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Abstract

The amount of user-generated content available on the internet is constantly grow-
ing and with it, the opportunity to find methods which allow us to infer valuable
information from this content. Sentiment Analysis is a task that allows us to cal-
culate the polarity of this content automatically. While some languages, such as
English, have a vast array of resources to enable sentiment analysis, most under-
resourced languages lack them. Cross-lingual Sentiment Analysis (CLSA) attempts
to make use of resource-rich languages in order to create or improve sentiment
analysis systems in a under-resourced language. Machine translation is the most
common way of transferring these resources, yet it is not always available nor the
optimal solution. The objective of this thesis is to explore approaches than enable
sentiment analysis in under-resourced languages, while moving from coarse- to
fine-grained sentiment.

Until now, there has been little investigation into CLSA for languages that lack large
amounts of parallel data. Here, we propose cross-lingual sentiment approaches that
have minimal parallel data requirements, while making the best use of available
monolingual data. We start by determining the characteristics of state-of-the-
art monolingual sentiment models that would be interesting for this task and
comparing machine translation and cross-lingual distributional representations. We
propose a model to incorporate sentiment information into bilingual distributional
representations, by jointly optimizing them for semantics and sentiment, showing
state-of-the-art performance when combined with machine translation. We then
move these approaches to aspect-level and subsequently test them on a variety of
language families and domains. Finally, we show that this approach can also be
suitable for domain adaptation.
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Resum

La quantitat de contingut creat pels usuaris a Internet creix constantment i1 al
mateix temps, I’oportunitat de trobar meétodes que ens permetin treure’n informacid
de valor. L’analisi de sentiment és una tasca que ens permet calcular la polaritat
d’aquesta informaci6é de manera automatica. Mentre algunes llengiies, com 1’angles
per exemple, tenen una amplia varietat de recursos per crear sistemes d’analisi de
sentiment, n’hi ha més que els troben a faltar. L’Analisi de Sentiment Cross-lingiie
(ASCL) intenta fer servir els recursos de llengiies riques en recursos per crear o
millorar sistemes d’analisi d’opinions en llengiies pobres en recursos. La traducci6
automatica és una de les maneres més corrents per transferir aquests recursos, pero
no sempre existeix ni és sempre la solucié optima. L’objectiu d’aquesta tesi €s
explorar metodes que facin possible 1’analisi de sentiment en llengiies amb pocs
recursos, i al mateix temps, passar de fer-ho a un nivell de document o frase a
nivell d’aspect.

Fins ara, hi ha hagut poca investigacié en ASCL a aquest nivell de granularitat,
encara que moltes vegades seria més util. Nosaltres proposem metodes d’analisi de
sentiment cross-lingiies que requereixen menys data paral-lela i treuen el maxim
profit de data monolingiie que tenim a I’abast. Comencem per determinar les
caracteristiques dels models que formen I’estat de 1’art que podrien servir per
a la nostra tasca. Després comparem la traduccié automatica i representacions
distribucionals cross-lingiies. Proposem un model que optimitza les representacions
distribucionals cross-lingiies perque tinguin informaci6é semantica i també de
sentiment, i que demostra ser 1’estat de ’art en combinant-se amb traducci6
automatica. Després passem a un nivell de granularitat més fina i examinem
com canvia el rendiment dels models amb diferents llengiies metes i dominis.
Finalment, demostrem que aquestes tecniques també son adequats per a 1’adaptacio
de domini.
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Laburpena

Interneteko erabiltzaileek egunero sortzen duten edukia etengabe handitzen ari da,
eta halaber, eduki honetatik informazio baliotsua eskuratzeko aukera. Sentimen-
duen analisia eduki honen polaritatea automatikoki kalkulatzeko aukera ematen
digun ataza bat da. Hizkuntza batzuk, ingelesak adibidez, baliabide aukera zabala
daukaten bitartean, baliabide gutxiko hizkuntza gehieni falta zaio. Hizkuntza-arteko
Sentimenduen Analisia (HSA) baliabide handiko hizkuntza bateko anotazioak er-
abiltzen saiatzen da, baliabide gutxiko hizkuntza batean sentimenduen analisi
automatikoa hobetzeko helburuz. Itzulpen automatikoa baliabide hauek transfer-
itzeko modurik erabilena da, baina ez da beti existitzen ezta beti soluziorik onena
izaten. Tesi honen helburua baliabide gutxiko hizkuntzetan sentimenduen analisia
ahalbideratzen duten hurbilketak esploratzea da, eta era berean, dokumentuen eta
fraseen sailkaketatik aspektuen sailkaketara pasatzea.

Orain arte, baliabide paraleloak falta zaizkien hizkuntzerako HSA-ko ikerketa
gutxi izan da. Tesi honetan, baliabide paralelo gutxi behar duten baina eskura
dauden elebakarreko baliabide anitzak erabiltzen dituzten HSA-ko hurbilketa pro-
posatzen ditugu. Lehenik eta behin, gure atazarako interesgarriak izan litezkeen
elebakarreko sentimenduen analisiaren ereduen ezaugarriak aztertzen ditugu. Gero
itzulpen automatikoa eta hizkuntza-arteko bektore espazioak alderatzen ditugu.
Hizkuntza-arteko bektore espazioetan sentimenduen informazioa sartzeko mod-
elo bat proposatzen dugu, aldi berean semantika eta sentimendua sailkatzeko
helburuak optimizatzearen bidez, itzulpen automatikoarekin konbinatuta arteko
egoerako emaitzarik onenak lortuz. Hurbilketa hauek fraseak sailkatzetik as-
pektuak sailkatzera pasatzen ditugu eta hizkuntza familia eta domeinu anitzetan
aztertzen ditugu. Azkenik, hurbilketa hauek sentimenduen analisirako domeinu-
egokitzapenarako ere egokiak direla egiaztatzen dugu.
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Chapter 1

INTRODUCTION

Consider that everything is opinion,
and opinion is in thy power.

Marcus Aurelius, Meditations

This thesis concerns the transfer of sentiment information from resource-rich
languages, i.e. English, to under-resourced languages. This task, known as
Cross-lingual Sentiment Analysis (CLSA), is of interest to anyone who wishes
to perform sentiment analysis, but does not have the time or money to curate hand-
annotated datasets to train supervised machine learning algorithms. Specifically,
our goal is to develop approaches for cross-lingual sentiment that require only
small amounts of parallel data, allowing us to perform sentiment analysis in
under-resourced languages.

For the purposes of this thesis, we define an under-resourced language as any
language which lacks annotated sentiment data and which does not have enough
parallel data available with English to enable us to easily build a high-quality
machine translation system. This means that most languages which are not official
languages spoken in Western Europe can be considered under-resourced for our
purposes. In fact, we work extensively with co-official languages spoken in Western
Europe, such as Catalan and Basque, which for our purposes are under-resourced
languages.

This chapter summarizes the motivation for the present line of research, summarizes
the approach presented later in the thesis, as well as the aims and objectives. Finally,
it also gives the reader an overview of the organization of this thesis.



sentiment target
positive sentiment phrase
negative sentiment phrase

Table 1.1: Colored example legend. These colors will be used for examples
throughout the thesis.

1.1 Motivation

Opinions are everywhere in our lives. Every time we open a book, read the
newspaper, or look at social media, we scan for opinions and form them ourselves.
Opinions give us an idea of who our friends are and who we trust. We also love
to show people our opinions, as a way to define our personality. This is true on
the Internet as much as it is in our face-to-face relationships. With the wealth of
opinionated material now available on the Internet, it has become feasible and
interesting to harness this data in order to automatically identify opinions.

Sentiment analysis, sometimes also referred to as opinion mining, seeks to do
exactly this: create data-driven methods to classify the polarity of a text. The
information obtained from sentiment classifiers can then be used for tracking user
opinions of movies (Pang et al., 2002; Socher et al., 2013)), predicting the outcome
of political elections (Wang et al., 2012;|Bakliwal et al.,|2013)), fighting hate speech
online (Nahar et al., 2012 Hartung et al., [2017), as well as predicting the stock
market to a degree (Pagolu et al., 2016).

Supervised machine learning algorithms have become the most successful ap-
proaches to sentiment analysis. In supervised learning, a statistical model sees
a set of training examples X = {x, 2o, ..., x,} and their corresponding labels
Y ={v1,y2,...,y,} and learns a function f(X;6) — Y, where 6 are the model
parameters. The assumption is that future test examples will come from a similar
distribution as X, allowing the model to generalize. This framework performs
well for sentiment analysis, but requires a large amount of annotated examples,
which must be found, compiled, and thoughtfully annotated in order to produce
high-quality training data. Let us take the following hotel review as an example of
what complexities lie in determining sentiment:

(1) We stayed at the hostel for two nights on the weekend. If you’re looking for
a cheap hostel in the center of the city, it’s not a bad option. Breakfast
isn’t included, but there’s a café on the other side of the street with
incredible croissants.



As we can see from Example|l| opinions come in varying degrees of granularity.
The overall polarity of the review, which we refer to as document-level classifica-
tion, is relatively positive. The polarity of the first sentence of this review, known
as sentence-level classification, however, is neutral as it contains only factual
information which does not give any opinion. The last sentence contains a mixture
of polarities regarding specific entities or characteristic of those entities. While
the opinion expressed about “breakfast” at the hotel is negative, polarity expressed
towards the “croissants” is positive. We refer to this last task as aspect-level or
targeted sentiment analysis.

At document-level, the main difficulty is to discern which sentiment is more preva-
lent, as documents can easily contain a mix of positive and negative sentiment.
The signal, however, is normally redundant, making it relatively easy to reach a
respectable accuracy. At sentence-level, there is much less signal, and a larger
amount of ambiguity. This makes sentence-level sentiment analysis more challeng-
ing. Many times, however, there is still conflicting sentiment within a sentence,
which cannot easily be resolved within the sentence-level framework. The need to
resolve conflicting intra-sentential sentiment motivates moving from document-
or sentence-level to aspect-level. Unlike the more coarse-grained approaches,
aspect-level sentiment analysis attempts to classify the polarity of an entity or
characteristic of that entity. The advantage is that aspect-level sentiment analysis is
a more realistic view of opinions, as opinions normally have a target, even if it is
not mentioned explicitly. Aspect-level sentiment analysis is the most challenging
subtask, both for sentiment classifiers as well as for annotation, because it is nec-
essary to identify the aspect in question, the opinion phrase that refers to it, and
resolve their relations.

Resource-rich languages, such as English, Spanish, or German, have high-quality
annotated data for many sentiment tasks and domains. However, under-resourced
languages either completely lack annotated data or have only a few resources for
specific domains or sentiment tasks. The cost of annotating data can often be
prohibitive as training native-speakers to annotate fine-grained sentiment is a long
process. This motivates the need to develop sentiment analysis methods capable of
leveraging data annotated in other languages.

Cross-lingual sentiment analysis (CLSA) offers us a way to perform sentiment
analysis in an under-resourced language that does not have any annotated data
available. Previous approaches to cross-lingual sentiment analysis have relied
heavily on large amounts of parallel data to transfer sentiment information across
languages. Machine translation (MT) has been the most common approach to
cross-lingual sentiment analysis (Banea et al., 2013;|/Almeida et al., 2015} [Zhang
and Wallacel, 2017). Accurate machine translation, however, requires millions of



parallel sentences, which places a limit on which languages can benefit from these
approaches.

Although high quality machine translation systems already exist between many
languages and have been shown to enable cross-lingual sentiment analysis, for
the vast majority of language pairs in the world there is not enough parallel data
between them to create these high quality MT systems. This lack of parallel
data coupled with the computational expense of MT means that approaches to
cross-lingual sentiment analysis that do not require MT are to be preferred.

MT also introduces noise through translation errors. Let us look at this example of a
hotel review in Basque and an automatic translation achieved with a state-of-the-art
machine translation syste

(2) Hotel txukuna da, nahiko berria. Harreran zeuden langileen arreta ez
zen onena izan. Tren geltoki bat du 5 minutura eta kotxez berehala
iristen da baina oinez urruti samar dago.

The hotel is tidy, quite new. The care of the workers at reception was
not the best. It’s 5 minutes away from a train station and it’s quick to
reach the car, but it’s a short distance away .

While the first two sentences are mostly well translated for the purposes of sen-
timent analysis, in the third, there are a number of reformulations and deletions
that lead to a loss of information. The third sentence should read “It has a train
station five minutes away and by car you can reach it quickly, but by foot it’s quite
a distance.” We can see that one of the aspects has been deleted and the sentiment
has flipped from negative to positive. These problems are quite common in MT
and degrade the results of cross-lingual sentiment systems that use MT.

Recently proposed bilingual distributional semantics models (bilingual embed-
dings) provide a useful framework for cross-lingual research without requiring
machine translation. They have proven to be useful features for bilingual dictionary
induction (Mikolov et al., 2013b; |Artetxe et al.,|2016; Lample et al., | 2018a)), cross-
lingual text classification (Prettenhofer and Stein, [2011; /Chandar et al., 2014), or
cross-lingual dependency parsing (Sggaard et al., [2015]), among others. In this
framework, a word is represented as an n-dimensional vector. These vectors are
trained on large monolingual corpora in order to 1) maximize the similarity of
words that appear in similar contexts and use some bilingual regularization in order
to 2) maximize the similarity of translation pairs. In this thesis, we concentrate on
a subset of these bilingual embedding methods that perform a post-hoc mapping

'https://translate.google.com/
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to a bilingual space, which we refer to as embedding projection methods. A
common feature of these approaches is that they first create separate monolingual
vector spaces on purely monolingual data and then learn to project these into a
bilingual space. One of the main advantages of these methods is that they make
better use of small amounts of parallel data than MT systems. In fact, recently
proposed unsupervised projection methods are able to achieve comparable results
to supervised methods (Artetxe et al., 2017;|Lample et al., 2018a) on bilingual word
similarity tasks, as well as enabling unsupervised machine translation (Artetxe
et al., 2018; Lample et al., 2018b).

These bilingual representations, however, have not been tested extensively on cross-
lingual sentiment tasks. In this thesis, we compare distributional approaches to MT
and identify a disadvantage of current bilingual embedding methods; namely, they
do not incorporate sentiment information. We propose a joint sentiment-projection
method that only requires a small bilingual dictionary and annotated data in the
source language.

1.2 Aims and Research Questions

The main goal of this thesis is to enable sentiment analysis in under-resourced
languages. As such, we introduce a number of sub-goals and associated research
questions which we will revisit in Chapter [5]

Create sentiment resources for under-resourced languages:
1. Introduce aspect-level sentiment datasets for Catalan and Basque.

2. Create and release machine learning resources for quickly prototyping cross-
lingual models.

Propose machine learning models for cross-lingual sentiment analysis that do
not require machine translation:

1. Do monolingual vector spaces contain enough distributional information for
a sentiment classifier to learn to both project them to a common space and
learn to classify sentiment?

2. If this is possible, how much parallel data is necessary to perform the trans-
fer?

3. How much source language annotated data is necessary to learn to classify
the target language?



4. What amount of loss of accuracy does this joint model suffer when compared
to monolingual models?

5. Is it possible to improve machine-translation based CLSA methods using
this approach?

Move cross-lingual sentiment models beyond sentence-level:

1. Given a bilingual sentiment representation, is it better to assume that all
aspects in a phrase have the same polarity, or try to predict each separately?

2. Can we predict the sentiment of aspects in a target language without using
machine translation?

1.3 Structure of Thesis

Chapter 2] details the corpora, datasets, and tools which we use throughout the
thesis.

Chapter 3| discusses state-of-the-art methods used in both monolingual and cross-
lingual sentiment analysis and how they relate to the goals of this thesis. This
chapter provides a general view, while some of the specifics of these approaches
are discussed in more detail in the relevant section in Chapter d]in order to facilitate
reading.

Chapter[d]reports on a series of experiments that build upon one another. The first is
an exploratory experiment to determine which state-of-the-art models work best for
sentiment analysis. The second tests the feasibility of using bilingual distributional
representations of words compared to machine translation and points out some
of their shortcomings. Next, we propose a model that jointly learns to project
monolingual vectors to a bilingual space and predict sentiment at sentence-level.
The next experiment proposes methods to move from sentence- to aspect-level
CLSA. We then report on the deployment of this system to large amounts of real
world data. Finally, we show that our cross-lingual methods can also perform
well on domain-adaptation tasks, providing evidence that the methods we develop
generalize well.

As such, Sections [4.3]- 4.6 comprise the main contribution of the thesis, whereas
Sections [4.1] - @.2] contain important but preliminary work.



Finally, chapter [5| provides the conclusions of the thesis and discusses relevant
areas of future work.

1.4 Publications

Part of the work presented in this dissertation has been published in peer-review
conference proceedings. A list of these publications follows:

1. Jeremy Barnes, Patrik Lambert, and Toni Badia (2016). “Exploring Distri-
butional Representations and Machine Translation for Aspect-based Cross-
lingual Sentiment Classification.” In: Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical
Papers, pp. 1613-1623.

2. Jeremy Barnes, Roman Klinger, and Sabine Schulte im Walde (2017). “As-
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Chapter 2

DATA, TOOLS, AND
METHODS

2.1 Datasets

As one of the goals of this thesis is to find approaches that generalize well to under-
resourced languages, for the experiments in Chapter 4, we test our approach on
many sentiment annotated datasets. We list these datasets and their most important
characteristics in this subsection. However, of all these datasets, two are of vital
importance to this thesis: namely, the OpeNER datasets and the MultiBooked
datasets. These datasets are composed of hotel reviews which have been annotated
at aspect-level. The main advantage of using these datasets is that they have been
drawn from similar sources and annotated similarly across four languages (English,
Spanish, Catalan, and Basque). This allows us to avoid problems of domain or
adaptation of labeling schemes and enables us to concentrate entirely on the cross-
lingual transfer in this thesis. The OpeNER dataset is described in detail in Section
[2.1.1] while the annotation project MultiBooked undertaken during the course of
the thesis is presented in Section [2.1.

2.1.1 OpeNER datasets

The OpeNER dataset (Agerri et al., 2013) are datasets of hotel reviews annotated
at aspect-level available in Dutch, German, English, French, Italian, and Spanish.
In this thesis, however, we will only make use of the English and Spanish datasets.
Each hotel review is sentence- and word-tokenized, POS-tagged, chunked, and



English  Spanish

Number of Reviews 396 409
Average length in tokens ~ 93.3 86.8
Number of Targets 3850 3980
Number of Expressions 4150 4388
Number of Holders 413 255

Table 2.1: Corpus Statistics

Binary Multiclass

+ - ++ + - -

EN 1658 661 472 1132 556 105

Number of Opinions oo o101 446 813 1591 387 59

Table 2.2: Distribution of class labels for the OpeNER datasets

parsed using Ixa-pipes (Agerri et al., 2014). The annotation scheme follows the
full opinion aspect-level formulation described later in Section (3.1.4]

For each sentence in the reviews, annotators first determine if the sentence contains
an opinion or not. If so, they annotate the opinion phrase, as well as the opinion
holder and opinion target if they are mentioned. This leads to opinion triplets
where the only mandatory information is the opinion phrase.

positive

opinion target

opinion target

opinion holder

1 liked the wifi and the location

Figure 2.1: An example of an annotated opinion from the English OpeNER dataset

Note that a single opinion phrase, “liked”, can have multiple targets, “the wifi” and
“the location”. One-to-many and many-to-one relationships are quite common in
these datasets. During training and testing, each triplet is considered a separate
occurrence.

The statistics for these datasets are shown in Tables [2.1|and One interesting
fact to point out that will be relevant for cross-lingual approaches is the difference
in the number of opinion holders in English and in Spanish (413 compared to 255)
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despite a larger number of reviews and opinion targets and expressions. This is
due to the fact that Spanish is a pro-drop language, meaning that if the subject of
the main verb is clear, it is not normally expressed overtly, which leads to a much
smaller number of opinion holders. These two datasets are used extensively in a
number of experiments in Chapter [4]
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Jeremy Barnes, Patrik Lambert, and Toni Badia (2018). “MultiBooked: A Corpus
of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Clas-
sification.” In: Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), pp. 656-660. http://www.lrec—
conf.org/proceedings/lrec2018/pdf/217.pdfl
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2.1.2 MultiBooked datasets

Introduction and Motivation

The movement towards multi-lingual datasets for sentiment analysis is important
because many languages offer different challenges, such as complex morphology
or highly productive word formation, which can not be overcome by focusing only
on English data.

In English there are many datasets available for document- and sentence-level
sentiment analysis across different domains and at different levels of annotation
(Pang et al., [2002; Hu and Liu, 2004; |Blitzer et al., 2007; [Socher et al., 2013;
Nakov et al.,[2013). These resources have been built up over a period of more than
a decade and are currently necessary to achieve state-of-the-art performance.

Corpora annotated at fine-grained levels (opinion- or aspect-level) require more
effort from annotators, but are able to capture information which is not present
at document- or sentence-level, such as nested opinions or differing polarities of
different aspects of a single entity. In English, the MPQA corpus (Wiebe et al.,
2005) has been widely used in fine-grained opinion research. More recently, a
number of SemEval tasks have concentrated on aspect-level sentiment analysis
(Pontiki et al., 2014} 2015, 2016).

The Iberian peninsula contains two official languages (Portuguese and Spanish),
as well as three co-official languages (Basque, Catalan, and Galician) and several
smaller languages (Aragonese, Gascon). The two official languages do have
available resources for sentiment at tweet-level (Villena-Roman et al., 2013}, |Arruda
et al., 2015), as well as at aspect-level (Agerr et al., 2013; Villena-Roman et al.,
2015; |/Almeida et al., 2015). The co-official languages, however, have almost
none.

We are aware of a small discourse-related sentiment corpus available in Basque
(Alkorta et al., 2015)), as well as a stance corpus in Catalan (Bosco et al., 2016).
These resources, however, are limited in size and scope.

In this section, we describe how we created corpora which cover both Basque
and Catalan languages and are annotated in such a way that they are compat-
ible with the OpeNER datasets (Agerri et al., |2013). This resource allows us
to control for domain-differences while performing research into cross-lingual
sentiment analysis, as well as introducing the first resource for aspect-level sen-
timent analysis in Catalan and Basque. The corpora are freely available at
https://jbarnesspain.github.io/resources/. The content of this
section derives directly from the paper accepted at LREC 2018, mentioned in
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Section [I.4] (Barnes et al., [2018c).

Data Collection

To collect suitable corpora, we crawl hotel reviews from www .booking. com.
Booking.com allows you to search for reviews in Catalan, but it does not include
Basque. Therefore, for Basque we crawled reviews from a number of other websites
that allow users to comment on their stay{'}

Many of the reviews that we found through crawling are either 1) in Spanish,
2) include a mix of Spanish and the target language, or 3) do not contain any
sentiment phrases. Therefore, we use a simple language identification methO(ﬂ in
order to remove any Spanish or mixed reviews and also remove any reviews that
are shorter than 7 tokens. This finally gave us a total of 568 reviews in Catalan and
343 reviews in Basque, collected from November 2015 to January 2016.

We preprocess them through a light normalization, after which we perform tok-
enization, POS-tagging and lemmatization using Ixa-pipes (Agerri et al., 2014) for
Basque and Freeling (Padro and Stanilovsky, 2012) for Catalan.

Our final documents are in KAF/NAF format (Bosma et al., [2009; |[Fokkens et al.,
2014). This is a stand-off xml format originally from the Kyoto project (Bosma
et al., 2009) and allows us to enrich our documents with many layers of linguistic
information, such as the POS-tag of a word, its lemma, whether it is a polar word,
and if so, if it has an opinion holder or target. The advantage of this format is that
we do not have to change the original text in any way.

Annotation For annotation, we adopt the approach taken in the OpeNER project
(Agerr et al., |2013), where annotators are free to choose both the span and label
for any part of the text.

Guidelines In the OpeNER annotation schemef| (see Table [2.3|for a short sum-
mary), an annotator reads a review and must first decide if there is any positive or
negative attitudes in the sentence. If there are, they then decide if the sentence is

'We took reviews from a total of 35 different websites, including www.airbnb.com,
www.atrapalo.com, www.nekatur.net, www.rentalia.es, www.toprural.es,
andwww.tripadvisor.com.

ZWe use the count of stopwords to predict the probability that a review is written in Spanish,
Catalan, or Basque.

3http://www.opener-project.eu/
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Is there a positive / negative attitude? yes/no

Is the sentence on topic ? yes/no

Is it to the point? yes/no
IF YES TO ALL, ANNOTATE:

What is the span of the expression? choose span
Is the expression positive or negative? choose

Is the expression strong? choose

Is there an explicit target? yes/no

If yes, what is the span? choose span
Is there an explicit opinion holder yes/no

If yes, what is the span? choose span

Table 2.3: Simplified annotation guidelines.

on topic. Since these reviews are about hotels, we constrain the opinion targets
and opinion phrases to those that deal with aspects of the hotel. Annotators should
annotate the span of text which refers to:

e opinion holders,
e opinion targets,
e and opinion phrases.

If any opinion phrase is found, the annotators must then also determine the polarity
of the expression, which can be STRONG NEGATIVE, NEGATIVE, POSITIVE, or
STRONG POSITIVE. As the opinion holder and targets are often implicit, we only
require that each review has at least one annotated opinion phrase.

For the strong positive and strong negative labels, annotators must use clues such

as adverbial modifiers ("very bad’), inherently strong adjectives ("horrible’), and

decide between the default polarity and the strong version.

Process We used the KafAnnotator Tool (Agerri et al., 2013) to annotate each
review. This tool allows the user to select a span of tokens and to annotate them as
any of the four labels mentioned in this section.

The annotation of each corpus was performed in three phases: first, each annotator
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Catalan Basque

Number of Reviews 567 343
Average length in tokens 45 46.9
Number of Targets 2762 1775
Number of Expressions 2346 2328
Number of Holders 236 296

Table 2.4: Corpus Statistics

annotated a small number of reviews (20-50), after which they compared anno-
tations and discussed any differences. Second, the annotators annotated half of
the remaining reviews and met again to discuss any new differences. Finally, they
annotated the remaining reviews. For cases of conflict after the final iteration, a
third annotator decided between the two.

The final Catalan corpus contains 567 annotated reviews and the final Basque
corpus 343.

Dataset Characteristics The reviews are typical hotel reviews, which often
mention various aspects of the hotel or experience and the polarity towards these
aspects. An example is shown in Figure [2.2]

positive opinion target

opinion holder opinion target

M’ han agradat el  wifi 1 la  ubicaci6
I liked the wifi and the location

Figure 2.2: An opinion annotation following the annotation scheme detailed in this
section.

Statistics for the two corpora are shown in Tables [2.4]and 2.5]

Agreement Scores Common metrics for determining inter-annotator agreement,
e.g. Cohen’s Kappa (Cohen, 1960) or Fleiss’ Kappa (Fleiss, [1971), can not be
applied when annotating sequences, as the annotators are free to choose which
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Binary Multiclass

+ -+ - -

CA 1453 883 685 808 741 142

Number of Opinions 1y 116 314 686 775 273 41

Table 2.5: Aspect-level statistics for the MultiBooked Catalan (CA) and Basque
(EU) datasets.

parts of a sequence to include. Therefore, we use the agr metric (Wiebe et al.,
2005)), which is defined as:

A matching B
agr(allp) = | a e B @.1)

where a and b are annotators and A and B are the set of annotations for each
annotator. If we consider a to be the gold standard, agr corresponds to the recall
of the system, and precision if b is the gold standard. For each pair of annotations,
we report the average of the agr metric with both annotators as the temporary gold
standard,

1
AvgAgr(a,b) = 5 [agr(al|b) + agr(b]|a)] (2.2)

Perfect agreement, therefore, is 1.0 and no agreement whatsoever is 0.0. Similar
annotation projects (Wiebe et al., 2005)) report AvgAgr scores that range between
0.6 and 0.8 in general.

For polarity, we assign integers to each label (Strong Negative: 0, Negative: 1,
Positive: 2, Strong Positive: 3). For each sentence of length n, we take the mean
squared error (MSE),

1 n
Mean Squared Error = — A— B)? (2.3)
- ;( )
where A and B are the sets of annotations for the sentence in question. This
approach punishes larger discrepancies in polarity more than small discrepancies,
1.e. if annotator 1 decides an opinion phrase is STRONG NEGATIVE and annotator
two that the same expression is POSITIVE, this will be reflected in a larger MSE
score than if annotator 2 had chosen NEGATIVE. Perfect agreement between
annotators would lead to a MSE of 0.0, with the maximum depending on the
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Catalan Basque

Number of Reviews 567 343

Targets 167 739
Expressions 716 714
Holders 121 259
Polarity (MSE) 1.53 2.7

Table 2.6: Inter-annotator agreement scores. AvgAgr score 1s reported for targets,
expressions and holders and averaged mean squared error is reported for polarity.

length of the phrase. For a phrase of ten words, the worst MSE possible (assuming
annotator 1 labeled all words STRONG POSITIVE and annotator 2 labeled them
STRONG NEGATIVE) would be a 9.0. We take the mean of all the MSE scores in
the corpus.

Inter-annotator agreement is reported in Table

The inter-annotator agreement for target and expressions is high and in line with
previous annotation efforts (Wiebe et al., [2005)), given the fact that annotators
could choose any span for these labels and were not limited to the number of
annotations they could make. This reflects the clarity of the guidelines used to
guide the annotation process.

The agreement score for opinion holders is lower and stems from the fact that there
were relatively few instances of explicit opinion holders. Additionally, Catalan
and Basque both have agreement features for verbs, which could be considered an
implicit mention of the opinion holder. This is not always clear, however. Finally,
the mean squared error of the polarity scores shows that annotators generally agree
on where and which polarity score should be given. Again, the mean squared error
in this annotation scheme requires both annotators to choose the same span and the
same polarity to achieve perfect agreement.

Difficult Examples

During annotation, there were certain sentences which presented a great deal of
problems for the annotators. Many of these are difficult because of 1) nested
opinions, 2) implicit opinions reported only through the presence or absence
of certain aspects, or 3) the difficulty to identify the span of an expression.
Here, we give examples of each difficulty and detail how these were resolved
during the annotation process.
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(3) Hotela bikaina zen,nahiz  etabertako langileak ez
Hotel.aBs.sc great.ass.sc be , although  there.from workers.ass.prL not

bereziki  jatorrak izan.
particularly friendly.ass.pL were

“The hotel was great, although the workers there were not particularly friendly.’

In the Basque sentence in Example [3| we can see that there are two distinct levels
of aspects. First, the aspect ‘hotel’, which has a positive polarity and then the
sub-aspect ‘workers’. We avoid the problem of deciding which is the opinion
target by treating these as two separate opinions, whose targets are ‘hotel’ and
‘workers’.

(4) Igerilekua zegoen.
pool.aBs.sc was

“There was a pool.’

If there was an implicit opinion based on the presence or absence of a desirable as-
pect, such as the one seen in Example 4], we asked annotators to identify the phrase
that indicates presence or absence, i.e. ‘there was’, as the opinion phrase.

(5) Langileek emandako arreta bikaina zen .
workers.erc.pL given.comp attention.ass.sc excellent.ass.sc was

“The attention that the staff gave was excellent.’

Finally, in order to improve overlap in span selection, we instructed annotators to
choose the smallest span possible that retains the necessary information. Even after
several iterations, however, there were still discrepancies with difficult examples,
such as the one shown in Example [5] where the opinion target could be either
‘attention’, ‘the attention’, or ‘the attention that the staff gave’.

Benchmarks

In order to provide a simple baseline, we frame the extraction of opinion holders,
targets, and phrases as a sequence labeling task and map the NAF tags to BIO tags
for the opinions in each review. These tags serve as the gold labels which will
need to be predicted at test time. We also perform classification of the polarity of
opinion phrases.

For the extraction of opinion holders, targets, and expressions we train a Condi-
tional Random Fielcﬂ (CRF) on standard features for supervised sequence labeling

“We use the implementation available in sklearn_crfsuite.
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Catalan Basque

Targets .64 57
Expressions 52 54
Holders .56 54
Polarity .80 .84

Table 2.7: Weighted F; scores for extraction of opinion targets, expressions and
holders, as well as the weighted F; for classification of polarity.

(word-, subword-, and part-of-speech information of the current word and previous
words). For the classification of the polarity of opinion phrases, we use a Bag-of-
Words approach to extract features and then train a linear SVM classiﬁeﬂ

For evaluation, we perform a 10-fold cross-validation with 80 percent of the data
reserved for training during each fold. For extraction and classification, we report
the weighted F; score. The results of the benchmark experiment (shown in Table
2.7) show that these simple baselines achieve results which are somewhat lower
but still comparable to similar tasks in English (Irsoy and Cardie, [2014). The drop
is not surprising given that we use a relatively simple baseline system and due to
the fact that Catalan and Basque have richer morphological systems than English,
which were not exploited.

Conclusion

While the inter-annotator agreement for the opinion holders does not reach a
satisfactory level, the agreement for opinion targets, opinion phrases, and polarity
are good. The fact that a simple CRF trained on the annotated data gets relatively
good F; scores indicates that they contain a useful source of information. Other
research in emotion detection shows that despite low inter-annotator agreement
scores, datasets can still be useful (Schuff et al., 2017). In fact, joint modeling of
all three variables (opinion targets, expressions, and holders) has been shown to
improve F; scores for emotion analysis (Kim and Klinger, [2018)).

These datasets will serve as a test bed for the approaches proposed later in the
thesis.

SWe use the liblinear implementation from sklearn.
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2.1.3 Other datasets

These datasets are used as test data in experiments in Chapter {4, but are less
important to the thesis than the two datasets previously mentioned. Further details
about these datasets are given in the relevant methodological sections.

The Stanford Sentiment Treebank is a dataset of English movie reviews which
have been annotated for sentiment at each node of a parse tree (Socher et al.,
2013).

The Sentube dataset consists of youtube comments in English and Italian anno-
tated for sentiment, as well as other phenomena (Severyn and Moschitti,
2015). We only make use of the English dataset.

The SemEval 2013 Tweet-based dataset are English tweets annotated for senti-
ment (Nakov et al.,|[2013)).

The SemEval 2016 Tweet-based dataset are English tweets annotated for senti-
ment (Nakov et al., 2016).

The SemEval 2016 Aspect-based datasets are English and Spanish tweets anno-
tated for sentiment at aspect-level (Pontiki et al., 2016).

The USAGE dataset are English and German product-reviews annotated for sen-
timent at aspect-level (Klinger and Cimiano, 2014).

The Amazon Domain Sentiment datasets are English product reviews annotated
for sentiment at review-level in four different domains (Books, DVDs, Elec-
tronics, )(Blitzer et al., 2006)).

2.2 Corpora

In this section, we describe the general corpora which are used in several of the
experiments in order to create the monolingual word embeddings in Chapter 4]
This does not imply that they are the only corpora used and in the methodology
sections of each experiment, we will make it clear which resources were used.
However, as these corpora are used repeatedly, we describe them here and refer to
them later.
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Spanish Catalan Basque

Sentences 23 M 9.6 M 0.7M
Tokens 610M 183 M 25 M
Embeddings 0.83M 04M 0.14M

Table 2.8: Statistics for the Wikipedia corpora and monolingual vector spaces.

2.2.1 Wikipedia Corpora and Embeddings

For all of the monolingual embeddings, we require relatively large monolingual
corpora to serve as input for the embedding algorithms. The easiest, largely
accessible, completely comparable corpora is Wikipedia.

We download 2016 Wikipedia dumps for Spanish, Catalan and Basque and re-
move HTML markup with Wikiextractoﬂ We then perform sentence- and word-
tokenization with Freeling (Padr6 and Stanilovsky, 2012) in the case of Spanish
and Catalan or IXA pipes (Agerri et al., 2014)) for Basque and finally lowercased
all sentences. We do not lemmatize or perform any further tagging upon the
corpora, as the input for the algorithms that we use do not require any further
processing.

For all of the experiments we require monolingual vector spaces. For English, we
use the publicly available GoogleNews Vectorﬂ For Spanish, Catalan, Basque,
and German we train skip-gram embeddings using the Word2Vec toolkit with 300
dimensions, subsampling of 1074, window of 5, negative sampling of 15. The
statistics of the Wikipedia corpora and embeddings are shown in Table[2.§]

2.3 Projection Lexicons

The bilingual embedding methods introduced in Chapter 4 require a bilingual
lexicon. We use the sentiment lexicon from |[Hu and Liu| (2004)) (to which we refer
in the following as Hu and Liu) and its translation into each target language. We
translate the lexicon using Google Translate and exclude multi-word expressions
This leaves a dictionary of 5700 translations in Spanish, 5271 in Catalan, and 4577
in Basque. We set aside ten percent of the translation pairs as a development set in

Shttp://attardi.github.io/wikiextractor/

"https://code.google.com/archive/p/word2vec/

8Note that we only do that for convenience. Using a machine translation service to generate this
list could easily be replaced by a manual translation, as the lexicon is comparably small.
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order to check that the distances between translation pairs not seen during training
are also minimized during training.

We also translate the NRC hashtag sentiment lexicon (Mohammad et al., |[2013) to
Spanish, which gives a much larger bilingual lexicon (22985 translation pairs).

2.4 Tools

The work presented in this thesis is built on the backs of those who have done a
great deal of preliminary work. Without the tools presented in this section, most of
the work in the thesis would have been impossible or desperately slow.

24.1 Freeling

Freeling (Padro et al., |2010) is a C++ library for natural language processing
developed at the Polytechnic University of Catalonia. It performs sentence- and
word-tokenization, lemmatization, morphological analysis, POS-tagging, parsing,
word sense disambiguation, and semantic role labeling. It is available for a number
of languages, including English, Spanish, Portuguese, Italian, French, German,
Russian, Catalan, Galician, Croatian, and Slovene.

We use this library for sentence- and word-tokenization for Catalan in all experi-
ments.

2.4.2 Ixa pipes

Ixa pipes (Agerri et al., |2014) is a Java library for natural language processing
developed at the University of the Basque Country. It performs sentence- and
word-tokenization, lemmatization, morphological analysis, POS-tagging, pars-
ing, named entity recognition, and chunking. It is available for a number of
languages, including English, Spanish, Basque, Dutch, Galician, German, Italian,
and French.

We use this library for sentence- and word-tokenization for English, Basque and
Galician in all experiments.
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2.4.3 Natural Language Toolkit

The Natural Language Toolkit (NLTK) (Loper and Bird, 2002) is a python platform
for performing and teaching natural language processing. It contains corpora, anno-
tated datasets, as well as pretrained models for sentence- and word-tokenization in
a number of languages, including English, Norwegian, Swedish, and Danish.

We use this library for sentence- and word-tokenization for Norwegian, Swedish,
and Danish in Section

2.4.4 Theano

Theano (Theano Development Team, 2016) is a deep learning framework that was
created in collaboration with the University of Montreal to allow users to create
deep learning architectures by providing automatic differentiation of arbitrary
functions. This framework allows a researcher to quickly prototype models without
having to worry about the implementation details. We used this framework for the
experiments mentioned only in Section4.2]

It has since been discontinued.

2.4.5 Keras

Keras (Chollet, |2015) is a high-level deep learning framework that builds on
top of either Theano or Tensorflow. It allows for rapid prototyping of the most
common variations of deep learning models, but has the disadvantage that any
large modifications require a larger investment of developing time. As it creates a
static graph that cannot be updated, padding training examples of differing lengths
is necessary for training.

We use Keras for determining the state of the art for monolingual sentiment models
in Section 4.1l

2.4.6 Pytorch

Pytorch (Paszke et al.,2016)) is a highly flexible machine learning framework which
has two main advantages over the previously mentioned deep learning frameworks:
(1) it creates the computational graph dynamically, and (2) it is highly compatible
with Numpy (Oliphant, [2006) syntax. The first advantage means that each batch of
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training examples does not need to have the same length, effectively reducing the
amount of preprocessing necessary to train a model, while the second means that it
is fast to learn if one knows Numpy.

We use Pytorch for the experiments in Sections [4.3] 4.4 .5 and 4.6

2.4.7 Sklearn

Scikit Learn (Pedregosa et al., 2011} is a general machine learning framework
available for Python that includes a number of implementations of supervised
and unsupervised algorithms, including Support Vector Machines and Logistic
Regression for classification. These two algorithms are used as baselines in many
of the experiments throughout the thesis.

2.4.8 Word2Vec

The word2vec toolkilﬂ is a well known word embedding toolkit which implements
the Continuous Bag-of-words and Skip-gram embeddings. It is written in an
optimized C code, which makes it possible to quickly train word embeddings. We
use embeddings created with this toolkit in all experiments in the thesis.

2.5 [Evaluation Metrics

As for any empirical approach to natural language processing, it is important to
choose evaluation metrics that allow us to quickly and correctly identify models
which perform well. While accuracy has often been used in the past, this metric
1s not as informative when there is a class imbalance, as we have seen in our data.
Therefore, we will mainly consider the macro-averaged F; score (macro Fy).

F, score is the harmonic mean of Precision and Recall scores.

Precision (Pr) measures how accurate a model’s predictions are by comparing the
ratio of true positives (7'P) to all of it’s predictions (T'P + F'P),

TP

Pr=——"
"TTPiFp

(2.4)

https://code.google.com/archive/p/word2vec/
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while simultaneously ignoring any false negatives.

Recall (Rec) on the other hand looks at the coverage of a model. Of all of the
specific data points found in the data, recall calculates how many the model
correctly identifies.

TP
Rec = ———— 2.5
“TTPTFN (22)
The F; score calculates the harmonic mean of these two measures as a way of
simultaneously testing both the accuracy of a model’s predictions as well as its
coverage.

Pr - Rec

F=2 ——
! Pr + Rec

(2.6)
In a multiclass setup, however, it is possible to calculate the F; score either by
macro- or micro-averaging. These two approaches have different implications,
depending on your data and what you want to know.

The macro-averaged F; first finds the individual F; score for each class ¢ € ' and
then averages these to calculate the final score.

c

F
macro F; = Z ﬁ 2.7)

This gives the same importance to all classes, regardless of the number of examples
found in each.

The micro-averaged F; instead combines all true positives, false positives, and
false negatives from all the classes and then calculates F; with these. Here, the
number of examples in a class is a factor, as smaller classes contribute less to the
overall F; score.

In this thesis, we prefer to use the macro-averaged F;, as we are interested in know-
ing how well models perform on the minority classes, as well as the majority.

2.6 Statistical Significance Testing

Another important aspect of comparing two or more models is to determine whether
differences between model outputs are due to real differences or if they are simply
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noise. Luckily, there are several good surveys for determining the best practices for
statistical significance testing in natural language processing (Yeh, 2000; Sggaard
et al., 2014 Dror et al.l|2018) which we can draw from.

The basic notion of statistical significance testing in natural language processing is
to establish a null hypothesis which assumes that there is no difference between
two models. You then compare the two distributions using either parametric or
non-parametric methods (Dror et al., 2018) and if the difference is more than
a certain threshold, known as a p-value (usually 0.05 or 0.01), you can dismiss
the null hypothesis and confirm that there is a statistically significant difference
between the two models.

Non-parametric approaches do not require you to assume a certain distribution in
the data, which is helpful as often in natural language processing this distribution is
not known. Approximate randomization testing (Noreen, |1989) is a non-parametric
approach to statistical significance testing, which uses computationally intensive
randomization testing. With this test, the null hypothesis supposes that there is
no real difference between the output of two models, so any output produced by
one model could just as easily come from the other model. In this case, we shuffle
the outputs and randomly assign each response to one of the models (each being
equally likely) and then determine what difference this causes in our metric of
interest (normally macro F; in this paper). We perform this procedure n times and
the percentage of the tests where the difference between metrics is greater than the
original difference is the probability of statistical difference.

The one disadvantage of approximate randomization tests is that they are compu-
tationally expensive. However, since all of the test data we use in this thesis are
relatively small, this is an acceptable trade-off.
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Chapter 3

STATE OF THE ART

Sentiment analysis is an immensely popular task, which has led to a proliferation
of research and publishings. In a single conference, ACL 2018 for example, there
were nearly 90 submissions in the sentiment and opinion mining track (Committee,
2018]). With such a large interest and large number of publications on the topic, it
is nearly impossible to read all papers. During the course of the thesis, we have
concentrated our reading efforts on machine learning and cross-lingual methods.
Although we will try to broadly cover most relevant areas of sentiment analysis in
the present review of the literature, this bias will be reflected to some extent.

The remainder of this section is divided into state-of-the-art approaches to mono-
lingual sentiment analysis, cross-lingual sentiment analysis, and distributional
semantics.

3.1 Monolingual Sentiment Analysis

3.1.1 Knowledge-based Approaches

Knowledge-based approaches to sentiment analysis work on the premise that words,
especially adjectives (but also nouns, verbs, and adverbs), can be clustered into
groups of the same semantic orientation. Semantic orientation “refers to the
polarity and strength of words, phrases, or texts” (Taboada et al., 2011]). Most of
these researchers start by creating a sentiment lexicon, which is a list of words
with their prior polarity. These can either be categorical, i. e., positive or negative,
or real valued, i. e., a number from -1 to 1 where -1 is the most negative and 1 is
the most positive.
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Early work on semantic orientation laid the groundwork for sentiment analysis
as we know it today. The research first concentrated on the semantic orientation
of single words, using distributional features (Hatzivassiloglou and McKeown,
1997), Pointwise Mutual Information of co-occurrence with known polar words
(Turney and Littman, 2003), information from WordNet (Kamps et al., 2004; Esuli
and Sebastiani, [2006), and the glosses from dictionaries (Esuli and Sebastiani,
2005).

Research has also investigated the prediction of the semantic orientation of phrases
and sentences. [Turney|(2002) proposed a mutual information approach to determine
the semantic orientation of phrases in a review. The author used the co-occurrence
patterns with clearly polar words, in this case “excellent” and “poor”, and deter-
mined the average semantic orientation of the phrases in the review. |Hu and Liu
(2004) create feature summaries for reviews by finding subjective sentences that
refer to a feature of a product, and determining the polarity of these sentences using
a sentiment lexicon.

More recently, knowledge-based sentiment analysis has moved towards incorporat-
ing linguistic elements, such as negation, diminishers, and intensification, into the
final classification. Early attempts at handling negation simply reversed the polarity
(Hu and Liu, 2004) or used special negated versions of words (Das and Chen,
2007)). Polanyi and Zaenen (2006) propose a method that takes both negation and
intensification into account by changing the prior semantic orientation of words
in context. [Taboada et al.| (2011]) demonstrated that their lexicon-based system,
which incorporated intensification and negation, performed well across domains
and unseen datasets.

While knowledge-based approaches provide the foundation and motivation for sen-
timent analysis, we are aware of no sentiment analysis subtask where knowledge-
based approaches by themselves achieve state-of-the-art results. This is best
summed up by stating “[a] sentiment lexicon is necessary but not sufficient for
sentiment analysis” (Liu, 2012).

3.1.2 Machine-learning Approaches

Machine learning is a statistical approach to classification, as well as other tasks,
that uses annotated data to learn to model a phenomenon. Background knowledge
on machine learning, i. e. training, objective functions, and inference, is assumed in
this section. For the reader interested in finding more details, we suggest Mitchell
(1997) or Bishop| (2006).
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Pang et al. (2002) proposed the first machine-learning based approach to sentiment
analysis, as well as creating a dataset that is still one of the benchmarks for
sentiment analysis. They crawled positive and negative reviews from the Internet
Movie Database (IMDb), and compared the use of Naive Bayes, Maximum Entropy,
and Support Vector Machine classifiers, finding that machine learning approaches
outperform human-generated baselines and that Support Vector Machines generally
gave the best results.

Early work following this first approach looked into sentiment-specific feature
engineering, such as the use of low-frequency words (Wiebe et al., [2004; Yang
et al., 2006)), positional information (Kim and Hovy, 2006), N-gram information
(Pang et al., 2002; |Dave et al.,[2003)), part of speech tags (Mullen and Collier, 2004;
Whitelaw et al., 2005)), and negation features (Na et al., 2004; [Wilson et al.,|2005;
Kennedy and Inkpen, [2006; Das and Chen, 2007; |Zhu et al., 2014)).

The main findings were that Support Vector Machines generally gave the best
results for supervised classification, and that unigrams were the single most im-
portant feature for determining the polarity of a text. These unigrams, however,
were highly domain- and even corpus-dependent (Aue and Gamon, 2005). While
lexicon-based methods at the time were better able to handle domain discrepancies,
recent approaches using neural networks and domain adaptation techniques (Blitzer
et al., 2007}; Bollegala et al., 2014} Ziser and Reichart, 2017)) or transfer learning
(Ruder and Plankl, 2017) have proven more effective.

Given that all current state-of-the-art methods rely on machine learning to some de-
gree, in this thesis we will concentrate only on the machine learning approaches.

3.1.3 Neural Networks

Neural networks are a family of machine learning algorithms that have become
omnipresent in sentiment analysis in the last five years. They reach state-of-the-art
results on almost all tasks and datasets which are commonly used for testing. A full
overview of neural networks is beyond the scope of this thesis, but the reader may
refer to (Goodfellow et al.| (2016)) for further details. Therefore, we will concentrate
only on models used in the experiments in Chapter 4]

Neural networks, like all machine learning algorithms, require large amounts of
training data in order to generalize well. However, since they have a larger number
of free parameters, they are more prone to overfitting than linear models such as
SVMs or maximum entropy models. Regularization and early stopping are often
used to counteract this problem.
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Feed forward neural networks: Feed forward neural networks (FF) are the
first and simplest kind of neural network. Information flows from the input layer,
through an optional number of hidden layers, finally coming to the output layer,
which has a dimensionality of the number of classes & that we want to classify.
A general figure of a deep FF network (Feedforward Neural Networks|, [2018)) is

shown in Figure[3.1]
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Figure 3.1: Depiction of a feed forward neural network. Taken from Feedforward
Neural Networks| (2018)).

More formally we can define a FF network with a single hidden layer as:

(W7 X +by) 3.1)
(WIZ +by) (3.2)

where W, and b, are the weight matrix and bias of layer ¢, Z is the hidden repre-
sentation, and o is a non-linearity function. Common choices for non-linearities
include:

_1
1+e—2

e tanh(x) = }jrz—j;

e sigmoid(x) =

e rectified linear unit(x) = max(0, x)

e®

e softmax(r) = =%

1=

1€°

For the non-linearity of the hidden layers, the most commonly used non-linearity
is the rectified linear unit (RELU) (Nair and Hinton, 2010a). The advantage
of the RELU is that the derivative is always linear, which helps to avoid the
exploding/vanishing gradient problem in deep networks (Hochreiter et al., 2001).
We normally use the softmax function in the output layer for classification, as the
output is a natural probability distribution over the class labels.

During training, for each (x,y) pair in an annotated corpus, we calculate the
prediction g, find the loss H (y, §), and calculate the derivative of each weight with
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respect to the input. The weights are updated using the back propagation algorithm
(Allen, [1987).

Backpropagation is a method used in deep neural networks to calculate the gradient
for all of the weights given a loss function. There are two phases which alternate;
propagation and weight update. During propagation, a feature vector is propagated
through the network until it reaches the output layer. The error for each neuron is
then calculated from its contribution to the overall loss. During the weight update,
each weight is changed to minimize the loss.

Some variant of gradient descent (Cauchyl |1847) is then employed to train the full
network (see |[Ruder| (2016) for a survey of gradient descent methods). By far the
most common flavor of gradient descent is mini-batch stochastic gradient descent
(Bengio, 2012). In this approach, the neural network receives small batches of
n training examples at a time, where n is a small subset of the training corpus
N. The model finds the overall error for the n examples and updates the weights
accordingly. The batch size serves as a way to speed up training, as weights are
not optimized for single examples, and therefore must try to move towards a more
overall optimal configuration.

Cross entropy loss is most commonly used to train a FF network, although there
are other options available, such as mean squared error. For binary classification,
we define cross entropy as

H(y,§) = —ylogy — (1 —y)log(1 —9) (3.3)
where y € {0, 1} is the true label and y € [0, 1] is the estimated label from the
softmax layer of the FF network.

Typically, regularization is needed to keep the deep network from overfitting.
L, regularization, which assumes that less complex models are preferable, is a
common choice. We define L, regularization as

L, regularization term = ||W|[3 (3.4)

where 11/ are the weights that we would like to learn. This regularization term is
added to the main objective function and effectively penalizes any model that tries
to give high weights.

Dropout (Srivastava et al.,[2014) has become more popular recently and has been
shown to avoid co-adaptation of weights. This method randomly “disconnects” a
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percentage of the neurons during training. During testing, all weights are used, after
being weighted to counteract the effects of learning with half of the weights.

Researchers have found that using both L, regularization and dropout in conjunc-
tion is also helpful (Flekova and Gurevych, 2016; |Merity et al.,[2018).

The main disadvantage that FF networks have is that they do not take into account
the dependencies or structure of the data. Unlike more advanced models, such as
Recurrent Neural Networks or Convolutional Neural Networks, FF networks do
not incorporate information about word order, either locally or globally. They also
cannot easily incorporate information about hierarchical linguistic structures, such
as a parse tree of a sentence, unlike Recursive Neural Networks. While in theory
these hindrances should lead to a preference for advanced models, in practice
properly tuned FF networks can often perform nearly as well, while requiring less
time to train.

Iyyer et al.| (2015) propose to use a bag-of-embeddings representation as input
to a deep feed forward network. They find that, despite ignoring structural and
dependency information, their model was able to perform nearly as well as more
informed models. This suggests that for many text classification tasks, order is not
critical for good performance.

Recurrent Neural Networks: Recurrent neural networks (RNNS) are a family
of neural networks whose nodes form a directed graph across a sequence (Rumel+
hart et al.,[1986)). RNNS introduce the crucial time element ¢, which allows this class
of models to process any kind of data that can be represented sequentially.

There are a number of models within this family, but in this thesis we focus primar-
ily on the Long Short-Term Memory network (LsT™M) (Hochreiter and Schmid-
huber, 1997)) and Bidirectional Long Short-Term Memory network (BILSTM)
(Schuster and Paliwal, [1997). A typical LSTM cell is shown in Figure 3.2

An LSTM takes three inputs, the input at time ¢ (x;), the previous hidden state
( C;_1), and the previous output (h;_1). It also has three gating mechanisms, a
forget gate (f), an input gate () and an output gate (o), which allow information
to pass through the model in time, depending on it’s importance for the task. These
gates each have a weight matrix and bias which allows the model to learn how
much of this information to incorporate and pass through. More formally, an LSTM
is defined as
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Figure 3.2: Depiction of a Long Short-Term Memory neural network. Based on
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fr = oWy - [he_1, 4] + by) (3.5)
ir = o(Wi - [y, 2] + b;) (3.6)
or = (W, - [h_y, ] + b,) (3.7)
Cy = tanh(We - [hy—1, 2] + be) (3.8)
Cy= fixCry +iyx Gy (3.9)
hy = oy * tanh(C}) (3.10)

where ét is the candidate hidden state.

Bidirectional LSTMS (Schuster and Paliwal, [1997)) are an extension of LSTMS
where you process the sequence once from left to right, and simultaneously from
right to left. The two hidden representations can then be concatenated to give
a final representation for classification. This allows the network to incorporate
information from both left and right contexts to help classification.

LsTMS and BILSTMS are one of the most effective sentiment classifiers and have

been successfully used for sentiment analysis (Tai et al., 2015} Barnes et al., 2017),
and emotion analysis (Felbo et al., 2017).

Convolutional Neural Networks:  Convolutional Neural Networks (CNNS) are
a family of neural networks that were originally designed within the image recogni-
tion community. They have shown great success on many image recognition tasks,
and more recently have been applied to Natural Language Processing tasks.
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Figure 3.3: Depiction of a Convolutional neural network. Taken from (Zhang and

CNNS are parameterized with a kernel or filter, which is a filter matrix smaller
than the dimensionality of the input matrix (R?*4:3%44xd in the example in Figure
[3.3] where d is the dimensionality of the embedding). This kernel operates in a
sliding fashion over the input, creating a feature map, which is the output of
the convolution on the input data. For NLP, the input is normally a set of word
embeddings, which have been concatenated and padded where necessary to form a
matrix. After the convolution, a non-linearity, such as RELU, is applied to each of
the feature maps. Finally, there is a pooling step, which reduces the dimensionality
of the representation by taking only the maximum or average of the pooling region.
A 1-max pooling, as shown in Figure [3.3] reduces a feature vector to a vector of
length 1 which takes the maximum of the original feature vector. This allows the
model a certain amount of resilience to local variation.

We can think of a CNN for Natural Language Processing as a parameterized N-
gram model, where the size of the kernel is equivalent to /V. In practice, several
kernel sizes are normally employed, which gives CNNS an advantage over other
algorithms that use N-grams as input. A typical CNN for text classification is
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depicted in Figure [3.3| (taken from [Zhang and Wallace| (2017)).

Convolutional Neural Networks (CNNS) have been applied to a number of sen-
timent tasks. Kim! (2014) first proposed CNNS for text classification, achieving
state-of-the-art results on 4 out of 7 text classification tasks. Since then, CNNS have
been successfully used for classifying sentiment in tweets (Severyn and Moschitti,
2015)), and short texts (dos Santos and Gatti, 2014), as well as emotions on a
number of datasets (Felbo et al.,[2017)).

Recursive Neural Networks: |Socher et al.|(2013) introduced a Recursive Neu-
ral Tensor Network (RNTN) which better accounted for compositional semantics
in sentiment when trained on a parsed version of the dataset from Pang and Lee
(2005)), where there is a sentiment label for each node. This model pushed the
state of the art up to 85.4% accuracy for binary classification, outperforming
feature-based baselines, as well as strong sequence-modeling baselines such as
Long Short-term Memory networks (LSTMS) (Hochreiter and Schmidhuber, |1997).
A depiction of a recursive neural network is shown in Figure (Socher et al.,
2013)).
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Figure 3.4: Depiction of a recursive neural network, taken from Socher et al.
(2013).

Successive work built upon the idea of using tree-structured data, introducing
new models, such as Deep Recursive Networks (Irsoy and Cardiel 2014), and
Tree-structured LSTMS (Tai et al., [2015)).

While recursive neural networks are well motivated and powerful models for
sentiment analysis, they impose data requirements which are unreasonable for
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under-resourced languages. For good results, you need a dataset which has been
previously parsed and which is also annotated for your task at each node of the
parse tree for each sentence in your training set. The only dataset annotated in
such a manner is the one released by Socher et al.|(2013)). This means that this
technique is not easily transferable to other languages.

3.1.4 Aspect-Level Sentiment Analysis

Sentence- and document-level sentiment analysis are not able to identify exactly
what people like or dislike, as they only determine the polarity of a sentence or
document, ignoring the opinions contained therein (Liu, [2012). In order to truly
analyze the sentiment contained in these texts, it is necessary to take all opinions
into account.

Aspect-level sentiment analysis (ABSA), also known as aspect-based or tar-
geted sentiment analysis, is a fine-grained view of sentiment analysis that at-
tempts to encounter all opinions in a text. Liu| (2012)) defines an opinion as a
quintuple (e, t, s, h,v) where e is an entity, ¢ is an optional aspect of the entity,
s is the sentiment towards ¢, h is the holder of the opinion, and v is the time at
which the sentiment is expressed. An aspect can be an entity, such as a product,
service, person or event, or one of its subcomponents, such as the service or food in
a restaurant (Liu, |2012). In this thesis we disregard the time v from our setup, and
consider the aspect of the entity as the target to classify, if there is one. Otherwise,
we consider the entity itself. This is a simplification which is common in sentiment
analysis (Pontiki et al., 2014, 2015, 2016} Zhang et al., 2016) and allows us to
work with triples of (¢, s, h), where t is either the aspect or, in the absence of an
aspect, the entity, instead of the original quintuples.

ABSA differs from sentence- and document-level sentiment analysis in several
respects:

1. It is necessary to determine the aspects, either by deciding which aspects we
are interested in beforehand or by finding all possible aspects.

2. There is less redundancy of sentiment information. A single word often
conveys all of the sentiment towards an aspect.

3. Many aspects are mentioned only implicitly.

These differences make aspect-level sentiment analysis more difficult than document-
or sentence-level sentiment analysis.

There are several possible task formulations for aspect-level sentiment analysis
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and they can often be different from one another. We can define four formulations,
which move from the simplest to the most complicated:

Open-set aspect classification: In this setup, an open set of aspects must be clas-
sified (Lambert, 2015). These aspects are assumed to be extracted separate
from the classification step.

Closed-set aspect classification: In this setup, a small set of pre-selected aspects
must be classified for polarity. While the aspects are pre-selected, they are
not always explicitly mentioned in the text, which requires a separate step
for resolution. This is often the format used for shared tasks on ABSA, such
as the SemEval tasks (Pontiki et al., 2014, [2015] 2016).

Targeted: In this setup, the classifier must identify the polarity of an open set of
targets, which are often entities (Zhang et al., 2015, 2016). These approaches
attempt to identify the target and its polarity jointly or in a pipeline fashion.

Full opinions: For some tasks (Klinger and Cimianol [2013; |Agerri et al., 2013}
Barnes et al., 2018a), the authors attempt to extract opinion targets, opinion
phrases, and define the relationship between them.

Previous successful approaches to ABSA relied on conditional random fields
(Lafferty et al., 2001) (Yang and Cardie, |2013}; Klinger and Cimiano, 2013} |[Zhang
et al., 2015), external knowledge bases (Mohammad et al., 2013)), or by incorporat-
ing target-specific information (Jiang et al., 2011)).

More recently, approaches for aspect level sentiment analysis have moved to neural
networks as well: Dong et al. (2014) focus on integrating target information into
recursive neural networks (Socher et al., 2013). They use dependency trees, which
they then convert to have the target as the root node. They show improvements
over support vector machines and more general architectures of recursive neural
networks.

/hang et al. (2015) extend CRF models by using neural networks to extract features.
They show an increase in recall and F;, while the traditional CRFs have higher
precision. Zhang et al.[(2016)) extend this work using gated recurrent networks (Cho
et al.,|2014) and show improvements on the concatenation of three datasets.

Tang et al.| (2016) propose a technique to perform ABSA with Long Short-Term
Memory networks (LSTMS) (Hochreiter and Schmidhuber, |1997). They notice that
the LSTM often ‘forgets’ the aspect words by the final timestep and propose to split
the sentence at the aspect and use two LSTMS to create separate representations of
the sentence for the left and right context. This ensures that the two LSTMS keep
the relevant aspect information, as it is the last input before classification.
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Sentiment can often be aspect-specific, 1.e. “the battery life is long” is positive
but “the movie is long” is negative. More recent approaches attempt to augment a
neural network with memory to model these interactions (Chen et al., 2017} |Xue
and L1, 2018; |Wang et al., 2018; Liu et al., 2018). Wang et al. (2017) explore
methods to improve classification of multiple aspects in tweets, while /Akhtar et al.
(2018]) attempt to use cross-lingual and multilingual data to improve aspect-based
sentiment analysis in under-resourced languages.

3.2 Cross-lingual Sentiment Analysis

The lack of available data in most of the world’s languages means that cross-lingual
methods are of great interest. Statistical machine translation first enabled cross-
lingual sentiment analysis and since has become a staple of most cross-lingual
approaches. Although there are ways to perform machine translation between
resource-rich languages and many under-resourced languages, i. e. triangulation
(Cohn and Lapata, 2007), multilingual neural machine translation (Johnson et al.,
2017; |[Lakew et al., 2018)), or unsupervised machine translation (Artetxe et al.,
2018; Lample et al., 2018b), the reality is that most languages are still left without
reliable machine translation.

In this section we provide an overview of relevant literature which motivates the
research goals of the thesis.

3.2.1 Using Machine Translation

Early work in cross-lingual sentiment analysis found that machine translation
(MT) had reached a point of maturity that enabled the transfer of sentiment across
languages. Researchers translated sentiment lexicons (Mihalcea et al., 2007; Meng
et al., 2012} or annotated corpora and used word alignments to project sentiment
annotation and create target-language annotated corpora (Banea et al., |2008}; | Duh
et al., 2011; Demirtas and Pechenizkiy, 2013}; Balahur and Turchi, 2014).

Annotation projection is a widely-used approach to cross-lingual tasks using ma-
chine translation or parallel corpora. The basic idea is to take a corpus which
has been annotated for a specific task and project the labels from the source to
the target corpus. This can either be done by tagging a parallel corpus, or by
machine translating the source corpus to the target language. It has proven a robust
approach across a number of tasks, such as POS-tagging (Buys and Botha, 2016),
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Dependency Parsing (Agic et al., 2016), semantic role labeling (Pado and Lapata,
2009)) or relationship extraction (Faruqui and Kumar, 2015).

root

OPINION

“ Mayor Antonio Prado would be the paradigmatic figure [...] ” , evaluates the architect Hugo Segawa .

///%//

“ Antonio Prado vai ser a figura paradigmatica [...] " , avalia o arquiteto Hugo Segawa .

Figure 3.5: A depiction of annotation projection of sentiment annotations for aspect-
level sentiment analysis using word alignments. Figure taken from (Almeida et al.,
2015).

Several approaches included a multi-view representation of the data (Banea et al.,
2010; | X1ao and Guo, [2012) or co-training (Wan, 2009a; Demirtas and Pechenizkiyl,
2013) to improve over a naive implementation of machine translation, where only
the translated data is used. There are also approaches which only require parallel
data (Meng et al., 2012; Zhou et al., 2016; Rasooli et al., 2017), instead of machine
translation.

Another approach is to create a bilingual view of the data. The essence of this
approach is to reduce the noise that translation introduces by presenting classifiers
with complementary views. Wan| (2009b) creates a bilingual representation of the
data through SMT and then uses co-training to take advantage of classifiers that
commit complementary errors. This research seems promising, but the benefits
of co-training may have more to do with incorporating in-domain data than cross-
lingual transfer (Demirtas and Pechenizkiy, 2013)).

Pan et al. (2011) use a bi-view non-negative matrix tri-factorization approach
which allows for the incorporation of sentiment lexicon information. [Lu et al.
(2011])) incorporate a joint bilingual model which makes use of unlabeled parallel or
pseudo-parallel data in order to improve sentiment classification for both languages
simultaneously.

3.2.2 Without Machine Translation

There are also approaches which focus on parallel data instead of machine trans-
lation. Meng et al.| (2012) make use of parallel corpora to learn a cross-lingual
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mixture model, while Zhou et al. (2016]) also use parallel corpora and stacked de-
noising autoencoders to learn a bilingual representation of documents. Rasooli et al.
(2017) , instead, make use of multiple annotations and bilingual word embeddings
to perform CLSA. |Popat et al.| (2013) use parallel corpora and learn clustering
algorithms to learn useful cross-lingual features.

All of these approaches, however, require large amounts of parallel data, which are
not always available between the resource-rich and under-resourced languages. A
notable exception is the approach proposed by Chen et al. (2016) , an adversarial
deep averaging network, which trains a joint feature extractor for two languages.
They minimize the difference between these features across languages by learning
to fool a language discriminator, which requires no parallel data. It does, however,
require large amounts of unlabeled data.

3.2.3 Aspect-level Cross-lingual Sentiment Analysis

At document and sentence level, there is often enough redundant sentiment signal
to withstand a certain amount of noise. But when we move to a more fine-grained
level, i. e., aspect or target level, we are often confronted with the situation that
sentiment towards a specific target is expressed with a single word. If this word is
mistranslated or its sentiment is incorrectly inferred, there is no way to correctly
predict it. That makes the combination of cross-lingual and aspect-level sentiment
analysis particularly challenging and leads to developments which aim at tackling
such issues.

Annotation projection is the most common technique to perform aspect-level
cross-lingual sentiment analysis. Lambert (2015) notices that when using an
annotation projection approach to perform aspect-level cross-lingual sentiment
analysis, aspects and sentiment-bearing phrases are shuffled or moved within
the sentence, leading to uninformative annotations. To reduce this, he proposes
a constrained statistical machine translation model which avoids reordering of
targets and sentiment expressions during translation. The classifiers trained on
this SMT data achieve comparable results to their monolingual version. However,
this is a state-of-the-art SMT systenﬂ which is not available in most language
combinations.

Almeida et al. (2015) also use annotation projection, but instead introduce depen-
dency based opinion mining, where dependency trees are used as features for a
classifier. They then use word aligned parallel text to project the dependency trees
from English to Portuguese and perform aspect-level sentiment analysis. This

'The system achieves a BLEU score 45.3 in Spanish-English translation with true-case.
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approach outperforms a similar delexicalized approach, as well as a model trained
on a small target-language annotated corpus.

Klinger and Cimiano| (2015) experiment with keeping only high-quality translated
examples when using MT to perform annotation projection. They include an
instance selection method which filters low-quality translations and show that this
leads to improvements over using the full set of noisy translations.

Unfortunately, all of the previous approaches assume there is a high-quality ma-
chine translation system available for each language pair. While machine transla-
tion systems have improved greatly, there are still many language combinations
with almost no parallel data (Balamurali et al., 2013} [Popat et al., |2013; Pour:
damghani and Knight, 2017; Artetxe et al., 2018; Lample et al., [2018b)), which
complicates the creation of machine translation systems. In fact, for the language
pairs which we consider in this thesis, we are only aware of one publicly available
translations service (https://translate.google.com/)) which is able to
translate all.

3.3 Distributional Semantics

Distributional semantics (Harris, | 1954) takes the view that a word or phrase can
be defined in large part by the contexts in which it appears, especially in a large
collection of sentences. [Firth (1957) famously stated that “You shall know a
word by the company it keeps,” which still sums up the motivation for this line of
research.

While early work in distributional semantics concentrated on intuitive count-based
models, more recent research has moved to what can be called predictive models
(Baroni et al., [2014). In this framework, instead of counting the number of times
a context word co-occurs with a target-word, the model learns a probabilistic
function to either predict the context-word, given the target-word, or vice versa.
Other researchers have shown that these modern approaches are really just highly
tuned models that implicitly perform the same functions as the co-occurrence
models (Levy et al., [2015).

Current state-of-the-art methods in sentiment analysis rely on features extracted
in an unsupervised manner, mainly through one of the existing pre-trained word
embedding approaches (Collobert et al., 20115 |Mikolov et al.,|2013a; Pennington:
et al., 2014). These approaches to sentiment analysis represent words as some func-
tion of their contexts, enabling the machine learning algorithms to generalize over
tokens that have similar representations, arguably giving them an advantage over
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previous approaches, such as bag-of-words, unigram, or bigram representations of
text.

3.3.1 Monolingual Embeddings

In this subsection we will introduce the word embedding models used in experi-
ments in Chapter [, We concentrate primarily on the Skip-gram algorithm, but also
introduce Global Vectors (GLoVe) and sentiment embeddings.

Skip-gram

Skip-gram is an approach to creating semantic word vectors which can be trained
on large amounts of data quickly and which retain certain regularities (Mikolov
et al.,[2013c|). While there is a large amount of similar research in representation
learning (Bengio et al., 2003} Mikolov et al., 2010), these previous techniques
primarily used neural networks to learn the word representations, which made
training slow.

Mikolov et al. (2013a)) propose two log-linear models: the continuous bag of
words model (CBOW) and the Skip-gram model. Preliminary experiments demon-
strate that Skip-gram embeddings perform better when given enough data (Mikolov:
et al., 2013a;|Levy et al., 20135, so we will concentrate on this model.

The Skip-gram model tries to predict all of the context tokens in a window using just
the center token. More formally, given a sequence of training words w1, ws, . . . wr,
the Skip-gram model attempts to maximize the average log probability

1 T
TZ > logp(wyyluw) (3.11)

t=1 —c<j<c,c#0

where c is the size of the training window. Intuitively, for each token ¢ in the corpus,
we create a context window around this token. We then try to predict each word in
the context window, given the token ¢.

Using a softmax over the whole vocabulary to calculate the probability of a word
given a context can be prohibitive when the vocabulary is large. The authors instead
propose negative sampling, a simplification of noise contrastive estimation, in
order to eliminate the need for softmax and to reduce training time. The authors
justify this choice by pointing out the difference in objectives; namely, Skip-gram
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is only interested in creating high quality vector representations, not computing a
full probability distribution. They therefore replace p(w; ;|w;) with

k
log o (V.0 Vwr) + ZE [log o(—v,,

=1

T

Vwr)] (3.12)

at every step. Basically, the task is reduced to distinguishing the current true
vector v;jo from other vectors taken from the noise distribution using logistic
regression.

These embeddings have been empirically shown to perform well for word analogy
tasks (Mikolov et al.,[2013a)), as well as text classification tasks (Kim, 2014} dos
Santos and Gatti, 2014 |Irsoy and Cardiel [2014).

Global Vectors for Word Representations (GloVe)

While the Skip-gram embedding algorithm is able to make good use of local
statistics via window co-occurrence, it does not utilize the overall statistics as
well as previous methods. Given that one of the interesting properties of the
word2vec embeddings is their syntactic and semantic regularities/Pennington et al.
(2014)) attempt to model this property explicitly by combining the advantages of
global matrix factorization and local context windows. They find that much of the
relevant information can be determined by ratios of co-occurrence, rather than the
raw counts and propose a log bilinear regression model to take advantage of this
fact.

Let X be a word-word co-occurrence matrix, where X ; is the co-occurrence count
of words ¢ and j. Instead of relying directly on the co-occurrence counts, they
make use of the ratio of co-occurrences given a context, P, ./ P; i, where k is a
context word. Their formulation leads to a general model

P
F((w; — wy) i) = p,’i (3.13)
]7

where w; and w; are the word embedding vectors for words 7 and j respectively,
and wy, is a context vector for the word k. Their final objective function is

\%4

J = Z F(Xi) (Wl 4 b; + by — log X, ;)? (3.14)

i,j=1
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where V' is the size of the vocabulary and f is a weighting function that effectively
downsamples frequent co-occurrences. They also include two biases (b; and Bj)
and a regularization term log X; ; and reduce the main function to the dot product
of the word vector w; and the context vector w;. .

These embeddings have been empirically shown to perform well for sentiment
classification and semantic relatedness (Tai et al., [2015)). However, there is cur-
rently no consensus as to whether GloVe or SkipGram embeddings perform better.
Therefore, in this thesis, we will mainly use SkipGram embeddings.

Retrofitting to Semantic Lexicons

There have been several proposals to improve the quality of word embeddings
using semantic lexicons. [Yu and Dredze| (2014) propose several methods which
combine the CBOW architecture (Mikolov et al., 2013a) and a second objective
function which attempts to maximize the relations found within some semantic
lexicon. They use both the Paraphrase Database (Ganitkevitch et al., 2013) and
WordNet (Fellbaum, |1999) and test their models on language modeling and seman-
tic similarity tasks. They report that their method leads to an improvement on both
tasks.

Kiela et al.| (2015) aim to improve embeddings by augmenting the context of
a given word while training a skip-gram model (Mikolov et al., 2013a). They
sample extra context words, taken either from a thesaurus or association data, and
incorporate this into the context of the word for each update. The evaluation is both
intrinsic, on word similarity and relatedness tasks, as well as extrinsic on TOEFL
synonym and document classification tasks. The augmentation strategy improves
the word vectors on all tasks.

Faruqui et al.| (2015) propose a method to refine word vectors by using rela-
tional information from semantic lexicons (we refer to this method as RETROFIT).
They require a vocabulary V' = {wy,...,w,}, its word embeddings matrix
Q = {q,...,qn}, where each ¢; is one vector for one word w; and an ontol-
ogy {2, which they represent as an undirected graph (V, E') with one vertex for
each word type and edges (w;, w;) € E C V x V. They attempt to learn the
matrix () = {q1, ..., ¢}, such that g; is similar to both ¢; and ¢;V; for (7, j) € E.
Therefore, the objective function to minimize is

n

VQ) =) |alla—a@ll’+ Y Bulla— gl

=1 (i.g)eE

where o and /3 control the relative strengths of associations.
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They use the XL version of the Paraphrase Database (PPDB-XL) dataset (Ganitke:
vitch et al., 2013)), which is a dataset of paraphrases as the semantic lexicon, to
improve the original vectors. This dataset includes 8 million lexical paraphrases
collected from bilingual corpora, where words in language A are considered para-
phrases if they are consistently translated to the same word in language B. They
then test on the Stanford Sentiment Treebank (Socher et al., 2013). They train an
L2-regularized logistic regression classifier on the average of the word embeddings
for a text and find improvements after retrofitting.

All above approaches show improvements over previous word embedding ap-
proaches (Mnih and Teh, [2012; [Yu and Dredze, 2014} Xu et al.,[2014) on this data
set.

Sentiment embeddings

Maas et al.| (2011)) first explored the idea of incorporating sentiment information
into semantic word vectors. They proposed a topic modeling approach similar to
latent Dirichlet allocation in order to collect the semantic information in their word
vectors. To incorporate the sentiment information, they included a second objective
whereby they maximize the probability of the sentiment label for each word in a
labeled document.

Tang et al.| (2014)) take a joint training approach and simultaneously incorporate
syntactid’| and sentiment information into their word embeddings (we refer to this
method as JOINT). They extend the word embedding approach of Collobert et al.
(2011)), who use a neural network to predict whether an n-gram is a true n-gram or
a “corrupted” version. They use the hinge loss

108Sey (£, ) = max(0,1 — foU(t) + f(t)) (3.15)

and backpropagate the error to the corresponding word embeddings. Here, ¢ is the
original n-gram, ¢" is the corrupted n-gram and f“" is the language model score.
Tang et al.[(2014)) add a sentiment hinge loss to the Collobert et al.|(2011) model,
as

lossg(t,t") = max(0, 1 — 05(¢) £ (t) + d5(¢) f{ (")) , (3.16)

where f} is the predicted negative score and d4(¢) is an indicator function that
reflects the sentiment of a sentence. d(¢) is 1 if the true sentiment is positive and

2We use the authors’ terminology here, but make no assumptions that the distributional repre-
sentation encodes information directly pertaining to syntax.
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—1 if it is negative. They then use a weighted sum of both scores to create their
sentiment embeddings:

10SScombined (t, 1) = @ - 1088y (£, 17) + (1 — ) - lossg(t,t") . (3.17)

This requires sentiment-annotated data for training both the syntactic and sentiment
losses, which they acquire by collecting tweets associated with certain emoticons.
In this way, they are able to simultaneously incorporate sentiment and semantic
information relevant to their task. They test their approach on the SemEval 2013
twitter dataset (Nakov et al., 2013), changing the task from three-class to binary
classification, and find that they outperform other approaches.

Overall, creating sentiment-specific embeddings shows promise for tasks with a
large amount of distantly-labeled data, and intuitively deals with the problem of
antonyms having similar representations.

Open Problems

While word embedding algorithms have led to improvements in many NLP tasks,
they still suffer from a number of shortcomings. One of the most relevant prob-
lems with using word embeddings for sentiment analysis is that antonyms often
have similar representations. This problem stems directly from the distributional
hypothesis, as antonyms are often found in similar local contexts. Compare the
words “love” and “hate” in the following examples:

I really loved that movie.
I really hated that movie.

Given only the current examples, these words would have the exact same repre-
sentation. In practice, this does not happen, but the word embeddings are still
overly similar, which can impair classification. Previous research has addressed
this problem, but this has not been used in sentiment analysis (Nguyen et al.,
2016).

A second problem comes from the concept of a word in these embedding algorithms.
They normally do not perform a significant amount of preprocessing, which means
that they perform their calculations directly on the tokens. For morphologically rich
languages, this is a problem, as the number of tokens is significantly higher than in
morphologically poor languages like English. This leads to a scarcity of training
examples for most words and a consequent loss in performance. There have been
attempts to incorporate morphological information into word embeddings on a
monolingual level (Bojanowski et al.l 2017). However, there is still a large amount
of work to be done in this line.
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Finally, it is not completely clear how to combine these word vectors into larger
constituents in an unsupervised way, as simple addition or averaging often func-
tions as well as more complicated methods (Kartsaklis, 2014). More recently,
research has turned to learning contextualized word representations trained on
large unlabeled data, which they can then fine-tune for other tasks (Felbo et al.,
2017} |Peters et al., 2018; Howard and Ruder, 2018]). This approach, however, is not
likely to help in cross-lingual cases, as the pretraining picks up on language-specific
relations that are not likely to generalize.

3.3.2 Bilingual Embeddings

Bilingual word embeddings offer an intuitive solution for low-resource languages,
as they can theoretically make the best use of large amounts of monolingual data
and small amounts of parallel data. Although they have been used for cross-lingual
document classification, there has been little previous work on using them for cross-
lingual sentiment analysis. We can subdivide bilingual embeddings according to
the amount of bilingual signal that they require. From most restrictive to least
restrictive:

1. Word-aligned Corpora
2. Sentence-aligned Corpora
3. Document-aligned Corpora

4. Projection-based Methods

Word-aligned Corpora

Word-level bilingual supervision is the most restrictive data requirement that bilin-
gual embedding algorithms can have, but ensures that the learned representations
are of high quality.

Zou et al.| (2013) introduce bilingual word embeddings for machine translation.
They require large word aligned parallel corpora and use a modified max margin
loss to predict true word / context pairs. They use bilingual regularization based on
the word alignment counts in order to ensure that the word embeddings for both
source and target languages are similar.

Luong et al.| (2015) extend the Skip-gram model to bilingual embeddings. The
proposed BiSkip algorithm requires word-aligned parallel corpora as input, and
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uses a modified loss function which, given a center word, attempts to predict both
the source and target words within a context window.

Gouws and Sggaard (2015) propose a method to create a pseudo-bilingual cor-
pus with a small task-specific bilingual lexicon, which can then be used to train
bilingual embeddings (BARISTA). This approach requires a monolingual corpus
in both the source and target languages and a set of translation pairs. The source
and target corpora are concatenated and then every word is randomly kept or
replaced by its translation with a probability of 0.5. Any kind of word embedding
algorithm can be trained with this pseudo-bilingual corpus to create bilingual word
embeddings.

While research indicates that bilingual embeddings created with word-level super-
vision perform better than sentence- or document-level supervision on cross-lingual
dictionary induction and cross-lingual document classification (Upadhyay et al.,
2016), it is also prohibitive for under-resourced languages, as they often do not
have large word-aligned parallel corpora available.

Sentence-aligned Corpora

Sentence-aligned data is less restrictive and easier to find for some language pairs.
The EuroParl (Koehn, [2005) and Open Subtitles (Lison and Tiedemann, |[2016) are
available in major European languages.

Bilingual embedding methods that require only sentence-aligned data attempt to
learn word representations that maximize the similarity of words that commonly
occur in parallel sentences, while at the same time maximizing the similarity of
words that occur in similar contexts monolingually (Hermann and Blunsom, [2014;
Chandar et al., 2014).

Gouws et al. (2015), on the other hand, attempt to make the best use of both
monolingual and bilingual signals. They use large monolingual corpora to best
create the monolingual word representations, while requiring less parallel data
which acts as bilingual regularization, ensuring that words that frequently occur in
parallel sentences have similar representations.

Comparable Corpora
An even less restrictive approach is to use comparable data. Wikipedia articles have

been the primary source of non-aligned but comparable corpora for creating bilin-
gual word representations. (Vuli¢ and Moens, 2014, 2015}, |Vulic and Moens, |2016))
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use comparable Wikipedia articles to create bilingual word embeddings. They
show that these representations work well for bilingual lexicon extraction.

Segaard et al. (2015)) create multilingual word representations by using the indexes
of the Wikipedia articles in which they appear. They find these representations
often outperform bilingual representations using sentence-aligned data.

Mogadala and Rettinger| (2016) propose both a sentence- and document-aligned
regularization term while learning bilingual word embeddings for cross-lingual
document classification. They then use these representations to perform cross-
lingual document classification.

Nonetheless, research indicates that representations created from document-aligned
data perform worse than word-level or sentence-level supervised embeddings
(Upadhyay et al., 2016; Mogadala and Rettinger, 2016)) for downstream tasks. In
fact, when using document-alignment only, Mogadala and Rettinger (2016) report
results that are roughly 20 percentage points worse than using the sentence-aligned
regularization for cross-lingual document classification.

Projection-based Methods

An approach to create bilingual embeddings that has a less prohibitive data require-
ment is to create monolingual vector spaces on large amounts of monolingual data
and then learn a projection from one to the other with a small bilingual lexicon.
This approach is interesting for under-resourced languages as it is often possible to
find enough monolingual data to create high-quality word representations. Small
bilingual lexicons, such as bilingual dictionaries or hand-translated lexicons, are
often enough signal to enable a mapping to a bilingual space.

Mikolov et al.| (2013b) find that vector spaces in different languages have simi-
lar arrangements. Therefore, they propose a linear projection which consists of
learning a rotation and scaling matrix. They do this with a simple ridge regression
approach, which is simply least squares regression with L2 regularization

. 2 2
m&nz W — 2|24 M|[W||3 (3.18)
ieD
where W is the weight matrix, D = (z1, 21), (22, 22), . . ., (%, 2;) is a bilingual

dictionary that contains translation pairs, with x in the source language and z in the
target language. Here \ is a parameter that determines the amount of regularization
used. They then show that these representations can be used to create translation
dictionaries automatically.
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VECMAP: Artetxe et al.| (2016, 2017) propose an approach (VECMAP) that
improves on the work of Mikolov et al.| (2013b) by requiring the projection to
be orthogonal, thereby preserving the monolingual quality of the original word
vectors.

Given source embeddings S, target embeddings 7', and a bilingual lexicon L,
Artetxe et al. (2016) learn a projection matrix W' by minimizing the square of
Euclidean distances
argminZHS’W—T’H%, (3.19)
w i

where S’ € S and T’ € T are the word embedding matrices for the tokens in
the bilingual lexicon L. This is solved using the Moore-Penrose pseudoinverse
St = (875718 as W = ST’ which can be computed using SVD. We refer
to this approach as VECMAP.

Multilingual Unsupervised and Supervised Embeddings (MUSE): Lample
et al. (2018a) propose a similar refined orthogonal projection method to that of
Artetxe et al. (2017)), but include an adversarial discriminator, which seeks to
discriminate samples from the projected space WS, and the target 7', while the
projection matrix I attempts to prevent this making the projection from the source
space W S as similar to the target space 1" as possible.

They further refine their projection matrix by reducing the hubness problem (Dinu
et al., [2015), which is commonly found in high-dimensional spaces. For each
projected embedding Wz, they define the k nearest neighbors in the target space,
N, suggesting k = 10. They consider the mean cosine similarity (¥ x) between
a projected embedding Wz and its k nearest neighbors

1
rT(Wx):E Z cos(Wz,y) (3.20)
yeENT(Wa)

as well as the mean cosine of a target word y to its neighborhood, which they
denote by rg.

In order to decrease similarity between mapped vectors lying in dense areas, they
introduce a cross-domain similarity local scaling term (CSLS)

CSLS(Wz,y) = 2cos(Wz,y) —re(Wzx) —rs(y), (3.21)

which they find improves accuracy, while not requiring any parameter tuning.

These last techniques have the advantage of requiring relatively little parallel train-
ing data while taking advantage of larger amounts of monolingual data. However,
they are not optimized for sentiment.
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Bilingual Sentiment Embeddings

Given that task-specific embeddings are generally desirable, research has moved
towards creating sentiment-specific bilingual embeddings.

Zhou et al.| (2015) propose a two step approach to create bilingual sentiment
embeddings by translating all source data to the target language and vice versa.
They first create bilingual representations using denoising autoencoders, in line
with the approach of |Chandar et al.|(2014). Instead of using the entire vocabulary,
however, they only attempt to model 2000 words taken from a sentiment lexicon,
as well as their translations to the target language. Once the autoencoder learns
a bilingual representation, they incorporate sentiment information by updating
the parameters of the autoencoder while performing supervised classification.
This optimizes the hidden representations to predict the sentiment of a document
regardless of whether it is in the source or target language.

The major drawback of this approach is that it requires the existence of a machine
translation system, which is a prohibitive assumption for many under-resourced
languages, especially if it must be open and freely accessible. It also is only able
to model a small number of sentiment bearing features (2000). While this is not a
large problem for document-level classification, at sentence- or aspect-level, it is
unlikely that these features would be present in all examples.
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Chapter 4

EXPERIMENTS

In this chapter, we outline the main experiments of the thesis. We begin by
evaluating which machine learning models are state-of-the-art in monolingual
English sentiment analysis in Section .1l This provides us with a basis for
choosing cross-lingual models later.

We then explore whether cross-lingual distributional representations are com-
petitive with machine translation approaches in Section These two sets of
experiments motivate the approaches we propose in the rest of the thesis.

In Section [4.3] we propose a joint model to learn to project sentiment to a bilingual
space for sentence-level cross-lingual sentiment analysis. We then propose several
techniques to transfer this to aspect-level in Section

We also include a more qualitative deployment experiment in Section4.5 where we
observe how well our approach works when applied to twitter sentiment analysis
in ten European languages.

Finally, we transfer our sentence-level approach from a cross-lingual to a cross-
domain task in Section
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4.1 Assessing State-of-the-art Monolingual Sentiment
Models

Given that the main goal of this thesis is to create machine-learning models that
are able to perform cross-lingual sentiment analysis, it is important to understand
the properties of state-of-the-art machine learning models. In order to evaluate
these models mono-lingually, we often use a number of datasets. However, not
every model is tested on every dataset, and it is not clear that a model that performs
well on one certain dataset will transfer well to other datasets with different
properties.

The work described in this section aims at discovering if there are certain models
that generally perform better or if there are certain models that are better adapted to
certain kinds of datasets. Ultimately, the goal of these experiments is to discover the
best overall models in monolingual sentiment analysis, so that we might see if these
models perform equally well cross-lingually, or if they require modifications.

In the following sections we compare seven approaches to English sentiment
analysis on six benchmark dataset We find that

e bidirectional LSTMS perform well across datasets,

e both LSTMS and bidirectional LSTMS are particularly good at fine-grained
sentiment tasks,

e and embeddings trained jointly for semantics and sentiment perform well on
datasets that are similar to the training data.

4.1.1 Datasets

We choose to evaluate the approaches presented in Section f.1.2] on a number
of different datasets from different domains, which also have differing levels
of granularity of class labels. The Stanford Sentiment Treebank and SemEval
2013 shared-task dataset have already been used as benchmarks for some of the
approaches mentioned in Section 3| Table 4.1{ shows which approaches have been
tested on which datasets and Table [4.2] gives an overview of the statistics for each
dataset.

'The code and embeddings for the best models are available at http: //www.ims.uni-
stuttgart.de/data/sota_sentiment
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SST-fine
SST-binary
OpeNER
SenTube-A
SenTube-T
SemEval

: g
m <
+
+
+
—+

| RETROFIT

—+

| JOINT

+

+ + | LST™
+ + | BILSTM

+ + | CNN

Table 4.1: Mapping of previous state-of-the-art methods to previous evaluations on
state-of-the-art datasets. An + indicates that we are aware of a publication which

reports on this combination and a — indicates our assumption that no reported

results are available.

Train Dev. Test # Labels Avg. Length Vocab. Size
SST-fine 8,544 1,101 2,210 5 19.53 19,500
SST-binary 6,920 872 1,821 2 19.67 17,539
OpeNER 2,780 186 743 4 4.28 2,447
SenTube-A 3,381 225 903 2 28.54 18,569
SenTube-T 4,997 333 1,334 2 28.73 20,276
SemEval 6,021 890 2,376 3 22.40 21,163

Table 4.2: Statistics of datasets. Train, Dev., and Test refer to the number of
examples for each subsection of a dataset. The number of labels corresponds to the
annotation scheme, where: two is positive and negative; three is positive, neutral,
negative; four is strong positive, positive, negative, strong negative; five is strong

positive, positive, neutral, negative, strong negative.
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Stanford Sentiment

The Stanford Sentiment Treebank (SS7-fine) (Socher et al., 2013) is a dataset of
movie reviews which was annotated for 5 levels of sentiment: strong negative,
negative, neutral, positive, and strong positive. It is annotated both at the clause
level, where each node in a binary tree is given a sentiment score, as well as at
sentence level. We use the standard split of 8544/1102/2210 for training, validation
and testing. In order to compare with Faruqui et al. (2015) , we also adapt the
dataset to the task of binary sentiment analysis, where strong negative and negative
are mapped to one label, and strong positive and positive are mapped to another
label, and the neutral examples are dropped. This leads to a slightly different split
of 6920/872/1821 (we refer to this dataset as SST-binary).

OpeNER

The OpeNER English dataset (Agerri et al., 2013)) is a dataset of hotel reviews
in which each review is annotated for opinions. An opinion includes sentiment
holders, targets, and phrases, of which only the sentiment phrase is obligatory.
Additionally, sentiment phrases are annotated for four levels of sentiment: strong
negative, negative, positive and strong positive. We use a split of 2780/186/734
examples.

Sentube datasets

The SenTube datasets (Uryupina et al.,|2014)) are texts that are taken from YouTube
comments regarding automobiles and tablets. These comments are normally
directed towards a commercial or a video that contains information about the
product. We take only those comments that have some polarity towards the
target product in the video. For the automobile dataset (SenTube-A), this gives a
3381/225/903 training, validation, and test split. For the tablets dataset (SenTube-T)
the splits are 4997/333/1334. These are annotated for positive, negative, and neutral
sentiment.

Semeval 2013
The SemEval 2013 Twitter dataset (SemEval) (Nakov et al., 2013) is a dataset that

contains tweets collected for the 2013 SemEval shared task B. Each tweet was
annotated for three levels of sentiment: positive, negative, or neutral. There were
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originally 9684/1654/3813 tweets annotated, but when we downloaded the dataset,
we were only able to download 6021/890/2376 due to many of the tweets no longer
being available.

4.1.2 Methodology

We compare seven approaches, five of which are already mentioned in Chapter 3]
as well as two baselines. In this section, we describe the models and parameters
and test them on the benchmark datasets mentioned in Section

Models

Baselines We compare our models against two baselines. First, we train an
L2-regularized logistic regression on a bag-of-words representation (BOw) of
the training examples, where each example is represented as a vector of size
n, with n = |V] and V' the vocabulary. This is a standard baseline for text
classification.

Our second baseline is an L.2-regularized logistic regression classifier trained on
the average of the word vectors in the training example (AVE). We train word
embeddings using the skip-gram with negative sampling algorithm (Mikolov et al.,
2013a) on a 2016 Wikipedia dump, using 50-, 100-, 200-, and 600-dimensional
vectors, a window size of 10, 5 negative samples, and we set the subsampling
parameter to 104, Additionally, we use the publicly available 300-dimensional
GoogleNews Vectorf] in order to compare to previous work.

Retrofitting We apply the approach by Faruqui et al. (2015) and make use of the
cod released in combination with the PPDB-XL lexicon, as this gave the best
results for sentiment analysis in their experiments. We train for 10 iterations. Fol-
lowing the authors’ setup, for testing we train an L2-regularized logistic regression
classifier on the average word embeddings for a phrase (RETROFIT).

Joint Training For the joint method, we use the 50-dimensional sentiment em-
beddings provided by Tang et al.| (2014). Additionally, we create 100-, 200-, and
300-dimensional embeddings using the code that is publicly availabl We use

https://code.google.com/archive/p/word2vec/
3https://github.com/mfaruqui/retrofitting
4http://ir.hit.edu.cn/~dytang
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the same hyperparameters as Tang et al.| (2014)): five million positive and negative
tweets crawled using hashtags as proxies for sentiment, a 20-dimensional hidden
layer, and a window size of three. Following the authors’ setup, we concatenate the
maximum, minimum and average vectors of the word embeddings for each phrase.
We then train a linear SVM on these representations (JOINT).

Supervised Training We implement a standard LSTM which has an embedding
layer that maps the input to a 50-, 100-, 200-, 300-, or 600-dimensional vector,
depending on the embeddings used to initialize the layer. These vectors then pass
to an LSTM layer. We feed the final hidden state to a standard fully-connected 50-
dimensional dense layer and then to a softmax layer, which gives us a probability
distribution over our classes. As a regularizer, we use a dropout (Srivastava et al.,
2014) of 0.5 before the LSTM layer.

The BIDIRECTIONAL LSTM (BILSTM) has the same architecture as the normal
LSTM, but includes an additional layer which runs from the end of the text to the
front. We use the same parameters as the LSTM, but concatenate the two hidden
layers before passing them to the dense layelﬂ

We also train a simple one-layer CNN with one convolutional layer on top of
pre-trained word embeddings. The first layer is an embeddings layer that maps the
input of length n (padded when needed) to an n X R dimensional matrix, where
R is the dimensionality of the word embeddings. The embedding matrix is then
convoluted with filter sizes of 2, 3, and 4, followed by a pooling layer of length 2.
This is then fed to a fully connected dense layer with ReLLU activations (Nair and
Hinton, 2010b) and finally to the softmax layer. We again use dropout (0.5), this
time before and after the convolutional layers.

For all neural models, we initialize our word representations with the skip-gram
algorithm with negative sampling (Mikolov et al.,[2013a)). For the 300-dimensional
vectors, we use the publicly available GoogleNews vectors. For the other dimen-
sions (50, 100, 200, 600), we create skip-gram vectors with a window size of 10, 5
negative samples and run 5 iterations. For out-of-vocabulary words, we use vectors
initialized randomly between -0.25 and 0.25 to approximate the variance of the
pre-trained vectors. We train our models using ADAM (Kingma and Ba, 2014) and
a minibatch size of 32 and tune the hidden layer dimension and number of training
epochs on the validation set.

SFor the neural models on the SST-fine and SST-binary datasets, we do not achieve results as high
as (Tai et al.L[2015) and (Kim,|[2014) , because we train our models only on sentence representations,
not on the labeled phrase representations. We do this to be able to compare across datasets.
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4.1.3 Results

Table [4.3] shows the results for the seven models across all datasets, as well as
the macro-averaged results. We performed random approximation tests (Yeh,
2000) using the sigf package (Padol 2006) with 10,000 iterations to determine the
statistical significance of differences between models. Since the reported accuracies
for the neural models are the means over five runs, we cannot use this technique
in a straightforward manner. Therefore, we perform the random approximation
tests between the runf] and consider the models statistically different if a majority
(at least 3) of the runs are statistically different (p < 0.01, which corresponds to
p < 0.05 with Bonferroni correction for 5 hypotheses). For interested readers, the
results of statistical testing are summarized in Table [6.1]

Obviously, BOW continues to be a strong baseline: Though it never provides the
best result on a dataset, it gives better results than AVE on OpeNER, SenTube-T,
and SemEval. Surprisingly, it also performs better than JOINT on the same sets
except for SenTube-T. Similarly, it outperforms RETROFIT on SenTube-T and
SemEval.

RETROFIT performs better than CNN on SS7-fine and JOINT on SST-fine, SST-
binary, and OpeNER. It also improves the results of AVE across all datasets but
SenTube-A and SemEval datasets.

Although JOINT does not perform well across datasets and, in fact, does not surpass
the baselines on some datasets, it does lead to good results on SemEval and to
state-of-the-art results on SenTube-A and SenTube-T.

Similarly to RETROFIT, CNN does not outperform any of the other methods on any
dataset. As said, this method does not beat the baseline on SS7-fine, SenTube-A,
and SenTube-T. However, it outperforms the AVE baseline on SS7T-binary and
OpeNER.

The best models are LSTM and BILSTM. The best overall model is BILSTM,
which outperforms the other models on half of the tasks (SS7-fine, Opener, and
SemEval) and consistently beats the baseline. This is in line with other research
(Plank et al., 2016} Kiperwasser and Goldberg, [2016; Zhou et al., 2016)), which
suggests that this model is robust across tasks as well as datasets. The differences in
performance between LSTM and BILSTM, however, are only significant (p < 0.01)
on the SemEval dataset, as shown in Table

We compare the results from the first run of model A with the first run of model B, then the
second from A with the second from B, an so forth. An alternative would have been to use a t-test,
which is common in such setting. However, we opted against this as the independence assumptions
for such test do not hold.
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Table 4.3: Accuracy on the test sets. For all neural models we perform 5 runs
and show the mean and standard deviation. The best results for each dataset is
given in bold and results that have been previously reported are highlighted. All
results derive from our reimplementation of the methods. We describe significance
values in the text and appendix. Footnotes refer to the work where a method was
previously tested on a specific dataset, although not necessarily with the same
results: [1] (Ta1 et al.,[2015) [2] (Kim, 2014])) [3] (Faruqui et al., 2015) [4] (Lambert,
20135) [S] (Uryupina et al., 2014) [6] (Tang et al.,[2014) .
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We also see that the difference in performance between the two LSTM models and
the others is larger on datasets with fine-grained labels (BILSTM 45.6 and LSTM
45.3 vs. an average of 40 for all others on the SS7-fine and BILSTM 82.5 and LSTM
82.3 vs. an average of 76.5 on OpeNER). These differences between the LSTM
models and other models are statistically significant, except for the difference
between BILSTM and CNN at 50 dimensions on the OpeNER dataset.

Our analysis of different dimensionalities as input for the classification models
reveals that, typically, the higher dimensional vectors (300 or 600) outperform
lower dimensions. The only differences are in JOINT for SenTube-T and SemEval
and LSTM for SenTube-A and AVE on all datasets except OpeNER.

CNN LSTM BiLSTM
‘ ‘ ‘ ‘ ‘ ‘ 450
StongNegatvel 6 | 242 5 26 0 25 |24 5 25 0 56 200 & 14 1 w
Negatvel 2 ML 2 o 1 7 O 21 . 3 37 WM 5 % 3 350
300

Neutrall 1 287 24 124 3 3 212 3 139 4 5 210 49 116 9 250
200

Positivel 0 110 21 335 44 0 92 18 58 1 104 40 ﬂ 79 150
100

Strong Positive} 0 33 6 100 0 24 2 222 151 1 28 13 176 181 50

True Label

>
> @,
0&“ S S
K & S

Predicted Label

Figure 4.1: Confusion matrices of CNN, LSTM, and BILSTM on SS7-fine dataset.
We can see that both LSTM and BILSTM perform much better than CNN on strong
negative, neutral, and strong positive classes.

While approaches that average the word embeddings for a sentence are comparable
to state-of-the-art results (Iyyer et al.,|2015), AVE and RETROFIT do not perform
particularly well. This is likely due to the fact that logistic regression lacks
the non-linearities which (Iyyer et al.| [2015) found helped, especially at deeper
layers. Averaging all of the embeddings for longer phrases also seems to lead to
representations that do not contain enough information for the classifier.

We also experimented with using large sentiment lexicons as the semantic lexicon
for retrofitting, but found that this hurt the representation more than it helped. We
believe this is because there are not enough kinds of relationships to exploit the
graph structure and by trying to collapse all words towards either a positive or
negative center, too much information is lost.
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x? with SemEval ~ x*>  p-value

SST-fine 19.408 0.002
SST-binary 19.408 0.002
OpeNER 19.408 0.002
SenTube-A 9.305 0.097
SenTube-T 7.377 0.194

Table 4.4: y? statistics comparing the frequency of the following emoticons over
the different datasets, :), :(, :-), :-(, :D, =). The difference in frequency of emoticons
between the SemEval and SenTube datasets is not significant (p > 0.05), while for
SST and OpeNER it is (p < 0.05).

We expected that JOINT would perform well on SemEval, given that it was designed
for this task, but it was surprising that it performed so well on the SenTube datasets.
It might be due to the fact that comments for these three datasets are comparably
informal and make use of emoticons and Internet jargon. We performed a short
analysis of datasets (shown in Table [4.4)), where we take frequency of emoticons
usage as an indirect indicator of informal speech and found that, indeed, the
frequency of emoticons in the SemEval and SenTube datasets diverges significantly
from the other datasets. The fact that JOINT is distantly trained on similar data
gives it an advantage over other models on these datasets. This leads us to believe
that this approach would transfer well to novel sentiment analysis tasks with similar
properties.

The fact that CNN performs much better on OpeNER may be due to the smaller
size of the phrases (an average of 4.28 vs. 20+ for other datasets), however, further
analyses to prove this are needed.

The good results that both LSTM models achieved on the more fine-grained sen-
timent datasets (SS7-fine and OpeNER) seem to indicate that LSTMS are able to
learn dependencies that help to differentiate strong and weak versions of sentiment
better than other models. This is supported by the confusion matrices shown in
Figure 4.1 This makes them natural candidates for fine-grained sentiment analysis
tasks.

LSTM performs better than BILSTM on two datasets but these differences are not
statistically significant.
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4.1.4 Discussion

In this section, we have shown that BILSTMS are good general models for senti-
ment analysis in English, that both LSTMS and BILSTMS work particularly well
for fine-grained sentiment analysis, and that sentiment embeddings perform well
on datasets similar to the data they are trained on.

Although sequence models, i. e. LSTMS and BILSTMS, show the strongest results
on monolingual sentiment analysis, this unfortunately does not make them ideal
candidates for cross-lingual sentiment analysis.

LSTMS are sensitive to dependencies between words and to word order (Socher:
et al., | 2013} Linzen et al., |2016)), which is beneficial for monolingual sentiment
analysis, as the classifier is able to do more than just identify keywords, incor-
porating such things as high-level negation or adverb modification. However, if
we use a classifier trained on English data on machine-translated Spanish data,
the translated data will exhibit characteristics different from those of the source
language (Mohammad et al., 2016).

If we follow the goal of this thesis and decide not to use machine translation, in an
attempt to design approaches which help under-resourced languages, the results
will be even worse. The difference in word order means that currently, sequence
models are not the best choice for our aim.

Given that embedding averaging methods do not perform much worse, we will use
these as a substitution for sequence models.
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Jeremy Barnes, Patrik Lambert, and Toni Badia (2016). “Exploring Distributional
Representations and Machine Translation for Aspect-based Cross-lingual Senti-
ment Classification.” In: Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pp. 1613-1623.
http://aclweb.org/anthology/C/Cl6/Cl6-1152.pdf
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4.2 Exploring Distributional Representations and Ma-
chine Translation for Cross-lingual Sentiment Anal-
ysis

The previous section introduced state-of-the-art machine learning models and
revealed that sequence models which use distributional representations as features
are a good starting place for monolingual sentiment analysis. In fact, this approach
to sentiment analysis leads to state-of-the-art results for most tasks. For the task
of cross-lingual sentiment analysis, however, it is not as clear that distributional
representations can carry both the bilingual and sentiment signals necessary to
classify sentiment in a target language.

In this section we attempt to determine if distributional representations, whether
that be word embeddings or the latent hidden state of autoencoders, can provide
enough signal to enable cross-lingual sentiment analysis. We do this by performing
experiments on a single language pair for which we have sufficient parallel data, as
well as high-quality machine translation (English - Spanish), and testing on a single
dataset available in the same domain in both languages (OpeNER). In this way we
are able to fairly compare several different approaches, which have different data
requirements, without introducing any domain differences.

Most research in cross-lingual sentiment analysis has used Statistical Machine
Translation (SMT) as a way of bridging the gap between languages, but there
are drawbacks to this. First, an SMT system must be available for the language
combination at hand. This requires a great deal of development and the quality of
the sentiment analysis system used afterwards depends heavily on the quality of
the SMT system. Secondly, study shows that even high quality SMT introduces
noise into the data (Mohammad et al., 2016). Finally, there are tasks in which
systems which use distributed semantic representations to map between languages
outperform SMT systems, e.g. cross-lingual document classification (Klementiev:
et al., [2012; |Chandar et al., [2014).

For this reason, a different representation of words and phrases, e. g. distributional
vector representations, could prove to be a more effective approach and enable us to
leverage information from resource-rich languages (English) to perform CLSA in
a target language that lacks these resources (e.g. Spanish, Catalan, Basque).

This section makes the following contributions:

e According to our knowledge, this is the most complete comparison of several
types of distributed representations and machine translation for cross-lingual
sentiment analysis.
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OpeNER Corpora English  Spanish

Training Examples 2780 2991
Strong Pos 23.38%  29%

Pos 46.08% 50.34%
Neg 25.61% 17.41%
Strong Neg 493%  3.01%
Test examples 929 999
Strong Pos 23.36% 29.23%
Pos 46.07% 50.34%
Neg 25.62% 17.42%
Strong Neg 4.95%  3.00%

Table 4.5: Statistics of OpeNER Corpora

e We demonstrate that distributed representations can be competitive with
machine translation for Cross-lingual Sentiment Classification tasks.

The content of this section derives directly from the paper accepted at COLING
2016, mentioned in Section [I.4] (Barnes et al., 2016)).

4.2.1 Methodology

Datasets

The data used to train the sentiment analysis models are the English and Spanish
OpeNER sentiment corpora (Agerri et al.,[2013). We take a subset of these corpora
which deal only with hotel reviews. Each review has annotations for opinion
holders, opinion targets and opinion sentiment. We refer to this triplet (opinion
holder, opinion target, opinion sentiment) as an opinion unit. The sentiment can
be strong positive, positive, negative, or strong negative. A neutral category is
not included. As such, when training a classifier, rather than training on the
complete sentence, we use the opinion unit. Table 4.5 shows the statistics for these
corpora.

The corpora used to create the word embeddings are an English and Spanish
Wikipedia corpus. These were taken from Wikipedia dumps in January 2016 and
preprocessed to remove html markup and lowercase all words. We then performed
sentence and word tokenization. We did not remove punctuation because this is
often useful information for sentiment analysis. Table [4.6| gives the statistics for
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Wikipedia Corpora English Spanish

Number of sentences 118,900,197 26,777,415
Number of tokens 2,055,786,401 506,612,108

Table 4.6: Statistics of Wikipedia Corpora

Europarl v7 Corpus English Spanish

Number of sentences 1,965,734 1,965,734
Number of tokens 49,093,806 51,575,784

Table 4.7: Statistics of Europarl v7 Corpus

these corpora.

The English-Spanish part of the Europarl v7 corpusﬂ (Koehn, 2005) is used as
parallel data. It contains around 2 million aligned sentences from the European
Parliament. Table 4.7 shows the statistics for this corpus.

Representation of Training and Test Data for Sentiment Classification: For
all experiments we use the same train and test split shown in Table 4.5] For each
experiment, we trained a classifier on the English training data, performed the
cross-lingual transfer on the Spanish test data and used this new data to test the
classifier. A depiction of this setup is shown in Figure [4.2]

One difficulty encountered when using vector representations is that the opinion
units are variable length. This means that to train a classifier either we find a
fixed-length representation for all opinion units or we use a classifier that accepts
variable-length input. We decided to take an averaging approach, which has shown
promise in other works (lyyer et al., |2015). For each opinion unit we took the
arithmetic mean of the words that compose the opinion unit in order to create a
fixed-length vector representation for each sentence (shown in Figure 4.3). We then
use these vectors to train a classifier. For the SMT transfer methods, we trained the
classifier on unigram features. In all experiments, we used the sequential minimal
optimization (SMO) classifier from the WEKA toolkit (Hall et al.,[2009).

Vector Space Projection: Following Mikolov et al. (2013b) we create two sets
of monolingual word embeddings using the Europarl v7 corpus (Koehn, 2005). We

http://www.statmt.org/europarl
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Train Set > Classifier —— Predictions
SpaniSh . | Cross-lingual

Test Set transfer

Figure 4.2: The process of cross-lingual sentiment classification. We assume that
the opinion units have already been determined. The English train set is used to
train a classifier. The Spanish test set is mapped accordingly and the classifier is
tested on this cross-lingual test set.
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Figure 4.3: The representation of an opinion unit. For each word in the opinion
unit, we take its vector representation and average these vectors in order to create a
fixed-length vector which we use to train a sentiment classifier

use the Skip-gram model (Mikolov et al., 2013a) and create 300 dimensional vec-
tors using a window of 5 words, and 10 negative samples. We compile a bilingual
dictionary by taking the 8000 most common words in the English Wikipedia and
translating them using Bing Translato Although Bing gives several options, we
take only the first translation for use in our bilingual dictionary. We then remove
errors and ambiguous words manually and arrive at a final number of 4518 word
pairs to train the matrix. Finally, we use ridge regression to optimize the translation
matrix W. After creating the transition matrix I/, we test the effectiveness of this
matrix translation to enable Cross-lingual Sentiment Classification.

For each opinion unit in the corpora, we create a fixed-length vector representation,
as shown in Figure .3 We now have a dataset with training instances such as
{z;,vy;}, where z; is a 300 dimension vector and y; is its corresponding label
(Strong Positive, Positive, Negative, Strong Negative). As a baseline, we train and

8http://www.microsofttranslator.com
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test an SVM on the Spanish data from the OpeNER corpus as the Spanish test set
has the same opinion units as the cross-lingual test set. We do the same with the
English data, although this is not truly comparable.

We then create the cross-lingual test set by applying our translation matrix W
to the embeddings for each sentence Spanish test set. In order to find the most
similar vector from the English word embeddings, we use a k-nearest neighbor
algorithm with cosine as the distance metric. Finally, we use the mean of the word
embeddings as mentioned above to create the final fixed-length representation. We
test on the cross-lingual test set. The results are shown in Table §.8]

Bilingual Word Embeddings:  The next set of experiments required the use of
parallel sentences to create bilingual word embeddings. Following the work of
Luong et al. (20135)), we create bilingual word embeddings using the Bilingual Skip-
gram (BISKIP) algorithm, which uses the Skip-gram model (Mikolov et al.,|2013a)
with an added bilingual objective. This algorithm creates vector representations in
which words that appear in parallel sentences have similar representations. We use
the BISKIP algorithm to train English and Spanish word vectors on the Wikipedia
corpora and the Europarl corpus (Koehn, 2005)). We create 300 dimensional vectors
with a window of 5 words on either side, 10 negative samples and run the algorithm
for 3 epochs. This process gives us two sets of word embeddings in which words
that often appear in parallel sentences have similar vector representations.

To train our classifier, we use our learned English embeddings and take the average
of the vectors in each opinion unit in the English train set. We perform the same
procedure with the learned Spanish embeddings and the Spanish test set. The
results are shown in Table [4.8]

Stacked Bilingual Denoising Autoencoders:  Following the work of [Zhou
et al. (2016) we train a Stacked Bilingual Denoising Autoencoder (SBDA) on
parallel sentences from the Europarl corpus. This approach aims to encode the
parallel sentences into a common latent space. Given a vocabulary of length
n, SBDA maps the sentences, which are represented as n-dimensional one-hot
vectors, to a lower dimensional representation. These representations are then
used to reconstruct the original sentences. In order to keep SBDA from simply
learning the identity function, the lower dimensional representation of one of the
sentences is corrupted, which causes SBDA to look for discriminative features to
help reconstruct the original sentences. In this way, SBDA learns to find a lower
dimensional representation that encodes as much information as possible needed
to reconstruct the bilingual sentences.
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We create source and target language autoencoders with 1000 hidden units, which
are then mapped to 500 hidden units. We set the corruption level to 0.5 and
concatenate and normalize the 500 source and 500 target hidden units before
feeding them to the bilingual autoencoder. After SBDA has been trained, we use
the learned weights to represent our data in the latent bilingual space.

We then create training data by mapping the opinion units from the English train
set to a latent 500 dimensional vector in bilingual space. We train a classifier on
the mapped English training set. We test on the similarly mapped Spanish test set.
The results are shown in Table 4.8]

Statistical Machine Translation For the final experiment we use statistical
machine translation as a means of bridging the gap between languages. We
translate our target language data using Google Translateﬂ a highly developed
SMT system, as well as Constrained SMT. Specifically, with Google Translate we
translate only the opinion phrases. This has the disadvantage that translation is
done without context, but the advantage that the opinion phrases are not mixed
with the rest of the text. We compared this approach with a Constrained SMT
approach (Lambert, 2015). Constrained SMT allows us to translate the opinion
units in context, but without reordering or scrambling them. The language model
used in this approach is trained with data from the hotel domain, which improves
the quality of translation and results in more accurate Cross-lingual Sentiment
Classification results.

Finally, we train an SVM classifier on unigram features from the monolingual
English training set. We create test sets by translating the Spanish test data with
each SMT system. The results are shown in Table 4.8}

Equal amounts of parallel data:  Each of the previous experiments rely on
different amounts of parallel data for optimal performance. Since we are interested
in their performance on under-resourced languages, we run all experiments again
with the minimal amount of parallel data (measured at 15.9M English words).

4.2.2 Results

From the results it is clear that the projection-search approach did not yield any
effective results. This may be a result of several factors. Mikolov et al. (2013b)
were able to leverage a simple mapping strategy between word embeddings created

“http://translate.google.com/
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EN ES VSP CSMT BWE SbDBA Google

Parallel Dat - - 4518 159M 159M 159M -
Precision - - 453 779 49.0 254 -
Recall - - 31.0 758 46.8 40.0 -

F1 Score - - 35.1 755 47.3 33.8 -
Accuracy - - 48.0 75.8 62.0 55.0 -

Parallel Data 0 0 8000 159M 49M 49M ?
Precision 824 803 254 779 43.7 68.2 67.0
Recall 822 809 251 758 46.8 59.0 56.8
F1 Score 82.0 80.0 252 755 45.3 63.3 61.5
Accuracy 82.2 809 335 758 56.0 74.5 72.8

Table 4.8: Results of Crosslingual Experiments: Precision, recall and F; are the
weighted averages of all classes. EN (English) and ES (Spanish) show the results
of training and testing a classifier on the monolingual data. Vector Space Projection
(VSP), Constrained SMT (CSMT), Bilingual Word Embeddings (BWE), Stacked
Bilingual Denoising Autoencoders (SDA), and Google SMT (Google).

from large monolingual datasets in order to fill the gaps in translation dictionaries.
Given the poor results of this experiment, it seems unlikely that using nearest
neighbor search is useful for cross-lingual sentiment analysis.

In Mikolov et al.| (2013b), the success of this technique depended largely on
using a small subset of the vocabulary and pairing it with other approaches. In
our approach, however, all of the weight of correctly classifying a phrase fell
on the accuracy of the mapping scheme. Therefore, it seems that any error in
the mapping resulted in the propagation of error during classification. Another
problem that arose is that there were some words whose vector representation
always appeared as the nearest neighbor of many other words, although they were
not semantically similar with any of them. This problem is known as hubness and
is an intrinsic problem with high-dimensional vector space. Our work seems to
confirm the research of |Lazaridou et al.| (2015) and |Dinu et al.| (2015)), who showed
that hubness is compounded when trying to create a linear mapping between two
sets of word embeddings.

The constrained SMT approach is the most accurate approach and shows that, given
a more refined treatment of less parallel data, one can achieve CLSA systems
which are comparable to monolingual ones. It is interesting that Google Translate
has a better BLEU score than constrained SMT[''} but the performance on the

""Google Translate achieves 48.6 BLEU in English-Spanish, versus 45.3 for constrained SMT.
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classification task was lower. It also showed poorer results than the bilingual
stacked denoising autoencoder.

The results given by the bilingual word embeddings are not optimal, but are promis-
ing enough to warrant more research. There are problems with bilingual word
embeddings which would need to be addressed in order to improve their usefulness
for Cross-lingual Sentiment Classification. First, there is the problem of ambiguity
that affects all word embeddings. This is not often taken into consideration in the
literature. One way to correct this problem would be to disambiguate the word
senses prior to creating the word embeddings. (Cheng et al. (2014) show that this
technique improves the performance of distributional models for learning com-
positional models of meaning and it may improve the performance for sentiment
analysis as well.

Secondly, due to the fact that they have similar distributions, antonyms are often
given similar vector representations. This is not a problem for POS-taggers or
parsers, but it is detrimental to sentiment analysis systems based on word embed-
dings because these words have opposing polarities and should therefore have
different vector representations. To remedy this, one could add a classification task
in the problem formulation that would better separate these antonyms into differing
vector spaces (Tang et al., 2014).

The SBDA approach gives reasonably good results, despite the fact that it was
designed for sentence-level CLSA. There are still ways which we could adapt
this approach to aspect-based CLSA. By using word alignment, we could split
sentences into parallel or pseudo-parallel n-grams and train the autoencoder with
this data. This may improve its performance at aspect-level.

The results shown in Table 4.8 show that, despite a general decrease in precision,
recall and F1, the performance of bilingual word embeddings remains stable with
less data. SBDA, however, performs poorly with this amount of data

4.2.3 Discussion

In this section, we have compared three bilingual distributional approaches (vector
space projection, bilingual word embeddings, and bilingual stacked denoising
autoencoders) to two machine translation approaches (google SMT and constrained
SMT). We have shown that while Stacked Bilingual Denoising Autoencoders show
promise, most current distributional approaches do not perform as well as M T for
cross-lingual sentiment analysis.

Role of Parallel Data: It is interesting to see that there is not a direct correlation
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between the amount of parallel data used and the results. Constrained SMT uses
less data than BWE or SBDA and still outperforms both. However, this approach
uses higher quality, in-domain data as well as tuning parameters which adapt it
to this domain. The trend within representation and distributional approaches has
been to use larger and larger datasets, but these results seem to suggest that using
smaller, task-specific in-domain datasets which are automatically discovered from
larger datasets may be key in improving performance in cross-lingual sentiment
analysis.

Representation: Besides using the average of the vectors in the opinion unit as a
representation, we also experimented with summation. Summation led to results
that were slightly worse than averaging. This is likely due to the fact that longer
opinion units result in vectors which are a magnitude larger than shorter opinion
units.

Classifiers: Apart from the SVM classifiers used in all experiments, we conducted
further experiments using deep feed-forward networks and LSTMS. The feed-
forward network gave similar results to the SVM, but the LSTMS performed poorly.
LsTMS are powerful non-linear classifiers which are able to take word order into
account. In our setup, it seems they overfit to the source side feature space and
word order and are not able to generalize to the target language, despite the fact
that the feature space is similar.

Parallel Data: One of the interesting findings from these experiments is that
more parallel data and a closer bilingual alignment does not necessarily lead to
better results in cross-lingual sentiment analysis. This corresponds to more recent
progress in projection-based bilingual word embeddings which require little or no
parallel data, and achieve better results than highly supervised approaches (Artetxe
et al., 2016} |2017; Lample et al., 2018a). In the following experiments, we will
exploit the fact that little parallel data can create useful bilingual representations to
develop better cross-lingual sentiment methods.

Finally, it is important to note that none of these methods were created specifically
for sentiment analysis. For the distributional approaches, it is possible and often
desirable to incorporate sentiment information directly in the training objective
(Tang et al., 2014; Yu et al., 2017). In the next section, we will address this
problem.
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4.3 Bilingual Sentiment Embeddings

The previous section shows us that distributional representations can be used for
cross-lingual sentiment analysis, but currently lack some necessary properties.
Specifically, stacked denoising autoencoders, biskip embeddings, and the basic
matrix projection technique do not make the best use of small amounts of parallel
data. Secondly, they do not incorporate sentiment information, as they are trained
only to maximize the similarity of translation pairs in vector space. This means that
while they may provide useful representations for word similarity tasks (Faruqui
and Dyer, 2014} |Vulic and Moens| |2016; |Artetxe et al., 2016, 2018]), they do not
perform well on cross-lingual sentiment analysis.

Cross-lingual approaches using distributed representations have shown great promise
for a number of tasks, such as cross-lingual document classification (Prettenhofer
and Stein, 201 1; |(Chandar et al., 2014), part of speech tagging (Buys and Botha,
2016; |Plank et al.l [2016) and cross-lingual dictionary induction (Mikolov et al.,
2013b; Hermann and Blunsom, 2014; Artetxe et al., 2016). For cross-lingual
sentiment analysis, however, these approaches do not currently perform well. This
is due in part to the fact that they have no sentiment signal during training.

In this section, we propose a novel approach to incorporate sentiment information
in a cross-lingual sentiment classification model. Here we perform sentence-level
classification, in order to concentrate on the projection and sentiment objectives,
without having to worry about other problems that arise when working at aspect-
level, such as multiple aspects in a single sentence or sparse signals, where a single
word determines the polarity. We will later extend this approach to aspect-level in
Section

Our model, Bilingual Sentiment Embeddings (BLSE), are embeddings that are
jointly optimized to represent both (1) semantic information in the source and target
languages, which are bound to each other through a small bilingual dictionary,
and (2) sentiment information, which is annotated on the source language only.
We only need three resources: (i) a comparably small bilingual lexicon, (ii) an
annotated sentiment corpus in the resource-rich language, and (iii) monolingual
word embeddings for the two involved languages.

We show that our model outperforms previous state-of-the-art models in nearly
all experimental settings across six benchmarks. In addition, we offer an in-depth
analysis and demonstrate that our model is aware of sentiment. Finally, we provide
a qualitative analysis of the joint bilingual sentiment space. Our implementation is
publicly available at https://github.com/jbarnesspain/blse.

The content of this section derives directly from the paper accepted at ACL 2018,
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mentioned in Section [T.4] (Barnes et al., 2018a).

4.3.1 Model

In order to project not only semantic similarity and relatedness but also sentiment
information to our target language, we propose a new model, namely Bilingual
Sentiment Embeddings (BLSE), which jointly learns to predict sentiment and to
minimize the distance between translation pairs in vector space. In this section we
detail the projection objective, the sentiment objective, and finally the full objective.
A sketch of the model is depicted in Figure 4.4}

TRAINING TEST
Source Language Target Language
Annotated Sentences Translation Dictionary Unnanotated Sentences
This hotel is nice fun divertido No esta muy bien
Embedding
Layer f; T
A ing L a a
Euclidean
Projection Layer Distance
MO\ S - G M’
z (D @GNS
| P
Softmax Layer -
Minimize

Crossentropy
Loss

Figure 4.4: Bilingual Sentiment Embedding Model (BLSE)

Cross-lingual Projection

We assume that we have two precomputed vector spaces S = R**¢ and T' = RV’ *?
for our source and target languages, where v (v') is the length of the source
vocabulary (target vocabulary) and d (d’) is the dimensionality of the embeddings.
We also assume that we have a bilingual lexicon L of length n which consists
of word-to-word translation pairs L = {(s1,t1), (s2,%2), - - ., (Sn, t,)} which map
from source to target.

In order to create a mapping from both original vector spaces .S and 7" to shared
sentiment-informed bilingual spaces z and Z, we employ two linear projection
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matrices, M and M’. During training, for each translation pair in L, we first look
up their associated vectors, project them through their associated projection matrix
and finally minimize the mean squared error of the two projected vectors. This is
similar to the approach taken by Mikolov et al. (2013b) , but includes an additional
target projection matrix.

The intuition for including this second matrix is that a single projection matrix
does not support the transfer of sentiment information from the source language to
the target language. Without M’, any signal coming from the sentiment classifier
would have no effect on the target embedding space 7’, and optimizing M to predict
sentiment and projection would only be detrimental to classification of the target
language. We analyze this further in Section Note that in this configuration,
we do not need to update the original vector spaces, which would be problematic
with such small training data.

The projection quality is ensured by minimizing the mean squared errom

n

1
MSE = — i —2)7, 4.1
where z; = S, - M is the dot product of the embedding for source word s; and the
source projection matrix and z; = T3, - M’ is the same for the target word ¢;.

Sentiment Classification

We add a second training objective to optimize the projected source vectors to
predict the sentiment of source phrases. This inevitably changes the projection
characteristics of the matrix M, and consequently M’ and encourages M’ to learn
to predict sentiment without any training examples in the target language.

To train M to predict sentiment, we require a source-language corpus Cyoyree =
{(z1,11), (x2,92), ..., (x;,y;) } where each sentence x; is associated with a label
Yi-

For classification, we use a two-layer feed-forward averaging network, loosely
following |lyyer et al. (2015) Iﬂ For a sentence x; we take the word embeddings

12We omit parameters in equations for better readability.

13We also experimented with cosine distance, but found that it performed worse than Euclidean
distance.

4Our model employs a linear transformation after the averaging layer instead of including a
non-linearity function. We choose this architecture because the weights M and M’ are also used to
learn a linear cross-lingual projection.
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from the source embedding S and average them to a; € RY. We then project
this vector to the joint bilingual space z; = a; - M. Finally, we pass z; through a
softmax layer P to get our prediction y; = softmax(z; - P).

To train our model to predict sentiment, we minimize the cross-entropy error of
our predictions

H==> yloggi — (1—yi)log(1— i) . (4.2)
=1

Joint Learning

In order to jointly train both the projection component and the sentiment component,
we combine the two loss functions to optimize the parameter matrices M, M’, and
P by

J=>" Y aH(z,y)+ (1 —a) MSE(s,1), (4.3)

(2,y)ECsource  (s,t)EL

where « is a hyperparameter that weights sentiment loss vs. projection loss.

Target-language Classification

For inference, we classify sentences from a target-language corpus Ciyrgei. AS in
the training procedure, for each sentence, we take the word embeddings from the
target embeddings 7" and average them to a; € R?. We then project this vector to
the joint bilingual space Z; = a; - M’. Finally, we pass Z; through a softmax layer
P to get our prediction g; = softmax(Z; - P).

4.3.2 Datasets and Resources
OpeNER and MultiBooked

To evaluate our proposed model, we conduct experiments using four benchmark
datasets and three bilingual combinations. We use the OpeNER English and
Spanish datasets (Agerri et al., 2013)) and the MultiBooked Catalan and Basque
datasets (Barnes et al., [2018c). All datasets contain hotel reviews which are
annotated for aspect-level sentiment analysis. The labels include Strong Negative
(——), Negative (—), Positive (+), and Strong Positive (++). We map the aspect-
level annotations to sentence level by taking the most common label and remove
instances of mixed polarity. We also create a binary setup by combining the strong
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EN ES CA EU

> + 1258 1216 718 956
£ — 473 256 467 173
R Total 1731 1472 1185 1129

++ 379 370 256 384
Z + 879 846 462 572
B — 399 218 409 153
3

—— 74 38 58 20
Total 1731 1472 1185 1129

Table 4.9: Statistics for the OpeNER English (EN) and Spanish (ES) as well as the
MultiBooked Catalan (CA) and Basque (EU) datasets.

and weak classes. This gives us a total of six experiments. The details of the
sentence-level datasets are summarized in Table For each of the experiments,
we take 70 percent of the data for training, 20 percent for testing and the remaining
10 percent are used as development data for tuning.

4.3.3 Monolingual Word Embeddings

For BLSE, VECMAP, and MT, we require monolingual vector spaces for each of
our languages. For English, we use the publicly available GoogleNews vectors.
For Spanish, Catalan, and Basque, we train skip-gram embeddings using the
Word2Vec toolkiﬁ with 300 dimensions, subsampling of 10~%, window of 5,
negative sampling of 15 based on a 2016 Wikipedia corpusm (sentence-split,
tokenized with IXA pipes (Agerri et al., 2014) and lowercased). The statistics of
the Wikipedia corpora are given in Table [2.8

Bilingual Lexicon

For BLSE, VECMAP, and BARISTA, we also require a bilingual lexicon. We use
the sentiment lexicon from |Hu and Liu| (2004)) (to which we refer in the following
as Hu and Liu) and its translation into each target language. We translate the
lexicon using Google Translate and exclude multi-word expressions This leaves

Bhttps://code.google.com/archive/p/word2vec

®http://attardi.github.io/wikiextractor/

17Note that we only do that for convenience. Using a machine translation service to generate this
list could easily be replaced by a manual translation, as the lexicon is comparably small.
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a dictionary of 5700 translations in Spanish, 5271 in Catalan, and 4577 in Basque.
We set aside ten percent of the translation pairs as a development set in order to
check that the distances between translation pairs not seen during training are also
minimized during training.

4.3.4 Experiments
Setting

We compare BLSE (Section[4.3.1)) to VECMAP and BARISTA (Section [3.3.2)) as
baselines, which have similar data requirements and to machine translation (MT)
and monolingual (MONO) upper bounds which request more resources. For all
models (MONO, MT, VECMAP, BARISTA), we take the average of the word
embeddings in the source-language training examples and train a linear SVM@
We report this instead of using the same feed-forward network as in BLSE as it is
the stronger upper bound. We choose the regularization parameter c on the target
language development set and evaluate on the target language test set.

Upper Bound MONO. We set an empirical upper bound by training and testing
a linear SVM on the target language data. We train the model on the averaged
embeddings from target language training data, tuning the ¢ parameter on the
development data. We test on the target language test data.

Upper Bound MT. To test the effectiveness of machine translation, we translate
all of the sentiment corpora from the target language to English using the Google
Translate AP Note that this approach is not considered a baseline, as we assume
not to have access to high-quality machine translation for low-resource languages
of interest.

Baseline VECMAP. We compare with the approach proposed by Artetxe et al.
(2016) which has shown promise on other tasks, such as word similarity. In order
to learn the projection matrix W, we need translation pairs. We use the same word-
to-word bilingual lexicon mentioned in Section We then map the source
vector space S to the bilingual space S = SW and use these embeddings.

Baseline BARISTA. We also compare with the approach proposed by (Gouws
and Sggaard (2015) . The bilingual lexicon used to create the pseudo-bilingual
corpus is the same word-to-word bilingual lexicon mentioned in Section We
follow the authors’ setup to create the pseudo-bilingual corpus. We create bilingual

18LinearSVC implementation from scikit-learn.
Yhttps://translate.google.com
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mm BLSE = MT @3 VecMap mmm Barista

0.2
ES binary ES 4-class CA binary CA 4-class EU binary EU 4-class

Figure 4.5: Binary and four class macro F; on Spanish (ES), Catalan (CA), and
Basque (EU).

embeddings by training skip-gram embeddings using the Word2Vec toolkit on the
pseudo-bilingual corpus using the same parameters from Section [4.3.3]

Our method: BLSE. We implement our model BLSE in Pytorch (Paszke et al.,
2016) and initialize the word embeddings with the pretrained word embeddings
S and T mentioned in Section[4.3.3] We use the word-to-word bilingual lexicon
from Section [4.3.3] tune the hyperparameters «, training epochs, and batch size
on the target development set and use the best hyperparameters achieved on the
development set for testing. ADAM (Kingma and Ba, |2014) is used in order to
minimize the average loss of the training batches.

Ensembles We create an ensemble of MT and each projection method (BLSE,
VECMAP, BARISTA) by training a random forest classifier on the predictions
from MT and each of these approaches. This allows us to evaluate to what extent
each projection model adds complementary information to the machine translation
approach.

Results

In Figure[d.5] we report the results of all four methods. Our method outperforms
the other projection methods (the baselines VECMAP and BARISTA) on four of
the six experiments substantially. It performs only slightly worse than the more
resource-costly upper bounds (MT and MONO). This is especially noticeable for
the binary classification task, where BLSE performs nearly as well as machine
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Table 4.10: Precision (P), Recall (R), and macro F; of four models trained on
English and tested on Spanish (ES), Catalan (CA), and Basque (EU). The bold
numbers show the best results for each metric per column and the highlighted
numbers show where BLSE is better than the other projection methods, VECMAP

and BARISTA (** p < 0.01, * p < 0.05).
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translation and significantly better than the other methods. We perform approximate
randomization tests (Yeh, 2000) with 10,000 runs and highlight the results that are
statistically significant (**p < 0.01, *p < 0.05) in Table

In more detail, we see that MT generally performs better than the projection
methods (79-69 F; on binary, 52—44 on 4-class). BLSE (75-69 on binary, 41-30
on 4-class) has the best performance of the projection methods and is comparable
with MT on the binary setup, with no significant difference on binary Basque.
VECMAP (67—46 on binary, 35-21 on 4-class) and BARISTA (61-55 on binary,
40-34 on 4-class) are significantly worse than BLSE on all experiments except
Catalan and Basque 4-class. On the binary experiment, VECMAP outperforms
BARISTA on Spanish (67.1 vs. 61.2) and Catalan (60.7 vs. 60.1) but suffers more
than the other methods on the four-class experiments, with a maximum F; of 34.9.
BARISTA is relatively stable across languages.

ENSEMBLE performs the best, which shows that BLSE adds complementary infor-
mation to MT. Finally, we note that all systems perform successively worse on
Catalan and Basque. This is presumably due to the quality of the word embeddings,
as well as the increased morphological complexity of Basque.

4.3.5 Model and Error Analysis

We analyze three aspects of our model in further detail: (i) where most mistakes
originate, (ii) the effect of the bilingual lexicon, and (iii) the effect and necessity of
the target-language projection matrix M.

Phenomena

In order to analyze where each model struggles, we categorize the mistakes and
annotate all of the test phrases with one of the following error classes: vocabulary
(voc), adverbial modifiers (mod), negation (neg), external knowledge (know) or
other. Table 4. 11| shows the results.

Vocabulary: The most common way to express sentiment in hotel reviews is
through the use of polar adjectives (as in “the room was great) or the mention of
certain nouns that are desirable (“it had a pool”). Although this phenomenon has
the largest total number of mistakes (an average of 71 per model on binary and
167 on 4-class), it is mainly due to its prevalence. MT performed the best on the
test examples which according to the annotation require a correct understanding
of the vocabulary (81 F; on binary /54 F; on 4-class), with BLSE (79/48) slightly
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< 2 B 3

Model s E 8 B 3 8
MT bi 49 26 19 14 5 113
4 147 94 19 21 12 293

bi 80 44 27 14 7 172

VECMAP 4 182 141 19 24 19 385
B bi 8 41 27 20 7 184
ARISTA 4 191 109 24 31 15 370
B bi 67 45 21 15 & 156
LSE 4 146 125 29 22 19 341

Table 4.11: Error analysis for different phenomena. See text for explanation of
error classes.

worse. VECMAP (70/35) and BARISTA (67/41) perform significantly worse. This
suggests that BLSE is better than VECMAP and BARISTA at transferring sentiment
of the most important sentiment bearing words.

Negation: Negation is a well-studied phenomenon in sentiment analysis (Pang
et al., 2002; Wiegand et al., 2010; |Zhu et al., [2014; Reitan et al.,|2015). Therefore,
we are interested in how these four models perform on phrases that include the
negation of a key element, for example “In general, this hotel isn’t bad”. We would
like our models to recognize that the combination of two negative elements “isn’t”
and “bad” lead to a Positive label.

Given the simple classification strategy, all models perform relatively well on
phrases with negation (all reach nearly 60 F; in the binary setting). However, while
BLSE performs the best on negation in the binary setting (82.9 F;), it has more
problems with negation in the 4-class setting (36.9 F;).

Adverbial Modifiers: Phrases that are modified by an adverb, e. g., the food was
incredibly good, are important for the four-class setup, as they often differentiate
between the base and strong labels. In the binary case, all models reach more than
55 F;. In the 4-class setup, BLSE only achieves 27.2 F; compared to 46.6 or 31.3 of
MT and BARISTA, respectively. Therefore, presumably, our model does currently
not capture the semantics of the target adverbs well. This is likely due to the fact
that it assigns too much sentiment to functional words (see Figure 4.9).

External Knowledge Required: These errors are difficult for any of the models
to get correct. Many of these include numbers which imply positive or negative
sentiment (350 meters from the beach is Positive while 3 kilometers from the beach
is Negative). BLSE performs the best (63.5 F;) while MT performs comparably

84



— Huand Liu NRC
=== Apertium ~— hand translated

.p.x.wmﬂ'.n,nmu'..'

0 5000 10000 15000 20000
translation pairs

Figure 4.6: Macro F; for translation pairs in the Spanish 4-class setup. Training
with the expanded hand translated lexicon and machine-translated Hu and Liu
lexicon gives a macro F; that grows constantly with the number of translation pairs.
Despite having several times more training data, the Apertium and NRC translation
dictionaries do not perform as well.

well (62.5). BARISTA performs the worst (43.6).

Binary vs. 4-class: All of the models suffer when moving from the binary to
4-class setting; an average of 26.8 in macro F; for MT, 31.4 for VECMAP, 22.2 for
BARISTA, and for 36.6 BLSE. The two vector projection methods (VECMAP and
BLSE) suffer the most, suggesting that they are currently more apt for the binary
setting.

Effect of Bilingual Lexicon

We analyze how the number of translation pairs affects our model. We train
on the 4-class Spanish setup using the best hyper-parameters from the previous
experiment.

Research into projection techniques for bilingual word embeddings (Mikolov et al.,
2013b; |Lazaridou et al., 2015} |Artetxe et al., [2016) often uses a lexicon of the most
frequent 8—10 thousand words in English and their translations as training data.
We test this approach by taking the 10,000 word-to-word translations from the
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Apertium English-to-Spanish dictiona We also use the Google Translate API
to translate the NRC hashtag sentiment lexicon (Mohammad et al., 2013) and keep
the 22,984 word-to-word translations. We perform the same experiment as above
and vary the amount of training data from 0, 100, 300, 600, 1000, 3000, 6000,
10,000 up to 20,000 training pairs. Finally, we compile a small hand translated
dictionary of 200 pairs, which we then expand using target language morphological
information, finally giving us 657 translation pair The macro F; score for the
Hu and Liu dictionary climbs constantly with the increasing translation pairs. Both
the Apertium and NRC dictionaries perform worse than the translated lexicon by
Hu and Liu, while the expanded hand translated dictionary is competitive, as shown

in Figure 4.6

While for some tasks, e. g., bilingual lexicon induction, using the most frequent
words as translation pairs is an effective approach, for sentiment analysis, this does
not seem to help. Using a translated sentiment lexicon, even if it is small, gives
better results.

Analysis of M’

The main motivation for using two projection matrices M and M’ is to allow
the original embeddings to remain stable, while the projection matrices have the
flexibility to align translations and separate these into distinct sentiment subspaces.
To justify this design decision empirically, we perform an experiment to evaluate
the actual need for the target language projection matrix M': We create a simplified
version of our model without M’, using M to project from the source to target and
then P to classify sentiment.

The results of this model are shown in Figure The modified model does learn
to predict in the source language, but not in the target language. This confirms that
M is necessary to transfer sentiment in our model.

4.3.6 Qualitative Analyses of Joint Bilingual Sentiment Space

In order to understand how well our model transfers sentiment information to the
target language, we perform two qualitative analyses. First, we collect two sets
of 100 positive sentiment words and one set of 100 negative sentiment words. An
effective cross-lingual sentiment classifier using embeddings should learn that two

Mnttp://www.meta-share.org
2I'The translation took approximately one hour. We can extrapolate that hand translating a
sentiment lexicon the size of the Hu and Liu lexicon would take no more than 5 hours.
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Figure 4.7: BLSE model (solid lines) compared to a variant without target language
projection matrix M’ (dashed lines). “Translation” lines show the average cosine
similarity between translation pairs. The remaining lines show F; scores for the
source and target language with both variants of BLSE. The modified model cannot
learn to predict sentiment in the target language (red lines). This illustrates the
need for the second projection matrix M.

positive words should be closer in the shared bilingual space than a positive word
and a negative word. We test if BLSE is able to do this by training our model
and after every epoch observing the mean cosine similarity between the sentiment
synonyms and sentiment antonyms after projecting to the joint space.

= SOUrce synonyms = target synonyms =+« translation cosine
== source antonyms == target antonyms
1.0
2
s |
E 05"
%]
Q
c
% 0
Q
O
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(a) BLSE (b) Artetxe (c) Barista

Figure 4.8: Average cosine similarity between a subsample of translation pairs
of same polarity (“sentiment synonyms”) and of opposing polarity (‘“sentiment
antonyms”) in both target and source languages in each model. The x-axis shows
training epochs. We see that BLSE is able to learn that sentiment synonyms should
be close to one another in vector space and sentiment antonyms should not.

We compare BLSE with VECMAP and BARISTA by replacing the Linear SVM
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classifiers with the same multi-layer classifier used in BLSE and observing the
distances in the hidden layer. Figure 4.8 shows this similarity in both source and
target language, along with the mean cosine similarity between a held-out set of
translation pairs and the macro F; scores on the development set for both source
and target languages for BLSE, BARISTA, and VECMAP. From this plot, it is clear
that BLSE is able to learn that sentiment synonyms should be close to one another
in vector space and antonyms should have a negative cosine similarity. While the
other models also learn this to some degree, jointly optimizing both sentiment and
projection gives better results.

Secondly, we would like to know how well the projected vectors compare to the
original space. Our hypothesis is that some relatedness and similarity information
is lost during projection. Therefore, we visualize six categories of words in t-
SNE, which projects high dimensional representations to lower dimensional spaces
while preserving the relationships as best as possible (Van der Maaten and Hinton,
2008): positive sentiment words, negative sentiment words, functional words,
verbs, animals, and transport.

The t-SNE plots in Figure [4.9 show that the positive and negative sentiment words
are rather clearly separated after projection in BLSE. This indicates that we are able
to incorporate sentiment information into our target language without any labeled
data in the target language. However, the downside of this is that functional words
and transportation words are highly correlated with positive sentiment.

4.3.7 Discussion

The experiments in this section have proven that it is possible to perform cross-
lingual sentiment analysis without machine translation, and that jointly learning
to project and predict sentiment is advantageous. This supports the growing trend
of jointly training for multiple objectives (Tang et al., 2014; |Klinger and Cimiano,
2015} [Ferreira et al., [2016)).

This approach has also been exploited within the framework of multi-task learning,
where a model learns to perform multiple similar tasks in order to improve on a
final task (Collobert et al., [2011). The main difference between the joint method
proposed here and multi-task learning is that vector space projection and sentiment
classification are not similar enough tasks to help each other. In fact, these two
objectives compete against one another, as a perfect projection would not contain
enough information for sentiment classification, and vice versa.

In the next section we will address how to move from sentence-level to aspect-level
sentiment analysis within this framework.
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Figure 4.9: t-SNE-based visualization of the Spanish vector space before and after

projection with BLSE. There is a clear separation of positive and negative words
after projection, despite the fact that we have used no labeled data in Spanish.

4.4 Beyond Sentences: Projection-based Aspect-level
Sentiment Analysis

In the previous Section, we proposed a method to learn bilingual sentiment em-
beddings and demonstrated their effectiveness for sentence-level cross-lingual
sentiment analysis. In this section, we move beyond sentences and extend our
method to aspect-level.

As mentioned in Chapter [T aspect-level sentiment analysis (ABSA) aims at
predicting the polarity expressed towards a particular entity or sub-aspect of that
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entity. This is a more realistic view of sentiment, as polarities are directed towards
targets, not spread uniformly across sentences or documents. Take the following
example:

The café near my house has great coffee but I never go there because
the service is terrible.

We mark the aspect, an evaluative positive phrase and an evaluative negative
phrase. In this sentence, it is not stated what the sentiment towards the aspect
“café” is, while the sentiment of the aspect “coffee” is positive and that of “ser-
vice” is negative. In order to correctly classify the sentiment of each aspect, it is
necessary to (1) detect the aspects, (2) detect polarity expressions, and (3) resolve
the relations between these. In this section we formulate the task of aspect-level
sentiment analysis as classification, given the aspects from an oracle. In order to
successfully determine the polarity of an aspect, approaches require a large number
of annotated examples, which are only available in a few major languages.

The question we attempt to address in this section is how to infer the polarities
of aspects in a target language that does not have any annotated data to permit
supervised learning while avoiding the need for machine translation or large
parallel corpora? In the following Spanish sentence, for example, how can we
determine that the sentiment of “servicio” is negative, while that of “comida” is
positive if we do not have annotated data in Spanish?

El servicio en el restaurante fue pé€simo. Por lo menos la comida
estaba rica.

For languages without annotated sentiment resources, cross-lingual sentiment
analysis (CLSA) approaches offer a way to transfer the information from a source
language corpus to the target language. As mentioned several times before, MT has
traditionally been the main approach for transferring information across language
barriers. But this is particularly problematic for aspect-level sentiment analysis,
as changes in word order or loss of words created during translation can directly
affect the performance of a classifier.

In this section, we formulate aspect-level sentiment analysis following the targeted
sentiment analysis setup from Section 3.1.4] This only differs from aspect-level
sentiment analysis in that we assume we already know the entities and aspects to be
classified. This is a simplification we make in order to identify the best projection
and classification strategies, without having to deal with the automatic detection of
aspects, either as part of a pipeline or jointly. Specifically, we compare approaches
which require (1) minimal bilingual data and instead make use of (2) high-quality
monolingual word embeddings in the source and target language. More specifically,
the main contributions are

90



e extending previous cross-lingual approaches to enable aspect-level cross-
lingual sentiment analysis with minimal parallel data requirements,

e comparing different model architectures for cross-lingual aspect-level senti-
ment analysis.

e performing a detailed error analysis, and detailing the advantages and disad-
vantages of each method.

The rest of the section is structured as follows: in Section 4.4.1) we outline
the projection methods we will compare and in Section we describe the
approaches to move from sentence- to aspect-level CLSA. In Section 4.4.3] we
detail the data and experiments. Finally, we perform a detailed error analysis in
Section and conclude in Section

4.4.1 Methodology

In this section, we combine four different (three projection-based) cross-lingual
methods with four approaches to move from sentence to aspect level. These
methods are detailed in Chapter [3] but we repeat some of the information for
ease of reading. We compare splitting the phrase into contexts, as proposed by
Zhang et al.| (20135); Tang et al. (2016)), to a baseline and two simplified versions of
the model (explained in Section [4.4.2) in order to understand the differences and
individual model properties better.

Cross-lingual Projection Methods

Previous approaches to ABSA and cross-lingual sentiment analysis are not easily
applicable to aspect-level cross-lingual sentiment analysis, as they require high-
quality annotated resources to train, i. e., machine translation, or large parallel
corpora. Therefore, we compare three projection-based bilingual embedding
methods (Bilingual Sentiment Embeddings (BLSE), Bilingual Word Embedding
Mappings (VECMAP), and Multilingual Unsupervised and Supervised Embeddings
(MUSE)), as well as BARISTA, which creates bilingual embeddings using a pseudo-
bilingual corpus and has similar data requirements as the projection methods.

For all methods except BARISTA, we assume that we have two precomputed
vector spaces S = R"*? and T = R"*? for our source and target languages,
where v (v') is the length of the source vocabulary (target vocabulary) and d (d')
is the dimensionality of the embeddings. We use the embeddings from Section
2.2.1
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4.4.2 Context Splitting for Cross-Lingual Aspect-level Sentiment
Analysis

We assume that the list of target aspects as they occur in the text is given. These
can be extracted previously either by using domain knowledge (Liu et al., [2005),
by using a named entity recognizer (Zhang et al.,|2015)) or by using a number of
aspect extraction techniques (Zhou et al.,|2012). Given these aspects, the task is
reduced to classification. For this classification task given the aspect, we compare
all projection methods explained in the previous Section {.4.1| respectively.

Our approach, SPLIT, is similar to the methods proposed by Tang et al. (2016)
and Zhang et al.| (2016) for LSTMS and gated recurrent networks respectively in a
sentence classification setting. For a sentence with an aspect a, we split the sentence
at a in order to get a left and right context, con,(a) and con,.(a) respectively.

Initial experiments using LSTMS showed that, in cross-lingual setups, they overfit
too much to word order and source-language specific information to perform well
on our tasks. Therefore, instead of using an LSTM to create a representation of
each context, we average each left context con,(a;), right context con,(a;), and
target aspect a; separately. Although averaging is a simplified approach to create
a compositional representation of a phrase, it has been shown to work well for
sentiment (lyyer et al., 2015; Barnes et al., 2017). After creating a single averaged
vector for the left context, right context, and target aspect, we concatenate them
and use these as features for the sentiment classifier.

Given that information related to the aspect is normally local, we also experiment
with giving more weight to the terms that are close to the aspect. We do this while
creating the averaged embedding €;. We give the words in the contexts a weight w
depending on their distance from the aspect a.

The weighted embedding vector €; for a context or aspect (e, ...,e,) with e;
being the embedding vectors is then
1 n
71' = — 7" ) 7 4.4
&= ;1 w; - e(7) (4.4)

where w; is the distance weighting for token 7.

Simplified Models: Context only and Aspect only
We hypothesized in the introduction of this section that cross-lingual approaches

are particularly error-prone when evaluative phrases and words are wrongly pre-
dicted. In such settings, it might be beneficial for a model to put emphasis on the
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Binary Multiclass
) I —
EN 1658 661|472 1132 556 105
OpeNER  po 5404 446813 1591 387 59
. CA 1453 883|645 808 741 142
MultiBooked o0y 1c1 3141686 775 273 41
ompval | EN 2268 053 2268 145 953
embva ES 2675 948 2675 168 948
EN 2985 1456 2985 34 1456
USAGE DE 3115 870 3115 99 870

Table 4.12: Aspect-level statistics for the datasets. A blank area indicates that the
dataset has no annotations for that label.

target word itself and learn a prior distribution of sentiment for each target inde-
pendent of the context. To analyze this, we compare our model to two simplified
versions.

The first is ASPECT-ONLY, which means that we use the model in the same way as
before but ignore the context completely. This serves as a tool to understand how
much model performance originates from the aspect itself.

In the same spirit, we use a CONTEXT-ONLY model, which ignores the target by
constraining the parameters of all aspect phrase embeddings to be the same. This
approach might be beneficial over our initial model if the prior distribution between
aspects was similar and the context actually carries the relevant information.

Baseline: Sentence Assumption

As the baseline for each projection method, we assume all aspects in each sentence
respectively to be of the same polarity (SENT). This is generally an erroneous
assumption, but can give good results if all of the aspects in a sentence have the
same polarity.

93



4.4.3 Experiments

Bilingual Lexicon

For all projection-based methods, as well as BARISTA, we require a bilingual
lexicon to learn the projection. We take the sentiment lexicon from Hu and Liu
(2004) , which we then translate to each target language using the Google API,
which gave the best results in Section

Datasets

We use the following corpora to set up the experiments in which we train on a
source language corpus C's and test on a target language corpus C7. Statistics for
all of the corpora are shown in Table d.12] We include a binary classification setup,
where neutral has been removed and strong positive and strong negative have been
mapped to positive and negative, as well as a multiclass setup, where the original
labels are used.

OpeNER Corpora: The OpeNER corpora (Agerri et al., 2013)) are composed
of hotel reviews, annotated for aspect-based sentiment. Each aspect is annotated
with a sentiment label (Strong Positive, Positive, Negative, Strong Negative). We
perform experiments with the English and Spanish versions.

MultiBooked Corpora: The MultiBooked corpora (Barnes et al., 2018a) are also
hotel reviews annotated in the same way as the OpeNER corpora, but in Basque
and Catalan. These corpora allow us to observe how well each approach performs
on low-resource languages.

SemEval 2016 Task 5: We take the English and Spanish restaurant review cor-
pora made available by the organizers of the SemEval event (Pontiki et al., [2016).
These corpora are annotated for three levels of sentiment (positive, neutral, nega-
tive).

USAGE Corpora: The USAGE corpora (Klinger and Cimianol 2014) are Amazon
reviews taken from a number of different items, and are available in English
and German. Each aspect is annotated for three levels of sentiment (positive,
neutral, negative). As the corpus has two sets of annotations available, we take the
annotations from annotator 1 as the gold standard.
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Baselines and Empirical Upper Bounds

For further analysis, we show a simple majority baseline as well as an MT upper
bound. We assume our models to perform between these two, as we do not have
access to the millions of parallel sentences required to perform high-quality MT
and particularly aim at proposing a method which is less resource-hungry.

Baseline: Majority class (Maj.) This is a naive baseline that always chooses the
majority class. This simple baseline gives us a way of determining how well we
are performing.

Upperbound: Machine Translation (MT) To test the effectiveness of machine
translation, we translate all of the test sets of the target language sentiment corpora
to English using the Google Translate AP This approach is not considered a
baseline, as we assume not to have access to high-quality machine translation for
low-resource languages of interest.

4.4.4 Results

Table [@.13] shows the macro F; scores for all cross-lingual approaches (BLSE,
VECMAP, MUSE, BARISTA, MT) and all aspect-level approaches (SENT, SPLIT,
CONTEXT-ONLY, and ASPECT-ONLY). The final column is the average over all
corpora. The final row in each setup shows the macro F; for a classifier that always
chooses the majority class.

We experimented with the best weighting scheme for the weighted average in
SPLIT, but found that a uniform weighting scheme performed best. The results
from this weighting scheme are reported in all experiments.

BLSE outperforms other projection methods on the binary setup, 63.0 macro
averaged F; across corpora versus 59.0, 57.9, and 51.4 for VECM AP, MUSE, and
BARISTA, respectively. On the multiclass setup, however, MUSE (32.2 F;) is the
best, followed by VECMAP (31.0), BARISTA (28.1) and BLSE (23.7). VECMAP is
never the best nor the worst approach. In general, BARISTA performs poorly on the
binary setup, but slightly better on the multiclass, although the overall performance
is still weak.

The SPLIT approach to ABSA improves over the SENT baseline on 33 of 50
experiments, especially on binary (21/25), while on multiclass it is less helpful

Pnttps://translate.google.com
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EN-ES EN-CA EN-EU EN-ES EN-DE |

OpeNER MultiBooked SemEval USAGE Average

BLSE 64.4 473 45.5 61.1 63.8 56.4

= VECMAP 522 41.8 39.1 423 31.2 51.3

4 MUSE 47.6 40.1 45.8 453 47.5 453

n BARISTA 473 39.1 45.8 423 334 41.6

MT 70.8 81.5 76.2 70.9 58.8 71.6

BLSE 66.8 69.8 66.3 62.2 50.0 63.0

& VECMAP 65.8 64.4 65.1 60.0 39.9 59.0

= MUSE 583 64.3 50.2 59.8 57.0 57.9

n BARISTA 61.9 59.0 56.1 44.5 353 514

o MT 67.3 77.8 74.8 73.2 69.4 72.5

; i~ BLSE 473 39.1 45.8 423 55.9 46.1

/M % > VECMAP 47.3 39.1 45.8 423 45.8 44.1

£z MUSE 55.5 67.5 52.1 61.6 454 56.4

5° BARISTA 473 60.2 51.9 42.3 45.5 494

QO MT 66.5 78.1 72.4 74.2 73.1 72.9

& BLSE 53.1 43.7 42.7 423 41.5 44.7

QX VECMAP 54.4 51.1 354 455 45.2 46.3

2z MUSE 56.2 554 52.3 46.0 47.5 51.5

2 © BARISTA 48.9 53.0 48.5 423 44.8 47.5

MT 46.7 40.1 45.8 475 56.0 47.2

Maj. \ 473 39.1 45.8 423 43.0 \ 43.5

BLSE 25.2 233 16.6 36.0 40.5 28.3

E VECMAP 28.1 19.9 26.3 28.2 28.3 26.2

5 MUSE 224 232 23.5 27.4 24.1 24.1

©n BARISTA 29.3 35.8 27.0 27.4 29.9 29.9

MT 414 46.5 44.3 33.1 28.9 38.8

BLSE 18.5 14.3 15.7 40.6 29.5 23.7

&= VECMAP 29.2 30.9 28.0 38.9 27.9 31.0

> MUSE 32.9 335 27.3 27.4 39.7 322

" « BARISTA 27.9 35.1 27.3 27.4 33.4 28.1

9 MT 24.7 29.2 27.0 338 332 29.6
Q

= = BLSE 18.5 12.6 15.7 274 38.4 22.5

§ o > VECMAP 18.5 12.6 15.7 274 28.3 20.5

£z MUSE 22.7 39.0 274 274 30.0 29.3

5° BARISTA 32.9 31.6 27.2 27.4 32.1 30.2

] MT 27.5 31.4 27.2 30.6 34.4 30.2

e BLSE 19.1 17.3 16.7 27.4 25.3 21.2

QX VECMAP 25.8 23.1 19.0 32.1 25.3 25.1

Bz MUSE 23.2 21.6 17.1 29.5 31.1 24.5

2 © BARISTA 21.8 21.5 16.8 274 339 24.3

MT 26.9 233 239 30.5 33.6 27.6

Maj \ 18.5 12.6 15.7 274 28.3 \ 20.5

Table 4.13: Macro F; results for all corpora and techniques. We denote the best
performing projection-based method per column with a blue box and the best
overall method per column with a green box.
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correct incorrect

BLSE 2.1 2.5
VECMAP 2.5 2.1
MUSE 2.1 2.2
BARISTA 1.7 2.2
MT 2.1 2.2

Table 4.14: Average length of tokens of correctly and incorrectly classified aspects
on the OpeNER Spanish binary corpus.

(13/25). Both SENT and SPLIT normally outperform CONTEXT-ONLY or ASPECT-
ONLY approaches. This confirms the intuition that it is important to take both
context and aspect information for classification.

SENT with MT performs well on the OpeNER and MultiBooked datasets, but
suffers on the SemEval and USAGE datasets. This is explained by the percentage
of sentences that contain contrasting polarities in each dataset: between 8 and 12%
for the OpeNER and MultiBooked datasets, compared to 29% for SemEval or 50%
for USAGE. In sentences with multiple targets that have contrasting polarities, the
SENT baseline performs poorly.

The CONTEXT-ONLY approach always performs better than ASPECT-ONLY, con-
firming that context is more important than the prior probability of an aspect being
positive or negative.

The main outlier is MT multiclass, where the sentence-level baseline is nearly
10 percentage points better than the sentence splitting approach (38.8 F; versus
29.6). This is mainly a result of the performance on the OpeNER and MultiBooked
corpora, where the sentence-level baseline is 20 performance points better than the
SPLIT approach.

Finally, the general level of performance of projection-based aspect-level cross-
lingual sentiment classification systems shows that they still lag 10+ percentage
points behind MT on binary (compare MT (72.9 F;) with BLSE (63.0)), and 6+
percentage points on multiclass (MT (38.8) versus MUSE (32.2)).

4.4.5 Error Analysis

We perform a manual analysis of the aspects misclassified by all systems on the
OpeNER Spanish binary corpus (see Table d.14), and found that the average length
of misclassified aspects is slightly higher than that of correctly classified aspects,
except for VECMAP. This indicates that averaging may have a detrimental effect
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as the size of the aspect increases.

With the MT upperbounds, there is a non-negligible amount of noise introduced
by aspects which have been incorrectly translated (0.05% OpeNER ES, 6% Multi-
Booked EU, 2% CA, 2.5% SemEval, 1% USAGE). We hypothesize that this is
why MT with CONTEXT-ONLY performs better than MT with SPLIT. This moti-
vates further research with projection-based methods, as they do not suffer from
translation errors.

neg 0 0 274 neg 0 4 274 neg 7 0 202

True label
5
True]label
True label
True label

pos 0 0 pos 0 0 pos 129 0

& &
Predicted label Predicted label Predicted label Predicted label
(a) BLSE (b) VecMap (c) MUSE (d) MT

S »
& &

Figure 4.10: Confusion matrices for all SPLIT models on the SemEval task.

The confusion matrices of the models on the SemEval task, shown in Figure
show that on the multilabel task, models are not able to learn the neutral class. This
derives from the large class imbalance found in the data (see Table[d.12)). Similarly,
models do not learn the Strong Negative class on the OpeNER and MultiBooked
datasets. In the future, it may be beneficial to upsample these minority classes in
order to improve performance.

4.4.6 Discussion

In this section we showed that is possible to learn a binary sentiment classifier that
performs well for targeted sentiment analysis with little parallel data, even outper-
forming MT on multi-class targeted sentiment analysis on several datasets. How-
ever, MT still outperforms the projection methods for binary classification.

The low performance of all models on the multiclass setup reflects the difficulty of
the task. Aspects which have neutral sentiment are often found within sentences
that overall express positive or negative sentiment. With our approach, we do not
require any syntactic information, but this may be necessary to improve results in
the future. Cross-lingual dependency information transferred with MT has shown
promise for cross-lingual sentiment analysis (Almeida et al., 2015). However, if
this is to be used for under-resourced languages, it would be necessary to create
high-quality bilingual dependency parsers, which are currently not available.
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While we did not experiment with ensemble techniques in this section, experiments
in Section 4.3|suggest that ensemble methods using MT and BLSE could improve
performance. But this falls outside the goals of this thesis, as MT assumes the ex-
istence of parallel sentences. For under-resourced languages, it is more interesting

that the projection based techniques perform nearly as well MT with much less
parallel data.
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4.5 Case Study: Real World Deployment

In the previous sections we developed methods to perform targeted cross-lingual
sentiment analysis with little parallel data. Yet most of the experiments were
performed on a two to three languages and only a few domains. It would be
informative to know how well these methods work when tested on real world data,
as many times we would like to know what opinion people from different countries
and cultures have regarding the same entity.

Knowing how a machine learning model will perform on different target languages
is another important facet of research, as different source-target combinations will
likely lead to a change in results. There have been many previous works that have
observed target-language specific differences in dependency parsing (AgicC et al.,
2016), machine translation (Johnson et al.,[2017), and language modeling (Cotterell
et al., 2018; Gerz et al.,[2018]). We are not aware of any work in sentiment analysis
that explores the relationship between target language and performance in such
depth.

Additionally, the effect of domain differences when performing cross-lingual tasks
has not been studied in depth. Hangya et al. (2018) propose domain adapta-
tion methods for cross-lingual sentiment classification and bilingual dictionary
induction. They show specifically that creating domain-specific cross-lingual
embeddings improves the classification for English-Spanish. However, the source-
language training data used to train the sentiment classifier is taken from the same
domain as the target-language test data. Therefore, it’s not clear what the effect
of using source-language training data from different domains would be. In this
section, we explore this relationship in more depth.

In this section we detail a case study in which we deploy three targeted cross-
lingual sentiment models on tweets in ten Western European languages. We use
English as the source language in all experiments, and test on each of the ten target
languages. We attempt to answer the following research questions:

e How much does the amount of monolingual data available to create mono-
lingual embeddings effect the final results?

e How do features of the target language, i. e. similarity to source language or
morphological complexity, affect the performance?

e How does domain mismatches between source-language training and target-
language test data affect the performance?

In this section, we demonstrate that 1) the amount of monolingual data does not
directly affect classification results, 2) language similarity between the source and
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2 #sents. (M) 3.1 9.6 2.5 23.7 39.1 19.4 53.7 6.8 359 3.6
= #tokens (M) 479 1437 510 5196 771.8 3273 902,1 1105 457.3 64.4
—g # vocab. (k) 246.0 4009 178.6 7294 967.7 8779 2,102.7 4433 1,346.7 294.6
A dim. 300 300 300 300 300 300 300 300 300 300
S #pairs 4,616 5271 6,297 5,683 5383 5,700 6,391 5,177 5,344 5,007
[a)]

Table 4.15: Statistics of Wikipedia corpora, embeddings, and projection dictionar-
ies.

target languages based on word and character n-gram distributions can predict the
performance of BLSE on new datasets, and 3) domain mismatch often has a larger
effect on BLSE than M T-based cross-lingual models.

4.5.1 Methodology

We collect Wikipedia dumps for ten languages; namely, Basque, Catalan, Galician,
German, Italian, Dutch, French, Norwegian, Swedish and Danish. We then prepro-
cess them using the Wikiextractor scrip@ and sentence and word tokenize them
with either Ixa pipes (Agerri et al., 2014) (Basque, Galician, Italian, Dutch, and
French), Freeling (Padro et al., [2010) (Catalan), or NLTK (Loper and Bird, [2002)
(Norwegian, Swedish, Danish).

For each language we create Skip-gram embeddings with the word2vec toolkit
following the pipeline and parameters described in Section [2.2.1] This process
gives us 300 dimensional vectors trained on similar data for all languages. We can
assume that any large differences in the embedding spaces derive from the size of
the data and the characteristics of the language itself.

We create projection dictionaries by translating the Hu and Liu dictionary |Hu and
Liu/(2004) to each of the target languages and keeping only translations that are
single word to single word, as described in Section 4.3.3]

The statistics of all Wikipedia corpora, embeddings, and projection dictionaries are
shown in Table

Bhttp://attardi.github.io/wikiextractor/
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The Sagrada Familia church
Parc Giiell

La Boqueria market

Tibidabo

Santiago de Compostela

The Guggenheim Museum Bilbao
Txindoki

Anboto

The Eiffel Tower

The Louvre

Big Ben

The London Eye
Buckingham Palace

Akershus castle Oslo

The Oslo viking ship museum
The Gamla Stan Stockholm

Table 4.16: Touristic targets used as tweet search criteria.

4.5.2 Data Collection

In order to evaluate the effectiveness of targeted cross-lingual sentiment models on
a large number of languages, we collect and annotate small datasets from twitter
for each of the target languages, as well as a larger dataset to train the models in
English. While it would be possible to only concentrate our efforts on languages
with existing datasets in order to enable evaluation, this could give a distorted view
of how well these models generalize.

Tourism is a topic where people often like to express their opinions on social media.
With this in mind, we collect tweets directed at a number of tourist attractions in
European cities using the Twitter API. We require these tourist attractions to be
unambiguous, i. e. Barcelona would be unfit as it can be associated either with the

city or with the football team. The list of tourist attractions used is found in Table
4.16!

A preliminary attempt to use only the mention of these tourist attractions led to
tweets that were almost always neutral towards the target. Therefore, in an attempt
to find a more varied sample, we download tweets that contain mentions of these
tourist attractions as well as one of several emoticons or keyword This distant

XThe emoticons and keywords we used were “:)”, “:(”, “good”, “bad”, and the translations of
these last two words into each target language.
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EN EU CA GL IT FR NL DE NO SV DA

+ 388 40 88 27 63 51 30 72 47 40 34
0 645 93 165 57 103 140 48 125 80 93 71
251 9 47 15 56 66 8 48 10 20 11

Cohen’sk  0.62 0.60 0.61

Table 4.17: Statistics of Tweet corpora collected for the deployment study, as well
as inter-annotator agreement for English, Basque, and Catalan calculated with
Cohen’s k.

supervision technique has been used to create sentiment lexicons (Mohammad
et al., 2016), semi-supervised training data (Felbo et al., 2017), and features for a
classifier (Turney and Littman, 2003)).

We then remove any tweets that are less than 7 words long or which contain
more than 3 hashtags or mentions. This increases the probability that a tweet
contains enough information to correctly classify it based solely on the text in the
tweet.

At sentence- or tweet-level it would be possible just to do a small revision, but
at target-level the keywords and emoticons used to collect the tweets do not
necessarily refer to the target in question. Therefore, we manually annotate all
tweets for its polarity toward the target to insure the quality of the data. Any
tweets that have unclear polarity towards the target are assigned a neutral label.
This produces the three class setup that is commonly used in the SemEval tasks
(Nakov et al., 2013, 2016). Finally, for a subset of tweets in English, Catalan, and
Basque two annotators classify each tweet. We report the pairwise inter-annotator
agreement using Cohen’s «. The final statistics for the tweets in each language are
found in Table

After annotation, the neutral class is the largest in all languages, followed by
positive, and finally negative. These distributions are similar to those found in
other twitter crawled datasets (Nakov et al., 2013} [2016). We calculate pairwise
agreement on a subset of languages using Cohen’s «. The scores reflect a good level
of agreement (0.60 - 0.62), indicating the reliability of these annotations.

4.5.3 Experiments

Since we predetermine the sentiment target for each tweet, we can perform targeted
experiments without further annotation. We use the SPLIT models described in
Section[4.4.2] Our model is the targeted BLSE models described in Section 4.4]
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Training Data Model EU CA GL 1T FR NL DE NO SV DA ‘ AVERAGE

maj. class 460 39.5 388 346 361 441 375 434 452 400 | 405
BLSE 537 545 520 634 492 441 534 564 653 683 56.0
Twitt VECMAP 564 481 333 382 486 552 510 590 605 434 494
witter MT 413 414 565 397 545 433 551 522 498 556 489
Ensemble  40.5 425 418 442 545 441 530 539 S22 467 474
z BLSE 364 445 468 594 504 522 446 577 652 443 50.1
E VECMAP 329 459 352 498 423 490 473 592 333 443 439
USAGE MT 49.1 543 535 581 498 211 555 414 490 451 477
Ensemble 482 555 427 571 504 289 533 484 445 480 477
BLSE 31,6 553 379 479 564 703 583 434 445 479 493
VECMAP 598 590 456 553  60.0 559 397 434 482 400 50.7
SemEval MT 570 587 405 582 490 616 576 403 538 508 52.8
Ensemble 460 472 369 444 373 628 549 4Ll 593 427 473

Training Data ~ Model EU CA GL IT FR NL DE NO SV DA | AVERAGE
maj.class 266 237 243 211 235 239 225 261 246 252 | 241
BLSE 326 359 300 267 280 287 369 414 409 243 32.6
VECMAP 265 302 39.6 267 372 346 398 317 334 410 34.1
Twitter MT 373 341 339 356 356 359 325 432 386 396 36.6
. Ensemble 415 305 365 269 363 319 309 379 428 363 35.1
c BLSE 293 363 352 340 277 2718 369 243 410 406 333
£ VECMAP  27.6 306 373 247 372 316 385 404 313 331 332
S USAGE MT 373 342 339 356 356 359 325 396 432 386 36.6
Ensemble 415 305 365 269 363 319 309 379 428 363 35.1
BLSE 293 363 352 340 277 278 369 243 410 406 333
VECMAP 276 306 373 247 372 316 385 404 313 331 332
SemEval MT 373 342 339 356 356 359 325 396 432 386 36.6
Ensemble 415 305 365 269 363 319 309 379 428 363 35.1

Table 4.18: Macro F; of targeted cross-lingual models on twitter data in 10 target
languages.

Additionally, we compare to the targeted VECMAP and MT models. Finally,
we set a majority baseline by assigning the most common label (neutral) to all
predictions, as well as an Ensemble classifier that uses the predictions from BLSE
and MT before taking the largest predicted class for classification (see Section
for details). All models are trained for 300 epochs with a learning rate of 0.001
and a of 0.3.

We train the three models on the English data compiled during this study, as well
as on the USAGE, and SemEval English data (the details can be found in Table
4.12)) and test the models on the target-language test set.

4.5.4 Results

Table [4.18] shows the macro F; scores for all cross-lingual targeted sentiment
approaches (BLSE, VECMAP, MT) trained on English data and tested on the
target-language using the SPLIT method proposed in The final column is the
average over all languages.

On the binary setup, BLSE outperforms all other cross-lingual methods including
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MT, with 56.0 macro averaged F; across languages versus 49.4, and 48.9 for
VECMAP, and MT respectively. BLSE performs particularly well on Catalan
(54.5), Italian (63.4), Swedish (65.3), and Danish (68.3). VECMAP performs
poorly on Galician (33.3), Italian (38.2), and Danish (43.4), but outperforms
all other methods on Basque (56.4), Dutch (55.2) and Norwegian (59.0). MT
performs the worst overall, although it does perform best for Galician (56.5).
Unlike experiments in Section the Ensemble approach does not perform better
than the individual classifiers.

On the multiclass setup, however, MT (36.6 F,) is the best, followed by VECMAP
(34.1), and BLSE (32.6). Compared to the experiments on hotel reviews, the average
differences between models is small (2.5 percentage points between MT and
VECMAP, and 1.5 between VECMAP and BLSE). Again, all methods outperform
the majority baseline.

On both the binary and multiclass setups, the best overall results are obtained by
testing and training on data from the same domain (56.0 F; for BLSE and 36.6 F,
for MT). Training MT and VECMAP on the SemEval data performs better on the
binary setup than training on SemEval, however.

Finally, compared to the experiments performed on hotel and product reviews in
Section 4.4} the noisy data from twitter is more difficult to classify. Despite the
rather strong majority baselines (an average of 40.5 macro F; on binary and 24.1
on multiclass), no model achieves more than an average of 56 Macro F; on the
binary task and 36 Macro F; on the multi-class task. Another marked difference is
that MT is the worst model on the binary setup.

4.5.5 Error Analysis

An initial error analysis shows that all models suffer greatly on the negative class.
We assumed that this was due to the data imbalance in the source-language training
data, and performed additional experiments with sub-sampled and over-sampled
balanced source-language data. These two approaches, however, gave poor results.
This seems to suggest that negative polarity towards a target is more difficult
to determine within these frameworks. A significant amount of the tweets that
have negative polarity towards a target also express positive or neutral sentiment
towards other targets. The averaging approach to create the context vectors does
not currently allow any of the models to exclude this information, leading to poor
performance on these instances.
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Availability of Monolingual Unlabeled Data

It is possible that the variance in availability of unlabeled monolingual data for
each language negatively affects the models. If the original word embedding spaces
are not of high quality, this could make it difficult for the projection-based models
to create useful features, as well as affecting the features used for classification in
the MT approach. We plot the performance of the models as a function of available
monolingual data in Figure d.11]
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Figure 4.11: Performance (Macro F;) on the binary task as a function of amount of
monolingual data available in each language.

A statistical analysis of the amount of unlabeled data available and the performance

of BLSE, VECMAP, and MT (Pearson’s r = -0.14, 0.08, 0.17, respectively) reveals
no statistically significant correlation between them.
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Figure 4.12: Cosine similarity of 3-gram POS-tag and 3-gram character frequency.

Language Similarity

We would like to know whether the similarity of the source and target languages can
affect the classification performance of our cross-lingual models. Since all of the
features we use for classification are derived from distributional representations, we
will consider two aspects which directly influence the embedding representations:
1) universal POS-tag n-grams which model the contexts used during training, and
11) character n-grams, which model differences in morphology. POS-tags have
shown promise for determining genre (Fang and Caol, 2010), improving statistical
machine translation (Lioma and Ounis, 2005), and the combination of POS-tag and
character n-grams have proven useful features for identifying the native language
of second language writers in English (Kulmizev et al., 2017). This indicates
that these are useful features for characterizing a language. In this section we
calculate the pairwise similarity between all languages and then check whether this
correlates with performance.

We first POS-tag the test sentences obtained from twitter using the universal part of
speech tags (Petrov et al., 2012)) and calculate the normalized frequency distribution
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Figure 4.13: Performance (Macro F;) on the binary task as a function of cosine sim-
ilarity between POS-tag and character trigram distributions in the source language
(EN) and the target languages.

of POS-tag trigrams and character trigrams for the two languages. We then measure
the cosine similarity of the distributions between all language combinations. The
pairwise similarities in Figure [4.12] confirm to expected similarities, and language
families are clearly grouped (Romance, Germanic, Scandinavian, with Basque as a
clear outlier). This confirms the use of our similarity metric for our purposes.

We additionally plot model performance as a function of language similarity in
Figure To measure the correlation between language similarity and perfor-
mance, we calculate Pearson’s 7. We find that for BLSE there is a strong correlation
between language similarity and performance, » = 0.76 and significance p < 0.01.
VECMAP and MT do not show these correlations (r = 0.24 and r = 0.14, respec-
tively). For MT this may be due to robust machine translation available in less
similar languages according to our metric, such as German-English, which helps
mediate this correlation. For VECM AP, however, it is less clear why it does not
follow the same trend as BLSE.
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Figure 4.14: Performance (Macro F;) on the binary task when each model is trained
on data from different domains.

Domain Similarity

In this section, we determine the effect of source-language domain on the cross-
lingual sentiment classification task. Specifically, we use English language training
data from three different domains (twitter, restaurant reviews, and product reviews)
to train the cross-lingual classifiers, and then test on the target-language twitter
data. In monolingual sentiment analysis, one would expect to see a drop when
moving to more distant domains, but in cross-lingual sentiment analysis, it’s not
clear that this is the case.

twitter SemEval USAGE
twitter 1.000 0.749 0.749
SemEval 0.749 1.000 0.819
USAGE 0.749 0.819 1.000

Table 4.19: Domain similarity of English training data measured as Jennson-
Shannon divergence between the most common 10,000 unigrams.

In order to analyze the effect of domain similarity further, we test the similar-
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BLSE VECMAP MT

0.32(0.08) 0.11(0.55) -0.07 (0.7)

Table 4.20: Pearson’s 7 and p values for correlations between domain and perfor-
mance of each model. There is a statistically insignificant effect of domain on
BLSE, and no effect on VECMAP or MT.

ity of the domains of the source-language training data using Jensen-Shannon
Divergence, which is a smoothed, symmetric version of the Kullback-Leibler Di-
vergence, Di 1 (A||B) = 2V a;log #+. Kullback-Leibler Divergence measures
the difference between the probability distributions A and B, but is undefined for
any event a; € A with zero probability, which is common in term distributions.

Jensen-Shannon Divergence is then

1
D;s(A, B) = 3 Di1(Al|B) + Dir(B||A)] .

Our similarity features are probability distributions over terms ¢ € RIVI, where ¢;
is the probability of the ¢-th word in the vocabulary V.

For each domain, we create frequency distributions of the most frequent 10,000
unigrams that all domains have in common and measure the divergence with
Dys.

The results in Table show us that both the SemEval and USAGE datasets are
relatively distinct from the twitter data described in Section[d.5.2] while they are
more similar to each other. The fact that both MT and VECMAP have an overall
performance improvement on the binary setup when training on the SemEval data
but not when trained on USAGE data seems, therefore, to be due to the larger size
of the SemEval data, rather than to domain effects (plotted in Figure 4.14).

We calculate Pearson’s r on the correlation between domain and model perfor-
mance, shown in Table [4.20] The results show a negligible correlation for BLSE
(0.32), with no significant correlation for VECMAP or MT. This suggests that the
models are relatively robust to domain noise, or rather that there is so much other
noise found in the approaches that domain is less relevant.

Translation Errors

Given the noisy nature of the twitter data and the lower performance of the MT
method, we perform two analysis of possible errors: 1) mistranslated targets and
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EU CA GL IT FR NL DE NO SV DA

targets 9.4% T7.7% 42% 90% 23% 0.0% 0.0% 6.6% 3.6% 9.8%
contexts 20.9% 19.7% 17.7% 10.8% 10.9% 14.0% 13.5% 8.8% 7.2% 15.7%

Table 4.21: Percentage of mistranslated targets and contexts per language.

— si home! yes man! +
— ja estd bé! it’s fine! +
— etait en traveaux it works +
— c’era troppa coda there was tail 0
+ prou bé! that’s enough ! —
+ ca promet it promises 0
+ darf nicht fehlen | may not be missing 0

Table 4.22: Common mistranslations of short phrases that indicate polarity.

2) translations that remove or change the sentiment with respect to the target
word.

Given that we know the targets we wish to identify in each tweet, it is easy to find
translation errors. We compare the translations to the list of possible target names
in English, and if it is not within the list, it is considered an error. Table d.21| shows
the results. The most commonly mistranslated targets are “Big Ben” — “Big Leg”
in the Scandinavian languages, and “Sagrada Familia” — “Holy Family” in the
Romance languages. For German and Dutch, there were no mistranslations of
targets.

We also perform a manual check of the contexts, only considering translation
mistakes when they change the polarity expressed towards the target, shown in
Table 4.21] The most common mistakes lead to a loss of polarity and a larger
neutral class prediction. However, there are a number of examples which flip the
polarity (see Example|[6). There is a small correlation between context errors and
MT performance (Pearson’s r =-0.53 (0.1)), but not for mistranslations of targets
(Pearson’s r = -0.17 (0.6)).

(6) No em direu que despertar-se al Parc Giiell no és una molt bona forma de despertar-se !
Not me tell that wake-up  at Parc Giiell notis a  very good way to wake-up !

‘T will not tell you to wake up at Parc Giiell it’s not a very good way to wake up!’

There are also some common informal phrases that carry a large amount of polarity
and are consistently mistranslated. We include a short list of the most common
mistakes in Table 4.22]
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4.5.6 Discussion

In this section, we have performed a case study by deploying the models from
Sections and to real world twitter data, which we collect and annotate for
targeted sentiment analysis. We then looked in detail at phenomena that affect the
performance of models. We found that for binary targeted sentiment analysis BLSE
performs better than machine translation on noisy data from social media, although
it is sensitive to differences between source and target languages. We have shown
that there is little correlation between performance on the cross-lingual sentiment
task and the amount of unlabeled monolingual data used to create the original
embeddings spaces. Finally, we have performed an analysis of the different kinds
of errors that MT introduces.

Unlike the experiments in Section [4.3] the ensemble classifier employed here
was not able to improve the results. This is likely because the small size of the
datasets does not allow for the classifier to learn which features are useful in certain
contexts.

One common problem that appears when performing targeted sentiment analysis
on noisy data from twitter is that many of the targets of interest are ambiguous,
which leads to false positives. Even with relatively unambiguous targets like “Big
Ben”, there are a number of entities that can be referenced; Ben Rothlisberger (an
American football player), an English language school in Barcelona, and many
others. In order to deploy a full sentiment analysis system on twitter data, it will
be necessary to disambiguate these mentions before classifying the tweets, either
as a preprocessing step or jointly.

In sentiment analysis, it is not yet common to test a model on multiple languages,
despite the fact that current state-of-the-art models are often theoretically language
agnostic. This section shows that good performance in one language does not
guarantee that a model will transfer well to other languages, even given similar
resources. We hope that future work in sentiment analysis will make better use of
the available test datasets.

The results in this section also lead us to a new set of research questions. Namely, if
BLSE performs relatively well on cross-lingual tasks and requires only precomputed
embedding spaces, will it be applicable to domain adaptation? We explore these
questions in the next section.
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Jeremy Barnes, Roman Klinger, and Sabine Schulte im Walde (2018). “Projecting
Embeddings for Domain Adaptation: Joint Modeling of Sentiment Analysis in
Diverse Domains.” In: Proceedings of COLING 2018, the 27th International
Conference on Computational Linguistics, pp. 818-830. http://aclweb.
org/anthology/C18-1070.
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4.6 Projecting Embeddings for Domain Adaptation

Besides the lack of training data in under-resourced languages, one of the main
limitations of current approaches to sentiment analysis is that they are sensitive to
differences in domain. This leads to classifiers that, after training, perform poorly
on new domains (Pang and Lee, |2008; Deriu et al., 2017). Domain adaptation tech-
niques provide a solution to reduce the discrepancy and enable models to perform
well across multiple domains (Blitzer et al.,|2007). The two main approaches to
domain adaptation for sentiment analysis are pivot-based methods (Blitzer et al.,
2007; Pan et al., 2010; 'Yu and Jiang, 2016)), which augment the feature space
with domain-independent features learned on unsupervised data, and autoencoder
approaches (Glorot et al., 2011} |Chen et al., 2012), which seek to create a good
general mapping from sentence to a latent hidden space. While pivot-based domain
adaptation methods are well-motivated, they are often outperformed by autoen-
coder methods. However, both approaches to domain adaptation effectively lead to
a loss of information, as they must reduce the effect of discriminant features which
are domain-dependent.

Unlike previous sections, in this section we concentrate not on cross-lingual sen-
timent analysis, but rather we propose a domain adaptation approach based on
lessons learned from cross-lingual sentiment analysis. This approach maintains the
domain-dependent features, while adapting them to the target domain. Following
state-of-the-art approaches to create bilingual word embeddings (Mikolov et al.,
2013a; |Artetxe et al., 2016, 2017), we learn to project a mapping from a source
domain vector space to the target domain space, while jointly training a sentiment
classifier for the source domain.

We show that our proposed model (1) performs comparably to state-of-the-art
models when domains are similar and (2) outperforms state-of-the-art models
significantly on divergent domains. We report novel state-of-the-art results on 11
domain pairs. We also contribute a detailed error analysis and compare the effect of
different projection lexicons. Our code is available at http://github.com/
Jjbarnesspain/domain_blse.

The content of this section derives directly from the paper accepted at COLING
2018, mentioned in Section[1.4] (Barnes et al., 2018b).

4.6.1 Related Work and Motivation

Domain adaptation is an omnipresent challenge in natural language processing.
It has been applied for many tasks, such as part-of-speech tagging (Blitzer et al.,
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2006; |[Daume 111, 2007), parsing (Blitzer et al., 2006; |Finkel and Manning, 2009;
McClosky et al.,[2010), or named entity recognition (Daume 111, 2007; |Guo et al.,
2009; 'Yu and Jiang, 2015). In the following, we limit ourselves to adaptation
techniques which have been applied to sentiment analysis.

Pivot-based Approaches

Blitzer et al. (2006) propose structural correspondence learning (SCL), which
introduces the concept of pivots. These are features that behave in the same way
for discriminative learning for both domains, e. g., good or terrible for sentiment
analysis. The intuition is that non-pivot domain-dependent features, e. g., well-
written for the book domain or reliable for electronics, which are highly correlated
to a pivot should be treated the same by a sentiment classifier.

Blitzer et al.| (2007) extend their SCL approach to sentiment analysis and also
create one of the benchmark datasets for domain adaptation in sentiment analysis.
They crawl between 4000 and 7000 product reviews for each domain, and create
balanced datasets of 1000 positive and 1000 negative reviews for four product
types (books, DVD, electronics, and kitchen appliances). The remaining reviews
serve as unlabeled training data for the SCL approach. For each pivot, they train a
binary classifier to predict the existence of the pivot from non-pivot features. They
then use these classifiers to create a domain-independent representation of the data.
The concatenation of the original representation and the SCL representation are
used to train a classifier.

Pan et al.| (2010) also exploit the relationship between pivots and non-pivots to
span the domain gap, but use a graph-based approach to cluster non-pivot features
and augment the original feature space. |Yu and Jiang (2016) learn sentence
embeddings that are useful across domains through multi-task learning. They
jointly train a convolutional recurrent neural network model to predict the sentiment
of source domain sentences while at the same time predicting the presence of
pivots. Finally,|Ziser and Reichart (2017) propose neural structural correspondence
learning (NSCL), which marries SCL and autoencoder techniques by using a
neural network to create a hidden representation of a text, and then using this
representation to predict the existence of pivots.

NSscCL is currently state of the art, but requires a careful choice of pivot features
and extensive hyper-parameter searches to achieve the best results.
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Autoencoder Approaches

Glorot et al.| (2011) adopt a deep learning approach for domain adaptation. They
create lower-dimensional representations for their data through the use of stacked
denoising autoencoders (SDA), which are trained to reconstruct the original sen-
tence from a corrupted version. They then train a linear SVM on the original
feature space augmented with the hidden representations obtained from the autoen-
coder.

Chen et al. (2012) extend this work by proposing Marginalized Denoising Autoen-
coders (MSDA), which are more scalable thanks to a series of linear transforma-
tions which are performed in closed-form, with the non-linearity being applied
afterwards. This leads to a significant gain in speed, as well as the ability to include
more features from the original representations. Autoencoder models perform
better than earlier SCL models (excluding NSCL), but have the disadvantages of
being less interpretable, requiring long training times, and only utilizing a small
amount of the original feature space.

Domain Specific Word Representations

A third approach is to create word representations that provide useful features for
multiple domains. |He et al. (2011) propose a joint sentiment-topic model which
uses pivots to change the topic-word Dirichlet priors. |Bollegala et al.| (2015) create
domain-specific embeddings for pivots and non-pivots with the constraint that the
pivot representations are similar across domains.

The work that is most similar to ours is that of Bollegala et al.|(2014)). Their method
learns to predict differences in word distributions across domains by learning to
project lower-dimensional SVD representations of documents across domains.
Unlike our work, however, they learn the projection step separately from the
classification. They also only learn to project the features that the two domains
have in common, which implies discarding information useful for classification.
These approaches, however, perform worse than MSDA and NSCL.

4.6.2 Projecting Representations

In this section, we cast domain adaptation for sentiment analysis as a version of
this cross-lingual adaptation in which the source and target domains have a large
shared vocabulary. However, as is the case in domain adaptation, words do not
necessarily have the same semantics across domains. Therefore, we will use the
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aforementioned BLSE projection model to learn a word-level projection from one
domain to another, while jointly learning to classify the source domain.

Target-domain Classification

For inference, we classify sentences from a target-domain corpus Ciyge. As in
the training procedure, for each sentence, we take the word embeddings from the
target embeddings 7" and average them to a; € R?. We then project this vector to
the joint space z; = a; - M’. Finally, we pass Z; through a softmax layer P to get
our prediction g; = softmax(z; - P).

4.6.3 Experimental Setup

We compare our method with two adaptive baselines and one non-adaptive version.
In the following, we describe the six evaluation corpora and the baselines.

Datasets

Amazon Corpora In order to evaluate our proposed method, we use the corpus
collected by Blitzer et al.| (2007)) , which consists of Amazon product reviews
from four domains: books (B), DVD (D), electronics (E), and kitchen (K). Each
subcorpus contains a balanced labeled subset, with 1000 positive and 1000 negative
reviews, as well as a much larger set of unlabeled reviews. We use the standard
split of 1600 reviews from each domain as training data and the remaining 400
reviews as validation data. For testing, we use all of the 2000 reviews from the
target domain (Ziser and Reichart, 2017).

We take the unlabeled data from each domain to create the domain embeddings
for our method, as well as to train the domain independent representations for the
NscL and MSDA methods. In order to create embeddings for the Amazon corpora,
we concatenate all of the unlabeled data from all domains. The statistics for this
corpus are given in Table 4.23]

SemEval Corpora Sentiment analysis of Twitter data is common nowadays,
with several popular shared tasks organized on the topic (Nakov et al., 2013} [2016).
In order to evaluate how well domain adaptation techniques perform on large
domain gaps, we also use the message polarity classification corpora provided by
the organizers of SemEval 2013 and 2016 (Nakov et al., 2013, 2016)). We will
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B D E K S13 S16

Unlabeled 973,194 122,438 21,009 17,856 49M 49M

I 800 800 800 800 2,225 2,468
Train — 800 800 800 800 831 664
+ 200 200 200 200 328 682
Dev — 200 200 200 200 163 310
+ 1000* 1000*  1000* 1000* 946 5,619
Test — 1000* 1000*  1000* 1000* 316 2,386
Total 2,000 2,000 2,000 2,000 4,809 12,129

Table 4.23: Statistics for the Amazon corpora (Books, DVD, Electronics, Kitchen),
as well as the SemEval 2013 and 2016 message classification tasks (S13 and S16
respectively). * For the Amazon corpora, we test on the entire target domain
corpora.

refer to these as S13 and S16, respectively. These contain tweets which have been
annotated for positive, negative, and neutral sentiment. We remove neutral tweets,
giving us a binary setup which allows compatibility with the Amazon corpora. The
statistics for these corpora are given in Table {.23]

Embeddings

For BLSE, we create mono-domain embeddings using the Word2Vec toolki We
train skip-gram embeddings with 300 dimensions, subsampling of 10~%, window of
5, negative sampling of 15 on the concatenation of the unlabeled Amazon corpora.
We also create Twitter-specific embeddings by training on nearly 8 million tokens
taken from tweets collected using various hashtags. The parameters were the
same as those used to create the Amazon embeddings. We use a vector initialized
randomly between -0.25 and 0.25 for out-of-vocabulary words to approximate the
variance of the pretrained vectors.

Baselines and Model

Domain transfer for sentiment analysis has been widely studied on the Amazon
sentiment domain corpus. However, we believe that progress previous approaches

Bhttps://code.google.com/archive/p/word2vec/
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have made on this particular corpus may not hold when tested on more divergent
domains. Therefore, we compare two state-of-the-art approaches on the Amazon
corpus with our method, as well as a standard non-adaptive baseline.

NOAD is a non-adaptive approach which uses a bag-of-words representation from
each review as features for a linear SVM.

MSDA is the original implementation of marginalized Stacked Denoising Autoen-
coders (Chen et al., 2012), one of the state-of-the-art domain adaptation methods
on the Amazon sentiment domain corpus. The approach learns a latent hidden
representation of the data, which is then concatenated to the original feature space.
For our experiments, we use the 30000 most common uni- and bi-grams as features
and take the top 5000 features as pivots (Chen et al.,|2012)). We tune the corruption
level (0.5, 0.6, 0.7, 0.8, 0.9) and the C-parameter for the SVM classifier on the
source domain validation data, but leave the number of layers at 5.

NSCL is an approach that marries both the pivot-based methods and autoencoders.
Specifically, we use the original implementatio of the Autoencoder SCL with
Similarity Regularization, which we refer to as NSCL. This approach substitutes
the reconstruction weights of the autoencoder with a matrix of the pre-trained
word embeddings of pivots. This allows the model to generalize beyond boolean
features. We set the hyper-parameters for training the autoencoders with stochastic
gradient descent to those from the original pape and tune the number of pivots
(100, 200, 300, 400, 500), dimensionality of the hidden layer (100, 300, 500), and
C-parameter for Logistic Regression on the source domain validation data (400
reviews).

BLSE is our approach based on cross-lingual vector projection. We use the domain-
specific word embeddings to initialize our model and following the embedding
literature, we take the most common 20,000 words in the concatenated corpora as
a projection dictionary (see Section[4.6.5). We tune the hyper-parameters training
epochs, alpha (0.1-0.9), and batch sizes (20-500) on the source domain validation
data.

4.6.4 Results

Tables 4.24| and present the results of our experiments. We report accuracy
scores for the balanced Amazon corpora. For the unbalanced SemEval corpora,

Mhttps://github.com/yftah89/Neural-SCL-Domain-Adaptation
27We set the learning rate to 0.1, momentum to 0.9 and weight-decay regularization to 10~°.
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D—B E—B K—B|B—D E—D K—D|B—E D—E K—E|B—K D—K E—K

BLSE | 82.2 713 69.0 | 81.0 768 765 |71.8 703 708 | 73.8 723 783
NscL | 773 712 73.0 | 81.1 745 763 | 76.8 78.1 84.0 | 80.1 80.3 84.6
MSDA| 76.1 719 700 | 783 71.0 714 | 746 750 824 | 788 774 845
NOAD| 73.6 679 67.7 | 76.0 69.2 702 | 70.0 709 81.6| 740 732 824

Table 4.24: Sentiment classification accuracy for the Blitzer et al. (2007) task
(Books (B), DVD (D), Kitchen (K), Electronics (E)).

|B—S13 D—S13 E—S13 K—S13|B—S16 D—S16 E—S16 K—S16

BLSE | 65.8 67.1 65.6 63.9 65.2 66.1 67.0 62.8
NscL | 62.8 60.6 59.2 50.7 61.5 61.9 60.7 57.6
MSDA| 522 45.3 48.8 53.2 53.1 43.1 48.2 55.6
NOAD| 61.6 61.5 60.9 51.8 59.6 63.2 59.3 54.2

Table 4.25: Sentiment classification macro F; for the SemEval 2013 and 2016 tasks
in binary setup, (Books (B), DVD (D), Kitchen (K), Electronics (E), SemEval 2013
(S13), SemEval 2016 (S16)).

we present macro F; scores. We introduce the notation X—Y, where X is the train
corpus and Y is the test corpus, to indicate the domain pairs.

On the Amazon corpora, NSCL outperforms the other approaches (3.6 accuracy
points on average compared to BLSE, 2.5 compared to MSDA, and 5.1 compared
to NOAD). BLSE only performs better than NSCL on three setups (DVD to books,
electronics to DVD, and kitchen to DVD) and MSDA on four setups (DVD to
books, books to DVD, electronics to DVD, and kitchen to DVD). BLSE performs
much better on the books and DVD test sets than the electronics and kitchen
test sets. This can be explained by the fact that the corpora used to train the
Amazon embeddings contain many more unlabeled reviews for books and DVDs
(973,194 / 122,438 respectively) than electronics and kitchen (21,009 / 17,856).
Consequently, the vector representations for sentiment words that only appear in
the books and DVD subcorpora are of higher quality than those that only appear in
the electronics and kitchen subcorpora (see Table #.27)). Since BLSE relies entirely
on the embeddings as input, the lower quality of what should be discriminative
features affects the classification.

For the SemEval corpora (see Figures ?? and ??), BLSE significantly outperforms
all other models (8.2, 15.5, and 6.4 F; better on average compared to NSCL, MSDA,
and NOAD, respectively). NSCL is better than MSDA on 7 of the 8 setups, but
better than the NOAD baseline on only 4. MSDA performs particularly poorly
here and only outperforms the baseline on one setup. We suspect that this may
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be caused by the substantial differences in the source and target corpora and the

way this effects the representation given to the classifier, which we explore in more
detail in Section [4.6.4

Domain Divergence and Feature Sparsity

From the initial results, it seems that the BLSE model performs better on more
divergent domains when compared to other state-of-the-art models. In order to
analyze this further, we test the similarity of our domains using the Jensen-Shannon
Divergence, which is a smoothed, symmetric version of the Kullback-Leibler
Divergence, Dk (A||B) = va a; log 3*. Kullback-Leibler Divergence measures
the difference between the probability distributions A and B, but is undefined for
any event a; € A with zero probability, which is common in term distributions.
Jensen-Shannon Divergence is then

1
Dys(A, B) = 5| Dk (AllB) + Dicn (Bl 4)]
Our similarity features are probability distributions over terms ¢ € R!VI, where ¢;

is the probability of the i-th word in the vocabulary V.

For each domain, we create frequency distributions of the most frequent 10,000
unigrams that all domains have in common and measure the divergence with D jg.
The results in Table make it clear that the SemEval datasets are more distant
from the Amazon datasets than the Amazon datasets are from each other. This is
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book DVD elect. kitchen SemEval 2013 SemEval 2016

book 1.000 0.940 0.870 0.864 0.775 0.802
DVD 1.000 0.873  0.866 0.790 0.814
elect. 1.000  0.908 0.748 0.769
kitchen 1.000 0.741 0.761
SemEval 2013 1.000 0.921
SemEval 2016 1.000

Table 4.26: Jensen-Shannon divergence between term distribution representations
of datasets. The bold numbers represent the most similar domains and underlined
numbers represent the most divergent.

Books Electronics
word admires conceit indispensable cumbersome
£ professes conceits career.this  choppiness
- unselfish  macgruffen  non-western setups
%’3 parminder pretentiously mindwalk  forgiveable
= well-liked  contrivance all-too-rare unweildy

Table 4.27: Words and their nearest neighbors for important domain-dependent
sentiment words. The nearest neighbors for the two example words from the book
domain are more coherent than those of the electronics domain.

especially true for the distance between the SemEval datasets from the Kitchen
dataset (D ;5 =0.741 and 0.761, respectively). This suggests that NSCL and MSDA
give the best results when the difference between domains is relatively small,
whereas BLSE performs better on more divergent datasets.

On the SemEval datasets, BLSE also benefits from using dense representations,
rather than the sparse unigram and bigram features of NSCL and MSDA. This
is particularly important when you have less domain overlap and smaller texts
(the average number of features for the Amazon corpora is 76, compared to 17
for SemEval). BLSE is always able to find useful features, even if the tweet is
quite short, whereas a bag-of-words representation can be so sparse that it is not
helpful.

Error Analysis

We perform a label-based error analysis of the models on the SemEval 2013 and
2016 datasets by checking the error rate for the positive and negative classes, which
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Figure 4.17: Plot of performance of each model as a function of domain similarity.
The x axis plots the rank of similarity from most similar (left) to least similar
(right). BLSE maintains its performance as the similarity decreases.

we define as .
Error Rate = — | (4.5)

nC
where the number of errors e, in class c is divided by the total number of examples
n. in the class. The results are found in Table @ In general, BLSE has better
overall performance than NSCL or MSDA. In fact, MSDA performs poorly on
the minority negative class, with error rates reaching 98 percent. NSCL almost
always favors a single class, with error rates as high as 60.4 on negative and 70.5
on positive.

4.6.5 Choice of projection lexicon

Given that the choice of projection lexicon is one of the key parameters in the
BLSE model, we experiment with three approaches to creating a projection lexicon
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BLSE
NscL
MSDA

Books

BLSE
NscL
MSDA

DVD

BLSE
NscL
MSDA

Elec.

BLSE
NscL
MSDA

Kitchen

SemEval 2013

SemEval 2016

Pos Neg | Pos Neg
26.9 354 | 31.8 33.0
34.2 43.0 | 28.9 43.5
1.4 927 14 89.5
22.8 39.2 | 28.0 36.5
18.1 60.4 | 18.7 52.1
0.2 97.8 | 0.2 98.2
19.1 48.7 | 27.7 34.6
35.2 41.5 | 38.9 33.7
1.1 93.7 | 0.8 91.6
21.6 49.1 | 233 50.1
63.6 19.3 | 70.5 13.2
24 90.5 | 24 85.8

Table 4.28: Error rates for positive and negative classes for BLSE, NSCL, and
MSDA trained on the Amazon corpora and tested on the SemEval corpora.
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and observe their effect on the books to SemEval 2013 setup.

The most frequent source words are a common source of projection lexicon in the
multilingual embedding literature (Faruqui and Dyer, 2014; Lazaridou et al., 2015).
For our experiment, we take the 20,000 most frequent tokens from the Brown
corpus (Francis and Kucera, [1979). The hypothesis behind using a general corpus
is that learning the best projection across domains will give the best results.

Sentiment Lexicons often contain domain-independent words that convey sen-
timent. In our model, using a sentiment lexicon as a translation dictionary is
equivalent to the use of pivots in other frameworks, as these are usually domain
independent words with are good predictors of sentiment. For our experiment, we
take a subset of the sentiment lexicon from [Hu and Liu/ (2004} which is found in
the Amazon and SemEval corpora. The final version has 1130 words.

Mutual Information Selected Pivots have been shown to be a good predictor of
sentiment across domains (Blitzer et al., [2006; Pan et al., [2010; [Ziser and Reichart,
2017)). We experiment with using words with the highest mutual information scores
as a projection lexicon. For each source and target domain pair, we take unigrams
and bigrams with high mutual information scores that appear at least 10 times in
both domains. The number of pivots differs with each domain pair. The lowest
number is 100 (DVD to SemEval 2013) and the highest 955 (books to DVD), with
an average of 470 per domain pair.

Figure [4.18] shows that the frequency-based lexicon gives better results on the
more divergent datasets, while the sentiment lexicon performs slightly better on
the similar datasets, but poorly on the divergent datasets. The mutual information
induced pivot lexicons provide good results on all but the SemEval 2013 dataset.
This is likely because the lexicon is too small to give a good mapping.

4.6.6 Discussion

We have presented an approach to domain adaptation which learns to project mono-
domain embeddings to a bi-domain space and use this bi-domain representation
to predict sentiment. We have experimented with 20 domain pairs and shown
that for highly divergent domains, our model shows substantial improvement over
state-of-the-art methods. Our model constitutes a novel state of the art on 11 of the
20 domain pairs.

One of the main advantages of this approach is that the learned classifier can be
used to classify sentiment in either of the two domains without further tuning. In
the future, we would like to extend this model to learn multiple domain mappings
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at a time, effectively permitting zero-shot domain adaptation at a large scale. This
would enable a single model to predict sentiment for a number of domains.

Another promising avenue for improvement is to create lexicons that map concepts
from the source domain to the target domain, i. e., “read” in the books domain
to “watch” in the movies domain. It would be interesting to see if it is possible
to use vector algebra (Mikolov et al.,|2013a)) to find similar concepts in different
domains, e. g., read - books + DVD = watch. 1t would also be beneficial to map
multiword units across domains, e. g., “not particularly exciting” in DVD to “not
very reliable” in electronics. This could be particularly helpful for moving beyond
a binary view of sentiment at document-level, where domain adaptation would
be of particular use, given that the cost of annotation is higher for multi-class,
sentence-, or aspect-level classification.

A current disadvantage of our model might be that it uses skip-gram embeddings
trained on more than one domain. Therefore, it would be of interest to investigate
if methods which create domain specific embeddings (He et al., 2011}; Bollegala
et al., 2014, 2015) are able to give better results within our framework.
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Chapter 5

CONCLUSION

5.1 Conclusion

In this thesis, we introduced a low-resource approach to cross-lingual sentiment
analysis, as well as a new aspect-level sentiment analysis dataset for two under-
resourced languages; namely, Catalan and Basque. This dataset also allows for
research into the effects of variables such as word order or morphology on cross-
lingual sentiment analysis, as both corpora are drawn from the same domain and
annotated with the same guidelines.

In Chapter 4] we outlined the main experiments conducted during the thesis.
Section.T|compared eight machine learning approaches to monolingual sentiment
analysis on six benchmark datasets. The results confirmed the general consensus
that BILSTMS are strong baselines across many NLP tasks. Section 4.2] compared
three cross-lingual models that rely on distributional representations to two machine
translation approaches for cross-lingual sentiment analysis. We described the
limitations of distributional representations and hypothesized that they did not
contain enough sentiment information to provide useful features for cross-lingual
sentiment analysis.

Section 4.3|introduced a joint model that learns to project monolingual embeddings
to a bilingual space which is simultaneously optimized to predict sentiment. Section
M.4] proposed several methods to perform targeted cross-lingual sentiment analysis
by building upon state-of-the-art bilingual embedding methods, including the
BLSE method introduced in the previous section. We concentrated only on target
classification, leaving the integration of target and subjective phrase identification
for future work. The fact that BLSE performed best on binary classification, while
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MUSE performed best on multiclass classification leaves the possibility of looking
at combining the strongest aspects of both methods.

Section [4.5] details a case study of deploying our model on ten target languages
for targeted sentiment analysis for tourism. We created a small test dataset for the
ten target languages. BLSE performed best on the binary task, outperforming both
VECMAP and MT by a large margin. We showed that the overall performance
of our models is limited to a degree by the similarity between source and target
languages, while the amount of unlabeled monolingual data available in the target
language has little effect. Finally we performed a detailed analysis of the errors
introduced by machine translation.

In Section we reformulated domain adaptation within the embedding pro-
jection framework. Treating each domain as if it were a separate language, we
learn to project the embeddings to a bi-domain space, which is jointly optimized
for sentiment. BLSE outperformed state-of-the-art models on distant domains,
demonstrating that our approach generalizes well to other tasks.

Returning to the original aims and research questions posed in the introduction,
there are a number of affirmations we can now make.

Do monolingual vector spaces contain enough distributional information for
a sentiment classifier to learn to both project them to a common space and
learn to classify sentiment? Monolingual vector spaces do have enough in-
formation to perform cross-lingual sentiment analysis by first projecting to a
bilingual space and then learning to classify. The experiments using VECMAP
and MUSE suggest that these techniques work relatively well, but do not contain
enough sentiment information. Jointly learning the projection and classification, i. e.
BLSE, often performs much better. This is especially true on binary classification
tasks.

How much parallel data is necessary to perform the transfer? The amount
of projection data needed is quite small, between 500-5000 translation pairs. This
makes our approach to cross-lingual sentiment analysis fast to develop. Addition-
ally, we have found that translating a small sentiment lexicon is more useful than
using larger general purpose dictionaries.

How much source language annotated data is necessary to learn to classify
the target language? From these experiments, even small amounts of labeled
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data, e. g. 1000 labeled sentiment phrases, were enough to transfer the sentiment
information to a target language.

What amount of loss of accuracy does this joint model suffer when compared
to monolingual models? All cross-lingual models perform worse than mono-
lingual models. Machine translation generally performs better than bilingual
embedding methods, but obviously requires an order of magnitude more parallel
data. On clean data, our models perform similarly to machine translation on the bi-
nary task, but significantly worse on multiclass classification tasks. On noisy twitter
data, however, projection based models outperform machine translation.

Is it possible to improve machine-translation based CLSA methods using this
approach? Yes, we have shown that ensemble methods that make use of ma-
chine translation and projection-based methods improve the state-of-the-art. The
use of multi-view cross-lingual representations is a promising avenue for future
research.

Given a bilingual sentiment representation, is it better to assume that all as-
pects in a phrase have the same polarity, or try to predict each separately?
It is almost always better to split the sentence into contexts, as proposed in Section
This is especially true for datasets that often have multiple aspects in a single
sentence, such as the SemEval and USAGE datasets. MT does not seem to follow
this trend, but this is likely because of the number of errors and mismatches to the
aspects caused by the use of MT.

Can we predict the sentiment of aspects in a target language without using
machine translation? Yes. In fact, for binary sentiment analysis, bilingual word
embedding approaches can outperform machine translation at aspect-level. This
is likely due to the fact that machine translation introduced more changes to the
original data than bilingual word embeddings, namely lexical changes, reordering,
and loss of information. These have a bigger impact on finer-grained sentiment
analysis, as there is less redundancy in the signal.
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5.2 Future Work

The current performance of the projection-based techniques still lags behind state-
of-the-art MT approaches on most tasks, indicating that there is still much work to
be done. While general bilingual embedding techniques do not seem to incorporate
enough sentiment information, they are able to retain the semantics of their word
vectors to a large degree even after projection. We hypothesize that the ability to
retain the original semantics of the monolingual spaces leads to MUSE performing
better than MT on multiclass aspect-level sentiment analysis. The joint approach
introduced in this thesis suffers from the degradation of the original semantics
space, while optimizing the sentiment information. Adding more regularization
to our model in order to maintain the original structures to a higher degree could
potentially help in this.

In the future, including multiword expressions within the projection of our frame-
work should help in part with the loss of performance on multiclass sentiment
analysis, as the model would learn to project phrases with similar semantics closely
together.

One problem that arises when using bilingual embeddings instead of machine trans-
lation is that differences in word order are no longer handled. Machine translation
models, on the other hand, always include a reordering element. Nonetheless,
there is often a mismatch between the real source language word order and the
translated word order. In this thesis, we avoided the problem by using a bag of
embeddings representation, but as we showed in experiments in Section {.1] this
approach does not perform as well as approaches that take word order into account,
such as LSTMS or CNNS. We leave the incorporation of these classifiers into our
framework for future work.

The recent introduction of Unsupervised Machine Translation (Artetxe et al., 2018;;
Lample et al., 2018b) may also introduce new avenues to explore CLSA for
under-resourced languages, avoiding in large part the need for large amounts of
parallel data. The need for long training times and the word ordering problems,
however, will remain. This means that the approaches proposed here will still be
of interest.

Experimenting with ensembles of MT and BLSE showed that our model captures
information that MT does not, and that the combination of the two leads to state-
of-the-art results. In the future, it may be interesting to perform more research on
ways to combine MT and cross-lingual distributed models.

Multi-view cross-lingual representations pRastogi2015,Ammar2016 also show
promise on many tasks. It may be possible to create a single classifier for groups of
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language families, so that languages with more resources within the family are able
to help the under-resourced ones. This approach has enabled zero-shot translation
(Johnson et al., 2017), so it is not impossible to imagine that multilingual zero-
shot modeling would work well for a comparatively easy task such as sentiment
analysis.

Finally, we showed that this approach can be used for a number of languages in
a multilingual deployment scenario. This could drastically reduce the time and
money spent on translating documents to determine sentiment in crisis scenar-
i0s.
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Bow AVE RETROFIT JOINT Lst™ BILST™M CNN
SST-fine SST-fine SST-fine SST-fine SST-fine SST-binary
SenTube-A OpeNER SST-binary SST-binary SST-binary OpeNER
Bow SenTube-T SenTube-A OpeNER OpeNER OpeNER SenTube-A
SemEval SemEval SenTube-A SemEval SemEval SenTube-T
SenTube-T
SemEval
SST-fine SST-fine SST-fine SST-fine SST-fine
SST-binary SST-binary SST-binary SST-binary SST-binary
AVE 3 SenTube-A OpeNER OpeNER OpeNER OpeNER
SenTube-T SenTube-A SenTube-A SenTube-A SenTube-A
SenTube-T SenTube-T SemEval SemEval
SemEval SemEval
SST-fine SST-fine SST-fine SST-fine
SST-binary SST-binary SST-binary SST-binary
RETROFIT 3 3 OpeNER OpeNER OpeNER SenTube-A
SenTube-A SenTube-A SenTube-A SemEval
SenTube-T SemEval SemEval
SemEval
SST-fine SST-fine SST-fine
SST-binary SST-binary SST-binary
JoiNt 3 3 3 OpeNER OpeNER OpeNER
SenTube-A SenTube-A SenTube-A
SenTube-T SenTube-T SenTube-T
SemEval SemEval
SemEval SST-fine
OpeNER
Lst™ 4 5 4 3 SenTube-A
SenTube-T
SemEval
SST-fine
OpeNER
BILST™M 4 5 5 4 1 SenTube-A
SenTube-T
SemEval
CNN 2 3 2 3 0 0

Table 6.1: Results of the statistical analysis described in Section 4. 1| for the best
performing dimension of embeddings, where applicable. Datasets where there is a
statistical difference (above diagonal) and number of datasets where a model on
the Y axis is statistically better than a model on the X axis (below diagonal).
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