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Abstract

The main objective of this thesis is the development of an adaptive mesh refinement
(AMR) algorithm for computational fluid dynamics simulations using hexahedral and
tetrahedral meshes. This numerical methodology is applied in the context of large-
eddy simulations (LES) of turbulent flows and direct numerical simulations (DNS) of
interfacial flows, to bring new numerical research and physical insight.

For the fluid dynamics simulations, the governing equations, the spatial discretiza-
tion on unstructured grids and the numerical schemes for solving Navier-Stokes equa-
tions are presented. The equations follow a discretization by conservative finite-volume
on collocated meshes. For the turbulent flows formulation, the spatial discretization
preserves symmetry properties of the continuous differential operators and the time
integration follows a self-adaptive strategy, which has been well tested on unstructured
grids. Moreover, LES model consisting of a wall adapting local-eddy-viscosity within a
variational multi-scale formulation is used for the applications showed in this thesis. For
the two-phase flow formulation, a conservative level-set method is applied for capturing
the interface between two fluids and is implemented with a variable density projection
scheme to simulate incompressible two-phase flows on unstructured meshes.

The AMR algorithm developed in this thesis is based on a quad/octree data structure
and keeps a relation of 1:2 between levels of refinement. In the case of tetrahedral
meshes, a geometrical criterion is followed to keep the quality metric of the mesh on a
reasonable basis. The parallelization strategy consists mainly in the creation of mesh
elements in each sub-domain and establishes a unique global identification number, to
avoid duplicate elements. Load balance is assured at each AMR iteration to keep the
parallel performance of the CFD code. The AMR algorithm is coupled within the CFD
libraries to solve turbulent flows around bluff bodies and two-phase flows. Moreover, a
mesh multiplication algorithm (MM) is reported to create large meshes, with different
kind of mesh elements, but preserving the topology from a coarser original mesh.

vii



viii Abstract

This thesis focuses on the study of turbulent flows and two-phase flows using an
AMR framework. The cases studied for LES of turbulent flows applications are the flow
around one and two separated square cylinders, and the flow around a simplified car
model. In this context, a physics-based refinement criterion is developed, consisting of
the residual velocity calculated from a multi-scale decomposition of the instantaneous
velocity. This criteria ensures grid adaptation following the main vortical structures and
giving enough mesh resolution on the zones of interest, i.e., flow separation, turbulent
wakes, and vortex shedding. Various quantities of interest were measured and compared
with numerical and experimental references, showing the capability of this methodology
in effectively cluster mesh elements where is needed and getting accurate numerical
results.

The cases studied for the two-phase flows are the DNS of 2D and 3D gravity-driven
bubble on regular and complex domains, with a particular focus on the wobbling regime
where their oscillatory paths require a vast computational domain, and the use of AMR
is convenient. The numerical methodology is applied to a series of verification and
validation test, which includes a comparative study of different interface capturing
methods on the gravity-driven bubbles, a static drop test to measure the error induced
by the surface tension model, and validations tests against experimental data. A study
of rising bubbles in the wobbling regime and the effect of dimensionless numbers on the
dynamic behavior of the bubbles are presented. The cases selected are in the range of
mid-high Reynolds numbers, where bubble shapes, oscillation paths, and hairpin-like
vortical structures are depicted to show the capability of our methodology to reproduce
the main physical features in this regime. Moreover, the use of tetrahedral AMR is
applied for the numerical simulation of gravity-driven bubbles in complex domains. On
this topic, the methodology is validated on bubbles rising in cylindrical channels with
different topology, where the study of these cases contributed to having new numerical
research and physical insight in the development of a rising bubble with wall effects.



1
Introduction

1.1 Background and Motivation

Computational fluid dynamics (CFD) has become important in the last decades as a
tool to simulate fluid dynamics numerically. As the computational power increases
rapidly over the years, the development of algorithms to join this growing development
is of great interest to the research community. Diverse CFD codes have been developed
for diverse applications as turbulent flows, multiphase flows, combustion or magneto-
hydrodynamics. Moreover, the users of these algorithms are coming from the research
community, as well as, the industrial sector, to increase the physical understanding,
improve industrial designs, or as a computational tool that can complement experimen-
tal studies. One limitation of this topic is the computational resources used to solve
flow dynamics problems. As the physical phenomenon is getting more complicated to
evaluate, the use of Large-Eddy Simulations (LES) or Direct Numerical Simulations
(DNS) requires mid-large computational effort to accurate solve turbulent and two-
phase flows. Diverse solutions to this problem have arisen, like the improvement of the
models, development of high-order schemes , or the use of mesh refinement techniques .
In this thesis will focus the attention into the last one, where several techniques have
been developed to reduce the computational resources used for numerical simulations
by manipulating the mesh. On the refinement mesh techniques, adaptive mesh refine-
ment algorithms (AMR) is the most well know method applied to partial differential
equations [1, 2]. AMR for hexahedral and tetrahedral elements have been developed
for particular flow applications [3–8] . Hexahedral AMR is the most common algorithm
because it is relatively easy to implement and has been widely used for turbulent and
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2 Chapter 1. Introduction

multiphase flows. Different AMR approaches exist around the research community
like the block-based [2] , and the cell-based algorithms [9] , which have shown good
performance in particular and different applications. On this context, this thesis brings
a hexahedral AMR that is coupled to a CFD unstructured code TermoFluids [10], where
our AMR formulation works with turbulent flows, multiphase flows [11–17] or any CFD
application, as far as, the numerical schemes developed for the physical governing equa-
tions follows a collocated unstructured finite-volume discretization [18–20] . Tetrahedral
AMR has been recently an open research topic, more related to industrial applications,
where complex geometries/designs lead to the use of unstructured grids to solve the
governing equations [21] . The main issues arise, for the development of tetrahedral
AMR, to avoid non-conforming elements, keep an acceptable mesh quality and be able
to execute 3D unsteady numerical simulations. Taking into account these issues, this
thesis looks for the development of a tetrahedral AMR for turbulent and two-phase flows
using complex solid objects or complex boundaries/domains. Tetrahedral AMR follows a
regular refinement and the numerical schemes given for the unstructured discretiza-
tion of our CFD code allows the use of non-conformal elements [11–14,18–20,22,23].
Moreover, a geometrical criterion is followed to preserve the quality of the subdivided
mesh elements [24] .

AMR has been used mainly to solve partial differential equations, with applicability
to many fields including computational fluid dynamics. On this topic, AMR for turbulent
flows has been developed in the context of different discretization methods methods
[8, 25–27]. This thesis brings new numerical research on the application of AMR for
LES of turbulent flow around bluff bodies, as well as, the introduction of a physics-
based criterion based on a variational multiscale decomposition of the instantaneous
velocity, which can be applied to a wide range of turbulent flows problems. On the
other hand, AMR for two-phase flows has been widely applied to different topics, i.e.,
bubbles, droplets, jets, free surface [28–32] . Most of the hexahedral AMR has been
coupled with interfacial capturing methods for 2D and 3D problems. In this thesis,
the AMR is coupled with a Conservative Level-Set for unstructured meshes that has
been developed before in our research center by [11–14,22,23], to bring new numerical
research in the gravity-driven bubbles area. Bubbles in the wobbling regime present
path instabilities that need a large computational domain and enough grid resolution to
get an accurate representation of the interface and the vortical structures that appear on
the lower surface of the bubble. Moreover, the numerical simulation of wobbling bubbles
at mid-high Reynolds number is still a challenging problem. Another application related
to two-phase flows is the simulation of bubbles and droplets in complex domains and
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channels. These numerical experiments are required on the designing of microchannels
in the chemical and nano industry. Where, the use of unstructured grids is a way
to approach this cases [6, 7]. However, the use of extensive computational resources,
when using unstructured grids, lead an opportunity to develop AMR methods for these
applications. Here, a tetrahedral AMR for two-phase flows is introduced to solve gravity-
driven bubbles in cylindrical domains, vertical and complex channels, to research the
wall effect on the rising motion of a bubble.

1.2 Objectives of this thesis

The development of adaptive mesh refinement algorithms is required for multi-scale
simulations where different grid resolutions are needed according to the problem.
Where in some areas a coarse or a fine mesh has to be defined and adapted to the
flow features. This methodology leads to a reduction of the computational efforts and
adds an automatic grid generation, which in most of the cases, is a bottleneck issue on
computational fluid dynamics simulations. Considering the applications described in
this thesis, which are turbulent and two-phase flows, the main objectives of this thesis
are:

• Development of an adaptive mesh refinement algorithm for the hexahedral and
tetrahedral mesh to be used on collocated unstructured grids. The algorithm will
work on a finite-volume CFD framework.

• Establish proper refinement criteria for the different applications of this thesis,
which in the case of LES of turbulent flows around bluff bodies, the mesh ele-
ments have to be clustered near the objects and flow separations, wakes, laminar-
turbulent transitions; or in the DNS of two-phase flows, the features of interest
are the interface between fluids and vortical structures.

• Show the capability of this methodology to solve 2D and 3D LES of turbulent
flows around bluff bodies and DNS of two-phase flows. Moreover, the use of this
formulation might allow the advance in the understanding on the physics of
the flow separation and vortex generation on the flow around different objects;
and the bubble dynamics in wobbling regime and the gravity-driven bubble in
vertical/complex channels.

As the proposed framework works in a high-performance environment due to the
LES and DNS simulations of fluid dynamics, the resulting code also works on parallel
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computers. Moreover, the use of hexahedral or tetrahedral AMR leads to simulate
fluid dynamics applications on complex geometries/boundaries, which can be used in
industrial cases as well.

1.3 Outline of the thesis

This thesis is focused on the development of an adaptive mesh refinement for compu-
tational fluid dynamics applications using hexahedral and tetrahedral meshes. The
main objective of using these algorithms is the reduction of computational resources,
without losing accuracy, to solve highly demanding numerical simulations related to
LES of turbulent flows and DNS of two-phase flows. The thesis is organized as follows.

Chapter 2 presents the governing equations and the numerical schemes to solve
Navier-Stokes Equations for a single-phase fluid flow. For turbulent flows, the spatial
discretization preserves symmetry properties of the differential operators and the time
integration scheme follows an efficient self-adaptive strategy. A description of the LES
model used in this thesis is presented, where a wall-adaptive local-eddy viscosity within
a variational multiscale method is applied for the turbulent applications. In this chapter,
the AMR algorithm for hexahedral meshes is introduced as well. The AMR algorithm
is based in a quad/octree data structure to keep track of the refinement/coarsening
process. An overview of the parallelization and load balance strategy is reported. For
LES of turbulent flows, a refinement criterion is introduced to capture the main vortical
structures for these cases. This criterion consists of the residual velocity calculated
from a multiscale decomposition of the instantaneous velocity. The AMR methodology
is tested for a series of verification an validation cases, which are the Rankine vortex
and flow around one/two square cylinders. An additional test case for the 3D turbulent
flow over a simplified car model can be found on the Appendix A. First and second order
statistics are compared with numerical and experimental references from the literature
to asses the accuracy and applicability of the algorithms.

In Chapter 3, the use of AMR for hexahedral meshes for two-phase flows is presented.
An unstructured conservative level-set method developed to keep track of the interface
between fluids is combined with a variable density scheme to simulate incompressible
two-phase flows, as introduced in [11, 14, 17, 23]. Physical properties are smoothly
varied along the interface to avoid numerical perturbations. In addition, a comparative
analysis between different interfacial capture methods [11,13,14,17,23] with AMR for
2D and 3D gravity-driven bubbles can be found in Appendix C. The AMR algorithm
is based in a quad/octree data structure to keep track of the refinement/coarsening
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process. For DNS of two-phase flows, 2D and 3D gravity-driven bubbles are simulated.
Different interface capturing methods has been tested, as well as, verification cases for
the adaptivity in two-phase flows are presented. Moreover, a study of rising bubbles
with path instabilities and the effect of the dimensionless numbers in the dynamic
behavior in the wobbling regime is described.

Chapter 4 presents the research work related to DNS of two-phase flows using
tetrahedral AMR framework. Tetrahedral AMR follows an octree data structure for
the refinement/coarsening of the mesh elements. A geometric criterion is established
for the regular refinement process to keep the mesh quality. In Appendix B, can be
found a mesh multiplication algortihm based on the 8-subdivision procedure of different
mesh elements and its application to CFD simulations. The tetrahedral AMR coupled
with the unstructured conservative Level Set [11,14,17,23] is verified and validated
with different numerical cases, as the rising bubbles in cylindrical domains, vertical
channels, and complex channels, where wall effect on the rising bubbles is researched.

The last Chapter is dedicated to the conclusions and further work.
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Abstract. In this chapter a parallel adaptive mesh refinement (AMR) strategy for large eddy

simulations (LES) of turbulent flows is presented. The underlying discretization of the Navier-

Stokes equations is based on a finite-volume symmetry-preserving formulation, with the aim of

preserving the symmetry properties of the continuous differential operators and ensure both,

stability and conservation of kinetic-energy balance. The conservation properties are tested for

the meshes resulting from the AMR process, which typically contain transitions between zones

with different level of refinement. Our AMR scheme applies a cell-based refinement technique,

with a physics-based refinement criteria based on the variational multi-scale (VMS) decomposition

theory. The overall AMR process, from the selection of the cells to be refined/coarsened till the

pre-processing of the resulting mesh, has been implemented in a parallel code, for which the

parallel performance has been attested on an AMD Opteron based supercomputer. Finally, the

robustness and accuracy of our methodology is shown on the numerical simulation of the turbulent

flow around a square cylinder at Re = 22000 and the turbulent flow around two side-by-side

square cylinders at Re = 21000.

9
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2.1 Introduction

The direct numerical simulation (DNS) of incompressible turbulent flows is limited by
the wide range of scale motions that need to be accurately solved. In each zone of the
simulation domain, the mesh needs to be dense enough in order to solve the smallest
scales of motion and, at the same time, all these discrete elements become coupled by
the largest scales of motion. The result is a large discrete system of mutually coupled
variables that, commonly requires unaffordable computing resources in order to solve it.

This situation, has prompted the scientific community to develop strategies in order
to reduce the computing requirements. An option is the large eddy simulation (LES),
based in modeling the subgrid scales of motion and therefore, allowing to coarse the
mesh. Another strategy consists in optimize the mesh generation in order to avoid
unnecessary zones of refinement. Adaptive mesh refinement (AMR) methods focus in
this second aspect by dynamically refine or coarsen any part of the mesh according
to the flow problem. The desired benefit from these techniques is an automatic and
dynamic mesh adaptation to accurately solve any flow, minimizing the number of grid
cells. Note that, as a result, this methods also cancel the cost of “manually” generating
a suitable mesh for the solution of the flow, what is becoming a tedious problem on the
HPC context.

At first, the AMR techniques were initially introduced by Berger [1,2], and Powell
[3] whom described an AMR formulation for Cartesian meshes and cell based AMR
methods, respectively. On the context of AMR applied to flow around bluff bodies, finite
element AMR approaches have been developed using a posteriori error estimation based
on the residuals of the Navier Stokes equations [4]. In [5,6] a posteriori error estimation
for turbulent flow is considered on applications like the flow around a surface mounted
cube and a square cylinder. Another AMR approach was developed for engineering
problems by Berrone et al. [7], where the viability of a fully combined space and time
adaptivity for engineering problems was investigated. Although the large number of
numerical studies available, most of them are based on error control technique, applied
on a finite element framework. Only few studies have been performed using solution-
directed mesh-refinement methods or applied to finite volume framework for different
applications [8–11].

It is also important that solution codes achieve good parallel performance in current
supercomputers in order to take advantage of the increasingly available computing
power. In this regard, the development of parallel AMR algorithms is mandatory,
although important difficulties appear such as the global labeling of the unknowns, the
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treatment of the elements at the boundaries of the mesh subdomains or the achievement
of a good workload distribution.

In this context the aim of the present work has been the development of a parallel
AMR method to be applied in LES of turbulent flow at high Reynolds number, using
a physics-based refinement criteria in a finite volume framework with conservative
formulations. This has been implemented on the top of the TermoFluids (TF) CFD
software platform [12]. In TF the Navier-Stokes equations are discretized following
a symmetry-preserving formulation [13–15], thus, the conservation properties on the
meshes resulting from the AMR process, which typically contain transitions between
zones with different level of refinement, has been analyzed. The WALE model [16] is
used within a variational multiscale framework [17] to deal with the smallest scales
of motion. Furthermore, AMR refinement criteria based on the VMS scale separation
theory has been developed and the AMR algorithm has been implemented in a parallel
code, for which the parallel performance has been attested on an AMD Opteron based
supercomputer. The robustness of our method has been proven on the numerical
simulation of the flow around square cylinder at Reynolds number 22000 and the flow
around two side-by-side square cylinders at Re=21000. These cases cover the main
turbulent flows features such as flow separation, vortex shedding and appearance of
vortex in the wake of the cylinder [18–24].

The rest of the chapter is organized as follows. In Section 2.2, the system of gov-
erning equations using a symmetry preserving discretization is described. In Section
2.3, a detailed description of the adaptive mesh refinement scheme and an ongoing
parallelization strategy with a performance study are presented. Moreover, conservation
test are carried out to test the AMR mesh on a Rankine vortex problem and a detailed
description of the refinement criteria with its corresponding applications on different
problems are presented. In Section 3.3, the solutions for a turbulent flow around a
square cylinder and two side-by-side square cylinders are compared to experimental
and numerical results. Finally, some conclusions are drawn.

2.2 Mathematical Formulation

In large-eddy simulations (LES) the spatial filtered and discretized Navier-Stokes
equations are defined as

M u = 0 (2.1)
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Ω
∂u
∂t

+C (u)u+νDu+ρ−1ΩGp = C (u)u−C (u)u ≈−MT (2.2)

where u and p represent the filtered velocity vector and pressure, respectively, ρ
is the fluid density and ν is the kinematic viscosity, Ω is a diagonal matrix with the
sizes of control volumes. Convective and diffusive operators in the momentum equation
for the velocity field are given by C (u) = (u · ∇) and D = −∇2, respectively. Gradient
and divergence operators are given by G=∇ and M =∇·, respectively. The term that
requires modelling is the filtered non-linear convective term. T is the SGS stress tensor,
which is defined as [25],

T = −2νsgsSij+ (T : I)I/3 (2.3)

Sij = 1
2

[G(u)+G∗(u)] (2.4)

where Sij is the rate-of-strain tensor and G∗ is the transpose of the gradient operator.
To close the formulation, a suitable expression for the subgridscale (SGS) viscosity,
must be introduced. LES studies have been performed using a SGS model suitable
for unstructured formulations: the wall-adapting local-eddy viscosity model within a
variational multi-scale framework (VMS-WALE) [16, 17]. A brief description of this
model is given hereafter.

2.2.1 Wall-adapting eddy viscosity model within a variational multiscale frame-
work (VMS-WALE)

The variational multi-scale (VMS) concepts for Large Eddy Simulation (LES) was
originally formulated by Hughes et al. [17] in the Fourier space, and is a viable and
practical approach for LES of turbulent flows. In VMS the decomposition of the flow
into three scales is considered: large scales, resolved small scales and unresolved small
scales. If a explicit filter is introduced, a splitting of the resolved scales can be performed,

f
′ = f − f̂ (2.5)

where following Vreman [26] notation, the large scales are determined by f̂ , the
small scales by f

′
and f is the original resolved quantity. Thus, for the large-scale parts
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of the resolved u, a general governing equation can be derived,

Ω
∂u
∂t

+C (u)u+νDu+ρ−1ΩGp− f = −∂T̂
∂x j

− ∂T
′

∂x j
(2.6)

Here, T̂ is the subgrid large-scale term and T
′
is the subgrid small-scale term. Now,

assuming that the unresolved scales doesn’t have any effect on the large scale equation
(T̂ ≈ 0), it is only necessary to model the effect of the small scale term T

′
. In our

implementation the small-small strategy is used in conjunction with the wall-adapting
eddy viscosity (WALE) model [16]:

T
′ = −2νsgsSij

′ + 1
3

T
′
δi j (2.7)

νsgs = (Cvms
w ∆)2

(Vij
′
: Vij

′
)

3
2

(Sij
′
: Sij

′
)

5
2 + (Vij

′
: Vij

′
)

5
4

Sij
′ = 1

2
[G(u

′
)+G∗(u

′
)]

Vij
′ = 1

2
[G(u

′
)2 +G∗(u

′
)2]− 1

3
[G(u

′
)2I]

where C vms
w is the equivalent of the WALE coefficient for the small-small VMS

approach and for finite volume method its value lies between 0.3 and 0.5 [27].

2.2.2 Numerical method

Second-order spectro-consistent schemes on a collocated unstructured grid arrangement
were adopted for the discretization of the governing equations. It is remarkable that
those schemes are conservative, i.e. they preserve the symmetry properties of the
continuous differential operators and ensure both, stability and conservation of the
kinetic- energy balance even at high Reynolds numbers and with coarse grids [28,29].
For the discretization in time of the momentum equation a two-step linear explicit
scheme on a fractional-step method was used for the convective and diffusive terms
[30], while the pressure is solved using an implicit first-order scheme. This methodology
has been extensively tested and verified with accurate results for solving the flow over
bluff bodies with massive separation [14,15,31]. Computations were carried out using
meshes generated by a constant step extrusion of a two-dimensional (2D) grid. Hence,
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the spanwise coupling of the discrete Poisson equation produce circulant sub-matrices
that are diagonalizable in a Fourier space. Consequently, a Fast Fourier Transform
(FFT) method is used to solve the Poisson equation based on the explicit calculation and
direct solution of a Schur Complement system for the independent 2D systems. More
details about this method can be found in [32].

2.3 Adaptive Mesh Refinement

Mesh adaptation is accomplished by dividing or coarsening groups of cells following a
refinement criteria, based on our physical understanding of the problem. Therefore, the
AMR algorithm starts with an initial mesh and continuously refines certain regions by
dividing a parent cell into four (two dimensions) or eight (three dimensions) children
cells. While, in areas that are over resolved, the refinement process can be reversed by
coarsening four or eight children cells into a single parent cell, following a quad/oct-tree
scheme. Those processes are continuously performed, creating a suitable mesh for
the solution of the vortical structures of the flow at each phase of the simulation. For
algorithm convenience, the grid adaptation is constrained such as the cell resolution
changes by only a factor of two between adjacent cells (see Fig. 2.1) and the maximum
level of refinement is established by a study of the Kolmogorov scales derived for the
problem being considered.

Figure 2.1: AMR cell-based scheme
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2.3.1 Mesh definition

In our software platform, a mesh is represented as an object composed of basic geo-
metrical elements (vertices, faces and cells) and, which also describes the relationship
between them. Hereafter the main data representing the basic elements of the mesh
are described:

• Vertex: The class vertex consist in a vector with three spatial coordinates.

• Face: A face is a polygon and can be defined as an ordered set of integers corre-
sponding to the indexes of its vertices.

• Cell: A cell is a polyhedron and is defined with the indexes of the face objects
that form it. In this case no ordering is needed; a set of faces determines only one
possible polyhedron.

For the face and cell objects, a list of its neighboring elements is stored. For example,
for each cell are stored the global indexes of its neighbors. Those are at minimum the
indexes of the 6 neighboring cells of the initial Cartesian mesh, but they may increase
as the AMR process evolves.

2.3.2 Domain decomposition

The mesh decomposition is derived from a partition of the cells adjacency graph, that is
carried out by means of an external tool such as the ParMETIS library [33]. Apart than
providing a good load balance, ParMETIS routines minimize the edge cuts, reducing the
data exchange requirements in the simulation.

After the mesh partition, each parallel process deals with a subset of cells, faces and
vertices that all together form a subdomain. These are referred to as owned elements
of each type. Since the graph is defined by means of the cells adjacency its partition
directly defines the owned cells of each parallel process.

The distribution of the faces and vertices is also based on the cells graph. However,
on the subdomains boundary, where the elements are shared between processors, a rank
criteria is used to establish the owner. For instance, when two neighbor cells are located
on different subdomains, a common face is located on the border of the subdomain. This
face is assigned to the processor with the higher rank.

The discrete operations are generally performed by means of scalar field defined over
the elements of the mesh. Therefore, its distribution is determined by the distribution
of the corresponding geometrical elements.
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Note that, in the geometric and algebraic parallel operations, each parallel process
may need elements owned by others. Therefore, a copy of the required elements, owned
by other processors is attached. Those copies of external elements attached to each
subdomain are referred as its halo. Its important to remark that any element of a halo
is a copy, meaning that the original element is owned by another parallel process. Thus,
if the original element changes in the owner parallel process, the copy stored in the halo
must be updated before using it. Otherwise, the results of the sequential and parallel
executions would differ.

Any mesh element is uniquely determined by its local identifier (lid), which refers
to its position in a local storing container. However, the lid only identifies the element
locally, i.e. different elements owned by different parallel processes may have the same
lid. In order to globally determine each element, we use global identifiers (gid).

For each mesh element type, a topology object is created that contains the informa-
tion of its corresponding local/global identifiers, that defines the domain decomposition
(owned/halo elements) and, also the communication scheme required to update the
halos.

2.3.3 Algorithm description

Writing a parallel AMR code for scientific computations is a laborious work. The
overall AMR process, from the selection of the cells to be refined or coarsened, till the
pre-processing of the resulting mesh, has been implemented in parallel, based on the
standard domain decomposition (DD) method.

The major aspects regarding the parallelization, are the definition of a global order
(i.e. the gids) for the discrete elements of the new mesh, and the operations performed
to keep coherence on the subdomains borders.

The AMR algorithm inputs are the old mesh, i.e., the mesh being adapted, a list
of global identifiers of cells and its corresponding level of refinement and, a tree data
structure that keeps track of the cells decomposition, see Fig. 2.2. The algorithm output
is a new adapted mesh gathered into an unique data file from the submeshes generated
by the different parallel processes, see Fig. 2.3. Parallel IO operations are performed
by means of the HDF5 library [34]. Finally, the new mesh partitioning is done with
ParMETIS library, to achieve load-balance. This leads to a new partitioned mesh, that
will be used for the next simulation step, see Fig. 2.4.

The intermediate solutions are transmitted to the new mesh by means of interpola-
tions based on the tree data structure. For the refinement process each solution data of
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Figure 2.2: AMR mesh showing various levels of refinement and its corresponding quadtree data
structure.

Figure 2.3: Schematic figure for the inputs/outputs of the algorithm
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Figure 2.4: Parallel partitioning, among 32 processors, for different meshes in the solution of a
square cylinder problem. The dark lines indicate partition boundaries.

the parent cell is set to its child cells, and for the coarsening process an average solution
is given from the child cells to its corresponding parent cell.

A description of the code is presented in Algorithm 1, divided in four main steps.

Algorithm 1

• Step1 (S1). Read the old mesh and prepare the cells to be refined/coarsened. In
this step, each processor uploads the old mesh from a data file and reads the list
of cells with its corresponding level of refinement. If this level match with the
cell level stored in the data file, the cells is not modified. However, if the level
is higher, the cells will be refined. Differently than the refinement process, the
coarsening is performed automatically (without requiring input data). The list of
cells to be coarsened consist on the cells with level higher than 0 which are not
in the input list of cells and neither are their neighbor cells. These operations
are carried out according to the tree data structure. Moreover, communications
are held between neighboring subdomains to ensure that the resolution between
neighbor cells only changes by a factor of two.
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• Step2 (S2). Create a new mesh with the cells that are not modified. A mesh object
is created with the elements that are not going to be refined/coarsened. A new
index ordering is established for each processor, where collective communications
are held in order to create an unique global index for each element. Storing
containers are used to save the geometric information of the elements, meanwhile
the information regarding the neighboring relations between elements is filled
during the storing process. Communications are necessary to share the new global
indexes of the elements on the boundary of the subdomains in order to complete
the definition neighboring relations.

• Step3 (S3). Create the new mesh elements and determine its corresponding global
indexes. With the list of cells to be refined/coarsened, each processor will create
the new vertices, cells and faces using the information of the old mesh and the tree
data structure. In the case of the refinement process, new vertex are created by
averaging the adjacent vertices coordinates of the parent cell. Then, the rest of the
elements corresponding to the four/eight new cells are created. For the coarsening
process, a new cell is created with all its corresponding elements. Finally, an
index ordering is established for the new elements, taking into account the already
existing elements from the Step 2. Collective communications are also required for
this task. The new geometric elements created on the boundary of the subdomains
need to be shared between parallel processes in order to ensure coherence and to
complete the definition the neighboring relations

• Step4 (S4). Create a data file with the new mesh. Finally, all processors are
synchronized and the data is gathered to create a HDF5 data file that contains
the information of the new mesh that is used in the next step of the solution
procedure. The creation of the HDF5 data file consist in two steps: first, collective
communications are held in order to determine the global size of the data to
be written. Second, each parallel process writes its respective information in a
specific position determined by the global index of the elements. Hyperslab HDF5
functionalities are used in order to optimize this process.

2.3.4 Parallel Performance

The strong speed up of the AMR algorithm has been assessed for an initial Cartesian
mesh of 1.1 million cells of which 1% are refined. In order to discard imbalance effects,
the cells to be refined are homogeneously distributed throughout the domain. This test



20
Chapter 2. Parallel adaptive mesh refinement for large-eddy simulations of turbulent

flows

has been performed in an AMD Opteron based cluster (AMD Opteron 6272, 16-core
processors at 2.1 GHz, 64 GB RAM linked with the infiniband QDR 4X network and a
DDN S2A9900 with 80 disks of 1 Tb, obtaining a storage capacity of 64 Tb and writing
at 2.6 Gbytes/s with a parallel file system called Lustre), engaging up to 256 CPU-cores.
The relative weight as the number of CPU-cores grows, is shown in Table 2.1, for each
of the four steps of Algorithm 1. Step 4, the creation of the final mesh file, is the part of
the algorithm that further increases its cost, therefore, it becomes the main limitation
for the speedup. The creation of this mesh file is managed by means of the HDF5 library,
unfortunately, it does not provide good parallel performance on the writing operation.
Contrary, the reading operation, performed in Step 1 with the same library, scales
properly.

Table 2.1: Relative weight (%) of each of the four steps of Algorithm 1 for different number of
CPU-cores.

Number of CPU 32 64 128 256
Step 1 37.9 32.5 25.3 21.7
Step 2 18.8 15.6 13.0 12.5
Step 3 23.3 18.8 13.5 9.9
Step 4 20.0 33.1 48.2 55.9

In Figure 2.5, is shown the strong speedup for both, the overall algorithm and also
the algorithm obtained by discarding IO operations; i.e the original part of it. The
parallel efficiency is clearly penalized by the IO operations. With 256 CPU-cores it
reaches up to 90% for the rest of the code, but decreases down to 50% when the IO
operations are included. Further work needs to be performed in order to extend the
scalability to higher number of CPU-cores.

2.3.5 Conservation tests

In order to analyze the conservation properties for the proposed adaptive mesh refine-
ment method, a Rankine vortex problem is chosen as test case. The Rankine vortex
model is given by the combination of a rigid-body rotation within a core, a decay of
angular velocity outside and zero mass flux at the boundaries. The tangential velocity,
uθ, of a Rankine vortex with circulation, Γ, and radius, R, is given by
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Figure 2.5: Strong speedup of the AMR algorithm with and without IO operations.

uθ(r)=
Γr/2πR2 r É R,

Γ/2πr r > R.
(2.8)

In particular, the Rankine vortex solved in this section is placed in the center of a
3-D domain (1.0 x 1.0 x h), the initial tangential velocity reaches a maximum of 0.16
m/s at radius R = 0.01 m, and circulation equals Γ = 0.032 π m2/s. The density and
viscosity of the fluid are ρ = 1.0 kg/m3 and ν= 0.01 m2/s, respectively. The domain is
an adaptive mesh, with a refined area in the middle with 3 levels of refinement (Fig.
2.6), where the refinement criteria is based on the vorticity field. All boundaries are slip
walls.

Since there is no flow across the domain boundaries, if any difference exists between
physical dissipation and the rate of change of total kinetic energy, it is due to the
pressure error term, that arises from the special definition for the normal face velocity
needed to exactly conserve mass in the collocated scheme [28,29,35].

For this test, a second-order spectro-consistent schemes on a collocated unstructured
grid arrangement in a finite volume context was used. The difference between rate of
change of total kinetic energy, dk/dt = d( 1

2 u ·u)/dt, and physical dissipation, −νω ·ω,
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Figure 2.6: Illustration of the computational domain with 3 levels of refinement.

for an adaptive mesh was calculated at every time step using Eq. 2.9, and is compared
with an uniform mesh with 6.4 ·103 cells. Results are plotted in Figure 2.7.

∑
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ρ

∑
f ∈F(∂Ω)
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(2.9)

Results show a slightly perturbation when the mesh changes due to symmetry incon-
sistencies on the operators in the time integration. Thus, conservation is affected and
dissipation is generated, but this phenomena is imperceptible for the global simulation
as can be seen in Figure 7. Moreover, results show that the collocated scheme presents
a decreasing difference of order 10−9 for both uniform and AMR mesh.

However, it is important to notice that the kinetic energy error does not have a
significant impact on the physics of the problem, because of the mesh size and time steps
are small enough when direct numerical simulation (DNS) or large-eddy simulation
(LES) are used to solve turbulent problems. This have been shown by Rodríguez et al.
and Lehmkuhl el al. [15,27,31], which solve turbulent flows using the collocated scheme
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Figure 2.7: Difference between kinetic energy rate of change and physical dissipation using
collocated scheme versus time with ν = 0.01 (left)Entire simulation (right) Zoom in when the
mesh has changed.
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by means of DNS and LES techniques.

2.3.6 Refinement criteria

Physics-based mesh adaptivity requires criteria to establish measures that will indicate
the refinement/coarsening process of the mesh. As mentioned earlier, we adopt in this
work a mesh adaptivity criteria based on our physical understanding of the flow to
identify the critical regions of the problem. For turbulent flows around bluff bodies
considered here, measure of the residual velocity was calculated using the VMS scale
separation theory, to focus on small scales range from the solution of the Navier-Stokes
equations, and can be defined as:

u
′ = u−u (2.10)

where u
′

is the residual velocity, u is the instantaneous velocity and u is the filtered
velocity. In the present work to calculate the filtered velocity, we used a non-uniform
Laplace filter based on a Gaussian filter that are normalized, conservative and also self-
adjoint [26]. Thereby can be calculated on a general unstructured grid. The measure
presented here is defined as:

φc = ‖u
′‖ (2.11)

where φc ∈ Rm is the residual velocity magnitude (here m applies for the total number
of control volumes (CV) of the discretized domain).
To identify the cells to be refined and coarsened, a global maximum value of the criteria
is established.

φmaxno = max[φc] (2.12)

Moreover, the global maximum value is averaged in time to keep a smooth adaptation
effect.

φmaxn = [φmaxn (t)+φmaxno (∆t)]
1

t+∆t
(2.13)
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Then, an average value is calculated with the cell values above 10% of the global
maximum value to avoid the cells where the residual velocity is near to zero.

φavgn =

m∑
0

f (φc) ·φc

m∑
0

f (φc)
(2.14)

where, f (φc) is given by,

f (φc)=
1 φc Ê 0.1(φmaxn ),

0 φc < 0.1(φmaxn ).
(2.15)

Therefore, the threshold can be defined as

εc = φavgn

φc
(2.16)

With this parameter, the cells to be refined are those with εc Ê 2. Based on our experience,
a more conservative approach for the coarsen process was adopted, for which the
coarsening limit to the cells with εc < 2 and those who are not neighbors with the cells
marked to be refined.

In Figure 2.8, an example of the use of this criteria for the square cylinder problem
at Re=22000 is shown. Most of the vortical structures are captured in refined cells
whether near the object and in the wake region. Other measures can be considered, i.e.
the vorticity field. But, as can be seen in Figure 2.9, the results are not very promising
because this field is flow-dependent, therefore there are important zones that are not
refined even if a vortical structure is present. Moreover, the use of this field requires
continual tuning depending on the flow problem, as studied by S.J. Kamkar [11]

The residual velocity criteria presents a better behavior and the threshold can
be established in a general way to resolve basic turbulent problems without user
intervention of the refinement process. This criteria, with the parameters established in
this section, has been applied in other turbulent problems, using an immersed boundary
technique, like the flow over a circular cylinder at Re=3900 and the flow past a NACA
0012 at Reynolds number Re = 5 ·105 with a low angle-of-attack AOA = 5o.

The criteria has worked well for both problems where the flow over a circular
cylinder exhibits a transition to turbulence in separated shear layers, and interactions
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Figure 2.8: Vorticity field of the square cylinder problem at Re=22000. Residual velocity was
used as refinement criteria.

Figure 2.9: Vorticity field of the square cylinder problem at Re=22000. Vorticity was used as
refinement criteria.
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Figure 2.10: Illustration of vortical structures for LES of turbulent flow using residual velocity
as refinement criteria: Circular cylinder at Re=3900.

Figure 2.11: Illustration of vortical structures for LES of turbulent flow using residual velocity
as refinement criteria: NACA0012 at Re = 5 ·105 and AOA = 5o.

between shear-layers and the turbulent wake (See Fig. 2.10). Meanwhile, the flow past
a NACA 0012 presents a laminar separation, transition to turbulence in the separated
shear-layer and a laminar separation bubble when the flow reattaches to the airfoil
surface. (See Fig. 2.11).

2.4 Numerical results of turbulent flows using AMR-LES

As has been show, the refinement criteria developed seems to refine the areas needed
to solve the smallest flow structures on most of the turbulent problems around bluff
bodies. Moreover, the AMR mesh has shown to be able to preserves well the kinetic
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Figure 2.12: Computational domain for turbulent flow around a square cylinder at Re=22000

energy balance to ensure the conservation properties to solve turbulent problems. After
these results, it would be desirable to test how our methodology deals with the turbulent
flow around bluff bodies at higher Reynolds numbers. Hereafter two cases have been
studied: (i) the flow around a square cylinder at Re=22000 and (ii) the flow around two
side-by-side square cylinders at Re=21000. In both cases, numerical results have been
compared with experimental and numerical results from the literature. An additional
test case for the 3D turbulent flow over a simplified car model can be found on the
Appendix A.

2.4.1 Flow around a square cylinder at Re=22000

Numerical simulations of the flow around a square cylinder are performed at Re = 22000
[18–22], where Reynolds number is defined in terms of the free-stream velocity U and
the square length L. The results presented in this section have been obtained using a
computational domain of dimensions [-5.5L,14.5L]; [-7L,7L]; [0,4L] in the stream-, cross-
and span-wise directions respectively, where the square cylinder is located at x = 0, y =
0 (See Fig. 2.12).

The governing equations are solved on an adaptive mesh generated from the extru-
sion around the axis of a two-dimensional grid in a (x,y) plane. The boundary conditions
at the inflow consist of a uniform velocity (u,v,w)=(1,0,0). A pressure based condition is
used at the outlet boundary for the downstream. At the cylinder surface, no-slip condi-
tions are prescribed. As for the span-wise direction, periodic boundary conditions are
imposed. The use of an adaptive mesh for the plane, with four mesh levels, has allowed
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Table 2.2: Time-averaged flow parameters for flow around a square cylinder at Re=22000.

Cdmean Clmean Cdrms Clrms St
Present work 2.024 0.016 0.154 1.036 0.133
Sohankar (LES) [20] 2.03-2.32 - 0.16-0.2 1.23-1.54 0.126-0.132
Verstappen (DNS) [21] 2.1 0.005 0.21 1.22 0.133
Lyn (Exp) [18,19] 2.1 - - - 0.132
Luo (Exp) [22] 2.2 - 0.18 1.2 0.13

to cluster more control volumes around the cylinder surface and in the near wake. For
this case, the mesh adaptivity is performed after every 0.13 computational time units,
this was set in an empirical way related to the phenomenon of vortex shedding for bluff
bodies, where a fraction of the non-dimensional shedding frequency (Strouhal number)
was used. At the end of the simulation, the total mesh has around (1.2MCVs) and 16
planes, for the periodic direction, have been also considered for this simulation.

For obtaining the numerical results presented here, simulations have been started
from an initial homogeneous flow field. Then, advanced in time until statistical sta-
tionary flow conditions have been achieved. Results have been obtained based on the
integration of instantaneous data over a sufficiently time period. Some instantaneous
snapshots are depicted in Figure 2.13. Vorticity structures in the near wake obtained
with the adaptive grid are plotted in Figure 2.13 (left) and the computational grid for
that time step is plotted in Figure 2.13 (right).

The resulting time-averaged flow parameters are summarized in Table 2.2. The
mean Strouhal number, the mean drag coefficient (Cd), the mean lift coefficient (Cl) and
the rms fluctuations of Cd and Cl are presented (see Figure 2.14, for the time variation
of the drag and lift coefficients).

For comparison, experimental and numerical (from DNS and LES) results from
the literature are also given [18–22]. As can be observed, the AMR-LES predicts the
computed flow parameters in good agreement with the ones in literature, using the
refinement criteria mentioned before. Although, the results show slightly differences
for the drag and lift coefficient, but the Strouhal number is in fair agreement with the
literature results (see Figure 2.15, for the power spectral density graph that shows a
peak at f=0.133). This can be related to the refinement criteria operation, that establish
a big refinement zone with the maximum level possible near the body and in the wake
region.

In order to gain more insight into the behavior of the AMR-LES, the stream-wise and
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tU/L = 0.13

tU/L = 5.33

tU/L = 16.6

tU/L = 232.18

Figure 2.13: Illustration LES of turbulent flow around a square cylinder (left)Vorticity structures
(right) computational grid.
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Figure 2.15: Power spectral density graph shows a peak at f=0.133

cross-streamwise velocity profile and its fluctuations are plotted at different locations
near the cylinder (at x/D = -0.5, x/D = -0.25, x/D = 0.5, x/D = 1.5 and x/D = 3, Figure 2.16
and 2.17). For comparison the experimental results from Lyn, D.A. et al. [18,19] are
also included. As can be seen, the AMR-LES results present good agreement with the
experimental data. The first-order statistics are quite well predicted near the body and
in the wake region. But, slightly differences can be observed at the velocity fluctuations
near the body, therefore a finest grid is required for a better prediction. It is also
interesting to observe some minor discrepancies in the wake region (x/D = 1.5), whereas
the transition takes place in the separate shear layers on the side of the cylinder.
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Figure 2.16: Comparison with experimental data. (up) Average streamwise velocity (down) Root
mean square streamwise velocity fluctuations



34
Chapter 2. Parallel adaptive mesh refinement for large-eddy simulations of turbulent

flows

Figure 2.17: Comparison with experimental data. (up) Average cross-streamwise velocity (down)
Root mean square cross-streamwise velocity fluctuations
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These good results can be attributed to the use of a conservative discretization of
the convective and diffusive operators, as they preserve the kinetic energy balance. It
should be pointed out that the refinement criteria presented here, shows a good behavior
following the small vortical structures, given the spatial resolution needed to achieve
better numerical results for the LES model. It also can be noticed that the impact on
the results of the dynamic procedure within the VMS-LES approach is rather small,
and it is attributed to separation of the scales, where the turbulent viscosity modeling
is acting directly only on the resolved small scales. With this strategy, SGS viscosity
is only introduced in the unresolved small scales improving the behavior of the LES
model.

2.4.2 Flow around two side-by-side square cylinders at Re=21000

Numerical simulations of the flow around two side-by-side square cylinders at Reynolds
number Re = 21000 [23,24] (Reynolds number is defined in terms of the free-stream
velocity Uref and and the square length L) and g*=g/L=6 (gap ratio is defined as g*=g/L,
where g represents the spacing between the square cylinder surfaces) have been carried
out. Solutions are obtained in a computational domain of dimensions 41L x 28L x 4L
where the first square cylinder is located at x = 10, y = 10, and the second square
cylinder is located at x = 10, y = 17 (see Fig. 2.18). All coordinates are referred to
body axes unless remarked. The x axis is stream-wise, y is the cross-wise and z is
span-wise direction. The boundary conditions at the inflow consist of a uniform velocity
(u,v,w)=(1,0,0). At the outflow boundary, a pressure-based condition is imposed. No-slip
conditions on the square surfaces are prescribed. Periodic boundary conditions are
used in the spanwise direction. The characteristics for the adaptive method are the
same used for the single square cylinder mentioned in the last section. At the end of
the simulation the total mesh has around (2.06MCVs) and 16 planes, for the periodic
direction, have been also considered for this simulation. In Figure 2.19, a detail of the
mesh of the plane in the region of the square cylinders is depicted. As can be seen,
control volumes have been clustered near the cylinders surfaces, as well as in the wake
region.

LES computation have been performed with the VMS-WALE model, and the results
show that the Strouhal number obtained is 13.3, which is in good agreement with the
value measured in experiments and numerical studies. As can be seen, the flow structure
behind each square cylinder is independent. There are not close interactions between
the shear layers and the flow separation that occurs near the surfaces of the cylinders,
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Figure 2.18: Computational domain for turbulent flow around two side-by-side square cylinders
at Re=21000

Figure 2.19: Illustration LES of turbulent flow around two side-by-side square cylinders
(left)Vorticity structures (right) computational grid.
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Table 2.3: Time-averaged flow parameters for flow around two side-by-side square cylinders at
Re=21000, where 1 identifies the upper cylinder and 2 the lower cylinder.

Cd1mean Cl1mean Cd2mean Cl2mean St
Present work 2.001 -0.085 2.056 0.069 0.13
Mirzaei (Num) [24] 2.117 -0.075 2.117 -0.075 0.13
Yen (Exp) [23] 2.08 - 2.08 - 0.13

thus the vortex shedding frequency is similar to the result for the singular square
cylinder. A complete comparison of aerodynamic coefficients against experimental
and numerical data [23, 24] is depicted in Table 2.3. A good agreement between the
calculated results and the experimental/numerical data has been achieved for this gap.
It should be noted, that the flow structure exhibits anti-phase vortex shedding [23,24],
where two distinct vortex streets separate from the cylinders and vortices can stably
proceeds to the far downstream wake zone, see Figure 2.19.

It also can be noticed, that the refinement criteria and the adaptive parameters used
for the single square cylinder have been used for the two side-by-side square cylinders,
where most of the flow features were captured and control volumes were clustered in
the regions where the grid must be dense enough to capture all the flow scales.

2.5 Concluding remarks

A parallel adaptive mesh refinement algorithm has been presented. It has been devel-
oped to optimize the LES simulation of turbulent flows. The underlying discretization of
the Navier-Stokes equations has been arranged by means of a non dissipative symmetry
preserving method. And a new refinement criteria tightly coupled with the LES model
has been developed.

The work presented is focused on three main aspects. First of all we assessed
the conservation properties of the discretization for the meshes resulting from the
AMR process, characterized by the transitions between zones with different level of
refinement. Tests performed for a Rankine vortex problem, show an almost negligible
kinetic energy error without any noticeable impact on the physics of the problem.

Secondly, a new mesh adaptivity criterion has been developed. It is based on the VMS
scales separation theory, which allows to better discriminate the unresolved scales of
motion. This methodology, has been successfully tested for different bluff body problems
without particular tuning for any of them.
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Third, the overall AMR algorithm has been developed to be executed in parallel. In
particular, the algorithm shows a good strong speedup with up to 256 CPU-cores, on the
refinement of an homogeneously distributed group of cells of a Cartesian mesh. We have
assessed that the principal limitation for the parallel performance are the IO operations.
The speedup of the rest of the algorithm reaches 90% on 256 CPU-cores. Further work
needs to be done in order to extend the parallelization to larger numbers of CPU-cores.

Finally, the AMR-LES method has been applied on the simulation of the turbulent
flow around a square cylinder at Re = 22000 and turbulent flow around two side-by-
side square cylinders at Re=21000. Main features of the flow (flow separation, vortex
shedding, turbulent wake, etc) were successfully captured. Numerical results are in
good agreement with previous references demonstrating the robustness of the presented
approach.
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3
Parallel adaptive mesh refinement
for two-phase flows

Main contents of this chapter are in:

O. Antepara, N. Balcázar, J. Rigola, and A. Oliva. Numerical study of rising bubbles with path
instability using a conservative level-set method. Computers & Fluids, (Submitted), 2018.

Abstract. This chapter focuses on three-dimensional direct numerical simulations of rising
bubbles in the wobbling regime, and the study of its dynamical behavior for Eötvös number
1< Eo < 10 and Morton number 10−11 < M < 10−9. The computational methodology is based on a
mass Conservative Level-Set method, whereas the spatial discretization of the computational
domain employs an Adaptive Mesh Refinement strategy for the reduction of computational
resources. The Navier-Stokes equations are discretized using the finite-volume approach on a
collocated unstructured mesh; the pressure-velocity coupling is solved using a classical fractional-
step projection method. This methodology is applied to a series of verification and validation
tests, which are compared with experiments and numerical results from the literature. Finally,
buoyancy bubbles rising in the wobbling regime are researched at moderate to high Reynolds
numbers (100< Re < 3000). Terminal Reynolds number, drag coefficient and frequency of path
oscillations are compared with empirical correlations and numerical studies from the literature.
Results show the discharge of alternate oppositely-oriented hairpin vortex structures. Moreover,
depending on the characteristics numbers of the system, different path features, bubble shape,
and vortical structures in the wake are reported.

43
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3.1 Introduction

The phenomenon of a bubble rising in a quiescent liquid due to gravity has been studied
over the last decades. Many experimental studies have demonstrated that gas bubbles
rising in liquids stops following a straight vertical line, and start to ascend in different
path motions ( [1–4]). As a result, this phenomenon, in which the effects of gravity,
surface tension, and liquid inertia are intimately coupled, has motivated numerous
investigations. However, there are still open questions about the intrinsic mechanism
that leads to a wake disruption, bubble deformations, periodic variations of the velocity,
and different path motions. Therefore, the main motivation of this research is to
contribute to the understanding of these phenomena.

Direct numerical simulation (DNS) of multiphase systems has become an important
research tool for the study of bubbles and droplets, where the interface capturing is a
relevant issue. Concerning the interface capturing, several methods can be employed,
i.e. Front Tracking (FT) method ( [5,6]), Level Set (LS) method ( [7–10]) and the Volume
Of Fluid (VOF) method ( [11, 12]). In FT methods ( [5, 6]), the interface is located in
a Lagrangian way across a stationary Eulerian grid. This method is accurate, but
rather complex to implement when topology changes. The VOF methods ( [11,12]) use
a color function to identify the interface, corresponding to the volume fraction within
each cell of one of the fluids. As a consequence, the VOF function needs to be advected
and reconstructed by geometric techniques. Its main advantage is to accurately advect
the interface, keeping a sharp interface to conserve the mass. However, it presents
difficulties to compute accurate curvatures from the color function, because of its step
discontinuity. In LS methods ( [7, 8]), the interface is defined as a zero-contour of a
smooth signed distance function. With this approach, interface curvatures and normals
can be accurately evaluated, although mass is not always conserved. Mass conservation
issue can be circumvented in the context of Conservative Level-Set (CLS) methods ( [9]),
where a regularized indicator function is used in place of the signed distance function.
Recently, a finite-volume CLS method has been introduced by ( [10]) for two-phase flows
with surface tension on unstructured grids. Further advantages of the CLS method
include an accurate computation of surface tension, numerical stability, and efficient
parallelization as demonstrated in our previously works ( [10,13–15]).

Regarding experimental research for the wobbling regime, unstable bubble wake
and paths have been researched by [16–21]. [1] has reported zigzagging and spiraling
bubbles, whose trajectory highly depends on bubble size and complex physical mech-
anisms. [22] described path motions in the absence of shape oscillations. [23] have
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shown a relation between the zigzagging path and the periodic shedding of vortices.
Moreover, [24,25] pointed out a description of shape oscillations and the formation of
vortical hairpin structures attached to the lower side of the rising bubble in a zigzagging
and spiral path. Although previous investigators have made a significant contribution,
detailed studies of the evolution of the flow, exact experimental conditions, and a full
description of the interface are not precisely determined.

The continued lack of understanding of this phenomenon has motivated numerical
research of buoyancy rising motion of gas bubbles in a stagnant liquid ( [14, 26–28]).
[29, 30] model the problem considering the bubble as a fixed shape, coupling Navier-
Stokes equations with force and torque balances. [31–34] reported simulations with
frozen bubble shapes and deformable nearly spheroidal bubbles, using VOF method and
fixed grid approach. [35–38] studied the rise dynamics of various cases of bubbles and
droplets, where various tests with different bubble/droplets sizes and dimensionless
numbers were reported. [39] presented a comparison between various VOF models,
and compared the terminal Reynolds with experimental correlations for cases in the
wobbling regime. [40] introduced a methodology using Front Tracking and adaptive
mesh refinement(AMR) for simulating wobbling bubbles. [41] used a Particle Level Set
in a periodic domain showing the wake and shape variations of an air bubble rising in
water.

Most of the previous numerical studies agree on the challenge of the DNS for the
rising bubbles in the wobbling regime, and the difficulties to capture the phenomena for
medium to high Reynolds numbers. Furthermore, some challenges arise for the need of
larger grids, improved models for capturing phase interfaces, and enough grid resolution
for capturing the wake and the vortical structures present in this phenomenon.

In this context, and to the best of authors’ knowledge, there are no previous studies
of buoyancy-driven rising bubbles at high Reynolds numbers, i.e., Re O(1000), by using
a conservative level-set method and adaptive mesh refinement. Therefore, objectives of
this contribution are twofold: the first goal is to present an improved numerical method-
ology for simulating rising bubbles with path instabilities, based on the conservative
level-set method ( [10,15]) for interface capturing on general meshes, integrated to an
adaptive mesh refinement framework (Chapter 2) for optimization of computational
resources in large spatial domains. The second goal is to perform a numerical research
of the effect of Eötvös number and Morton number on the motion of rising bubbles with
path instability, by using the improved framework. As aforementioned, the present
research is based on an unstructured finite-volume/CLS method introduced in [10,15].
As a consequence, mass conservation issue inherent to standard level-set methods is
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circumvented, whereas the grid can be adapted to complex domains, enabling for an
efficient mesh distribution in regions where interface resolution has to be maximized,
by using adaptive mesh refinement strategy introduced in Chapter 2. Furthermore,
unstructured flux-limiter schemes introduced in [10] are used to advect the CLS function
in interface propagation equation, as well as the velocity in momentum equation, to
avoid numerical oscillations around discontinuities, whereas the numerical diffusion is
minimized. Finally, the present finite-volume formulation ( [10]) is attractive due to its
simplicity and the satisfaction of the integral forms of the conservation laws over the
entire domain.

The outline of the chapter is as follows: A summary of the governing equations
and numerical methods are given in Section 3.2. The coupling of the Navier-Stokes
equations for two-phase flow, and the description of the CLS method are introduced.
Moreover, a description of the AMR implementation is shown. The code validation and
numerical results for wobbling bubbles are displayed in Section 3.3. The conclusions
are presented in Section 3.4.

3.2 Governing equations and numerical methods

3.2.1 Incompressible two-phase flow

The momentum and mass conservation of two immiscible incompressible and Newtonian
fluids are described by the Navier-Stokes equations defined by a single fluid in the
domain Ω, with a singular source term for the surface tension force at the interface Γ
(see [10,42–44]):

∂

∂t
(ρv)+∇· (ρvv)=−∇p+∇·µ

(
∇v+ (∇v)T

)
+ρg+σκnδΓ, (3.1)

∇·v= 0, (3.2)

where ρ and µ are the density and dynamic viscosity of the fluids, g is the gravity
acceleration, p is the pressure, v is the velocity field, the super-index T represents the
transpose operator, δΓ is a Dirac delta function at the interface Γ, σ is the surface tension
coefficient, κ is the curvature of the interface, and n denotes the normal unit vector on
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the interface. Physical parameters change discontinuously across the interface:

ρ = ρ1H1 +ρ2(1−H1) (3.3)

µ=µ1H1 +µ2(1−H1),

with ρ1, ρ2 and µ1, µ2 being the densities and viscosities of the first and second fluids,
respectively. Whereas, H1 is the Heaviside step function that is one at fluid 1, and zero
elsewhere. At discretized level, physical properties are smoothed according to the CLS
method (see [10]).

3.2.2 Conservative level set equations

The conservative level-set method as introduced in [10] for interface capturing on
unstructured meshes, is used in this work. While the standard level-set method ( [8])
uses a signed distance function d(x, t) to represent the interface, the CLS method
employs a regularized indicator function, φ, as follows:

φ(x, t)= 1
2

(
tanh

(
d(x, t)

2ε

)
+1

)
, (3.4)

where ε= 0.5h0.9 is a tunable parameter which sets the thickness of the profile, and h is
the grid size. With this profile the interface Γ is defined by the location of the iso-surface
φ= 0.5:

Γ= {x |φ(x, t)= 0.5}. (3.5)

Since the level-set function is advected by the fluid velocity field, the following interface
transport equation can be derived:

∂φ

∂t
+∇·φv= 0. (3.6)

The level-set function must be reinitialized to keep the profile and thickness of the
interface constant, following the next equation:

∂φ

∂τ
+∇·φ(1−φ)n=∇·ε∇φ. (3.7)

This equation advances in pseudo-time τ, and consists of a compressive term, ∇·φ(1−φ)n,
which compress the level-set function onto the interface along the normal vector n, and
of a diffusion term ∇·ε∇φ which keeps the profile with a characteristic thickness ε.
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The reader is referred to [10, 15] for further details on the implementation of the
conservative level-set method used in this work.

3.2.3 Surface tension and regularization of fluid properties

Implementing surface tension in a numerical method involves two issues: the curvature
κ needs to be determined and the pressure jump should be applied appropriately to
the fluids. These problems are addressed in the context of the continuous surface force
model (CSF) introduced by [43]. Thus, the term, σκnδΓ, is converted to a volume force
as follows:

σκnδΓ =σκ(φ)∇φ, (3.8)

where κ(φ) and n are given by

n= ∇φ
||∇φ|| , (3.9)

κ(φ)=−∇·n. (3.10)

Following the work of [10], ∇φ is computed using the least-squares method with the
information of the neighbor cells around the vertices of the current cell. In addition,
the fluid properties are regularized using the level-set function. Therefore, density and
viscosity fields are calculated as follows:

ρ = ρ1φ+ρ2(1−φ) (3.11)

µ=µ1φ+µ2(1−φ).

3.2.4 Numerical methods

The governing equations have been discretized using a finite-volume(FV) approach on a
collocated unstructured grid arrangement according to [10], which automatically adapts
to the AMR framework. Convective terms are discretized using a Total Variation Dimin-
ishing (TVD) Superbee flux limiter scheme (see [10]), to avoid numerical oscillations at
the discontinuities, and minimize numerical diffusion (comparison between different
convective schemes in rising bubble cases is presented in Section 3.3.1). Diffusive terms
are discretized employing a central difference scheme. Gradients are computed at cell
centroids using the least-squares method, and a distance-weighted linear interpolation
is used to calculate the values of physical properties, gradients and interface normals at
the cell faces (see [10]), unless otherwise stated. A central difference scheme is employed
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to discretize both compressive and diffusive terms of the re-initialization Eq. 3.7. A
standard fractional step projection method is used for solving the pressure-velocity
coupling (see [15,45]):

ρv∗−ρnvn

∆t
=An +Dn +ρg+σκ∇h(φ), (3.12)

v= v∗− ∆t
ρ

∇h(p), (3.13)

where super-index n denotes the previous time step, A = −∇h · (ρvv), and D = ∇h ·
(µ((∇hv)+ (∇hv)T )) are explicitly evaluated, (∇hv)T is calculated by a vertex-node based
least-squares method (see [10]). Combining the incompressible constraint with Eq. 3.13,
a Poisson equation for the pressure field is obtained, which is solved by means of a
preconditioned conjugated gradient method:

∇h ·
(

1
ρ
∇h(p)

)
= 1
∆t

∇h ·
(
v∗)

, e∂Ω ·∇h p|∂Ω = 0. (3.14)

In order to fulfill the incompressible constraint (Eq. 3.2), and to avoid pressure-velocity
decoupling when the pressure projection is made on collocated meshes (see [46]), a cell
face velocity v f is defined at each control volume. Namely in discretized form:

v f =
∑

q∈{P,F}

1
2

(
vq + ∆t

ρ(φq)
(∇h p)q

)
− ∆t
ρ f

(∇h p) f , (3.15)

where P and F are denoting the adjacent cell nodes to the face f . The reader is referred
to Appendix B of our previous work (see. [15]) for additional technical details on the
origin of Eq. 3.15. The time increment ∆t, which is limited by the CFL conditions and
the stability condition for the capillary force (see [43]), is given by:

∆t = C∆tmin

(
h

||v|| ,
ρh2

µ
,
(

h
||g||

)1/2
,h3/2

(ρ1 +ρ2

4πσ

)1/2
)

, (3.16)

where C∆t = 0.1 for the current method and h = (Vp)1/3 is defined as the characteristic
size of the control volume P. Finally, a TVD Runge-Kutta method ( [47]) is used for
time integration of advection Eq. 3.6 and re-initialization Eq. 3.7. The time step for
re-initialization Eq. 3.7 is restricted by its viscous term as follows ∆τ= Cτmin((h2)/ε),
where Cτ is taken to be ∼ 0.05. For the present simulations, one re-initialization step is
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enough to achieve the steady state of Eq. 3.7.
The numerical algorithms explained in this work are implemented in a parallel

C++/MPI code called TermoFluids (see [48]). The code has been executed on the su-
percomputer MareNostrum IV using up to 144 cores for 3D simulations of wobbling
bubbles. Furthermore, the numerical methods used in this work have been extensively
validated with experiments and numerical results from the literature, including 2D
dam-break ( [10]), 2D and 3D rising bubbles ( [10,14,49]), bubbly flows ( [13,50]), droplet
deformation in a shear flow ( [49]), droplet collision against a fluid-fluid interface and
binary droplet collision with bouncing outcome ( [13]), thermocapillary-driven motion of
deformable fluid particles ( [15]), Taylor bubbles ( [51]), and atomization of a liquid-gas
jet ( [52]). Therefore, this research can be considered as a further step in the under-
standing of the physics of rising bubbles with path instability at high Reynolds numbers,
with the aid of a CLS method introduced by [10] and adaptive mesh refinement method
given by Chapter 2.

3.2.5 Adaptive mesh refinement

The use of Adaptive Mesh Refinement algorithms for the solution of multiphase problems
has been presented by various authors ( [28,40,53–55]), which is becoming an effective
tool for computational demanding problems.

In this work, the Conservative Level Set method (see [10]) for tracking the interface
in a continuous medium and adaptive mesh refinement to ensure a good mesh resolution
in the interface profile as well as in the near wake where the vortices appear for most of
the rising bubble problems are used. The adaptive mesh refinement employs an octree
decomposition to be able to do the refinement and coarsening process in a proper way.
Moreover, a 1:2 relation between the different refinement levels is kept (see Fig. 3.1).
The reader is referred to Chapter 2 for further details on the adaptive mesh refinement
algorithm applied to this chapter. Furthermore, our hexahedral AMR algorithm has
been validated with numerical results from the literature, including turbulent flows
around bluff bodies [56–58] and two-phase flows [52,59,60].

The AMR is included in the global algorithm developed for the CLS method (see [10]),
and the AMR loop is reinitialized when the centroid of the bubble has moved a distance
equal to the minimum grid size in the computational domain Ω. The global algorithm
for the coupled AMR-CLS consists of the following steps:

1. Calculate the minimum grid size hmin in Ω.
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2. Calculate the initial position of the bubble centroid bco.

3. Calculate ∆t by Eq. 3.16.

4. Solve level-set advection Eq. 3.6.

5. Solve re-initialization Eq. 3.7 for steady state.

6. Physical properties (ρ,µ) are updated according to Section 3.2.3

7. Calculate v and p by the fractional-step method:

(a) Calculate the predicted velocity by Eq. 3.12.

(b) Solve Eq. 3.14 for pressure.

(c) Calculate the corrected velocity by Eq. 3.13.

8. Calculate v f by Eq. 3.15.

9. Calculate the actual position of the bubble centroid bc.

10. if (||bc −bco|| < hmin) Repeat steps 3-8.
else Re-mesh and repeat steps 1-8 until the desired time-level is reached.

The Re-mesh step from the CLS-AMR algorithm follows the next criteria for the
rising bubbles in quiescent liquid:

1.- Interface capturing function. The level-set function φ is used to identify the
interface between fluids, and locally refine the mesh when 0+ ε < φ < 1− ε, where
ε= 1e−4. Moreover, to avoid the refinement process to be often repeated, up to three
layers of neighboring cells adjunct to the interface profile will also be refined. This is
done to give enough spatial displacement for the interface to move in any direction
ensuring a good mesh resolution. Fig. 3.1 is an example of a level-set function and its
neighboring cells with a grid spacing of four levels of refinement.

2.- 3D Box. The near wake of the bubble is essential for the correct development
of the vortical structures which will appear at the lower side of the rising bubbles. To
ensure a correct physical solution, a box around the bubble will be refined depending on
the bubble diameter. This is described in the numerical experiments section.

3.- Vorticity function. This is used to capture the vortical structures that appear in
the near wake of the rising bubble. The vorticity field is calculated following the next
equation,

ω=∇×v. (3.17)
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Figure 3.1: Illustration of the refinement procedure for a level-set function φ, where four levels
of refinement have been applied.

The vorticity values which are positive identify clockwise rotating vortices, and the
negative values are related to anti-clockwise rotation. With the vorticity magnitude
field ||ω|| , the cells to be refined as the ones with vorticity values over the 10% of the
maximum value for the entire field were established, to capture the primary vortical
structures. Furthermore, three layers of neighbors cells are also refined to ensure
enough grid resolution for the vortical structures.

3.3 Numerical experiments

In this section, numerical tests for verification and validation are described, and new
numerical experiments related to wobbling bubbles will be analyzed. According to [61]
and [62], the dimensionless numbers controlling the rising bubble in a quiescent liquid
are the Eötvös number (Eo), Reynolds number (Re), Morton number (M) and the ratios
of physical properties (density ratio ηρ and viscosity ratio ηµ), defined as follows

Eo = gd2∆ρ

σ
, M = gµ4

1∆ρ

ρ2
1σ

3
, Re = ρ1UT d

µ1
, ηρ = ρ1

ρ2
, ηµ = µ1

µ2
, (3.18)

where the subindex 1 refers to the continuous fluid phase, the subindex 2 refers to
the lighter fluid in the bubble, d refers to the bubble diameter and ∆ρ = ρ1−ρ2 specifies
the density difference between the fluid phases. The terminal velocity of the bubble is
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defined by,

UT =
∫
Ω2

vyφdV∫
Ω2

dV
, (3.19)

and we also introduce the following dimensionless time, t∗ = t
√

g/d. Furthermore, in
order to get a quantitative measure of the bubble shape, the sphericity is defined as

ζ= πd2∫
Ω ||∇φ||dV

. (3.20)

3.3.1 Verification and validation

A selection of numerical tests, with an increase of the grid resolution, are presented to
show the accuracy of the numerical method. For the stationary drop test, the starting
grid size consists of 20 control volume per diameter, and is increased up to 80 control
volumes per diameter. For the experimental validation and the wobbling bubbles, the
starting grid size consists of 15 control volumes per diameter, and is increased up to 60
control volumes per diameter, which is a sufficient resolution for simulations covered
in this work. In addition, a comparative analysis between different interfacial capture
methods with AMR for 2D and 3D gravity-driven bubbles can be found in Appendix C.

Stationary drop test This numerical test consists in the solution of a spherical drop,
with a diameter d, positioned in the center of a cubic domain with a length of 10d,
without the influence of gravity. The densities are equal to 104, the viscosities and the
surface tension equal to 1. This has also been used by [63] and by [49] for unstructured
meshes. A steady solution is originated where the pressure jump can be calculated and
compared to an analytical solution provided by the Laplace equation,

∆Pexact =σκexact, (3.21)

where the exact curvature is given by κexact = 4/d for a spherical drop. The exact
solution is a zero velocity field, and the pressure jump at the droplet interface is given
by ∆P = 4σ

d . Present test cases are solved on a uniform mesh where AMR is applied, as
can be seen in Fig. 3.2

The error of the pressure jump is calculated by using pressure values inside (pin)
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(a) (b) (c)

Figure 3.2: Mid-section plane for the 3D static drop test with different grid resolutions using
AMR, where the pressure distribution is shown. (a) d/20, (b) d/40, (c) d/80.

Table 3.1: Errors for the dimensionless velocity and pressure for different grid resolution. Here
p is the order of convergence.

h L1(v) E(∆P)
1/20 4.1e−08 0.020
1/40 6.8e−09 0.0029
1/80 1.4e−09 0.00041
p ≈ 2.4 2.8

and outside (pout) of the drop,

E(∆P)= |pin − pout −4σ/d|
4σ/d

. (3.22)

Moreover, spurious currents arise as a consequence of the imbalance between surface
tension and the pressure around the drop, which can be measured following the L1

error norm:

L1(v)= 1
Ncells

Ncells∑
k

(vk ·vk)1/2 µ

σ
, (3.23)

which is computed on the whole spatial domain. In Table 3.1, the numerical error for
the pressure jump and the spurious velocities are shown and compared when the grid
resolution is increased.

The spurious current and pressure jump errors diminish with an order of conver-
gence of second order. Moreover, the spurious current magnitude tends to a steady state
as time advances (See Fig. 3.3). The aforementioned results demonstrate the accuracy
of the surface tension model.
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Figure 3.3: Time evolution of the error for the dimensionless velocity, Eq. 3.23, on different grid
resolutions.

Grid convergence for ellipsoidal and wobbling bubbles In this section, the methodology
is validated with the rising bubble of ellipsoidal and wobbling bubbles in a quiescent
liquid.

The dimensions of the rectangular domain for the ellipsoidal test case are the
following: Ω= [0,8d]× [0,16d]× [0,8d], where the initial bubble of diameter d = 0.25 is
located at (x, y, z)= (0,d,0). Moreover, the boundary conditions in the top/bottom walls
are no-slip, whereas the Neumann condition is applied on the lateral walls and the initial
mesh is around 54k control volumes. For the wobbling test case, a vast computational
domain is required due to the chaotic and oscillatory path trajectories expected in this
regime. The computational domain has a size of Ω= [0,16d]× [0,80d]× [0,16d]. The
boundary and initial conditions are the same as for the ellipsoidal bubble. The initial
mesh is around 1.08M control volumes.

AMR was used to achieve a desired grid resolution in the interface and the near wake.
To assure these conditions a 3D box was refined around the bubble with dimensions of
[2d;2.75d;2.0d], where the 3D box centroid is relatively located at (0.0,−0.375d,0.0)
with respect to the bubble centroid (See Fig. 3.4).

For the ellipsoidal bubble test, the dimensionless numbers are Eo = 116, M = 41.1,
ρ1/ρ2 =µ1/µ2 = 100. In Figure 3.5, the terminal Reynolds number for the ellipsoidal test
is shown for different grid resolutions. The final bubble shape is consistent with the
experimental result of [62], where the bubble reached an ellipsoidal shape with a dimple
formation at the rear end. These results are compared to experiments and numerical
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Figure 3.4: AMR with an effective grid resolution of 60 control volumes per diameter at the
interface, and 30 control volumes per diameter for the vortical structures and the near wake.
(Left) Eo = 116, M = 41.1 (Right) Eo = 3.6, M = 2.5e−11
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Figure 3.5: Grid convergence and final bubble shape for Eo = 116, M = 41.1. (a) d/15, (b) d/30,
(c) d/60, (d) Experiment ( [62]).
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Table 3.2: Present Re computations compared with experimental results by [62], and numerical
results by [14,49].

Case Eo = 116, M = 41.1 Number of control volumes Re
[62] 7.16
[14] 2.30e+06 6.94
[49] 2.92e+06 7.02
Present AMR-CLS (d/15) 8.00e+04 6.55
Present AMR-CLS (d/30) 1.64e+05 6.89
Present AMR-CLS (d/60) 6.60e+05 6.98

solutions from the literature using a fixed mesh (See Table 3.2). As the resolution
increases up to 60 control volumes per bubble diameter, the computed Reynolds number
is closer to the experiments reported by [62]. In addition, present results are consistent
with CLS and VOF/LS simulations reported by [14,49] on fixed meshes.

For the cases of wobbling bubbles, different grid resolutions are compared for Eo =
3.6, M = 2.5e−11, ρ1/ρ2 =µ1/µ2 = 100. In Figure 3.6, Reynolds number, bubble shape
and vortical structures are compared with grid resolutions of d/30, d/45 and d/60. As
shown, the behavior of the rising velocity becomes chaotic in this regime. Nevertheless,
the global qualitative appearance of the terminal Reynolds number (see Fig. 3.6 and
Table 3.3) are retained as the grid resolution is increased, although the peak velocity at
earlier times slightly changes. However, to keep an adequate grid size for the numerical
tests presented in this work with mid to high Reynolds number, the resolution of d/60
was chosen for the interface and d/30 for the near wake and vortical structures.
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Figure 3.6: Reynolds number and bubble shapes at t∗ = 59.5 for Eo = 3.6, M = 2.5e−11. (a) d/30,
(b) d/45, (c) d/60
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Table 3.3: Present Re computations compared with experimental result by [64] with different
grid resolutions.

Case Eo = 3.6, M = 2.5e−11 Re
[64] 1200
Present AMR-CLS (d/30) 1145.37
Present AMR-CLS (d/45) 1106.36
Present AMR-CLS (d/60) 1105.09

Comparison of different convective schemes and mass conservation for ellipsoidal and
wobbling bubbles Numerical tests have been performed to study the influence of the
convective scheme used to discretize momentum Eq. 3.1, on terminal Reynolds and
final shape for ellipsoidal bubbles. Moreover, the effect of the convective schemes in
the solution of wobbling bubbles will be discussed. Following the work by [10], the
discretization of the convective term of Eq. 3.1 is based on the use of flux limiters
( [65] and [66]), L(θ), defined in the Table 3.4, where θ is a monitor variable defined
as the upwind ratio of consecutive gradients of the velocity components. The reader is
referred to [10,14] for technical details on the application of flux limiters to discretize
the convective term on unstructured grids.

Table 3.4: Flux limiters L(θ) used in this work.

L(θ)
Central difference limiter (CD) 1
TVD Superbee limiter max(0,min(2θ,1),min(2,θ))
Smart limiter max(0,min(2θ, (0.25+0.75θ)),4)
First-order upwind limiter 0

In Figure 3.7, the Central Difference, Upwind, Smart, and Superbee schemes are
compared to the solution of terminal Reynolds number and sphericity for the case with
Eo = 116, M = 41.1, with the same properties and the finest mesh proposed in Section
3.3.1. As can be seen, the use of different flux limiters leads to similar results for
terminal Reynolds number and final bubble shape.

For the cases of wobbling bubbles, the Upwind, Smart, and Superbee schemes are
compared for Eo = 1, M = 1e−09. The central difference scheme is out of this review
because its behavior was unstable in this regime. In Figure 3.8 terminal Reynolds
number, sphericity and oscillation paths in different planes are compared. As can be
seen, Smart and Superbee perform in the same manner, but the Upwind differs with low
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Figure 3.9: Mass conservation error for (Left) Eo = 116, M = 41.1 (Right) Eo = 1, M = 1e−09.

amplitude of path oscillation, smaller terminal Reynolds number and less deformation.
This behavior can be explained as the Upwind scheme is a more dissipative scheme
compared to the others. Therefore, a TVD Superbee flux limiter is employed to avoid
numerical oscillations at discontinuities and to minimize the numerical diffusion.

Furthermore, CLS shows excellent mass conservation for ellipsoidal and wobbling
bubbles (see Fig. 3.9), where the mass conservation error is calculated by

Mr = [M(t)−M(0)]/M(0), (3.24)

M(t)=
∫
Ω
φdV , (3.25)

and the tests were done with the finest grid using TVD Superbee flux limiter.

3.3.2 Wobbling bubbles

In this section, we present a numerical study of wobbling bubbles (See Fig. 3.10),
where our results are compared with experimental correlations and numerical evidence
(Terminal Reynolds, Strouhal number, Drag coefficient, and experimental image). More-
over, the effect of Eo and M are researched. Dimensionless parameters used in these
simulations are in Table 3.5.

The cases reported in this work start with a spherical bubble as the initial state.
As it rises due to the buoyancy, it starts to transform into an oblate ellipsoidal with an
unstable path. Moreover, AMR is used to get a resolution of 60 control volumes per
diameter in the interface, and 30 control volumes for the near wake and the vortical
structures. For most cases, the final mesh reaches around 1.8M control volumes.
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Figure 3.10: (Wobbling cases performed in this article pointed out in the Grace diagram by [61],
and its respective bubble shape.

Terminal Reynolds number and comparison with experimental image In Table 3.6, the
average Reynolds number is reported and compared with experiments and numerical
literature. The velocity average was calculated by discarding the initial overshoot
(startup influences of the simulation) at t∗ = 0.3. The comparison is made with the
experimental correlations ( [64, 67]), and numerical results using different interface
capturing methods ( [39]). Even with the complexity and chaotic behavior of wobbling
bubbles, results are in close agreement with most of the numerical and experimental
solutions reported in Table 3.6.

Experimental image of the vortical structures present on wobbling bubbles ( [23])
are compared with the present simulation with Eo = 3.6, M = 2.5e−11 (see Fig. 3.11).
This case shows hairpin vortices, where the legs of these structures are attached to the
lower side of the bubble. When a change of direction occurs on the path of the bubble, a
new head of a counter-rotating hairpin vortex appears. In the meantime, the old hairpin
vortices are evacuated downstream the wake.

Strouhal number and drag coefficient The accuracy of the methodology is assessed
by the comparison of the Strouhal number and the drag coefficient with literature
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Table 3.5: Dimensionless numbers for the numerical cases in the wobbling regime.

Case Eo M ηρ ηµ
A 1.0 1.0e−09 100 100
B 3.6 1.0e−09 100 100
C 10.0 1.0e−09 100 100
D 1.0 1.0e−10 100 100
E 1.0 1.0e−11 100 100
F 3.6 2.5e−11 100 54
G 4.0 1.0e−11 100 100
H 10.0 1.0e−11 100 100

Table 3.6: Terminal Reynolds for the present simulations (ReP ) compared with the Grace
diagram ( [64])(ReG ), Tomiyama correlation ( [67])(ReT ) and numerical simulations performed
by [39](ReNum.Ref ).

Case Eo M ReG ReT ReNum.Ref ReP
A 1.0 1.0e−09 320 280 320−350 340
B 3.6 1.0e−09 530 480 − 467
C 10.0 1.0e−09 900 830 730−740 797
D 1.0 1.0e−10 540 500 − 514
E 1.0 1.0e−11 930 880 710−970 856
F 3.6 2.5e−11 1200 1200 − 1106
G 4.0 1.0e−11 1700 1600 1600−1700 1512
H 10.0 1.0e−11 2800 2600 2200−2300 2646

correlations. The Strouhal number has been calculated by the next equation:

St = f d
UT

(3.26)

, where f is the path oscillation frequency. Miyahara and Yamaka proposed a correlation
(see [68]) to calculate St with path instabilities, in function of the Re and M.

St = 2.29×10−2(Re ·M0.26)2.18−0.3821ln(Re·M0.26) (3.27)

The Strouhal number obtained for the set of numerical cases are shown in Table 3.7
and Figure 3.12a. For the test cases, experimental and numerical results can be found
in the literature by [25,29,41,68]. Our findings for the cases with similar conditions
are in fair agreement with the literature correlation and numerical results. Moreover,
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Figure 3.11: Vortical structures presented in the wake of a wobbling bubble. (a) Visualization
by [23] at Re≈1500; (b) Present simulation for the case Eo = 3.6, M = 2.5e−11.

it is also noticeable the increase of the Strouhal number as the Eo increase or the M
decrease, due to the increase of bubble deformation and the evolution to more complex
vortical structures leading to different oscillation paths.

The drag coefficient (CD) has been calculated from the simulation by means of the
following equation:

CD = 4(ρ1 −ρ2)gd
3ρ1U2

T
(3.28)

[69] presents a CD model for non-spherical bubbles for a pure system in a simple
form as:

CD = max{min[
16
Re

(1+0.15Re0.687),
48
Re

],
8
3

Eo
Eo+4

} (3.29)

Moreover, [70] proposed a drag closure for both spherical and deformed bubbles,
given by the next equation:

CD =
√

CD(Re)2 +CD(Eo)2 (3.30)

with:
CD(Re)= 16

Re
(1+ 2

1+ 16
Re + 3.315p

Re

) (3.31)
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Table 3.7: Strouhal number for the present simulations (StP ) compared with Miyahara and Ya-
maka correlation (see [68])(StMY ), and numerical simulations performed by [29](StM ), [25](StB),
[41](StG ).

Case Eo M StMY StRef StP
A 1.0 1.0e−09 0.05 [0.09−0.108]∗∗ StM 0.034∗;0.09∗∗
B 3.6 1.0e−09 0.117 − 0.091∗
C 10.0 1.0e−09 0.233 − 0.202∗
D 1.0 1.0e−10 0.043 − 0.044∗
E 1.0 1.0e−11 0.039 − 0.053∗
F 3.6 2.5e−11 0.094 0.11∗ StB; 0.093∗ StG 0.108∗
G 4.0 1.0e−11 0.111 − 0.114∗
H 10.0 1.0e−11 0.217 − 0.183∗

∗St = f d/UT ( [25,36])
∗∗St = f

√
2d/g ( [29])

Table 3.8: Drag coefficient for the present simulations (CDP ) compared with [69] correlation (see
Eq. 3.29)(CDT ), and [70] correlation (see Eq. 3.30)(CDDi ).

Case Eo M CDT CDDi CDP

A 1.0 1.0e−09 0.53 0.40 0.36
B 3.6 1.0e−09 1.26 1.10 1.32
C 10.0 1.0e−09 1.91 2.05 2.11
D 1.0 1.0e−10 0.53 0.39 0.51
E 1.0 1.0e−11 0.53 0.38 0.58
F 3.6 2.5e−11 1.26 1.10 1.50
G 4.0 1.0e−11 1.33 1.19 1.49
H 10.0 1.0e−11 1.91 2.05 2.00

CD(Eo)= 4Eo
Eo+9.5

(3.32)

The CD obtained for the set of numerical cases are shown in Table 3.8 and compared
with the correlations of [69] and [70]. It can be noticed that as the Eo increase or M
decrease, the drag coefficient increase, as a consequence of the bubble deformations and
the increase of vorticity at the lower side of the bubble. Finally in Figure 3.12b, the drag
coefficient is plotted in function of the Reynolds number for M = 1.0e−11, and compared
with the correlations. These numerical results shows that for low Eo, our findings are
close to [69] correlation and for higher Eo the results tend to [70] correlation.
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Figure 3.12: (a) Present Strouhal number results compared with Miyahara and Yamaka correla-
tion (see [68]); (b) Present drag coefficient results compared with [69] and [70] correlations for
M = 1.0e−11.

Effect of Morton number (M) on the wobbling regime In this section, we show the main
characteristics of the wobbling bubbles concerning M. The physical parameters, except
for M, are fixed to Eo = 1.0,ηρ = ηµ = 100. The time variation of the velocity components,
3D path and sphericity evolution are shown in Figure 3.13.

In the case with M = 1e−9, the rising velocity and sphericity tend to a constant value,
which is the result of a balance between buoyancy and viscous drag. Nevertheless, when
the two horizontal velocity components start to oscillate, a unstable path is depicted (Fig.
3.13a). When M diminishes, a periodicity on the velocity components appears. Moreover,
the amplitude of the oscillating velocity components and the frequency are increased.
For the case with M = 1e−10, the horizontal velocity components are aligned between
them, leading to a zigzag path (see Fig. 3.13b). It is also noticeable, the increase of
bubble displacement in the horizontal direction as M decrease, mainly produced by the
increase of the horizontal velocity components.

Sphericity is measured for this cases, where the decrease of M number makes the
bubble to suffer frequently deformations. For the case with M = 1e−9, bubble shape
remains mainly ellipsoidal, but with the decrease of M the sphericity starts to oscillate.
It is shown, the bubble reaches opposites states where it can be almost spherical or
get a flat shape. These states are dictated by the oscillation of the inertial and surface
tension forces, where high inertial forces produce a flat shape, and high surface tension
forces shows a spherical shape (see Fig. 3.13).

Isosurfaces of the vorticity magnitude are presented with fixed Eötvös number
and different Morton number in Fig. 3.14. As the Morton number decreases, the
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Figure 3.13: Velocity components [ug−1/2d−1/2(−·−),vg−1/2d−1/2(−−),wg−1/2d−1/2(−)], spheric-
ity, 3D path and bubble shapes for (a) Eo = 1, M = 1e−9; (b) Eo = 1, M = 1e−10; (c) Eo = 1,
M = 1e−11.
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Figure 3.14: Isosurfaces of the vorticity magnitude ||ω||(d/g)1/2 = 8, colored with vertical vorticity
ωy , where the red color corresponds to ωy > 0, and the blue color corresponds to ωy < 0, at different
positions for (a) Eo = 1, M = 1e−9; (b) Eo = 1, M = 1e−10; (c) Eo = 1, M = 1e−11.

hairpin vortices attached to the lower side of the bubble are getting more elongated, as a
consequence of the increase of bubble deformations and vorticity generated at the base of
the bubble. For the case with M = 1e−9, as seen in Figure 3.14a, the vorticity generated
in the wake is vertically aligned with the bubble, as a pair of counter-rotating vortices.
Moreover, vorticity keeps a constant sign all along the trajectory. The numerical case
with M = 1e−10 (see Fig. 3.14b) reveals vortex rings, which are simplified structures of
the head loop of the hairpin vortex. Furthermore, for case E the vorticity presents two
longer counter-rotating threaded vortices which tend to wrap up around one another,
dissipating the hairpin vortex head in a more efficient way (see Fig. 3.14c).

The case with Eo = 1.0 and M = 1e−09 is the limit where the bubble still presents no
substantial shape deformations and small path oscillations, but as the Morton number
decrease, bubble shape and velocity components frequently present oscillations. Bubble
shape presents widely deformations going from flat to almost spherical, which this
behavior is stronger as the Morton number gets smaller. Moreover, different vortical
structures appear, such as axisymmetric two-thread vortex and long wrapped hairpin
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vortex. To sum up, as the vortex generation gets stronger, and the vortex structures
are getting elongated, the horizontal bubble displacement increases as a mechanism of
vorticity evacuation, which is quite noticeable when the M decreases.

Effect of Eötvös number (Eo) on the wobbling regime In this section, we show the main
characteristics of the wobbling bubbles with respect to Eo. The physical parameters,
except for Eo, are fixed to M = 1.0e−11,ηρ = ηµ = 100. The time variation of the velocity
components, 3D path and sphericity evolution are shown in Figure 3.15.

These cases have been selected with a small Morton number, where all of them
present path instabilities. The bubble shape, velocities components, and path start
to oscillate leading to a zigzag or spiraling movement. When Eo is increased, the
amplitude of the velocity components decrease and its frequency increase. This behavior
relates to the shrinking of the bubble displacement in the horizontal plane, generated
by the bubble deformations and chaotic vortical structures.

Bubble shape measured by sphericity is shown in Fig. 3.15. As Eo decreases, the
bubble shape oscillates with higher frequency and is less likely to reach a spherical
shape during the oscillation, as it could get it at Eo = 1. In the case with highest Eötvös
number, the bubble deformations are considerably noticeable and present local bulges
(see Fig. 3.15c). These bulges are related to the chaotic creation of vortical structures
appearing near the bubble.

In Fig. 3.16, illustrations of vortical structures are shown for each one of the studied
cases. At small Eo, the main vortical structure is the hairpin vortex, where the legs
are attached to the lower surface of the bubble, and in the meantime, the head of old
hairpin vortices are being evacuated downstream (see Fig. 3.16a). As Eo increases,
the bubble shape deforms frequently, the vorticity generation gets stronger, and the
vortex structures are smaller (see Fig. 3.16c). For these cases, the bubble deformation
plays an important role in the vorticity evacuation. Here, it is noticeable that vorticity
generation increases, and the vortical structures changes from the elongated hairpin
vortex, to small vortical structures. Moreover, the bubble presents a decrease in the
horizontal displacement as the Eo increases (see Fig. 3.15). As a consequence of the
vorticity generation at higher Reynolds, the bubble reduces its horizontal displacement,
increase the bubble deformation by the presence of bulges and shortens the vortical
structures as a mechanism of vorticity evacuation.
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Figure 3.15: Velocity components [ug−1/2d−1/2(−·−),vg−1/2d−1/2(−−),wg−1/2d−1/2(−)], spheric-
ity, 3D path and bubble shapes for (a) Eo = 1, M = 1e−11; (b) Eo = 4, M = 1e−11; (c) Eo = 10,
M = 1e−11.
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(a) (b) (c)

Figure 3.16: Isosurfaces of the vorticity magnitude ||ω||(d/g)1/2 = 8, colored with vertical vorticity
ωy , where the red color corresponds to ωy > 0, and the blue color corresponds to ωy < 0, at different
positions for (a) Eo = 1, M = 1e−11; (b) Eo = 4, M = 1e−11; (c) Eo = 10, M = 1e−11.

3.4 Conclusions

DNS of rising bubbles with path instability at high Reynolds number has been presented.
The cases were selected at Morton number, O(10−11) up to O(10−9), and the Eötvös
number was varied to observe the main differences in terminal velocities, bubble shape,
vortical structures and oscillations paths.

The methodology consisted of a Conservative Level-Set method and Adaptive Mesh
Refinement within a finite volume framework, which allowed to reproduce the main
features of three-dimensional two-phase flows, combining an accurate representation of
the interface, good mass conservation and a reduction of the computational effort. More-
over, the numerical methods have been verified and validated with previous empirical
and numerical results from the literature, which include spurious currents in the static
drop, and dynamic cases.

In the wobbling regime, terminal Reynolds number was compared with experimental
and numerics references showing fair agreement for Reynolds number Re ∼O(102) and
Re ∼O(103). The drag coefficient and the oscillation paths frequency were examined and
compared to experimental correlation and some numerics. The results were appreciably
good for most of the cases, where a vast domain is required to be able to capture the
main global quantitative variables for all the cases.

The effect of the dimensionless numbers was reported. When Eo = 1, and 1e−11≤
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M ≤ 1e−09, two filaments of counter-rotating vortex were found. Moreover, with the
decrease of M those filaments are getting elongated, and hairpin vortex structures were
observed. Under these conditions, the mechanism of vorticity evacuation was to increase
the horizontal bubble displacement according to the vorticity generation.

For the cases, where M = 1e−11 and 1≤ Eo ≤ 10, vortex structures transformed from
hairpin vortex to small vortical structures. At higher Eo the bubble shape presented
bulges and large deformations. On these cases, as the Eo was increased, the vorticity
evacuation leads to increase the bubble deformation with the presence of bulges, making
the vortical structures to be smaller, and reducing the horizontal bubble displacement.
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4
Tetrahedral adaptive mesh
refinement for two-phase flows

Abstract. In this chapter, an adaptive mesh refinement strategy for two-phase flows using

tetrahedral meshes is presented. Our algorithm applies a cell-based refinement technique

and adapts the mesh according to physics-based refinement criteria defined by the two-phase

application. The new adapted tetrahedral mesh is obtained from mesh manipulations of an input

mesh: operations of refinement and coarsening until a maximum level of refinement is achieved.

For the refinement method of tetrahedral elements, geometrical characteristics are taking into

consideration to preserve the shape quality of the subdivided elements. The present method is

used for two-phase flows to show the capability and accuracy on 3D adapted tetrahedral grids to

bring new numerical research in this context. Finally, the applicability of this method is shown in

the study of the gravity-driven motion of a single bubble in a quiescent viscous liquid on regular

and complex domains.
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4.1 Introduction

Applications in the nuclear, chemical and nano industry involving coiled flow tubes or
micro-devices lead to the challenge of designing systems of two-phase flows where the
systems present complex geometries. A good strategy to solve these problems is the
use of numerical algorithms for unstructured meshes, which the governing equations of
two-phase flows can be accurately solved in complex computational domains. Therefore,
the primary purpose of this work is the development of an unstructured adaptive mesh
refinement algorithm for two-phase flows in complex domains.

Direct numerical simulation (DNS) of multiphase systems has become a valuable
research tool for the study of bubbles and droplets, where the interface capturing is a
relevant point. Regarding interface capturing, several methods can be applied, i.e. Front
Tracking (FT) method ( [1,2]), the Volume Of Fluid (VOF) method ( [3,4]) and Level Set
(LS) method ( [5–8]). In FT methods ( [1, 2]), the interface is placed in a Lagrangian
form over a stationary Eulerian grid. This method is accurate but rather complex to
implement when topology varies. The VOF methods ( [3, 4]) use a color function to
distinguish the interface, corresponding to the volume fraction within each cell. As a
consequence, the VOF function needs to be advected and reconstructed by geometric
techniques. Its main advantage is to accurately advect the interface retaining a sharp
interface to conserve the mass. However, presents difficulties to compute accurate
curvatures from the color function, because of the step discontinuity. In LS methods
( [5,6]), the interface is defined as a zero-contour of a smooth signed distance function.
With this approach, interface curvatures and normals can be accurately evaluated,
although mass is not always conserved. Mass conservation issue can be circumvented in
the context of Conservative Level-Set (CLS) methods ( [7]), where a regularized indicator
function is employed instead of the signed distance function. Recently, a finite-volume
CLS method has been introduced by ( [8]) for two-phase flows with surface tension
on unstructured grids. Further advantages of the CLS method include an accurate
computation of surface tension, numerical stability, and efficient parallelization as
demonstrated in our previous works ( [8–11]).

A shortcoming on this topic is the extensive use of computational resources for
two-phase flows on unstructured grids, where most of the grid elements should be near
the interface between phases and the vortical structures in its surroundings. This issue
can be solved with the use of Adaptive Mesh Refinement (AMR), initially introduced by
[12–14], where enough grid resolution can be achieved following a refinement/coarsening
criteria. Several methods have been developed concerning the AMR for triangular and
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tetrahedral meshes using bisection, generation of an unstructured mesh and regular
refinement, where an overview of the advances on this topic during the recent years can
be found in [15]. One concern around these methods is the resulting non-conforming
meshes which have been solved with algorithms to ensure a conforming mesh. Another
issue is the mesh quality resulting from the refinement methods, which is of importance
due to poor quality elements can produce numerical errors in the solution procedure
( [16]). A solution to this problem is the use of specific geometric criteria on the selection
of the refinement mechanism that will lead to a quality change bounded to certain
limits ( [17]). On the context of using AMR for tetrahedral meshes for multiphase and
turbulent problems, many authors have developed some methods that allow achieving
success in the applications mentioned above ( [18–21]).

The main limitations on this topic are the achievement of accurate and non-expensive
3D simulations, the application of this methodology to unsteady problems, the dimin-
ishing of the mesh quality and the use of conforming meshes. In this work, we want to
introduce an AMR method for tetrahedral meshes on an unstructured CFD code based
on collocated finite volume discretization for 3D problems. This approach allows the
use of regular refinement and non-conformed meshes. Moreover, a process to ensure an
optimal tetrahedral quality, during the refinement step, will be followed. Finally, this
method will be tested in the solution of two-phase flows using a conservative level set
method on regular and complex domains.

The chapter is organized as follows. The mathematical formulation and the numeri-
cal method used are described in Section 4.2. The Adaptive Mesh Refinement algorithm
for tetrahedral meshes is described in Section 4.3. Validations with the simulation of
a gravity-driven bubble on complex domains are discussed in Section 4.4. Section 4.5
summarizes the numerical method and the results outlined in the chapter.

4.2 Governing equations and numerical methods

4.2.1 Incompressible two-phase flow

Mass conservation and momentum of two immiscible incompressible and Newtonian
fluids are given by the Navier-Stokes equations defined by a single fluid in the domain
Ω, which includes a source term for the surface tension force at the interface Γ (see
[8,22–24]):

∂

∂t
(ρv)+∇· (ρvv)=−∇p+∇·µ

(
∇v+ (∇v)T

)
+ρg+σκnδΓ, (4.1)
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∇·v= 0, (4.2)

where ρ and µ are the density and dynamic viscosity of the fluids, g is the gravity
acceleration, v is the velocity field, p is the pressure, the super-index T represents the
transpose operator, δΓ is a Dirac delta function at the interface Γ, σ is the surface tension
coefficient, κ is the curvature of the interface, and n denotes the normal unit vector on
the interface. Physical parameters change discontinuously across the interface:

ρ = ρ1H1 +ρ2(1−H1) (4.3)

µ=µ1H1 +µ2(1−H1),

with ρ1, ρ2 and µ1, µ2 being the densities and viscosities of the first and second fluids,
respectively. Whereas, H1 is the Heaviside step function that is one at fluid 1, and zero
elsewhere. At discretized level, physical properties are smoothed according to the CLS
method for unstructured meshes (see [8]).

4.2.2 Conservative level set equations

The conservative level-set method given by [8] for interface capturing on unstructured
meshes, is applied in this work. While the standard level-set method ( [6]) uses a
signed distance function d(x, t) to represent the interface, the CLS method employs a
regularized indicator function, φ, as follows:

φ(x, t)= 1
2

(
tanh

(
d(x, t)

2ε

)
+1

)
, (4.4)

where ε= 0.5h0.9 is a parameter which sets the thickness of the profile, and h is the
grid size. According to this profile, the interface Γ is defined by the iso-surface φ= 0.5:

Γ= {x |φ(x, t)= 0.5}. (4.5)

Since the level-set function is advected by the fluid velocity field, the following interface
transport equation can be established:

∂φ

∂t
+∇·φv= 0. (4.6)
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The level-set function must be reinitialized to keep constant the profile and thickness of
the interface, following the next equation:

∂φ

∂τ
+∇·φ(1−φ)n=∇·ε∇φ. (4.7)

This equation advances in pseudo-time τ, and consists of a compressive term, ∇·φ(1−φ)n,
which compress the level-set function onto the interface along the normal vector n, and
a diffusion term ∇·ε∇φ which keeps the profile with a characteristic thickness ε.

The reader is referred to [8, 11] for further details on the implementation of the
conservative level-set method used in this work.

4.2.3 Surface tension and regularization of fluid properties

Implementing surface tension in a numerical method involves two issues: the curvature
κ needs to be determined and the pressure jump should be applied appropriately to
the fluids. These problems are addressed in the context of the continuous surface force
model (CSF) introduced by [23]. Thus, the term, σκnδΓ, is converted to a volume force
as follows:

σκnδΓ =σκ(φ)∇φ, (4.8)

where κ(φ) and n are given by

n= ∇φ
||∇φ|| , (4.9)

κ(φ)=−∇·n. (4.10)

Following the work of [8], ∇φ is computed using the least-squares method with the
information of the neighbor cells around the vertices of the current cell. In addition,
the fluid properties are regularized using the level-set function. Therefore, density and
viscosity fields are calculated as follows:

ρ = ρ1φ+ρ2(1−φ) (4.11)

µ=µ1φ+µ2(1−φ).

4.2.4 Numerical methods

The governing equations have been discretized using a finite-volume(FV) approach
on a collocated unstructured grid arrangement according to [8], which automatically
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adapts to the AMR framework. Convective terms are discretized using a Total Variation
Diminishing (TVD) Superbee flux limiter scheme (see [8]), to avoid numerical oscillations
at the discontinuities, and minimize numerical diffusion (comparison between different
convective schemes in rising bubble cases is presented in Section 4.4.1). Diffusive terms
are discretized employing a central difference scheme. Gradients are computed at cell
centroids using the least-squares method, and a distance-weighted linear interpolation
is used to calculate the values of physical properties, gradients and interface normals at
the cell faces (see [8]), unless otherwise stated. A central difference scheme is employed
to discretize both compressive and diffusive terms of the re-initialization Eq. 4.7. A
standard fractional step projection method is used for solving the pressure-velocity
coupling (see [11,25]):

ρv∗−ρnvn

∆t
=An +Dn +ρg+σκ∇h(φ), (4.12)

v= v∗− ∆t
ρ

∇h(p), (4.13)

where super-index n denotes the previous time step, A = −∇h · (ρvv), and D = ∇h ·
(µ((∇hv)+ (∇hv)T )) are explicitly evaluated, (∇hv)T is calculated by a vertex-node based
least-squares method (see [8]). Combining the incompressible constraint with Eq. 4.13,
a Poisson equation for the pressure field is obtained, which is solved by means of a
preconditioned conjugated gradient method:

∇h ·
(

1
ρ
∇h(p)

)
= 1
∆t

∇h ·
(
v∗)

, e∂Ω ·∇h p|∂Ω = 0. (4.14)

In order to fulfill the incompressible constraint (Eq. 4.2), and to avoid pressure-velocity
decoupling when the pressure projection is made on collocated meshes (see [26]), a cell
face velocity v f is defined at each control volume. Namely in discretized form:

v f =
∑

q∈{P,F}

1
2

(
vq + ∆t

ρ(φq)
(∇h p)q

)
− ∆t
ρ f

(∇h p) f , (4.15)

where P and F are denoting the adjacent cell nodes to the face f . The reader is referred
to the Appendix section of our previous work (see. [11]) for additional technical details
on the origin of Eq. 4.15. The time increment ∆t, which is limited by the CFL conditions
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and the stability condition for the capillary force (see [23]), is given by:

∆t = C∆tmin

(
h

||v|| ,
ρh2

µ
,
(

h
||g||

)1/2
,h3/2

(ρ1 +ρ2

4πσ

)1/2
)

, (4.16)

where C∆t = 0.1 for the current method and h = (Vp)1/3 is defined as the characteristic
size of the control volume P. Finally, a TVD Runge-Kutta method ( [27]) is used for
time integration of advection Eq. 4.6 and re-initialization Eq. 4.7. The time step for
re-initialization Eq. 4.7 is restricted by its viscous term as follows ∆τ= Cτmin((h2)/ε),
where Cτ is taken to be ∼ 0.05. For the present simulations, one re-initialization step is
enough to achieve the steady state of Eq. 4.7.

The numerical algorithms explained in this work are implemented in a parallel
C++/MPI code called TermoFluids (see [28]). Furthermore, the numerical methods used
in this work have been extensively validated with experiments and numerical results
from the literature, including 2D dam-break ( [8]), 2D and 3D rising bubbles ( [8,10,29]),
bubbly flows ( [9, 30]), droplet deformation in a shear flow ( [29]), droplet collision
against a fluid-fluid interface and binary droplet collision with bouncing outcome ( [9]),
thermocapillary-driven motion of deformable fluid particles ( [11]), Taylor bubbles ( [31]),
and atomization of a liquid-gas jet ( [32]).

4.3 Tetrahedral adaptive mesh refinement algorithm

The present computational approach uses an adaptive mesh refinement algorithm
based on an octree data structure and regular refinement for 3D tetrahedral meshes.
This method generates a unit mesh according to a prescribed physics-based criterion.
The newly adapted mesh is obtained from an input mesh through some geometrical
manipulations: operations of refinement and coarsening until a maximum level of
refinement is achieved. This methodology is a further step to extend our previous
work on the development of AMR algorithms for hexahedral meshes (Chapter 2) to
tetrahedral meshes. Furthermore, our hexahedral AMR algorithm has been validated
with numerical results from the literature, including turbulent flows around bluff
bodies [33–35] and two-phase flows [32,36,37].

The AMR is included in the global algorithm developed for the CLS method (see [8]),
and the AMR loop is reinitialized when the centroid of the bubble has moved a distance
equal to the minimum grid size in the computational domain Ω. The global algorithm
for the coupled AMR-CLS consists of the following steps:
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1. Calculate the minimum grid size hmin in Ω.

2. Calculate the initial position of the bubble centroid bco.

3. Calculate ∆t by Eq. 4.16.

4. Solve level-set advection Eq. 4.6.

5. Solve re-initialization Eq. 4.7 for steady state.

6. Physical properties (ρ,µ) are updated according to Section 4.2.3

7. Calculate v and p by the fractional-step method:

(a) Calculate the predicted velocity by Eq. 4.12.

(b) Solve Eq. 4.14 for pressure.

(c) Calculate the corrected velocity by Eq. 4.13.

8. Calculate v f by Eq. 4.15.

9. Calculate the actual position of the bubble centroid bc.

10. if (||bc −bco|| < hmin) Repeat steps 3-8.
else Re-mesh and repeat steps 1-8 until the desired time-level is reached.

The Re-mesh step follows the next steps:

• Physics-based criterion computation. The level-set function φ is used to identify
the interface between fluids, and locally refine the mesh when 0+ ε < φ < 1− ε,
where ε= 1e−4. Moreover, to avoid the refinement process to be often repeated,
up to three layers of neighboring cells adjunct to the interface profile will also be
refined. This is done to give enough spatial displacement for the interface to move
in any direction ensuring a good mesh resolution.

Vorticity function is used to capture the vortical structures that appear in the
near wake of the rising bubble. The vorticity field is calculated following the next
equation,

ω=∇×v. (4.17)

The vorticity values which are positive identify clockwise rotating vortices, and
the negative values are related to anti-clockwise rotation. With the vorticity
magnitude field ||ω|| , the cells to be refined are the ones with vorticity values over
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Figure 4.1: Illustration of the regular refinement of a tetrahedron

the 10% of the maximum value for the entire field to capture the primary vortical
structures.

• Generation of adapted meshes. At each Re-mesh step, the current mesh and
the corresponding physical criterion is processed to create the newly mesh. The
refinement step is based on an 8-subdivision procedure for tetrahedron elements
(See Fig. 4.1). The coarse mesh is refined to the level of resolution needed for the
simulation. Moreover, a geometrical criterion is taken into account at the moment
of the subdivision, diminishing the drop on the quality metric from the original
cell to its children cells. In Appendix B, can be found a mesh multiplication
algorithm based on the 8-subdivision procedure of different mesh elements and
its application to CFD simulations

The parallel algorithm for the subdivision procedure of a coarse partitioned mesh
follows the next steps, where each one of them are executed independently on
every grid subdomain with fixed interfaces:

1. Read mesh to be refined

2. Create a new mesh object and insert the vertex needed from the coarse mesh.

3. New vertex will be created in the edges of the elements. Thus, an edge
data structure is used to create new vertex without duplicate them on the
subdomain boundaries.

4. Unique global indexes are assigned according to the old indexes from the
parent element to be subdivided.

5. Create new faces and cells according to a criterion to preserve the quality of
the coarse mesh.
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6. Parallel creation of an HDF5 data file with new mesh.

For step 3 and 4, cells elements can be created uniquely, without duplication on
each parallel subdomain, but faces and vertex need special treatment. For the
faces that are shared between two parallel subdomains, the global identification
number is just assigned by the subdomain with the lowest rank and copied to the
highest rank. In the case of the vertex elements, that are shared among many
ranks, a master-slave procedure is followed. As indicated in Fig. 4.2, the edge data
structure is sent by each slave-rank to the master-rank. Here, the master-rank
compares the edge information from each slave-rank to avoid duplication of new
mesh elements and establishes a unique global index for the new vertex. Then,
the proper information about indexes is sent back to the slaves-ranks to complete
the new mesh.

The quality of the refined mesh is important to get good numerical approximations
and results. On the subdivision of tetrahedron cells on step 5, a criterion is
followed to ensure that the quality of the new tetrahedron will have similar
quality as the parent cell. This criterion consists of the inner edge of a tetrahedral
has to connect its longest edges to generate eight tetrahedrons that will be similar
to the original tetrahedron ( [17]). This can be shown in the Figure 4.1, where the
edge V23V14 was the one chosen between the possible edges V23V14,V13V24 and
V12V34, according to the criterion. Moreover, the new mesh is partitioned using
ParMETIS library ( [38]), to ensure a good load balance for its use on parallel
computing simulations. (See Fig. 4.3).

• Solution interpolation. Between time intervals, the solution has to be transferred
from one mesh to the newly. For now, we use a hierarchical cell evaluation
mechanism: given any cell in the domain, it provides the value at this point and
its hierarchical position on the octree data structure. Then, an average process is
performed for the coarsening, and a pass value is done for the refinement process
in the computational space.

The numerical algorithms explained in this work have been implemented in the
framework of a parallel C++/MPI code called TermoFluids [28]. The code has been exe-
cuted on the supercomputer MareNostrum IV using up to 144 cores for 3D simulations
of gravity-driven bubbles. Moreover, the parallel performance for the steps explained in
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Figure 4.2: Illustration of global Id assignment for a new vertex, shared between processors.
LR =Lowest rank; HR =Highest rank; MR =Master rank

the generation of the adapted meshes has been executed up to 384 CPU-cores showing
a good strong speed up for the AMR of a tetrahedral mesh where the size to be refined
was one million tetrahedron cells. This test has been performed in the supercomputer
MareNostrum IV. In Figure 4.4, is shown the strong speedup for the generation mesh
algorithm, where up to 192 CPU-cores it reaches an efficiency close to 90%

4.4 Numerical experiments

In this section, numerical tests for validation are described, and new numerical ex-
periments related to gravity-driven bubbles in regular and complex domains will be
analyzed. According to [39] and [40], the dimensionless numbers controlling the rising
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Figure 4.3: Parallel partition and the computational grid for the AMR mesh of gravity-driven
bubble simulation at different adaptation times

bubble in a quiescent liquid are the Eötvös number (Eo), Reynolds number (Re), Morton
number (M) and the ratios of physical properties (density ratio ηρ and viscosity ratio
ηµ), defined as follows

Eo = gd2∆ρ

σ
, M = gµ4

1∆ρ

ρ2
1σ

3
, Re = ρ1UT d

µ1
, ηρ = ρ1

ρ2
, ηµ = µ1

µ2
, (4.18)

where the subindex 1 refers to the continuous fluid phase, the subindex 2 refers to
the lighter fluid in the bubble, d refers to the bubble diameter and ∆ρ = ρ1−ρ2 specifies
the density difference between the fluid phases. The terminal velocity of the bubble is
defined by,

UT =
∫
Ω2

vyφdV∫
Ω2

dV
, (4.19)
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and we also introduce the following dimensionless time, t∗ = t
√

g/d. Furthermore, the
grid resolution is defined as h =V 1/3

tet , where Vtet is the tetrahedron volume.

4.4.1 Three-dimensional buoyant bubble in a cylindrical domain

In this section, the methodology is validated with the rising bubble of an ellipsoidal
bubble in a quiescent liquid. The dimensionless numbers selected are depicted in Table
4.1.

Table 4.1: Dimensionless numbers for the presented test.

Eo logM ρ1/ρ2 µ1/µ2
4.88 −4.9 100 100

The dimensions of the cylindrical domain are the following: Dcyl = 8d and Hcyl = 8d,
where the initial bubble of diameter d = 0.25 is located at (x, y, z)= (0,d,0). Moreover,
the boundary conditions in the top/bottom walls are no-slip, whereas the Neumann
condition is applied on the lateral walls. The initial mesh is around 54k control volumes
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and AMR was used to achieve the desired grid resolution in the interface and the near
wake (See Fig. 4.5). The final number of control volumes is presented in Table C.1.

Figure 4.5: AMR for the test case Eo = 4.88, logM =−4.9, with a grid resolution of 40 control
volumes per diameter at the interface.

In Figure 4.6a, the terminal Reynolds number is shown for different grid resolutions.
Moreover, the final bubble shape is consistent with the experimental result of [41],
where the bubble reached an ellipsoidal shape (see Figure 4.7).
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Figure 4.6: Gravity-driven bubble in an infinite domain for Eo = 4.88, logM = −4.9 (a) Grid
convergence; (b) Effect of the convective scheme used to discretize the momentum Eq. 4.1.

The bubble aspect ratio measured in the experiments by [41] is defined by
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Figure 4.7: (Left) Bubble shape for Eo = 4.88, logM =−4.9. (Right) Experimental bubble shape
by [41].

Table 4.2: Present Re computations compared with experimental results by [41].

Case Eo = 4.88, logM =−4.9 Number of control volumes Re E
[41] 51.7 0.49
Present AMR-CLS (h = d/30) 9.00e+05 52.23 0.54
Present AMR-CLS (h = d/35) 1.30e+06 52.46 0.53
Present AMR-CLS (h = d/40) 2.00e+06 53.00 0.53

E = shortest radius
longest radius

, (4.20)

The computed Reynolds number and the bubble aspect ratio are compared to experi-
ments reported by [41] (See Table C.1). As it can been shown, our present results are in
good agreement with the experimental data.

Comparison of different convective schemes Numerical tests have been performed to
study the influence of the convective scheme used to discretize momentum Eq. 4.1, on
terminal Reynolds for ellipsoidal bubbles. Following the work by [8], the discretization
of the convective term of Eq. 4.1 is based on the use of flux limiters ( [42]), L(θ), defined
in the Table 4.3, where θ is a monitor variable defined as the upwind ratio of consecutive
gradients of the velocity components. The reader is referred to [8,10] for technical details
on the application of flux limiters to discretize the convective term on unstructured
grids.

In Figure 4.6b, the Central Difference, Upwind, Smart, and Superbee schemes are
compared to the solution of terminal Reynolds number for the case with Eo = 4.88,
logM =−4.9, with the same properties as in Section 4.4.1, but with a grid resolution
of d/40. As can be seen, the use of different flux limiters leads to similar results for
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Table 4.3: Flux limiters L(θ) used in this work.

L(θ)
Central difference limiter (CD) 1
TVD Superbee limiter max(0,min(2θ,1),min(2,θ))
Smart limiter max(0,min(2θ, (0.25+0.75θ)),4)
First-order upwind limiter 0

terminal Reynolds number and Superbee scheme will be selected for the next test
cases, as it prevents numerical oscillations at discontinuities and minimizes numerical
diffusion.

Mesh compression, quality and timings The dynamic mesh adaptation, up to three
levels of refinement, increased the initial number of control volumes from 54k to near
2M. Temporal evolution of the total number of control volumes for this case with
Eo = 4.88, logM = −4.9 is depicted in figure 4.8a. As it can be seen, the number of
control volumes is very stable for the entire simulation. It is important to point out that
the equivalent fixed mesh, with a grid resolution close to three levels of refinement, will
contain near 27M of control volumes, which makes a compression rate equal to 93%.
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Figure 4.8: Gravity-driven bubble in an infinite domain for Eo = 4.88, logM =−4.9 (a) Temporal
evolution of the total number of control volumes; (b) Temporal evolution of the quality metric
defined by Eq. 4.21.

In section 4.3, a criterion to preserve the quality of the mesh is followed. A quality
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Table 4.4: Computational times for fixed and unstructured adaptive mesh for gravity-driven
bubble Eo = 4.88, logM =−4.9.

Mesh Level of refinement t∗ = t
√

g/d CPU Time(h)
Fixed 0 1.38 72.00
Adaptive mesh 3 1.38 16.13

metric is calculated for each tetrahedron, to evaluate the mesh quality, given by

η= 12(3v)(2/3)/
n∑

0≤i< j≤3
l2

i j, (4.21)

where v is the volume of the tetrahedron, and l i j are the lengths of the tetrahedron
edges. Equation 4.21 is the tetrahedron shape measure that is equivalent to two
commonly shape measures: minimum solid angle and radius ratio (from 0, worst, to 1,
best) (see [17]). In figure 4.8b, the temporal evolution of the minimum, maximum and
an average over the entire mesh of the quality metric is presented. It is shown that
during the entire simulation the quality is mostly preserved and there are no significant
changes.

For time testing purposes, an unstructured fixed mesh was created for the case Eo =
4.88, logM =−4.9. The fixed mesh contained a significant density of control volumes
near the center of the domain, where the bubble will follow its path (approximately
9M control volumes), reaching a minimum grid size similar to an adaptive mesh with
three levels of refinement. The CPU time for the fixed mesh and the adaptive mesh
are displayed in Table 4.4. The simulations were done with 144 cores in the Altamira
supercomputer. These results show the time to run until t∗ = 1.38, including adaptation
times, and reaching a similar state. From this information, it shows that the simulation
time of the adaptive mesh is far less time compared with the fixed mesh.

4.4.2 Three-dimensional buoyant bubble in a vertical pipe

In this section, the methodology is validated with the rising of an ellipsoidal bubble
in a vertical pipe and the effect of the wall on the rising motion is researched. The
dimensionless numbers selected are depicted in Table 4.5.

The dimensions of the cylindrical domain Ω are the following: Dcyl = 2d and Hcyl =
14d, whereas the confinement ratio is defined as CR = Dcyl /d = 2. The initial bubble of
diameter d = 0.25 is located at (x, y, z)= (0,d,0). Moreover, the boundary conditions in
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Table 4.5: Dimensionless numbers for the presented test.

Eo logM ρ1/ρ2 µ1/µ2
3.00 −6.0 100 100

the top/bottom walls are Neumann conditions, whereas the no-slip condition is applied
on the lateral walls. The initial mesh is around 27k control volumes and AMR was used
to achieve the desired grid resolution (h = d/60) in the interface, nearby the walls and
in the near wake (See Fig. 4.9). The final number of control volumes is presented in
Table 4.6.

Figure 4.9: (Left) AMR for the test case Eo = 3.0, logM =−6.0, with an effective grid resolution of
60 control volumes per diameter at the interface. (Right) Vorticity field for Eo = 3.0, logM =−6.0.

Figure 4.10 shows the time evolution for the Reynolds number. The observed Re is
lower compared to the experimental Reynolds for an infinite domain, due to the increase
of the drag force when the bubble is very close to the walls. Moreover, the bubble shape
reaches a consistent ellipsoidal shape and its motion is aligned with the symmetry
axis of the computational domain. The computed Reynolds number is compared to
experiments, for infinite domain, reported by [40] and numerical results in a confined
domain presented by [30](See Table 4.6).

The scale factor relation SF, suggested by [39], is a correlation given for the influence
of the wall on the single bubble rise velocity. For this case, with d/Dcyl = 0.5, it is defined



4.4 Numerical experiments 97

  

A

A

B

B

C

C

 0

 10

 20

 30

 40

 50

 60

 70

 0  1  2  3  4  5  6

R
e

t*=tg1/2d-1/2

Figure 4.10: Terminal Reynolds number and final shape for Eo = 3.0, logM =−6.0.

Table 4.6: Present Re computations compared with experimental results (infinite domain) by [40],
and numerical results by [30].

Case Eo = 3.0, logM =−6 Number of control volumes Re
[40] Infinite domain 85
[30] 9.00e+05 57
Present AMR-CLS (h = d/60) 1.60e+06 56

by

SF =UT /UT∞ = [1− (d/Dcyl)2]3/2. (4.22)

According to Eq. 4.22, SF = 0.65, and for the present numerical results, SFnum =
0.66, which agrees well up with the correlation given by [39].

In Figure 4.9, the vorticity field is shown and presents the formation of a double
vortex at the bottom of the bubble with the opposite direction. Moreover, the presence of
counter-rotating vortices at the walls, which increases the total drag, are shown. This
phenomenon leads to achieve terminal conditions within a short distance of the bubble
release.
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These various tests serve to validate our numerical methodology.

4.4.3 Three-dimensional buoyant bubble in a complex pipe

In the earlier section, the methodology was validated with the rising of a bubble in
a vertical pipe, where the bubble velocity decreases due to the wall and the bubble
deformed into an ellipsoidal shape. In this section, we investigate the rising of a bubble
in a complex pipe and the effect of the wall on the rising motion. The dimensionless
numbers selected are the same to the case in section 4.4.1, and are depicted in Table 4.7.

Table 4.7: Dimensionless numbers for the presented test.

Eo M ρ1/ρ2 µ1/µ2
4.88 1.25e−05 100 100

The dimensions of the domain are shown in the figure 4.11, where the initial bubble
of diameter d = 0.25 is located at (x, y, z)= (0,d,0). Moreover, the boundary conditions in
the lateral walls are no-slip, whereas the Neumann condition is applied to the top/bottom
walls. The initial mesh is around 80k control volumes, and AMR was used to achieve
the desired grid resolution (h = d/60) in the interface and the near wake at different
time moments (See Fig. 4.11). The final number of control volumes was around 2.2M.

Figure 4.12 shows the terminal Reynolds number as the bubble travel through the
pipe. The bubble rises because of buoyancy, where a pair of counter-rotating vortices
appear at the bottom, making a cunning of the lower surface. With this deformation,
the surface tension force and the viscous drag are increased, making the bubble to
decelerate until reach an equilibrium. However, as the pipe presents a deviation, the
bubble reaches the wall, which increments the drag force and the bubble drastically
decrease its velocity and changes its shape to more spherical due to the increase of
surface tension force provoked by the formation of different vortex near the wall (see
Figs. 4.13 and 4.12). Along the wall, the velocity and shape keep stable, where a vortex
in the contact point between the bubble and the wall prevents its attachment. Later on,
when the bubble gets into a rectilinear section of the pipe, it is velocity increase until it
reaches an equilibrium, similar to the first section of the pipe.
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Figure 4.11: (Left) Configuration and dimensions of the computational domain. (Right) 3D AMR
grid for the test case Eo = 4.88, M = 1.25e−05, with an minimum grid resolution of 60 control
volumes per diameter at the interface.

4.5 Conclusions

In this chapter, we describe an adaptive mesh refinement algorithm for two-phase flows,
when using tetrahedral meshes and complex computational domains. The method-
ology consisted of a Conservative Level-Set method and Adaptive Mesh Refinement
within a finite volume framework, which allows reproducing the main features of three-
dimensional two-phase flows, combining an accurate representation of the interface,
proper mass conservation and a reduction of the computational effort. The AMR fol-
lows a regular refinement division of the tetrahedron element, taking into account a
geometrical criterion to preserve the mesh quality.

Numerical tests involving gravity-driven bubbles in regular and complex domains
are used to evaluate the efficacy of the method reported. For the case of the gravity-
driven bubble in an infinite domain, the terminal Reynolds number and the aspect ratio
compare well with the results of experimental reference. Besides, the use of different
convective schemes shows similar results for this case. In simulations of the gravity-
driven bubble in a pipe, the terminal Reynolds number agrees well with the numerical
reference using a fixed grid. Moreover, the scale factor, for cases with wall influence,
shows good agreement with the correlation reference. For the test of the gravity-driven
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Figure 4.12: Terminal Reynolds number for Eo = 4.88, M = 1.25e−05.

in a complex domain, terminal Reynolds number, final shape, and flow field are shown.
Where the wall effect produces a decrease in the velocity, increasing surface tension and
drag forces which makes the bubble to be more spherical.

The tests presented indicate that the numerical methods described are quite useful
for the direct numerical simulation of two-phase flows in complex domains.
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5
Conclusions and future work

An adaptive mesh refinement algorithm for hexahedral and tetrahedral meshes to solve
LES of turbulent flows and DNS of gravity-driven bubbles have been presented in this
thesis. The numerical methodology has been implemented in the in-house CFD code
called TermoFluids [1].

Chapter 2 described the conservative discretization for unstructured meshes and a
self-adaptive strategy for the explicit time integration of the governing equation for LES
of turbulent flows [2–4]. The LES model suitable for unstructured grids has been shown,
where WALE-VMS model constitutes a good approach for incompressible turbulent flows
[5–7]. An AMR algorithm for hexahedral meshes has been presented. This algorithm is
based on a quad/octree data structure to keep track of the refinement/coarsening process.
The parallelization strategy consists of assigning a unique identification number for
each mesh element to avoid duplications on each parallel partition. Moreover, load
balancing is carried out to keep a good parallel performance on the CFD simulation. LES
of flow around one and two square cylinders at Reynolds number of 22000 and 21000
have been carried out. Numerical results showed the first and second order statistics, as
well as, the drag coefficient, lift coefficient, and Strouhal number, where the AMR-LES
methodology agrees well with the experimental and numerical data from the literature.
On Appendixes A and B, numerical results for the flow around a simplified car model at
Reynolds number 7100, using hexahedral AMR and MM of a coarse mesh have shown
the capabilities of the method to exhibits fundamental characteristics of the flow around
bluff bodies. Moreover, the stream-wise averaged velocity for different points in the
wake and pressure coefficient agree well with literature data.

In Chapter 3, a finite-volume/level set method for unstructured grids to simulate

107
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incompressible two-phase flows was coupled with AMR, in which a continuous surface
force model introduces the surface tension, and the numerical method looks to improve
accuracy with a reduction of computational resources. Furthermore robustness of the
numerical methods on fixed meshes [8–12] is preserved, whereas unphysical oscillations
are avoided by means of unstructured flux-limiters introduced in [8,11]. On Appendix
C, a comparison between different interface capturing methods with AMR has been
presented with different applications, such as 2D and 3D gravity-driven bubbles. More-
over, DNS of rising bubbles with path instability at high Reynolds number has been
presented. The cases were selected at Morton number, O(10e-11) up to O(10e-9), and the
Eötvös number was varied to observe the main differences in terminal velocities, bub-
ble shape, vortical structures, and oscillations paths. Terminal Reynolds number and
frequency of path oscillations are compared with empirical correlations and numerical
studies from the literature. Results show the discharge of alternate oppositely-oriented
hairpin vortex structures. Moreover, depending on the characteristics numbers of the
system, different path features, bubble shape, and vortical structures in the wake are
reported.

Chapter 4 showed the AMR algorithm applied for two-phase flows for tetrahedral
meshes [8]. This algorithm follows an octree data structure, and its parallelization
consist of the creation of mesh elements on each parallel subdomain and the assignment
of a global identifier number. Moreover, a load balance procedure is performed to keep
a correct mesh distribution for the in-house unstructured CFD code. For tetrahedral
AMR, a geometrical criterion is taken into account to keep a good mesh quality on the
subdivided elements. For two-phase flows, 3D simulations of gravity-driven bubbles
have been performed. The applicability of tetrahedral AMR is shown in the study of the
gravity-driven motion of a single bubble in a quiescent viscous liquid on regular and com-
plex domains. Results involving terminal Reynolds number, final shape, and flow field
are shown and compared well with numerical and experimental data, demonstrating
the capability of the AMR methodology.

5.0.1 Future work

This thesis presents an adaptive mesh refinement algorithm for hexahedral and tetra-
hedral meshes to perform numerical simulations about LES of flows around bluff bodies
and DNS of two-phase flows. On this development, three main stages can be identified
for improvement.

The first stage is the improvement of the parallelization of AMR algorithms, where
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the use of CPUs and GPUs could lead to a general improvement of the overall parallel
efficiency. With the next generation of supercomputers reaching the exascale era, this is
an excellent opportunity to redesign the algorithm to be used for the next generation of
supercomputers [13].

The second stage involves the refinement criteria for different physical applications.
Here, wavelet-based adaptivity could provide an improvement, where multi-resolution
analysis will give a more mathematical proof for the refinement/coarsening criteria,
giving the methodology to have a better error control and be less tunable when the
dimensionless parameters governing a problem are changed [14].

The last stage is the applicability of these methods to solve challenging problems of
the CFD community. In this case, it will be of particular interest to apply AMR algo-
rithms for the solution of the turbulent flow around objects that are rotating/translating;
this will involve applications as wind energy generators, deformable solids, or industrial
equipment. Other applications are the rising bubble in a skirted regime, where the
bubble leaves a very thin filament, which the use of AMR will be of great interest.
Moreover, the solution of two-phase flows where the interface needs finer grid resolution
to get accurate results on heat and mass transfer, boiling and thermal-reactive process
where the interface gets extremely thin [11,15,16].
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Appendix A
Parallel adaptive mesh refinement of
turbulent flow around simplified car
model using an immerse boundary
method

Main contents of this appendix have been published in:

O. Antepara, R. Borrell, O. Lehmkuhl, I. Rodríguez and A. Oliva. Parallel adaptive mesh
refinement of turbulent flow around simplified car model using an immerse boundary method.
Proceedings of the Joint WCCM - ECCM – ECFD 2014 Congress, 6th. European Conference on
Computational Fluid Dynamics (ECCOMAS ECFD VI), Spain. 2014.

In the present appendix, a parallel adaptive mesh refinement (AMR) strategy for
large-eddy simulations (LES) is proposed and tested for a fully 3D geometry. The
underlying discretization of the Navier-Stokes equations is based on a finite-volume
symmetry-preserving formulation, with the aim of preserving the symmetry properties
of the continuous differential operators to ensure stability and conservation of kinetic-
energy balance. The proposed AMR scheme applies a cell-based refinement technique,
with a physics-based refinement criteria based on the variational multi-scale(VMS)
decomposition theory and an equalized histogram of the vorticity field. This strategy
has been tested in other turbulent problems around bluff bodies in 2D and 3D. To
carry out the simulation of turbulent flow around complex geometries with AMR, an
immerse boundary method is implemented based on a finite volume approach. Finally,
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the robustness and accuracy of our methodology is shown on the numerical simulation
of the turbulent flow over an Ahmed car at Reh = 7.68×105, which reproduces the
basic fluid dynamics features of real cars, i.e. vortex shedding, flow reattachment and
recirculation bubbles.

A.1 Mathematical formulation

In large-eddy simulations (LES) the spatial filtered and discretized Navier-Stokes
equations are defined as

M u = 0 (A.1)

Ω
∂u
∂t

+C (u)u+νDu+ρ−1ΩGp = C (u)u−C (u)u ≈−MT (A.2)

where u and p represent the filtered velocity vector and pressure, respectively, ρ
is the fluid density and ν is the kinematic viscosity, Ω is a diagonal matrix with the
sizes of control volumes. Convective and diffusive operators in the momentum equation
for the velocity field are given by C (u) = (u · ∇) and D = −∇2, respectively. Gradient
and divergence operators are given by G=∇ and M =∇·, respectively. The term that
requires modelling is the filtered non-linear convective term. T is the SGS stress tensor,
which is defined as [1],

T = −2νsgsSij+ (T : I)I/3 (A.3)

Sij = 1
2

[G(u)+G∗(u)] (A.4)

where Sij is the rate-of-strain tensor and G∗ is the transpose of the gradient operator.
To close the formulation, a suitable expression for the subgridscale (SGS) viscosity,
must be introduced. LES studies have been performed using a SGS model suitable
for unstructured formulations: the wall-adapting local-eddy viscosity model within a
variational multi-scale framework (VMS-WALE) [2,3].

Second-order spectro-consistent schemes on a collocated unstructured grid arrange-
ment were adopted for the discretization of the governing equations. Discrete conserva-
tion properties are related to the symmetries of the continuous differential operators as
studied in detail by Verstappen and Veldman [4]. These conservation properties are held
if and only if the discrete convective operator is skew-symmetric C(u)=−C(u)∗, if the
negative conjugate transpose of the discrete gradient operator is equal to the divergence
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operator M =−G∗ and if the diffusive operator is symmetric and positive-definite. For
the temporal discretization of the momentum equation a two-step linear explicit scheme
on a fractional-step method has been used for the convective and diffusive terms, while
the pressure is solved using an implicit first-order scheme. This methodology has been
extensively tested and verified with accurate results for solving the flow over bluff
bodies with massive separation [5–8].

The immerse boundary method used in this work consist on the addition of a mass
source/sink as well as a momentum forcing on the momentum equation, and if this
equation is discretized in time, we obtain

up −un

dt
= RHS+ f (A.5)

where RHS contains the convective and viscous terms and the pressure gradient.
The forcing term will be a non-zero value on the inner body nodes (interior points)
and on the fluid nodes that has a neighbour node inside the body or in the interface
body-fluid (forcing points), but if up =V on the immersed boundary this will yield to a
equation that gives the forcing value,

f = V −un

dt
−RHS (A.6)

where V in the interior points is the body velocity in that position, and for the forcing
points a second order linear interpolation is used [9], to keep the global accuracy. To do
this interpolation, three external neighbours nodes (no forcing points) and the nearest
object node are used. Because the interpolation is held on the predictor velocities, an
error appears due to the linear relation between the velocities is not kept after the
projection step of the fractional-step method. To reduce this error, the idea introduced
by [10] and improved on [11,12] is used.

A.1.1 Adaptive mesh refinement algorithm

Mesh adaptation is accomplished by coarsening and dividing a group of cells following
refinement criteria based on our physical understanding of the problem. In regions
where spatial resolution needs to be increased, a parent cell is refined by dividing itself
eight (three dimensions) children (Fig. A.1). However, in areas that are over resolved,
the refinement process can be reversed by coarsening eight children into a single parent
cell. In any case, the grid adaptation is constrained such as the cell resolution changes
by only a factor of two between adjacent cells.
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Figure A.1: Illustration of AMR technique applied to a 3D Mesh and its corresponding octree

The proposed mesh refinement scheme is based on linear interpolation; this scheme
is performed by averaging the adjacent vertex coordinates of the parent cell. In addition,
a tree data structure is used to keeping track of the computational cell connectivity
to transmit the information between the old and new mesh, wherein the information
on the tree data structure is corresponding to the level of refinement and the indexes
representing each cell.

The refinement criteria is based on the variational multi-scale(VMS) decomposition
theory that allows the refinement of the cells where spatial resolution is needed to
solve the small structures, this criteria has been tested with good results for turbulent
problems around bluff bodies (Chapter 2). Moreover, an equalized histogram of the
vorticity field is used, modifying the actual vorticity field into an equalized one with a
linear cumulative distribution, thus the maximum and minimum values of the equalized
vorticity are established between 0 and 1, and this wont requires continual tuning
depending on the flow problem.
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A.2 Numerical results of turbulent flow over an ahmed car at
Reh = 7.68×105

Numerical simulations of the flow over an Ahmed car were performed at Reh = 7.68×105,
where the Reynolds number is based on the inlet velocity, Ure f , and the car height,
h. Solutions are obtained on a computational domain of dimensions 9.1944 x 1.87 x
1.4, where the front of the body is located at a distance from the inlet of 2.1024m. The
boundary condition at the inflow consist of a uniform axial velocity. At the lateral and
top walls, slip boundary conditions are prescribed. A pressure-based boundary condition
is applied at the outlet for the downstream. No-slip conditions at the bottom surface
are considered. The use of an adaptive mesh, with four mesh levels for the interface
fluid/object at the slant back and up to three mesh levels for the fluid, has allowed to
cluster more control volumes around the body surface and in the near wake. Some
illustrative results obtained are depicted in Figure A.2. Vorticity structures in the near
wake obtained with the adaptive grid are plotted in Fig. A.2(left) and the computational
grid is plotted in Fig. A.2(right).

Results have been obtained based on the integration of instantaneous data over a
sufficiently time period (from 10 to 30 time units), and a mesh with approximately 5M
cells. Furthermore, preliminary results for the averaged streamwise velocity for the
symmetry plane (y=0) at the rear end of the body are compared with the experimental
data by Leinhart et al. [13] in figure A.3 and A.4. As can be seen, results obtained
with a parallel adaptive mesh refinement are in good agreement with the experimental
data, but some minor differences appear on the prediction of the mean flow in the
final part of the slant back. In the results, the flow separates in the slant corner and
forms a recirculation zone. So, minor discrepancies are obtained in the prediction of the
Reynolds stresses as can be seen in Fig A.4.
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Figure A.2: Illustration LES of turbulent flow over an Ahmed car at Reh = 7.68 × 105
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Appendix B
Parallel mesh multiplication and
adaptation technique for turbulent
flow simulation using unstructured
meshes

In this appendix, we report the development of a parallel mesh multiplication code to
subdivide a base mesh (containing tetrahedral, pyramids, prisms or hexahedral) into
a finer mesh without user intervention, taking care of the quality of refined meshes
generated by the algorithm. First, a coarse mesh is generated with an unstructured
mesh generator and subdivided to the level of resolution needed for the simulation.
On the refinement process of tetrahedral elements, geometrical properties are taking
into account in order to preserve the shape quality of the subdivided elements. Then,
the mesh is conformed on the solid surfaces to the original geometry, since linear
subdivision ignores surface curvatures, and interior points of the mesh are adapted
using Radial Basis functions, due to the surface correction. Moreover, a smoothing
algorithm for tetrahedral mesh is applied to improve the mesh quality according to
element geometry metric or based in minimize numerical errors in the CFD solution
computed with unstructured meshes. Finally, the applicability of this method is shown
on the numerical simulation of the turbulent flow over an Ahmed car at Reh = 7.68×105.
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Figure B.1: Mesh multiplication process

B.1 Parallel mesh multiplication algorithm

The parallel mesh multiplication algorithm is based on a 8-subdivision procedure for
tetrahedron, prism and hexahedron elements. The coarse mesh is subdivided to the
level of resolution needed for the simulation. Moreover, the quality of the mesh is taken
into account at the moment of the subdivision, keeping the same quality metric of the
original cell for the children cells. The overall mesh multiplication process is shown in
the diagram on the figure B.1.

The subdivision procedure for a coarse mesh follows the next steps, where all the
steps are performed independently on each subdomain with fixed interfaces:

• Read mesh to be refined

• Create a new mesh object and insert all the vertex from the coarse mesh.

• New vertex will be created in the edges of the elements. Thus, an edge data
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structure is used to to create new vertex without duplicate them on the subdomain
boundaries.

• Create new faces and cells according to a criterion in order to preserve the quality
of the coarse mesh.

• Unique global indexes are assigned according to the old indexes from the parent
element to be subdivided.

• Parallel creation of a HDF5 data file with new mesh.

The quality of the refined mesh is important in order to get good numerical results
and enable better physics. On the subdivision of tetrahedron cells a criterion is followed
to ensure that the quality of the new tetrahedron will have the same quality metric
as the parent cell. This criterion consist on the center edge of a tetrahedral has to
connect its longest edges to generate eight tetrahedrons that will be similar to the
original tetrahedron [1]. The overall mesh multiplication process has been implemented
in parallel and complements the previous work developed for AMR in turbulent flow
problems (Chapter 2). An illustration of the algorithm applied to a unstructured mesh
is shown on figure B.2.

Figure B.2: Illustration of the mesh multiplication algorithm applied to an unstructured coarse
base mesh.

B.2 Surface correction for curved meshes and smoothing pro-
cess

On the subdivision process of different kind of cells, new vertex are created on the
middle of edges and faces. When those vertex belongs to a solid surfaces, a STL
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Figure B.3: An example of the surface correction process where the new vertex on the boundary
surface, created by the subdivision process, are projected to the STL surface(blue)

(STereoLithography) [2] is used as reference surface, where the new boundary vertices
are projected to the STL, due to linear subdivision ignores surface curvatures, see an
illustration on figure B.3. Moving mesh methods (RBF, CSD, etc) are used to modify the
adjacent cells, according to the displacement of the boundary vertices [3].

Optimization-based smoothing has been implemented to improve the quality of the
mesh [4]. This method optimize the worst tetrahedron in a group - maximizing the
minimum quality metric among the tetrahedral that share a specified vertex.

The main steps applied for the optimization-based smoothing are:

• Select a search direction to move the vertex

• Find the optimal position for the vertex constrained along the search direction

• Compute a new search direction and iterate until convergence

One important criteria is applied to prevent the tetrahedral to become worst than
the original. So, a smart smoothing is applied: If a smoothing operation does not
improve the minimum quality among the tetrahedral changed by the operation, then
the operation is not done.

Different qualities metrics were used in order to find the one that increase at most
the quality of the mesh. A list of the quality metrics used are depicted on the table B.1.

Table B.1: Different quality metrics used on to improve a tetrahedral mesh

Expression Range Used in re f erence
12(3V )(2/3)/Σl2 [0,1] A. Liu and B. Joe [1]

6
p

6(V )/[(
4∑

i=1
Si) max

j=1,..,6
L j] [0,1] Geuzaine and Remacle [5]

6
p

2(V )/l3
rms [0,1] Klingner and Shewchuk [6]
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Vertices on the boundary of the mesh, are allowed to move in determined directions
in order to preserve the original surface’s shape. In a flat boundary, the search direction
has to be constrained to the face and for curved boundary, a quadric smoothing is applied
[7].

Quadrics allows to smooth surface vertices while controlling how much error is
introduced into the domain shape.

Q(x)=Σdi(x)2

a2
i

(B.1)

where d(x) is the distance from the vertex to the faces that adjoint the vertex and ai

is the original altitude of the vertex in the triangular face. To each surface vertex, a
quality is assigned to be compared with tetrahedron quality range (0-1) in order to be
incorporated on the optimization-based smoothing.

q =α−βQ(x) (B.2)

,where α is an offset parameter and β is a scale parameter.

B.3 Numerical results of turbulent flow over an Ahmed car at
Reh = 7.68×105

Numerical simulations of the flow over an Ahmed car were performed at Reh = 7.68×105,
where the Reynolds number is based on the inlet velocity, Ure f , and the car height,
h. Solutions are obtained on a computational domain of dimensions 9.1944 x 1.87 x
1.4, where the front of the body is located at a distance from the inlet of 2.1024m. The
boundary condition at the inflow consist of a uniform axial velocity. At the lateral and
top walls, slip boundary conditions are prescribed. A pressure-based boundary condition
is applied at the outlet for the downstream. No-slip conditions at the bottom surface are
considered. Second order conservative unstructured discretization and QR-model [8]
was used for this numerical simulation.

A coarse mesh was transformed using our mesh multiplication algorithm to create a
larger mesh for this simulation. The coarse mesh has 2.1M of cells and the final mesh
has around 17M of cells. The surface correction method was applied to conform the
mesh on the curved surfaces of the Ahmed car, and smoothing process was applied to
improve the quality of the mesh in order to avoid numerical errors, where the quality
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Figure B.4: Left:Refined mesh showing cells with quality under 0.5 (28k cells). Right: Refined
mesh with smoothing showing cells with quality under 0.5 (12k cells)

metric q (from 0, worst, to 1, best) defined in the next equation was used,

q = 6
p

2(V )/l3
rms (B.3)

results obtained from the smoothing process are depicted in figure B.4.
Average statistics have been obtained based on the integration of instantaneous data

over a sufficiently time period (from 10 to 30 time units), and a mesh with approximately
17M cells. Some illustrative results obtained are depicted in figure B.5. Furthermore,
preliminary results for the averaged streamwise velocity for the symmetry plane (y=0)
at the rear end of the body are compared with the experimental data by Leinhart et
al. [9], as well as the pressure drag coefficient, in figure B.6 and table B.2. As can
be seen, results are in good agreement with the experimental data, but some minor
differences appear on the prediction of the mean flow in the final part of the slant back.
In the results, the flow separates in the slant corner and forms a recirculation zone.

Table B.2: Pressure drag (Experimental Ahmed car: Cp=0.285 [10])

Mesh Cp
2.1×106 0.295
1.7×107 0.287
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Figure B.5: Q-isosurfaces of LES Flow over an Ahmed car with a refined mesh (17M cells),
created after two mesh multiplication steps.
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capturing methods with AMR for
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Main contents of this appendix have been published in:

O. Antepara, N. Balcázar and A. Oliva. A comparative study of interface capturing methods with
AMR for incompressible two-phase flows. Proceedings of the 7th International Conference on
Computational Methods for Coupled Problems in Science and Engineering, Greece. 2017.

This appendix presents a comparative study of interface capturing methods with
adaptive mesh refinement for Direct Numerical Simulation (DNS) of incompressible
two-phase flows. The numerical algorithms for fluid motion and interface capturing
methods have been previously introduced in the context of the finite-volume approach
for both mass conservative level-set methodology and coupled volume-of-fluid/level-set
method for unstructured/structured fixed meshes. The Adaptive Mesh Refinement
(AMR) method introduced in consist on a cell-based refinement technique to minimize
the number of computational cells and provide the spatial resolution required for the
interface capturing methods. The present AMR framework adapts the mesh according to
a physics-based refinement criteria defined by the movement of the interface between the
fluid-phases. Numerical experiments are presented to evaluate the methods described
in this work. This includes a study of the hydrodynamics of single bubbles rising in
a quiescent viscous liquid, including its shape, terminal velocity, and wake patterns.
These results are validated against experimental and numerical data well established
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in the scientific literature, as well as a comparison of the different approaches used.

C.1 Mathematical model and numerical methods

C.1.1 Incompressible two-phase flow

The momentum and mass conservation of two immiscible incompressible and Newtonian
fluids are described by the Navier-Stokes equations defined a single fluid in Ω, with a
singular source term for the surface tension force at the interface Γ [1–5]:

∂

∂t
(ρv)+∇· (ρvv)=−∇p+∇·µ

(
∇v+ (∇v)T

)
+ρg+σκnδΓ (C.1)

∇·v= 0 (C.2)

where ρ and µ are the density and dynamic viscosity of the fluids, g is the gravity
acceleration, p is the pressure, v is the velocity field, the super-index T represents the
transpose operator, δΓ is a Dirac delta function at the interface Γ, σ is the surface tension
coefficient, κ is the curvature of the interface and n denotes the unit normal vector on
the interface. Physical parameters change discontinuously across the interface:

ρ = ρ1H1 +ρ2(1−H1) µ=µ1H1 +µ2(1−H1) (C.3)

with ρ1, ρ2 and µ1, µ2 being the densities and viscosities of the first and second fluids,
respectively, whereas H1 is the Heaviside step function that is one at fluid 1 and zero
elsewhere [1,2].

C.1.2 Conservative level set equations

In the context of conservative level set (CLS) method [1,2,6], a regularized indicator
function, φ, is employed as follows φ(x, t)= 0.5(tanh (d(x, t)/2ε)+1), where d is a signed
distance funtion, ε= 0.5h0.9 is a tunable parameter that sets the thickness of the profile,
h is the grid size [1, 2]. With this profile the interface Γ is defined by the location of
the φ= 0.5 iso-surface [1,6], Γ= {x |φ(x, t)= 0.5}. Since the level set function is avected
by an incompressible velocity field, the following interface transport equation can be
written in conservative form:

∂φ

∂t
+∇·φv= 0 (C.4)
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The level set function must be reinitialized to keep the profile and thickness of the
interface constant following the next equation [1,6]

∂φ

∂τ
+∇·φ(1−φ)n=∇·ε∇φ (C.5)

The reader is referred to [1] for further details on the CLS method on unstructured
meshes applied to this work.

C.1.3 Coupled volume-of-fluid/level-set method

In the volume-of-fluid method [7], an indicator function f is used to track the interface,

f (x, t)=
{

1 if x ∈Ω1

0 if x ∈Ω2
(C.6)

with Ω1 and Ω2 the sub-domains occupied by the fluid 1 and 2 respectively. Discretely,
the information stored at the cell ΩP is the volume-averaged indicator function, namely
the volume fraction fP = ∫

ΩP
f (x, t)dV /

∫
ΩP

dV , where V is the volume of the cell ΩP .
The advection equation for f is given by:

∂ f
∂t

+v ·∇ f = 0 (C.7)

where v is the fluid velocity. The reader is referred to [8] for further details of the
VOF-PLIC method used in the present work. The main idea in the coupled VOF/LS
methods [9, 10] is to take the advantages of both approaches (VOF and LS). In the
present formulation, the mass losses are reduced through the application of a VOF-
PLIC method, while a fine representation of the interface curvature is preserved by
utilizing the level set method. From the geometrical data of the interface given by the
VOF-PLIC method, a signed distance function is reconstructed following a geometric
algorithm [11]. Then, the signed distance function is used to compute surface tension
forces. The reader is referred to [11] for further details on the VOF/LS method utilized
in the present work.

C.2 Numerical experiments

Test cases are presented to validate the present numerical methods in the context
of single buoyancy driven motion bubbles. In the next sections, the verification and
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validation of the proposed AMR algorithm with CLS and VOF/LS are shown, in the
context of 2D and 3D single bubbles. The dimensionless numbers controlling the rising
of a quiescent bubble flows are the Eötvös number (Eo), Reynolds number (Re), Morton
number (M) and the ratios of physical properties (density ratio ηρ and viscosity ratio
ηµ) defined as following

Eo = gd2∆ρ

σ
M = gµ4

1∆ρ

ρ2
1σ

3
Re = ρ1UT d

µ1
ηρ = ρ1

ρ2
ηµ = µ1

µ2
(C.8)

where the subindex 1 refers to the continuous fluid phase, the subindex 2 refers to
the lighter fluid in the bubble, the subindex d refers to the dispersed phase.

UT = ∫
Ω2

vyφdV /
∫
Ω2

dV is the terminal velocity of the bubble, ∆ρ = ρ1 −ρ2 speci-
fies the density difference between the fluid phases. Furthermore, in order to get a
quantitative measure of bubble shape, the sphericity is defined as ζ=πd2/

∫
Ω ||∇ f ||dV .

C.2.1 Two-dimensional rising bubble

Solutions are obtained on a computational domain of [-db,db];[0,4db], where the initial
cylindrical bubble of diameter db = 5.0 is located at x=0, y=db (See Fig. C.1). The
boundary conditions at the top and bottom are non-slip conditions, and on the vertical
walls, a free-slip boundary condition is applied. The fluid parameters are: Eo = 10,
Re = 35, ρ1/ρ2 = 10, µ1/µ2 = 10, where the subscript 1 is used for the continuous fluid
phase, Ω1, while the subscript 2 is assigned to the lighter fluid in the bubble, Ω2.

Figure C.1: Illustration of the computational domain (left)Bubble initial position
(right)computational base grid-number of control volumes 7k.

Present simulations are performed using AMR to ensure grid resolution on the
interface between fluids. Following the numerical studies carried out by [1], a minimum
grid size was fixed on the interface with three levels of refinement for VOF/LS(hmin =
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db/240) and three/four levels of refinement for CLS(hmin = db/240 and hmin = db/480),
to maximize the resolution of the bubble and reduce the overall number of control
volumes for this case(total number of control volumes for three levels of refinement 9.3k
aprox. and for four levels of refinement 37k aprox.). More refinement was achieved
for CLS method because the interface is more wide compared to VOF/LS that has an
interface thickness of one cell. The predicted bubble shapes on different times, defined
as t∗ = tg1/2d−1/2, with its AMR mesh are shown in Fig. C.2.

CLS VOF/LS

Figure C.2: Example of a two dimensional rising bubble with CLS and VOF/LS at t∗ = 4.20.
Bubble shape with its computational grid.

For the sake of comparison, the benchmark quantities are defined as follows:

vc =
∫
Ω2

v ·eydV∫
Ω2

dV
, yc =

∫
Ω2

x ·eydV∫
Ω2

dV
, ζ= πd2

b∫
Ω||∇ f (x, t)||dV

. (C.9)

where vc is the rise velocity, ey is a unit vector parallel to the y−axis, yc is the bubble
centroid, ζ is the bubble circularity which takes the value 1 for a perfect circular bubble
and values less than unity as the bubble is deformed.

Fig. C.3 shows the position of the bubble, terminal Reynolds number, and circularity
as a function of time. Our results compare well with the data published by [12,13]. Both
approaches show a correct representation of the dimple ellipsoidal bubble. Where the
bubble being initially circular has a horizontal change, then the interfacial curvature
gets smaller and, finally, tends to a certain limit value. This bubble deformation
develops a slight dimple at the bottom but, at later times, eventually reaches a more
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Figure C.3: Two dimensional rising bubble results compared against [12]. (left top)Rise velocity
(right top)Circularity (bottom)Bubble centroid

stable ellipsoidal shape.

C.2.2 Three-dimensional buoyant bubbles

While the dynamics of a 2D single bubble is important for understanding the physical
process of a rising bubble according to the dimensionless numbers, yet more useful
information can be extracted from the analysis of a fully 3D single bubble. Experimental
studies and correlations are usually invoked for the estimation of some macroscopic char-
acteristics of the rising bubble. Rising bubble in ellipsoidal shape regime in an initially
quiescent liquid is explored. The computational domain are [0,8db];[0,16db];[0,8db],
where the initial bubble of diameter db = 2.5 is located at x=0, y=3db as it is shown in
Fig. C.4.

The fluid parameters are: Eo = 116, Mo = 41.1, ρ1/ρ2 = 100, µ1/µ2 = 100, No-slip
boundary condition is used at the top/bottom boundaries, and free-slip boundary con-
dition is used at the lateral side of the domain. The mesh configurations follow an
AMR strategy for 3D hexahedral elements. Following the numerical studies presented
by [11], a minimum grid size was fixed on the interface (hmin = db/64), to maximize the
resolution of the bubble and reduce the overall number of control volumes for this case
(total number of control volumes 825k aprox.).
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Figure C.4: Illustration of the computational domain (left)Bubble initial position
(right)computational base grid-number of control volumes 524k.

CLS VOF/LS

Figure C.5: Example of a three dimensional rising bubble with CLS and VOF/LS at t∗ = 6.2.
Bubble shape with its computational grid.

A sequence of shapes for different times is presented in Fig. C.5. Bubble start
to rise due to buoyancy and starts to stretch tending to form a dimple at the bottom.
This is produced due to the bubble tries to achieve a skirted shape but, finally reaches
a dimple ellipsoidal shape, where it remains. The numerical prediction for terminal
Reynolds number is compared with the numerical results reported by [11,14] (See Table
1). A close agreement between CLS and VOF/LS results are obtained. Furthermore,
CLS shows better mass conservation compared to VOF/LS (See Fig. C.6). Here, the
instantaneous mass is evaluated and compared with the initial mass, then the mass
conservation error is calculated by Mr = [M(t)−M(0)]/M(0) with M(t)= ∫

Ω f dV .
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Figure C.6: Three dimensional rising bubble results. (left top)Rise velocity (right top)Sphericity
(bottom)Mass conservation error

Table C.1: Present Re computations compared against experimental results from [15] and
numerical results from [11,14].

[15] [14] [11] Present AMR-CLS Present AMR-VOF/LS
Number of cells 2.30E6 2.92E6 8.25E5 7.75E5
Re 7.16 6.94 7.02 6.79 6.76
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