

Impacto de la asimilación radar en el pronóstico de precipitación a muy corto plazo usando el modelo WRF

Richard Humberto Cáceres León

ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (**www.tdx.cat**) i a través del Dipòsit Digital de la UB (**diposit.ub.edu**) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (**www.tdx.cat**) y a través del Repositorio Digital de la UB (**diposit.ub.edu**) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (**www.tdx.cat**) service and by the UB Digital Repository (**diposit.ub.edu**) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

Impacto de la asimilación radar en el pronóstico de precipitación a muy corto plazo usando el modelo WRF

TESIS DOCTORAL

Richard Humberto Cáceres León

Departamento de Física Aplicada Sección de Meteorología Universidad de Barcelona

Septiembre 2018

Este documento está preparado para ser impreso a doble cara.

Impacto de la asimilación radar en el pronóstico de precipitación a muy corto plazo usando el modelo WRF

Programa de doctorado en Física

Autor: Richard Humberto Cáceres León

Director: Bernat Codina Sánchez Tutor: Maria Rosa Soler

Departamento de Física Aplicada Sección de Meteorología Universidad de Barcelona

Septiembre 2018

Copyright © Richard Humberto Cáceres León

A mi madre Elvia Yasmine León y a mi esposa Rocio Villamizar Durán.

Su amor incondicional me ha permitido navegar por el rumbo correcto. Mi brújula siempre estará, siguiendo el latido de sus corazones.

Agradecimientos

El que da, no debe volver a acordarse; pero el que recibe nunca debe olvidar. Proverbio hebreo

Cerca a la Facultad de Física de la Universidad de Barcelona hay un gran espacio destinado para aparcar vehículos, el cual permanece constantemente congestionado. Un día cualquiera mientras subía las escaleras exteriores hasta mi despacho ubicado en la última planta de la Facultad, por casualidad comencé a observar los vehículos que daban y daba vueltas sin parar buscando sitios libres donde aparcar que ni yo, desde mi posición, alcanzaba a visualizar; pero a medida que avanzaba un piso más, mi campo visual aumentaba y en el preciso instante en que llegaba al final de las escaleras podía ubicar con exactitud las plazas vacías dentro de ese gran laberinto. No puedo evitar relacionarlo con la vida, cuando tienes un problema y cuando no encuentras soluciones acertadas, necesitas de alguien que esté fuera de ese entorno y que te guíe desde un punto mucho más alto.

Es por eso, que hoy quiero agradecer a cada una de esas personas e Instituciones que me vieron rondando estos cuatro años de mi vida pues fueron quienes me ayudaron a encontrar un sitio libre, me guiaron hacia la salida, y con su perspectiva me mostraron nuevos horizontes que me permitieron seguir adelante en este gran proyecto de vida.

El Doctor Bernat Codina Sánchez, mi director de tesis, mi maestro, mi guía, por ofrecerme la oportunidad de recurrir a su capacidad y a su práctica científica en el manejo de modelos numéricos en un marco de confianza, afecto y amistad, fundamentales para alcanzar el éxito en este estudio.

La Doctora Juanzhen Sun del National Center for Atmospheric Research (NCAR), quien orientó mi tesis doctoral durante el año que profundice en NCAR los conceptos de la asimilación de datos radar, brindándome su experiencia y apoyo en el uso del software VDRAS y los supercomputadores Cheyenne y Jasmine durante todos estos cuatro años.

Para que la investigación sea eficiente debe estar basada en datos, en este referente fueron varias las instituciones y personas que me manifestaron su respaldo: Alejandro Reina, desde la Unidad Administrativa de la Aeronáutica Civil facilitó el acceso a datos crudos de los tres radares colombianos; Julián Pantoja, Técnico Primero de la Fuerza Aérea Colombiana (FAC), permitió el acceso a los servidores y a la información de estaciones convencionales administradas por la FAC; Abdelmalik Sairouní, Jordi Mercader y Jordi Moré, quienes me dieron acceso a los datos crudos de los cuatro radares administrados por el Servicio Meteorológico de Cataluña y a los datos observados de precipitación.

Agradezco enormemente a mi familia, mi madre Yasmin León, a mi padre Gustavo y mi hermano Gustavo Adolfo, por motivarme continuamente a cumplir mis metas. A pesar de estar separados por el inmenso Océano Atlántico, he sentido su inmensurable cariño y compañía; son ese motor incansable que me llena de fuerzas para continuar en la búsqueda de mis sueños hechos realidad.

A mi esposa Rocío Villamizar, un agradecimiento especial por su amor incondicional, su respaldo y comprensión; aunque la distancia nos haya separado por lapsos de tiempo, mi mente y mi corazón han estado junto a ti, vida mía.

Y como olvidar a mis compañeros de doctorado, Enric, Yolanda, Angela, Mireia, Ana y Maria, gracias por su amistad y por compartir parte de su vida conmigo, en especial agradezco a Alex Montornès, mi compañero de despacho y del cual tuve la oportunidad de aprender herramientas útiles en este trabajo.

Finalmente mis más sinceros agradecimientos a Colfuturo, Fundación para el futuro de Colombia y a la Fuerza Aérea Colombiana, institución a la cual pertenezco, las cuales promovieron un programa especial que ha permitido a los militares desarrollar estudios en las universidades de más alto nivel en el mundo, con el compromiso de retornar al país, aportar un mejor capital humano y contribuir con mis conocimientos al desarrollo de Colombia.

Resumen

El propósito de esta investigación es maximizar el impacto de la asimilación de datos radar sobre el pronóstico de precipitación a muy corto plazo usando el modelo Weather Research and Forecasting (WRF), de tal manera que pueda ser implementado de modo operativo en los Servicios Meteorológicos Nacionales.

En una primera fase se utiliza un episodio de precipitación extrema que tuvo lugar en Cataluña (NE de España) para probar varias configuraciones de predicción inmediata, basadas en el modelo WRF con la asimilación de datos radar, y en una segunda fase, se profundizan los resultados a través de una serie de experimentos basados en diez eventos de precipitación extrema ocurridos en Cataluña en el periodo 2015 - 2017.

Las configuraciones consideradas se generan modificando: 1) el ciclo de inicialización del WRF, 2) los procedimientos de preprocesamiento de datos radar utilizados por el Centro Nacional de Investigación Atmosférica (NCAR) y por el Servicio Meteorológico de Cataluña (SMC), 3) datos convencionales y de radar asimilados dentro del sistema variacional tridimensional (3DVAR), y 4), otros parámetros tales como la escala de longitud de las observaciones, el número de bucles externos y la parametrización de la convección húmeda.

El efecto de los anteriores parámetros se evalua mediante la habilidad de una serie de experimentos para simular la cantidad y localización de la precipitación usando técnicas estadísticas convencionales, índices categóricos y el Receiver Operating Characteristic (ROC). Sin embargo, en este estudio la construcción de las tablas de contingencia está condicionada al desplazamiento del patrón de precipitación y la cercanía entre los valores observados y pronosticados, sin considerar los umbrales de precipitación.

El método de control de calidad desarrollado por el SMC es confiable y en el caso particular del 12 de octubre de 2016, produjo mejores resultados que el método de NCAR. La predicción inmediata de precipitación logra mejores resultados cuando el modelo WRF es ejecutado con dos ciclos de asimilación, uno en frío y otro en caliente con un *length scale* de 0.75 y 0.50 respectivamente, asimilando en cada ciclo datos radar y datos convencionales en un mismo momento y con el error del *background* CV7. Los largos ciclos de inicialización, las actuales parametrizaciónes usadas en el SMC y el uso de tres bucles externos no mejoran los resultados del pronóstico.

Abstract

The purpose of this research is to maximize the radar data assimilation impact on precipitation nowcasting using the Weather Research and Forecasting (WRF), in such a way that it can be implemented operationally in the National Meteorological Services .

In a first phase is used an episode of extreme precipitation that took place in Catalonia (NE Spain) to test several nowcasting system configurations, which are based on the Weather Research and Forecasting (WRF) model with radar data assimilation, and in a second phase, the results are deepened through a series of experiments based on ten extreme precipitation events that occurred in Catalonia in the period 2015 - 2017.

The configurations considered are generated by modifying the following elements: 1) the WRF initialization cycle, 2) the radar data preprocessing procedures used by the National Center for Atmospheric Research (NCAR) and by the Meteorological Service of Catalonia (SMC), 3) conventional and radar data assimilated within the three dimensional variational system (3DVAR), and 4), other parameters such as the observations length scale, number of outer loops and the cumulus parameterization.

The effect of the previous parameters is evaluated through the skill of the different experiments to simulate both the amount and location of precipitation using conventional statistical techniques, categorical indices and the Receiver Operating Characteristic (ROC). However, in this study the construction of the contingency tables has been conditioned to the precipitation pattern displacement and the closeness between the observed and forecast values without considering precipitation thresholds..

The quality control method developed by the SMC is trustworthy and in the particular case occurred on October 12, 2016, it produced better results than the NCAR method. The precipitation nowcasting achieves better results when the WRF model is executed with two assimilation cycles, one in cold and another in warm with a length scale of 0.75 and 0.50 respectively, assimilating in each of these cycles radar data and conventional data (METAR and SYNOP) at the same time and with the background error CV7. The long initialization cycles, the current parameterizations used in the SMC and the use of three external loops do not improve the forecast results.

Índice

Ag	Agradecimientos			
Re	Resumen			
Ab	strac	t	XI	
1.	Mot 1.1. 1.2.	ivación e Introducción Motivación	1 1 4	
2.	Desc	cripción del módulo WRFDA	11	
	2.1.	WRF 3DVAR system	11	
	2.2.	Asimilación de la velocidad radial	19	
	2.3.	Asimilación de la reflectividad	20	
3.	Met	odología	23	
	3.1.	Configuración del Advanced Research WRF (ARW) y WRF Data		
		Assimilation (WRFDA)	23	
	3.2.	Preprocesamiento de los datos radar	27	
		3.2.1. Estructura de los datos radar	27	
		3.2.2. Control de calidad con el método de NCAR	29	
		3.2.3. Control de calidad con el método del SMC	30	
		3.2.4. Filtrado de datos radar según el método de control de		
		calidad utilizado	30	
	3.3.	Evaluación del incremento del análisis después de Three dimen-		
		sional variational (3DVAR)	32	
	3.4.	Verificación	33	
		3.4.1. Medida escalar de variables continuas	34	
		3.4.2. Medida discreta de variables categóricas	36	
		3.4.3. Medida de variables categóricas usando Receiver Opera-		
		ting Characteristic (ROC)	40	
	3.5. Experimentos			

		3.5.1.	Primera fase. Experimentos basados en el 12 de octubre de 2016	44
		3.5.2.	Segunda fase. Experimentos basados en diez casos de es-	
			tudio	46
4.	Dese	cripción	n de los diez casos de estudio y análisis de datos	49
	4.1.	Descrip	oción de los casos de estudio	49
		4.1.1.	Julio 21 y 22 de 2015 de 15 a 21 Coordinated Universal	
			Time (UTC)	49
		4.1.2.	Julio 30 de 2015 de 09 a 15 UTC	49
		4.1.3.	Noviembre 11 de 2015 de 15 a 21 UTC y de 21 a 03 UTC	50
		4.1.4.	Julio 22 de 2016 de 15 a 21 UTC	51
		4.1.5.	Julio 27 de 2016 de 15 a 21 UTC	53
		4.1.6.	Octubre 12 y 13 de 2016 de 15 a 21 UTC	53
		4.1.7.	Marzo 24 de 2017 de 21 a 03 UTC	54
	4.2.	Análisi	s de datos	55
		4.2.1.	Descripción estadística de los datos de precipitación	55
		4.2.2.	Descripción estadística de los datos radar	58
5.	Resi	ultados	y discusión	65
	5.1.	Resulta	ados de la primera fase	65
		5.1.1.	Incrementos en el Análisis	65
		5.1.2.	Validación del <i>nowcasting</i> usando variables continuas	70
		5.1.3.	Validación del <i>nowcasting</i> usando variables categóricas .	72
	5.2.	Resulta	ados de la segunda fase	80
		5.2.1. 5.2.2.	Validación de la segunda fase usando el Diagrama de Taylor Validación de la segunda fase usando el AUC del ROC	80
		-	clásico	82
		5.2.3.	Validación de la segunda fase usando el AUC del ROC	
			adaptado sin umbrales de precipitación	85
		5.2.4.	Validación de la segunda fase usando mapas ROC	88
6.	Resi	umen y	Conclusiones	91
Α.	Imp	ementa	ación del modelo WRF con asimilación de datos radar	
	en C	Colombi	а	97
	A.1.	Import	ancia del pronóstico del tiempo en la FAC	97
	A.2.	Instala	ción WRF version 3.8.1 en la FAC	99
		A.2.1.	Definición capacidades de máquina y dominios	100
		A.2.2.	Requisitos mínimos de instalación	103
	A.3.	Sistem	a de asimilación de datos	106
		A.3.1.	Asimilación de datos convencionales	106

		A.3.2. Asimilación de datos radar	107
В.	Nan	nelist del modelo Weather Research and Forecasting (WRF)	115
	B.1.	Namelist.input del ARW usado en la investigación	115
	B.2.	Namelist.input del ARW usado por el Servicio Meteorológico de	
		Cataluña (SMC)	117
	B.3.	Namelist.input del 3DVAR	120
c	Dota	alles de los resultados	123
C.		Disgrama da Taular nara las disa assas da astudia	104
	C.1.		124
	C.2.	ROC clásico para los diez casos de estudio	126
	C.3.	Nuevo ROC para los diez casos de estudio	128
	C.4.	Mapas ROC de los experimentos (Tabla 3.11)	130
Bil	bliogr	rafía	133
Lis	sta de	e acrónimos	143

Índice de figuras

2.1.	Componentes del modelo WRF. Adaptado de: NCAR (2017)	11
2.2.	WRF inicializado en frío o en caliente dependiendo del <i>back-ground</i> . Adaptado de: NCAR (2017)	13
2.3.	Método directo e indirecto utilizados en el 3DVAR para asimilar datos radar.	21
3.1.	Dominios WRF de 9 (azul) y 3 km (rojo) de resolución horizontal. La región sombreada en rojo forma parte del dominio anidado de 3 km, corresponde a la región de Cataluña y es el área sobre la cual se realizaron los procesos de validación. La cobertura máxima está representada por un círculo con línea continua para el caso del radar Creu del Vent (CDV) y por líneas discontinuas para los radares Puig Bernat (PBE), La Miranda (LMI) y Puig d 'Arques (PDA).	24
3.2.	Altura correspondiente a cada ángulo de elevación según la dis- tancia al radar con un alcance máximo de 150 km	28
3.3.	Datos de reflectividad corregida usando el <i>software</i> Interactive Radar Information System (IRIS) (Fuente: SMC) y del radar CDV a 1 y 3 km de resolución.	29
3.4.	Datos de reflectividad con 3 km de resolución después de superar los métodos de control de calidad establecidos en National Center for Atmospheric Research (NCAR) y en el SMC.	31
3.5.	Rango del HIT asociado con la posición de la observación (cua- drado negro). Cada cuadrado tiene una resolución de 3x3 km	37
3.6.	Intervalos de tolerancia utilizados en el parámetro HIT. El área azul representa el rango de coincidencia entre las observaciones y el pronóstico	38
3.7.	Ciclos de inicialización. El color verde representa que se ha reali- zado un proceso de asimilación de datos y los colores azul y rojo indican que el modelo WRF fue inicializado en frío o caliente,	
	respectivamente	44

3.8.	Ciclos (eje Y) y horas (HH) de inicialización del modelo (eje X). El color verde representa que se ha realizado un proceso de asimilación de datos y los colores azul y rojo indican que el modelo WRF fue inicializado en frío o caliente, respectivamente.	46
4.1.	Estimación Cuantitativa de la Precipitación (QPE) desde las 15 a 21 UTC de los días 21 (a) y 22 (c) junto con la situación sinóptica de las 18 UTC del 21 (b) y 22 (d) de julio de 2015. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.	50
4.2.	QPE desde las 09 a 15 UTC y situación sinóptica de las 12 UTC del 30 de julio de 2015. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.	51
4.3.	QPE desde las 15 a 21 UTC (a) y desde las 21 a 03 UTC (c) junto con la situación sinóptica de las 18 (b) y 24 (d) UTC del 11 de noviembre de 2015. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.	52
4.4.	QPE desde las 15 a 21 UTC y situación sinóptica de las 18 UTC del 22 de julio de 2016. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel	52
4.5.	QPE desde las 15 a 21 UTC y situación sinóptica de las 18 UTC del 27 de julio de 2016. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas	52
4.6.	de nivel	53
4.7.	QPE desde las 21 a 03 UTC y situación sinóptica de las 24 UTC del 24 de marzo de 2017. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.	55
4.8.	Análisis de tendencia central, variabilidad y datos extremos de la precipitación asociada a cada uno de los casos de estudio	56
4.9.	Análisis de tendencia central, variabilidad y datos extremos de los datos de reflectividad usados en los procesos de asimilación en frío y en caliente por el 3DVAR.	59
4.10.	Análisis de tendencia central, variabilidad y datos extremos de la altura asociada a los datos de reflectividad usados en los procesos de asimilación en frío y en caliente por el 3DVAR.	61

5.1.	Incrementos relativos (análisis menos <i>background</i>) causados por la asimilación de datos radar en cada uno de los niveles verticales del modelo WRF, el cual fue inicializado en frío con datos del 12 de octubre de 2016 a las 15 UTC. El eje X representa los niveles del modelo y su equivalencia en metros geopotenciales (gpm).	66
5.2.	Incrementos relativos (análisis menos <i>background</i>) causados por la asimilación de datos radar en cada uno de los niveles verticales del modelo WRF, el cual fue inicializado en frío con datos del 12 de octubre de 2016 a las 15 UTC. El eje X representa los niveles del modelo y su equivalencia en metros geopotenciales (gpm).	67
5.3.	Reflectividad máxima del radar (dBZ) a una resolución de 3 km el 12 de octubre de 2016 a las 12 UTC.	68
5.4.	Integración de los incrementos (análisis menos <i>background</i>) de la columna de $QRAIN$ (kg/m^2) producidos por los métodos de NCAR (a) y SMC (b) por punto de grilla en los experimentos 4 y 9 el 12 de octubre de 2016 a las 15 UTC, respectivamente. Incrementos relativos usando umbrales de 10% (c) y 1% (e) en el método de NCAR y del 10% (d) and 1% (f) en el método del SMC.	69
5.5.	La desviación estándar se representa por la distancia radial desde el origen, el coeficiente de correlación entre cada conjunto de datos y las observaciones por la distancia angular y el error Root Mean Squared Error (RMSE) por los semicírculos que comienza y termina en el eje X con valores de 10 y 20 mm	71
5.6.	Análisis ROC. La línea roja entre los puntos (0,0) y (1,1) repre- senta la suposición aleatoria. Los experimentos que se encuentran debajo de esta línea presentan malos resultados, incluso peores que el azar.	73
5.7.	Pronósticos de precipitación acumuladas (mm) el 12 de octubre de 2016 de 15 a 21 UTC para los 6 mejores casos según el análisis ROC	75
5.8.	Parámetros coincidentes de acuerdo con el pronóstico de preci- pitación acumulada el 12 de octubre de 2016 de 15 a 21 UTC usando la Ecuación 3.5 y la metodología difusa	76
5.9.	Clasificación categórica de los valores de precipitación (mm) se- gún el tipo de experimento (Tabla 3.10).	77
5.10.	Matriz de comparación entre los experimentos 4 (eje Y) y 9 (eje X) usando variables categóricas. El tamaño del círculo azul varía según la magnitud relativa de cada categoría.	79

5.11.	La desviación estándar se representa por la distancia radial desde el origen, el coeficiente de correlación entre cada conjunto de datos y las observaciones por la distancia angular y el error RMSE por los semicírculos que comienzan y terminan en el eje X con valores de 5, 10 y 15 mm. Ver texto.	81
5.12.	Curva ROC. La línea roja entre los puntos $(0,0)$ y $(1,1)$ representa la suposición aleatoria por debajo de la cual los resultados son considerados peores que el azar	83
5.13.	Curva ROC basada en los diez casos de estudio y construida con 10 puntos provenientes de los criterios de flexibilización de HIT y CREJ. La línea roja entre los puntos (0,0) y (1,1) representa la suposición aleatoria.	86
5.14.	AUC de mapas ROC basados en los diez casos de estudio de la Tabla 3.11. Mientras que el color verde indica una buena habilidad del modelo WRF para el <i>nowcasting</i> de precipitación en esas regiones, el color naranja señala las regiones donde el modelo produce resultados muy bajos, incluso peores que el azar	89
A.1.	Dominios de 9, 3 y 1 km para las configuraciones 1 y 2 de la Tabla A.1. Los tres círculos rojos representan la cobertura de tres radares en 100, 200 y 300 km de radio.	101
A.2.	Observaciones SYNOP y METAR que podrían ser asimiladas se- gún el dominio madre seleccionado	102
A.3.	Topografía colombiana modelada con 9 y 3 km de resolución espacial.	103
A.4.	Pronósticos operativos de 72 horas (Oper72) inicializados en frío (azul) versus Rápida Actualización del Pronóstico (RAP) con 6 horas de pronóstico inicializado en caliente (rojo). El color verde simboliza que se ha realizado un ciclo de asimilación de datos	105
A.5.	Transformación desde el formato crudo de las observaciones ME- TAR y SYNOP al formato Little_R y 3DVAR. El rectángulo di- ferenciado por colores y lineas señala las modifican realizadas a los datos de elevación, presión, temperatura, punto de rocío, di- rección y velocidad del viento en cada tipo de formato	109
A.6.	Transformación desde el formato crudo de las observaciones ti- po TEMP extraídas desde Wyoming y transformadas al formato LITTLE_R. El rectángulo diferenciado por colores y líneas se- ñala las modificaciones que sufren los datos de altura, presión, temperatura, punto de rocío, dirección y velocidad del viento	110
A.7.	Número y localización de SYNOP, METAR y sondeos asimilados el 31 de marzo de 2015 a las 12 UTC	111

A.8.	Red de radares Colombianos con cobertura de 100, 200 y 300 km de radio. En negro los radares de AND (NW), COR (N) y TAB (S). En azul intermitente los radares en proceso de instalación y en rojo el radar de Curazao con cobertura de 150, 300 y 450 km de radio.	112
A.9.	Formato requerido por el 3DVAR para asimilar los datos de velo- cidad radial y reflectividad de los tres radares colombianos TAB, COR y AND	113
A.10	. Conjunto de experimentos con simulaciones horarias de precipita- ción asimilando diferentes tipos de observaciones según la Tabla	11/
	A.S	114
C.1.	Diagrama de Taylor de experimentos en la fase dos. La desviación estándar se representa por la distancia radial desde el origen, el coeficiente de correlación entre cada conjunto de datos y las observaciones por la distancia angular y el error RMSE por los semicírculos que comienzan y terminan en el eje X.	125
C.2.	Curva ROC clásica de los experimentos en la fase dos. Los puntos de cada línea representan uno de los 100 umbrales de precipita- ción y la línea roja entre los puntos (0,0) y (1,1) representa la suposición aleatoria por debajo de la cual los resultados son con- siderados peores que el azar.	127
C.3.	Curva ROC sin umbrales de los experimentos en la fase dos en donde los puntos de cada línea representan uno de los 10 criterios de flexibilización de HIT y CREJ. La línea roja entre los puntos (0,0) y $(1,1)$ representa la suposición aleatoria por debajo de la	
C.4.	cual los resultados son considerados peores que el azar AUC de mapas ROC basados en los diez casos de estudio de la Tabla 3.11. Mientras que el color verde indica una buena habilidad del modelo WRF para el <i>nowcasting</i> de precipitación en esas regiones, el color naranja señala las regiones donde el modelo	129
	produce resultados muy bajos, incluso peores que el azar	132

Índice de Tablas

1.1.	Datos convencionales que pueden ser asimilados en WRFDA	8
2.1.	Matriz de covarianza del error del background según las variables de control utilizadas. Adaptado de: NCAR (2017).	17
3.1.	Configuración del ARW	25
3.2.	Configuración del WRFDA	26
3.3.	Características de la red radar en Cataluña	27
3.4.	Número de datos radar en el archivo ob.radar según método de	
	control de calidad utilizado	31
3.5.	Indices de variables continuas. Ver texto	35
3.6.	Tabla de contingencia	36
3.7.	Indices de variables categóricas	39
3.8.	Criterios de flexibilización de HIT para observaciones de 1, 50 y	
	100 mm	42
3.9.	Criterios de flexibilización de CREJ según caso de estudio	42
3.10	. Experimentos fase 1. Combinación de características del ARW y	15
2 1 1	SUVAR	45
2 12	Casos de estudio	47 70
J.12		40
4.1.	Análisis estadístico de los valores de precipitación de cada caso	
	de estudio	57
4.2.	Análisis estadístico de los valores de reflectividad por cada caso	<u> </u>
4.2		60
4.3.	Analisis estadístico de las alturas de reflectividad por cada caso	62
лл	Apólicie estadíctico de las alturas de reflectividad por cada caso	02
4.4.	de estudio	63
		05
5.1.	Resultados de índices estadísticos con variables continuas utili-	
	zando la metodología punto a punto	70
5.2.	Resultados de índices categóricos utilizando la metodología difusa	72

Resultados de índices categóricos utilizando metodología ROC y difusa	74
Análisis estadístico de los valores de las observaciones presentes en las categorías HIT, MISS, FA y CREJ	78
Distancia euclídea de los experimentos a los índices estadísticos del diagrama de Taylor normalizados	82
Umbrales de precipitación (mm) para el experimento ctrl_00 en el caso de estudio número tres	84
Resultados de los índices POD y POFD basados en diez casos de estudio para cada uno de los experimentos y criterios de flexibi- lización de HIT y CREJ	87
Posición general de los experimentos de la Tabla 3.11 según los tres métodos de evaluación	92
Resumen del <i>namelist.input</i> usado en las configuraciones de prueba 1 y 2	100
Pruebas de tiempo realizadas en los servidores de NCAR usando la configuración 1 y 2 con distinto número de procesadores	101
Experimentos realizados el 31 de marzo de 2015 a las 12 UTC usando el WRF y el 3DVAR con distintos tipos de observaciones	108
	Resultados de índices categóricos utilizando metodología ROC y difusa

Capítulo 1

Motivación e Introducción

La determinación es la fuerza capaz de borrar de mi corazón toda traza de envidia, ignorancia o pereza. Anónimo

1.1. Motivación

Salvaguardar y proteger la vida de los hombres y mujeres del aire, colombianos vestidos de héroes que en el día a día se despiden de sus hogares a sabiendas que arriesgarán sus vidas para defender con orgullo los intereses del Estado. Hoy surcarán nuevamente el cielo confiando su existencia a quienes desde tierra les prestan los Servicios de Tránsito Aéreo (ATS), cuyo principal objetivo es garantizar su seguridad, desde el momento preciso en que inician motores en la rampa de un aeródromo hasta que aterrizan gloriosos en su destino. Como parte de los ATS, el servicio meteorológico de la Fuerza Aérea Colombiana (FAC) facilita al piloto el cumplimiento de su misión y ayuda a mitigar el riesgo meteorológico implícito en las operaciones aéreas.

He dedicado 22 años de vida a la FAC, 18 años dentro de los ATS y 9 años como parte del Centro Meteorológico Operacional de la FAC (CMEOP), Centro desde donde se gestiona y centraliza la información meteorológica que se le suministra a las tripulaciones por intermedio de las Oficinas de Información Aeronáutica (OIA's) establecidas en cada Unidad Aérea. Mi último cargo como Especialista en Predicción Numérica del Tiempo me ha dado la experiencia suficiente para maximizar las capacidades y fortalecer las debilidades del CMEOP en su búsqueda permanente por apoyar la misión institucional. La FAC tiene como misión ejercer y mantener el dominio del espacio aéreo, conducir operaciones aéreas para la defensa de la soberanía, la independencia, la integridad del territorio nacional, el orden constitucional y el logro de los fines del Estado. La FAC garantiza, durante las 24 horas del día, la protección única y permanente del espacio aéreo nacional convirtiéndose en una Fuerza decisiva para el futuro de la paz, tranquilidad y seguridad del pueblo colombiano. El cumplimiento de la misión encomendada involucra operaciones aéreas a lo largo y ancho del territorio nacional, en donde el objetivo de la misión amerita asumir riesgos propios del tipo de operaciones que se desarrollan, tales como: interceptación y/o neutralización de aeronaves, vigilancia aérea y alerta temprana, reconocimiento armado, apoyo aéreo cercano, transporte de personal y carga hasta los sitios más recónditos del territorio nacional, búsqueda y rescate en combate, evacuación aero-médica, traslado aero-médico, vigilancia y reconocimiento, operaciones especiales contra las organizaciones al margen de la ley, etc.

Para que las aeronaves de la FAC puedan cumplir la misión minimizando el riesgo, operan constantemente bajo la supervisión, vigilancia y control de los ATS, encargados de proveerles la información necesaria para realizar operaciones aéreas de forma ordenada, ágil y segura. Consciente de los peligros meteorológicos tropicales a los que están expuestos las tripulaciones, desde 1972 la FAC ha venido utilizando la meteorología con fines misionales. Es así como se implementó el Sistema de Información Meteorológico de la FAC (SIMFAC) entre 2001 y 2006, con su posterior fortalecimiento basado en cuatro componentes principales: software, hardware, información y personas. El componente software fue fortalecido mediante la adquisición de programas especializados en el análisis de información procedentes de satélites geoestacionarios y polares, sondeos atmosféricos, radares meteorológicos, estaciones automáticas y software de visualización de datos e interacción con los usuarios finales. La incorporación de hardware fue implementada como un novedoso sistema de almacenamiento y procesamiento de información, invirtiendo recursos importantes en la simulación atmosférica. La estrategia de información y mejora de datos incluyó la adquisición de los equipos más avanzados de la época, los cuales fueron instalados en las ocho Unidades Aéreas donde no se compartía pista con la Unidad Administrativa Especial de la Aeronáutica Civil (UAEAC), una estación meteorológica portátil de alta precisión tipo Tactical Meteorological Observation System (TAC-MET), un sistema de sondeo atmosférico que opera desde 2005 integrado en la red de la World Meteorological Organization (WMO) con código 80371, tres radiómetros¹ y diferentes convenios interinstitucionales que permiten al acceso a los datos radar administrados por la UAEAC.

En su afán por mejorar la seguridad aérea, la FAC entendió que los procesos misionales solo pueden ser exitosos sin son llevados a cabo por personal capacitado, sobre todo en los campos de acción que se han determinado como fundamentales. Este es el caso de la simulación atmosférica y pronóstico del tiempo. En este aspecto, la FAC ha implementado el modelo meteorológico WRF en sus versiones 2.1, 3.5 y 3.8.1. Siendo esta última, planeada, ejecutada e implementada por personal propio de la institución donde tuve el honor de

¹Sensor que mide el perfil vertical de la humedad relativa, presión, temperatura y punto de rocío desde superficie hasta 10 km sobre el cenit del instrumento con una anchura angular de 15° y temporal de 2 minutos.

participar. Bajo esa óptica, distintos profesionales han sido capacitados en la gestión del *software*, los datos y el *hardware* de modelización.

No obstante y a pesar de todos estos esfuerzos, la FAC ha tenido numerosos incidentes y accidentes aéreos donde la meteorología ha sido considerada como factor contribuyente. Cáceres (2017) determinó que en el periodo 1985-2013 los peligros que más daños causaron en la FAC fueron la baja visibilidad, la turbulencia, el impacto con rayo y el engelamiento, con porcentajes del 31 %, 27 %, 24 % y 11 % respectivamente, razón por la cual me fue encomendada la misión de mejorar la predicción de precipitación a muy corto plazo simulada por el modelo WRF. Para la FAC es importante este horizonte temporal puesto que las seis horas antes de la programación de un vuelo es el periodo de tiempo que se tiene para la autorización del despegue y ejecución de la misión, clave para que los ATS garanticen que la aeronave pueda despegar, realizar la misión y aterrizar de forma segura en el aeródromo de destino. El impacto positivo que la asimilación de datos causa en el corto plazo hace que sea de especial interés para la FAC, considerada una herramienta fundamental para brindar información veraz que permita desarrollar operaciones aéreas de forma segura y modelar procesos atmosféricos que puedan ser utilizados en la detección de incendios, inundaciones, tormentas y todos aquellos fenómenos atmosféricos que afectan a la comunidad en general.

La poca experiencia de la FAC había causado que las dos primeras versiones del modelo WRF solo incluyeran asimilación de observaciones en superficie que se usaban con timidez e incomprensión, sin implementar métodos estadísticos o verificar el impacto de estas observaciones sobre la elaboración, diagnóstico y validación de los pronósticos operativos que se realizaban en el CMEOP. Los datos de sondeos atmosféricos, los nuevos datos procedentes de los tres radiómetros instalados en 2017 y, sobre todo, los datos provenientes de once² radares meteorológicos banda C de doble polarización, impulsaron la necesidad de apropiar el conocimiento suficiente para implementar la asimilación de estos datos en el modelo WRF de la FAC, de tal manera que se obtenga la mejor predicción a corto plazo posible con los datos que se tienen disponibles.

Aunque inicialmente esta investigación estuvo centrada en el área de Colombia y se hicieron unos avances preliminares consignados en el Apéndice A, la falta de datos de precipitación horaria impidió seguir avanzando por considerarse indispensables para la validación de las predicciones. Con el fin de vincular esta investigación con las necesidades actuales de la FAC y considerando que los datos provenientes de los radares de Colombia y Cataluña coinciden en su formato tipo IRIS, se utilizó el área de Cataluña para esta investigación conservando las parametrizaciones físicas utilizadas por la FAC. De esta manera se busca fortificar el pronóstico del tiempo y entregar a la FAC una herramienta útil y eficiente en la toma de decisiones operativas, con un modelo WRF adaptado para la asimilación

 $^{^2 {\}rm Cinco}$ radares instalados desde 2012 hasta la fecha y otros seis que serán instalados antes de 2020.

de datos radar y un procedimiento de validación e interpretación de resultados.

Los nuevos conocimientos adquiridos serán fundamentales para cumplir mis funciones como Especialista en Predicción Numérica del Tiempo, cargo creado por la FAC para garantizar la seguridad de las operaciones aéreas. También me permitirán continuar con la labor de difusión del conocimiento a los Oficiales y Suboficiales de la FAC, estudiantes de carreras universitarias afines a la aeronáutica y ciencias ambientales, y funcionarios de la UAEAC y del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). La combinación de la docencia y teoría con mi trabajo diario, me ha proporcionado una experiencia enriquecedora que me motiva a seguir investigando y poner en práctica los conocimientos adquiridos.

1.2. Introducción

La comprensión, detección, seguimiento y pronóstico de los fenómenos meteorológicos adversos que afectan a la población, forman parte de las preocupaciones de los Servicios Meteorológicos Nacionales (SMN), incidiendo en la gestión ambiental, en las políticas económicas y, principalmente, en la generación de alertas meteorológicas que podrían llegar a impedir una tragedia. En este contexto, el tiempo transcurrido entre la detección del fenómeno y la generación de la alarma puntúan la diferencia entre la vida o la muerte.

En la aeronáutica, la detección y pronóstico de los fenómenos meteorológicos tiene una aplicación particular. El pronóstico es especialmente útil porque genera en los ATS cierto nivel de confianza para restringir o permitir las operaciones aéreas bajo condiciones atmosféricas seguras en las fases de despegue, vuelo y aterrizaje; por tal motivo, los pronósticos deben contar con un alto grado de actualización y precisión que permitan una armonía entre la seguridad y el cumplimiento de los itinerarios del tráfico aéreo. En la FAC, el principal problema que afrontan los pilotos es que tienden a asumir el riesgo de volar en condiciones atmosféricas adversas en pro de proteger la vida de los colombianos y el consiguiente cumplimiento de la misión institucional.

En este orden de ideas, el pronóstico a corto plazo (normalmente de las siguientes 6 horas), llamado de aquí en adelante *nowcasting*, se convierte en una herramienta fundamental para los SMN. El *nowcasting* proporciona la información meteorológica más actualizada posible, permitiendo así la toma de decisiones acertadas y el tiempo suficiente para la consecuente ejecución de acciones que garanticen la integridad de la población.

Dentro del espectro de los fenómenos meteorológicos que más daño pueden causar a la población se encuentran los Sistemas Convectivos de Mesoescala (SCM's), conformados por nubes tipo cumulonimbus que interactúan entre sí, organizadas en forma circular o lineal (Jirak et al., 2003) y producen un área de precipitación contigua del orden de 100 km o más en escala horizontal en al menos una dirección (AMS, 2012). En EE.UU Heideman y Michael Fritsch

(1988) manifestaban que el 80 % de la precipitación significativa procedía de eventos convectivos y en Cataluña (NE de España), Llasat y Puigcerver (1997) responsabilizaban a estos eventos de más de la mitad de la precipitación anual, la cual aumentaba hasta aproximadamente un 70 % en otoño, en el periodo comprendido entre julio y octubre.

La descripción de los SCM's y su influencia en España ha sido extensamente estudiada. Rigo y Llasat (2004) desarrollaron una metodología para clasificar estos sistemas en la costa mediterránea de la Península Ibérica basada en datos radar, la posición del área convectiva y estratiforme, tamaño, duración y cantidad de precipitación causada. Investigaciones realizadas por Capel Molina (2000) indican que este tipo de fenómenos se fortalece debido a la localización geográfica de la Península Ibérica, la dirección del flujo proveniente del Océano Atlántico como resultado de la variación estacional en la circulación general de la atmósfera y la interacción entre zonas de alta y baja presión atmosférica. Cada uno de estos factores o su combinación intensifican la cantidad de precipitación en un corto periodo de tiempo causando intenso flujo de viento, inundaciones, daños materiales y pérdida de vidas humanas. Por tal motivo, identificar, analizar y pronosticar cada evento se ha convertido en uno de los retos más grandes de la actual predicción numérica del tiempo.

A medida que han aumentado las capacidades tecnológicas, los procedimientos para generar *nowcasting* han alcanzado un nivel de desarrollo importante. Wapler et al. (2018) presenta un conjunto de técnicas para la detección y seguimiento de tormentas usando datos satelitales, información estadística, algoritmos de extrapolación del flujo del viento basados en datos de radar, detección y seguimiento de la trayectoria de los rayos y, recientemente, la combinación de todos estos datos con umbrales de peligrosidad integrados a un sistema de alertas tempranas administrados por los diferentes SMN.

Teniendo en cuenta los avances en la modelización numérica a pequeña escala, los avances computacionales y la disponibilidad de observaciones con alta resolución, Lilly (1990) ya visualizaba la importancia que tendrían en el futuro la Predicción Numérica del Tiempo (NWP) en la predicción de los SCM's. Se considera NWP al uso de ordenadores para tratar de encontrar soluciones numéricas a las ecuaciones que gobiernan los procesos responsables del comportamiento del estado del tiempo basadas en la dinámica, la física, y a partir de un estado inicial conocido de la atmósfera. En la actualidad, Wapler et al. (2018) presenta las capacidades de la NWP para generar *nowcasting*, donde el continuo incremento del poder de cómputo de las últimas décadas ha permitido su uso operativo y resolver numéricamente los procesos convectivos con altas resoluciones espaciales. En este ámbito, Sun et al. (2014) resalta la importancia de asimilar datos de alta resolución, como los datos radar, en el *nowcasting* de la precipitación proveniente de la NWP.

En España, Codina et al. (1997) fueron los primeros en implementar un modelo numérico de predicción del tiempo para estudiar los SCM's. Más adelante, el modelo WRF descrito en Skamarock et al. (2008) como un modelo de NWP, fue utilizado con el fin de predecir la precipitación causada por los SCM's. En Cataluña, por ejemplo, Mercader (2010) inicializó el WRF con diferentes combinaciones microfísicas buscando las combinaciones más apropiadas y Trapero et al. (2013) lo utilizó para analizar la influencia de la cordillera de los Pirineos en los procesos de precipitación. Así mismo, el WRF fue utilizado por Arasa et al. (2016) para generar pronósticos en el Puerto de Huelva asimilando datos procedentes de sondeos atmosféricos y satélites, y por Cáceres y Codina (2018) con el fin de analizar el impacto que la asimilación de datos radar causaba sobre el *nowcasting* de los SCM's en Cataluña.

El WRF es un modelo de área limitada y alta resolución que requiere condiciones atmosféricas iniciales y de frontera provistas por modelos globales como el Global Forecast System (GFS) y el European Center for Medium-Range Weather Forecasts (ECMWF). El WRF ha sido ampliamente utilizado alrededor del mundo y debe ser adaptado y configurado de acuerdo las condiciones atmosféricas particulares de cada área o país y según su uso, el cual puede ser operativo o de investigación.

En aplicaciones operativas, la disponibilidad del pronóstico más actualizado es crucial. Por ejemplo, para un pronóstico de 60 horas, solo 48 pueden usarse en el modo operativo. Esto es debido a que el modelo GFS utiliza aproximadamente seis horas para realizar un pronóstico completo de las condiciones atmosféricas alrededor del globo y otras seis horas son usadas por el modelo WRF para producir pronósticos con alta resolución. Operativamente significa que los SMN tendrán que tomar decisiones basadas en un estado inicial de la atmósfera de 12 horas de antelación, debido a la falta de disponibilidad de datos con las condiciones atmosféricas actualizadas.

Para reducir esta brecha, el *nowcasting* basado en NWP se concentra en pronósticos a muy corto plazo, como por ejemplo nueve horas, en donde operativamente solo se utilizarán las últimas seis. Las primeras tres horas serán utilizadas para los cálculos numéricos requeridos por los modelos GFS y WRF.

Debido a que la investigación está centrada en *nowcasting* con horizonte de pronóstico de nueve horas, uno de los problemas que enfrenta es el *spin-up*³, profundizado por 1) una brecha más corta entre las horas operativas y la hora de inicialización del modelo WRF, y por 2) la falta de hidrometeoros al inicializar el modelo, causando retrasos en la aparición de la precipitación (Schwitalla y Wulfmeyer, 2014). Para evitar el *spin-up* sin utilizar asimilación de datos, en Cataluña por ejemplo, Montornès (2015) corrió el WRF sin considerar las primeras 6 horas de pronóstico y Udina et al. (2017) descartó las primeras 24 de 48 horas de pronóstico.

Para pronósticos a corto plazo es extremadamente importante considerar que el modelo WRF es sensible a las pequeñas perturbaciones producidas al inicializar

 $^{^{3}\}mbox{Desequilibrio}$ entre las diferentes variables del modelo durante las primeras horas de pronóstico.

el modelo y, en consecuencia, el error del pronóstico está altamente relacionado con las parametrizaciones físicas del modelo y con las condiciones iniciales, siendo extremadamente necesario que estas últimas sean lo más cercanas posible a la realidad (Barker et al., 2003, 2004).

La asimilación de datos juega un rol importante en la obtención de un estado inicial de la atmósfera más preciso (Courtier et al., 1998; Barker et al., 2003; Sugimoto et al., 2009) y en minimizar el tiempo de *spin-up* mediante un fuerte ciclo de asimilación (Skamarock, 2004; Jankov et al., 2007; Kain et al., 2010; Yang et al., 2011); contribuyendo, por lo tanto, con el uso operativo de las últimas 6 horas de un pronóstico de 9 horas y, consecuentemente, con un mejor *nowcasting*.

La relación entre el *spin-up* y la asimilación de datos pone a consideración la manera de usar el *nowcasting*, debido a que un fuerte proceso de asimilación podría presentar mejores resultados que los obtenidos con variables equilibradas desde modelos inicializados con más de 12 horas de anterioridad, los cuales usualmente presentan peores resultados. El propósito de usar modelos inicializados solo con tres horas de anterioridad es maximizar la influencia de la asimilación de datos y generar un *nowcasting* actualizado que pueda ser implementado en los SMN como parte de un sistema integrado de alertas tempranas con un fuerte componente de asimilación de datos.

En el modelo WRF, la asimilación de observaciones es realizada por el WRF-DA, el cual puede ser utilizado usando 3DVAR, de acuerdo a Barker et al. (2004), o Four dimensional variational (4DVAR) siguiendo Huang et al. (2009). En cualquier caso, el WRFDA tiene como función generar un nuevo, actualizado y mejorado estado inicial de la atmósfera llamado análisis (Sokol y Pešice, 2009), el cual requiere un *background*⁴, la asimilación de observaciones y el error asociado a cada uno de estos dos componentes. Cuando el *background* proviene de modelos globales se dice que el modelo WRF es inicializado en frío y cuando proviene de pronósticos previos del mismo WRF, se considera que el modelo es inicializado en caliente. Una extensiva descripción del WRFDA puede ser encontrada en Barker et al. (2012).

El WRFDA tiene la capacidad de asimilar observaciones convencionales⁵ y no convencionales⁶. Las observaciones convencionales más utilizadas están cifradas en claves meteorológicas (WMO, 2016), siempre están escritas en hora UTC y provienen de datos en tierra, mar y aire (Tabla 1.1).

Algunas de estas observaciones tienen la ventaja de ser tomadas muy cerca de la superficie donde comienzan los procesos de calentamiento y convección. Aún así, tienen dos grandes desventajas:

⁴Cualquier estado inicial de la atmósfera procedente de NWP en donde el WRF aún no ha realizado asimilación de datos.

⁵Datos tomados en el lugar de la observación que mantienen una correspondencia directa con las variables meteorológicas implementadas en el WRF.

⁶Datos tomados usando sensores remotos sin que tengan una correspondencia directa con las variables meteorológicas implementadas en el WRF.

Clave Met	Procedencia	Disponibilidad	Datos asimilados
SYNOP	estación sinóp- tica	00, 06, 12 y 18 UTC	presión, temperatura, hu- medad y velocidad e inten- sidad del viento en superfi- cie y a 10 metros
METAR	estación auto- mática de ae- ródromo	horaria	presión, temperatura, hu- medad y velocidad e inten- sidad del viento en superfi- cie y a 10 metros
SHIP	barcos	a requerimiento	presión, temperatura, hu- medad y velocidad e inten- sidad del viento en superfi- cie y a 10 metros
BUOY	boyas fijas y a la deriva	cada 20 minutos	presión, temperatura, direc- ción e intensidad del viento en superficie
ТЕМР	radiosondas	00 y 12 UTC	temperatura, humedad, presión, dirección e intensi- dad del viento en diferentes niveles de la atmósfera
PROFILERS	perfiladores de viento	cada 5 minutos	dirección e intensidad del viento en los distintos nive- les de la atmósfera

Tabla 1.1: Datos convencionales que pueden ser asimilados en WRFDA

- Distribución espacial heterogénea. Los datos de superficie procedentes del Informe Meteorológico de Rutina de Aeródromo (METAR) y del Informe de observación de superficie desde una estación terrestre fija (SYNOP) están concentrados en las ciudades principales y áreas más pobladas.
- Escasez y disponibilidad de datos en altura. Cada país cuenta con muy pocos puntos donde se realiza un Informe de presión, temperatura, humedad y viento en altura desde una estación terrestre fija (TEMP) y su disponibilidad temporal varía entre uno y dos lanzamientos diarios. En Colombia, por ejemplo, solo se realizan sondeos a las 12 UTC.

A diferencia de los datos convencionales que tienden a ser escasos y con una distribución heterogénea, los datos radar son interpolados a una grilla horizontal y vertical desde la cual son asimilados de forma homogénea. Adicionalmente proveen observaciones en alta resolución y en las tres dimensiones, favoreciendo la representación de los procesos convectivos y, por consiguiente, de la estructura de una tormenta formada en minutos que, de otra manera, no lograría ser representada por los fenómenos de gran escala ni por la asimilación de datos convencionales. Como la asimilación de datos radar causa importantes modificaciones en el *background* debido a su alta resolución y afectación en todos los niveles donde se desarrollan las tormentas convectivas (Wakimoto et al., 2004), cabe esperar un efecto muy positivo en el *nowcasting* de la precipitación asociada a estos fenómenos (Xiao et al., 2005, 2007; Sugimoto et al., 2009; Sun et al., 2014; Cáceres y Codina, 2018).

No obstante, los datos satelitales y de radar tienen la desventaja de no poder ser directamente comparados con las variables del modelo (temperatura, humedad, viento, etc), lo que implica un desarrollo adicional que permita inferir sus equivalencias con las variables del satélite (radiancia) y del radar (reflectividad y velocidad radial). Park y Zupanski (2003), Dance (2004) y Sun (2005b) resumen muchas de las técnicas utilizadas para la asimilación de datos radar en modelos numéricos de alta resolución y área limitada.

Aunque autores como Sun y Wang (2013a) han demostrado que los resultados del *nowcasting* pueden ser más efectivos usando asimilación de datos radar con 4DVAR, este sistema no será utilizado por su alto costo computacional asociado a su baja aplicabilidad en el ámbito operativo. Por el contrario, el 3DVAR no requiere mayor tiempo de cómputo y será utilizado en esta investigación para modificar el *background*. Aunque el 3DVAR tiene la capacidad de asimilar datos radar usando las técnicas de Xiao et al. (2007) o Wang et al. (2013), esta investigación utiliza solo la técnica de Wang et al. (2013) para asimilar datos radar y la la metodología de Xiao et al. (2005) para asimilar datos de velocidad radial.

El impacto que la asimilación radar causa sobre el pronóstico de precipitación realizado por el modelo WRF cuando es inicializado en frío o en caliente, puede ser maximizada ajustando (entre 0 y 1) el parámetro de *length scale*, que representa el radio de influencia de una observación alrededor de su posición, calculado en puntos de malla (Descombes et al., 2015). Aunque Sun et al. (2016) estableció que un *length scale* de 0.5 podría acabar mejorando el pronóstico, sigue siendo necesario un ajuste previo para cada área de estudio y no es claro si este parámetro afecta por igual a las simulaciones inicializadas en frío o caliente.

La efectividad del modelo WRF para realizar pronósticos de precipitación acumulada en 6 horas y el impacto que la asimilación radar causa sobre los resultados, son analizados en 10 eventos de precipitación extrema en Cataluña durante el periodo 2015-2017, en donde en algunos casos se registraron máximos de hasta 284.3 mm de precipitación acumulada en 6 horas.

La metodología de validación se lleva a cabo de dos maneras diferentes: 1) usando índices que utilizan variables continuas tradicionales como el Mean Error (ME), Mean Absolute Error (MAE), Mean Squared Error (MSE) y RM-SE y 2) usando índices compuestos por variables categóricas como el Frequency Bias (BIAS), False Alarm Ratio (FAR), Critical Success Index (CSI), Proportion Correct (PC), Probability of Detection (POD) y Probability of False Detection (POFD) que, aunque siguen la metodología propuesta por Stanski et al. (1989) y Ebert (2008), las tablas de contingencia se construyen con una nueva técnica propuesta en esta investigación facilitando la toma de decisiones operativas. Finalmente todos los experimentos serán clasificados siguiendo un modelo logístico basado en el análisis ROC descrito en Fawcett (2006). Para la generación de los índices mencionados, la variable precipitación es interpolada y comparada contra un QPE del área de estudio. Tanto los pronósticos de precipitación como las observaciones, son interpolados a una malla de 0.025° por 0.025° desde la cual se realizan todas las validaciones.

El QPE es la precipitación derivada del Hydrometeorological Integrated Forecasting Tool (EHIMI), el cual combina en un mismo producto la precipitación estimada a partir de la reflectividad radar y las observaciones de precipitación tomadas de la red de estaciones meteorológicas automáticas de Cataluña. El producto EHIMI (Sánchez et al., 2002; Bech et al., 2005; Trapero et al., 2009; Rigo et al., 2013) fue desarrollado por el SMC en colaboración con la Agencia Catalana del Agua. Bech et al. (2004) realizan una explicación detallada de los elementos y características que componen la red radar en Cataluña y Trapero et al. (2009) encuentran que el producto EHIMI tiende a subestimar la precipitación debido a bloqueos orográficos que pueden llegar a ser mayores al 40 % al Norte de Cataluña debido a la Cordillera de los Pirineos.

El objetivo principal de la investigación es maximizar el impacto positivo de la asimilación radar sobre el *nowcasting* de precipitación extrema usando una adecuada configuración del WRFDA, de tal manera que pueda ser implementado de modo operativo en los SMN

Los objetivos secundarios son: 1) establecer si el método de control de calidad que permite al SMC asimilar datos radar dentro de modelo WRF causa resultados positivos sobre el *nowcasting* de precipitación y, por tanto, podría ser usado de manera operativa, 2) determinar cuál ciclo de inicialización del WRF podría ser más efectivo para implementar de manera operativa, 3) optimizar el análisis mediante la mejor técnica de combinación de datos radar y datos convencionales, 4) encontrar la mejor configuración posible del módulo WRFDA, 5) encontrar las áreas geográficas donde el modelo tiende a ser más efectivo en el pronóstico de precipitación.

La tesis está organizada en seis capítulos y tres apéndices: el capitulo 1 corresponde a la motivación e introducción; el capítulo 2 describe las características principales del 3DVAR enfocado a la asimilación de datos radar; el capítulo 3 introduce la metodología utilizada para alcanzar cada uno de los objetivos propuestos; el capítulo 4 describe los casos de estudio y se hace un análisis de los datos utilizados; el capítulo 5 presenta los resultados obtenidos y el capítulo 6 expone las conclusiones finales de la investigación. Finalmente, el apéndice A resume la implementación del modelo WRF en la FAC usando asimilación de datos radar, el apéndice B describe los diferentes *namelist* del WRF utilizados en la investigación y el apéndice C detalla los resultados encontrados.

Capítulo 2

Descripción del módulo WRFDA

Una palabra bien elegida puede economizar no sólo cien palabras sino cien pensamientos.

Poincaré, Henri

2.1. WRF 3DVAR system

El modelo WRF (Fig. 2.1) es un NWP mesoescalar no hidrostático desarrollado por el NCAR con el fin de simular las condiciones atmosféricas del tiempo. El WRF incluye tres módulos: El WRF Data Assimilation System (WRFDA), el WRF Preprocessing System (WPS) y el ARW.

Figura 2.1: Componentes del modelo WRF. Adaptado de: NCAR (2017).

El WPS es el modulo que enlaza al WRF con los datos externos del modelo.
Su función principal es preparar los datos iniciales provenientes de otros modelos para que puedan ser interpretados por el ARW. El WPS está compuesto por tres programas: *geogrid, ungrib y metgrid*, los cuales tienen asignadas funciones específicas:

- Geogrid: define la posición, resolución y puntos de grilla de cada dominio así como los datos estáticos y el tipo de proyección utilizada para interpolar estos datos a cada punto de grilla. Genera un archivo geo.em.nc por cada dominio utilizado. Si los dominios no cambian solo es necesario correr el programa geogrid una sola vez.
- Ungrib: extracta los datos meteorológicos en formato GRIB proporcionados por otros modelos (Ej. el modelo GFS) y genera archivos de salida en un formato intermedio propio del WRF, con el prefijo FILE, diferenciados por el año (AA), mes (MM), día (DD) y hora UTC (HH). Ejemplo: FILE:YYYY-MM-DD_HH. El parámetro *out_format* del *namelist* del *ungrib* es usado para seleccionar el formato de los datos intermedios que se escribirá mediante *ungrib* con tres tipos de formatos intermedios: 1) el formato WPS, recomendado por el manual de usuario con información adicional útil para los programas posteriores, 2) el formato SI, que corresponde a un formato anterior del modelo WRF y 3) el formato MM5, el cual fue incluido para proporcionar datos GRIB2 al modelo MM5.
- Metgrid: utiliza los archivos de salida de geogrid y ungrib. Interpola horizontalmente los datos extraídos por ungrib a los dominios previamente establecidos por geogrid. Genera archivos netCDF identificados con el prefijo met_em y el dominio para el cual fueron generados. Ejemplo: met em.d01.YYYY-MM-DD HH:00:00.nc.

El ARW es el componente principal del modelo WRF y tiene como función simular el comportamiento futuro de la atmósfera a partir de en un estado inicial conocido mediante la resolución de ecuaciones dinámicas y termodinámicas (Holton y Hakim, 2013) que, al no tener solución analítica, requieren métodos numéricos para ser resueltas en cada uno de los puntos de grilla del modelo. El ARW puede ser utilizado en investigación, simulaciones idealizadas y tiempo real (Skamarock et al., 2008) con escalas que van desde algunos metros hasta cientos de kilómetros.

Cuando el modelo WRF es utilizado operativamente como un modelo mosoescalar de área limitada, requiere condiciones iniciales y de frontera conocidas suministradas por un modelo global; es decir, requiere ser inicializado a partir de condiciones atmosféricas conocidas. Este proceso es realizado por el programa *real*, quien a partir de los datos provenientes del programa *metgrid* inicializa el ARW generando las condiciones de frontera (wrfbdy_d01) y las condiciones iniciales de cada dominio (*wrfinput*). Pero el ARW también puede ser utilizado por la comunidad científica para investigar nuevas técnicas de predicción sin necesidad de partir de condiciones reales, en este caso se utilizan condiciones utópicas (ideales) que no requieren el modulo WPS y las funciones del programa *real* son realizadas por el programa *ideal*.

En cualquier caso, los modelos numéricos no son exactos a la hora de simular y pronosticar las condiciones atmosféricas, necesitan partir de un primer estado inicial de la atmósfera (análisis) que requiere ser ajustado convenientemente. Es así como muchos de los modelos de mesoescala usan la técnica de asimilación de datos para corregir la simulación inicial y están en capacidad de asimilar datos reales provenientes de estaciones en tierra, satélites, boyas meteorológicas, radiosondas y radares meteorológicos. Esta investigación diferencia dos tipos de ese estado inicial: en adelante se llamará análisis¹ a las condiciones iniciales que han sido mezcladas con observaciones a través de un proceso de asimilación de datos realizado en el WRFDA, y se llamará $background^2$ a las condiciones iniciales que aún no han sido mezcladas con las observaciones. También se diferenciará cuando el modelo sea inicializado en frío, con un *background (wrfinput)* obtenido a través de modelos globales, del módulo WPS y del programa real, o cuando el modelo sea inicializado en caliente (también conocido como cíclico) con background (wrfoutput) procedente de pronósticos del mismo WRF (Fig. 2.2).

Figura 2.2: WRF inicializado en frío o en caliente dependiendo del *background*. Adaptado de: NCAR (2017).

La diferencia entre inicializar el WRF partiendo de un *background* o de un análisis es que este último pretende disminuir el error suministrando condiciones iniciales más cercanas a la realidad. Si bien todo pronóstico tiene asociado errores que se desean disminuir, dichas fuentes de error provienen en gran parte de la resolución del modelo, del dominio escogido, de la orografía y de las parametrizaciones físicas, entre otros; sin embargo, es bien sabido y aceptado que las condiciones iniciales aportan gran parte del error; por ende, la idea general de todo sistema de asimilación es mejorar las condiciones iniciales para obtener un mejor pronóstico. A diferencia de los dos primeros módulos, El WRFDA pue-

¹También conocido como best guess

²También conocido como first guess

de utilizarse de forma optativa como una manera de alcanzar dicho propósito (Barker et al., 2004, 2012).

Como se observa en la Figura 2.1, el WRF incluye un programa llamado Observation Preprocessor (OBSPROC) que tiene como función realizar un control de calidad sobre las observaciones convencionales asimiladas y reescribir los datos de entrada (en formato LITTLE_R³) a un archivo de salida obs_gts_YYYY-MM-DD_HH:00:00.3DVAR que debe ser renombrado como ob.ascci para que pueda ser interpretado por el el WRFDA. Como los datos de entrada pueden estar escritos en una gran variedad de formatos (ASCII, BUFR, PREPBUFR, MADIS and HDF), el usuario debe transformarlos al formato LITTLE_R requerido por OBSPROC. Las observaciones no convencionales (datos satelitales y radar) no son interpretadas por este programa, razón por la cual se requiere un método propio de control de calidad y transformación de datos que supla las funciones de OBSPROC y permita el suministro de la mayor cantidad de observaciones posibles al WRFDA.

Un sistema de asimilación combina toda la información disponible del estado de la atmósfera en un tiempo inicial para producir un estimado de las condiciones atmosféricas validas en cierto periodo de tiempo. Se espera que el resultado de esa combinación sea más completo, actualizado y represente mejor las condiciones iniciales de la atmósfera que lo que se podría obtener con el *background* y las observaciones por separado (Barker et al., 2004; Skamarock et al., 2008).

Generar un nuevo análisis basado en la observación ocasionaría muchas fuentes de error difíciles de identificar; por ello, la asimilación variacional utilizada por el 3DVAR parte del principio básico de considerar el *background* como un buen punto de partida, requiriendo tan solo de pequeños ajustes en algunas variables del modelo sin que se cause con esto un desequilibrio en el estado general de la atmósfera. El 3DVAR compara las observaciones con su contraparte en el *background* obteniendo los valores que representan las diferencias entre ellas. Tales diferencias fueron llamadas por Barker et al. (2004) vector innovación, enfrentando dos problemas principales: 1) determinar cuál de los dos valores representa mejor las condiciones iniciales de la atmósfera para incrementar o disminuir el valor del *background*, y 2) definir cuánto debe variar el *background* para causar el mayor impacto positivo posible sin crear un desequilibrio con las otras variables del modelo.

El 3DVAR soluciona el primer problema mediante la inclusión de una función de costo⁴ y un error estadístico, tanto del *background* como de las observaciones, que determinará el peso asociado a cada valor. Para resolver el segundo problema, el método variacional minimiza la función de costo con el fin de aumentar o disminuir los valores del *background* lo mínimo posible basado en las

³Formato de texto.

⁴También llamada función de penalización puesto penaliza las diferencias entre el análisis y el *background* y entre el análisis y las observaciones según el error asociado a cada una de ellas.

observaciones. Para lograrlo, utiliza una función de costo cuadrática precondicionando el problema de la minimización a fin de obtener una rápida convergencia (Courtier et al., 1994) y garantizando un único resultado (Ide et al., 1997; Barker et al., 2004) y una varianza del análisis menor que la suma de las varianzas del background y las observaciones:

$$J(\delta x^{a}) = J^{b} + J^{o}$$

= $\frac{1}{2}(x^{a} - x^{b})^{T}\mathbf{B}^{-1}(x^{a} - x^{b}) + \frac{1}{2}[H(x^{a}) - y^{o}]^{T}\mathbf{R}^{-1}[H(x^{a}) - y^{o}],$
(2.1)

Donde:

 x^a : análisis

x^b: *background* completo⁵

H: operador no lineal de la observación

 y^o : observación

- R: matriz de covarianza del error de observación
- B: matriz de covarianza del error del background completo

La solución de la función de costo representa el mínimo incremento del análisis δx^a , el cual es agregado al *background* x^b para obtener un análisis

$$x^a = x^b + \delta x^a. \tag{2.2}$$

El operador no lineal H es una especie de puente entre las variables del modelo que genera a su vez un error **R** producto de: 1) actuar como simple interpolador entre los valores de los puntos de grilla del modelo y la ubicación de la observación o como 2) algoritmo de transformación que relaciona las variables del modelo con su equivalencia en términos de la observación.

Aunque H permite comparar las observaciones con las variables del modelo, introduce un error **R** causado por la transformación de las variables en el análisis x^a a su equivalente valor en términos de observación. La ecuación cuadrática 2.1 asume una función de distribución de probabilidad gaussiana en **R** y **B** cuando H es usado en su forma lineal H' (Barker et al., 2004).

El problema con la Ecuación 2.1 es el costo computacional de resolver J^b con el *background* completo x^b y la matriz de covarianza del error del *background* completo B. Una solución practica es simplificar J^b y B de tal manera que puedan ser representados solo por un grupo de variables denominadas variables de control v vía las aproximaciones 2.3 y 2.4:

$$J^b = x^a - x^b \simeq Uv. \tag{2.3}$$

⁵Se considera que el *background* es completo cuando se usan todas las variables en cada uno de los puntos de grilla del modelo.

$$\mathbf{B} = \sqrt{\mathbf{B}^T} \sqrt{\mathbf{B}} \simeq U^T U. \tag{2.4}$$

Utilizando la Ecuación 2.4, el 3DVAR incorpora un **B** que no depende de las variables del modelo, sino que es computado basado en las *variables de control* bajo la condición que la relación entre el error de sus componentes sea despreciable. También se utiliza a U como un operador de transformación lineal que representa la descomposición de **B** en sus componentes físico U_p , vertical U_v y horizontal U_h .

El incremento variacional vía variables de control también incluye el uso del vector innovación $y^{o'}$ (Barker et al., 2004) calculado como la diferencia entre las observaciones y el background que ha sido previamente transformado por el operador no lineal y por lo tanto

$$y^{o'} = y^o - H(x^b).$$
(2.5)

Utilizando las aproximaciones 2.3 y 2.4 junto con el vector innovación 2.5, la Ecuación 2.1 puede ser reescrita en términos de *variables de control* como:

$$J(v) = \frac{1}{2}(x^{a} - x^{b})^{T}\mathbf{B}^{-1}(x^{a} - x^{b}) + \frac{1}{2}[H(x^{a} - x^{b}) - y^{o'}]^{T}\mathbf{R}^{-1}[H(x^{a} - x^{b}) - y^{o'}]$$

= $\frac{1}{2}v^{T}v + \frac{1}{2}[H'(Uv - y^{o'}]^{T}\mathbf{R}^{-1}[H'(Uv) - y^{o'}].$
(2.6)

La función de costo final dada por la Ecuación 2.6 permite un rápido proceso de asimilación en el 3DVAR favoreciendo numerosas aplicaciones operativas y transforma la Ecuación 2.2 en $x^A = x^b + Uv$. Sin embargo, la equivalencia $\mathbf{B} = UU^T$ y el uso de variables de control implica una posible perdida de información y, en consecuencia, una subestimación de B, especialmente cuando los componentes del viento (u, v) son transformados a su equivalente en términos de las variables de control: función de corriente y velocidad potencial. La solución planteada por el WRFDA es permitir al usuario ajustar manualmente la relación entre las variables del modelo y las variables de control (Wang et al., 2014) mediante la manipulación de dos parámetros asociados a las variables de control: 1) el var scaling que controla la varianza máxima permitida entre el background y las observaciones y 2) el length scaling, el cual es calculado a través de la varianza de cada variable y representa el radio de influencia calculado para cada punto de grilla alrededor de la observación (Descombes et al., 2015). Por ejemplo, ajustar un valor de 0.25 en la escala de longitud de alguna de las variables de control, implicaría una reducción del 75% de su valor original obtenido en el cálculo de B y ajustarlo a 2.0, lo incrementaría al 100%. Lo mismo sucedería con el parámetro de varianza.

Inicialmente el 3DVAR calcula la función de costo con al menos un *outer* loop. Esto significa que utiliza el operador no lineal de la observación H para computar $y^o - H(x^b)$. Las observaciones son rechazadas si la diferencia entre el background y las observaciones (O - B) son mayores que el umbral establecido en el parámetro check_max_iv definido como cinco veces el error de la observación. A pesar de que este primer paso asume que el *background* es correcto (preciso), se corre el riesgo de rechazar buenos valores de las observaciones por este criterio. Por ende, un segundo *outer loop* puede ser usado como control de calidad, el cual permitiría aceptar las observaciones si al restarlas al análisis (O - A) superan el umbral establecido en el primer *outer loop*.

Después de un primer cálculo no lineal, son necesarios varios *inner loops* (usando H') para computar $y^o - H'(x^b)$ (Courtier et al., 1994) con el método del gradiente conjugado⁶ (Shewchuk, 1994) el cual restringe los *inner loops* del 3DVAR para que sean completamente lineales (Skamarock et al., 2008).

En el 3DVAR el usuario puede escoger entre cuatro tipos de matriz de covarianza del error **B** diferenciados por el conjunto de Variables de Control (CV) que componen la matriz. Los predeterminados conjuntos de variables de control CV3, CV5, CV6 y CV7 son indicados en la Tabla 2.1 según la guía de usuario del WRFDA (NCAR, 2017).

Tabla 2.1: Matriz de covarianza del error del background según las variables de control utilizadas. Adaptado de: NCAR (2017).

Error B		cv_options				
CV3	ψ ,	χ_u ,	T_u ,	q,	$P_{s,u}$	3
CV5	ψ ,	χ_u ,	T_u ,	RH_s ,	$P_{s,u}$	5
CV6	ψ ,	χ_u ,	T_{u} ,	$RH_{s,u}$,	$P_{s,u}$	6
CV7	<i>u</i> ,	v,	Τ,	RH_s ,	P_s	7

 ψ : función de corriente

 χ_u : velocidad potencial desbalanceada*

 T_u : temperatura desbalanceada*

11	•	tomnoratura
1	•	lemperatura

 $RH_{s,u}$: pseudo humedad relativa desbalanceada*

RH_s: pseudo humedad relativa

q: humedad específica

 $P_{s,u}$: presión en superficie desbalanceada*

 P_s : presión en superficie

u, v: componentes del viento

*La parte desbalanceada de velocidad potencial, temperatura, humedad relativa y presión se calculan restando su parte equilibrada de la función de corriente. Descombes et al. (2015) las define como perturbaciones no correlacionadas derivadas a partir de regresiones lineales que retiran la parte balanceada de otras variables de perturbación.

⁶Método iterativo que sirve para resolver numéricamente los sistemas de ecuaciones lineales cuyas matrices son simétricas

Mientras el CV3 es suministrado por NCAR como un error genérico y global B que puede ser utilizado para cualquier área y dominio, el uso de un conjunto de *variables de control* distintas tiene implícito la generación de un nuevo B que debe ser calculado por el usuario, usualmente usando el método desarrollado por el National Meteorological Center (NMC) descrito en Parrish y Derber (1992) como una manera de obtener un promedio estadístico del error en las *variables de control*. Aunque es posible utilizar el CV3 en numerosas aplicaciones, es plenamente aceptado que generar un error de covarianza específico para cada dominio genera mejores resultados (NCAR, 2017). La matriz del error de covarianza del *background* se define como:

$$\mathbf{B} = \overline{\epsilon \epsilon^T} \simeq \overline{x' x'^T},\tag{2.7}$$

donde el error verdadero del background ϵ no es conocido, debiendo ser estadísticamente estimado por un estado perturbado del modelo x'. La barra superior indica el promedio en tiempo y espacio. El método del NMC calcula esta perturbación (error) mediante la diferencia de dos pronósticos inicializados en diferentes momentos pero con horizontes de pronóstico coincidentes en un mismo periodo; de tal manera que $x' = x^{t1} - x^{t2}$, t1 y t2 representan diferentes tiempos de inicialización del modelo.

El cálculo del CV3, por ejemplo, es estimado en cada uno de los puntos de grilla del modelo GFS sobre 357 casos distribuidos en un periodo de un año usando el método del NMC con diferencias de 24 y 48 horas. Aunque en modelos regionales suelen usarse 12 y 24 horas de diferencia para eliminar el error del ciclo diurno modelado, también pueden utilizarse solo 6 horas de diferencia (Bannister, 2008), tal cual como se ha hecho en este estudio, en el que se realizaron cuatro pronósticos diarios (00, 06, 12 y 18 UTC) durante un mes con un horizonte de 12 horas, donde las 6 horas en común entre un pronóstico y el siguiente fueron usadas para calcular el error del pronóstico de acuerdo a:

$$\mathbf{B} = \overline{(x^{f12} - x^{f06})(x^{f12} - x^{f06})^T},$$
(2.8)

donde x^{f12} and x^{f06} representan las horas en común entre pronósticos consecutivos inicializados con 12 y 06 horas de diferencia.

El WRFDA cuenta con una herramienta externa llamada gen_be que ayuda al usuario a generar el **B** requerido por el 3DVAR para su área específica. Tiene como finalidad transformar la matriz del error de varianza de las variables del modelo a una matriz definida en términos de las variables de control utilizando el operador U. La utilidad gen_be realiza principalmente cinco etapas (Skamarock et al., 2008):

1. Etapa 0: Transforma datos del modelo a perturbaciones⁷ estándar y me-

⁷Estas perturbaciones están dadas para cada una de las variables de control en cada uno de los puntos de grilla del modelo (i, j, k)

tadatos.

- 2. Etapa 1: Calcula la covarianza entre las variables de control.
- 3. Etapa 2: Realiza la transformación física (U_p). Calcula los coeficientes de regresión lineales usando una correlación multivariada entre la función de corriente y las otras variables (velocidad potencial, temperatura y presión en superficie), y transforma los incrementos de las variables del modelo a incrementos en términos de variables de control (Wang et al., 2014). Si las variables de control incluidas en CV7 fueran usadas, se evitaría la correlación multivariada en U_p sin que se afectara negativamente el pronóstico de la precipitación (Sun et al., 2016).
- 4. Etapa 3: Realiza la transformación vertical (U_v) . Calcula el error de correlación vertical en los niveles del modelo usando una Empirical Orthogonal Function (EOF) para cada variable de control. En esta etapa se generan promedios de todo el dominio o valores locales de los niveles verticales que sirven para generar varianzas homogéneas (promedio) u heterogéneas (locales).
- 5. Etapa 4: Realiza la transformación horizontal (U_h) . Calcula el error de correlación horizontal mediante filtros recursivos (Hayden y Purser, 1995) y utiliza la varianza de cada variable y la varianza de su segunda derivada para estimar qué tanto afecta la observación a los puntos a su alrededor asumiendo una longitud de escala con covarianzas homogéneas e isotrópicas (Purser et al., 2003a) o heterogéneas y anisotrópicas (Purser et al., 2003b). El error es computado entre cada uno de los puntos de grilla como una función de distancia en un campo 2D que permite una correlacionada longitud de escala.

2.2. Asimilación de la velocidad radial

Con el objetivo de utilizar datos de radar como parte del sistema de asimilación y obtener un impacto positivo en el *nowcasting* de precipitación, Xiao et al. (2005) modificaron el 3DVAR de tal manera que fuera posible incluir incrementos de velocidad vertical w combinando la ecuación de la continuidad, termodinámica e hidrostática en una única ecuación balanceada. El operador lineal de observación de velocidad radial Doppler (Ecuación 2.9) presenta la relación entre la velocidad radial V_r y la velocidad terminal de agua de lluvia $v_t(m/s)$. Esta última obtenida a partir de la proporción de mezcla del agua de lluvia q_r y calculada según Sun y Crook (1997)

$$V_r = u \frac{x - x^o}{r} + v \frac{y - y^o}{r} + (w - v_t) \frac{z - z^o}{r},$$

$$v_t = 5.40 (p_s/\bar{p})^{0.4} (q_r)^{0.125},$$
(2.9)

donde:	
u, v, w:	campos de velocidad cartesiana $\left(m/s ight)$
x, y, z:	posición del radar
x^o, y^o, z^o :	posición de la observación
r:	distancia entre el radar y la observación
p_s :	presión en superficie
$ar{p}$:	presión de referencia
q_r :	proporción de mezcla del agua de lluvia $\left(g/kg\right)$

También fue necesario incluir q_r y proporción de mezcla de agua de nube en el *background* desde inicializaciones en caliente, debido a que las inicializaciones en frío usualmente no contienen estas variables. Aun cuando el operador de la observación V_r es lineal, la dependencia entre v_t and q_r también necesita ser lineal para obtener un definitivo operador lineal (Sun y Wang, 2013b).

2.3. Asimilación de la reflectividad

Desde la versión 3.7 de WRFDA hay dos maneras diferentes de asimilar reflectividad Z (Figura 2.3). El primer método fue propuesto por Xiao et al. (2007) en el cual se introduce la proporción de mezcla de agua total q_t como una nueva variable de control, cuyo incremento es dividido a través de una partición de hidrometeoros entre las proporciones de mezcla del agua en la nube q_c , vapor de agua q_v y agua de lluvia q_r . Este método solo involucra hidrometeoros con procesos de formación cálidos donde la temperatura siempre es superior a 0°C, razón por la cual se recomienda incorporar reflectividades por debajo de 5 km. Este método relaciona Z y q_r mediante el operador no lineal de la observación propuesto por Sun y Crook (1997):

$$Z = 43.1 + 17.5 \log(\rho q_r). \tag{2.10}$$

En la Ecuación 2.10, Z es medida en dBZ, la densidad del aire ρ en kg/m^3 y q_r en g/kg. Este método es conocido como el método directo debido a que las observaciones de reflectividad Z_o ingresan directamente al 3DVAR sin sufrir ningún tipo de transformación previa. De esta manera es contrastada con la reflectividad simulada por el modelo Z_a permitiendo calcular el término J^o de la Ecuación 2.1 como:

$$J^{o} = \frac{1}{2} [H(Z^{a}) - Z^{o}]^{T} \mathbf{R}_{z}^{-1} [H(Z^{a}) - Z^{o}], \qquad (2.11)$$

La segunda opción para asimilar reflectividad es conocida como el método indirecto y fue desarrollado por Wang et al. (2013). El método indirecto plantea transformar la reflectividad observada Z_o a su equivalencia en q_r utilizando la

Figura 2.3: Método directo e indirecto utilizados en el 3DVAR para asimilar datos radar.

Ecuación 2.10 pero con la ventaja de evitar el error causado por la no linealidad del logaritmo de la ecuación, especialmente con valores bajos de q_r . De esta manera, la reflectividad radar es asimilada por el 3DVAR usando:

$$J^{o} = \frac{1}{2} [H(q_{r}^{a}) - q_{r}^{o}]^{T} \mathbf{R}_{qr}^{-1} [H(q_{r}^{a}) - q_{r}^{o}].$$
(2.12)

Este método también agrega nuevos hidrometeoros a la observación, de tal manera que q_v puede ser obtenido mediante el operador no lineal planteado por Wang et al. (2013) como:

$$q_v^o = RH.q_s. \tag{2.13}$$

Donde q_s es equivalente al vapor de agua saturado calculado con la presión y la temperatura del *background*, y *RH* corresponde a la humedad relativa asumida (100 %) en valores de reflectividad superiores a un umbral (usualmente 25 dBZ) que se encuentren por encima de la base de la nube con respecto al *background*. La asimilación estimada de q_v desde datos de reflectividad es activada de forma independiente al resto de hidrometeoros produciendo, a su vez, incrementos en los valores de humedad relativa y temperatura (Wang et al., 2013).

La nueva versión del 3DVAR (3.9.1) permite calcular la reflectividad con el método directo planteado por Xiao et al. (2007) o por el método indirecto propuesto por Wang et al. (2013). Sin embargo, en el método indirecto asume los operadores no lineales de la observación propuestos en Gao y Stensrud (2012) como manera de calcular los incrementos de las proporciones de mezcla de agua de lluvia q_r , nieve q_s y granizo q_h

$$Z(q_r) = 3.63X10^9 (\rho q_r)^{1.71}$$
(2.14)

$$Z(q_s) = 4.26X10^{11} (\rho q_s)^{1.75}$$
(2.15)

$$Z(q_q) = 4.33X10^10(\rho q_q)^{1.75},$$
(2.16)

basado en la reflectividad radar total Z (Smith et al., 1975; Gilmore y Wicker, 1998) que contribuye al incremento de distintos tipos de hidrometeoros

$$Z = Z(q_r) + Z(q_s) + Z(q_h)$$
(2.17)

y en la temperatura del *background* T_b :

$$Z_T = \begin{cases} Z(q_r), & T_b > 5^{\circ}C \\ Z(q_s) + Z(q_h), & T_b < -5^{\circ}C \\ \alpha Z(q_r) + (1 - \alpha)[Z(q_s) + Z(q_h)], & -5^{\circ}C < T_b < 5^{\circ}C. \end{cases}$$
(2.18)

De tal manera que α varia linealmente entre 0 y -5°C, y entre 1 y 5°C según la temperatura del *background* (Gao y Stensrud, 2012).

Según lo anterior, el 3DVAR asimila q_r , q_s , q_h y q_v usando la aproximación planteada mediante la Ecuación 2.12. La única diferencia entre ellos es que mientras q_v puede usar el **B** general en el termino del *background* de la función de costo, los otros hidrometeoros usan su propio error de covarianza previamente pre-especificado en el WRFDA. Finalmente, la función de costo puede ser expresada como

$$J(x^{a}) = J^{b} + J^{o} + J^{V_{r}} + J^{q_{r}} + J^{q_{v}}.$$
(2.19)

El mapa de procesos con los componentes, ejecutables, entradas y salidas del modelo WRF y las opciones generales del ARW, el módulo WRF y WRFDA son manipuladas por el usuario mediante los archivos de configuración llamados *namelist*, los cuales pueden ser consultados en el Apéndice B. El manual de usuario del modelo WRF (NCAR, 2017) tiene una alerta indicando que es imposible correr, simular o probar todas las permutaciones y opciones del *namelist*, por lo cual se recomienda a los usuarios partir del *namelist* general y adaptarlo a las condiciones atmosféricas de cada país.

Capítulo 3

Metodología

La ciencia, mi niño, está hecha de errores, pero es bueno hacer este tipo de errores, porque conducen poco a poco a la verdad.

Jules Verne

3.1. Configuración del ARW y WRFDA

El modelo WRF versión 3.9 fue configurado con dos dominios de 9 y 3 km de resolución espacial, de tal manera que su dominio interno cubriera completamente la región de Cataluña, situada al NE de la Península Ibérica, que cuenta con la ventaja de estar completamente cubierta por cuatro radares banda C operados por el SMC.

La Figura 3.1 muestra los dos dominios escogidos y el área sobre la cual se realizaron todos los procesos de verificación (sombreada en rojo), que incluyó todo el territorio Catalán; también es posible observar la composición de la red radar en Cataluña y el alcance máximo utilizado para cada uno de los radares: CDV, PBE, LMI y PDA. Los dominios fueron seleccionados evitando que sus límites laterales coincidieran con topografía significativa pero permitiendo que fueran lo suficientemente grandes para garantizar una correcta interacción del océano con el continente.

Los parámetros principales establecidos en la configuración del ARW y WRF-DA se resumen en las Tablas 3.1 y 3.2, respectivamente.

Figura 3.1: Dominios WRF de 9 (azul) y 3 km (rojo) de resolución horizontal. La región sombreada en rojo forma parte del dominio anidado de 3 km, corresponde a la región de Cataluña y es el área sobre la cual se realizaron los procesos de validación. La cobertura máxima está representada por un círculo con línea continua para el caso del radar CDV y por líneas discontinuas para los radares PBE, LMI y PDA.

Esquema	Parámetro	Referencia
Inicialización	datos GFS con resolución horizontal de 0.25° \simeq 27 km	
Dominios	Dos dominios de 9 y 3 km de resolución horizontal	
Proyección del ma- pa	Proyección cónica conforme de Lambert	
Niveles verticales	51 niveles sigma desde la superficie hasta 50 hPa	
Microfísica	Parametrización de Thompson	Thompson et al. (2008)
Física de cúmulos	Parametrización de Kain-Fritsch solo en el dominio madre de 9 km	Kain (2004)
Física de PBL	Parametrización de Mellor-Yamada-Janjic	Janjić (1994)
Radiación de onda corta y larga	Modelo de transferencia rápida de radiación para modelos de circulación general (RRTMG)	lacono et al. (2008)
Capa de superficie	Capa de superficie similar a la establecida para el modelo ETA	Monin y Obukhov (1954)
Tipo de suelo	Noah unificado	Mukul Tewari et al. (2004)
Uso del suelo	MODIS (MODerate resolution Imaging Spectroradiome- ter)	Friedl et al. (2002)

Tabla 3.1: Configuración del ARW

Tabla 5.2. Configuración del VIRI DA	Tabla	3.2:	Configuración	del	WRFDA
--------------------------------------	-------	------	---------------	-----	-------

Opciones de configuración	Parámetro	Referencia
Proceedimiente veriacional		Barker et al. (2004), Bar-
Frocedimento variacional	SDVAR	ker et al. (2012)
Asimilación de reflectividad	Partición de hidrometeoros estimada a partir	Wang et al. (2013); Gao
Asimilación de renectividad	de la reflectividad radar	y Stensrud (2012)
Acimilación de velocidad radial	Relación entre velocidad radial y velocidad	Xiao et al. (2005), Sun y
	terminal de agua de lluvia	Crook (1997)
Error estadístico del back-	Variables de control prodotorminadas on CV7	Sup at al. (2016)
ground	variables de control predeterminadas en CV7	
Estimación del error del back-	Método del NMC usando 120 pronósticos de	Parrich y Darbor (1002)
ground	6 horas desde el 24/09/2016 al 24/10/2016	Faitisit y Derber (1992)
Número de <i>outer loops</i>	1 outer loop	
Número máximo de iteraciones	200 iteracciones	
Ajuste de la covarianza en B	2.5 para todas las variables de control	
Ajuste de la escala de longitud	0.75 para inicializaciones en frío y 0.25 para	Cácoros y Codina (2018)
en B	inicializaciones en caliente	
Proceso de asimilación de datos	Solo en el dominio anidado de 3 km	

3.2. Preprocesamiento de los datos radar

3.2.1. Estructura de los datos radar

La red radar está compuesta por cuatro radares Doppler convencionales banda C que garantizan una cobertura total de Cataluña. Bech et al. (2004) explican como fue conformada y realizan una completa descripción de sus componentes y aplicaciones.

Los datos generados por esta red tienen una resolución temporal de 6 minutos y están divididos en tres volúmenes con ángulos de elevación de la antena cada vez mayores que incluyen reflectividad no corregida o total (DBZ_TOT), reflectividad corregida (DBZ) y velocidad radial (VEL). Las características actuales de la red radar en Cataluña se resumen en la Tabla 3.3.

	Características	PBE	CDV	LMI	PDA	
ón	Latitud	41.37	41.60	41.09	41.88	
lizaci	Longitud	1.88	1.40	0.86	2.99	
Loca	Altitud (m)	631	825	910	542	
	Rango (km)	248	248	248	250	
umen	Angulos (grados)		0	.6		
Vol	Datos		DBZ_T	OT, DB	Ζ	
1 2	Rango (km)	128	148	128	128	
umer	Angulos (grados)	0.6,	0.8, 1, 1	3, 1.7,	2*, 3	
Voli	Datos	DB	Z_ТОТ	, DBZ, V	VEL	
3	Rango (km)	128	148	128	128	
umer	Angulos (grados)	4, 5, 6, 8, 10, 13, 16, 21, 27				
Vol	Datos	DB	Z_TOT	, DBZ, V	VEL	
*Er	ı el radar PBE el áng	gulo 2 fu	e reempl	azado po	or el 2.4	

Tabla 3.3: Características de la red radar en Cataluña

Como solo los volúmenes 2 y 3 contienen tanto reflectividad radar como velocidad radial Doppler, los datos del volumen 1 se descartaron y los volúmenes 2 y 3 se usaron en el proceso de asimilación con un alcance máximo de 148 y 128 km, respectivamente.

El haz de los 16 ángulos de elevación transmiten información que el radar logra interpretar en términos de reflectividad y velocidad radial. La trayectoria del haz y su altitud son afectados por la refracción y la curvatura de la Tierra. Una aproximación del comportamiento del haz con respecto a la Tierra puede lograrse usando el índice de refracción estándar, de tal manera que la altura del haz (H) está dada por la Ecuación 3.1:

$$H = \sqrt{r^2 + (kR)^2 + 2rkRsin\phi} - kR + h.$$
(3.1)

donde:

r : distancia del radar al punto de interés

- k : constante del radio terrestre recorrido por el haz de forma paralela (4/3)
- R : radio de la Tierra (6374 km)
- ϕ : ángulo de elevación rdar
- h : elevación más altura de la antena radar

La Figura 3.2 muestra la relación distancia - altura para los 16 ángulos de elevación contenidos en el volumen 2 y 3 a una distancia máxima de 150 km.

Figura 3.2: Altura correspondiente a cada ángulo de elevación según la distancia al radar con un alcance máximo de 150 km

Aunque el procesador de radar puede filtrar información errónea causada por falsos ecos provenientes de blancos fijos (terreno, edificios) o móviles (aves), generalmente se requiere un tratamiento y control de calidad extra. Es responsabilidad del usuario aplicar rigurosos procesos de control de calidad y transformar el formato binario IRIS de los datos de reflectividad y velocidad radial al formato ASCII requerido por el 3DVAR antes del proceso de asimilación.

Con la finalidad de verificar si la técnica básica utilizada por el SMC para el preprocesamiento de datos radar presentaba buenos resultados, los incrementos

producidos por el 3DVAR y los pronósticos de precipitación se comparan con los resultados obtenidos utilizando la técnica de preprocesamiento establecida por NCAR.

3.2.2. Control de calidad con el método de NCAR

El preprocesamiento de datos radar en NCAR es realizado por el módulo de control de calidad del Variational Doppler Radar Analysis System (VDRAS) detallado por Sun y Crook (1997). La importancia de implementar un algoritmo avanzado que pueda corregir los datos de velocidad máxima que un radar Doppler puede detectar de forma correcta o inambigua¹ en todas las condiciones meteorológicas es ampliamente destacado en Sun (2005a), donde también se amplia el procedimiento realizado por VDRAS con la finalidad de filtrar los datos de radar que considera erróneos.

VDRAS también cambia la resolución de la grilla de 1 a 3 km (Figura 3.3) usando el método de ajuste de mínimos cuadrados (Mohr et al., 1986) y determina el error que se le asignará a cada valor de reflectividad y velocidad radial, destacando el uso de la desviación estándar local para el control de calidad final (Miller et al., 2003), realiza además un completo filtrado de datos usando diferentes parámetros tales como: eliminación de datos que superen un umbral de varianza respecto a cierto número de puntos de grilla a su alrededor, asignación de una altura máxima de asimilación en metros, umbrales de reflectividad para separar la precipitación de los ecos falsos y la eliminación de datos de velocidad radial menores a 5 m/s.

Figura 3.3: Datos de reflectividad corregida usando el *software* IRIS (Fuente: SMC) y del radar CDV a 1 y 3 km de resolución.

Antes de usar VDRAS, es necesario volver a escribir los datos de radar sin procesar en formato Meteorological Data Volume (MDV), el formato NCAR para almacenar datos de grillas de dos y tres dimensiones (NCAR, 2008). Mediante

¹También conocida como velocidad Nyquist, máxima velocidad que produce un corrimiento de frecuencia de π radianes.

una transformación de cuadrícula de interpolación lineal de 8 puntos se convierten las coordenadas esféricas del radar en coordenadas cartesianas sobre un cuadrado de 300 km con resolución de punto de grilla de 1 km. La estructura vertical normalmente consta de 16 niveles distribuidos cada 500 m. El primer nivel comienza a 250 m de la superficie y el más alto alcanza los 7750 m.

3.2.3. Control de calidad con el método del SMC

El SMC ha explorado desde el 2016 la asimilación de datos radar como una manera de mejorar los pronósticos de precipitación. Mercader et al. (2017) analiza algunos casos en los que este tipo de asimilación presentó un impacto positivo sobre el pronóstico. El proceso utilizado por el SMC para asimilar los datos radar y realizar control de calidad sobre los datos se describe a continuación:

- Las coordenadas polares de los datos del radar se transforman en coordenadas cartesianas basadas en la posición del radar, el ángulo de elevación del radar (0 a 27 grados), el azimut (0 - 360 grados) y la distancia de la observación al radar (0 - 150 km). Después cada dato es georeferenciado y se realiza un corrección final de altura debido a la curvatura de la Tierra.
- Los datos del radar se almacenan en una grilla de 1 km y posteriormente se transforman a una grilla de menor resolución (3 km), lo que garantiza la coincidencia de la resolución de datos radar con la resolución del dominio anidado del modelo WRF. El cambio de resolución permite realizar un control de calidad y filtro de observaciones basándose en la cantidad y varianza de los datos, de tal manera que solo se obtendrá un valor promedio de un conjunto de datos en una celda 3x3 si se cumplen dos requisitos:
 1) deben existir mínimo 7 de las posibles 9 observaciones y 2) no se debe exceder el umbral de varianza establecido en 50 dBZ² para el caso de reflectividad y en 60 m²/s² si se trata de velocidad radial. De lo contrario, se asigna un valor nulo a la nueva ventana de la grilla.
- Se le asigna un valor de error constante de 5 dBZ a la reflectividad y de 1 a 5 m/s a la velocidad radial según la distancia entre la observación y el radar siguiendo la metodología propuesta por Montmerle et al. (2009).
- Inicialmente se establece un umbral vertical de 4500 m por encima del cual no se asimilarán datos radar; posteriormente, este límite es aumentado a 10000 m.

3.2.4. Filtrado de datos radar según el método de control de calidad utilizado

Al final de los procedimientos mencionados en las Secciones 3.2.2 y 3.2.3, se obtienen cierto número de observaciones que dependen del método de control

de calidad aplicado. Usando como ejemplo el caso del 12 de agosto de 2016, la Tabla 3.4 resume el número de puntos de malla con datos de observaciones. Mientras que en el método de NCAR esto significa que en cada punto puede existir un valor de reflectividad, velocidad radial o de ambas, en el método del SMC representa que en cada punto de malla se encuentran valores para las dos variables.

Tabla 3.4: Número de datos radar en el archivo ob.radar según método de control de calidad utilizado

Método		PBE	CDV	LMI	PDA
	NCAR	20340	19192	18640	5933
12 010	SMC	23015	23015	23015	23015
	NCAR	26819	26773	19055	18417
15 010	SMC	10401	20339	5870	18520

La Figura 3.4 representa los valores y posición de los datos de reflectividad máxima que han superado el proceso de control de calidad de NCAR y del SMC, tienen una resolución de 3 km y son los que finalmente ingresarán al proceso de asimilación de datos en el 3DVAR. Es bastante notable como el método de NCAR tiende a representar mejor el campo de reflectividad, mientras que el método del SMC tiende a filtrar los datos con los valores más bajos y altos reflectividad. Este último también esta limitado por los 4500 m de umbral vertical versus los 7750 m contemplados en NCAR.

Figura 3.4: Datos de reflectividad con 3 km de resolución después de superar los métodos de control de calidad establecidos en NCAR y en el SMC.

3.3. Evaluación del incremento del análisis después de 3DVAR

Para comprender el impacto de la asimilación de datos radar usando el 3DVAR, se analizan los incrementos (análisis menos *background*) de las variables velocidad vertical, viento y proporción de mezcla de agua de lluvia, vapor de agua y nieve.

El primer paso consiste en averiguar cuáles de todas las variables estudiadas experimentan mayores incrementos en el proceso de asimilación y cómo se ve reflejado en los niveles del modelo. Para ello, se comparan las variables entre sí sin considerar las dimensiones, normalizándolas de acuerdo con:

$$X'_{lev} = \frac{C_{lev}}{\sum_{lev=1}^{L} C_{lev}}$$

$$C_{lev} = \sum_{grd=1}^{N} \left| x_{grd, lev^a} - x_{grd, lev^b} \right|,$$
(3.2)

donde:

X'_{lev} :	incremento de las variables por nivel
x_{grd, lev^a} :	análisis de las variables en cada punto de la grilla
$x_{ard.lev^b}$:	background de las variables en cada punto de la grilla
N:	número total de puntos de grilla
L:	número total de niveles del modelo

El segundo paso consiste en verificar cómo los incrementos experimentan la propagación horizontal y observar si conservan un patrón similar o comparten las mismas áreas de influencia. Para esto se aplican las diferencias relativas considerando:

$$X'_{grd} = \frac{Z_{grd}}{\max(Z_{grd})}$$

$$Z_{grd} = \sum_{lev=1}^{L} \left| x_{grd, lev^a} - x_{grd, lev^b} \right|,$$
(3.3)

donde:

 X'_{grd} : incremento de variable por punto de malla max: valor máximo $(Z_{grd}, grd = 1, N)$

Después se le asigna 1 a todos los valores de X'_{grd} por encima de un umbral definido (1 o 10%) y 0 para el resto de los puntos de grilla. Este procedimiento permite descartar los incrementos más bajos del proceso de asimilación, obtener una única capa para cada variable y realizar una comparación espacial entre los máximos incrementos que presentan todas las variables.

3.4. Verificación

El *nowcasting* de la precipitación es contrastado con el QPE derivado del producto EHIMI del SMC, una estimación horaria de la precipitación acumulada basada en datos radar y una extensa red de pluviómetros. Las observaciones, por lo tanto, serán una estimación de la realidad basada en el QPE. Trapero et al. (2009) concluyeron que EHIMI tiende a subestimar la precipitación a medida que aumenta el rango del radar y se experimentan bloqueos topográficos, especialmente en el norte de Cataluña, donde se presentan bloqueos del haz superiores al 40 %. El área de cubrimiento de EHIMI está representada por la zona sombreada en rojo de la Figura 3.1, limitada por las coordenadas 0.04 E, 3.37 E, 40.48 N y 42.93 N, que incluyen toda la región de Cataluña.

Aunque EHIMI presenta una resolución optima de 1,2 km para aplicaciones hidrometeorológicas con una malla compuesta de 230×312 puntos de grilla, es necesario interpolarla bi-linealmente a una malla de 0.025° de resolución (93 x 128 puntos de grilla) a la cual también son interpolados los datos del dominio anidado del modelo WRF. Una vez los datos simulados y las observaciones son unificados en una misma resolución, el impacto que la asimilación radar causa sobre el *nowcasting* de precipitación es verificado mediante técnicas de validación que utilizan índices basados en variables continuas y categóricas.

Estos índices son una herramienta útil para tomar decisiones que mejoren la calidad del pronóstico, toda vez que relacionan su grado de coincidencia con las observaciones. Como la calidad depende de varios atributos o medidas escalares congruentes con el objetivo de la verificación, no existe una única medida de verificación para todos los atributos del pronóstico. Murphy (1993) identifica las características de un buen pronóstico y sus atributos, tales como:

- Sesgo. Mide el error promedio (general) entre el valor medio del pronóstico y el valor medio de las observaciones (ejemplo: ME)
- Precisión. Mide la diferencia (error) media entre el valor de pares individuales de pronósticos y las observaciones (ejemplo: MAE, MSE, RMSE)
- Asociación. Relación lineal entre el pronóstico y las observaciones (ejemplo: coeficiente de correlación)
- Habilidad. Precisión relativa del pronóstico sobre algún pronóstico de referencia como climatología o persistencia.
- Discriminación. Mide el nivel de aciertos de los pronósticos entre el nivel de aciertos entre eventos y no eventos (ejemplo: índices categóricos).
- Incertidumbre. Cuanto mayor sea la variabilidad de las observaciones, peor será el pronóstico.
- Resolución: Mide la acertada separación de los pronósticos correctos de los incorrectos (Ejemplo área ROC).

3.4.1. Medida escalar de variables continuas

Inicialmente se realiza una evaluación punto a punto, donde el valor de la observación asociada a cada punto de la grilla es comparado con los valores de grilla pronosticados por el modelo WRF. Como parte de esta primera evaluación, se calculan los índices de variables continuas que a pesar de tener traducción al español, se mantienen en inglés por ser siglas comúnmente utilizadas.

ME. Es conocido como sesgo, error medio o sistemático. Se calcula promediando la suma de las diferencias de los pronósticos menos las observaciones y su rango oscila ente - ∞ e ∞ , siendo cero la puntuación perfecta. No es una medida de precisión ya que la dirección media del error positiva o negativa, solo indica que las cantidades pronosticadas pueden ser superiores o inferiores a las observaciones y su puntuación puede ser perfecta si los errores positivos son compensados con los errores negativos.

MAE. Al ser absoluto, contempla los errores positivos y negativos sin que se compensen entre sí considerándose una medida de precisión. Es el promedio del valor absoluto de las diferencias de los pronósticos menos las observaciones y su rango oscila ente cero e ∞ , siendo cero la puntuación perfecta. Sin importar si el error de cada punto es pequeño o grande, se le asigna el mismo peso dentro del cálculo general, de tal manera que al comparar un MAE de 10 mm versus un MAE de 20 mm, se entiende que este último presenta un error dos veces mayor que el primero.

MSE. Este índice le asigna más peso a los errores grandes que a los pequeños, penalizando fuertemente los valores atípicos de un conjunto de datos. El error es calculado promediando el cuadrado de las diferencias entre cada pronóstico y la observación, es una medida de precisión y su rango oscila ente cero e ∞ , siendo cero la puntuación perfecta.

RMSE. Es la raíz cuadrada del MSE, tiende a utilizarse para conservar las unidades de la variable estudiada y que se pierden en el MSE al elevarse al cuadrado. Al comparar un RMSE de 10 mm versus un RMSE de 20 mm, no se cumple que este último presente un error dos veces mayor al primero.

Designando por N el número total de comparaciones entre el pronóstico x^f y las observaciones y^o , los índices de las variables continuas son resumidos en la Tabla 3.5.

Los resultados de estos índices ayudan a entender el comportamiento de los datos pronosticados versus los observados, y según su puntuación es posible clasificar una serie de experimentos que se comparan con las observaciones. Pero a medida que se tienen más experimentos, índices y se quieren tener en cuenta más atributos del pronóstico, la clasificación puede volverse compleja. Para abordar este problema, se ha utilizado un diagrama de Taylor (Taylor, 2001), un método gráfico que es especialmente útil porque proporciona un resumen estadístico de como los experimentos coinciden entre sí en términos de su correlación, su RMSE y la relación de sus varianzas, combinando así los atributos de calidad del

Indices	Descripción	Formulación
ME	Mean Error	$\frac{1}{N}\sum_{i=1}^{N} \left(x^f - y^o\right)$
MAE	Mean Absolute Error	$\frac{1}{N}\sum_{i=1}^{N} \left x^{f} - y^{o} \right $
MSE	Mean Squared Error	$\frac{1}{N}\sum_{i=1}^{N} (x^f - y^o)^2$
RMSE	Root Mean Squared Error	$\sqrt{\frac{1}{N}\sum_{i=1}^{N} (x^f - y^o)^2}$

Tabla 3.5: Indices de variables continuas. Ver texto

pronóstico relacionados con asociación, precisión y sesgo respectivamente.

El diagrama cuantifica estadísticamente el grado de similitud entre un estado observado y otro simulado mediante una relación geométrica entre la medida de los tres atributos del pronóstico, de tal manera que una clasificación visual es fácilmente posible ubicando el experimento con una mayor correlación, un menor RMSE y una varianza similar a la que presenta las observaciones. Para llevar los resultados del diagrama de Taylor a un único valor que sirva de clasificador entre los distintos experimentos, se ha implementado la distancia euclídea *d* definida como:

$$d^{2} = (|S_{x^{f}} - S_{y^{o}}|)^{2} + {E'}^{2} + (1 - R)^{2}$$
$$E' = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[(x^{f} - \overline{x^{f}}) - (y^{o} - \overline{y^{o}}) \right]^{2}},$$
(3.4)

donde:

 S_{x^f} : desviación estándar del pronóstico

 $S_{y^o}\,$: desviación estándar de la observación

- E' : RMSE sin diferencias medias entre x^f y y^o (Taylor, 2001)
- R : correlación

Para calcular la distancia euclídea d es necesario normalizar cada uno de los componentes de la Ecuación 3.4. De esta manera el experimento con una menor d será aquel que se encuentra más cerca a los tres índices estadísticos y por lo tanto, se considera que presenta los mejores resultados. Cuando el diagrama de Taylor es usado para calcular los resultados de más de un caso de estudio, la distancia d es calculada como la distancia a los valores medios de $|S_{x^f} - S_{y^o}|$, E' y (1 - R).

3.4.2. Medida discreta de variables categóricas

El pronóstico de precipitación también es evaluado usando índices categóricos, los cuales indican que solo uno de un posible conjunto de eventos finitos puede ocurrir. Estos eventos están basados en una tabla de contingencia 2x2 (Stanski et al., 1989) y detallados en la Tabla 3.6.

T 11	2 0	T 11			
Tabla	3.6:	Tabla	de	continge	ncia

		Pr		
		Sí	No	Total
SC	Sí	HIT	MISS	HIT + MISS
ō	No	FA	CREJ	FA + CREJ
	Total	HIT + FA	MISS + CREJ	N

Este método es utilizado para determinar si hay coincidencias entre la ocurrencia o no de un evento observado (Sí/No) versus la capacidad del pronóstico para detectarlo o no detectarlo (Sí/No), de tal manera que cada elemento de la Tabla 3.6 corresponde a la frecuencia de repetición de las 4 posibles combinaciones entre observaciones (Obs) y pronósticos, en donde el número total de observaciones es igual al número de puntos de grilla y está representado por N.

Hay dos combinaciones positivas y dos negativas: por una parte están los HIT y los CREJ, los primeros representan el número de eventos observados y pronosticados acertadamente y los segundos el número de veces que el modelo no pronóstico un evento que efectivamente nunca se presentó; y por otra están los MISS y los FA, en donde los primeros representan eventos observados y no pronosticados y los segundos, eventos que no fueron observados pero fueron pronosticados por el modelo WRF generando así una falsa alarma.

Sin embargo, en la aplicación a la verificación de pronósticos, los criterios clásicos con los que se construye una tabla de contingencia basados en coincidencias punto a punto y el uso de umbrales de precipitación, fueron modificados por:

Un enfoque difuso (Ebert, 2008), que considera aciertos a las coincidencias entre la observación y el valor pronosticado sin que necesariamente coincidan en una exacta localización, evitando así la penalización asociada con ligeras diferencias en la posición de los valores observados y pronosticados, diferencias que en el campo de la precipitación son principalmente causadas por el uso de modelos de alta resolución espacial (Ebert, 2009). Por ende, se ha aplicado la técnica de mínima cobertura (Damrath, 2004), donde un pronóstico se considera igualmente útil si el valor de la observación coincide con cualquiera de los valores pronosticados en los puntos de una grilla preestablecida. Sin embargo, a diferencia de investigaciones previas, este estudio utiliza una ventana circular con un radio de 7 km que equivaldría como máximo a 21 celdas alrededor del punto evaluado (Fig. 3.5).

Figura 3.5: Rango del HIT asociado con la posición de la observación (cuadrado negro). Cada cuadrado tiene una resolución de 3x3 km.

Sustitución del criterio HIT, el cual considera como acierto todas las coincidencias que simplemente superen un umbral empírico de precipitación por intervalos de tolerancia. El método propuesto considera un HIT si el valor de la observación es igual al valor pronosticado ± un porcentaje z de la observación y^o. Asignar el mismo porcentaje a valores altos y bajos de precipitación pondría en desventaja la detección de estos últimos. Por tal motivo, el porcentaje cambia dinámicamente en función de la cantidad de precipitación.

Sustituyendo β por un valor de 40 en la Ecuación 3.5, por ejemplo, se obtiene un intervalo de tolerancia que varía entre el 40 % y el 15 % alrededor del valor observado en el rango de 0 a 100 mm.

$$z = (-0.25y^o + \beta)/100. \tag{3.5}$$

El criterio cualitativo definido por la Ecuación 3.5 asigna dinámicamente los intervalos de tolerancia según el valor de la observación, tal como se representa en la Figura 3.6.

Figura 3.6: Intervalos de tolerancia utilizados en el parámetro HIT. El área azul representa el rango de coincidencia entre las observaciones y el pronóstico.

Por lo tanto, los elementos de la tabla de contingencia (Tabla 3.6) se redefinieron para el pronóstico de precipitación de 6 horas, teniendo en cuenta los siguientes criterios:

HIT: cuando el valor de una observación excede el criterio mínimo de lluvia (ejemplo 1 mm) acumulado en seis horas, coincide con al menos uno de los valores del modelo dentro de un radio de 7 km y se encuentra dentro del intervalo de tolerancia definido por la Ecuación 3.5.

CREJ: cuando un punto de observación y al menos 5 de los 21 valores del modelo dentro de un radio de 7 km se encuentran por debajo del criterio mínimo de lluvia.

MISS/FA: cuando no es posible obtener HIT ni CREJ y si el valor de la observación es más bajo/alto que el promedio de los valores de los 21 puntos de grilla del modelo asociados con la observación.

El método de evaluación anterior presenta dos diferencias principales con respecto a trabajos previos: primero, la ventana de vecindad cuadrada se cambia por una circular, considerando el patrón de distribución espacial de la precipitación; segundo, se eliminan los umbrales de precipitación (generalmente 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 mm), los cuales tienen las siguientes desventajas:

- Aunque facilita la comparación de resultados individuales dados por cada umbral de precipitación, se dificulta determinar la habilidad del modelo para evaluar el campo de la precipitación desde un enfoque operativo, donde se requiere conocer qué tanto el valor de la precipitación simulada es cercano a la realidad
- La eficiencia del modelo solo se mide con los umbrales más altos, los umbrales bajos implican un amplio rango de éxito por encima del umbral y, por lo tanto, favorecen un alto porcentaje de éxito.

- El comportamiento continuo de la variable precipitación se ve afectado por los límites impuestos por cada uno de los umbrales; las coincidencias están tan limitadas a un umbral que no importa si la precipitación se encuentra a una milésima de diferencia por debajo del umbral, afectando así la calidad de la verificación. En el método general las coincidencias dependen del límite inferior establecido mediante un umbral; en el método propuesto dependen del intervalo de tolerancia establecido para cada valor de la observación.
- El umbral más alto (por ejemplo, 50 mm) representa todos los máximos de precipitación.
- Parecen estar construidos solo para detectar precipitaciones intensas y carecen de la capacidad de valorar la no precipitación, una habilidad muy apreciada en las operaciones aéreas.

Cada observación asociada a un punto de grilla genera un HIT, CREJ, MISS o FA según el grado de coincidencia con el pronóstico. Al representar estos resultados en un mapa es posible encontrar las zonas donde se obtienen los mejores y peores resultados. También es bastante útil para identificar tendencias espaciales o realizar comparaciones cualitativas.

Finalmente, siguiendo Stanski et al. (1989), Ebert (2008), y con base en la condición de cobertura mínima utilizada en la elaboración de las tablas de contingencia, se computaron los índices categóricos de la Tabla 3.7.

Indices	Descripción	Formulación
BIAS	Frequency Bias	$\frac{HIT+FA}{HIT+MISS}$
FAR	False Alarm Ratio	$\frac{FA}{HIT+FA}$
CSI	Critical Success Index	$\frac{HIT}{HIT + FA + MISS}$
PC	Proportion Correct	$\frac{HIT + CREJ}{N}$
POD	Probability of Detection	$\frac{HIT}{HIT + MISS}$
POFD	Probability of False Detection	$\frac{FA}{CREJ+FA}$

Tabla 3.7: Indices de variables categóricas

El BIAS mide el sesgo de los pronósticos binarios al comparar la frecuencia de eventos pronosticados versus la frecuencia de eventos observados de tal manera que un BIAS >1 sobreestima el número de eventos y un BIAS <1 lo subestima. El rango del resto de los índices oscila entre 0 a 1; mientras que para el CSI, PC y POD el puntaje deseable es 1, para el FAR y POFD el puntaje deseable es 0. Cada uno de los índices relacionados en la Tabla 3.7 mide un parámetro diferente: la relación de eventos pronosticados que no existieron, los eventos observados que se pronosticaron correctamente sin tener en cuenta los CREJ, proporción de eventos positicados que fueron correctamente pronosticados. Al igual que los índices de variables continuas, aplicar solo uno sería insuficiente para un sistema de validación ya que ninguno de ellos contempla las cuatro posibles combinaciones de la tabla de contingencias 2x2.

Una validación que usa variables categóricas y que permite utilizar las cuatro posibles combinaciones de la tabla de contingencias 2x2 es el ROC, un diagrama de dispersión que utiliza los resultados obtenidos en los índices POD y POFD. De esta manera se logra un completo análisis que se convierte, además, en un efectivo método de clasificación que permite comparar los resultados obtenidos por diferentes tipos de pronósticos.

3.4.3. Medida de variables categóricas usando ROC

3.4.3.1. ROC clásico

El ROC es una técnica de clasificación estadística que permite comparar si existen características comunes entre valores observados y pronosticados (Pontius Jr y Si, 2014) utilizando diferentes umbrales que determinan la presencia o ausencia de las características que se están investigando. Pontius Jr y Si (2014) hacen énfasis en las numerosas aéreas del conocimiento donde ROC ha sido aplicado, destacando percepción sensorial, genética, radiología, medicina, memoria, estructura cerebral, ciencia animal, aprendizaje automático, teledetección y, por supuesto, meteorología. ROC no predice la ocurrencia del evento, solo evalúa la probabilidad de detección de un evento que supera un umbral (Gudmundsson et al., 2014), como en el trabajo de Gibergans-Báguena y Llasat (2007), donde se obtuvo la probabilidad de ocurrencia para seis categorías de precipitación con diferentes umbrales que definían la dicotomía lluvia o no lluvia.

En este estudio se han utilizado 100 umbrales de precipitación con el objetivo de comparar los resultados del ROC clásico con la nueva metodología propuesta. Cada umbral genera una única tabla de contingencia basada en los parámetros HIT, CREJ, FA y MISS, los cuales dan lugar a un único par (POFD, POD) representado como un punto de la curva ROC, de tal manera que la curva estará compuesta por cada uno de los 100 puntos resultantes de aplicar los umbrales escogidos empíricamente por el usuario, los cuales suelen estar relacionados con el objetivo de la investigación y el grado de aceptación de POFD y POD.

Con la finalidad de observar el comportamiento de la curva ROC en el procedimiento clásico, se han escogido umbrales de precipitación distribuidos linealmente desde 0 mm (menor valor) hasta el máximo valor de precipitación donde cada experimento detecte por lo menos un HIT. Un ROC general es encontrado mediante el promedio de los diez casos de estudio en cada uno de los 100 puntos (POFD, POD).

3.4.3.2. ROC adaptado sin umbrales de precipitación

Considerando que en esta investigación se han eliminado los umbrales de precipitación en el método de verificación, se propone evaluar ROC de dos maneras distintas:

- Utilizando solo un criterio de clasificación y la Ecuación 3.5 con un β de 40 es posible obtener intervalos de tolerancia entre el 40 % y el 15 % alrededor de la observación en un rango de 0 a 100 mm. Cada uno de los pares (POFD, POD) corresponderá a un experimento en el espacio ROC (Fawcett, 2006) y los mejores resultados corresponderán a las diferencias máximas entre POFD y POD o la distancia máxima de los pares (POFD, POD) a la línea entre los puntos (0,0) y (1,1). Solo los experimentos ubicados sobre la línea presentarán mejores resultados que una estimación aleatoria.
- Utilizando el Area Bajo la Curva (AUC) de ROC. En este caso, la curva ROC estará compuesta por los pares POFD y POD provenientes de aplicar los criterios de flexibilización a los parámetros HIT y CREJ, de tal manera que sean más permisivos o restrictivos. Mientras que la flexibilización del parámetro HIT afecta consecuentemente el índice POD, la flexibilización de CREJ afecta el índice POFD. Si el área bajo la curva se encuentra entre 0.5 y 1 (pronóstico perfecto), se considera que los resultados son mejores que una estimación aleatoria. El AUC se usa con frecuencia para medir la capacidad general de un modelo para detectar un evento teniendo en cuenta más de un criterio de clasificación.

El parámetro HIT es calculado basado en diez criterios de flexibilización, los cuales aumentan un 5% el intervalo de tolerancia respecto al criterio anterior. El primer criterio para flexibilizar HIT inicia con el entorno más restrictivo, con intervalos de tolerancia entre el 25% y el 0% según el valor de la observación, y termina con el criterio más flexible, con intervalos de tolerancia que oscilan entre el 70% y el 45%. La Tabla 3.8 ejemplifica los intervalos de tolerancia construidos con los diez criterios de flexibilización para observaciones de 1, 50 y 100 mm, los límites de cada intervalo son calculados cambiando el valor β en la Ecuación 3.5, por el nuevo valor β indicado en la Tabla 3.8.

Fle	exibilizaci	ón	P	orcentajes ((%)	Intervalos de tolerancia (mm)						
Criterio	Beta	%	1 mm	50 mm	100 mm	1 r	nm	50	mm	100	mm	
1	25	25 - 0	0.25	0.13	0	0.75	1.25	43.75	56.25	100	100	
2	30	30 - 05	0.30	0.18	0.05	0.70	1.30	41.25	58.75	95	105	
3	35	35 - 10	0.35	0.23	0.10	0.65	1.35	38.75	61.25	90	110	
4	40	40 - 15	0.40	0.28	0.15	0.60	1.40	36.25	63.75	85	115	
5	45	45 - 20	0.45	0.33	0.20	0.55	1.45	33.75	66.25	80	120	
6	50	50 - 25	0.50	0.38	0.25	0.50	1.50	31.25	68.75	75	125	
7	55	55 - 30	0.55	0.43	0.30	0.45	1.55	28.75	71.25	70	130	
8	60	60 - 35	0.60	0.48	0.35	0.40	1.60	26.25	73.75	65	135	
9	65	65 - 40	0.65	0.53	0.40	0.35	1.65	23.75	76.25	60	140	
10	70	70 - 45	0.70	0.58	0.45	0.30	1.70	21.25	78.75	55	145	

Tabla 3.8: Criterios de flexibilización de HIT para observaciones de 1, 50 y 100 mm

También es necesario calcular CREJ según diez criterios de flexibilización; sin embargo, debido a las peculiaridades de los diez casos de estudio, es necesario realizar este proceso diferenciando los casos secos versus los más húmedos; de tal manera, que el criterio mínimo de lluvia cambie según los datos observados o por el contrario, este criterio podría quedarse demasiado pequeño para los casos con abundante precipitación y demasiado alto para los casos con precipitación más escasa. Otro problema en la flexibilización de CREJ es que los datos deben tener el 50 % de probabilidad de ser ubicados en HIT o CREJ para que sean consecuentes con la metodología ROC.

Los diez criterios de flexibilización de CREJ corresponden a los valores distribuidos linealmente desde cero hasta la mediana de precipitación de cada caso de estudio, las cuales se han utilizado como el criterio mínimo de lluvia y como el límite del criterio más flexible. A diferencia de la media y de la moda estadística, el uso de la media posibilita a la mitad del conjunto de datos ser ubicados en las categorías HIT o CREJ. Si la mediana de las observaciones es menor a 1 mm, este último valor es asignado como límite del criterio más flexible de lluvia de acuerdo a la Tabla 3.9.

Criterio	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7	Caso 8	Caso 9	Caso 10
1	0.1	0.1	0.1	0.6	0.3	0.1	0.1	0.3	0.6	0.9
2	0.2	0.2	0.2	1.5	0.7	0.2	0.2	0.7	1.4	2.2
3	0.3	0.3	0.3	2.4	1.2	0.3	0.3	1.1	2.3	3.5
4	0.4	0.4	0.4	3.3	1.6	0.4	0.4	1.6	3.2	4.8
5	0.5	0.5	0.5	4.2	2.1	0.5	0.5	2.0	4.0	6.1
6	0.6	0.6	0.6	5.1	2.5	0.6	0.6	2.4	4.9	7.4
7	0.7	0.7	0.7	6.0	2.9	0.7	0.7	2.9	5.7	8.7
8	0.8	0.8	0.8	6.9	3.4	0.8	0.8	3.3	6.6	10.0
9	0.9	0.9	0.9	7.8	3.8	0.9	0.9	3.7	7.4	11.3
10	1.0	1.0	1.0	8.7	4.2	1.0	1.0	4.1	8.3	12.6
mediana	0.00	0.00	0.20	8.68	4.24	0.99	0.00	4.13	8.30	12.60
media	3.11	1.82	4.11	16.65	9.31	3.58	1.34	8.44	10.10	15.61
moda	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tabla 3.9: Criterios de flexibilización de CREJ según caso de estudio

La combinación de los criterios de flexibilización de HIT (Tabla 3.8) con su igual en los criterios de flexibilización CREJ (Tabla 3.9), generan diez puntos de la curva ROC para cada uno de los experimentos por caso de estudio. Finalmente, es posible resumir los resultados en un ROC global elaborada bajo la nueva metodología propuesta, de tal manera que todos los parámetros HIT, CREJ, FA y MISS de los casos de estudio, son analizados en un único conjunto de datos.

3.4.3.3. Mapas ROC

Con el fin de evaluar la calidad del pronóstico en referencia al atributo de resolución relacionado en la Sección 3.4 y definir cuales son las zonas geográficas dentro del área de estudio donde se están presentando los mejores y peores resultados para cada experimento, se han generado mapas ROC basados en los diez casos de estudio, los cuales representan la habilidad del modelo WRF para el *nowcasting* de precipitación bajo las siguientes características:

- Toda el área de estudio esta construida por una grilla de 93 x 128 puntos con una resolución de 3 km. Sobre esta grilla principal se construyeron ventanas más pequeñas de 35 x 35 puntos de grilla que generaron AUC individuales.
- Estas ventanas más pequeñas se mueven y se calculan punto a punto de tal manera que se conserva la resolución inicial de 93 x 128 puntos de grilla.
- Los límites laterales del mapa ROC están construidos con una resolución de hasta 18 x 18 puntos de grilla; por lo tanto, los resultados encontrados para estas zonas estarán afectados por este factor.

3.5. Experimentos

Se realizaron dos fases con conjuntos de experimentos diferenciados por su objetivo principal. El primer set de experimentos se realizó sobre el caso de estudio del 12 de octubre de 2016 con la finalidad de resolver los objetivos secundarios 1 y 2 de la investigación mediante cuatro tareas principales: 1) establecer si el método de control de calidad de datos radar del SMC arroja resultados similares versus el método ya comprobado de NCAR, 2) identificar como el incremento de las variables de control afecta los niveles verticales del análisis, 3) identificar como el incremento de las variables de control se propaga espacialmente y 4) determinar cuál método de inicialización del WRF podría ser más efectivo para implementar de manera operativa.

El segundo set de experimentos toma como base los resultados obtenidos en la primera fase, utiliza los diez casos de estudio descritos en la Sección 3.5.2 y pretenden resolver los objetivos secundarios 3, 4 y 5 mediante: 1) encontrar el mejor *background* posible partiendo de una inicialización en frío o en caliente con un apropiado *length scale* que favorezca el *nowcasting* de precipitación, 2) verificar la habilidad del modelo WRF para usarse de manera operativa en la detección de máximos y mínimos de precipitación, y 5) encontrar áreas geográficas donde el modelo tiende a ser más efectivo en el pronóstico de precipitación.

3.5.1. Primera fase. Experimentos basados en el 12 de octubre de 2016

Se realizaron 13 experimentos combinando las siguientes características:

Ciclo de inicialización. Dependiendo de la capacidad de cómputo, del propósito (operativo o de investigación) y de la disponibilidad de datos (globales y de asimilación), sería posible obtener el *nowcasting* de precipitación de 15 a 21 UTC siguiendo los seis posibles ciclos de inicialización presentados en la Figura 3.7.

Figura 3.7: Ciclos de inicialización. El color verde representa que se ha realizado un proceso de asimilación de datos y los colores azul y rojo indican que el modelo WRF fue inicializado en frío o caliente, respectivamente.

- Control de calidad. Las técnicas de control de calidad de datos radar utilizadas por NCAR y SMC (Secciones 3.2.2 y 3.2.3).
- Datos asimilados. Aunque en la mayoría de los experimentos únicamente se asimilaron datos radar (OnlyRad), en dos experimentos se combinaron datos radar con observaciones convencionales (datos meteorológicos de informes METAR y estaciones automáticas) utilizando dos técnicas. En el primero, los datos convencionales y de radar se combinaron al mismo tiempo (SfcRad), mientras que en el segundo el 3DVAR se ejecutó dos veces, primero con datos convencionales y a continuación con datos de radar (1Sfc-2Rad).
- Otros parámetros. Se realizaron algunos experimentos cambiando las especificaciones enumeradas en las Tablas 3.1 y 3.2, activando la parametrización de cúmulos Kain-Fritsch (Kain, 2004) también en el dominio interno (CumPa) y realizando el proceso de asimilación de datos con tres *outer loops* (3loops).

De acuerdo con lo anterior, las configuraciones de cada experimento son resumidas en la Tabla 3.10.

Exporimontos			Ci	clo			Control de calidad		Dat	tos asimi	Otros parámetros		
Experimentos	1	2	3	4	5	6	NCAR	SMC	OnlyRad	SfcRad	1Sfc-2Rad	3loops	CumPa
1	1						✓		1				
2		1					1		1				
3			1				1		1				
4				1			1		1				
5				1			1		1			1	
6				1			1		1				1
7				1			1			1			
8				1			1				√*		
9				1				1	1				
10					1		1		1				
11					1		1		1			1	
12					1			1	1				
13						1	1		1				
Ctrl				1					Sin as	imilación (
* El error del ba	ckgra	ound	gené	érico	CV3	fue	usado en el	primer ciclo	de asimilad	ción, solo (con observaci	ones conven	cionales

Tabla 3.10: Experimentos fase 1. Combinación de características del ARW y 3DVAR

45

3.5.2. Segunda fase. Experimentos basados en diez casos de estudio

En esta segunda fase, se llevaron a cabo 13 nuevos experimentos sobre diez eventos de precipitación extrema en Cataluña, esta vez usando únicamente el filtro de control de calidad desarrollado por el SMC y descartando los ciclos 1, 2, 3 y 6 descritos en la Tabla 3.10; los primeros tres por los resultados obtenidos y el cuarto por su baja aplicación operativa. También se cambiaron y adicionaron las siguientes características:

 Ciclo de inicialización. Se han seleccionado solo los ciclos que puedan ser utilizados de manera operativa inicializando el modelo WRF en frío o en caliente (Fig. 3.8).

Figura 3.8: Ciclos (eje Y) y horas (HH) de inicialización del modelo (eje X). El color verde representa que se ha realizado un proceso de asimilación de datos y los colores azul y rojo indican que el modelo WRF fue inicializado en frío o caliente, respectivamente.

- Escala de longitud. Representa el radio de influencia de una observación alrededor de su posición (Descombes et al., 2015). Controlado desde el namelist.input del 3DVAR mediante el parámetro len_scaling.
- Datos asimilados. Se agrega la opción de asimilar únicamente datos convencionales de superficie (OnlySfc).
- Otros parámetros. Se realizaron experimentos únicamente con observaciones de superficie con el fin de determinar la viabilidad de usar CV3 o CV7 (Tabla 2.1) cuando se utiliza la opción 1Sfc-2Rad descrita en la Sección 3.5.1.

Las características especiales del nuevo conjunto de experimentos que podrían influir positiva o negativamente sobre el *nowcasting* de precipitación son resumidas en la Tabla 3.11.

Tabla 3.11: Experimento	s fase 2.	Combinación de	e características del 3DVAR
-------------------------	-----------	----------------	-----------------------------

	Ciclo Escala de longitud								Datos a		Otros parámetros			
Exp.	1	2	3	4	0.25	0.50	0.75	OnlyRad	OnlySfc	SfcRad	1Sfc-2Rad	3loops	CV3	CV7
Ctrl_00**	1				Simula	ción de o	control. I	No se realiza	asimilaciór	n de datos		<u>.</u>		
Ctrl_01	1				Simula	ción de o	control. I	No se realiza	asimilaciór	n de datos				
1		1			1			 ✓ 						 ✓
2		1				1		1						1
3		1					1	1						1
4			✓		1			1						1
5			✓			1		1						1
6			1				1	1						1
7			1			1		1				1		1
8				1		✓*		 ✓ 						 ✓
9				1		1	1	1						1
10			1			1			1				1	
11			✓			1			1					1
12			1			1				1				1
13			1			1					1			1
** Difiere co	omple	etam	ente	del r	resto de e	experime	ntos. Us	a el <i>namelis</i> t	<i>t.input</i> oper	rativo del S	SMC (Apéndic	e B.2)		

* Los dos ciclos de asimilación (caliente y frío) son realizados con este valor
Mientras que el experimento Ctrl_00 es utilizado para validar la configuración general del modelo WRF y las parametrizaciones físicas utilizadas en esta investigación (Tabla 3.1), el experimento de Control (Ctrl_01) sirve como base para validar el impacto de la asimilación de datos radar sobre el *nowcasting* de precipitación.

En esta fase de la investigación se analizaron 55 días de fuertes precipitaciones durante los años 2015, 2016 y 2017 siguiendo los boletines climatológicos que presenta mensualmente el SMC (Meteocat, 2018). Cada uno de esos días fue dividido en cuatro posibles eventos de seis horas especificando como hora de inicio las 03, 09, 15 y 21 UTC, de tal manera que coincidieran con posibles simulaciones del modelo WRF inicializadas en caliente a la misma hora y con simulaciones en frío inicializadas tres horas antes de cada evento (00, 06, 12 y 18 UTC respectivamente).

Según lo descrito anteriormente, se obtuvieron 220 posibilidades de las cuales se seleccionaron 10 casos de estudio (Tabla 3.12) que cumplían con alguna de estas dos características: la precipitación acumulada en 6 horas alcanzaba un máximo de 80 mm en algún punto o el promedio de toda el área de estudio superaba los 10 mm.

Casos	Fecha	F	lora UT	С	QPE	(mm)
Casos	Геспа	09-15	15-21	21-03	Máxima	Promedio
1	2015-07-21		1		172.3	3.1
2	2015-07-22		1		134.0	1.8
3	2015-07-30	1			168.4	4.1
4	2015-11-02		1		284.3	16.6
5	2015-11-02			1	100.1	9.3
6	2016-07-22		1		84.7	3.6
7	2016-07-27		1		122.3	1.3
8	2016-10-12		1		184.8	8.4
9	2016-10-13		1		71.2	10.1
10	2017-03-24			1	76.7	15.6

Tabla 3.12: Casos de estudio

Los eventos de precipitación extrema fueron causados por SCM's desarrollados principalmente en horas de la tarde en el periodo de 15-21 UTC. Hay un caso con fuertes precipitaciones en el periodo 09-15 UTC y dos casos que involucran la madrugada entre las 21-03 UTC. Las fuertes precipitaciones estimadas desde el producto EHIMI en un lapso de seis horas y las condiciones sinópticas que favorecieron cada evento son brevemente analizadas en Capítulo 4.

Capítulo 4

Descripción de los diez casos de estudio y análisis de datos

Cada elección tiene su anverso, es decir, una renuncia, por lo que no hay diferencia entre el acto de elegir y el acto de renunciar.

Italo Calvino

4.1. Descripción de los casos de estudio

4.1.1. Julio 21 y 22 de 2015 de 15 a 21 UTC

Durante el 21 y 22 de julio de 2015 el producto EHIMI estimó precipitaciones máximas de 172.3 (Fig. 4.1a) y 134 mm (Fig. 4.1c) respectivamente. Estos eventos precipitaron granizo y estuvieron precedidos de un incremento de temperatura por encima de los promedios históricos como consecuencia de una masa de aire cálido procedente del norte de Africa y la subsidencia provocada por una persistente dorsal en capas medias (Figs. 4.1b y 4.1d) y altas. Estas características sumadas a una mayor insolación causada por el solsticio de verano y a la escasa nubosidad, favorecieron la formación de fuertes tormentas en la cordillera del Pirineo y Prepirineo en horas de la tarde.

4.1.2. Julio 30 de 2015 de 09 a 15 UTC

El paso de un frente sinóptico causó un descenso de la temperatura y provocó varias tormentas con granizo en el Pirineo occidental, Pirineo y centro de Cataluña, donde el QPE del 30 de julio alcanzó hasta 168.4 mm (Fig. 4.2a). Mientras que en superficie se observa un débil sistema de baja presión que cubre el Mediterráneo Occidental y Norte de Africa, en las capas medias es notoria la

Figura 4.1: QPE desde las 15 a 21 UTC de los días 21 (a) y 22 (c) junto con la situación sinóptica de las 18 UTC del 21 (b) y 22 (d) de julio de 2015. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.

influencia de una vaguada que favorece la formación de tormentas en Cataluña (Fig. 4.2b).

4.1.3. Noviembre 11 de 2015 de 15 a 21 UTC y de 21 a 03 UTC

Este caso es uno de los eventos que mayor precipitación ha causado en los registros históricos de Cataluña y podría subdividirse en tres eventos: de 09 a 15 UTC con un máximo de 136 mm de QPE, de las 15 a las 21 UTC con un máximo de 284.3 mm (Fig. 4.3a) y de 21 a 03 UTC donde se estimaron 100.1 mm de precipitación acumulada (Fig. 4.3c). En este trabajo solo se tuvieron en cuenta los últimos dos eventos. El SMC informó que en lagunas zonas la precipitación recogida a lo largo de todo el episodio significó más de la mitad de la precipitación que se había acumulado en 10 meses y casi una cuarta parte de

Figura 4.2: QPE desde las 09 a 15 UTC y situación sinóptica de las 12 UTC del 30 de julio de 2015. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.

la Red de Estaciones Meteorológicas Automáticas (XEMA) superaron el umbral de peligro establecido en 20 mm/ 30 min.

Las Figuras 4.3b y 4.3d muestran un sistema de baja presión en superficie ubicado al NW de la Península Ibérica y una Depresión Aislada en Niveles altos (DANA), más conocida como gota fría, en los niveles medios de la atmósfera que favorecieron la inestabilidad atmosférica, causaron un intenso flujo de humedad en Cataluña procedente del Mediterráneo y provocaron precipitaciones extremadamente abundantes en el Pirineo, Prepirineo y Prelitoral Catalán.

4.1.4. Julio 22 de 2016 de 15 a 21 UTC

En este evento de precipitación extrema, el producto EHIMI estimó 84.7 mm de precipitación máxima (Fig. 4.4a) afectando principalmente las zonas del Prelitoral y Prepirineo donde según lo reportado por el SMC la precipitación superó los umbrales de alerta de 20 mm / 30 min y se presentaron tormentas con granizo. La Figura 4.4b permite visualizar un sistema de baja presión al oriente de Cataluña fortalecido con el paso de una vaguada en niveles medios. También es posible observar un anticiclón en el Atlántico desplazado al norte de su ubicación habitual.

Figura 4.3: QPE desde las 15 a 21 UTC (a) y desde las 21 a 03 UTC (c) junto con la situación sinóptica de las 18 (b) y 24 (d) UTC del 11 de noviembre de 2015. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.

Figura 4.4: QPE desde las 15 a 21 UTC y situación sinóptica de las 18 UTC del 22 de julio de 2016. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.

4.1.5. Julio 27 de 2016 de 15 a 21 UTC

Durante este evento el QPE alcanzó los 122.3 mm de precipitación máxima acumulada (Fig. 4.5a) afectando principalmente la zona del Prepirineo donde se presentaron tormentas con granizo y se superó el umbral de alerta de 20 mm/30 min. La Figura 4.5b muestra un sistema de baja presión en superficie centrado en la Península Ibérica.

Figura 4.5: QPE desde las 15 a 21 UTC y situación sinóptica de las 18 UTC del 27 de julio de 2016. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.

4.1.6. Octubre 12 y 13 de 2016 de 15 a 21 UTC

El primero de estos dos eventos produjo un promedio de 8.4 mm de precipitación en el territorio Catalán y un máximo de 184.8 mm de QPE (Fig. 4.6a) y el segundo evento produjo un promedio de 10.1 mm y un máximo de 71.2 mm de QPE (Fig. 4.6c). Mientras que el primer evento afectó principalmente la costa central y el oriente de Cataluña, el segundo se presentó en todo el territorio Catalan sin concentrarse en alguna región específica. La situación sinóptica, como se ve en el análisis GFS de las 18 UTC (Figs. 4.6b y 4.6d), muestra la región catalana bajo el lado este de una vaguada de 500 hPa que favorece ascensos verticales, un flujo de aire cálido mediterráneo en superficie procedente del SE y el aire húmedo impulsado por un sistema de baja presión localizado en el lado occidental de la Península Ibérica. Se trata de una típica situación de lluvias generales denominada "llevantada" en lengua catalana.

Figura 4.6: QPE desde las 15 a 21 UTC del 12 (a) y 13 (c) de octubre de 2016, y situación sinóptica de las 18 UTC del 12 (b) y 13 (d) de octubre de 2016. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.

4.1.7. Marzo 24 de 2017 de 21 a 03 UTC

Este evento alcanzó un máximo de precipitación de 76.7 mm de QPE superando el umbral de 20 mm/30 min (Fig. 4.7a) con precipitaciones generalizadas que promediaron 15.6 mm en todo el territorio Catalán. Después de una semana de estabilidad atmosférica, un sistema de baja presión en superficie cercano a Cataluña y una DANA (Fig. 4.7a), afectó la Península Ibérica causando inestabilidad atmosférica y fuertes precipitaciones.

Figura 4.7: QPE desde las 21 a 03 UTC y situación sinóptica de las 24 UTC del 24 de marzo de 2017. Altura geopotencial (gpm) a 500 hPa en tonos de color y presión media del nivel del mar (hPa) en curvas de nivel.

4.2. Análisis de datos

4.2.1. Descripción estadística de los datos de precipitación

Como se puede apreciar en la Tabla 3.12 y en la Sección 4.1, cada uno de los casos presenta ciertas particularidades, donde se destacan altos máximos y promedios de precipitación en toda la región Catalana. Sin embargo, es necesario realizar un resumen estadístico que permita conocer cómo se encuentran distribuidos estos datos y sirvan de base para determinar si el modelo WRF presenta mejores o peores resultados según las particularidades de cada caso de estudio.

En la Figura 4.8a se identifica rápidamente dos grupos de datos: por una parte los casos 1, 2, 3, 6 y 7, con una mediana muy cerca a cero y, por otro lado, los casos 4, 5, 8, 9 y 10. Estos dos primeros grupos de datos sirven para una primera clasificación entre los casos con menor y mayor precipitación respectivamente. También se destaca que aunque todos presentan datos extremos, el caso 10 parece mantener una mejor distribución de todos sus datos.

Una manera de identificar si los casos presentan una distribución similar de sus datos de precipitación es mediante un análisis de la media estadística e intervalos de confianza, construidos a partir de la media \pm (1.96* DesvSdar)/N), tal como se muestra en la Figura 4.8b.

Figura 4.8: Análisis de tendencia central, variabilidad y datos extremos de la precipitación asociada a cada uno de los casos de estudio.

Un resumen estadístico más completo que ayuda a comprender como se encuentran distribuidos los datos en cada uno de los casos de estudio, es presentado en la Tabla 4.1.

Estadístico	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7	Caso 8	Caso 9	Caso 10
Media	3.1	1.8	4.1	16.6	9.3	3.6	1.3	8.4	10.1	15.6
Mediana	0.0	0.0	0.2	8.7	4.2	1.0	0.0	4.1	8.3	12.6
Moda	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Desv. estándar	8.0	6.5	10.4	22.2	12.3	6.7	7.0	12.6	7.5	14.1
IQR	2.7	0.6	3.7	18.4	13.4	4.3	0.0	9.2	9.6	20.8
Min	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max	172.3	134.0	168.4	284.3	100.1	84.7	122.3	184.8	71.2	76.7
Rango	172.3	134.0	168.4	284.3	100.1	84.7	122.3	184.8	71.2	76.7
Cuartil1	0.0	0.0	0.0	3.3	0.3	0.0	0.0	0.9	4.8	3.4
Cuartil3	2.7	0.6	3.7	21.7	13.8	4.3	0.0	10.1	14.4	24.2
N°Observaciones	11904	11904	11904	11904	11904	11904	11904	11904	11904	11904
Error estándar	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1
IC95MediaLower	3.0	1.7	3.9	16.2	9.1	3.5	1.2	8.2	10.0	15.4
IC95MediaUpper	3.3	1.9	4.3	17.0	9.5	3.7	1.5	8.7	10.2	15.9
Varianza	63.3	41.6	107.9	490.7	151.2	45.4	49.0	158.2	56.0	198.4
Suma	37013.4	21638.6	48964.7	198143.9	110787.9	42653.1	15973.2	100473.3	120245.6	185787.0

Tabla 4.1: Análisis estadístico de los valores de precipitación de cada caso de estudio

57

4.2.2. Descripción estadística de los datos radar

Los datos radar utilizados por el 3DVAR para modificar el *background* de cada uno de los diez casos de estudio están divididos en dos grandes grupos; por una parte se especifica el grupo de datos utilizados para las asimilaciones en frío a la hora HH (Fig. 3.7) y, por otro, el grupo de datos radar utilizado para las asimilaciones en caliente (HH + 3).

Un análisis de la distribución de los datos de reflectividad determinó: 1) solo los casos 1, 2 y 7 usaron valores de reflectividad superiores a 50 dBZ (Fig. 4.9a), 2) los valores medios de la reflectividad fueron menores en los casos donde el modelo WRF fue inicializado en frío (Fig. 4.9b), con valores inferiores a 3 dBZ respecto a los casos inicializados en caliente (Tabla 4.2), 3) la reflectividad promedio de los casos más secos (1, 2, 3, 6 y 7) fue de 1 dBZ más alta respecto a los más húmedos (4, 5, 8, 9 y 10), con valores de 17 y 16 dBZ, respectivamente.

Considerando que la asimilación radar es especialmente importante por su capacidad para modificar algunas de las variables del modelo WRF en las tres dimensiones, se representa esquemáticamente la distribución de los datos de reflectividad en altura según cada caso de estudio (Fig 4.10a). Se destacan tres aspectos principales: 1) en todos los casos se presentan reflectividades superiores a los 8000 m, 2) en los casos 1, 2 y 6, se alcanzan valores de reflectividad muy cercanos al límite vertical de 10000 m por encima del cual se descartan los datos de reflectividad para el proceso de asimilación (Sección 3.2.3), 3) la altura media de la reflectividad diferencia dos grupos de datos que coinciden a su vez con los casos más secos y más húmedos (Fig. 4.10b) con alturas medias de 3962 y 2556 m, respectivamente (Tabla 4.4).

Figura 4.9: Análisis de tendencia central, variabilidad y datos extremos de los datos de reflectividad usados en los procesos de asimilación en frío y en caliente por el 3DVAR.

Estadístico	Ca 2015	so 1 -07-21	C 201	aso 2 5-07-22	Cas 2015-	io 3 07-30	Cas 2015-	io 4 11-02	Cas 2015-	io 5 11-02	Cas 2016-	so 6 -07-22	C 201	aso 7 6-07-27	Cas 2016-	so 8 -10-12	Cas 2016-	so 9 -10-13	Cas 2017-	o 10 03-24
	12	15	12	15	6	9	12	15	18	21	12	15	12	15	12	15	12	15	18	21
Media	14	16	15	19	14	17	15	20	17	19	22	23	13	15	15	16	12	16	16	17
Mediana	12	14	15	19	14	16	15	21	16	19	21	21	13	12	14	15	11	15	15	16
Desv. estándar	8	9	7	9	7	7	7	8	8	8	8	10	4	10	8	8	7	8	8	8
IQR	8	11	9	12	8	9	11	12	12	12	10	13	4	13	11	12	10	14	12	12
Min	3	1	3	1	1	1	0	1	0	1	3	2	2	1	0	0	0	0	0	0
Max	43	50	29	52	37	44	42	44	44	47	50	58	20	49	46	44	46	45	47	44
Rango	40	50	27	51	36	43	41	43	44	46	47	56	18	47	46	43	46	45	46	44
Cuartil1	9	10	10	13	10	12	10	14	11	13	16	16	11	8	9	9	6	9	10	11
Cuartil3	17	21	20	25	18	21	21	26	23	24	26	29	15	21	20	21	17	22	21	22
Error estándar	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IC95MediaLower	13	16	13	19	14	16	15	20	17	19	21	23	12	14	15	16	12	16	16	17
IC95MediaUpper	15	16	17	20	15	17	16	20	17	19	22	23	14	16	15	16	12	16	16	17
Varianza	57	85	53	89	48	54	53	58	68	60	70	105	13	105	58	63	52	70	60	65
Obs. CDV	43	2533	2	741	698	594	15347	31529	17758	19092	1398	3225	0	0	25085	15072	5241	19456	28036	24100
Obs. LMI	320	2481	17	66	126	338	23647	24117	5008	8304	135	676	76	0	16311	9779	6153	13023	17523	29332
Obs. PDA	0	416	26	1937	275	228	1394	28141	22728	35571	0	0	0	596	2909	19781	3447	17494	22135	11261
Obs. PBE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22463	24657	7576	16018	29104	28211
Obs. Total Radares	363	5430	45	2744	1099	1160	40388	83787	45494	62967	1533	3901	76	596	66768	69289	22417	65991	96798	92904
Obs. Superficie	2	44		245	24	46	24	46	24	40	2	53		251	24	45	2	51	24	49

Tabla 4.2: Análisis estadístico de los valores de reflectividad por cada caso de estudio

60

Figura 4.10: Análisis de tendencia central, variabilidad y datos extremos de la altura asociada a los datos de reflectividad usados en los procesos de asimilación en frío y en caliente por el 3DVAR.

	Cas	so 1	Cas	so 2	Cas	so 3	Cas	so 4	Cas	so 5	Cas	so 6	Cas	io 7	Cas	so 8	Cas	so 9	Cas	o 10
Estadístico	2015-	07-21	2015-	07-22	2015-	07-30	2015-	11-02	2015-	11-02	2016-	07-22	2016-	07-27	2016-	10-12	2016-	10-13	2017-	03-24
	12	15	12	15	6	9	12	15	18	21	12	15	12	15	12	15	12	15	18	21
Media	4419	4395	3420	3713	3830	3755	2452	2461	2365	2552	4299	4056	3612	4121	2402	2782	2796	2591	2489	2668
Mediana	3961	3962	3248	3248	3746	3597	2007	2180	2029	2280	3865	3684	3370	3033	2202	2609	2664	2376	2273	2352
Desv. estándar	1672	2004	1813	2121	1480	1466	1433	1339	1400	1424	1843	1984	1526	2695	1160	1438	1313	1310	1277	1441
IQR	2394	2817	2610	3168	2083	2200	1783	1876	1930	2018	2538	2895	1710	4681	1679	2093	1960	1761	1868	2095
Min	2149	781	1325	820	1034	1080	828	566	566	566	1208	1043	1808	861	656	566	566	566	566	656
Max	9804	9972	8475	9941	9804	8168	9389	9482	8687	8539	9804	9865	9482	9941	8188	8677	8677	8908	8998	9588
Rango	7655	9191	7150	9120	8770	7088	8561	8916	8121	7973	8597	8822	7674	9080	7532	8111	8111	8342	8432	8932
Cuartil1	3107	2807	1855	1948	2759	2682	1358	1382	1238	1389	2927	2462	2440	1799	1465	1625	1705	1576	1465	1483
Cuartil3	5501	5624	4465	5115	4842	4882	3141	3258	3167	3408	5465	5357	4149	6480	3144	3718	3666	3337	3333	3578
Error estándar	88	27	270	40	45	43	7	5	7	6	47	32	175	110	4	5	9	5	4	5
IC95MediaLower	4247	4342	2890	3633	3742	3671	2438	2452	2353	2541	4207	3993	3269	3905	2393	2772	2779	2581	2481	2659
IC95MediaUpper	4591	4448	3949	3792	3917	3839	2466	2470	2378	2563	4391	4118	3955	4337	2411	2793	2814	2601	2497	2677
N°Observaciones	363	5430	45	2744	1099	1160	40388	83787	45494	62967	1533	3901	76	596	66768	69289	22417	65991	96798	92904

Tabla 4.3: Análisis estadístico de las alturas de reflectividad por cada caso de estudio

62

	Cas	so 1	Cas	so 2	Cas	io 3	Cas	io 4	Cas	io 5	Cas	50 6	Cas	so 7	Cas	8 08	Cas	io 9	Cas	o 10
Estadístico	2015-	07-21	2015-	07-22	2015-	07-30	2015-	11-02	2015-	11-02	2016-	07-22	2016-	07-27	2016-	10-12	2016-	10-13	2017-	03-24
	12	15	12	15	6	9	12	15	18	21	12	15	12	15	12	15	12	15	18	21
Media	4419	4395	3420	3713	3830	3755	2452	2461	2365	2552	4299	4056	3612	4121	2402	2782	2796	2591	2489	2668
Mediana	3961	3962	3248	3248	3746	3597	2007	2180	2029	2280	3865	3684	3370	3033	2202	2609	2664	2376	2273	2352
Desv. estándar	1672	2004	1813	2121	1480	1466	1433	1339	1400	1424	1843	1984	1526	2695	1160	1438	1313	1310	1277	1441
IQR	2394	2817	2610	3168	2083	2200	1783	1876	1930	2018	2538	2895	1710	4681	1679	2093	1960	1761	1868	2095
Min	2149	781	1325	820	1034	1080	828	566	566	566	1208	1043	1808	861	656	566	566	566	566	656
Max	9804	9972	8475	9941	9804	8168	9389	9482	8687	8539	9804	9865	9482	9941	8188	8677	8677	8908	8998	9588
Rango	7655	9191	7150	9120	8770	7088	8561	8916	8121	7973	8597	8822	7674	9080	7532	8111	8111	8342	8432	8932
Cuartil1	3107	2807	1855	1948	2759	2682	1358	1382	1238	1389	2927	2462	2440	1799	1465	1625	1705	1576	1465	1483
Cuartil3	5501	5624	4465	5115	4842	4882	3141	3258	3167	3408	5465	5357	4149	6480	3144	3718	3666	3337	3333	3578
Error estándar	88	27	270	40	45	43	7	5	7	6	47	32	175	110	4	5	9	5	4	5
IC95MediaLower	4247	4342	2890	3633	3742	3671	2438	2452	2353	2541	4207	3993	3269	3905	2393	2772	2779	2581	2481	2659
IC95MediaUpper	4591	4448	3949	3792	3917	3839	2466	2470	2378	2563	4391	4118	3955	4337	2411	2793	2814	2601	2497	2677
N°Observaciones	363	5430	45	2744	1099	1160	40388	83787	45494	62967	1533	3901	76	596	66768	69289	22417	65991	96798	92904

Tabla 4.4: Análisis estadístico de las alturas de reflectividad por cada caso de estudio

Capítulo 5

Resultados y discusión

La calidad nunca es un accidente; siempre es el resultado de un esfuerzo de la inteligencia. John Ruskin

5.1. Resultados de la primera fase

Los resultados de la primera fase fueron obtenidos a partir de una serie de trece experimentos, los cuales fueron diseñados para medir el impacto de la asimilación de datos radar sobre el *nowcasting* de precipitación del 12 de octubre de 2016 de 15 a 21 UTC, donde un SCM generó 184.8 mm de precipitación máxima en la costa central de Cataluña.

El impacto de la asimilación radar fue analizado de dos maneras diferentes, primero determinando los incrementos que los datos radar causan en algunas de las variables del *background* y, segundo, clasificando los experimentos según su grado de acierto sobre el *nowcasting* de precipitación usando variables continuas y categóricas.

5.1.1. Incrementos en el Análisis

Utilizando el conjunto de variables y la metodología mencionada en la Sección 3.3, se analizaron los incrementos normalizados $(x^a - x^b)$ de cada variable en los 51 niveles verticales del modelo y las diferencias que se presentaron entre ellos como consecuencia del método de control de calidad de datos radar. Tal como se muestra en la Figura 5.1, los incrementos normalizados con el método NCAR (experimento 4) son diferentes a los obtenidos por el SMC (experimento 9), lo que sugiere una futura afectación en los resultados del *nowcasting* de precipitación. El incremento normalizado de una variable con respecto a las demás se representa en el eje Y y los niveles sigma junto con su altura geopotencial, son representados en en eje X.

Figura 5.1: Incrementos relativos (análisis menos *background*) causados por la asimilación de datos radar en cada uno de los niveles verticales del modelo WRF, el cual fue inicializado en frío con datos del 12 de octubre de 2016 a las 15 UTC. El eje X representa los niveles del modelo y su equivalencia en metros geopotenciales (gpm).

Independientemente del método de control de calidad aplicado a los datos brutos de radar, los incrementos máximos estuvieron relacionados con la clasificación de hidrometeoros basada en temperatura y aplicada en Gao y Stensrud (2012). La relación directa de la temperatura con la altura causa un máximo de proporción de mezcla de agua de lluvia QRAIN en los niveles más bajos, un máximo de proporción de mezcla de granizo QGRAUP en los niveles más altos y un máximo de proporción de mezcla de nieve QSNOW en los niveles medios; también es posible observar que los incrementos del vector de viento UV, la velocidad vertical W, QRAIN y la proporción de mezcla de agua QVAPOR presentan una mayor dispersión que QSNOW y QGRAUP, cuyos incrementos están restringidos, como se ha dicho, por los valores de temperatura presentes en los niveles verticales del modelo.

Las principales diferencias entre los dos métodos de control de calidad se presentaron en la ubicación de los incrementos máximos de QRAIN y la velocidad vertical W. Mientras que en el método de NCAR (Fig. 5.1a) tienen forma de campana y se encuentran cerca de 1700 y 3500 gpm (metros geopotenciales), en el método del SMC (Fig. 5.1b) estos incrementos son de forma triangular y alcanzan 2500 y 2100 gpm, respectivamente.

También hay diferencias en la distribución vertical de los incrementos, siendo el método NCAR (Fig. 5.1a) más sesgado que el método del SMC (Fig. 5.1b). Dichas diferencias podrían ser causadas por tres factores propios del método de control de calidad, estos son:

 Filtros de calidad independientes. Mientras que el método del SMC elimina los datos asimilados en un punto de grilla si alguna de las dos variables del radar (reflectividad y velocidad radial) no superan de forma independiente los filtros de control de calidad, el método de NCAR contempla asimilar cualquiera de las dos, independientemente de si alguna no supera los filtros de control de calidad.

- Puntos de grilla de asimilación con más de un valor en las variables radar. Cuando un punto de observación está cubierto por más de un radar, el método de NCAR selecciona el dato final que tenga un menor error de observación, mientras que el método del SMC asigna el valor que esté asociado a una menor distancia respecto al radar que lo origina.
- Límite vertical de asimilación. Inicialmente de 4500 m para el método del SMC y de 9000 m para el método de NCAR.
- Parámetros propios del control de calidad. Cada método utiliza un sistema independiente de filtrado de datos, cambio de resolución (de 1 km a 3 km), cambio del sistema de proyección de coordenadas y asignación del error de la observación.

Para una comparación más eficiente que permita descartar las tres primeras posibilidades, se utilizan en el proceso de asimilación únicamente los datos del radar CDV, se repite el análisis de incrementos verticales eliminando las observaciones del método de NCAR que solo contienen una de las dos variables del radar (5.2a) y se aumenta el límite vertical de los datos del SMC a 9000 m (Fig. 5.2b).

Figura 5.2: Incrementos relativos (análisis menos *background*) causados por la asimilación de datos radar en cada uno de los niveles verticales del modelo WRF, el cual fue inicializado en frío con datos del 12 de octubre de 2016 a las 15 UTC. El eje X representa los niveles del modelo y su equivalencia en metros geopotenciales (gpm).

Al comparar los resultados eliminando los tres primeros factores que diferencian los dos métodos de control de calidad, es posible determinar que los incrementos máximos de QRAIN y la velocidad vertical W siguen en el mismo nivel, por lo cual los parámetros propios del control de calidad son los que verdaderamente están afectando los datos del *background*. Aunque la asimilación en frío permite conocer más fácilmente cómo los dos métodos de control de calidad afectan las variables estudiadas, no es posible establecer una relación directa entre los incrementos de QRAIN y QVAPOR o W, porque estos dos últimos están influenciados por su contraparte en el *background*.

La diferencia entre el uso de los métodos NCAR y SMC también es notable horizontalmente, en donde la dispersión horizontal de incrementos causada por los dos métodos de control de calidad es analizada aplicando la técnica propuesta en la Sección 3.3.

Para comprender el método de umbrales, se comparan tres factores: 1) la reflectividad máxima del radar a las 12 UTC (Fig. 5.3), 2) la integración de la columna de los incrementos de QRAIN en kg/m^2 causados por la asimilación de datos radar en frío usando los métodos de control de calidad de NCAR y el SMC y 3) los incrementos relativos causados por cada método usando umbrales del 10 % y 1 % en cada caso. De esta manera, es posible conocer la equivalencia de la reflectividad en términos de QRAIN y la dispersión horizontal influenciada por el método de control de calidad.

Una comparación cualitativa entre la reflectividad máxima del radar (Fig. 5.3) y los incrementos en QRAIN obtenidos usando el método de NCAR (Fig. 5.4a) y el SMC (Fig. 5.4b) sugiere que el método de NCAR favorece una mejor representación del campo general de QRAINbasado en la reflectividad. También se destaca la habilidad del método de NCAR para representar en términos de incrementos de QRAIN (de 2 a 3 kg/m^2) la reflectividad

Figura 5.3: Reflectividad máxima del radar (dBZ) a una resolución de 3 km el 12 de octubre de 2016 a las 12 UTC.

máxima causada por una tormenta ubicada sobre el mar mediterráneo al sur de Cataluña. El hecho que el método del SMC no logre representar esta tormenta puede ser causado por la altura de asimilación establecida en 4500 m, impidiendo asimilar datos radar que superen este límite vertical.

Figura 5.4: Integración de los incrementos (análisis menos *background*) de la columna de QRAIN (kg/m^2) producidos por los métodos de NCAR (a) y SMC (b) por punto de grilla en los experimentos 4 y 9 el 12 de octubre de 2016 a las 15 UTC, respectivamente. Incrementos relativos usando umbrales de 10% (c) y 1% (e) en el método de NCAR y del 10% (d) and 1% (f) en el método del SMC.

Los valores entre 0.1 y 1 kg/m^2 (Figs. 5.4a y 5.4b) resultantes de la integración de la columna de los incrementos de QRAIN, coincide bastante bien con el uso de un umbral de 10% (color rojo) en QRAIN (Figs. 5.4c y 5.4d). Este mismo umbral muestra que el incremento máximo producido por cada método no necesariamente coincide.

Si en lugar de utilizar un umbral del 10 %, se aplica un umbral más bajo, 1 % por ejemplo, los incrementos de la dispersión horizontal de las variables analizadas comienzan a coincidir entre ellos (Figs. $5.4e ext{ y } 5.4f$).

Este patrón de coincidencia no es igualmente visible en incrementos de UV, W y QVAPOR, porque como se mencionó anteriormente, están influenciados por su contraparte en el *background*. También es posible que el patrón de dispersión horizontal se vea afectado en gran medida por la forma en que los métodos de control de calidad construyen una única cuadrícula de datos basada en la superposición de datos proveniente de los cuatro radares.

5.1.2. Validación del nowcasting usando variables continuas

El pronóstico cuantitativo de precipitación se evaluó de acuerdo con la metodología propuesta en la Sección 3.4.1 utilizando los índices ME, MAE, MSE y RMSE. La Tabla 5.1 resume los resultados encontrados, destacando en negrilla los dos mejores resultados obtenidos por cada índice.

Evnorimentes		In	dices	
Experimentos	ME	MAE	MSE	RMSE
1	5.26	13.04	606.75	24.63
2	6.41	12.67	435.34	20.86
3	6.80	12.36	423.60	20.58
4	3.04	8.09	203.39	14.26
5	3.22	8.50	216.98	14.73
6	2.97	9.12	206.15	14.36
7	2.56	7.49	167.84	12.96
8	-0.39	7.58	167.72	12.95
9	2.05	7.56	161.49	12.71
10	2.84	7.58	142.13	11.92
11	3.17	8.08	155.00	12.45
12	2.03	7.22	135.06	11.62
13	1.66	6.92	134.97	11.62
Control	2.34	7.90	165.40	12.86

Tabla 5.1: Resultados de índices estadísticos con variables continuas utilizando la metodología punto a punto

De acuerdo con los índices de la Tabla 5.1, solo el experimento 8 presenta un ME negativo, lo que indica que el modelo podría estar subestimando la precipitación. Los dos mejores resultados parecen estar representados por los experimentos 12 y 13, pero continuar clasificando la precisión de los experimentos del mejor al peor teniendo en cuenta todos los índices, podría volverse complejo. Para solucionar este inconveniente, los experimentos fueron clasificados según el diagrama de Taylor (Fig. 5.5). Este método gráfico es especialmente útil porque combina los índices estadísticos de cada modelo, muestra cuán cerca están los experimentos de la observación y permite una rápida clasificación de los resultados obtenidos.

Figura 5.5: La desviación estándar se representa por la distancia radial desde el origen, el coeficiente de correlación entre cada conjunto de datos y las observaciones por la distancia angular y el error RMSE por los semicírculos que comienza y termina en el eje X con valores de 10 y 20 mm.

La mejor simulación corresponde al experimento con el coeficiente de correlación más alto, el RMSE más bajo y la desviación estándar más cercana a la desviación estándar de las observaciones (13 mm en 6 h). De acuerdo con lo anterior, los experimentos con los mejores resultados se presentaron en este orden: 13, 10, 12, 9, 7, control, 11, 4 y 5 (dentro del cuadrado rojo en la Figura 5.5), todos ellos con una correlación mayor a 0.4, seguidos por 6, 8, 3, 2 y 1.

Aunque el experimento 13 presentó resultados satisfactorios tanto en el diagrama de Taylor como en los índices estadísticos (Tabla 5.1), la coincidencia entre la hora de inicialización del modelo y la hora de inicio del evento, podría estar influenciando la subestimación de la precipitación y favoreciendo, en este caso, los resultados del pronóstico. Esta es la razón por la que se considera que los mejores resultados se obtuvieron en los experimentos 10 y 12.

5.1.3. Validación del nowcasting usando variables categóricas

Al igual que con los índices basados en variables numéricas, la variedad de índices basados en variables categóricas (BIAS, FAR, CSI, PC y POD) hace que sea difícil organizar y clasificar los experimentos de acuerdo con los resultados obtenidos. También es complejo seleccionar un único índice categórico para clasificar los mejores experimentos porque ninguno combina las categorías HIT, FA, MISS y CREJ. Al resaltar en negrilla los dos mejores resultados de cada índice categórico (Tabla 5.2), se observa que los experimentos 4, 7 y 9 se destacan sobre el resto; sin embargo, sigue siendo una apreciación subjetiva basada en la combinación de índices categóricos.

Experimentes			Indices	;	
Experimentos	BIAS	FAR	CSI	PC	POD
1	1.21	0.58	0.30	0.40	0.51
2	1.50	0.66	0.26	0.36	0.51
3	1.52	0.59	0.32	0.42	0.62
4	1.28	0.40	0.51	0.60	0.77
5	1.29	0.42	0.48	0.58	0.74
6	1.52	0.53	0.40	0.48	0.72
7	1.32	0.40	0.52	0.60	0.79
8	1.10	0.41	0.45	0.55	0.65
9	1.19	0.36	0.54	0.63	0.77
10	1.44	0.44	0.49	0.58	0.81
11	1.52	0.47	0.47	0.56	0.80
12	1.33	0.41	0.51	0.60	0.79
13	1.10	0.40	0.45	0.56	0.66
Control	1.30	0.42	0.49	0.59	0.76

Tabla 5.2: Resultados de índices categóricos utilizando la metodología difusa

El análisis ROC es una herramienta que combina eficientemente las categorías especificadas en la Tabla 3.6 a través del uso de los índices POD y POFD. También permite clasificar gráfica y numéricamente cada uno de los experimentos. De acuerdo con la Sección 3.4.3.2 es posible utilizar un ROC adaptado sin umbrales (Figura 5.6) en donde la distancia desde cada punto (experimento) hasta la línea de conjetura aleatoria es obtenida mediante la ecuación de la distancia de un punto a la recta y resumida en la Tabla 5.3.

Figura 5.6: Análisis ROC. La línea roja entre los puntos (0,0) y (1,1) representa la suposición aleatoria. Los experimentos que se encuentran debajo de esta línea presentan malos resultados, incluso peores que el azar.

Según el análisis ROC (Fig. 5.6 y Tabla 5.3), los mejores resultados se encuentran en este orden: experimento 9, 4, 7, 12, 10, control, 5, 11, 13, 8, 6, 3, 1 y 2. Solo los experimentos 9, 4, 7, 12 y 10 son mejores que el control, siendo el experimento 9 el que mejor resultados obtuvo con un POD de 0.768 y un POFD de 0.556. Los experimentos 1, 2, 3 y 6 están por debajo de la línea de suposición aleatoria arrojando resultados pobres, inclusive peores que una estimación aleatoria. Aunque esto se esperaba para los primeros tres experimentos inicializados seis horas antes que el resto, el hecho que el experimento 6 se encuentre dentro de este grupo significa que la parametrización de cúmulos incluida dentro del dominio interno está afectando negativamente los resultados. Esta clasificación ubica el experimento 13 en la décima posición, en contraste con los resultados obtenidos por el diagrama de Taylor.

		ndices	
Experimentos	Distancia	POD	POFD
9	0.150	0.768	0.556
4	0.126	0.768	0.589
7	0.123	0.792	0.618
12	0.122	0.788	0.615
10	0.117	0.807	0.641
Control	0.116	0.755	0.592
5	0.103	0.745	0.598
11	0.090	0.803	0.676
13	0.074	0.657	0.553
8	0.047	0.652	0.585
6	-0.012	0.723	0.740
3	-0.095	0.619	0.754
1	-0.148	0.510	0.719
2	-0.180	0.515	0.770

Tabla 5.3: Resultados de índices categóricos utilizando metodología ROC y difusa

Con base en el análisis ROC, la precipitación simulada por los seis mejores experimentos mencionados en la Tabla 3.10, es representada mediante la Figura 5.7. Sin embargo, una comparación cualitativa con la precipitación observada el 12 de octubre de 2012 de 15 a 21 UTC (Fig. 4.6a) sería muy compleja teniendo en cuenta el número de experimentos, la cantidad y localización de la precipitación; por ello, es mejor representar las áreas donde el pronóstico de cantidad de precipitación coincide con las observaciones (HIT y CREJ) y donde el modelo WRF sobreestima (FA) o subestima (MISS) la precipitación acumulada en seis horas (Fig. 5.8).

De esta manera se facilita comparar los experimentos entre sí y reconocer las áreas geográficas donde se están obteniendo los mejores resultados. Cualitativamente es posible determinar que la tendencia general de la precipitación simulada por los seis experimentos muestra un retraso en el desplazamiento de la precipitación en dirección SW - NE. También es posible observar que aunque ninguno de los seis experimentos logra un HIT en el máximo de precipitación (Fig 4.6a), el experimento 9 presenta un mayor número de aciertos alrededor del máximo de precipitación.

Figura 5.7: Pronósticos de precipitación acumuladas (mm) el 12 de octubre de 2016 de 15 a 21 UTC para los 6 mejores casos según el análisis ROC.

Figura 5.8: Parámetros coincidentes de acuerdo con el pronóstico de precipitación acumulada el 12 de octubre de 2016 de 15 a 21 UTC usando la Ecuación 3.5 y la metodología difusa.

Un análisis de los valores asociados con los índices categóricos de cada experimento (Fig. 5.9) determinó que solo los experimentos 2, 3 y 9 alcanzaron un HIT en algunos sectores donde la precipitación presentaba valores superiores a 100 mm. Aunque se podría llegar a pensar que esta habilidad del modelo para pronosticar altos valores de precipitación podría incrementar los valores de falsa alarma, como efectivamente sucede con los experimentos 2 y 3 con valores de falsa alarma máxima de 48.8 y 65.8 mm respectivamente, el experimento 9 presenta uno de los valores de falsa alarma más bajos de todos los experimentos (34.8 mm).

Un análisis de los valores asociados con los índices categóricos de cada experimento (Fig. 5.9) determinó que solo los experimentos 2, 3 y 9 alcanzaron un HIT en algunos sectores donde la precipitación presentaba valores superiores a 100 mm. Mientras que el experimento 9 obtuvo uno de los valores de falsa alarma más bajos (34.8 mm) en todo el dominio, los experimentos 2 y 3 alcanzaron valores de falsa alarma máxima de 48.8 y 65.8 mm respectivamente.

Figura 5.9: Clasificación categórica de los valores de precipitación (mm) según el tipo de experimento (Tabla 3.10).

Cada una de las categorías de la Figura 5.9 tiene asociados valores de precipitación (mm) observados que cumplieron con los criterios de intensidad y localización. La descripción estadística de cada uno de los experimentos y categorías se resumen en la Tabla 5.4.

Tabla 5.4: Análisis estadístico de los valores de las observaciones presentes en las categorías HIT, MISS, FA y CREJ

FΔ	Control	exp 01	exp 02	exp 03	exp 04	exp 05	exp 06	exp 07	exp 08	exp 09	exp 10	exp 11	exn 12	exp 13
	E O	2.0	2.7	4.0	4.2	2.0	2.0	2.6	2.0	4 F	2.7	2 5	4.1	4.0
Denu Estándor	5.0	3.2	5.7	4.0	4.5	3.9	3.2	3.0	3.2	4.0	3.7	3.5	4.1	4.0
Mediane	0.0	4.2	0.1	0.0	0.4	4.0	3.7	4.0	3.4	0.0	4.0	3.7	4.7	4.9
	2.0 E 1	2.7	2.2	4.2	2.0	2.3	1.9	2.2	1.9	2.3 E 4	2.0	2.5	2.9	2.2
Min	5.1	3.7	4.2	4.5	4.9	4.0	4.1	4.7	4.2	5.4	4.4	4.2	4.9	4.2
Maria	22.1	20.0	40.0	0.0	47.2	10.0	0.0	10.0	10.7	24.0	20.1	20.1	21.0	0.0
IVIAX	33.1	38.2	48.8	05.8	47.3	40.9	23.2	40.0	19.7	34.8	39.1	39.1	31.9	50.1
Rango	33.1	38.2	48.8	05.8	47.3	40.9	23.2	40.0	19.7	34.8	39.1	39.1	31.9	50.1
Cuartill	1.0	0.6	0.7	0.7	0.8	0.9	0.6	0.7	0.7	0.7	0.8	0.8	0.7	0.8
Cuartil3	0.1	4.4	4.9	5.0	5.8	5.5	4.7	5.4	4.9	0.1	5.2	5.0	5.0	5.0
N_Observaciones	3206	4073	4846	4/16	3205	3339	4532	3405	2968	2703	3080	4033	3314	2847
Error Estàndar	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
IC95MediaLower	4./	3.1	3.6	3.8	4.1	3.8	3.1	3.4	3.1	4.3	3.5	3.4	3.9	3.8
IC95MediaUpper	5.2	3.4	3.9	4.1	4.5	4.1	3.3	3.7	3.3	4.7	3.8	3.6	4.2	4.1
Varianza	36.1	18.0	25.8	35.5	29.7	20.3	13.3	16.0	11.5	30.7	15.8	13.5	22.0	24.3
CREJ	Control	exp_01	exp_02	exp_03	exp_04	exp_05	exp_06	exp_07	exp_08	exp_09	exp_10	exp_11	exp_12	exp_13
Promedio	0.3	0.2	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.3	0.3	0.2	0.3	0.3
Desv. Estándar	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Mediana	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.1
IQR	0.6	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5
Min	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Rango	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cuartil1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cuartil3	0.6	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5
N Observaciones	2365	1725	1656	1655	2290	2250	1585	2086	2171	2324	2094	1989	2159	2332
Error Estándar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IC95MediaLower	0.3	0.2	0.2	0.2	0.3	0.3	0.2	0.3	0.3	0.3	0.2	0.2	0.2	0.3
IC95MediaUpper	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Varianza	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
MISS	Control	exp_01	exp_02	exp_03	exp_04	exp_05	exp_06	exp_07	exp_08	exp_09	exp_10	exp_11	exp_12	exp_13
MISS Promedio	Control 21.9	exp_01 16.1	exp_02 15.5	exp_03	exp_04 20.3	exp_05 19.5	exp_06	exp_07 21.1	exp_08	exp_09 19.6	exp_10 24.7	exp_11 26.4	exp_12 24.6	exp_13 12.8
MISS Promedio Desy, Estándar	Control 21.9 20.8	exp_01 16.1 16.7	exp_02 15.5 14.8	exp_03 17.0 15.1	exp_04 20.3 20.2	exp_05 19.5 19.6	exp_06 24.6 20.1	exp_07 21.1 21.1	exp_08 22.7 19.8	exp_09 19.6 19.2	exp_10 24.7 21.7	exp_11 26.4 21.5	exp_12 24.6 20.9	exp_13 12.8 15.3
MISS Promedio Desv. Estándar Mediana	Control 21.9 20.8 15.1	exp_01 16.1 16.7 10.1	exp_02 15.5 14.8 10.4	exp_03 17.0 15.1 11.8	exp_04 20.3 20.2 14.5	exp_05 19.5 19.6 14.0	exp_06 24.6 20.1 17.8	exp_07 21.1 21.1 14.3	exp_08 22.7 19.8 16.7	exp_09 19.6 19.2 14.0	exp_10 24.7 21.7 18.7	exp_11 26.4 21.5 20.9	exp_12 24.6 20.9 18.6	exp_13 12.8 15.3 8.2
MISS Promedio Desv. Estándar Mediana IQR	Control 21.9 20.8 15.1 25.5	exp_01 16.1 16.7 10.1 14.7	exp_02 15.5 14.8 10.4 13.5	exp_03 17.0 15.1 11.8 16.5	exp_04 20.3 20.2 14.5 24.5	exp_05 19.5 19.6 14.0 23.2	exp_06 24.6 20.1 17.8 23.0	exp_07 21.1 21.1 14.3 23.7	exp_08 22.7 19.8 16.7 24.6	exp_09 19.6 19.2 14.0 23.6	exp_10 24.7 21.7 18.7 25.8	exp_11 26.4 21.5 20.9 24.9	exp_12 24.6 20.9 18.6 23.3	exp_13 12.8 15.3 8.2 10.6
MISS Promedio Desv. Estándar Mediana IQR Min	Control 21.9 20.8 15.1 25.5 1.0	exp_01 16.1 16.7 10.1 14.7 1.0	exp_02 15.5 14.8 10.4 13.5 1.0	exp_03 17.0 15.1 11.8 16.5 1.0	exp_04 20.3 20.2 14.5 24.5 1.0	exp_05 19.5 19.6 14.0 23.2 1.0	exp_06 24.6 20.1 17.8 23.0 1.0	exp_07 21.1 21.1 14.3 23.7 1.0	exp_08 22.7 19.8 16.7 24.6 1.0	exp_09 19.6 19.2 14.0 23.6 1.0	exp_10 24.7 21.7 18.7 25.8 1.0	exp_11 26.4 21.5 20.9 24.9 1.0	exp_12 24.6 20.9 18.6 23.3 1.0	exp_13 12.8 15.3 8.2 10.6 1.0
MISS Promedio Desv. Estándar Mediana IQR Min Max	Control 21.9 20.8 15.1 25.5 1.0 184.8	exp_01 16.1 16.7 10.1 14.7 1.0 184.8	exp_02 15.5 14.8 10.4 13.5 1.0 122.5	exp_03 17.0 15.1 11.8 16.5 1.0 85.0	exp_04 20.3 20.2 14.5 24.5 1.0 184.8	exp_05 19.5 19.6 14.0 23.2 1.0 184.8	exp_06 24.6 20.1 17.8 23.0 1.0 184.8	exp_07 21.1 14.3 23.7 1.0 184.8	exp_08 22.7 19.8 16.7 24.6 1.0 184.8	exp_09 19.6 19.2 14.0 23.6 1.0 184.8	exp_10 24.7 21.7 18.7 25.8 1.0 184.8	exp_11 26.4 21.5 20.9 24.9 1.0 184.8	exp_12 24.6 20.9 18.6 23.3 1.0 184.8	exp_13 12.8 15.3 8.2 10.6 1.0 184.8
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartill	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5 1	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil1 Cuartil3	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0	exp_07 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil1 Cuartil3 N. Observaciones	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2 2707	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6 2332	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 1759	exp_07 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartila N_Observaciones Frror Frándar	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0 5	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2 2797 0.3	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6 2332 0.3	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 1759 0.5	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila M_Observaciones Error Estándar IC95Media over	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.2 3211 0.5 5	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2 2797 0.3 15.0	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6 2332 0.3 16 3	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 9.4	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 18.6	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 1759 0.5 23.7	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 219	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 18.7	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 235	exp_11 26.4 21.5 20.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25 2	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartila Cuartila Cuartila Cuartila Cuartila ICOSMediaLower ICOSMediaLower	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 1.5 16.7 1.5 16.7 1.5 16.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2 2797 0.3 15.0 161	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6 2332 0.3 16.3 17.6	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 18.6 20 5	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 1759 0.5 23.7 25.6	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 235	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 18.7 20.5	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25.2 27 6	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 23.6 25.7	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartila Cuartila Cuartila Cuartila IC95MediaLower IC95MediaLower IC95MediaLoper Varianza	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 2434.4	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 16.7	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2 2797 0.3 15.0 16.1 217.6	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6 2332 0.3 16.3 17.6 226 6	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 406.2	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 18.6 20.5 386.1	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 34.0 1759 0.5 23.7 25.6 402 6	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 391.2	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 18.7 20.5 367.9	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25.2 27.6 462.2	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 23.6 25.7 437.8	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartil3 N_Observaciones Error Estándar IC95MediaLower IC95MediaLower Varianza	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 434.4	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 278.1	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 5.7 19.2 2797 0.3 15.0 16.1 217.6	exp_03 17.0 15.1 11.8 85.0 84.0 6.1 22.6 2332 0.3 16.3 17.6 226.6	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 406.2	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 18.6 20.5 386.1	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 34.0 34.0 35 23.7 25.6 402.6	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 391.2	exp_09 19.6 19.2 14.0 184.8 183.8 4.8 28.4 1704 0.5 18.7 20.5 367.9	exp_10 24.7 21.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25.2 27.6 462.2	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 25.7 437.8	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila N_Observaciones Error Estándar IC95MediaL0per Varianza HIT	Control 21.9 20.8 15.1 125.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6 2332 0.3 16.3 17.6 226.6 exp_03	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04	exp_05 19.5 19.6 19.6 14.0 23.2 1.0 184.8 4.9 28.2 1716 0.5 18.6 20.5 386.1 exp_05	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 1759 0.5 23.7 25.6 402.6 exp_06	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 exp_08	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 18.7 20.5 367.9 exp_09	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 exp_11	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp_13
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil1 Cuartil3 N_Observaciones Error Estándar IC95MediaUpper Varianza HIT Promedio	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 10.2	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01 12.2	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 14.8	exp_03 17.0 15.1 11.8 16.5 1.0 84.0 6.1 22.6 2332 0.3 17.6 226.6 exp_03 13.1	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 1.1	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 18.6 20.5 386.1 exp_05 11.6	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 1759 0.5 23.7 25.6 402.6 exp_06 10.5	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 exp_08 8.5	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 18.7 20.5 367.9 exp_09 10.5	exp_10 24.7 21.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 11.2	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 27.6 462.2 11.4	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12 10.2	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp_13 13.4
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartila Cuartila Cuartila Cuartila Custerila Cobservaciones Error Estándar IC95MediaLower IC95MediaLower IC95MediaLower Varianza MIT Promedio Desv. Fstándar	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 23.4 434.4 <u>Control</u> 10.2 10.2	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6	exp_02 15.5 14.8 10.4 13.5 121.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 14.8 16.2	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6 2332 0.3 16.3 16.3 16.3 16.3 16.5 226.6 226.6 226.6 226.6 226.6 21.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 11.7	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 18.6 20.5 386.1 <u>exp_05</u> 11.6 11.6 12.2	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 34.0 1759 0.5 23.7 25.6 402.6 402.6 10.5 10	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 11.4	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 8.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 \$ 391.2 \$ \$ 9.9 \$ 8.5 7 3	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 18.7 20.5 367.9 exp_09 10.5 12.0	exp_10 24.7 21.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 11.2 11.1	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 exp_11 11.4 11.4 11.4	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 23.6 25.7 437.8 exp_12 10.2 10.7	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 0.3 12.2 13.4 23.4 23.4 23.4 23.4 13.4 14.3
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartil3 N_Observaciones Error Estándar IC95MediaLower IC95MediaLoper Varianza HIT Promedio Desv. Estándar Mediana	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 10.2 10.7 6 3	exp_01 16.7 10.1 14.7 10.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6 6 7	exp_02 15.5 14.8 10.4 13.5 122.5 121.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 14.8 16.2 8.7 14.8 15.5 16.1 16.2 16.2 16.2 16.1 16.1 16.1 16.2 16.2 16.2 17.6 16.2 16.2 16.2 17.6 16.2 17.6 16.2 16	exp_03 17:00 15:1 11:8 16:5 1.00 85:0 84:0 6:1 22:6 2332 0.3 17:6 22:6.6 22:6.6 exp_03 13:1 15:2 7 3 3	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 1634 0.5 1634 21.3 406.2 exp_04 11.1 11.7 6 7 6	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 18.6 20.5 386.1 exp_05 11.6 12.2 6 9	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 181.0 34.0 1759 0.5 23.7 25.6 402.6 exp_06 10.5 10.1 6 5	exp_07 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 11.4 6 7	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 exp_08 8.5 7.3 5 7	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 18.7 20.5 367.9 exp_09 10.5 12.0 6 0 0	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 11.2 11.1 6 9 9	exp_11 266.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 27.6 462.2 27.6 462.2 27.6 11.4 11.4	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 183.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12 10.2 10.7 6 2	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp_13 13.4 13.4 14.3 6 7
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartila N_Observaciones Error Estándar IC95MediaLower IC95MediaL	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 10.2 10.7 6.3 8 4	exp_01 16.7 10.1 14.7 10.0 184.8 183.8 5.5 20.2 3211 0.3 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6 6.7 14.4	exp_02 15.5 14.8 10.4 13.5 121.5 5.7 122.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 14.8 16.2 8.7 16.5	exp_03 17:00 15:1 11:8 16:5 1.00 85:00 84:00 6:11 22:66 23322 0.3 16:33 17:66 226:66 exp_03 13:11 15:22 7:3 13:10	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 11.7 6.7 11.0	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 1716 0.5 386.1 exp_05 386.1 exp_05 11.6 12.2 6.9	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 1759 0.5 23.7 25.6 402.6 exp_06 10.5 10.1 6.5 10.1	exp_07 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 11.4 6.7 11.4	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 exp_08 8.5 7.3 5.7 7 5 5.7	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 367.9 exp_09 10.5 12.0 6.0 9 3	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 11.2 11.1 6.9 11.2	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 27.6 462.2 11.4 11.1 7.3 11.7	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 183.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12 10.2 10.7 6.2 9 4	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 0.3 12.2 0.3 12.2 13.4 234.9 exp_13 13.4 234.9 24.9 13 13.4 234.9 15.8 13.4 234.9 15.3 13.4 234.9 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil1 Cuartil3 N_Observaciones Error Estándar IC95MediaUpper Varianza HIT Promedio Desv. Estándar IQR Min	Control 21.9 20.8 15.1 25.5 1.0 184.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 10.2 10.7 6.3 8.4	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.1 3.1 5.5 16.7 278.1 exp_01 12.2 12.6 6.7 14.4 1.2 12.4 12.2 12.6 1.2 12.2 12.6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2 2797 0.5 15.0 16.1 217.6 exp_02 14.8 16.5 8.7 16.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 22.6 2332 0.3 16.3 17.6 226.6 exp_03 13.1 15.2 7.3 13.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 19.4 21.3 40.5 19.4 21.3 40.2 exp_04 11.1 11.7 6.7 11.0 1.0	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 18.6 20.5 386.1 exp_05 11.6 12.2 6.9 11.2 1.2	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 18.3 11.0 34.0 34.0 34.0 34.0 34.0 34.0 1759 0.5 23.7 25.6 402.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	exp_07 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 1.4 6.7 1.8	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 exp_08 8.5 7.3 35.7 7.5	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 28.4 1704 0.5 18.7 20.5 367.9 10.5 12.0 6.0 9.3 1.0	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 11.2 11.1 6.9 11.1	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 184.8 11.9 36.8 12.4 0.6 25.2 27.6 462.2 27.6 462.2 exp_11 11.4 11.1 7.3 11.7 1.0 1.7 1.0	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 184.8 18.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp_13 13.4 13.4 14.3 6.7 15.8
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil3 N_Observaciones Error Estándar IC95MediaLower IC95MediaUpper Varianza Melin Promedio Desv. Estándar Mediana IQR Min Max	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 10.2 10.7 6.3 8.4 1.0 914	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6 6.7 14.4 1.0 8.3 4 10.3 10.5 10.5 10.7 10	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 14.8 16.2 14.8 16.2 14.8 16.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	exp_03 17.0 15.1 11.8 16.5 1.0 84.0 6.1 22.6 23322 0.3 16.3 17.6 226.6 exp_03 13.1 15.2 7.3 13.9 1.0 18.4 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 11.7 6.7 11.0 1.0 97.3	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 183.8 183.8 183.8 185.8 1716 0.5 18.6 20.5 386.1 exp_05 11.6 12.2 6.9 11.2 1.0 8.6 12.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 183.8 183.8 183.8 183.8 11.0 34.0 1759 0.5 23.7 25.6 402.6 exp_06 10.5 10.1 6.5 10.1 1.5 11.1 1.0 71.0 71.0 71.0 71.0 71.0	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 11.4 11.4 11.8 1.0 83.6	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 23311 0.4 21.9 23.5 391.2 exp_08 8.5 7.3 5.7 7.5 1.0	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 18.7 20.5 367.9 10.5 12.0 6.0 9.3 1.0 1.0	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 11.2 11.1 1.6 9 911.1	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 183.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 exp_11 11.4 11.1 7.3 11.7 10.7	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 183.8 183.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12 10.2 10.7 6.2 9.4 1.0 78.0 10 78.0 10 78.0 10 78.0 77 78.0 78.0 78.0 78.0 78.0 78.0	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp_13 13.4 14.3 6.7 15.8 1.0 85.0 85.0 0.5
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila N_Observaciones Error Estándar IC95MediaUoper Varianza HIT Promedio Desv. Estándar Mediana IQR Min Max Rango	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 10.2 10.7 6.3 8.4 1.0 91.4 0.9	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 5.5 20.2 3211 0.3 15.5 20.3 315.5 20.3 315.5 20.2 3211 0.3 15.5 20.2 3211 0.3 15.5 20.2 3212 0.3 15.5 20.2 3212 0.3 15.5 20.2 3212 0.3 15.5 20.2 3212 0.3 15.5 20.2 3212 0.3 15.5 20.2 3212 0.3 15.5 20.2 3212 0.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.3 15.5 20.2 20.2 20.3 15.5 20.2 20.2 20.3 15.5 20.2 20.2 20.3 15.5 20.2 20.2 20.3 15.5 20.2 20.2 20.3 15.5 20.2 20.2 20.2 20.3 20.2 20.2 20.6 6.7 14.4 10.0 83.4 83	exp_02 15.5 14.8 10.4 1.22.5 121.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 14.8 16.2 8.7 1.0 1.0 1.0 1.22.5 1.0 1.0 1.0 1.22.5 1.0 1.0 1.0 1.22.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 84.0 6.1 22.6 2332 0.3 16.3 17.6 226.6 226.6 223.6 226.6 226.2 0.3 16.3 17.6 226.6 226.6 226.2 0.3 16.3 17.6 226.6 226.6 226.2 0.3 16.3 17.6 226.6 226.2 0.3 16.3 17.6 226.6 226.2 0.3 16.3 17.6 226.6 226.6 226.6 226.6 226.6 226.6 226.7 17.6 226.6 226.6 226.7 17.6 226.6 226.6 226.6 226.6 226.7 17.6 226.6 226.6 226.7 17.6 226.6 226.6 226.7 17.6 226.7 226.6 226.7 17.6 226.6 226.7 226.7 17.6 226.7 226.7 226.6 226.7 226.6 226.7 226.6 226.7 226.6 227.3 15.2 7.3 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 11.7 6.7 11.0 1.0 97.3 96 2	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 4.9 28.2 1716 0.5 18.6 20.5 386.1 exp_05 11.6 12.2 6.9 11.2 1.0 86.7	exp_06 24.6 20.1 17.8 20.1 17.8 184.8 11.0 34.0 1759 23.7 23.7 25.6 402.6 402.6 10.5 10.1 6.5 10.1 1.0 1.0 1.0 10.1 1.0 1.0 1.0 1.0 2.0 0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	exp_07 21.1 21.1 14.3 23.7 1.0 184.8 5.4 29.1 1533 0.5 20.0 22.1 245.9 exp_07 11.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 8.80 32.6 2331 0.4 21.9 23.5 391.2 exp_08 8.5 7.3 5.7 7.5 7.5 1.0 50.1 401	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 4.8 28.4 1704 0.5 367.9 exp_09 exp_09 10.5 12.0 6.0 9.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 exp_10 11.2 11.1 6.9 11.2 11.1 1.0 67.9 66.6 2.6	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 11.9 36.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 27.6 462.2 exp_11 11.1 7.3 11.7 .0 73.0 73.0	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12 10.7 6.2 10.7 6.2 9.4 1.0 76.0 77.0	exp_13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp_13 13.4 14.3 6.7 15.8 1.0 85.0
MISS Promedio Desv. Eständar Mediana IQR Min Max Rango Cuartila Cuartil3 N_Observaciones Error Eständar IC95MediaLower IC95Med	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 10.2 10.7 6.3 8.4 1.0 90.4 2.9 434.4	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6 6.7 14.4 1.0 0.3 4.4 1.0 0.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 5.7 19.2 2797 0.3 15.0 15.0 15.0 15.0 15.0 15.5 5.7 19.2 2797 0.3 16.1 217.6 exp_02 8.7 16.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	exp_03 17.0 15.1 11.8 16.5 5 0 84.0 6.1 22.6 2332 0.3 16.2 226.6 22322 0.3 17.6 226.6 2232 2 0.3 17.6 226.6 2332 7.3 1.3 1.5 2 7.3 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 11.7 6.7 11.0 0.7 396.3 37	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 4.9 28.2 1716 0.5 386.1 1716 18.6 18.6 18.6 18.6 18.7 6.9 11.2 1.0 18.7 85.7 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 11.0 34.0 1759 0.5 23.7 25.6 402.6 402.6 exp_06 10.5 10.1 6.5 11.1 1.0 71.0 71.0 70.0 30	exp_07 21.1 21.1 21.1 21.1 21.1 14.3 23.7 1.0 184.8 5.4 29.1 1533 0.5 20.0 20.1 445.9 exp_07 11.4 1.7 1.8 1.0 83.6 82.6 3	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 8.8 0 32.6 2331 0.4 21.9 23.5 391.2 exp_08 8.5 7.3 5.7 7.5 1.0 5.0.1 49.1 49.1 3 5.7	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 28.4 1704 0.5 367.9 exp_09 10.5 12.0 6.0 9.3 1.0 141.2 140.2 3	exp_10 24.7 21.7 18.7 25.8 1.0 184.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 11.2 11.1 1.0 67.9 11.1 1.0 66.9 4	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 11.9 36.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 27.6 462.2 27.6 462.2 11.4 11.1 7.3 3 11.7 7.0 73.0 73.0 73.0 73.0	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 10.6 33.9 1449 0.5 23.6 23.6 23.6 25.7 437.8 exp_12 10.2 10.7 6.2 9.4 1.0 78.0 77.0 3 4	exp 13 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp 13 6.7 15.8 10.9 8.0 8.0 13.4 13.4 15.8 10.0 84.0 15.0 15.0 15.1 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.8 15.0 15.8 15.0 15.8 15.0 15.8 15.0 15.8 15.0 15.8 15.0 15.8 15.0 15.0 15.8 15.0 15.8 15.0 15.8 15.0 15.0 15.8 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0 15.0 15.8 15.0
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartila Cuartila IC95MediaLower IC95MediaUpper Varianza HIT Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartila	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 10.2 10.7 6.3 8.4 1.0 91.4 90.4 3.8	exp_01 16.1 16.7 10.1 14.7 10 184.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6 6.7 14.4 1.0 83.4 82.4 1.8 1.8	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 exp_02 14.8 16.2 8.7 16.5 1.0 18.4 8.4 1.2 1.2 1.2 1.5 1.0 1.2 1.5 1.0 1.2 1.5 1.0 1.2 1.5 1.0 1.2 1.5 1.0 1.2 1.5 1.2 1.5 1.7 1.2 1.5 1.7 1.2 1.5 1.7 1.2 1.5 1.7 1.5 1.7 1.2 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 226.6 226.6 exp_03 15.2 7.3 13.9 1.0 184.8 183.8 4.1 181	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 10.7 6.7 10.0 96.3 3.7 14.7	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 186.6 20.5 386.1 exp_05 11.6 6.9 11.2 1.0 86.7 85.7 4.0 15.2	exp_06 24.6 20.1 17.8 23.0 1.0 1.84.8 11.0 34.0 1759 0.5 23.7 25.6 402.6 exp_06 10.5 10.1 6.5 10.1 0.71.0 70.0 3.9 15.0	exp_07 21.1 21.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 6.7 11.8 1.0 83.6 82.6 3.8 155	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 exp_08 8.5 7.3 5.7 1.0 50.1 49.1 3.6 111	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 8.8 4.8 28.6 1704 0.5 18.7 18.7 20.5 367.9 exp_09 10.5 12.0 6.0 9.3 1.0 141.2 140.2 3.6	exp_10 24.7 21.7 21.7 25.8 1.0 184.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 exp_10 11.2 1.0 6.9 1.1.1 1.0 67.9 66.9 4.1 15	exp_11 26.4 21.5 20.9 24.9 24.9 1.0 184.8 183.8 1248 0.6 25.2 27.6 462.2 exp_11 11.4 11.7 10 73.0 72.0 72.0 72.0 72.0 15.6	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12 10.2 10.7 6.2 9.4 10.7 6.2 9.4 10.7 6.2 9.4 10.7 10.7 10.7 6.2 9.4 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	exp_13 12.8 12.8 15.3 8.2 10.6 10.10 10.84.8 183.8 4.5 15.1 2512 0.3 12.22 13.4 234.9 exp_13 6.7 15.8 1.0 85.0 84.0 4.0 10.0
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil1 Cuartil3 N_Observaciones Error Estándar IC95MediaUpper Varianza HIT Promedio Desv. Estándar IQR Min Max Rango Cuartil1 Cuartil3 N_Observaciones N_Observacione	Control 21.9 20.8 15.1 25.5 1.0 184.8 183.8 5.7 31.2 20.9 22.9 434.4 Control 10.2 10.2 10.7 6.3 8.4 1.0 91.4 90.4 3.8 8 12.2	exp_01 16.1 16.7 10.1 14.7 10 184.8 185.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6 6.7 14.4 1.0 83.4 82.4 3.8 18.2 20000	exp_02 15.5 14.8 10.4 13.5 5.7 121.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 14.8 16.5 1.0 184.8 18.8 4.1 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.7	exp_03 17.0 15.1 11.8 16.5 2.30 2.332 0.3 17.6 226.6 226.6 226.6 226.6 226.6 226.6 13.1 15.2 7.3 13.9 1.0 184.8 18.3 8 4.1 1.5 2.7 .3 1.3.9 1.0 1.6 1.5 1.0 1.0 2.7 1.0 2.7 1.0 2.7 1.0 2.7 1.0 2.0 2.0 2.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 11.7 6.7 11.0 97.3 96.3 3.7 14.7	exp_05 19.5 19.6 14.0 23.2 1.0 184.8 183.8 4.9 28.2 28.2 1716 0.5 18.6 20.5 386.1 exp_05 11.6 12.2 6.9 11.2 1.0 86.7 85.7 4.0 15.3 45.7 4.0 15.3 45.7	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 11.0 34.0 34.0 25.6 402.6 exp_06 10.5 10.1 6.5 11.1 1.0 71.0 79.0 3.9 15.0	exp_07 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 1.0 184.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 11.4 11.4 6.7 11.8 1.0 83.6 82.6 3.8 15.6	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 8.0 32.6 2331 0.4 22.35 391.2 exp_08 8.5 7.3 5.7 7.5 1.0 50.1 49.1 3.6 11.1	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 4.8 28.4 1704 0.5 187.7 20.5 367.9 exp_09 10.5 12.0 6.0 9.3 1.00 141.2 140.2 3.6 12.9	exp_10 24.7 21.7 18.7 25.8 1.0 1844 183.8 9.2 35.0 0.6 22.5 25.8 470.6 exp_10 11.2 11.1 6.9 11.1 1.0 67.9 66.9 4.70	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 11.9 36.8 1248 0.6 25.2 27.6 462.2 exp_11 11.4 11.7 10.73.0 73.0 72.0 4.22 15.9 4.62	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 25.7 437.8 exp_12 10.2 10.7 6.2 9.4 1.00 78.0 77.0 3.4 4.12.8	exp_13 12.8 15.3 8.2 10.6 1.0 183.8 4.5 15.1 2512 0.3 12.22 13.4 234.9 exp_13 6.7 15.8 1.0 85.0 84.0 4.0 4.0 4.0 4.0 4.0 4.0
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil3 N_Observaciones Error Estándar IC95MediaLower IC95MediaUpper Varianza Mediana IQR Min Mediana IQR Min Max Rango Cuartil3 N_Observaciones Error Estándar N_Observaciones Error Estándar Mediana IQR Min Max Rango Cuartil3 N_Observaciones Error Estándar N_Observaciones Error Estándar N_Observaciones	Control 21.9 20.8 15.1 125.5 1.0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 10.7 6.3 8.4 1.0 91.4 90.4 3.8 12.2 10.7 6.3 8.4 1.0 91.4 90.4 3.8 12.2 10.7 6.3 8.4 10.2 10.7 10.7 6.3 8.4 10.2 10.7 10.7 6.3 8.4 10.2 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 272.1 12.2 12.6 6.7 14.4 1.0 83.4 3.8 18.2 2895 2.2 2895 0.2 2.2 2895 0.2	exp 02 15.5 14.8 10.4 13.5 1.0 122.5 121.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 1217.6 1.0 184.8 16.2 1.0 184.8 4.1 20.6 26005 2	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 226.6 2332 0.3 16.3 17.6 226.6 exp_03 13.1 15.2 7.3 13.9 1.0 184.8 4.1 18.1 3201	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 40.5 19.4 21.3 40.5 9.6 11.1 11.7 6.7 11.1 11.7 6.7 11.1 11.7 6.7 11.1 11.7 11.7 11.1 11.1 11.7 6.7 14.7 7 4775	exp_05 19.5 19.6 10.0 23.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 386.1 20.5 386.1 12.2 6.9 11.6 12.2 6.9 11.0 85.7 4.0 15.3 45.99 92	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 11.0 34.0 759 0.5 23.7 25.6 402.6 10.5 10.1 6.5 11.1 1.0 71.0 3.9 15.0 4028	exp_07 21.1 21.1 21.1 21.1 21.1 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 11.4 11.4 11.4 10 83.6 3.8 15.6 4880 48.0	exp 08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 331.2 exp 0.8 5 7.3 5.7 7.3 5.7 1.0 5.0.1 5.01 1.01 3.6 11.11 4434	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 20.5 36.7 18.7 20.5 18.7 20.5 18.7 20.5 18.7 20.5 12.0 6.0 9.3 1.0 141.2 3.6 12.9 5173 5173	exp 10 24.7 21.7 21.7 25.8 1.0 184.8 183.8 9.2 35.0 0.6 0.6 0.6 25.8 470.6 11.2 11.1 1.0 66.9 47.96 66.9 4.1 1.5.2 4709.6 6.9 4.1 15.2 47.96 0.2	exp_11 26.4 21.5 20.9 1.0 184.8 183.8 1248 0.6 0.6 25.2 27.6 462.2 462.2 462.1 11.1 7.3 11.7 10.0 73.0 72.0 4634 4634	exp_12 24.6 20.9 18.6 33.9 1449 0.52.7 437.8 10.7 6.2 9.447.8 23.6 25.7 437.8 10.7 6.2 9.4 10.7 6.2 9.4 10.7 6.2 9.4 10.0 78.0 77.0 3.4 12.8 4982	exp_13 exp_13 12.8 15.3 8.2 10.6 1.0 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp_13 6.7 15.8 1.0 85.0 4.0 19.9 4213
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil1 Cuartil3 N_Observaciones Error Estándar IC95MediaLower IC95MediaUpper Varianza HIT Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartil3 Cuartil3 Cuartil3 Cuartil3 Cuartil3 Cuartil3 Cuartil4 Cuar	Control 21.9 20.8 15.1 25.5 1.0 0 184.8 183.8 5.7 31.2 1670 0.5 20.9 22.9 434.4 Control 0.2 2.9 434.4 10.2 0.7 6.3 8.4 4.1 0.0 10.7 6.3 8.4 4.1 10.1 10.2 2.9 2.9 434.4 10.1 10.2 2.9 2.0 8 43.4 10.1 10.2 5.5 5.5 10.0 10.1 10.1 10.1 10.1 10.1 1	exp_01 16.1 16.7 10.1 14.7 10 184.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6 6.7 14.4 3.8 3.8 18.2 2895 0.2 1.7	exp_02 15.5 14.8 10.4 1.0 122.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 14.8 16.2 8.7 16.5 1.0 184.8 183.8 4.1 20.6 2605 0.3 14.2 1.0 1.0 1.2 1.5 1.0 1.2 1.5 1.0 1.2 1.5 1.0 1.2 1.5 1.0 1.2 1.5 1.2 1.5 1.7 1.2 1.5 1.7 1.2 1.5 1.7 1.2 1.5 1.7 1.2 1.5 1.7 1.2 1.5 1.7 1.2 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 85.0 84.0 6.1 226.6 2332 0.3 17.6 226.6 exp_03 13.1 15.2 7.3 13.9 15.2 7.3 13.9 14.8 18.4 18.4 18.4 18.4 18.4 18.4 18.5 10.0 19.5 10.0	exp_04 20.3 20.2 14.5 24.5 24.5 1.0 184.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 11.7 6.7 11.0 996.3 3.7 14.7 4775 0.2 0.2 0.2	exp_05 19.5 19.6 14.0 1.0 184.8 4.9 28.2 1716 0.5 184.8 386.1 exp_05 11.6 12.2 1.0 86.7 85.7 4.0 15.3 4599 0.2 1.2 1.3 4599 1.2 1.3	exp_06 24.6 20.1 17.8 23.0 1.0 184.8 11.0 34.0 1759 0.5 23.7 25.6 402.6 exp_06 10.5 10.1 1.0 71.0 71.0 71.0 71.0 71.0 71.0 72.0 2.0 2.0 2.0	exp_07 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 1.0 184.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 6.7 11.4 6.82.6 3.8 15.6 48800 0.2 11.1	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 8.0 32.6 2331 0.4 23.5 391.2 9 23.5 391.2 6 7.3 5.7 7.5 1.00 50.1 49.1 3.6 11.1 4434 0.1	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 8.8 4.8 20.5 367.9 exp_09 10.5 12.0 6.0 9.3 1.0 141.2 140.2 3.6 12.9 5173 0.2 0.2 0.2	exp_10 24.7 21.7 21.7 25.8 1.0 184.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 11.1 6.9 11.1 1.09 11.1 1.52 4796 66.9 4.1 15.2 4706 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 11.9 36.8 22.2 27.6 462.2 27.6 462.2 11.1 7.30 72.0 72.0 4634 0.2 15.9 4634 0.2 11.9	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 10.6 33.9 1449 0.5 23.6 22.7 437.8 exp_12 10.2 10.7 6.2 9.4 1.0 76.2 9.4 1.0 77.0 3.4 12.8 4982 0.2 0.2 0.2	exp_13 exp_13 12.8 15.3 8.2 10.6 1.0 184.8 4.5 15.1 2512 0.3 12.22 13.4 234.9 exp_13 6.7 15.8 10.0 84.0 4.0 19.9 4213 0.2 12.2
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartil3 N_Observaciones Error Estándar IC95MediaLower Varianza HIT Promedio Desv. Estándar IQR Mediana IQR Min Max Rango Cuartil1 Cuartil3 N_Observaciones Error Estándar IC95MediaLower UCastáciaLower Cuartil2 Cuartil3 N_Observaciones Error Estándar IC95MediaLower UC95MediaLower UC95MediaLower	Control 21.9 20.8 15.1 15.1 15.1 164.8 163.8 5.7 31.2 1670 20.9 22.9 243.4 7 Control 10.2 10.7 6.3 8.4 4.1.0 0.4 9.1.4 9.0.4 8.4 4.6 3.8 4.4 1.0.0 1.0.2 1.0	exp_01 16.1 16.7 10.1 14.7 10 184.8 183.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 12.2 12.6 6 8.34 8.24 3.8 18.2 2895 0.2 11.7 10	exp 02 15.5 14.8 10.4 10.4 10.1 122.5 121.5 121.5 121.7 19.2 2797 0.3 15.0 16.1 217.6 2 184.8 183.8 14.2 2.6 2605 0.3 14.2 2.6	exp 03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 61.1 226.6 2332 0.3 16.3 17.6 226.6 226.6 2332 16.3 15.2 7.3 7.3 1.3.1 15.2 1.3.1 15.2 1.3.3 13.9 1.0 184.8 183.8 4.1 4.1 18.1 3201 0.3 0.3 12.5	exp 04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 51 19.4 21.3 406.2 - exp 0.4 11.1 11.7 10.0 97.3 96.3 36.3 97.7 14.7 4775 0.2 10.7 10.7	exp 05 19.5 19.6 19.6 19.6 23.2 1.0 184.8 183.8 183.8 28.2 1716 0.5 0.5 386.1 11.6 12.2 10.9 11.2 1.0 86.7 4.0 15.3 4599 0.2 0.12 11.2 11.2 11.2	exp 06 24.6 20.1 17.8 23.0 1.0 184.8 183.8 183.8 183.9 0.5 23.7 25.6 402.6 10.5 10.1 1.0 5 11.1 1.0 71.0 71.0 70.0 90.15.0 4028 0.2 10.2	exp 07 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 23.7 1.0 184.8 183.8 54.4 29.1 1533 0.5 20.0 22.1 445.9 0.7 11.4 11.4 11.4 1.0 83.6 82.6 32.6 35.6 4880 0.2 0.11.1 11.1	exp 08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 32.6 2331 0.4 21.9 23.5 391.2 391.2 exp 08 8.5 7.3 5.7 7.5 1.0 50.1 49.1 3.6 11.1 4434 0.1 8.3	exp 09 19.6 19.2 19.0 13.0 23.6 1.0 184.8 183.8 48.4 1704 0.5 18.7 20.5 367.9 9 10.5 12.0 6.0 9.3 1.0 141.2 140.2 36.6 12.9 5173 0.2 10.2 10.2	exp 10 24.7 21.7 21.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 470.6 66.9 11.2 11.1 1.0 67.9 911.1 1.5.2 4796 0.2 0.9 19.5	exp_11 26.4 21.5 20.9 20.9 1.0 184.8 183.8 1248 0.6 25.2 27.6 462.2 exp_11 11.4 11.1 11.7 1.0 73.0 72.0 4634 0.2 11.1	exp_12 24.6 20.9 18.6 33.9 1449 0.5 23.6 25.7 437.8 10.2 10.7 6.2 9.4 1.0 77.0 78.0 77.0 78.0 77.0 9.4 1.2 9.9 9.9	exp_13 exp_12.8 12.8 15.3 8.2 10.6 1.0 184.8 183.8 4.5 15.1 2512 0.3 12.2 13.4 234.9 exp_13 13.4 16.8 10.0 85.0 84.0 4.0 4.0 4.0 4.0 3.0 20.2 13.0
MISS Promedio Desv. Estándar Mediana IQR Min Max Rango Cuartila Cuartila Cuartila IC95MediaUoper Varianza Promedio Desv. Estándar IQR Min Max Rango Cuartil3 N_Observaciones Error Estándar IC95MediaLower IC95MediaLowe	Control 21.9 20.8 15.1 25.5 1.0 0 5.7 1.0 25.5 1.0 0 5.7 2.5 1.0 0 5.7 2.5 2.9 2.2 9.2 2.9 2.2 9.4 4.4 4.3 4.4 1.0 2.2 1.0 7 0.6 3.4 4.3 4.4 1.0 1.0 2.2 9.0 9.1 1.0 2.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	exp_01 16.1 16.7 10.1 14.7 1.0 184.8 5.5 20.2 3211 0.3 15.5 16.7 278.1 exp_01 12.2 12.6 6.7 14.4 3.8 8.2 2895 0.2 11.7 12.7 12.7	exp_02 15.5 14.8 10.4 13.5 1.0 122.5 5.7 19.2 2797 0.3 15.0 16.1 217.6 exp_02 exp_02 exp_02 18.8 18.3 8.4.1 126.5 0.3 14.2 2.2605 0.3 14.2 2.2605 0.3 14.2 2.2605 0.3 14.2 2.2605 0.3 14.2 15.4 2.2605 0.3 14.2 15.4 2.2605 0.3 14.2 15.4 2.2605 0.3 14.2 15.4 15.4 15.4 15.5 15.	exp_03 17.0 15.1 11.8 16.5 1.0 85.0 84.0 6.1 2232 0.3 16.3 17.6 226.6 exp_03 15.2 7.3 13.9 1.0 184.8 183.8 1.1 0.3 220.6 232.2	exp_04 20.3 20.2 14.5 24.5 1.0 184.8 183.8 5.1 29.5 1634 0.5 19.4 21.3 406.2 exp_04 11.1 11.7 6.7 10.0 96.3 3.7 14.7 4775 0.2 10.7 11.4 126.5	exp_05 19.5 19.6 14.0 1.0 1.0 1.3.2 1.0 184.8 183.8 4.9 28.2 1716 0.5 386.1 exp_05 6.9 11.2 1.0 86.7 85.7 4.0 34599 0.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2	exp_06 24.6 20.1 1778 23.0 1.0 184.8 183.8 11.0 34.0 1759 0.5 23.7 25.6 402.6 exp_06 10.5 10.1 6.5 10.1 6.5 10.1 0.70.0 70.0 70.0 15.0 0.2 10.2 10.2	exp_07 21.1 21.3 23.7 1.0 184.8 183.8 5.4 29.1 1533 0.5 20.0 22.1 445.9 exp_07 11.4 6.7 11.4 6.7 11.4 6.7 11.4 6.7 11.4 1.0 83.6 82.6 11.1 11.7 120.2	exp_08 22.7 19.8 16.7 24.6 1.0 184.8 183.8 8.0 32.6 2331 0.4 21.9 23.5 391.2 exp_08 8.5 7.3 5.7 1.0 50.1 49.1 1.11 1.4434 0.1 8.7 5.7	exp_09 19.6 19.2 14.0 23.6 1.0 184.8 183.8 4.8 20.5 367.9 20.5 367.9 18.7 20.5 367.9 12.0 6.0 9.3 1.0 141.2 140.2 3.6 12.9 5173 0.2 10.8 142	exp_10 24.7 21.7 21.7 25.8 1.0 184.8 183.8 9.2 35.0 1328 0.6 23.5 25.8 470.6 11.2 11.1 6.9 11.1 1.0 67.9 66.9 4.796 0.2 10.9 11.5 122 c2	exp_11 26.4 21.5 20.9 24.9 1.0 184.8 1248 0.6 25.2 27.6 462.2 27.6 462.2 exp_11 11.1 7.3 11.7 1.0 73.0 72.0 15.9 4634 0.2 11.1 11.8 122	exp_12 24.6 20.9 18.6 23.3 1.0 184.8 183.8 10.6 33.9 1449 0.5 23.6 23.6 25.7 437.8 exp_12 10.7 6.2 9.4 1.0 78.0 77.0 78.0 77.0 3.4 12.8 4982 0.2 9.9 9.10.5 115.1	exp_13 12.8 12.8 15.3 8.2 10.6 10.10 184.8 45 15.1 2512 0.3 12.2 13.4 234.9 exp_13 exp_13 6.7 15.8 1.0 84.0 4213 0.2 13.8 204.0

Estos valores deben ser analizados con cautela. Aunque el promedio de la categoría MISS en el experimento 13 es el más bajo (12.8), no significa que sea el experimento con valores MISS más pequeños como se podría llegar a pensar. Este experimento tampoco puede detectar valores altos ubicados en MISS, pero su alto número de observaciones en MISS (2512) con valores muy pequeños reducen el valor promedio de todos los datos contenidos en esta categoría.

Una manera de profundizar entre las diferencias alcanzadas por los experimentos cuando se utilizan variables categóricas es mediante la herramienta *balloonplot*, la cual representa una matriz donde cada celda contiene un circulo cuyo tamaño refleja la magnitud relativa del correspondiente componente. Usando esta técnica entre los experimentos 4 y 9, es posible distribuir el número de observaciones (11904) entre las categorías HIT, MISS, FA y CREJ de cada uno de los experimentos (Fig 5.10).

Figura 5.10: Matriz de comparación entre los experimentos 4 (eje Y) y 9 (eje X) usando variables categóricas. El tamaño del círculo azul varía según la magnitud relativa de cada categoría.

El uso de variables continuas y categóricas permite mejorar el proceso de verificación mediante la implementación de más atributos del pronóstico. Aunque en el diagrama de Taylor se clasificaron los seis mejores experimentos en el orden: 13, 10, 12, 9, 7 y control, la inclusión de atributos de precisión (Eq. 3.5 y Fig. 3.6), resolución (Fig. 3.5) y discriminación en la validación realizada usando variables categóricas, permitió una nueva clasificación de los seis mejores experimentos: 9, 4, 7, 12, 10 y control. Es de resaltar que cinco de los seis experimentos se mantuvieron como los mejores, independientemente del sistema de clasificación utilizado, en donde solo se presentaron dos cambios importantes: la posición del experimento 13 que cambió de primero a noveno y la posición del experimento 4 que pasó de octavo a segundo.

Esta nueva forma de clasificar los experimentos también resalta dos tendencias: los experimentos inicializados en frío (9, 4 y 1) lograron mejores resultados que los experimentos con iguales características inicializados en caliente (12, 10 y 2, respectivamente), y los experimentos donde se utilizó la técnica de control de calidad del SMC (9 y 12) presentaron mejores resultados que los obtenidos usando la técnica de control de calidad del NCAR (4 y 10, respectivamente). Por esta razón, y con el ánimo de incorporar la asimilaciones radar dentro de los pronósticos operativos del SMC, todos los experimentos de la segunda fase son realizados utilizando la técnica de control de calidad de datos radar desarrollada por el SMC.

5.2. Resultados de la segunda fase

Estos resultados se obtuvieron a partir de un conjunto de trece nuevos experimentos y dos simulaciones de control. El impacto de la asimilación de datos radar sobre el *nowcasting* de precipitación es analizado en diez eventos de precipitación extrema ocurridos en Cataluña en el periodo 2015 - 2017 (Tabla 3.12).

Siguiendo una metodología similar a la implementada en la primera fase, se valida el *nowcasting* de precipitación usando variables continuas y categóricas.

5.2.1. Validación de la segunda fase usando el Diagrama de Taylor

El impacto de la asimilación de datos radar se validó mediante el uso del diagrama de Taylor (Taylor, 2001), el cual propone, como se había mencionado en la Sección 3.4.1, hacer una clasificación visual que depende de la cercanía de cada experimento (un punto del diagrama) con la desviación estándar de las observaciones, un mínimo RMSE y una alta correlación con las observaciones. Sin embargo, se han agregado dos características especiales: 1) una variable *d* que mide la distancia euclídea de cada experimento a los tres índices estadísticos, evitando así una clasificación que dependa únicamente de la apreciación visual (Sección 3.4.1) y, 2) un diagrama de Taylor general que resume la información procedente de los diez casos de estudio (Figura 5.11).

La fuerte agrupación de la mayoría de los puntos en la Figura 5.11, no permite clasificar fácilmente los experimentos; por tal motivo, es necesario calcular *d* usando la Ecuación 3.4 con la previa normalización de los tres índices estadísticos. De esta manera se obtiene la Tabla 5.5 que presenta los resultados de todos los experimentos en orden descendente. Aunque según la teoría (Taylor, 2001) el experimento de control Ctrl_00 (sin asimilación radar) podría ser clasificado como el mejor por obtener una menor *d*, esta posición podría cuestionarse porque fue ganada principalmente por la cercanía de su desviación estándar con la desviación estándar de las observaciones con un RMSE muy parecido al resto de experimentos pero con el índice de correlación más bajo.

De los resultados obtenidos en el diagrama de Taylor (Figura 5.11 y Tabla 5.5) se observa que, exceptuando el experimento ctrl_00 que contiene parametrizaciones muy distintas, los demás comparten un RMSE y desviaciones estándar muy similares, por lo tanto su posición en la clasificación se debe principalmente a la correlación. También es notable que todos los experimentos con asimilación de datos superan el ctrl_01, excepto por el exp_7 donde se utilizan tres *outer loops*, que contrasta con Rizvi et al. (2008), al afirmar que este sistema es beneficioso para asimilar observaciones tales como velocidad del viento y velocidad radial del radar, y con los resultados obtenidos por Maiello et al. (2014), donde sugiere que el aumento en el número de *outer loops* puede tener un impacto positivo en el pronóstico de lluvias fuertes.

Figura 5.11: La desviación estándar se representa por la distancia radial desde el origen, el coeficiente de correlación entre cada conjunto de datos y las observaciones por la distancia angular y el error RMSE por los semicírculos que comienzan y terminan en el eje X con valores de 5, 10 y 15 mm. Ver texto.

En los diagramas de Taylor para cada caso de estudio (Figura C.1), se puede observar que los experimentos ctrl_00 y Exp_10 tienden a presentar resultados muy distintos entre ellos, especialmente en los casos 1, 2, 5, 7 y 10, y con los otros experimentos. Mientras que la mayoría de los experimentos tienden a distribuirse en un área específica del diagrama, ctrl_00 presenta tendencias extremas que afectan negativa o positivamente los resultados y se contrarrestan en el diagrama de Taylor general (Fig. 5.11). También se destaca la nula correlación existente entre las observaciones del caso 2 y cada uno de los experimentos.

Exp.	$RMSE \approx E'$	S_{x^f} - S_{y^o}	R	d
ctrl_00	13.522	0.292	0.455	0.100
exp_6	13.620	2.169	0.528	0.115
exp_5	13.630	2.174	0.528	0.115
exp_13	13.534	2.231	0.537	0.115
exp_12	13.568	2.235	0.535	0.115
exp_4	13.773	2.170	0.517	0.116
exp_11	13.879	2.186	0.510	0.117
exp_1	14.057	2.128	0.495	0.118
exp_8	13.818	2.278	0.519	0.118
exp_10	13.820	2.343	0.521	0.119
exp_3	14.009	2.260	0.504	0.119
exp_2	14.001	2.271	0.505	0.119
exp_9	13.879	2.354	0.518	0.120
ctrl_01	14.102	2.242	0.497	0.120
exp_7	13.765	2.426	0.529	0.120

Tabla 5.5: Distancia euclídea de los experimentos a los índices estadísticos del diagrama de Taylor normalizados

5.2.2. Validación de la segunda fase usando el AUC del ROC clásico

Los trece experimentos de la Tabla 3.11 se validaron usando el AUC del ROC clásico especificado en la Sección 3.4.3.1; es decir, el ROC basado en umbrales de precipitación y en tablas de contingencia construidas bajo la verificación punto a punto.

En esta evaluación del ROC clásico se utilizaron 100 umbrales distribuidos linealmente entre los valores de menor y mayor precipitación de cada caso de estudio. Con cada uno de esos umbrales de precipitación se construye una tabla de contingencia que a su vez genera un punto de la curva ROC. La Figura 5.12 representa un ROC global que promedia los resultados obtenidos en cada uno de los pares (POFD, POD) de los diez casos de estudio.

La mayor AUC de cada uno de los experimentos corresponderá al experimento con mejores resultados. La Figura 5.12 resume las AUC de mayor a menor encontrando los siguientes resultados: 1) todos los experimentos donde se realiza el proceso de asimilación de datos superan los experimentos de control (sin asimilación), 2) las parametrizaciones usadas en la investigación presentan mejores resultados que las utilizadas operativamente en el SMC (ctrl_01 versus ctrl_00), 3) es preferible utilizar un *background* específico (CV7) que el *background* genérico (CV3) aun cuando solo se asimilan observaciones convencionales (exp_11 versus exp_10), 4) un *length scaling* de 0.75 produce los mejores resultados para los casos fríos y los peores para los casos en caliente (exp_3 y exp_6), 5) todos los casos en caliente superan los resultados de los casos inicializados en frío, 6) el experimento que produce un mejor *nowcasting* de la precipitación es el experimento 12, el cual mezcla datos de radar y datos convencionales en un mismo ciclo de asimilación.

Figura 5.12: Curva ROC. La línea roja entre los puntos (0,0) y (1,1) representa la suposición aleatoria por debajo de la cual los resultados son considerados peores que el azar.

Los resultados obtenidos para cada uno de los casos de estudio utilizando la metodología del ROC clásico son presentados en la Figura C.2 del Apéndice. No es de extrañar si la curva ROC toma diversas formas, pues depende de la distribución de los datos y la habilidad del modelo para encontrar HIT. En la gráfica C.2c por ejemplo, se nota una discontinuidad entre los pares (0.165, 0.479.) y (0.770, 0.868) del experimento ctrl_00, los cuales solo están diferenciados por los umbrales de 0.3 y 0 mm respectivamente, resaltados en negrilla en la Tabla 5.6. El umbral de 32.4 mm indica que ese es el último valor sobre el cual el experimento ctrl_00 genera un HIT para el caso de estudio número tres.
Ur	nbral	POD	POFD	Un	nbral	POD	POFD	Un	nbral	POD	POFD	Un	nbral	POD	POFD
1	32.8	0.000	0.000	26	24.4	0.000	0.005	51	16.0	0.000	0.020	76	7.7	0.001	0.084
2	32.4	0.000	0.001	27	24.1	0.000	0.006	52	15.7	0.000	0.022	77	7.4	0.001	0.089
3	32.1	0.000	0.001	28	23.7	0.000	0.006	53	15.4	0.000	0.024	78	7.0	0.002	0.093
4	31.8	0.000	0.001	29	23.4	0.000	0.006	54	15.0	0.000	0.026	79	6.7	0.002	0.101
5	31.4	0.000	0.001	30	23.1	0.000	0.007	55	14.7	0.000	0.028	80	6.4	0.003	0.107
6	31.1	0.000	0.001	31	22.7	0.000	0.007	56	14.4	0.000	0.029	81	6.0	0.003	0.113
7	30.8	0.000	0.001	32	22.4	0.000	0.008	57	14.0	0.000	0.030	82	5.7	0.004	0.122
8	30.4	0.000	0.001	33	22.1	0.000	0.008	58	13.7	0.000	0.032	83	5.3	0.004	0.129
9	30.1	0.000	0.001	34	21.7	0.000	0.009	59	13.4	0.000	0.033	84	5.0	0.005	0.140
10	29.8	0.000	0.001	35	21.4	0.000	0.009	60	13.0	0.000	0.035	85	4.7	0.007	0.150
11	29.4	0.000	0.002	36	21.1	0.000	0.009	61	12.7	0.000	0.036	86	4.3	0.008	0.160
12	29.1	0.000	0.002	37	20.7	0.000	0.010	62	12.4	0.000	0.038	87	4.0	0.010	0.171
13	28.8	0.000	0.002	38	20.4	0.000	0.010	63	12.0	0.000	0.039	88	3.7	0.013	0.187
14	28.4	0.000	0.002	39	20.1	0.000	0.011	64	11.7	0.000	0.040	89	3.3	0.016	0.204
15	28.1	0.000	0.003	40	19.7	0.000	0.012	65	11.4	0.000	0.042	90	3.0	0.021	0.221
16	27.7	0.000	0.003	41	19.4	0.000	0.012	66	11.0	0.000	0.043	91	2.7	0.028	0.237
17	27.4	0.000	0.003	42	19.1	0.000	0.013	67	10.7	0.000	0.045	92	2.3	0.034	0.259
18	27.1	0.000	0.004	43	18.7	0.000	0.013	68	10.4	0.000	0.047	93	2.0	0.043	0.285
19	26.7	0.000	0.004	44	18.4	0.000	0.014	69	10.0	0.000	0.049	94	1.7	0.052	0.311
20	26.4	0.000	0.004	45	18.1	0.000	0.014	70	9.7	0.000	0.053	95	1.3	0.064	0.340
21	26.1	0.000	0.004	46	17.7	0.000	0.015	71	9.4	0.000	0.056	96	1.0	0.081	0.372
22	25.7	0.000	0.004	47	17.4	0.000	0.015	72	9.0	0.000	0.061	97	0.7	0.108	0.415
23	25.4	0.000	0.005	48	17.0	0.000	0.016	73	8.7	0.000	0.066	98	0.3	0.165	0.479
24	25.1	0.000	0.005	49	16.7	0.000	0.018	74	8.4	0.000	0.072	99	0.0	0.770	0.868
25	24.7	0.000	0.005	50	16.4	0.000	0.019	75	8.0	0.001	0.077	100	<= 0	1.000	1.000

Tabla 5.6: Umbrales de precipitación (mm) para el experimento ctrl_00 en el caso de estudio número tres

Aunque el ROC clásico podría tomarse como un buen sistema de clasificación de resultados, estos serían más certeros si se definieran los mismos 100 umbrales de precipitación para todos los experimentos, y aún así, los resultados seguirían evaluando la probabilidad de detección de un evento que supera un umbral, una técnica que podría considerarse valiosa si la simulación se aplicara exclusivamente a la generación de alertas tempranas por precipitaciones máximas. Para validar el impacto de la asimilación de datos radar en el modelo WRF y seleccionar el experimento que realiza un mejor *nowcasting* de la precipitación evaluando la probabilidad del pronóstico, se ha utilizado un nuevo ROC que no depende de los umbrales de precipitación.

5.2.3. Validación de la segunda fase usando el AUC del ROC adaptado sin umbrales de precipitación

En esta etapa, la validación es realizada siguiendo las características descritas en la Sección 3.4.3.2, en donde a diferencia del ROC clásico, no se utilizan umbrales de precipitación y se agregan atributos de localización (Fig. 3.5) y precisión (Ecuación 3.5) al *nowcasting* de precipitación. La curva ROC es construida mediante 10 puntos que representan los 10 criterios de flexibilización de HIT y CREJ, los cuales hacen más restrictivos o permisivos estos parámetros.

La Figura 5.13 representa un ROC global construido a partir de la Tabla 5.7, la cual resume los resultados de los índices POFD y POD de los trece experimentos (Tabla 3.11) para los diez casos de estudio (Tabla 3.12). Estas curvas cuentan con la ventaja de estar estandarizadas para cualquier caso de estudio y permiten inferir la probabilidad de acierto del pronóstico independientemente de la cantidad de precipitación asociada.

En la Tabla 5.7 se resaltan en negrilla los mejores resultados de la diferencia de POD menos POFD, los cuales a excepción del experimento 10, se consiguen debido a la aplicación del octavo criterio de flexibilización. La aplicación de este criterio maximiza la probabilidad de acierto sobre la probabilidad de error, de tal manera que su aplicación implica que la precipitación simulada por el modelo WRF puede estar entre el 60 % por debajo o por encima del valor de la observación para datos de 1 mm o del 35 % para valores de 100 mm (Tabla 3.8).

La nueva clasificación de los experimentos según el ROC sin umbrales es muy similar al ROC clásico, solo difiere en: 1) clasifica las dos técnicas donde se han llevado a cabo dos procesos de asimilación (en frío y en caliente) utilizando diferente *length scaling* (exp_08 y exp_09) como de las mejores, solo superadas por las técnicas donde se asimilan datos de radar y convencionales (exp_12 y exp_13), 2) presenta una gran diferencia con la clasificación del exp_10 (usa CV3) enviándolo a la última posición de la clasificación, inclusive por debajo de los dos experimentos de control, su diferenciada tendencia está representada por los cuadrados de color gris claro en la Figura 5.13.

Figura 5.13: Curva ROC basada en los diez casos de estudio y construida con 10 puntos provenientes de los criterios de flexibilización de HIT y CREJ. La línea roja entre los puntos (0,0) y (1,1) representa la suposición aleatoria.

	ex	(p 01			exp	02		exp	03		exp	04		exp	05
Criterio	POFD	POD	POD-POFD	POFD	POD	POD-POFD	POFD	POD	POD-POFD	POFD	POD	POD-POFD	POFD	POD	POD-POFD
1	0.33	0.54	0.21	0.32	0.55	0.22	0.33	0.56	0.23	0.32	0.55	0.23	0.34	0.58	0.24
2	0.34	0.57	0.23	0.33	0.57	0.24	0.34	0.58	0.25	0.33	0.58	0.25	0.35	0.60	0.26
3	0.35	0.59	0.24	0.35	0.60	0.25	0.35	0.61	0.26	0.34	0.61	0.26	0.36	0.63	0.27
4	0.36	0.61	0.25	0.36	0.61	0.25	0.36	0.62	0.27	0.35	0.63	0.28	0.37	0.65	0.28
5	0.37	0.63	0.26	0.37	0.63	0.26	0.37	0.64	0.27	0.37	0.65	0.29	0.38	0.67	0.29
6	0.39	0.65	0.26	0.39	0.65	0.26	0.39	0.66	0.27	0.38	0.68	0.30	0.40	0.69	0.30
7	0.40	0.67	0.27	0.40	0.67	0.27	0.40	0.68	0.28	0.39	0.70	0.30	0.41	0.71	0.30
8	0.42	0.69	0.27	0.42	0.69	0.28	0.41	0.70	0.28	0.41	0.72	0.31	0.42	0.73	0.31
9	0.44	0.71	0.27	0.44	0.71	0.27	0.44	0.72	0.28	0.43	0.74	0.30	0.45	0.75	0.30
10	0.47	0.73	0.26	0.47	0.73	0.26	0.47	0.74	0.26	0.47	0.76	0.29	0.48	0.77	0.29
	ex	(p_06			exp	07		exp	08		exp	_09		exp	_10
1	0.35	0.58	0.23	0.34	0.58	0.24	0.34	0.58	0.24	0.34	0.59	0.25	0.39	0.54	0.15
2	0.36	0.61	0.25	0.35	0.61	0.26	0.35	0.61	0.26	0.35	0.62	0.27	0.40	0.57	0.17
3	0.37	0.64	0.27	0.36	0.63	0.27	0.36	0.64	0.28	0.36	0.64	0.28	0.42	0.59	0.17
4	0.38	0.66	0.28	0.37	0.66	0.28	0.37	0.66	0.29	0.37	0.66	0.29	0.43	0.61	0.18
5	0.40	0.68	0.28	0.39	0.67	0.29	0.38	0.68	0.30	0.39	0.68	0.30	0.44	0.63	0.18
6	0.41	0.70	0.29	0.40	0.69	0.30	0.40	0.70	0.30	0.40	0.70	0.30	0.46	0.65	0.19
7	0.43	0.72	0.30	0.41	0.71	0.30	0.41	0.72	0.31	0.42	0.72	0.31	0.48	0.67	0.19
8	0.44	0.74	0.30	0.43	0.73	0.30	0.43	0.74	0.31	0.44	0.74	0.31	0.50	0.68	0.19
9	0.47	0.76	0.29	0.45	0.75	0.30	0.46	0.76	0.30	0.46	0.76	0.30	0.53	0.70	0.18
10	0.50	0.78	0.27	0.49	0.77	0.28	0.49	0.78	0.29	0.50	0.78	0.28	0.57	0.73	0.15
	ex	(p_11			exp	12		exp	13		ctrl	_00		ctrl	_01
1	0.32	0.54	0.22	0.33	0.58	0.26	0.33	0.59	0.26	0.24	0.38	0.15	0.32	0.53	0.21
2	0.33	0.57	0.24	0.34	0.61	0.27	0.34	0.62	0.28	0.24	0.41	0.16	0.33	0.56	0.23
3	0.34	0.58	0.24	0.35	0.64	0.29	0.35	0.64	0.29	0.25	0.43	0.18	0.34	0.58	0.24
4	0.35	0.60	0.25	0.36	0.66	0.30	0.36	0.66	0.30	0.26	0.45	0.19	0.36	0.60	0.25
5	0.36	0.62	0.26	0.37	0.68	0.31	0.37	0.68	0.31	0.27	0.47	0.20	0.37	0.62	0.25
6	0.38	0.65	0.27	0.39	0.70	0.31	0.39	0.70	0.32	0.28	0.49	0.21	0.38	0.64	0.26
7	0.39	0.67	0.28	0.40	0.72	0.32	0.40	0.72	0.32	0.30	0.51	0.22	0.40	0.66	0.27
8	0.41	0.69	0.28	0.42	0.74	0.32	0.42	0.74	0.32	0.31	0.54	0.22	0.41	0.68	0.27
9	0.43	0.70	0.28	0.44	0.76	0.32	0.44	0.75	0.31	0.33	0.55	0.22	0.43	0.70	0.27
10	0.46	0.72	0.27	0.47	0.78	0.30	0.47	0.77	0.30	0.36	0.58	0.21	0.46	0.72	0.25

Tabla 5.7: Resultados de los índices POD y POFD basados en diez casos de estudio para cada uno de los experimentos y criterios de flexibilización de HIT y CREJ

5.2.4. Validación de la segunda fase usando mapas ROC

Siguiendo el procedimiento estipulado en la Sección 3.4.3.3, se generan los mapas ROC de cada uno de los experimentos (Tabla 3.11), de esta manera se identifican las áreas geográficas donde el modelo WRF obtiene mejores y peores resultados en el *nowcasting* de precipitación.

La Figura 5.14 muestra el mapa ROC de los experimentos con más cambios representativos. Los resultados de todos los experimentos se reflejan en la Figura C.4 del Apéndice. Las regiones con una puntuación AUC igual o superior a 0.7 son de color verde, e indican regiones con una habilidad de predicción relativamente buena. Las regiones de azul oscuro con puntaje ROC entre 0.6 y 0.7 muestran un menor nivel de habilidad en la predicción, pero aún así, mejor que el azar o la climatología. El azul claro se usa cuando los puntajes están entre 0.5 y 0.6, muy cerca al umbral de habilidad en el pronóstico y en color naranja se representa el puntaje entre 0.4 y 0.5; es decir, por debajo del umbral de 0.5, lo que sugiere que los resultados de los pronósticos de precipitación en estas regiones se encuentran incluso peor que el azar.

Independientemente de la configuración del modelo WRF, el análisis usando mapas ROC (Fig. 5.14) permite identificar al Pirineo y Prepirineo como las zonas de Cataluña donde el modelo tiende a realizar un *nowcasting* de precipitación deficiente, especialmente si se utiliza el WRF con las parametrizaciones del SMC sin asimilación de datos radar (Fig. 5.14a).

También es posible inferir parámetros propios de cada experimento: 1) las diferencias entre los resultados del uso del CV7 (Fig. 5.14e) versus el error del *background* genérico (Fig. 5.14d) son relevantes, siendo visualmente notable como este último afecta negativamente el pronóstico en la zona Norte de Cataluña donde la orografía es más compleja; 2) respecto al experimento de control (Fig. 5.14b), el experimento inicializado en frío (Fig. 5.14c) tiende a mejorar los resultados al sur de Cataluña y empeorarlos al norte; 3) La asimilación de datos convencional y radar (Fig. 5.14f) influye notablemente en el *nowcasting* de precipitación de toda Cataluña y logra pequeñas mejoras en la zona norte.

La poca influencia de la asimilación de datos radar y los bajos resultados en el *nowcasting* de precipitación presentes en la zona norte podrían deberse a dos factores: 1) aunque las simulaciones realizadas con el modelo WRF utilizan alta resolución (3 km), esta podría ser insuficiente para mejorar los resultados sobre orografía compleja, tal como se presenta en la zona Norte de Cataluña; 2) Los datos radar son insuficiente debido a bloqueos orográficos que pueden llegar a ser mayores del 40 % al norte de Cataluña (Trapero et al., 2009), por lo cual no logran representar acertadamente las condiciones atmosféricas de esta zona geográfica.

Figura 5.14: AUC de mapas ROC basados en los diez casos de estudio de la Tabla 3.11. Mientras que el color verde indica una buena habilidad del modelo WRF para el *nowcasting* de precipitación en esas regiones, el color naranja señala las regiones donde el modelo produce resultados muy bajos, incluso peores que el azar.

Capítulo 6

Resumen y Conclusiones

Los argumentos más fuertes no prueban nada, siempre y cuando las conclusiones no son verificadas por la experiencia. La ciencia experimental es la reina de las ciencias y la meta de toda especulación.

Roger Bacon

Para maximizar el impacto positivo de la asimilación radar sobre el *nowcasting* de precipitación extrema usando una adecuada configuración del WRFDA, de tal manera que pueda ser implementado de modo operativo en los SMN –objetivo principal de esta investigación– se establecieron cinco líneas principales: 1) el método de control de calidad realizado a los datos radar asimilados, 2) el ciclo de inicialización del modelo WRF, 3) la combinación de datos radar con datos convencionales, 4) la mejor configuración posible de los parámetros más significativos del módulo WRFDA y 5) la habilidad del modelo WRF para pronosticar la cantidad y localización de la precipitación encontrando las áreas geográficas donde el modelo WRF tiende a ser más efectivo.

Con la finalidad de desarrollar a cabalidad el objetivo principal se implementó la siguiente metodología: dos fases con dos conjuntos de experimentos diferentes en donde la primera fase estuvo enfocada en seleccionar el ciclo de asimilación más conveniente para ser implementado en las SMN, determinando la efectividad del método de control de calidad de datos radar del SMC y explorando la mejor forma de combinar los datos radar con los datos convencionales, el uso de tres *outer loops* para permitir el ingreso de mayor número de observaciones y la activación de la parametrización de cúmulos (Kain, 2004) en el dominio de 3 km, debido a que esta opción es utilizada por el SMC con resultados favorables. Para la segunda fase se seleccionaron los dos mejores ciclos de la fase anterior, se evaluó la influencia del parámetro *length scaling* en las inicializaciones en frío o en caliente, la conveniencia de mezclar observaciones convencionales con datos radar y las ventajas de usar un error del *background* para el área de estudio (CV7) versus uno genérico (CV3).

Mientras que la primera fase de esta investigación fue realizada con un conjunto de experimentos (Tabla 3.10) basados en el *nowcasting* de precipitación del 12 de octubre de 2016 de 15 a 21 UTC, donde un SCM generó 184.8 mm de precipitación máxima en la costa central de Cataluña, los resultados de la segunda fase se analizaron a través de una serie de experimentos (Tabla 3.11) basados en diez eventos (Tabla 3.12) de precipitación extrema ocurridos en Cataluña en el periodo 2015 - 2017.

La estrategia para medir el impacto que los diferentes parámetros causan sobre el *nowcasting* de precipitación fue clasificar los experimentos mediante un nuevo ROC que no está basado en umbrales de precipitación y que evalúa la habilidad del modelo incorporando atributos de precisión (Ecuación 3.5) y localización (Fig. 3.5) a los criterios de aceptación HIT y CREJ. De esta manera se logra evaluar la habilidad del modelo para pronósticos tanto de mínima como de intensa precipitación.

La Tabla 6.1 resume los resultados obtenidos en la segunda fase, donde se contrasta la clasificación realizada por el nuevo ROC versus el ROC tradicional y la metodología de clasificación de Taylor a la cual se le agregó el calculo de la distancia euclídea normalizada a los parámetros de correlación, varianza y RMSE.

Experimentos	Taylor	ROC clásico	ROC propuesto
ctrl_00	1	15	14
ctrl_01	14	14	13
exp_01	8	11	12
exp_02	12	13	11
exp_03	11	10	9
exp_04	6	7	6
exp_05	3	4	5
exp_06	2	8	8
exp_07	15	5	7
exp_08	9	3	3
exp_09	13	6	4
exp_10	10	12	15
exp_11	7	9	10
exp_12	5	1	1
exp_13	4	2	2

Tabla 6.1: Posición general de los experimentos de la Tabla 3.11 según los tres métodos de evaluación

A continuación se resumen las conclusiones y resultados basados en la metodología ROC propuesta (Figura 5.13) con recomendaciones específicas para futuros trabajos, organizados de acuerdo a los objetivos planteados en la Sección 1.2. 1. Establecer si el método de control de calidad que permite al SMC asimilar datos radar dentro de modelo WRF causa resultados positivos sobre el *nowcasting* de precipitación y, por tanto, podría ser usado de manera operativa (fase 1)

Los resultados de aplicar el método de control de calidad de datos radar del SMC fueron contrastados con los obtenidos utilizando el método de control de calidad ya comprobado de NCAR, analizando las diferencias verticales y horizontales entre el análisis y el *background* que presentaban las variables proporción de mezcla de agua de lluvia, proporción de mezcla de nieve, proporción de mezcla de granizo, proporción de mezcla de vapor de agua, vectores de viento y velocidad vertical, utilizando ambos métodos de control de calidad.

En la vertical, los incrementos relativos máximos de QRAIN, QSNOW y QGRAUP están afectando a diferentes niveles verticales de acuerdo con el perfil de temperatura y la partición de hidrometeoros definidos en Gao y Stensrud (2012). La principal diferencia entre los métodos de control de calidad de NCAR y el SMC se encuentran en la ubicación de los incrementos máximos de W, que se presentan a 3500 y 2500 gpm respectivamente (Fig. 5.2). La restricción de la asimilación de datos radar hasta un máximo de 9000 m (NCAR) y 4500 m (SMC) afecta principalmente el límite superior de QGRAUP (Fig. 5.1b vs. Fig. 5.2b), por ende, el aumento de este límite vertical hasta 10000 m (Fig. 4.10a) en la fase dos, permite una mejor representación de QGRAUP.

En la horizontal son evidentes dos relaciones: 1) entre la reflectividad (Fig. 5.3) y los incrementos de agua de lluvia (Figs. 5.4a y 5.4b) y 2) entre la localización de las diferencias relativas máximas de las variables de hidrometeoros (Figs. 5.4e y 5.4f), a excepción de QVAPOR que ya está presente en el *background* y que se asimila de forma diferente. La falta de zonas con una mayor cantidad de incrementos en QVAPOR en el método del SMC indica que las reflectividades asimiladas por encima de la base de la nube con respecto al *background* y que superan el umbral de 25 dBZ son pocas comparadas con el método de NCAR. Nuevamente, la diferencia entre los dos métodos de control de calidad se presenta principalmente en los incrementos máximos de W, cuya dispersión horizontal tiende a ser mayor en el método NCAR (Fig. 5.4c vs. 5.4d y Fig. 5.4e vs. 5.4f).

Las diferencias entre los incrementos provenientes de los métodos de control de calidad de datos radar de NCAR y SMC son visibles tanto en los campos verticales (Fig. 5.2) como horizontales (Fig. 5.4), lo cual conlleva a una afectación del pronóstico de precipitación. Usando como base un análisis ROC (Tabla 5.3), se puede establecer que aunque el patrón de precipitación se retrasa un poco con respecto a las observaciones en la dirección SW - NE (Fig. 5.8) en todas las simulaciones, la clasificación de los experimentos 9 y 12 antes de 4 y 10, respectivamente, muestra que el método de control de calidad desarrollado por el SMC es confiable y que incluso en el caso particular del 12 de octubre de 2016, produce mejores resultados que el método de NCAR. De acuerdo a lo anterior y considerando que esta investigación puede ser especialmente útil para el SMC, todos los experimentos de la segunda fase utilizaron la técnica del SMC.

Recomendación: Independientemente del método de control de calidad de datos radar utilizado, la técnica de asimilación propuesta por Gao y Stensrud (2012) permite una óptima distribución vertical de los incrementos de hidrometeoros derivados a partir de la reflectividad radar y de la temperatura del *background*; por lo cual se recomienda utilizar un límite vertical considerable que permita una mejor representación de los incrementos en *QGRAUP* y *QVAPOR*. En la segunda parte de esta investigación el límite vertical utilizado llega hasta los 10000 m (Fig. 4.10a).

2. Determinar cuál ciclo de inicialización del WRF podría ser más efectivo para implementar de manera operativa. (fase 1 y 2)

El pronóstico de precipitación se ve completamente afectado por el ciclo de inicialización del modelo WRF. Es evidente que los resultados de los ciclos de inicialización con nueve horas de antelación al *nowcasting* (ciclos 1, 2 y 3 de la Figura 3.7) arrojaron resultados deficientes, por lo cual debe evitarse su uso operativo. Aunque usar el ciclo 6 sería un escenario deseable, del cual parten las conclusiones de muchos investigadores, su imposibilidad de uso de forma operativa hace que sea descartado durante la segunda fase de este trabajo.

Los ciclos 4 y 5 se presentan como una opción valida para ser utilizados de manera operativa bajo la premisa que usar un nuevo *background* procedente de datos GFS es mucho más efectivo que realizar varios ciclos de asimilación y, en consecuencia, se deben usar los datos globales más actualizados.

En algunos casos los experimentos inicializados en frío superan los resultados de los experimentos inicializados en caliente, como es el caso del 12 de octubre de 2016. En este evento y siguiendo la metodología de ROC propuesta (Sección 3.4.3.2), los experimentos 9 y 4 de la Tabla 3.10 superan los resultados de los demás experimentos utilizando un solo criterio de clasificación ROC (Figura 5.6 y Tabla 5.3). La superioridad de los experimentos inicializados en frío versus los inicializados en caliente fueron confirmados utilizando el AUC y varios criterios de flexibilización de HIT y CREJ (Fig. C.3g). No obstante, los resultados obtenidos a partir de diez casos de estudio indican que el *nowcasting* de precipitación logra mejores resultados cuando el modelo WRF es inicializado en caliente (Fig. 5.13); en este nuevo set de experimentos las simulaciones inicializadas en frío (Exp. 1, 2 y 3 de la Tabla 3.11) obtienen los puntajes más bajos de clasificación. **Recomendación:** 1) inicializar el modelo WRF en caliente procurando utilizar las condiciones iniciales más actualizadas, 2) el uso de modelos de manera operativa implica considerar los tiempos de cómputo del modelo GFS y WRF. Debido a que el pronóstico a 72 horas del modelo GFS está disponible de manera operativa unas 3.5 horas después de ser inicializado, para un sistema de *nowcasting* se recomienda descargar solo las nueve horas iniciales y lanzar el modelo WRF para alcanzar en promedio cinco horas que pueden ser usadas de manera operativa.

Optimizar el análisis mediante la mejor técnica de combinación de datos radar y datos convencionales. (fase 1 y 2)

Mientras que los datos radar solo pueden ser asimilados usando un error del *background* propio del área de estudio, los datos convencionales pueden ser asimilados indistintamente con un CV3 o CV7. En la primera fase la técnica de ejecutar el 3DVAR dos veces, primero con observaciones convencionales usando CV3 y después con datos radar usando CV7, desmejoró los resultados obtenidos al utilizar datos radar únicamente. Esta técnica produce mejores resultados cuando se usa CV7 en lugar de CV3, tal como lo demuestran los experimentos de la segunda fase donde los resultados de esta técnica obtuvieron la segunda posición en la tabla de clasificación (Fig. 5.13).

Los resultados del *nowcasting* de precipitación se ven favorecidos mediante la combinación de los datos convencionales procedentes de METAR y SYNOP con los datos radar y la mejor forma de hacerlo es incorporando al mismo tiempo los datos al 3DVAR.

Recomendación: 1) realizar el *nowcasting* de precipitación utilizando ciclos de asimilación que combinen la mismo tiempo los datos radar y las observaciones convencionales procedentes de los informes METAR y SYNOP y 2) teniendo como base el estudio preliminar realizado para Colombia, no se recomienda mezclar observaciones TEMP hasta profundizar los efectos que este tipo de datos causa sobre el pronóstico de precipitación.

Encontrar la mejor configuración posible del módulo WRFDA. (fase 1 y 2)

Entendiendo que extender esta actividad a todas las posibles combinaciones de los parámetros del 3DVAR sería una tarea inabordable, esta investigación está centrada en el análisis del *length scale*, *outer loop* y una comparación con el conjunto de parametrizaciones utilizadas por el SMC.

El parámetro *length scale* debe ser ajustado de forma distinta según el tipo de inicialización del modelo WRF. Mientras que los mejores resultados para las asimilaciones en frío fueron obtenidos con un *length scale* de 0.75, este mismo valor disminuyó la efectividad de los resultados de las simulaciones inicializadas en caliente.

Dentro del la primera fase es posible identificar que ni el experimento de inicio en frío (experimento 5) ni el experimento de inicio en caliente (experimento 11) donde el modelo de WRF se ejecuta con tres *outer loops*, mejora los resultados obtenidos por los experimentos inicializados con un único *outer loop*. Este hecho también fue confirmado en la segunda fase, donde el uso de tres *outer loops* no mejoraron los resultados del *nowcasting*.

Al incorporar la parametrización de cúmulos (Kain, 2004) en el dominio de 3 km con las otras variables del *namelist* del SMC, se evidencia que su activación es justificable (Tabla 5.5); sin embargo, combinarla con las parametrizaciones físicas de esta investigación afecta negativamente el *nowcasting*, tal como se observa en la ubicación del experimento 6 de la fase uno. El conjunto de parametrizaciones utilizadas en esta investigación favorecen los resultados del *nowcasting* de precipitación versus las utilizadas operativamente por el SMC.

Recomendación: 1) ejecutar el modelo WRF con dos ciclos de asimilación, uno en frío y uno en caliente con un *length scale* de 0.75 y 0.50 respectivamente, en cada uno de estos ciclos asimilar datos radar y datos convencionales METAR y SYNOP en un mismo tiempo y con un mismo CV7, 2) evaluar un cambio de las parametrizaciones físicas, actualmente utilizadas por el SMC, usando como base las parametrizaciones planteadas en este estudio.

5. Encontrar las áreas geográficas donde el modelo tiende a ser más efectivo en el pronóstico de precipitación. (fase 2)

Un análisis de área ROC (Fig. 5.14) determinó que el modelo WRF es efectivo en el *nowcasting* de precipitación en la mayor parte de la región de Cataluña, especialmente si es utilizado con asimilación de datos convencionales y de radar. Solo se exceptúa la zona Norte donde se encuentran ubicados los sistemas montañosos de los Prepirineos y Pirineos, aminorando los resultados del pronóstico en estas áreas geográficas.

Recomendación: 1) evaluar la configuración de los ángulos radar de tal manera que se disminuya el bloqueo orográfico al Norte de Cataluña, 2) anexar un tercer dominio con resolución de 1 km en la zona Norte de Cataluña para verificar si este aumento de resolución contribuye a mejorar los resultados de esa región, 3) sin importar si el modelo WRF es utilizado con o sin asimilación de dato radar, desconfiar del *nowcasting* de precipitación que se realice sobre las mencionadas zonas de Cataluña.

Apéndice A

Implementación del modelo WRF con asimilación de datos radar en Colombia

No te preguntes qué puede hacer tu país por ti, pregúntate qué puedes hacer tú por tu país.

John F. Kennedy

A.1. Importancia del pronóstico del tiempo en la FAC

Como participante del semillero de talentos de Colfuturo, Fundación para el futuro de Colombia y Oficial en servicio activo de la Fuerza Aérea Colombiana, he adquirido dos compromisos esenciales: 1) retornar a Colombia, difundir el conocimiento y contribuir al desarrollo del país y, 2) resolver dentro de la investigación una problemática de la FAC que sea aplicable a la misión institucional y que contribuya especialmente al desarrollo seguro, ordenado y rápido de las operaciones aéreas.

Con el fin de garantizar que las aeronaves de la Policía y de las Fuerzas Militares (Ejército, Armada y Fuerza Aérea) puedan desarrollar operaciones aéreas más seguras, la FAC ha enfocado todos sus esfuerzos en identificar y pronosticar zonas con condiciones atmosféricas adversas. Estadísticas indican que tan solo en la FAC, durante los años 1985 - 2013 se documentaron 55 casos donde la meteorología fue considerada uno de los factores contribuyentes dentro de la cadena de errores que finalizaron en incidentes y accidentes aéreos (Cáceres, 2017).

El rol de la FAC, le impone retos más altos que los de la aviación civil convencional, la necesidad de llegar a sitios de Colombia con poca infraestructura aeronáutica, la realización de vuelos ambulancia en sitios de difícil acceso y la necesidad urgente de cumplir misiones relacionadas con la seguridad nacional, requieren un constante y delicado análisis de las condiciones atmosféricas en el despegue, la ruta, el sitio de la operación y el lugar del aterrizaje.

En la práctica, la FAC utiliza tres horizontes de tiempo relacionados con meteorología: cuasi-real, *nowcasting* y pronóstico, siendo el *nowcasting* (de 1 a 6 horas) la más amplia preocupación porque un 85 % de las operaciones aéreas se planean y ejecutan dentro de las primeras seis horas. Para conseguirlo, durante las primeras dos horas se aplican técnicas de diagnóstico y las últimas cuatro horas se pronostican condiciones atmosféricas basadas en el modelo WRF; sin embargo, las dificultades técnicas para actualizar el modelo, la gran capacidad de computo y costos asociados, la poca asimilación de datos y el escaso conocimiento sobre las nuevas técnicas de *nowcasting* dificultan el cumplimiento de la misión.

Por tal causa se planeó, dirigió y ejecutó la instalación del modelo WRF versión 3.8.1 en la FAC con dos horizontes de pronóstico: el primero de 72 horas para ser utilizado en la planeación de operaciones aéreas y el segundo de seis (6) horas para ser utilizado en la ejecución de dichas operaciones. Dado el positivo impacto que se espera de la asimilación de datos en las primeras horas del pronóstico, se configura el WRF con un fuerte componente de asimilación de datos en superficie, sondeos atmosféricos y datos radar, convirtiendo a la FAC en Institución pionera en utilizar los datos procedentes de una reciente red de radares que actualmente se encuentra en expansión.

No solo los tripulantes se benefician del servicio meteorológico implementado en la FAC, desde allí también se vigilan el desbordamiento de las cuencas de los ríos, inundaciones y deslizamientos de tierra producto de fuertes precipitaciones, factores que tanto afectan a la población civil. Estos eventos deben ser estudiados, detectados y pronosticados oportunamente con herramientas científicas que permitan reducir la pérdida de vidas humanas y su impacto ambiental.

El estudio de los fenómenos meteorológicos adversos es de vital importancia para la humanidad, y en particular para cada nación. Colombia ocupa un lugar privilegiado en la geografía mundial, es un país tropical que limita con el Mar Caribe en el norte, con el Océano Pacífico en el occidente y con parte de la Selva Amazónica en el sur, tiene tres cadenas montañosas provenientes de la cordillera de los Andes y una gran variedad de zonas climáticas propias de las diferentes elevaciones que van desde el nivel del mar hasta 5775 metros en el pico Cristóbal Colón.

Su climatología está principalmente moldeada por los dos océanos que la rodean, los tres sistemas montañosos, bifurcaciones de la Cordillera de los Andes, y el constante movimiento de la Zona de Convergencia Intertropical (ZCIT) que pasa por el centro del país durante los meses de marzo y agosto en su recorrido hacia el norte y sur del hemisferio respectivamente, definiendo a su paso el régimen anual de lluvias, bimodal en la zona centro de Colombia y uni-modal en los extremos norte y sur, conformándose así dos temporadas de lluvia favorecidas por el choque de los vientos alisios del norte con los alisios del sur y la consecuente

98

generación de SCM's de gran extensión temporal y espacial.

Estadísticas nacionales señalan que los fenómenos anteriormente mencionado han causado innumerables pérdidas humanas y financieras que afectan directa e indirectamente la calidad de vida de los colombianos, la economía nacional y la infraestructura del país, por lo cual se hace necesario investigar, desarrollar e implementar nuevos sistemas de pronóstico que permitan reducir su impacto humano, ambiental y económico.

A.2. Instalación WRF version 3.8.1 en la FAC

La FAC inició el proceso de modelamiento atmosférico en 2007 mediante la implementación del modelo WRF versión 2.1 con tres dominios de 45, 15 y 5 km, incluyendo en el dominio de 15 km todo el territorio nacional y en el de 5 km la zona Andina. Posteriormente, en el año 2015 se habilitaron dos servidores que ejecutaban el WRF versión 3.3 con un solo dominio de 10 km en todo Colombia, esta nueva actualización aún distaba bastante de los requerimientos operativos y continuaban varios de los inconvenientes de la versión 2.1: baja resolución espacial (10 km) y vertical (27 niveles sigma), la actualización del pronóstico se realizaba tan solo dos veces al día y se usaba un procedimiento precario de asimilación de datos en superficie.

Conscientes de estas falencias, de las nuevas capacidades del país, de la Institución y del modelo en general, la FAC planeó una tercera actualización del modelo WRF, en donde por primera vez se pretendía impactar el *nowcasting* mejorando las condiciones iniciales del modelo mediante la asimilación de datos en superficie (METAR y SYNOP), altura (radiosondeos y radiómetros) y radar, siendo estos últimos de gran interés por su alta distribución espacial y temporal.

Los nuevos desarrollos serían rápidamente incorporados a los procesos de la FAC, desde donde se tomarían las acciones necesarias para reducir el impacto de los factores meteorológicos en la población civil, tendientes a incrementar la seguridad en vuelo a nivel nacional. El proyecto requería ajustarse a las actuales y futuras necesidades de la FAC contemplando un plan general que incluyera el cálculo de la capacidad de cómputo, actualización del modelo cuatro veces al día, alta resolución y un robusto sistema de asimilación de datos. Todo como parte del nuevo subsistema de modelamiento que estaría en funcionamiento para enero de 2017.

Dado que el plan de investigación estaba enfocado en solucionar los problemas mencionados facilitándole a la FAC un procedimiento de *nowcasting* acertado, se proyectó la modernización del WRF a la última versión disponible (3.8.1) incluyendo la asimilación de datos radar y la definición de un dominio acorde a las necesidades operativas y al presupuesto, estableciendo así dos posibles configuraciones del modelo y un plan general de instalación.

A.2.1. Definición capacidades de máquina y dominios

Teniendo en cuenta la obligación de la FAC de soportar las operaciones aéreas en todo el territorio nacional, se contemplaron dos posibles configuraciones del modelo, cada una con tres dominios de 9, 3 y 1 km de resolución espacial, permitiendo que el domino de más alta resolución fuese móvil y de fácil adaptación según los requerimientos operacionales de la FAC. La Tabla A.1 y Figura A.1 representan las características propuestas para cada una de las dos configuraciones planteadas.

\M/DE 2 9 1		Configuració	n 1	Configuración 2								
VVNF 3.0.1	d01	d02	d03	d01	d02	d03						
e_we	320	697	112	410	697	334						
e_sn	350	772	112	440	772	334						
mp_physics	Song-Yo	ou y Jeong-Ocl	kjade (2006)	Thomps	son et al.	(2008)						
ra_lw_physics		lacono et al. (2	2008)	Collin	s et al. (2	2004)						
ra_sw_physics		lacono et al. (2	Collin	2004)								
rad		30	9	3	1							
sf_sfclay_physics	Monin y Obukhov (1954)											
sf_surface_physics												
bl_pbl_physics		Nak	(2006)	(2006)								
cu physics	Kain	0		Kain	ſ)						
cu_physics	(2004)	0		(2004)								
e_vert		35	48									
ref_lat y ref_lon		N y 76.0 W										

Tabla A.1: Resumen del namelist.input usado en las configuraciones de prueba 1 y 2

Las dos configuraciones estipuladas en la Tabla A.1 fueron utilizadas para ejecutar el WRF 3.8.1 en los servidores de NCAR con el fin de determinar los tiempos de ejecución del *wrf.exe* para pronósticos de 72 horas teniendo en cuenta los siguientes aspectos:

- NCAR utiliza la tecnología de asignación de nodos por proceso, un estimado del número de procesadores es equivalente al número de nodos multiplicando el por el número de cores.
- Aunque estas son pruebas reales cabe recordar que los tiempos también están asociados a la forma en la que fue compilado el modelo WRF y al tipo de compilador. Las pruebas fueron realizadas con el compilador *ifort* de Intel.
- Los tiempos necesarios para ejecutar los módulos WPS, WRFDA y el programa *real.exe* no fueron contemplados en este estudio.
- El servidor con el que se realizaron las pruebas fue un IBM iDataPlex Cluster con Intel 2.6-GHz Sandy Bridge EP, con extensiones de vector avanzado, 4518 nodes, 72288 cores, 1504 PetaFlops, 32 GigaBytes de memoria

Figura A.1: Dominios de 9, 3 y 1 km para las configuraciones 1 y 2 de la Tabla A.1. Los tres círculos rojos representan la cobertura de tres radares en 100, 200 y 300 km de radio.

por nodo, 145 TeraBytes de memoria total y un modo de interconexión de nodos llamado InfiniBand Fat-tree.

Los resultados de las pruebas son resumidos en la Tabla A.2 y permitieron concluir que el costo computacional de un tercer dominio de 1 km es muy alto y debería ser descartado. Para cumplir con las cuatro actualizaciones diarias requeridas por la FAC, se deben adquirir como mínimo 64 procesadores con características similares a los utilizados por los servidores de NCAR.

Procesadores	Nodos	Cores por	RAM por	Tiempo				
		nodo	nodo	wrf.exe				
Configuración	1 (2 dominios)							
384	24	16	32 GB	1 h 26 min				
256	16	16	32 GB	1 h 53 min				
128	8	16	32 GB	2 h 40 min				
64	4	16	32 GB	4 h 41 min				
32	2	16	32 GB	8 h 17 min				
Configuración	2 (3 dominios)							
1024	64	16	32 GB	3 h 43 min				
512	32	16	32 GB	5 h 04 min				
384	24	16	32 GB	5 h 50 min				

Tabla A.2: Pruebas de tiempo realizadas en los servidores de NCAR usando la configuración 1 y 2 con distinto número de procesadores.

Una vez descartado el tercer dominio, se propuso utilizar los dominios de 9 y 3 km contemplados en la configuración 2. El dominio madre de 9 km tiene dos ventajas asociadas: simula los procesos atmosféricos y fenómenos meteorológicos propios del Caribe y permite asimilar un mayor número de datos de superficie, tal como lo demuestra la Figura A.2. Aunque las comparaciones fueron realizadas en fechas diferentes, es perceptible el considerable incremento en el número de observaciones SYNOP y METAR que podrían ser asimiladas por el modelo WRF en el Caribe.

Figura A.2: Observaciones SYNOP y METAR que podrían ser asimiladas según el dominio madre seleccionado.

Por otra parte, mantener el área correspondiente al dominio anidado de 3 km también tiene dos ventajas: contiene la resolución mínima requerida par asimilar datos datos radar y garantiza una mejora en la simulación de los procesos atmosféricos que dependen del forzamiento orográfico. La Figura A.3 esquematiza las diferencias topográficas entre representar el país con 9 y 3 km de resolución espacial.

Figura A.3: Topografía colombiana modelada con 9 y 3 km de resolución espacial.

A.2.2. Requisitos mínimos de instalación

La instalación del modelo WRF debe cumplir con las siguientes consideraciones:

- 1. Generalidades
 - La instalación del modelo tendrá como característica especial la flexibilidad, entendiendo por flexible la facilidad de realizar futuras actualizaciones sin que esto signifique una nueva y completa instalación de las características principales del modelo.
 - El manejo y operación del modelo deberá ser realizado en un solo lenguaje de programación que facilite la administración del sistema.

APÉNDICE A. Implementación del modelo WRF con asimilación de datos radar en Colombia

 El modelo WRF será ejecutado de dos maneras distintas. Por una parte se inicializará en frío con 72 horas de pronóstico (modo operativo) y, por la otra, se inicializará en caliente con solo 6 horas de simulación. Sobre esta última se harán las pruebas de asimilación y será utilizada para investigación y desarrollo.

2. Estructura

El modelo debe ser instalado bajo una estructura lógica, secuencial e intuitiva con procesos compuestos por tareas y subtareas donde la dependencia de una con la otra debe ser notable y fácil de manejar. Los datos variables deben ser distinguibles de los datos fijos y de los componentes que requiere el modelo para funcionar. El directorio principal del WRF debe estar compuesto por los subdirectorios: *control, namelist, data, run y system*.

- Control: contiene todos los scripts que controlan el funcionamiento general del modelo.
- Namelist: contiene los namelist de WPS, WRFDA y ARW.
- Data: contiene los datos gfs y las observaciones procedentes de estaciones en superficie, sondeos atmosféricos, radiómetro, radar y satélite.
- Run: contiene cuatro subcarpetas en la forma yyyymmddhh, cada una de ellas incluirá los archivos de salida de WPS, WRFDA y ARW.
- System: contiene tres subcarpetas con los archivos del sistema de cada uno de los tres módulos del WRF.
- 3. WPS

Se debe optimizar la descarga de datos GFS de $0.25^{\circ} \times 0.25^{\circ}$ ($\simeq 27$ km x 27 km) para los dominios establecidos, condicionando la ejecución del programa *geogrib.exe* a la ausencia de los archivos *geo_em.d01.nc* y *geo_em.d02.nc*.

4. WRFDA

Se generará un error del bakground usando las variables de control preestablecidas en CV7 y se implementará un sistema que permitirá escoger el proceso de asimilación utilizado, según la disponibilidad e impacto positivo que presenten los resultados de asimilar datos de superficie, sondeos, radiómetro, radar o la combinación de diferentes tipos de observaciones.

5. ARW

Se ejecutará en modo operativo y en modo *nowcasting*. Mientras que en modo operacional el WRF será inicializado en frío con pronósticos de hasta 72 horas, en modo *nowcasting* el modelo será inicializado en caliente con

104

la hora nueve de la corrida operativa. A este último caso se le denominará

pronósticos de 6 horas y usando como condiciones iniciales el pronóstico de

Figura A.4: Pronósticos operativos de 72 horas (Oper72) inicializados en frío (azul) versus RAP con 6 horas de pronóstico inicializado en caliente (rojo). El color verde simboliza que se ha realizado un ciclo de asimilación de datos.

6. Pronósticos

El WRF generará cuatro pronósticos diarios de hasta 72 horas en los dominios de 9 y 3 km. La RAP se aplicará como una técnica de nowcasting solo para el dominio de 3 km y será un modelo totalmente independiente con sus propios namelist de control. Al ser un modelo independiente no afectará los resultados operativos que servirán de insumo al SIMFAC.

7. Borrado

Debe existir un procedimiento claro de limpieza y borrado que mantenga el modelo libre de componentes innecesarios. Por seguridad nada podrá ser eliminado directamente del sistema, todo irá a una carpeta de pre-borrado, la cual se eliminará automáticamente cada 24 horas.

8. Control y seguimiento

El modelo debe contar con un archivo de seguimiento donde se consignen constantemente el estado de ejecución de cada uno de sus componentes, enviando automáticamente un mail de control al administrador del sistema cada vez que se inicie, termine o se detecte algún fallo en el funcionamiento del modelo.

9. Scripts

Los nombres de los scripts deben guardar información del orden de ejecución, dependencias con otro script y función para la que fue pensado.

Ejemplo:

5 mainWrfda: Este script es el quinto del proceso en ser ejecutado, al no tener una letra asociada significa que es el script principal.

5a_sfc2litR: Es utilizado por 5_mainWrfda y tiene como función convertir al formato LITTLE_R las observaciones de superficie.

5b_sou2litR: Es utilizado por 5_mainWrfda, se ejecuta después de 5a_sfc2litR y es utilizado para convertir al formato LITTLE_R los sondeos atmosféricos.

A.3. Sistema de asimilación de datos

Si bien es cierto que el país ha realizado importantes avances en términos de la predicción de fenómenos meteorológicos que podrían ser fatales, los modelos numéricos no han sido lo suficientemente explorados. Aunque la FAC los ha utilizado desde el año 2007, poco o nada se ha profundizado en la capacidad de los modelos para asimilar datos. La técnica de asimilación había sido desaprovechada sobre todo por la escasez de datos y su poca interconectividad con un punto central que permitiera utilizarlos en tiempo real, situaciones que fueron cambiando a medida que el país se fue modernizando.

Con el fin de verificar la capacidad del modelo WRF para simular la precipitación del 31 de marzo de 2015 de las 19 a las 24 UTC, se realizaron diferentes experimentos asimilando datos de estaciones en superficie, sondeos atmosféricos y datos radar a las 12 UTC.

A.3.1. Asimilación de datos convencionales

La asimilación de datos convencionales fue implementada en dos partes dependiendo del tipo de observación. Mientras que para asimilar datos ME-TAR y SYNOP fue necesario desarrollar una metodología que permitiera transformar las observaciones horarias de la base de datos de la FAC al formato LITTLE_R requerido por el programa *obsproc* (Figura A.5), para asimilar los datos de los sondeos atmosféricos se utilizó una estrategia diferente. En este último caso se implementó una metodología general que permite descargar y transformar los datos de cualquier sondeo en el formato *Text:List* de http://weather.uwyo.edu/upperair/sounding.html al formato LITTLE_R (Figura A.6).

Una vez se ha transformado todo el conjunto de datos (METAR, SYNOP y sondeos) se procede a ejecutar el programa *obsproc* con el fin de leer los datos en LITTLE_R, realizar controles de calidad y finalmente modificarlos al formato requerido por 3DVAR. Las características de tipo, cantidad y localización de las observaciones asimiladas por el 3DVAR el 31 de marzo de 2015 a las 12 UTC son representadas en la Figura A.7.

106

A.3.2. Asimilación de datos radar

En el año 2012 la UAEAC inició un plan de seguridad aérea que trajo consigo la instalación de tres radares meteorológicos banda C de doble polarización en El Tablazo (TAB), Corozal (COR) y San Andrés Islas (AND) (Figura A.8). Los radares han causado un gran impacto en la meteorología del país, tanto así que ya se han adquirido otros tres los cuales quedarán completamente instalados para enero de 2019. Esta nueva capacidad del país y la posibilidad de también asimilar datos del radar de Curazao hace necesario implementar una técnica de asimilación de datos radar dentro del un modelo numérico que permita mejorar el *nowcasting* de precipitación en Colombia.

A diferencia de la red de estaciones en superficie y de sondeos, la asimilación de reflectividad y velocidad radial se realiza sobre una malla homogénea con la misma resolución del modelo (3 km); además, los tres radares podrían aportar fácilmente más de 10000 observaciones en cada ciclo de asimilación, muy por encima de los datos convencionales que pueden rondar unas 150 observaciones en superficie y unos 20 sondeos atmosféricos. Las observaciones en altura solo estarán disponibles a las 12 UTC debido a que en el Caribe y Suramérica solo se realizan sondeos atmosféricos a esta hora del día.

El control de calidad y la transformación de datos crudos del radar al formato requerido por el 3DVAR fueron realizados usando el VDRAS. Este procedimiento permitió asimilar 7457, 1845 y 703 puntos de grilla con datos procedentes de los radares de TAB, COR y AND respectivamente. Cada uno de estos puntos podría contener información de velocidad radial, de reflectividad o de ambos.

Una vez establecido el procedimiento de asimilación de todos los datos, se realizaron una serie de experimentos (Tabla A.3) con el objetivo de verificar el impacto de los diferentes tipos de observaciones sobre el pronóstico horario de precipitación. Teniendo en cuenta que Colombia no cuenta con un sistema que permita cuantificar efectivamente la precipitación horaria de todo el país, los resultados fueron evaluados cualitativamente contra la temperatura del tope de la nube derivada del satélite GOES-13 en el canal infrarrojo de 11.2 μ m.

Los experimentos que simulan la precipitación horaria el 31 de marzo de 2015 entre las 19 y 24 UTC, son representados en la Figura A.10, permitiendo así realizar las siguientes conclusiones preliminares:

- Al utilizar el modelo sin ningún tipo de asimilación (experimento 1), el pronóstico de precipitación horaria es bajo. La poca precipitación que se simula guarda correspondencia con las imágenes satelitales y se asume como correcta debido a que su localización concuerda con las tres cordilleras colombianas donde suele ser común encontrar precipitación producto de nubes convectivas formadas por ascenso orográfico.
- 2. El hecho de asimilar sondeos atmosféricos parece favorecer condiciones atmosféricas mucho más secas, razón por la cual el experimento 3 produce

Tabla A.3: Experimentos realizados el 31 de marzo de 2015 a las 12 UTC usando el WRF y el 3DVAR con distintos tipos de observaciones

Experimento	Datos asimilados									
1	—									
2	Sfc									
3	Hgt									
4	Rad									
5	Sfc + Hgt									
6	Sft + Rad									
7	Hgt + Rad									
8	Sfc + Hgt + Rad									
—: Sin asimila	ación									
Sfc: Observac	iones METAR y SYNOP									
Hgt: Sondeos atmosféricos										
Rad: datos de reflectividad radar y velocidad radial										

aún menor precipitación que el experimento 1, lo cual no parece coincidir con lo observado en las imágenes satelitales.

- Asimilar datos de superficie causa un mayor aumento de la precipitación que cuando únicamente se asimilan datos radar. Aunque el aumento de precipitación de ambos coincide con lo esperado, es difícil establecer cual de los dos experimentos (Exp. 2 o Exp. 4) genera los mejores resultados.
- 4. Partiendo del hecho de considerar toda la precipitación simulada como positiva, las observaciones de menor a mayor que más causaron precipitación fueron en su orden: sondeos atmosféricos, observaciones radar y observaciones de superficie.
- 5. Los experimentos 5, 6 y 7 permiten conocer cual tipo de observación afecta más el pronóstico de precipitación, ya sea de forma positiva o negativa. Esto indica que siempre que se mezclen observaciones predominará una sobre la otra en este orden: sondeos atmosféricos, observaciones radar y observaciones de superficie.
- Los sondeos atmosféricos parecen estar afectando considerablemente el pronóstico de precipitación y al mezclarlos con observaciones de superficie y radar siguen arrojando resultados muy parecidos que prácticamente anulan las otras observaciones.
- 7. Es necesario realizar una validación cuantitativa de precipitación simulada versus precipitación observada para confirmar los resultados preliminares. También se deben realizar más casos de estudio que permitan verificar cual de los tres tipos de observaciones produce un impacto positivo mayor sobre el pronóstico de la precipitación en Colombia.

Figura A.5: Transformación desde el formato crudo de las observaciones METAR y SYNOP al formato Little_R y 3DVAR. El rectángulo diferenciado por colores y lineas señala las modifican realizadas a los datos de elevación, presión, temperatura, punto de rocío, dirección y velocidad del viento en cada tipo de formato.

		0	00	0	0	0	00	90	90	9 6	0	0	0	0	0	9 6	0 6	0	0	0	0	0	00	9 6	0	0	0	00	96	0	0	0	00	96	0	0	0	0	00	0 0	9 6	0	0	0	0
		0-888888.00000	0-888888.00000 0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0.00000.000000	0-888860.000000	0-00000.000000	0-88888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-00000.000000	0-88888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888,00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-555555.00000 0-88888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-88888 00000 0-88888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-00000.000000	0-888888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000
	FAC research	0-888888.00000	0-888888.00000 0-888888.000000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0 00000 00000	0-88886.00000	0-00000.000000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-00000.000000	0-888888.000000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-88888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-88888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-88888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-00000.000000	0-00000.00000	0-88888.00000	0-888888.00000	0-888888.00000	0-888888.00000
		0000-888888.00000	0-888888.00000 0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0.00000.00000	0-888885.00000	0-888888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888 000000	0-888888,00000	0-888888,00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-88888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-806005.00000 0-88888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-555555.00000 0-88888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-00000.000000	0-888888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000
	FM-35 TEMP	8888 2015033112	0-888888.00000 0-888888.000000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888885.00000	0-00000.000000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-00000.000000	0-88888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.000000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-88888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-88888 00000 0-88888 00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-888888.00000	0-00000.000000000000000000000000000000	0-888888 00000	0-888888,00000	0-888888.00000	0-888888.00000	0-888888.00000
b Litlle_R	AC	F -888888 -85	0-888888.00000 0 160.000000	0 118.00000	0 85.00000	0 93.00000	0 94.00000	00000.72 0	0 100.00000	0 107 00000	0 109.00000	0 115.00000	0 115.00000	0 113.00000	0 107.00000	000000 FOT 0	0 107.00000	00000.72 0	0 85.00000	0 85.00000	0 85.00000	0 85.00000	0 43.00000	00000.0C 0	0 40.00000	0 115.00000	0 58.00000	0 315.00000	0 47 00000	0 53.00000	0 65.00000	0 75.00000	0 76.00000	0 85.00000	00000.68 0	00000.06 0	0 115.00000	0 122.00000	0 128.00000	000000 851 V	000000 E91 0	0 165.00000	0 245.00000	0 696.50000	0-888888.00000
Formato	SOUND OBS from F.	1	0-888888.00000 0 4.00000	0 5.00000	6.00000	0 10.00000	0 11.00000	0000011 0	0 14.00000	0 14 00000	0 13.00000	0 13.00000	0 13.00000	0 13.00000	0 13.00000	0 13 00000	0 13.00000	0 12.00000	0 12.00000	0 13.00000	0 13.00000	0 13.00000	000000 11 000000	00000.12 0	0 30.00000	0 10.00000	0 15.00000	0 24.00000	0 22.00000	0 22.00000	0 22.00000	0 22.00000	0 23.00000	0 33.00000	0 46.00000	0 47.00000	0 35.00000	0 31.00000	0 28.00000	0 13 00000	0 11 00000	0 10.00000	0 22.00000	Ø 696.90002	0-888888.00000
	COLOMBIA	0	0-888888.00000 0 284.75000	0 282.25000	0 280.35001	0 273.14999	0 272.14999	0 267.35001	0 203. /3000	0 262-04-999	0 259.04999	0 251.04999	0 249.45000	0 247.45000	0 250.14999	0 243.04999	0 246.25000	0 234.45000	0 228.45000	0 219.45000	0 220.04999	0 219.45000	0 214.45000	0 198.64999	0 197.64999	0 187.64999	0 191.04999	0 184.84999	0 187.04099999999999999999999999999999999999	0 185.04999	0 182.64999	0 182.84999	0 184.25000	000027.081 0	0 180.84999	0 179.84999	0 182.84999	0 181.84999	0 183.84999	000070 981 W	0 187 84000	0 189.04999	0 193.25000	0 193.45000	0-888888.00000
	000 BOGOTA AIRPORT/	0	0-888888.00000 0 286.35001	0 282.94998	Ø 281.94998	0 Z73.14999	0 272.25000	0 2/1.25000	00003C 23C V	00052.702 0	0 260.64999	0 259.04999	Ø 258.44998	0 257.44998	0 Z53.Z5000	00054.252 0	0 251.04999	0 249.45000	0 242.45000	0 237.45000	Ø 233.04999	0 232.45000	0 222.45000	0 204-64999	0 203.64999	0 194.64999	0 199.04999	0 194.84999	0 196 04999	0 199.04999	0 197.64999	0 197.84999	0 200.25000	0 206 45000	0 204.84999	Ø 204.84999	Ø 211.84999	0 210.84999	0 214.84999	000C7.017 0	0 220,84000	0 222.04999	0 227.25000	0 227.45000	0 48.00000
	-74.15	00 288	0-888888.00000 0 2546.00000	0 2885.00000	0 3152.00000	0 4675.00000	0 4772.00000	0 5334.00000	000000.0/85 0	000000 2000 0	0 6916.00000	0 7533.00000	0 7590.00000	0 7704.00000	0 8175.00000	000000.0520 0	00000.1000 0	0 8841.00000	00000.0000	0 10440.00000	0 10916.00000	0 10970.00000	0 12095.00000	0 14063 00000	0 14220.00000	0 15722.00000	0 16029.00000	0 16580.00000	0 1/430.00000	0 18255.00000	0 18469.00000	0 18640.00000	0 18749.00000	000000 0755T 0	0 20535.00000	0 20630.00000	0 21678.00000	0 21948.00000	0 22216.00000	000000,1C#C2 0	000000 20222 0	0 23810.00000	0 26480.00000	0 26513.00000	0-777777.00000 R
	4.700	2546.000	00000 00F27	72300.00000	70000.00000	58100.00000	57400.00000	53500.00000	00000,00000	43000.00004	43700.00000	40300.00000	40000.00000	39400.00000	37000.00000	36100 00000	00000 00TOC	33800,00000	30000,00000	27000.00000	25200.00000	25000.00000	21100.00000	15400.00000	15000.00000	11600.00000	11000.00000	10000.00000	00000.0000	7480.00049	7210.00000	7000.00000	6869.99951	5520 000000	5080.00000	5000.00000	4210.00000	4030.00000	3859.99976	000000 0715	3050 00000	3000,00000	2000.00000	1990.00000	-777777.00000 48 0
of Wyoming			PED XY YX ZZ 4 310.5 346.0 312.7	5 310.4 341.7 312.3	6 312.2 340.9 313.5	10 319.0 340.5 320.3	11 319.0 339.3 320.2	1.225 0.045 5.4.5 21	A. 145 C. 046 C. 0. 125 41	1 025 7 005 7.045 7.125 4T	13 330.2 340.6 330.8	13 B35.9 341.9 336.2	13 335.8 341.1 336.1	13 335.9 340.5 336.2	13 336.4 342.5 336.8	1./CC 4.24C 0./CC CL 7 7FF 0.04F 7 7FF F1	13 338.3 342.9 338.6	12 340.1 341.7 340.2	12 342.0 343.0 342.6	13 345.2 345.6 345.2	13 345.5 346.0 345.6	13 345.4 345.9 345.4	19 347.0 347.3 347.4	29 349.3 349.3 349.3 349.3	30 350.2 350.2 350.2	10 360.2 360.2 360.2	15 374.0 374.0 374.6	24 376.2 376.2 376.2 2 3 3 3 3 3 3 3 4 3 5 5 5 5 5 5 5 5 5 5 5	27 409.7 409.7 409.7	22 417.6 417.6 417.6	22 419.0 419.0 419.6	22 423.0 423.0 423.0	23 430.4 430.4 430.4 22 447 E 447 E 447 E	2.244 C.244 C.244 CC 404 CC 404 CC 405 CC 40	46 479.9 479.9 479.9	47 482.1 482.1 482.1	35 523.7 523.7 523.7	31 527.8 527.8 527.8	28 544.5 544.5 544.5 14 570 2 570 2 570 2	12 580 8 580 8 580 8	11 598.6 598.7 598.6	10 604.7 604.8 604.7	22 694.9 695.3 694.5	696.5 696.9 696.5	
de University (TIME = 150331/1200 15 SELV = 2546.0		HK XXX DRCT S 30 11.57 160	95 10.13 118	90 9.18 85	00 6.63 93	99 6.24 94	75 4.00 9/ 72 100	101 3.// 101	72 3.04 107 107	38 2.96 109	51 1.62 115 ^r	46 1.42 115	42 1.20 113	76 1.63 107	701 CAT C4-1 7/	55 1.21 102	24 0.40 97	24 0.24 85	14 0.10 85	24 0.11 85	23 0.10 85	38 0.07 43	32 0.01 39	41 0.01 40	32 0.00 115	28 0.00 58	19 0.00 315	4 0.00 47	10 0.00 53	8 0.00 65	8 0.00 75	7 0.00 76 5 0.00 27	20 00.0 5 86 00 86	2 0.00 89	2 0.00 90	1 0.00 115	1 0.00 122	1 0.00 128	0CT TA'A T	0CT TA'A T	1 0.01 165	1 0.03 245	1 0.04	
mato Text:List	STNM = 80222 70 SLON = -74		11 TMPC DMPC	1.6 9.8 9.1	52 8.8 7.2	75 0.0 0.0 1	72 -0.9 -1.0		0 -4.9 -9.4	1.01- 0.2- EI	6 -12.5 -14.1	13 -14.1 -22.1	30 -14.7 -23.7	M -15.7 -25.7	75 -19.9 -23.0	0.42- 7.02- 02 20-2- 2.02- 7:	3 -22.1 -26.9	1 -23.7 -38.7	70 -30.7 -44.7	10 -35.7 -53.7	16 -40.1 -53.1	70 -40.7 -53.7	35 -50.7 -58.7		0 -69.5 -75.5	22 -78.5 -85.5	29 -74.1 -82.1	50 -78.3 -88.3 6 -75 5 -87 5	1.19- 1.77- 5	5 -74.1 -88.1	39 -75.5 -90.5	to -75.3 -90.3	19 -72.9 -88.9	14 -66 7 -88 7	15 -68.3 -92.3	30 -68.3 -93.3	78 -61.3 -90.3	48 -62.3 -91.3	16 -58.3 -89.3	7 -57 1 -87 1	127.3 -85.3	0 -51.1 -84.1	30 -45.9 -79.9	13 -45.7 -79.7	
For	B0 AT = 4.	AA 1206	RES HGI 3.0 754	3.0 285	0.0 315	1.0 46	47.0 47.		00 0.0	10.0 001 10.0	7.0 691	6.0 753	0.0 755	4.0 776	18 0.0	1 0 835	2.9 854	8.0 884	976 0.0	0.0 1044	1001 0.2	0.0 109)	071 0.1 071 0.1	4.0 1406	0.0 1422	6.0 1572	0.0 1602	0.0 1658 5 1740	76.1 1815	4.8 1825	2.1 1846	0.0 1864	8.7 1874	1002 2 3	0.8 2053	0.0 2063	2.1 216	0.3 2194	88.6 ZZZ)	11.0 2351	0282 2308	80.0 Z381	20.0 2648	9.9 2651	

 $\operatorname{AP\acute{E}NDICE}$ A. Implementación del modelo WRF con asimilación de datos radar en Colombia

110

Figura A.6: Transformación desde el formato crudo de las observaciones tipo TEMP extraídas desde Wyoming y transformadas al formato LITTLE_R. El rectángulo diferenciado por colores y líneas señala las modificaciones que sufren los datos de altura, presión, temperatura, punto de rocío, dirección y velocidad del viento.

Figura A.7: Número y localización de SYNOP, METAR y sondeos asimilados el 31 de marzo de 2015 a las 12 UTC.

Figura A.8: Red de radares Colombianos con cobertura de 100, 200 y 300 km de radio. En negro los radares de AND (NW), COR (N) y TAB (S). En azul intermitente los radares en proceso de instalación y en rojo el radar de Curazao con cobertura de 150, 300 y 450 km de radio.

TOTAL	NUMBER = 0	3					
#		#					
	Nombre	Latitud	Longitud	d Elevacion.	Fecha.	Hora Datos	Angulos
RADAR	SKB0	-74.204	5.012	3523.0	2015-03-31_11	L:59:20 7457	10
#					#		
FM-128	RADAR 20	15-03-31_11:	59:20	5.025	-75.815	3523.0	3
	1876.1	-4.055	0 Error	0.784 dBZ	17.714 0	Error 3.094	
Altura	- 3433.9 V	el -3.855	0 Vel	1.104	9.466 0	dBZ 1.599	
	4992.1	adial -1.750	0 Raulai	2.476 -8	88888.000 -88	-888888.000	-
FM-128	RADAR 20	15-03-31_11	:59:20	5.052	-75.815	3523.0	3
	1877.1	-4.300	0	1.107	12.671 0	3.533	K
	3435.4	-3.016	0	1.279	8.127 0	0.906	
EM 100	4994.0	2.12/	50.20	2.9/2 -8	55555.000 -88 75 015	-8888888.000	ر ا
FM-120	1970 20	-3 212	0	1 224	9 770 0	1 795	א ר
	3438.4	-1.858	ø	1.355 -8	88888.000 -88	-888888.000	
			-				
RADAR	SKCZ	-75.283	9.331	125.0	2015-03-31_12	2:04:17 1845	10
#					#		
FM-128	RADAR 20	015-03-31_12	:04:17	7.267	-76.582	125.0	1
	6653.7	2.534	0	0.861	12.484 0	0.648	
FM-128	RADAR 20	015-03-31_12	:04:17	7.294	-76.582	125.0	2
	6551.0	3.002	0	0.885	12.028 0	0.356	
	8886.7	3,268	0	0.638	15.838 0	0.842	
FM-128	RADAR 20	015-03-31 12	:04:17	7,321	-76,582	125.0	2
120	6449 4	3 170	0	0 820	11 985 0	0 223	-
RADAR	SKSP	-81,708	12.588	12.0	2015-03-31 12	.04.27 703	10
#	51(51				#		10
- 	BADAD 30	15 02 24 42	04.27	12 114		12.0	
FM-128	KADAK 20	15-03-31_12	:04:27	13.114	-81.169	12.0	1
	1847.1	3.490	0	1.021	18.960 0	6.429	
FM-128	RADAR 20	15-03-31_12	:04:27	13.088	-81.141	12.0	1
	1850.0	4.030	0	0.920	22.292 0	5.137	
FM-128	RADAR 20	15-03-31_12	:04:27	13.114	-81.141	12.0	1
	1905.7	3.850	0	1.141	18.793 0	5.662	

Figura A.9: Formato requerido por el 3DVAR para asimilar los datos de velocidad radial y reflectividad de los tres radares colombianos TAB, COR y AND.

APÉNDICE A. Implementación del modelo WRF con asimilación de datos 114 radar en Colombia

Figura A.10: Conjunto de experimentos con simulaciones horarias de precipitación asimilando diferentes tipos de observaciones según la Tabla A.3.

Apéndice B

Namelist del modelo WRF

B.1. *Namelist.input* del ARW usado en la investigación

time_control run days = 0, run hours = FCSTH, run minutes = 0, run seconds = 0, start year = SYY, SYY, SYY, start month = SMM, SMM, SMM, $start_day = SDD, SDD, SDD,$ start hour = SHH, SHH, SHH, start minute = 00, 00, 00,start second = 00, 00, 00,end_year = EYY, EYY, EYY, end_month = EMM, EMM, EMM, end day = EDD, EDD, EDD, end hour = EHH, EHH, EHH, end minute = 00, 00, 00,end second = 00, 00, 00,interval seconds = 3600input from file = .true.,.true., history_interval = 60, 60,frames per outfile = 1, 1, restart = .false., restart interval = 1440, io form history = 2io form restart = 2io form input = 2io form boundary = 2

```
debug_level = 0
/
domains
time step = 54,
time_step_fract_num = 0,
time step fract den = 1,
max dom = 2,
e we = 115, 193,
e sn = 97, 163,
e vert = 51, 51,
p top requested = 5000,
num metgrid levels = 32,
num_metgrid_soil_levels = 4,
dx = 9000, 3000,
dy = 9000, 3000,
grid id = 1, 2,
parent_id = 0, 1,
i_parent_start = 1, 34,
j parent start = 1, 23,
parent grid ratio = 1, 3,
parent time step ratio = 1, 3,
feedback = 0,
smooth option = 0,
use adaptive time step = .true.,
step_to_output_time = .true.,
target cfl = 1.2, 1.2,
target hcfl = 0.84, 0.84,
max step increase pct = 15, 51,
starting_time_step = -1, -1,
min_time_step = 09,
max time step = 90,
adaptation domain = 1,
/
physics mp physics = 8, 8,
ra lw physics = 4, 4,
ra sw physics = 4, 4,
radt = 9, 3,
sf sfclay physics = 2, 2,
sf surface physics = 2, 2,
bl pbl physics = 2, 2, 2
bldt = 0, 0,
cu_physics = 1, 0,
cudt = 5,
isfflx = 1,
```

```
ifsnow = 0,
icloud = 1,
surface input source = 1,
num soil layers = 4,
sf_urban_physics = 0, 0,
/
fdda
/
dynamics w damping = 0,
diff opt = 1, 1,
km opt = 4, 4,
diff 6th opt = 0, 0,
diff_6th_factor = 0.12, 0.12,
base temp = 290.,
damp_opt = 0,
zdamp = 5000., 5000.,
dampcoef = 0.01, 0.01,
khdif = 0, 0,
kvdif = 0, 0,
non hydrostatic = .true., .true.,
moist adv opt = 1, 1,
scalar_adv_opt = 1, 1,
/
bdy control
spec_bdy_width = 5,
spec zone = 1,
relax zone = 4,
specified = .true., .false.,
nested = .false., .true.,
/
grib2
/
namelist quilt
nio tasks per group = 0,
nio_groups = 1,
/
```

B.2. Namelist.input del ARW usado por el SMC

```
time_control
run_days = 0,
run hours = FCSTH,
```

run minutes = 0, run seconds = 0, start year = SYY, SYY, SYY, start month = SMM, SMM, SMM, start_day = SDD, SDD, SDD, start hour = SHH, SHH, SHH, start minute = 00, 00, 00,start second = 00, 00, 00,end year = EYY, EYY, EYY, end month = EMM, EMM, EMM, end day = EDD, EDD, EDD, end hour = EHH, EHH, EHH, end minute = 00, 00, 00,end second = 00, 00, 00,interval seconds = 3600input from file = .true.,.true., history interval = 60, 60,frames_per_outfile = 1, 1, restart = .false.,restart interval = 5000, io form history = 2io form restart = 2io form input = 2io form boundary = 2 $debug_level = 0$ / domains time step = 54, time step fract num = 0, time_step_fract_den = 1, max dom = 2, e we = 115, 193, e sn = 97, 163, e vert = 31, 31, p top requested = 10000, num metgrid levels = 27, num metgrid soil levels = 4, dx = 9000, 3000,dy = 9000, 3000,grid id = 1, 2, parent id = 0, 1, i_parent_start = 1, 34, $j_parent_start = 1, 23,$ parent grid ratio = 1, 3,

```
parent_time_step_ratio = 1, 3,
feedback = 0,
smooth option = 0,
eta levels = 1.000,0.998,0.993,0.986,0.975,0.960,0.940,0.910,
             0.880,0.840,0.800,0.760,0.720,0.680,0.640,0.600,
             0.560,0.520,0.480,0.440,0.400,0.360,0.320,0.280,
              0.240,0.200,0.160,0.120,0.080,0.040,0.000
/
physics
mp physics = 4, 4,
ra lw physics = 1, 1,
ra sw physics = 1, 1,
radt = 9, 3,
sf_sfclay_physics = 1, 1,
sf surface physics = 2, 2, 2
bl pbl physics = 1, 1,
bldt = 0, 0,
cu_physics = 1, 1,
cudt = 0,
isfflx = 1.
ifsnow = 0,
icloud = 1,
surface input source = 1,
num soil layers = 4,
sf urban physics = 0,
num land cat = 24,
/
dynamics w damping = 0,
diff opt = 1, 1,
km_opt = 4, 4,
diff 6th opt = 0, 0,
diff 6th factor = 0.12, 0.12,
base temp = 290.,
damp opt = 0,
zdamp = 5000., 5000.,
dampcoef = 0.01, 0.01,
khdif = 0, 0,
kvdif = 0, 0,
non hydrostatic = .true., .true.,
moist adv opt = 1, 1,
scalar_adv_opt = 1, 1,
bdy control
spec bdy width = 5,
```
```
spec_zone = 1,
relax_zone = 4,
specified = .true., .false.,
nested = .false., .true.,
/
grib2
/
namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,
/
```

B.3. Namelist.input del 3DVAR

```
wrfvar1
write_increments = F,
var4d = F,
multi inc = 0,
print detail radar = T,
print detail grad = T,
check max iv print = T,
/
wrfvar2
calc_w_increment = T,
/
wrfvar3
ob format = 2,
num_fgat_time = 1,
/
wrfvar4
use synopobs = F,
use metarobs = F,
use soundobs = F,
use shipsobs = F,
use pilotobs = F,
use airepobs = F,
use geoamvobs = F,
use polaramvobs = F,
use bogusobs = F,
use _buoyobs = F,
use profilerobs = F,
use satemobs = F,
```

```
use_gpspwobs = F,
use gpsrefobs = F,
use ssmiretrievalobs = F,
use ssmitbobs = F,
use ssmt1obs = F,
use ssmt2obs = F,
use qscatobs = F,
use radarobs = T,
use radar rv = T,
use radar rf = F
use radar rhv = T,
use_radar_rqv = T,
/
wrfvar5
max_error_rv = 5.0,
max error rf = 5.0,
/
wrfvar6
max ext its = 1,
ntmax = 200,
/
wrfvar7
cloud cv options = 3,
rf passes = 6,
cv options = 7,
use cv w = T,
var scaling 1 = 2.5,
var scaling2 = 2.5,
var scaling3 = 2.5,
var_scaling4 = 2.5,
var scaling5 = 2.5,
var scaling6 = 2.5,
var scaling7 = 2.5,
var scaling8 = 2.5,
var scaling9 = 2.5,
var scaling10 = 2.5,
var scaling11 = 2.5,
len scaling 1 = 0.75,
len scaling2 = 0.75,
len scaling3 = 0.75,
len scaling4 = 0.75,
len scaling5 = 0.75,
len scaling6 = 0.75,
len scaling7 = 0.75,
```

```
len_scaling8 = 0.75,
len scaling9 = 0.75,
len scaling10 = 0.75,
len_scaling11 = 0.75,
/
wrfvar9
trace\_use = F
/
wrfvar11
cv options hum = 1,
check rh = 0,
seed array 1 = 0,
seed array2 = 0,
calculate_cg_cost_fn = T,
lat\_stats\_option = F,
/
wrfvar13
vert_evalue = 1,
/
wrfvar17
analysis type = "3D-VAR",
/
wrfvar18
analysis date = .<sup>A</sup>AAA-MM-DD HH:00:00.0000",
/
wrfvar21
time window min = .<sup>A</sup>AAA-MM-DD HH:00:00.0000",
/
wrfvar22
time_window_max = .^AAAA-MM-DD_HH:00:00.0000",
/
wrfvar23
jcdfi use = F,
/
domains
e we = 193,
e sn = 163,
e vert = 51,
dx = 3000,
dy = 3000,
i_parent_start = 34,
j_parent_start = 23,
/
```

Apéndice C

Detalles de los resultados

C.1. Diagrama de Taylor para los diez casos de estudio

Figura C.1: Diagrama de Taylor de experimentos en la fase dos. La desviación estándar se representa por la distancia radial desde el origen, el coeficiente de correlación entre cada conjunto de datos y las observaciones por la distancia angular y el error RMSE por los semicírculos que comienzan y terminan en el eje X.

C.2. ROC clásico para los diez casos de estudio

Figura C.2: Curva ROC clásica de los experimentos en la fase dos. Los puntos de cada línea representan uno de los 100 umbrales de precipitación y la línea roja entre los puntos (0,0) y (1,1) representa la suposición aleatoria por debajo de la cual los resultados son considerados peores que el azar.

C.3. Nuevo ROC para los diez casos de estudio

Figura C.3: Curva ROC sin umbrales de los experimentos en la fase dos en donde los puntos de cada línea representan uno de los 10 criterios de flexibilización de HIT y CREJ. La línea roja entre los puntos (0,0) y (1,1) representa la suposición aleatoria por debajo de la cual los resultados son considerados peores que el azar.

C.4. Mapas ROC de los experimentos (Tabla 3.11)

Figura C.4: AUC de mapas ROC basados en los diez casos de estudio de la Tabla 3.11. Mientras que el color verde indica una buena habilidad del modelo WRF para el *nowcasting* de precipitación en esas regiones, el color naranja señala las regiones donde el modelo produce resultados muy bajos, incluso peores que el azar.

Bibliografía

Uno no es lo que es por lo que escribe, sino por lo que ha leído. Jorge Luis Borges

AMS. Mesoscale convective system - AMS Glossary. 2012.

- Arasa, R., Porras, I., Domingo-Dalmau, A., Picanyol, M., Codina, B., González, M. Á. y Piñón, J. Defining a Standard Methodology to Obtain Optimum WRF Configuration for Operational Forecast: Application over the Port of Huelva (Southern Spain). Atmospheric and Climate Sciences, vol. 06(02), páginas 329–350, 2016. doi 10.4236/acs.2016.62028.
- Bannister, R. N. A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances. *Quarterly Journal of the Royal Meteorological Society*, vol. 134(637), páginas 1951–1970, 2008. doi 10.1002/qj.339.
- Barker, D., Huang, W., Guo, Y.-R. y Bourgeois, A. A Three-Dimensional Variational (3DVAR) Data Assimilation System for use with MM5. Informe técnico, NCAR, Boulder, Colorado, USA, 2003.
- Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M., Guo, Y.-R., Henderson, T., Huang, W., Lin, H.-C., Michalakes, J., Rizvi, S. y Zhang, X. The Weather Research and Forecasting Model's Community Variational/Ensemble Data Assimilation System: WRFDA. *Bulletin of the American Meteorological Society*, vol. 93(6), páginas 831–843, 2012. doi 10.1175/BAMS-D-11-00167.1.
- Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, a. J. y Xiao, Q. N. A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results. *Monthly Weather Review*, vol. 132(4), páginas 897–914, 2004. doi 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.
- Bech, J., Rigo, T., Pineda, N., Segala, S. y Vilaclara, E. Implementation of the EHIMI software package in the weather radar operational chain of the catalan

meteorological service. 11th Conference on Mesoscale Processes and the 32nd Conference on Radar Meteorology, 2005.

- Bech, J., Vilaclara, E., Pineda, N., Rigo, T., López, J., O 'hora, F., Lorente, J., Sempere, D. y Abregas, F. X. The weather radar network of the Catalan Meteorological Service : description and applications. *Proceedings of ERAD Copernicus GmbH*, páginas 416–420, 2004.
- Cáceres, R. y Codina, B. Radar data assimilation impact over nowcasting a mesoscale convective system in Catalonia using the WRF model. *Tethys, Journal of Weather and Climate of the Western Mediterrania*, 2018. doi 10.3369/tethys.2018.15.01.
- Cáceres, R. H. Meteorología aplicada a la seguridad de las operaciones aéreas. Escuela de Posgrados de la Fuerza Aérea Colombiana, Bogotá, Colombia (Suramérica), primera ed edición, 2017. ISBN 978-958-59961-1-3.
- Capel Molina, J. J. Los Sistemas Convectivos de Mesoescala y su influencia en la España mediterránea. *PAPELES DE GEOGRAFÍA*, vol. 32, páginas 29–43, 2000.
- Codina, B., Aran, M., Young, S. y Redaï¿¹/₂o, A. Prediction of a mesoscale convective system over catalonia (Northeastern Spain) with a nested numerical model. *Meteorology and Atmospheric Physics*, vol. 62(1-2), páginas 9–22, 1997. doi 10.1007/BF01037476.
- Collins, W. D., Rasch, P., Boville, B., Hack, J., McCaa, J., Williamson, D., Kiehl, J. y Briegleb, B. Description of the NCAR Community Atmosphere Model (CAM 3.0). En NCAR TECHNICAL NOTE NCAR/TN-464+STR., página 214. 2004.
- Courtier, P., Andersson, E., Heckley, W., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F., Fisher, M. y Pailleux, J. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. *Quarterly Journal of the Royal Meteorological Society*, vol. 124(550), páginas 1783– 1807, 1998. doi 10.1002/qj.49712455002.
- Courtier, P., Thépaut, J. y Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. *Quarterly Journal of the Royal Meteorological Society*, vol. 120(519), páginas 1367–1387, 1994. doi 10.1002/qj.49712051912.
- Damrath, U. Verification against precipitation observations of a high density network - what did we learn? En *International Verification Methods Workshop*. Montreal, 2004.

- Dance, S. Issues in high resolution limited area data assimilation for quantitative precipitation forecasting. *Physica D: Nonlinear Phenomena*, vol. 196(1-2), páginas 1–27, 2004. doi 10.1016/j.physd.2004.05.001.
- Descombes, G., Auligné, T., Vandenberghe, F., Barker, D. M. y Barré, J. Generalized background error covariance matrix model (GEN_BE v2.0). *Geoscientific Model Development*, vol. 8(3), páginas 669–696, 2015. doi 10.5194/gmd-8-669-2015.
- Ebert, E. E. Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework. *Meteorological Applications*, vol. 15(1), páginas 51–64, 2008. doi 10.1002/met.25.
- Ebert, E. E. Neighborhood Verification: A Strategy for Rewarding Close Forecasts. Weather and Forecasting, vol. 24(6), páginas 1498–1510, 2009. doi 10.1175/2009WAF2222251.1.
- Fawcett, T. An introduction to ROC analysis. *Pattern Recognition Letters*, vol. 27(8), páginas 861–874, 2006. doi 10.1016/j.patrec.2005.10.010.
- Friedl, M., McIver, D., Hodges, J., Zhang, X., Muchoney, D., Strahler, A., Wood-cock, C., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F. y Schaaf, C. Global land cover mapping from MODIS: algorithms and early results. *Remote Sensing of Environment*, vol. 83(1-2), páginas 287–302, 2002. doi 10.1016/S0034-4257(02)00078-0.
- Gao, J. y Stensrud, D. J. Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification. *Journal of the Atmospheric Sciences*, vol. 69(3), páginas 1054–1065, 2012. doi 10.1175/JAS-D-11-0162.1.
- Gibergans-Báguena, J. y Llasat, M. Improvement of the analog forecasting method by using local thermodynamic data. Application to autumn precipitation in Catalonia. *Atmospheric Research*, vol. 86(3-4), páginas 173–193, 2007. doi 10.1016/j.atmosres.2007.04.002.
- Gilmore, M. S. y Wicker, L. J. The Influence of Midtropospheric Dryness on Supercell Morphology and Evolution. *Monthly Weather Review*, vol. 126(4), páginas 943–958, 1998. doi 10.1175/1520-0493(1998)126<0943:TIOMDO>2.0.CO;2.
- Gudmundsson, L., Rego, F. C., Rocha, M. y Seneviratne, S. I. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. *Environmental Research Letters*, vol. 9(8), página 084008, 2014. doi 10.1088/1748-9326/9/8/084008.

- Hayden, C. M. y Purser, R. J. Recursive Filter Objective Analysis of Meteorological Fields: Applications to NESDIS Operational Processing. *Journal of Applied Meteorology*, vol. 34(1), páginas 3–15, 1995. doi 10.1175/1520-0450-34.1.3.
- Heideman, K. F. y Michael Fritsch, J. Forcing Mechanisms and Other Characteristics of Significant Summertime Precipitation. Weather and Forecasting, vol. 3(2), páginas 115–130, 1988. doi 10.1175/1520-0434(1988)003<0115:FMAOCO>2.0.CO;2.
- Holton, J. R. y Hakim, G. J. An introduction to dynamic meteorology. Elsevier, 2013. ISBN 0123848679.
- Huang, X.-Y., Xiao, Q., Barker, D. M., Zhang, X., Michalakes, J., Huang, W., Henderson, T., Bray, J., Chen, Y., Ma, Z., Dudhia, J., Guo, Y., Zhang, X., Won, D.-J., Lin, H.-C. y Kuo, Y.-H. Four-Dimensional Variational Data Assimilation for WRF: Formulation and Preliminary Results. *Monthly Weather Review*, vol. 137(1), páginas 299–314, 2009. doi 10.1175/2008MWR2577.1.
- Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. y Collins, W. D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. *Journal of Geophysical Research*, vol. 113(D13), página D13103, 2008. doi 10.1029/2008JD009944.
- Ide, K., Courtier, P., Ghil, M. y Lorenc, A. C. Unified Notation for Data Assimilation : Operational, Sequential and Variational (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice). Journal of the Meteorological Society of Japan. Ser. II, vol. 75(1B), páginas 181–189, 1997. doi 10.2151/jmsj1965.75.1B 181.
- Janjić, Z. I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. 1994.
- Jankov, I., Gallus, W. A., Segal, M. y Koch, S. E. Influence of Initial Conditions on the WRF-ARW Model QPF Response to Physical Parameterization Changes. *Weather and Forecasting*, vol. 22(3), páginas 501–519, 2007. doi 10.1175/WAF998.1.
- Jirak, I. L., Cotton, W. R. y McAnelly, R. L. Satellite and Radar Survey of Mesoscale Convective System Development. *Monthly Weather Review*, vol. 131(10), páginas 2428–2449, 2003. doi 10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.
- Kain, J. S. The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, vol. 43(1), páginas 170–181, 2004. doi 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

- Kain, J. S., Xue, M., Coniglio, M. C., Weiss, S. J., Kong, F., Jensen, T. L., Brown, B. G., Gao, J., Brewster, K., Thomas, K. W., Wang, Y., Schwartz, C. S. y Levit, J. J. Assessing Advances in the Assimilation of Radar Data and Other Mesoscale Observations within a Collaborative Forecasting-Research Environment. *Weather and Forecasting*, vol. 25(5), páginas 1510–1521, 2010. doi 10.1175/2010WAF2222405.1.
- Lilly, D. K. Numerical prediction of thunderstorms has its time come? *Quarterly Journal of the Royal Meteorological Society*, vol. 116(494), páginas 779–798, 1990. doi 10.1256/smsqj.49401.
- Llasat, M. C. y Puigcerver, M. Total rainfall and convective rainfall in Catalonia, Spain. International Journal of Climatology, vol. 17(15), páginas 1683–1695, 1997. doi 10.1002/(SICI)1097-0088(199712)17:15<1683::AID-JOC220>3.0.CO;2-Q.
- Maiello, I., Ferretti, R., Gentile, S., Montopoli, M., Picciotti, E., Marzano, F. S. y Faccani, C. Impact of radar data assimilation for the simulation of a heavy rainfall case in central Italy using WRF-3DVAR. *Atmospheric Measurement Techniques*, vol. 7(9), páginas 2919–2935, 2014. doi 10.5194/amt-7-2919-2014.
- Mercader, J. Results of the meteorological model WRF-ARW over Catalonia, using different parameterizations of convection and cloud microphysics. *Tethys, Journal of Weather and Climate of the Western Mediterranean*, 2010. doi 10.3369/tethys.2010.7.07.
- Mercader, J., Moré, J., Dalmasso, E. y Sairouni, A. Very Short-Range NWP Forecasts Initialised with STMAS and WRFDA Analyses: An Evaluation During the Convective Season. *European Nowcating Conference*, 2017.
- Meteocat. Atles climàtics de Catalunya | Meteocat. 2018.
- Miller, L., Preprints, J. S., Meteorology, s. C. o. R. y 2003, U. Initialization and forecasting of thunderstorms: Specification of radar measurement errors. *ams.confex.com*, páginas Pp. 146–149 in Preprints of the 31st Conference on, 2003.
- Mohr, C. G., Jay Miller, L., Vaughan, R. L. y Frank, H. W. The Merger of Mesoscale Datasets into a Common Cartesian Format for Efficient and Systematic Analyses. *Journal of Atmospheric and Oceanic Technology*, vol. 3(1), páginas 143–161, 1986. doi 10.1175/1520-0426(1986)003<0143:TMOMDI>2.0.CO;2.
- Monin, A. y Obukhov, A. Basic laws of turbulent mixing in the surface layer of the atmosphere. *Contrib. Geophys. Inst. Acad. Sci. USSR*, vol. 151 number, página e187, 1954.

- Montmerle, T., Faccani, C., Montmerle, T. y Faccani, C. Mesoscale Assimilation of Radial Velocities from Doppler Radars in a Preoperational Framework. *Monthly Weather Review*, vol. 137(6), páginas 1939–1953, 2009. doi 10.1175/2008MWR2725.1.
- Montornès. A discussion about the role of shortwave schemes on real WRF-ARW simulations. Two case studies: cloudless and cloudy sky. *Tethys, Journal of Weather and Climate of the Western Mediterranean*, 2015. doi 10.3369/tethys.2015.12.02.
- Mukul Tewari, N., Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J. y Cuenca, R. H. Implementation and verification of the unified NOAH land surface model in the WRF model (Formerly Paper Number 17.5). En 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, páginas 11–15. NCAR, 2004.
- Murphy, A. H. What Is a Good Forecast? An Essay on the Nature of Goodness in Weather Forecasting. Weather and Forecasting, vol. 8(2), páginas 281–293, 1993. doi 10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.
- Nakanishi, M. y Niino, H. An Improved Mellor-Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. *Boundary-Layer Meteorology*, vol. 119(2), páginas 397–407, 2006. doi 10.1007/s10546-005-9030-8.
- NCAR. Interface Control Document for Meteorological Data Volume (MDV) XML format. *National Center for Atmospheric Research*, 2008.
- NCAR. Data Assimilation (WRFDA). En WRF ARW V3: User's Guide, capítulo
 6. NCAR, Boulder, Colorado, USA, 2017.
- Park, S. K. y Zupanski, D. Four-dimensional variational data assimilation for mesoscale and storm-scale applications. *Meteorology and Atmospheric Physics*, vol. 82(1-4), páginas 173–208, 2003. doi 10.1007/s00703-001-0586-7.
- Parrish, D. F. y Derber, J. C. The National Meteorological Center's Spectral Statistical-Interpolation Analysis System. 1992.
- Pontius Jr, R. G. y Si, K. The total operating characteristic to measure diagnostic ability for multiple thresholds. *International Journal of Geographical Information Science*, vol. 28(3), páginas 570–583, 2014. doi 10.1080/13658816.2013.862623.
- Purser, R. J., Wu, W.-S., Parrish, D. F. y Roberts, N. M. Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part I: Spatially Homogeneous and Isotropic Gaussian Covariances. *Monthly*

Weather Review, vol. 131(8), páginas 1524–1535, 2003a. doi 10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

- Purser, R. J., Wu, W.-S., Parrish, D. F. y Roberts, N. M. Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances. *Monthly Weather Review*, vol. 131(8), páginas 1536–1548, 2003b. doi 10.1175//2543.1.
- Rigo, T. y Llasat, M. C. A methodology for the classification of convective structures using meteorological radar: Application to heavy rainfall events on the Mediterranean coast of the Iberian Peninsula. *Natural Hazards and Earth System Science*, vol. 4(1), páginas 59–68, 2004. doi 10.5194/nhess-4-59-2004.
- Rigo, T., Serra, A. y Berenguerr, M. N. En Integració de dades de radar i pluviòmetre per a la predicció meteorològica dávingudes, páginas 1–6. Barcelona, 2013.
- Rizvi, S., Guo, Y.-R., Shao, H. y Huang, X.-Y. Impact of outer loop for WRF data assimilation system (WRFDA). En *9th WRF Users'Workshop*.. Boulder, Colorado, USA, 2008.
- Sánchez, R., Sempere, D., Bech, J. y Velasco, E. Development of a hydrometeorological flood warning system (EHIMI) based on radar data. Delft, Netherlands, 2002.
- Schwitalla, T. y Wulfmeyer, V. Radar data assimilation experiments using the IPM WRF Rapid Update Cycle. *Meteorologische Zeitschrift*, vol. 23(1), páginas 79–102, 2014. doi 10.1127/0941-2948/2014/0513.
- Shewchuk, J. An introduction to the conjugate method without the agonizing pain. Informe técnico, Technical report, School of Computer Science, Carnegie Mellon University., 1994.
- Skamarock, W. C. Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra. *Monthly Weather Review*, vol. 132(12), páginas 3019–3032, 2004. doi 10.1175/MWR2830.1.
- Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W. y Powers, J. G. A Description of the Advanced Research WRF Version 3. NCAR TECHNICAL NOTE, vol. NCAR/TN-47, 2008. doi 10.5065/D68S4MVH.
- Smith, P. L., Myers, C. G. y Orville, H. D. Radar Reflectivity Factor Calculations in Numerical Cloud Models Using Bulk Parameterization of Precipitation. *Journal of Applied Meteorology*, vol. 14(6), páginas 1156–1165, 1975. doi 10.1175/1520-0450(1975)014<1156:RRFCIN>2.0.CO;2.

- Sokol, Z. y Pešice, P. Comparing nowcastings of three severe convective events by statistical and NWP models. *Atmospheric Research*, vol. 93(1-3), páginas 397–407, 2009. doi 10.1016/j.atmosres.2008.09.016.
- Song-You, H. y Jeong-Ockjade, L. The WRF Single-Moment 6-Class Microphysics Sheme (WSM6). *Journal of the korean meteorological society*, vol. Vol. 42 No, páginas 129–151, 2006.
- Stanski, H. R., Wilson, L. J. y Burrows, W. R. Survey of Common Verfication Methods in Meteorology - 2. Atmospheric Research, páginas 9–42, 1989. doi 10.1017/CBO9781107415324.004.
- Sugimoto, S., Crook, N. A., Sun, J., Xiao, Q. y Barker, D. M. An Examination of WRF 3DVAR Radar Data Assimilation on Its Capability in Retrieving Unobserved Variables and Forecasting Precipitation through Observing System Simulation Experiments. *Monthly Weather Review*, vol. 137(11), páginas 4011–4029, 2009. doi 10.1175/2009MWR2839.1.
- Sun, J. Convective-scale assimilation of radar data: Progress and challenges. Quarterly Journal of the Royal Meteorological Society, vol. 131(613), páginas 3439–3463, 2005a. doi 10.1256/qj.05.149.
- Sun, J. Initialization and Numerical Forecasting of a Supercell Storm Observed during STEPS. *Monthly Weather Review*, vol. 133(4), páginas 793–813, 2005b. doi 10.1175/MWR2887.1.
- Sun, J. y Crook, N. A. Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. *Journal of the Atmospheric Sciences*, vol. 54(12), páginas 1642–1661, 1997. doi 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.
- Sun, J. y Wang, H. Radar Data Assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a Squall Line over the U.S. Great Plains. *Monthly Weather Review*, vol. 141(7), páginas 2245–2264, 2013a. doi 10.1175/MWR-D-12-00169.1.
- Sun, J. y Wang, H. WRF-ARW Variational Storm-Scale Data Assimilation: Current Capabilities and Future Developments. Advances in Meteorology, vol. 2013, páginas 1–13, 2013b. doi 10.1155/2013/815910.
- Sun, J., Wang, H., Tong, W., Zhang, Y., Lin, C.-Y. y Xu, D. Comparison of the Impacts of Momentum Control Variables on High-Resolution Variational Data Assimilation and Precipitation Forecasting. *Monthly Weather Review*, vol. 144(1), páginas 149–169, 2016. doi 10.1175/MWR-D-14-00205.1.

- Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., Onvlee-Hooimeyer, J., Joe, P., Barker, D. M., Li, P.-W., Golding, B., Xu, M. y Pinto, J. Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges. *Bulletin of the American Meteorological Society*, vol. 95(3), páginas 409–426, 2014. doi 10.1175/BAMS-D-11-00263.1.
- Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, vol. 106(D7), páginas 7183–7192, 2001. doi 10.1029/2000JD900719.
- Thompson, G., Field, P. R., Rasmussen, R. M. y Hall, W. D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. *Monthly Weather Review*, vol. 136(12), páginas 5095–5115, 2008. doi 10.1175/2008MWR2387.1.
- Trapero, L., Bech, J. y Lorente, J. Numerical modelling of heavy precipitation events over Eastern Pyrenees: Analysis of orographic effects. *Atmospheric Research*, vol. 123, páginas 368–383, 2013. doi 10.1016/j.atmosres.2012.09.014.
- Trapero, L., Bech, J., Rigo, T., Pineda, N. y Forcadell, D. Uncertainty of precipitation estimates in convective events by the Meteorological Service of Catalonia radar network. *Atmospheric Research*, vol. 93(1-3), páginas 408–418, 2009. doi 10.1016/j.atmosres.2009.01.021.
- Udina, M., Soler, M. R. y Sol, O. A Modeling Study of a Trapped Lee-Wave Event over the Pyrénées. *Monthly Weather Review*, vol. 145(1), páginas 75– 96, 2017. doi 10.1175/MWR-D-16-0031.1.
- Wakimoto, R. M., Murphey, H. V., Fovell, R. G. y Lee, W.-C. Mantle Echoes Associated with Deep Convection: Observations and Numerical Simulations. *Monthly Weather Review*, vol. 132(7), páginas 1701–1720, 2004. doi 10.1175/1520-0493(2004)132<1701:MEAWDC>2.0.CO;2.
- Wang, H., Huang, X.-Y., Sun, J., Xu, D., Zhang, M., Fan, S. y Zhong, J. Inhomogeneous Background Error Modeling for WRF-Var Using the NMC Method. *Journal of Applied Meteorology and Climatology*, vol. 53(10), páginas 2287– 2309, 2014. doi 10.1175/JAMC-D-13-0281.1.
- Wang, H., Sun, J., Fan, S. y Huang, X. Y. Indirect assimilation of radar reflectivity with WRF 3D-var and its impact on prediction of four summertime convective events. *Journal of Applied Meteorology and Climatology*, vol. 52(4), páginas 889–902, 2013. doi 10.1175/JAMC-D-12-0120.1.
- Wapler, K., Bañón Peregrín, L. M., Buzzi, M., Heizenreder, D., Kann, A., Meirold-Mautner, I., Simon, A. y Wang, Y. Conference Report 2nd European Nowcasting Conference. *Meteorologische Zeitschrift*, vol. 27(1), páginas 81–84, 2018. doi 10.1127/metz/2017/0870.

- WMO. World Meteorological Organization. Manual de Códigos. Codigos Internacionales. Volumne 1. Parte A. Códigos alfanuméricos. 2016.
- Xiao, Q., Kuo, Y.-H., Sun, J., Lee, W.-C., Barker, D. M. y Lim, E. An Approach of Radar Reflectivity Data Assimilation and Its Assessment with the Inland QPF of Typhoon Rusa (2002) at Landfall. *Journal of Applied Meteorology* and Climatology, vol. 46(1), páginas 14–22, 2007. doi 10.1175/JAM2439.1.
- Xiao, Q., Kuo, Y.-H., Sun, J., Lee, W.-C., Lim, E., Guo, Y.-R. y Barker, D. M. Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case. *Journal of Applied Meteorology*, vol. 44(6), páginas 768–788, 2005. doi 10.1175/JAM2248.1.
- Yang, Y., Uddstrom, M. y Duncan, M. Effects of short spin-up periods on soil moisture simulation and the causes over New Zealand. *Journal of Geophysical Research Atmospheres*, vol. 116(24), 2011. doi 10.1029/2011JD016121.

Lista de acrónimos

- **3DVAR** Three dimensional variational. 7, 9, 10, 14, 16–22, 26, 28, 29, 31, 32, 44–47, 58, 59, 61, 93, 104–107, 111, 118, 119
- 4DVAR Four dimensional variational. 7, 9
- AND San Andrés Islas. 105
- ARW Advanced Research WRF. 11, 12, 22, 23, 25, 45, 102, 113, 115, 117
- ATS Servicios de Tránsito Aéreo. 1-4
- AUC Area Bajo la Curva. 41, 43, 80, 83, 86, 87, 92, 130
- BIAS Frequency Bias. 9, 40, 70
- CDV Creu del Vent. 23, 24, 27, 31
- CMEOP Centro Meteorológico Operacional de la FAC. 1, 3
- COR Corozal. 105
- CSI Critical Success Index. 9, 40, 70
- CV Variables de Control. 17-19, 26, 45-47, 80, 83, 86, 90, 93, 94
- DANA Depresión Aislada en Niveles altos. 51, 54
- ECMWF European Center for Medium-Range Weather Forecasts. 6
- EHIMI Hydrometeorological Integrated Forecasting Tool. 10, 33, 48, 49, 51
- EOF Empirical Orthogonal Function. 19
- FAC Fuerza Aérea Colombiana. 1–4, 10, 95–99, 104
- FAR False Alarm Ratio. 9, 40, 70
- GFS Global Forecast System. 6, 12, 18, 53, 92, 93, 102

IDEAM Instituto de Hidrología, Meteorología y Estudios Ambientales. 4

IRIS Interactive Radar Information System. 3, 28, 29

LMI La Miranda. 23, 24, 27, 31

MAE Mean Absolute Error. 9, 33, 34, 68

MDV Meteorological Data Volume. 29

ME Mean Error. 9, 33, 34, 68

- METAR Informe Meteorológico de Rutina de Aeródromo. 8, 44, 93, 94, 97, 100, 104
- MSE Mean Squared Error. 9, 33, 34, 68
- NCAR National Center for Atmospheric Research. 11, 18, 29, 31, 43, 44, 63–67, 77, 91, 92, 98, 99
- NMC National Meteorological Center. 18, 26
- NWP Predicción Numérica del Tiempo. 5-7, 11

OBSPROC Observation Preprocessor. 14

OIA's Oficinas de Información Aeronáutica. 1

PBE Puig Bernat. 23, 24, 27, 31

PC Proportion Correct. 9, 40, 70

PDA Puig d 'Arques. 23, 24, 27, 31

- POD Probability of Detection. 9, 40, 41, 70, 71, 80, 82, 83
- POFD Probability of False Detection. 9, 40, 41, 70, 71, 80, 82, 83
- QPE Estimación Cuantitativa de la Precipitación. 10, 33, 48-55
- RAP Rápida Actualización del Pronóstico. 103
- RMSE Root Mean Squared Error. 9, 33-35, 68, 69, 78-80, 90, 123
- **ROC** Receiver Operating Characteristic. 10, 33, 40–43, 70–73, 80, 81, 83, 84, 86, 87, 90–92, 94, 124–130
- SCM's Sistemas Convectivos de Mesoescala. 4-6, 48, 97

- SIMFAC Sistema de Información Meteorológico de la FAC. 2, 103
- **SMC** Servicio Meteorológico de Cataluña. 10, 23, 28–31, 33, 43, 44, 46–48, 50, 51, 63–67, 77, 80, 86, 89, 91–94, 115, 117
- SMN Servicios Meteorológicos Nacionales. 4-7, 10, 89
- **SYNOP** Informe de observación de superficie desde una estación terrestre fija. 8, 93, 94, 97, 100, 104
- TAB El Tablazo. 105
- TACMET Tactical Meteorological Observation System. 2
- **TEMP** Informe de presión, temperatura, humedad y viento en altura desde una estación terrestre fija. 8, 93
- UAEAC Unidad Administrativa Especial de la Aeronáutica Civil. 2, 4, 105
- **UTC** Coordinated Universal Time. 7, 8, 12, 18, 31, 44, 48–55, 63–67, 72–74, 90, 104–106, 109
- VDRAS Variational Doppler Radar Analysis System. 29, 105
- WMO World Meteorological Organization. 2
- WPS WRF Preprocessing System. 11-13, 98, 102
- WRF Weather Research and Forecasting. 2, 3, 6, 7, 9–14, 22–24, 30, 33, 34, 36, 43, 44, 46, 48, 55, 58, 64, 65, 72, 83, 86, 87, 89, 91–94, 96–98, 100–104, 106, 113, 114, 116, 118, 120, 130
- WRFDA WRF Data Assimilation. 7, 8, 10, 13, 14, 16–18, 20, 22, 23, 25, 26, 89, 93, 98, 102
- XEMA Red de Estaciones Meteorológicas Automáticas. 50
- **ZCIT** Zona de Convergencia Intertropical. 96

– prueba1 – prueba1 prueba1

> prueba2 prueba2 prueba2

-prueba3prueba3 prueba3

> prueba4 prueba4 prueba4