivem
 = maternal liver blood flow as fraction of cardiac output   

 Qfet = fetal cardiac output in L/h 

9. 𝐐𝐤𝐢𝐝𝐧𝐞𝐲 𝐟𝐞𝐭 = 𝐅𝐐𝐤𝐢𝐝𝐧𝐞𝐲𝐦
∗ 𝐐𝐟𝐞𝐭   

 𝐐𝐤𝐢𝐝𝐧𝐞𝐲 𝐟𝐞𝐭 = fetal kidney flood flow in L/h 

 FQkidneym
 = maternal kidney blood flow as fraction of cardia output 

 Qfet = fetal cardiac output in L/h 

10. 𝐐𝐛𝐫𝐚𝐢𝐧 𝐟𝐞𝐭 = 𝐅𝐐𝐛𝐫𝐚𝐢𝐧𝐦
∗ 𝐐𝐟𝐞𝐭    

 𝐐𝐛𝐫𝐚𝐢𝐧 𝐟𝐞𝐭 = fetal brain blood flow in L/h 

 FQbrainm
 = maternal brain blood flow as fraction of cardiac output 

 Qfet = fetal cardiac output 

Table A.1: General physiology parameters for PBPK model 

Parameter  Symbol  Value  References  

Cardiac blood output QCC a 20 

(L/h/kg0.75) 

(Clewell et al., 1999) 

(Clewell and Clewell, 

2008) 

Fractional liver blood 

flow   

FQliver 0.25 (Brown et al., 1997) 

Fractional brain  blood 

flow  

FQbrain 0.117 (Brown et al., 1997) 

Fractional kidney blood 

flow   

FQkidne

y 

0.177 (Brown et al., 1997) 

Fractional fat blood flow FQfat 0.052 (Brown et al., 1997) 

Fractional skin blood flow FQskin 0.058 (Brown et al., 1997) 

Constant Fraction of organs volume to body weight 

Fractional liver volume Fliver 0.026 (Brown et al., 1997) 

Fractional brain volume Fbrain 0.021 (Brown et al., 1997) 

Fractional kidney volume Fkidney 0.004 (Brown et al., 1997) 

Fractional fat volume Ffat 0.187 (Brown et al., 1997) 

Fractional skin volume Fskin 0.0371 (Brown et al., 1997) 
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Fractional plasma volume Fplasma 0.0428 (Davies and Morris, 1993) 

Fractional gut volume Fgut 0.016 (Brown et al., 1997) 

Haematocrit  HCT 0.45 (Davies and Morris, 1993) 

Fetal Blood flow as 

fraction of blood weight 

in kg  

FQblood

_fetus 

54(L/h/Kg0.

75) 

(Clewell et al., 1999) 

Fetal haematocrit  HCT_fet

us 

0.5 (Sisson et al., 1959) 

Fraction liver volume of 

fetus BW 

Fliver_fe

tus 

0.04* (Valentin, 2002) 

Fraction kidney volume of 

fetus BW 

Fkidney_

fetus 

0.0072* (Valentin, 2002) 

Fraction brain volume of 

fetus BW 

Fbrain_f

etus 

0.11* (Valentin, 2002) 

a parameter depends on body weight and on physical activity can be vary from 15-25 (Clewell and 

Clewell, 2008) . 

*Fractional organ weight for the fetus was estimated from ICRP (2002) data. Blood flow is scaled 

by multiplying fractional blood flow to tissue in a mother with the volume of fetus tissue.  

 

Table A.2 Pharmacokinetic parameters of BPA used for the P-PBPK 

Parameters Symbol/Unit Mean 

value 

References 

Gastric emptying time GE 

(L/h/kg-0.25) 

3.5 (Kortejärvi et al., 

2007) 

Oral absorption rate K_oral 

(L/h/kg-0.25) 

9 Optimize 

BPAG uptake to the 

liver 

KGlin_BPAG 

(L/h/kg-0.25) 

50 (Fisher et al., 2011) 

Fraction of BPAS 

transferred to plasma 

from liver 

Fbpasliver 1 (Fisher et al., 2011) 

Enterohepatic 

recirculation of BPAG 

Kentero_BPAG 

(L/h/kg-0.25) 

0.2 (Fisher et al. 2011) 
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BPA urinary excretion 

rate 

Kurine_BPA 

(L/h/kg0.75) 

0.1 Optimize 

BPAG urinary 

excretion rate 

Kurine_bpag 

(L/h/kg0.75) 

0.40 Optimize 

BPAS urinary 

excretion rate 

Kurine_bpas 

(L/h/kg0.75) 

0.025 Optimize 

BPAG fraction 

volume of distribution 

Vdbpag a 

(L) 

0.0435 set equal to plasm 

fraction volume 

BPAS fraction volume 

of distribution 

Vdbpasa 

(L) 

0.0435 set equal to plasm 

fraction volume 

fractional constant 

placental transfer from 

mother to fetus 

FK_t1 b 

 

5.2e-05 (Kawamoto et al., 

2007) 

fractional constant for 

placental transfer from 

fetus to mother 

FK_t2b 2.0e-05 (Kawamoto et al., 

2007) 

fractional constant for 

chemical transfer from 

fetus to amniotic fluid 

FK_t3b 0.008 

 

Visually fit against 

(Ikezuki et al., 2002) 

data 

fractional constant for 

chemical from  

amniotic fluid to fetus 

FK_t4b 0.001 Visually fit against 

(Ikezuki et al., 2002) 

data 

fractional constant for 

placental transfer from 

mother to fetus 

 

FK_t1_BPAGb 3.3e-6 (Kawamoto et al., 

2007) 

fractional constant for 

placental transfer from 

fetus to mother 

FK_t2_BPAGb 6.6e-14 (Kawamoto et al., 

2007) 

Deconjugation rate in 

placenta and fetus  

Kde  0.35  Estimated  

Glucuronidation of BPA  in liver c 
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Vmax 

nmol/min/mg of 

protein 

 

 

Km (µmole) Vmax 

(nmol/hr/

kg 

BW.75) 

Reference 

4.71 45.8 680,095.

6 

 

(Coughlin et al., 2012) 

 

Glucuronidation of BPA in gut c 

1.4 58 

 

22750 

 

(Trdan Lusin et al., 

2012) 

Sulfation of BPA in liver c 

149 

nmol/h/g liver 

10.1 

 

11657 (Kurebayashi et al., 

2010) 

Partition coefficient 

Liver/blood PC k_liver_plasma 0.73 (Doerge et al., 2011) 

Brain/blood PC k_brain_plasma 2.8 (Doerge et al., 2011) 

Kidney/blood PC k_kidney_plasma 0.858 (Kawamoto et al., 

2007) 

Fat/blood PC k_fat_plasma 5.0 (Doerge et al., 2011) 

Skin/blood PC k_skin_plasma 5.7 (Mielke et al., 2011) 

Rest of the PC 

body/blood 

k_restbody_plasm

a 

2.7 Assumed similar to 

brain 

Placenta/blood PC k_placenta_plasm

a 

1.43 (Csanády et al., 2002) 

Placenta/blood BPAG 

PC 

k_placentaBPAG

_plasma 

0.680 (Kawamoto et al., 

2007) 

Fetus Liver/blood PC k_liver_fetus_plas

ma 

0.73 set equal to mother 

Fetus rest of the PC 

body/blood 

k_restbody_fetus_

plasma 

2.7 set equal to mother 
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a = parameter set to plasma volume, b= value need to scale (Vfetus0.75 ) to use in P-PBPK 

modeling, c = mean experimental value has used for scaling to in-vivo 

 

Table A.3. Subject Anthropometries 

Cohort  BW (mean) Kg  Age (mean) year  Height (mean) 

meter  

(Schönfelder et al., 

2002) (Aris, 2014), 

(Zhang et al., 2013) 

78 33 1.6 

(Kuroda et al., 2003), 

(Ikezuki et al., 2002 

53 33 1.58 

 

Table A.4. Human biomonitoring data collected from literature from different 

pregnancy cohort studies 

 

References 

Mother 

Plasma 

(nM) 

Fetal 

Plasma 

(nM) 

Placenta 

(nM) 

Fetal 

liver 

(nM) 

Fetal 

amniotic 

fluid conc. 

(nM) 

Cohort 

(Zhang et al., 

2013) 

(at delivery) 

 

15.7±18.73 

 

0.57±0.52 

 
NA NA NA China 

(Schönfelder 

et al., 2002) 

(at delivery) 

 

19.3±2.8 

 

12.7±1.8 

 

49±6.63 

 
NA NA 

German

y 

(Lee et al., 

2008) 

(at delivery) 

 

11.97b 

(13.6±4.8)c 

2.74b 

(2.85±4.6)c 
NA NA NA Korean 
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(Ikezuki et 

al., 2002) 

(at early 

pregnancy) 

 

 

6.6±0.86 

 

NA NA NA 

 

36.4±6.9 

 

Japan 

(Ikezuki et 

al., 2002 

(at delivery) 

 

 

6.1±0.65 

 

 

9.6±1.4 

 

NA NA 

 

4.8±0.71 

 

Japan 

(Kuroda et 

al., 2003) 

 

 

2.0±0.3 

 

 

2.8±0.19 

 

NA NA NA Japan 

BPA(Cao et 

al., 2012) 

(early to mid-

gestational) 

NA NA 

 

55.3b 

(2.41-

723)d 

 

 

39.56b 

(4.50-

165)d 

 

NA 

 

Canada 

(1998-

2008) 

 

 
(J. Zhang et 

al., 2011) 

(at early 

pregnancy) 

 

NA NA 

 

41.6±70 

 

 

37.28±42 

 

NA 

 

 

Canada 

 

 

 

(Aris, 2014) 

(at delivery) 

 

(0-19.5)d 

5.96±5.17 

 

 

(0-20.17)d 

5.39±4.56 

 

NA NA NA 

Canada 

eastern 

townshi

p 

(Gerona et al., 

2014) 

(mid-

gestational) 

NA 

0.219b 

(LOD- 

229)d 

NA NA NA 

North 

Califor

nia 
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b = median value, c = geometric mean, d= range value, LOD= limit of detection 

(0.220nM) 

NA = not available  

Note: all units are converted into nM for this study. 
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Chapter 4: Supplementary information 

dt(KEAP1) = -(((kf_re2*KEAP1*NRF2_cyt)/(kinh_re2* PARK7Act + 1)) - 

kb_re2*(KEAP1_NRF2_cyt))  - (kf_re3*KEAP1*ROS -kb_re3*KEAP1_ROSmod)+ 

KEAP1synt*S + ((k1_re4*KEAP1_NRF2_cyt - k2_re4*KEAP1*NRF2cytUB))- 

k1_re31*KEAP1 - ((k1_re6*KEAP1*P62_cyt - k2_re6*KEAP1_P62)); 

 

dt(KEAP1_ROSmod) = (kf_re3*KEAP1*ROS - kb_re3*KEAP1_ROSmod) - k1_re33 

*KEAP1_ROSmod; 

 

dt(VDAC1) = -(kf_re1*VDAC1*(0.01 + PINK1_PARK2) - kb_re1*VDAC1UB); 

 

dt(PARK2) = -(((kf_re26*PINK1*PARK2*ROS)/(kinh_re26*PARK7Act +1))- 

kb_r26*PINK1_PARK2); 

 

dt(ATP) = ((kf_re8*RE*O2*Mit_H*ADP)/(1 + kup_re8*UPp)) - k1_re14*S*ATP - 

k1_re29*ATP; 

 

dt(ADP) = -((kf_re8*RE*O2*Mit_H*ADP)/(1 + kup_re8*UPp)) + k1_re14*S*ATP + 

k1_re29*ATP; 

 

dt(Antioxidant_p) = kf_re12*Antioxidant_m *S - k1_re13*Antioxidant_p -

k1_re40*ROS*Antioxidant_p; 

 

dt(NRF2_cyt) = -(((kf_re2 * KEAP1*NRF2_cyt)/(kinh_re2* PARK7Act + 1)) - 

kb_re2*(KEAP1_NRF2_cyt)) + NRF2_synt*S - (k1_re17*NRF2_cyt -

k2_re17*NRF2_nucleus) - k1_re30*NRF2_cyt; 

 

dt(PARK7Act) = kf_re46*PARK7InAct_DJ1*(0.01 +ROS)-kb_re46*PARK7Act; 

 

dt(PARK7InAct_DJ1) = kb_re46*PARK7Act - kf_re46*PARK7InAct_DJ1*(0.01 

+ROS); 

 

dt(UPp) = kf_re24*UPm*S -k1_re25*UPp; 

 

dt(PINK1) = -(((kf_re26*PINK1*PARK2*ROS)/(kinh_re26*PARK7Act +1))- 

kb_r26*PINK1_PARK2); 

 

dt(Mit_H) = k1_re14*S*ATP - kf_re34*Mit_H*(ROS +1) + kf_MitR*BCLxL*Mit_D; 

 

dt(Mit_D) = kf_re34*Mit_H*(ROS +1)- kf_re35*AP*Mit_D -

kf_MitR*BCLxL*Mit_D; 

 

dt(AP) = -k1_re38*AP + kf_apoptosis*S; 

 

dt(Aggr) = kf_re36*Alfa_synuclein*ROS -kb_re36*Aggr - (k1_re37*Aggr*P62_cyt - 

k2_re37*P62_im);  
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dt(P62_im) = (k1_re37*Aggr*P62_cyt - k2_re37*P62_im) - k1_re50*P62_im; 

 

dt(P62_cyt) = -((k1_re16*P62_cyt*VDAC1UB - k2_re16*VDAC_P62))-  

k1_re32*P62_cyt - ((k1_re37*Aggr*P62_cyt -k2_re37*P62_im)) 

-((k1_re6*KEAP1*P62_cyt- k2_re6*KEAP1_P62)) + kf_re7*P62_m*S; 

 

dt(ROS) = -k1_re40*ROS*Antioxidant_p + ((ROS_synt*O2*RE*Mit_D - 

kb_re41*ROS)/(1+ kUPp_re41*UPp;       

 

dt(KEAP1_P62) = -kf_re28*KEAP1_P62*(ROS+1) + k1_re6*KEAP1*P62_cyt - 

k2_re6*KEAP1_P62 ; 

 

dt(PINK1_PARK2) = (((kf_re26*PINK1*PARK2*ROS)/(kinh_re26*PARK7Act +1))- 

kb_r26*PINK1_PARK2); 

 

dt(VDAC1UB) = (kf_re1*VDAC1*(0.01+ PINK1_PARK2)- kb_re1*VDAC1UB) -

((k1_re16*P62_cyt*VDAC1UB - k2_re16*VDAC_P62)); 

 

dt(VDAC_P62) = k1_re16*P62_cyt*VDAC1UB - k2_re16*VDAC_P62; 

 

dt(KEAP1_NRF2_cyt) = (((kf_re2 * KEAP1*NRF2_cyt)/(kinh_re2* PARK7Act + 1)) - 

kb_re2*KEAP1_NRF2_cyt) -(k1_re4*KEAP1_NRF2_cyt - 

k2_re4*KEAP1*NRF2cytUB); 

 

dt(NRF2cytUB) = k1_re4*KEAP1_NRF2_cyt - k2_re4*KEAP1*NRF2cytUB -

k1_re5*NRF2cytUB; 

 

dt(NFkB) = k1_re42*IKK - ((kf_re43*NFkB)/(1 + kinh_re43*PARK7Act)); 

 

dt(BCLxL) = kf_re44*NFkB*S - k1_re45*BCLxL; 

 

dt(CytC) = kf_re49*S*Mit_D/(1+kinh_re49*BCLxL)-k1_re48*CytC; 

 

dt(Ncells) = -Ncells*k1_re59*celldeathcoeficient*CytC; 

 

dt(AntioxidantInActGene) = -(k1_re9*AntioxidantInActGene*NRF2_nucleus - 

k2_re9*AntioxidantActGene); 

 

dt(AntioxidantActGene) = k1_re9*AntioxidantInActGene*NRF2_nucleus - 

k2_re9*AntioxidantActGene; 

 

dt(Antioxidant_m) = -k1_re11*Antioxidant_m + kf_re10*AntioxidantActGene*Snuc; 

 

dt(P62_m) = kf_re19*P62ActGene*Snuc -k1_re20*P62_m; 

 

dt(P62ActGene) = (kf_re18*P62InActGene*NRF2_nucleus*NFkB -

kb_re18*P62ActGene/1); 
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dt(P62InActGene) = -(kf_re18*P62InActGene*NRF2_nucleus*NFkB -

kb_re18*P62ActGene/1); 

 

dt(UPActGene) = kf_re21*UPInActGene*PARK7Act - kb_re21*UPActGene; 

 

dt(UPm) = kf_re22*UPActGene*Snuc - k1_re23*UPm; 

 

dt(UPInActGene) = -(kf_re21*UPInActGene*PARK7Act - kb_re21*UPActGene); 

 

dt(NRF2_nucleus) = (k1_re17*NRF2_cyt - k2_re17*NRF2_nucleus) - 

(kf_re18*P62InActGene*NRF2_nucleus*NFkB-kb_re18*P62ActGene/1) - 

((k1_re9*AntioxidantInActGene*NRF2_nucleus -k2_re9*AntioxidantActGene)); 

 

dt(UPActGene) = kf_re21*UPInActGene*PARK7Act - kb_re21*UPActGene; 

 

dt(UPm) = kf_re22*UPActGene*Snuc - k1_re23*UPm; 

 

dt(UPInActGene) = -(kf_re21*UPInActGene*PARK7Act - kb_re21*UPActGene); 

 

dt(NRF2_nucleus) = (k1_re17*NRF2_cyt - k2_re17*NRF2_nucleus) - 

(kf_re18*P62InActGene*NRF2_nucleus*NFkB-kb_re18*P62ActGene/1) - 

((k1_re9*AntioxidantInActGene*NRF2_nucleus -k2_re9*AntioxidantActGene)); 

 

Parmeters value for ROS systems biology model 

 
ROS_synt_coefficient = 1; 

ROS_synt_corrected = 8e-14; 

kf_re2= 0.5; 

kinh_re2= 0.1; 

kb_re2= 100; 

kf_re3= 1; 

kb_re3= 1; 

KEAP1synt= 1; 

k1_re4= 500; 

k2_re4= 0.01; 

k1_re31= 0.0001; 

k1_re6= 60; 

k2_re6= 6000; 

k1_re33= 0.1; 

kf_re1= 1; 

kb_re1= 100; 

kf_re26= 1; 

kinh_re26= 0.1; 

kb_r26= 10; 

kf_re8= 8e-14; 

RE= 5000000; 

O2= 250000; 

kup_re8= 0.0001; 

kf_re28 = 0.002; 

k1_re14= 2e-07; 

S= 1; 

k1_re29= 4;                 

kf_re12= 100000; 

k1_re13= 50; 

k1_re40= 0.05; 

NRF2_synt= 100; 

k1_re17= 1; 

k2_re17=1; 

k1_re30= 0.0002; 

kf_re46= 1; 

kb_re46=1 ; 

kf_re24= 192; 

k1_re25= 0.1; 

kf_re34= 0.01; 

kf_MitR= 0.0001; 

kf_re35=0.1; 

k1_re38= 0.1; 

kf_re36= 0.1; 

Alfa_synuclein= 3; 
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kb_re36= 0.1; 

k1_re37=0.1; 

k2_re37=0.1; 

k1_re50= 0.1; 

k1_re16= 6; 

k2_re16=600; 

k1_re32= 0.001; 

kf_re7=20; 

kb_re41= 0; 

kUPp_re41= 0.0001; 

k1_re5= 1000; 

k1_re42= 0.005; 

kf_re43=0.001; 

kinh_re43=0.001; 

kf_re44= 1; 

k1_re45= 0.5; 

kf_re49= 0.5; 

kinh_re49= 0.001; 

k1_re48= 0.1; 

k1_re59= 2.5e-06; 

k1_re9=0.022; 

k2_re9= 2.1; 

k1_re11=0.0011; 

kf_re10= 0.1; 

Snuc= 1; 

kf_re19= 0.1; 

k1_re20= 0.002; 

kf_re18= 0.03; 

kb_re18= 25; 

kf_re21= 1; 

kb_re21=200; 

kf_re22=50; 

k1_re23=0.8; 

IKK = 1  
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Chapter 5A: Supplementary information 

 
Model equations for PBPK/PD coupled mechanistic model  

 

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%#

Model equations for PFOS 

𝑑

𝑑𝑡
(𝐴𝑔𝑢𝑡) = Qgut ∗ (cplasma ∗ fu −  cgut ∗ (

fu

kgutplasma
)) 

 

𝑑

𝑑𝑡
(𝐴𝑙𝑖𝑣𝑒𝑟) =  Qliver ∗ cplasma ∗ fu +  Qgut ∗ cgut ∗ (

fu

kgutplasma

)  

− ((Qliver + Qgut) ∗ cliver ∗ (
fu

kliverplasma

))            

 

𝑑

𝑑𝑡
(𝐴𝑏𝑟𝑎𝑖𝑛) =  Qbrain ∗ (cplasma ∗ fu −  cbrain ∗ (

fu

kbrainplasma

))  

𝑑

𝑑𝑡
(𝐴𝑓𝑎𝑡) = Qfat ∗ (cplasma ∗ fu − cfat ∗ (

fu

kfatplasma

))    

𝑑

𝑑𝑡
(𝐴𝑘𝑖𝑑𝑛𝑒𝑦) = Qkidney ∗ (cplasma ∗ fu −  ckidney ∗ (

fu

kkidneyplasma

))

+ (
Tm ∗ cfilterate

kt + cfilterate
) 

 
𝑑

𝑑𝑡
(𝐴𝑓𝑖𝑙𝑡𝑒𝑟𝑎𝑡𝑒) = Qfilterate ∗ (cplasma ∗ fu −  cfilterate) − (

Tm ∗ cfilterate

kt + cfilterate
) 

   
𝑑

𝑑𝑡
(𝐴𝑑𝑒𝑙𝑎𝑦) = Qfilterate ∗ cfilterate −  kurine ∗  Adelay   

 

𝑑

𝑑𝑡
(𝐴𝑙𝑢𝑛𝑔) = Qlung ∗ (cplasma ∗ fu − clung ∗ (

fu

klungplasma

)) 

𝑑

𝑑𝑡
(𝐴𝑏𝑚) = Qbm ∗ (cplasma ∗ fu − cbm ∗ (

fu

kbmplasma

)) 

𝑑

𝑑𝑡
(𝐴𝑟𝑒𝑠𝑡𝑏𝑜𝑑𝑦) = Qrestbody ∗ (cplasma ∗ fu −  crestbody ∗ (

fu

krestbodyplasma

)) 

𝑑

𝑑𝑡
(𝐴𝑢𝑟𝑖𝑛𝑒) = Kurine ∗ Adelay 
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𝑑

𝑑𝑡
(𝐴𝑝𝑙𝑎𝑠𝑚𝑎) = Qfat ∗ cfat ∗ (

fu

kfatplasma

) + (Qliver + Qgut) ∗ cliver

∗ (
fu

kliverplasma

) + (Qbrain ∗ cbrain ∗ (
fu

kbrainplasma

)) +  Qlung

∗ clung ∗ (
fu

klungplasma

) +  Qbm ∗ cbm ∗ (
fu

kbmplasma

)

+ (Qkidney ∗ ckidney ∗ (
fu

kkidneyplasma

)) + cfilterate ∗ fu 

+ (Qrestbody ∗ crestbody ∗ (
fu

krestbodyplasma

))

− (QCplasma ∗  cplasma ∗ fu) 

 

################################################################### 

   #Mechanistic base model equations 

################################################################### 
𝑑

𝑑𝑡
(primiRNA) = k1 −  k2 ∗ primiRNA −  k ∗ R −  d1 ∗ primiRNA 

𝑑

𝑑𝑡
(𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑛

) =  𝑘2 ∗ 𝑝𝑟𝑖𝑚𝑖𝑅𝑁𝐴 +  𝑘 ∗ 𝑅  −  𝑑2 ∗ 𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑛
−  𝑘3 ∗  𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑛

∗

                                    (
𝑣𝑝

𝑣𝑛
)  

𝑑

𝑑𝑡
(𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑐

) =  (
𝑣𝑝

𝑣𝑛
) ∗ 𝑘3 ∗ 𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑛

−  𝑑3 ∗ 𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑐
−  𝑘4 ∗ 𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑐

  

 
𝑑

𝑑𝑡
(𝑑𝑠𝑅𝑁𝐴) =  𝑘4 ∗ 𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑐

−  𝑑4 ∗ 𝑑𝑠𝑅𝑁𝐴 −  𝑘5 ∗ 𝑑𝑠𝑅𝑁𝐴  

 
𝑑

𝑑𝑡
(𝑚𝑖𝑅𝑁𝐴) =  𝑘5 ∗ 𝑑𝑠𝑅𝑁𝐴 +  𝑘11 ∗ 𝑅𝐼𝑆𝐶 −  𝑑5 ∗ 𝑚𝑖𝑅𝑁𝐴 −  𝑘6 ∗ 𝑚𝑖𝑅𝑁𝐴  

 
𝑑

𝑑𝑡
(𝑚𝑅𝑁𝐴) =  𝑘𝑚 +  𝑘8 ∗ 𝑅𝐼𝑆𝐶𝑚 −  𝑘7 ∗  𝑅𝐼𝑆𝐶 ∗  𝑚𝑅𝑁𝐴 −  𝑑8 ∗ 𝑚𝑅𝑁𝐴 

 
𝑑

𝑑𝑡
(𝑅𝐼𝑆𝐶) =  𝑘9 ∗ 𝑅𝐼𝑆𝐶𝑚 +  𝑘8 ∗ 𝑅𝐼𝑆𝐶𝑚 +  𝑘6 ∗ 𝑚𝑖𝑅𝑁𝐴 −  𝑑6 ∗ 𝑅𝐼𝑆𝐶 −  𝑘7

∗ 𝑅𝐼𝑆𝐶 ∗ 𝑚𝑅𝑁𝐴 −  𝑘11 ∗ 𝑅𝐼𝑆𝐶 
𝑑

𝑑𝑡
(𝑅𝐼𝑆𝐶𝑚) =  𝑘7 ∗ 𝑅𝐼𝑆𝐶 ∗ 𝑚𝑅𝑁𝐴 −  𝑘9 ∗ 𝑅𝐼𝑆𝐶𝑚 −  𝑘8 ∗ 𝑅𝐼𝑆𝐶𝑚 −  𝑑7 ∗ 𝑅𝐼𝑆𝐶𝑚 

𝑑

𝑑𝑡
(𝐵𝐷𝑁𝐹) =  𝑘10 ∗ 𝑚𝑅𝑁𝐴 −  𝑑9 ∗ 𝐵𝐷𝑁𝐹 

𝑑

𝑑𝑡
(𝑐𝑒𝑙𝑙𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦) =   𝑑9 ∗ 𝐵𝐷𝑁𝐹 ∗ (1 + (

𝐸𝑚𝑎𝑥𝑐𝑒𝑙𝑙∗ 𝐵𝐷𝑁𝐹

𝐸𝐶50𝐵𝐷𝑁𝐹+ 𝐵𝐷𝑁𝐹
)) −  𝑘𝑑𝑐𝑒𝑙𝑙 ∗  𝑐𝑒𝑙𝑙  
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###################################################################### 

# PBPK/PD Model coupled mechanistic signalling pathway Model 

###################################################################### 
𝑑

𝑑𝑡
(primiRNA_change) = k1 −  k2 ∗ primiRNAchange

−  k ∗ R −  d1 ∗ primiRNA_change 

𝑑

𝑑𝑡
(𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒𝑛

) =  𝑘2 ∗ 𝑝𝑟𝑖𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒
+  𝑘 ∗ 𝑅  −  𝑑2 ∗ 𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒𝑛

−

                                              𝑘3 ∗  𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒𝑛
∗ (

𝑣𝑝

𝑣𝑛
)  

 
𝑑

𝑑𝑡
(𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝑐ℎ𝑎𝑛𝑔𝑒𝑐

) =  (
𝑣𝑝

𝑣𝑛
) ∗ 𝑘3 ∗ 𝑝𝑟𝑖𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒

−  𝑑3 ∗ 𝑟𝑒𝑚𝑖𝑅𝑁𝑐ℎ𝑎𝑛𝑔𝑒𝑐
−  𝑘4 ∗

                                            𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝑐ℎ𝑎𝑛𝑔𝑒𝑐
  

 
𝑑

𝑑𝑡
(𝑑𝑠𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒)

=  𝑘4 ∗ 𝑝𝑟𝑒𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒𝑐
−  𝑑4 ∗ 𝑑𝑠𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑘5 ∗ 𝑑𝑠𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒 

 

 
𝑑

𝑑𝑡
(𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒)

=  𝑘5 ∗ 𝑑𝑠𝑅𝑁𝐴 ∗ (1 + (
𝐸𝑚𝑎𝑥𝑚𝑖𝑅𝑁𝐴 ∗  𝑐𝑏𝑟𝑎𝑖𝑛

𝐸𝐶50𝑚𝑖𝑅𝑁𝐴 +  𝑐𝑏𝑟𝑎𝑖𝑛
)) +  𝑘11

∗ 𝑅𝐼𝑆𝐶𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑑5 ∗ 𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑘6 ∗ 𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒 

 
𝑑

𝑑𝑡
(𝑚𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒)

=  𝑘𝑚 +  𝑘8 ∗ 𝑅𝐼𝑆𝐶𝑚𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑘7 ∗  𝑅𝐼𝑆𝐶𝑐ℎ𝑎𝑛𝑔𝑒 ∗  𝑚𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒

−  𝑑8 ∗ 𝑚𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒 

 
𝑑

𝑑𝑡
(𝑅𝐼𝑆𝐶𝑐ℎ𝑎𝑛𝑔𝑒) =  𝑘9 ∗ 𝑅𝐼𝑆𝐶𝑚𝑐ℎ𝑎𝑛𝑔𝑒 +  𝑘8 ∗ 𝑅𝐼𝑆𝐶𝑚𝑐ℎ𝑎𝑛𝑔𝑒 +  𝑘6 ∗ 𝑚𝑖𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒

−  𝑑6 ∗ 𝑅𝐼𝑆𝐶𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑘7 ∗ 𝑅𝐼𝑆𝐶𝑐ℎ𝑎𝑛𝑔𝑒 ∗ 𝑚𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑘11

∗ 𝑅𝐼𝑆𝐶𝑐ℎ𝑎𝑛𝑔𝑒 

 
𝑑

𝑑𝑡
(𝑅𝐼𝑆𝐶𝑚𝑐ℎ𝑎𝑛𝑔𝑒)

=  𝑘7 ∗ 𝑅𝐼𝑆𝐶𝑐ℎ𝑎𝑛𝑔𝑒 ∗ 𝑚𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑘9 ∗ 𝑅𝐼𝑆𝐶𝑚𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑘8

∗ 𝑅𝐼𝑆𝐶𝑚𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑑7 ∗ 𝑅𝐼𝑆𝐶𝑚𝑐ℎ𝑎𝑛𝑔𝑒 

𝑑

𝑑𝑡
(𝐵𝐷𝑁𝐹𝑐ℎ𝑎𝑛𝑔𝑒) =  𝑘10 ∗ 𝑚𝑅𝑁𝐴𝑐ℎ𝑎𝑛𝑔𝑒 −  𝑑9 ∗ 𝐵𝐷𝑁𝐹𝑐ℎ𝑎𝑛𝑔𝑒 

𝑑

𝑑𝑡
(𝑐𝑒𝑙𝑙 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑐ℎ𝑎𝑛𝑔𝑒)

=   𝑑9 ∗ 𝐵𝐷𝑁𝐹𝑐ℎ𝑎𝑛𝑔𝑒 ∗ (1 + (
𝐸𝑚𝑎𝑥𝑐𝑒𝑙𝑙 ∗  𝐵𝐷𝑁𝐹𝑐ℎ𝑎𝑛𝑔𝑒

𝐸𝐶50𝐵𝐷𝑁𝐹 +  𝐵𝐷𝑁𝐹𝑐ℎ𝑎𝑛𝑔𝑒
))

−  𝑘𝑑𝑐𝑒𝑙𝑙 ∗  𝑐𝑒𝑙𝑙𝑐ℎ𝑎𝑛𝑔𝑒 
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Table 1. Physiological parameters used for PBPK model 

QCC = 16.6 Cardiac blood output (L/h/kg^0.75) 

FQliver = 0.25 Fraction cardiac output going to liver 

FQbrain = 0.117 Fraction cardiac output going to brain 

FQkidney = 0.177 Fraction cardiac output going to kidney 

FQfilterate = 0.035  Fraction cardiac output to the filtrate 

compartment 

FQgut = 0.181 Fraction cardiac output going to gut 

FQbm =  0.1 Fraction cardiac output going to bone 

marrow 

FQfat =  0.052 Fraction cardiac output going to fat 

FQlung = 0.034 Fraction cardiac output going to lung 

Fraction tissue volume  of BW 

Fliver = 0.026 Fraction liver volume 

Fbrain =  0.021 Fraction brain volume 

Fkidney = 0.004 Fraction kidney volume 

Ffilterate = 0.0004 Fraction filtrate compartment volume 

Ffat = 0.187 Fraction fat compartment volume 

Flung = 0.014 Fraction of lung volume 

Fbm = 0.05 Fraction bone marrow volume 

Fplasma = 0.0428 fraction volume of plasma 

Fgut = 0.0171 Fraction gut 
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Table 2. Physicochemical parameter For PFOS 

fu = 0.025                     

                

Free fraction of PFOS in plasma 

k_liver_plasma = 2.2  

                        

Liver/blood partition coefficient 

k_gut_plasma = 0.05                                                Gut/blood partition coeffcient  

 

k_brain_plasma = 0.37   

                       

brain/blood partition coefficient 

k_kidney_plasma = 1.05 

                       

Kidney/blood partition coefficient 

k_fat_plasma =  0.04                           Fat/blood partition coefficient 

  

k_lung_plasma = 9.08                   

       

Skin/blood partition coefficient                          

  

k_bm_plasma = 18.73                              bone marrow/blood partition 

coefficient     

  

k_restbody_plasma = 0.120                        Rest of the body/blood partition 

coefficient 

Tmc = 7.0                  resorption maximum 

(nmole/h/kg^0.75); from adult 

human model  

kt = 0.023           

  

affinity constant; from monkey 

model    

kurinec = 0.1              urinary elimination rate constant 

(1/h) 

kurine = kurinec*BW^(-0.25)    

  

urine elimination  

Tm = Tmc*BW^0.75                  

   

transporter maximum (scaled as 

BW^0.75) 
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