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Abstract

Recent advances in fabrication and modification of the nanotopography on surfaces have led
to the development of a new generation of nanostructured materials with new properties,
such as mechano-bactericidal activity and enhancement of growth of mammalian cells. This
features are quite appealing for applications in biomedicine, especially as implants, but the
underlying mechanisms driving the antimicrobial effects are not completely understood.
Therefore, adequate theoretical modelling is required to provide deeper comprehension of
the interactions between biological media and surfaces with nanoscale topographies.

This work presents two types of models, targeting two different aspects of the same
problem. The first approach, Random Sequential Adsorption (RSA), describes the first step
of any foreign entity entering the human body: protein adsorption. For this purpose, we
develop an extension to RSA for nanostructured surfaces and show how complex geometries
affect the final configurations of adsorption.

The second approach studies the actual interaction of cells with nanopatterned surfaces.
We use Coarse-grained Langevin Dynamics to model deformations of Red Blood Cells,
which represent an optimal compromise between computational simplicity and realistic
modelling, and show how surfaces of different dimensions, including nanoparticles, affect
the final shape of the cells. We demonstrate that the rupture is not caused by the piercing
of the peaks on the surfaces, but rather by the important deformations leading to over-
extension. This effect can be diminished by varying the design of the surfaces, in particular
their dimensions.
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Introduction

The importance of Biomaterials is growing at an increasing rate in both market share
and fields of application. B. D. Ratner and S. J. Bryant1 in 2004 reported a $100 billion
endeavour concerning biomaterials, risen to $203.5 billion in 2013 and predicted to hit $400
billion in 2020.2 Biomaterials are utilised in medical devices, such as heart valve prostheses,
total hip replacement prostheses, dental implants, intraocular lenses, left ventricular assist
devices,3,4 but applications beyond the field of medicine are becoming more relevant, as
exemplified by artificial compound eyes5 and ship hull coatings.6

Despite the wide range of applications, the modern concept of biomaterial is relatively
recent. Historically, medical implant materials have been exploited since millennia, with
some archaeological evidence of sutures used over 32,000 years ago.1,7, 8 However, the
associated issues related to infections and other biological reactions to these implants lead
often to failure. The scientific approach to investigate biocompatibility of these materials
has been initiated in the late 1940s by H. Ridley,1 with the first implantation of poly(methyl
methacrylate) lenses for replacing cataractous natural lenses.

Modern definitions of “Biomaterial” need to include a broad range of materials; D.
Williams9 defines a biomaterial as a nonviable material used in a medical device, intended
to interact with biological systems, but, as already mentioned, the term “medical” can be
dropped to include non-medical applications.

The materials used as biomaterials can be divided into two classes, synthetic and nat-
ural.3,10 The former includes polymers (polyurethanes, silicones, flourinated biomaterials,
acrylics), metals (Titanium, Stainless Steel), ceramics and glasses (synthetic hydroxyap-
atites, alumina), while the latter includes materials such as hyaluronic acid and collagen.
Whatever the type and origin of the material, the degree of biocompatibility has to be
assessed, which consists of testing toxicology, extrinsic organism colonization, mechanical
effects (e.g. roughness) and cell-biomaterials interactions.3

The main focus of this work is a branch of the topic of biocompatibility: antibacte-
rial surfaces. The colonization of biomaterials by bacteria is a major concern both in the
preparation stage (sterilization) and following insertion (in case of implants).11,12 In par-
ticular, these surfaces are commonly classified into two categories: antibiofouling surfaces,
which prevent attachment of bacteria due to unfavourable morphology or surface coating,
and bactericidal surfaces, which allow adhesion of bacteria, subsequently rupturing them.11

An example of commonly employed biomaterial with antibacterial properties are Titanium
and its alloys.13 They represent a general preference for dental and orthopaedic implants,
pacemakers, artificial hip joints and further applications due to the low electrical conduc-

1
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2 Introduction

tivity, high resistance to corrosion and high osteoconductivity. The main disadvantage of
using Ti alloys is represented by the high Young modulus compared to the elastic modu-
lus of human bone structure.13 Moreover, after implantation, osteoconductivity has been
shown to degrade over time,14 reducing the compatibility with the bone tissue. Neverthe-
less, Ti and alloys such as Ti6Al4V are leading biomaterials in the aforementioned medical
applications.

Despite the broad usage of Ti, the understanding of the underlying mechanisms which
favour such materials over other candidates is far from complete. For instance, surface
modifications at the micro-scale can enhance the biocompatibility of the implants.15 Thus,
the underlying topology of such surfaces appears to contribute significantly to the bacte-
ricidal or antifouling properties, and further research on micro- (and nano-) morphologies
could give important insights.

Following this direction, new materials are being investigated: in particular, we are
interested in recent discoveries of bactericidal effects of Black Silicon (bSi).16 BSi is a
variant of silicon which, due to its pillar like structures at the nanoscale, greatly suppresses
light reflection, while increasing light scattering and adsorption efficiency.17 The resulting
appearance is thus black, and its properties, such as low reflectance, large active surface
area and luminescence efficiency make bSi an optimal candidate for photovoltaic and op-
toelectronic applications, just to mention a few. Finally, the nanostructured surface also
enhances bactericidal activity, compared to flat geometries, triggering a new branch of
research for applications as biomaterial.

These discoveries of bactericidal activity of bSi were inspired by natural antibacterial
surfaces such as insect wings, whose surfaces also present relevant topographies at the
nano-scale.18 One such example, Cicada wings, has been inspected both experimentally
and theoretically. E. P. Ivanova et al. demonstrated mechanical rupture of Pseudomonas
aeruginosa cells on Psaltoda claripennis wings, emphasising the special role played by ge-
ometrical features.19 In fact, to explore the importance of surface chemistry, the originally
highly hydrophobic wings were coated with a 10 nm thick gold layer, effectively reducing
the original water contact angle from 158.8◦ to 105.5◦, without significant change in the
original topography. The bactericidal effect was preserved, proving that the physical struc-
ture, rather than the underlying chemistry, was primarily responsible for the mechanical
rupture.

Having asserted the relevance of physical properties in bactericidal activity in exper-
iments, theoretical models aimed at understanding such activity have been developed to
provide significant information for the design of appropriate antibacterial surfaces. S.
Pogodin et al.20 analyse the free energy of stretching upon contact of bacteria with nano-
pillars, proposing a possible mechanism of cell membrane rupture. Analogously, Li21 used
a thermodynamic model to describe the bactericidal mechanism of nanostructures on disk
shaped cell membranes. Despite significant insight provided by such approaches, a more
comprehensive study is required if these surfaces have to be employed for medical applica-
tions, given the complexity of the environment in the human body.

The present work aims to address several aspects of the interactions between bioma-
terials and the biological media in which they are inserted. In particular, proteins first
populate any foreign object entering the human body.22 Red Blood Cells (RBCs) will
definitely enter in contact at some point with the external material and are expected to

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTER SIMULATIONS OF RED BLOOD CELLS AND PROTEINS INTERACTING WITH NANOSTRUCTURED SURFACES 
Berardo Mario Manzi 
 



3

survive the event, while bacteria should be ruptured by the bactericidal surface. Each of
these phenomena have been simulated using different methods, and a brief introduction is
given in the following paragraphs.

Protein adsorption on nanostructured surfaces

Blood plasma is constituted by several hundreds of protein species,23 with Human Serum
Albumin (HSA), immunoglobulins type G (IgG), transferrin (Tr), Fibrinogen (Fib) and
immuonglobulins type A (IgA) representing the most abundant ones. Upon insertion of a
foreign body in the blood stream, surface colonisation will occur, with the smaller proteins,
such as HSA, preceding larger ones, e.g. Fib, which will than replace the former due to
stronger interface interactions (Vroman effect).24 The attachment is considered generally
irreversible or almost irreversible, although ongoing debates exist in different scientific com-
munities.23 Nevertheless, concerning smaller proteins, in particular HSA, the agreement
on irreversible adsorption is quite general, and allowed us to perform computer simulations
with this assumption.

Theoretical approaches to the problem of protein adsorption, given its complexity, are
generally quite limited. The most misleading method used for analysis of isotherms is
Langmuir adsorption,25 originally developed for gas adsorption on porous media. In fact,
the working hypotheses of this approach are:

• All adsorption sites on the surface are equivalent

• Only one molecule can adsorb onto a given site at any time (no overlap of molecules
allowed)

• No interaction is present between adsorbing molecules

• The process of adsorption is reversible

These conditions are limiting the predicting power of the model, with special emphasis on
the assumption of reversibility, which is in clear contradiction with the aforementioned ir-
reversibility of protein adsorption. However, most likely due to its simplicity, the Langmuir
approach is still quite widespread, inducing misinterpretation of experimental results.26

A sounder method is the Random Sequential Adsorption (RSA) approach,27 also named
the ”Car-parking problem”. The method consists of sequential attempts to adsorb a generic
particle to an N-dimensional manifold (a line in 1-D, a surface in 2-D or a volume in 3-
D), with problem-specific constraints for latter particle positioning. For instance, J. Feder
performed RSA simulations of disk on a flat surface, applying a simple steric repulsion
constraint, i.e. placement of a particle may occur solely if not overlapping with previously
adhered particles.28

Analytical solutions for RSA are available only in the 1-D case; in higher dimensions
numerical calculations or computer simulations are necessary. A very common method
relies on Monte Carlo (MC) steps, in which a particle is generated at a random position on
the surface and adheres if the constraint is satisfied, otherwise the attachment is rejected.
Several authors have approached the topic in this fashion: from steric repulsion constraint
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4 Introduction

for disks on flat surfaces,28 to linear chains adsorption as Fib models,29 to hard sphere
adsorption to a volume.30

Theoretical models of protein adsorption on nanostructured surfaces are important to
achieve a comprehensive understanding of the preservation of the bactericidal effect in blood
stream. Excessive amount of protein could saturate the surface, smoothing the topogra-
phy causing the rupturing effects. To our knowledge, protein adsorption to nanostructured
surface, which we present in this work, appears to have been overlooked in previous stud-
ies. We show results obtained using computer simulations, in analogy to former studies,
adapting the MC RSA approach to the new geometries. In part I the theoretical back-
ground for RSA is elucidated, with particular care for the modifications introduced. Then,
in part II, we demonstrate our findings, and the conclusions which can be inferred from
the simulations.

RBCs interacting with nanopatterned surfaces and solid
nanoparticles

The second focus of our work concerns Red Blood Cells (RBCs). In fact, the promis-
ing features of bactericidal properties of bSi (and Cicada wings), and the low toxicity
of these surfaces for mammalian cells, is juxtaposed to the unwanted rupturing effect on
RBCs.31 Such rupturing effects on RBCs and bacteria suggest a possible length scale de-
pendence of the bactericidal activity, since RBCs are among the smallest mammalian cells
(6 − 8 µm),32 compared to typical ∼ 10 µm scales of more complex cells). Obviously, if
protein adsorption, mentioned in the previous section, would inhibit the bactericidal ef-
fect of nanostructures, the RBCs rupture would also be negated. However, this represents
an undesired case, and, moreover, we demonstrate that it does not occur. Therefore, it
is more important to understand what length scales of the underlying topology induce
mechanical rupture on RBCs, and to suggest adequate design to the surface producers.
Fortunately, the task is facilitated by the relatively simple structure of RBCs, for which
solid computational models exist.33,34

We investigate interactions of RBCs with flat surfaces, Cicada wings and bSi using the
theoretical framework developed by D. A. Fedosov et al.33 Their approach models RBCs
as triangulated surfaces, whose vertices move according to Dissipative Particle Dynamics
(DPD),35,36 with a potential defined to correctly take into account the viscoelastic be-
haviour of the outer lipid membrane and the underlying spectrin network.37 Details of the
theoretical framework will be outlined in chapter 2, where we also discuss the rationale
behind our choice to use Langevin dynamics38 instead of DPD.

Following the results about protein adsorption in chapter 3, we outline the outcome of
the simulations of RBCs on different nanostructured surfaces. We will extract information
about membrane deformations by solving a topologically equivalent problem, nanoparticle
adsorption on RBCs, while reducing the computational cost involved in the simulations.
Analysing the strain-stress relations we observe that strong deformations leading to inclu-
sion of foreign bodies, either nanoparticles or nanopillars, is not possible, due to the elastic
properties of spectrin network. However, several piercing objects lead to an overall tensile
deformation and possible rupture.
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Theoretical methods
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Chapter 1

Models for Protein Adsorption
on nanostructured surfaces

The interaction of Proteins with solid interfaces is a topic of great relevance in the study of
biomaterials, nanotechnologies and beyond.39 Despite the importance, theoretical models
are often strong approximations and aimed to describe a specific feature, thus with little
or no generalisation power. Kinetic models (Langmuir adsorption isotherms, RSA) are
capable to output quantities such as the saturation limit distribution and pair correlation
functions,27,40 while unable to predict information about the timescales of the processes
involved, unless coupling with other methods, such as diffusion equation computation,41 is
exploited. Conversely, Molecular Dynamics approaches are suitable for extraction of realis-
tic time dependent quantities, although extremely coarse-grained force fields are required to
keep the computational resources affordable.42 In fact, full atomistic resolution of a single
protein contains thousands of heavy atoms (excluding Hydrogen), while coarse-graining at
the amino acid scale still requires several hundreds of beads per protein. For instance, the
Humans Serum Albumin (HSA) crystallographic structure shown in figure 1.1 and obtained
via X-Ray diffraction,43 contains 9205 atoms, in a sequence of 585 amino acids. Therefore,
the selected method is necessarily a compromise, given the type of information requested,
as is the chosen level of coarse-graining. In the following, all methods will treat the proteins
as spherical particles, which is a reasonable and frequently utilised assumption for cases
such as HSA;23,44 for more complex proteins, e.g. Fibronectin (Fib) different assumptions
would be necessary, but were beyond the scope of our work.

A method which receives great criticism, despite its widespread use, is the Langmuir
adsorption isotherm approach.26 Its use, originally developed for reversible gas adsorption
on porous media,25 as model for protein adsorption results in misleading conclusions. More
suitable is the Random Sequential adsorption (RSA) approach,27 which explicitly assumes
irreversibility of protein adhesion.

The following sections will outline both methods, explaining how to extract the relevant
quantities. Langmuir adsorption is considered for mere comparison with other methods in
part II, and to once again highlight the erroneous interpretation of the results obtained via

7
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8 Models for Protein Adsorption on nanostructured surfaces

Figure 1.1: Human serum albumin at full-atom resolution. Colour scheme is red for O, blue
for N, cyan for C and yellow for S. Snapshot obtained using Visual Molecular Dynamics
(VMD)45 software, with data available at the RCBS Protein Data Bank (PDB) website
(https://www.rcsb.org).43

this approach.

1.1 Kinetics of protein adsorption

The adsorption of N spherical particles of cross-section πσ2/4 onto a surface of area A,
can be described via the time dependence of the occupancy θ(t) = N(t)πσ2/4A, using the
equation:46

dθ

dt
= kanB(θ)− kdθ. (1.1)

Here, ka and kd are the constants of adsorption and desorption, respectively, n is the
volume density of particles in the bulk, and B(θ) is the surface exclusion effect, or Blocking
function at a given occupancy θ. The density n is supposed to be constant throughout the
adsorption process, approximation which holds as long as the number of proteins in the
bulk of the solution is much greater than on the surface.

The blocking function B(θ) represents the probability for a particle to adsorb, for a
given amount of particles already present on the surface. Naturally, B(θ) will equal unity

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTER SIMULATIONS OF RED BLOOD CELLS AND PROTEINS INTERACTING WITH NANOSTRUCTURED SURFACES 
Berardo Mario Manzi 
 

https://www.rcsb.org


1.1 Kinetics of protein adsorption 9

when the surface is empty, and will decrease with increasing occupancy θ. For Langmuir
adsorption, B(θ) = 1−θ or B(θ) = θ∞−θ for adsorption on a discrete number of sites or a
continuous surface, respectively. Following an initial transient time for protein colonisation
on the surface, a dynamic equilibrium between adsorption and desorption will be reached.
Setting dθ/dt = 0 in equation 1.1 yields:

θ =
Keqn

1 +Keqn
θ∞, (1.2)

where Keq = ka/kd and θ∞ = 1, if the surface is constituted of a finite amount of sites.
The typical behaviour of a Langmuir isotherm is reported in figure 1.2a, with Keq =
1.73 · 107 L/mol26 and θ∞ = π/2

√
3 ' 0.9069, corresponding to closed hexagonal packing.

The assumption of achieving a uniform packing is confirmed by the theory of reversible
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Figure 1.2: (a) Shape of the Langmuir adsorption isotherm of equation 1.2, with θ∞ =
0.9069, asymptotic value estimated for adsorption on continuous surfaces, assuming hexag-
onal packing, as in (b). The value for θ∞ can be calculated as the ratio of the area of the
three circle sections included in the red triangle and the area of said triangle.

adsorption and by experimental observations,47 and the value for θ∞ can be computed as
the ratio of the area of three slices of spheres inside the red triangle in figure 1.2b and the
area of said triangle.

The initial steep increase, followed by an asymptotic trend towards saturation is a
commonly observed behaviour of the protein adsorption mechanism,47,48 and is quite often
the only justification for the utilization of Langmuir approach.26 In chapter 3 we will discuss
the limitation of such reasoning by comparing it with RSA.

Noteworthy is the dependence of protein adsorption on sphere packing, a well known
and complex problem.49 A general approach to the Kepler conjecture is far beyond the
scope of this work, but nevertheless a few considerations are mandatory to adequately
interpret the results of our computations in chapter 3. Therefore, in the following section,
we discuss the effect of curved surfaces on dense sphere packing, which will be a recurrent
topic while analysing our observations.
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10 Models for Protein Adsorption on nanostructured surfaces

1.2 Sphere packing problem on curved surfaces

The argument in this section is treated for a one dimensional case for the sake of simplicity.
Considerations for the case of adsorption on two dimensional manifolds are straightforward
generalisations of the former, and analogous conclusions can be deduced.

Figure 1.3: Comparison of circle packing on a line segment versus a semicircle. Ten circles
of diameter σ = 2r = L/10 can be placed on a line of length L, while more than 11 fit onto
the semicircle of the same length (i.e. diameter D = 2L/π).

Figure 1.3 illustrates a case where 10 spheres (or their circular section) are placed
at closed packing on a line segment of length L = 10σ, with σ = 2r the diameter of a
sphere. From the second image it is evident that the convex hemisphere, whose (semi-)
circumference is also L, allows more spheres to fit, due to the lower occupancy of a single
sphere. In fact, defining Nfmax

= L/σ and Nsmax
= L/s as the maximum amount of

spheres fitting on the line and on the hemisphere, respectively, and being s the arc length
effectively occupied by a single sphere, we have:

s = αR = 2 arcsin

(
r

R+ r

)
R. (1.3)

The relation for α is obtained from the construction in figure 1.4. The condition for lower
occupancy on the curved surface is s < 2r, or, equivalently:

r

r +R
< sin

( r
R

)
. (1.4)

Under the condition that r < R, sin(r/R) < sin(1) ' 0.84, and lower occupancy is achieved
if:

r . 5.25R, (1.5)

which certainly holds given r < R. An analogous argument leads to conclude that, for
concave surfaces, the occupancy is lower than for flat ones.
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1.3 Random Sequential Adsorption 11

Figure 1.4: Geometry defining equation 1.3.

This apparently simple argument is often overlooked in protein adsorption on more
complex topologies,48 and the lack of proportionality between the increase in number of
adsorbed proteins and area increase is attributed to diffusive, dynamic or other physical
phenomena not under direct control of the observer. Evidently, occupancy does not change
on larger area, being it a quantity defined per unit area; any of such changes, if not
conformational, is therefore related to curvature.

The inclusion of curvature effects in the Langmuir theory of adsorption is achieved by
a change of θ∞, or, conversely, any measurement of θ∞ will highlight a change of topology
of the underlying surface. In the case of RSA, described in the next section, the Blocking
function B(θ) will be affected, but the curvature dependence is implicit in the model.

1.3 Random Sequential Adsorption

The Random Sequential Adsorption method is based on A. Rényi’s Car-parking problem,50

which describes the placement of cars along a given line. The situation, displayed in
figure 1.5, consists of placing “cars” (represented as rectangles in the figure) at a random
spot along the line, without overlapping of subsequent rectangles. For instance, in the
illustrative example of figure 1.5, three cars are already placed along the line, with formation
of unavailable empty space between cars 1 and 2, which, thus, constrains car 4 to park in
between cars 2 and 3. Formally, the average amount of cars M(x) which fit onto interval
I = [0, x], x > 1 and assuming all cars to be of unit length, can be computed analytically.51

Consider the first car, parked at [t, t+ 1] ⊂ [0, x+ 1]; the average number of cars at its
left is M(t) and the average number of cars at its right is M(x− t). Given that t is drawn
from a uniform distribution on I we can write:

M(x+ 1) =
1

x

∫ x

0

(M (t) +M (x− t)) dt+ 1 (1.6)

or equivalently:

M(x) = 1 +
2

x− 1

∫ x−1

0

M(t)dt (1.7)

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTER SIMULATIONS OF RED BLOOD CELLS AND PROTEINS INTERACTING WITH NANOSTRUCTURED SURFACES 
Berardo Mario Manzi 
 



12 Models for Protein Adsorption on nanostructured surfaces

Figure 1.5: Illustrative example of “Car” placement along a line. Following the parking of
cars 1 to 3, some empty space has been created, in which no other car fits (between cars
1 and 2), although car 4 will still fit between cars 2 and 3. The final occupancy of a line
segment upon RSA will generally satisfy the relation θ∞ < 1.

with M(x) = 0 if 0 ≤ x < 1. The mean density of cars for x→∞ assumes the value:27,51

m(x) = lim
x→∞

M(x)

x
=

∫ ∞
0

exp

(
−2

∫ x

0

1− e−y

y
dy

)
dx = 0.7475979202 . . . (1.8)

and called Rényi’s Parking Constant, after the author of its first derivation. The rather
cumbersome computation leading to equation 1.8 is not reported here for the sake of brevity.

It is noteworthy to highlight the assumptions used in the derivation of the relation for
the Car-parking problem: non-overlapping rectangles and cars of equal length. The former
is compulsory in case of RSA applied to solid objects, such as cars, but is not straightfor-
ward for soft matter systems such as protein adsorption. The second assumption represents
a limitation even for the case of car parking: commonly, cars of different sizes would park
along a given roadside. Nevertheless, the 1-D model introduces some important concepts,
typical of RSA, which are used in higher dimensions, and for more complex systems. Per-
haps the most relevant is the saturation limit θ∞, indicated as m(x) in equation 1.8, which
represents the coverage achieved for t→∞, i.e. when no other particles can be adsorbed.
Evidently, θ∞ < 1, and common values for simple geometries also satisfy θ < m(x). An-
other important factor is the trend of adsorption, with straightforward adhesion of the
first particle, while the line (or a higher dimensional surface) is empty, and with decreased
probability of adsorption as the occupancy grows closer to θ∞.

Having illustrated the simplest case of 1 dimensional RSA, we will move to the more
interesting case of 2-D adsorption, which is the most relevant for protein adsorption pro-
cesses treated in this work. Previous works addressed the RSA problem under different
assumptions. J. Feder28 considered solid disks and aligned squares adsorbing to a flat sur-
face, computing the values of θ∞ = 0.547 ± 0.002 and θ∞ = 0.562 ± 0.002, respectively.
Z. Adamczyk and P. Weroński52 consider RSA of spheroidal particles, as a function of as-
pect ratio, while B. Widom30 studied adsorption of particles to a volume. All these works
perform numerical simulations, as an analytical solution is not known for such complex
cases.27

The numerical method used in this work is an extension of the approaches of J. Feder28

and of P. Schaaf and J. Talbot:46 we consider proteins, approximated as spheres, and let
them adsorb using a Monte Carlo (MC) approach. Each MC step consists of drawing a set
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1.3 Random Sequential Adsorption 13

of (x, y) coordinates from a uniform distribution and attempting to place a particle i to
the point. If the placement satisfies the constraints, the MC move is accepted, otherwise a
new set of coordinates is drawn, until successful collocation. Then, the number of attempts
ni is recorded and the probability of adsorption defined as:

pi =
1

ni
. (1.9)

Obviously, pi will depend on the particular configuration of the surface due to the i−1 pro-
teins already adsorbed, and, thus on a series of random events, which are not reproducible
if repeated. In fact, we are interested in statistical significant results, and for this purpose,
each simulation is repeated a certain amount of times N . In other words, equation 1.9
becomes:

pi =
1

〈ni〉
, (1.10)

with:

〈ni〉 =
1

N

N∑
r

ni,r. (1.11)

The function defining the probability of adsorption at a given occupancy θ is the afore-
mentioned blocking function B(θ) = pi(θ),

40 and can be used to solve equation 1.1.
The blocking function obtained via the approach outlined thus far is a numerical ap-

proximation of the real theoretical function. The data obtained from the simulations can
be used to fit B(θ) as a polynomial

∑n
m amθ

m, and each order of the expansion has been
shown to carry information about the configuration of adsorbed proteins.46 Starting with
an empty surface, the probability to adsorb at θ = 0 is B(θ = 0) = 1, as any attempt
will automatically succeed. Considering hard spheres of diameter σ, each particle will
exclude an area, due to steric repulsion, equal to 2σ, since no centres of subsequent par-
ticles can be placed without overlap, as illustrated in figure 1.6 (external ring represents
excluded area). Therefore, the excluded area will behave as B(θ) ∼ 1−N(θ)/Aπσ2 = 4θ,
where N is the number of adsorbed disks on the surface, A is the total area of the surface
and θ = N/Aπσ2/4 is the occupancy. Second order contributions take into account dou-
ble counting of overlapping excluded areas, as depicted in figure 1.7. The common area
A2(ri, rj) of particles i and j will depend only on the relative distance rij = |ri − rj |, and
will be denoted as A2(rij). The number of pairs N2(rij) with centres distances between
rij and rij + drij , in case of nearly randomly distributed particles, and at low density is:46

N2(r) =
1

2

(
2πr

N2

A2
+O

((
N

A

)3
))

(1.12)

yielding a second order correction factor:

S2 =
N2

2A2

∫ 2σ

σ

2πrA2(r)dr (1.13)

to be added to B(θ).
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14 Models for Protein Adsorption on nanostructured surfaces

Figure 1.6: Example of initial disks adsorption on a flat surface, with representation of the
excluded area surrounding each disk.

The general expression for higher order corrections is:53

B(θ) = 1− S1 + S2 − S3 + . . . , (1.14)

where

Sn =
1

n!

∫ ∫
· · ·
∫
ρ(n)(r1, r2, . . . , rn)An(r1, r2, . . . , rn)dr1dr2 . . . drn, (1.15)

and where ρ(n)(r1, r2, . . . , rn) is the n particle distribution function (ρ(2)(r1, r2) is the pair
correlation function), and An(r1, r2, . . . , rn) the overlapping area of the n neighbouring
particles. In analogy with P. Schaaf and J. Talbot46 we will expand B(θ) to third or-
der, therefore including contributions of the form illustrated in figure 1.8, which take into
account the formation of additionally excluded areas, like the red area in the image.

A comment is mandatory at this point. We have not discussed other constraints for the
RSA process except avoidance of overlapping between spheres. In fact, equations 1.12-1.15
are derived under the approximation of hard spheres for the adsorbate, with no interactions
between particles of the adsorbing species. This is generally in good agreement with weakly
clustering proteins such as HSA,23 and will be assumed in the remaining of this work.

Finally, the results in chapter 3 will concern non trivial topologies, contrarily to the
examples illustrated thus far. Although effects similar to the ones discussed in section 1.2
are implicit in the shape of the blocking function B(θ) and in the value for θ∞, care has
to be taken for the generation of the particles on the surface. As discussed earlier, disks
(or spheres) have to be uniformly placed on top of the surface. For flat geometries this
is equivalent to generate 2 random numbers x, y on the domain of the surface, since the
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1.3 Random Sequential Adsorption 15

Figure 1.7: Representation of a second order exclusion contribution to B(θ), which needs
to take into account of the overlapping of the shaded regions, to avoid double counting.

Figure 1.8: Representation of a third order exclusion contribution to B(θ) (area in red).

metric tensor equals the identity matrix. However, for more complex geometries, the metric
becomes:54

gab =

[
1 + ∂2h

∂x2
∂h
∂x

∂h
∂y

∂h
∂x

∂h
∂y 1 + ∂2h

∂y2

]
(1.16)

where we utilised the Monge gauge:

r =

 x
y

h(x, y)

 (1.17)

with h(x, y) being the analytical expression for the surface. The condition for uniform
distribution on the generic surface z = h(x, y) is that each area element dA of the surface
is equally probable. In other words:

dP ∝ dA =
√
gdxdy (1.18)
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16 Models for Protein Adsorption on nanostructured surfaces

with g = 1/2
∑
a,b,c,d ε

abεcdgabgcd, a, b, c, d ∈ {x, y} and εab the two dimensional Levi-
Civita symbol εxx = εyy = 0, εxy = −εyx = 1. In practice, since inversion of this expression
is required to define a random number generator, and since such inversion becomes hard,
if not impossible to perform in the general case, we used a numerical approach: every time
a position (x, y) is uniformly generated, the position is selected if and only if a randomly
generated number r ∈ [0,

√
gmax], with gmax the maximum value for g, satisfies r <

√
g;

otherwise a new position is generated. In other words, the generation of the positions
follows a MC scheme.
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Chapter 2

Simulation of Triangulated
surface adhesion using Langevin
Dynamics

The mechanics of soft objects such as bacteria, lipid vesicles and cells in general plays
a fundamental role in the exploration of the properties of biomaterials. The triggers for
our work were represented by observations of rupturing effects of Pseudonomas Aerug-
inosa,16,19 Bacillus Subtilis, Planococcus maritimus and Staphylococcous aureus16,20 on
different types of natural and artificial nanopatterned surfaces, such as cicada (Psaltoda
Claripennis) wings and Black Silicon (bSi). Additional observations of erythrocyte lysis,31

motivated the computational exploration of these mechanisms to attempt to understand
them. The use of computational tools appears quite appealing, given the independence
of the underlying rupturing effects from the chemical composition of the surfaces.19,20

Therefore, an approach from a physical perspective seems to be the most appropriate.

Comprehensive computational models capable of describing cells in detail are, to date,
infeasible. The amount of complexity at the atomic scale, as for the case of proteins outlined
in the introduction to chapter 1, is way beyond the power of modern computer systems, and
simplifications are generally performed,55 according to the interested type of information.
For instance, studies about lipid bilayers have been tackled using various approaches, from
Molecular Dynamics (MD) simulations at different levels of coarse-graining, to Monte Carlo
(MC) simulations, to numerical calculations of free energy.56–58 Blood flow and RBCs have
been simulated with both continuum and discrete methods,59,60 where the level of coarse-
graining is even greater.

We employ coarse-grained MD simulations of RBCs adhering to surfaces, as well as
nanoparticles adsorbing to RBCs, to test their mechanical properties. Such choice is often
preferred to other approaches61,62 for both its computational stability and the possibility
of observing non equilibrium effects in the dynamics of cells. Moreover, sound models have
already been developed and tested for correctly predicting the outcome of experiments.33,34

One of this model, due to D. A. Fedosov, B. Caswell and G. E. Karniadakis33 will be

17
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18 Simulation of Triangulated surface adhesion using Langevin Dynamics

described in the following sections, as it has been used, with slight modifications, for our
computations of RBC adhesion.

The next section will review some basic concepts of MD, with special emphasis on
the Langevin equations, used as a thermostat in our calculations. Next, we describe the
force-field used for our triangulated meshes of RBCs and explain the relations between the
parameters of the model and the macroscopic properties.

2.1 Overview of Molecular Dynamics
and Langevin Dynamics

MD simulations aim to predict macroscopic information from the dynamics of microscopic
particles, in accordance with the statistical theory of Boltzmann.38 Given the hamiltonian
H of a system, and given the equations of Hamilton:

q̇i =
∂H
∂pi

(2.1)

ṗi = −∂H
∂qi

(2.2)

where qi and pi are the generalised coordinate and momentum of particle i, thermodynamic
quantities can be extracted as mean values over the set of all particles, in the limit of large
number of particles N →∞. For instance, the temperature of an ensemble of particles can
be computed from the equipartition theorem:

δmnkBT = 〈qm
∂H
∂qn
〉 (2.3)

where kB is the Boltzmann constant and δmn the Kronecker delta, which is 1 if m = n and
0 otherwise.

In principle, finding a solution for equations 2.1-2.2 for all particles in a system and
computing the desired quantities as averages is all what MD is about. In practice, there
are several aspects which have to be considered when working on a computational model
for statistical mechanics. First, the aforementioned condition N → ∞, or at least N ∝
NA, where NA ' 6.022 · 1023 is the Avogadro number, can not be satisfied in nowadays
computers; common amounts of particles being simulated can reach 106, perhaps 107,
much smaller than the thermodynamic limit. Placing such a small amount of particles
into a finite sized box of volume V would not appropriately reproduce the bulk properties
of a macroscopic system, due to the presence of fixed boundary conditions. Similarly,
the removal of any boundary conditions (free, interacting particles) would cause a rapid
dispersion of the particles, with no remaining interaction. Therefore, periodic boundary
conditions are generally employed, with particles exiting one side of the simulation box
re-entering the other side, as shown in figure 2.1.

Moreover, the small number of degrees of freedom in simulated systems can not, in
general, reach real values of the macroscopic thermodynamic observables, e.g. tempera-
ture, and external sources have to be added to the hamiltonian H to obtain the correct
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2.1 Overview of Molecular Dynamics and Langevin Dynamics 19

Figure 2.1: Original system (center) and periodic images, for a 2D particle simulations.
All particles and their images move identically, and every time a particle leaves the box on
a side, its image on the opposite side enters.

macroscopic ensemble.38 For instance, a typical choice for a canonical ensamble is the
Nosé-Hoover thermostat:63

H =

N∑
i=1

p2
i

2mis2
+
∑
i<j

V (ri − rj) +
p2
s

2Q
+ gkBT log(s) (2.4)

where the additional degree of freedom s represents the thermostatting variable and ps
its conjugate momentum, and we have specialised to Cartesian coordinates {ri,pi}. The
coordinates in equation 2.4 are virtual coordinates, and are linked to the real coordinates
via the relations:

r′i = rj , p′i =
pi
s
, dt′ =

dt

s
, s′ = s, p′s =

ps
s
, (2.5)

with the primed quantities being the real ones. Finally, defining:

η = log(s), pη = Q
1

s

ds

dt′
(2.6)
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20 Simulation of Triangulated surface adhesion using Langevin Dynamics

leads to the equations of motion:

ṙ′i =
pi
mi

, (2.7)

ṗ′i =Fi −
pη
Q

p′i, (2.8)

η̇ =
pη
Q
, (2.9)

ṗη =
N∑
i=1

p′2i
mi
− gkBT. (2.10)

The last equation highlights the role of the new coordinate, since the momentum pη will
minimise the difference between the kinetic energy of all particles and the thermodynamic
limit requested by the equipartition theorem.

Different types of thermostats are possible and the particular choice will depend on
the type of system we intend to simulate. Having very coarse-grained entities, where it is
desirable to reduce the DoFs as much as possible, we chose to use a set of equations of
motions which does not include explicitly molecules of water. The Generalised Langevin
Equations:

miq̈i(t) = Fi(qi(t))− γq̇i(t) +Ri(t) (2.11)

represent such a set of relations, where:

Fi(qi(t)) = −∂V
∂qi

(2.12)

is the force acting on particle i, γ is the viscous damping coefficient and R(t) is a random
force. The use of a stochastic term in a deterministic approach might appear misleading,
but we remind that the role of a thermostat, or thermal bath, is to smooth the dynamic
of a single (microscopic) particle to consistently achieve an overall (macroscopic) thermo-
dynamic ensemble. It can be shown that, as long as the second fluctuation dissipation
theorem:38,64

〈R(0)R(t)〉 = kBTγδ(t), (2.13)

with δ(t) the Dirac delta, is satisfied, a canonical ensemble for particle i will be obtained.

The equations presented thus far are in their analytical and continuous form, despite
the incapability of computer systems to treat functional equations. Indeed, MD simulations
evolve following an approximation scheme, which unavoidably introduces further numerical
errors. The theory of numerical integrators, as well as some common examples such as the
Verlet65 or leapfrog algorithms, is beyond the scope of this work. However, the numerical
integrator of equations 2.11 is reported here, based on the derivation of E. Vanden-Eijnden
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2.1 Overview of Molecular Dynamics and Langevin Dynamics 21

and G. Ciccotti:66

qi(t+ ∆t) =qi(t) + ∆tvi(t) +Ai(t), (2.14)

vi(t+ ∆t) =vi(t) +
1

2
∆t [fi(qi(t+ ∆t)) + fi(qi(t))] (2.15)

− γ

mi
∆tvi(t) + σi

√
∆tξi(t)−

γ

mi
Ai(t)

Ai(t) =
1

2
∆t2(f(q(t))− γ

mi
vi(t)) + σ∆t3/2

(
1

2
ξi(t) +

1

2
√

(3)
θi(t)

)
. (2.16)

This second-order integrator introduces some common issues with numerical approxima-
tions in MD. First, the positions qi and velocities vi are updated at finite time points
t, t + ∆t, . . . , t + Nt∆t, where Nt∆t is the total duration of the simulation. Hence, the
choice of ∆t is fundamental, since large values would approximate the analytical solution
with large errors, while small values would increase the total number of required timesteps
for a given total simulated time interval, and, thus, increase the computational time. Sec-
ond, the force fields Fi(qi(t)) = fi(qi(t))mi have to be evaluated at two subsequent time
steps t and t+ ∆t to compute the velocity at timestep t+ ∆t, which implies that the force
used to compute said velocity is an average of the forces acting on particle i at the two
time points. Finally, specific for Langevin equations, appropriate random numbers ξi, θi
have to be generated at each time point and for each particle, such that:

〈ξiξj〉 = 〈θiθj〉 = δij , 〈ξiθj〉 = 0, (2.17)

relations which follow from 2.13, as does the condition:

σi =

√
kBTγ

m2
i

. (2.18)

This set of equations have to be implemented as a computer software. Fortunately, some
solid frameworks already exist and have been thoroughly tested. In fact, the simula-
tions presented in chapter 4 have been performed using a custom version of the Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS),67 available at http:

//lammps.sandia.gov, which implements the algorithms outlined thus far.

This brief overview of MD techniques, although far from comprehensive of all issues
necessary to set up a simulation, introduces the main concerns to address for the task:
definition of the initial conditions and of the force-field. In fact, equations 2.14-2.16 re-
quire qi(0) and vi(0) to be initialised, and the evolution is determined by fi(qi(t)). Initial
conditions have to be defined for each specific simulation (e.g. a Lennard-Jones gas might
have all positions randomly generated and velocity either set to zero or drawn from a
Maxwell-Boltzmann distribution), while force-fields will depend on the type of system
being simulated. Our specific choices of qi(0) and vi(0) will be commented during the
presentation of the results, while in the next section we will focus on the definition of the
force-field for RBCs.
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22 Simulation of Triangulated surface adhesion using Langevin Dynamics

2.2 RBC force field

The typical biconcave shape of a human RBC, displayed in figure 2.2, is maintained by
the combination of the outer lipid bilayer and the underlying spectrin network.37 The

Figure 2.2: The typical shape of a Human RBC.

resulting mechanical properties allow for large deformations, starting from the rest shape
with diameter D0 = 7.8 µm and squeezing into blood capillaries of diameter about 3 µm.
The model developed by D. A. Fedosov, B. Caswell and G. E. Karniadakis33 reflects these
features by representing the membrane as a triangular mesh, with links mimicking the
behaviour of the protein network. However, the real links in the spectrin network are
replaced by effective springs, and the overall elastic parameters, e.g. the Young modulus,
are used to adequately match the real mechanical properties of the RBC.

The analytical expression for the shape in figure 2.2 is given by:68

z = ±D0

√
1− 4 (x2 + y2)

D2
0

(
a0 + a1

x2 + y2

D2
0

+ a2

(
x2 + y2

)2
D4

0

)
, (2.19)

with a0 = 0.0518, a1 = 2.0026 and a2 = −4.491. The area and volume of this shape are
A = 135 µm2 and V = 94 µm2, respectively. The triangulated mesh is extracted from equa-
tion 2.19 using a Matlab (https://www.mathworks.com/products/matlab.html) package
named DistMesh.69 An example of such mesh is reported in figure 2.3. MD simulations
of RBC meshes are performed applying equations 2.14-2.16 to each vertex of the triangles,
with the force field described next.

The viscous component of the RBC dynamics was simulated in the original paper
using Dissipative Particle Dynamics (DPD).35,36 We chose to utilize Langevin equations
instead, reducing the computational overhead related to the simulation of explicit water
molecules, loosing, however, Galilean invariance, fundamental to correctly reproduce the
hydrodynamic behaviour of RBC in blood stream. Such approximation holds well in our
case, as we are not interested in the fluid dynamics of the RBC, but rather in the quasi-
static behaviour close to adsorption.
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2.2 RBC force field 23

Figure 2.3: An example of triangulation of the RBC in figure 2.2. This particular mesh
consists of 18830 vertices, connected via 56484 bonds.

The elastic potential employed is a combination of spring-like interactions, area and
volume compression restraints and bending rigidity. The consistence of the choice was
thoroughly checked against results from optical tweezers experiments,33 and is deemed
appropriate for our simulations. The first term in the potential is a two-point interaction,
as illustrated in figure 2.4, and assumes the form:

ri rj

V (rij)

Figure 2.4: Example of two point interaction between vertices on the mesh.

V 2p
ns

(rij) =
kBT lmax

4p

3x2 − 2x3

1− x
+
kp
rmij

. (2.20)

In the equation lmax is the maximum spring extension, x = rij/lmax is the instantaneous
relative extension, with x ∈ [0, 1), p is the persistence length, kp and m > 0 are model
parameters. The first term of equation 2.20 is the Worm-like chain potential, also reported
in figure 2.5. The potential is purely compressive, therefore the second term is introduced
to add local expansion.

The subsequent terms impede the collapse of the RBC on its center, pushing to preserve
the original shape:

Varea =
ka(A−Atot0 )2

2Atot0

+
∑

j∈1...Nt

kd(Aj −A0)2

2A0
, (2.21)
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Figure 2.5: The Worm-like chain potential, with kBT lmax/4p = 1, for simplicity. Units
conventions are discussed in the forthcoming sections of this chapter.

Vvolume =
kv(V − V tot0 )2

2V tot0

, (2.22)

where Atot0 is the total area of the RBC, A0 is the equilibrium area of a single triangle, V0

is the total volume of the cell, Nt is the total number of triangles, and ka, kd and kv are
model parameters. Figure 2.6 illustrates the meaning of the second term of equation 2.21.
Finally, bending is taken into account by the last term:

Figure 2.6: Illustrative example of the local area preservation term of equation 2.21. The
bonds are pushed inwards if the current triangle area is larger than its equilibrium value,
outwards in the opposite case.

Vbending =
∑

j∈1...Ns

kb [1− cos(θj − θ0)] , (2.23)

with θj the angle at the central bond of figure 2.7, and θ0 the equilibrium value of said
angle, related to the spontaneous curvature of the membrane. The sum runs over all bonds
(springs) of the mesh. The complete expression for the potential of the triangulation can
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2.2 RBC force field 25

ri

rj

rk

rl

θi

Figure 2.7: Definition of dihedral potential between the 4 vertices ri, rj , rk and rl.

thus be written as:

V (ri) =
∑
ns

V 2p
ns

+ Varea + Vvolume + Vbending, (2.24)

to which it is necessary to add the inter-molecular potential (RBC-RBC, RBC-nanoparticles
and RBC-surface):

V (rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(2.25)

which is represented by the classical Lennard-Jones Potential (figure 2.8). The definition

1 2 3 4 5
r (a.u.)

-1

0

1

2

3

4

5

6

V
(r

) 
(a

.u
.)

Figure 2.8: The classical Lennard-Jones potential, in units of σ = ε = 1.

of the form the potential is, thus, completely defined, and the forces, needed for Langevin
Dynamics, can be computed as:

fi = −∂V ({xi})
∂xi

. (2.26)
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26 Simulation of Triangulated surface adhesion using Langevin Dynamics

Figure 2.9: Hexagon constituted of 6 equilateral triangles, used to define the stress tensor
of equation 2.27.

However, for the dynamics of simulated RBC to be predictive of the real cell mechanics,
the microscopic parameters in the potential 2.24 have to be linked to the macroscopic
parameters known from experiments.70 Therefore, in the upcoming section, we are going
to derive such linking relations.

2.3 Force field from real RBC mechanics

We start by considering an in-plane hexagon as in figure 2.9, formed by 6 equilateral
triangles constituting the mesh of the membrane. From this figure we can calculate the
contribution to the Cauchy stress tensor on vertex v from the potential in equation 2.24
using the virial theorem:38,71

ταβ =− 1

2A

(
f(a)

a
aαaβ +

f(b)

b
bαbβ +

f(c)

c
(bα − aα)(bβ − aβ)

)
−
(
ka(Atot0 −NtA)

Atot0

+
kd(A0 −A)

A0

)
δαβ ,

(2.27)

where S = 2A is the area inside the dashed line, A the area of a single triangle and f(x) is
the contribution to the force from V 2p

ns
. Since Atot0 = NtA0, the second term can be written

as −(ka+kd)(A0−A)/A0δαβ . Relation 2.27 allows to calculate the linear shear modulus by
applying a small engineering shear strain Γ and computing µ0 = ∂ταβ/∂Γ|Γ=0.72,73 This
yields:

µ0 =

√
3kBT

4plmaxx0

(
x0

2(1− x0)3
− 1

4(1− x0)2
+

1

4

)
+

√
3kp(m+ 1)

4lm+1
0

, (2.28)
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2.3 Force field from real RBC mechanics 27

with l0 the equilibrium length of the spring and x0 = l0/lmax. Similarly, the area-
compression modulus can be calculated from the in-plane pressure P (the system is 2
dimensional):

K = − ∂P

∂ log(A)
|A=A0 , (2.29)

where:

P = −1

2
(ταα + τββ), (2.30)

yielding, for the potential 2.24:

K = 2µ0 + ka + kd. (2.31)

Finally, the Young modulus Y is defined as:

Y =
4Kµ0

K + µ0
. (2.32)

Generally, for a nearly incompressible sheet of bonds, as is the case of RBCs, ka+kd � µ0

and, thus, K � µ0.
Having outlined the links between microscopic and macroscopic elastic parameters, we

are left with the parameters concerning bending. For this purpose, we consider the Helfrich
Hamiltonian:74

H =
kc
2

∫
A

(C1 + C2 − 2C0)
2
dA+ kg

∫
A

C1C2dA, (2.33)

with kc and kg being the bending rigidities, C1 and C2 the local principal curvatures and
C0 the spontaneous curvature. The second term is generally omitted, since, on closed
surfaces, it is constant, according to the Gauss-Bonnet theorem.54 Assuming that the
triangulation of the membrane is sufficiently smooth, we can treat small patches of the
mesh as approximations of a spherical shell. Then, equation 2.33 reduces to:

H = 8πkc

(
1− R

R0

)2

(2.34)

where R = 1/C1 = 1/C2 and R0 = 1/C0. The corresponding relation for the triangulated
surface can be obtained from the construction in figure 2.10 and equation 2.23. This
relation, up to second order in (θ − θ0), becomes:

Vbending =
Nskb

2
(θ − θ0)

2
(2.35)

Inspection of the figure leads to θ = a/(
√

3R), and analogously for θ0. Moreover, Atot =
4πR ' NtA0 =

√
3Nta

2/4 =
√

3Nsa
2/6, or a2/R2 = 8π

√
3/Ns. Substituting in 2.35,

yields:

Vbending =
4πkb√

3

(
1− R

R0

)2

. (2.36)
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28 Simulation of Triangulated surface adhesion using Langevin Dynamics

Figure 2.10: Illustration of the approximation of a spherical shell with a pair of triangles.

Finally, equating H = Vbending gives:

kb =
2√
3
kc, θ0 = arccos

(√
3Ns/2− 5π√
3Ns/2− 3π

)
. (2.37)

This last expression completes the set or relations we were seeking.
A last word before moving to the chapters presenting the results concerns the choice

of units of measurement. The choice for the length scale is quite natural, being the size of
RBCs, and other cells, in the order of a few µm. However, for other units, it is simpler,
both for human comprehension and for computational accuracy, to work with numbers
close to 1, e.g. ranging 10−3 to 103. Therefore, we define a reference quantity which allows
simple conversion from “physical” units to model units. Labelling the former with P and
the latter with M , we can use:

Y P
(kBT )P

(DP
0 )2

= YM
(kBT )M

(DM
0 )2

, (2.38)

where the Young modulus Y represents the reference quantity and the diameter D0 is used
to define length scale. From this relation, we can define the energy units for a given model:

(kBT )M =
Y p

YM
(DP

0 )2

(DM
0 )2

(kBT )P . (2.39)

Analogously, we can define the model units for the time scale as:

tM =
DP

0 η
PYM0

DM
0 ηMY P0

tP , (2.40)

where η is the dynamic viscosity and t is the unit of time. The relation between η and γ
(equation 2.11), assuming the vertices to behave like small spheres of diameter d, is given
by Stokes’s law γ = 3πdη. The detailed choices made for the units will be discussed in the
sections concerning the results.

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTER SIMULATIONS OF RED BLOOD CELLS AND PROTEINS INTERACTING WITH NANOSTRUCTURED SURFACES 
Berardo Mario Manzi 
 



Part II

Results

29

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTER SIMULATIONS OF RED BLOOD CELLS AND PROTEINS INTERACTING WITH NANOSTRUCTURED SURFACES 
Berardo Mario Manzi 
 



UNIVERSITAT ROVIRA I VIRGILI 
COMPUTER SIMULATIONS OF RED BLOOD CELLS AND PROTEINS INTERACTING WITH NANOSTRUCTURED SURFACES 
Berardo Mario Manzi 
 



Chapter 3

Random Sequential Adsorption
of proteins on Nanostructured
Surfaces

The methods introduced in chapter 1 were used to produce the results described in the
forthcoming sections. The problem of protein adsorption, specifically Human Serum Al-
bumin (HSA) is treated with the RSA approach on model surfaces of Psaltoda Claripennis
and Black Silicon (bSi), defined in terms of simple analytical functions. However, the
dimensions of the original surfaces, as well as the size of the model proteins are chosen
consistently. The details and motivations of our choices are explained in the first section
concerning the setup of our computer experiments. After that, the actual results are shown
and their interpretation is given, emphasising the most relevant conclusions for applications
in biomedicine.

The first preliminary results from early simulations have been used to give a qualitative
description of the protein adsorption process, and to accompany experimental observa-
tions.75 The final quantitative conclusions outlined in this chapter are mostly in line with
these observations, and have been submitted for publication.

3.1 Simulations setup

The choice to utilise HSA as the modelled protein is dictated mainly by it being the
most abundant one in blood stream.76 Although crystallographic data depicts HSA as
heart-shaped,43 in solution the excluded volume surrounding the protein screens its non-
spherical shape. In fact, there is good agreement between Quartz Crystal Microbalance
(QCM) experiments and models of spherical proteins23 and, thus, HSA is generally treated
as a sphere in theoretical modelling.44 Hence, our simulations are performed on spheres of
diameter D = 7 nm, which represents the typical size of HSA.77

The description of the surfaces is achieved by defining the nanostructures in the func-

31
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32 Random Sequential Adsorption of proteins on Nanostructured Surfaces

tional form:

fi(x, y) =

{
H exp

(
− (x−xi)

2+(y−yi)2
2v

)
if (x− xi)2 + (y − yi)2 ≤ d2p

4

0 otherwise
. (3.1)

Here, −dp/2 < x < dp/2 and −dp/2 < y < dp/2, H denotes the height of the structures,
Ci = (xi, yi) is the center of the i-th peak, dp is the peak-to-peak distance and v =(
W
2

)2 1
2 log(2) is the Gaussian variance, with W being the half height width. Choosing

the Ci such that any two neighbouring peaks i and j satisfy either Cj = Ci + (dp, 0)
or Cj = Ci + (0, dp), a periodic array of peaks is formed, mimicking the topology of
nanopatterned surfaces. However, the quantities we compute are functions of θ, which
is independent of the surface area, allowing us to use a single peak per simulation and
reducing significantly the computational cost.

Two different sets of W and H values are employed to study the influence of the
geometrical features on the final configuration of adsorption. The first one, defining model
surfaces we denote as Gaussian pillars, consists of variations from the values H = 200 nm
and W = 80 nm, while the second set, denoting Gaussian spikes, is initially given the
values H = 500 nm and W = 60 nm. These quantities are somewhat reminiscent of the real
surfaces Psaltoda Claripennis and bSi, although, for the sake of the modelling, we preferred
a different denomination. Additionally, we explore the effect of concave structures, denoted
as Gaussian Holes, and flat surface, mostly for comparison with previous works.

All simulations are repeated 1000 times, since the blocking function B(θ) and the jam-
ming limit θ∞ are defined as mean values of a statistically significant sample, as expressed
by equation 1.10. This choices is deemed significant given that the standard deviation of
the output data, used as statistical uncertainty, is unaltered for larger numbers of repe-
titions. Examples of final configuration of adsorbed HSA on a flat surface, on Gaussian
pillars and spikes, and on a Gaussian Hole, are illustrated in figure 3.1.

Following the description of RSA on model surfaces, we employ the same approach
on an Atomic Force Microscopy scan of a real bSi surface. AFM scans were performed at
Swinburne University, using an Innova scanning probe microscope (Veeco, Bruker, Billerica,
MA) in tapping mode, in air at at ambient conditions, using a silicon cantilever (Cont20A,
Veeco Probes) with a spring constant of 0.9 N/m and a resonance frequency of ∼ 20 kHz.
The sample surfaces were first scanned with a 10 µm × 10 µm field of view to ensure even
surface coverage and to avoid damaged areas (data not shown), before selecting 1 µm × 1
µm areas for scanning and analysis. Finally, for computer simulations, a 2.5 µm× 2.5 µm
surface was extracted, due to memory performance hits for larger surfaces. A snapshot of
the final state of these simulations is shown in figure 3.2.

3.2 RSA of HSA on model surfaces

The first observation concerns the behaviour of the Blocking function B(θ) for the four
different geometries of figure 3.1. The plot in figure 3.3 shows that B(θ) is shifted towards
larger values for Gaussian spikes with respect to the other surfaces, in particular for θ →
θ∞, and that the jamming limit is also increased. Given the arguments of sections 1.2
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3.2 RSA of HSA on model surfaces 33

(a) (b)

(c) (d)

Figure 3.1: Final configuration for RSA simulations of four different surfaces: (a) Flat
surface, (b) Gaussian spike withW = 80 nm andH = 200 nm (Psaltoda claripennis model),
(c) Gaussian spike with W = 60 nm and H = 500 nm (BSi model) and (d) Gaussian ”hole”
with W = 60 nm and H = −550 nm. These snapshots have been obtained using OVITO.78

Figure 3.2: Final snapshot of an RSA simulation of albumin onto a BSi surface represented
by an AFM scan.
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34 Random Sequential Adsorption of proteins on Nanostructured Surfaces

and 1.3, this result is not surprising, since the Gaussian spikes have greater curvature at
given height and are higher than the pillars. Analogously, the Gaussian Holes show lower
occupancy than even the flat surface, effect caused by the negative curvature. Modifying
the dimensions helps to further understand the role of length scales. Figure 3.4 illustrates
the dependence of the blocking function on W and H for Gaussian pillars, while 3.5 depicts
the same conclusions for Gaussian Spikes. Once more, the change of B(θ) is noticeable as
the change of topology becomes more pronounced. In particular, the variability with the
width for Gaussian spikes is quite large in figure 3.5a, due to larger curvatures associated
to thinner spikes.

Consider the analysis of section 1.3, where we discussed the meaning of a Taylor ex-
pansion of the Blocking function with respect to θ. For small values of θ, only the first
order term will be significant, and the behaviour for all types of surfaces is about the
same. Hence, until overlap becomes relevant, surface geometry does not affect adsorption,
as expected from B(θ) ∼ 4θ. The curves start to spread apart when second and third
order contributions become important. This effect occurs earlier for Gaussian Holes and
flat surfaces, or for larger peaks, due to the larger effective area occupied by single spheres,
as illustrated in figure 1.3. Therefore, the probability of adsorption, and, consequently,
the Blocking function, is larger at fixed θ. The same argument leads to explain the larger
values of the jamming limit θ, reported in table 3.1. The first row represents θ∞ for flat
surfaces resulting from our computations, while the value in the second row, from P. Schaaf
and J. Talbot,46 is used as reference to prove the consistence of our work with previous
ones. The remaining entries outline a relation between strongly curved surface and the
increase of the jamming limit. For instance, Gaussian spikes of height H = 500 nm and
width W = 40 nm show in increase of ∆N = 9.5% in the jamming limit, with the increase
computed as:

∆N =
Ns −Nf
Nf

=

(
θ∞,s
θ∞,f

− 1

)
As
Af

, (3.2)

where Ni is the number of adsorbed proteins, Ai the area and s and f stay for spikes and
flat, respectively. The relevance of this value of ∆N is even greater if we consider that
∆N ' (0.9069/0.545− 1) ' 0.6640 is the same increase computed between hexagonal and
random, and represents, thus, the largest expected value. The overall trend of increase of
θ∞ as a function of the curvature at half height 1/W is reported in figure 3.6.

Another property of experimental importance is the sequence of adsorption. For in-
stance, in the work of D. H. K. Nguyen et al,75 a colonisation of the valleys is observed at
first, followed by adsorption at the top of the peaks. However, it is worth noticing that all
the considerations have been made after equilibration, at different concentrations of HSA in
solution. Therefore, the actual time dependence of the adsorption process is not transpar-
ent, but rather assumed based on the observed colonisation at increasing concentrations.
Figure 3.7 displays the amount of proteins as a function of the vertical coordinates z, for
both Gaussian pillars and spikes. Having generated the proteins with uniform probability
over the actual manifold, the greater number of proteins at the bottom is a mere conse-
quence of larger area availability. Although this is in line with the observations of D. H. K.
Nguyen et al., their interpretation relies on more complex assumptions, since it is solely a
consequence of greater surface availability.
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Figure 3.3: Blocking functionB(θ) for: flat surface (black), Gaussian pillars (red), Gaussian
spikes (green) and Gaussian hole (blue) defined by Equation (3.1). The inset highlights
the ending points corresponding to θ∞.
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Figure 3.4: Blocking function of pillars using (a) different widths at fixed height (200 nm),
and (b) using different heights at fixed width (80 nm).
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Figure 3.5: Blocking function of spikes using (a) different widths at fixed height (500 nm),
and (b) using different heights at fixed width (60 nm). The isolated points are due to
fluctuations in the statistical sampling.
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36 Random Sequential Adsorption of proteins on Nanostructured Surfaces

Figure 3.6: θ∞ as a function of 1/W (i.e. the curvature) for both Gaussian Pillars (black)
and Gaussian Spikes (red). The lines represent a linear fit, demonstrating a linear increase
with increase of curvature.

Figure 3.7: Vertical distribution of proteins for Gaussian Pillars with W = 80 nm and
H = 200 nm, and for Gaussian Spikes with W = 60 nm and H = 500 nm. The number
of proteins adsorbing on the bottom of the pillars is clearly much greater than that on
the top of the pillars, a consequence of lower surface availability. The discontinuity in the
left-hand side figure is a simple consequence of the definition of the shape, Eq. 3.1.
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3.2 RSA of HSA on model surfaces 37

Table 3.1: Jamming limit θ∞ for different geometries: flat surface, Gaussian pillars, Gaus-
sian spikes and Gaussian holes. The values are obtained as the average of the coverage
in the final state for each set of simulation. The error bars are estimated as standard
deviation of each set. The values in the last column are the relative increase of number of
adsorbed proteins with respect to the flat surface, ∆N = (Ns −Nf )/Nf .

H (nm) W (nm) As/Af θ∞ ∆N(%)
Flat - - 1 0.545± 0.007 -
Flat (Schaaf et. al. 46) 0.547± 0.002

Gaussian Pillars

150 80 1.7 0.558± 0.005 2.4

200 60 1.9 0.568± 0.005 4.2

200 70 2.0 0.565± 0.005 3.7

200 80 2.1 0.562± 0.004 3.1

200 90 2.2 0.561± 0.004 2.9

200 100 2.2 0.560± 0.004 2.8

250 80 2.5 0.566± 0.004 3.9

Gaussian Spikes

450 60 3.3 0.581± 0.004 6.6

500 40 2.8 0.597± 0.004 9.5

500 50 3.2 0.588± 0.003 7.9

500 60 3.6 0.582± 0.003 6.8

500 70 3.9 0.577± 0.003 5.9

500 80 4.2 0.574± 0.003 5.3

550 60 3.8 0.583± 0.003 7.0

Gaussian Hole -550 60 3.8 0.499± 0.003 -8.4

The observations thus far on model surfaces can be used to interpret results on more
complex topologies. The graph in figure 3.8 displays the blocking function of the surface
in figure 3.2. The corresponding value of θ∞ is 0.4576 ± 0.0003, smaller than the value
for the Gaussian Hole. The interpretation is straightforward, given the analysis outlined
above: the contribution toB(θ) from the hole-like structures, i.e. valleys, is greater than the
contribution from the peaks. Therefore, the occupancy level is lower than the one obtained
in the case of the flat surface. It is worth mentioning that the resolution of the AFM image
introduces an experimental uncertainty that is greater than the theoretical error associated
with our modeling approximations. Comparing the image presented in Fig. 3.2 to the
figures reported by D. H. K. Nguyen,75 it can be seen that the real pillars are steeper,
while the AFM data introduces smoothing effects due to the cantilever jumping between
the tips of the surface nanopillars. Nevertheless, our approach emphasizes the importance
of considering the influence of topology in the process of protein adsorption, and how the
geometry defines both the final configuration as well as the pattern of adsorption.
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38 Random Sequential Adsorption of proteins on Nanostructured Surfaces

This last consideration concludes the analysis of the results obtained using RSA. How-
ever, further insight can be obtained by substituting the blocking functions for the various
surfaces into equation 1.1. We describe the results of this approach in the following section,
and conclude this chapter with a comparison of RSA with the excessively used Langmuir
model.

3.3 The timescale of HSA adsorption onto nanostruc-
tured surfaces

An interesting question that arises in practical adsorption experiments concerns the time
required for proteins to adsorb onto a substrate surface. We use the fourth-order Runge-
Kutta method79,80 to numerically solve equation 1.1 for albumin taken at the concentration
corresponding to that in blood plasma (n = 5.3 · 10−4mol/L) and an arbitrary lower
concentration (n = 1.06 · 10−5mol/L) leads to the solutions shown in figures 3.9 and 3.10.

The curves rapidly reach plateau values, which are dependent on the jamming limit.
Saturation of the surface is reached in tens of seconds at low protein concentration, and
a few seconds at the higher protein concentration corresponding to that found in blood
plasma. Since the desorption constant kd = 5.78 · 10−4 s−1 is small compared to the
adsorption ka = 104 Lmol−1s−1, the plateau values are very close to those reported in
Table 3.1, which is in line with the assumption that irreversible (or almost irreversible)
adsorption is taking place.

Note however, that our model does not take into account the diffusion time τD required
by the proteins to reach the surface. For the aforementioned approximations to hold, this
time scale needs to be smaller than the time scale of adsorption τa. The diffusion time
can be estimated as τD = h2/D, where D is the diffusion coefficient. For albumin, this
assumes the value40 Ddif = 2.15 · 10−11 m2/s, and h is the typical length scale of the
interaction between proteins and surface. Diffusion depends on the geometry and, thus,
the quantity h will be, in general, a function of the surface structure. For an estimate
value of h, however, we can consider a volume hA close to the surface, where the density of
non-adsorbed proteins is n. Then, equating the amount of protein adsorbed to the surface
to the amount still in this interaction range, we obtain:

A

σ
= nhA (3.3)

Diffusion is negligible if:

τa � τD =
1

n2σ2D
, (3.4)

yielding, for the two concentrations in figures 3.9-3.10, τD ' 0.8 s and τD ' 3.1 · 10−4 s.
Thus, for albumin at the concentration found in blood, the timescale of adsorption is a good
approximation of the overall time required to cover the surface with the protein. At lower
concentrations, an important contribution to the time of adsorption comes from the time
required for the proteins to diffuse to the surface. Therefore, a different approach, coupling
the diffusion equation to the RSA model, like the generalized RSA model,40 would lead to
the calculation of more accurate timescales in the case of low protein concentrations. In
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3.3 The timescale of HSA adsorption onto nanostructured surfaces 39

Figure 3.8: Blocking function of albumin adsorption on the AFM scan of the real BSi
surface.
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Figure 3.9: Coverage as a function of time for the four surfaces investigated (n = 1.06 ·
10−5mol/L).
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Figure 3.10: Coverage as a function of time for the four surfaces investigated (n = 5.3 ·
10−4mol/L).
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the case of albumin adsorption at realistic concentration values, however, the simple RSA
model allows good estimates of typical timescales to be determined.

3.4 Comparison of Langmuir and RSA approaches

Since Langmuir adsorption isotherms are widely used for modelling experimental data,
we compared the results obtained by the Langmuir model with those obtained using the
RSA model. Langmuir isotherms were obtained using equation 1.2, using the typical
value Keq = 1.73 × 107 L/mol of the adsorption constant, which is valid for albumin.26

The saturation occupancy θ∞ was estimated as an upper boundary, assuming hexagonal
packing. For a flat surface, this becomes θ∞ = π

4 ' 0.9069 and for a nanostructured
surface made of cylindrical pillars, θ∞ = 0.92. These are estimated values for the purpose
of comparing the Langmuir and RSA models.

The different saturation values θ∞ obtained via the Langmuir adsorption with respect
to the jamming limits in Table 3.1 provides an insight into the departure expected from such
an approach to an irreversible adsorption process. Even if it is assumed that the Langmuir
saturation value matches that of the RSA model, fitting the data using the Langmuir
model would be incorrect, as shown in figure 3.11. The plot shows a steady solution of
equation 1.1 for several values of concentration n, as is common in the Langmuir approach.
While the coefficients ka and kd used to derive the two curves are set to the same value in
both cases, the Langmuir isotherm reached saturation at a lower concentration than that
obtained using the RSA model. Conversely, if the Langmuir model was used to fit the
RSA data, the resulting adsorption and desorption constants would likely lead to wrong
interpretations of adsorption behaviour being made.26

UNIVERSITAT ROVIRA I VIRGILI 
COMPUTER SIMULATIONS OF RED BLOOD CELLS AND PROTEINS INTERACTING WITH NANOSTRUCTURED SURFACES 
Berardo Mario Manzi 
 



3.4 Comparison of Langmuir and RSA approaches 41

Figure 3.11: RSA isotherm (red) in comparison with the Langmuir isotherm (black) for
spherical proteins adsorbing onto a flat surface.
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Chapter 4

Strain-stress analysis of
deformed RBCs

The results of the second part of our project are outlined below. We discuss the effect
of mechanical deformations on the viscoelastic membrane of Red Blood Cells (RBCs), to
understand how rupture occurs on antimicrobial surfaces, despite their large deformability
in blood vessels.

A major drawback of the computer models we describe in the following sections is the
need for discretisation to numerical solve the equations of motion. We introduced the
problem in chapter 2, where we presented the RBC membrane as a triangulated manifold,
with each vertex moving as an MD particle. However, we did not mention that the surface
of a single triangle of the mesh is empty, and, in principle, external particles could move
through it, creating an artifact related to the approximation used. The issue is fixed by
an appropriate choice of all σi in equation 2.25, where the index runs over all possible pair
types in the simulation. For instance, if the vertices have diameter dv and the external
particle dp, σpp = dp and σpv = (dp + dv)/2, then the condition for impermeability is (see
figure 4.1):

rvv <
√

3σpv, (4.1)

where rvv is the center to center distance between two vertices. In practice, rvv is varying
due to the dynamics of the RBC, and condition 4.1 is required to be satisfied at all time
steps. Eventually, if this is not the case over the duration of simulation, a finer mesh can be
employed. However, for nanopatterned surfaces, as the erythrocyte adheres to the surface,
rvv will inevitably increase to the point where the condition is no longer valid, and the
peak will enter the membrane.

Mainly for these reasons, we started the simulations analysing the deformability of
RBCs upon adsorption of nanoparticles (NPs) on the cells, as this problem is topologically
equivalent, but condition 4.1 can be maintained at all time steps. Obviously, this type of
systems has its own experimental importance,81 and we will discuss our conclusions with
either cases in mind.

43
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44 Strain-stress analysis of deformed RBCs

σpv
rvv

Figure 4.1: Scheme representing the limiting condition for a triangle to be impermeable,
without explicitly defining it as solid.

4.1 Simulations of Nano-particle adsorption on RBCs

The simulated systems in this section consist of an RBC and a varying number Np of
NPs of diameter dp = 200 nm. The NPs are initially placed in the neighbourhood of the
cell, to reduce the computational cost. For the first set of simulations, this placement is
chosen at random, giving a situation as in figure 4.2, where the images illustrate the initial
configuration (t = 0) and the configuration after 500 timesteps.

Figure 4.2: A system consisting of an RBC and 25 Nps distributed at random around
the cell. The figures depict the system at the beginning of the simulation and after 500
timesteps.

At this stage, it is compulsory to highlight some important features of our simulations.
First, the RBC is cleary at its minimum shape at the start of the calculations, which,
however, does not correspond to its thermodynamic equilibrium at body temperature.
Therefore, before “switching on” the interaction potentials between NPs and the RBC, the
latter is left to relax towards the target temperature using the thermostat (equation 2.11).
Only following equilibration are the inter-body forces activated, driving the whole system
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4.1 Simulations of Nano-particle adsorption on RBCs 45

to its new thermodynamic steady state.

The variations of the total area and the total volume of the RBC are used to quantify
the deformation of the membrane. Figure 4.3 shows the outcome of the first set of such
simulations for 1, 2, 3, 5, 10, 25, 50, 75 and 100 Nps adsorbing to an RBC. The plots show
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Figure 4.3: Graphs displaying, from top to bottom, Area, Volume and Area to Volume
ratio as a function of time for a RBC adsorbing 1, 2, 3, 5, 10, 25, 50, 75 and 100 Nps of
diameter 200 nm (see legend). The final quantities are almost indifferent to the amount of
particles sticking to the cell.

that increasing the number of Nps does not affect relevantly the shape of the cell, with the
area and volume changing, from 1 to 100 Nps, by less than 0.2%. Note that the time steps
are reported in arbitrary units, whose actual definition is worth a few observations.

All the simulations use µm as units of length, making the definition of area and volume
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46 Strain-stress analysis of deformed RBCs

units straightforward. For energy units, we apply relation 2.39 to impose (kBT )M = 1,
which decreases the numerical rounding errors in the computations, and which can be
obtained from:

YM = Y P
(
DP

0

DM
0

)2
(kBT )P

(kBT )M
' (18.9 · 10−9)(109)(4.3 · 10−21) ' 81.3 · 10−21model units,

(4.2)
where as physical parameters we have used the International System of Units (SI), T =
310K is the body temperature and Y P = 18.9 µN/m.33 Analogously we define the time
step from equation 2.40:

tM ' (109)
6.9 · 10−4

3.2

81.3 · 10−21

18.9 · 10−9
s ' 9.3 · 10−7s ' µs, (4.3)

where s stays for seconds, 6.9 · 10−4Pa · s is the dynamic viscosity of water at 310 K and
3.2 is an arbitrary viscosity value in model units. This value, as well as the size of the time
step ∆t = 10−6tM are chosen after some trial and error: greater values of ∆t easily lead
to instabilities, while greater value of η will slow down the simulations to a point where
no motion is observed. Consequently, the total duration of a simulation is in the order of
6 · 106∆t = 6 µs.

Having clarified our choice of units, we continued our work by changing, more precisely
increasing, the size of the NPs. As already mentioned, we expect dimensions of the struc-
tures adsorbing to RBCs to have a leading role, in addition to a greater amount, e.g. more
peaks. Figure 4.4 depicts the same snapshot as the right-hand side of figure 4.2, for NPs
of diameter dp = 400 nm. For this second set of simulations, only two different amounts

Figure 4.4: Snapshot of a simulation using 25 NPs of size 400 nm, at t = 500∆t.

have been chosen, 25 and 50, as smaller variations did not give much insight in the for-
mer computations. The area and volume deformations of this second case are reported in
figure 4.5. Although the area increase is still of the order of 0.17%, the volume increase
starts to be slightly larger, about 0.32%, which does not represent a significant variation,
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4.1 Simulations of Nano-particle adsorption on RBCs 47

Figure 4.5: Area, Volume and Area to Volume ratio as a function of time, for 25 and 50
NPs of diameter 400 nm.

but suggests a trend with the dimensions of the interacting structures. Notice also that
the area to volume ratio is decreasing: this behaviour reflects the tendency of the RBC to
deform towards a more spherical shape, since the expected ratio for a sphere of diameter
D0 = 7.82 µm is 0.767 µm.

Another contribution which could enhance the deformations of RBCs is given by co-
operative effects. Thus far we have spread the NPs at random close to the surface of the
RBCs, and, locally, only one, or at times two, NPs contribute to the deformations. Conse-
quently, the elasticity of the cell membrane might be enough to relax the strains with little
effect on the overall shape.

Figure 4.6 shows an example of a configuration where 19 NPs are placed symmetrically
at the center of the upper side of the RBC membrane. Similar simulations have been
performed for 1, 2, 19 and 55 NPs, with the latter two choices dictated solely by symmetry.
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48 Strain-stress analysis of deformed RBCs

Figure 4.6: Configuration at timestep t = 500∆t of a system with 19 NPs all placed at the
center of the top side of the RBC. On the right-hand side the central section is displayed,
to show the local deformations.

The results of these computations are displayed in figure 4.7. Comparing to figure 4.5,
we observe less fluctuations in the final surface area, but a greater increase in volume
(' 1.09%), and, consequently, greater decrease towards the sphere area-volume ratio.

We can deduce from these considerations that the size of the structures does affect the
overall shape of the visco-elastic sheet of springs describing the RBC, but that cooperative
effects are more relevant. The cell membrane is able to accommodate a large number of
small local deformations easier than a single, large deformation occurring only on one side
of the membrane. Therefore, we expect a surface such as bSi, pushing only on one side, to
enhance this effect even more.

Particular emphasis is devoted to the volume increase observed in the simulations. This
phenomenon indicates that the RBC, despite its ability to conserve area, begins to blow,
eventually reaching a point where it can not accommodate the deformations any more, and,
consequently, rupture is observed. However, our model does not predict breaking bonds,
and eventual rupture must be inferred from comparison with empirical data.

A final word is due at this point concerning the choice of ε, the parameter determining
the strength of the Lennard-Jones interaction, equation 2.25. We did not discuss its value
thus far because the variation is not significant over the range of physical values (a few
kBT s). In fact, figure 4.8 displays the area, volume and area to volume ratio obtained for
a system with 1 NP of size 400 nm placed at the center of the RBC, with ε = 2.5kBT and
ε = 10kBT . No noticeable effect is deducible, confirming the statement.
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4.1 Simulations of Nano-particle adsorption on RBCs 49

Figure 4.7: Area, Volume and Area to Volume ratio for a system with no, 1, 2, 19 and 55
NPs, placed symmetrically around the central point on the top side of the RBC.
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50 Strain-stress analysis of deformed RBCs

Figure 4.8: Area, Volume and Area to Volume ratio for a system with 1 NP on the RBC,
at ε = 2.5kBT and ε = 10kBT .
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Conclusions

This work describes the approaches to two different problems related to biomaterials, which
have been recently of major interest in literature. The first one concerns protein adsorption
on nanostructured surfaces, in particular HSA, which is the first protein colonising a foreign
object entering blood. The second problem is represented by the mechanical rupture of
RBCs on said surfaces, an undesired collateral effect of these antimicrobial topologies.

Protein adsorption has been studied using RSA, an approach which implicitly assumes
irreversibility, making it an optimal candidate for this type of problem. We demonstrate
the importance of curvature effects on the amount of adsorbed particles, and additionally
determine estimations for the time scales of adsorption, of the order of a few seconds. We
confirm the trend observed by former experiments,48 that the total amount of adsorbate at
saturation is larger than the quantity expected by a mere proportionality with the surface
area, and we also explain the sequence for HSA adsorption described in the experiments of
D. H. K. Nguyen et al.75 Finally, we stress once more the importance of abandoning the
Langmuir adsorption approach, still excessively used to predict protein isotherms, despite
its inherently inconsistent assumptions.26

RBC has been investigate using coarse-grained MD, specifically Langevin equations,
and interesting results on shape deformations upon NPs adsorption have been found. Par-
ticularly, we demonstrated that the membrane is generally capable of accommodating area
deformations, at the cost of increasing its volume. This effect can lead to excessive stress
and, eventually, to rupture.

An important observation valid for both cases concerns size effects. The purely geo-
metric results of chapter 3 and the physical simulations of chapter 4 highlight the relevance
of the dimensions mismatch between adsorbent and adsorbate, being it a NP adsorbing
to a RBC or HSA adsorbing to bSi. This apparently straightforward consideration is of-
ten overlooked in biological systems, where more complex explanations are sought. Our
work moves somewhat into the opposite direction, nevertheless capable of deducing some
relevant features of otherwise very complex systems.
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