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Abstract (English) 

The work of this thesis aims to develop of a new workflow to 

predict potential cleavage sites in new candidate peptide drugs. The 

main goal of this workflow is to understand the protease specificity 

rules from data coming from different sources (experimental data 

and/or external databases) and with no limitations on peptides 

structure (linear/cyclic, containing natural and/or unnatural amino 

acids) or specific experimental conditions (individual proteases or 

complex matrices such as plasma). 

At the first step we implemented a new algorithm to store the 

information from experimental and external sources in a chemically 

aware database WebMetabase, so that the chemically aware exact 

substructure and a similarity-based substructure search can be 

performed. The main advantages of this database are that it allows 

to combine data from different sources and can be further enriched 

with new data without limitations. Moreover, because each peptide 

structure was interpreted as a chemical structure, we were able to 

process information about cyclic peptides. Since each amino acid 

was described by pharmacophoric and physicochemical properties, 

there were no limitations for the processing of the unnatural amino 

acids. 

At the second step we developed and applied a frequency analysis 

approach to reveal the metabolically labile amide bonds defined by 

similar pharmacophoric or physicochemical properties of residues 

around the cleavage site towards the specific proteases/specific 

media. 

At the third step we built several predictive models using a training 

dataset, where each site of cleavage was described by its molecular 

descriptors and frequency. Therefore, prediction ability of the 

models was not limited to only natural amino acids in contrast to the 

state-of-the-art approach such as PeptideCutter. We demonstrated 

that models can be trained for different proteases on MEROPS 

exported data and have a comparable predictive performance as 

other public tools such as PROSPERous. 
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Resumen (Spanish) 

El trabajo realizado durante la presente tesis doctoral se centra en el 

desarrollo de un sistema para la predicción del sitio de catabolismo 

de péptidos. El objetivo fundamental del mismo es el encontrar 

patrones de especificad para el sitio de metabolismo producidos por 

proteasas considerando diversas fuentes de datos (desarrolladas 

experimentalmente internamente por el usuario o publicadas en base 

de datos externas), sin limitaciones en la estructura de los péptidos 

(lineal/cíclicos, con aminoácidos naturales o no) y que sean capaces 

de considar varias condiciones experimentales (incubaciones con 

proteasas individualmente o en matrices complejas como plasma) 

En un primer paso, se implementó un nuevo algoritmo para poder 

guardar la información de manera sistemática independientemente 

de la fuente en una base de datos que considera la estructura 

química, WebMetabase. De esta manera se pueden realizar 

búsquedas sub-estructurales o de basadas en similitud sub-

estructural. La principal ventaja de la estrategia seguida es que 

permite combinar datos de diversas fuentes y por lo tanto puede ser 

actualizada con nuevos datos sin ningún tipo de limitación. 

Además, al guardar la estructura de los péptidos como estructuras 

químicas y no tan solo como secuencias de monómeros, es posible 

procesar compuestos cíclicos de cualquier tipo. En este 

procedimiento cada aminoácido se caracteriza mediante una serie de 

propiedades fisicoquímicas y farmacofóricas, de tal manera que no 

existe limitaciones a la hora de comparar aquellos monómeros de 

procedencia natural o de síntesis.   

En un segundo paso, se ha desarrollado y aplicado a la base de datos 

antes mencionada un análisis de frecuencias que permite definir las 

propiedades fisicoquímicas y/o farmacofóricas de los residuos que 

participan en los enlaces amíSdicos metabólicamente lábiles sobre 

cualquier proteasa o medio de incubación. 

Por último, se han construido modelos predictivos que proporcionan 

la probabilidad (frecuencia) de que un enlace sea objeto de 

reacciones metabólicas de hidrólisis. Estos modelos se han derivado 

a partir de conjuntos de aminoácidos caracterizados con los 

descriptores moleculares ya mencionados y que tienen asociados la 

frecuencia obtenida del análisis anterior. De esta manera, la 
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capacidad predictiva no se encuentra limitada a la estructura de los 

aminoácidos naturales como ocurre con alguno de los programas 

que se consideran más avanzados en la actualidad, como, por 

ejemplo, PeptideCutter. Múltiples modelos se han obtenidos a partir 

de conjuntos de datos exportados de la base de datos MEROPS. 

Estos modelos presentan una capacidad predictiva comparable con 

herramientas de acceso público como por ejemplo PROSPERous, 

pero sin sus limitaciones en cuanto a fuente de información ni 

estructura de los péptidos tratados. 
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Preface & Justification 

Peptides therapeutics are becoming increasingly important on the 

pharmaceutical market. However, it is known that peptide drugs 

bioavailability and stability are lower than for small molecules. It is 

highly important to understand peptide drug metabolism and 

optimize its clearance as it influences the drug safety and efficacy. 

Because peptides are mainly cleaved by peptidases, every new 

candidate must be designed considering the localization of potential 

protease sites of cleavage. The information about proteases and 

their sites of cleavage is widely spread across publications and 

databases. Although useful, these databases still have several 

limitations. For example, none of the available resources allow to 

add new information in an automatic way to enrich the database. 

In this study, we developed an approach based on Mass-MetaSite 

and WebMetabase to process data-dependent and data-independent 

acquisition high-resolution mass spectrometry data from in vitro 

incubation samples, to elucidate metabolites structures, to predict 

cleavage sites and to store the results in a chemically aware 

database. Furthermore, we added a new method that processes the 

information from external sources. After processing received data 

on peptide substrate and metabolites is annotated in accordance 

with new developed annotation system and persisted in 

WebMetabase. The annotation of the peptide information in this 

manner enables a chemically aware exact substructure search and a 

similarity-based substructure search inside the database. Moreover, 

we implemented an algorithm that performs frequency analysis and 

similarity frequency analysis approach that reveals the group of 

metabolically labile amide bonds defined by exact structure 

matching or similar molecular properties towards the specific 

proteases. 

In this study analyzing several datasets of data for cyclic and linear 

peptides, containing nonstandard amino acids collected from 

different sources we demonstrated how frequency analysis could be 

used to build predictive models and how these models can be 

applied to predict the metabolic liability of different amide bonds in 

a new non-tested peptide. These results were described in the 

following publications: 
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1. “Software-aided approach to investigate peptide structure and

metabolic susceptibility of amide bonds in peptide drugs based on

high resolution mass spectrometry”

2. “Software assisted analysis for peptide drug metabolism”

3. “WebMetabase: cleavage sites analysis tool for natural and

unnatural substrates from diverse data source”

4. “Software-aided workflow for predicting protease-specific

cleavage sites using physicochemical properties of the natural and

unnatural amino acids in peptide-based drug discovery.”

5. “Metabolite Identification Using A Ion-Mobility Enhanced Data

Independent Acquisition Strategy and Automated Data Processing.”

Therefore, one of the main advantages of this approach is that it 

generates a searchable database for the information coming from 

different sources that can be enriched with new data. Nevertheless, 

the proposed methodology as opposed to existing databases can be 

applied in the case of non-natural amino acids and/or cyclic 

peptides. Moreover, since the system used to derive the cleavage 

site appearance rules could be enriched with the new experiments, 

models can be re-trained with updated dataset and the derived rules 

can be refined to tune the system for the experimental conditions 

and/or peptide families of interest. This knowledge can be applied 

during the design-make-test drug discovery cycle. 
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OBJECTIVES 

General objective: 

To obtain and validate a new workflow to generate protease 

specificity rules and use them to predict potential cleavage sites in 

new candidate peptide drugs. The proposed metholodology should 

work without any limitations on: peptide structure (cyclic or linear, 

containing natural and unnatural amino acids); experimental 

procedure (specific protease or complex matrix); analytical mass 

spectrometry acquisition technique (data-dependent or data-

independent methods); and source of data (experimental or 

external). 

Specific objectives: 

1. Develop an approach to process data from different 

incubation samples for any kind of peptide structure and to 

perform metabolite identification for processed samples for 

multiple acquisitions MS data. 

2. Develop an approach to annotate processed information 

from multiple sources, suitable for interpreting data on any 

type of amino acid and to store annotated data into the 

searchable database. 

3. Implement a frequency analysis algorithm which, using the 

created annotation system is able to reveal the protease 

specificity rules. 

4. Explore the usage of the described system for the 

development of site of cleavage predictive models useful for 

peptide drug design specialists. 
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INTRODUCTION 

1.1 Peptides as therapeutics 

During the last two decades, the interest in peptide therapeutics has 

increased in pharmaceutical research and development. Peptides 

position in the pharmaceuticals molecule space is between small 

molecules and proteins. Peptides are defined as polypeptides 

containing from 2 to 50 amino acids (aa) but differ biochemically 

and therapeutically from small molecules and proteins [1,2]. 

Peptides can act naturally as hormones, neurotransmitters, growth 

factors or antibacterial agents. They are generally thought to be 

well-suited for diseases where the target is a protein-protein 

interaction [3, 4]. Peptides have great potential as new drugs due to 

a good safety and tolerability profile, a higher efficacy and 

selectivity comparing to small molecules [1-3,5-7] and high 

specificity to certain protein targets, for example G-protein-coupled 

receptors (GPCR) [1,5,6]. 

Recently, peptides became an important element on the 

pharmaceutical market. Peptide therapeutics timeline on 

pharmaceutical market is shown in Figure 1. The initial appreciation 

of the peptide drugs was related to the fact that native peptides 

could be used as a replacement therapy in case of lack or absence of 

endogenous hormone. The first peptide administered as a drug was 

insulin extracted from animal pancreas in the 1920s. Insulin became 

the first commercially available peptide therapeutic [8]. Since then 

several more natural peptides such as adrenocorticotropic hormone 

(ACTH) and calcitonin have been used as a hormone therapy [9]. 

Later when synthetic strategies became available synthetic 

oxytocin, vasopressin and octreotide (synthetic analogue of 

somatostatin) entered in the pharmaceutical market. In 1982 when 

the recombinant technique was developed the first recombinant 

insulin was introduced [8]. In 1988 one of the most important cell 

permeable peptides (CPP) - trans-activator of transcription protein 

(TAT) from human immunodeficiency virus-1 (HIV-1) was 

discovered [10]. Moreover, venoms, plants, bacteria and fungi were 

considered as a new source for isolation of new natural peptide 

therapeutics. 



6 

Figure 1. Peptides utilization timeline in drug development 

The new knowledge in genomics and proteomics provided 

additional information about potential peptide receptors targets [9]. 

In addition, other more complex peptide structures such as 

conjugates gained popularity and entered in clinical development 

since 2010. Conjugation was used as a methodology to increase 

half-life time and improve stability profile of the peptide drugs. 

From a chemical point of view, peptide drugs can be divided in 

three main groups (native, analogues and heterogenous), where 

heterogenous are the peptides discovered through synthetic library 
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screening or phage display [9] or using other methods but 

independently from the native peptides. 

Today, 68 peptides are represented on the worldwide drug market, 

approximately 155 peptide-based drugs are in active early 

development and 260 are tested in clinical trials [1, 5, 9]. It is worth 

mentioning that about 28 peptide drugs were approved worldwide 

since 2000s [8] (Figure 2). Recently the most successful peptide 

drugs available on the market are Copaxone, Victoza, Lupron, 

Zoladex, and Sandostatin [2, 11]. Peptide drugs are well-suited for 

treatment in a wide range of therapeutic areas, such as diabetics, 

cancer, osteoporosis, hormone therapy, cardiovascular diseases, 

anemia, bowel syndrome, Cushing’s disease, multiple sclerosis, 

HIV, and many more [3]. 

Figure 2. Development status of therapeutic peptides. 

 

 

Depending on peptide drug target localization and/or amount of the 

targets peptide therapeutics can be classified in three main groups: 

• Peptide drug with extracellular target (most of the peptide 

drugs available on the market) 

• Intracellular peptides (CPPs used for drug delivery) 

• Hybrid peptides (Dopastatin, “Twincretins”) 
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The largest group of peptide drug targets is represented by GPCRs, 

the remaining targets are ion channels, and other extracellular 

targets such as structural proteins or secreted enzymes. Big portion 

of peptides available on the market or in development is represented 

by antimicrobial peptides. Only few peptides, so called cell 

penetrating peptides, are used to treat intracellular targets in drug 

delivery [9, 12, 13]. CPPs are short amino acid oligomers (5-30 

residues) that contain or correspond to protein transduction domains 

(PTDs). The most important feature of CPPs is their ability to 

directly permeate the cell membrane and consequently the ability to 

deliver substances (e.g. proteins, antibodies, small molecule drugs 

etc.) into cells [12, 13]. As any peptide, CPPs have advantages 

comparing to small molecules, such as low cytotoxicity even at the 

concentration at which CPP permeation occurs and are 

metabolically degraded after delivery of the accompanied 

substance. Also, several peptides were developed as multitarget 

drugs. For example, Dopastatin was developed to address two 

targets involved in neuroendocrine tumor disease pathology and 

was synthetized as a hybrid of peptidic somatostatin receptor 

agonist linked to a small molecule dopamine agonist [14]. Other 

hybrid molecules are “Twincretins”, they are glucagon-like peptide-

1 (GLP-1) agonist and the glucagon of gastric inhibitory 

polypeptide (GIP) receptors agonist [15]. Another peptide that acts 

as GLP-1 agonist covalently bonded to a proprotein convertase is 

subtilisin/kexin type 9 (PCSK9)-inhibiting antibody [16]. 

1.1.1 Peptide drug advantages and 
disadvantages 

Since many native peptides are natural ligands for many cell surface 

receptors, they are acting as agonists in many pathways and 

therefore recognized as a potent and highly selective candidate 

drug. Currently, most of the peptide drugs are represented by native 

peptide analogues since their absorption, distribution, metabolism 

and elimination (ADME) properties, safety and toxicity profiles are 

known and easier to predict. On the contrary, synthetic peptides 

require more attention to the analysis of ADME and toxicity 

(ADMET) properties since the chemical structures of some of the 

canonical monomers used for the synthesis are modified and it is 

necessary to evaluate the potential ADMET properties of the new 

molecule produced. 
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Limited development of therapeutic peptides occurred in the past 

due to insufficient ADME properties: low permeability, low 

solubility, short half-life time and limited residence time in tissues. 

Low cell permeability is often related to structural factors such as 

high hydrogen bonding capacity and low lipophilicity [3]. Because 

of this limitation the therapeutic application of the peptide drugs is 

restricted to extracellular and transmembrane agents, excluding the 

group of peptides so-called cell penetrating peptides. Another 

permeability issue is that peptides cannot easily pass the 

gastrointestinal (GI) barrier, thus parenteral administration route is a 

preferable comparing to oral and that one is not the most convenient 

and compliant route of administration. Moreover, peptides cannot 

cross blood-brain barrier (BBB) and it excludes central nervous 

system (CNS) drug targets [11]. Therefore, new techniques were 

developed and applied to improve permeability properties of the 

peptides described below. Moreover, low oral bioavailability is 

more frequently related to physiological processes. Since natural 

peptides exist as a part of the natural pathways they act as agents in 

well-established system. It means that they are produced as an 

answer to the biological signal, processed, released, they perform 

their function and then are rapidly metabolized to turn off the 

signal. Fast extraction happens through proteolysis, and pH 

dependent hydrolysis in blood, GI tract, and liver with consequent 

renal filtration [1,3,7,17]. Therefore, natural peptides have in 

general a short half-life. On one hand it is a limitation because 

peptides cannot be administered orally and should be administered 

through injection or delivered via non-oral routes such as trans 

buccal, nasal, inhaled or transdermal [1-3,5,7,17]. On the other 

hand, it means that drug-drug interactions are rarely observed, and 

the toxicology profiles seem to be safer than for small molecules 

because peptides do not accumulate in the tissue and metabolism in 

liver is not generally significant. [8]. 

In case that the peptide drug is administered orally there are several 

enzymatic barriers that should be crossed to become a successful 

drug (Figure 3). 



10 

 

 

Figure 3. Enzymatic barriers that should be considered during 

drug development of orally administered peptide 

It is well known that numerous human proteases are involved in 

peptide degradation. The most important barrier after oral 

administration is the lumen of the small intestine, which contains 

peptidases secreted from the pancreas (e.g. chymotrypsin), as well 

as cellular peptidases from mucosal cells. The second one would be 

the brush border membrane of the epithelial cells, which contains at 

least 15 different peptidases [18]. Therefore, several structure-based 

peptide design methodologies described below were developed to 

improve the stability of the peptide drug. 

1.1.2 Peptide drug structure-based design steps 

During rational peptide therapeutics design the following traditional 

structure-based design steps are usually completed (Figure 4). 

These steps are essentially important for identifying possible sites 

of substitution since these chemically labile residues can be 

isomerized, glycosylated or oxidated: 
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• identification of minimum active sequence (e.g. known 

crystal structure of the peptide with given secondary and 

tertiary structure) and selection of the lead compound; 

• positional scanning to determine critical amino acids 

through alanine substitution (Ala-scan) and analysis of small 

focused libraries and structure-activity relations (SAR), 

• protection from degradation at the terminal ends with 

modification of the C- and N-terminal of the peptide 

preventing degradation by carboxy- and aminopeptidases, 

• identification of the sites of cleavage (e.g. during 

metabolites elucidation) and finally chemical modifications 

applied during structure-based peptide design. These 

modifications are implemented to improve the following 

peptide candidate drug properties: selectivity, solubility, 

stability, bioavailability, safety and toxicity [11]. 

• And finally, perform substitution of amino acids and 

building a SAR via experiments such as an alanine scan and 

estimation the half maximal effective concentration (EC50) 

for each of the modified compounds. 

 

Figure 4. The traditional structure-based design strategies that 

are used in peptide drug discovery. 

Currently, several strategies are applied to select peptide lead 

compounds: 

• Native peptides used as a starting point; 

• Peptides derivation from natural products; 

• De-novo peptide discovery; 
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• Peptide discovery through genomic, proteomic, peptidomic 

approaches. 

The first and most common is when a native known peptide 

molecule is used as a starting point. Native peptides are synthetized 

by ribosome and composed from canonical standard amino acids 

connected through peptide bonds. It can be a peptide with a known 

target of interest such as hormone. In this case the main efforts are 

spent on optimizing its ADME properties, increasing the half-life 

and/or improving the stability and selectivity using synthetic 

chemical modifications. Octreotide and leuprolide were discovered 

as synthetic analogues of the natural hormones somatostatin and 

luteinizing-hormone releasing hormone (LHRH), respectively. The 

second strategy would be a derivation of a peptide candidate drug 

from natural product and its optimization to improve its ADME 

properties [11,19,20]. The third strategy would be de-novo peptide 

discovery. In this case the screening is performed on synthetically 

or biologically (phage, mRNA) produced compound libraries [10-

13]. The fourth and last strategy is using genomic, proteomic, 

peptidomic approaches. In this case the efforts are spent in finding 

peptides of interest in different species or finding a new activity for 

known peptides [11,21]. 

Natural product derived peptides provided productive starting 

points for many drug discovery strategies since they contain 

structures that aim to improve peptide membrane permeability 

properties, stability and bioavailability comparing to the native 

ones. For example, non-ribosomal synthesized peptides controlled 

by non-ribosomal peptide synthetases (e.g. vancomycin, structure is 

presented in Table 1) produced by bacteria and fungi can contain 

nonstandard amino acids (e.g. N- and D-methylated aa) and 

cyclization motifs [11,19,20]. Peptides extracted from venoms are 

usually cyclic disulfide-rich sequences. Several optimized peptides 

reached the market such as captopril, exenatide and ziconotide 

[11,22-24]. Ziconotide structure is shown in Table 1. Plant-derived 

cyclotide peptides are characterized as thermally stable and orally 

active peptides. They are organized as a cyclic head-to-tail structure 

with disulfide bridges and demonstrate enhanced stability and 

bioavailability in plasma and gastric fluids. Lanthipeptides such as 

nisin are cyclic peptides that contain macrocyclic thioether linkage 

[11,25-27]. Nisin structure is shown in Table 1. All these structural 



 

13 

 

patterns and motifs were used in peptide medicinal chemistry 

optimization strategies and structure-based peptide design 

methodologies. 

Table 1. Structures of natural peptides 

 

Nisin 

  

Vancomycin Ziconotide 

1.1.2.1 Peptide drug optimization techniques 

To achieve better ADME properties, improve solubility, reduce 

aggregation tendency the following chemical modifications are 

typically applied: substitution of the common L-amino acids to D-

amino acids or other unnatural amino acids, backbone N-

methylation, alpha-methylation of amino acids, incorporating of 

beta-amino acids and others [3,7,11,28,29] (Table 2). 

Since hydrogen-bonding capacity (especially intramolecular 

hydrogen bonding), hydrophobicity/lipophilicity, size, and polar 

surface significantly influence peptide permeability, it was found 
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that the introduction of hydrogen bond acceptor–donor pairs in 

peptides can improve membrane permeability [30] (Table 2). 

To maximize half-life time of peptide drug the usual modification 

technique is implemented to introduce a limitation in the enzymatic 

degradation of the peptide. For this purpose, the possible cleavage 

sites should be identified, and it should be followed by substitution 

of identified residues and/or protection against proteolytic 

degradation through enhancement on the secondary structure (e.g. 

insertion of a structure inducing probe (SIP)-tail, lactam bridges, 

stapling or clipping of peptide sequences or cyclization) [1,16] 

(Table 2). Several strategies were developed to specifically increase 

half-life of peptide in plasma such as peptide acylation, insertion of 

albumin-binding peptide elements in the peptide backbone, 

conjugation to albumin-binding antibody fragments [1] (Table 2). 

Also, the N-terminus residue of a peptide correlates to its half-life in 

plasma. For example, if peptides contain Met, Ser, Ala, Thr, Val, or 

Gly as N-terminus, they have longer half-lives. On the contrary, 

half-life is shorter if peptides contain Phe, Leu, Asp, Lys, or Arg as 

N-terminus. Moreover, peptide sequences rich in Pro, Glu, Ser, and 

Thr are more sensitive to enzymatic degradation [3]. To reduce 

renal elimination, polyethylene glycol (PEG)-ylation can be used to 

reduce globular filtration [35]. 

Table 2. Strategies applied to improve peptide ADME 

properties 

To improve 

solubility and 

reduce 

aggregation 

tendency 

Chemical modifications: 

Substitution of the common L-amino acids to D-amino 

acids or other unnatural amino acids; 

Backbone N-methylation; 

Alpha-methylation of amino acids; 

Incorporating of beta-amino acids; 

Salt-bridge formation; 

Cyclization of the peptide; 

Deamination; 

Oxidation; 

Isomerization; 

Peptidomimetic bonds incorporating; 

Usage of peptoids (poly-N-substituted glycines); 

Usage of aza-peptides and others 

To improve 

permeability 
Introduction of hydrogen bond acceptor–donor pairs 
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Table 2. Strategies applied to improve peptide ADME 

properties 

To maximize half-

life time  

Enhancement on the secondary structure: 

Insertion of a structure inducing probe (SIP)-tail; 

Insertion of lactam bridges; 

Stapling or clipping of peptide sequences; 

Cyclization 

 

Chemical modifications: 

Substitution of the common L-amino acids to D-amino 

acids or other unnatural amino acids; 

Backbone N-methylation; 

Alpha-methylation of amino acids; 

Incorporating of beta-amino acids; 

Deamination; 

Oxidation; 

Isomerization; 

and others. 

To maximimze 

half-live time in 

plasma 

Peptide acylation; 

Insertion of albumin-binding peptide elements in the 

peptide backbone; 

Conjugation to albumin-binding antibody fragments 

To reduce renal 

elimination 
Polyethylene glycol (PEG)-ylation 

Nowadays, new technologies are under development to produce 

semisynthetic organisms with expanded genetic code to produce 

non-canonical proteins [12,31-34]. These changes are applied 

during the design-make-test drug discovery cycle, with hopes of 

improving the physicochemical and pharmacokinetics properties of 

the compound of interest. Synthetic and modified peptides require 

more attention to be paid to the analysis of ADMET properties 

since non-canonical monomers can be incorporated, therefore, it is 

crucial to evaluate these properties rapidly in early development. 

1.2 Examination of peptide ADME properties 
and stability 

In accordance with U.S. Food & Drug Administration drug 

discovery and drug development process consists of the following 

steps: 

• drug discovery and development; 
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• preclinical research; 

• clinical research; 

• FDA review; 

• FDA post-market safety monitoring. 

During each of these stages drug compound should be examined 

and tested through different assays to evaluate its ADMET 

properties and safety profile. Several criteria should be considered 

during assay selection depending on the stage such as available 

amount of the compound, tissue where the compound testing should 

be performed, number of samples to be analyzed. For example, in 

the early discovery and development stages, preclinical research 

and clinical research the amount of the investigated compound is 

limited, and highly sensitive analytical approaches are needed to 

perform qualitative and quantitative evaluation. On the contrary, 

there is no such limitation in the last stages of the drug development 

process. 

Early preclinical investigation process can be additionally split in 

five steps: 

• target identification; 

• target validation; 

• hit finding; 

• lead finding; 

• lead optimization. 

Each of these steps involves certain tasks to be completed. During 

target identification a target molecule search is performed. This 

molecule should be related to the disease of interest and involved in 

the disease development process. At the next step the selected target 

should be tested to find out if it is therapeutically useful and its 

effect on the disease of interest. After that hit finding is performed 

to identify a compound that demonstrates interaction to the selected 
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target. During lead finding ADME properties of the hit compound 

are evaluated to prove that they are reaching the necessary levels 

and finally the selected compound is optimized to improve its 

ADME properties. Due to the significant developments in the 

automatization of the drug discovery process, data processing and 

analysis especially at the early stages, it starts to be possible to 

investigate large number of compounds in short time (high-

throughput screening (HTS)), therefore, high number of samples 

should be analyzed by the multiple bioassays to evaluate the 

properties of the compound of interest. 

Speed, selectivity and sensitivity should be considered before the 

selection of the bioassay and analytical technique to measure the 

ADME properties, stability, safety and toxicity profile. Moreover, it 

is important to consider what information is the most critical for 

answering the questions of interest. For instance, in absorption 

studies the main interest is about the amount of parent peptide in 

serum or plasma after administration, thus a parent drug 

quantification assay would be required. Alternatively, the 

mechanisms of the route of absorption (e.g., lymphatic or vascular) 

or the degree of metabolism can be investigated and in this case 

analysis of both parent therapeutic and metabolites in lymph or 

blood should be performed. Measurements of the concentrations for 

the parent drug in tissues of interest and/or the metabolites can be 

performed during the distribution studies. The following criteria 

should be also considered to select the bioassay: 

• analyte of interest; 

• matrix; 

• sensitivity and specificity; 

• final goal of the bioassay; 

• number of samples needed for the bioassay. 

The analyte of interest should be identified to understand the 

ADME characteristics of the peptide therapeutic. In many situations 

the analyte of interest is the parent molecule. In some cases, ADME 

properties of primary metabolites could also be of interest because 
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these molecules can be pharmacologically active. In such a 

situation, it may be necessary to ensure that the methods used can 

confirm that all the pharmacologically active sites of the molecule 

are intact. It may also be of interest to elucidate metabolite 

structures and measure its amounts to understand the differences in 

ADME of the active components upon metabolism. This can be 

achieved by radiolabeling of each component with a separate 

radioisotope and using tissue sampling to obtain highly quantitative 

tissue concentrations. In some situations, the identity of the 

metabolites can be unknown at the time of the design of the ADME 

studies, and thus careful consideration of the analytical methods and 

study design is required to ensure that all relevant metabolites can 

be identified and quantitated. 

The study design and choice of analytical method is significantly 

influenced by the matrix. For example, if distribution and 

elimination studies are performed in solid tissue use of certain 

methods (e.g., immunoassays and mass spectrometry) can be more 

difficult, time-consuming and less sensitive comparing to 

application for these approaches in liquid matrices such as plasma 

or serum [36]. Additionally, the commonly used approaches applied 

for tissue investigation can be classified as destructive and non-

destructive. The destructive approach is where the sacrifice of 

individuals or groups of animals at specified time points is followed 

by analysis. These methods have the disadvantage of preventing 

serial assessment of tissue distribution within individual animals 

and can require relatively large numbers of animals. To overcome 

these limitations non-destructive methods such as imaging, 

including PET and optical imaging can be used. As it was described 

before, large number of samples should be evaluated during HTS 

and therefore large number of animals should be involved in the 

investigation, therefore, tissue investigation should be avoided on 

the early stage due to the regulatory authority’s requirements. 

The assay sensitivity is a critical factor since it is highly influenced 

by other aspects of study design, including matrix and analyte. The 

assay should be sufficiently sensitive to produce reliable 

quantitative measures of the desired analyte (s) and to be able to 

measure compound of interest at pharmacologically relevant 

concentrations with the necessary accuracy and precision. As 

mentioned above, during early drug discovery stages available 
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amount of the compound is relatively low, therefore, mass 

spectrometry and nuclear magnetic resonance spectroscopy are 

preferable analytical approach to be selected. 

Assays used to measure ADME properties of the compound of 

interest can be performed in vitro, in vivo and in silico. Depending 

on the result of the assay they can be split in two main groups: 

• Bioassays where actual analytical measurement is done 

without previous preparation of the sample; 

• Bioassays that need a sample preparation step before the 

actual analytical measurement is done. 

In the first group the bioassay itself provides an analytical read out 

that is used to determine the biological activity of a test substance in 

a biological fluid being the result information on functional and 

biological response from the test system [37]. For example, 

immunoassay that is an analytical procedure that measures the 

concentration of a test substance in a biological fluid. It uses the 

principle of specific binding of antigen and antibody, where antigen 

and antibody can be determined using different methods, for 

example, labeling (by radiotope or colloidal gold etc.) or other 

techniques (e.g. agglutination, Western blot etc.). Because of the 

high sensitivity and specificity, immunoassay was a method of 

preference for the peptide quantification, but the main disadvantage 

of the method is that it cannot distinguish active and metabolized 

peptides. Thus, application of immunoassay for metabolism study is 

limited [37, 38]. It is used for drug analyte sample measurement and 

for pharmacokinetic (PK) studies [39]. 

Another example is the labeling approaches. Labeling techniques 

are also used for pharmacokinetics and metabolism studies. 

Peptides can contain certain sequences that can be used as a target 

for labeling. Different labeling strategies are used directly such as 

radiolabeling (e.g. halogenation or complexation with metallic 

radioisotopes) [36]. Fluorescent labeling has become a routine 

procedure used to evaluate physical properties, biodistribution and 

pharmacokinetics of the compounds of interest. But labels can 

influence the physicochemical properties of the molecule and it can 

lead to undesirable oxidation, deamidation or aggregation [36]. 



20 

 

The second group contains bioassays are the ones that needs a 

sample preparation step before the actual analytical measurement is 

done. For example, in the case of liquid chromatography (LC), mass 

spectrometry (MS), nuclear magnetic resonance (NMR) 

spectroscopy some experimental steps are needed (i.e. dissolution, 

centrifugation etc.). They are described in detail below. 

1.2.1 Bioassays applied on peptides 

Multiple in vivo, in vitro and in silico assays have been developed 

to address the ADME and stability challenges of peptides. 

The combination of in vitro data and in vivo studies can be used to 

determine whether low oral bioavailability is related to poor 

absorption or fast first-pass liver extraction. In vivo animal models 

are frequently used to study peptide bioavailability and fraction 

absorbed in nonsurgical or portal vein cannulated (PVC) animals. 

Transporter knockout animals (e.g., PEPT1 knockout mice) are 

used to understand the contribution of uptake transporters in oral 

absorption [3]. 

The bioanalysis of peptides can be challenging due to low 

sensitivity and selectivity, high nonspecific binding and protein 

binding, low recovery, carryover, solubility, and stability issues [3]. 

These challenges can be addressed by: adding protease inhibitors to 

the collection tubes and putting these tubes on wet ice immediately 

after blood collection. Adding organic solvents, acids, salts can help 

to prevent further hydrolysis during sample preparation and 

analysis. Increasing peptide solubility helps to overcome 

nonspecific binding [40]. 

Peptide structures and physicochemical properties can be similar 

either to small molecules or protein. Thus, strategies used to 

evaluate the in vivo clearance of small molecules can be applied to 

small and lipophilic peptides (cyclosporine) (e.g., via P450-

mediated metabolism) [43]. Peptides similar to proteins are 

eliminated through proteolysis, renal filtration, catabolism, and 

endocytosis. Ttherefore, allometric scaling can be an effective tool 

to predict human PK parameters (e.g., volume of distribution and 

clearance) from preclinical species [3]. 
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1.2.1.1 Proteolytic stability investigation 

Peptide drugs can be administered through injections 

(subcutaneous, intravenous etc.), via other routes such as trans 

buccal, nasal, inhaled, transdermal or orally [1-3,5,7,17]. When the 

peptide therapeutic is administered orally there are several 

enzymatic barriers that should be crossed to get to the potential 

target and thus it can be digested by numerous proteases. 

Consequently, proteolysis is one of the major elimination pathways 

for most peptide drugs. 

Therefore, in early preclinical studies in vitro metabolic stability 

assays should be performed using incubations of the peptide of 

interest in individual proteases or complex matrices such as blood, 

plasma or serum. Moreover, cell cultures can be used to measure 

metabolic stability of the compound, i.e. in hepatocytes cells. 

During sample preparation experimental conditions can be 

optimized by evaluating and comparing different organic solvents to 

obtain an adequate extraction of the parent peptides and their 

metabolites and to optimize matrix effect. For example, in case of 

pepsin, pH should be reduced to activate the protease. Both kinetic 

information (in vitro intrinsic clearance and half-life) and 

degradation products can be determined when peptides are 

incubated with individual proteases or biological matrices in order 

to evaluate their stability. This information is used to guide 

structure modifications to improve peptide stability. 

The typical matrices that are used for various species are: 

• plasma/serum and blood to evaluate degradation in systemic 

circulation; 

• GI fluids (simulated gastric fluid (SGF), simulated intestinal 

fluid (SIF)), intestine brush border membrane vesicles 

(BBMV), and intestine microsomes or S9 to examine GI 

stability and predict oral bioavailability; 

• liver microsomes and hepatocytes to study liver metabolism 

by the various liver enzymes; 

• kidney BBMV, microsomes, or homogenates to assess 

kidney degradation; 

• tissue homogenates to examine tissue stability; 
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• assay media and formulation vehicles to ensure acceptable 

stability.  

Recently, information was collected for about 500-600 human 

proteases in total and from these group about 300-400 are functional 

in the human body [45-48]. MEROPS [49,52], CutDB [50] and 

ENZYME databases [51] integrate available information about 

proteolytic sites and, consequently, about proteases, their cleavage 

sites, substrates and inhibitors. This information can be used to 

identify possible labile residues in the candidate peptide for 

individual proteases. But in drug discovery, the proteolytic enzymes 

for a specific peptide are not always known. Consequently, the sites 

of cleavage are typically identified using liquid chromatography–

mass spectrometry (LC-MS) through elucidation of the metabolites 

structures. 

1.2.2 Analytical techniques to perform metabolite 
identification of peptides 

Drug metabolism properties are one major determinant that 

characterizes a successful drug candidate. Metabolic stability 

largely contributes to bioavailability of the active compound and 

thus the pharmacological response. Nowadays, many analytical 

techniques for the identification and structure elucidation of 

metabolites are available. This knowledge can help to understand 

aspects of bioavailability and it is crucially important to get this 

information as soon as possible during the drug discovery process. 

The study of peptide drug metabolism is a complicated process 

which requires sophisticated analytical techniques. Selection of the 

most suitable technique generally requires a compromise among 

speed, selectivity and sensitivity. Currently, NMR, gas 

chromatography (GC), liquid chromatography including high 

performance liquid chromatography (HPLC), and capillary 

electrophoresis are widely used in metabolic profiling and targeted 

metabolite analysis for disease diagnosis and treatment, detection 

and identification of biomarkers and drug synthesis as well as 

metabolism investigations [53-55]. Moreover, analytical separation 

methods such as GC, HPLC coupled with mass spectrometry have 

been investigated for their application to metabolism research. 
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Mass spectrometry is an essential tool for efficient and reliable 

quantitative and qualitative analyses: metabolite formation and 

identification for small molecules, peptides and others. The 

characterization of metabolites in biological matrices becomes more 

challenging as the complexity of the matrix background increases. 

Mass spectrometry is particularly attractive because of the higher 

selectivity between similar peptides, higher accuracy and precision 

and lower requirement for specific reagents [36]. Mass 

spectrometry and tandem mass spectrometry (MSMS) experiments 

are the major tools used in protein and peptide identification. Mass 

spectrometers measure the mass/charge ratio of analytes. For 

protein studies, this can include intact proteins and protein 

complexes [37]. In case of top-down sequencing fragment ions 

produced by gas-phase activation of protein ions are measured [56-

59]. In case of bottom-up sequencing peptides produced by 

enzymatic or chemical digestion of proteins (mass mapping) 

[39,60], and fragment ions produced by gas-phase activation of 

mass-selected peptide ions are measured [61]. The application of 

MS and MSMS to proteomics takes advantage of the vast and 

growing array of genome and protein data stored in databases. 

Protein identification by mass spectrometry requires an interplay 

between mass spectrometry instrumentation (how molecules are 

ionized, activated, and detected) and gas-phase peptide chemistry 

(which bonds are broken, at what rate, and how cleavage depends 

on factors such as peptide/protein charge state, size, composition, 

and sequence) [60]. 

Different types of mass spectrometers that serve different purposes 

are available to the DMPK (drug metabolism and pharmacokinetics) 

scientists. Originally triple stage quadrupole mass spectrometers 

had been developed to sensitively, specifically and precisely 

measure drugs and metabolites in biological matrices and enable 

qualitative analysis using scanning modes. These scanning modes 

are full scan, precursor ion scan, selected reaction monitoring, or 

neutral loss scan as survey experiments and product ion scan as 

dependent experiments [62]. For the MS techniques the accurate 

mass data obtained by using time-of-flight (TOF) mass 

spectrometers was a breakthrough in metabolite profiling. 

Therefore, typically triple stage quadrupole is used for the 

quantitative analysis and quadropole time-of-flight (QTOF) and ion 

trap (IT)/Orbitrap mass spectrometers are used for qualitative 
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analysis. High resolution (resolving power RP >30,000) with good 

mass accuracy (<5 ppm) can be reached by two mass spectrometer 

type of instruments: TOF-MS and Fourier transform (FT)- MS, 

including the FT ion cyclotron resonance and the Orbitrap [70]. One 

of the main difference between the two types of instrument used for 

the peptide incubation data is the duty cycle [63]. 

More recently, liquid chromatography coupled with high-resolution 

mass spectrometry (LC-HRMS) has gained an important role [38] 

for both quantitative [64] and qualitative analysis in DMPK studies 

[62] specially, when metabolites should be separated and identified 

with a high degree of certainty in complex biological matrices [37, 

39,60,61]. One of the main advantages of HRMS is that it almost 

does not need to be tuned and large numbers of analytes can be 

analyzed simultaneously. Liquid chromatography is extremely 

important in analyte preconcentration and sample cleanup. 

Significant progress has been achieved in separation efficiency with 

the development of core-shell technology, resulting in LC peak 

widths of only a few seconds [65]. Additionally, improvements in 

chromatographic separation such as ultra-high-performance liquid 

chromatography (UPLC) have generally led to higher 

chromatographic resolution via sharper peaks and correspondingly 

higher MS sensitivity [66, 70]. 

Typically, LC-HRMS is applied using data-dependent acquisition 

(DDA). In DDA, precursor ions are selected based on their 

abundances and are serially fragmented. Although commonly used, 

DDA has inherent limitations, such as stochastic and irreproducible 

precursor ion selection, undersampling and long instrument cycle 

times. The higher resolution, improved mass accuracy and 

sequencing speed of the most recent mass spectrometers partially 

reduce these problems. Also, the introduction of a preferred list of 

ions that represents the potential products formed can help in having 

a more reliable precursor ion selection. Unbiased data-independent 

acquisition (DIA) strategies have also been developed to overcome 

the limitations of DDA and improve reproducibility. DIA 

approaches feature parallel fragmentation of multiple precursor 

ions, regardless of intensity or other characteristics, resulting in 

complex but comprehensive production of data. DIA methods 

enable the acquisition of a complete, unbiased sample record, 

enhancing quantification reproducibility. During MSE (where E is 
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collision energy) acquisition (one of the most common DIA 

methods), alternating MS scans are collected at low and high 

collision energy, providing information on precursor and fragment 

ions, respectively. Chromatographic coelution profiles of precursor 

ions and their corresponding fragment ions can be used to generate 

deconvoluted product-ion spectra for each precursor, which can be 

subsequently searched against databases. Thus, in contrast to DDA-

based methods, which are intrinsically limited by scan time, DIA 

methods are theoretically limited only by system peak capacity [57]. 

An established DIA approach to data collection, such as ‘all-in-one’ 

fragmentation or MSE [66], employs a rapid alternation between 

two full scan MS functions. The first scan function applies a low 

collision energy which results in precursor ion spectra (drug and 

metabolites), and the second scan function acquires data at high 

collision energy resulting in almost simultaneous acquisition of high 

resolution fragment ion (FI) spectra. The use of QTOF platforms 

with UPLC provides well-resolved peaks and in most cases the 

predominant FIs can be associated with a single matching precursor 

ion [66]. An extension of the MSE approach was enabled by the 

introduction of ion mobility (IM) functionality into mass 

spectrometers. Briefly, IM-MS is a two-dimensional separation 

technique that separates ions in a dimension related to structure 

(charge-to-surface area ratio) as a function of their collision cross 

section (CCS) and subsequently in a second dimension according to 

the mass-to-charge ratio [56]. CCS represents the area of the ion 

available for collisions with neutral molecules in the gas phase. 

Many forms of ion mobility exist: high field asymmetric waveform 

ion mobility (FAIMS), differential ion mobility, traveling wave ion 

mobility (TWIMS) and uniform field ion mobility (IMS). A specific 

feature of ion mobility spectroscopy, when coupled with mass 

spectrometry and a post-IMS collision cell, is that FIs can be 

correlated with their precursor ions based on a shared drift time to 

generate IM-resolved spectra. This approach is particularly useful in 

complex samples [60] and HDMSE approaches have been applied to 

a variety of biological, pharmaceutical and environmental scenarios 

[53]. IMS provides an additional dimension of separation by 

improving system peak capacity while concomitantly reducing 

chimeric and composite interferences [56,57]. A key aspect of the 

combination of an IMS separation (typically occurring in the 

millisecond time-frame) and MS detection (typically occurring in 
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the microsecond time frame) is that it allows an additional 

separation step to be obtained on the MS time-scale (e.g., in 

addition to liquid chromatography), without compromising the 

speed of MS detection [67]. 

1.2.3 Semi-automated tools for metabolite 
identification of peptides based on MS data 

Technological advances in mass spectrometry such as accurate mass 

high resolution instrumentation have fundamentally changed the 

approach to systematic metabolite identification over the past 

decade [47]. Notwithstanding the sensitivity of these platforms, and 

the quality of the data which can be generated, their usage in drug 

metabolite identification can be a time-consuming task, several 

semi-automated tools were developed for MS peptide data 

interpretation. These approaches include four main groups: 

1. database searching (SEQUEST, MASCOT, etc.); 

2. de novo peptide sequencing (PEAKS, PepNovo, etc.); 

3. peptide sequence tagging (GutenTag); 

4. consensus of multiple search engines (Scaffold) [68]. 

These MS-based proteomics approaches have difficulties with 

sequencing cyclic peptides without prior linearization and they are 

limited to the 20 standard amino acids [2, 46,47]. 

Therefore, other semi-automated cheminformatic approaches were 

developed to assist the structural assignment of metabolites based 

on known parent structures such as: 

• BiopharmaLynx [69, 71]; 

• MetabolitePilot [72]; 

• Mass-MetaSite (MMS) [72-78]. 

These software tools are able to propose metabolite structures based 

on the combination of metabolite prediction and interrogation of 

analytical mass spectrometric data. 
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BiopharmaLynx is a new informatics package for vendor-specific 

software within the MassLynx approach [69, 71] that can analyze 

LC-MS data during peptide mapping studies. The basis of the 

MassLynx software algorithm is designed to compare each analyte 

sample with a control sample and perform correlation between 

retention time, m/z value, intensity and components from alternative 

detection technologies (e.g. diode array UV). This comparison 

allows to filter matrix-related peaks, therefore, excludes the false 

positive ones. BiopharmaLynx automatically annotates detected 

peptides structures related to the identified LC-MS peaks using 

accurate mass assignments and utilizes algorithms for filtering 

compound-related ions from endogenous matrix ions to identify 

only ions that are related to parent compound. It can recognize 

modified peptides in the analyzed sample [69, 71]. 

MetabolitePilot is a vendor-specific software package used in both 

pre- and post-data acquisition processes. Before acquisition during 

parent structure import this software generates inclusion list based 

on theoretical fragmentation of parent molecule. It includes 

predicted biotransformation reactions and any potential cleavage 

metabolites. This list is used to preferentially trigger MSMS data 

collection during acquisition for all included drug-related sample 

components, but also can trigger on any unexpected peaks above a 

preset intensity threshold. In post-acquisition phase MetabolitePilot 

is used to process the data in batches and extract metabolite 

information through comparison of up to five control(s) and a 

treated sample. The following information and features are used to 

identify potential metabolites: common product ions, neutral losses, 

isotope pattern and/or multiple mass defect filters. Also, it performs 

additional filtering of the false positives based on mass accuracy, 

score, retention time and MSMS similarity and selection of the 

major metabolites of interest based on analog and MS peak areas. 

Proposed structures should be checked by expert. Finally, each of 

the elucidated structures is scored to measure the confidence in a 

given interpretation [72]. 

During this study we used Mass-MetaSite [72-78] a vendor neutral 

approach that uses LC-MS data from peptide metabolic stability 

experiments to determine the specific metabolic sites for processing 

DIA (MSE and HDMSE) and DDA data. This tool can process 

datasets from both small molecule and peptide metabolic stability 
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experiments to determine the specific sites of metabolism for small 

molecules and metabolic cleavage sites for peptides and then store 

the results in a chemically aware database (WebMetabase, WMB), 

where chemical structure-based searches can be performed by 

structure and/or substructures. Mass-MetaSite uses as inputs the 2D 

structure of the compound together with control and treated sample 

data files. The data can be processed sample-by-sample manually or 

in a batch mode with an automatic processing of a set of sample 

files. MMS data processing is shown in Figure 5. 

 

Figure 5. Mass-MetaSite metabolites elucidation process 

The data processing involves two steps (Figure 5). Step-1 consists 

of automatic detection of the chromatographic peaks related to the 

parent compound, i.e. metabolites. The methodology for peptides 

does not differ from the one described for small molecules [72]. 

Step-2 consists of structure elucidation of the potential metabolites 

based on the fragmentation pattern for each peak detected. Once the 

list of potential chromatographic peaks has been selected (step-1), 

Mass-MetaSite compares the m/z associated with each peak to all 
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the possible theoretical metabolites based on a list of included 

biotransformation reactions [72]. In this study, the only 

transformation of interest selected was the hydrolysis of amide 

bonds. 

The overall principle for the structural elucidation of metabolites is 

a comparison of fragment ions obtained from the parent (assigned 

from the incubation time t = 0 sample) and the ones from the 

metabolites (t = incubation time) and then identifying mass shifts 

corresponding to the mass of the metabolite or common neutral 

losses [76]. 

In addition to the above comparative fragmentation analysis, the 

fragmentation of the metabolite without comparison to the parent 

molecule is considered. This fragmentation strategy is most 

advantageous in the case of cyclic peptides where the metabolite 

could be a linear peptide (the amide hydrolysis is occurring in the 

cycle) and fragmentation can be significantly different compared to 

the parent one. Fragmenting all the metabolite structures to the 

same extent as the substrate takes a prohibitive amount of 

computational time; therefore, the number of bonds that can be 

broken to generate metabolite fragments has been limited to 1. 

A score is assigned to each peptide metabolite based on the peak 

intensity and the number of matches/mismatches between the 

theoretical fragment m/z value and the m/z value observed in the 

MSMS spectrum [78]. Once Mass-MetaSite results have been 

uploaded into a database system like WebMetabase, they should be 

manually checked and approved by the expert. 

Mass-MetaSite can process the experimental data of peptide 

substrate structures up to 4000 Da in molecular. This limitation is 

related to the fact that maximum monoisotopic mass is used for the 

peak detection. 

During this study we used Mass-MetaSite to HRMS DDA and DIA 

data from in vitro incubation samples, to determine specific 

metabolic cleavage sites of peptides which involves reading peptide 

MSMS data, finding the chromatographic peaks related to the 

parent compound and elucidating the structure of the metabolites. 

Also, we used MMS to process MSE and HDMSE data to compare 
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the accuracy and quality of metabolites elucidation for small 

molecules and peptides. 

1.3 In silico cleavage site prediction tools 

1.3.1 Proteases catalytic mechanisms 

Recently, several protease classification systems were published, 

and they are shown in Figure 6. 

 

Figure 6. Proteases classification 

Proteases were classified in two groups: endoproteases and 

exoproteases, depending on the location of the target in the 

sequence. Endopeptidase action is directed on internal peptide bond, 

exopeptidase action is directed by the N-termini or C-termini 

(amino- and carboxypeptidases, respectively). 

Proteases fall into six main classes with respect to their catalytic 

mechanism: 

1. serine proteases; 

2.  cysteine proteases; 

3. threonine proteases; 
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4. aspartic proteases; 

5. glutamic proteases (not found in the mammals); 

6. the metalloproteases. 

For the remaining proteases the catalytic mechanism is known 

[49,79]. Proteases can be further classified into families that contain 

related sequences, which are clustered into clans that contain related 

tertiary structures. Metalloproteases and serine proteases are the 

most densely populated classes, respectively, followed by cysteine 

proteases, whereas threonine and aspartic proteases contain lower 

number of members, respectively [79]. 

Proteases in each class cleave peptide bonds through different 

catalytic mechanisms. Aspartic, glutamic, and metalloproteases 

utilize an activated water molecule as a nucleophile to attack the 

peptide bond of the substrate. Cysteine, serine, and threonine 

proteases, the nucleophile is an amino acid residue (Cys, Ser, or 

Thr, respectively) located in the active site that participates in 

covalent catalysis [79]. 

The primary determinant of protease specificity is the architecture 

of the protease active site because of its ability to interact with the 

amino acid residues surrounding scissile bond in the substrate. 

Proteolytic cleavage of peptides is directed by short amino acid 

motifs, from two to eight amino acids around the scissile bond that 

binds to the specific pocket that defines proteases specificity. The 

amino acids surrounding the cleavage site are called P4-P3-P2-P1-

P1’-P2’-P3’-P4’ with cleavage site located between P1-P1’ [81,82]. 

The selectivity of the protease can vary depending on the amount of 

the preferred specific residues around the cleavage site of the 

substrate from generic proteases who discriminate only one residue 

in the cleavage site to highly specific when eight amino acids are 

important. Although the specificity could also depend on exosites 

and allosteric sites [80]. Active sites for cysteine, serine, aspartic 

proteases and metallopeptidases are presented in Figure 7. 
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Figure 7: Protease mechanisms for serine proteases (a); cysteine 

proteases (b); aspartyl proteases (c); and metalloproteases (d). 

© 2009 Nature Publishing Group Erez, E., Fass, D., & Bibi, E. How 

intramembrane proteases bury hydrolytic reactions in the 

membrane. Nature 459, 371–378 (2009). 

Specificity mechanism depending on serine protease for 

chymotrypsin, trypsin and elastase are illustrated on Figure 8. 

A  B  

C  

Figure 8. Specificity mechanism for serine proteases: A) 

Chymotrypsin; B) Trypsin; C) Elastase 

Most proteolytic enzymes cleave α-peptide bonds between naturally 

occurring amino acids, but there are some proteases that perform 

slightly different reactions. Thus, a large group of enzymes known 
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as DUBs (deubiquitylating enzymes) can hydrolyze isopeptide 

bonds in ubiquitin and ubiquitin-like protein conjugates; γ-glutamyl 

hydrolase and glutamate carboxypeptidase target γ-glutamyl bonds; 

γ-glutamyltransferases both transfer and cleave peptide bonds; and 

intramolecular autoproteases (such as nucleoporin and polycystin-1) 

hydrolyze only a single bond on their own polypeptide chain but 

then lose their proteolytic activity [79]. 

1.3.2 Cleavage data databases 

Nowadays, the information about proteases and their cleavage sites 

is widely spread across publications and databases but it is not 

always suitable for fast automatic computed searches. Following 

databases integrate available information about proteolytic sites 

and, consequently, about proteases, their cleavage sites, substrates 

and inhibitors: 

Table 3. Databases that integrate available information about 

proteases, their cleavage sites, substrates and inhibitors. 

ENZYME database Bairoch A. The ENZYME database in 

2000. Nucleic Acids Res. 

2000;28(1):304-305. 

doi:10.1093/nar/28.1.304. 

CutDB Igarashi Y, Eroshkin A, Gramatikova 

S, et al. CutDB: A proteolytic event 

database. Nucleic Acids Res. 

2007;35(SUPPL. 1):546-549. 

doi:10.1093/nar/gkl813 
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Table 3. Databases that integrate available information about 

proteases, their cleavage sites, substrates and inhibitors. 

MEROPS Rawlings ND, Waller M, Barrett AJ, 

Bateman A. MEROPS: the database of 

proteolytic enzymes , their substrates 

and inhibitors. 2014;42(October 

2013):503-509. doi:10.1093/nar/ 

gkt953. 

Rawlings ND, Barrett AJ, Thomas PD, 

Huang X, Bateman A, Finn RD. The 

MEROPS database of proteolytic 

enzymes, their substrates and inhibitors 

in 2017 and a comparison with 

peptidases in the PANTHER database. 

Nucleic Acids Res. 2018;46(D1): 

D624-D632. doi:10.1093/nar/gkx1134. 

Proteasix Klein J, Eales J, Zürbig P, Vlahou A, 

Mischak H, Stevens R. Proteasix: A 

tool for automated and large-scale 

prediction of proteases involved in 

naturally occurring peptide generation. 

Proteomics. 2013;13(7):1077-1082. 

doi:10.1002/pmic. 201200493. 

PMAP Igarashi Y, Eroshkin A, Gramatikova 

S, et al. CutDB: A proteolytic event 

database. Nucleic Acids Res. 

2007;35(SUPPL. 1):546-549. 

doi:10.1093/nar/gkl813 

Igarashi Y, Heureux E, Doctor KS, et 

al. PMAP: databases for analyzing 

proteolytic events and pathways. 

Nucleic Acids Res. 2009;37(suppl_1): 

D611-D618. doi:10.1093/nar/gkn683. 

This information can be used to identify possible labile residues in 

the candidate peptide drug for individual proteases. Most of the 

information in these databases is limited to 20 standard amino acids 

[46]. 

ENZYME nomenclature database is a repository that contains the 

nomenclature of enzymes referenced by Enzyme Commission (EC) 
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number and based on the recommendations of the Nomenclature 

Committee of the International Union of Biochemistry and 

Molecular Biology (IUBMB) [51]. 

The CutDB database [50] was one of the first publicly available 

databases created to collect information regarding individual 

cleavage sites reported in the literature. The database contains 

information about more than 5300 annotated proteolytic events that 

occur within 1702 protein substrates. These cleavage sites were 

registered for 164 metallopeptidases, 180 serine, 108 cysteine and 

61 aspartic proteases. 

The MEROPS is a publicly available peptidase database [49, 52] 

that integrates the available information about proteases from 

different organisms, their experimentally identified or predicted 

SoCs with their sequences, substrates and inhibitors. At the moment 

of writing, it contains over 900,000 sequences of the peptidases and 

more than 90,000 substrate cleavages and over 80% of them were 

mapped to UniProt database, the remaining ones were represented 

by cleavage sites in synthetic substrates. Peptidases are 

hierarchically classified in MEROPS. Each peptidase is annotated 

by primary substrate binding sites (though not necessarily 

secondary binding sites, known also as ‘exosites’) and the catalytic 

residues. Peptidase normally corresponds to a structural domain, 

and some proteins contain more than one peptidase domain. Each 

substrate is described by: a) the name, b) the UniProt accession 

number, c) the peptidase known to cleave that substrate with a link 

to the summary for that peptidase, and a count of cleavages 

performed by each peptidase, d) the residue number of the amino 

acid in the P1 position, e) the name of the peptidase responsible, f) 

the residue range of the substrate used in the experiment compared 

to the complete coding sequence that is presented in the UniProt 

entry, whether the cleavage is thought to be physiological or not; g) 

how the cleavage was determined (e.g. MS for mass spectroscopy 

etc.), h) a comment describing the purpose of the cleavage and a 

reference. Different types of searches can be performed in the 

database: sequence similarity search for peptidases, substrates and 

inhibitors with BLASTP, PSI-BLAST, FASTA, HMMER; search of 

the peptidase by name, MEROPS identifier, other identifiers such as 

UniprotKB, gene name, by family or clan name; search by 

specificity can be performed using cleavage site sequence, substrate 
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name, substrate UniProt accession, inhibitor, etc. User can add 

sequence of characterized proteins and hypothetical sequences from 

organisms that are of evolutionary, medical or economic interest. 

Proteasix is publicly available database of cleavage sites that 

contains information about 3500 protease/cleavage sites 

combinations from 191 different human proteases. In total over 

1700 unique protease/substrate pairs were described in the database. 

It was built using information collected in CutDB, Uniprot database 

and available literature. Each protease was annotated with cleavage 

site P4-P4’ and Swiss-PROT identifier number. Each cleavage site 

was aligned with Swiss-PROT substrate sequence. The user can 

perform a search of the cleavage sites using Swiss-PROT identifier 

or by name of substrate peptide, peptide substrate’s start and end. 

The output of the search is the list of the proteases associated with 

predicted cleavage sites. Mentioned search is performed through 

alignment of the input peptide substrate sequence to Swiss-PROT 

sequences. 

PMAP (proteolysis MAP) is a website that helps to improve 

understanding regarding proteolytic networks and pathways and 

proteolysis reasons. PMAP is connected to five databases (CutDB 

ProteaseDB, SubstrateDB, ProfileDB and PathwayDB) and thus 

links information from these databases together, where CutDB has 

information on more than 5000 proteolytic events. ProteaseDB 

contains basic information for a set of 150 human proteases and 

more than 45000 proteases acquired from MEROPS. The 

information is stored in a MySQL database and presented as a 

Molecule Page on a web server that displays a comprehensive set of 

annotations on 15 different features of proteases such as: a) 

predictions of PFAM domain structure [85], b) secondary structure, 

transmembrane regions, c) signal peptides and disordered regions 

and each page is linked to external sites (e.g. MEROPS, PDB, 

PubMed, etc.) from which the data was collected. SubstrateDB 

contains molecular information on documented protease substrates 

in CutDB. Data was extracted from MEROPS, human protein 

reference database, UniProt and original articles. For each cleavage 

site the primary sequence of the protein substrate with highlighted 

residues around cleavage site is described. Moreover, the following 

information is stored for each proteolytic event: a) molecular 

identity of the protease linked to ProteaseDB, b) substrate linked to 
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SubstrateDB, c) reference in the Literature Track, d) and other 

features associated if available (e.g. the method by which the event 

was detected, the potential consequences of the event, relevant 

cofactors, associated pathways, cell compartments where the event 

takes place, cell lines where the event is observed and information 

linking the event to any process or disease). Any registered user can 

curate the content of CutDB by adding new events, fixing errors or 

adding comments [49,84]. ProfileDB was generated to collect 

information of the substrate recognition specificity of proteases. 

PathwayDB uses data from four databases described above and 

comprise information about known pathways and hypothetical 

pathways reports in the literature [84]. 

Information stored in these databases can be used to identify 

possible labile residues in the candidate peptide for individual 

proteases. Although useful, these databases still have several 

limitations. None of the resources allows to perform an automatic 

search in batches, thus each Site of Cleavage (SoC) should be 

queried manually, except of Proteasix. But Proteasix contains 

information on a reduced set of proteases. Furthermore, none of the 

resources allows to add new experimental information in an 

automatic way to enrich the database information. Finally, these 

databases are publicly available and thus cannot be enriched with 

private data. 

1.3.3 WebMetabase Database 

In this study we planned to develop a new approach that uses LC-

HRMS DDA, DIA (MSE or HDMSE) data from peptide metabolic 

stability experiments or data coming from external sources such as 

MEROPS database to determine the specific metabolic cleavage 

sites. The peptide mode of Mass-MetaSite will be used to process 

the MS data and elucidate the metabolites structures and upload 

results into WebMetabase. Metabolites structures extracted from 

MEROPS will be directly uploaded into WMB. Therefore, this 

system should be able to combine data from multiple data sources. 

When data is stored in a chemically aware database (e.g. 

WebMetabase), each substrate and cleavage site is annotated by 

residues or structural blocks (SBs) contained in the sequence and 

described as a combination of pharmacophoric and/or 

physicochemical properties of each SB contained in the sequence. 
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For this purpose, we planned to use molecular descriptors (Volsurf 

descriptors [109,110] and SHOP descriptors [104-108], 

respectively). Therefore, the proposed methodology should be able 

to handle synthetic amino acid. Also, each stored residue is 

annotated with similarity score calculated based on pharmacophoric 

and/or physicochemical properties. 

Moreover, this new way to annotate the information should also 

include a system to perform an exact substructure and similarity-

based substructure search without being limited to any type of 

peptides and/or amino acid (cyclic/linear, natural/synthetic). 

Therefore, the methodology could be used to perform a structural 

search on the exact sequences to identify the experiments where a 

certain bond of interest participated in a metabolic reaction. In 

addition, the system should also be able to perform searches based 

on similarity of the molecular descriptors identifying the bond 

participated in a metabolic reaction that is similar to the bond of 

interest. The output of the searches should be a list of experiments 

that fulfill the search criteria. Additionally, the proposed 

methodology should be able to handle unnatural amino acid and/or 

cyclic peptides. The system should be linked to the software 

assisted metabolite structure elucidation based on MS data (e.g. 

Mass-MetaSite), so that the database can be automatically enriched 

with the new experiments. 

1.3.4 Available in silico prediction tools 

Predicting possible sites of cleavage for individual proteases is an 

important task to be completed during drug-design process of 

peptide therapeutics. Such information could be used to improve 

their stability and bioavailability as a promising drug. Currently, 

mass spectrometry techniques or peptide libraries profiling are 

typically used to identify possible sites of cleavage in peptide drugs. 

However, in most cases experimental identification of protease 

cleavage sites is a difficult, labor-intensive and time-consuming 

task and requires access to specialised equipment. Moreover, new 

peptide molecule synthesis is labor-intensive and time-consuming. 

In contrast to experimental methods, in silico prediction of 

proteolytic sites has been recognised as a useful alternative 

approach to provide valuable knowledge on probable protease-

peptide drug interaction relationships. Efficient computational tools 
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would reduce the number of experiments and would help to 

improve peptide drug structure before synthesis. 

Recently, several bioinformatics tools were implemented to identify 

possible proteolytic sites and proteases that can probably cleave the 

peptide of interest. These approaches use as input data extracted 

from databases such as MEROPS [49,52], CutDB [50], collect 

information from the available literature and/or experimental data. 

These approaches can be classified in two main groups: 

1. tools that provide general prediction for proteases from 

different classes (SitePrediction [86], PROSPER [101], 

PROSPERous [87], PoPS [88], ExPaSy [89, 90]); 

2. tools that provide prediction only for the specific proteases 

or the specific classes of proteases (CasCleave 2.0 [91], 

GraBCas [92], CASVM [93], Pripper [94], CasPredictor 

[95]). 

These approaches use protease specificity prediction models and 

depending on the way how models were developed they can be 

classified in four main groups: 

1. Sequence-based approaches (ExPaSy); 

2. Approaches that perform prediction using position-specific 

scoring matrix (PSSM) for individual proteases (GraBCas, 

CasPredictor, PoPS, SitePrediction); 

3. Approaches that use predictive models trained on sets of 

cleavage site specific descriptors (PROSPER, PROSPER-

ous, Pripper, CasCleave 2.0, CASVM); 

4. Approaches that combine methods explained (Proteasix 

[83]). 

The first group contains sequence-based approaches that use exact 

sequence motifs matching to a known cleavage site. The main 

limitation of these approaches is that they are restricted to the set of 

the known sites. 
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Approaches in the second group perform prediction of possible 

cleavage sites using PSSM for individual proteases based on the 

available information regarding cleavage sites of different 

proteases. The main limitation of these type of tools is that they are 

restricted by amino acids used to build scoring matrix and thus most 

of the cases limited to 20 standard amino acids and cannot perform 

prediction on synthetic peptides with unnatural amino acids. 

In the third group approaches each proteolytic site is represented as 

a set of cleavage site specific descriptors that defines the identity of 

each residue in the proteolytic site sequence. Different types of 

descriptors can be used: descriptors that explain physical, 

physicochemical, pharmacophoric properties, secondary structure of 

the cleavage site, solubility of the sequence around cleavage site 

and others. At the next step these approaches use different machine 

learning algorithm such as support vector machine learning 

algorithm (CASVM, Pripper, CasCleave 2.0, PROSPER, 

PROSPERous), logistic regression (PROSPERous), neural 

networks and others to train prediction models based on these 

descriptors. These models can use different size of local window 

around cleavage site, typically from two to sixteen residues. 

Finally, approaches in the fourth group combine methods explained 

above. For example, Proteasix can perform matching against the 

collection of the known cleavage sites from the literature and 

calculate probability of cleavage event appearance based on 

MEROPS specificity matrix. 

Since these tools use input data from databases such as MEROPS to 

develop models and identify possible labile residues in the 

candidate peptide drug for individual proteases, they still have 

several limitations. For example, none of the available resources 

allow to add new information in an automatic way to enrich the 

database content and tune the models. These tools do not provide a 

methodology for user to train their own models using private 

experimental data. Finally, these tools contain models trained for 

specific proteases and are not able to perform model developments 

for complex matrices (e.g. plasma, serum, blood etc.) or develop 

models for a specific group of the peptides. The later group of 

models can be particularly usefull for the development of the 
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synthetic analogues for a peptide of interest (e.g. analogues of 

LHRH, analogues of somatostatin etc.). 

1.3.5 WebMetabase Analysis Tools 

The availability of the database described above enables the third 

aim of the present work that is to be able to perform frequency 

analysis to discover the most frequent metabolically labile amide 

bonds. These frequency analysis results can be used to understand 

cleavage site appearance rules for the specific peptide family or for 

specific experimental condition (i.e. individual protease) within this 

database, like in the methodologies from the first group of models 

described above. Moreover, these results can be used to train 

cleavage site prediction models for individual proteases or complex 

matrices like in the third group of approaches. For this purpose, we 

planned to use and compare several machine learning algorithms 

since it was demonstrated in the literature that these methods are 

highly effective when applied in in silico tools for prediction of the 

sites of cleavage [87, 91, 93, 101]. 

Since we plan to annotate each amino acid and each cleavage site 

by its physicochemical and pharmacophoric properties using 

molecular descriptors, we can use these descriptors for the model 

training. In this case there would be no limitations related to the 

amino acids used for the training as it happens when the exact 

sequences of amino acids are used for the training. Also, our goal is 

to develop a system that can be linked to the software assisted 

metabolite structure elucidation based on MS data, consequently the 

database can be automatically enriched with the new experimental 

data and derived rules can be refined to tune the system for the 

experimental conditions and/or peptide families of interest. 
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2. RESULTS AND DISCUSSIONS 

Peptides therapeutics are gaining a significant role on the 

pharmaceutical market due to high selectivity and efficacy. 

However, one of the main aspects that usually have to be optimized 

in the case of peptide-based drugs is the low bioavailability and 

instability due to protease activity. Therefore, it is crucially 

important to identify primary metabolites of the peptides for 

incubations with individual proteases or complex matrices such as 

plasma in an efficient manner. In addition, in silico tools able to 

predict possible cleavage sites for various incubation conditions are 

also needed. This knowledge can be applied during drug 

development process to better understand when and where 

structural modifications are required to improve peptide ADME 

properties: stability and bioavailability. Currently, databases such as 

MEROPS or Proteasix integrate information regarding many 

proteases, their substrates, cleavage sites and inhibitors, collected 

from available literature and other public sources. This data is used 

in several publicly available in silico software tools such as 

PeptideCutter, PROSPER or PROSPERous to predict the Site of 

Cleavage (SoC). These approaches can help to design a peptide 

drug with increased stability against proteolysis. Nevertheless, the 

databases and tools described above have several limitations: 

1. Databases: 

a. Databases used for the model training dataset 

preparation cannot be enriched with new 

experimental data in an automatic way. 

b. Information for some type of peptides is not well 

captured i.e. peptides with nonstandard monomers, 

peptides with single or multiple cycling bonds. 

2. Model tools: 

a. A limited number of proteases have been modelled in 

the available tools. 

b. There are no prediction models trained for a complex 

matrix such as plasma. 

c. Models cannot be refined and tuned with new 

experimental information. 
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d. These tools are publicly available and therefore there 

is no possibility to build private models for internal 

use. 

e. Several tools cannot perform prediction on synthetic 

peptides that contain unnatural amino acids or 

peptides with cyclic structure. 

Consequently, our main aim for this thesis is to introduce and 

validate new workflow to predict and rank potential cleavage sites 

for a new candidate peptide-based drug without any limitations on 

peptide structure and no limitations in data source using the derived 

specificity rules for specific protease or complex matrix. In Figure 9 

the main workflow followed in this thesis is represented. 

 

Figure 9. Developed workflow to perform cleavage site 

prediction for peptide-based drug candidates 

This workflow contains several steps: 

1. In the first step we implemented a methodology based on Mass-

MetaSite (MMS) to process coupled to liquid chromatography - 

high-resolution mass spectrometry data (LC-HRMS) from in vitro 

incubation samples (Figure 9) (Articles 1, 2, 3). 

2. In the second step the system is used to store the results in the 

chemically aware database WMB (Figure 9) (Articles 1, 2, 3, 4). 

3. In the third step, we implemented an algorithm that performs 

frequency analysis (FA) based on exact match of residue structures 

in the site of cleavage (so-called simple frequency analysis, SFA) 

(Figure 9) (Articles 1, 2, 3). 
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4. In the fourth step, we implemented an algorithm that performs 

similarity frequency analysis (SimFA). This analysis reveals the 

group of metabolically labile amide bonds defined by similar 

pharmacophoric or physicochemical properties towards the specific 

proteases/specific media (Figure 9) (Article 4). 

5. In the fifth step, we implemented system that used created 

database to train cleavage site prediction models using different 

machine learning algorithms based on molecular properties of the 

identified cleavage sites (Figure 9) (Article 5). 

2.1 First step 

To complete these goals at the first step we implemented a 

methodology based on Mass-MetaSite (MMS) to process data-

dependent acquisition (DDA), data-independent acquisition (DIA) 

MSE and ion mobility-MS (high definition MSE, HDMSE) data from 

in vitro incubation samples (Figure 9). This developed methodology 

enables the elucidation of metabolite structures and thus allows to 

identify the cleavage sites. The step of the data processing involves 

reading peptide MSMS data, finding the chromatographic peaks 

related to the parent compound and elucidating the structure of the 

metabolites based on the fragment ions for parent and metabolite 

structures. 

In the first article we used the implemented approach to process 

DDA LC-HRMS analytical data collected for a set of fourteen 

peptide drugs (linear/cyclic, containing natural/unnatural amino 

acids) and four substrate peptides incubated with different 

proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic 

elastase, dipeptidyl peptidase-4 (DPP4) and neprilysin (NEP). This 

peptide set included two families of analogues: the LHRH peptide 

analogues that includes LHRH peptide and five synthetic analogues 

and glucagon-like peptide-1 (GLP-1) analogues group including 

GLP-1 and three synthetic analogues. The first group was used to 

investigate the effect of small chemical/monomer changes in the 

peptide structure with respect to the matrix catalyzed activity for 

chymotrypsin, trypsin, elastase and pepsin. In the second group the 

effect of small chemical changes in GLP-1 analogues group with 

respect to the proteases DPP-4 and NEP was also investigated. 
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During the metabolite identification study in total 132 metabolites 

were found from the various in vitro conditions tested. 

In the second article a metabolite identification study was 

performed using a peptide set that included eight compounds: one 

commercially available - somatostatin - and seven synthetic 

analogues. All test compounds were incubated in serum. All eight 

peptides were cyclic and seven of them had unnatural amino acids. 

These peptides were used to investigate the effect of small 

chemical/monomer changes in the peptide structure with respect to 

the serum catalyzed activity. During metabolite identification 17 

metabolites were annotated in the database. 

In the third article DIA MSE and HDMSE data for GLP-1 and 

verapamil incubated with rat hepatocytes were processed using the 

implemented workflow to compare accuracy and quality of data 

received using these DIA methods. A total of 7 metabolites were 

found for GLP-1. There was an agreement between the metabolites 

identified in these experiments and those reported in the literature 

with most of the rat metabolites being found by both unsupervised 

DIA methods [96]. 

All these multiple MS data sources were analyzed with MMS to 

find metabolites and determine their structures. All the metabolites 

identified were produced by amide hydrolysis and were checked 

manually and considered as reliable because the fragmentation was 

adequate, isotope pattern was as expected, the m/z small differences 

between the m/z of observed and theoretical, and the mass score was 

high. 

In this way we have developed a new methodology that is able to 

process data from many different MS based analysis systems (DIA, 

DDA) for compound sets containing cyclic/linear and natural/non-

natural peptides. 

2.2 Second step 

In the second step the system was used to store the results in a 

chemically aware database WebMetabase (Figure 9). The results 

uploaded into WMB are always followed by consolidation of all 

these data (cluster metabolites from different experimental 
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conditions, i.e. incubation times from the same experiment). 

Furthermore, we added a new method that processes the 

information from external sources such as MEROPS database. The 

developed approach annotates each peptide by the structural blocks 

(SBs) defined as the structural fragments between amide bonds and 

their connectivity. The annotation of the peptide information in this 

manner enables doing a chemically aware exact substructure search. 

Moreover, each SB is annotated by its physicochemical and 

pharmacophoric properties that are computed by the validated 

Volsurf [109,110] and SHOP [104-108] molecular descriptors, 

respectively. Also, they are characterized by an index that describes 

the similarity between a SB and each one of the other SBs in the 

database. Thus, each peptide and cleavage site sequence are 

represented in the database as a combination of Volsurf and/or 

SHOP descriptors of the residues contained in the sequence. This 

type of annotation enables performing a similarity-based 

substructure search inside the database. The designed annotated 

system allows, that the searches are not limited to any type of 

peptides and/or amino acid (cyclic/linear, natural/unnatural) and do 

not consider the theoretical mass spectrum or even sequence 

alignment. The annotation system in the database described above is 

represented in Figure 10. 

 

Figure 10. WebMetabase annotation system. 
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In the first article information regarding all identified metabolites 

was annotated into database. We compared the percent of remaining 

parent peptide with respect to the time for all investigated peptides 

to compute the clearance for each case. The smallest peptide, 

oxytocin, (molecular weight (MW) 1007.187) was digested slower 

than the biggest peptide, calcitonin (MW 3429.713) by the 

chymotrypsin protease. In the trypsin incubation oxytocin was 

hydrolyzed slower than all other peptides. These results agreed with 

the available literature published regarding incubations in 

gastrointestinal fluid (GIF) and simulated intestinal fluid (SIF) [85]. 

In addition, we examined the effect of small chemical changes in 

peptide structures for a) LHRH analogues group along with natural 

gonadorelin and b) GLP-1 analogues group along with GLP-1 

peptide. All LHRH analogues were digested at similar rates by both 

chymotrypsin and trypsin except for leuprolide, which was 

hydrolyzed slower in all proteolytic media. This may be due to the 

replacement of Gly6 in gonadorelin with the non-natural amino 

acid, D-Leu to form leuprolide. In GLP-1 analogues group we 

found that DPP-4 and NEP hydrolyzed exenatide slower as 

compared to liraglutide and taspoglutide. This may be related to the 

substitution of Lys34 for arginine in exenatide and the addition of a 

C16 fatty acid at the ɛ-amino group of Lys26 using a γ-glutamic 

acid spacer in liraglutide. Liraglutide was digested faster than the 

other compounds in both matrices. For liraglutide, NEP acted 

slower as compared to DPP-4. 

In the second article information regarding all identified metabolites 

was annotated into database. All compounds from the dataset were 

hydrolyzed with the different velocity. Five compounds were more 

stable than somatostatin, this may be due to the replacement of both 

Phe7 to Msa7 and Trp8 to D-Trp8. One of the compounds was 

digested significantly slower than somatostatin due to the 

replacement of both Cys3 and Cys14 to D-Cys. 

In the third article information about 7 metabolites found for GLP-1 

was annotated into database. 

The fourth article presents a new approach that stores the 

information coming from external sources such as MEROPS 

database in a chemically aware database (i.e. WebMetabase). In this 
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study we exported peptide cleavage data from the MEROPS 

database (version 11 1/09/2017) for all the available proteases. In 

total information about 18760 substrate peptides and 21804 

metabolites were extracted. All extracted data was uploaded into 

WebMetabase. Moreover, in this research we used an experimental 

dataset to perform metabolites identification using LC-HRMS data 

for the peptide dataset including the six commercially available 

peptides and five of them were synthetic analogues for the same 

peptide series, the luteinizing-hormone releasing hormone. 

2.3 Third step 

In the third step, we implemented an algorithm that performs 

frequency analysis (FA) based on the exact match of residue 

structures in the site of cleavage (so-called simple frequency 

analysis, SFA) (Figure 9). This approach can be used to discover 

the most frequent scissile bonds within the generated database 

depending on the protease based on the sequence of interest. SFA 

allows us to create a set of empirically derived rules that define 

protease specificity rules that later can be used to predict the 

metabolic liability of different amide bonds in a new non-tested 

peptide. Consequently, to make the prediction one can do a search 

for the exact match of motifs in the peptide of interest to the 

cleavage sites considered by frequency analysis within the database. 

The highest prediction rate will be given to the found motifs with 

the highest frequency. In Figure 11 the Mass-

MetaSite/WebMetabase workflow from experimental data to 

searchable information in a database manageable by in silico 

analysis tools is shown. 
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Figure 11. Mass-MetaSite/WebMetabase workflow for 

experimental data. © Radchenko T, Brink A, Siegrist Y, 

Kochansky C, Bateman A, Fontaine F, et al. (2017) Software-aided 

approach to investigate peptide structure and metabolic 

susceptibility of amide bonds in peptide drugs based on high 

resolution mass spectrometry. PLoS ONE 12(11): e0186461. 

In the first article 77 distinct cleavage sites were found during the 

metabolite identification study. The most frequent observed 

cleavage sites always agreed with those already reported in 

MEROPS and ENZYME databases [49, 51, 52]. In addition, during 

examination of the effect of small chemical changes in peptide 

structures for two groups described above we found that elastase 

cleaved the Ser-Tyr bond and trypsin cleaved the Arg-Pro bond, 

except when D-Ser(tBu) was positioned in buserelin and goserelin 

on the P2’ position, and when the C-terminal Pro was modified to 

Pro-NHNHCONH2 in goserelin instead of Pro-NHet. In GLP-1 

analogues group our approach revealed that liraglutide and GLP-1 

were cleaved at the Ala-Glu linkage. Exenatide was not cleaved at 

the same site due to the amino acid change in the parent sequence 

where Ala8 was modified to Gly, taspoglutide was cleaved despite 

the modification Ala8 to α-aminoisobutyric acid. 

In the second article 8 distinct sites of cleavage were registered 

during frequency analysis. 

In the third article 7 cleavage sites were found for GLP-1 that 

agreeded with cleavage sites reported in the literature with most of 
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the rat metabolites being found by both unsupervised DIA methods 

[96]. 

The experimental results have been validated for those cases were 

literature data was available. The main advantages of the developed 

approach are the ability to store processed information in a 

searchable format within a database leading to frequency analysis of 

the labile sites for the analyzed peptide drugs. Also, in the fourth 

article, we have shown that the database can be enriched with new 

experimental data and subsequently customized for a peptide set of 

interest for further analysis. This new algorithm may be useful to 

optimize peptide drug properties with regards to cleavage sites, 

stability, metabolism and degradation products in drug discovery. 

2.4 Fourth step 

In the fourth step (Figure 9), we implemented an algorithm that 

performs similarity frequency analysis (SimFA). This analysis 

reveals the group of metabolically labile amide bonds defined by 

similar pharmacophoric or physicochemical properties towards the 

specific proteases/specific media. This methodology can be used to 

perform a frequency analysis to discover the most frequent cleavage 

sites for similar amide bonds, based on the similarity of the SB that 

participate in such a bond within the experimentally derived and/or 

public database. The site of cleavage is considered as similar to the 

SoC of interest when total similarity score is higher than a default 

total threshold score. Total similarity score is a linear combination 

of the similarity score for the SB in P1 position and the similarity 

score for the SB in P1’ position. Similarity score P1 describes 

similarity between pharmacophoric or physicochemical properties 

of SB in position P1 in the SoC of interest to the SB in P1 in the 

SoC of comparison. The workflow described above is represented 

in Figure 12. 
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Figure 12. MEROPS/WebMetabase workflow with similarity 

frequency analysis workflow. © Radchenko T, Fontaine F, 

Morettoni L, Zamora I. WebMetabase: cleavage sites analysis tool 

for natural and unnatural substrates from diverse data source 

(submitted) 

In the fourth article we were able to compare the identified cleavage 

sites from both sources (experimental data and data from external 

sources). We performed a similarity frequency analysis for the 

selected SoCs from the combined dataset (MEROPS + experimental 

data) using chymotrypsin and trypsin1, while caspase 6, matrix 

metallopeptidase-2 were selected only from MEROPS. The SimFA 

results were analyzed to obtain empirically derived rules for the 

cleavage site appearance rules based on similarity of the 

pharmacophoric properties for the cleavage sites. To investigate the 

effect of the similarity to the P1 and P1’ structural blocks on the 

recovery of known metabolized bonds we performed an enrichment 

analysis. After we plotted the enrichment for each of the selected 

bonds for each individual protease as a function of the weight of P1 

similarity in the total enrichment score. Enrichment plots for all the 

selected proteases and bonds in both MEROPS and experimental 

datasets are shown in Figure 13. These plots were used to perform 

analysis of the enrichment versus the weighted factor for the 

contribution of similarity to P1 structural block. 
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Figure 13. Enrichment plots for selected bonds from MEROPS 

dataset for all selected proteases and bonds with unnatural 

amino acids from experimental dataset for chymotrypsin. © 

Radchenko T, Fontaine F, Morettoni L, Zamora I. WebMetabase: 

cleavage sites analysis tool for natural and unnatural substrates from 

diverse data source (submitted) 

In accordance with Figure 13 for chymotrypsin and trypsin1 the 

amino acids located on P1’ position in SoC have a minimal 

influence. Cconsidering only the similarity to the residue located in 

P1’ position, the percentage of enrichment is lower than 20% 

independently on SB on position P1’ used for the analysis. 

Meanwhile, when the contribution of P1 similarity to the total score 

is increased, the percentage of enrichment (PR) drastically 

increases. For example, for chymotrypsin it can be seen when 

Tyrosine, Tryptophan and Phenylalanine are the amino acids on 

position P1 and PR is reaching 90% that let us to collect 

information about the cleavage sites about 100% better than 

random. These results agree with literature [80] and in similarity 

matrix described in MEROPS database. 

For caspase 6, the amino acids located on P1’ position in SoC has 

different influence depending on the amino acid (Figure 13). For 

example, on one hand when Phenylalanine is located on P1’ 

position and considering only the similarity to it the percentage of 

enrichment is worse than random. On the other hand, when Glycine 

is located on position P1’ and P1 is Asp the enrichment reaches the 
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maximum comparing to random. These results agree with literature 

where it was described that caspase-6 cleavage preferentially occurs 

at sites composed of D|X where X is any amino acid but Pro, Glu, 

Asp, Gln, Lys, Arg [92, 97, 98]. 

For matrix metallopeptidase-2 (MMP-2), the amino acids located on 

P1 position in SoC has a minimal influence in the enrichment 

(Figure 13). Considering only the similarity to this amino acid in a 

cleavage site the percentage of enrichment is lower than 40% 

independently on SB on position P1 used for the analysis. 

Meanwhile, when the contribution of P1’ increases the amount of 

collected information drastically increases. It is worth mentioning 

that in most of the cases Leu or Ile were located on position P1’ in 

cleaved SoCs in MEROPS database. In accordance with literature 

MMP2 cleaves SoC where a Leu or other hydrophobic amino acid 

is in P1’ position [99]. 

For cathepsin L, both amino acids located on P1 position and P1’ 

position are important, but it also depends on the pair selected as a 

reference in the analysis (Figure 13). For example, if Gly is located 

on position P1’ and Gly or Ser are in P1 position the influence of 

P1’ is practically equals to P1 and maximum enrichment is reached 

when PR for P1 is 60%. Similarly, when Ser is located on position 

P1’ and Gly or Ser are in P1 position their influence is equal. It 

means that maximum percentage of enrichment is reached when 

PRP1 and PRPr are equal to 0.5. These results agree with literature 

where it was described that preferentially cathepsin L cleaved at 

Gly in P1 and Gly or Ser in P1’ position [100]. 

Moreover, we demonstrated that the algorithm can evaluate SoCs in 

peptide drugs from experimental dataset that contained nonstandard 

amino acids. In this case, we see that modification of the natural 

amino acid in position P1’ to D-Ser-tBu, D-Leu or D-Trp does not 

improve the enrichment percentage and it is still close to zero or 

lower (random) when P1’ influence is high. It does not change the 

specificity rules defined for the chymotrypsin based on MEROPS 

dataset. Meanwhile the contribution of P1 similarity increased the 

PR. 

Since in the literature it was revealed that increasing the 

investigated local window’s size around the cleavage site can 
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improve the understanding of the protease specificity and probable 

proteolytic activity [87], we performed similarity frequency analysis 

for sites of cleavage with increased local window sequence P2-P2’ 

for caspase-6 and cathepsin L. Moreover, in the case of cathepsin L 

we also evaluated P4 - P4’. We concluded that influence of P1 and 

P1’ is not enough to be able to define protease specificity. We 

demonstrated that the influence of the P2 and P2’ depends on 

residues in the P1 and P1’ positions. Similar conclusion was 

reached in the case of cathepsin L for the P2 - P2’ and P4 - P4’ local 

windows. 

In conclusion, a similarity frequency analysis of the actual SoC 

depending on the protease can be done to create a set of empirically 

derived rules based on molecular properties of the cleavage sites. 

These rules could be later used to predict the metabolic liability of 

different amide bonds in a new non-tested peptide. The proposed 

methodology as opposed to existing databases (i.e. ExPASy) can be 

applied in the case of non-natural amino acid and/or cyclic peptides. 

This approach can be used to derive cleavage site appearance rules 

for the specific peptide family (i.e. LHRH and analogues) or for 

specific experimental condition (i.e. individual protease or complex 

matrix as plasma). Moreover, since the system used to derive the 

cleavage site appearance rules (frequency analysis) could be linked 

to the software assisted metabolite structure elucidation based on 

MS data, the database is automatically enriched with the new 

experiments. Rules can then be refined to tune the system for the 

experimental conditions and/or peptide families of interest. 

2.5 Fifth step 

In the fifth step (Figure 9), we demonstrated that the implemented 

system and information stored in the created database can be used 

to train cleavage site prediction models using different machine 

learning algorithms based on molecular properties of the cleavage 

sites. 

In the fifth article we used previously described database that 

contained data extracted from MEROPS and experimental data to 

train several models using different classifier learning approaches 

for eighteen proteases from four protease families: serine, cysteine, 

aspartic and matrix metalloproteases. Moreover, we developed 



56 

 

models based on two different local window size P1-P1’ and P4-

P4’. In the training dataset each sequence pattern around the 

potential cleavage site and actual site of cleavage was represented 

as a combination of Volsurf descriptors that characterized the 

physicochemical properties of the SBs in the sequence of the SoC. 

The described above workflow is shown in Figure 14. 

 

Figure 14. Cleavage sites prediction model’s preparation tool 

with MEROPS/WebMetabase workflow; 

We compared the predictive performance of the models trained with 

different learning approaches applying 5-fold cross validation test 

and more importantly prediction results on an external dataset. 

Moreover, we examined the influence of the local window sequence 

size around the site of cleavage by comparing the models trained for 

P1-P1’ and P4-P4’ range. We revealed that the logistic regression 

and random forest classification models trained using window P4-

P4’ outperformed other machine learning methods or the models 

trained using the P1-P1’ window. 

We noted that training dataset size influenced the predictive 

performance of the models analyzing data for caspases. Finally, we 

compared the predictive performance of trained models with other 

approaches such as PROSPERous and SitePrediction tools. Logistic 

regression model recovered higher percentage of the known 

cleavage sites in the first 30% of the ranking positions comparing to 

the other tools. It can be explained by the fact that it performed 

better prediction on smaller peptides (Figure 15). 
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Figure 15. The cumulative ranking score in percentage for the 

recovered known sites of cleavage for selected protease families 

compared with PROSPERous and SitePrediction for 0-100% 

range of ranking positions percentage © Radchenko T, Fontaine 

F, Morettoni L, Zamora I. Software-aided workflow for predicting 

protease-specific cleavage sites using physicochemical properties of 

the natural and unnatural amino acids in peptide-based drug 

discovery (submitted). 

Predicting possible sites of cleavage for individual proteases is an 

important task to be completed during drug-design process of 

peptide therapeutics to improve their stability and availability as a 

promising drug. In this study we presented a new approach in 

WebMetabase that helps to predict cleavage sites for the specific 

peptide family or for specific experimental condition (i.e. individual 

protease). One of the main advantages of this approach is that it 

generates a searchable database for the information coming from 

LC-MS based experimental data or from external sources such as 

MEROPS database. In this database each amino acid is described as 

a vector of physicochemical properties, Volsurf molecular 

descriptors, and/or pharmacophoric properties, SHOP descriptors. 

Thus, the motif around the potential cleavage was represented as 

combination of molecular descriptors. Comparing to MEROPS this 

database type can be enriched with new experimental or external 

data. This way to store the data can be utilized to perform frequency 
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analysis to discover the most frequent scissile bonds within the 

generated database. The FA results can be used to derive a cleavage 

site appearance rules based on molecular properties of the cleavage 

sites and similarity of the molecular descriptors. These results can 

be used to train predictive models for individual proteases or 

complex matrices. We demonstrated that predictive performance of 

the models trained with different learning approaches can recover 

same or higher percentage of the known cleavage site in the first 

30% of the ranking positions comparing to the other publicly 

available tools. The developed system can be linked to the software 

assisted metabolite structure elucidation based on MS data, the 

database is automatically enriched with the new experiments. 

Moreover, models can be re-trained with updated dataset and 

derived rules can be refined to fine tune the system for the 

experimental conditions and/or peptide families of interest. This 

knowledge can be applied during the design-make-test drug 

discovery cycle. 
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3. FUTURE WORK 

The main goal of the future work is to improve the predictive 

performance of the models and following steps can be applied to 

achieve this objective: 

• According to the literature secondary structure of the 

potential cleavage site can influence certain proteases 

activity [102, 103] and considering secondary structure, 

flexibility of the potential cleavage site region and solubility 

during models training can improve predictive performance 

of the models [87,101]. It was suggested by Song et al. that 

considerable unfolding for a helical segment to bind into the 

active sites of a protease in a manner appropriate for 

catalysis is required during protease-substrate interactions. 

Moreover, a solvent accessible surface is a key factor that 

determines whether a substrate can be accessed and cleaved 

by the protease [101]. In the present work we evaluated only 

predictive models trained on physicochemical properties of 

the residue containing in the cleavage site. Therefore, we 

planned to train predictive models based on pharmacophoric 

properties and add consideration of the secondary structure 

of the cleavage site and compare the predictive performance 

of the generated models for the state of the art prediction 

tools (e.g. PROSPERous). 

• Since it was demonstrated by Song et al. that predictive 

models based on a bigger local window from P4-P2’ to P8-

P8’ sites achieve the better performance depending on 

protease [87,91,101] we planned to use different 

symmetrical and asymmetrical local window sizes to 

perform extensive feature selection to extract more relevant 

features and to compare predictive performance of the 

generated models for the state of the art prediction tools. 

• Moreover, previous studies revealed that application of the 

combination of predictive models can improve the 

predictive performance of the models. We plan to combine 

several learning algorithms and use prediction from 

combination of prediction models based on Volsurf and 

SHOP. 
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4. CONCLUSIONS

1. We developed an algorithm for processing LC-MS peptide

incubation data able to process the experimental data of any

peptide structures up to 4000 Da in molecular weight

incubated in multiple media. It was effectively applied in

multiple acquisition modes and persist process data in the

chemically aware database.We developed an annotation

system that enabled the use of processed data for multiple

applications. It allows to perform chemical search

(substructure search or similar structures search), frequency

analysis (count the number of different amino acids in P1

and P1’ positions in cleavage site) and prediction of the

potential cleavage site for different proteases. This system

can handle any type of amino acid and can be enriched with

new data and any kind of searches can be performed on it.

2. We developed a frequency analysis algorithm which, applied

to the annotation system described before, is an effective

tool to reveal the protease specificity rules. These rules are

based on molecular properties of the cleavage sites for

individual proteases and not limited to natural amino acids.

Moreover, defined rules can be refined to tune the system

for the experimental conditions and/or peptide families of

interest.

3. We demonstrated the possibility to generate site of cleavage

predictive models with a prediction performance comparable

with those of state of the art prediction tools, but without

their limitations on the type of peptide structure and/or

proteases.
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Abstract 

The interest in using peptide molecules as therapeutic agents is due 

to their high selectivity and efficacy. However, most peptide-

derived drugs cannot be administered orally because of their 

instability in the gastrointestinal tract. To achieve better ADME 

properties the following chemical modifications are typically 

applied: substitution of the common L-amino acids to D-amino 

acids, cyclization of the peptide and others. Somatostatin or 

Somatotropin release-inhibiting factor (SRIF14) is a natural 

hormone that is being used as gastric anti-secretory drug as well as 

to treat growth hormone secretion disorders and endocrine tumors. 

The substitution of phenylalanine, using non-natural aromatic 

amino acids to enhance the aromatic interactions, naturally present 

in the hormone between Phe6, Phe7 and Phe11 has been studied 

before. 

We used a new approach implemented in Mass-MetaSite and 

WebMetabase to process DDA LC-HRMS analytical data collected 

for a set of eight peptide drugs (somatostatin and seven synthetic 

analogue, containing non-standard amino acids) incubated with 

human serum. The effect of small chemical/monomer changes in 

the peptide structure with respect to the matrix catalyzed activity for 

serum was investigated in his peptide set. During the metabolite 

identification study in total 17 metabolites were found resulting in 8 

distinct cleavage sites. We compared the percent of remaining 

parent peptide with respect to the time for all investigated peptides 

to compute the half life for each case. All compounds from the 

dataset were hydrolyzed with the different velocity. The most stable 
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compound was the one where Phe7 was replaced to Msa7, Trp8 to 

D-Trp8 and both Cys3 and Cys14 were replaced to D-Cys. It was

digested significantly slower than somatostatin.

Introduction 

Peptide drugs are well-suited for treatment in a wide range of 

therapeutic areas, such as diabetics, cancer, osteoporosis, hormone 

therapy, cardiovascular diseases and many more [1]. Today, more 

than 70 peptides are represented on the worldwide drug market 

[2,3]. Most of the peptide drugs are represented by native peptide 

analogues since their absorption, distribution, metabolism and 

elimination (ADME) properties, safety and toxicity profiles are 

known and easier to predict. Since natural peptides exist as a part of 

the natural pathways they are produced as an answer to the 

biological signal, processed, released, perform their function and 

then are rapidly metabolized to turn off the signal. Therefore, 

natural peptides have in general a short half-life. Fast extraction 

happens through proteolysis, and pH dependent hydrolysis in blood, 

gastro-intestinal (GI) tract, and liver with consequent renal filtration 

[1,2,4,5]. 

In case that the peptide drug is administered orally there are several 

enzymatic barriers that should be crossed to become a successful 

drug. It is well known that numerous human proteases are involved 

in peptide degradation. The most important barrier after oral 

administration is the lumen of the small intestine, which contains 

peptidases secreted from the pancreas (e.g. chymotrypsin), as well 

as cellular peptidases from mucosal cells. The second one would be 

the brush border membrane of the epithelial cells, which contains at 

least 15 different peptidases [6]. Therefore, several structure-based 

peptide design methodologies described below were developed to 

improve the stability of the peptide drug. 

Many efforts have been done on developing of new techniques to 

improve the following peptide candidate drug properties: 

selectivity, solubility, stability, bioavailability, safety and toxicity 

[7]. The main efforts are spent on optimizing its ADME properties, 

increasing the half-life and/or improving the stability and selectivity 

using synthetic chemical modifications. The following modification 

techniques are typically implemented: introduce a limitation in the 
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enzymatic degradation of the peptide through the identification of 

the possible cleavage sites followed by substitution of identified 

residues and/or protection against proteolytic degradation through 

enhancement on the secondary structure (e.g. insertion of a structure 

inducing probe (SIP)-tail, lactam bridges, stapling or clipping of 

peptide sequences or cyclization) [2,5]. These changes are applied 

during the design-make-test drug discovery cycle, with hopes of 

improving the physicochemical and pharmacokinetics properties of 

the compound of interest. Synthetic and modified peptides require 

more attention to the analysis of ADME and toxicity (ADMET) 

properties since the chemical structures of some of the canonical 

monomers used for the synthesis are modified and it is necessary to 

evaluate the potential ADMET properties of the new molecule 

produced. 

Somatostatin or Somatotropin release-inhibiting factor (SRIF14) is 

a natural hormone that is being used as gastric anti-secretory drug 

as well as to treat growth hormone secretion disorders and 

endocrine tumors. The substitution of phenylalanine, using non-

natural aromatic amino acids to enhance the aromatic interactions, 

naturally present in the hormone between Phe6, Phe7 and Phe11 has 

been studied before [8]. Octreotide was discovered as synthetic 

analogue of the natural hormone somatostatin. 

We used a new approach implemented in Mass-MetaSite to process 

data-dependent acquisition (DDA) liquid chromatography high-

resolution mass spectrometry (LC-HRMS) analytical data. This data 

was collected for a set of eight peptide drugs (somatostatin and 

seven synthetic analogues, containing non-standard amino acids) 

incubated with human serum. The samples obtained were used to 

perform metabolite identification, to reveal potential cleavage sites 

and to store the processed information in a searchable format within 

a database (WMB). During the metabolite identification study in 

total 17 metabolites were found resulting in 8 distinct cleavage 

sites. We compared the percent of remaining parent peptide with 

respect to the time for all investigated peptides to compute the half 

life for each case. Moreover, we evaluated the influence of the 

chemical modifications on the half-life time of the investigated 

compounds comparing to the value obtained for somatostatin. All 

compounds from the dataset were hydrolyzed with the different 

velocity. More stable compounds were the compounds where 
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following replacements were done: both Phe7 to Msa7, Trp8 to D-

Trp8 and/or both Cys3 and Cys14 to D-Cys. 

We demonstrated that the developed approach can elucidate 

metabolite structure of cyclic peptides and those containing 

unnatural amino acids. The processed information obtained could 

be stored in a searchable format within a database leading to 

frequency analysis of the labile sites for the analyzed peptides. This 

new algorithm may be useful to optimize peptide drug properties 

with regards to cleavage sites, stability, metabolism and degradation 

products in drug discovery. 

Materials and methods 

Dataset 

A metabolite identification study was performed using a peptide set 

that included eight compounds: one commercially available, 

somatostatin and seven synthetic analogues (Table 1). All eight 

peptides were cyclic and seven of them had unnatural amino acids. 

These peptides were used to investigate the effect of small 

chemical/monomer changes in the peptide structure with respect to 

the matrix catalyzed activity. All test compounds were dissolved in 

water to reach the concentration of a 6 mg/mL. 

Table 1: Peptide-substrates structures and other characteristics 

Name Code Molecular formula Calculated 

exact mass 

Somatostatin - C76H104N18O19S2 1636.7167 

Msa7_DTrp8_DCys14_SRIF 05/006 C79H110N18O19S2 1678.7636 

LOrn4_Msa7_DTrp8_SRIF 05/030 C78H108N18O19S2 1664.7480 

Msa7_DTrp8_SRIF 05/031 C79H110N18O19S2 1678.7636 

LOrn4_Msa7_DTrp8_DCys14_SRIF 05/035 C78H108N18O19S2 1664.7480 

DAla1_DCys3,14_Msa7_DTrp8_SRIF 05/095 C79H110N18O19S2 1678.7636 

DCys3,14_Msa7_DTrp8_SRIF** 03/064 C79H110N18O19S2 1678.7636 

Incubations 

The incubations were done using human serum (Sigma, H4522), 

that was slowly unfrozen and maintained at temperature 37°C. All 

incubations were conducted at 37°C. The detailed information 

regarding the incubation conditions is provided in Supplementary 

Table 1. 
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The final solution was dispensed into Eppendorf tube with adding 

100 uL in each and then maintained at temperature 37ºC. Probe 

compounds were added to manually to have a final peptide 

concentration of 0.6 mg/mL. Each tube was used to investigate each 

time point, a total of eleven time points was studied (0, 5 min, 10 

min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, 30 h and 48 h) per compound. 

The incubation tubes were placed in heated shaker at 37°C and 

1000 rpm shaking speed. All the reactions were started with the 

addition of the compound at the same time and quenched at an 

appropriate finished time. Incubation quenching was carried out by 

adding 400 uL of cold acetonitrile (the final probe concentration is 

0.12 mg/mL) and the internal standard (labetalol) at a concentration 

of 0.6 uM. Following reaction quenching, the samples were 

refrigerated in acetone-carbon dioxide bath. The samples were then 

centrifuged in an Eppendorf 5810 R at 10000 rpm for 5 min at 4°C. 

100 uL of resulting supernatant were transferred to clean glass vials 

and 0.5 uL was injected onto an Agilent Zorbax Eclipse Plus (C18 

150 x 2.1 mm), 1.8 µm column via a Thermo Scientific Ultimate 

3000 ultra-performance liquid chromatography (UPLC) 

autosampler. All time points were analyzed using a data-dependent 

MS/MS method. Negative control samples were prepared under the 

same conditions of the incubation (see above), containing serum but 

without adding probe compounds. 

UPLC-MS/MS 

The chromatographic separation of metabolites was performed 

using the Thermo Ultimate 3000 UPLC system. Agilent Zorbax 

Eclipse (C18 150 x 2.1 mm), 1.8 µm column was heated to 40°C. 

The mobile phase consisted of 0.1% TFA in water (eluent A) and 

0.1% TFA in acetonitrile (eluent B) at a flow rate of 0.25 mL/min. 

The initial condition was 0% eluent B, which was increased via a 

linear gradient to 100% until 20 min. Eluent B was then ramped 

down to 0% until the end of the run at 22 min. Full MS scans were 

acquired in the Orbitrap mass over m/z 150-1700 range with 

resolution of 70000, with an automatic gain control (AGC) setting 

of 1e6 and maximum injection time of 120 ms. A “Top-5” method 

and peptide-specific inclusion lists were used for MS acquisition. 

Full scan MS/MS was a data dependent acquisition (DDA) using 

peptide-specific inclusion lists containing amide hydrolysis ions of 

multiple charge states (z ≥ 2). These lists were generated using a 
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MOL file for each peptide and the software Mass-MetaSite 5.1.9. 

The five most intense peaks with charge state ≥ 2 were fragmented 

in the HCD collision cell with normalized collision energy of 30% 

and tandem mass spectrum was acquired in the Orbitrap mass 

analyzer with resolution of 17500, AGC of 5e5 and max injection 

time of 60. The DDA method settings employed a minimum AGC 

target of 8e3, intensity threshold of 1.3e5, chromatographic peak 

width of 4 s with an apex trigger between 5 to 10 s, isotopes 

excluded, dynamic exclusion of 10 s. 

Data processing 

All data acquired from the LC-MS system were processed using 

Mass-MetaSite 5.1.9 [10-13]. The Mass-MetaSite Batch Processor 

was used to process data without supervision. The produced output 

was automatically uploaded into the web application 

“WebMetabase 3.2.9” (Molecular Discovery Ltd, Middlesex, UK) 

[9, 14], where all the samples from the same experiment were 

clustered together for further analysis and interpretation. In 

WebMetabase (WMB) the detected chromatographic peaks were 

displayed together with the structural elucidation data for parent and 

metabolites [9]. 

The Mass-MetaSite settings used for the Mass-MetaSite Batch 

Processor are reported in Supplementary Table 2. The sample list 

used for the batch was generated in WMB mirroring the 

experimental design (enzymes, time points and instrument) and 

defined as a WebMetabase protocol. Settings used for the WMB 

protocol are given in Supplementary Table 3. 

Mass-MetaSite 

The application of Mass-MetaSite for the interpretation of small 

molecules metabolic stability data has been described previously 

[10-13]. Mass-MetaSite uses as inputs the 2D structure of the 

compound together with control and treated sample data files. The 

data can be processed sample-by-sample manually or in a batch 

mode with an automatic processing set. The data processing 

consists of two steps: on a first step automatic detection of the 

chromatographic peaks related to the parent and metabolites and on 

a second step structure elucidation of the potential metabolites 
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based on the fragmentation pattern for each peak detected. Once the 

list of potential chromatographic peaks has been selected, Mass-

MetaSite compares the m/z associated with each peak to all the 

possible theoretical metabolites based on a list of included 

biotransformation reactions (the hydrolysis of amide bonds for 

peptides). Then it generates all possible metabolites based on a 

predefined list of metabolic biotransformation reactions. 

The overall principle for the structural elucidation of metabolites is 

a comparison of fragment ions obtained from the parent and the 

ones from the metabolites and then identifying mass shifts 

corresponding to the mass of the metabolite or common neutral 

losses. In addition to the above comparative fragmentation analysis, 

the fragmentation of the metabolite without comparison to the 

parent molecule is considered [9]. For each detected metabolite a 

score is assigned based on the number of matches/mismatches 

between the theoretical fragment m/z value and the m/z value 

observed in the MSMS spectrum as it has been described for small 

molecules [13]. Finally, Mass-MetaSite results are uploaded into the 

WebMetabase and manually checked and approved by the expert. 

WebMetabase 

All WebMetabase experimental settings are reported in 

Supplementary Table 3. Each experiment consisted of a set of 

samples, i.e. one sample per incubation time point. Mass-MetaSite 

processes every sample file as a separate unit. For each sample it 

collected the following information: metabolic scheme, structural 

fragment assignment, retention time, MS area, MS relative area and 

ppm for each structure. After, WebMetabase consolidates all these 

data in a single interpretation for the entire experiment and analyzes 

which metabolite peaks from each sample can be grouped based on 

the retention time and m/z. These consolidated substrates and 

metabolites are used for the next step in the analysis. 

A new algorithm was introduced into WebMetabase to store the 

information about peptide in a chemically aware searchable format, 

including a system to perform searches based on matches of 

chemical substructure [9]. 
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Results and Discussion 

In this section, we present the results of applying our approach for 

the analysis of the investigated dataset. Firstly, it uses the peptide 

mode from Mass-MetaSite to process the DDA HRMS data and 

find chromatographic peaks related to the parent and then elucidate 

the metabolites structure. Secondly, these results were uploaded to 

WebMetabase followed by consolidation of all these data. This 

consolidated data was used for further analysis, i.e. evaluation of 

the identified cleavage sites and kinetic curves for the substrate and 

metabolites. 

Metabolite identification was performed on the eight investigated 

compounds that were incubated with human serum. The compounds 

were structurally diverse, containing natural and unnatural amino 

acids (Table 1). The result of the peak detection step for the two 

main metabolites, using the Mass-MetaSite algorithm for 

somatostatin, and for 30-minute time sample shown in Figure 1. 

The metabolites listed in the figure are named by a shift in m/z 

(such as -71 or -128) with respect to the parent. The computed m/z 

values of the identified metabolites agreed with the predicted 

values. The metabolites have almost the same retention time of the 

parent and therefore one could even think that they could be a 

fragment of the parent. We know this is not the case, not only 

because the Mass-MetaSite algorithm, but also, we can see how the 

parent disappear and the metabolites appear (Figure 2), therefore 

one cannot be fragment of the other, since the proportion of both 

ions under the same fragmentation conditions should be very 

similar if one would be an in-source fragmentation of the other one. 
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Figure 1. Extracted ion chromatogram of somatostatin after 30 minutes of 

incubation. 

Blue peak - parent peptide compound; 

Green peaks - first generation of metabolites; 

Marine peak - internal standard; 

 

 
Figure 2. Appearance of the main metabolites in incubations with human 

serum and the Internal standard area at different time points and ratio of 

somatostatin 

 

The second step of the algorithm assigns the chemical structures to 

the chromatographic peaks found for the metabolites. All the 

somatostatin and its analogues metabolites have similar 

fragmentation pattern compared to the substrate fragmentation. The 

metabolite fragment ions can have the same mass as a parent 

fragment or an expected mass shift, conserved and shifted, 
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respectively. All assigned structures of the previously found 

metabolites for somatostatin and analogues are presented in Figure 

3. All metabolites are presented in Supplementary Table 4 with the 

list of their substrates. 

Figure 3. Proposed metabolites of somatostatin in incubations with human 

serum. 

M+18 M-71 M-128 

 
 

 

M-1082 M-1056 M-896 

  
 

M-1138 M-110 M-1024 

 

 

 

M-53 

 

 



121 

The structural assignments for somatostatin metabolites is shown in 

greater detail in Figure 4 and it is based on the fragment ions 

(ppm<10) that were detected in the substrate and metabolite spectra. 

In this figure, four main fragment ions were shown that are 

compatible with the structure for somatostatin. A score based on 

matching and mismatching fragments of the parent and metabolite 

is calculated and reported for each metabolite. For the metabolite 

M-71, the score was 2411 with 235 matching fragments and 27

mismatching fragments, respectively. The highest is the score the

more confident the structural assignment is, although the score is an

absolute value and therefore, it is difficult to compare from

structure to structure, since there it will depend on the spectra

obtained. In this case, the values obtained are considered high. In

addition, the high proportion of matching peaks compared to the

mismatches as well as the small difference between the observed

and calculated m/z (<3 ppm) produce an additional confident in the

proposed structure.

The analysis of the investigated peptides resulted in 17 metabolites 

that were annotated in the database. All the metabolites identified 

were produced by amide hydrolysis and were checked manually 

including a review of the assigned fragments. Metabolites were 

considered as reliable because the fragmentation was adequate, 

isotope pattern was as expected, the m/z small differences between 

the m/z of observed and theoretical, and the mass score was high. 

The metabolite time profile for the major metabolites of 

somatostatin and compound 095 is shown in Figure 5. Metabolite 

structure, Site of Cleavage (SoC) and the matrix were automatically 

registered into the database after experiment approval. The fact that 

all the information is stored in a consistent and chemically aware 

manner enables the classification of the predicted metabolites based 

on retention time and fragmentation across different experiments 

with different matrices and time points. 



122 

Fig 4. Full scan/data-dependent MS/MS fragment analysis of somatostatin 

substrate and metabolite M-. 

a) Oxytocin substrate

b) Metabolite M-71

Red peaks - correlated with fragments that match between metabolite and

fragment;

Orange peaks - correlated only with metabolite;

Blue peaks - correlated only with parent;

a) b) 

Substrate fragments and four highest matching fragments in metabolites 

m/z 120.0806 m/z 129.1020 m/z 159.0911 m/z 221.1275 
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Figure 5. Metabolic stability of a) somatostatin and b) compound 095 

a) 

b) 
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To investigate injection-to-injection differences we used an internal 

standard during all incubations and so the peak area ratios of parent 

or metabolites to internal standard are shown in Figure 4. It is worth 

mentioning that the concentration of the metabolite cannot be 

directly correlated with the signal shown if a calibration line is not 

computed with an authentic standard of the metabolite. We did not 

have authentic standards of the metabolites and so these curves 

were evaluated qualitatively. The first generated metabolite usually 

has an exponential shape, when the metabolites are starting to be 

formed, for example M1-71 in Figure 6. If the metabolites are 

further metabolized, the signal of the metabolite will decrease since 

the metabolite has been consumed to generate a second generation 

one. Typically, the second-generation metabolite has a sigmoidal 

shape since it needs that the first-generation metabolite to form and 

then be further metabolized, for example being M2-230 in Figure 6. 

In some cases, metabolites could be detected in the sample labeled 

as t = 0, for example M5+18 in Figure 6. This is potentially because 

there was some insufficient time between the addition of quench 

reactants and it indicates the starting of the incubation at the 

moment of the extraction of the first sample. 

For each investigated peptide half-life time was calculated. Firstly, 

a natural logarithm of determined area for substrate in each time 

point was computed and plotted against the incubation timeline. 

Then, a linear regression was applied to fit the line through several 

time points to describe substrate degradation and computed the R2 

to evaluate the linear regression model and select the best model. 

Finally, we calculated half-life time for each compound using slope 

of the line identified with linear regression. Results were shown in 

Table 2. 
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Figure 6. Appearance of the main metabolites in incubations with human serum and 

the Internal standard area at different time points and ratio of somatostatin and 

compound 095 
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Table 2. Half-life time of compounds 

Compound name Half-life (slope) R2 score 

Somatostatin 15 min 0.993 

Compound 006 30 min 0.978 

Compound 030 15 min 0.993 

Compound 031 27 min 0.999 

Compound 035 13 min 0.999 

Compound 064 65 min 0.995 

Compound 065 39 min 0.953 

Compound 095 2400 min 0.957 

All compounds from the dataset were hydrolyzed with the different 

velocity. We evaluated the effect of small chemical changes in 

peptide structures. The information about half-life time of the 

peptide compound and the structure of the firstly formed metabolite 

may help to understand the major metabolic clearance pathway and 

then aid in the designing of a new compound that would be more 

metabolically stable than the original compound. Compounds 006, 

031, 064, 065 and 095 were more stable than somatostatin this may 

be due to the replacement of both Phe7 to Msa7 and Trp8 to D-

Trp8. Compound 095 was digested significantly slower than 

somatostatin. This may be due to the replacement of both Cys3 and 

Cys14 to D-Cys. Our approach here revealed not only the rates of 

metabolism but also the site of catalysis. We found that all 

substrates except of 095 where cleaved in the linear part of the 

peptide. 

Conclusions 

In this research metabolite identification study was performed using 

a peptide set that included eight compounds: one commercially 

available, somatostatin and seven synthetic analogues. All test 

compounds were incubated in serum. All eight peptides were cyclic 

and seven of them had unnatural amino acids. We used a new 

approach implemented in Mass-MetaSite and WebMetabase to 
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process experimental LC-HRMS data to find metabolite peaks, 

elucidate their structures, reveal potential cleavage sites. Moreover, 

we evaluated the effect of small chemical/monomer changes in the 

peptide structure with respect to the matrix catalyzed activity for 

serum. During this study in total 17 metabolites were found 

resulting in 8 distinct cleavage sites. We compared the percent of 

remaining parent peptide with respect to the time for all investigated 

peptides to compute the clearance for each case. All compounds 

from the dataset were hydrolyzed with the different velocity. Five 

compounds were more stable than somatostatin, this may be due to 

the replacement of both Phe7 to Msa7 and Trp8 to D-Trp8. 

Compound 095 was digested significantly slower than somatostatin 

and all other compounds due to the additional replacement of both 

Cys3 and Cys14 to D-Cys. 

We demonstrated that the developed approach can elucidate 

metabolite structure of cyclic peptides and those containing 

unnatural amino acids, store processed information in a searchable 

format within a database. This new algorithm may be useful to 

optimize peptide drug properties with regards to cleavage sites, 

stability, metabolism and degradation products in drug discovery. 
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Supplementary Table 1: Experiment conditions 

Matrix 
Human Serum, Sigma 4522, pH (25°C)  

7.4-7.6 

Internal standard 
Labetalol hydrochloride  

Sigma L1011 

Mobile Phase A: Water +0.1%FA 

Mobile Phase B: Acetonitrile+0.1%FA 

Instrument 
 

Thermo Scientific Q-Exactive 

Injection Volume 0.5 uL 
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Supplementary Table 2: Mass-MetaSite settings are shown with experimental details  

Mass-MetaSite Settings 

Import  Protonation policy pH=7 

  Maximum number of conformers 20 

Metabolite 

generation Minimum mass 
50 

  Metabolite stereochemistry and redundant metabolites ignored 

  

MIM (the percentage of the monoisotopic mass of the 

parent) 
30% 

  Common cytochrome P450 reaction mechanisms none 

 Amide Hydrolysis true 

Mass settings, 

experiment Retention time range (min) 
not used 

  GSH mode deactivated 

Mass settings, 

MS peaks Maximum metabolite count limit 
20 

  Peak area threshold (%) 0.50% 

  Peak area threshold (absolute) 0 

  Peak detection smoothing level 1 

Expected 

metabolites Rescue computed DRM peaks 
not used 

  Split computed DRM peaks not used 

  

  

  

Adducts not used 

Dimeric Ions  

Unexpected metabolites excluded 

Break metabolites used 

Mass settings, 

Met ID Number of metabolite generations 
2 

  Compound fragmenting, bond breaking limit 2 

  Even electron MS and MS/MS 

  Odd electron MS and MS/MS 

  N-Oxide MS  

Mass settings, 

DD-MS/MS Mass spectrometer 

Thermo Q-

Exactive_DDS 

algorithms, 

thresholds Same peak tolerance (amu) 
0.01 

  Chromatogram automatic filtering threshold 0.97 

  MS automatic filtering threshold 0.98 

  MS/MS automatic filtering threshold 0.95 

  Ionization mode positive [M+H]+ 

  Spectra comparisons for “Maximum MS/MS level" 2 

  Signal filtering automatic 

  Scan filtering automatic 
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Supplementary Table 3: WebMetabase settings with experimental 

details  

User Experimental 

Settings 

M/Z tolerance 0.025 

Retention time 

tolerance 
0.2 

Retention time for 

calibration 

experiments 

0.6 

Number for the 

important metabolites 

to show 

4 

Protocol Variables 

Time 

0, 5 min, 10 min, 30 

min, 1h, 2h, 4h, 8h, 

24h, 30h and 48h 

Matrix Human serum 
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Supplementary Table 4: All identified metabolites with their substrates 

Metabolite name Substrates 

M+18 Somatostatin, 006, 064, 095 

M-71 Somatostatin, 006, 030, 031, 035, 064, 065 

M-128 Somatostatin, 006, 030, 035, 065 

M-110 Somatostatin, 006, 030, 035 

M-1082 Somatostatin 

M-1056 Somatostatin, 095 

M-896 Somatostatin 

M-1024 Somatostatin 

M-1138 Somatostatin 

M-129 095 

M-762 065 

M-53 Somatostatin, 030, 031, 035, 064 

M-647 030 

M-909 006, 064, 065, 095 

M-230 065, 095 

M-317 095 

M-661 031 
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Abstract: 

Liquid chromatography/mass spectrometry (LC/MS) is an essential 

tool for efficient and reliable quantitative and qualitative analysis 

and underpins much of contemporary drug metabolism and 

pharmacokinetics. The characterization of small molecule clearance 

and metabolism using LC/MS is well understood and documented 

in the literature. Increasing attention on larger molecule therapeutics 

requires that optimized strategies for these kinds of chemotypes also 

be developed since there is the same requirement to optimize 

clearance, and for biotherapeutics containing non-native elements, 

to understand the metabolic fate of these components. Data-

independent acquisition (DIA) methods such as MSE (where E is 

collision energy) have reduced potential to miss metabolites, since 

product ion data are collected on all components, but do not 

formally generate quadrupole-resolved product ion spectra. 

Addition of ion mobility separation to DIA approaches such as High 

Definition Mass Spectrometry (HDMSE) has the potential to both 

reduce the time needed to set up an experiment and maximize the 
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chance that all metabolites present can be resolved and 

characterized. In this study, we report the comparison of DIA 

methods – MSE and HDMSE using automated software processing 

with two commercially available software platforms, Mass-

MetaSite and WebMetabase. We demonstrate that HDMSE is an 

effective approach for the elucidation of metabolite structures for 

small molecules and peptides, with excellent accuracy and quality. 

HDMSE provided high reproducibility and gave outcomes 

comparable with a state-of-the-art DDA workflow. 

Introduction: 

High performance liquid chromatography (HPLC) coupled to mass 

spectrometry (MS) is currently the method of choice for metabolite 

identification and quantification studies for small molecules, 

peptides and others [2-5]. Improvements in chromatographic 

separation such as ultra-high performance liquid chromatography 

(UPLC) have generally led to higher chromatographic resolution via 

sharper peaks and correspondingly higher MS sensitivity. A 

common strategy for MS data acquisition involves data-dependent 

acquisition (DDA) in which a list of likely metabolites is often 

employed to drive targeted fragmentation (MS2). This methodology 

has the advantage that good quality MS2 spectra are obtained for 

expected metabolites but has the possibility that unexpected 

metabolites will be missed. Furthermore, when the number of 

possible metabolites is high, the target list may be too large to be 

effectively used and may trigger MS2 acquisition on isobaric 

background ions. Data-independent acquisition (DIA) methods such 

as MSE (where E is collision energy) have reduced potential to miss 

metabolites, since product ion data are collected on all components, 

but do not formally generate quadrupole-resolved product ion 

spectra [10]. 

A variety of types of mass spectrometers can be coupled with liquid 

chromatography front ends, such as tandem quadrupole, quadrupole 

time-of-flight (QTOF) and Orbitrap mass spectrometers. 

Notwithstanding the sensitivity of these platforms, and the quality 

of the data which can be generated, their usage in drug metabolite 

identification can be a time-consuming task. An established DIA 

approach to data collection, such as ‘all-in-one’ fragmentation or 

MSE [6], employs a rapid alternation between two full scan MS 
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functions. The first scan function applies a low collision energy 

which results in precursor ion spectra (drug and metabolites), and 

the second scan function acquires data at high collision energy 

resulting in almost simultaneous acquisition of high resolution 

fragment ion spectra. The use of QTOF platforms with UPLC 

provides well-resolved peaks and in most cases the predominant 

fragment ions can be associated with a single matching precursor 

ion via peak convolution algorithms [6]. 

An extension of the MSE approach was enabled by the introduction 

of ion mobility functionality into mass spectrometers (ion mobility-

mass spectrometry, IM-MS). Briefly, IM-MS is a two-dimensional 

separation technique that separates ions in a dimension related to 

structure as a function of the ion’s collision cross section (CCS) and 

subsequently in a second dimension according to the mass-to-

charge ratio [7]. The CCS represents the area of the ion available 

for collisions with molecules in the gas phase. Many forms of ion 

mobility exist: high field asymmetric waveform ion mobility 

(FAIMS), differential ion mobility, traveling wave ion mobility 

(TWIMS) and uniform field ion mobility (IMS), although FAIMS is 

distinct in that it uses ion mobility to afford improved selectivity, 

and does not result in the generation of a CCS value. A specific 

feature of ion mobility spectroscopy, when coupled with mass 

spectrometry and a post-IMS collision cell, is that fragment ions can 

be correlated with their precursor ions on the basis of a shared drift 

time (the time taken to transit the ion mobility cell, subsequently 

converted to a CCS value) to generate IM-resolved spectra. This 

approach is particularly useful in complex samples [3] and high 

definition (HD) HDMSE approaches have been applied to a variety 

of biological, pharmaceutical and environmental scenarios [1]. IMS 

provides an additional dimension of separation improving 

chromatographic peak capacity while concomitantly reducing 

chimeric and composite interferences [7,8]. More importantly, the 

measurement of CCS as a consequence of IMS experiments affords 

a compound-specific parameter, which in many cases allows 

isobaric components to be discriminated [9]. A key aspect of the 

combination of an IMS separation (typically occurring in the 

millisecond time-frame) and MS detection (typically occurring in 

the microsecond time frame) is that it allows an additional 

separation step to be obtained on the MS time-scale (e.g., in 
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addition to liquid chromatography), without compromising the 

speed of MS detection [9]. 

In this report we compare structural mass spectrometry techniques 

such as MSE, HDMSE and DDA mass spectrometry approaches to 

peptide metabolite identification. While DDA is commonly used, it 

has a number of limitations, such as irreproducible precursor ion 

selection (in the case where only the most intense ions are selected, 

or the dynamic exclusion option is selected), undersampling and 

long instrument cycle times. Unbiased DIA strategies have been 

developed to overcome the limitations of DDA [8]. DIA approaches 

perform parallel fragmentation of multiple precursor ions, 

regardless of intensity or other characteristics, resulting in more 

complex but complete datasets. They enable the acquisition of a 

complete, unbiased sample record, enhancing quantification 

reproducibility. Using peak deconvolution algorithms, precursor 

ions can be correlated with their corresponding fragment ions. Thus, 

in contrast to DDA-based methods, which are intrinsically limited 

by scan time, DIA methods are theoretically limited only by the 

peak capacity (the number of peaks which can be discriminated 

based on retention time, m/z and CCS differences). HDMSE 

approaches use drift time correlation between precursor and product 

ions to achieve selectivity, compared with the peak deconvolution 

approach used in the MSE DIA approach. Both MSE and HDMSE 

experiments alternate between a low and high CE state on alternate 

scans, allowing collection of precursor and fragment ion 

information for all species in an analysis without the sampling bias 

inherent to DDA where a specific m/z value must be isolated before 

fragmentation [8]. 

Technological advances in mass spectrometry (MS) such as 

accurate mass high resolution instrumentation have fundamentally 

changed the approach to systematic metabolite identification over 

the past decade [15]. The process of metabolite identification has 

become largely facilitated and partly automated by cheminformatics 

approaches such as Mass-MetaSite (MMS) [10], Metabolynx-XS 

[16], UNIFI [20] and MetabolitePilot [17] which are able to propose 

metabolite structures based on the combination of metabolite 

prediction and interrogation of analytical mass spectrometry data. 

Here we describe the use of a software tool, Mass-MetaSite and its 

associated web-enabled platform, WebMetabase, for processing 
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DIA (MSE and HDMSE) data. These tools process datasets from 

both small molecule and peptide metabolic stability experiments to 

determine the specific metabolic sites and metabolic cleavage sites 

and then store the results in a chemically aware database, where 

chemical structure- and substructure-based searches can be 

performed. We demonstrate further that HDMSE enables the 

elucidation of metabolite structures for small molecules and 

peptides with excellent accuracy and quality as compared to MSE, 

providing similar data accuracy and quality to published DDA 

work. 

Materials and methods 

Sample Generation and Preparation 

Metabolite identification was performed for glucagon-like peptide-1 

(7-37) and verapamil hydrochloride purchased from Sigma-Aldrich. 

Both compounds were incubated at 5 µM substrate concentration 

with 1 mL of rat hepatocytes at 1 million cells/mL cell density in a 

48-well plate while shaking in an incubator at 37°C and 5% CO2 

atmosphere.  Multiple time points were sampled and mixed with 2-

volumes of acetonitrile by vortexing. Samples were spun in a 

centrifuge for 20 min at 10°C and 4000 rcf. The verapamil samples 

were then diluted with 4-parts water to 1-part quenched incubation. 

Samples were then frozen and stored at -70°C until analyses by LC-

HRMS. 

Data Acquisition 

The MSE and HDMSE methods were conducted on a Waters 

ACQUITY UPLC with Vion IMS QTof mass spectrometer operated 

by UNIFI. 

UPLC 

GLP-1 verapamil and their transformation products were analyzed 

by reversed phase UPLC using an ACQUITY BEH C18 2.1x100 

mm column set to 40oC and 50oC for verapamil and GLP-1 

respectively. Chromatography was performed on an ACQUITY I-

Class UPLC (Waters Corp. Milford, MA) system configured with a 

fixed loop injection system. Mobile phase A and B were 0.1% 
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formic acid (Thermo Fisher Scientific, Waltham, MA) in Milli-Q 

water (Millipore, Burlington, MA) and 0.1% formic acid in LC-MS 

grade acetonitrile (Thermo Fisher Scientific, Waltham, MA) 

respectively. The injection volume was set to 5 µL and 10 µL using 

partial loop injection mode for verapamil and GLP-1 respectively. 

Verapamil sample components were separated by the following 

gradient at 0.5 mL/min flow rate: Held at 5% B for 0.5 mins, 

increased to 85% B at 1.25 mins, increased to 50% B at 2.75 mins 

and finally increased to 95% B at 3.25mins. GLP-1 sample 

components were separated by the following gradient at 0.55 

mL/min flow rate: held at 2% B for 1 min, increased to 60% B at 

2.5 mins, and finally increased to 95% B at 4 mins. 

MSE and HDMSE 

A VION IMS QToF (Waters Corp. Milford, MA) equipped with an 

electrospray ionization interface was used in this analysis. Tuning 

parameters were optimized to achieve the maximum transmission of 

parent ions and to provide detailed fragmentation patterns. The 

following parameters were used: capillary voltage: 1 kV, 

desolvation temperature: 600oC (verapamil)/500oC (GLP-1), 

desolvation gas flow: 1000 L/hr, source temperature: 125oC, low 

collision energy: 6 eV, high collision energy ramp: 20-45 eV 

(verapamil)/30-40 eV (GLP-1) and analyzer mode: sensitivity. 

Leucine enkephalin was used as the external lock mass for both 

mass and CCS correction. The scan range was from 50 – 1000 m/z 

at a scan speed of 0.1 s for verapamil and from 200 – 2000 m/z at a 

scan speed of 0.125 s for GLP-1. 

Data Processing 

All data acquired from the LC/MS system were processed using a 

prototype version of Mass-MetaSite 5.1.9 (Molecular Discovery 

Ltd, Middlesex, UK) able to read data from UNIFI 1.9.2 (Waters 

Corporation, Milford, USA) using the built-in Application 

Programming Interface (API). The produced output was manually 

uploaded into the web application WebMetabase 3.2.9 (Molecular 

Discovery Ltd, Middlesex, UK), where all samples from the same 

experiment were clustered together for further analysis and 

interpretation. WebMetabase was used to review the detected 
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chromatographic peaks together with the structural elucidation data 

for parent and metabolites. 

Mass-MetaSite 

The application of Mass-MetaSite for the interpretation of small 

molecule and peptide metabolic stability data has been described 

previously [10-12]. Mass-MetaSite (MMS) uses as input the 2D 

structure of the compound together with control and treated sample 

data files. Settings used for the processing of GLP-1 and verapamil 

MS data in MMS are presented in Supporting Tables 1 and 2. The 

data processing workflow consists of two steps. Step - 1 consists of 

automatic detection of the chromatographic peaks related to the 

parent compound. Step - 2 consists of structure elucidation of the 

potential metabolites based on the fragmentation pattern for each 

detected peak. Once the list of potential chromatographic peaks has 

been selected (Step - 1), MMS compares the m/z associated with 

each peak with all possible theoretical metabolites which can be 

generated using a list of biotransformation reactions. In this study, 

the only transformation of interest selected for GLP-1 was the 

hydrolysis of amide bonds. For processing of the verapamil dataset, 

the Hepatocytes mode, which includes both phase - 1 oxidation and 

phase - 2 conjugation reactions, was used. Mass-MetaSite then 

generates all possible metabolites which can be formed on the basis 

of the rules sets used. 

The overall principle for the structural elucidation of metabolites is 

a comparison of fragment ions obtained from the parent (assigned 

from the incubation time t = 0 sample) and those fragment ions 

from the metabolites (t = incubation time), and then identification of 

mass shifts corresponding to the mass change of the 

biotransformation, or common neutral losses. In addition to the 

above comparative fragmentation analysis, peptide data processing 

is executed using theoretical fragmentation of the metabolite 

without comparison to the parent molecule. This fragmentation 

strategy is most advantageous in the case of cyclic peptides, where 

the metabolite could be a linear peptide (amide hydrolysis results in 

ring opening), in which fragmentation is expected to be 

significantly different compared to that of the parent. 
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A score is assigned to each metabolite based on the number of 

matches/mismatches between the theoretical fragment m/z value 

and the m/z value observed in the MSMS spectrum. Once MMS 

results have been uploaded into WebMetabase, they can be 

reviewed and approved by the expert. 

WebMetabase 

Each experiment consisted of a set of samples, i.e. one sample per 

incubation time point per matrix. Mass-MetaSite processes each 

sample as a separate entity and thus generates three main pieces of 

information for each sample: metabolic scheme, spectrometry data 

(structural fragment assignment) and outcomes (retention time, MS 

area, MS relative area, CCS and ppm mass error) for each found 

component. WebMetabase then consolidates all these data from the 

individual files into a single interpretation for the entire experiment 

(time/matrix) and analyzes which metabolite peaks from each 

sample can be clustered based on the retention time and m/z. This 

consolidated data was used for further processing, i.e. evaluation of 

number of identified peaks, evaluations of structures, background 

noise cleaning, and determining the kinetics of the parent peptide 

and metabolites. After this manual data interpretation, review and 

approval of the experiments, parent and metabolite structures were 

stored in the database. This interpretation is used for the subsequent 

data review. 

Results and Discussion. 

In this section, we present the results of comparing DIA (MSE and 

HDMSE) experiments processed with Mass-MetaSite and 

WebMetabase.  

Metabolite identification was performed on incubations of GLP-1 

(7-37) with rat hepatocytes. Results were compared with published 

metabolism of GLP-1 (9-36) following incubation with mouse and 

human hepatocytes by Sharma et al. [13]. There was good 

agreement between the metabolites identified in these experiments 

and those found for GLP-1 (9-36) as shown in Table 1. In addition, 

the majority of the metabolites found in rat hepatocytes were 

identified using either DIA methods. The five most abundant 

metabolites of GLP-1 (7-37) were then selected for detailed analysis 
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with respect to their fragmentation and structural assignment. These 

metabolites are marked in bold in Table 1. Identified verapamil 

metabolites were consistent with previous npublished work in 

suspensions of rat hepatocytes as well as with incubations in plated 

rat hepatocytes by Walles et al. [21]. 

Table 1. Metabolites of GLP-1 (7-37) amide and GLP-1 (9-36) [13] in rat and 

human hepatocytes, respectively 

Parent/ 

Metabolit

e 

Peptide sequence for GLP-1 (7-37) Peptide sequence for GLP-1 (9-36) 

Parent 
HAEGTFTSDVSSYLEGQAAKEFI

AWLVKGRG 

EGTFTSDVSSYLEGQAAKEFIA

WLVKGR 

M-208 

RT=2.20 

EGTFTSDVSSYLEGQAAKEFIA

WLVKGRG 
Parent (9-36) 

M-495 

RT=2.17 

FTSDVSSYLEGQAAKEFIAWLV

KGR (12-37) 

FTSDVSSYLEGQAAKEFIAWL

VKGR 

(12-36) 

M-642 

RT=2.15 

TSDVSSYLEGQAAKEFIAWLV

KGRG (13-37) 

TSDVSSYLEGQAAKEFIAWLV

KGR 

(13-36) 

M-830 

RT=2.18 

DVSSYLEGQAAKEFIAWLVKGR 

(15-37) 

DVSSYLEGQAAKEFIAWLVKG

R (15-36) 

M-945 

RT=2.10 

VSSYLEGQAAKEFIAWLVKGR 

(16-37) 

VSSYLEGQAAKEFIAWLVKG

R (16-36) 

M-1219 

RT=2.07 

YLEGQAAKEFIAWLVKGRG 

(19-37) 

YLEGQAAKEFIAWLVKGR 

(19-36) 

M-1382 

RT=2.03 

LEGQAAKEFIAWLVKGR (20-

37) 

LEGQAAKEFIAWLVKGR (30-

36) 

M-1495 

RT=2.00 
EGQAAKEFIAWLVKGR (21-37) EGQAAKEFIAWLVKGR (21-36) 

GLP-1 

(18-36) 
Not found SYLEGQAAKEFIAWLVKGR 

GLP-1 

(27-36) 
Not found EFIAWLVKGR 

The results of the first step of peak detection using the Mass-
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MetaSite algorithm for GLP-1 and verapamil for the 120 min 

incubations are shown in Figures 1 and 2, respectively. The 

metabolites listed in the figure are named by a shift in m/z (such as -

945 or +148) with respect to the parent. The experimental m/z 

values of the identified metabolites agreed with the predicted 

values, being with in less than 3-ppm. All selected metabolites for 

GLP-1 and two metabolites for verapamil correspond to first-

generation products (from a single reaction, green peaks). The 

single brown peak is indicative that multiple enzymatic reactions (2 

or more) are required to generate the observed m/z. Though detected 

at earlier time points, three of the verapamil metabolites were 

second generation metabolites. 

Figure 1. Extracted ion chromatograms for GLP-1 metabolites after 120 

minutes of incubation with rat hepatocytes: a) MSE; b) HDMSE. Blue peak 

- parent compound; Green peaks - first generation metabolites; 

Aquamarine peak - internal standard; 

a) 

b) 
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Figure 2. Extracted ion chromatograms for detected verapamil 

metabolites after 120 minutes of incubation with rat hepatocytes with rat 

bile: a) MSE; b) HDMSE. Blue peak - parent compound; Green peaks - 

first generation metabolites; Brown peaks- second generation or higher; 

a) 

b) 

The second step of the algorithm assigns chemical structures to the 

identified metabolites. The software predicts the theoretical 

fragment ions for the parent compound and metabolites and 

compares them with the experimentally generated fragment ions. 

The metabolite fragment ions can have the same m/z as a parent 

fragment ion (the ion is conserved) or can have a defined mass shift 

(the ion is shifted), respectively. The assigned structures of the 

previously found metabolites for verapamil are presented in Figures 

3 and 4. 
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Figure 3. Proposed metabolites of GLP-1 found in 120 min incubations. 

 

 

 

Figure 4. Proposed metabolites of verapamil found in 120 min incubations. 

M-164 M+148 M+162 

 

  

 

M-178 
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MSE spectra were acquired with a collision energy ramp and no 

quadrupole selection, the association of fragment and precursor ions 

is achieved by matching retention time and peak shape. As with 

MSE, HDMSE has no formal preselection of the ions, but precursor 

and product ions can be correlated based on a shared drift time in 

the ion mobility cell, resulting in cleaner MS and MS2 spectra. This 

is evident upon comparison of the MSE and HDMSE spectra 

generated by UNIFI for GLP-1 and the M-208 metabolite shown in 

Figure 5. Here HDMSE has drift separated the multiply charged ions 

resulting in HDMSE MS2 spectra for the drift window containing 

m/z 839.4253 and m/z 787.4014 for GLP-1 and M-208, 

respectively. 

Figure 5. MSE and HDMSE spectra for GLP-1 and metabolite M-208. 

 MSE HDMSE 

GLP-1 

  

M-208 

  

The MS/MS spectra obtained using MSE and HDMSE for the GLP-1 

and the metabolite M-495 peak which elutes at 2.17 minutes and the 

metabolite M-642 peak which elutes at 2.15 are shown in Figure 6 

and 7, respectively. Red ions denote substrate fragments that match 

with metabolite fragments. Blue ions denote substrate fragments 

that do not match with metabolite fragments or that the 

fragmentation process does not follow any of the rules used in 

fragment generation. There are 47 matching fragments in the MSE 

spectrum, with 17 mismatches and 10 matching fragments in the 

HDMSE spectrum with only 3 mismatching fragments identified for 

metabolite M-495. For the metabolite M-642 there are 51 matching 

fragments and 12 mismatches were identified in the MSE and 21 



234 

 

matching fragments and no mismatches in the HDMSE. For 

example, in MSE m/z 946.39 and m/z 643.29 were found in both 

MS2 spectra for metabolite and substrate but they did not match the 

proposed metabolite structure and so they were colored in blue. In 

HDMSE m/z 946.39 and m/z 643.29 were found only in the MS2 of 

substrate and were not found for the metabolite, supporting the 

proposed metabolite by removing the mismatch. The difference 

between the observed and theoretical (exact) m/z was less than 3 

ppm for both metabolites. The MS/MS spectra obtained using MSE 

and HDMSE for the GLP-1 and other selected metabolites were 

provided in Supplementary materials (SFig. 3-6). For all selected 

metabolites, HDMSE was cleaner with less ions in total and along 

with the number of mismatches. The less observed ions and cleaner 

spectra was a result of drift separation of different charge states 

from the same molecule and drift separation of chromatographically 

unresolved peaks. 

For each metabolite a score is calculated and reported. This score is 

based on the number and intensity of matches/mismatches between 

the theoretical fragment m/z value and the m/z value observed in the 

fragment ion spectrum. A high score denotes an assignment which 

is more likely to be correct due to a high number of matching 

fragments, a low number of mismatching fragments, and a low 

average m/z difference between the observed and computed values 

(<3 ppm). However, the ratio of structurally matched to mismatched 

product ions should be considered since its increases confidence in 

the proposed metabolites structures. This metabolite has been 

previously reported when we performed metabolite identification 

for GLP-1 incubated with dipeptidyl peptidase-4 and neprilysin and 

used DDA methodology, with full scan/data-dependent MS/MS 

analyses on a Q Exactive™ Hybrid Quadrupole-Orbitrap Mass 

Spectrometer (Thermo Fisher Scientific). We obtained similar 

metabolite structure, kinetic analysis results and similar results for 

the matches/mismatches score with 52 matches and 2 mismatches 

[12]. For the DDA data Mass-MetaSite combines MSMS spectra for 

all charge states in one. While processing MSE and HDMSE data 

Mass-MetaSite selects the spectra with a drift time of the most 

intense peak of m/z of one of the charges. The combination of 

different charge states cannot be done at this moment. Thus, we 

cannot confirm if the larger number of matches is caused by 

combining MS2 spectra from multiple charge states, or that the 
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DDA experimentation generated a larger number of ions, or a 

combination of these two reasons. 

Figure 6. MS2 spectra for the GLP-1 metabolite M-495. 

Red peaks - correlated with fragments that match between metabolite 

and parent; Blue peaks - correlated only with parent; 

MSE HDMSE 
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Figure 7. MS2 spectra for the GLP-1 metabolite M-642.  

Red peaks - correlated with fragments that match between metabolite 

and parent; Blue peaks - correlated only with parent; Orange peaks - 

correlated only with metabolite; 

MSE HDMSE 

  

  

In Tables 4 and 5 the number of matching and mismatching 

fragment ions is reported for selected metabolites of GLP-1 and 

verapamil, respectively for MSE and HDMSE data. The total number 

of resolved fragment ions for GLP-1 was lower for HDMSE 

corresponding to the enhanced precursor selectivity obtained with 

drift time-resolved product ion spectra. While the absolute score is 

lower for the metabolites elucidated using HDMSE data for GLP-1 

and verapamil, which is a function of the lower total amount of 

matched and mismatched fragments, the structural assignment is 

expected to be more reliable, because the number of mismatched 

ions is significantly lower for HDMSE data. A mismatch represents 

the existence of a fragment ion in the spectra that is not rationalized 

by the proposed structure. Therefore, although the score for MSE is 

higher for the GLP-1 metabolites, the number of mismatches for 

HDMSE was lower for all the metabolites, thus the proposed 

metabolites structures are more reliable. 
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Table 4. Number of match/mismatches, and structural assignment score based on 

MSE and HDMSE spectra for the GLP-1 metabolites 

 

MSE HDMSE 

Match 
Mis-

match 

Match-

Mis-

match 

Ratio 

Score Match 
Mis-

match 

Match

-Mis-

match 

Ratio 

Score 

M-1219 33 2 16.5 1705 21 0 21* 1082 

M-1382 13 0 13* 851 10 0 10* 241 

M-945 20 1 20 1265 13 1 13 942 

M-495 47 17 2.8 1715  10 3 3.3 819  

M-642 51 12 4.2 1808 21 0 21* 1072  

 

Table 5. Number of match/mismatches, and structural assignment scores based on 

MSE and HDMSE spectra for the verapamil metabolites 

 

MSE HDMSE 

Match 
Mis-

match 

Match-

Mis-

match 

Ratio 

Score Match 
Mis-

match 

Match-

Mis-

match 

Ratio 

Score 

M-164 8 2 4 399 10 1 10 557 

M+162 11 3 3.7 539 9 1 9 876 

M+148 13 3 4.3 513 10 3 3.3 601 

M-178 5 0 5* 395 4 2 2 22 

A metabolic stability or clearance experiment has multiple time 

points. Therefore, a software system should be able to compare the 
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multiple samples of an experiment and perform kinetic analyses. 

Metabolites from each sample were grouped together with the 

metabolites from the other samples by “analysis clustering” 

performed in WebMetabase. The appearance of the metabolites and 

the disappearance of the parent represented as the areas of the found 

peaks against the incubation time were plotted and compared. The 

substrate and metabolite time profiles for the major metabolites of 

MSE and HDMSE data of GLP-1 and verapamil are shown in 

Supporting Figures 1 and 2, respectively. The kinetic analyses in 

HDMSE and MSE data was very similar, even when the 

concentration or signal of the metabolite was very low. Therefore, 

both MSE and HDMSE provide similar kinetic results, with similar 

sensitivity.  

Conclusion: 

To our knowledge this is the first time that an HDMSE approach has 

been published in the field of metabolite identification of peptides. 

Here we found that HDMSE outcomes were comparable to the 

previously published DDA outcomes with similar values between 

the numbers of structural matching and mismatching fragment ions. 

A comparison of DIA approaches (MSE and HDMSE) resulted in the 

same metabolite structures for both GLP-1 and verapamil. MSE data 

acquisition generated more matching and mismatching ions due to 

unresolved charge states and chromatographic peaks. The ratio of 

structurally matched to mismatched product ions found by Mass-

MetaSite was greater HDMSE improving confidence in the 

structures proposed through the addition of ion mobility-based data 

acquisitions. Moreover, HDMSE displayed the ability to drift 

separate charge states and unresolved chromatographic peaks, 

evident by the lower number of mismatching fragments. Future 

work will be aimed toward combining the HDMSE acquired MS2 

spectra of peptides from the multiple drift windows associated with 

the multiple charge states of peptides to improve structure 

identification. 
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Supporting Table 1. Mass-MetaSite settings are shown with experimental 

details for GLP-1 

Mass-MetaSite Settings 

Import Protonation policy pH=7 

 Maximum number of conformers 20 

Metabolite 

generation  

Minimum mass 50 

Metabolite stereochemistry and redundant 

metabolites 
ignored 

MIM (the percentage of the monoisotopic 

mass of the parent) 
30% 

Common cytochrome P450 reaction 

mechanisms 
none 

Mass settings, 

experiment 

Amide Hydrolysis true 

Retention time range (min) not used 

Standard mode deactivated 

Peptide mode activated 

GSH mode deactivated 

Mass settings, MS 

peaks 

Maximum metabolite count limit 20 

Peak area threshold (%) 0.50% 

Peak area threshold (absolute) 0 

Peak detection smoothing Medium 

 Isotope pattern filtering tolerance 20 

Expected 

metabolites 

Rescue computed DRM peaks not used 

Split computed DRM peaks not used 

Adducts not used 

Dimeric Ions not used 

Neutral loses not used 

Multi-Charge Ions  used 

Multi-Charge Ions max z  5 

Unexpected metabolites included 

Mass settings, 

Met ID 

Number of metabolite generations 2 

Compound fragmenting, bond breaking 

limit 
2 

Break metabolites included 

Break metabolites limit 1 

Even electron 
MS and 

MS/MS 

Odd electron 
MS and 

MS/MS 

N-Oxide MS  

Mass settings, 

DD-MS/MS 

algorithms, 

thresholds 

Mass spectrometer 
TEC Waters 

Q-TOF 

Same peak tolerance (amu) 0.01 

Chromatogram automatic filtering threshold 0.95 
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Supporting Table 1. Mass-MetaSite settings are shown with experimental 

details for GLP-1 

MS automatic filtering threshold 0.95 

MS/MS automatic filtering threshold  0.95 

Ionization mode 
positive 

[M+H] + 

Signal filtering for MSE data 100 

Signal filtering for HDMSE data automatic 

Scan filtering automatic 
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Supporting Table 2. Mass-MetaSite settings are shown with experimental 

details for Verapamil 

Mass-MetaSite Settings 

Import Protonation policy pH=7 

 Maximum number of conformers 20 

Metabolite 

generation 

Minimum mass 50 

Metabolite stereochemistry and redundant 

metabolites 
ignored 

MIM (the percentage of the monoisotopic 

mass of the parent) 
30% 

Common cytochrome P450 reaction 

mechanisms 
none 

Mass settings, 

experiment 

Hepatocytes true 

Retention time range (min) not used 

Standard mode activated 

Peptide mode deactivated 

GSH mode deactivated 

Mass settings, MS 

peaks 

Maximum metabolite count limit 20 

Peak area threshold (%) 0.50% 

Peak area threshold (absolute) 0 

Peak detection smoothing Medium 

Expected 

metabolites 

Rescue computed DRM peaks not used 

Split computed DRM peaks not used 

Adducts not used 

Dimeric Ions not used 

Neutral loses not used 

Multi-Charge Ions  used 

Multi-Charge Ions max z  5 

Unexpected metabolites included 

Mass settings, 

Met ID 

Number of metabolite generations 3 

Compound fragmenting, bond breaking 

limit 
4 

Break metabolites Not included 

Break metabolites limit 0 

Even electron 
MS and 

MS/MS 

Odd electron 
MS and 

MS/MS 

N-Oxide MS  

Mass settings, 

DD-MS/MS 

algorithms, 

thresholds 

Mass spectrometer 
TEC Waters Q-

TOF 

Same peak tolerance (amu) 0.01 

Chromatogram automatic filtering threshold 0.95 

MS automatic filtering threshold 0.95 
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Supporting Table 2. Mass-MetaSite settings are shown with experimental 

details for Verapamil 

MS/MS automatic filtering threshold 0.95 

Ionization mode 
positive [M+H] 

+ 

Signal filtering for MSE data 100 

Signal filtering for HDMSE data automatic 

Scan filtering automatic 
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Supporting Figure 1. Peak area as a function of incubation time for GLP-1 and 

its metabolites. 
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Supporting Figure 1. Peak area as a function of incubation time for GLP-1 and 

its metabolites. 
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Supporting Figure 2. Peak area as a function of incubation time for verapamil 

and its metabolites. 
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Supporting Figure 3. Full scan/data-dependent MS/MS spectra for the GLP-1 

metabolite M-208. Red peaks - correlated with fragments that match between 

metabolite and fragment; Blue peaks - describe peaks correlated only with 

parent; 
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Supporting Figure 4. Full scan/data-dependent MS/MS spectra for the GLP-1 

metabolite M-1219. Red peaks - correlated with fragments that match between 

metabolite and fragment; Blue peaks - describe peaks correlated only with 

parent; 
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Supporting Figure 5. Full scan/data-dependent MS/MS spectra for the GLP-1 

metabolite M-945. Red peaks - correlated with fragments that match between 

metabolite and fragment; Blue peaks - describe peaks correlated only with 

parent; 
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Supporting Figure 6. Full scan/data-dependent MS/MS spectra for the GLP-1 

metabolite M-1382. Red peaks - correlated with fragments that match between 

metabolite and fragment; Blue peaks - describe peaks correlated only with 

parent; 
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