

La aplicación de la metabolómica en el ataque isquémico transitorio

Gerard Josep Mauri Capdevila

http://hdl.handle.net/10803/664910

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes.

TESIS DOCTORAL

La aplicación de la metabolómica en el ataque isquémico transitorio

Gerard Josep Mauri Capdevila

Memoria presentada para optar al grado de Doctor por la Universitat de Lleida

Programa de Doctorado en Salud

Director y Tutor Dr. Francesc Purroy García

Agradecimientos

La realización de la Tesis es un camino tortuoso que se va incorporando en el día a día de uno mismo. Durante un tiempo hemos crecido juntos con todas las implicaciones profesionales y personales que conlleva. En múltiples momentos he tenido dudas de que pudiera llegar a su fin. No obstante, ha sido precisamente en esos momentos en los que he sentido la necesidad de sacar a relucir los incontables agradecimientos que han hecho posible el presente trabajo.

Es evidente que la Tesis puede moldear la trayectoria profesional. En este sentido resulta imprescindible recordar mi introducción a la Neurología, ligada inexorablemente al Servicio de Neurología del Hospital Universitario Central de Asturias. ¡Cuántos recuerdos y agradecimiento a todos mis Adjuntos y Compañeros ovetenses! Debo elogiar especialmente al Dr. Carlos H. Lahoz la voluntad de inculcarme unos valores en el trabajo y a los Dres. Sergio Calleja y Pedro Oliva por enseñarme que la excelencia científica no está reñida con la excelencia humana.

A los Dres. Jorge Mier y Juan Vega por compartir enseñanzas fundamentales para sobrevivir en la Residencia. ¡Cuánto se os echa de menos!

A mis compañeros del Servicio de Neurología del Hospital Universitario de Canarias por darme una oportunidad.

Mi siguiente estación, y parada indispensable para la realización de este trabajo de investigación, es el Hospital Universitari Arnau de Vilanova.

No existen suficientes palabras de agradecimiento al Dr. Francesc Purroy por abrirme la puerta a pesar de las dificultades y transmitirme la importancia de la investigación para mejorar la práctica clínica. También por permitirme poner a prueba su paciencia sin fin. Gracias por acogerme.

Resulta indispensable exaltar el grupo de "Neurociències Clíniques" del IRBLleida y, en particular, el tesón de Ikram Benabdelhak y el de mis compañeros del Servicio de Neurología para la valoración de los pacientes y la recogida de sus muestras. Es preciso

mostrar agradecimiento a Laura Colàs y a la Dra. Rosa Palma por su tiempo en detallarme los pormenores del Doctorado.

Esta tesis no hubiera sido posible sin la implicación de los Dres. Manuel Portero y Mariona Jové del IRBLleida. Mi gratitud infinita a su dedicación, conocimientos metabolómicos y a su actitud docente.

A los pacientes porque sin su colaboración no serían posibles trabajos como este.

A mi madre y a Francesc por mostrarme con cariño los conocimientos más importantes.

Finalmente, deseo expresar mi agradecimiento más especial a los pilares de mi vida: Carla, mi compañera de viaje en este recorrido por la vida, y Ada, encargada de recordarme lo verdaderamente importante. Para ser sincero, siento en lo más profundo que más que un agradecimiento les debo una disculpa.

¡Muchas gracias!

Abreviaturas

A			
A			American Heart Association/American Stroke
A	Arteria	AHA/ASAC	Association Council
AA	Acido araquidónico	AIT	Ataque isquémico transitorio α-amino-3-hidroxi-5-metil-4-
a.C.	Antes de Cristo	AMPA	isoxazolpropionato
ACI ADC	Arteria carótida interna	ANT aPS/PT	Attique neurológico transitorio
ADC ADMA	Coeficiente de difusión aparente Dimetilarginina asimétrica	ARIC	Anticuerpos antifosfatidilserina-protrombina Atherosclerosis Risk in Communities
ADN	Ácido desoxirribonucleico	ATP	Adenosina trifosfato
AEA	Anandamida	AUC	Área bajo la curva
AGV	Ateromatosis de gran vaso		
В			
BDNF BNP	Factor neurotrófico derivado del cerebro Péptido natriurético cerebral	BHE	Barrera hematoencefálica
C	replido had fulcico cerebrai		
Ca ⁺²	Calcio	CL	Colesterol
CE	Electroforesis capilar	COX	Ciclooxigenasa
CIP	Clinical and Imaging-based Predictive Score		
D	Diagram D	DIIA	Ácido docosahexaenoico
DD DF	Dímero D Imágenes potenciadas en difusión	DHA DM	Acido docosanexaenoico Diabetes mellitus
E	6		
ECV	Enfermedad cerebrovascular	ERK	Quinasas reguladas por señal extracelular
EPC	Células progenitoras endoteliales	EUA	Estados Unidos de América
F			
FA FOP	Fibrilación auricular	FSC FUT	Flujo sanguíneo cerebral
FR	Foramen oval permeable Factor de riesgo	FvW	Lesión fragmentada en un territorio vascular Factor de von Willebrand
G			
GC	Cromatografía de gases	GFAP	Proteína acídica fibrilar glial
GCNKSS	Greater Cincinnati/Northern Kentucky Stroke	GGT	Gamma-glutamiltransferasa
GDF	Study Factor de diferenciación de crecimiento	GIM	Grosor íntima-media
H			
H	Helper	HO ₂	Radical hidroperoxil
H⁺ HDL	Hídrogeno Lipoproteína de alta densidad	$_{ m H_2O_2}$ HR	Peróxido de hidrógeno Coeciente de riesgo
hFABP	Proteína cardíaca transportadora de ácidos	HSP	Proteínas de <i>shock</i> térmico
	grasos		
HIF HNE	Factor inducible por hipoxia Hidroxinonenal	HTA	Hipertensión arterial
_	nidioxilioliellai		
IAM	Inforto condo do microardio	ICC	Índias Cadara/Cintura
IAM IC	Infarto agudo de miocardio Intervalo de confianza	ICC IDI	Îndice Cadera/Cintura Mejoramiento integral de la discriminación
ICAM	Molécula de adhesión intercelular	IL	Interleuquina
J			
JAK	Quinasa Janus	JNK	Quinasa c-Jun N-terminal
K			
K^{+}	Potasio		
L			
LC LCD	Cromatografía de líquidos	Lp-PLA ₂	Fosfolipasa A ₂ asociada a lipoproteína
LCR LCU	Líquido cefalorraquídeo Lesión cortical única	LPA LPC	Ácido lisofosfatídico Lisofosfatidilcolina
LDL	Lipoproteína de baja densidad	LTA4	Leucotrieno A4
LOX	Lipoxigenasa		
M	W 1/2 1 1 1 11 1/2 1 1	P.C.	F 1 1 F 1: 1:7
MAdCAM MAPK	Molécula de adhesión celular mucosa Quinasas de proteínas activadas por mitógenos	mRS MS	Escala de Rankin modificada Espectrometría de masas
MCP	Proteína quimioatrayente de monocitos	MT	Múltiples territorios
MMP	Metaloproteasas de matriz	m/z	Relación de masa/carga

N			
Na^{+}	Sodio	NMR	Espectroscopia de resonancia magnética nuclear
NDKA NEDICES NGAL NIHSS NINDS NMDA	Nucleósido difosfato quinasa A Neurologic Disorders in Central Spain Lipocalina asociada a neutrófilo gelatinasa National Institute of Health Stroke Scale National Institute of Neurological Disorders N-metil-D-aspartato	NOMASS NOS NRI NSE NT-proBNP	Northern Manhattan Stroke Study Óxido nítrico sintetasa Mejora neta de reclasificación Enolasa específica neuronal Propéptido natriurético cerebral N-terminal
O ₂ - OCSP ON	Anión superóxido Oxford Community Stroke Project Óxido nítrico	OR OXVASC	Odds ratio Oxford Vascular Study
P PA PAD PAS PAF PAMP PBP PC	Presión arterial Presión arterial diastólica Presión arterial sistólica Factor de activación plaquetaria Patrones moleculares asociados a patógeno Proteína básica de plaquetas Plasticidad cerebral	PEA PECAM PENK PI PI3K PLA ₂ PLS	Palmitoiletanolamida Molécula de adhesión plaqueta-endotelio Neuropéptido proencefalina Precondicionamiento isquémico Fosfatidilinositol-3 quinasa Fosfolipasa A ₂ Minimos cuadrados parciales
PCA	Análisis de componentes principales	PLS-DA	Análisis discriminante de mínimos cuadrados parciales
PCR	Proteína C Reactiva		
Q			
Q	Cuadrupolo		
R RI RIND	Recurrencia en forma de ictus isquémico Déficit neurológico isquémico reversible	ROS RR	Especies reactivas de oxígeno Riesgo relativo Activador tisular del plasminógeno
RM	Resonancia magnética	rtPA	recombinante
ROC	Característica operativa del receptor		
SAPK SC sCD40L	Quinasa de proteínas activadas por estrés Lesión subcortical Ligando soluble CD40	SLC SNC STAT	Transportador de soluto Sistema nervioso central Transductor de señal y activador de transcripción
SD	Desviación estándar	sTREM-1	Receptor inductor expresado en células mieloides-1 soluble
SHIP-1	Fosfatidilinositol-3,4,5-trifosfato 5-fosfatasa-1		iniciolacs-1 soluble
T T TC TG TGF TI TLR U	Tesla Tomografia computerizada Triglicéridos Factor de transformación de crecimiento Tolerancia isquémica Receptores <i>Toll-like</i>	TNF TNFR-1 TnI TOAST TOF tPA	Factor de necrosis tumoral Receptor-1 de TNF Troponina-1 Trial of Org 10172 in Acute Stroke Treatment Time of flight Activador tisular del plasminógeno
UHPLC	Ultrahigh performance LC	UN	Unidad neurovascular
V VEGF	Factor de crecimiento endotelial vascular	VCAM	Molécula de adhesión vascular

VI

Índice

Agradecimientos	III
Abreviaturas	V
1. Resumen	1
1.1. Resumen	3
1.2. Abstract	5
1.3. Resum	7
2. Introducción	9
2.1. Evolución de la definición de ataque isquémico transitorio	11
2.2. Epidemiología del ataque isquémico transitorio	19
2.3. Factores de riesgo	31
2.4. Fisiopatología de la isquemia cerebral	47
2.5. Biomarcadores relacionados con la isquemia cerebral	67
2.6. Metabolómica	93
2.7. El papel de la resonancia magnética en el ataque isquémico transitorio y en las escalas pronósticas	109
3. Objetivos	117
4. Material y métodos	121
4.1. Sujetos a estudio	123
4.2. Estudio neurosonológico	125
4.3. Protocolo de neuroimagen	127
4.4. Seguimiento de los pacientes y variable clínica	129
4.5. Análisis metabolómico	131
4 6 Análisis estadístico	133

5. Resultados	135
5.1. Características clínicas de las cohortes	137
5.2. Riesgo de recurrencia en forma de ictus isquémico	141
5.3. Patrones temporales de las recurrencias en forma de ictus isquémico	145
5.4. Estudio de las arteriosclerosis de gran vaso	149
5.5. Validación de los resultados según el contexto clínico en la cohorte independiente	151
5.6. Potencial predictivo de los biomarcadores descritos de recurrencia en forma de ictus isquémico	155
5.7. Metabolómica y difusión positiva	159
5.8. Metabolómica y volumen de la lesión isquémica aguda	167
5.9. Metabolómica y patrones de difusión	169
6. Discusión	173
7. Conclusiones	185
8. Bibliografía	189
9. Anexos	217
9.1. Índice de tablas	219
9.2. Índice de figuras	221
9.3. Tablas suplementarias	223
9.4. Primer artículo	255
9.5. Segundo artículo	265

1. Resumen

1. Resumen 1.1. Resumen

1.1. Resumen

Introducción: El estudio de biomarcadores relacionados con el ataque isquémico transitorio (AIT) tiene un interés creciente en vistas a facilitar su diagnóstico y mejorar el conocimiento de los cambios fisiopatológicos que acontecen. La metabolómica, que se define como el estudio de los metabolitos moleculares de pequeño tamaño derivados del metabolismo celular, ofrece un abordaje novedoso para la obtención de biomarcadores.

Objetivo: Obtener los perfiles metabolómicos de pacientes que han sufrido un AIT para identificar biomarcadores relacionados con la recurrencia en forma de ictus isquémico (RI), arteriosclerosis de gran vaso (AGV), patrones temporales de RI, y con los hallazgos de la secuencia potenciada en difusión (DF) de la resonancia magnética (RM). **Métodos:** Los análisis metabolómicos se obtuvieron mediante un sistema de cromatrografía líquida acoplada a espectrometría de masas a partir de las muestras plasmáticas procedentes de dos cohortes de pacientes diagnosticados de AIT reclutados en las primeras 24 horas tras el inicio de los síntomas. La primera cohorte incluyó a 131 pacientes y la segunda a 162. Se excluyeron a 12 pacientes del estudio con RM por presentar contraindicaciones a la misma, 2 de la primera cohorte y 10 de la segunda.

Resultados: 35 (11,9%) sujetos sufrieron una RI. La RI, los patrones temporales de RI y los pacientes con AGV tuvieron un perfil metabolómico específico. Distintas lisofosfatidilcolinas (LPC) resultaron resaltables en el análisis de las variables clínicas. Unas concentraciones bajas de LPC (16:0) se relacionaron significativamente con RI. La LPC (20:4) aumentó el poder predictivo de la escala *ABCD*² y AGV. La LPC (22:6) destacó como biomarcador potencial de AGV. Un total de 115 (40,9%) sujetos presentaron una DF positiva. El patrón de lesión más frecuente resultó el fragmentado en un territorio vascular (35,7%), que se mostró relacionado con AGV. Una DF positiva y el volumen de la lesión isquémica determinaron un patrón distintivo de metabolitos. Lisofosfolípidos y creatinina permitieron distinguir el patrón de lesión subcortical de los otros patrones.

Conclusiones: La metabolómica es un abordaje factible y útil para identificar biomarcadores de AIT con implicaciones diagnósticas y pronósticas.

Palabras clave: AIT; Metabolómica; Biomarcadores; Imagen potenciada en difusión.

1. Resumen 1.2. Abstract

1.2. Abstract

Background: The study of biomarkers related to transient ischemic attack (TIA) is becoming more important in order to facilitate diagnosis and improve knowledge of pathophysiological changes. Metabolomics, which is defined as the study of the small-molecule metabolite derived from cell metabolism, offers a novel approach.

Objective: To obtain metabolic profiles in TIA patients as a way to discover biomarkers for stroke recurrence (SR), large-artery atherosclerosis (LAA), temporal patterns of SR, and brain diffusion-weighted (DWI) magnetic resonance imaging (MRI).

Methods: Metabolomic analyses were performed by liquid chromatography coupled to mass spectrometry in plasma samples from two cohorts of TIA patients recruited the first 24 hours after the onset of symptoms. First cohort includes 131 patients and the second cohort 162. 12 patients were excluded from MRI analysis due to contraindications to perform this study, 2 from the first cohort and 10 from the second cohort.

Results: SR was suffered by 35 (11.9%) subjects. SR, temporal patterns of SR and had a specific metabolomic patients with LAA profile. Different lysophosphatidilcolines (LPC) were remarkable in the analysis of clinical variables. Low concentrations of a specific LPC (16:0) were significantly associated with SR. LPC (20:4) increased the prediction power of ABCD² scale and LAA. LPC (22:6) aroused as a potential LAA biomarker. Positive DWI was observed in 115 (40.9%) subjects. Scatterred pearls in one arterial territory was the most frequent lesion pattern (35.7%) and was related to LAA. Positive DWI and ischemic lesion volume exhibited a distinctive pattern of metabolites. Lysophospholipids and creatinine differed the subcortical DWI pattern from other patterns.

Conclusions: Metabolomics represents a feasibility and useful approach to identify TIA biomarkers with diagnostic and prognostic implications.

Keywords: TIA; Metabolomics; Biomarkers; Diffusion-weighted imaging.

1. Resumen 1.3. Resum

1.3. Resum

Introducció: L'estudi del biomarcadors relacionats amb l'atac isquèmic transitori (AIT) està adquirint un interès creixent per tal de facilitar el seu diagnòstic i millorar el coneixement dels canvis fisiopatològics que esdevenen. La metabolòmica, definida com l'estudi dels metabòlits de petita mida derivats del metabolisme cel·lular, ofereix un abordatge innovador per a l'obtenció de biomarcadors.

Objectiu: Obtenir els perfils metabolòmics dels pacients que han patit un AIT per identificar biomarcadors relacionats amb la recurrencia en forma d'ictus isquèmic (RI), arteriosclerosi de gran vas (AGV), patrons temporals de RI, i amb les troballes de la seqüència potenciada en difusió (DF) de la ressonància magnètica (RM).

Mètodes: Els anàlisis metabolòmics es van obtenir mitjançant un sistema de cromatografía líquida acoblada a espectrometría de masses a partir de les mostres plasmàtiques procedents de dues cohorts de pacients amb AIT reclutats en les primeres 24 hores des de l'inici dels símptomes. La primera cohort va inclure a 131 pacients i la segona a 162. Es van excloure 12 pacients de l'estudi amb RM per presentar contraindicacions a la seva seva realització, 2 de la primera cohort i 10 de la segona.

Resultats: 35 (11,9%) individus van patir una RI. La RI, els patrons temporals de RI i els pacients amb AGV van obtenir un perfil metabolòmic específic. Diferents lisofosfatidilcolines (LPC) van resultar ressaltables en l'anàlisi de les variables clíniques. Unes concentraciones baixes de LPC (16:0) es van relacionar significativamnet amb RI. La LPC (20:4) va augmentar el poder predictiu de l'escala $ABCD^2$ i AGV. La LPC (22:6) es va destacar com a biomarcador potencial d'AGV. Un total de 115 (40,9%) individus van presentar una DF positiva. El patró de lesió més freqüent va resultar el fragmentat en un territori vascular (35,7%), que es va mostrar relacionat a AGV. Una DF positiva i el volum de lesió isquémica van determinar un patró distintiu de metabòlits. Lisofosfolípids i creatinina van permetre distingir el patró subcortical dels altres patrons.

Conclusions: La metabolòmica és un abordatge factible i útil en la identificació de biomarcadors d'AIT amb implicacions diagnòstiques i pronòstiques.

Paraules clau: AIT; Metabolòmica; Biomarcadors; Imatge potenciada en difusió.

2. Introducción

2.1. Evolución de la definición de ataque isquémico transitorio

Definir el término *ataque isquémico transitorio* (AIT) no ha resultado sencillo puesto que a lo largo de la historia se han publicado distintas definiciones, que no han estado exentas de cierta controversia. La esencia del concepto de AIT se puede adoptar a través de la visión pragmática de L. R. Caplan. *Transitorio* implica temporal; *isquémico* identifica la causa y *ataque* implica una instauración súbita y una duración limitada¹.

2.1.1. Recorrido histórico

Históricamente se ha atribuido a Sir Thomas Willis la primera y somera descripción escrita de AIT. A finales del siglo XVII, Willis escribió: "The irradation of the spirits is wont to be interrupted with little clouds, as it were, scattered here and there but in the former, the same is forthwith darkened and undergoes total eclipse"2. Si bien, Hipócrates se había percatado de estos fenómenos transitorios ya en el siglo V a.C.³. Evidentemente, esta descripción no adquiere la precisión que se le demanda en el presente. Los tratados médicos de los siglos dieciocho y diecinueve también incluían entidades similares². Con la llegada del siglo veinte los escritos de los neurólogos Gowers y Osler incluyeron la observación de que se podían desarrollar episodios de advertencia previos al ictus⁴, pero sin llegar a utilizar el término AIT. Hunt caracterizó en 1914 lo que denominó como "amagos" de hemiplejia y claudicación cerebral intermitente⁵. El trabajo de C. M. Fisher publicado en el año 1951 centrado en la patología de la arteria carótida interna (ACI) supone un claro salto cualitativo. En dicho escrito Fisher enunciaba los "fugaces ataques prodrómicos" en forma de afectación motora, sensitiva, del lenguaje, ceguera unilateral, o mareo que a menudo precedían al ictus en los pacientes con patología ateromatosa a nivel de la arteria carótida⁶. El término AIT surgió durante las dos primeras Princeton Cerebrovascular Disease Conferences, que tuvieron lugar en 1954 y en 1956⁷. En dichos encuentros se barajaron otras nomenclaturas como insuficiencia vascular intermitente, ataques isquémicos recurrentes, ataques isquémicos recurrentes cerebrales focales, o isquemia cerebral transitoria. De nuevo, Fisher en la *Second Princeton Cerebrovascular Conference* aportó una descripción más moderna. Constató que los AIT tenían una duración desde unos pocos segundos a diversas horas, siendo la duración más común desde unos pocos segundos a 5 ó 10 minutos⁸. Tres años más tarde, durante la *Third Princeton Cerebrovascular Conference*, evocó una definición que ilustra con mayor detalle el significado de AIT. Fisher describió el AIT como "ocurrencia de uno o múltiples episodios de disfunción cerebral cuya duración no es mayor a una hora y que no ocasionan secuelas". Sin embargo, inicialmente no se consiguió un consenso en cuanto a la duración que debía tener el AIT como demuestra el hecho que en 1964 se publicaron dos series de pacientes, por Acheson y Hutchinson¹⁰ y por Marshall¹¹, que consideraban una duración de menor a una hora o menor a 24 horas, respectivamente. El consenso para la duración del AIT se alcanzaría en la *Fouth Princeton Cerebrovascular Conferences* de 1965: menor a 24 horas.

2.1.2. La definición clásica de 1975

La definición clásica se consolidó en el año 1975 a través del comité ad hoc del National Institute of Neurological and Communicative Disorders and Stroke, que estableció que el AIT era una disfunción neurológica de una duración inferior a 24 horas y causada por una isquemia cerebral focal o retiniana con tendencia a la recurrencia¹². La Organización Mundial de la Salud adoptó esta definición en 1988¹³. En esa misma publicación también se recoge el término déficit isquémico neurológico reversible (RIND, en sus siglas en inglés), que englobaría una duración de un día a tres semanas¹². La definición de AIT de 1975 fue, y sigue siendo, de gran utilidad en tanto que proporcionó a la comunidad médica de una herramienta sencilla y uniforme para consensuar su diagnóstico. Sin embargo, en el tiempo en que fue promulgada la definición clásica no se disponía de las herramientas de neuroimagen que avalasen la presencia o ausencia de lesiones isquémicas cerebrales. Por otro lado, el amparo de la marca temporal inferior a 24 horas fue arbitrario, con pocos datos clínicos objetivos¹⁴. Con el devenir de los estudios clínicos focalizados en el mayor conocimiento del AIT y los avances en la neuroimagen, esencialmente la tomografía computerizada (TC) y resonancia magnética (RM), surgió la necesidad de instaurar una nueva definición. Con este fin se constituyó un grupo de expertos en el seno del $TIA\ Working\ Group\$ en los albores del año 2000^{15} .

Otra crítica que recae sobre la definición tradicional de AIT es que puede subyacer un atisbo de benignidad, a pesar que el AIT se sustenta en un compromiso arterial principalmente de la circulación cerebral¹⁶. Esta ficticia sensación de benignidad asociada al mismo desconocimiento de esta enfermedad han condicionado que históricamente el AIT haya pasado desapercibido en una proporción no desdeñable de pacientes, como pone de relieve el hecho que aproximadamente un tercio de los individuos no solicitan una valoración clínica de su sintomatología ante una AIT¹⁷, o que por ejemplo en una encuesta sobre más de 1.800 personas se identifica más el dolor torácico que la hemiparesia como signo de alarma de la enfermedad cerebrovascular¹⁸. De igual modo, desde la atención sanitaria también se ha llegado a tratar el AIT de un modo incorrecto, sin otorgarle ni la prioridad ni la importancia que los estudios evolutivos han demostrado¹⁹⁻²¹. Bajo una perspectiva actual, el AIT (isquemia que ocasiona síntomas pero no infarto) y el ictus isquémico (infarto del tejido del sistema nervioso central)¹⁶, forman parte de un mismo proceso implicado en la isquemia cerebral²². Ambos son marcadores de un reducido flujo sanguíneo cerebral y de un mayor riesgo de discapacidad y muerte¹⁶. Se ha estimado que entre un 12 a un 30% de los pacientes que han sufrido un ictus isquémico refieren haber padecido previamente un AIT, habiendo acontecido éste último en las días previos al ictus en un cuarto de estos pacientes^{23,24}. Desde un punto de visto fisiopatológico, la transición de isquemia a infarto es compleja dado que, más allá del factor tiempo, intervienen el grado de isquemia, la extensión de la circulación colateral, o la demanda metabólica²⁵.

2.1.3. Justificación y descripción de la primera actualización de la definición clásica

En el año 2002 se publicó una actualización de la considerada definición tradicional, que consideraba al AIT como "un episodio breve de disfunción neurológica causado por una isquemia cerebral focal o retiniana, con unos síntomas clínicos de una duración típicamente inferior a una hora, y sin evidencia de infarto agudo"¹⁴. Estas trascendentales modificaciones se sustentaban en la consideración que AIT implica no

permanencia y, en consecuencia, la evidencia de infarto no puede ser sugerente de AIT independientemente de la duración de los síntomas¹. Con la nueva definición tisular se pretende establecer un paralelismo con la cardiopatía isquémica, dado que se podría equiparar el AIT con la angina (cardiopatía isquémica sin desarrollo de infarto de miocardio) y el IcI con el infarto de miocardio. El mayor conocimiento adquirido desde la instauración de la descripción clásica de 1975 ha promovido el surgimiento de una argumentación que abogaría por su actualización. El argumentario a favor de la nueva definición se centra básicamente en dos aspectos: la duración y los hallazgos de los estudios de neuroimagen.

El análisis de los resultados de estudios que recogieron información sobre la duración del AIT halló que en la mayoría de las ocasiones la sintomatología presenta una duración inferior a una hora. En las ocasiones en las que la duración fue superior a una hora, generalmente, persistieron los signos neurológicos¹. Dyken y colaboradores evidenciaron, sobre una muestra de 1.307 pacientes, que la duración media del AIT en el territorio de la arteria carótida era de 14 minutos, y de 8 minutos para los de la circulación posterior²⁶. Ese mismo año, otro grupo analizó a 50 pacientes que habían sido diagnosticados de AIT en relación a la afectación de la arteria carótida. Observaron que en la mitad de esta serie de pacientes la duración de la sintomatología fue igual o inferior a 15 minutos y que en aproximadamente el 50% de éstos los episodios tuvieron una duración de 1 a 5 minutos²⁷. Otro estudio que consideró a 382 pacientes hospitalizados constató que el AIT se resolvió en la mitad de los casos dentro de los primeros 30 minutos²⁸. Considerando sólo éstos, el 24% los síntomas se solucionaron en los cinco primeros minutos y en el 39% a los 15 minutos. Kimura y colaboradores observaron que aproximadamente la mitad de una muestra de 81 pacientes consecutivos diagnosticados de AIT presentaron una duración de los síntomas inferior una hora. Para ser más concretos, 23 pacientes sufrieron un AIT inferior a 15 minutos²⁹.

Por tanto, establecer como definitorio de AIT una duración inferior a 24 horas sugiere inexactitud y poca precisión. Existe otro razonamiento que respalda la modificación del límite temporal de la definición de AIT. La aprobación del activador tisular del plasminógeno recombinante (rtPA) en 1998 por la estadounidense Food and Drug Administration y en 2003 por la Agencia Europea del Medicamento cambió diametralmente el tratamiento del ictus isquémico agudo³⁰. En la actualidad, está aceptado que el rtPA pueda infundirse en las primeras 4,5 horas tras el inicio de los síntomas del ictus^{31,32}. Por consiguiente, el criterio temporal de 24 horas del AIT podía

generar una actitud excesivamente expectante en los Servicios de Urgencias con el riesgo de consecuencias perniciosas para los pacientes³³. Cabe destacarse que tras una duración de los síntomas de 160 minutos, la probabilidad de una restitución *ad integrum* a las 24 horas es inferior al 5%²⁸. Por otro lado, está establecida la relación positiva entre la administración temprana del rtPA y el pronóstico de los enfermos³⁴.

La instauración de los estudios de neuroimagen en los centros sanitarios ha puesto de manifiesto que no es extraño hallar lesiones compatibles con infartos cerebrales en pacientes que han padecido una sintomatología neurológica autolimitada. Estos hallazgos ponen en entredicho el concepto preconcebido de que el AIT es un ente transitorio y, por tanto, no causante de muerte celular irreversible o infarto¹. El avance que supuso la llegada de la TC a los centros de diagnóstico por la imagen precedió a la revolución de la RM. Una de las primeras publicaciones que estudió a los pacientes que habían sido diagnosticados de AIT mediante TC es la de Perrone y colaboradores³⁵. Se reclutaron a 35 pacientes que habían sufrido un AIT y se observó que en un 34% de los casos la TC mostraba pequeñas áreas hipodensas compatibles con lesiones isquémicas. Estudios más recientes sitúan en el 4% el porcentaje de pacientes con AIT que presentan lesiones compatibles en la TC³⁶. En un intento de definir estas situaciones, se acuñó el término "infarto cerebral con déficit transitorio" ³⁷. La instauración de la RM y de las distintas secuencias específicas incidió en este aspecto. Se considera que la RM tiene una mayor sensibilidad para la identificación de lesiones isquémicas agudas y para la distinción de infartos en diferentes estadios temporales³⁸. En este punto emerge la secuencia potenciada en difusión (DF) como de especial importancia. En líneas generales, la RM pone de manifiesto imágenes compatibles con infarto agudo en aproximadamente un tercio de los pacientes que serían diagnosticados de AIT con la definición de 1975³⁹. Avances en el conocimiento de la plasticidad cerebral han demostrado que una pronta resolución clínica de los déficits ocurre frecuentemente debido a la rápida adaptación del cerebro y a la reorganización funcional que condiciona el daño permanente, y no a la preservación completa del parénquima cerebral⁴⁰. La importancia de identificar alteraciones en las secuencias de difusión de la RM también reside en que se ha considerado como un factor de riesgo de recurrencia⁴¹. Los avances en el conocimiento de la fisiopatología, en neuroimagen y en el tratamiento agudo del ictus isquémico condenaron el concepto de RIND, que se considera anticuado en la actualidad⁴⁰.

2.1.4. Críticas a la definición de 2002

La actualización de la definición de AIT publicada en el año 2002 generó controversia⁴²⁻⁴⁴, si bien contó con el apoyo de expertos, comités científicos y se utilizó en ensayos clínicos⁴⁰. En el año 2009 un grupo de expertos, en el seno de la *American* Heart Association / American Stroke Association Council (AHA/ASAC), publicaron un documento de consenso que consideraba detenidamente los diferentes aspectos de la definición¹⁶. Uno de los reproches fue la necesidad de disponer de un estudio de neuroimagen. Según la definición tisular, el diagnóstico de AIT depende de la disponibilidad de un centro que cuente con los recursos para realizar una TC o una RM y con experiencia para la valoración de la relevancia de una imagen compatible con infarto, en el caso de hallarse⁴². Sin embargo, en la actualidad no es cuestionable la realización de un estudio de neuroimagen para la valoración inicial de un AIT⁴⁵. El cambio de criterio basado en la no evidencia de lesión tisular en la definición del AIT implica inexorablemente una modificación en cuanto al número de pacientes que según la definición de 1975 serían diagnosticados de AIT. Los pacientes que han sufrido una sintomatología menor a las 24 horas y que presentan una lesión isquémica en los estudios de neuroimagen serían excluidos. Hay autores que han afirmado que esta modificación compromete la capacidad para establecer comparaciones con estudios realizados antaño o en regiones que no dispongan de RM. En este sentido, una publicación concluyó que con la adopción de la definición de 2002 se reduce la incidencia anual de AIT en un 33% (con un rango de análisis de sensibilidad del 19 al 44%) y se incrementa la de ictus isquémico en un 7% (con un rango del 4 al 10%)⁴⁶. Con la finalidad de remediar esta limitación el documento de consenso de 2009 recomienda simplemente recoger la duración de los síntomas de los episodios¹⁶. Los autores de la definición de 2002 fueron más expeditivos y sugirieron el término AIT clínicamente probable para aquellos estudios epidemiológicos que engloben localizaciones donde no se disponga de neuroimagen¹⁴. También se ha destacado que esta definición puede resultar confusa para los profesionales sanitarios que se enfrenten inicialmente a un episodio transitorio en relación a una sospecha de isquemia cerebral. Con el fin de solucionar la presumible duda de nomenclatura, se ha sugerido el término síndrome neurovascular agudo hasta que no pueda completarse de un modo apropiado el diagnóstico¹⁶. De un modo similar, Kidwell y Warach enunciaron el síndrome

cerebrovascular isquémico agudo para incluir el AIT y el ictus isquémico⁴⁷. El cambio de nomenclatura despertó las inquietudes respecto al uso del tratamiento fibrinolítico⁴⁴. Según la "Guía para el tratamiento del infarto cerebral agudo" realizada por el Comité ad hoc del Grupo de Enfermedades Cerebrovasculares de la Sociedad Española de Neurología, un ictus isquémico acaecido en los 3 meses previos es un criterio de exclusión para la administración de rtPA ante un nuevo ictus isquémico agudo, no cumpliéndose esta contraindicación en el caso del AIT48. La duda surge ante la evidencia de infarto en los estudios de neuroimagen practicados a pacientes que han presentado una sintomatología transitoria y que previamente hubieran sido diagnosticados de AIT. Sin embargo, los mismos autores de la definición de 2002 respondieron que el riesgo de transformación hemorrágica asociado al tratamiento fibrinolítico está más relacionado con la extensión de la lesión que con la duración de los síntomas¹⁴. McKinney y colaboradores determinaron que la tasa de hemorragia intracraneal sintomática tras la infusión de rtPA en pacientes con ictus isquémico agudo precedido de un AIT reciente es similar a aquellos que no habían sufrido un AIT reciente⁴⁹. Otra publicación que incluyó a pacientes de nuestro entorno alcanzó unas conclusiones similares⁵⁰.

La definición de 2002 realiza, de nuevo, una mención al factor tiempo. Específicamente, describe "típicamente inferior a una hora". Sin embargo, no se ha podido enunciar un límite temporal de los síntomas con la suficiente sensibilidad y especificidad como para que distinga a los pacientes que vayan a sufrir un infarto a nivel tisular de aquellos que no⁵¹.

2.1.5. Definición actual de AIT

Con el fin de responder a las inquietudes que plantea la interpretación de la definición de AIT del año 2002, en 2009 nació un documento de consenso auspiciado por la AHA/ASAC. Se definió el AIT como "un episodio transitorio de disfunción neurológica ocasionado por una isquemia cerebral focal, medular, o retiniana, sin infarto agudo" le Por tanto, continua prevaleciendo la valoración tisular aunque sin establecer ni limitaciones ni recomendaciones en cuanto a la duración.

2. Introducción

La disertación sobre la evolución de la definición de AIT puede vislumbrar que se trata de un tema controvertido. Este hecho explica que la mayoría de estudios sobre el AIT sigan empleando la definición clásica⁵².

Más allá de definiciones teóricas y de centrarse en diferenciar un AIT de un ictus isquémico, se debe enfatizar que la piedra angular recae en determinar la causa con el fin de establecer el tratamiento adecuado con la máxima celeridad posible en vistas a reducir el riesgo a corto y largo plazo¹.

2.2. Epidemiología del ataque isquémico transitorio

El manejo de toda entidad patológica implica conocer su impacto en la población. En este apartado se revisará la información epidemiológica del AIT.

2.2.1. Consideraciones previas

A diferencia del ictus, el conocimiento epidemiológico del AIT resulta complejo. En la actualidad su diagnóstico no está sujeto a unas pruebas complementarias que indiquen sin ningún atisbo de duda que se trata de un AIT²⁰. Por otro lado, generalmente y a tenor de la duración de los síntomas, el paciente no presentará signo neurológico alguno cuando sea valorado por el personal sanitario. Además, es preciso considerar la existencia de otros cuadros patológicos, tales como auras migrañosas o crisis epilépticas, que por su presentación en forma de síntomas neurológicos transitorios focales deficitarios pueden asemejarse a un AIT. También hay que incidir en el conocimiento inadecuado de los síntomas y signos asociados al AIT tanto por parte de los pacientes como del personal del sistema sanitario⁵³. Se ha recogido que un 60% de los pacientes que eran derivados a los Servicios de Urgencias con la sospecha diagnóstica inicial de AIT, por haber padecido un episodio neurológico transitorio focal, acababan siendo diagnosticados de otra entidad⁵⁴; o que más de un tercio de los pacientes no consultarán en las primeras 24 horas¹⁷. Se ha sugerido que la ausencia de conocimiento del AIT es un factor de confusión para el establecimiento de su impacto y extensión poblacional⁵⁵. En un estudio realizado en nuestro entorno mediante el envío de una encuesta electrónica a personal médico y de enfermería de Atención Primaria se constató que el conocimiento de la actitud ante un AIT era correcto en la mayoría de los casos. No obstante, también reflejó que era preciso mejorar el conocimiento de la sintomatología de los AIT⁵⁶. La evolución en las definición de AIT puede jugar un papel en la dificultad para establecer comparaciones entre los distintos estudios. En el año 2003 se publicó un estudio que pretendió aplicar un modelo para establecer el impacto de la adopción de la definición del AIT del año 2002. Dicha definición se basaba en la demostración de ausencia de lesión tisular, en contraposición con la

definición previa, que sólo establecía una duración de los síntomas inferior a 24 horas⁴⁶. La publicación constató que la incidencia anual de AIT en los Estados Unidos de América (EUA) se reduciría entre el 19 y el 44%, mientras que la de ictus se incrementaría del orden de un 4 a un 10%. Respecto a esta consideración, un documento de consenso de la AHA/ASAC afirmaba que la aplicación del nuevo criterio de AIT modificaría modestamente las tasas de incidencia y prevalencia¹⁶. Una evidencia de la dificultad que entraña el diagnóstico del AIT se puede hallar en la disparidad de valores del coeficiente kappa obtenidos en distintos estudios con el fin de establecer la concordancia interobservador, incluso entre neurólogos expertos. Así, se han identificado unos coeficientes kappa de 0,11, a través de la valoración de la historia clínica, hasta 0,65, si se empleaba un protocolo estandarizado de diagnóstico⁵⁷. Todo ello ha redundado en una infraestimación del AIT¹⁶. Otra dificultad que se ha destacado es la interferencia ocasionada por el perfil de los estudios de incidencia. Así, desde el grupo de investigación británico de Rothwell y colaboradores se ha incidido en la importancia de basarse en estudios guiados por una metodología poblacional más que en los de base hospitalaria⁵⁸. A estos últimos se le ha atribuido la posibilidad de caer en diversos sesgos, tales como cambios en los criterios de derivación, de ingreso, el seguimiento de los pacientes ambulatorios, o susceptibles de las inexactitudes de la codificación diagnóstica. Aunque también los estudios de base poblacional cuentan con debilidades. Entre éstas cabe mencionar el hecho que impliquen un mayor esfuerzo de tiempo y recursos; no se van a poder incluir los pacientes que o no consultan a los servicios médicos o han estado mal diagnosticados desde la atención sanitaria primaria; y que la estadísticas de mortalidad no se recogen de modo fiable⁹. La incidencia del AIT en los EUA se ha cuantificado entre 200.000 y 500.000 casos por año con una prevalencia de aproximadamente 5.000.000 de individuos⁵⁹. Se ha puesto de manifiesto que los datos epidemiológicos de las enfermedades cerebrovasculares pueden variar en función del ámbito geográfico⁵⁵, por ello se ha pretendido realizar un especial hincapié a los estudios nacionales.

2.2.2. La incidencia del ataque isquémico transitorio

Resultados del estudio IBERICTUS

La tasa de incidencia concentra el número de casos nuevos de una enfermedad, en el caso que nos ocupa de AIT, por unidad de tiempo por unidad de población en riesgo. Generalmente se expresa como el número de casos nuevos por cada 1.000 ó 100.000 habitantes en situación de riesgo por año. Tratar la incidencia del AIT en España pasa inevitablemente por destacar el trabajo del grupo de investigadores IBERICTUS del Grupo de Estudio de Enfermedades Cerebrovasculares de la Sociedad Española de Neurología. El estudio IBERICTUS es un análisis prospectivo de base poblacional cuyo objetivo era el registro de los primeros episodios de ictus y de AIT en España entre los mayores de 17 años de edad⁶⁰. Los datos se obtuvieron a partir de los residentes contabilizados según el censo del año 2005 en 5 áreas distribuidas por la geografía española: Lugo (norte), Almería (sur), Segovia (centro), Talavera de la Reina (centro) y Mallorca (representación del área mediterránea). La población total del estudio ascendía a 1.440.979 personas. La definición de AIT utilizada era la de la OMS, fundamentada en el límite temporal de 24 horas para las manifestaciones clínicas. Entre el 1 de enero y el 31 de diciembre de 2006 se identificaron a 2.700 primeros episodios cerebrovasculares (ictus isquémico, ictus hemorrágico, AIT, indeterminados), de los que 443 fueron etiquetados de AIT. Por tanto, el 16,4% de los primeros episodios de enfermedad cerebrovascular aguda se corresponden a AIT; mientras que el 67,3% fueron ictus isquémicos, el 15,1% ictus hemorrágicos y el 1,1% indeterminados. La edad media de los pacientes fue de 73,9 ± 13,4 años, localizándose el grupo de población afecto más envejecido en Segovia, Talavera de la Reina y Lugo en comparación a Mallorca y Almería. La incidencia estandarizada a la población europea (del año 2006) de AIT se estimó en 29 por 100.000 habitantes/año (IC 95%; 26-32). Considerando las diferencias por sexos, la incidencia por 100.000 habitantes/año fue de 30 (IC 95%; 26-34) en los varones y de 27 (IC 95%; 24-31) en las mujeres. El mismo grupo exhibió unos resultados preliminares unos años antes en los que describió una tasa cruda de AIT por 1.000 habitantes/año de 0,37 y que se reducía a 0,34 si se estandarizaba a la población europea⁵⁷. Resulta llamativa la disparidad en la distribución geográfica de la tasa de incidencia, dado que obtuvieron unos valores que

oscilaron desde el 20 por 100.000 habitantes por año (IC 95%; 9-31) al 69 por 100.000 habitantes por año de Lugo (IC 95%; 54-85). Como se ha mencionado, la incidencia resultó mayor en el sexo masculino que en el femenino. La diferenciación se mantuvo para todos los grupos de edad, excepto para los mayores de 85 años. Esta característica se asoció al menor número de casos en varones de más de 85 años, debido presumiblemente a la elevada tasa de mortalidad masculina durante la Guerra Civil Española (1936-1939)⁶⁰.

Otros estudios de incidencia nacionales

La obtención de la incidencia real del AIT resulta una ardua tarea. Un estudio llevado a cabo en el área de Alcoy (Alicante) destacaba que el 29% de los pacientes no habían hecho partícipes de sus síntomas a los médicos de atención primaria⁶¹. Estudios comunitarios han puesto de manifiesto que la incidencia de AIT en España es del orden de 35-60 por 100.000. Sin embargo, estudios con una metodología puerta a puerta elevan la cifra a cerca de 300 por 100.000⁶². Si se destacan artículos concretos, se puede hallar la investigación del año 1994 de Matías-Guiu y colaboradores que puso de relieve una tasa cruda de incidencia de 2,8 por 1.000 habitantes, mediante una metodología puerta a puerta llevada a cabo en tres poblaciones del área sanitaria de Alcoy⁶¹. Un año más tarde se publicó que en un área rural de Girona la tasa de incidencia de AIT se cifraba en 0,64 casos por 100.000 habitantes/año⁶³. También la provincia de Segovia ha sido partícipe de estudios sobre incidencia de AIT. En el año 1996 se identificó una tasa cruda de incidencia de 0,35 por 1.000 habitantes (IC 95%; 0,28-0,42), tasa de incidencia que ajustada a la población estándar europea descendía a 0,21 por 1.000 habitantes (IC 95%; 0,12-0,30)⁶⁴.

Estudios de incidencia internacionales

El análisis de distintos estudios realizados en países occidentales ha permitido establecer que la incidencia de AIT se halla comprendida entre 0,37 y 1,1 por 1.000 habitantes/año⁵⁷. Se ha estimado que aproximadamente entre 200.000 y 500.000 pacientes reciben el diagnóstico de AIT cada año en los EUA. No obstante, habida cuenta de las peculiaridades del AIT, entre 300.000 y 700.000 individuos sufren anualmente síntomas sugestivos de AIT pero no llegan a consultar en sus centros

sanitarios^{17,59}. El *National study on emergency department visits for transient ichemic attack* fue un estudio que nació con la pretensión de realizar una descripción de la epidemiología de los AIT atendidos en los Servicios de Urgencias de centros hospitalarios estadounidenses. Los datos fueron obtenidos a partir de la base de datos *National Hospital Ambulatory Medical Care Survey* e incluyeron un período de 10 años, comprendido entre los años 1992 y 2001. Fueron identificados un total 2.969.000 de casos de AIT (297.000 anuales) que condicionaron una tasa de incidencia 1,1 por 1.000 habitantes (IC 95%; 0,9-1,3)⁶⁵.

Otra población ampliamente estudiada ha sido la del Reino Unido. El Oxford Vascular Study (OXVASC) estableció un registro de 91.106 personas dependientes de 63 médicos de atención primaria situados en Oxfordshire (Reino Unido). Se recogieron los episodios cardiovasculares, cerebrovasculares y correspondientes a patología vascular periférica durante un período de 3 años, comprendidos entre los años 2002 y 2005. Rothwell y colaboradores hallaron una tasa de incidencia para sufrir un primer AIT de 0,66 por 1.000 habitantes (IC 95%; 0,57-0,77). Sin embargo, si se consideraban los AIT definidos o posibles, episodios iniciales o recurrentes, la tasa ascendía hasta 1,1 por 1.000 habitantes (IC 95%; 0,98-1,23)⁶⁶. También el cambio de incidencia a lo largo del tiempo ha recibido la atención de la comunidad científica. En este sentido, el grupo de Oxford publicó una comparativa de la incidencia de AIT entre dos poblaciones similares basándose en dos registros: el Oxford Community Stroke Project (OCSP), comprendido entre los años 1981-1984 y 1985-1986; y el OXVASC, entre 2002 y 2004. Expusieron un incremento en la tasa de incidencia de AIT por 1.000 (estandarizada al censo de población de Inglaterra del año 2011) desde 0,43 (IC 95%; 0,34-0,52) del período 1981-1984 hasta el 0,58 (IC 95%; 0,46-0,69) del OXVASC; pasando por el 0,52 (IC 95%; 0,40-0,65), de los años 1985-1986. El incremento podría deberse en parte al cambio en la percepción del AIT, el consenso diagnóstico y a la mayor disponibilidad de herramientas diagnósticas. Sin embargo, no en todas las franjas de edad evaluadas se constató un aumento de la incidencia con el paso de los años. Los menores de 75 años contaban con una tasa de 0,24 (IC 95%; 0,17-0,32) en el último período estudiado, respecto el 0,27 (IC 95%; 0,20-0,34) del periodo inicial⁵⁸.

En la ciudad rusa de Novosibirk también se llevó a cabo un estudio de base poblacional con la finalidad de establecer la incidencia en dos periodos temporales distintos, de 1987-1988 y de 1996-1997. La tasa hallada por 1.000 habitantes/año fue de 0,16 (IC 95%; 0,08-0,33) para el primer periodo y de 0,29 (IC 95%; 0,09-0,87) para el

segundo⁶⁷. Por tanto, y en el mismo sentido que el grupo de Oxford, se podía evidenciar un incremento en la incidencia del AIT con el paso de los años.

El grupo de Rotterdam (Países Bajos) aplicó otro abordaje con el fin de obtener los datos epidemiológicos del AIT. A partir de la información obtenida entre los años 1990 y 1993 de 6.062 habitantes mayores de 54 años y residentes del distrito de Ommoord de la ciudad de Rotterdam, se cercioraron de los individuos que habían experimentado un ataque neurológico transitorio (ANT). Fueron excluidos los pacientes con contaban con antecedentes patológicos de infarto de miocardio (IM), ictus o demencia. El ANT fue definido como una disfunción neurológica de aparición brusca y de una duración inferior a 24 horas, sin una franca evidencia de migraña, epilepsia, enfermedad de Ménière, hiperventilación, síncope cardiogénico, hipoglucemia, o hipotensión ortostática. Así mismo, se estableció una clasificación en función de la sintomatología que distinguía los ANT focales (equivalentes a AIT), no focales y mixtos. Los autores observaron una tasa de incidencia por 1.000 personas y año de 4,7 para los ANT focales, 3,8 en el caso de ANT no focales, y de 0,6 para los mixtos⁶⁸.

En el norte de Portugal se desarrolló un estudio de base poblacional que registró los primeros episodios de ictus y de AIT de un área meramente urbana (Porto) y de otra calificada de rural (Vila Pouca de Aguiar y Mirandela) durante 2 años, de 1998 a 2000. La tasa anual de incidencia por 1.000 habitantes resultó de 0,67 (IC 95%; 0,45-1,04), hallándose más elevada en la zona rural, 0,96 (IC 95%; 0,43-2,33), que en la urbana, 0,61 (IC 95%; 0,38-1,01). Los datos estandarizados a la población europea arrojaron una incidencia por 1.000 habitantes de 0,67 (IC 95%; 0,45-1,04) para la región rural y de 0,40 (IC 95%; 0,23-0,69) para la ciudad de Porto⁶⁹.

Tras incidir en diferentes puntos geográficos, faltaba constatar los datos de países orientales. Se llevó a cabo un estudio prospectivo en Hisayama, una comunidad rural localizada en el occidente japonés, a partir de la obtención de datos poblacionales de los habitantes de más de 39 años, desde el año 1961 hasta el 1981⁷⁰. La tasa de incidencia anual media para sufrir un primer AIT fue de 0,56 por 1.000 residentes.

Los estudios publicados han generado un consenso en cuanto que, al igual que sucede con el ictus, la tasa de AIT es dependiente de la edad. Concretamente, mantienen una relación directamente proporcional⁵⁷. La investigación estadounidense presentada previamente constató que la tasa de AIT incrementaba con la edad, desde un 0,1 para los pacientes menores de 50 años hasta el 11,7 correspondiente a los pacientes de mayores de 79 años⁶⁵. Esta observación también fue destacada en el estudio

desarrollado en la provincia de Segovia⁶⁴, que sin embargo percibió una tendencia a la disminución de la incidencia para los pacientes mayores de 85 años. Por tanto, una conclusión que subyace es que es esperable un aumento de la incidencia de AIT como resultado del envejecimiento de la población⁷¹.

Tabla 1. Incidencia del AIT (por 1.000 habitantes).

Estu	ıdio	Total (IC 95%)	Hombres (IC 95%)	Mujeres (IC 95%)
	T	0,72	0,64	0,74
	Lugo	(0,61-0,83)	(0,54-0,85)	(0,58-0,91)
	Almería	0,46	0,50	0,42
	Aimena	(0,36-0,55)	(0,37-0,63)	(0,30-0,54)
	Segovia	0,27	0,37	0,17
IBERICTUS	Segovia	(0,18-0,36)	(0,22-0,51)	(0,17-0,28)
(España) ⁶⁰	Talavera de	0,19	0,20	0,16
	la Reina	(0,11-0,26)	(0,09-0,31)	(0,07-0,26)
	Mallorca	0,265	0,26	0,27
	Manorca	(0,23-0,30)	(0,20-0,31)	(0,21-0,33)
	Global	0,29	0,30	0,74 (0,58-0,91) 0,42 (0,30-0,54) 0,17 (0,17-0,28) 0,16 (0,07-0,26) 0,27
	Giovai	(0,26-0,32)	(0,26-0,34)	
Alcoi (E	cnoño)61	2,8	2,6	3,2
Alcoi (E	spana)	(0,73-4,90)	(0-5,4)	(0,1-6,2)
Girona (España) ⁶³		0,64	0,93	0,34
Segovia (España) ⁶⁴		0,35	0,42	0,29
		(0,28-0,42)	(0,31-0,52)	(0,20-0,37)
	Rural	0,96	0,82	1,11
Portugal ⁶⁹	Kurar	(0,43-2,33)	(0,25-3,12)	(0,36-3,52)
1 Ortugai	Urbana	0,61	0,62	0,60
	Orbana	(0,38-1,01)	(0,30-1,35)	(0,58-0,91) 0,42 (0,30-0,54) 0,17 (0,17-0,28) 0,16 (0,07-0,26) 0,27 (0,21-0,33) 0,27 (0,24-0,31) 3,2 (0,1-6,2) 0,34 0,29 (0,20-0,37) 1,11 (0,36-3,52) 0,60 (0,32-1,20) 1,31 (1,13-1,52) 1,3 (1,0-1,6) 0,15 (0,06-0,41) 0,32 (0,07-1,42)
Oxfordshire (R	Paino Unido)66	1,1	0,89	1,31
Oxfordsinie (N	Cenio Onido)	(0,98-1,23)	(0,74-1,06)	(1,13-1,52)
FII	Λ 65	1,1	0,9	1,3
EUA ⁶⁵		(0,92-1,30)	(0,7-1,2)	
	1987-1988	0,16	0,17	
Novosibirk		(0,08-0,33)	(0,06-0,49)	(0,06-0,41)
(Rusia) ⁶⁷	1996-1997	0,29	0,25	,
		(0,09-0,87)	(0,05-1,31)	
Hisayama	(Japón) ⁷⁰	0,56	0,78	0,38

2.2.3. La prevalencia del ataque isquémico transitorio

La tasa de prevalencia identifica el número total de casos de una enfermedad por unidad de población en riesgo en un momento dado. Se suele expresar como porcentaje o como número total de casos por cada 1.000 ó 100.000 habitantes en riesgo. Existen pocos estudios de prevalencia dirigidos al AIT, hecho que se puede relacionar con la misma definición de prevalencia. Por un lado, el cálculo de la prevalencia del AIT es metodológicamente complejo debido a que es harto complicado confirmar su diagnóstico sin una evaluación directa del paciente⁹. Por otro lado, cabe considerar que los estudios de prevalencia permiten estimar la carga sociosanitaria que supone la enfermedad para la sociedad; por tanto, desde el punto de vista del AIT, que en cuya evolución no se instala la secuela, a priori podría sugerir que no se trata de un enfoque particularmente valioso. Sin embargo, cabe destacar que aproximadamente el 20% de los ictus están precedidos por un AIT²³. Por consiguiente, el conocimiento de la prevalencia del AIT puede dar paso a ilustrar el impacto potencial de la salud pública en la prevención de un ictus, de una elevada carga socioeconómica, tras un AIT¹⁷. Siguiendo la estructura del apartado previo sobre incidencia, se hará mención a los estudios nacionales e internacionales sobre la prevalencia del AIT.

Estudios de prevalencia nacionales

El trabajo nacional que ha congregado un mayor número de individuos es el estudio NEDICES (*Neurologic Disorders in Central Spain*). Se incluyó a un total de 5.278 individuos que contaban con una edad mayor o igual a 65 años y que eran residentes de tres comunidades con realidades socioeconómicas distintas: Las Margaritas, barrio obrero de Getafe; Lista, barrio de clase profesional del centro de Madrid; y 28 aldeas de la zona rural de Arévalo (Ávila). Los autores observaron una tasa cruda de prevalencia edad-específica de 1,3% (IC 95%; 1,1-1,7), tasa que estandarizada a la población europea se mantiene en el 1,3% (IC 95%; 1,0-1,6). La prevalencia resultó mayor para el sexo masculino (1,4%) que para el sexo femenino (1,3%) en la globalidad del estudio; con una salvedad, y es que entre los 80-84 años se obtuvo un predominio para el sexo femenino (1,5% en comparación con el 1,1% de la población masculina). Esta diferencia se explica nuevamente por la mortalidad predominantemente masculina de la

Guerra Civil Española. También es destacable el incremento de la prevalencia con la edad. De modo que mientras que en los individuos de 65 a 69 años se obtuvo una prevalencia en tanto por ciento poblacional de 0,6 (IC 95%; 0,3-1,1), ésta alcanzó el 2,5% (IC 95%; 1,5-4,2) para la población mayor de 84 años. Por otro lado, se advirtió una prevalencia de enfermedad cerebrovascular (ECV) más elevada en el entorno obrero y más disminuida en el rural, pudiendo sugerir la influencia del estilo de vida⁷². En otra región de la geografía española, en el área de Alcoy, se presentó una tasa de prevalencia de 13 por 1.000 habitantes, calculada en una muestra de edad mayor o iagual a 20 años. En el mismo sentido que la publicación precedente, la tasa era mayor en el sexo masculino (16,6/1.000 versus 10,3/1.000) y se incrementaba con la edad⁶¹. Para completar el ámbito nacional, destacar un estudio llevado a cabo en un área rural de Girona, que cuantificó una prevalencia de 679 casos por 100.000 habitantes para una muestra de más de 69 años y cosechó el mayor diferencial entre el sexo masculino (prevalencia del 1,16%) y el femenino (0,37%), con una razón mujer/hombre de 1/3,2⁶³. Díaz-Guzmán y colaboradores destacaron que la región central de España es una zona de prevalencia media de ECV⁷².

Estudios de prevalencia internacionales

Johnston y colaboradores publicaron un estudio centrado en la evaluación de una muestra de la población estadounidense con el propósito de indagar sobre la prevalencia del AIT y sobre el conocimiento que tenía la población sobre la misma enfermedad sujeto de estudio. Se incluyeron a un total de 10.112 individuos de 18 años o más que, mediante la respuesta a una encuesta telefónica, permitieron averiguar que la prevalencia de individuos que habían sido diagnosticados de AIT era del 2,3% (IC 95%; 2,0-2,6). Tras proyectar esta cifra a la población de los EUA, se estimó que 4,9 millones de habitantes habían sido diagnosticados de AIT. Sin embargo, además de estos individuos, se identificó a otras 323 personas del estudio (3,2%, IC 95%; 2,9-3,6%) que reconocieron haber sufrido síntomas típicos del AIT y no haber recurrido a la atención médica. Sólo el 8,7% conocía la definición de AIT y el 8,6% pudo identificar una manifestación típica. El estudio constató que había un mayor desconocimiento del AIT entre los jóvenes adultos, aquellos con menores ingresos y nivel educativo, afroamericanos e hispanos¹⁷. Resulta incuestionable que esta falta de consciencia sobre la enfermedad puede distorsionar los resultados de los estudios epidemiológicos sobre el

AIT. En la mismo territorio se han publicado otros estudios de prevalencia que han dado a conocer unas cifras dispares. A principios de los años setenta se presentaron los datos recogidos en el Condado de Evans (Georgia, EUA) que pusieron de relevancia una prevalencia ajustada a la edad de 13,8/1.000. Además, destacaron que mientras los varones de la población blanca contaban con una prevalencia ajustada a la edad de 15,9/1.000, ésta descendía al 7,9/1.000 en el caso de los de la población afroamericana. En el supuesto de las mujeres sucedía un fenómeno similar pero con unos valores globalmente inferiores (11,5/1.000 versus 7,8/1.000). Los autores atribuyeron esta diferencia a que la población caucásica sufría una mayor patología arteriosclerótica en los vasos extracraneales. Es probable que el acceso al sistema sanitario también pudiera interferir en los resultados^{57,73}. El Condado de Evans está localizado en el llamado "Cinturón del ictus" (the Stroke Belt), que se caracteriza por una mayor incidencia de ictus⁷⁴. El Atherosclerosis Risk in Communities (ARIC) Study fue una investigación que incluyó a 12.205 individuos, entre los años 1987 a 1989. Dichos individuos eran oriundos de 4 comunidades de los EUA: Forsyth (Carolina del Norte), Jackson (Misisipi), suburbio de Minneapolis (Minnesota) y Condado de Washington (Maryland). La prevalencia global obtenida fue del 0,4%. Si bien, la población estudiada fue predominantemente joven, con edades entre los 45 y los 64 años de edad⁷⁵.

El viejo continente también ha centrado la atención en el estudio de la prevalencia del AIT. El grupo de Rotterdam estableció la prevalencia del AIT a partir del estudio de una muestra de la población mayores de 54 años del suburbio de Ommoord de Rotterdam. En este caso, distinguieron a los individuos que habían padecido, según definieron los mismos autores, un AIT típico de los que presentaron un ANT no específico. Obtuvieron una prevalencia de 1,6% (IC 95%; 1,4-1,9) para el primer supuesto y un 1,6% (IC 95%; 1,3-1,9) para el segundo. Por otro lado, expusieron un franco incremento de la prevalencia con la edad de la población, pasando de una prevalencia global de 1,9% para la franja de 55 a 64 años hasta el 5,1%, en el caso de los de 85 o más años. Nuevamente, el sexo masculino alcanzó una mayor prevalencia global de AIT típico (1,9% versus 1,4%). Sin embargo, este hallazgo se invierte para los habitantes de 85 o más años (1,9% versus 2,2%)²¹.

En la región de Pisa (Italia) se objetivaron unos valores de prevalencia sensiblemente más elevados, destacando una prevalencia global del 5,6%. Por sexos, el estudio señalaba una predominancia del sexo masculino para el que otorgaba una prevalencia

del 7,0%, en contraposición al 4,9% del femenino. En el mismo sentido que en los resultados del estudio holandés, se halló una relación positiva entre la edad y la prevalencia de AIT. Sin embargo, en el italiano se apostilló un descenso de la prevalencia en los individuos de la última franja de edad considerada (mayores de 89 años), hecho que se relacionó con el exceso en la tasa de mortalidad y deterioro cognitivo (el estudio siguió una metodología puerta a puerta, mediante una encuesta) de la población más anciana⁷⁶. En otra región italiana, en Florencia, se facilitó un cuestionario a una muestra de 8.626 individuos comprendidos entre los 40 y los 65 años. Como era de esperar la prevalencia resultó menor que la de sus compatriotas pisanos estudiados. En este caso se obtuvo una prevalencia del 0,66% (IC 95%; 4,8-8,9)⁷⁷.

Con una finalidad parcialmente distinta, el Reino Unido acogió un estudio multicéntrico de base poblacional que incluyó a individuos de 65 o más años con el objetivo de determinar la prevalencia de tres síntomas neurológicos transitorios comunes: debilidad de las extremidades, afasia y alteración de la visión. Se consideraron a 11.903 participantes, de los que el 12,8% de los varones y el 12,0% de las mujeres refirieron haber sufrido al menos uno de los síntomas expuestos⁷⁸.

Urakami y colaboradores determinaron la prevalencia del AIT en dos ciudades occidentales del archipiélago japonés, Daisen y Ama. La muestra considerada incluyó a individuos de más de 40 años y se cosechó una prevalencia sobre 100 habitantes de 0,44 en Daisen y de 0,20 en Ama⁷⁹.

Tras este repaso a los resultados procedentes de diferentes estudios nacionales e internaciones cabe considerar la heterogeneidad obtenida, en cuya explicación pueden contribuir diferencias en la selección de los pacientes, en la prevalencia de factores de riesgo y en los criterios de definición de AIT prevalente¹⁷.

Otra estadística que ha suscitado el interés científico y que ha avalado la consideración de que el AIT debe ser estimado como una urgencia médica, a pesar de lo autolimitado de su sintomatología, concierne al estudio de la prevalencia de AIT en pacientes que han padecido un ictus. Se ha identificado que entre los pacientes que han sufrido un ictus, la prevalencia de un AIT previo se sitúa en un amplio abanico comprendido entre el 7 y el 50%¹⁶. La distinta metodología de los estudios, así como las diferentes etiologías de los episodios isquémicos han participado en la obtención de unos valores tan dispares. El estudio de base poblacional *Northern Manhattan Stroke Study* puso en

relieve que la prevalencia de AIT entre aquellos individuos que habían presentado un ictus isquñemico ascendía al 8,7%⁸⁰. El OCSP, también de base poblacional, situó esta prevalencia en el 7%⁸¹. En cambio, el *Lausanne Stroke Registry* a partir de los registros del centro sanitario *Centre Hospitalier Universitaire Vaudois* obtuvo una prevalencia del 40%⁸². Otros estudios basados en datos hospitalarios, como son el *Harvard Stroke Registry*⁸³ y el banco de datos del *National Institute of Neurological Disorders* (NINDS)⁸⁴ calcularon una prevalencia del 50% entre aquellos que habían padecido un ictus de etiología aterotrombótica.

Tabla 2. Prevalencia del AIT (por 100 habitantes).

Estudio			Total (IC 95%)	Hombres (IC 95%)	Mujeres (IC 95%)
NEDICES			1,3	1,4	1,3
$(España)^{72}$			(1,1-1,7)	(1,0-2,0)	(0,9-1,7)
Alcoi			1,3	1,7	1,0
(España) ⁶¹			(0,9-1,8)	(0,9-2,4)	(0,7-1,3)
Girona (España) ⁶³			0,7	1,1	0,4
Rotterdam			1,6	1,9	1,4
(Países Bajos) ²¹			(1,3-1,9)	(1,4-2,4)	(1,1-1,7)
Pisa (Italia) ⁷⁶			5,6	7,0	4,9
Florencia			0,7	0,4	0,9
(Italia) ⁷⁷			(0,5-0,9)	(0,2-0,7)	(0,6-1,2)
EUA ¹⁷		2,3	2,0	2,6	
Condado de Evans (EUA) ⁷³	AFA		0,8	0,8	0,8
	C		1,3	1,5	1,1
	Global		1,1	1,3	1,0
ARIC Study (EUA) ⁷⁵	AFA -	Jackson	0,3	0,2	0,3
		Forsyth County	0,6	0,4	0,8
	С	Forsyth County	0,4	0,3	0,6
		Minneapolis	0,4	0,3	0,5
		Washington County	0,5	0,5	0,6
	Global		0,4	0,3	0,5
Japón ⁷⁹	Daisen		0,4	0,6	0,2
	Ama		0,2	0,5	0

AFA: Población afroamericana. C: Población caucásica.

A tenor de los datos expuestos se puede concluir que estamos frente a un problema sanitario de primer orden que justifica el desarrollo de investigaciones que permitan esclarecer todas las ramificaciones del AIT, desde un punto de vista etiológico, diagnóstico, de manejo, terapéutico, pronóstico o preventivo.

2.3. Factores de riesgo

A diferencia del ictus isquémico, en la bibliografía no abundan los estudios centrados en la determinación específica de los factores de riesgo (FR) del AIT. La fisiopatología del AIT y del ictus isquémico es equivalente salvo por la duración de los síntomas. No debe sorprender que exista un consenso en considerar que los FR entre ambas entidades patológicas son similares¹⁷. Sin embargo, una de las notables singularidades del AIT es que se comporta como uno de los FR más destacados para sufrir un ictus isquémico. A diferencia de los FR crónicos de la ECV (Tabla 3), el AIT tiene la peculiaridad de que el mayor riesgo de ictus isquémico se enmarca poco tiempo después del episodio transitorio⁸⁰.

Tabla 3. Factores de riesgo.

Sexo Ritmo circadiano DM Obest Raza Causas hereditarias Procesos infecciosos Dieta Talla Dislipemia Activ	Modificables		
Raza Causas hereditarias Procesos infecciosos Dieta Talla Dislipemia Activ	Alcohol		
Talla Dislipemia Activ	Obesidad		
<u>.</u>	Dieta		
Cardiopatías Homo	Actividad física		
	Homocisteinemia		
Tabaquismo			

HTA, hipertensión arterial; DM, diabetes mellitus

2.3.1 Factores de riesgo no modificables

Edad

La edad es el FR de riesgo no modificable más importante asociado a ictus isquémico⁸⁵. Los diferentes estudios epidemiológicos destacan sin lugar a dudas la relación positiva existente entre la edad y el AIT⁶⁵. Sin embargo, se vislumbra un leve descenso para el grupo de mayor edad, los mayores de 85-90 años. El exceso de mortalidad o la subestimación del AIT en los sujetos de mayor edad pueden estar implicados en este cambio de tendencia^{64,76}.

Sexo

Los estudios epidemiológicos muestran que el sexo masculino concentra una mayor incidencia no solamente de AIT⁶⁰, sino también de la enfermedad cerebrovascular (ECV)⁸⁶. También se han expuesto diferencias de sexos en cuanto a los subtipos etiológicos, destacando una mayor tasa de ateromatosis de gran vaso (AGV) entre los varones que han sufrido un ictus isquémico⁸⁷; y en la temporalidad de aparición del AIT. En cambio, en menores de 35 años, como demuestra el *Greater Cincinnati/Northern Kentucky Stroke Study* (GCNKSS), hay un predominio femenino⁸⁸.

Raza

Las distintas razas presentan una susceptibilidad diferente para desarrollar una ECV. Kleindorfer y colaboradores resaltaron una predominancia de la población negra sobre la blanca en la publicación de los resultados del GCNKSS⁸⁸. Específicamente, obtuvieron una tasa de incidencia por 1.000 habitantes de 1,07 para los varones negros (IC 95%; 0,79-1,34) y de 1,00 para los blancos (IC 95%; 0,91-1,10); en el caso de la población femenina la tasa ascendió a 0,92 (IC 95%; 0,72-1,12) y a 0,67 (IC 95%; 0,61-0,73), respectivamente. Esta disimilitud puede estar influenciada por una mayor incidencia en la globalidad de la población negra de hipertensión y diabetes⁸⁹. También se ha reparado en la existencia de diferencias raciales en la patología arterial intracraneal⁹⁰. En este sentido, destaca la población asiática, particularmente la japonesa⁷⁹ y la china⁹¹. Paralelamente, se destaca el estudio *Northern Manhattan Stroke* Study (NOMASS), que glosó la incidencia de ictus isquémico en una área de la ciudad de Nueva York (EUA). El estudio, que excluyó a los pacientes que habían presentado un AIT, puso de manifiesto que los negros y los hispanos contaban con una incidencia superior de ictus isquémico respecto a la población blanca: 2,23; 1,96 y 0,93 por 1.000 respectivamente⁹².

Talla

Una cohorte de más de 10.000 varones y seguidos durante más de 20 años permitió observar que la altura de los individuos guarda una relación inversamente proporcional

con la incidencia de ictus isquémico fatal a largo plazo. Probablemente este resultado traduzca la intervención de diversos factores, tales como la genética o la nutrición⁹³.

Genética

Existe la evidencia que una historia positiva para enfermedad vascular en los progenitores es un FR independiente de ictus isquémico, más allá de otros factores de riesgo. Concretamente se le ha atribuido un riesgo relativo (RR) de 1,89 (p = 0,004) en el caso de los hombres y de 1,80 (p = 0,007) para las mujeres⁹⁴. De hecho, se ha apuntado a que el 42% de los pacientes con isquemia cerebral tienen un antecedente familiar⁸⁶. Por otro lado, se están realizando avances dirigidos a una mayor comprensión de las bases genéticas del ictus isquémico⁹⁵. Uno de los avances que están llamados a liderar este conocimiento es la genómica⁹⁶. Un meta-análisis que evaluó a 187 polimorfismos genéticos identificó a 5 genes que se asociaban a una susceptibilidad de ictus isquémico. Éstos fueron: factor V de Leiden (Arg506Gln; OR 1,31), enzima convertidora de angiotensina (I/D; OR 1,15), metilentetrahidrofolato reductasa (C677T; OR 1,26), protrombina (G20210A; OR1,60), inhibidor del activador del plasminógeno (5G; OR 1,11), y glicoptroteína IIIa (Leu33Pro; OR 1,24)97. Una publicación islandesa reconoció a la fosfodiesterasa 4D⁹⁸, hallazgo que no se ha podido replicar⁹⁶. Análisis posteriores han intentado identificar los genes atendiendo a los subgrupos etiológicos de ictus isquémico. Se halló que los genes PITX2 y ZFHX3 se asociaban a ictus isquémico cardioembólico, mientras que el locus 9p21 y el HDAC9 eran más sugerentes de ictus isquémico en relación a aterosclerosis de gran vaso (AGV)⁹⁹. La asociación de PITX2, ZFHX3 y HDAC9 fue validada en un meta-análisis posterior¹⁰⁰. El ictus isquémico en relación a la enfermedad de pequeño vaso se ha relacionado con el gen PRKCH¹⁰¹.

Ritmo circadiano

Un metaanálisis que consideró los datos provenientes de 31 publicaciones concluyó que el ictus isquémico sigue un ritmo circadiano marcado por un mayor riesgo matutino, entre las 6 horas de las mañana y el mediodía¹⁰². Investigaciones de corte similar en el AIT resultan complejas puesto que un 44,4% de los pacientes consultarán a partir del día siguiente. No obstante, la duración de los síntomas o la afectación motora pueden

condicionar que se acuda antes al centro sanitario¹⁰³. La percepción de benignidad del AIT motiva un leve descenso de la su incidencia los fines de semana⁹.

Estados protrombóticos

Distintos estudios observacionales no han constatado una fuerte relación entre las trombofilias hereditarias y el ictus isquémico acontecido en la edad adulta¹⁰⁴. Sin embargo, la situación difiere en pacientes jóvenes. Una publicación que evaluó a 100 pacientes menores de 55 años diagnosticados de ictus isquémico o AIT halló que un 46% presentaban estados de hipercoagulabilidad¹⁰⁵. Dentro de dichos estados identificaron casos de hiperhomocisteinemia adquirida o por mutación del gen metiltetrahidrofolato reductasa, déficit de la proteína S, déficit de la proteína C, mutación del factor V de Leiden, mutación G2120A del gen de la protrombina, o síndrome antifosfolípido. En el caso de la población infantil, se ha destacado el papel que constituyen las distintas trombofilias como FR tanto de ictus isquémico como de trombosis de los senos venosos cerebrales¹⁰⁶.

2.3.2. Factores de riesgo modificables

Hipertensión arterial

La presión arterial (PA) normal es aquella determinada por una PA sistólica (PAS) menor a 120 mmHg y una PA diastólica (PAD) inferior a 80 mmHg. La hipertensión arterial (HTA) está caracterizada por unas cifras de PAS \geq 140 mmHg o de PAD \geq 90 mmHg. Los valores que se hallan entre ambas situaciones (PAS entre 120-139 mmHg o PAD entre 80-89 mmHg) señalan el llamado estado prehipertensivo¹⁰⁷.

La HTA es el principal FR modificable para sufrir un ictus isquémico. Se le atribuye un RR ajustado a la edad de 3¹⁰⁸. Sin embargo, la potencia de la asociación entre la PA y el ictus isquémico se mitiga con el incremento de la edad. A pesar que la HTA continua siendo un FR en la senectud, unos valores bajos de PA pueden desencadenar una situación de hipoperfusión cerebral que ocasione un evento cerebrovascular isquémico en este grupo potencial de pacientes¹⁰⁹. En un sentido similar, el tratamiento agresivo de

la HTA en los pacientes diagnosticados de una estenosis grave u oclusión de arteria carótida podría resultar perjudicial¹¹⁰. En un contexto general, existe el consenso que el riesgo de ictus isquémico aumenta proporcionalmente con el incremento de la PA¹⁰⁸. La HTA también se ha relacionado con un incremento de la mortalidad de causa vascular en general, y de ictus en particular. Se computó que entre los 40-69 años de edad cada diferencia de 20 mmHg en la PAS usual o de 10 mmHg en la PAD usual supone duplicar la tasa de mortalidad de ictus isquémico¹¹¹. El control adecuado de la HTA es uno de los caballos de batalla en vistas a reducir el riesgo de ictus isquémico⁸⁵.

Diabetes mellitus

La diabetes mellitus (DM) es una enfermedad metabólica caracterizada por hiperglucemia constatada por la detección de unas cifras de glucemia ≥ 126 mg/dL (ó 7.0 mmol/L), tras un periodo sin ingesta calórica durante al menos 8 horas. La determinación de una glucemia $\geq 200 \text{ mg/dL}$ (ó 11.1 mmol/L) en el seno de una prueba de tolerancia oral a la glucosa o de unos valores de hemoglobina glicosilada ≥ 6.5% también son diagnósticos¹¹². Una investigación centrada en la DM tipo 2 y que incluyó a más de 7.600 varones vertió un RR de ictus isquémico de 2,27 (IC 95%; 1,23-4,20). Tras ajustar los datos a la PA, la DM continuaba doblando el riesgo de padecer un ictus isquémico (2,07, IC 95%; 1,44-2,98)¹¹³. Otros estudios han obtenido una cifras mayores. Con datos del registro GCNKSS, en el año 2013 se publicó que la DM implicaba un incremento del riesgo de padecer un ictus isquémico de 3 a 4 veces mayor en comparación a los individuos sin DM114. La DM se ha relacionado con una afectación de gran y pequeño vaso⁸⁶. Por lo que respecta a la mortalidad, la hiperglucemia se ha asociado a un incremento de ictus isquémico catastrófico, a un peor pronóstico y a mortalidad asociada a ictus isquémico¹¹⁴. Sin embargo, a pesar que el tratamiento específico contra la DM reduce el riesgo de complicaciones microvasculares e interrumpe la progresión del grosor íntima-media (GIM)¹¹⁵, no interviene en la incidencia de eventos macrovasculares, tales como el ictus isquémico¹¹⁶.

Dislipemias y aterosclerosis

El término dislipemia hace referencia a las anomalías de los lípidos sanguíneos, es decir del colesterol (CL) total, lipoproteínas de baja densidad (LDL), lipoproteínas de alta densidad (HDL), o triglicéridos (TG)⁸⁶. Unos valores elevados de CL, LDL y TG se han vinculado a la afección vascular y, especialmente, a la enfermedad coronaria. En contraposición a la HDL, de la que se ha destacado su relación inversa¹¹⁷. La tercera revisión del *National Cholesterol Education Program* consensuó los valores ideales de todos ellos. Indicó que los niveles óptimos para el CL total, LDL y TG son < 200, < 100 y < 150 mg/dL, respectivamente. En el caso concreto de la HDL, se determinó que unas cifras < 40 mg/dL son más bajas de lo deseable¹¹⁸. En sentido contrario, se ha apuntado a que unos niveles disminuidos de CL se relacionan con un incremento del riesgo de ictus hemorrágicos¹¹⁹.

La hipercolesterolemia, y particularmente un valor elevado de LDL, configuran un elemento imprescindible para el desarrollo ulterior de aterosclerosis. Se ha observado que un LDL por encima de 100 mg/dL resulta aterogénico¹¹⁸. La expresividad de la enfermedad aterosclérotica es amplia y se ha enlazado como una de las principales causas de ictus isquémico y de AIT. Se estima que en el 25% de los casos están implicados mecanismos trombóticos o complicaciones embólicas de la placa de ateroma de las arterias de gran o de medio calibre¹²⁰. Una estenosis del 60 al 99% de la arteria carótida implica un riesgo anual de ictus isquémico del 3,2%¹²¹. La estenosis de carótida sintomática es una de los principales factores de recurrencia. Precisamente, se considera que triplica el riesgo de una recurrencia temprana en forma de ictus isquémico. No sólo la presencia de la placa, sino las características de la misma también suponen un mayor riesgo de recurrencia¹²². La aterosclerosis en los vasos arteriales intracraneales conlleva igualmente un mayor riesgo de ECV de perfil isquémico, dado que acarrea un riesgo de recurrencia de ictus isquémico de entre el 13,7% y el 15% 123,124. El riesgo de AIT sería incluso mayor¹²³. También se ha destacado el papel de la presencia de las placas aterosclerosis de un grueso de \geq 4 mm en el cayado aórtico¹²⁵. La evaluación mediante ultrasonidos ha destacado el cálculo del GIM como un marcador de aterosclerosis, así como de enfermedad cardiovascular futura¹²⁶.

Cardiopatías

El conjunto de cardiopatías suponen la segunda causa de la ECV⁸⁶. Más específicamente, la etiología cardioembólica recoge el 20% de los AIT². En este grupo de pacientes, la mitad cuentan con una historia de fibrilación auricular (FA), un 25% de valvulopatía y un tercio de trombo mural a nivel del ventrículo izquierdo¹²⁷. Las guías publicadas por la AHA/ASA tanto de prevención primaria¹²⁸ como secundaria¹²⁷ destacan las principales enfermedades cardíacas relacionadas con el ictus isquémico y, por ende, con el AIT. Se ha resaltado que los ictus isquémicos criptogénicos, aquellos que tras un estudio exhaustivo no se ha podido evidenciar su etiología, presentan frecuentemente características embólicas sugerentes de un origen cardíaco¹²⁸.

1. Fibrilación auricular:

El riesgo anual de ictus isquémico en pacientes con FA sin alteración valvular asciende al 3-5%. Aproximadamente dos tercios de los pacientes con FA que sufren un ictus isquémico responden a una causa cardioembólica⁸⁵. Explicado de otro modo, un individuo con FA sin enfermedad valvular tiene un riesgo de 4 a 5 veces superior de padecer un ictus isquémico, riesgo que se incrementa con la edad. La FA implica un ritmo cardíaco desordenado que conlleva la formación de trombos inducidos por el estasis de sangre en la aurícula izquierda¹²⁹. El riesgo de ictus isquémico en un paciente con FA es incluso mayor si se asocia a una de las siguientes manifestaciones: edad, insuficiencia cardíaca congestiva, HTA, DM, tromboembolismo previo, disfunción del ventrículo izquierdo, tamaño de la aurícula izquierda, calcificación del anillo mitral, o el hallazgo de un trombo en la aurícula izquierda¹²⁷. La FA paroxística conlleva un riesgo de ictus isquémico similar a la FA persistente. Por otro lado, no hay evidencia que la cardioversión reduzca ese riesgo¹³⁰. El llamado *CHADS2 score* es una escala validada que ha permitido estratificar el riesgo de ictus isquémico en los pacientes diagnosticados de FA. Esta escala puntúa 1 punto por la presencia de cada uno de los siguientes: insuficiencia cardíaca congestiva, HTA, edad ≥ 75 años y DM; y 2 puntos si hay antecedentes de ictus isquémico o AIT. Un resultado en el CHADS2 score de 0 confiere un riesgo de 0,5%, mientras que es \geq 15% en el caso de una puntución de 6^{131} . A tenor del incremento de la FA con la edad y de los riesgos que implica, se recomienda realizar un cribado de FA a los individuos mayores de 65 años mediante la práctica de electrocardiografía 128.

Una publicación que evaluó a más de 3.500 pacientes que habían sufrido un ictus isquémico determinó que el sexo femenino, una edad \geq 80 años, tener antecedentes de enfermedad coronaria y enfermedad vascular periférica eran más frecuentes en el grupo de pacientes con FA¹³².

2. Infarto agudo de miocardio:

El infarto agudo de miocardio (IAM) actúa como FR de ictus isquémico habida cuenta de que puede conducir a la formación de trombos intracardíacos, con la consiguiente potencialidad de cardioembolismo, o a una hipoperfusión. El mayor riesgo de cardioembolismo se establece en las primeras 2-4 semanas posteriores al IAM⁸⁶.

3. Cardiomiopatía:

Se ha constatado que el riesgo de ictus isquémico incrementa con el descenso de la fracción de eyección del ventrículo izquierdo, dada una mayor tendencia a la embolia cardíaca. Aproximadamente el 10% de los pacientes con han sufrido un ictus isquémico presentan una fracción de eyección $\leq 30\%^{133}$.

4. Valvulopatía nativa:

La estenosis de la válvula mitral es la valvulopatía más embolígena, asociada a la FA⁸⁶. La valvulopatía mitral reumática se caracteriza por un elevado porcentaje de embolismos recurrentes, valor que puede alcanzar el 30-65% de los pacientes. Cabe destacar que, en el contexto de enfermedad reumática mitral, la valvuloplastia no elimina el riesgo tromboembólico¹²⁷. La consideración del prolapso de la válvula mitral como FR de fenómenos cardioembólicos ha generado controversia¹³⁴. También se ha orientado el papel de la calcificación del anillo mitral en la predisposición a sufrir un ictus isquémico, aunque con reservas. Se ha sugerido que la calcificación del anillo mitral conlleva a estenosis mitral o embolizaciones de material fibrocalcificado¹²⁷.

5. Valvulopatía protésica:

Las protesis valvulares están asociadas con fenómenos tromboembólicos y con endocarditis. Esta situación genera un riesgo de embolismo anual de 1-2%, a pesar de la ingesta de anticoagulación¹³⁵. Las prótesis de material biológico generan una tasa menor de tromboembolismo que las de estructura metálica¹³⁶.

6. Otras afecciones cardíacas:

Determinadas alteraciones cardíacas congénitas, como son el foramen oval permeable (FOP), una comunicación interauricular, o un aneurisma en el septo

atrial, se han relacionado con ictus isquémico particularmente en individuos jóvenes¹²⁸. Sin embargo, todavía existe cierta polémica para determinar el riesgo de ictus isquémico que implica el FOP. Un metaánalisis reciente concluía expresando la divergencia entre los estudios de casos - controles y los de cohortes¹³⁷. Así, mientras los primeros manifestaban una potente asociación entre el FOP y los ictus isquémicos criptogénicos (*odds ratio* -OR-: 2,94; p < 0.001), los segundos ponían en tela de juicio una asociación estadísticamente significativa (RR: 1,28; p = 0,119). La presencia de tumores cardíacos supone una causa poco frecuente de eventos embólicos¹³⁸.

Tabaquismo

El tabaquismo es un FR independiente de ictus isquémico. Se ha cuantificado que la población fumadora tiene un RR para sufrir un ictus isquémico de 1,9 (IC 95%; 1,7-2,2), respecto a la población no fumadora¹³⁹. Su actuación perjudicial, que sigue una relación dosis-respuesta, promociona el desarrollo de la aterosclerosis y promueve un estado procoagulante¹⁴⁰. Respecto a la diferencia de su influencia por sexos, el metaanálisis publicado por Peters y colaboradores concluyó que el tabaquismo condiciona un riesgo similar a mujeres y a hombres¹⁴¹. Esta similitud de riesgo contrasta con la enfermedad coronaria, donde se ha expuesto que el riesgo es mayor para el sexo femenino que para el masculino. El tabaquismo, además, potencia los efectos de otros FR de ictus isquémico, tales como la PA o los anticonceptivos orales¹²⁸. Pero no solamente el individuo que fuma está sujeto a un mayor riesgo de padecer un ictus isquémico, también la exhibición misma a un ambiente fumador (el conocido como "fumador pasivo")¹⁴². A pesar que la mejor medida preventiva es no fumar nunca y minimizar la exposición ambiental al tabaco¹²⁸, se ha observado que el riesgo de ictus isquémico desciende significativamente a los dos años del abandono del hábito tabáquico y que se asemeja al de los no fumadores a los 5 años¹⁴³. Los beneficios del cese del tabaquismo también son comparables en ambos sexos¹⁴¹.

Alcohol

Existe el consenso de que el consumo excesivo de alcohol es un FR para todos los tipos de ictus¹⁰⁴. Sendas revisiones sistemáticas de múltiples estudios concluyen que se

2. Introducción 2.3. Factores de riesgo

establece una relación en forma de "J" entre el alcohol ingerido y el riesgo de sufrir un ictus isquémico 144,145. De modo que mientras unos consumos mayores de 60 g de alcohol por día implican un incremento del RR de ictus isquémico (1,69, IC 95%; 1,34-2,15), un consumo bajo (menor de 12 g/d) o moderado (12-24 g/d) se han asociado a reducción de ese RR en comparación con la abstención: 0,80 (IC 95%; 0,67-0,96) y 0,72 (IC 95%; 0,57-0,91), respectivamente 144. Estos resultados se diferencian de los obtenidos en el caso de ictus hemorrágico, que se rige por una relación dosis-respuesta lineal 145. Más allá de la ingesta habitual, se ha señalado que el llamado consumo de "borrachera" o la toma episódica de gran cantidad de alcohol puede desencadenar un embolismo cerebral de origen cardiaco 146. A pesar de lo descrito, en la actualidad no se hallan publicaciones suficientes que avalen la asociación entre el consumo de alcohol y el ictus isquémico recurrente 104.

Obesidad

La obesidad se está convirtiendo en una de las condiciones más prevalentes de las sociedades actuales¹⁴⁷. Datos procedentes del estudio NOMASS arrojaron que la obesidad abdominal, definida como un índice cintura/cadera elevado, es un FR de riesgo independiente de ictus isquémico en todos los grupos raciales¹⁴⁸. En un mismo sentido, Winter y colaboradores publicaron un estudio de casos-controles que puso de manifiesto la utilidad del índice cintura/cadera, no solamente para el ictus isquémico, sino como valor predictivo de AIT en ambos sexos, por encima de otros marcadores de obesidad tales como el índice de masa corporal¹⁴⁹. Otras investigaciones han hallado diferencias por sexos, obteniendo que el índice cintura/cadera solamente es un marcador de riesgo para varones¹⁵⁰. Se ha puntualizado, que si bien la medida de la circunferencia abdominal es un indicador de obesidad abdominal, no es un buen predictor de ictus isquémico¹⁴⁸. El síndrome metabólico constituye una agrupación de FR que promueven la enfermedad aterosclerótica y, por ende, la enfermedad cardiovascular¹⁵¹ y cerebrovascular¹⁵². En el síndrome metabólico confluyen la intolerancia a la glucosa, resistencia a la insulina, obesidad central, hipertensión y dislipemia¹⁵³.

Dieta

La guía más actualizada de la SEN sobre el tratamiento preventivo del ictus isquémico y el AIT enfatiza la importancia de la dieta en el riesgo cerebrovascular¹⁰⁴. En este sentido, recoge que un consumo habitual de pescado, legumbres, fibra, frutas y vegetales se relaciona con una reducción del riesgo de ECV; a diferencia de la ingesta de sal y grasas. Sin embargo, también se ha sugerido que establecer una relación entre los elementos de una dieta y el riesgo de enfermedad vascular es difícil puesto que los datos observacionales están sujetos a sesgos¹³¹. Se ha discutido sobre el papel que podrían tener los ácidos grasos poliinsaturados omega-3, con resultados inconsistentes¹⁵⁴. Por otro lado, se ha apuntado a que la ingesta de magnesio guarda una relación inversa con el ictus isquémico¹⁵⁵. Resultados similares han sido obtenidos con el potasio¹⁵⁶. El estudio PREDIMED (Prevención con Dieta Mediterránea) fue un ensayo clínico randomizado para probar la eficacia de dos dietas mediterráneas (una suplementada con aceite de oliva virgen extra y la otra con una mezcla de frutos secos nueces, avellanas y almendras-) en comparación con una dieta control (con consejos sobre una dieta baja en grasas) en la prevención primaria de enfermedad cardiovascular. Se incluyeron a más de 7.440 pacientes que fueron seguidos durante una media de 4,8 años. El estudio PREDIMED concluyó que los individuos asignados a la dieta mediterránea (suplementada con aceite de oliva virgen extra o frutos secos) sufrieron una menor tasa de eventos cardiovasculares mayores (infarto de miocardio, ictus y fallecimiento de causa cardiovascular) que los que siguieron la dieta control. Concretamente, las tasas de incidencia por 1.000 personas-año fueron de 8,1 (IC 95%; 6,6-9,9) en el grupo de dieta mediterránea suplementada con aceite de oliva virgen extra, 8,0 (IC 95%; 6,4-9,9) en el grupo de dieta mediterránea suplementada con frutos secos y de 11,2 (IC 95%; 9,2-13,5) en el grupo que siguió la dieta control. El riesgo absoluto a los 5 años resultó de 3,6% (IC 95%; 2,8-4,5), 4,0% (IC 95%; 3,1-5,0) y de 5,7% (IC 95%; 4,6-6,9), respectivamente¹⁵⁷.

Actividad física

Sendos metaanálisis concluyen que mantener una moderada o elevada actividad física está asociado a una reducción del riesgo de ictus isquémico¹⁵⁸. Esta relación está mediada por la reducción de la PA, de la viscosidad de la sangre, de las concentraciones

de fibrinógeno, de la agregabilidad plaquetaria, así como de la obtención de un perfil lipídico más óptimo¹⁵⁹. Se recomiendan 30 minutos de ejercicio moderadamente intenso la mayoría de los días de la semana¹⁰⁴.

Procesos infecciosos

Los procesos infeccioso preceden hasta un tercio de los casos de ictus isquémico¹⁶⁰. Piñol-Ripoll y colaboradores establecieron que la bronquitis crónica y el desarrollo de una infección aguda durante los dos meses previos son FR para el desarrollo ulterior de ictus isquémico. Los mecanismos que justifican esta relación pasan por fenómenos de trombosis, daño de la pared arterial y aterosclerosis, alteraciones en el marco del mecanismo de coagulación, cambios en la tolerancia de la glucosa o en el perfil lipídico durante la infección¹⁶¹. Una publicación posterior también destaca la bronquitis crónica y las enfermedades gripales como FR de ictus isquémico y de AIT. Otros estudios han incidido en la periodontitis¹⁶² y las infecciones crónicas por *Helicobacter pylori*¹⁶³, *Chlamydia pneumoniae*¹⁶⁴ o citomegalovirus¹⁶⁵.

Homocisteinemia

La asociación de la homocisteína con el ictus isquémico ha despertado la curiosidad de la comunidad científica tal y como demuestra el número de trabajos publicados al respecto. Un metaanálisis, realizado a partir de estudios observacionales, avaló que unos niveles elevados de homocisteína en sangre suponen un FR de ictus isquémico¹⁶⁶. Esta asociación ha motivado que se investigara sobre la eficacia de la disminución de la homocisteína con la administración de suplementos de ácido fólico o vitaminas del grupo B, con unos resultados dispares. Los estudios clínicos *Vitamin Intervention for Stroke Prevention* (VISP)¹⁶⁷ o el *Vitamins to Prevent Stroke*¹⁶⁸ concluyeron que la toma de los suplementos vitamínicos no reducen el riesgo de recurrencia de ictus isquémico. El *Norwegian Vitamin Trial* observó que tampoco disminuían el riesgo de recurrencia de enfermedad cardiovascular tras un IAM¹⁶⁹. Sin embargo, una reciente publicación que realizó análisis por subgrupos del ensayo VISP constató que los suplementos vitamínicos podrían resultar beneficiosos en la población anciana¹⁷⁰. Asimismo, una revisión puso de manifiesto una reducción del 18% del riesgo de ictus isquémico con el uso de suplementos de ácido fólico¹⁷¹.

2.3.3. Otros factores de riesgo

Existen otros FR que se han sido involucrados en el ictus isquémico. La migraña se considera un factor de riesgo independiente de ictus isquémico¹⁷². Un artículo de revisión sistemática evidenció un incremento significativo de ictus isquémico en los pacientes migrañosos en comparación con la población no migrañosa (OR de 2,04; IC 95%; 1,72-2,43)¹⁷³. También se ha indicado que presentan un mayor riesgo de AIT (RR 2,4; IC 95%; 1,8-3,3)¹⁷⁴. También, se ha discurrido sobre el riesgo del síndrome de la apnea obstructiva del sueño, concluyendo que es un FR independiente de ictus isquémico¹⁷⁵.

Desde un punto de vista socioeconómico se ha observado que el AIT es más frecuente entre individuos con menores ingresos económicos y entre aquellos con han seguido menos años en el sistema educativo¹⁷.

2.3.4. Factores de riesgo diferenciales entre el ictus isquémico y el ataque isquémico transitorio

El trabajo de Whisnant y colaboradores comparó los FR de pacientes que habían sufrido un AIT con otro grupo que había sido diagnosticado de ictus isquémico. Observó que la enfermedad coronaria isquémica, la FA, la HTA, la DM y el tabaquismo constituían FR tanto de AIT como de ictus isquémico. Sin embargo, la valvulopatía mitral mostró una asociación negativa con el AIT (OR 0,4; IC 95%; 0,2-0,9) pero se destacó como un FR (OR 2,2; IC 95%; 1,3-3,8)¹⁷⁶. Daffertshofer v predictivo de ictus isquémico colaboradores compararon a 1.380 pacientes que habían presentado un AIT con 3.855 que habían sufrido un ictus isquémico. El sexo, antecedentes de AIT o ictus y HTA resultaron similares. No obstante, factores como la edad, DM, FA, deterioro del nivel de consciencia, paresia, trastornos del lenguaje arrojaron unas diferencias estadísticamente significativas entre los dos grupos¹⁷⁷. Arboix y colaboradores compararon el perfil de los FR de 239 pacientes que habían sufrido un AIT y de 1.473 pacientes diagnosticados de ictus isquémico. Observaron que los principales FR comunes en ambas entidades fueron: la HTA, la dislipemia, la DM y la FA. No obstante, el análisis multivariante determinó que el antecedente de ictus isquémico (OR 1,65; IC 95%; 1,07-2,56) y la FA (OR 1,60; IC 95%; 1,14-2,26) resultaron significativamente más frecuentes en el ictus isquémico que en el AIT¹⁷⁸.

2.3.5. El ataque isquémico transitorio como factor de riesgo

Entre los años 1997 y 2003 se realizaron sendos estudios que cuantificaron el riesgo de ictus isquémico o de síndrome coronario agudo entre el 12 y el 20% durante los 3 primeros meses tras un AIT o ictus isquémico menor^{179,180}. Con el fin de actualizar estos datos surgió The TIAregistry.org project, con consiste en un registro internacional, prospectivo y observacional de pacientes que han sufrido un AIT o un ictus isquémico menor y que cuentan con un seguimiento durante 5 años. Un primer artículo que evaluó el riesgo al año del suceso inicial incluyó a más de 4.700 pacientes. Observó que, a diferencia de los estudios históricos previos, el riesgo de sufrir una recurrencia en forma de ictus isquémico (RI) y AIT era del 5,1% y del 7,4%, respectivamente. Acotando el periodo de observación, se obtuvo que las RI afectaron al 1,5% a los 2 días del episodio inicial, 2,1% a los 7 días, 2,8% a los 30 días, y al mencionado 5,1% al cabo del primer año. El resultado principal del estudio estaba condicionado por la variable eventos cardiovasculares mayores, compuesta por fallecimiento de causa cardiovascular, ictus no fatal (isquémico o hemorrágico), y síndrome coronario agudo no fatal. El 6,2% de los pacientes presentaron un evento cardiovascular mayor. La disminución de la tasa de recurrencia respecto los estudios previos se atribuyó a una mejor y más rápida implementación de las estrategias de prevención secundaria (antiagregación, anticoagulación en el caso de FA, revascularización urgente en el caso de estenosis crítica de la arteria carótida, uso de estatinas y de tratamientos antihipertensivos)¹⁸¹. Dos años más tarde se publicó el seguimiento a los 5 años. En este trabajo se incluyeron a más de 3.800 pacientes. Tras este periodo, la RI y de AIT resultó del 9,5% y del 8,3%, respectivamente. El 6,4% de los pacientes sufrieron un evento cardiovascular mayor entre el segundo y el quinto año de seguimiento. Por tanto, el riesgo de recurrencia cardiovascular se mantiene a lo largo de los primeros 5 años¹⁸².

Valls y colaboradores publicaron un metaanálisis para establecer el riesgo de temprano de RI en aquellos pacientes que habían sufrido un AIT y habían recibido un manejo urgente. Se incluyeron 15 estudios, que entre otros también consideraron los datos

2. Introducción 2.3. Factores de riesgo

procedentes *The TIAregistry.org project*, que englobaban a un total de 14.889 pacientes. El riesgo de RI fue de 3,42% (IC 95%; 3,14-3,74) a los 90 días, de 2,78% (IC 95%; 2,47-3,12) a los 30 días, de 2,06% (IC 95%; 1,83-2,33) a los 7 días y de 1,36% (IC 95%; 1,15-1,59) a los 2 días. También se concluyó que el riesgo de RI actual es menor que en los estudios precedentes con un manejo del AIT más conservador¹⁸³.

2.4. Fisiopatología de la isquemia cerebral

La investigación en el campo de los biomarcadores en el AIT obliga a hacer hincapié en los sucesos que acontecen a nivel celular cuando se produce una isquemia. Uno de las problemas que subyace cuando se investigan determinados aspectos del AIT es la inherente dificultad de estudiar un fenómeno que generalmente se habrá resuelto antes de que se produzca la ocasión de observarlo¹⁸⁴. Sin embargo, el AIT y el ictus isquémico comparten los mecanismos fisiopatológicos que suceden tras someter el tejido nervioso a un proceso isquémico¹⁸⁵. El AIT y el ictus isquémico representan estaciones distintas dentro del espectro continuo que determina la afectación isquémica¹⁸⁶.

El cerebro está dotado de mecanismos anatómicos y funcionales que tienen la finalidad de protegerlo ante las deficiencias del flujo sanguíneo. A este supuesto contribuyen de un modo esencial el polígono de Willis y las anastomosis leptomeníngeas de Heubner¹⁸⁷. El polígono de Willis es una estructura anatómica vascular que se localiza en la base del cráneo y que está compuesto por las porciones terminales de ambas arterias (a.) carótidas internas, los segmentos A1 de ambas a. cerebrales anteriores, a. comunicante anterior, los segmentos P1 de ambas a. cerebrales posteriores, a. comunicantes posteriores y por el extremo del tronco basilar. El heptágono vascular resultante es el encargado de conectar la circulación anterior y posterior. Sin embargo, abunda una gran variabilidad anatómica que condiciona que hasta el 75% de los individuos tengan segmentos hipoplásicos o ausentes. Las anastomosis leptomeníngeas de Heubner comunican las ramas arteriales corticales distales¹⁸⁸. Por otro lado, la dilatación de los vasos de resistencia proporciona un mecanismo fisiológico compensatorio frente a la reducción del aporte sanguíneo. Por tanto, se constituye una red vascular cuya finalidad es la de salvaguardar el aporte sanguíneo. El daño isquémico se origina cuando se colman los elementos vasculares compensatorios. Desde un punto de vista fisiopatológico, la isquemia cerebral se define como "la reducción del aporte sanguíneo hasta unos niveles insuficientes para mantener el metabolismo y funcionamiento normales de las células cerebrales" 187. El flujo sanguíneo cerebral (FSC) medio es de aproximadamente 50 mL/100 g de tejido cerebral por minuto. Sin embargo, cuando el FSC se sitúa entorno a 20 mL/100 g de tejido cerebral por minuto la tasa metabólica cerebral de oxígeno comienza a caer. El resultado de esta circunstancia es la isquemia¹⁸⁹. Hay que resaltar que la isquemia no es homogénea. El área isquémica delimita dos áreas: el núcleo isquémico, o infarto, y el área que rodea a este núcleo, que recibe el nombre de penumbra isquémica. A diferencia del núcleo isquémico, la perfusión de la penumbra isquémica se mantiene parcialmente por la dilatación de los vasos sanguíneos y por la irrigación que aportan las arterias colaterales¹⁹⁰. Así, mientras el núcleo isquémico presenta unas tasas de FSC de entre 4,8 y 8,4 mL/100 g de tejido cerebral por minuto, la penumbra isquémica registra unas tasas de FSC de entre 14,1 y 35 mL/100 g de tejido cerebral por minuto. La penumbra isquémica describe áreas de recuperación espontánea, que determinan la oligoemia benigna, y áreas que progresan a infarto¹⁹¹. La importancia del área de penumbra isquémica radica en que define tejido metabólicamente afectado y eléctricamente hipoactivo, pero estructuralmente viable¹⁹⁰. Es decir, se trata de tejido funcionalmente alterado pero potencialmente viable, a diferencia del núcleo isquémico. Los factores que determinan la progresión de la penumbra al infarto son el grado de circulación colateral, la duración de la isquemia y el estado funcional y metabólico previos de la célula¹⁸⁷.

Las vías celulares que participan en la isquemia no se conocen en toda su exactitud. El daño isquémico desencadena una compleja cascada de eventos que está supeditada a cuatro mecanismos celulares que se desarrollan de un modo solapado: excitotoxicidad, despolarización, inflamación y muerte neuronal¹⁹². Las relaciones que se establecen entre las distintas estructuras del sistema nervioso central (SNC) involucradas en el daño isquémico han acuñado el concepto de "unidad neurovascular" (UN). La UN contempla el conjunto de interacciones multidireccionales que se desenvuelven entre la neurona, el astrocito, el endotelio cerebral, los oligodendrocitos y los compartimentos axonales de la sustancia blanca¹⁹³. En definitiva, la UN circunscribe los efectos de la isquemia en la señalización intercelular y entre las células y su entorno, que incluye la barrera hematoencefálica (BHE). La BHE está compuesta de células endoteliales cerebrales que se caracterizan por la presencia de las denominadas uniones estrechas y la ausencia de fenestraciones. La peculiaridad estructural de la BHE junto a sus sistemas específicos de transporte configuran su papel restrictivo para la entrada de moléculas y células inmunes desde la circulación sistémica al SNC194. La función de la BHE resulta fundamental para el mantenimiento y para la regulación cerebrales.

2.4.1. Excitotoxicidad y despolarización

El desarrollo de una isquemia aguda, es decir la ausencia de flujo sanguíneo, conduce a un déficit de oxígeno y de glucosa. Esta alteración ocasiona a un déficit energético celular que se ilustra por la merma de adenosina trifosfato (ATP) y, en consecuencia, de los mecanismos celulares dependientes de la misma, como la bomba sodio (Na⁺)/potasio (K⁺)-ATPasa. En las membranas celulares se va a instaurar un proceso de despolarización y de alteración de la permeabilidad de la membrana celular que condicionará, entre otros, una incapacidad para la recaptación de K⁺ o para la entrada de Na⁺, cloro y agua, con conducirá al edema celular. Esta situación conducirá a la llamada despolarización anóxica que se caracteriza por la entrada de calcio (Ca+2) que incrementará su concentración intracelular. La liberación de neurotransmisores es otra consecuencia de la disfunción de las membranas celulares. neurotransmisores que fluyen al espacio extracelular, el glutamato es el más destacado y estudiado. Las acciones del glutamato están mediadas por la activación de varios receptores de membrana, entre los que cabe destacar los receptores NMDA (N-metil-Daspartato), AMPA (α-amino-3-hidroxi-5-metil-4-isoxazolpropionato) y kainato (KA). Estos receptores de membrana conllevarán la apertura de canales transmembrana que, a su vez, facilitarán la entrada de Ca⁺² o hidrógeno (H⁺), entre otros cationes. La acidosis fruto de la metabolización de la glucosa por la vía anaeróbica, como resultado de la isquemia, también es una vía alternativa del incremento de Ca+2 intracelular. Por lo descrito previamente, el Ca+2 adquiere un rol principal en la isquemia puesto que es el responsable de iniciar las reacciones que ocasionarán el daño citoplasmático y nuclear, tales como la activación de proteasas y lipasas. Entre otros neurotransmisores que participan en el daño isquémico cabe destacar la noradrenalina y la adenosina, que participan en el incremento de la permeabilidad de la membrana y, con ello, contribuyen al desarrollo de edema. El acúmulo de K⁺ y de glutamato extracelulares inducen la despolarización de las neuronas próximas de manera que facilitan la propagación de la despolarización anóxica^{187,192,195}.

Con independencia de la etiología del ictus isquémico o del AIT, la isquemia genera una cascada de reacciones cuyo resultado es el incremento de la producción de especies reactivas del oxígeno (ROS). El estrés oxidativo define la situación en que la célula está

sometida a unos niveles excesivos de radicales libres y de ROS tales que sobrepasan la capacidad de los sistemas antioxidantes para evitar sus efectos deletéreos, situación que acontece tanto en la isquemia cerebral como en la reperfusión. Los sistemas antioxidantes del organismo incluyen la superóxido dismutasa, la catalasa, el glutatión peroxidasa, el glutatión, o las vitaminas E y C. El estrés oxidativo asociado a la excesiva producción de ROS constituye el mecanismo fundamental de lesión cerebral asociado a la isquemia y a la reperfusión secundaria. El cerebro resulta especialmente sensible al estrés oxidativo debido a que contiene niveles relativamente bajos de antioxidantes protectores; elevadas concentraciones de lípidos susceptibles de peroxidación (lípidos con ácidos grasos insaturados); y elevadas concentraciones de hierro, que adquiere un efecto prooxidante en condiciones patológicas¹⁹⁶.

Como se ha mencionado con anterioridad, la isquemia genera la imposibilidad de metabolizar la glucosa por la vía aeróbica. Por tanto, se propicia un contexto acidótico por la acumulación de ácido láctico. La acidosis potencia la conversión del anión superóxido (O₂-) a peróxido de hidrógeno (H₂O₂) o hacia el radical hidroperoxil (HO₂). O₂ es el principal ROS. Se han identificado distintas fuentes que potencian la producción de este anión: la inhibición de la respiración mitocondrial, la metabolización del ácido araquidónico (AA), la activación del receptor AMPA por el glutamato y perturbaciones a nivel de la síntesis de óxido nítrico (ON) y en la degradación de los nucleótidos de adenina por las enzimas NADPH oxidada y xantina oxidasa¹⁹⁷. Si bien las ROS tienen un reconocido papel en procesos fisiológicos (no patológicos) puesto que regulan la señalización neuronal entre los sistemas nerviosos central y periférico, las consecuencias del exceso de ROS implican la destrucción tisular y la muerte celular. Para ello, las ROS actúan a distintos niveles: contribuyen a la rotura de la BHE, a la peroxidación lipídica, a modificaciones del ácido desoxirribonucleico (ADN), a la desnaturalización proteica y a efectos sobre la señalización celular que conducen a la activación de la cascada apoptótica^{195,196}. Dentro de la desnaturalización proteica, se ha observado que la oxidación del triptófano contribuye al daño isquémico a través del papel agonista del ácido quinolínico y antagonista del ácido kinurénico del receptor del glutamato¹⁹⁸. Por otro lado, en este contexto de estrés oxidativo, el ADN también sufre modificaciones oxidativas que conllevan su fragmentación. La peroxidación lipídica es una de las principales consecuencias del perjuicio mediado por las ROS. En un contexto fisiológico, se hallan las denominadas enzimas fosfolipasas A₂ (PLA₂), que tienen la

función de liberar AA, ácido docosahexaenoico (DHA) y lisofosfolípidos. Los ácidos grasos liberados que no pasan a formar parte de los fosfolípidos de membrana son sometidos a procesos enzimáticos en los que interviene la ciclooxigenasa (COX) y la lipoxigenasa (LOX). De tal manera que a partir de AA surgirán los eicosanoides mientras que de DHA, los docosanoides 199. Prostaglandinas, tromboxanos o leucotrienos forman parte de los eicosanoides y participan en importantes acciones que se encuadran en la señalización celular y en la respuesta inflamatoria. Los docosanoides engloban el grupo de sustancias (como neuroprotectinas, resolvinas o docosatrienos) que antogonizan los efectos de los eicosanoides y participan en la regulación de leucocitos y citoquinas. El factor de activación plaquetaria (PAF) es un factor proagregante que resulta de la acción de las PLA2 y que también participa en la respuesta inflamatoria. La activación de las PLA2 durante la isquemia está aumentada. El nexo entre la isquemia y la sobreacitivación de PLA2 es el incremento de la concentraciones del Ca⁺² intracelular. Este contexto ocasiona una mayor producción de AA y DHA. Los ácidos grasos libres son una fuente de ROS y de radicales libres que van a interferir en la fosforilación oxidativa. Por otra parte, la peroxidación de AA y de DHA conduce a la formación de 4-hidroxinonenal (4-HNE) y de 4-hidroxihexenal. 4-HNE es un reconocido tóxico para la neuronas y la sustancia blanca que puede inducir la apoptosis²⁰⁰. Además, se perturbará la permeabilidad de la membrana y, con ello, de modificará la actividad de canales iónicos y de transportadores²⁰¹.

Además del papel que juegan las ROS en el daño isquémico, es preciso incidir en las especies reactivas de nitrógeno. El ON es un potente compuesto que en condiciones fisiológicas participa en la regulación de múltiples funciones como la señalización celular, en el control de la presión arterial, en la relajación del músculo liso, o en la respuesta inmune. Las ON sintetasas (NOS) son las responsables de la producción de ON en los tejidos biológicos a partir de L-arginina. Se distinguen tres isoenzimas de NOS: neuronal (nNOS), inducible (iNOS) y endotelial (eNOS). En la isquemia se constata un exceso de producción de ON como consecuencia de la sobreactivación de las 3 isoenzimas, que responden a estímulos distintos. Así, mientras eNOS y nNOS dependen del aumento de la concentración de Ca⁺², la actividad de iNOS viene regulada por mediadores de la inflamación¹⁹⁵. Diversas publicaciones han destacado que el ON tiene un efecto dual en la isquemia en función de la isoenzima productora. Así, mientras la producción de ON por parte de eNOS sería beneficiosa puesto que participa en

mecanismos vasodilatadores y antiagregantes, la sobreactividad de iNOS y nNOS ocasiona un efecto nocivo¹⁸⁷. El daño cerebral relacionado con ON está mediado principalmente por peroxinitrito (ONOO⁻)²⁰². El ONOO⁻ es un potente agente oxidante que está constituido a partir de la reacción mediada por la enzima superóxido dismutasa entre ON y O₂⁻. El ONOO⁻ interviene en la fragmentación del ADN, la peroxidación lipídica y en el menoscabo proteico. Además, también se le ha relacionado con la liberación de factores proinflamatorios¹⁹⁷. Por otro lado, se ha descrito que el ON participa en la liberación de neurotransmisores, como glutamato; en inhibiciones enzimáticas a nivel de la cadena de transporte de electrones mitocondrial, como la inhibición de la citocromo c oxidasa, o a nivel de antioxidantes, como la glutatión peroxidasa¹⁸⁷. Todas estas acciones ilustran la lesión celular fruto de una cascada isquémica.

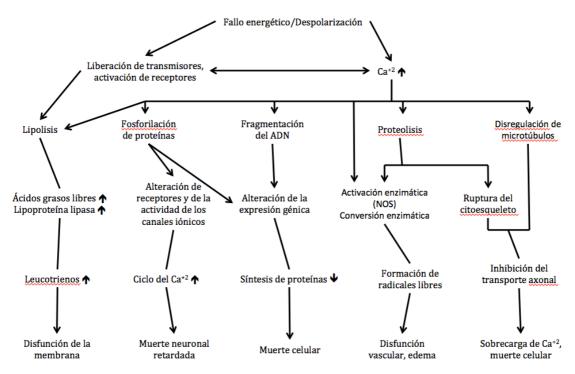


Figura 1. Cascada de los eventos tras el fracaso energético (adaptado de 186).

2.4.2. Inflamación

El daño isquémico desencadena una respuesta inflamatoria caracterizada por la expresión de genes inflamatorios que en última instancia ocasionan un incremento del daño isquémico por la propagación de la inflamación mediante la liberación de citoquinas, quemoquinas, moléculas de adhesión y enzimas proteolíticas. La microglía constituye las principales células que participan en la neuroinflamación^{203,204}.

Los procesos de inflamación se asocian a la infiltración de leucocitos, especialmente neutrófilos, en el parénquima cerebral. Por tanto, la isquemia desencadena alteraciones en la expresión de las moléculas de adhesión y las citoquinas que modulan la activación de los leucocitos. Para ello, las ROS promueven la expresión de múltiples elementos de las células endoteliales cuya finalidad va a ser la disrupción de la BHE y de la matriz extracelular. La infiltración de las células sanguíneas se ha relacionado con la obstrucción de los microvasos y el fenómeno de "no-reflujo". Asimismo, los neutrófilos colaboran en la rotura de BHE debido a que configuran una fuente de metaloproteasa de matriz (MMP)-9, que es la proteasa relacionada con la degradación de la lámina basal²⁰³. Las selectivas, las sialomucinas, la superfamilia de las inmunoglobulinas y las integrinas forman parte de las moléculas de adhesión implicadas en el paso de leucocitos a través del endotelio²⁰⁵. Las selectinas tercian en el rodamiento de los leucocitos, es decir, en la interacción inicial entre leucocitos y células endoteliales. Se distinguen la P-selectina, la E-selectina y la L-selectina. Ésta última facilita la interacción entre las células endoteliales y los leucocitos, mientras que P-selectina y Eselectina están más directamente relacionadas con el reclutamiento de los leucocitos. Pselectina se ha relacionado con el empeoramiento clínico después de un ictus isquémico e interviene en las interacciones entre los leucocitos y las plaquetas²⁰³. Posteriormente, otros mediadores facilitarán el reclutamiento de los leucocitos en las paredes vasculares. Unas de las consecuencias es la caracterización de un estado protrombótico a nivel del endotelio.

La superfamilia de inmunoglobulinas es el grupo más numeroso de receptores de la superficie celular y están implicadas en la presentación y reconocimiento del antígeno. También, intervienen en el segundo paso de la migración de la célula²⁰⁵. Dentro de este

grupo de moléculas implicadas en la adhesión de los leucocitos en las células endoteliales se identifican las siguientes: molécula de adhesión intercelular-1 (ICAM-1), molécula de adhesión intercelular-2 (ICAM-2), molécula de adhesión vascular-1 (VCAM-1), molécula de adhesión plaqueta-endotelio-1 (PECAM-1), y molécula de adhesión celular mucosa-1 (MAdCAM-1). La expresión de ICAM-1 está inducida por la interleuquina (IL)-1 y por el factor de necrosis tumoral (TNF)-α, que a su vez aumentan por la isquemia²⁰⁶. La expresión de ICAM-1 aumenta una hora después del inicio de la isquemia, evidenciándose un pico a las 24 horas. La concentración de ICAM-1 se relaciona con el nivel de infiltración de neutrófilos²⁰⁵. Paralelamente, su expresión se ha relacionado con la presencia de una placa en la arteria carótida interna sintomática frente a la asintomática²⁰⁷. Por tanto, la expresión de ICAM-1 puede relacionarse con la arteriosclerosis. Se postula que ICAM-2 interviene en la interacción entre leucocitos y células endoteliales mediante la potenciación de la unión de ICAM-1 con la integrina CD11b/CD18, que es su principal ligando. La especificidad de ICAM-2 reside en que participa en la interacción entre leucocitos y plaquetas²⁰³. La expresión de VCAM-1 también está impulsada por IL-1 y TNF-α. La intervención de VCAM-1 en la isquemia cerebral es menos conocida. Se ha observado que unas concentraciones elevadas están relacionadas con recurrencia o con el fallecimiento de causa vascular. VCAM-1 interviene en el rodamiento de los leucocitos en las vénulas del SNC a través de la integrina $\alpha_4\beta_1$. El papel de PECAM-1 también está poco esclarecido²⁰⁵.

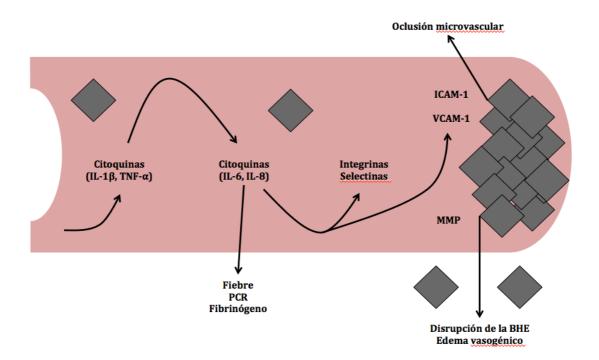
Las integrinas son glicoproteínas de membrana constituidas por dos cadenas que configuran las subunidades α y β . Las integrinas cohesionan las células endoteliales, los astrocitos y la lámina basal para formar la BHE. En consecuencia, intervienen en el mantenimiento de la integridad de la microvasculatura cerebral²⁰⁵. Como se ha destacado previamente la integrina CD11b/CD18 o MAC-1 de los leucocitos facilita su adhesión firme al endotelio vascular mediante la interacción con ICAM-1. La integrina CD 41 ($\alpha_{IIb}\beta_3$) parece que participa en la activación de las plaquetas y por ello desencadena complicaciones trombóticas de la microvasculatura cerebral²⁰³.

El aumento de la concentración de Ca⁺² intracelular y la sobreinducción de radicales libres desencadenan la expresión de un abanico de genes proinflamatorios que conducirán a la producción de los mediadores de la inflamación¹⁹², que en condiciones fisiológicas se encuentran en bajas concentraciones. Los mediadores de la inflamación

son elementos indispensables en el daño isquémico puesto que se encargan del reclutamiento y de la activación de las células del sistema inmunitario en el interior del parénquima. Los mediadores inflamatorios están producidos tanto por las neuronas como por los astrocitos, la microglía o los oligodendrocitos. Las citoquinas, las quemoquinas, los metabolitos del AA, la proteína inflamatoria-1 de macrófagos α , el ON y las ROS comprenden los mediadores inflamatorios que intervienen en el daño isquémico²⁰³.

Por lo que respecta a las citoquinas, la IL-1 desarrolla un importante papel en la cascada de inflamación y, por consiguiente, en el daño isquémico cerebral. La IL-1 está compuesta por un sistema agonista (IL-1α y IL-1β), que favorece del daño isquémico, y por un sistema antagonista (IL-1RA), con actividad neuroprotectora²⁰³. La IL-1β y el TNF-α han sido identificados como las citoquinas que inician la respuesta inflamatoria. Sin embargo, esta activación es transitoria. Por ello, la IL-1β y el TNF-α también son los responsables de inducir una respuesta inflamatoria más duradera a través de la intervención de la IL-6 y de la IL-8. Estas moléculas contribuyen a la liberación de las moléculas de adhesión celular²⁰⁸. La IL-1β también es activada a través de los receptores Toll-like (TLR), que se comentan brevemente en los siguientes párrafos. El TNF-α ejerce funciones opuestas dado que, por un lado, fomenta la difusión de la respuesta inflamatoria y se ha asociado a una mayor gravedad del daño isquémico; y, por otro lado, efectúa funciones neuroprotectoras mediante acciones antiinflamatorias y antiapoptóticas. La dualidad en la respuesta de TNF-α ha sido atribuida a la existencia de distintas vías de señalización y de receptores²⁰⁹. La IL-18 interviene en la respuesta inflamatoria más retardada mediante la regulación de otras citoquinas proinflamatorias. El neuropéptido Y atesora un papel relevante en la distribución de las células inmunitarias²⁰³. Otras citoquinas han mostrado poseer unos efectos contrapuestos a la respuesta inflamatoria. Este es el caso de la IL-10, que es una citoquina antiinflamatoria que promueve la inhibición de la IL-1 y el TNF-α. El factor de transformación de crecimiento (TGF)-β1 también parece reducir la respuesta inflamatoria²¹⁰.

Las quemoquinas participan en la señalización celular en vistas a mediar en la inflamación. La proteína-1 quimioatrayente de monocitos (MCP-1) es una quemoquina cuya síntesis está estimulada por citoquinas y favorece la permeabilidad de la BHE en la isquemia cerebral. Por otra parte, se ha relacionado la MCP-1 con procesos de


migración de células derivadas de la médula ósea con fines de recuperación del área lesionada²⁰³. Un modelo animal basado en infligir una isquemia cerebral focal transitoria a ratones puso de manifiesto que la expresión de MCP-1 está influenciada por el estrés oxidativo secundario a los procesos de isquemia y reperfusión. Así, la sobreexpresión de la enzima superóxido dismutasa disminuye MCP-1. En la misma publicación se evidenció que los niveles de la proteína inflamatoria-1 de macrófagos α (MIP-1 α), relacionada con la diferenciación neuronal, también mermaban²¹¹.

Como se ha mencionado previamente, en una situación de isquemia se desencadena la activación de PLA₂ que conducirá al incremento de AA. El AA sometido a la enzima COX sintetizará las prostaglandinas, otros mediadores de la inflamación. Sin embargo, el AA metabolizado mediante la enzima LOX produce 5-hidroxieicosatetranoico que cuenta con leucotrieno A4 (LTA4) entre sus derivados. Se ha relacionado el LTA4 con la disfunción de la BHE y con los fenómenos de muerte celular²⁰³.

Las MMP engloban una familia de enzimas proteolíticas que degradan las proteínas de la matriz extracelular, como colágeno, proteoglicanos, elastina o fibronectina. La activación de las MMP se desencadena como respuesta a la isquemia cerebral. La MMP-2 y la MMP-9 constituyen las gelatinasas y se corresponden con las proteasas más implicadas en el daño isquémico puesto que condicionan la alteración de la permeabilidad de la BHE e intervienen en la formación de edema vasogénico. Las gelatinasas están implicadas en la mediación de la cascada inflamatoria. La IL-1 β o el TNF- α son algunos de los mediadores inflamatorios que son activados por las gelatinasas. Fruto de su acción nociva, las gelatinasas favorecen el paso de los leucocitos al endotelio²¹².

La penumbra isquémica va a sufrir despolarizaciones, como la descritas previamente, en el caso de no restaurar la perfusión cerebral. Así, puede acabar sufriendo los mecanismos que conducen a la muerte y al incremento del área del núcleo isquémico con el consiguiente detrimento del área de penumbra¹⁹⁰. Como se reseña más adelante, mientras el núcleo isquémico sufre procesos de necrosis, el área de penumbra isquémica característicamente está sometida a procesos apoptóticos.

La influencia de los fenómenos inflamatorios abarca a los mecanismos etiológicos que determinan el desarrollo de un ictus isquémico. En la actualidad, se considera que la arteriosclerosis es una enfermedad inflamatoria porque precisamente los mecanismos inflamatorios resultan indispensables en la patogénesis y progresión de la arteriosclerosis, ruptura de la placa, trombosis e ictus isquémico^{194,213}. En este sentido, la proteína C reactiva (PCR) es un indicador de inflamación sistémica que se emplea como marcador plasmático de la enfermedad arteriosclerótica. Está establecido que la PCR regula procesos inflamatorios que contribuyen a la instauración de un estado protrombótico²⁰⁸.

Figura 2. Marcadores moleculares de la inflamación durante la fase aguda de isquemia (adaptado de ²⁰⁸). IL, interleuquina; TNF-α, factor de necrosis tumoral-α; ICAM-1, molécula de adhesión intercelular-1; VCAM-1, molécula de adhesión vascular-1; MMPs, metaloproteasa de matriz; PCR, proteína C reactiva; BHE, barrera hematoencefálica.

El edema cerebral implica la acumulación de líquido y constituye una vía de daño isquémico. El edema secundario a una lesión isquémica puede ser citotóxico y vasogénico. El edema citotóxico acontece de forma temprana, en los primeros minutos tras el inicio del ictus isquémico. Este tipo de edema es secundario al fracaso del transporte de iones dependiente del ATP, que conduce a la entrada de agua del intersticio al interior de la célula por razones osmóticas. El edema vasogénico es más

tardío puesto que se inicia a las horas del inicio de la lesión isquémica. El edema vasogénico está relacionado con el fracaso de la BHE que conlleva la entrada de elementos plasmáticos al espacio extracelular²⁰⁴.

2.4.3. Señalización intracelular

La isquemia cerebral es uno de los mayores estímulos para la inducción génica cerebral. Estos genes van a estar relacionados con excitotoxicidad, inflamación y apoptosis. No obstante, el suceso isquémico condiciona la activación de vías de señalización que conllevan también un efecto neuroprotector. El mecanismo de activación de los mecanismos de transcripción responde, a grandes rasgos, a la activación de los receptores NMDA y AMPA por la liberación masiva de glutamato. Los acúmulos intracelulares de Ca⁺² y Na⁺ tienen una participación fundamental²¹⁴.

Las quinasas de proteínas activadas por mitógenos (MAPKs) conforman un grupo de mensajeros que se encargan de transmitir las señales extracelulares al núcleo. Las quinasas reguladas por señal extracelular (ERK), quinasas de proteínas activadas por estrés (SAPK), p38 MAPK y la quinasa c-Jun N-terminal (SAPK/JNK) forman parte de la familia de MAPKs²¹⁵. SAPK, p38 MAPK y SAPK/JNK están involucradas en la supervivencia celular y en la producción de citoquinas inflamatorias y apoptosis¹⁸⁷.

JAK (quinasa Janus) / STAT (transductor de señal y activador de la transcripción) establecen una importante vía de señalización que media en la respuesta intracelular de las citoquinas. Se ha descrito que INF-γ conlleva la activación de STAT1, que promueve la muerte celular. Caso contrario es el rol de la IL-10, puesto que induce la activación de STAT 3, relacionado con supervivencia celular. La vía de señalización JAK/STAT está relacionada con la respuesta inmune²¹⁶.

TNF- α propicia el inicia de la respuesta inflamatoria mediante la inducción de los genes que codifican para la proteína-1 activadora (AP-1) y para el factor de transcripción nuclear κB (NF- κB)²¹⁴. NF- κB se libera por mecanismos de fosforilación que permitirán

su translocación al núcleo para unirse a secuencias específicas del ADN implicadas en la transcripción de genes relacionados con el proceso inflamatorio²¹⁷.

La muerte celular programada o apoptosis que sigue a la isquemia cerebral está determinada por genes de la familia Bcl-2 y regulada por una familia de proteasas llamada caspasas. El factor p53, cuya activación está relacionada tras el desarrollo de una lesión del ADN, puede desencadenar la señal apoptótica. En modelos animales se ha puesto de manifiesto que la sobreexpresión de TNF-α, IL-1β y IL-6 conduce a la apoptosis neuronal mediante la activación de la vía p38 MAPK. TNF-α interviene en la formación del complejo de señal de inducción de muerte a través del reclutamiento de proteínas FADD (*fas-associated death domain*). La producción de iNOS o la MMP-9 también están involucrada en la activación de la cascada apoptótica²¹⁴.

Las proteínas de *shock* térmico (HSP) son unas chaperonas moleculares que intervienen en la constitución de las proteínas y, por consiguiente, participan en el mantenimiento celular y en la señalización, diferenciación y migración neuronal. La expresión de las HSP-70 está inducida masivamente en la isquemia y se le confiere un efecto inhibidor de la cascada apoptótica²¹⁸.

2.4.4. Inmunomodulación en la isquemia cerebral

La inmunomodulación hace referencia a la implicación del sistema inmune en la respuesta tras una isquemia cerebral. En condiciones fisiológicas, la respuesta inmunológica del SNC está compartimentalizada y varía en función de sus estructuras anatómicas. Las meninges, los plexos coroideos, los ventrículos y los espacios periventriculares presentan una respuesta inmunológica similar a la observada en otros tejidos del organismo. Sin embargo, el parénquima cerebral ofrece constitutivamente una respuesta menor a los estímulos inmunes. La finalidad de este privilegio inmunológico es limitar el daño inflamatorio. El ictus isquémico desencadena una cascada de reacciones proinflamatorias y antiinflamatorias que modifican las respuestas inmunológicas del SNC²¹⁹.

A diferencia de la inmunidad adquirida, la inmunidad innata no precisa de la exposición previa a antígenos. Los tipos celulares que participan en la inmunidad innata son los macrófagos, neutrófilos, células dendríticas y células *natural killer*. Las células del sistema inmune innato están adaptadas para reconocer determinados patrones moleculares asociados a los patógenos. En el reconocimiento de estas estructuras intervienen determinados receptores, como los TLR. Los TLR tienen la capacidad de identificar componentes específicos de los microorganismos y ligandos endógenos. Por ello, pueden identificar la presencia de productos de degradación, productos de cascadas proteolíticas o de procesos inflamatorios. Las distintas poblaciones celulares del SNC contienen distintos tipos de TLR. La promoción de la ruta de los TLR conllevará la activación de NF-κB que, a su vez, promocionará la transcripción de mediadores de la inflamación, como IL-1, IL-6, TNF-α, o moléculas de adhesión, que iniciarán la respuesta inflamatoria. La activación de TLR también puede estar implicada en procesos de neurorreparación tras una isquemia cerebral mediante la potenciación de células progenitoras y de factores de crecimiento²⁰⁵.

La inmunidad adquirida precisa de la acción previa de la inmunidad innata en vistas a difundir los linfocitos B y T específicos. Tras la lesión isquémica se desencadenan cambios a nivel del endotelio que propician la infiltración de células T, que se diferencian en distintas poblaciones celulares cuyos efectos pueden llegar a ser opuestos. Las células T *helper* (h) 1 están implicadas en la inflamación mediante la promoción de la producción de IL-2, IL-12, IFN-γ y TNF-α. Las células Th2 actúan como contrapunto con su relación con la liberación de citoquinas antiinflamatorias, como IL-4, IL-10 e IL-13²⁰⁵.

2.4.5. Muerte neuronal

La muerte neuronal es una manifestación final del daño isquémico. Se consideran dos procesos distintos: necrosis y apoptosis. La necrosis afecta a un gran número de células localizadas en el llamado núcleo del infarto. La necrosis es el resultado del proceso de excitotoxicidad en el que participan la activación de receptores ionotrópicos, como NMDA, tras la liberación de glutamato. La pérdida de la homeostasis celular,

desencadenada por la anoxia, condicionará los hinchamientos del núcleo y la célula y la pérdida de la integridad de la membrana celular desde las etapas tempranas. La liberación del contenido citoplasmático al espacio extracelular participa en la propagación de la respuesta inflamatoria. Se trata de un mecanismo rápido de muerte celular circunscrito por un mecanismo pasivo²¹⁴.

La apoptosis define un proceso de muerte celular programada regulado por la producción y activación de unas proteínas específicas, llamadas caspasas. Las caspasas son una familia de proteasas responsables de la proteólisis selectiva de proteínas indispensables para la supervivencia. La caspasa-3 es el miembro de esta familia de proteasas que más se ha relacionado con la apoptosis isquémica. Así, a diferencia de la necrosis, la apoptosis describe un mecanismo activo de muerte neuronal. Las neuronas delimitadas en el área de la penumbra isquémica, dado que conservan una mínima actividad metabólica, son las susceptibles de conducir a la cascada apoptótica que puede iniciarse días o semanas después del inicio de la isquemia. La apoptosis implica una muerte neuronal retardada. Como se ha mencionado previamente, el daño isquémico propicia la activación de la vía de señalización JNKs/SAPKs que favorece la expresión de CD95L y TNF-α que intervienen en la señalización apoptótica. En la apoptosis, la célula mantiene la membrana isquémica hasta las etapas finales, que traducirá una menor respuesta inflamatoria y un menor vertido de material genético^{214,220}.

2.4.6. Inmunosupresión en relación con ictus isquémico

Se ha postulado que la infección es una complicación frecuente del ictus isquémico²²¹. El SNC modula la actividad del sistema inmune a través de una compleja regulación que incluye el eje hipotálamo-hipofisario-adrenal, el nervio vago y el sistema nervioso simpático. Se ha descrito que citoquinas de perfil proinflamatorio, a través de una compleja vía de regulación, están implicadas en la secreción de la hormona adrenocorticotropina, que induce la secreción de glucocorticoides. A su vez, estos glucocorticoides tienen la capacidad de suprimir la producción de mediadores proinflamatorios (IL-1β, IL-11, IL-12, INF-γ, IL-8, prostaglandinas y ON). Por otro lado, los glucocorticoides potencian la liberación de mediadores antiinflamatorios (IL-

2. Introducción

4, IL-10, factor de transformación de crecimiento-β). El sistema nervioso simpático está implicado en la inhibición de la acción proinflamatoria de las células Th 1, dando lugar un predominio de la respuesta antiinflamatoria de las células Th 2. En este contexto también son liberadas catecolaminas que regulan la producción de mediadores inflamatorios. Los mecanismos de inmunosupresión relacionados con el ictus isquémico pueden actuar como un mecanismo neuroprotector en aras de contrarrestar el proceso inflamatorio y evitar la respuesta autoinmune tras la disrupción de la BHE²²².

2.4.7. Angiogénesis tras la isquemia cerebral

Tras un proceso isquémico se establecen diversos mecanismos encaminados a la neurorreparación: la angiogénesis, la neurogénesis y la plasticidad cerebral²²³. La angiogénesis implica la formación de nuevos vasos sanguíneos. Así, tras la isquemia cerebral acontece la expresión de múltiples genes relacionados con la angiogénesis que conducirán a la proliferación de las células endoteliales que rodean el área del infarto con el objetivo de incrementar los vasos sanguíneos en los primeros días tras la isquemia.

Uno de los factores esenciales que participan en la angiogénesis es el factor de crecimiento del endotelio vascular (VEGF). Precisamente, la unión de VEGF a su receptor desencadena multitud de señales que conllevan la angiogénesis. Por otro lado, el VEGF también está relacionado con señales antiapoptóticas a través de la vía PI3k/Akt. Además de este factor de crecimiento, también se ha constatado el papel de otros factores. El factor de crecimiento derivado de plaquetas-β induce la formación de nuevos capilares. El TGF-β, cuya expresión se activa tras la isquemia cerebral, modula la angiogénesis y estimula el crecimiento de las células endoteliales. El factor de crecimiento de fibroblastos también parece tener un papel destacado en este proceso²²³.

Las células progenitoras endoteliales (EPC) constituyen otro elemento fundamental en el desarrollo de la angiogénesis. Las EPC son células madre que se generan en la médula ósea y se movilizan en base a determinados estímulos mediante una modulación proporcionada por diferentes quimocinas o citoquinas. Las EPC podrían desempeñar

una función indispensable en el restablecimiento de la integridad endotelial tras la ruptura de la BHE en la fase aguda del ictus. VEGF está comprometido con la proliferación, migración y reclutamiento de la EPC²²⁴.

2.4.8. Neurogénesis tras la isquemia cerebral

La neurogénesis se define como el proceso de generación de nuevas neuronas a partir de sus progenitoras. La neurogénesis se desencadena básicamente durante las etapas del desarrollo del cerebro. Sin embargo, en la actualidad está establecido que en el cerebro adulto se hallan células madre que pueden producir nuevas neuronas y glía y, por tanto, desencadenarse procesos de neurogénesis²²⁴. No obstante, en el cerebro adulto la generación de nuevas neuronas acontece fundamentalmente en dos áreas: la zona subgranular del giro dentado hipocampal y la zona subventricular del cerebro anterior. La neurogénesis está regulada por factores genéticos, factores de crecimiento, neurotransmisores, hormonas (estrógenos) y la edad. Entre los factores de crecimiento cabe destacar el VEGF, el factor neurotrófico de origen cerebral, el factor de crecimiento fibroblástico básico y el factor de crecimiento epidérmico. La isquemia cerebral es un potente inductor de estos factores²²³. La mayoría de las nuevas neuronas mueren prematuramente. Se ha indicado que esta situación puede responder a un ambiente adverso para las nuevas neuronas ante la ausencia de factores tróficos, de conexiones, o de un ambiente angiogénico propicio. Como sugiere la participación de VEGF, la angiogénesis y la neurogénesis están íntimamente relacionadas. Es necesaria la generación de nuevos vasos sanguíneos para asegurar el aporte de nutrientes y, de este modo, la supervivencia de las nuevas neuronas²²⁴. Los vasos sanguíneos resultantes de la angiogénesis liberan quemoquinas y factores de crecimiento que estimulan la migración de las neuronas inmaduras hacia las áreas adyacentes del núcleo isquémico. El ictus isquémico también estimula la división y la diferenciación parcial de las células progenitoras de oligodendrocitos en las zonas contiguas a la lesión. Estas células tienen la capacidad de diferenciarse en oligodendrocitos maduros y mediar en la reparación neuronal²²⁵.

2.4.9. Plasticidad cerebral

La plasticidad cerebral (PC) está determinada por aquellos sucesos que regulan la capacidad de modificación del SNC como respuesta a una lesión o a cambios fisiológicos. Durante la recuperación limitada que acontece tras el ictus isquémico, el cerebro tiene la capacidad de activar programas de supervivencia neuronal que están involucrados en el establecimiento de nuevas conexiones que son sensibles a la actividad conductual y a las estrategias de neurorrehabilitación²²⁵. Los mecanismos relacionados con la PC son: activación de vías paralelas que ejecutan funciones similares a las de vías dañadas, revelación de vías funcionales silentes, y la formación de nuevos brotes a partir de neuronas supervivientes con la formación de nuevas sinapsis²²⁶. La activación de los receptores de TGF-β induce la formación de nuevos brotes axonales y está involucrada en los procesos de recuperación motora tras un ictus isquémico²²⁵. En los fenómenos de PC intervienen diferentes mecanismos en función del perfil temporal. A corto plazo se ha descrito la potenciación funcional de circuitos neuronales existentes a través del revelamiento de sinapsis silentes reguladas por mecanismos GABAérgicos. En cambio, la regeneración axonal, con la formación de nuevos brotes y espinas dendríticas y las variaciones de las sinapsis, forma parte de las modificaciones a largo plazo²²⁶. AMPA participa en la mediación de la actividad sináptica²²⁵. El entrenamiento interviene en la PC a través de cambios en las sinapsis²²⁶.

2.4.10. Precondicionamiento isquémico y tolerancia isquémica

El precondicionamiento isquémico (PI) define la situación en la que un corto período de isquemia cerebral confiere una resistencia cerebral a episodios ulteriores de isquemia más prolongada. La tolerancia isquémica (TI) contempla dos fases: una tolerancia rápida o temprana, que se desencadena en los primeros minutos hasta las primeras horas; y una tolerancia retardada que está asociada a la síntesis de *novo* de proteínas y que se desarrolla durante los primeros días. A nivel cerebral, se cree que es precisamente la tolerancia retardada la que ejerce un papel predominante¹⁸⁴.

La respuesta que confiere el PI conlleva cambios en la expresión de los genes para conferir citoprotección y supervivencia a las células. La expresión génica está regulada por factores de transcripción y sometida a mecanismos epigenéticos²²⁷. Se ha postulado que los micro-ácido ribonucleicos pueden estar involucrados en la reprogramación de la respuesta a la isquemia y en la adquisición de un fenotipo de tolerancia a la isquemia¹⁸⁴. Uno de los reguladores clave de la respuesta genómica tras el PI es el factor inducible por hipoxia (HIF). En condiciones de hipoxia, esta proteína participa en la regulación de genes encargados de codificar proteínas relacionadas con transporte de oxígeno (eritropoyetina), angiogénesis (VEGF y angiopoyetina-2), control vasomotor (adrenomedulina y receptores β-adrenérgicos), supervivencia celular (VEGF y eritropoyetina), regulación del pH (anhidrasas carbónicas), y metabolismo energético (transportadores de glucosa y enzimas glicolíticos)²²⁷. La activación de NF-κB también se ha relacionado como uno de los mecanismos que intervienen en el fenómeno de TI²⁰⁵. La TI interviene en la regulación de los distintos procesos que conllevan el daño isquémico. El fenómeno de TI está asociado al mantenimiento de la perfusión microvascular durante el ictus isquémico. El PI potencia la angiogénesis de la penumbra isquémica durante la dos primeras semanas tras el ictus isquémico. VEGF y eritropoyetina inducen mecanismos antiapoptóticos mediante la activación de la vía de la quinasa PI3-Akt. Se ha constatado que el PI interviene en la regulación de genes relacionados con una menor demanda energética a través de la preservación de la función y de la integridad de la membrana mitocondrial. Por otro lado, el PI establece una inhibición de la excitotoxicidad asociada a glutamato o a la sobreactivación de los receptores NMDA y AMPA. Otra vía por la que el PI confiere una protección frente al daño isquémico es por su implicación en la expresión de varios factores de crecimiento, como factor de crecimiento insulínico tipo 1, factor de crecimiento de fibroblastos-2, TGF-β1, factor de crecimiento epidérmico, factor neurotrófico derivado del cerebro, eritropoyetina, VEGF, factor de crecimiento derivado de la glía, y factor de creciemiento derivado de las plaquetas-A. La inmunidad innata colabora en el proceso de tolerancia isquémica a través de ligandos específicos de los TLR, como el lipopolisacárido²²⁷. El sistema endocanabinoide, a través de la producción de 2araquidonilglicerol y N-araquidonoiletanolamina anandamida, media efectos neuroprotectores a través de los receptores canabinoides CB1²²⁸. En el proceso de tolerancia isquémica también se ha señalado una sobreproducción de TNF- α^{229} .

Considerando que el AIT implica un déficit neurológico funcional sin lesión estructural, se ha descrito al AIT como un episodio clínico de TI²²⁸. Se han publicado numerosos estudios con la finalidad de investigar si los pacientes con antecedentes de AIT tienen un mejor pronóstico tras sufrir un ictus isquémico en comparación con aquellos sin antecedentes de AIT²³⁰⁻²³⁶. A pesar que se ha sugerido que el pronóstico de un ictus isquémico puede resultar mejor en pacientes que hayan sufrido un ictus isquémico de perfil no lacunar y cuenten con antecedentes de AIT en la semana previa, no todos los estudios han puesto de manifiesto una asociación entre AIT previo y pronóstico tras un ictus isquémico²²⁸. Se ha indicado que factores como la heterogeneidad del ictus isquémico, la edad de los pacientes, la duración o los días previos de ocurrencia del AIT pueden interferir en la disparidad de conclusiones^{227,228}.

2.5. Biomarcadores relacionados con la isquemia cerebral

Una valoración adecuada de los pacientes que consultan por una sospecha de AIT resulta esencial en la práctica clínica diaria. Cabe considerar que de ello van a depender las decisiones clínicas y, en consecuencia, la estrategia diagnóstica y terapéutica. Decisiones fundamentales que van a intervenir en el pronóstico del paciente y que van a revertir en los balances de coste-efectividad de cualquier sistema sanitario²³⁷. En este contexto, los biomarcadores están llamados a adquirir una importancia capital, máxime en el AIT cuyo diagnóstico resulta complejo. El hecho de que los síntomas y signos mayoritariamente se hayan resuelto antes de que el paciente reciba la valoración médica o que el AIT tenga una presentación inespecífica condicionan que el diagnóstico diferencial pueda ser amplio en función de los casos. Por otro lado, la neuroimagen no siempre va a confirmar la isquemia. Múltiples estudios han identificado una elevada variabilidad en el diagnóstico de AIT entre el personal médico, incluyendo neurólogos versados en la atención de la ECV²³⁸. La identificación de biomarcadores que participen en las tareas diagnósticas y pronósticas ayudaría a dar respuesta a estas vicisitudes²³⁹. Por otro lado, es preciso mejorar la capacidad pronóstica de las escalas clínicas de AIT para identificar los pacientes que sufrirán una potencial recurrencia²⁴⁰. Desde un punto de vista genérico, los biomarcadores se definen como aquellos parámetros biológicos, bioquímicos, o biofísicos procedentes de procesos biológicos, patogénicos o de intervención terapéutica, y que pueden ser monitorizados de un modo objetivo²⁴¹⁻²⁴³. De ello subyace que proporcionan información de los procesos fisiopatológicos que acontecen. La isquemia cerebral está caracterizada por diversas alteraciones celulares y moleculares (como excitotoxicidad, estrés oxidativo, inflamación, muerte celular, o apoptosis) que se acompañan de cambios bioquímicos en la sangre periférica²⁴⁴. El candidato a biomarcador en la ECV debe poseer unas cualidades adicionales. Debe poder ser medido rápidamente y mediante un método accesible a distintos entornos clínicos. Además, debe ser reproducible, fiable, preciso, fácil de interpretar y costeefectivo²⁴⁵. El estudio de los biomarcadores se ha desarrollado en las distintas etapas del manejo de la ECV: diagnóstico, pronóstico y terapéutico. En la actualidad, en la literatura se identifica un predominio de estudios centrados en el ictus isquémico en

comparación con el AIT. No obstante, el concepto de síndrome cerebrovascular agudo establece que tanto el AIT agudo como el ictus isquémico agudo puedan ser considerados como dos entidades que forman parte del mismo espectro²⁴⁶. Sin embargo, no parece baladí tener en consideración las especificidades de ambos cuadros, como por ejemplo en el diagnóstico. La utilidad de un biomarcador en el diagnóstico de AIT viene configurada por su capacidad de identificar la isquemia cerebral transitoria y de permanecer detectable varios días²³⁹. La fuente de obtención de los biomarcadores resulta igualmente de interés. Cabe considerar que la obtención de biomarcadores procedentes de tejido cerebral humano no es planteable; como tampoco la obtención rutinaria de líquido cefalorraquídeo en estos pacientes, que están sometidos a tratamiento antiagregante o anticoagulante. Por otro lado, en pacientes que realmente hayan sufrido un cuadro imitador de ictus, la realización de pruebas no puede suponer un riesgo adicional de complicaciones médicas. En condiciones normales, los biomarcadores derivados del SNC no son detectables en grandes cantidades en el torrente circulatorio debido a la integridad de la BHE. Sin embargo, tras un episodio isquémico se desarrollan disrupciones de la BHE que pueden conducir a la liberación en la circulación de estos biomarcadores, favoreciendo una mayor accesibilidad para su estudio²⁴⁷. No obstante, la lenta liberación de proteínas neuronales y gliales a través de la BHE es una dificultad en si misma²⁴⁸. Asimismo, se han hallado diversos biomarcadores potenciales de isquemia cerebral en cuadros imitadores de ictus, como por ejemplo infarto de miocardio o infección cerebral²⁴⁹. La mayoría de los estudios sobre biomarcadores de isquemia cerebral se han centrado en la evaluación de proteínas seleccionadas por su conocida relación con la fisiopatología del ictus isquémico, incluyendo a marcadores de daño tisular cerebral, inflamación, endoteliales, o de coagulación/trombosis²⁵⁰. La complejidad y la diversidad tanto de los distintos tipos de tejido cerebral como de la fisiopatología de la isquemia contribuyen a la carencia actual de biomarcadores específicos de ictus²⁴⁷. Una de las mayores limitaciones en la identificación de biomarcadores con utilidad clínica en el campo del ictus isquémico y del AIT es la falta de un modelo de validación preciso²⁵¹.

En este capítulo se ha optado por presentar una clasificación de los biomarcadores desde un punto de vista clínico²⁵⁰.

2.5.1. Biomarcadores relacionados con el diagnóstico

Elementos traza en el suero

Se ha descrito que la patogenia del ictus isquémico ocasiona una alteración de la homeostasis de los elementos traza o oligoelementos²⁵². Un estudio que incluyó a 20 pacientes que habían sufrido un AIT y 20 sujetos sanos identificó un descenso de hierro y un incremento de vanadio y boro séricos mediante técnicas de espectrometría de masas (EM) en la población de estudio. También puso de manifiesto diferencias en el perfil de oligoelementos en función del sexo de los individuos. Así, mientras que la población femenina que había sufrido un AIT contaba con un descenso de la concentración de cobre, la población masculina estaba caracterizada por una elevación de yodo, litio, manganeso, selenio, zinc, arsenio, plomo, níquel y estroncio²⁵³.

Copeptina

Un grupo de estudio alemán realizó un ensayo para evaluar el uso de copeptina para diferenciar ictus isquémico, AIT o cuadro imitador de ictus entre aquellos pacientes que consultaban por sospecha de ictus en las primeras 4,5 horas desde el inicio de los síntomas. La copeptina, péptido compuesto por 39 aminoácidos que se correlaciona con la secreción de vasopresina, se incrementa de forma temprana tras una situación que condicione un estrés hemodinámico agudo. Se ha constatado que la copeptina también está aumentada en pacientes que sufren sepsis, enfermedad respiratoria aguda, o infarto de miocardio agudo. En el estudio, 20 pacientes fueron diagnosticados de ictus isquémico, 9 de AIT, y 7 de un cuadro imitador de ictus. Los niveles de copeptina tendían a ser más elevados en los pacientes con ictus isquémico [19,1 pmol/L (11,2-48,5)] en comparación con los que habían sufrido un AIT [9,4 (5,4-13,8)]. Sin embargo, los niveles más elevados de copeptina fueron recogidos en la población que había presentado un imitador de ictus, con un amplio rango de valores [33,3 (7,57-255,7)] que penalizó la especificidad de la copeptina. La precisión de la copeptina para el diagnóstico de ictus isquémico fue del 63% con una sensibilidad del 80% y un valor predictivo positivo del 64%²⁵⁴.

Fosfolipasa A2 asociada a lipoproteína

La fosfolipasa A2 asociada a lipoproteína (Lp-PLA2) es una lipasa serina independiente de calcio cuya función es la hidrólisis de fosfolípidos oxidados para liberar el proinflamatorio lisofosfatidilcolina y ácidos grasos oxidados. Lp-PLA2 circula unida a LDL²⁴⁸. Lp-PLA2 es sintetizada por monocitos y por macrófagos tisulares. Los niveles elevados de Lp-PLA2 se han relacionado con un aumento del riesgo de eventos vasculares y con el diagnóstico de estenosis sintomáticas entre los pacientes con AIT. En la actualidad existen mecanismos que permiten medir tanto su masa como su actividad. En 2004 se publicó un estudio con resultados negativos que pretendía valorar la capacidad diagnóstica de Lp-PLA2 en un grupo de 100 pacientes que habían consultado por síntomas neurológicos transitorios de presumible causa isquémica²⁵⁵.

IL-6

La glicoproteína IL-6 es una citoquina inflamatoria que se libera tras episodios isquémicos cerebrales y actúa como molécula mensajera entre leucocitos, endotelio vascular y parénquima. La concentración de IL-6 en sangre se ha correlacionado con la gravedad de ictus y como marcador de peor pronóstico. La IL-6 se ha señalado como como biomarcador de daño cerebral agudo²⁴⁷. Un estudio que comparó 45 sujetos con AIT y 36 sujetos sanos evidenció que los sujetos com AIT presentan un aumento significativo de la concentración de IL-6, concretamente 6,76 pg/mL (2,72-18,3) en comparación con el valor de 2,46 pg/mL (1,5-4,61) de la población control²⁵⁶.

Molécula de adhesión intercelular-1

La molécula de adhesión intercelular-1 (ICAM-1) constituye otro mediador de la inflamación cuyas concentraciones están elevadas en el AIT. Concretamente, el estudio previo previa también evaluó los niveles de ICAM-1. Identificó que el grupo AIT contaba con unas concentraciones de ICAM-1 de 371,6 ng/mL +- 161,8 en comparación con unos valores de 301,9 ng/mL +- 91.6 de la población control²⁵⁶.

Proteína C reactiva

La proteína C reactiva (PCR) es uno de los marcadores inflamatorios más investigados. El estudio previo también identificó una elevación estadísticamente significativa de la PCR entre los pacientes que habían sufrido un AIT (8,5 mg/L [6,7-14,9]) en comparación con el grupo de control (4,5 [2,8-5,8])²⁵⁶.

Fosfatidilinositol-3,4,5-trifosfato 5-fosfatasa 1

La fosfatidilinositol-3,4,5-trifosfato 5-fosfatasa 1 (SHIP-1) es un mediador codificado por el gen INPP5D que se expresa predominantemente por los componentes celulares del compartimentos hematopoyético. Se considera que SHIP-1 actúa como un regulador negativo de vías de señalización relacionadas con citoquinas, inmunoreceptores y de factores de crecimiento en diferentes tipos celulares. Una publicación centrada en la evaluación de una población china que consultaba por un episodio isquémico agudo identificó, mediante técnicas de espectrometría de masas (MS), que SHIP-1 resultaba un marcador de diagnóstico de ictus. Concretamente, establecieron un aumento de riesgo de evento isquémico agudo ante unos niveles de SHIP-1 ≥ 1,550 pg/ml (OR 4,48; IC 95%; 1,97-8,96). El punto de corte de 1,550 pg/ml arrojó una sensibilidad de 77,5% y una especificidad de 88,3%. La relación entre SHIP-1 y la patogenia de ictus se estableció a través de la regulación negativa de SHIP-1 sobre la vía fosfatidilinositol-3 quinasa (PI3K), relacionada con la respuesta inflamatoria, el factor neurotrófico derivado del cerebro. La vía PI3K está implicada en la permeabilidad de la BHE tras una isquemia cerebral focal²⁵⁷.

Gamma-glutamiltransferasa

La gamma-glutamiltransferasa (GGT) es una de las enzimas hepáticas que se utilizan de forma rutinaria en los estudios de enfermedad hepática. Un grupo alemán halló una asociación entre la actividad GGT y el AIT. Se razonaba que las placas de las arterias carótidas están relacionadas con un aumento de la actividad de GGT y que, de hecho, la GGT está involucrada en los fenómenos de progresión de placa²⁵⁸.

Anticuerpos NR2

El receptor NMDA es uno de los principales reguladores de la transducción de señales eléctricas neuronales y participa en los fenómenos de excitoxicidad. Los receptores NMDA se localizan en las superficies pre y postsinápticas de las neuronas y en las superficie epitelial de la microvasculatura cerebral. De este modo, juegan un papel en la función de la BHE y en el control de la función de la microvasculatura. Se ha detallado que en las fases tempranas de isquemia se estimulan las serina proteasas activadas por trombina que liberan fragmentos, los denominados péptidos NR2, del receptor NMDA. Los anticuerpos NR2 surgen como respuesta a los fragmentos péptidos NR2 y pueden ser medidos en sangre. Se ha observado que los pacientes que sufren un ictus isquémico tienen unos niveles en sangre más elevados de anticuerpos NR2, comparado con individuos sanos. Los autoanticuerpos del receptor NMDA reflejan el antecedente de isquemia, incluso en las situaciones de isquemia transitoria reversible. También se ha evidenciado que los niveles de anticuerpos NR2 están significativamente más elevados en pacientes que han sufrido múltiples eventos vasculares recientes en contraposición con los que han experimentado un fenómeno aislado²⁵⁹.

Glicoproteína plaquetaria V

Las plaquetas adquieren un rol fundamental en el episodio isquémico cerebral. Otro grupo de estudio alemán dictaminó que los pacientes que presentan un AIT o un ictus isquémico muestran una mayor expresión de la glicoproteína plaquetaria VI en comparación con pacientes sin enfermedad isquémica. No se identificaron diferencias estadísticamente significativas entre los valores de los pacientes con AIT e ictus isquémico²⁶⁰.

Productos de degradación de fibrinógeno por elastasa

En el ictus isquémico acontece la acumulación y activación de leucocitos que liberan diversas enzimas proteolíticas, entre las que se incluyen la elastasa. La elastasa puede degradar componentes de la matriz extracelular y de las proteínas plasmáticas. Una de las proteínas que pueden ser degradadas por elastasa es el fibrinógeno, dando lugar a los productos de degradación. A tenor de esta premisa, un grupo holandés describió que el

grupo de pacientes con ictus isquémico mostraban unos niveles significativamente más elevados de productos de degradación de fribrinógeno por elastasa que el grupo control²⁶¹.

Dimetilarginina asimétrica

La dimetilarginina asimétrica (ADMA) es un derivado del catabolismo de las proteínas que contienen residuos de arginina metilada. Este producto es un inhibidor competitivo de la NOS. De modo que la elevación plasmática de ADMA juega un papel en la reducción de la biodisponibildad de ON asociada a la aterosclerosis. Por otro lado, se han relacionado los niveles de ADMA con el GIM de la arteria carótida y con enfermedad coronaria²⁶². Un grupo sueco llevó a cabo un estudio en una población de 363 pacientes que habían sufrido un ictus. De ellos, un 86% fueron etiquetados de ictus isquémico, un 8% de AIT y el 6% restante de ictus hemorrágico. Mientras los pacientes con ictus isquémico se dividieron en cardioembólicos y en no cardioembólicos, los pacientes con AIT se mantuvieron como grupo único independientemente de su etiología. El análisis de los datos mediante una regresión logística múltiple identificó que el incremento de la concentración de ADMA estaba fuerte e independientemente asociada a AIT y a ictus isquémico de características cardioembólicas²⁶³.

Metaloproteasas de matriz-9

Las metaloproteasas de matriz-9 (MMP-9) constituyen una familia de endopeptidasas encargadas de la renovación y degradación de las proteínas de la matriz extracelular. En condiciones normales, la expresión en el tejido cerebral de MMP-9 es mínima o indetectable. No obstante, como resultado de una acción lesiva acontece un incremento de sus niveles que ha llevado a sugerir su importante papel en la patogenia del ictus a través de la degradación de las proteínas de la matriz extracelular, que resultan esenciales para el mantenimiento de la homeostasis. Tras el inicio del ictus, se desarrolla un marcado aumento de la expresión de MMP-9 que conduce a disrupciones de la BHE y a muerte celular a través de mecanismos proteolíticos. Los niveles de MMP-9 se incrementan tanto en la ECV isquémica como hemorrágica²⁴⁸.

Proteína S100 β

La proteína S100 β es una proteína glial que participa en la regulación del Ca⁺² intracelular. Esta proteína tiene un perfil dual puesto que resulta protectora y trófica a concentraciones bajas, pero adquiere un papel tóxico y proapoptótico a elevadas concentraciones²⁴⁷. Cabe destacar que se ha planteado que la proteína S100 β resulta más un marcador de disfunción de la BHE más que de daño glial específico por su amplia localización en varios tipos celulares. El aumento de los niveles de S100 β no es específico del infarto cerebral, también sucede en las lesiones traumáticas cerebrales y en patología tumoral maligna extracraneal²⁴⁸.

Proteína acídica fibrilar glial

La proteína acídica fibrilar glial (GFAP) es una proteína específica de los astrocitos cerebrales. Un estudio que incluyó a 135 pacientes concluyó que la GFAP permitía distinguir entre aquellos pacientes que presentaban un ictus hemorrágico de los que habían sufrido un ictus isquémico en las primeras 6 horas desde el inicio de los síntomas. Concretamente, se observó que las concentraciones de GFAP era más elevadas en los casos de ictus hemorrágico: 111,6 ng/L en comparación de 0,4 ng/L de los ictus isquémicos (p<0.001). Estos resultados arrojaban una sensibilidad del 79% y una especificidad del 98%²⁶⁴.

Proteína PARK7

PARK7 es una proteína relacionada con acciones reparadoras en el marco del daño neurológico por estrés oxidativo. Se ha determinado que los pacientes que experimentan un ictus tienen aumentadas las concentraciones plasmáticas de PARK7. Si bien, dichos incrementos no diferencian entre ictus isquémico, AIT o ictus hemorrágico²⁴⁸.

Nucleósido difosfato quinasa A

La enzima nucleósido difosfato quinasa A (NDKA) cataliza el intercambio de fosfato entre varios nucleósidos. NDKA se ha involucrado en la cascada isquémica del ictus y

se han recogido aumentos de su concentración de forma temprana tras un ictus isquémico²⁴⁸.

Paneles de biomarcadores

En la bibliografía no solamente se han investigado biomarcadores individuales, también se ha ensayado con los llamados paneles de biomarcadores. El desarrollo de los paneles de biomarcadores responde a la necesidad de mejorar la sensibilidad y la especificidad de los biomarcadores individuales²⁴⁷. A tenor de la heterogeneidad del ictus isquémico, un biomarcador individual puede no ser suficiente para reflejar su complejidad²⁴⁵. Sendas revisiones de la materia han identificado distintas publicaciones que se han centrado en el estudio de paneles de biomarcadores en la ECV isquémica^{247,248,250}:

- Reynolds y colaboradores identificaron una sensibilidad del 92% y una especificidad del 93% para el diagnóstico de ictus isquémico en las primeras 6 horas desde el inicio de los síntomas mediante la determinación de S100 β , factor de crecimiento neurotrófico tipo B, factor von Willebrand (FvW), MMP-9 y proteína quimiotáctica de monocitos-1²⁶⁵. El FvW es una glicoproteína que se sintetiza en las células endoteliales y en los magacariocitos y participa en la formación del trombo arterial en el cerebro y en el corazón²⁶⁶.
- Lynch y colaboradores evaluaron la combinación de S100 β , MMP-9, molécula de adhesión celular vascular y FvW. En este caso, la sensibilidad y la especificidad fueron del $90\%^{267}$.
- Laskowitz y colaboradores, que aplicaron un panel que incluía PCR, dímero D (DD), péptido natriurético cerebral (BNP), MMP-9 y S100 β , obtuvieron una sensibilidad del 81% y una especificidad del 70%²⁶⁸.
- Laskowitz y colaboradores examinaron MMP-9, BNP, S100 β y DD. El modelo multivariante mostró un área bajo la curva característica operativa del receptor (ROC) de 0,76 para el ictus hemorrágico y de 0,69 para todos los ictus (p<0.001). Además, se obtuvo una sensibilidad del 86% y una especificidad del 37% para diferenciar entre ictus y cuadro imitador de ictus, incluyendo el ictus hemorrágico²⁶⁹.
- Kim y colaboradores concluyeron que un panel compuesto por BNP, DD, MMP-9 y S100 β no podía discriminar entre ictus isquémico agudo e ictus hemorrágico²⁷⁰.

- Whiteley y colaboradores comprobaron que el activador tisular del plasminógeno (tPA) y NT-proBNP estaban asociados positiva y significativamente con el diagnóstico de ictus o AIT. No obstante, solo mejoran el pronóstico de un modo marginal²⁷¹.
- Bustamente y colaboradores realizaron un estudio mediante la evaluación de un panel de 21 biomarcadores (IL-6, IL-17A, IL-2RG, proteína de unión al factor de crecimiento similar a la insulina-3, TNF-R1, oncogen relacionado con el crecimiento-α, FasL, factor de crecimiento nervioso-β, Hsc70, NT-proBNP, DD, caspasa-3, fibronectina celular, FvW, endostatina, S100B, proteína de adhesión vascular-1, apolipoproteína CIII, NSE, y molécula de adhesión de células neuronales) sobre más de 1,300 pacientes que consultaron por sospecha de ictus en las 6 primeras horas tras el inicio de los síntomas. El objetivo del estudio era, por un lado, diferenciar a los pacientes que habían sufrido un ictus real de aquellos que presentaron un cuadro imitador de ictus y, por otro lado, distinguir a los pacientes con ictus isquémico de los que sufrieron un ictus hemorrágico. Las conclusiones del estudio fueron que los biomarcadores estudiados no ofrecieron la las tasas de precisión adecuadas para su aplicación en un entorno clínico²⁷².

Aplicación de la proteómica en el diagnóstico

El conocimiento del conjunto de proteínas de la célula o del organismo está considerado como unos de los pasos más cercanos para obtener el fenotipo clínico definitivo. La expresión génica puede no reflejar de un modo preciso la expresión de proteínas durante la isquemia focal, que representa el elemento que condiciona el pronóstico funcional²⁷³. Un grupo estadounidense aplicó técnicas de proteómica mediante MS con la finalidad de identificar bionarcadores de AIT. En 2 cohortes de pacientes se identificó a la proteína básica de plaquetas (PBP) como potencial biomarcador de AIT. PBP, miembro de la familia de quimioquinas de las plaquetas humanas, es una proteína derivada de los granulocitos implicada en el reclutamiento de neutrófilos en la cascada inflamatoria. PBP se libera como consecuencia a la desgranulación plaquetaria que sucede en respuesta a una lesión. Esta proteína se ha relacionado con la arteriosclerosis²³⁸.

Zhang y colaboradores identificaron a 13 biomarcadores potenciales que arrojaban una sensibilidad del 84,4% y una especificidad del 95% para el diagnóstico de ictus isquémico²⁷⁴.

La cadenas α y β de la hemoglobina se expresan de modo diferente en los pacientes que han sufrido un ictus isquémico respecto a la población control, orientando a su uso como potencial biomarcador según un grupo taiwanés²⁷⁵.

Genes

Una reciente revisión sobre biomarcadores sanguíneos de AIT señalaba el papel del subhaplogrupo K de ADN mitocondrial y de la enzima 5,10-metilentetrahidrofolato reductasa²⁷⁶.

En la bibliografía se ha descrito el interés en aplicar paneles de genes con el fin de distinguir a los pacientes con ictus isquémico. Cabe destacar el trabajo de Stamova y colaboradores en el que validaron una batería de 18 genes (ARG1, BCL6, CA4, CKAP4, ETS-2, HIST2H2AA, HOX1.11, F5, FPR1, LY96, MMP9, NPL, PYGL, RNASE2, S100A9, S100A12, S100P, SLC16A6) para diferenciar ictus isquémico de sujetos sanos con una sensibilidad del 92,9% y una especificidad del 94,7%²⁵⁰.

A pesar de la descripción detallada sobre los estudios que han pretendido identificar biomarcadores que faciliten el diagnóstico de la ECV isquémica, una revisión sistemática concluía que estos trabajos contenían debilidades en su metodología que podían explicar las elevadas cifras de sensibilidad y especificidad halladas. Los principales problemas identificados de estos estudios eran, entre otros, el pequeño tamaño muestral, la elección de los controles, o la falta de validación²⁴⁹. También se ha señalado a la heterogeneidad de esta compleja patología como una de las razones de la dificultad para identificar biomarcadores²⁴⁵. Por tanto, no se podía recomendar ninguno de los biomarcadores en la práctica clínica habitual. Es necesaria la valoración de los biomarcadores en cohortes de pacientes no seleccionados con sospecha de ictus²⁴⁹.

2.5.2. Biomarcadores relacionados con los subtipos etiológicos

En el año 1993 se publicó en la revista *Stroke* la clasificación de los subtipos etiológicos del ictus isquémico, que mantiene una amplia repercusión y una profunda aceptación²⁷⁷. La clasificación TOAST (*Trial of Org 10172 in Acute Stroke Treatment*) contempla los siguientes subtipos: AGV, cardioembólico, enfermedad de pequeño vaso, ictus de otra etiología determinada, y de etiología indeterminada. En este último supuesto quedan englobadas las posibilidades que no se haya alcanzado una etiología por identificarse dos o más causas, que los estudios no hayan identificado ninguna causa, o bien, que el estudio haya sido incompleto. Es conocido que no se logrará identificar una etiología del episodio isquémico en el 20-30% de los pacientes²⁷⁸. La identificación de biomaracdores que faciliten el diagnóstico etiológico ha despertado el interés de diversos grupos de estudio, sobretodo en vistas a evitar recurrencias en aquellos pacientes a los no se ha podido identificar una causa a pesar de haber realizado los estudios complementarios. Entre los pacientes con una etiología indeterminada, cabe destacar que una proporción importante de ellos tendrá una FA paroxística²⁷⁹.

Biomarcadores relacionados con etiología cardioembólica

a) Péptido natriurético cerebral

El BNP es un factor diurético con actividad vasodilatadora que se libera principalmente del miocardio ventricular. BNP se ha considerado como un marcador de insuficiencia cardíaca congestiva. Sin embargo, se ha analizado que sus niveles elevados en plasma se relacionan con aquellos pacientes que sufren un ictus isquémico de etiología cardioembólica²⁸⁰. Okada y colaboradores determinaron que unos niveles de BNP superiores a 85,0 pg/ml (OR 7,20; IC 95%; 1,71-30,43, p=0,007) constituían un factor predictivo positivo de FA de nuevo diagnóstico en un grupo de pacientes que habían ingresado por ictus isquémico o AIT²⁸¹. También se ha descrito que unos valores de BNP > 140 pg/mL pueden resultar marcadores de trombo en la aurícula izquierda en los pacientes con FA que han sufrido un ictus isquémico o un AIT²⁸².

b) <u>Dímero D</u>

El DD es un producto de la degradación de fibrina por plasmina. Tras un ictus isquémico acontece una potenciación del sistema de coagulación que conduce a la formación de trombos y a la oclusión de vasos. El DD es un indicador de la activación de la coagulación sanguínea. Niveles elevados de DD se consideran como un elemento predictor independiente de ictus cardioembólico. Concretamente, Montaner y colaboradores obtuvieron una OR de 2,2 [1,4-3,7, p=0,001) con unos niveles de DD > 0.96 μg/mL²⁸⁰. Se han realizado estudios con la finalidad de adjudicar al DD un valor pronóstico, pero sin éxito²⁸³.

c) Propéptido natriurético cerebral N-terminal

El propéptido natriurético cerebral N-terminal (NT-proBNP) surge de la escisión que sufre el precursor pro-BNP, proceso que da lugar a la liberación de BNP y NT-proBNP en cantidades equimolares. Pro-BNP se libera de los miocitos cardíacos como respuesta a un aumento de la tensión de la pared, sobrecargas de presión/volumen y en situaciones de estrés hemodinámico²⁸⁴. Purroy y colaboradores llevaron a cabo un estudio en una población de pacientes que habían sufrido un AIT y concluyeron que unos niveles elevados de NT-proBNP recogidos durante los 3 primeros meses tras el episodio isquémico estaban asociados a FA. Se obtuvieron distintos valores de corte en función de la evolución temporal: 313 pg/mL en el inicio (sensibilidad del 89,7% y especificidad del 74,5%), 181 pg/mL a los 7 días (sensibilidad del 88% y especificidad del 74,5%), y 174 pg/mL a los 90 días (sensibilidad del 83,3% y especificidad del 71,9%)²⁸⁵. Debido a que NT-proBNP tiene una mayor vida media y permanece con una concentración más estable en sangre, se considera que tiene una mejores aptitudes que BNP como biomarcador²⁸⁶. Un reciente meta-análisis apunta a que los péptidos natriuréticos, BNP/NT-proBNP, muestran una elevada sensibilidad y especificidad para catalogar de causa cardioembólica un ictus isquémico²⁸⁴. La misma publicación destaca que la relación entre pro-BNP y la dilatación auricular explica la asociación entre la elevación de los niveles de BNP/NT-proBNP con la presencia de FA e ictus cardioembólico²⁸⁴.

d) Troponina-I

La troponina-I (TnI) es un marcador específico de daño miocárdico en el contexto de los síndromes agudos coronarios. Sin embargo, la TnI también se ha relacionado con la FA sin isquemia aguda coronaria. Ward y colaboradores observaron que unos niveles elevados de TnI en el inicio de un AIT o de un ictus isquémico agudo está asociado a un diagnóstico ulterior de FA. Aquellos pacientes que contaban con antecedentes de FA también tenían unos valores de TnI más elevados²⁷⁹.

e) Expresión génica

Un grupo de EUA identificó un panel de 40 genes que permitía distinguir ictus de etiología cardioembólica de los relacionados con AGV con una sensibilidad y especificidad superiores al 95%. En la misma publicación se destacaba el hallazgo de un perfil de 37 genes que diferenciaban a los pacientes que habían sufrido un ictus isquémico cardioembólico debido a una FA de otras causas cardioembólicas. En este caso también se alcanzaban una elevadas cotas de sensibilidad y especificidad, que eran mayores del 90%. Estos resultados sugieren que se desencadenan respuestas inmunes específicas para cada uno de los supuestos señalados²⁸⁷.

Biomarcadores relacionados con la arteriosclerosis de gran vaso

a) Fosfolipasa A2 asociada a lipoproteína

Como se ha señalado previamente, Lp-PLA2 es un marcador involucrado en la enfermedad arteriosclerótica. Delgado y colaboradores hallaron que la actividad de Lp-PLA2 se encuentra aumentada en los pacientes que han sufrido un AIT en relación a AGV como mecanismo etiológico. Concretamente, identificaron una mediana de 207 ng/mL/min (166-245) en comparación con 184 ng/mL/min (148-218) de los pacientes sin AGV (p=0,044)²⁸⁸. Massot y colaboradores observaron que una actividad elevada de Lp-PLA2 identifica a los pacientes que han sufrido un ictus isquémico o un AIT en relación a enfermedad arteriosclerótica intracraneal²⁸⁹.

b) Proteómica

Mediante técnicas de MS, un grupo de Bethesda (EUA) analizó el suero de pacientes que habían sido sometidos a una endarterectomía de las arterias carótidas. Lograron identificar a 4 proteínas cuya expresión diferenciaba a los pacientes con enfermedad arteriosclerótica de las arterias carótidas sintomática de aquellos en que la afectación de las carótidas había sido asintomática. Dichas proteínas eran haptoglobina, α 1-antitripsina, proteína de unión a la vitamina D, y precursor de α 2-glicoproteína rico en leucina²⁹⁰.

Biomarcadores relacionados con la enfermedad de pequeño vaso

Los biomarcadores relacionados con la enfermedad de pequeño vaso han sido menos estudiados. Una revisión sobre los biomarcadores de ictus isquémico recoge que los ictus de perfil lacunar han mostrado tener unos niveles más elevados de trombomodulina, ICAM-1, factor tisular y homocisteína comparados con controles²⁵⁰.

2.5.3. Biomarcadores como factor pronóstico

Copeptina

El Grupo de Neurociencias Clínicas del IRBLleida publicó un estudio que consideró a 237 pacientes que habían sufrido un AIT y habían sido atendidos consecutivamente. Un 5% de estos pacientes experimentaron una RI. Observaron que unos niveles elevados de copeptina se asociaban a RI en los 7 primeros días tras el episodio inicial, no así en las RI durante los primeros 90 días. Se ha teorizado que la copeptina pudiera ser un marcador de placas inestables que amenacen la homeostasis o, directamente, represente un marcador de isquemia cerebral real. Resulta interesante la afirmación que aquellos pacientes que han sufrido un AIT que cuenten con un estudio vascular negativo y unos niveles de copeptina inferiores a 13,8 pmol/l podrían ser susceptibles de un manejo ambulatorio, a tenor de su elevado valor predictivo negativo (97,4%)²⁹¹. En un contexto de ictus isquémico, los niveles en sangre de copeptina, determinados en las primeras 72

horas desde el inicio, traducen un pronóstico funcional y de mortalidad durante los primeros 90 días²⁴². De Marchis y colaboradores también evaluaron la capacidad pronóstica de la copeptina en una población de pacientes que habían sufrido un AIT. Concluyeron que la copeptina mejoraba el valor pronóstico de la escala *ABCD*² para la predicción de ictus isquémico en los tres primeros meses tras el AIT. Se observó que la copeptina era 4 veces más elevada en los pacientes que habían sufrido una RI (24,3 pmol/l; RIQ, 8,7-63,8 en comparación con 5,8 pmol/l; RIQ, 2,8-13,7; p=0,02)²⁹².

Fosfolipasa A2 asociada a lipoproteína

El grupo de Cucchiara y colaboradores llevó a cabo un estudio a pacientes que habían consultado en su Servicio de Urgencias por AIT. Describieron que la actividad Lp-PLA2 tiene un papel predictivo estadísticamente significativo de RI o fallecimiento en los primeros 90 días tras el AIT inicial. Los resultados del estudio refuerzan el concepto que Lp-PLA2 es un biomarcador de placa aterosclerótica inestable. Además, observaron que tanto la masa como la actividad de Lp-PLA2 están asociadas significativamente a estenosis de gran vaso sintomáticas superiores al 50%, pero no en el caso de mecanismo cardioembólico²⁹³. Delgado y colaboradores obtuvieron unas conclusiones similares²⁸⁸. Otra publicación se percató que el riesgo de recurrencia aumentaba un 7% por cada 30 nmol/min/mL de incremento de la actividad de Lp-PLA2²⁹⁴.

Ligando soluble CD40

El ligando soluble CD40 (sCD40L) participa en la inestabilidad de la placa aterosclerótica y se libera mediante la activación plaquetaria. Se ha contemplado que sCD40L establece un RI en pacientes con AIT o ictus isquémico menor²⁹⁵.

Proteína C-reactiva

La PCR es un marcador de inflamación sistémica. Una publicación, que incluyó a más de 130 pacientes que habían sido atendidos por un AIT y que tuvieron un seguimiento durante 12 meses, constató que unos niveles > 4,1 mg/mL de PCR de alta sensibilidad constituyen un predictor independiente de sufrir una recurrencia vascular²⁹⁶. En la

misma publicación se incide en su papel de mediador en la formación de la placa y disregulación endotelial. Corso y colaboradores alcanzaron unas conclusiones similares por lo que a la RI respecta mediante la determinación de unos niveles ≥ 3 mg/L de PCR²⁹⁷. También se ha determinado que la PCR de alta sensibilidad predice más recurrencias en pacientes con enfermedad oclusiva de gran vaso intracraneal²⁹⁸. Otro trabajo a destacar se centró en el estudio de pacientes sometidos a endarterectomía de la arteria carótida identificó que los pacientes con estenosis sintomáticas tenían unos valores de PCR de alta sensibilidad más elevados que los asintomáticos²⁹⁹. El estudio de Framingham también observó que, con independencia de otros FR vasculares, unos niveles plasmáticos elevados de PCR establecen un incremento del riesgo de sufrir ictus isquémico y AIT en el futuro³⁰⁰.

IL-6

A la IL-6, reseñada previamente en los biomarcadores diagnósticos, también se le atribuye una capacidad pronóstica. Un grupo israelí determinó que los valores iniciales de IL-6 en pacientes que han sufrido un ictus isquémico o un AIT se correlacionan con la supervivencia a lo largo del primer año de seguimiento³⁰¹. Establecieron un valor de corte de la IL-6 de 6,47 pg/mL. En una revisión sobre la función de la IL-6 como biomarcador pronóstico de los pacientes con ictus isquémico se describe que la IL-6 está asociada a un peor pronóstico funcional, valorado con la aplicación de la escala de Rankin modificada (mRS). Sin embargo, en comparación con otros modelos pronóstios de ictus validados como la clasificación OCSP o la puntuación de la *National Institutes of Health Stroke Scale* (NIHSS), no se considera que la determinación de IL-6 aporte una mayor potencia predictiva que haga recomendable su aplicación en la práctica clínica diaria³⁰².

IL-16

La IL-16 es una quimioquina que se expresa en diferentes grupos celulares, como células T CD8+, macrófagos o células endoteliales. Se cree que la IL-16 inhibe el receptor de la célula T. Un grupo de Lund (Suecia) determinó la expresión de RNAm y los niveles proteicos de IL-16 en placas de arterias carótidas procedentes de endarterectomías. Los resultados permitieron concluir que los niveles elevados de IL-16

estaban asociados a placas asintomáticas y a un menor riesgo de eventos cardiovasculares tras la cirugía. Por tanto, otorgan un papel protector a la IL-16³⁰³.

Neuropéptido proencefalina A

El neuropéptido proencefalina A (PENK-A) es un marcador de la integridad de la BHE. Se ha constatado que la concentración de PENK-A aumenta en paralelo a la gravedad clínica del ictus isquémico (r=0,225; p=0,002) y al tamaño de la lesión isquémica (r=0,325; p<0,001)³⁰⁴.

Marcadores inmunes para la predicción de infecciones tras un ictus isquémico

Las infecciones que acontecen tras un ictus isquémico son una de las principales complicaciones del ictus agudo, alcanzando unas frecuencias de entre el 21 y el 65%. Más allá de las limitaciones funcionales que pueden conllevar un mayor riesgo de broncoaspiraciones, cabe considerar que tras el ictus isquémico se desencadena una regulación negativa del sistema inmune. En este sentido, se ha observado una disminución de la expresión monocítica de HLA-DR o unos recuentos bajos de las células T CD4+. Ambas situaciones son factores predictivos para el desarrollo de infecciones postictales²⁴². Las complicaciones infecciosas también están relacionadas con la activación de la vía adrenomedular simpática, situación representada por la elevación de las catecolaminas plasmáticas³⁰⁵.

Anticuerpos antifosfatidilserina-protrombina

Los anticuerpos antifosfatidilserina-protrombina (aPS/PT) forman parte de las denominadas nuevas subclases de anticuerpos antifosfolípidos. Estos anticuerpos están relacionados con los fenómenos trombóticos del síndrome anticuerpo antifosfolípido pero también con la arteriosclerosis en pacientes sin el síndrome anticuerpo antifosfolípido. Mullen y colaboradores realizaron una determinación de anticuerpos antifosfolípido (anticuerpos anticardiolipina, β-2-glicoproteína-I, contra los dominios 1 y 4/5 de la β-2-glicoproteína-I y aPS/PT) a una población de más de 160 pacientes que habían sufrido un AIT. El estudio identificó los anticuerpos Ig G contra el complejo fosfatidilserina-protrombina estaban asociados a RI o muerte en los primeros 90 días

tras el evento inicial. Los autores no identificaron ninguna relación entre los otros anticuerpos estudiados y las variables pronósticas. Por otro lado, ninguno de los anticuerpos evaluados pudo ser relacionado con arteriosclerosis³⁰⁶.

Urato

El urato, la forma soluble del ácido úrico, tiene una potencial acción dual puesto que, por un lado, es un potente antioxidante y, por otro lado, a niveles elevados podría exhibir un efecto de potenciación de los fenómenos oxidativos²⁴⁷. En probable relación a esta dualidad, la bibliografía recoge resultados aparentemente contradictorios por lo que respecta al urato en la ECV. Koton y colaboradores determinaron que unos niveles elevados de urato representan un factor predictivo independiente de riesgo a largo plazo de enfermedad coronaria aguda en mujeres que han sufrido un AIT o un ictus isquémico. No obtuvieron la misma conclusión en la población masculina³⁰⁷. El estudio de Rotterdam señaló que unos valores elevados de ácido úrico sérico guardaban relación con el riesgo de infarto de miocardio y de ictus³⁰⁸. En contraposición, el grupo de Chamorro y colaboradores detalló que los pacientes con un ictus isquémico agudo cuentan con un incremento del 12% de posibilidades de buen pronóstico clínico por cada miligramo por decilitro de aumento de ácido úrico sérico³⁰⁹.

Apolipoproteínas

La apolipoproteína apo A1 se localiza principalmente en las HDL y la apo B en las LDL. La determinación de las apo A1 y de las apo B aportan una información más específica sobre las partículas aterogénicas (apo B) y antiaterogénicas (apo A1). Un grupo del Reino Unido desarrolló un estudio prospectivo a un grupo de 261 pacientes con AIT que fueron seguidos durante 10 años, antes que se extendiera el uso de estatinas. Se determinaron los niveles de colesterol total, LDL, HDL, apo A1 y apo B. Los datos obtenidos les permitieron concluir que las apo B y el cociente apoB/apo A1 representan importantes marcadores pronósticos de RI. Resulta destacable que las apo B tuvieron un mayor valor predictivo que el colesterol total, las LDL o las HDL. Es más, las LDL mostraron tener un débil valor predictivo de RI³¹⁰.

Ácidos grasos omega 3 de cadena larga

Los ácidos grasos omega 3 de cadena largo son un grupo de ácidos grasos poliinsaturados que incluyen los ácidos eicosapentaenoico y DHA. Los pescados grasos de agua fría y el aceite de pescado componen sus fuentes alimenticias más comunes. Un meta-análisis concluyó que estudios observacionales demuestran una asociación moderada e inversa entre el consumo de pescado y ácidos grasos omega 3 de cadena larga con el riesgo de ECV. Sin embargo, no se evidenció una asociación semejante en el caso de medir los ácidos grasos omega 3 de cadena larga como biomarcadores circulantes. Por consiguiente, el efecto beneficioso del consumo de pescado puede estar mediado a través de una compleja interacción entre una amplia gama de nutrientes³¹¹. Se lograron unas conclusiones similares con el estudio del ácido α-linolénico, ácido graso omega 3 de origen vegetal³¹².

Fragmento de protrombina F 1.2

Las concentraciones elevadas de fragmentos de protrombina F 1.2 se han relacionado con estenosis de las arterias carótidas más severas y con RI en pacientes que habían sufrido un AIT o presentan un soplo cervical asintomático. Estos hallazgos sugieren la importancia de la actuación de la trombina en la fisiopatología de RI, como también la inestabilidad de la placa y en la formación de trombos³¹³.

Metaloproteasas de matriz-9

La expresión de MMP-9 se incrementa en las primeras horas tras una isquemia cerebral focal y permanece aumentada varios días. Como se ha mencionado previamente, las MMP-9 guardan relación con la pérdida de la integridad de la BHE y están relacionadas con la formación de edema vasogénico y con la transformación hemorrágica. Se ha descrito que los niveles de MMP-9 suelen disminuir a las 72 horas del inicio del ictus isquémico, con la excepción de los pacientes que sufran una progresión del ictus e infartos de gran tamaño en la fase subaguda³¹⁴.

Factor 15 de diferenciación de crecimiento

El factor 15 de diferenciación de crecimiento (GDF-15) forma parte de la superfamilia de citoquinas transformadoras del factor de crecimiento β. La expresión de GDF-15 se desencadena como respuesta a situaciones de estrés, tales como procesos de inflamación o de lesión tisular. En un grupo de pacientes que habían sufrido un ictus isquémico o un AIT se observó que los niveles elevados circulantes de GDF-15 se correlacionan con un peor pronóstico funcional en los pacientes con ictus isquémico. En el mismo trabajo se determinó que los niveles de GDF-15 están vinculados a biomarcadores de daño cerebral (S100 β), de inflamación (IL-6) y con el GIM de la arteria carótida³¹⁵.

Paneles de BM

Como en el caso de los BM diagnósticos de la ECV, el uso de paneles de BM con una finalidad pronóstica también ha centrado el interés de distintos grupos de estudio.

- Campbell y colaboradores evaluaron VCAM-1 soluble, NT-proBNP, PCR, homocisteína, renina, y lípidos. Pues bien, tanto los niveles de VCAM-1 soluble como de NT-proBNP surgieron como biomarcadores pronósticos de RI más allá de los FR tradicionales³¹⁶.
- Welsh y colaboradores obtuvieron los niveles de IL-6, IL-18, TNF-α, PCR y fibrinógeno con el fin de estudiar las RI. Por lo que respecta a las citoquinas proinflamatorias, con la salvedad de la IL-18, tanto la IL-6 como el TNF-α se erigieron como factores de riesgo significativos de RI. Los reactantes de fase aguda, PCR y fibrinógeno, también mostraron una relación con RI. No hallaron ninguna relación entre los marcadores inflamatorios estudiados y las recurrencias en forma de ictus hemorrágico³¹⁷.
- Whiteley y colaboradores aplicaron un amplio panel de biomarcadores compuesto por marcadores de inflamación (adiponectina, PCR, ICAM-1, IL-6, IL-10, MMP-9, TNF-α, FvW, y recuento de glóbulos blancos); de trombosis (DD, fibrinógeno y tPA); de tensión cardíaca (NT-proBNP y troponina T); y de daño glial y neural (tau, S100 β, creatinina y glucosa) a una población de más de 240 pacientes que habían consultado por ictus isquémico o AIT. Solamente IL-6 y NT-proBNP pudieron asociarse significativamente como marcadores de mal pronóstico funcional (medido

- a través de la mRS) a los 3 meses del episodio inicial. Aunque, interesantemente, los autores concluían que la determinación de IL-6 y de NT-proBNP no resultaba de mayor utilidad que el uso de la NIHSS o la edad para predecir el pronóstico funcional a corto plazo de los pacientes que han sufrido un ictus isquémico³¹⁸.
- Hermus y colaboradores valoraron la aplicación de 4 BM para discernir entre estenosis de la arteria carótida sintomáticas y asintomáticas. Por tanto, biomarcadores que faciliten la identificación de pacientes con elevado riesgo de padecer una ECV en el seno de placas en las arterias carótidas inestables. Determinaron los niveles en el suero de neopterina, pentraxina 3, CD163 soluble y receptor inductor expresado en células mieloides-1 soluble (sTREM-1) a un grupo de pacientes que fueron sometidos a endarterectomía. Estos biomarcadores están relacionados con procesos de arteriosclerosis o de progresión de la placa arteriosclerótica. Los autores concluyeron que neopterina y sTREM-1 pueden estar relacionados con arteriosclerosis, pero no con la vulnerabilidad de la placa. Ninguno de los biomarcadores analizados podría utilizarse para distinguir entre enfermedad de la arteria carótida asintomática y sintomática³¹⁹.
- Bajo la hipótesis que los marcadores inflamatorios están asociados con un incremento de recurrencias vasculares tempranas tras un AIT o un ictus isquémico menor, Selvarajah y colaboradores analizaron las concentraciones plasmáticas de PCR, IL-6, antagonista del receptor de IL-1, fibrinógeno, recuento leucocitario, y velocidad de sedimentación globular a una muestra de más 700 pacientes que habían sufrido un AIT o un ictus isquémico minor. Diseñaron un estudio de casos y controles. Asimismo, los autores examinaron las frecuencias alélicas de genes inflamatorios. Es este estudio se evaluaron los polimorfismos de los genes de CD14, PCR, cadena α de fibrinógeno, cadena β de fibrinógeno, granulina, ICAM-1, IL-1α, IL-1β, antagonista del receptor de IL-1, IL-6, integrina β2, linfotoxina α, selectina E, selectina P, TNF, VCAM-1, factor de crecimiento transformador β1. Los resultados mostraron que los marcadores inflamatorios circulantes estudiados no guardaban relación con recurrencias de eventos vasculares. Por lo que al estudio de los genes refiere, los alelos G y C de la IL-6 y polimorfismos de fibrinógeno α se relacionaron como marcadores pronósticos. No obstante, los mismos autores razonan que es preciso replicar los resultados³²⁰.

- Segal y colaboradores publicaron un estudio que resulta destacable por el gran nombres de pacientes incluidos. Concretamente, 1.292 pacientes que habían sufrido un ictus isquémico o un AIT procedentes del estudio poblacional OXVASC. Estos pacientes fueron sometidos al análisis de 14 biomarcadores relacionados con inflamación (IL-6, PCR, lipocalina asociada a neutrófilo gelatinasa -NGAL-, y receptor-1 de TNF -TNFR-1); trombosis (trombomodulina, fibrinógeno, selectina P, DD, FvW, y proteína Z); aterogénesis (anticuerpo antiaterogénico antifosforilcolina); y daño cardíaco o neuronal (proteína cardíaca transportadora de ácidos grasos hFABP-, enolasa específica de neuronas -NSE-, y factor neurotrófico derivado del cerebro -BDNF-). Los autores identificaron que solamente IL-6 y PCR resultaron predictivos de RI, aunque mediante una débil asociación. La conclusión es que ninguno de los biomarcadores estudiados presenta utilidad clínica en la práctica habitual³²¹.
- Greisenegger y colaboradores investigaron la asociación entre un panel de biomarcadores y mortalidad en una cohorte de más de 900 pacientes con AIT o ictus isquémico menor. La importancia radica en que los fallecimientos prematuros tras un AIT o un ictus isquémico suelen ocurrir como consecuencia de enfermedad cardíaca o cáncer más que del propio ictus. El panel de biomarcadores estaba compuesto por marcadores de inflamación (IL-6, PCR, NGAL, y TNFR-1 soluble); trombosis (trombomodulina, fibrinógeno, selectina P, DD, FvW, y proteína Z); aterogénesis (antifosforilcolina); función cardíaca (NT-proBNP); daño cardíaco o neuronal (NSE y hFABP); y regeneración neural (BDNF). Unos niveles elevados de TNFR-1 soluble, IL-6, PCR, NGAL, FvW, NT-proBNP y hFABP resultados elementos predictivos de fallecimiento temprano, independiente de factores demográficos o FR clínicos. NT-proBNP puede reflejar una mayor prevalencia de enfermedad cardíaca en estadio subclínico o deterioro de la función renal. Elevadas concentraciones de hFABP se han asociado a mortalidad tras un síndrome agudo coronario. Por otro lado, hFABP puede participar en la cancerogénesis. Por ello, hFABP puede resultar de interés para identificar un cáncer oculto en pacientes con AIT o ictus menor³²².

Whiteley y colaboradores realizaron una revisión sistemática sobre las publicaciones de biomarcadores en sangre en relación al pronóstico del ictus isquémico. En su artículo concluyeron que la mayoría de trabajos no habían establecido si estos marcadores

añadían información a variables clínicas establecidas, tales como edad o severidad de ictus, o lograban aumentar el poder predictivo en el caso de añadirse a escalas pronósticas clínicas. Por ello, la mayoría de biomarcadores poseen un significado clínico incierto³²³. Esta conclusión está en la línea del resultado del estudio de Segal y coloboradores³²¹. En relación a la potencial aplicabilidad de los biomarcadores, es preciso señalar que su relevancia clínica debe ser validada mediante ensayos clínicos que contengan un diseño y un análisis específicos a responder cuestiones clínicas³²⁴.

A la vista de las tenues conclusiones de la revisión de los biomarcadores relacionados con el AIT y con el ictus isquémico, el abordaje que proporcionan las ciencias "ómicas" para el estudio de biomarcadores puede potenciar el conocimiento de las vías fisiopatológicas que intervienen en la ECV²⁴⁴. De aquí subyace el interés de la aplicación de la metabolómica, una de las ramas de las ciencias "ómicas".

Tabla 4. Biomarcadores relacionados con la isquemia cerebral.

Biomarcadores		Valor diagnóstico		Valor etiológico		Valor pronóstico	
	u01 00	AIT	IcI	AIT	IcI	AIT	Icl
ADMA ²⁶³		X					
AG omega	3311						X
Anticuerpo	os NR2 ²⁵⁹	X	X				
Apolipopro	oteínas ³¹⁰					X	
aPS/PT ³⁰⁶ BNP ^{281,282}						X	
Copeptina ²	42 254 291 292			X	X		
Copeptina ² DD ²⁸³	1227 1327 2	X	X		**	X	X
Elastasa ²⁶¹					X		
Elementos	tro.zo.253	v	X				
Factor tisul	lar ²⁵⁰	X			X		
GDF-15 ³¹⁵	lai				Λ		X
GFAP ²⁶⁴			X				А
GGT ²⁵⁸			Λ	X			
GPV^{260}		Х	X	Λ			
Homociste	ína ²⁵⁰		A		X		
ICAM-1 ²⁵⁶		Х			X		
IL-6 ^{256,301}		X				Х	х
IL-16 ³⁰³						X	X
Lp-PLA2 ²⁵	5,288,289,293,294	Х		Х	Х	X	X
Marcadore	s de infección ²⁴²						X
MMP-9 ²⁴⁸			Х				X
NDKA ²⁴⁸			Х				
NT-proBN	P ^{284,285}			X	X		
	S100B/NGF-B/FvW/MMP-						
	9/MCP-1 ²⁶⁵		X				
	S100B/MMP-9/VCAM/FvW ²⁶⁷		X				
	PCR/DD/BNP/MMP-		X				
	9/S100B ²⁶⁸						
lore	MMP-9/BNP/S100B/DD ²⁶⁹		X				
Paneles de biomarcadores	BNP/DD/MMP-9/S100B ²⁷⁰		X				
	tPA/NT-proBNP ²⁷¹	X	X				
	VCAM-1/NT-proBNP ^{a316}					X	X
le k	IL-6/TNF-					X	X
ss	α/PCR/Fibrinógeno ^{a317}						
nelo	NT-ProBNP/Alelos G y C/ IL-					X	X
Ра	6/Fibrinógeno ^{a320} IL-6/PCR ^{a321}						
	TNFR-1/IL-					X	X
	1NFK-1/1L- 6/PCR/NGAL/FvW/NT-					v	37
	proBNP/hFABP ³²²					X	X
	NT-proBNP/Endostatina ^{a272}		X				
Paneles de	genes ^{250,287}		X		X		
PARK 7 ²⁴⁸		Х	X				
PCR ^{256,296-3}	500	X				Х	х
PENK-A ³⁰⁴	4						X
	Cadenas α y β de Hb ²⁷⁵		X				
ca	Haptoglobina/						
Proteómica	α1-antitripsina/			_	_		
otec	prot. unión vit.D/			X	X		
Pro	α2-glicoprot. ²⁹⁰						
	PBP ²³⁸	X					
Protrombin	na F 1.2 ³¹³			X		X	
$S100B^{248}$			X				
sCD40L ²⁹⁵						X	X
SHIP-1 ²⁵⁷			X				
TnI ²⁷⁹				X	X		
Trombomo	odulina ²⁵⁰				X		
Urato ³⁰⁷⁻³⁰⁹						X	Х

IcI, ictus isquémico; ADMA, dimetilarginina asimétrica; AG, ácidos grasos; aPS/PT, anticuerpos antifosfatidilserina-protrombina; BNP, péptido natriurético cerebral; DD, dímero D; GDF, factor de diferenciación del crecimiento; GFAP, proteína acídica fibrilar glial; GGT, gamma-glutamiltransferasa; GPV, glicoproteína plaquetaria V; ICAM, molécula de adhesión intercelular; IL, interleuquina; Lp-PLA2, fosfolipasa A2 asociada a lipoproteína; MMP, metaloproteasas de matriz; NDKA, nucleósido difosfato quinasa A; NT-proBNP, propéptido natriurético cerebral N-terminal; NGF, factor de crecimiento neurotrófico; FvW, factor de von Willebrand; MCP, proteína quimiotáctica de monocitos; VCAM, molécula de adhesión vascular; PCR, proteína C reactiva; tPA, activador tisular del plasminógeno; TNF, factor de necrosis tumoral; TNFR, receptor de TNF; NGAL, lipocalina asociada a gelatinasa de neutrófilos; hFABP, proteína cardíaca transportadora de ácidos grasos; PENK, neuropéptido proencefalina; PBP, proteína básica de plaquetas; Hb, hemoglobina; Prot, proteína; sCD40L, ligando soluble CD40; SHIP, fosfatidilinositol-3,4,5-trifosfato 5-fosfatasa; TnI, troponina-I. a No se ha anotado la totalidad de los biomarcadores del panel.

2.6. Metabolómica

El estudio de los biomarcadores está adquiriendo una importancia capital en vistas a identificar los elementos que intervienen en los mecanismos fisiopatológicos del ictus y que puedan posibilitar su diagnóstico precoz y el riesgo de recurrencia³²⁵. Los biomarcadores están llamados a ser unos componentes indispensables en el campo del AIT. Como se ha destacado con anterioridad, su diagnóstico resulta complejo porque sus síntomas y signos generalmente se resuelven antes de que el paciente pueda ser valorado por el personal médico. Sin embargo, hasta la fecha no existe ningún biomarcador con utilidad clínica validado³²⁶. Se ha señalado que frente a enfermedades caracterizadas por una fisiopatología variable, tales como la ECV, sea más factible la aplicación de una combinación de biomarcadores que un único biomarcador²⁸⁰. Fruto de lo reseñado, el estudio de los llamados sistemas biológicos está adquiriendo una mayor relevancia en la actualidad. Los sistemas biológicos ofrecen un abordaje integrador para valorar la respuesta biológica ante un escenario de enfermedad³²⁷. Los sistemas biológicos están regidos por las relaciones jerárquicas que se establecen entre las distintas ciencias "ómicas": genómica, transcriptómica, proteómica y metabolómica³²⁸. La metabolómica está protagonizando un rol emergente en el estudio de diversas enfermedades neurológicas³²⁹. Las relaciones estadísticas entre la expresión génica y los niveles de proteínas pueden resultar débiles e inconsistentes y ser más indicativos de un potencial fisiopatológico que de un determinado fenotipo³²⁷. De modo, que en la mayoría de las enfermedades, ni la proteómica ni la genómica proporcionan resultados tangibles que permitan la identificación de biomarcadores³³⁰. Por otro lado, el número relativamente pequeño de metabolitos humanos (aproximadamente 74.000), en comparación con el número estimado de genes (25.000), transcripciones (100.000) y proteínas (1.000.000) condiciona que la metabolómica pueda tener un mejor abordaje respecto el resto de disciplinas "ómicas" 328,331.

2.6.1. Concepto de metabolómica

Las funciones de cada célula así como las interacciones que acontecen entre las diferentes células están bajo un estricto control molecular y componen un programa de regulación metabólica que participa en la homeostasis general. El metabolismo celular está constituido por la red de secuencias interconectadas que interconvierten los metabolitos celulares³³².

La metabonómica se define como la medida cuantitativa de la respuesta dinámica metabólica de los sistemas vivos ante estímulos fisiopatológicos o modificaciones genéticas. Por otro lado, la metabolómica constituye el análisis comprensivo y cuantitativo de todos los metabolitos de un sistema vivo³³³. Así, mientras las metabolómica se centra en el análisis intra y extracelular de sistemas biológicos simples, la metabonómica determina el estudio de la respuesta metabólica ante estímulos fisiopatológicos o modificaciones genéticas^{334,335}. Sin embargo, ambas ciencias han devenido en disciplinas convergentes difíciles de distinguir. Por ello, los términos metabonómica y metabolómica se utilizan indistintamente³³³. Por consiguiente, la metabolómica se encarga de la identificación, cuantificación y caracterización de los metabolitos, es decir, de las moléculas de pequeño tamaño (generalmente < 1 kDa) derivadas del metabolismo celular y que actúan de intermediarios. El conjunto de metabolitos determina el metaboloma³³⁶ y comprende un rango amplio de distintas entidades químicas: sales, ácidos, bases, lípidos, etcétera³³⁷. El estudio metabolómico se puede llevar a cabo a partir de distintas muestras biológicas, tales como fluidos biológicos (orina, sangre, saliva, líquido cefalorraquídeo), tejidos, o de la exhalación³²⁹. Por tanto, la metabolómica permite la monitorización de las variaciones de metabolitos que acontecen a nivel celular ante estados patológicos o fisiológicos³³⁸. La importancia de los metabolitos radica en que son el resultado de la interacción del genoma y el epigenoma con el entorno del individuo. Más allá de representar el producto final de la expresión génica, conforman parte de los medios reguladores siendo parte esencial de la integración entre los distintos sistemas biológicos³³⁹. El conocimiento de los metabolitos proporciona una estimación a tiempo real de la respuesta metabólica a la enfermedad³⁴⁰. Además de la misma naturaleza química del compuesto, la determinación de los metabolitos depende, entre otros, de las diferencias en la dieta y el estilo de vida, del origen de la muestra, del sistema elegido

para la detección del metabolito, o de los mismos cambios dinámicos en el metabolismo celular y tisular³²⁹.

2.6.2. Aproximación metodológica para la obtención de los perfiles metabolómicos

El desarrollo de la metabolómica está intimamente relacionado con los avances en la capacidad de análisis matemáticos y estadísticos que permitan la determinación y comparación de miles de entidades químicas³⁴¹. El análisis de todo el espectro del metaboloma no es posible mediante un único instrumento. En el momento actual, es preciso la aplicación de un enfoque multiplataforma³³⁶. Se distinguen dos tipos de abordajes metabolómicos: el análisis metabolómico dirigido y el no dirigido. El análisis dirigido se define por la medición cuantitativa o semicuantitava de un grupo definido de metabolitos involucrados en una vía bioquímica o reacción metabolómica. Por tanto, requiere que el investigador conozca previamente aquellos metabolitos que deben centrar el interés del patrón metabolómico. El análisis dirigido proporciona una mayor selectividad y sensibilidad que el análisis no dirigido, pero no está exento de limitaciones. Este abordaje precisa de una mayor preparación de la muestra. Además, la valoración de grandes cantidades de metabolitos, las fluctuaciones metabolómicas o la evaluación de productos nuevos del metabolismo limitan su aplicación^{336,342,343}. El analísis no dirigido determina el análisis o la identificación de una gran cantidad de metabolitos con la finalidad de establecer diferencias entre los perfiles metabolómicos de varias situaciones clínicas³²⁸. El principal objetivo de la preparación de la muestra de este abordaje es mantenerla intacta, en la medida de las posibilidades, para evitar fraccionamientos o pérdidas. El análisis no dirigido genera una gran complejidad por la elevada cantidad de datos obtenidos³⁴⁴.

El procedimiento es complejo técnicamente. Se trata de establecer los cambios existentes en miles de moléculas de modo comparable, cuando la diferencia en su concentración puede alcanzar diversos órdenes de magnitud. La obtención de un perfil metabolómico implica aislar metabolitos, realizar su determinación y analizar los datos obtenidos mediante herramientas bioinformáticas con el objetivo de establecer diferentes relaciones que definan sistemas biológicos³⁴⁵. Predominantemente, se

consideran dos técnicas analíticas para llevar a cabo los estudios metabolómicos: los métodos basados en espectroscopia de resonancia magnética nuclear (NMR) y los métodos basados en espectrometría de masas (MS)³⁴⁶. La NMR se fundamenta en que la estructura química molecular condiciona la distribución de electrones alrededor del núcleo, que determinan un campo magnético. La nube de electrones que rodean los núcleos genera que no todos los núcleos de un mismo isótopo resuenen a la misma frecuencia³³³. La NMR puede emplearse para identificar y cuantificar metabolitos procedentes de mezclas complejas. Es una técnica que permite mantener intactos los metabolitos analizados, no precisa de preparaciones de la muestra complejas, y ofrece tiempos de ejecución analíticos relativamente cortos que producen resultados altamente reproducibles. El estudio mediante ¹H NMR permite el análisis directo de células ex vivo de tejido intacto, sin requerir de pretratamiento de la muestra. La principal limitación de la NMR es la baja sensibilidad y su bajo rendimiento en el análisis de lípidos³³⁶. La MS separa los iones en función de la relación masa-carga. La MS precisa de una manipulación específica en vistas a derivar un metabolito determinado a formas iónicas. En comparación con la NMR, la MS ofrece una elevada sensibilidad y unos límites de detección bajos; de modo que es una técnica que permite la detección de cambios metabólicos sutiles que pasarían desapercibidos para la NMR. La MS puede tener problemas de reproducibilidad en cuanto a que la presencia de contaminantes en la muestra puede modificar la eficiencia de la ionización de los metabolitos³³¹. La MS se combina con técnicas de separación para mejorar su resolución, como la cromatografía de gases (GC), la cromatografía líquida (LC), y la electroforesis capilar (CE). La CE-MS es una técnica de separación de alta resolución que permite el análisis de sustancias que pueden ser suspendidas o disueltas en un líquido conductivo. La GC-MS combina una elevada eficiencia en la separación con una elevada sensibilidad para la detección de masas. Esta técnica precisa de la modificación química de los compuestos porque la GC-MS sólo trabaja con metabolitos volátiles. La combinación de LC-MS es el método de análisis metabolómico más adecuado porque permite la separación y la identificación de una abanico más amplio de especias químicas que la GC-MS³³⁶. La aplicación de la técnica LC-MS requiere de una preparación de la muestra. Se suelen aplicar disolventes orgánicos como acetonitrilo, metanol, isopropanol, cloroformo, o su mezcla. Existen diferentes protocolos para el análisis de los metabolitos polares, lípidos, y otros tipos de metabolitos utilizando distintos sistemas solventes de extracción. Se distinguen distintos tipos de columnas de LC que resultan apropiadas para los estudios metabolómicos. La

ultrahigh performance LC (UHPLC) es una de más comunes puesto que proporciona un alto rendimiento en el análisis de metabolitos³⁴⁷. Las muestras retenidas en el proceso de LC pasarán al espectrómetro ionizadas mediante un electrospray. Puesto que hay metabolitos que ionizarán mejor en modo positivo y otros en negativo, el estudio metabolómico debe incluir el análisis por ambos métodos de ionización³³³. El uso de tándems de MS proporciona una mejor identificación de los metabolitos. El tándem de MS combina diferentes analizadores de masa para ejecutar múltiples pasos de MS separados en el tiempo o en el espacio con la finalidad de asegurar una elevada sensibilidad y precisión³³⁶. En este sentido, time of flight (TOF) MS es el instrumento más comúnmente usado para la obtención de los perfiles metabolómicos de muestras clínicas. Esta metodología ofrece una resolución, sensibilidad y velocidad elevadas³⁴⁷. Los espectrómetros TOF miden el tiempo que precisa un ion para trasladarse desde la fuente de iones al detector. Dado que todos los iones recibirán la misma energía cinética durante la aceleración, las diferentes velocidades corresponden a diferentes valores de la relación masa/carga (m/z) -masa del ion dividido por el número de cargas-. Los espectrómetros de cuadrupolo (Q) utilizan campos eléctricos oscilantes para estabilizar o desestabilizar de modo selectivo los iones que pasan a través de un campo cuadrupolar de radiofrecuencia creado por cuatro placas paralelas. De este modo, sólo se permite el paso en un tiempo preciso a los iones con un determinado valor de m/z. Uno de los tándems más comunes es, precisamente, Q-TOF que permite el paso de iones con valor m/z determinado (Q), con el análisis de los fragmentos del ion determinado (TOF)³³³. Los metabolitos que cuentan con una dificultad para ser ionizados son difíciles de ser medidos mediante técnicas de LC-MS, sin embargo se pueden aplicar técnicas de transformación química (derivatización) para mejorar la ionización de los metabolitos³⁴⁷.

Alcanzado este punto del análisis metabolómico, el primer objetivo es extraer la información del metabolito a partir del perfil de la MS. La información obtenida de los metabolitos aislados será el tiempo de retención y la m/z. La interpretación de los datos es compleja. Es preciso la aplicación de análisis estadísticos de multivarianza que permitan el procesamiento de los datos obtenidos que, originariamente, van a ser en forma de picos espectrales que identifiquen unas coordenadas indicativas de la actividad metabólica. Los análisis multivarianza se dividen en dos categorías: métodos supervisados y no supervisados. El rasgo característico de los métodos supervisados es que a partir de los datos de un grupo conocido se construye un modelo predictivo que

permite identificar potenciales biomarcadores. Una de sus las principales técnicas es el análisis de mínimos cuadrados parciales (del inglés partial least squares, PLS)348. El análisis por PLS se caracteriza por ser un método que distingue una matriz de observables X y una matriz de valores cualitativos Y que se relacionan a través de un modelo lineal multivariante³³³. Los métodos no supervisados tienen la finalidad de hallar y ordenar los elementos químicos que permiten diferenciar las muestras biológicas, por ejemplo entre casos y controles. El análisis de componentes principales (PCA) es su técnica más común³⁴⁸. El PCA es un análisis estadístico multivariante que tiene por finalidad reducir un gran número de variables y, de esta manera, evitar la redundancia y facilitar su estudio. Se termina obteniendo un nuevo conjunto de variables (componentes principales) a partir del conjunto de variables iniciales. Las variables de los componentes principales están relacionadas entre sí. Además, se pueden detectar rasgos característicos de los datos, tales como grupos de muestras, valores anómales u otras variables más relacionadas con un tipo determinado de muestra. El PCA determina la realización de una transformación lineal a partir de los datos originales, generando un nuevo sistema de coordenadas. Las nuevas variables son combinaciones lineales de las originales. Los componentes principales resultan los ejes del nuevo sistema de coordenadas. La varianza cobra una especial importancia puesto que determina el orden de los componentes principales. El primer componente principal es aquel que representa la mayor varianza del conjunto de datos. La segunda varianza más grande conforma el segundo eje, que será ortogonal al primero; y así sucesivamente³⁴⁹. La obtención de los patrones de discriminación dará el paso a la aplicación de las pruebas paramétricas (ANOVA, prueba t de Student) y no paramétricas (prueba de Krustal-Wallis) con la finalidad de destacar a los metabolitos más estadísticamente condicionados por el factor sujeto de estudio³⁴⁴. La identificación de los metabolitos se lleva a cabo a partir de bases de datos existentes como METLIN, the Kioto Encyclopedia of Genes and Genomes (KEGG) o the Human Metabolome Database, entre otras^{328,350-352}. Al contrario de lo que sucede con la genómica, la proteómica y la transcriptómica, no existe ninguna regla para indicar qué metabolitos pueden esperarse para una determinada constitución génica. Este hecho dificulta considerablemente la identificación de los metabolitos y, por tanto, la interpretación de los resultados³⁵³. Por otro lado, también existen herramientas de software que integran los metabolitos identificados en vías metabólicas procedentes de bases de datos³³¹.

Como se ha mencionado previamente, los perfiles metabolómicos se pueden obtener de distintas muestras biológicas. Sin embargo, si se contextualiza en el estudio de la ECV, la orina, la sangre o el líquido cefalorraquídeo (LCR) representan las precedencias muestrales más significativas. A pesar que el LCR es una fuente de biomarcadores de patologías del SNC, muchos metabolitos del LCR no han sido identificados y, por otro lado, la obtención de perfiles metabolómicos resulta difícil debido a la baja concentración de metabolitos en comparación con las muestras sanguíneas³⁵⁴. En la bibliografía existen sendos estudios que han utilizado muestras sanguíneas³⁵⁵ y urinarias³⁵⁶ para el estudio metabolómico de pacientes que han sufrido un ictus isquémico. La facilidad de la obtención de muestras de sangre justifica que la mayoría de publicaciones se centren en su estudio para la búsqueda de biomarcadores³⁵⁷. La sangre es la encargada de mantener una homeostasis fisiológica a través de los mecanismos reguladores. Por tanto, la determinación de perfiles metabolómicos procedentes del plasma o del suero van a ilustrar el estado metabólico de ese momento³⁴⁸. La importancia de la obtención de perfiles metabolómicos en orina puede ser más significativa para aquellos metabolitos que se eliminen con mayor celeridad del torrente circulatorio³⁵⁸. Sin embargo, los perfiles procedentes de las muestras de orina podrían ser más dependientes de los cambios dietéticos³⁵⁹.

La metabolómica presenta una serie de limitaciones. La obtención de perfiles metabolómicos es un proceso no exento de dificultades a pesar de los avances en las herramientas de análisis. Por otro lado, a pesar que se trabaja en la identificación del metaboloma humano³⁶⁰, es preciso establecer el rol que desempeñan los metabolitos en las múltiples vías metabólicas que rigen las respuestas celulares a los estímulos, como puede representar un ictus isquémico o un AIT. Es preciso destacar que el perfil metabolómico está condicionado por numerosos factores, tales como dieta, edad, grupo étnico, fármacos, estilo de vida, o microflora intestinal³⁴⁸. Los inhibidores de la HMG-CoA reductasa y los betabloquantes han sido descritos como fármacos que pueden interferir en los estudios metabolómicos^{361,362}. Si bien, por lo descrito previamente, cualquier fármaco o agente que modifique la actividad celular conducirá a cambios más o menos marcados del metabolismo y, por consiguiente, del perfil metabolómico.

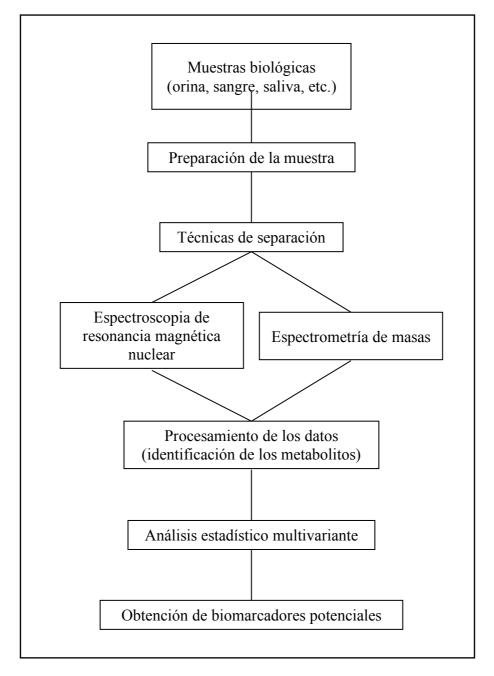


Figura 3. Representación esquemática de la metodología de la metabolómica³²⁹.

2.6.3. Aplicación de la metabolómica en la isquemia cerebral

Los mecanismos metabólicos y moleculares de la hipoxia aguda (infarto de miomardio o ictus) suelen diferir de la hipoxia de instauración crónica (enfermedad pulmonar o cáncer)³⁶³. En los últimos años ha ido en aumento el número de publicaciones referentes a los cambios metabólicos relacionados con el ictus isquémico tanto en modelos animales como en pacientes. Con el objetivo de mejorar el conocimiento de los cambios neuroquímicos que se producen en el ictus, se destaca un estudio en el que se aplicó la técnica de NMR a un grupo de ratas de la cepa Sprague-Dawley a las que se había provocado una oclusión de la arteria cerebral media. Los resultados se compararon con los obtenidos de un grupo de ratas que no fueron sometidas a la oclusión arterial. Se obtuvo un perfil metabolómico que permitió identificar a las ratas con la oclusión de la arteria cerebral media. Estas ratas sufrieron alteraciones en el ciclo de Krebs, la derivación del GABA y en el metabolismo de la colina y de los ácidos nucleicos, que los diferenciaron del grupo control³⁶⁴. Mediante la formación de imágenes a través de la NMR de muestras procedentes de ratas de la cepa Sprague-Dawley sacrificadas a las 24 horas de la oclusión intencionada de la arteria cerebral media izquierda, Koizumi y colaboradores constataron un proceso de conversión dinámica de fosfatidilcolina a lisofosfatidilcolina (LPC) en las áreas cerebrales con lesiones isquémicas. Este hallazgo fundamenta la hipótesis que la LPC, cuya producción está inducida a nivel del núcleo isquémico y del área de penumbra, participa en la progresión del daño isquémico. Los estudios de metabolómica en modelos animales de ictus han demostrado que, en un contexto de isquemia, se desencadena una alteración de los metabolitos que resulta biológicamente plausible³⁶⁵. Cambray y colaboradores desarrollaron un modelo animal basado en la oclusión distal de la arteria cerebral media de ratones para simular AIT e ictus isquémico. Se realizaron análisis metabolómicos a las 6, 12, 24 y 48 horas tras la isquemia y los resultados se validaron en una segunda cohorte. Concluyeron que el análisis metabolómico identificó los patrones temporales y, mediante la aplicación del modelo estadístico PLS-DA, se logró distinguir los grupos que habían sufrido AIT, ictus isquémico o la simulación del procedimiento³⁶⁶.

Los estudios metabolómicos realizados en humanos están más sujetos a la variación genética y a factores intercurrentes, como los tratamientos, la dieta o las

comorbilidades³³⁸. Existen pocos estudios que se hayan centrado en la ECV. Se trata de trabajos que, por otro lado, han incluido a un número relativamente pequeño de sujetos (Tabla 5). Jung y colaboradores obtuvieron los perfiles metabolómicos plasmáticos y urinarios de pacientes que habían sufrido un ictus isquémico secundario a la afectación de pequeño vaso. Dichos perfiles se compararon con los perfiles procedentes de una población de individuos sana. Mediante la aplicación de un abordaje que asoció técnicas de ¹H-NMR y análisis estadístico multivariante, establecieron diferencias significativas en los perfiles metabolómicos de ambos grupos. Los pacientes que habían padecido un ictus estaban caracterizados por presentar a nivel plasmático unos niveles elevados de lactato, glicolato, piruvato y formiato; y una disminución de valina, metanol y glutamina. En cambio, al análisis de las muestras urinarias evidenció que el grupo de pacientes presentaba un decremento en la excreción de citrato, dimetilamina, creatinina, glicina e hipurato. La diferencia hallada en los niveles de metabolitos de los dos grupos se contextualiza por el rol que podrían tener la glicolisis anaeróbica, la deficiencia de ácido folato y la hiperhomocisteinemia en el desarrollo del ictus isquémico³⁵⁶. Kimberly y colaboradores estudiaron los perfiles metabolómicos obtenidos de una muestra plasmática de un grupo de 52 pacientes que habían sufrido un ictus isquémico de etiología cardioembólica. Los resultados se compararon a los obtenidos de un grupo de 32 pacientes que consultaron por síntomas neurológicos de presentación aguda y que acabaron siendo diagnosticados de AIT o sin diagnóstico de ictus. La importancia de los resultados recayó sobre los animoácidos de cadena ramificada (valina, leucina, isoleucina) puesto que este grupo puso de manifiesto que la magnitud de reducción en los niveles plasmáticos de dichos aminoácidos se correlacionaban con el tamaño de la lesión isquémica y con la severidad clínica. Además, los análisis estadísticos multivariantes verificaron que los aminoácido de cadena ramificada permitían discriminar entre los dos grupos del estudio³⁶⁷. Otra publicación comparó los datos de las muestras séricas de un grupo de 67 pacientes con ictus isquémicos con un grupo control compuesto por 62 individuos. Las muestras se analizaron mediante UHPLC en asociación con el sistema TOF. Tras el análisis estadístico multivariante se identificaron a 12 metabolitos que presentaban unas diferencias estadísticamente significativas entre los dos grupos. Concretamente, hallaron un aumento en las concentraciones de cisteína, S-adenosil-homocisteína, glutatión oxidado, ácido hidroxieicosatetraenoico, ácido Asimismo. hidroxioctadecadienoico. identificaron disminución una en las concentraciones de ácido fólico, tetrahidrofolato, adenosina. aldosterona,

deoxocatasterona, sacarosa 6-fosfato y betaína. Estos metabolitos pertenecen a distintas vías metabólicas del organismo. Sin embargo, es preciso destacar a los participantes del ciclo del átomo del carbono (como ácido fólico, cisteína, S-adenosil-homocisteína). El hallazgo del glutatión oxidado establece la importancia de las especies reactivas de oxígeno en la patogenia del ictus isquémico³⁵⁵. Lee y colaboradores diseñaron un estudio retrospectivo entre dos grupos de sujetos en función de si habían padecido un ictus isquémico. Se compararon los perfiles metabolómicos de 348 sujetos controles y de 62 pacientes que habían sufrido un ictus isquémico. El estudio aplicó técnicas de LC-MS y determinó que el grupo que había sufrido un ictus isquémico estaba determinado por un descenso en los niveles de N⁶-acetil-L-lisina, 5-aminopentanoato, cadaverina, 2oxoglutarato, nicotinamida, L-valina, S-(2-metilpropionil)-dihidrolipoamida-E, y ubiquinona. Dicho grupo también contaba con un ascenso del ácido sulfínico de la homocisteína. El estudio concluía que la reducción en las concentraciones de los catabolitos de lisina estaba asociada con el desarrollo de ictus isquémico. La potencicación del proceso de catabolismo de la lisina puede aumentar la producción y proceder a la activación del glutamato, neurotransmisor excitatorio, en las membranas postsinápticas de las neuronas del SNC. La elevación del ácido sulfínico de la homocisteína se engloba en los procesos de estrés oxidativo que acontecen en el ictus³⁶⁸. Un grupo chino obtuvo el perfil metabolómico mediante técnicas de GC-MS y de LC-MS a un grupo de 40 pacientes que habían sufrido un ictus del territorio de la arteria cerebral media y que no contaban ni con antecedentes de diabetes ni de patología cardiovascular. Los resultados se compararon a los perfiles obtenidos de un grupo e 40 individuos sanos. Identificaron a un panel de 5 metabolitos -serina, isoleucina, betaína, fosfatidilcolina (5:0/5:0) y lisofosfatidiletanolamina (18:2)- que permitían identificar a las muestras de los pacientes que habían sufrido un ictus isquémico. Los autores destacan el papel de la isoleucina, destacada en estudios mencionados previamente, como unos de los aminoácidos de cadena ramificada que interviene en la producción energética y en la síntesis de distintos neurotransmisores. Los hallazgos que apuntan al papel de fosfatidilcolina y de lisofosfatidiletanolamina se relacionan con el aumento de la actividad de la enzima PLA₂, que hidroliza las membranas fosfolipídicas³⁶⁹.

El abordaje dirigido, descrito previamente, ha permitido la cuantificación de moléculas concretas y también ha centrado el interés de los grupos de investigación. Mediante la aplicación de UHPLC a muestras plasmáticas, se observó que los niveles de taurina eran significativamente mayores en pacientes que habían sufrido un ictus isquémico

(136.9±8.2 mmol/L). Este resultado se asoció a la lesión de tejido cerebral secundaria a la isquemia³⁷⁰. La taurina es un aminoácido inhibidor que se ha relacionado con mecanismos de neuromodulación y neuroprotección³⁷¹. Naccarato y colaborades se centraron en la determinación de anadamida (AEA) y palmitoiletanolamida (PEA) procedentes de muestras plasmáticas recogidas en un grupo de pacientes que habían sufrido un ictus y en otro grupo de individuos controles. Las determinaciones se realizaron en el momento del ingreso, a las 6 y a las 18 horas. Los niveles de AEA de la muestra inicial estaban incrementados en el grupo de ictus isquémico y sus niveles tenían una corrrelación positiva con el deterioro neurológico y con el volumen de la lesión isquémica, determinada mediante la TC. No se obtuvieron diferencias significativas ni en cuanto a los niveles de PEA ni en cuanto a los niveles de AEA de las muestras posteriores. La AEA y la PEA son lípidos del sistema endocanabinoide, que forma parte de la respuesta mediadora frente al daño isquémico³⁷². Otro grupo concluyó que los niveles plasmáticos de los F2-isoprostanos estabn incrementados en un grupo de 52 pacientes que habían ingresado consecutivamente por ictus isquémico, en comparación a las muestras obtenidas de 27 sujetos sanos. Los F2-isoprostanos, surgidos de la peroxidación del ácido araquidónico, son marcadores del estrés oxidativo inducido por la peroxidación lipídica³⁷³. Por otro lado, se ha descrito que unos niveles disminuidos de homoarginina, relacionado con el metabolismo del ON, podrían asociarse a un mal pronóstico³⁷⁴.

Los ictus criptogénicos, es decir aquellos sin una causa definida a pesar de realizar un estudio etiológico completo, suponen el 30-40% de todos los ictus³⁷⁵. Por tanto, la identificación de biomarcadores que faciliten de la investigación etiológica de los ictus isquémicos, en aras de recomendar el tratamiento de prevención secundaria más óptimo y de racionalizar los estudios complementarios, resultan de especial importancia. En este sentido, Mayr y colaboradores describieron que incrementos de betahidroxibutirato lograban identificar a un grupo de pacientes con fibrilación auricular³⁷⁶. Por lo que respecta a la arteriosclerosis, reseñar que el ácido graso palmitato podría ejercer como biomarcador fenotípico de la arteriosclerosis³⁷⁷. Un grupo español adoptó un abordaje no dirigido para el análisis plasmático de 9 individuos con arteriosclerosis de carótida y de 10 individuos sanos. Mediante técnicas de GC-MS y de ¹H-NMR, obtuvieron que los individuos con arterisoclerosis de carótida presentaban un perfil metabolómico implicado con la resistencia a la insulina y, por extensión, con el síndrome metabólico³⁷⁸.

La importancia del presente trabajo de investigación pasa por llevar a cabo una investigación centrada en la identificación de biomarcador en el AIT mediante el abordaje que ofrece la metabolómica. En el momento actual, no se tiene constancia de que se haya llevado a cabo una investigación similar en el AIT.

Tabla 5. Metabolitos relacionados con el ictus isquémico.

Grupo de estudio	Población (Pacientes con ictus / controles)	Muestra	Alteración	Metabolitos
Kelly, 2008 ³⁷³	52 / 27	Plasma	Elevación	F2-isoprostanos
Naccarato, 2010 ³⁷²	10 / 8	Plasma	Elevación	Anandamida
Ghandforoush- Sattari, 2011 ³⁷¹	60 / 54	Plasma	Elevación	Taurina
		G	Elevación	Cisteína, S-Adenosil- homocisteína, glutatión oxidado, ácido hidroxieicosatetraenoico ácido hidroxioctadecadienoico
Jiang, 2011 ³⁵⁵	67 / 62	Suero	Disminución	Ácido fólico, tetrahidrofolato, adenosina, aldosterona, deoxocatasterona, sacarosa 6-fosfato, betanina
Jung, 2011 ³⁵⁶	54 / 47	Plasma	Elevación	Lactato, glicolato, piruvato, formiato
			Disminución	Valina, metanol, glutamina
	28 / 30	Orina	Disminución	Creatinina, glicina, hipurato
Pilz, 2011 ³⁷⁴	61 pacientes con ictus fatales / 3,244 pacientes ^a	Suero	Disminución	Homoarginina
Kimberly, 2013 ³⁶⁷	52 ^b / 32 ^c	Plasma	Disminución	Valina, leucina, isoleucina
			Elevación	Acido sulfinico de la homocisteína
Lee, 2017 ³⁶⁸	62 / 348	Suero	Disminución	N ⁶ -acetil-L-lisina, 5- aminopentanoato, cadaverina, 2- oxoglutarato, nicotinamida, L-valina, S (2-metilpropionil)- dihidrolipoamida-E, ubiquinona
			Elevación	Lisofosfatidiletanolamina betaína
Liu, 2017 ³⁶⁹	40 / 40	Suero	Disminución	Alanina, glicina, serina, isoleucina, treonina, aspartato, prolina, ornitina, lisina, ácido fosfatídico, fosfatidilinositol, fosfatidilcolina

^a El estudio fue realizado en una muestra de 3,305 individuos que fueron sometidos a una angiografía coronaria. ^b 52 pacientes que habían sufrido un ictus isquémico cardioembólico. ^c Grupo control formado por pacientes diagnósticos de AIT o sin evidencia de ictus.

2.6.4. La metabolómica como generadora de biomarcadores

En el campo de la neurología, más allá del ictus, otras patologías han centrado el interés de la metabolómica. Jové y colaboradores publicaron una revisión sobre la aplicación de la metabolómica en enfermedades neurodegenerativas, como la enfermedad de Alzheimer, enfermedad de Parkinson y la esclerosis lateral amiotrófica³³². La esclerosis múltiple también ha sido evaluada desde este punto de vista³⁷⁹.

La obtención de perfiles metabolómicos de trastornos neuropsiquiátricos ha despertado el interés de diversos grupos de estudio que han evaluado el trastorno bipolar, la esquizofrenia, el trastorno depresivo mayor, y el trastorno adictivo³⁸⁰.

Son múltiples los estudios de metabolómica cuyo objetivo ha sido la obtención de marcadores en el ámbito de las enfermedades cardiovasculares, que guardan cierto paralelismo con el tema que nos ocupa. En una revisión sistemática se destacaba que los siguientes metabolitos, o bien individualmente o bien en grupo, estaban asociados a la enfermedad cardiovascular: acilcarnitinas, dicarboxilacilcarnitinas, N-óxido trimetilamida, distintos aminoácidos como fenilalanina, glutamato, aminoácidos de cadena ramificada, ceramidas, y diversas clases de lípidos. Es preciso destacar que las dicarboxilcarnitinas y acilcarnitinas, los aminoácidos de cadena ramificada y aromáticos, fenilalanina, α-hidrobutirato, y ceramidas se han relacionado con factores de riesgo vascular como la obesidad, la resistencia a la insulina y la diabetes mellitus³⁸¹. La enfermedad renal crónica³⁸², el cáncer de páncreas³⁸³, el cáncer de próstata³⁸⁴, cáncer de vejiga³⁸⁵, el cáncer de mama³⁸⁶, las neoplasias hematológicas³⁸⁷, o el daño cerebral traumático³⁸⁸ son algunas de las disciplinas que han centrado el interés en la aplicación de la metabolómica.

2.7. El papel de la resonancia magnética en el ataque isquémico transitorio y en las escalas pronósticas

2.7.1 La resonancia magnética en el ataque isquémico transitorio

Los estudios de neuroimagen suponen el pilar sobre el que se sustenta el apoyo diagnóstico en las patologías del SNC. El AIT no es una excepción. Dadas sus peculiaridades clínicas, el primer objetivo consiste en distinguir el AIT de cuadros clínicos simuladores. La técnica de imagen más ampliamente disponible es la TC de cráneo sin contraste. Sin embargo, la detección de una lesión isquémica aguda es baja. Concretamente, se ha señalado que en menos de un 4% de los pacientes con AIT se logra identificar una lesión isquémica con la TC³⁸⁹.

Las imágenes potenciadas en difusión (DF) suponen la secuencia de la RM de elección para la detección de isquemia aguda debido a su mayor sensibilidad y especificidad³⁹⁰. Concretamente se ha identificado una sensibilidad del 81-100% y una especificidad del 86-100% para la detección de isquemia aguda en las primeras 12 horas tras el inicio de los síntomas³⁹¹. No obstante, la DF no está exenta de resultados falsamente negativos. En una publicación se concluyó que un 17% de los casos los resultados podían ser falsos negativos³⁹², mientras que otras publicaciones lo sitúan en un 5%³⁹³. Los infartos leves o de pequeño tamaño, estudios tempranos, o lesiones en el tronco cerebral constituyen las principales situaciones que se han relacionado con esta tasa³⁹². Entre el 21 y el 68% de los pacientes que han sufrido un AIT presentan una lesión isquémica que se visualiza mediante la secuencia de DF³⁹⁰. Brazelli y colaboradores llevaron a cabo un metaanálisis que incluyó a 9.078 pacientes diagnosticados de AIT que les permitió concluir que en el 34,3% (IC 95%; 30,5-38,4) de los casos se identifican lesiones isquémicas agudas en la DF³⁹.

La visualización de las lesiones isquémicas en las secuencias de DF se justifica porque la isquemia induce la quiebra del metabolismo de la adenosina trifosfato; de modo que se acaba generando un edema citotóxico resultado de la entrada pasiva de agua desde el

compartimento extracelular, donde la difusión del agua se da relativamente sin restricciones, hacia el espacio intracelular, donde la difusión del agua está relativamente restringida³⁹⁴. La valoración de las imágenes obtenidas en la DF se debe complementar con el mapa del coeficiente de difusión aparente (ADC). La restricción en la difusión del agua conlleva un descenso en el ADC, que supone una medida fisiológica de la tasa de movimiento del agua a través del parénquima cerebral³⁹². Las lesiones isquémicas agudas con una difusión restringida se visualizan hiperintensas la secuencia DF e hipointensas en el ADC. Tras el descenso inicial del ADC, se produce un incremento gradual en los valores del ADC secundario a la lisis celular y al aumento del edema vasogénico hasta alcanzar una llamada *pseudonormalización*, que supone el resultado de que el ADC del tejido isquémico inviable es similar al del tejido cerebral normal. El nadir en los mapas de ADC sucede entre el primer y el cuarto día con un retorno a la situación basal entre una y dos semanas tras el inicio de los síntomas³⁹¹. Por tanto, las secuencias en DF tiene la habilidad de diferenciar entre las lesiones isquémicas agudas y las crónicas²⁴.

La principal característica de las lesiones en DF relacionadas con el AIT es su pequeño tamaño que ha llevado al acuñamiento del concepto de "huellas de isquemia transitoria". Este concepto describe a las lesiones punteadas de la DF que permanecen tras la resolución de los síntomas del AIT³⁹⁵. El AIT puede condicionar la aparición de lesiones isquémicas tan pequeñas como de 0,07 ml²⁴. Los casos de AIT con mayor duración de los síntomas (especialmente más de 60 minutos), déficit motor, afasia y oclusión de gran vaso son los que principalmente se han asociado a estudios de DF positivos. No obstante, es preciso considerar que existen patologías sin naturaleza isquémica que pueden simular un AIT tanto desde el punto de vista clínico como de la RM. En la hipoglucemia, la amnesia global transitoria, el déficit postcomicial, o en la migraña pueden identificarse hiperintensidades focales en las secuencias de DF. Por otro lado, y como se ha indicado previamente, aproximadamente dos tercios de los pacientes diagnosticados de AIT no obtienen un resultado positivo en la DF³⁹⁶. En algunas publicaciones se describe que las lesiones en DF de los pacientes diagnosticados de AIT representan infartos establecidos; sin embargo, otros estudios han demostrado que estas lesiones pueden ser transitorias en el AIT³⁹⁰. Las lesiones isquémicas visualizadas en las secuencias de DF son dinámicas³⁹². Siguiendo este concepto, estudios mediante la obtención de RM seriadas han mostrado que algunas de

las lesiones isquémicas pueden desvanecerse a las 48 horas del inicio del AIT, sugiriendo que una realización tardía de la RM reduce su potencial diagnóstico³⁹⁶. Se ha apuntado a que en algunas situaciones de isquemia transitoria se puede desencadenar una disminución en el flujo sanguíneo cerebral insuficiente para desencadenar un fallo bioenergético irreversible. Una trombolisis endógena óptima o un aporte de flujo sanguíneo por colateralidad pueden jugar un papel en la reperfusión temprana que evite la lesión citotóxica permanente³⁹⁰. La fisiopatología del AIT no incluye solamente lesión tisular, sino un componente de recuperación condicionado por la interrelación de distintos factores como el tamaño de la lesión isquémica, la robustez del circuito neuronal afectado, o el sustrato neurovascular subyacente²⁴.

Las lesiones visualizadas en la DF pueden ayudar a identificar la etiología del episodio isquémico cerebral. Las lesiones únicas córtico-subcorticales, las lesiones múltiples en distintos territorios vasculares están asociadas a cardioembolismo. Sin embargo, el hallazgo de múltiples lesiones unilaterales en la circulación anterior o la obtención de un patrón de pequeñas lesiones dispersas en un territorio vascular están más relacionadas con arteriosclerosis de gran vaso^{392,397}.

Los estudios de neuroimagen y, especialmente, la RM con las secuencias de DF han ofrecido una perspectiva novedosa en cuanto a la fisiopatología del AIT³⁹⁰. En el año 2009 la AHA/ASAC acuñó una nueva definición de AIT, describiéndolo como "un episodio transitorio de disfunción neurológica ocasionado por una isquemia cerebral focal, medular, o retiniana, sin infarto agudo"¹⁶. Por tanto, adquiere una importancia capital la valoración tisular y subyace que, por un lado, los pacientes con síntomas neurológicos transitorios pueden tener un infarto cerebral agudo; y, por otro lado, la necesidad de realizar estudios de neuroimagen a los pacientes con síntomas neurológicos transitorios³⁹⁶. En este sentido, se ha establecido la recomendación de realizar una prueba de neuroimagen urgente en las primeras 24 horas desde el inicio de los síntomas en los pacientes con sospecha de AIT. La realización de una RM de cráneo, con secuencias de DF, constituye la recomendación preferente. Sin embargo, en los casos en los que no encuentre disponible, debe realizarse una TC de cráneo¹⁶.

La neuroimagen también tiene un papel pronóstico. Los pacientes diagnosticados de AIT que presentan una lesión isquémica aguda en la DF tienen un mayor riesgo de sufrir un ictus. Un estudio multicéntrico que avaluó a más de 4.500 pacientes observó que los pacientes con lesión en DF presentaban una tasa de recurrencia en forma de ictus del 7%. En cambio, la tasa disminuía al 0,4% en los pacientes con DF negativa (p<0,0001)³⁹⁸. Purroy y colaboradores identificaron que la asociación de una duración de los síntomas superior a 1 hora con la presencia de lesiones en la DF constituye un predictor independiente de recurrencia de isquemia cerebral u otro evento vascular (cociente de riesgo 5,33)⁴¹. Los patrones de las lesiones obtenidas en la DF también tiene una vinculación pronóstica. Se observó que las lesiones agudas de patrón subcortical estaban asociadas con episodios recurrentes³⁹⁷.

2.7.2. La resonancia magnética en las escalas pronósticas del ataque isquémico transitorio

Con el objetivo de predecir la recurrencia temprana tras un AIT, se han desarrollado distintas escalas que, a grandes rasgos, se pueden distinguir entre las meramente clínicas y las que incluyen estudios diagnósticos (escalas clínicas-plus)²⁴. Respecto a las primeras cabe destacar *California Risk Score*, que considera cinco factores pronósticos: edad igual o mayor a 60 años, diabetes mellitus, debilidad unilateral, alteración del habla, y duración de los síntomas más de 10 minutos (puntuación máxima de 5 puntos). El riesgo de ictus se incrementaba un 34% con la puntuación máxima¹⁷⁹. ABCD es un sistema basado en la edad (Age), presión arterial (Blood pressure), características clínicas (Clinical features) y duración de los síntomas (Duration). En función de estas variables se asigna la puntuación: edad mayor de 60 años, 1 punto; PAS mayor de 140 mmHg o diastólica mayor o igual a 90 mmHg, 1 punto; debilidad unilateral son 2 puntos, mientras que alteración del habla es 1 punto. Por lo que respecta a la duración, 60 o más minutos equivalen a 2 puntos y de 10 a 59 minutos 1 punto. La puntuación máxima es de 6 puntos, que ha llevado a establecer un riesgo de ictus a los 7 días de 35,5%³⁹⁹. Se llevó a cabo una validación en una cohorte del OXVASC que mostró que el 95% de los ictus ocurrían en pacientes con una puntuación superior a 5. En los pacientes con una puntuación inferior a 5, el riesgo de recurrencia temprana fue del 0,4%, con 5 puntos del 12,1% y con 6 del 31,4% [Área bajo la curva -AUC- 0,91 (0,86-0,95)]. Por otro lado, la escala ABCD obtuvo un mejor perfil en el análisis ROC en comparación con la California Risk Score⁴⁰⁰. ABCD² supuso la adición de la variable diabetes, cuya presencia sumaba un punto adicional. Por tanto, establecía una escala con 7 puntos máximos⁴⁰¹. Se identificó una clasificación de grupos de riesgo en función de su sumatorio. De modo que menos de 4 se consideraba de bajo riesgo; 4-5, riesgo moderado; y más de 5, riesgo elevado. En los estudios iniciales de ABCD² se estimó el riesgo de ictus a los 2, 7, y 90 días tras un AIT. El riesgo de ictus a los 2 días del AIT fue del 0% para puntuaciones 0-1, 1-2% para puntuaciones de 2, 0-3% para puntuaciones de 3, 2-5% para puntuaciones de 4, 3-7% para puntuaciones de 5, 4-14% para puntuaciones de 6; y 0-50% para puntuaciones de 7⁴⁰⁰. Los pacientes con puntuaciones superiores a 5 tuvieron un riesgo de ictus del 11,7% a los 7 días y del 17,8% a los 90 días. La aplicación de la escala ABCD² mejoraba la capacidad predictora de su antecesora, la ABCD [estadístico c de ABCD² 0,62-0,83 en comparación con 0,60-0,81]⁴⁰¹. El AUC para la escala ABCD² en la predicción de recurrencia en forma de ictus a los 7 días es 0,66 (IC 95%; 0,53-0,78)²⁴. A pesar de estos datos, un metaanálisis posterior destacó las limitaciones de la escala ABCD², de modo que un 41% de los pacientes que contaban con más de 4 puntos resultaron ser cuadros imitadores de AIT v un 21% de los pacientes con una puntuación baja presentaban una etiología de elevado riesgo de recurrencia como fibrilación auricular o estenosis de las arterias carótidas⁴⁰². El estudio PROMAPA incluyó el análisis de 1.137 pacientes que habían sufrido un AIT procedentes de 30 hospitales españoles. Su análisis concluyó que las escalas que no tenían en consideración los estudios de imagen vascular o el antecedente de ictus no demostraron ser útiles como predictoras de riesgo al ser aplicadas por neurólogos⁴⁰³. Otro estudio que evaluó la California Risk Score, ABCD y ABCD² con la presencia de lesiones en las secuencias de DF de pacientes con AIT concluyó que estas escales de riesgo clínico no estaban asociadas con una DF positiva⁴⁰⁴. A la vista de estos datos, resulta de interés la aplicación de las llamadas escalas clínicas-plus, que proporcionan una mayor precisión para estimar el riesgo de recurrencia en forma de ictus³⁹⁶. ABCD²I añadía 3 puntos si de identificaba una lesión isquémica en la secuencia de DF o en la TC de cráneo (independiente de los síntomas de presentación). De este modo se logró mejorar la predicción del riesgo de ictus respecto a la previa (AUC 0,78 vs 0,66 a los 7 días; 0,80 vs 0,68 a los 90 días)⁴⁰⁵. Clinical and Imaging-based Predictive Score (CIP) estipula que los pacientes con un riesgo elevado de recurrencia son aquellos que presentan más de 4 puntos en la escala ABCD² y lesión en DF o una RM de cráneo positiva para isquemia⁴⁰⁶. El modelo CIP proporciona un rendimiento predictivo superior en comparación con la ABCD² (AUC 0,81 vs 0,66). Tanto la CIP como la ABCD²I no entran en considerar el mecanismo etiológico de AIT, información cuya valoración resulta importante en vistas a establecer el riesgo de recurrencia²⁴. ABCD³ es una escala desarrollada, nuevamente, a partir de la ABCD². En este caso, se suma 2 puntos en el caso de haber sufrido un AIT en la semana previa. Sin embargo, la muestra de validación obtuvo un valor predictivo similar entre ambas escalas⁴⁰⁰. A partir de la escala ABCD³, el estudio PROMAPA desarrolló la escala ABCD³V, que sumaba dos puntos adicionales si se identificaba una estenosis sintomática mayor o igual al 50% de la arteria carótida o a nivel intracraneal. Los autores mejoraron los resultados que proporcionaba la ABCD³ [AUC 0,69 (0,57-8,81) a los 7 días y 0,63 (0,51-0,69) a los 90 días en comparación con un AUC de 0,66 (0,54-0,77) y 0,61 (0,52-0,70) a los 7 y 90 días, respectivamente]⁴⁰³. ABCD³I resulta de la adición de la información de los estudios vasculares y de neuroimagen a la escala ABCD³. De modo que asigna 2 puntos en el caso de detección de una estenosis de la arteria carótida mayor del 50% y 2 puntos si se detecta lesión en DF. Por consiguiente, esta escala puntúa un máximo de 13 puntos y divide 3 grupos de riesgo: bajo (de 0 a 3 puntos), intermedio (de 4 a 7 puntos) y alto (de 8 a 13 puntos). La ABCD³I ha mostrado una mejor capacidad de discriminación de los pacientes con un mayor riesgo de recurrencia temprana [AUC a los 7 días de 0,71 (0,63-0,78) vs 0,63 (0,56-0,59) con la escala $ABCD^2$ ⁴⁰⁷. En este sentido se ha sugerido que debería considerarse el manejo de los pacientes con AIT según la escala ABCD³I y mediante la valoración por un especialista en ictus, la realización de una RM de cráneo urgente y estudio vascular⁴⁰⁸. Otra publicación coincide en señalar que la ABCD³ (estadístico c 0,61) y la ABCD³I (estadístico c 0,66) mejoran la predicción de ictus a los 7 días respecto la ABCD² (estadístico c 0,54)⁴⁰⁹. ASPIRE Approach surgió como respuesta a tratar de mejorar la información clínica de la escala ABCD² en aquellos casos en los que no estuvieran disponibles los criterios de imagen. En este caso, los pacientes con una puntuación ABCD² mayor o igual a 4, o síntomas motores o del lenguaje de más de 5 minutos de duración, o con fibrilación auricular eran considerados de alto riesgo. Sin embargo, con este abordaje el 78% de los pacientes eran catalogados de alto riesgo y, en consecuencia, su utilidad práctica resultaba limitada⁴¹⁰.

Tabla 6. Escalas de predicción del riesgo en forma de ictus isquémico tras un AIT.

Parámetros	California Risk Score ¹⁷⁹	ABCD ³⁹⁹	ABCD ²⁴⁰¹	ABCD ² I ⁴⁰⁵	ABCD ^{3 407}	$ABCD^3V^{403}$	ABCD³I ⁴⁰⁷	ABCDE + ⁴¹¹
$Edad \geq 60 \ a \tilde{n} o s$	1	1	1	1	1	1	1	1
$PA \ge 140/90$ mmHg	-	1	1	1	1	1	1	1
Paresia unilateral	1	2	2	2	2	2	2	2
Trastorno del habla	1	1 ^b	1 ^b	1 ^b	1 ^b	1 ^b	1 ^b	1 ^b
< 10'	-	0	0	0	0	0	0	0
T 10-59'	1 a	1	1	1	1	1	1	1
≥ 60'	1ª	2	2	2	2	2	2	2
Diabetes	1	-	1	1	1	1	1	1
LI por neuroimagen	-	-	-	3°	-	-	2^d	3^d
ES en ACI	-	-	-	-	-	-	2	-
ES en ACI o IC	-	-	-	-	-	2	-	-
7 días previos 30 días	-	-	-	-	2	2	2	-
₹ 30 días previos	-	-	-	-	-	-	-	-
AGV	-	-	-	-	-	=	-	3
ي <u>ط</u> CE	-	-	-	-	-	-	-	1
<u>o</u> EPV	-	-	-	-	-	-	-	0
etiologia EPV Otros	-	-	-	-	-	-	-	0
Inaet	-	-	-	-	-	-	-	1
Total posible ⁴⁰⁰	5	6	7	10	9	11	13	13
Bajo	_	≤ 3	< 4		≤ 3		< 3	≤ 6
R Inter	_	> 3	4-5	-	4-5	-	4-7	-
Alto	-i4 II 1i4-		> 5	-	6-9	•	8-13	> 6

T, duración; ' minutos; LI, lesión isquémica; ES, estenosis sintomática; ACI, arteria carótida interna; IC, intracraneal; AGV, arteriosclerosis de gran vaso; CE, cardioembólica; EPV, enfermedad de pequeño vaso; Indet, indeterminado; R, riesgo; Inter, intermedio. ^aConsidera 1 punto si la duración es > 10 minutos. ^b Trastorno del habla sin paresia. ^c en la DF o en la TC de cráneo. ^d Lesión en DF.

La escala *RRE* (*Recurrence Risk Estimator*) fue desarrollada para proporcionar una predicción del riesgo de recurrencia en aquellos pacientes con hallazgos de lesión isquémica en la neuroimagen. Se trata de una escala sobre 7 puntos que tiene en consideración el mecanismo etiológico, la presencia de múltiples infartos agudos, la visualización de infartos simultáneos en distintos territorios vasculares, si múltiples infartos en diferentes estadios evolutivos, la presencia de infartos corticales aislados, y el antecedente de AIT o ictus isquémico en el mes previo al episodio índice. Se ha publicado que la escala *RRE* proporcionó un AUC de 0,85 para el riesgo de ictus isquémico a los 7 días²⁴. *ABCDE*+ también surgió a partir de la escala *ABCD*² con el fin de añadir información respecto la etiología y la positividad de la DF. De esta manera, añade 3 puntos si se pone de manifiesto patología de gran vaso; 1 punto si cardioembolismo; 1 punto si etiología desconocida; o 3 puntos si la DF resulta positiva. La obtención de más de 6 puntos se identificó con alto de riesgo de recurrencia⁴¹¹. El análisis ROC mostró un rendimiento superior de la escala *ABCDE*+ [AUC 0,67 (0,55-

0,75)] en comparación con la ABCD [AUC 0,48 (0,37-0,58)] y con la $ABCD^2$ [AUC 0,48 (0,37-0,58)]. Si bien, mientras la diferencia entre ABCDE+ y $ABCD^2$ resultó significativa (p=0,04); en el caso de ABCDE+ y ABCD se identificó una tendencia (p=0,07)⁴⁰⁰.

A pesar de lo reseñado, en el momento actual no se ha hallado la escala pronóstica perfecta. Algunos autores han señalado que la adición de la neuroimagen en la estratificación del riesgo puede carecer de sentido puesto que representa la realización del propio trabajo clínico.

3. Objetivos

3. Objetivos

La metabolómica permite el estudio de la respuesta del metabolismo celular frente a situaciones patológicas. De esta manera, conlleva una mayor entendiemiento de la fisiopatología con el objetivo de identificar biomarcadores.

La finalidad del presente proyecto de tesis doctoral es la aplicación del abordaje metabolómico al AIT, entidad en la que los biomarcadores deberían adquirir una especial relevancia debido a sus connotaciones clínicas.

Para ello, se plantea la obtención de los perfiles metabolómicos a pacientes diagnosticados de AIT con el fin de identificar biomarcadores vinculados a dos contextos concretos de los que emanan unos objetivos específicos:

1. En relación al contexto clínico de los pacientes diagnosticados de AIT:

- 1.1. Identificar biomarcadores relacionados con la recurrencia en forma de ictus isquémico.
- 1.2. Identificar biomarcadores vinculados a patrones temporales de recurrencia.
- 1.3. Identificar biomarcadores de arteriosclerosis de gran vaso.

2. En relación a los hallazgos de la secuencia de difusión de la RM de cráneo de los pacientes diagnosticados de AIT:

- 2.1. Identificar biomarcadores asociados a la presencia de lesiones en la secuencia de difusión.
- 2.2. Identificar biomarcadores relacionados con el volumen de la lesión isquémica aguda visualizada en la secuencia de difusión.
- 2.3. Identificar biomarcadores vinculados a patrones de lesión específicos de la secuencia de difusión.

4. Material y métodos

4.1. Sujetos a estudio

El estudio fue aprobado por el Comité de Ética del Hospital Universitari Arnau de Vilanova de Lleida. Se obtuvo el consentimiento informado de los pacientes incluidos. Se reclutaron prospectivamente a los pacientes que habían sufrido un déficit neurológico transitorio y que habían sido atendidos por un neurólogo en el Servicio de Urgencias del Hospital Universitari Arnau de Vilanova en las primeras 24 horas tras el inicio de los síntomas. Los pacientes que contaban con un valor mayor de 3 en la mRS, contabilizado tras la resolución de los síntomas, y los que sufrieron una recurrencia antes de la realización de la RM no fueron incluidos en el estudio. Se utilizó la definición clásica de AIT caracterizada por el inicio agudo de síntomas cerebrales focales o monoculares de una duración inferior a 24 horas y atribuibles a isquemia cerebral⁴¹². Se definieron dos cohortes independientes de pacientes. La primera incluyó a 144 pacientes que fueron reclutados entre enero de 2008 y enero de 2010, mientras que la segunda incluyó a 179 pacientes reclutados entre enero de 2010 y enero de 2012. Un total de 30 pacientes fueron excluidos debido a que acabaron siendo diagnosticados de otras entidades. Concretamente, 13 (9,02%) pacientes de la primera cohorte fueron dados de alta con otros diagnósticos (hiponatremia, 1 caso; trastorno psicosomático, 2; migraña, 3; epilepsia, 2; angiopatía amiloide cerebral, 1; hematoma subdural, 1; y amnesia global transitoria, 1) y 17 (9,49%) de la segunda (hipoglucemia, 2 casos; trastornos psicosomáticos, 3; migraña, 2; epilepsia, 3; tumor cerebral, 1; hematoma subdural, 1; amnesia global transitoria, 2; meningitis reumatoide, 1; y mielopatía cervical, 2). En un segundo tiempo se analizaron los estudios de RM de los pacientes incluidos inicialmente. Ello motivó que en la parte de investigación de la neuroimagen fueran excluidos un total de 12 pacientes que presentaban contraindicaciones para la realización de la RM: 2 (1,52%) de la primera cohorte y 10 (6,17%) de la segunda. Por tanto, los pacientes incluidos en el estudio de la RM fueron 129 de la primera cohorte y 152 de la segunda (Figura 4).

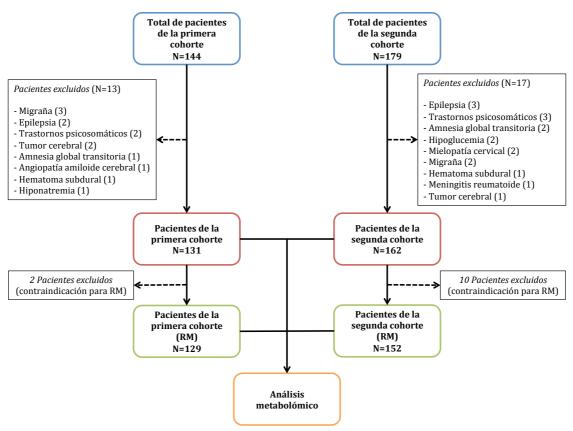


Figura 4. Pacientes incluidos en el estudio.

Con el objetivo de evitar diferencias étnicas en los perfiles metabolómicos, todos los pacientes presentaban un origen caucásico. Se obtuvieron muestras de sangre venosa periférica en las primeras 24 horas tras el inicio de los síntomas. De las muestras se separó el plasma, que fue almacenado a una temperatura de -80°C. Todos los pacientes fueron sometidos a una batería de estudios complementarios compuesta por análisis de sangre, electrocardiografía, estudio neurosonológico (dúplex de los troncos supraaórticos, dúplex doppler transcraneal) y estudio de neuroimagen (TC de cráneo a todos los pacientes y RM de cráneo a 281 pacientes). Se completó la valoración mediante ecocardiografía, monitor Holter o monitorización electrocardiográfica a aquellos pacientes con sospecha de etiología cardioembólica. Se registraron los FR, las características clínicas y el valor de la escala *ABCD*²⁴⁰¹. Los pacientes fueron clasificados etiológicamente según la clasificación TOAST²⁷⁷. El diagnóstico de AIT de localización vertebrobasilar estuvo determinado por los siguientes síntomas: disfunción motora o sensitiva bilateral o cambiante, pérdida de visión completa o parcial en los campos homónimos, mareo, vértigo, o cualquier combinación de los mismos³⁹⁷.

4.2. Estudio neurosonológico

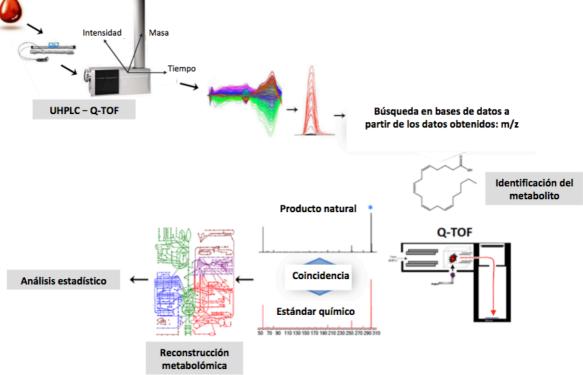
El estudio neurosonológico se llevó a cabo en las primeras 48 horas tras el inicio de los síntomas. La evaluación de la circulación arterial intracraneal fue realizada mediante el dispositivo Multi-Dop-T/TCD (DWL Elektronische Systeme GmgH, Alemania) en la primera cohorte y con el dispositivo Toshiba applio (Toshiba, Japón) en la segunda cohorte. El diagnóstico de una estenosis intracraneal dependía de la identificación de un aumento focal de la velocidad del flujo sanguíneo, con una diferencia respecto a la arteria contralateral >30 cm/s y con signos de flujo turbulento⁴¹³. Se establecieron los mismos criterios tanto para el doppler transcraneal (dispositivo utilizado en la primera cohorte) como para el dúplex transcraneal (dispositivo de la segunda cohorte)⁴¹⁴. Por lo que respecta al estudio de la arteria carótida extracraneal, reseñar que fue efectuada mediante el dispositivo Eco Doppler Micromaxx (Sonosite Inc., EUA) en la primera cohorte de pacientes y con el Toshiba applio (Toshiba, Japón) en la segunda. Las categorías de estenosis de la ACI estaban determinadas por los criterios surgidos de la Society of Radiologists in Ultrasound Consensus Conference: ausente; leve, si una o ambas ACI tenían una estenosis <50%; moderada, si alguna de las ACI contaban con una estenosis de entre el 50 y el 70%; y severa, si alguna de las ACI presentaba una estenosis $> 70\%^{415}$.

El diagnóstico de AGV estaba condicionado a la visualización de una estenosis intracraneal o extracraneal de grado moderado a severo. Dicho hallazgo debía ser confirmado mediante la realización de una angiografía por RM. Los síntomas del AIT debían ser congruentes con la localización y el lado de la estenosis.

4.3. Protocolo de neuroimagen

Se realizó una TC de cráneo a todos los pacientes. La detección de una lesión cerebral de características no isquémicas era motivo de exclusión del estudio. Se practicó una RM de cráneo a 281 pacientes, a los 12 restantes no pudo realizarse por presentar alguna contraindicación. La RM se realizó en los 7 primeros días tras la clínica inicial (3,7 días [desviación estándar -SD- 2,1]). Todas las RM se realizaron mediante un sistema de imágenes de cuerpo completo de 1,5 teslas (T) con un gradiente de intensidad de 24-mT/m, tiempo de aumento de 300 ms, y un receptor capacitado para eco plano equipado con un gradiente (Philips Intera 1,5 T, MRI scanner). El estudio de RM incluía imágenes axiales potenciadas en eco de espín rápido T2 (TR/TE:4800/120), imágenes potenciadas en eco de espín T1 (TR/TE: 540/15), imágenes axiales en la secuencia de recuperación de la inversión de ruido atenuado (TR/TI/TE: 8000/2200/120), imágenes en difusión eco plano (TR/TE: 3900/95). El campo de vista era de 230 mm y la matriz de 256 x 256 en todas las secuencias. La DF se obtenía con una secuencia de disparo único de pulso eco de espín eco plano con un valor b de gradiente de difusión de 1000 s/mm² a través de ejes ortogonales sobre 20 secciones axiales, utilizando secciones de 6 mm de grosor, y dejando un espacio de 1 mm entre los cortes. La alteración del tejido (DF positiva) fue definida como áreas de elevada intensidad de señal en la DF isotrópica, determinando una lesión isquémica aguda. Los patrones de la DF utilizados fueron: DF normal, fragmentado en un territorio arterial (FUT), múltiples territorios vasculares, lesión cortical única en un territorio vascular, y patrón subcortical³⁹⁷. Las imágenes de DF fueron valoradas por dos neurorradiólogos que desconocían las características clínicas. El acuerdo interobservador (valor kappa) resultó de 1,0 para la identificación de una DF positiva y de 0,98 para la identificación de los patrones de DF. Se empleó el software de procesamiento de imágenes OsiriX V.4.0 para calcular el volumen total de la lesión en DF⁴¹⁶. Para ello, se señalaba manualmente la lesión con la herramienta de polígono cerrado de OsiriX con el objetivo de crear una región de interés. Las regiones de interés entre los cortes se intercalaban automáticamente, permitiendo el cálculo del volumen de la lesión.

4.4. Seguimiento de los pacientes y variable clínica


La variable clínica fue la recurrencia en forma de ictus isquémico (RI). Un neurólogo dedicado a la patología cerebrovascular realizó las visitas clínicas durante el seguimiento a los 7 días, 3 meses y cada 6 meses. La consideración de RI precisó de un estudio de neuroimagen que objetivara la lesión isquémica cerebral. La recurrencia en forma de AIT no se recogió como variable.

4.5. Análisis metabolómico

Las muestras plasmáticas de los pacientes fueron sometidas a un análisis metabolómico no dirigido. Con el fin de evitar que hubiera variaciones a lo largo del día, todas las muestras se obtuvieron por la mañana. Se añadieron 90 µl de metanol frío a 30 µl de plasma que, posteriormente, fueron incubados durante 1 hora a una temperatura de -20°C y centrifugados durante 3 minutos a 12.000 g. El sobrenadando fue recuperado, evaporado mediante la herramienta SpeedVacTM (Thermo Fisher Scientific, España) y resuspendido en agua con una concentración de 0,4% de ácido acético/metanol (50/50)⁴¹⁷. Con el objetivo de separar los metabolitos se aplicó un esquema de UHPLC con el sistema Agilent 1290 LC asociado a una ionización con electrospray del tándem Q-TOF 6520 (Agilent Technologies, España). Se utilizó una columna con un tamaño de partícula de 1,8 µM. Se empleó la base de datos PCDL (Agilent Technologies, España) para la obtención preliminar de los metabolitos diferenciales. Esta base de datos se fundamenta en los tiempos de retención, la masa exacta y la distribución de los isotopos en un sistema cromatográfico estandarizado como parámetro de búsqueda ortogonal para complementar los datos de masa precisos (abordaje AMRT)³⁵⁰. Las muestras fueron randomizadas antes del análisis metabolómico para seguir una metodología de doble ciego. Se introdujeron muestras de control de calidad con el fin de evitar factores de confusión. Las identidades se confirmaron con un tándem de MS (Sigma-Aldrich, EUA). La aplicación ConsensusPathDB-human, que es una herramienta que muestra las redes de integración del metaboloma en el *Homo sapiens*, permitió calcular el impacto de las vías metabólomicas identificadas⁴¹⁸. Con el fin de reducir el sesgo de identificar e interpretar los resultados se utilizaron distintas bases de datos: KEGG, Reactome, Netpath, Biocarta, HumanCyc y the pathway interaction database (PID), Signalink, Inoh, Wikipathways, Pharmgkb, y Ehmn.

Extracción de la muestra Intensidad

Figura 5. Análisis metabolómico (adaptado de ⁴¹⁹).

UHPLC, cromatografía líquida ultrahigh performance; m/z, relación de masa/carga; Q-TOF, tándem espectrómetro de cuadrupolo-time of flight.

4.6. Análisis estadístico

Los cálculos estadísticos se realizaron con la plataforma SPSS (SPSS, EUA) y el paquete estadístico Stata 11 (StataCorp, EUA). La prueba de Kolmogorov-Smirnov verificó la distribución normal de las variables. Se realizó un análisis discriminante de mínimos cuadrados parciales (PLS-DA) mediante el software *Mass Molecular Profiler* (Agilent Technologies, España). El número de componentes escogidos para realizar el PLS-DA fue 4. Los datos fueron escalados automáticamente con un algoritmo. La validación del modelo se logró con el tipo de validación de N-iteración (*N-fold*) con 3 iteraciones y 10 repeticiones. Para examinar el modelo se ha considerado la precisión y el indicador de la varianza R².

En todos los casos, la significación estadística quedó determinada por una p<0,05. La significación estadística para las diferencias intergrupales se evaluó mediante la prueba χ^2 para las variables categóricas y las pruebas t de Student, ANOVA y U de Mann-Whitney para las variables continuas. Se realizaron análisis univariados para detectar las variables asociadas a RI, así como a DF positiva y a los patrones de DF. Se asumió que el volumen de la lesión isquémica visualizada en la DF constituye una variable continua y se analizó si algún metabolito circulante se asociaba a ello. Se realizó la corrección de Bonferroni a todas las asociaciones significativas con el objetivo de reducir el riesgo de identificar asociaciones falsamente positivas. La plataforma ROCCET permitió la realización de curvas ROC para los datos metabolómicos⁴²⁰. La normalización y el procesamiento de estos análisis ante datos desequilibrados se llevó a cabo mediante el método Montecarlo. Se analizaron curvas ROC adicionales para comparar la precisión predictiva de la escala ABCD², y la escala ABCD² sumada a los biomarcadores identificados tras el análisis metabolómico, la predicción de la presencia de DF positiva y los patrones de DF. Para estos propósitos, se utilizó el paquete Hmisc en el medio R (http://biostat.mc.vanderbilt.edu/wiki/Main/Hmisc).

Solamente fueron utilizados aquellos casos de los que se disponían todas las mediciones. En estos casos se aplicaron las pruebas mejora neta de reclasificación (NRI) y mejoramiento integral de la discriminación (IDI), así como la prueba de

Hosmer-Lemeshow para calibrar el riesgo de los modelos de predicción⁴²¹. También se calculó la tasa cumulativa libre de eventos en el patrón temporal de las recurrencias en relación al patrón metabolómico según el método de Kaplan-Meier.

5. Resultados

En este apartado se exponen los datos obtenidos tras la investigación realizada. Tras la descripción de los sujetos incluidos en el estudio, se describirán los resultados siguiendo la estructura expuesta en el apartado de "Hipótesis y Objetivos".

5.1. Características clínicas de las cohortes

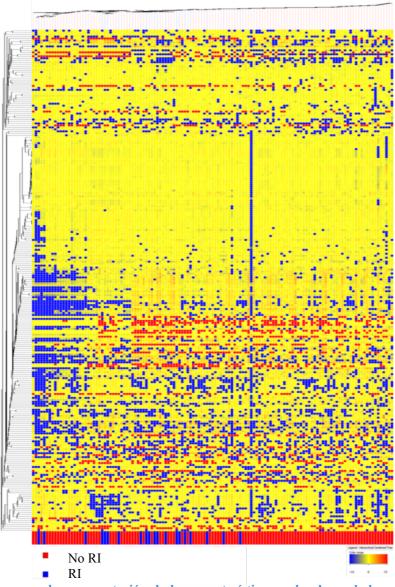
En la primera parte del estudio se incluyó a un total de 293 pacientes distribuidos en dos cohortes: 131 pacientes en la primera cohorte y 162 en la segunda. Las características de la población estudiada se detallan en la tabla 7. La edad media fue de 71,7 años (SD 10,8) y 179 pacientes eran de sexo masculino (61,1%). La HTA resultó el principal FR vascular habida cuenta de que se halló en 201 pacientes (68,8%). Las dos cohortes no presentaron diferencias significativas por lo que respecta a los FR vascular, síntomas clínicos, puntuación en la escala $ABCD^2$, o subtipos etiológicos. Si se consideran los tratamientos previos al AIT (suceso inicial), cabe destacar que la anticoagulación tendió a ser más frecuente en la primera cohorte de la primera parte del estudio. No obstante, dicha tendencia devino significativa tras excluir a los pacientes que presentaban alguna contraindicación para la realización de la RM.

Ambas cohortes no difirieron significativamente en cuanto a las RI. Un total de 35 (11,94%) pacientes sufrieron una RI a lo largo del seguimiento, que se distribuyeron del siguiente modo: 11 (3,75%) RI acontecieron a los 7 días del episodio inicial, 4 (1,36%) entre los 7 y los 90 días, 8 (2,73%) entre los 90 días y el primer año de seguimiento, y 12 (4,09%) más allá del primer año desde el episodio inicial. El seguimiento medio fue de 28,3 meses. El 24,6% de los pacientes diagnosticados de AGV sufrió una RI a lo largo del seguimiento. Solamente las variables AGV y *ABCD*² se asociaron a RI en el análisis univariado (Tabla 8). La anticoagulación se asoció a RI. Dos pacientes fallecieron debido a la recurrencia.

Tabla 7. Características clínicas, tratamientos y recurrencias.

Variables		Cohorte 1 (n=131)	Cohorte 2 (n=162)	Total (n=293)	p
	Edad, media (SD)	70,5 (11,4)	72,1 (11,2)	71,7 (10,8)	0,509
0,	Sexo masculino	85 (64,9)	94 (58,0)	179 (61,1)	0,231
esg	Antecedente de ictus	28 (21,4)	35 (21,6)	63 (21,5)	0,962
e ri lar	HTA	91 (69,5)	111 (68,5)	201 (68,8)	0,899
Factores de riesgo vascular	Enfermedad coronaria	18 (13,7)	21 (13,0)	39 (13,3)	0,846
ore. va:	DM	41 (31,3)	47 (29,0)	88 (30,0)	0,671
acto	Hábito tabáquico	18 (13,7)	19 (11,7)	37 (12,6)	0,606
Ĕ.	Hipercolesterolemia	49 (37,4)	61 (37,7)	110 (37,5)	0,965
	Antecedente de FA	17 (13,0)	17 (10,5)	34 (11,6)	0,509
	AAS	30 (22,9)	36 (22,4)	66 (22,6)	0,913
es	Clopidogrel	9 (6,9)	18 (11,2)	27 (9,2)	0,229
Ttos basales	Anticoagulación	19 (14,5)	12 (7,5)	31 (10,6)	0,058
ра	Estatina	43 (32,8)	46 (28,6)	89 (30,6)	0,407
	ISRA	65 (49,6)	78 (48,1)	144 (49,1)	0,924
	Duración				0,913
	<10 minutos	12 (9,3)	17 (10,8)	29 (9,9)	
	10-59 minutos	50 (38,2)	61 (37,7)	111 (37,9)	
nas	1 hora	69 (52,7)	84 (51,9)	153 (52,2)	
Síntomas	Cúmulo de AIT	36 (27,5)	33 (20,4)	65 (22,2)	0,406
Sín	Paresia	70 (53,4)	85 (52,4)	155 (52,9)	0,869
	Síntomas sensitivos aislados	12 (9,2)	13 (8,0)	25 (8,5)	0,729
	Trastorno del lenguaje	78 (59,5)	103 (64,0)	181 (62,0)	0,438
	Vertebrobasilar	10 (7,6)	12 (7,5)	22 (7,5)	0,954
$ABCD^2$		5,2	5,1	5,1	0,753
ABCD		(4,0-6,0)	(4,0-6,0)	(4,0-6,0)	
. 8	AGV	33 (25,2)	32 (19,9)	65 (22,3)	0,502
pos	Cardioembolismo	23 (17,6)	37 (23,0)	60 (20,5)	
Subtipos etiológicos	Enfermedad de pequeño vaso	28 (21,4)	30 (18,6)	58 (19,9)	
ō	Etiología indeterminada	47 (35,9)	62 (38,5)	109 (37,3)	
	Meses de seguimiento,	38,2	16,9	28,3	<0,001
1to	media (RIQ)	(18,3-50,3)	(12,2-35,4)	(13,7-42,9)	<0,001
nier	RI a los 7 días	6 (4,6)	5 (3,1)	11 (3,8)	
uin	RI a los 90 días	8 (6,1)	7 (4,3)	15 (5,1)	
Seguimiento	RI al primer año	13 (9,9)	10 (7,2)	23 (8,5)	
9 1	RI durante el seguimiento	20 (15,3)	15 (9,3)	35 (11,9)	0,147
	Ter durante or begunnento	20 (12,2)	10 (7,5)	20 (11,7)	0,1 1/

SD, desviación estándar; HTA, hipertensión arterial; DM, diabetes mellitus; FA, fibrilación auricular; Ttos, tratamientos; AAS, ácido acetilsalicílico; ISRA, Inhibidor del sistema renina-angiotensina; AGV, arteriosclerosis de gran vaso; RIQ, rango intercuartil; RI, recurrencia en forma de ictus isquémico.


Tabla 8. Variables asociadas a recurrencia en forma de ictus isquémico en ambas cohortes de pacientes.

Varia	, klo	RI a los	7 días de seguim	iento	RI a los 9	00 días de seguim	iento	RI al prime	er año de segui	miento	RI dur	ante el seguimie	nto
varia	abie	No $(n=282)$	Sí (n=11)	р	No (n=278)	Sí (n=15)	р	No (n=247)	Sí (n=23)	р	No (n=258)	Sí (n=35)	р
	Edad, media (SD)	71,6 (10,9)	75,5 (8,6)	0,247	71,6 (10,9)	74,5 (8,2)	0,318	71,3 (11,01)	75,6 (7,5)	0,073ª	71,7 (11,6)	76,1 (6,5)	0,148
0	Sexo masculino	175 (62,1)	4 (36,4)	0,115	172 (61,9)	7 (46,7	0,239	152 (61,5)	11 (47,8)	0,198	157 (60,9)	22 (62,9)	0,819
riesgo ar	Antecedente de ictus	63 (22,4)	1 (9,1)	0,295	63 (1)	1 (6,7)	0,204	51 (20,7)	6 (26,1)	0,548	55 (21,4)	9 (25,7)	0,627
e ri lar	HTA	193 (68,4)	9 (81,8)	0,347	191 (68,7)	11 (73,3)	0,706	165 (66,8)	19 (82,6)	0,120	174 (67,7)	28 (80,0)	0,307
s de scula	Enfermedad coronaria	29 (13,8)	0 (0)	0,370	39 (14,0)	0 (0)	0,234	30 (12,1)	4 (17,4)	0,468	30 (11,7)	8 (22,8)	0,403
Factores	DM	83 (29,4)	5 (45,5)	0,255	81 (20,1)	7 (46,7)	0,158	71 (28,7)	9 (39,1)	0,341	69 (26,8)	19 (54,3)	0,103
act	Hábito tabáquico	37 (13,1)	0(0)	0,370	37 (13,3)	0(0)	0,231	35 (0)	0 (0)	$0,053^{a}$	35 (13,6)	2 (5,7)	0,220
ΙΞ	Hipercolesterolemia	105 (37,2)	5 (45,5)	0,752	105 (37,8)	5 (33,3)	0,792	88 (35,6)	10 (43,5)	0,500	97 (37,7)	13 (37,1)	0,859
	Antecedente de FA ^a	32 (11,3)	2 (18,2)	0,487	32 (11,5)	2 (13,3)	0,688	25 (10,1)	6 (26,1)	0,034a	25 (9,7)	9 (25,7)	0,211
	AAS	63 (22,4)	3 (27,3)	0,706	63 (22,7)	3 (20,0)	1	52 (21,1)	6 (26,1)	0,581	57 (22,2)	9 (25,7)	0,637
es s	Clopidogrel	27 (9,6)	0 (0)	0,607	27 (9,7)	0 (0)	0,376	19 (7,7)	4 (17,4)	0,119	23 (8,9)	4 (11,4)	0,635
Ttos asale	Anticoagulación	29 (10,3)	2 (18,2)	31 (10,6)	29 (10,5)	2 (13,3)	0,726	24 (9,8)	6 (26,1)	0,030	22 (8,5)	9 (25,7)	0,016
D ₂	Estatina	84 (30,0)	5 (45,4)	0,321	84 (30,4)	5 (33,3)	0,164	72 (29,4)	10 (43,5)	0,161	77 (30,0)	12 (34,3)	0,637
	ISRA	134 (48,0)	9 (81,8)	0,033	132 (48,0)	11 (73,3)	0,066	116 (60,9)	14 (60,9)	0,221	121 (46,9)	22 (62,9)	0,105
	Duración												
	<10 minutos	29 (10,2)	0(0)	0,482	30 (10,8)	0 (0)	0,175	23 (9,3)	0 (0)	0,297	28 (10,9)	1 (2,9)	0,913
	10-59 minutos	107 (37,9)	4 (36,4)		107 (38,4)	4 (26,7)		93 (37,7)	10 (43,5)		100 (38,9)	11 (31,4)	
nas	1 hora	146 (51,9)	7 (63,6)		141 (50,7)	11 (73,3)		131 (53,0)	13 (56,5)		126 (49,0)	27 (77,1)	
	Cúmulo de AIT	60 (21,3)	5 (45,5)	0,071	60 (21,6)	5 (33,3)	0,336	55 (22,3)	5 (21,7)	0,954	60 (23,3)	5 (14,3)	0,738
Sínto	Paresia	147 (52,1)	8 (72,7)	0,227	145 (52,2)	10 (66,7)	0,302	145 (52,2)	10 (66,7)	0,907	132 (51,4)	23 (65,7)	0,290
	SSA	25 (8,9)	0 (0)	0,607	23 (8,3)	2 (13,3)	0,372	23 (9,3)	2 (8,7)	0,922	22 (62,9)	3 (8,6)	0,834
	Trastorno del lenguaje	171 (60,9)	10 (90,9)	0,057	169 (6,0)	12 (80,0)	0,140	148 (60,2)	17 (73,9)	0,264	155 (60,3)	26 (74,3)	0,138
	Vertebrobasilar	21 (7,5)	1 (9,1)	0,842	21 (7,6)	1 (6,7)	0,896	18 (7,3)	1 (4,3)	1	21 (7,6)	1 (0,0)	0,954
	ositiva	113 (41,4)	2 (25,0)	0,478	110 (40,9)	5 (41,7)	0,957	101 (42,3)	10 (50,0)	0,502	99 (39,8)	16 (50,0)	0,267
ABCI	\mathcal{D}^2	5,0 (4,0-6,0)	6,0 (4,0-7,0)	0,058a	5,0 (4,0-6,0)	6,0 (4,0-7,0)	0,056ª	5,0 (4,0-6,0)	6 (4,0-7,0)	0,335	5,0 (4,0-6,0)	6,0 (4,0-7,0)	0,005
	AGV	57 (20,3)	87 (72,7)	0,002	56 (20,2)	9 (60,0)	$0,007^{a}$	47 (19,1)	12 (52,2)	0,002	49 (19,1)	16 (45,7)	0,008
SE	Cardioembolismo	59 (21,0)	1 (9,1)		59 (21,3)	1 (6,7)		47 (19,1)	6 (26,1)		52 (20,2)	8 (22.9)	
S	EPV	57 (20,3)	1 (9,1)		55 (19,9)	3 (20,0)		51 (20,7)	3 (13,0)		53 (20,6)	5 (14,3)	
	Etiología indeterminada	96 (34,2)	1 (9,1)		95 (34,3)	2 (13,3)		89 (36,2)	2 (8,7)		103 (40,1)	6 (17,1)	
CD 4	lacviación estándar: DI recu			o. IITA hima			llitua. EA			iantaa. A A			aibidan dal

SD, desviación estándar; RI, recurrencia en forma de ictus isquémico; HTA, hipertensión arterial; DM, diabetes mellitus; FA, fibrilación auricular; Ttos, tratamientos; AAS, ácido acetilsalicílico; ISRA, Inhibidor del sistema renina-angiotensina; DF, secuencia potenciada en difusión; SSA, síntomas sensitivos aislados; SE, subtipos etiológicos; AGV, arteriosclerosis de gran vaso; EPV, enfermedad de pequeño vaso; RIQ, rango intercuartil; RI, recurrencia en forma de ictus isquémico. a No significativo tras la corrección de Bonferroni.

5.2. Riesgo de recurrencia en forma de ictus isquémico

Se realizó un análisis metabolómico no dirigido a las muestras plasmáticas de la primera cohorte con el fin de evaluar los cambios potenciales que pueden sugerir el ulterior riesgo de RI. La figura 6 ilustra las características moleculares detectadas, presentes en al menos el 50% de las muestras del mismo grupo (1.558, 1.304 en ionización positiva y 254 en la negativa).

Figura 6. Diagrama de representación de las características moleculares de la primera cohorte. Cada línea del gráfico representa una masa precisa ordenada por el tiempo de retención. La coloración indica la intensidad de abundancia. La escala de -10 azul (abundancia baja) a +10 rojo (abundancia elevada) representa la abundancia normalizada en unidades arbitrarias.

El análisis PLS-DA identificó que los pacientes que sufrieron una RI tenían un perfil metabolómico específico con una precisión del 66% (en ionización positiva) y al 73% (en ionización negativa). La figura 7 muestra que resulta posible separar las muestras de acuerdo a la RI.

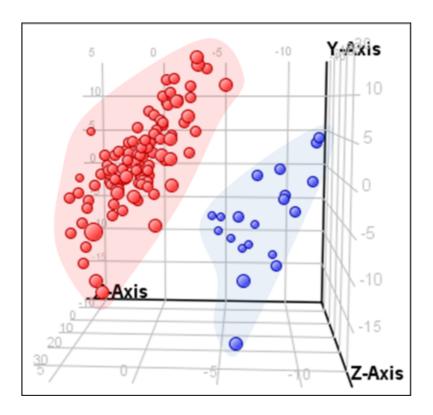


Figura 7. Gráfico tridimensional del PLS-DA que demuestra que la RI determina un metaboloma plasmático. Los puntos azules representan las muestra plasmática de RI, mientras que los puntos rojos representan las muestras de no RI.

El análisis estadístico univariado reveló que 94 iones diferenciaban a los pacientes en función de la RI (p<0,05) (Tabla suplementaria 1). Mediante la aplicación de un abordaje ortogonal, basado en bases de datos de tiempo de retención, la distribución isotópica y la masa exacta, se obtuvieron 6 moléculas cuya identificación fue confirmada mediante estudios en tándem de EM. De éstas, 5 presentaban una regulación disminuida (1-monopalmitina, ácido dodecanoico, meso-eritritol, treonato y LPC 16:0) mientras que la restante tenía una regulación aumentada (miristoiletanolamina) (Tabla 9).

Tabla 9. Metabolitos diferenciales entre los grupos RI y No RI.

Metabolito	p	Regulación (RI versus No RI)	Ratio
1-Monopalmitina	0,007	D	-2,27
Miristoil-etanolamina	0,010	A	12,28
Ácido dodecanoico	0,043	D	-2,68
Meso-eritriol	0,047	D	-10,99
Treonato	0,023	D	-4,09
LPC 16:0	0,036	D	-1,65

LPC, lisofosfatidilcolina; D, disminuido; A, aumentado.

El análisis de las vías metabólicas descubrió que los metabolitos señalados pertenecen a distintas vías relacionadas con el metabolismo de los ácidos grasos, metabolismo energético, vías mediadas de transporte transmembrana SLC (*solute carrier* [transportador de soluto]) (Tabla suplementaria 2).

5.3. Patrones temporales de las recurrencias en forma de ictus isquémico

Se evaluó si los pacientes que habían sufrido una RI temprana tenían un perfil metabolómico distinto a aquellos que habían presentado una RI tardía. Los resultados mostraron que el PLS-DA de los perfiles metabolómicos permiten la diferenciación entre ambos grupos con una elevada precisión (entre el 95% y el 100% en los modos de ionización positiva y negativa, respectivamente).

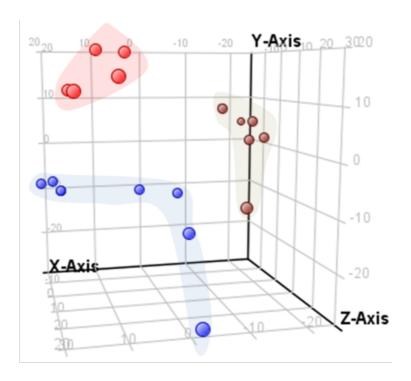


Figura 8. Gráfico tridimensional del PLS-DA que demuestra que el patrón temporal de la RI determina un metaboloma plasmático. Los puntos azules representan las RI temprana (<90 días), los puntos rojos las RI medias (>90 días y <1 año) y los puntos marrones las RI tardías (>1 año).

5. Resultados

Un total de 325 iones diferenciales (p<0,05) fueron detectados mediante ANOVA (Tabla suplementaria 3). Los análisis estadísticos revelaron que la mayoría de las diferencias se hallaban entre los pacientes que habían sufrido una RI tardía (> 1 año comparado con los habían presentado la recurrencia entre los 3 meses y 1 año. En cambio, los pacientes con una RI temprana (<3 meses) se caracterizaron por una menor cantidad de metabolitos diferenciales (76 y 103 metabolitos comparado con RI tardía y RI media, respectivamente). Tras la pertinente búsqueda en las bases de datos, se lograron identificar a 14 metabolitos sugerentes de RI temprana (Tabla 10), pertenecientes a distintas vías metabólicas (Tabla suplementaria 4). Entre estos metabolitos, 13 eran coincidentes entre RI y patrón temporal de RI y se engloban en el metabolismo de los ácidos grasos (biosíntesis, transporte y receptores) y regulación de la secreción de insulina.

Tabla 10. Metabolitos diferenciales en relación al patrón temporal de la RI.

-	Ratio	Regulación	Ratio	Regulación	Ratio	Regulación
P	(1 año vs 90 días)	(1 año vs 90 días)	(1 año vs >1 año)	(1 año vs >1 año)	(90 días vs >1 año)	(90 días vs > 1año)
0,004	-1	D	-261,004	D	-261,004	D
0,047	540,952	A	387,993	A	-1,394	D
0,049	3,898	A	376,264	A	96,514	A
0,024	-321,573	D	-3,768	D	85,337	A
0,004	-47,121	D	-12836	D	-272,403	D
0,027	485,071	A	1113,566	A	2,295	A
0,021	-217,184	D	-3,241	D	67,009	A
0,003	1354,707	A	111,582	A	-12,140	D
0,040	1,337	A	-1,117	D	-1,494	D
0,005	3,0159	A	612,310	A	203,026	A
0,002	797,538	A	1,472	A	-541,666	D
0,020	-50,749	D	6,174	A	313,347	A
0,022	-36,204	D	5,775	A	209,099	A
0,017	966,007	A	3705,88	A	3,836	A
	0,047 0,049 0,024 0,004 0,027 0,021 0,003 0,040 0,005 0,002 0,020 0,022	p (1 año vs 90 días) 0,004 -1 0,047 540,952 0,049 3,898 0,024 -321,573 0,004 -47,121 0,027 485,071 0,021 -217,184 0,003 1354,707 0,040 1,337 0,005 3,0159 0,002 797,538 0,020 -50,749 0,022 -36,204	p (1 año vs 90 días) (1 año vs 90 días) 0,004 -1 D 0,047 540,952 A 0,049 3,898 A 0,024 -321,573 D 0,004 -47,121 D 0,027 485,071 A 0,021 -217,184 D 0,003 1354,707 A 0,040 1,337 A 0,005 3,0159 A 0,002 797,538 A 0,020 -50,749 D 0,022 -36,204 D	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

D, disminuido; A, aumentado.

5.4. Estudio de la arteriosclerosis de gran vaso

Se ha considerado oportuna la priorización del estudio de la etiología AGV debido a su importancia como predictor de RI⁴⁰³. Mediante la evaluación de los pacientes con estenosis sintomáticas de la ACI o intracraneales >50%, se observó que los perfiles metabolómicos ofrecieron una elevada precisión para la predicción de la presencia de AGV (precisión del PLS-DA del 98% en ionización positiva y del 91% en la negativa; positiva: especificidad = 0,79, sensibilidad = 1; negativa: especificidad = 0,86, sensibilidad = 1) (Figura 9).

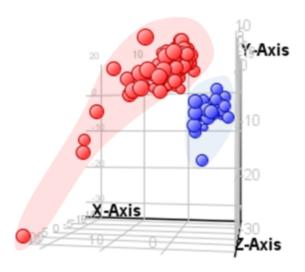
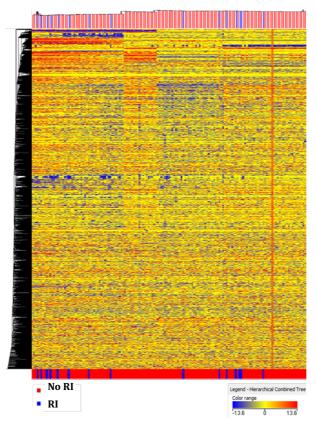


Figura 9. Gráfico tridimensional del PLS-DA que muestra las diferencias entre los pacientes en cuanto a la AGV. Los puntos azules representan AGV y los rojos no AGV.

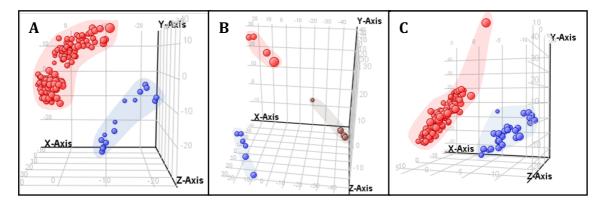
Un total de 73 metabolitos resultaron estadísticamente diferentes (prueba de t de Student) entre AGV y no AGV (tabla suplementaria 5). Tras el estudio de identificación se revelaron 4 moléculas, todas ellas aumentadas en los pacientes con AGV: androsterona, ácido esteárico, ácido ascórbico y LPC (22:6) (Tabla 11).

Tabla 11. Metabolitos diferenciales (p<0,05) identificados entre AGV y no AGV.

Compuesto	P	Regulación (AGV vs. No AGV)	Ratio
Androsterona	0,013	A	8,72
Ácido ascórbico (Vitamina C)	0,032	A	8,79
Ácido esteárico	0,023	A	9,08
LPC (22:6)	0,039	A	2,88


A, aumentado; LPC, lisofosfatidilcolina.

Posteriormente, se consideró de interés estudiar si los metabolitos diferenciales entre AGV y no AGV coincidían con los metabolitos diferenciales RI y no RI. Los resultados mostraron la existencia de 18 moléculas comunes en estos 2 grupos. Se logró la identificación de dos de estos metabolitos: ácido dodecanoico y 1-monopalmitina, cuyas concentraciones estaban disminuidas en los pacientes que habían sufrido una RI.


5.5. Validación de los resultados según el contexto clínico en la cohorte independiente

El análisis multivariado sobre la segunda cohorte confirmó que los perfiles metabolómicos permiten distinguir tanto a los pacientes con han que sufrido una RI como el patrón temporal de la misma (Figuras 11.A y 11.B). También se reprodujeron las diferencias en cuanto a la AGV (Figura 11.C). Se identificaron diversas vías metabólicas comunes en ambas cohortes en relación al patrón temporal de las recurrencias concernientes, entre otras, a la biosíntesis de ácidos grasos insaturados y al transporte-SLC (Figura 12) (Tabla suplementaria 6).

Es preciso destacar que en las dos cohortes se identificó, por un lado, un descenso de LPC (16:0) en los pacientes con RI temprana y, por otro lado, un incremento de LPC (22:6) en los pacientes con AGV (Figura 13).

Figura 10. Diagrama de representación de las características moleculares de la segunda cohorte. Cada línea del gráfico representa una masa precisa ordenada por el tiempo de retención. La coloración indica la intensidad de abundancia. La escala de -13,6 azul (abundancia baja) a +13,6 rojo (abundancia elevada) representa la abundancia normalizada en unidades arbitrarias.

Figura 11. Gráficos tridimensionales del PLS-DA de la segunda cohorte. A. La RI determina un metaboloma plasmático. Los puntos azules representan RI y los rojos no RI. **B.** El patrón temporal de la RI determina un metaboloma plasmático entre las recurrencias temprana, < 90 días (puntos azules); medias, >90 días y < 1 año (puntos rojos); y tardías, >1 año (puntos marrones). **C.** El perfil metabolómico diferencia entre AGV (puntos azules) y no AGV (puntos rojos).

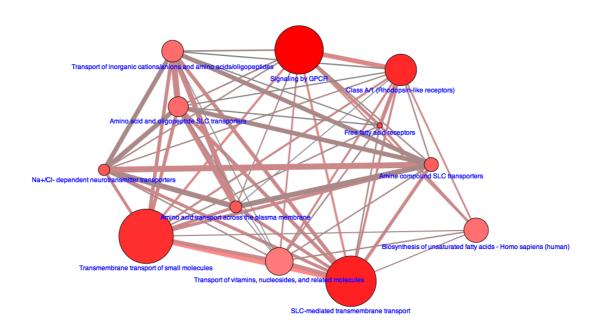


Figura 12. Vías comunes en las dos cohortes afectadas por el patrón temporal de RI. El gráfico representa conjuntos de metabolitos (sobrerrepresentados en una lista de entrada) presentes en el plasma y relacionados con el patrón temporal de RI. El tamaño del nodo representa el tamaño del conjunto de genes y el color del nodo refleja su valor p (el rojo más intenso identifica el valor p más pequeño). Cada línea ilustra un solapamiento entre conjuntos de metabolitos (es decir, metabolitos compartidos). El grosor de la línea refleja el tamaño de la superposición, mientras que el color hace referencia a la cantidad de metabolitos de la lista contenidos en la superposición.

Figura 13. A y B. Lisofosfatidilcolina -LPC- (16:0) se erige como un potencial biomarcador en sangre de recurrencia en forma de ictus isquémico (RI) (A. cohorte 1; B. cohorte 2). ** Indica diferencias estadísticamente significativas (p<0,0001) mediante el análisis de la varianza con la prueba de Tukey de comparaciones múltiples. C y D. LPC (22:6) se destaca como potencial biomarcador en sangre de arteriosclerosis de gran vaso (AGV) (C. cohorte 1, D. cohorte 2). * Indica diferencias estadísticamente significativas con la prueba t de Student (p<0,05).

5.6. Potencial predictivo de los biomarcadores descritos de recurrencia en forma de ictus isquémico

Con la finalidad de establecer la capacidad predictiva de los potenciales biomarcadores descritos, se efectuaron curvas ROC con los metabolitos presentes en al menos un 70% de las muestras del mismo grupo (RI y no RI). Se agruparon ambas cohortes debido al número de RI. Los resultados destacan el valor de LPC (20:4) como un biomarcador potencial (Figura 14) (Tabla 12). LPC (20:4) aumentó significativamente el poder predictivo de la escala ABCD² y/o AGV desde el 64-67% hasta el 71%, evaluada mediante las pruebas mejora neta de reclasificación (NRI) o mejoramiento integral de la discriminación (IDI). Al comparar los modelos con ABCD² con ABCD² + AGV, tanto la prueba NRI (0,73, 4,09, 4,31e-05 para NRI índice, valores Z y 2P, respectivamente) y la prueba IDI (0,023, 3,43, 0,0004 para IDI índice, valores Z y 2P, respectivamente) mostraron una mejoría significativa. Al comparar el modelo ABCD² + LAA con la adición de LPC (20:4) también se obtuvo una mejoría significativa en las pruebas IDI (0,48, 3,51, 0,0004 para NRI índice, valores Z y 2P, respectivamente) e IDI (0,024, 3,76, 0,000168 para IDI indice, valores Z y 2P, respectivamente). Sin embargo, la adición de LPC (16:0) al mismo modelo ABCD² + AGV no generó una mejoría significativa ni en la prueba NRI (-0,308, -1,69, 0,091 para NRI índice, valores Z y 2P, respectivamente) ni en la IDI (-0,029, -2,03, 0,041 para IDI índice, valores Z y 2P, respectivamente). La prueba de Hosmer-Lemeshow para la calibración del riesgo de predicción de los modelos mostró que mientras el modelo ABCD² estaba bien calibrado $(\chi^2 7,05, p=0,069)$, el modelo $ABCD^2 + AGV$ no lo estaba $(\chi^2 13,79, p=0,003)$. El modelo $ABCD^2 + AGV + LPC$ 20:4 logró la calibración más elevada (χ^2 3,58, p=0,309), mientras que el modelo ABCD² + AGV + LPC 16:0 obtuvo el valor de calibración más bajo (χ^2 17,33, p=6e-04).

El análisis de las RI tempranas arrojó un metabolito no identificado como biomarcador potencial con la capacidad de aumentar el poder predictivo de la escala *ABCD*² o AGV (del 62-67% al 71%) (Figura 15).

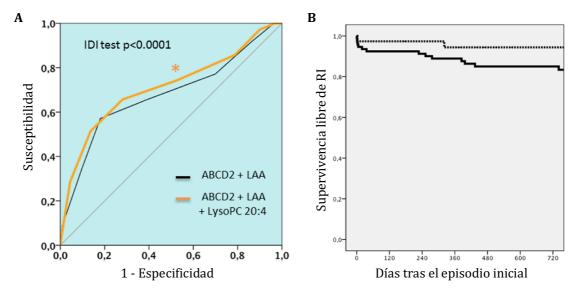
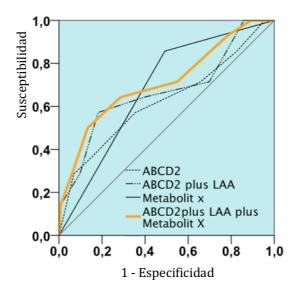


Figura 14. A. La inclusión de LPC (20:4) a la escala *ABCD*² y AGV aumenta la potencia de predicción de RI (áreas: ABCD2 = 0,646, p= 0,005; ABCD2 + AGV = 0,678, p=0,001; ABCD2 + AGV + LPC (20:4) = 0,711, p<0,001; Prueba de mejoramiento integral de la discriminación (IDI) para la comparación de modelos predictivos: p< 0,0001). B. Método de Kaplan-Meier para estimar la proporción de pacientes libres de RI. La línea discontinua indica LPC (20:4) > 114,000 recuentos de MS; la línea continua indica LPC (20:4) <114,000 recuentos de MS. MS, espectroscopia de masas.

Tabla 12. Precisión predictiva de la variables clínicas y de los biomarcadores del estudio metabolómico para las RI a los 7 días, a los 90 días, al primer año de seguimiento y durante todo el seguimiento.


Diamana dan	Cohouto	RI a los 7 d	días	RI a los 90	días	RI al 1er	año		RI durante el seguimiento	
Biomarcador	Cohorte -	AUC (IC 95%)	p							
$ABCD^2$	Ambas cohortes	0,65 (0,47-0,84)	0,085	0,64 (0,47-0,80)	0,075	0,56 (0,42-0,69)	0,359	0,65 (0,54-0,76)	0,005	
ABCD	Cohorte de validación	0,70 (0,42-0,98)	0,126	0,68 (0,43-0,93)	0,110	0,55 (0,34-0,76)	0,608	0,68 (0,51-0,85)	0,023	
(DGD ²), AGV	Ambas cortes	0,72 (0,55-0,89)	0,013	0,68 (0,52-0,84)	0,019	0,60 (0,46-0,74)	0,103	0,68 (0,57-0,79)	<0,001	
$ABCD^2 + AGV$	Cohorte de validación	0,77 (0,53-1,0)	0,038	0,73 (0,49-0,97)	0,039	0,61 (0,39-0,83)	0,257	0,72 (0,55-0,89)	0,004	
$ABCD^2 + AGV + LPC (20:4) < 114,000$	Ambas cohortes	0,72 (0,54-0,89)	0,014	0,70 (0,54-0,85)	0,011	0,62 (0,49-0,75)	0,048	0,71 (0,60-0,82)	<0,001	
ABCD + AGV + LPC (20.4) \114,000	Cohorte de validación	0,75 (0,49-1,00)	0,054	0,74 (0,51-0,96)	0,035	0,61 (0,40-0,83)	0,228	0,74 (0,57-0,91)	0,002	
$ABCD^2 + AGV + LPC (16:0) \ge 0,710$	Ambas cohortes	0,64 (0,45-0,82)	0,110	0,64 (0,45-0,81)	0,111	0,57 (0,43-0,72)	0,293	0,67 (0,56-0,79)	0,002	
	Cohorte de validación	0,72 (0,37-1,00)	0,192	0,67 (0,56-0,79)	0,002	0,56 (0,31-0,81)	0,590	0,72 (0,53-0,90)	0,010	

RI, recurrencia en forma de ictus isquémico; AUC, área bajo la curva; IC, intervalo de confinaza; AGV, arteriosclerosis de gran vaso; LPC, lisofosfatidilcolina.

Tabla 13. Modelo	de regresión de rie	esgos proporcionale	es de Cox par	a evaluar el RI.

	Model	o 1	Modelo	2	Modelo 3	
Variables	HR (IC)	p	HR (IC)	p	HR (IC)	p
$ABCD^2$	1,27 (0,89-1,82)	0,187	-	-	1,25 (0,95-1,66)	0,117
AGV	2,18 (0,89-5,33)	0,089	-	-	2,04 (0,83-5,03)	0,119
LPC (20:4)	-	-	3,64 (0,85-15,71)	0,083	3,19 (0,74-13,85)	0,121

HR, cociente de riesgo; IC, intervalo de confianza; AGV, arteriosclerosis de gran vaso; LPC, lisofosfatidilcolina.

Figura 15. La inclusión de un compuesto no identificado "X" (masa 734,267, tiempo de retención: 11,66) a la escala ABCD2 y AGV a la curva ROC conduce a un aumento en la potencia de predicción de RI temprana (Área: ABCD2 = 0,623, p=0,12; ABCD2+AGV = 0,670, p=0,032; ACBD2 + AGV + X = 0,712, p=0,008.

5.7. Metabolómica y difusión positiva

En la segunda parte del estudio, que implicó relacionar el abordaje metabolómico a los hallazgos de la secuencia de DF de la RM, se excluyeron los pacientes que presentaban contraindicaciones para la realización de este estudio de neuroimagen. Tras la exclusión de 12 pacientes (2 de la primera cohorte y 10 de la segunda), se estudiaron un total de 281 pacientes: 129 de la primera cohorte y 152 de la segunda (Figura 4). El análisis de los pacientes sometidos a la RM no identificó diferencias estadísticamente significativas entre las dos cohortes, ni en lo referente a los FR vascular, ni a las características clínicas, ni a los datos de la neuroimagen (Tabla 14). Por lo que respecta a los tratamientos basales, destacar que la tendencia a una mayor frecuencia de anticoagulación en la primera cohorte, devino significativa tras excluir a los pacientes que presentaban alguna contraindicación para la realización de la RM.

Se identificaron alteraciones en la DF en 115 pacientes (40,9%). El patrón de lesión fragmentada en un único territorio vascular (FUT) resultó el más frecuente, puesto que se visualizó en 41 pacientes (37,7%). La tabla 15 recoge los FR, las características clínicas y los subtipos etiológicos en función de los patrones de DF. Por lo que respecta a las características clínicas, los pacientes que contaban con alteraciones en la DF en distintos territorios vasculares fueron mayores que los pacientes con los otros patrones de DF. En cuanto a los factores de riesgo vascular, la hipercolesterolemia mostró diferencias estadísticamente significativas entre los distintos patrones de DF, siendo los más frecuentes el de lesión cortical única (40,9%) y FUT (38,6%). La paresia se halló más frecuentemente relacionada con los patrones de lesión subcortical y de múltiples territorios vasculares. La etiología AGV resultó la más frecuente en el patrón FUT (39%). Por lo que respecta al estudio de los volúmenes de las lesiones, el volumen medio de la lesión isquémica aguda fue de 0,33 cm³ (0,15-1,90). Si bien no se obtuvieron unas diferencias significativas, los patrones FUT y múltiples territorios mostraron un mayor volumen lesional (Tabla 15).

Tabla 14. Factores de riesgo, características clínicas y de neuroimagen.

Tabla 14. Factores de riesgo, características clínicas y de neuroimagen.								
	Variables	Cohorte 1	Cohorte 2	Total	p			
		(n=129)	(n=152)	(n=281)				
	Edad, media (SD)	71,1 (10,4)	71,8 (11,2)	71,5 (10,8)	0,623			
30	Sexo masculino	83 (64,3)	91 (59,9)	174 (61,9)	0,442			
ess	Antecedente de ictus	28 (21,7)	34 (22,5)	62 (22,1)	0,894			
e ri lar	HTA	89 (69,0)	102 (67,1)	191 (68,0)	0,735			
res de ri vascular	Enfermedad coronaria	17 (13,2)	20 (13,2)	37 (13,2)	0,996			
ore va:	DM	40 (31,0)	44 (28,9)	84 (29,9)	0,707			
Factores de riesgo vascular	Hábito tabáquico	18 (14,0)	18 (11,8)	36 (12,8)	0,598			
Ĕ	Hipercolesterolemia	49 (38,0)	59 (38,8)	108 (38,4)	0,886			
	Antecedente de FA	17 (13,2)	15 (9,9)	32 (11,4)	0,384			
	AAS	30 (23,3)	36 (23,8)	66 (23,6)	0,908			
es	Clopidogrel	8 (6,2)	17 (11,3)	25 (8,9)	0,139			
Ttos basales	Anticoagulación	19 (14,7)	10 (6,6)	29 (10,4)	0,026			
Л	Estatina	43 (33,6)	46 (30,5)	89 (31,9)	0,576			
	ISRA	64 (49,6)	71 (47,7)	135 (48,6)	0,744			
	Duración				0,925			
	<10 minutos	12 (9,3)	16 (10,5)	28 (10,0)				
	10-59 minutos	49 (38,0)	56 (36,8)	105 (37,4)				
nas	1 hora	68 (52,7)	80 (52,6)	148 (52,7)				
Síntomas	Cúmulo de AIT	35 (27,1)	33 (21,7)	68 (24,2)	0,290			
Sín	Paresia	69 (53,5)	78 (51,3)	147 (52,3)	0,716			
	Síntomas sensitivos aislados	12 (9,3)	13 (8,6)	25 (8,9)	0,826			
	Trastorno del lenguaje	76 (58,9)	94 (62,3)	170 (60,7)	0,569			
	Vertebrobasilar	10 (7,8)	12 (7,9)	22 (7,9)	0,952			
$ABCD^2$, me	diana (RIO)	5,2	5,1	5,1	0,753			
TIDED , INC		(4,0-6,0)	(4,0-6,0)	(4,0-6,0)				
	AGV	32 (24,8)	29 (19,2)	61 (21,8)	0,509			
${ m SE}$	Cardioembolismo	23 (17,8)	35 (23,2)	58 (20,7)				
01	Enfermedad de pequeño vaso	28 (21,7)	29 (19,2)	57 (20,4)				
	Etiología indeterminada	46 (35,7)	58 (38,4)	104 (37,1)				
B	DF positiva	59 (45,7)	56 (36,8)	115 (40,9)	0,145			
Características de la DF	DF normal	70 (54,3)	93 (62,4)	163 (58,6)				
	FUT	18 (14,0)	23 (15,4)	41 (14,7)	0,485			
ística DF	Múltiples territorios	4 (3,1)	3 (2,0)	7 (2,5)				
erís D	Lesión cortical única	18 (14,0)	16 (10,7)	34 (12,2)	0,147			
acte	Lesión subcortical	19 (14,7)	14 (9,4)	33 (11,9)	,			
`ara		0,36	0,33	0,33				
)	Volumen de la lesión, media (SD)	(0,15-1,91)	(0,15-2,45)	(0,15-1,90)	0,987			
			(, , ,)					

HTA, hipertensión arterial; DM, diabetes mellitus; FA, fibrilación auricular; Ttos, tratamientos; AAS, ácido acetilsalicílico; ISRA, Inhibidor del sistema renina-angiotensina; SE, subtipos etiológicos; AGV, arteriosclerosis de gran vaso; SD, desviación estándar; RIQ, rango intercuartil DF, secuencia potenciada en difusión; FUT, lesión fragmentada en un territorio vascular.

Tabla 15. Factores de riesgo y características clínicas en función de los patrones de difusión.

	Variable	Total (n=281)	DF normal (n=166)	FUT (n=41)	MT (n=7)	LCU (n=34)	LS (n=33)	p
	Edad, media (SD)	71,5 (10,8)	73,4 (9,9)	69,2 (11,3)	74,1 (5,5)	68,8 (13,8)	67,2 (10,2)	0,005
0	Sexo masculino	174 (61,9)	95 (57,2)	32 (78,0)	5 (71,4)	20 (58,8)	22 (66,7)	0,165
esa	Antecedente de ictus	62 (22,1)	42 (25,3)	8 (19,5)	2 (28,6)	7 (20,6)	3 (9,1)	0,340
e ri lar	HTA	191 (68,0)	118 (71,1)	27 (65,9)	4 (57,1)	20 (58,8)	22 (66,7)	0,687
Factores de riesgo vascular	Enfermedad coronaria	37 (13,2)	23 (13,9)	6 (14,6)	1 (14,3)	6 (17,6)	1 (3,0)	0,448
vas	DM	84 (29,9)	58 (34,9)	7 (17,1)	1 (14,3)	9 (26,5)	9 (27,3)	0,175
acte	Hábito tabáquico	36 (12,8)	13 (7,8)	8 (19,5)	0 (0)	7 (20,6)	8 (24,2)	0,020
щ	Hipercolesterolemia	108 (38,4)	64 (38,6)	17 (41,5)	5 (71,4)	18 (52,9)	4 (12,1)	0,003
	Antecedente de FA	32 (11,4)	20 (12,3)	9 (22,0)	1 (14,3)	1 (2,9)	1 (3,0)	0,054
	Cúmulo de AIT	68 (24,2)	31 (19,0)	13 (31,7)	3 (42,9)	9 (26,5)	10 (30,3)	0,216
as	Trastorno del lenguaje	170 (60,7)	103 (63,6)	20 (48,8)	3 (42,9)	19 (55,9)	22 (66,7)	0,317
ĬĬ.	Paresia	147 (52,3)	68 (41,0)	27 (65,9)	5 (71,4)	21 (61,8)	26 (78,8)	<0,001
Características clínicas	SSA	25 (8,9)	20 (12,0)	1 (2,4)	1 (14,3)	0 (0)	3 (9,1)	0,096
cas	Vertebrobasilar	22 (7,9)	11 (6,7)	4 (9,8)	1 (14,3)	3 (8,6)	3 (9,1)	0,867
ísti	Síndrome lacunar	105 (37,5)	61 (36,6)	15 (36,6)	0 (0)	9 (25,7)	20 (62,5)	0,007
ter	Duración (n=272)							0,087
ıraç	<10 min	28 (10,0)	22 (13,3)	3 (7,3)	1 (14,3)	0 (0)	2 (6,1)	
$\tilde{C}_{\mathcal{B}}$	10-59 min	105 (37,4)	58 (34,9)	16 (39,0)	2 (28,6)	20 (58,8)	9 (27,3)	
	1 hora	148 (52,7)	86 (51,8)	22 (53,7)	4 (57,1)	14 (41,2)	22 (66,7)	
	AGV	61 (21,8)	30 (18,1)	16 (39,0)	2 (28,6)	11 (32,4)	2 (6,1)	<0,001
sos	Cardioembolismo	58 (20,7)	34 (20,5)	13 (31,7)	2 (28,6)	7 (20,6)	2 (6,1)	
Subtipos etiológicos	Enfermedad de pequeño vaso	57 (20,4)	33 (19,9)	0 (0)	0 (0)	0 (0)	29 (87,9)	
S	Etiología indeterminada	99 (35,2)	68 (41,0)	12 (29,3)	3 (42,9)	16 (47,1)	0 (0)	
Volum	en de la lesión en DF,	0,33		0,67	0,49	0,27	0,23	0.070
media ((SD)	(0,15-1,90)		(0,28-2,99)	(0,04-1,19)	(0,07-7,17)	(0,17-0,68)	0,079

DF, secuencia potenciada en difusión; FUT, lesión fragmentada en un territorio vascular; MT, múltiples territorios; LCU, lesión cortical única; LS, lesión subcortical; SD, desviación estándar; HTA, hipertensión arterial; DM, diabetes mellitus; FA, fibrilación auricular; SSA, síntomas sensitivos aislados; AGV, arteriosclerosis de gran vaso.

El 40,9% de los pacientes incluidos en el estudio (45,7% de la primera cohorte y 36,8% de la segunda cohorte) presentaron una DF positiva. El hallazgo de una DF positiva no alcanzó una relación estadísiticamente significativa en cuanto a la RI. Los resultados del procesamiento metabolómico pusieron de manifiesto que la DF positiva presenta un perfil metabolómico que permite su distinción (Figura 16).

Tabla 16. Características clínicas en función de la difusión.

Variables	Total (n=281)	DF normal (n=166)	DF positiva (n=115)	p
Factores de riesgo vascular	,	, ,	, ,	
Edad, media (SD)	71,5 (10,8)	73,4 (9,9)	68.8 (11,5)	< 0,001
Sexo masculino	174 (61,9)	95 (57,2)	79 (68,7)	0,052
HTA	191 (68.0)	118 (71,1)	73 (63,5)	0,179
Antecedente de ictus	62 (22,1)	42 (25,3)	20 (17,4)	0,116
Diabetes mellitus	84 (29,9)	58 (34,9)	26 (22,6)	0,026
Enfermedad coronaria	37 (13,2)	23 (13,9)	1 (3,0)	0,448
Hábito tabáquico	36 (12,8)	13 (7,8)	23 (20,0)	0,003
Hipercolesterolemia	108 (38,4)	64 (38,6)	44 (38,3)	0,960
Antecedente de FA	32 (11,4)	20 (12,3)	12 (10,4)	0,675
Características clínicas				
Cúmulo de AIT	68 (24,2)	31 (19,0)	37 (32,2)	0,042
Trastorno del lenguaje	170 (60,7)	103 (63,6)	67 (58,3)	0,148
Paresia	147 (52,3)	68 (41,0)	79 (68,7)	< 0,001
Síntomas sensitivos aislados	25 (8,9)	20 (12,0)	5 (4,3)	0,026
Vertebrobasilar	22 (7,9)	11 (6,7)	11 (9,6)	0,375
Síndrome lacunar	105 (37,5)	61 (36,6)	20 (62,5)	0,007
Duración (n=272)	. , ,	, , ,	. , ,	ŕ
<10 minutos	28 (10,0)	22 (13,3)	6 (5,2)	0,061
10-59 minutos	105 (37,4)	58 (34,9)	47 (40,8)	
1 hora	148 (52,7)	86 (51,8)	62 (53,9)	
ABCD ² , mediana (RIQ)	5,1 (4,0-6,0)	5,0 (4.0-6,0)	5,1 (4,0-6,0)	0,990
Subtipos etiológicos				
AGV	61 (21,8)	30 (18,1)	31 (27,0)	0,239
Cardioembolismo	58 (20,7)	34 (20,5)	24 (20,9)	
Enfermedad de pequeño vaso	57 (20,4)	33 (19,9)	24 (20,9)	
Etiología indeterminada	99 (35,2)	68 (41,0)	31 (26,9)	

DF, secuencia potenciada en difusión; SD, desviación estándar; HTA, hipertensión arterial; FA, fibrilación auricular; RIQ, rango intercuartil; AGV, arteriosclerosis de gran vaso.

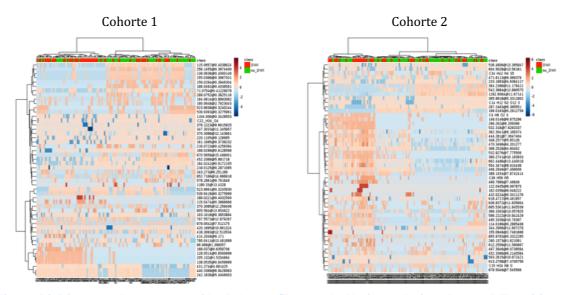


Figura 16. Diagrama de representación de los perfiles metabolómicos relacionados con DF positiva.

Se constituyeron modelos gráficos tras el PLS-DA que alcanzaron una elevada precisión tanto en la primera cohorte (0,62; R²=0,85) como en la segunda cohorte de validación (0,64; R²=0,96) (Figura 17). Se analizó la capacidad de los metabolitos para justificar las diferencias entre los grupos de DF positiva y DF negativa. Los resultados desvelaron que diversos metabolitos pueden distinguir entre estos dos grupos como demuestran las curvas ROC (Figura 18).

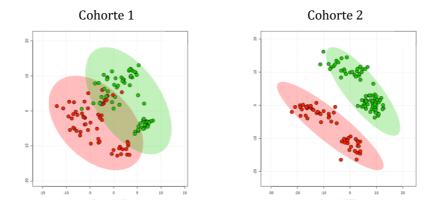


Figura 17. Modelo gráfico de PLS-DA que ilustra las diferencias en cuanto a la difusión. Los puntos rojos identifican DF positiva y los puntos verdes DF negativa.

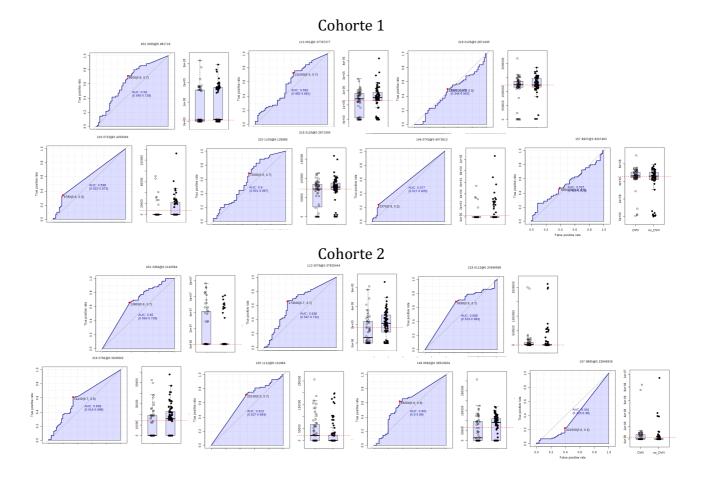


Figura 18. Moléculas identificadas por técnicas de metabolómica que contribuyen a distinguir las muestras en función de la difusión. Se muestran las curvas ROC de las moléculas que presentan un mayor área bajo la curva, previo a la normalización y al autoescalado de estadísticos multivariantes.

El análisis estadístico univariante halló que un total de 87 metabolitos de la primera cohorte se constituían significativamente como elemento diferencial entre los pacientes con una DF positiva y los pacientes con una DF normal (prueba t de Student, p entre 6,98e-5 y 0,05) (Tabla suplementaria 7). La realización del mismo abordaje en la segunda cohorte de validación permitió la detección de un grupo de 379 moléculas que mostró características significativamente diferenciales entre los dos grupos (prueba t de Student, p entre 2,34e-5 y 0,05) (Tabla suplementaria 8). A partir de estos conjuntos de metabolitos, se obtuvieron metabolitos comunes en las dos cohortes de pacientes (Tabla 17). A través de las bases de datos se logró identificar a distintos de estos compuestos: creatinina, treoninil-treonina, N-acetil-glusosaminilamina, ácido lisofosfatídico (LPA) y una molécula relacionada con el colesterol. Los compuestos identificados mostraron unas áreas ROC entre 0,6 y 0,65, indicativo, por tanto, de su potencialidad como biomarcadores de lesión isquémica aguda en la secuencia de DF.

Tabla 17. Metabolitos comunes en las dos cohortes que permiten diferenciar entre los pacientes con difusión positiva y difusión negativa.

		Cohorte 1			Cohorte 2		
Metabolitosa	Masa	TR (min)	p^{b}	Masa	TR (min)	p^b	
LPA O-20:0/5α-colestano-3 α,7 α,12 α,23,25-pentol	452,34	5,98	0,011	452,34	6,21	0,001	
Desconocido 1	218,01	0,29	0,028	218,01	0,21	0,007	
Desconocido 2	220,11	9,13	0,006	220,11	9,13	0,08	
Creatinina	113,06	0,38	0,050	113,06	0,38	0,012	
Treoninil-treonina/N-acetil-b-glucosaminilamina/DiHDPA	362,25	11,67	0,009	362,25	11,94	0,012	
Desconocido 3	216,07	0,43	0,007	216,08	0,56	0,013	
Desconocido 4	154,97	0,14	0,023	154,97	0,28	0,013	
Desconocido 5	157,99	0,30	0,039	157,99	0,23	0,017	
Desconocido 6	146,07	0,41	0,019	146,07	0,39	0,038	

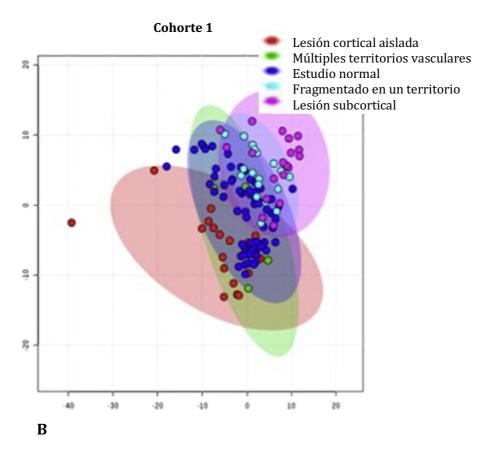
TR, tiempo de retención; LPA, ácido lisofosfatídico. ^a Identidades potenciales de acuerdo al tiempo de retención y a la masa exacta. Se muestran las identidades potenciales cuando no resulta posible atribuir solamente una. ^b Tras la prueba t de Student entre los pacientes con DF positiva y con DF negativa.

5.8. Metabolómica y volumen de la lesión isquémica aguda

La media de volumen de la lesión isquémica aguda resultó de 0,33 (0,15-1,90) cm³ (Tabla 15). Si bien los diferentes patrones de DF no mostraron diferencias estadísticamente significativas en cuanto al volumen, el patrón de lesión FUT fue el que obtuvo un volumen mayor (0,67 -0,28-2,99- cm³). En el análisis de la primera cohorte, 43 moléculas mostraron una correlación significativa con el volumen de la lesión isquémica aguda (prueba de correlación de Pearson, valores de p entre 3,12e-07 y 0,05) (Tabla suplementaria 9). En la segunda cohorte de validación se hallaron 211 moléculas (prueba de correlación de Pearson, valores de p entre 1,31e-10 y 0,05) (Tabla suplementaria 10). Siguiendo el procedimiento descrito de identificación de los metabolitos, se reconocieron a 7 metabolitos distintos, incluyendo LPC, hipoxantina/treonato, y leucina (Tabla 18).

Tabla 18. Metabolitos que se correlacionan con el volumen de la lesión isquémica aguda.

	Cohorte 1				Cohorte 2			
Metabolitos	Masa	TR (min)	CC de Pearson ^b	p	Masa	TR (min)	CC de Pearson ^b	p
LPC (22:6)	567,33	10,72	0,20	0,06	567,33	10,89	0,29	0,00
Hipoxantina/Treonato	136,04	0,78	0,20	0,06	136,04	0,78	0,23	0,01
Desconocido 1	294,19	9,36	0,18	0,09	294,19	9,41	0,19	0,02
LPC (20:4) ^c	543,33	10,68	0,18	0,08	543,33	11,10	0,18	0,03
Desconocido 2	760,03	0,34	-0,21	0,05	760,02	0,33	-0,16	0,04
Isoleucina/Leucina/Norleucina	131,09	0,56	0,30	0,00	131,09	0,55	0,16	0,05
Desconocido 3	85,09	0,56	0,29	0,01	85,09	0,55	0,16	0,06


TR, tiempo de retención; CC, coeficiente de correlación; LPC, lisofosfatidilcolina. ^a Identidades potenciales de acuerdo al tiempo de retención y a la masa exacta. Se muestran las identidades potenciales cuando no resulta posible atribuir solamente una. ^b Correlación del coeficiente con la isquemia. ^c Se constató una diferencia en el TR entre las dos cohortes. No se encontró ningún pico cercano al primer TR con una masa exacta ni distribución isotópica similares.

5.9. Metabólomica y patrones de difusión

La distribución de los patrones de neuroimagen no mostró diferencias significativas entre las dos cohortes (Tabla 14). Con esta salvedad, el patrón más frecuente en el conjunto de las dos cohortes fue el FUT (14,7%). Cabe destacar que los subtipos etiológicos configuraron significativamente los distintos patrones de DF. La lesión cortical única supuso el patrón de neuroimagen más frecuente de los pacientes clasificados como de etiología indeterminada. El patrón de imagen más frecuente en el grupo AGV, como en el caso de la etiología cardioembólica, fue el de FUT (39%). El patrón de lesión subcortical resultó el más frecuente entre los pacientes del grupo de enfermedad de pequeño vaso (87,9%). El volumen de la lesión en DF no alcanzó diferencias significativas ni entre las dos cohortes ni en función de los patrones de neuroimagen.

El perfil metabolómico de la primera cohorte permitió catalogar los patrones de DF definidos. El modelo PLS-DA diferenció con una precisión moderada a los pacientes con un patrón de lesión subcortical de aquellos que presentaban una lesión cortical única (0,503; R²=0,63) (Figura 19.A). El análisis de la segunda cohorte confirmó los datos obtenidos en la primera cohorte con un mayor grado de precisión (0,58; R²=0,92). Además se identificó a los pacientes con una DF negativa (Figura 19.B). Estos hallazgos fueron confirmados mediante un esquema en bosques aleatorios que clasificó en ambas cohortes el patrón subcortical con el menor margen de error (<0,05).

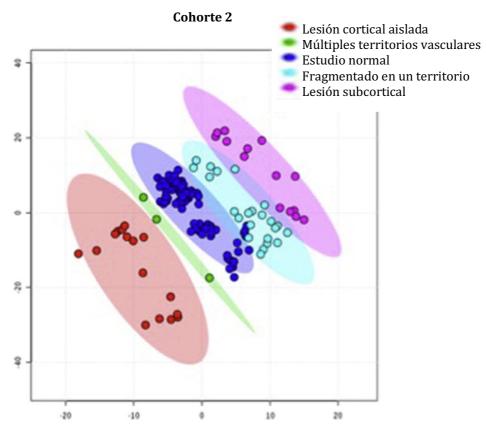


Figura 19. Modelo gráfico de PLS-DA que ilustra las diferencias en cuanto a los patrones de la DF en la primeta cohorte (A) y en la segunda (B).

El análisis univariante identificó a 81 moléculas de la primera cohorte que mostraban una diferencia estadísticamente significativa para los patrones de la DF considerados (p entre 3e-04 y 0,05) (Tabla suplementaria 11). La cifra de metabolitos estadísticamente significativos aumentó hasta 285 en la segunda cohorte (p entre 5,94e-11 y 0,05) (Tabla suplementaria 12). Tras comparar los resultados entre ambas cohortes, 8 moléculas resultaron comunes (Tabla 19). Nuevamente, se hallaron LPC, creatinina, así como otros metabolitos no identificados.

Tabla 19. Metabolitos que determinan los patrones de DF.

	Cohorte 1				Cohorte 2			
Metabolito ^a	Masa	TR (min)	\mathbf{P}^{b}	LSD de Fischer ^c (n de pacientes)	Masa	TR (min)	P^b	LSD de Fischer ^c (n de pacientes)
LPC (16:0)/LPE (19:0)	495,33	10,77	0,02	N (70) – LCU (18); FUT (18) – LCU (18) ; SC (19) – LCU (18)	495,33	10,78	0,00	LCU (16) – FUT (23); N (83) – FUT (23)
Ácido 2-Oxo-4- metiltiobbutanoico	148,02	9,69	0,04	N (70) – LCU (18); SC (19) – LCU (18)	148,01	9,68	0,00	FUT (23) – LCU (16); FUT (23) – N (83)
Creatinina	113,06	0,38	0,00	LCU (18) – MT (4); N (70) – LCU (18); SC (19) – LCU (18); N (70) – MT (4); FUT (18) – MT (4); SC (19) - MT (4)	113,06	0,38	0,01	LCU (16) – FUT (23); N (83) – FUT (23); SC (14) – FUT (23)
Ácido Piroglutámico/N- Acriloglicina/Ácido Pirrolinhidroxicarboxílico/ 4-Oxoprolina ^d	129,04	0,65	0,02	LCU (18) – FUT (18); N (70) – FUT (18); SC (19) – FUT (18)	129,04	0,38	0,01	LCU (16) – FUT (23); N (83) – FUT (23)
Desconocido 1	760,03	0,34	0,05	N (70) – LCU (18) ; FUT (18) – LCU (18); SC (19) – LCU (18)	760,02	0,33	0,02	N (83) – LCU (16) ; SC (14) – LCU (16); N (83) – FUT (23); SC (14) – FUT (23)
Desconocido 2	825,97	0,35	0,02	FUT (18) – N (70) ; SC (19) – N (70)	825,98	0,33	0,03	FUT (23) – LCU (16); FUT (23) – N (83)
Ácido eicosatrienoico	306,26	12,17	0,05	LCU (18) – N (70); LCU (18) – SB (19); FUT (18) – N (70) ; FUT (18) – SC (19)	306,26	12,13	0,03	FUT (23) – LCU (16); FUT (23) – N (83)

TR, tiempo de retención; LPC, lisofosfatidilcolina; LPE, lisofosfatidiletanolamina; DF, imágenes potenciadas en difusión; LSD de Fisher, método de la diferencia mínima significativa; N, normal; LCU, lesión cortical única; FUT, lesión fragmentada en un territorio vascular; SC, lesión subcortical; MT, múltiples territorios vasculares. ^a Identidades potenciales de acuerdo al tiempo de retención y a la masa exacta. Se muestran las identidades potenciales cuando no resulta posible atribuir solamente una. ^b Tras ANOVA considerando los distintos patrones de DF. ^c Análisis *post-hoc* mediante el método de la diferencia mínima significativa de Fisher. Los grupos con diferencias significativas están separados por el signo ortográfico punto y coma (;). Las diferencias idénticas encontradas en ambas cohortes se señalan en negrita. ^d Se constató una diferencia en el TR entre las dos cohortes. No se encontró ningún pico cercano al primer TR con una masa exacta ni distribución isotópica similares.

6. Discusión

La metabolómica facilita una instantánea del metabolismo celular. De modo que conlleva un mayor entendimiento de la fisiopatología de la ECV y favorece la oportunidad de identificar nuevos biomarcadores³²⁹. El campo de los biomarcadores adquiere una especial relevancia en el AIT cuyo diagnóstico resulta complejo puesto que, por un lado, sus síntomas y signos frecuentemente se habrán resuelto antes de que el paciente reciba la valoración médica y, por otro lado, puede tener una presentación inespecífica²³⁸. La importancia del correcto diagnóstico del AIT permite la implantación de unas adecuadas medidas terapéuticas de prevención secundaria en vistas a evitar recurrencias que puedan implicar secuelas permanentes¹⁸². Cabe destacar la trascendencia del diagnóstico de la AGV como fuente etiológica debido a sus implicaciones pronósticas en las recurrencias⁴²². Hasta el momento actual, la mayoría de biomarcadores tienen un significado clínico incierto³²³. De aquí subyace el interés de plantear nuevos abordajes como los que ofrece la metabolómica. Las técnicas de neuroimagen sustentan el apoyo diagnóstico de las patologías del SNC. En este sentido, la secuencia de DF de la RM constituye un importante predictor de recurrencia temprana en forma de ictus isquémico⁴¹. Uno de cada tres pacientes que han sufrido un AIT presentan una lesión aguda en la secuencia de DF. Sin embargo, no todos los pacientes que han sufrido un AIT disponen de un estudio con RM³⁹. Por tanto, la identificación de biomarcadores relacionados con los hallazgos de la neuroimagen resulta de gran interés. Las particularidad de la información obtenida de los perfiles metabolómicos puede permitir la identificación de biomarcadores que se relacionen con los hallazgos de la neuroimagen.

Los datos obtenidos del presente trabajo de investigación demuestran que el abordaje metabolómico es factible y resulta de interés en el manejo del AIT desde el punto de vista tanto del estudio etiológico como del pronóstico. El haber centrado la atención de esta ciencia ómica sobre el AIT representa un abordaje novedoso. Se han identificado biomarcadores de predicción de RI, de diagnóstico de AGV y relacionados con las lesiones de isquemia aguda en la secuencia de DF de la RM. Cabe destacar que la obtención de estos biomarcadores ha sido el fruto del análisis de 2 cohortes independientes de pacientes.

De la primera parte de la investigación, centrada en el contexto clínico, se ha determinado que un conjunto pequeño de metabolitos discierne entre los grupos de

pacientes en función de si han sufrido una RI o no, con una precisión mayor del 60%. Este resultado puede ser un estímulo para llevar a cabo proyectos futuros para mejorar la precisión e identificar los metabolitos y su rol fisiopatológico en la cascada de eventos que suceden en la isquemia con el objetivo de lograr nuevas herramientas diagnósticas, pronósticas y terapéuticas. Se han logrado identificar tres metabolitos que se erigen como potenciales biomarcadores en las dos cohortes: LPC (16:0), LPC (20:4) y LPC (22:6).

Los fosfolípidos forman parte de los lípidos del organismo. Están compuestos por una molécula de glicerol a la que se unen dos ácidos grasos en las posiciones sn-1 y sn-2. Existen dos tipos de fosfolípidos: los fosfoglicéridos y las esfingomielinas. Los fosfoglicéridos son lípidos estructurales que constituyen los principales fosfolípidos de las membranas biológicas. Los fosfoglicéridos están constituidos por una molécula de glicerol, dos ácidos grasos y una cabeza polar. Precisamente, el alcohol del grupo de la cabeza polar determina los subtipos⁴²³⁻⁴²⁵. Por ejemplo, la fosfatidilcolina es resultado de que el alcohol sea una colina (Figura 20).

Figura 20. Fosfatidilcolina (adaptado de ⁴²³).

Los lisofosfolípidos son el resultado de la hidrólisis selectiva de los ácidos grasos de los fosfolípidos en las posiciones sn-1 y sn-2 de la molécula del glicerol. Las fosfolipasas A1 y A2 son las enzimas encargadas de este proceso (Figura 21)⁴²⁵. Cabe mencionar que el aumento de la masa y actividad de la Lp-PLA₂ tras un AIT se ha asociado a factor de peor pronóstico^{293,426}.

Figura 21. Formación de lisofosfolípidos (adaptado de ⁴²⁶).

Los lisofosfolípidos son necesarios para el mantenimiento de la homesotasis en muchos procesos fisiológicos, incluyendo los relacionados con la reproducción, el desarrollo vascular y el funcionamiento del sistema nervioso. La LPC es el lisofosfolípido más abundante. Además, constituyen el mayor componente fosfolipídico de las LDL oxidadas. En el plasma se pueden identificar diversas moléculas de LPC con distintas cadenas acilo, como palmitoil (16:0), araquidonil (20:4), o docosahexanoil (22:6). La modulación de las acciones de las LPC se lleva a cabo a través de la interacción con los receptores transmembraba acoplados a proteínas G. La LPC está involucrada en la modulación de las funciones de la célula T y la inmunidad. En este sentido, la LPC puede desencadenar la liberación de IL-1β y potenciar la expresión de IFN-γ y del factor de crecimiento transformante-β1. También se han relacionado con la producción de ROS y de protaglandina I₂. Las LPC, a través de su relación con LDL han sido vinculadas con la arteriosclerosis⁴²⁷.

Unos niveles bajos de LPC (16:0) se establecen como potencial predictor de RI, especialmente en las recurrencias tempranas. Este marcado criterio temporal puede orientar a la existencia de un mismo mecanismo etiopatogénico entre el caso índice y la recurrencia temprana, como en el caso de una patología arterial significativa⁴²⁸. Mannheim y colaboradores determinaron que las placas de la arteria carótida sintomáticas, es decir, aquellas que han sido relacionadas con un episodio isquémico

cerebral, estaban caracterizadas por un incremento en los niveles de Lp-PLA₂ y de LPC (16:0) medidos en las propias placas obtenidas tras procedimientos quirúrgicos⁴²⁹. Estudios realizados en ratas han puesto de manifiesto que los niveles de LPC (16:0) experimentan un incremento a nivel cerebral como respuesta a la isquemia, donde desencadenan una respuesta lipídica que conlleva el reclutamiento fagocitario (microglía activada, astroglía, macrófagos)^{365,430,431}. Todo ello, puede contribuir al daño isquémico cerebral⁴³². A priori estos resultados pueden parecer contradictorios a los obtenidos en el presente trabajo. Sin embargo, es preciso considerar que los niveles elevados de LPC (16:0) de la placa de la arteria carótida están relacionados con el incremento de Lp-PLA2 tanto a nivel plasmático como de la placa. No acontece del mismo modo con los niveles plasmáticos de LPC (16:0)⁴³³. Además, en este estudio tampoco se ha evaluado la producción cerebral de LPC 16:0. Diversas publicaciones avalan el papel protector de LPC (16:0) a distintos niveles. A nivel plasmático LPC (16:0) inhibe la actividad Lp-PLA₂ y, de este modo anula su actividad neuroinflamatoria^{434,435}. Se ha señalado que las LPC protegen las regiones cerebrales vulnerables frente al daño isquémico a través de un papel neuroprotector y de inducción de una tolerancia isquémica sostenida. Se ha sugerido que esta función es llevada a cabo mediante la activación de los canales de K+ TREK. Estos canales de K+ sensibles a ATP han sido descritos como potentes neuroprotectores contra la isquemia⁴³⁶. Dentro de esta familia de canales, la apertura de TREK-1 está mediada por ácidos grasos poliinsaturados y por LPC⁴³⁷. Finalmente, LPC (16:0) induce la angiogénesis a través de la inducción de la producción del ion superóxido en las células endoteliales⁴³⁸. En este proceso de angiogénesis participa VEGF⁴³⁹. En consecuencia a lo expuesto, unos niveles disminuidos de LPC 16:0 pueden ser indicativos de una RI temprana. Se observó que a adición de LPC (16:0) al modelo ABCD² + AGV no generó una mejoría significativa ni en la prueba NRI ni en la prueba IDI. Este resultado sugiere que la información aportada por LPC (16:0) está biológicamente relacionada con factores clínicos implícitos a la escala ABCD² + AGV.

Mediante la metodología de curvas ROC sobre aquellos metabolitos presentes en más del 70% de las muestras del grupo RI y del grupo no RI de las dos cohortes, sobresalió la LPC (20:4), reforzando la implicación de las LPC en las RI. Este hallazgo está en línea con los obtenidos en estudios recientes que han identificado niveles plasmático disminuidos de LPC formados por ácidos grasos de 20 carbonos de longitud en modelos

experimentales de isquemia⁴⁴⁰. Esta molécula se ha relacionado con un papel antiinflamatorio que puede estar modulado a través de la inhibición de la formación de leucotrienos y citoquinas, y a través de la potenciación de lipoxina A⁴⁴¹. De la acción antiinflamatoria subyace la importancia de los mecanismos de inflamación en la RI o en la tolerancia isquémica. Las LPC pueden aumentar la precisión pronóstica de las escalas clínicas o de la AGV, pudiendo adquirir un papel más relevante a la hora de tomar decisiones sobre el manejo terapéutico de estos pacientes. Otros biomarcadores, como Lp-PLA₂, han mostrado unas acciones similares²⁸⁸. Como se ha descritos en los resultados, LPC (20:4) ha mostrado la capacidad de mejorar la predicción de la escala pronóstica combinada *ABCD*² y AGV. Este hecho incrementa en gran medida el interés por este biomarcador.

La AGV tiene una importancia capital como predictor de RI⁴⁰³. De esta constatación surge el interés de su estudio. En este sentido, los resultados avalan a la LPC (22:6) como potencial biomarcador de AGV, puesto que se demostró un aumento en sus niveles plasmáticos en las 2 cohortes de pacientes. Este hallazgo pone de relieve que la LPC (22:6) interfiere en la formación o en la estabilidad de la placa arteriosclerótica. Hasta el momento actual, no hay constancia de la descripción del papel de LPC (22:6) en el fenómeno de arteriosclerosis. Como se ha mencionado previamente, las LPC contienen dos grupos acilo, sn-1 y sn-2. Predominantemente, los acilos sn-2 son poliinsaturados⁴⁴². Se ha descrito que el transportador Mfsd2a de la BHE transporta específicamente LPC-DHA⁴⁴³. El DHA es un ácido graso poliinsaturado. Se ha descrito que DHA (22:6) desarrolla una acción vasculoprotectora mediante el descenso de la producción de mediadores inflamatorios, el aumento de metabolitos antiinflamatorios, así como el descenso del estrés oxidativo y de la producción de ON444. Por tanto, se puede sugerir que los niveles elevados de LPC (22:6) en la AGV pueden ser un indicador de respuesta reactiva a la inflamación asociada al desarrollo de la placa de ateroma.

El estudio de las vías metabólicas también ha centrado el interés de esta investigación. Se identificaron varias vías comunes tras el análisis de los patrones temporales de RI. Entre ellas destacan las vías relacionadas con el transporte-SLC. SLC comprende una extensa familia de transportadores de membrana responsable del transporte de diferentes metabolitos, como iones inorgánicos, aminoácidos, neurotransmisores, y

azúcar⁴⁴⁵. El hecho que la afectación de estas vías de transporte siga un patrón temporal en las dos cohortes puede ser indicativo de diferencias en cuanto a la afectación de la BHE durante el AIT. Está establecido que la isquemia puede contribuir a la disfunción de la BHE⁴⁴⁶. Por otro lado, la isquemia da lugar a modificaciones de la permeabilidad microvascular⁴⁴⁷. Estas disfunciones podrían dar lugar a un traspaso de metabolitos entre el SNC y el plasma.

Tabla 20. Biomarcadores relacionados con el contexto clínico.

Metabolito	Cambio	Función	Razonamiento
LPC (16:0)	D	Predictor de RI	Relacionado con procesos de angiogénesis y de neuroproteción
LPC (20:4)	D	Predictor de RI	Papel antiinflamatorio a través de la modulación de leucotrienos, citoquinas y lipoxina A
LPC (22:6)	A	Marcador de AGV	Indicador de respuesta a la inflamación asociada al desarrolla de la placa de ateroma

LPC, lisofosfatidilcolina; D, descenso; A, ascenso; RI, recurrencia en forma de ictus isquémico; AGV, arteriosclerosis de gran vaso.

La segunda parte de la investigación se ha centrado en la relación entre los perfiles metabolómicos y la neuroimagen, concretamente, en los hallazgos de la secuencia de DF de la RM cerebral. En esta investigación la DF positiva no mostró una relación significativa con la RI, a diferencia de otros estudios⁴¹. En su justificación se ha apuntado a la mejoría significativa del manejo de los sujetos con AIT, que ha cambiado la historia natural de la enfermedad¹⁸³. Además, una publicación previa de nuestro grupo de investigación reveló que resulta más importante el patrón de lesión isquémica aguda que su mera presencia o ausencia³⁹⁷. Si bien otros grupos de investigación han aplicado el abordaje metabolómico al estudio de la neuroimagen en otras enfermedades del SNC, como esclerosis múltiple⁴⁴⁸, enfermedad de Alzheimer⁴⁴⁹ o enfermedad de Parkinson⁴⁵⁰, nuevamente no hay constancia en el momento actual que se hayan realizado investigaciones similares en al ámbito del AIT. El análisis de los resultados muestra que el estudio metabolómicos clasifica a los pacientes que han sufrido un AIT en función de si presentan una DF positiva con una precisión mayor del 60%. De modo que esta investigación puede incitar a nuevos estudios que avalen el abordaje metabolómico en los casos de disponibilidad limitada de la RM. Máxime, tras haber identificado, también, perfiles metabolómicos específicos en relación al volumen de la lesión y a patrones de la lesión isquémica aguda.

Bivard y colaboradores evaluaron mediante técnicas de espectroscopia de la RM a pacientes que habían sufrido un ictus isquémico que había sido tratado mediante fibrinolisis endovenosa⁴⁵¹. Constataron que los pacientes que habían desarrollado una hiperperfusión tras el tratamiento presentaban un mejor pronóstico a los 3 meses. Con la técnica de neuroimagen expuesta, identificaron que los pacientes con hiperperfusión mostraron un incremento significativo de glutamato, N-acetilaspartato y lactato. Este resultado se relacionó con el mayor grado de actividad metabólica que puede potenciar la ulterior neuroplasticidad. En el presente estudio, se lograron identificar distintos metabolitos comunes en las dos cohortes, que alcanzaron la significación estadística, y que permiten discriminar a los pacientes con una DF positiva: creatinina, Nacetilglucosaminilamina y LPA, entre otros. La creatinina ha sido descrita como un marcador de arteriopatía hipertensiva, con su consiguiente relación como FR vascular⁴⁵². Por otro lado, el deterioro de la función renal ha sido asociada a la enfermedad de pequeño vaso cerebral sobre todo en pacientes menores de 60 años. En los mayores de 60 años esta relación queda atenuada tras el ajuste para los FR, como HTA⁴⁵³. La N-acetilglucosaminilamina, relacionada estructuralmente con Nacetilglucosamina, y otras moléculas similares modulan la respuesta inmune cuando se expresan en la membrana endotelial⁴⁵⁴. Este hallazgo puede estar vinculado a los cambios en la expresión y a la división de los componentes de las glicoproteínas, asumiendo las acciones de la microglía y de los neutrófilos activados como respuesta a la isquemia cerebral⁴⁵⁵. Las situaciones de estrés patológico afectan a la dinámica mitocondrial a través de modificaciones translacionales. La glicosilación de la acetilglucosamina es una de las dianas de estos cambios cuyo objetivo es el de adaptar el metabolismo bioenergético celular a las demandas energéticas del nuevo entorno resultado del contexto de estrés⁴⁵⁶. Los resultados también han arrojado a LPA como biomarcador de DF positiva. LPA es una molécula de señalización extracelular implicada, entre otros, en los procesos fisiopatológicos que acontecen tras el daño isquémico cerebral, como la activación de la vía de muerte neuronal⁴⁵⁷. LPA surge de la digestión enzimática de LPC y lisofosfatidilinositol⁴²⁷. También se ha enlazado el LPA con la generación del dolor neuropático central tras la isquemia cerebral. Este proceso está mediado por el receptor LPA₁⁴⁵⁸. En la bibliografía, se encuentran trabajos que abogan por el aumento de los niveles plasmáticos del LPA en los pacientes que han sufrido una isquemia cerebral⁴⁵⁹. En este sentido, las plaquetas activadas y la placa de ateroma son fuentes conocidas de LPA⁴⁶⁰. Zhou y colaboradores observaron que las

concentraciones de MMP-9 y de LPA eran significativamente más elevadas en las placas de ateroma inestables de la ACI⁴⁶¹. Sin embargo, el presente trabajo de investigación ha identificado que el hallazgo de una DF positiva está condicionado a unos niveles bajos del LPA. En este sentido, algunas moléculas pertenecientes a la familia del LPA, como 1-palmitoil-LPA (16:0), oleoil-LPA (18:1), intervienen en la regulación proangiogénica⁴⁶². Por consiguiente, unos niveles disminuidos pueden estar asociados a una menor capacidad para resistir la apoptosis inducida por al hipoxia⁴⁶³. Considerando que los pacientes incluidos en el estudio sufrieron un AIT, implicando por ello la recuperación de su sintomatología, puede resultar complejo explicar si haber identificado unos niveles disminuidos corresponde a una característica protectora, debido a su demostrada actividad trombogénica, o todo lo contrario, dada su actividad angiogénica. Se puede tener en consideración que LPA actúa sobre distintos receptores y que en la función del LPA adquiere un relevante papel su cadena lateral⁴⁶⁰. Específicamente, se identificó a LPA (O-20:0).

De un modo significativo, el abordaje metabolómico mostró una correlación con el volumen de la lesión isquémica. Los metabolitos LPC (22:6) y LPC (20:4), comentados respectivamente como biomarcadores de AGV y de RI, reflejaron una relación directa con el volumen de la isquemia. En consecuencia, se pueden sugerir los vínculos que se establecen con la AGV. El patrón de lesión isquémica aguda más frecuentemente asociado a AGV fue el FUT, que mostró el mayor volumen lesional aunque sin alcanzar una diferencia significativa con el resto de patrones. La leucina corresponde a otro metabolito relacionado significativamente con el volumen de la lesión. La leucina ha sido nombrada en estudios previos que han aplicado el abordaje metabolómico a pacientes con ictus isquémico³⁶⁹. La leucina es un aminoácido que, junto a otros, interviene en la regulación de diferentes funciones celulares encargadas del mantenimiento, crecimiento y reparación de la función cerebral. La leucina está involucrada en la vía fundamental del ciclo del ácido tricarboxílico o de Krebs⁴⁶⁴. Finalmente, la hipoxantina también se identificó en este apartado. En un modelo animal de ratas sometidas a isquemia cerebral con el fin de realizar su análisis bajo la perspectiva metabolómica, también se identificó una disminución de la hipoxantina, echo que se relacionó con el catabolismo del ATP³⁶⁴. También fue identificada en una serie pacientes que sufrió un ictus isquémico⁴⁶⁵.

En cuanto al estudio de los patrones de neuroimagen mediante el abordaje metabolómico, el modeló PLS-DA alcanzó el mayor grado de precisión (entre el 50-58% en las dos cohortes) para distinguir el patrón de lesión subcortical. Por lo que respecta a los potenciales biomarcadores, en las dos cohortes se identificó de nuevo a LPC (16:0), identificado previamente como potencial biomarcador de RI. Este biomarcador se mostró vinculado a los patrones de lesión cortical única y FUT. A su vez, dichos patrones estuvieron sobrerrepresentados en el subgrupo etiológico de AGV, que ha sido considerado como factor pronóstico en la RI⁴⁰⁷. La creatinina constituve otro potencial biomarcador del patrón de lesión en la neuroimagen. Considerando la avidez de la metabolómica en diferenciar el patrón subcortical, claramente representado por el subgrupo etiológico de enfermedad de pequeño vaso, cabe mencionar de nuevo la relación de la creatinina con la arteriopatía hipertensiva⁴⁵², situación que interviene en el desarrollo de microsangrados, ictus isquémicos lacunares subcorticales leucoaraiosis⁴⁶⁶. La oxoprolina se ha sugerido como potencial biomarcador, con la salvedad que en su identificación no se obtuvieron los mismos tiempos de retención en las dos cohortes. Su relación con la ECV, podría ser a través de los transportadores de glutamato localizados en la BHE⁴⁶⁷. Finalmente, el ácido eicosatrienoico mostró una tendencia a la significación estadística en los patrones de la neuromagen puesto que el valor de la presultó de 0,05 en la primera cohorte y de 0,03 en la segunda. Moléculas relacionadas con éste, que surgen de la catalización del AA a través de la citocromo P450 epoxigenasa, desarrollan una acción neuroprotectora a través de la mediación del crecimiento y la apoptosis de las células musculares lisas vasculares cerebrales en condiciones de isquemia⁴⁶⁸.

Limitaciones

Como no podía ser de otra manera, un estudio de estas características no podía estar exento de limitaciones. Entre la población estudiada se obtuvo una muestra relativamente pequeña de RI. Otra limitación es común a todos los estudios que incluyeron sujetos con AIT. El AIT conlleva de forma inherente una dificultad diagnóstica importante puesto que, en la mayoría de los casos, la clínica se habrá resuelto antes de que el individuo haya sido evaluado. La heterogeneidad de nuestras cohortes en cuanto a edad, sexo, subgrupos etiológicos, y tratamientos dificulta la identificación de biomarcadores mediante técnicas de metabolómica. El metaboloma, incluso entre pacientes sanos de características fenotípicas similares, presenta una variabilidad considerable a través del tiempo⁴⁶⁹⁻⁴⁷¹. Además, las muestras fueron extraídas sin poder controlar las ingestas previas. Es conocido que la dieta influye en los niveles de metabolitos plasmáticos³²⁹. Sin embargo, el uso de dos cohortes ha permitido reforzar la robustez de los datos obtenidos⁴⁷². Otra limitación es la representada por el hecho de que no se ha podido identificar un porcentaje importante de metabolitos de interés. Esta es una circunstancia común a este tipo de investigaciones⁴⁷³. No obstante, la aplicación de un abordaje ortogonal, el uso del tiempo de retención en sistema cromatográficos reproducibles, masa exacta y patrones de isótopos pueden ayudar a superar este inconveniente y permitir la identificación de biomarcadores potenciales³⁵⁰. En la actualidad, el análisis metabolómico, más allá de las dificultades técnicas mencionadas, conlleva un no menos importante uso de recursos económicos, personal y de tiempo que dificulta su aplicabilidad inmediata en la práctica clínica habitual.

La metabolómica representa un abordaje útil para la obtención de perfiles de metabolitos que vinculan el AIT con la RI, el patrón temporal de la RI, la AGV y las características de la neuroimagen, focalizadas en la secuencia de DF de la RM cerebral. En definitiva, ofrece un camino para la obtención de biomarcadores que faciliten el manejo de los pacientes que han sufrido un AIT.

7. Conclusiones

7. Conclusiones

- 1. La metabolómica es un abordaje factible y de utilidad para la identificación de biomarcadores de interés en el diagnóstico y pronóstico de individuos que han sufrido un AIT.
- 2. Los pacientes diagnosticados de AIT que sufrieron una RI tienen un perfil metabolómico específico. La LPC (16:0) y la LPC (20:4) han sido identificadas como potenciales biomarcadores de RI, especialmente de las recurrencias tempranas.
- 3. Los perfiles metabolómicos muestran una elevada precisión en separar a los pacientes que sufrieron una RI temprana de una RI tardía. Existen varias vías metabólicas comunes implicadas en el patrón temporal de la RI, entre las que es precisado destacar el transporte-SLC.
- 4. Los perfiles metabolómicos ofrecen una elevada precisión en predecir la presencia de AGV. La LPC (22:6) se ha erigido como un potencial biomarcador de esta etiología.
- 5. Los pacientes con una DF positiva exhiben una perfil metabolómico específico. La creatinina, N-acetilglucosamina, el LPA (o-20:0) han sido identificados como metabolitos implicados en la distinción de los pacientes en función de la presencia de lesiones isquémicas agudas en la secuencia de DF de la RM.
- 6. Un conjunto de metabolitos, entre los que se incluyen LPC (22:6) y LPC (20:4), han mostrado una relación directa significativa con el volumen de la isquemia.
- 7. La metabolómica permite identificar biomarcadores relacionados con los patrones de lesión isquémica aguda de la secuencia de DF de la RM.

8. Bibliografía

- 1. Caplan LR. Transient ischemic attack with abnormal diffusion-weighted imaging results: what's in a name? Arch Neurol 2007;64:1080-2.
- 2. Siket MS, Edlow JA. Transient ischemic attack: reviewing the evolution of the definition, diagnosis, risk stratification, and management for the emergency physician. Emerg Med Clin North Am 2012;30:745-70.
- 3. Arboix Damunt A. Definiciones de AIT, clasificaciones y manifestaciones clínicas. In: J. M, ed. Ataque isquémico transitorio. Barcelona: Marge Médica Books; 2009:46-56
- 4. Osler W. Transient Attacks of Aphasia and Paralyses in States of High Blood Pressure and Arterio-Sclerosis. Can Med Assoc J 1911;1:919-26.
- 5. Hunt JR. Hunt: the role of the carotid arteries: the role of the carotid arteries, in the causation of vascular lesions of the brain, with remarks on certain special features of the symptomatology. 1914. Am J Med Sci 2013;346:504-9.
- 6. Fisher M. Occlusion of the internal carotid artery. AMA Arch Neurol Psychiatry 1951;65:346-77.
- 7. Caplan LR. Transient ischemic attack: definition and natural history. Curr Atheroscler Rep 2006;8:276-80.
- 8. Cerebral vascular disease: Transactions of the second conference held under the auspices of the american heart association, princeton, new jersey; january 16-18, 1957. Journal of the American Medical Association 1958;168:2202-.
- 9. Pendlebury STG, M. F.; Rothwell, P. M. Epidemiology. Transient ischemic attack and stroke Diagnosis, investigation and management. Cambridge: Cambridge University Press; 2009:1-15.
- 10. Acheson J, Hutchinson EC. Observations on the Natural History of Transient Cerebral Ischaemia. Lancet 1964;2:871-4.
- 11. Marshall J. The Natural History of Transient Ischaemic Cerebro-Vascular Attacks. Q J Med 1964;33:309-24.
- 12. A classification and outline of cerebrovascular diseases. II. Stroke 1975;6:564-616.
- 13. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. WHO MONICA Project Principal Investigators. J Clin Epidemiol 1988;41:105-14.
- 14. Albers GW, Caplan LR, Easton JD, et al. Transient ischemic attack--proposal for a new definition. N Engl J Med 2002;347:1713-6.
- 15. Easton JD, Albers GW, Caplan LR, Saver JL, Sherman DG, Group TIAW. Discussion: Reconsideration of TIA terminology and definitions. Neurology 2004;62:S29-34.
- 16. Easton JD, Saver JL, Albers GW, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke 2009;40:2276-93.
- 17. Johnston SC, Fayad PB, Gorelick PB, et al. Prevalence and knowledge of transient ischemic attack among US adults. Neurology 2003;60:1429-34.
- 18. Pancioli AM, Broderick J, Kothari R, et al. Public perception of stroke warning signs and knowledge of potential risk factors. JAMA 1998;279:1288-92.
- 19. Goldstein LB, Bian J, Samsa GP, Bonito AJ, Lux LJ, Matchar DB. New transient ischemic attack and stroke: outpatient management by primary care physicians. Arch Intern Med 2000;160:2941-6.

- 20. Kelly J, Hunt BJ, Lewis RR, Rudd A. Transient ischaemic attacks: under-reported, over-diagnosed, under-treated. Age Ageing 2001;30:379-81.
- 21. Bots ML, van der Wilk EC, Koudstaal PJ, Hofman A, Grobbee DE. Transient neurological attacks in the general population. Prevalence, risk factors, and clinical relevance. Stroke 1997;28:768-73.
- 22. Caplan LR. TIAs: we need to return to the question, 'What is wrong with Mr. Jones?'. Neurology 1988;38:791-3.
- 23. Rothwell PM, Warlow CP. Timing of TIAs preceding stroke: time window for prevention is very short. Neurology 2005;64:817-20.
- 24. Sorensen AG, Ay H. Transient ischemic attack: definition, diagnosis, and risk stratification. Neuroimaging Clin N Am 2011;21:303-13, x.
- 25. Prabhakaran S. Reversible brain ischemia: lessons from transient ischemic attack. Curr Opin Neurol 2007;20:65-70.
- 26. Dyken ML, Conneally M, Haerer AF, et al. Cooperative study of hospital frequency and character of transient ischemic attacks. I. Background, organization, and clinical survey. JAMA 1977;237:882-6.
- 27. Pessin MS, Duncan GW, Mohr JP, Poskanzer DC. Clinical and angiographic features of carotid transient ischemic attacks. N Engl J Med 1977;296:358-62.
- 28. Levy DE. How transient are transient ischemic attacks? Neurology 1988;38:674-7.
- 29. Kimura K, Minematsu K, Yasaka M, Wada K, Yamaguchi T. The duration of symptoms in transient ischemic attack. Neurology 1999;52:976-80.
- 30. Ustrell-Roig X, Serena-Leal J. [Stroke. Diagnosis and therapeutic management of cerebrovascular disease]. Rev Esp Cardiol 2007;60:753-69.
- 31. Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008;359:1317-29.
- 32. Wahlgren N, Ahmed N, Davalos A, et al. Thrombolysis with alteplase 3-4.5 h after acute ischaemic stroke (SITS-ISTR): an observational study. Lancet 2008;372:1303-9.
- 33. Gallego J, Munoz R, Martinez-Vila E. Emergent cerebrovascular disease risk factor weighting: is transient ischemic attack an imminent threat? Cerebrovasc Dis 2009;27 Suppl 1:88-96.
- 34. Marler JR, Tilley BC, Lu M, et al. Early stroke treatment associated with better outcome: the NINDS rt-PA stroke study. Neurology 2000;55:1649-55.
- 35. Perrone P, Candelise L, Scotti G, De Grandi C, Scialfa G. CT evaluation in patients with transient ischemic attack. Correlation between clinical and angiographic findings. Eur Neurol 1979;18:217-21.
- 36. Douglas VC, Johnston CM, Elkins J, Sidney S, Gress DR, Johnston SC. Head computed tomography findings predict short-term stroke risk after transient ischemic attack. Stroke 2003;34:2894-8.
- 37. Waxman SG, Toole JF. Temporal profile resembling TIA in the setting of cerebral infarction. Stroke 1983;14:433-7.
- 38. Messe SR, Jauch EC. Transient ischemic attack: diagnostic evaluation. Ann Emerg Med 2008;52:S17-26.
- 39. Brazzelli M, Chappell FM, Miranda H, et al. Diffusion-weighted imaging and diagnosis of transient ischemic attack. Ann Neurol 2014;75:67-76.
- 40. Saver JL. Proposal for a universal definition of cerebral infarction. Stroke 2008;39:3110-5.
- 41. Purroy F, Montaner J, Rovira A, Delgado P, Quintana M, Alvarez-Sabin J. Higher risk of further vascular events among transient ischemic attack patients with diffusion-weighted imaging acute ischemic lesions. Stroke 2004;35:2313-9.

- 42. Brown MM, Rudd A, McGovern R. Transient ischemic attack--proposed new definition. N Engl J Med 2003;348:1607-9; author reply -9.
- 43. Ballotta E, Toniato A, Baracchini C. Transient ischemic attack--proposed new definition. N Engl J Med 2003;348:1607-9; author reply -9.
- 44. Bernstein RA, Alberts MJ. Transient ischemic attack--proposed new definition. N Engl J Med 2003;348:1607-9; author reply -9.
- 45. Tejada JM, J.; Larracoechea, J.; Gállego, J.; Casado, I. Guía de actuación clínica en el ataque isquémico transitorio. In: E. DT, ed. Guía para el diagnóstico y tratamiento del ictus. Barcelona: Prous Science; 2006:65-95.
- 46. Ovbiagele B, Kidwell CS, Saver JL. Epidemiological impact in the United States of a tissue-based definition of transient ischemic attack. Stroke 2003;34:919-24.
- 47. Kidwell CS, Warach S. Acute ischemic cerebrovascular syndrome: diagnostic criteria. Stroke 2003;34:2995-8.
- 48. Alonso de Lecinana M, Egido JA, Casado I, et al. Guidelines for the treatment of acute ischaemic stroke. Neurologia 2014;29:102-22.
- 49. McKinney JS, Masjuan J, Purroy F, Calvet D, Ay H, Cucchiara BL. Safety of thrombolytic therapy for acute ischemic stroke after recent transient ischemic attack. J Stroke Cerebrovasc Dis 2012;21:551-4.
- 50. Alonso de Lecinana M, Fuentes B, Masjuan J, et al. Thrombolytic therapy for acute ischemic stroke after recent transient ischemic attack. Int J Stroke 2012;7:213-8.
- 51. H. Shah S, Saver J, S. Kidwell C, et al. A multicenter pooled, patient-level data analysis of diffusion-weighted MRI in TIA patients 2007.
- 52. Cucchiara B, Kasner SE. In the clinic. Transient ischemic attack. Ann Intern Med 2011;154:ITC11-5; quiz ITC1-6.
- 53. Liberato B, Prabhakaran S, Sacco RL. Evolving concepts regarding transient ischemic attacks. Curr Atheroscler Rep 2005;7:274-9.
- 54. Prabhakaran S, Silver AJ, Warrior L, McClenathan B, Lee VH. Misdiagnosis of transient ischemic attacks in the emergency room. Cerebrovasc Dis 2008;26:630-5.
- 55. Gorelick PB. TIA incidence and prevalence: the Stroke Belt perspective. Neurology 2004:62:S12-4.
- 56. Purroy F, Cruz Esteve I, Galindo Ortego MG, Marsal Mora JR, Oro M, Plana A. Survey of the knowledge and management of transient ischemic attacks among primary care physicians and nurses. Neurologia 2011;26:200-7.
- 57. Díaz Guzmán J. Epidemiología del AIT. In: Montaner J, ed. Ataque isquémico transitorio. Barcelona: Marge Médica Books; 2009:23-41.
- 58. Rothwell PM, Coull AJ, Giles MF, et al. Change in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford Vascular Study). Lancet 2004;363:1925-33.
- 59. Writing Group M, Lloyd-Jones D, Adams RJ, et al. Heart disease and stroke statitics--2010 update: a report from the American Heart Association. Circulation 2010;121:e46-e215.
- 60. Diaz-Guzman J, Egido JA, Gabriel-Sanchez R, et al. Stroke and transient ischemic attack incidence rate in Spain: the IBERICTUS study. Cerebrovasc Dis 2012;34:272-81.
- 61. Matias-Guiu J, Oltra A, Falip R, Martin R, Galiano L. Occurrence of transient ischemic attacks in Alcoi: descriptive epidemiology. Neuroepidemiology 1994;13:34-9.
- 62. Perez-Sempere A. [Cerebrovascular morbidity in Spain: incidence and prevalence]. Rev Neurol 1999;29:879-81.
- 63. Lopez-Pousa S, Vilalta J, Llinas J. [Incidence of cerebrovascular disease in Spain: a study in a rural area of Girona]. Rev Neurol 1995;23:1074-80.

- 64. Sempere AP, Duarte J, Cabezas C, Claveria LE. Incidence of transient ischemic attacks and minor ischemic strokes in Segovia, Spain. Stroke 1996;27:667-71.
- 65. Edlow JA, Kim S, Pelletier AJ, Camargo CA, Jr. National study on emergency department visits for transient ischemic attack, 1992-2001. Acad Emerg Med 2006;13:666-72.
- 66. Rothwell PM, Coull AJ, Silver LE, et al. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study). Lancet 2005;366:1773-83.
- 67. Feigin VL, Shishkin SV, Tzirkin GM, et al. A population-based study of transient ischemic attack incidence in Novosibirsk, Russia, 1987-1988 and 1996-1997. Stroke 2000;31:9-13.
- 68. Bos MJ, van Rijn MJ, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM. Incidence and prognosis of transient neurological attacks. JAMA 2007;298:2877-85.
- 69. Correia M, Silva MR, Magalhaes R, Guimaraes L, Silva MC. Transient ischemic attacks in rural and urban northern Portugal: incidence and short-term prognosis. Stroke 2006;37:50-5.
- 70. Ueda K, Kiyohara Y, Hasuo Y, et al. Transient cerebral ischemic attacks in a Japanese community, Hisayama, Japan. Stroke 1987;18:844-8.
- 71. Giles MF, Rothwell PM. Transient ischaemic attack: clinical relevance, risk prediction and urgency of secondary prevention. Curr Opin Neurol 2009;22:46-53.
- 72. Diaz-Guzman J, Bermejo-Pareja F, Benito-Leon J, et al. Prevalence of stroke and transient ischemic attack in three elderly populations of central Spain. Neuroepidemiology 2008;30:247-53.
- 73. Karp HR, Heyman A, Heyden S, Bartel AG, Tyroler HA, Hames CG. Transient cerebral ischemia. Prevalence and prognosis in a biracial rural community. JAMA 1973:225:125-8.
- 74. Kokubo Y. Epidemiology of transient ischemic attack. Front Neurol Neurosci 2014;33:69-81.
- 75. Toole JF, Lefkowitz DS, Chambless LE, Wijnberg L, Paton CC, Heiss G. Self-reported transient ischemic attack and stroke symptoms: methods and baseline prevalence. The ARIC Study, 1987-1989. Am J Epidemiol 1996;144:849-56.
- 76. Orlandi G, Gelli A, Fanucchi S, Tognoni G, Acerbi G, Murri L. Prevalence of stroke and transient ischaemic attack in the elderly population of an Italian rural community. Eur J Epidemiol 2003;18:879-82.
- 77. Fratiglioni L, Arfaioli C, Nencini P, et al. Transient ischemic attacks in the community: occurrence and clinical characteristics. A population survey in the area of Florence, Italy. Neuroepidemiology 1989;8:87-96.
- 78. Mavaddat N, Savva GM, Lasserson DS, Giles MF, Brayne C, Mant J. Transient neurological symptoms in the older population: report of a prospective cohort study--the Medical Research Council Cognitive Function and Ageing Study (CFAS). BMJ Open 2013;3.
- 79. Urakami K, Igo M, Takahashi K. An epidemiologic study of cerebrovascular disease in western Japan: with special reference to transient ischemic attacks. Stroke 1987;18:396-401.
- 80. Sacco RL. Risk factors for TIA and TIA as a risk factor for stroke. Neurology 2004;62:S7-11.
- 81. Dennis M, Bamford J, Sandercock P, Warlow C. Prognosis of transient ischemic attacks in the Oxfordshire Community Stroke Project. Stroke 1990;21:848-53.
- 82. Bogousslavsky J, Van Melle G, Regli F. The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke 1988;19:1083-92.

- 83. Mohr JP, Caplan LR, Melski JW, et al. The Harvard Cooperative Stroke Registry: a prospective registry. Neurology 1978;28:754-62.
- 84. Sacco RL, Ellenberg JH, Mohr JP, et al. Infarcts of undetermined cause: the NINCDS Stroke Data Bank. Ann Neurol 1989;25:382-90.
- 85. Gorelick PB. Epidemiology of transient ischemic attack and ischemic stroke in patients with underlying cardiovascular disease. Clin Cardiol 2004;27:II4-11.
- 86. Belvís Nieto RM-V, J. L. Factores de riesgo. Prevención. In: Martí-Vilalta JL, ed. Enfermedades vasculares cerebrales. Tercera edición ed. Barcelona: Ediciones Mayo; 2012:55-74.
- 87. Petty GW, Brown RD, Jr., Whisnant JP, Sicks JD, O'Fallon WM, Wiebers DO. Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke 1999:30:2513-6.
- 88. Kleindorfer D, Panagos P, Pancioli A, et al. Incidence and short-term prognosis of transient ischemic attack in a population-based study. Stroke 2005;36:720-3.
- 89. Bravata DM, Wells CK, Gulanski B, et al. Racial disparities in stroke risk factors: the impact of socioeconomic status. Stroke 2005;36:1507-11.
- 90. Lynch GF, Gorelick PB. Stroke in African Americans. Neurol Clin 2000;18:273-90.
- 91. Huang CY, Chan FL, Yu YL, Woo E, Chin D. Cerebrovascular disease in Hong Kong Chinese. Stroke 1990;21:230-5.
- 92. Sacco RL, Boden-Albala B, Gan R, et al. Stroke incidence among white, black, and Hispanic residents of an urban community: the Northern Manhattan Stroke Study. Am J Epidemiol 1998;147:259-68.
- 93. Goldbourt U, Tanne D. Body height is associated with decreased long-term stroke but not coronary heart disease mortality? Stroke 2002;33:743-8.
- 94. Jousilahti P, Rastenyte D, Tuomilehto J, Sarti C, Vartiainen E. Parental history of cardiovascular disease and risk of stroke. A prospective follow-up of 14371 middle-aged men and women in Finland. Stroke 1997;28:1361-6.
- 95. Cole JW, Meschia JF. Stroke Genetics Update: 2011. Curr Cardiovasc Risk Rep 2011;5:533-41.
- 96. Sharma P, Yadav S, Meschia JF. Genetics of ischaemic stroke. J Neurol Neurosurg Psychiatry 2013;84:1302-8.
- 97. Bentley P, Peck G, Smeeth L, Whittaker J, Sharma P. Causal relationship of susceptibility genes to ischemic stroke: comparison to ischemic heart disease and biochemical determinants. PLoS One 2010;5:e9136.
- 98. Gretarsdottir S, Thorleifsson G, Reynisdottir ST, et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet 2003;35:131-8.
- 99. Ellinor PT, Lunetta KL, Albert CM, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 2012;44:670-5.
- 100. Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol 2012;11:951-62.
- 101. Kubo M, Hata J, Ninomiya T, et al. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction. Nat Genet 2007;39:212-7.
- 102. Elliott WJ. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke 1998;29:992-6.
- 103. Giles MF, Flossman E, Rothwell PM. Patient behavior immediately after transient ischemic attack according to clinical characteristics, perception of the event, and predicted risk of stroke. Stroke 2006;37:1254-60.

- 104. Fuentes B, Gallego J, Gil-Nunez A, et al. Guidelines for the preventive treatment of ischaemic stroke and TIA (I). Update on risk factors and life style. Neurologia 2012;27:560-74.
- 105. Martinez-Martinez M, Cazorla-Garcia R, Rodriguez de Antonio LA, Martinez-Sanchez P, Fuentes B, Diez-Tejedor E. [Hypercoagulability and ischemic stroke in young patients]. Neurologia 2010;25:343-8.
- 106. Kenet G, Lutkhoff LK, Albisetti M, et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation 2010;121:1838-47.
- 107. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003;42:1206-52.
- 108. Sacco RL. Risk factors, outcomes, and stroke subtypes for ischemic stroke. Neurology 1997;49:S39-44.
- 109. Birns J, Markus H, Kalra L. Blood pressure reduction for vascular risk: is there a price to be paid? Stroke 2005;36:1308-13.
- 110. Rothwell PM, Howard SC, Spence JD, Carotid Endarterectomy Trialists C. Relationship between blood pressure and stroke risk in patients with symptomatic carotid occlusive disease. Stroke 2003;34:2583-90.
- 111. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360:1903-13
- 112. Executive summary: Standards of medical care in diabetes--2013. Diabetes Care 2013;36 Suppl 1:S4-10.
- 113. Wannamethee SG, Perry IJ, Shaper AG. Nonfasting serum glucose and insulin concentrations and the risk of stroke. Stroke 1999;30:1780-6.
- 114. Khoury JC, Kleindorfer D, Alwell K, et al. Diabetes mellitus: a risk factor for ischemic stroke in a large biracial population. Stroke 2013;44:1500-4.
- 115. Nathan DM, Lachin J, Cleary P, et al. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med 2003;348:2294-303.
- 116. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:837-53.
- 117. Koren-Morag N, Tanne D, Graff E, Goldbourt U. Low- and high-density lipoprotein cholesterol and ischemic cerebrovascular disease: the bezafibrate infarction prevention registry. Arch Intern Med 2002;162:993-9.
- 118. National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143-421.
- 119. Wang X, Dong Y, Qi X, Huang C, Hou L. Cholesterol levels and risk of hemorrhagic stroke: a systematic review and meta-analysis. Stroke 2013;44:1833-9.
- 120. Pendlebury STG, M. F.; Rothwell, P. M. Causes of transient ischemic attack. Transient ischemic attack and stroke Diagnosis, investigation and management. Cambridge: Cambridge University Press; 2009:55-90.

- 121. Goldstein LB, Adams R, Becker K, et al. Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association. Circulation 2001;103:163-82.
- 122. Marnane M, Prendeville S, McDonnell C, et al. Plaque inflammation and unstable morphology are associated with early stroke recurrence in symptomatic carotid stenosis. Stroke 2014;45:801-6.
- 123. Mazighi M, Tanasescu R, Ducrocq X, et al. Prospective study of symptomatic atherothrombotic intracranial stenoses: the GESICA study. Neurology 2006;66:1187-91.
- 124. Chimowitz MI, Lynn MJ, Howlett-Smith H, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 2005;352:1305-16.
- 125. French Study of Aortic Plaques in Stroke G, Amarenco P, Cohen A, et al. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N Engl J Med 1996;334:1216-21.
- 126. van den Oord SC, Sijbrands EJ, ten Kate GL, et al. Carotid intima-media thickness for cardiovascular risk assessment: systematic review and meta-analysis. Atherosclerosis 2013;228:1-11.
- 127. Furie KL, Kasner SE, Adams RJ, et al. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2011;42:227-76.
- 128. Goldstein LB, Bushnell CD, Adams RJ, et al. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011;42:517-84.
- 129. Kannel WB, Benjamin EJ. Status of the epidemiology of atrial fibrillation. Med Clin North Am 2008;92:17-40, ix.
- 130. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 2002;347:1825-33.
- 131. Pendlebury STG, M. F.; Rothwell, P. M. Risk factors. Transient ischemic attack and stroke Diagnosis, investigation and management. Cambridge: Cambridge University Press; 2009:16-29.
- 132. Marini C, De Santis F, Sacco S, et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study. Stroke 2005;36:1115-9.
- 133. Pullicino PM, Halperin JL, Thompson JL. Stroke in patients with heart failure and reduced left ventricular ejection fraction. Neurology 2000;54:288-94.
- 134. Gilon D, Buonanno FS, Joffe MM, et al. Lack of evidence of an association between mitral-valve prolapse and stroke in young patients. N Engl J Med 1999;341:8-13.
- 135. Vongpatanasin W, Hillis LD, Lange RA. Prosthetic heart valves. N Engl J Med 1996;335:407-16.
- 136. Arboix A, Alio J. Acute cardioembolic cerebral infarction: answers to clinical questions. Curr Cardiol Rev 2012;8:54-67.
- 137. Ma B, Liu G, Chen X, Zhang J, Liu Y, Shi J. Risk of stroke in patients with patent foramen ovale: an updated meta-analysis of observational studies. J Stroke Cerebrovasc Dis 2014;23:1207-15.
- 138. Roeltgen D, Kidwell CS. Neurologic complications of cardiac tumors. Handb Clin Neurol 2014;119:209-22.
- 139. Shinton R, Beevers G. Meta-analysis of relation between cigarette smoking and stroke. BMJ 1989;298:789-94.

- 140. Bhat VM, Cole JW, Sorkin JD, et al. Dose-response relationship between cigarette smoking and risk of ischemic stroke in young women. Stroke 2008;39:2439-43.
- 141. Peters SA, Huxley RR, Woodward M. Smoking as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 81 cohorts, including 3,980,359 individuals and 42,401 strokes. Stroke 2013;44:2821-8.
- 142. Iribarren C, Darbinian J, Klatsky AL, Friedman GD. Cohort study of exposure to environmental tobacco smoke and risk of first ischemic stroke and transient ischemic attack. Neuroepidemiology 2004;23:38-44.
- 143. Wolf PA, D'Agostino RB, Kannel WB, Bonita R, Belanger AJ. Cigarette smoking as a risk factor for stroke. The Framingham Study. JAMA 1988;259:1025-9.
- 144. Reynolds K, Lewis B, Nolen JD, Kinney GL, Sathya B, He J. Alcohol consumption and risk of stroke: a meta-analysis. JAMA 2003;289:579-88.
- 145. Patra J, Taylor B, Irving H, et al. Alcohol consumption and the risk of morbidity and mortality for different stroke types--a systematic review and meta-analysis. BMC Public Health 2010;10:258.
- 146. Hillbom M, Numminen H, Juvela S. Recent heavy drinking of alcohol and embolic stroke. Stroke 1999;30:2307-12.
- 147. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. JAMA 2004;291:2847-50.
- 148. Suk SH, Sacco RL, Boden-Albala B, et al. Abdominal obesity and risk of ischemic stroke: the Northern Manhattan Stroke Study. Stroke 2003;34:1586-92.
- 149. Winter Y, Rohrmann S, Linseisen J, et al. Contribution of obesity and abdominal fat mass to risk of stroke and transient ischemic attacks. Stroke 2008;39:3145-51.
- 150. Hu G, Tuomilehto J, Silventoinen K, Sarti C, Mannisto S, Jousilahti P. Body mass index, waist circumference, and waist-hip ratio on the risk of total and type-specific stroke. Arch Intern Med 2007;167:1420-7.
- 151. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735-52.
- 152. Osborn MF, Miller CC, Badr A, Zhang J. Metabolic syndrome associated with ischemic stroke among the Mexican Hispanic population in the El Paso/US-Mexico border region. J Stroke Cerebrovasc Dis 2014;23:1477-84.
- 153. Eckel RH, Alberti KG, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2010;375:181-3.
- 154. Larsson SC, Orsini N, Wolk A. Long-chain omega-3 polyunsaturated fatty acids and risk of stroke: a meta-analysis. Eur J Epidemiol 2012;27:895-901.
- 155. Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. Am J Clin Nutr 2012;95:362-6.
- 156. Larsson SC, Orsini N, Wolk A. Dietary potassium intake and risk of stroke: a dose-response meta-analysis of prospective studies. Stroke 2011;42:2746-50.
- 157. Estruch R, Ros E, Salas-Salvado J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med 2018;378:e34.
- 158. Wendel-Vos GC, Schuit AJ, Feskens EJ, et al. Physical activity and stroke. A meta-analysis of observational data. Int J Epidemiol 2004;33:787-98.
- 159. Lee CD, Folsom AR, Blair SN. Physical activity and stroke risk: a meta-analysis. Stroke 2003;34:2475-81.
- 160. Emsley HC, Hopkins SJ. Acute ischaemic stroke and infection: recent and emerging concepts. Lancet Neurol 2008;7:341-53.

- 161. Pinol-Ripoll G, de la Puerta I, Santos S, Purroy F, Mostacero E. Chronic bronchitis and acute infections as new risk factors for ischemic stroke and the lack of protection offered by the influenza vaccination. Cerebrovasc Dis 2008;26:339-47.
- 162. Beck J, Garcia R, Heiss G, Vokonas PS, Offenbacher S. Periodontal Disease and Cardiovascular Disease. J Periodontol 1996;67 Suppl 10S:1123-37.
- 163. Sawayama Y, Ariyama I, Hamada M, et al. Association between chronic Helicobacter pylori infection and acute ischemic stroke: Fukuoka Harasanshin Atherosclerosis Trial (FHAT). Atherosclerosis 2005;178:303-9.
- 164. Elkind MS, Lin IF, Grayston JT, Sacco RL. Chlamydia pneumoniae and the risk of first ischemic stroke: The Northern Manhattan Stroke Study. Stroke 2000;31:1521-5.
- 165. Huang ZR, Yu LP, Yang XC, et al. Human cytomegalovirus linked to stroke in a Chinese population. CNS Neurosci Ther 2012;18:457-60.
- 166. Homocysteine Studies C. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002;288:2015-22.
- 167. Toole JF, Malinow MR, Chambless LE, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004:291:565-75.
- 168. Group VTS. B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol 2010;9:855-65.
- 169. Bonaa KH, Njolstad I, Ueland PM, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 2006;354:1578-88
- 170. Towfighi A, Arshi B, Markovic D, Ovbiagele B. Homocysteine-lowering therapy and risk of recurrent stroke, myocardial infarction and death: the impact of age in the VISP trial. Cerebrovasc Dis 2014;37:263-7.
- 171. Wang X, Qin X, Demirtas H, et al. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 2007;369:1876-82.
- 172. Larrosa-Campo D, Ramon-Carbajo C, Para-Prieto M, Calleja-Puerta S, Cernuda-Morollon E, Pascual J. [Migraine as a vascular risk factor]. Rev Neurol 2012;55:349-58.
- 173. Spector JT, Kahn SR, Jones MR, Jayakumar M, Dalal D, Nazarian S. Migraine headache and ischemic stroke risk: an updated meta-analysis. Am J Med 2010;123:612-24.
- 174. Becker C, Brobert GP, Almqvist PM, Johansson S, Jick SS, Meier CR. Migraine and the risk of stroke, TIA, or death in the UK (CME). Headache 2007;47:1374-84.
- 175. Capampangan DJ, Wellik KE, Parish JM, et al. Is obstructive sleep apnea an independent risk factor for stroke? A critically appraised topic. Neurologist 2010;16:269-73.
- 176. Whisnant JP, Brown RD, Petty GW, O'Fallon WM, Sicks JD, Wiebers DO. Comparison of population-based models of risk factors for TIA and ischemic stroke. Neurology 1999;53:532-6.
- 177. Daffertshofer M, Mielke O, Pullwitt A, Felsenstein M, Hennerici M. Transient ischemic attacks are more than "ministrokes". Stroke 2004;35:2453-8.
- 178. Arboix A, Sola E, Castillo M, Baena JM. [Comparison of vascular risk factors profiles for transient ischemic attacks and ischemic stroke]. Med Clin (Barc) 2003:121:292-4.
- 179. Johnston SC, Gress DR, Browner WS, Sidney S. Short-term prognosis after emergency department diagnosis of TIA. JAMA 2000;284:2901-6.

- 180. Lovett JK, Dennis MS, Sandercock PA, Bamford J, Warlow CP, Rothwell PM. Very early risk of stroke after a first transient ischemic attack. Stroke 2003;34:e138-40.
- 181. Amarenco P, Lavallee PC, Labreuche J, et al. One-Year Risk of Stroke after Transient Ischemic Attack or Minor Stroke. N Engl J Med 2016;374:1533-42.
- 182. Amarenco P, Lavallee PC, Monteiro Tavares L, et al. Five-Year Risk of Stroke after TIA or Minor Ischemic Stroke. N Engl J Med 2018;378:2182-90.
- 183. Valls J, Peiro-Chamarro M, Cambray S, Molina-Seguin J, Benabdelhak I, Purroy F. A Current Estimation of the Early Risk of Stroke after Transient Ischemic Attack: A Systematic Review and Meta-Analysis of Recent Intervention Studies. Cerebrovasc Dis 2017;43:90-8.
- 184. Sommer C. Neuronal plasticity after ischemic preconditioning and TIA-like preconditioning ischemic periods. Acta Neuropathol 2009;117:511-23.
- 185. Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014;45:2160-236.
- 186. Levine SR. Pathophysiology and therapeutic targets for ischemic stroke. Clin Cardiol 2004;27:II12-24.
- 187. Torregrosa GS, J. B.; Jover-Mengual, T.; Alborch, E. . Fisiopatología básica: de la oclusión arterial a la muerte neuronal. In: Montaner J, ed. Fisiopatología de la isquemia cerebral. Barcelona: Marge Médica Books; 2007:13-31.
- 188. Baiges-Octavio JJG-R, M. Anatomía de la circulación cerebral. In: Martí-Vilalta JL, ed. Enfermedades vasculares cerebrales Tercera edición ed. Barcelona: Mayo; 2012:11-21.
- 189. Martínez-Sánchez PG-F, M.; Díez-Tejedor, E. . Fisiología de la circulación cerebral y de la barrera hematoencefálica. Bases fisiopatológicas. In: Martí-Vilalta JL, ed. Enfermedades vasculares cerebrales Tercera Edición ed. Barcelona: Mayo; 2012:23-36
- 190. Brea-López DC-S, J. Neuroprotectores. In: Martí-Vilalta JL, ed. Enfermedades vasculares cerebrales Tercera Edición ed. Barcelona: Mayo; 2012:517-28.
- 191. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke 2006;37:1334-9.
- 192. Pendlebury S.T.; Giles M.F.; Rothwell PM. Pathophysiology of acute cerebral ischemia. Transient ischemic attack and stroke Diagnosis, investigation and management. Cambridge: Cambridge University Press; 2009:49-54.
- 193. Rosell AN, M.; Montaner, J.; Wang, X.; Lo, E. H. The neurovascular unit concept. In: Montaner J, ed. Fisiopatología de la isquemia cerebral. Barcelona: Marge Médica Books; 2007:53-64.
- 194. Sierra C, Coca A, Schiffrin EL. Vascular mechanisms in the pathogenesis of stroke. Curr Hypertens Rep 2011;13:200-7.
- 195. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 2009;4:461-70.
- 196. Saeed SA, Shad KF, Saleem T, Javed F, Khan MU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res 2007;182:1-10.
- 197. Stamler JS, Simon DI, Osborne JA, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 1992;89:444-8.

- 198. Darlington LG, Mackay GM, Forrest CM, Stoy N, George C, Stone TW. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci 2007:26:2211-21.
- 199. Chuang DY, Simonyi A, Kotzbauer PT, Gu Z, Sun GY. Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. J Neuroinflammation 2015;12:199.
- 200. McCracken E, Valeriani V, Simpson C, Jover T, McCulloch J, Dewar D. The lipid peroxidation by-product 4-hydroxynonenal is toxic to axons and oligodendrocytes. J Cereb Blood Flow Metab 2000;20:1529-36.
- 201. Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 2006;52:201-43.
- 202. Cui J, Holmes EH, Greene TG, Liu PK. Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. FASEB J 2000;14:955-67.
- 203. Krupinski JT, M. La respuesta inflamatoria en la isquemia cerebral. In: Montaner J, ed. Fisiopatología de la isquemia cerebral. Barcelona: Marge Médica Books; 2007:145-58.
- 204. Sobrado MM, M. A.; Hurtado, O. El papel de la glía tras la isquemia cerebral. In: Montaner J, ed. Fisiopatología de la isquemia cerebral. Barcelona: Marge Médica Books; 2007:145-58.
- 205. Cuenca-Lopez MD, Brea D, Galindo MF, et al. [Inflammatory response during ischaemic processes: adhesion molecules and immunomodulation]. Rev Neurol 2010;51:30-40.
- 206. Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 2002;33:2115-22.
- 207. DeGraba TJ, Siren AL, Penix L, et al. Increased endothelial expression of intercellular adhesion molecule-1 in symptomatic versus asymptomatic human carotid atherosclerotic plaque. Stroke 1998;29:1405-10.
- 208. Rodriguez-Yanez M, Castillo J. Role of inflammatory markers in brain ischemia. Curr Opin Neurol 2008;21:353-7.
- 209. Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med 2002;8:1363-8.
- 210. Tukhovskaya EA, Turovsky EA, Turovskaya MV, et al. Anti-inflammatory cytokine interleukin-10 increases resistance to brain ischemia through modulation of ischemia-induced intracellular Ca(2)(+) response. Neurosci Lett 2014;571:55-60.
- 211. Nishi T, Maier CM, Hayashi T, Saito A, Chan PH. Superoxide dismutase 1 overexpression reduces MCP-1 and MIP-1 alpha expression after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2005;25:1312-24.
- 212. Kurzepa J, Kurzepa J, Golab P, Czerska S, Bielewicz J. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int J Neurosci 2014;124:707-16.
- 213. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340:115-26.
- 214. Slevin MG, J. Gene expression patterns following brain ischemia. In: Montaner J, ed. Fisiopatología de la isquemia cerebral. Barcelona: Marge Médica Books; 2007:65-75.
- 215. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007;54:34-66.
- 216. Planas AM, Gorina R, Chamorro A. Signalling pathways mediating inflammatory responses in brain ischaemia. Biochem Soc Trans 2006;34:1267-70.

- 217. Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA. Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 2002;22:3921-8.
- 218. Sharp FR, Zhan X, Liu DZ. Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res 2013;4:685-92.
- 219. Chamorro A. Alteraciones inmunológicas en el infarto cerebral. In: Montaner J, ed. Fisiopatología de la isquemia cerebral. Barcelona: Marge Médica Books; 2007:109-17.
- 220. Badiola NS, M. F.; Comella, J. X.; Rodríguez-Álvarez, J. Receptores de muerte e isquemia cerebral. In: Montaner J, ed. Fisiopatología de la isquemia cerebral. Barcelona: Marge Médica Books; 2007:77-89.
- 221. Westendorp WF, Nederkoorn PJ, Vermeij JD, Dijkgraaf MG, van de Beek D. Poststroke infection: a systematic review and meta-analysis. BMC Neurol 2011;11:110.
- 222. Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 2007;38:1097-103.
- 223. Lizasoain IM, M. A.; Fernández-López, J. M.; Pradillo, T.; Sobrino, J.; Castillo, J. Plasticidad, neurogénesis y angiogénesis. In: Montaner J, ed. Fisiopatología de la isquemia cerebral. Barcelona: Marge Médica Books; 2007:179-89.
- 224. Brea D, Sobrino T, Ramos-Cabrer P, Castillo J. [Reorganisation of the cerebral vasculature following ischaemia]. Rev Neurol 2009;49:645-54.
- 225. Carmichael ST. Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann Neurol 2016;79:895-906.
- 226. Hurtado O, Pradillo JM, Alonso-Escolano D, et al. Neurorepair versus neuroprotection in stroke. Cerebrovasc Dis 2006;21 Suppl 2:54-63.
- 227. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009;8:398-412.
- 228. Sandu N, Cornelius J, Filis A, Arasho B, Perez-Pinzon M, Schaller B. Ischemic tolerance in stroke treatment. Expert Rev Cardiovasc Ther 2009;7:1255-61.
- 229. Castillo J, Moro MA, Blanco M, et al. The release of tumor necrosis factor-alpha is associated with ischemic tolerance in human stroke. Ann Neurol 2003;54:811-9.
- 230. Arboix A, Cabeza N, Garcia-Eroles L, et al. Relevance of transient ischemic attack to early neurological recovery after nonlacunar ischemic stroke. Cerebrovasc Dis 2004;18:304-11.
- 231. Della Morte D, Abete P, Gallucci F, et al. Transient ischemic attack before nonlacunar ischemic stroke in the elderly. J Stroke Cerebrovasc Dis 2008;17:257-62.
- 232. Johnston SC. Ischemic preconditioning from transient ischemic attacks? Data from the Northern California TIA Study. Stroke 2004;35:2680-2.
- 233. Sitzer M, Foerch C, Neumann-Haefelin T, et al. Transient ischaemic attack preceding anterior circulation infarction is independently associated with favourable outcome. J Neurol Neurosurg Psychiatry 2004;75:659-60.
- 234. Wegener S, Gottschalk B, Jovanovic V, et al. Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 2004;35:616-21.
- 235. Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, van Melle G. Do transient ischemic attacks have a neuroprotective effect? Neurology 2000;54:2089-94.
- 236. Weih M, Kallenberg K, Bergk A, et al. Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 1999;30:1851-4.
- 237. Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 2009;119:2408-16.

- 238. George PM, Mlynash M, Adams CM, Kuo CJ, Albers GW, Olivot JM. Novel TIA biomarkers identified by mass spectrometry-based proteomics. Int J Stroke 2015;10:1204-11.
- 239. Dolmans LS, Rutten FH, El Bartelink ML, et al. Serum biomarkers for the early diagnosis of TIA: The MIND-TIA study protocol. BMC Neurol 2015;15:119.
- 240. Amarenco P, Labreuche J, Lavallee PC. Patients with transient ischemic attack with ABCD2 <4 can have similar 90-day stroke risk as patients with transient ischemic attack with ABCD2 >/=4. Stroke 2012;43:863-5.
- 241. Moreno-Galindo C. Marcadores moleculares de respuesta a quimioterapia en los carcinomas epidermoides de laringe e hipofaringe [Tesis doctoral]. Oviedo: Universidad de Oviedo; 2015.
- 242. Meisel A, Meisel C, Harms H, Hartmann O, Ulm L. Predicting post-stroke infections and outcome with blood-based immune and stress markers. Cerebrovasc Dis 2012;33:580-8.
- 243. Vittos O, Toana B, Vittos A, Moldoveanu E. Lipoprotein-associated phospholipase A2 (Lp-PLA2): a review of its role and significance as a cardiovascular biomarker. Biomarkers 2012;17:289-302.
- 244. Caplan LR, Arenillas J, Cramer SC, et al. Stroke-related translational research. Arch Neurol 2011;68:1110-23.
- 245. Jickling GC, Sharp FR. Biomarker panels in ischemic stroke. Stroke 2015;46:915-20
- 246. Uchiyama S. The concept of acute cerebrovascular syndrome. Front Neurol Neurosci 2014;33:11-8.
- 247. Ng GJL, Quek AML, Cheung C, Arumugam TV, Seet RCS. Stroke biomarkers in clinical practice: A critical appraisal. Neurochem Int 2017;107:11-22.
- 248. Saenger AK, Christenson RH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem 2010;56:21-33.
- 249. Whiteley W, Tseng MC, Sandercock P. Blood biomarkers in the diagnosis of ischemic stroke: a systematic review. Stroke 2008;39:2902-9.
- 250. Jickling GC, Sharp FR. Blood biomarkers of ischemic stroke. Neurotherapeutics 2011;8:349-60.
- 251. Jensen MB, Chacon MR, Sattin JA, Aleu A, Lyden PD. The promise and potential pitfalls of serum biomarkers for ischemic stroke and transient ischemic attack. Neurologist 2008;14:243-6.
- 252. Gönüllü H, Karadaş S, Milanlioglu A, Gönüllü E, Katı C, Demir H. Levels of serum trace elements in ischemic stroke patients2014.
- 253. Klimenko LL, Skalny AV, Turna AA, et al. Serum Trace Element Profiles, Prolactin, and Cortisol in Transient Ischemic Attack Patients. Biol Trace Elem Res 2016;172:93-100.
- 254. von Recum J, Searle J, Slagman A, et al. Copeptin: Limited Usefulness in Early Stroke Differentiation? Stroke Res Treat 2015;2015:768401.
- 255. Tai W, Garcia M, Mlynash M, Kemp S, Albers GW, Olivot JM. Lipoprotein phospholipase A2 mass and activity are not associated with the diagnosis of acute brain ischemia. Cerebrovasc Dis 2014;38:324-7.
- 256. Martinic-Popovic I, Simundic AM, Dukic L, et al. The association of inflammatory markers with cerebral vasoreactivity and carotid atherosclerosis in transient ischaemic attack. Clin Biochem 2014;47:182-6.
- 257. Tu WJ, Liu XY, Dong H, Yu Y, Wang Y, Chen H. Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1: a meaningful and independent marker to predict stroke in the Chinese population. J Mol Neurosci 2014;52:507-14.

- 258. Weikert C, Drogan D, di Giuseppe R, et al. Liver enzymes and stroke risk in middle-aged German adults. Atherosclerosis 2013;228:508-14.
- 259. Weissman JD, Khunteev GA, Heath R, Dambinova SA. NR2 antibodies: risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J Neurol Sci 2011;300:97-102.
- 260. Bigalke B, Stellos K, Geisler T, et al. Expression of platelet glycoprotein VI is associated with transient ischemic attack and stroke. Eur J Neurol 2010;17:111-7.
- 261. de Lau LM, Cheung EY, Kluft C, et al. Strongly increased levels of fibrinogen elastase degradation products in patients with ischemic stroke. Br J Haematol 2008;143:734-7.
- 262. Valkonen VP, Paiva H, Salonen JT, et al. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 2001;358:2127-8.
- 263. Wanby P, Teerlink T, Brudin L, et al. Asymmetric dimethylarginine (ADMA) as a risk marker for stroke and TIA in a Swedish population. Atherosclerosis 2006;185:271-7
- 264. Foerch C, Curdt I, Yan B, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry 2006;77:181-4.
- 265. Reynolds MA, Kirchick HJ, Dahlen JR, et al. Early biomarkers of stroke. Clin Chem 2003;49:1733-9.
- 266. Kraft P, Drechsler C, Gunreben I, et al. Von Willebrand factor regulation in patients with acute and chronic cerebrovascular disease: a pilot, case-control study. PLoS One 2014;9:e99851.
- 267. Lynch JR, Blessing R, White WD, Grocott HP, Newman MF, Laskowitz DT. Novel diagnostic test for acute stroke. Stroke 2004;35:57-63.
- 268. Laskowitz DT, Blessing R, Floyd J, White WD, Lynch JR. Panel of biomarkers predicts stroke. Ann N Y Acad Sci 2005;1053:30.
- 269. Laskowitz DT, Kasner SE, Saver J, Remmel KS, Jauch EC, Group BS. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke 2009;40:77-85.
- 270. Kim MH, Kang SY, Kim MC, Lee WI. Plasma biomarkers in the diagnosis of acute ischemic stroke. Ann Clin Lab Sci 2010;40:336-41.
- 271. Whiteley W, Wardlaw J, Dennis M, et al. Blood biomarkers for the diagnosis of acute cerebrovascular diseases: a prospective cohort study. Cerebrovasc Dis 2011;32:141-7.
- 272. Bustamante A, Lopez-Cancio E, Pich S, et al. Blood Biomarkers for the Early Diagnosis of Stroke: The Stroke-Chip Study. Stroke 2017;48:2419-25.
- 273. Ning M, Lopez M, Cao J, Buonanno FS, Lo EH. Application of proteomics to cerebrovascular disease. Electrophoresis 2012;33:3582-97.
- 274. Zhang X, Guo T, Wang H, et al. Potential biomarkers of acute cerebral infarction detected by SELDI-TOF-MS. Am J Clin Pathol 2008;130:299-304.
- 275. Huang P, Lo LH, Chen YC, Lin RT, Shiea J, Liu CK. Serum free hemoglobin as a novel potential biomarker for acute ischemic stroke. J Neurol 2009;256:625-31.
- 276. Li J, Wang Y. Blood Biomarkers in Minor Stroke and Transient Ischemic Attack. Neurosci Bull 2016;32:463-8.
- 277. Adams HP, Jr., Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993;24:35-41.

- 278. Putaala J, Metso AJ, Metso TM, et al. Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: the Helsinki young stroke registry. Stroke 2009;40:1195-203.
- 279. Ward F, McGovern R, Cotter PE. Troponin-I is a predictor of a delayed diagnosis of atrial fibrillation in acute ischemic stroke and transient ischemic attack. J Stroke Cerebrovasc Dis 2015;24:66-72.
- 280. Montaner J, Perea-Gainza M, Delgado P, et al. Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke 2008;39:2280-7.
- 281. Okada Y, Shibazaki K, Kimura K, Iguchi Y, Miki T. Brain natriuretic peptide as a predictor of delayed atrial fibrillation after ischaemic stroke and transient ischaemic attack. Eur J Neurol 2010;17:326-31.
- 282. Okada Y, Shibazaki K, Kimura K, et al. Brain natriuretic peptide is a marker associated with thrombus in stroke patients with atrial fibrillation. J Neurol Sci 2011;301:86-9.
- 283. Cucchiara BL, Messe SR, Sansing L, et al. D-dimer, magnetic resonance imaging diffusion-weighted imaging, and ABCD2 score for transient ischemic attack risk stratification. J Stroke Cerebrovasc Dis 2009;18:367-73.
- 284. Llombart V, Antolin-Fontes A, Bustamante A, et al. B-type natriuretic peptides help in cardioembolic stroke diagnosis: pooled data meta-analysis. Stroke 2015;46:1187-95.
- 285. Purroy F, Suarez-Luis I, Mauri-Capdevila G, et al. N-terminal pro-brain natriuretic peptide level determined at different times identifies transient ischaemic attack patients with atrial fibrillation. Eur J Neurol 2014;21:679-83.
- 286. Bai M, Yang J, Li Y. Serum N-terminal-pro-brain natriuretic peptide level and its clinical implications in patients with atrial fibrillation. Clin Cardiol 2009;32:E1-5.
- 287. Jickling GC, Xu H, Stamova B, et al. Signatures of cardioembolic and large-vessel ischemic stroke. Ann Neurol 2010;68:681-92.
- 288. Delgado P, Chacon P, Penalba A, et al. Lipoprotein-associated phospholipase A(2) activity is associated with large-artery atherosclerotic etiology and recurrent stroke in TIA patients. Cerebrovasc Dis 2012;33:150-8.
- 289. Massot A, Pelegri D, Penalba A, et al. Lipoprotein-associated phospholipase A2 testing usefulness among patients with symptomatic intracranial atherosclerotic disease. Atherosclerosis 2011;218:181-7.
- 290. Degraba TJ, Hoehn GT, Nyquist PA, et al. Biomarker discovery in serum from patients with carotid atherosclerosis. Cerebrovasc Dis Extra 2011;1:115-29.
- 291. Purroy F, Suarez-Luis I, Cambray S, et al. The determination of copeptin levels helps management decisions among transient ischaemic attack patients. Acta Neurol Scand 2016;134:140-7.
- 292. De Marchis GM, Weck A, Audebert H, et al. Copeptin for the prediction of recurrent cerebrovascular events after transient ischemic attack: results from the CoRisk study. Stroke 2014;45:2918-23.
- 293. Cucchiara BL, Messe SR, Sansing L, et al. Lipoprotein-associated phospholipase A2 and C-reactive protein for risk-stratification of patients with TIA. Stroke 2009;40:2332-6.
- 294. Lin J, Zheng H, Cucchiara BL, et al. Association of Lp-PLA2-A and early recurrence of vascular events after TIA and minor stroke. Neurology 2015;85:1585-91.
- 295. Li J, Wang Y, Lin J, et al. Soluble CD40L Is a Useful Marker to Predict Future Strokes in Patients With Minor Stroke and Transient Ischemic Attack. Stroke 2015;46:1990-2.

- 296. Purroy F, Montaner J, Molina CA, et al. C-reactive protein predicts further ischemic events in transient ischemic attack patients. Acta Neurol Scand 2007;115:60-6. 297. Corso G, Bottacchi E, Brusa A, et al. Blood C-reactive protein concentration with ABCD(2) is a better prognostic tool than ABCD(2) alone. Cerebrovasc Dis 2011;32:97-105.
- 298. Arenillas JF, Alvarez-Sabin J, Molina CA, et al. C-reactive protein predicts further ischemic events in first-ever transient ischemic attack or stroke patients with intracranial large-artery occlusive disease. Stroke 2003;34:2463-8.
- 299. Papas TT, Maltezos CK, Papanas N, et al. High-sensitivity CRP is correlated with neurologic symptoms and plaque instability in patients with severe stenosis of the carotid bifurcation. Vasc Endovascular Surg 2008;42:249-55.
- 300. Rost NS, Wolf PA, Kase CS, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: the Framingham study. Stroke 2001;32:2575-9.
- 301. Shenhar-Tsarfaty S, Ben Assayag E, Bova I, et al. Interleukin-6 as an early predictor for one-year survival following an ischaemic stroke/transient ischaemic attack. Int J Stroke 2010;5:16-20.
- 302. Whiteley W, Jackson C, Lewis S, et al. Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6. PLoS Med 2009;6:e1000145.
- 303. Gronberg C, Bengtsson E, Fredrikson GN, et al. Human Carotid Plaques With High Levels of Interleukin-16 Are Associated With Reduced Risk for Cardiovascular Events. Stroke 2015;46:2748-54.
- 304. Doehner W, von Haehling S, Suhr J, et al. Elevated plasma levels of neuropeptide proenkephalin a predict mortality and functional outcome in ischemic stroke. J Am Coll Cardiol 2012;60:346-54.
- 305. Chamorro A, Amaro S, Vargas M, et al. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci 2007;252:29-35.
- 306. Mullen MT, Messe SR, Kasner SE, et al. Anti-Phosphatidylserine-Prothrombin Antibodies are Associated with Outcome in a TIA Cohort. Front Neurol 2012;3:137.
- 307. Koton S, Howard SC, Warlow CP, Murphy MF, Rothwell PM. Serum urate predicts long-term risk of acute coronary events in women after a transient ischaemic attack and stroke. Cerebrovasc Dis 2008;26:517-24.
- 308. Bos MJ, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke 2006;37:1503-7
- 309. Chamorro A, Obach V, Cervera A, Revilla M, Deulofeu R, Aponte JH. Prognostic significance of uric acid serum concentration in patients with acute ischemic stroke. Stroke 2002;33:1048-52.
- 310. Bhatia M, Howard SC, Clark TG, et al. Apolipoproteins as predictors of ischaemic stroke in patients with a previous transient ischaemic attack. Cerebrovasc Dis 2006;21:323-8.
- 311. Chowdhury R, Stevens S, Gorman D, et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ 2012;345:e6698.
- 312. Pan A, Chen M, Chowdhury R, et al. alpha-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 2012;96:1262-73.
- 313. Cote R, Wolfson C, Solymoss S, et al. Hemostatic markers in patients at risk of cerebral ischemia. Stroke 2000;31:1856-62.

- 314. Brouns R, Wauters A, De Surgeloose D, Marien P, De Deyn PP. Biochemical markers for blood-brain barrier dysfunction in acute ischemic stroke correlate with evolution and outcome. Eur Neurol 2011;65:23-31.
- 315. Worthmann H, Kempf T, Widera C, et al. Growth differentiation factor 15 plasma levels and outcome after ischemic stroke. Cerebrovasc Dis 2011;32:72-8.
- 316. Campbell DJ, Woodward M, Chalmers JP, et al. Soluble vascular cell adhesion molecule 1 and N-terminal pro-B-type natriuretic peptide in predicting ischemic stroke in patients with cerebrovascular disease. Arch Neurol 2006;63:60-5.
- 317. Welsh P, Lowe GD, Chalmers J, et al. Associations of proinflammatory cytokines with the risk of recurrent stroke. Stroke 2008;39:2226-30.
- 318. Whiteley W, Wardlaw J, Dennis M, et al. The use of blood biomarkers to predict poor outcome after acute transient ischemic attack or ischemic stroke. Stroke 2012;43:86-91.
- 319. Hermus L, Schuitemaker JH, Tio RA, et al. Novel serum biomarkers in carotid artery stenosis: useful to identify the vulnerable plaque? Clin Biochem 2011;44:1292-8.
- 320. Selvarajah JR, Smith CJ, Hulme S, et al. Does inflammation predispose to recurrent vascular events after recent transient ischaemic attack and minor stroke? The North West of England transient ischaemic attack and minor stroke (NORTHSTAR) study. Int J Stroke 2011;6:187-94.
- 321. Segal HC, Burgess AI, Poole DL, Mehta Z, Silver LE, Rothwell PM. Population-based study of blood biomarkers in prediction of subacute recurrent stroke. Stroke 2014;45:2912-7.
- 322. Greisenegger S, Segal HC, Burgess AI, Poole DL, Mehta Z, Rothwell PM. Biomarkers and mortality after transient ischemic attack and minor ischemic stroke: population-based study. Stroke 2015;46:659-66.
- 323. Whiteley W, Chong WL, Sengupta A, Sandercock P. Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke 2009;40:e380-9.
- 324. Foerch C, Montaner J, Furie KL, Ning MM, Lo EH. Invited article: searching for oracles? Blood biomarkers in acute stroke. Neurology 2009;73:393-9.
- 325. Castillo J, Rodriguez I. Biochemical changes and inflammatory response as markers for brain ischaemia: molecular markers of diagnostic utility and prognosis in human clinical practice. Cerebrovasc Dis 2004;17 Suppl 1:7-18.
- 326. Wong DT, George K, Wilson J, et al. Effectiveness of serial increases in aminoterminal pro-B-type natriuretic peptide levels to indicate the need for mechanical circulatory support in children with acute decompensated heart failure. Am J Cardiol 2011;107:573-8.
- 327. Shalhoub J, Sikkel MB, Davies KJ, Vorkas PA, Want EJ, Davies AH. Systems biology of human atherosclerosis. Vasc Endovascular Surg 2014;48:5-17.
- 328. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation 2012;126:1110-20.
- 329. Mauri-Capdevila G, Jove M, Suarez-Luis I, Portero-Otin M, Purroy F. [Metabolomics in ischaemic stroke, new diagnostic and prognostic biomarkers]. Rev Neurol 2013;57:29-36.
- 330. Lindon JC, Holmes E, Nicholson JK. So what's the deal with metabonomics? Anal Chem 2003;75:384A-91A.
- 331. Riekeberg E, Powers R. New frontiers in metabolomics: from measurement to insight. F1000Res 2017;6:1148.

- 332. Jove M, Portero-Otin M, Naudi A, Ferrer I, Pamplona R. Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol 2014;73:640-57.
- 333. Izquierdo-García JL. Análisis metabolómico para la identificación de biomarcadores en enfermedades respiratorias [Tesis doctoral]. Madrid: Universidad Complutense de Madrid; 2011.
- 334. Dunn WB, Bailey NJ, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst 2005;130:606-25.
- 335. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999;29:1181-9.
- 336. Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: A review. J Pharm Biomed Anal 2016;130:141-68.
- 337. Issaq HJ, Abbott E, Veenstra TD. Utility of separation science in metabolomic studies. J Sep Sci 2008;31:1936-47.
- 338. Qureshi MI, Vorkas PA, Coupland AP, Jenkins IH, Holmes E, Davies AH. Lessons from Metabonomics on the Neurobiology of Stroke. Neuroscientist 2016:1073858416673327.
- 339. Rochfort S. Metabolomics reviewed: a new "omics" platform technology for systems biology and implications for natural products research. J Nat Prod 2005;68:1813-20.
- 340. Shah SH, Sun JL, Stevens RD, et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J 2012;163:844-50 e1.
- 341. Idle JR, Gonzalez FJ. Metabolomics. Cell Metab 2007;6:348-51.
- 342. Goonewardena SN, Prevette LE, Desai AA. Metabolomics and atherosclerosis. Curr Atheroscler Rep 2010;12:267-72.
- 343. Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol 2002;48:155-71.
- 344. Luque de Castro MD, Priego-Capote F. The analytical process to search for metabolomics biomarkers. J Pharm Biomed Anal 2018;147:341-9.
- 345. Schadt EE, Zhang B, Zhu J. Advances in systems biology are enhancing our understanding of disease and moving us closer to novel disease treatments. Genetica 2009;136:259-69.
- 346. Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res 2007;6:443-58.
- 347. Yin P, Xu G. Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications. J Chromatogr A 2014;1374:1-13.
- 348. Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 2008;8:617-33.
- 349. Iriondo-Frias G. Estudio metabolómico de los efectos relacionados con la escasez de agua durante el crecimiento de los cultivos de arroz (Oryza sativa japonica) [Trabajo fin de máster]. Barcelona: Universitat Politècnica de Catalunya; 2016.
- 350. Sana TR, Roark JC, Li X, Waddell K, Fischer SM. Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF-MS. J Biomol Tech 2008;19:258-66.
- 351. Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006;34:D354-7.

- 352. Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0--The Human Metabolome Database in 2013. Nucleic Acids Res 2013;41:D801-7.
- 353. Wishart DS. Advances in metabolite identification. Bioanalysis 2011;3:1769-82.
- 354. Stoop MP, Coulier L, Rosenling T, et al. Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol Cell Proteomics 2010;9:2063-75.
- 355. Jiang Z, Sun J, Liang Q, et al. A metabonomic approach applied to predict patients with cerebral infarction. Talanta 2011;84:298-304.
- 356. Jung JY, Lee HS, Kang DG, et al. 1H-NMR-based metabolomics study of cerebral infarction. Stroke 2011;42:1282-8.
- 357. Laborde CM, Mourino-Alvarez L, Akerstrom F, et al. Potential blood biomarkers for stroke. Expert Rev Proteomics 2012;9:437-49.
- 358. Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol 2008;52:117-23.
- 359. Yap IK, Brown IJ, Chan Q, et al. Metabolome-wide association study identifies multiple biomarkers that discriminate north and south Chinese populations at differing risks of cardiovascular disease: INTERMAP study. J Proteome Res 2010;9:6647-54.
- 360. Psychogios N, Hau DD, Peng J, et al. The human serum metabolome. PLoS One 2011;6:e16957.
- 361. Kirschenlohr HL, Griffin JL, Clarke SC, et al. Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nat Med 2006;12:705-10.
- 362. Teul J, Garcia A, Tunon J, et al. Targeted and non-targeted metabolic time trajectory in plasma of patients after acute coronary syndrome. J Pharm Biomed Anal 2011;56:343-51.
- 363. Serkova NJ, Reisdorph NA, Tissot van Patot MC. Metabolic markers of hypoxia: systems biology application in biomedicine. Toxicol Mech Methods 2008;18:81-95.
- 364. Yang M, Wang S, Hao F, Li Y, Tang H, Shi X. NMR analysis of the rat neurochemical changes induced by middle cerebral artery occlusion. Talanta 2012;88:136-44.
- 365. Koizumi S, Yamamoto S, Hayasaka T, et al. Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience 2010;168:219-25.
- 366. Cambray S, Portero-Otin M, Jove M, et al. Metabolomic Estimation of the Diagnosis and Onset Time of Permanent and Transient Cerebral Ischemia. Mol Neurobiol 2018;55:6193-200.
- 367. Kimberly WT, Wang Y, Pham L, Furie KL, Gerszten RE. Metabolite profiling identifies a branched chain amino acid signature in acute cardioembolic stroke. Stroke 2013;44:1389-95.
- 368. Lee Y, Khan A, Hong S, Jee SH, Park YH. A metabolomic study on high-risk stroke patients determines low levels of serum lysine metabolites: a retrospective cohort study. Mol Biosyst 2017;13:1109-20.
- 369. Liu P, Li R, Antonov AA, et al. Discovery of Metabolite Biomarkers for Acute Ischemic Stroke Progression. J Proteome Res 2017;16:773-9.
- 370. Saransaari P, Oja SS. Taurine and neural cell damage. Amino Acids 2000;19:509-26
- 371. Ghandforoush-Sattari M, Mashayekhi SO, Nemati M, Ayromlou H. Changes in plasma concentration of taurine in stroke. Neurosci Lett 2011;496:172-5.
- 372. Naccarato M, Pizzuti D, Petrosino S, et al. Possible Anandamide and Palmitoylethanolamide involvement in human stroke. Lipids Health Dis 2010;9:47.

- 373. Kelly PJ, Morrow JD, Ning M, et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke 2008;39:100-4.
- 374. Pilz S, Tomaschitz A, Meinitzer A, et al. Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 2011;42:1132-4.
- 375. Guercini F, Acciarresi M, Agnelli G, Paciaroni M. Cryptogenic stroke: time to determine aetiology. J Thromb Haemost 2008;6:549-54.
- 376. Mayr M, Yusuf S, Weir G, et al. Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am Coll Cardiol 2008;51:585-94.
- 377. Chen X, Liu L, Palacios G, et al. Plasma metabolomics reveals biomarkers of the atherosclerosis. J Sep Sci 2010;33:2776-83.
- 378. Teul J, Ruperez FJ, Garcia A, et al. Improving metabolite knowledge in stable atherosclerosis patients by association and correlation of GC-MS and 1H NMR fingerprints. J Proteome Res 2009;8:5580-9.
- 379. Gonzalo H, Brieva L, Tatzber F, et al. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 2012;123:622-34.
- 380. Sethi S, Brietzke E. Omics-Based Biomarkers: Application of Metabolomics in Neuropsychiatric Disorders. Int J Neuropsychopharmacol 2015;19:pyv096.
- 381. Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martinez-Gonzalez MA, Hu FB. Comprehensive Metabolomic Profiling and Incident Cardiovascular Disease: A Systematic Review. J Am Heart Assoc 2017;6.
- 382. Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 2017;13:269-84.
- 383. Tumas J, Kvederaviciute K, Petrulionis M, et al. Metabolomics in pancreatic cancer biomarkers research. Med Oncol 2016;33:133.
- 384. Lima AR, Bastos Mde L, Carvalho M, Guedes de Pinho P. Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies. Transl Oncol 2016;9:357-70.
- 385. Shi H, Li X, Zhang Q, Yang H, Zhang X. Discovery of urine biomarkers for bladder cancer via global metabolomics. Biomarkers 2016;21:578-88.
- 386. Hart CD, Tenori L, Luchinat C, Di Leo A. Metabolomics in Breast Cancer: Current Status and Perspectives. Adv Exp Med Biol 2016;882:217-34.
- 387. Allegra A, Innao V, Gerace D, Bianco O, Musolino C. The metabolomic signature of hematologic malignancies. Leuk Res 2016;49:22-35.
- 388. Posti JP, Dickens AM, Oresic M, Hyotylainen T, Tenovuo O. Metabolomics Profiling As a Diagnostic Tool in Severe Traumatic Brain Injury. Front Neurol 2017;8:398.
- 389. Tung CE, Olivot JM, Albers GW. Radiological examinations of transient ischemic attack. Front Neurol Neurosci 2014;33:115-22.
- 390. Pavlovic AM, Barras CD, Hand PJ, Tress BM, Desmond PM, Davis SM. Brain imaging in transient ischemic attack--redefining TIA. J Clin Neurosci 2010;17:1105-10.
- 391. Fung SH, Roccatagliata L, Gonzalez RG, Schaefer PW. MR diffusion imaging in ischemic stroke. Neuroimaging Clin N Am 2011;21:345-77, xi.
- 392. Merino JG, Warach S. Imaging of acute stroke. Nat Rev Neurol 2010;6:560-71.
- 393. Engelter ST, Wetzel SG, Bonati LH, Fluri F, Lyrer PA. The clinical significance of diffusion-weighted MR imaging in stroke and TIA patients. Swiss Med Wkly 2008;138:729-40.

- 394. Olivot JM, Albers GW. Diffusion-perfusion MRI for triaging transient ischemic attack and acute cerebrovascular syndromes. Curr Opin Neurol 2011;24:44-9.
- 395. Ay H, Oliveira-Filho J, Buonanno FS, et al. 'Footprints' of transient ischemic attacks: a diffusion-weighted MRI study. Cerebrovasc Dis 2002;14:177-86.
- 396. Souillard-Scemama R, Tisserand M, Calvet D, et al. An update on brain imaging in transient ischemic attack. J Neuroradiol 2015;42:3-11.
- 397. Purroy F, Begue R, Gil MI, et al. Patterns of diffusion-weighted magnetic resonance imaging associated with etiology improve the accuracy of prognosis after transient ischaemic attack. Eur J Neurol 2011;18:121-8.
- 398. Giles MF, Albers GW, Amarenco P, et al. Early stroke risk and ABCD2 score performance in tissue- vs time-defined TIA: a multicenter study. Neurology 2011;77:1222-8.
- 399. Rothwell PM, Giles MF, Flossmann E, et al. A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischaemic attack. Lancet 2005;366:29-36.
- 400. Wolf ME, Held VE, Hennerici MG. Risk scores for transient ischemic attack. Front Neurol Neurosci 2014;33:41-68.
- 401. Johnston SC, Rothwell PM, Nguyen-Huynh MN, et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet 2007;369:283-92.
- 402. Wardlaw JM, Brazzelli M, Chappell FM, et al. ABCD2 score and secondary stroke prevention: meta-analysis and effect per 1,000 patients triaged. Neurology 2015;85:373-80.
- 403. Purroy F, Jimenez Caballero PE, Gorospe A, et al. Prediction of early stroke recurrence in transient ischemic attack patients from the PROMAPA study: a comparison of prognostic risk scores. Cerebrovasc Dis 2012;33:182-9.
- 404. Purroy F, Begue R, Quilez A, et al. The California, ABCD, and unified ABCD2 risk scores and the presence of acute ischemic lesions on diffusion-weighted imaging in TIA patients. Stroke 2009;40:2229-32.
- 405. Giles MF, Albers GW, Amarenco P, et al. Addition of brain infarction to the ABCD2 Score (ABCD2I): a collaborative analysis of unpublished data on 4574 patients. Stroke 2010;41:1907-13.
- 406. Ay H, Arsava EM, Johnston SC, et al. Clinical- and imaging-based prediction of stroke risk after transient ischemic attack: the CIP model. Stroke 2009;40:181-6.
- 407. Merwick A, Albers GW, Amarenco P, et al. Addition of brain and carotid imaging to the ABCD(2) score to identify patients at early risk of stroke after transient ischaemic attack: a multicentre observational study. Lancet Neurol 2010;9:1060-9.
- 408. Kelly PJ, Albers GW, Chatzikonstantinou A, et al. Validation and comparison of imaging-based scores for prediction of early stroke risk after transient ischaemic attack: a pooled analysis of individual-patient data from cohort studies. Lancet Neurol 2016;15:1238-47.
- 409. Kiyohara T, Kamouchi M, Kumai Y, et al. ABCD3 and ABCD3-I scores are superior to ABCD2 score in the prediction of short- and long-term risks of stroke after transient ischemic attack. Stroke 2014;45:418-25.
- 410. Coutts SB, Sylaja PN, Choi YB, et al. The ASPIRE approach for TIA risk stratification. Can J Neurol Sci 2011;38:78-81.
- 411. Engelter ST, Amort M, Jax F, et al. Optimizing the risk estimation after a transient ischaemic attack the ABCDE plus sign in circle score. Eur J Neurol 2012;19:55-61.
- 412. Special report from the National Institute of Neurological Disorders and Stroke. Classification of cerebrovascular diseases III. Stroke 1990;21:637-76.

- 413. Valdueza JMS, S. J.; Roehl, J. E.; Klingebiel, R. Vascular pathology. Neurosonology and neuroimaging of stroke. Stuttgart: Thieme; 2008:76-109.
- 414. Bernaudin F, Verlhac S, Arnaud C, et al. Long-term treatment follow-up of children with sickle cell disease monitored with abnormal transcranial Doppler velocities. Blood 2016;127:1814-22.
- 415. Grant EG, Benson CB, Moneta GL, et al. Carotid artery stenosis: gray-scale and Doppler US diagnosis--Society of Radiologists in Ultrasound Consensus Conference. Radiology 2003;229:340-6.
- 416. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 2004;17:205-16.
- 417. Wikoff WR, Pendyala G, Siuzdak G, Fox HS. Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J Clin Invest 2008;118:2661-9.
- 418. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 2013;41:D793-800.
- 419. Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012;13:263-9.
- 420. Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 2013;9:280-99.
- 421. Pickering JW, Endre ZH. New metrics for assessing diagnostic potential of candidate biomarkers. Clin J Am Soc Nephrol 2012;7:1355-64.
- 422. Purroy F, Montaner J, Molina CA, Delgado P, Ribo M, Alvarez-Sabin J. Patterns and predictors of early risk of recurrence after transient ischemic attack with respect to etiologic subtypes. Stroke 2007;38:3225-9.
- 423. McKee TM, J. R. Lípidos y membranas. Bioquímica Las bases moleculares de la vida. 4ª Edición ed. Madrid: McGraw Hill; 2009:371-410.
- 424. Feduchi-Canosa EB-C, I.; Romero-Magdalena, C. S.; Yáñez-Conde, E. Lípidos. Bioquímica: Conceptos esenciales. 1ª Edición ed. Madrid: Editorial Médica Panamericana; 2010:41-56.
- 425. Torres García J, Durán Agüero S. Fosfolípidos: propiedades y efectos sobre la salud. Nutrición Hospitalaria 2015;31:76-83.
- 426. Voet D.; Voet JGP, C. W. Lípidos y membranas biológicas. Fundamentos de bioquímica La vida a nivel molecular. 2ª Edición ed. Madrid: Editorial Médica Panamericana; 2007:233-83.
- 427. Drzazga A, Sowinska A, Koziolkiewicz M. Lysophosphatidylcholine and lysophosphatidylinosiol--novel promissing signaling molecules and their possible therapeutic activity. Acta Pol Pharm 2014;71:887-99.
- 428. Jickling GC, Montaner J. Lysophosphatidylcholine to stratify risk of ischemic stroke in TIA. Neurology 2015;84:17-8.
- 429. Mannheim D, Herrmann J, Versari D, et al. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke 2008;39:1448-55.
- 430. Shanta SR, Choi CS, Lee JH, et al. Global changes in phospholipids identified by MALDI MS in rats with focal cerebral ischemia. J Lipid Res 2012;53:1823-31.
- 431. Zhang Z, Lee YC, Kim SJ, et al. Production of lysophosphatidylcholine by cPLA2 in the brain of mice lacking PPT1 is a signal for phagocyte infiltration. Hum Mol Genet 2007;16:837-47.
- 432. Hung ND, Kim MR, Sok DE. Anti-inflammatory action of arachidonoyl lysophosphatidylcholine or 15-hydroperoxy derivative in zymosan A-induced peritonitis. Prostaglandins Other Lipid Mediat 2009;90:105-11.

- 433. Goncalves I, Edsfeldt A, Ko NY, et al. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol 2012;32:1505-12.
- 434. Cunningham TJ, Yao L, Lucena A. Product inhibition of secreted phospholipase A2 may explain lysophosphatidylcholines' unexpected therapeutic properties. J Inflamm (Lond) 2008;5:17.
- 435. Pinto F, Brenner T, Dan P, Krimsky M, Yedgar S. Extracellular phospholipase A2 inhibitors suppress central nervous system inflammation. Glia 2003;44:275-82.
- 436. Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux C. A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 2002;22:821-34.
- 437. Heurteaux C, Guy N, Laigle C, et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 2004;23:2684-95.
- 438. Rao SP, Riederer M, Lechleitner M, et al. Acyl chain-dependent effect of lysophosphatidylcholine on endothelium-dependent vasorelaxation. PLoS One 2013;8:e65155.
- 439. Bir SC, Shen X, Kavanagh TJ, Kevil CG, Pattillo CB. Control of angiogenesis dictated by picomolar superoxide levels. Free Radic Biol Med 2013;63:135-42.
- 440. Liu YT, Jia HM, Chang X, Ding G, Zhang HW, Zou ZM. The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics. Mol Biosyst 2013;9:2823-34.
- 441. Hung ND, Kim MR, Sok DE. Mechanisms for anti-inflammatory effects of 1-[15(S)-hydroxyeicosapentaenoyl] lysophosphatidylcholine, administered intraperitoneally, in zymosan A-induced peritonitis. Br J Pharmacol 2011;162:1119-35.
- 442. Sugasini D, Subbaiah PV. Rate of acyl migration in lysophosphatidylcholine (LPC) is dependent upon the nature of the acyl group. Greater stability of sn-2 docosahexaenoyl LPC compared to the more saturated LPC species. PLoS One 2017;12:e0187826.
- 443. Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 2017;7:11263.
- 444. Boivin A, Burban M, Clere-Jehl R, et al. Docosahexaenoic acid, but not eicosapentaenoic acid, improves septic shock-induced arterial dysfunction in rats. PLoS One 2017;12:e0189658.
- 445. Rask-Andersen M, Masuram S, Fredriksson R, Schioth HB. Solute carriers as drug targets: current use, clinical trials and prospective. Mol Aspects Med 2013;34:702-10.
- 446. Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 2011;42:3323-8.
- 447. Liu HS, Chung HW, Chou MC, et al. Effects of microvascular permeability changes on contrast-enhanced T1 and pharmacokinetic MR imagings after ischemia. Stroke 2013;44:1872-7.
- 448. Vingara LK, Yu HJ, Wagshul ME, et al. Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage 2013;82:586-94.
- 449. Lista S, O'Bryant SE, Blennow K, et al. Biomarkers in Sporadic and Familial Alzheimer's Disease. J Alzheimers Dis 2015;47:291-317.
- 450. Ren Z, Yang N, Ji C, et al. Neuroprotective effects of 5-(4-hydroxy-3-dimethoxybenzylidene)-thiazolidinone in MPTP induced Parkinsonism model in mice. Neuropharmacology 2015;93:209-18.

- 451. Bivard A, Krishnamurthy V, Stanwell P, et al. Spectroscopy of reperfused tissue after stroke reveals heightened metabolism in patients with good clinical outcomes. J Cereb Blood Flow Metab 2014;34:1944-50.
- 452. Webb AJ, Pendlebury ST, Li L, et al. Validation of the Montreal cognitive assessment versus mini-mental state examination against hypertension and hypertensive arteriopathy after transient ischemic attack or minor stroke. Stroke 2014;45:3337-42.
- 453. Liu B, Lau KK, Li L, et al. Age-Specific Associations of Renal Impairment With Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Transient Ischemic Attack and Stroke. Stroke 2018;49:899-904.
- 454. Srikrishna G, Toomre DK, Manzi A, et al. A novel anionic modification of N-glycans on mammalian endothelial cells is recognized by activated neutrophils and modulates acute inflammatory responses. J Immunol 2001;166:624-32.
- 455. Amantea D, Micieli G, Tassorelli C, et al. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 2015;9:147.
- 456. Klimova N, Long A, Kristian T. Significance of Mitochondrial Protein Post-translational Modifications in Pathophysiology of Brain Injury. Transl Stroke Res 2018;9:223-37.
- 457. Wang C, Zhang J, Tang J, et al. Lysophosphatidic acid induces neuronal cell death via activation of asparagine endopeptidase in cerebral ischemia-reperfusion injury. Exp Neurol 2018;306:1-9.
- 458. Halder SK, Yano R, Chun J, Ueda H. Involvement of LPA1 receptor signaling in cerebral ischemia-induced neuropathic pain. Neuroscience 2013;235:10-5.
- 459. Li ZG, Yu ZC, Wang DZ, et al. Influence of acetylsalicylate on plasma lysophosphatidic acid level in patients with ischemic cerebral vascular diseases. Neurol Res 2008;30:366-9.
- 460. Haseruck N, Erl W, Pandey D, et al. The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte aggregate formation in whole blood: involvement of P2Y1 and P2Y12 receptors. Blood 2004;103:2585-92.
- 461. Zhou Z, Li X, Yang B, Jiang D. Relationship between lysophosphatidic acid and matrix metalloproteinase-9 plasma concentrations and carotid atheromatous plaque stability in patients with cerebral infarction. J Int Med Res 2014;42:669-76.
- 462. Ren B, Hale J, Srikanthan S, Silverstein RL. Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent signaling pathway. Blood 2011;117:6036-45.
- 463. Liu X, Hou J, Shi L, et al. Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev 2009;18:947-54.
- 464. Fernstrom JD. Branched-chain amino acids and brain function. J Nutr 2005;135:1539S-46S.
- 465. Wang D, Kong J, Wu J, Wang X, Lai M. GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci Lett 2017;642:7-13.
- 466. Meissner A. Hypertension and the Brain: A Risk Factor for More Than Heart Disease. Cerebrovasc Dis 2016;42:255-62.
- 467. Hawkins RA, Vina JR. How Glutamate Is Managed by the Blood-Brain Barrier. Biology (Basel) 2016;5.
- 468. Qu Y, Liu Y, Zhu Y, Chen L, Sun W, Zhu Y. Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways. Mol Cells 2017;40:837-46.
- 469. Krug S, Kastenmuller G, Stuckler F, et al. The dynamic range of the human metabolome revealed by challenges. FASEB J 2012;26:2607-19.

- 470. Enea C, Seguin F, Petitpas-Mulliez J, et al. (1)H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal Bioanal Chem 2010;396:1167-76.
- 471. Park Y, Kim SB, Wang B, et al. Individual variation in macronutrient regulation measured by proton magnetic resonance spectroscopy of human plasma. Am J Physiol Regul Integr Comp Physiol 2009;297:R202-9.
- 472. Shi H, Paolucci U, Vigneau-Callahan KE, Milbury PE, Matson WR, Kristal BS. Development of biomarkers based on diet-dependent metabolic serotypes: practical issues in development of expert system-based classification models in metabolomic studies. OMICS 2004;8:197-208.
- 473. Vaniya A, Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt Chem 2015;69:52-61.

9. Anexos

9. Anexos 9.1. Índice de tablas

9.1. Índice de tablas

Tabla 1. Incidencia del AIT (por 1.000 habitantes)	2
Tabla 2. Prevalencia del AIT (por 100 habitantes)	3
Tabla 3. Factores de riesgo	3
Tabla 4. Biomarcadores relacionados con la isquemia cerebral	9
Tabla 5. Metabolitos relacionados con el ictus isquémico	10
Tabla 6. Escalas de predicción del riesgo en forma de ictus isquémico tras un AIT	11
Tabla 7. Características clínicas, tratamiento y recurrencias	13
Tabla 8. Variables asociadas a recurrencia en forma de ictus isquémico en ambas cohortes de pacientes	13
Tabla 9. Metabolitos diferenciales entre los grupos RI y No RI	14
Tabla 10. Metabolitos diferenciales en relación al patrón temporal de la RI	14
Tabla 11. Metabolitos diferenciales (p<0,05) identificados entre AGV y no AGV .	15
Tabla 12. Precisión predictiva de la variables clínicas y de los biomarcadores del estudio metabolómico para las RI a los 7 días, a los 90 días, al primer año de seguimiento, y durante todo el seguimiento	15
Tabla 13. Modelo de regresión de riesgos proporcionales de cox para evaluar el RI	15
Tabla 14. Factores de riesgo, características clínicas y neuroimagen	16
Tabla 15. Factores de riesgo y características clínicas en función de los patrones de difusión	16
Tabla 16. Características clínicas en función de la difusión	16
Tabla 17. Metabolitos comunes en las dos cohortes que permiten diferenciar entre los pacientes con difusión positiva y difusión negativa	16
Tabla 18. Metabolitos que se correlacionan con el volumen de la lesión isquémica aguda	16
Tabla 19. Metabolitos que determinan los patrones de difusión	17
Tabla 20. Biomarcadores relacionados con el contexto clínico	18

9.2. Índice de figuras

Figura 1. Cascada de los eventos tras el fracaso energético	52
Figura 2. Marcadores moleculares de la inflamación durante la fase aguda de isquemia	57
Figura 3. Representación esquemática de la metodología de la metabolómica	100
Figura 4. Sujetos del estudio	124
Figura 5. Análisis metabolómico	132
Figura 6. Diagrama de representación de las características moleculares de la primera cohorte	141
Figura 7. Gráfico tridimensional del PLS-DA que demuestra que la RI determina un metaboloma plasmático	142
Figura 8. Gráfico tridimensional del PLS-DA que demuestra que el patrón temporal de la RI determina un metaboloma plasmático	145
Figura 9. Gráfico tridemensional PLS-DA que muestra las diferencias entre los pacientes en cuanto a la AGV	149
Figura 10. Diagrama de representación de las caracterísitcas moleculares de la segunda cohorte	151
Figura 11. Gráficos tridimensionales del PLS-DA de la segunda cohorte	150
Figura 12. Vías comunes en las dos cohortes afecatdas por el patrón temporal de RI	152
Figura 13. Lisofosfatidilcolina (16:0) y lisofosfatidilcolina (22:6) en las dos cohortes	152
Figura 14. Lisofosfatidilcolina (20:4)	156
Figura 15. Compuesto no identificado	158
Figura 16. Diagrama de representación de los perfiles metabolómicos relacionados con DF positiva	163
Figura 17. Modelo gráfico de PLS-DA que ilustra las diferencias en cuanto a la difusión	163
Figura 18. Moléculas identificadas por técnicas de metabolómica que contribuyen a distinguir las muestras en función de la difusión	164

Figura 19. Modelo gráfico de PLS-DA que ilustra las diferencias en cuanto a los patrones de la difusión en la primera cohorte (A) y en la segunda (B)	170
Figura 20. Fosfatidilcolina	176
Figura 21. Formación de lisofosfolípidos	177

9.3. Tablas suplementarias

Tabla suplementaria 1. Metabolitos diferenciales (p<0,05) entre los grupos RI y no RI de la primera cohorte.

Mass	Retention Time	p-value	regulation (SR vs. Non SR)	Fold change
232.9766		0.03876901	,	16.387247
650.0031	0.31	0.02316765	down	-4.102207
517.9501	0.31	0.02725453	down	-4.0903864
785.9577	0.33	0.02723433	up	14.493217
388.038		0.04192693	down	-10.610966
202.0511	0.38	0.04756955	down	-4.754436
345.0026		0.03053171	up	11.514822
136.0386	0.79 5.95	0.02399175	down	-4.094576 1.7543603
218.1677		0.02729409	*****	-1.7543602
248.106		0.03434657	down	-4.509111
216.1159		0.03447417	down	-10.267317
367.2147	7.51	0.010839	down	-20.965994
200.1749	8.17	0.0135133	up	19.3356
315.3133	9.07	0.04987197	up	5.6812353
278.1554		0.0019285	down	-22.986109
274.2174		0.00245747	down	-4.067033
240.1922	9.87	0.01999647	up	10.772711
467.3022	9.99	0.00139325	down	-32.96528
270.2194		0.03514279	down	-9.305706
493.3177	10.31	0.02421998	down	-13.910165
517.3173	10.30	0.03131267	down	-7.922801
541.3176		2.55E-04	down	-11.650691
292.2014		0.0178858	up	11.391153
302.2279	10.82	0.02701304	down	-15.059594
761.9747	10.91	0.03486734	down	-11.8167925
495.3345	10.93	0.03634827	down	-1.6489536
458.2452	10.91	0.03715977	down	-10.842161
430.3084	10.94	0.03776617	up	10.872579
329.2719	11.07	0.01703978	down	-8.139353
330.2778	11.35	0.00796523	down	-2.2734299
345.2669	11.43	0.01566532	down	-20.809391
500.367	11.54	0.03752512	down	-10.214314
362.2467	11.68	0.01291994	down	-9.919054
616.4511	11.97	0.00506217	down	-23.343895
699.5458	11.99	0.01462784	down	-14.217725
270.2504		0.01038687	up	14.516107
420.3183	12.46	0.03253291	down	-10.1142025
548.4274		0.04796289	down	-5.823688
1221.843	13.28	0.00952938	down	-14.611949
683.1942	13.36	0.021716	down	-1.766414
881.5139		0.04221213	up	8.05458
614.4892		0.04577104	up	4.431304
707.5053	13.42	0.03145449	down	-1.6401191
635.5476		0.02171745	up	11.622121
817.5481	13.46	0.0262681		14.01759
1200.8251	13.49	0.01156363	up	16.610552
811.0445		0.00626077	up	15.814758
1158.8385		0.00327227	up	10.196046
637.5691			up	
793.0605	13.55 13.55	0.02331175 0.00495009	up	11.988791 20.013979
		0.03221164	up	
841.0477 1187.3604			up	7.7984643
		0.02899865	up	11.280402
820.6178		0.03352851	up	10.222881
799.6314		0.03786054	up	9.252918
649.6332		0.02592278	up	11.048938
813.6643		0.04196644	up	13.079204
727.6517		1.48E-06	down	-51.683243
852.7166		0.04079213	down	-9.0147085
	0.29	0.01928711	down	-9.996094
571.9378 863.4838		0.03125126	down	-7.2069836

1108.989	0.34	0.04477991	up	9.555175
1006.028	0.34	0.03184672	down	-6.826359
414.2059	8.65	0.00915143	up	38.127636
278.1645	9.63	0.03959313	up	41.165047
436.1557	9.70	0.03335054	down	-6.78488
390.2782	12.24	0.03557742	down	-11.558917
444.3612	12.59	0.04518352	up	8.146555
568.3786	12.87	0.0039952	up	25.127165
1228.7994	13.45	0.0433569	up	7.551775
765.5688	13.48	0.02576385	down	-11.507402
906.7645	15.50	0.0210844	down	-7.8327174
545.3461	11.54	0.02918642	up	10.625042
818.0341	13.46	0.01205172	up	17.89577
1228.3535	13.62	0.00709312	up	15.514032
309.2048	9.65	0.01016424	up	12.284917
205.083	9.88	0.03267171	up	9.009867
804.0747	13.63	0.00315082	up	29.831608
795.061	13.64	0.04859669	up	8.4176035
145.967	14.06	0.02446526	up	12.746043
844.5306	13.45	0.01356027	up	10.033227
368.2131	7.52	0.00882898	up	14.19308
455.3758	12.40	0.04331416	up	9.398497

Tabla Suplementaria 2. Vías de integración de los cambios metabolómicos asociados a RI.

Vía	р	Vía	р
Transporte de los ácidos grasos	0,002	Receptores similares a Rodopsina (Clase A/1)	0,019
Regulación de la secreción de insulina por ácidos grasos unidos a GPR40	0,002	Señalización desreguladora de GPCR	0,027
Regulación de la secreción de insulina por ácidos grasos libres	0,002	Funcionalización de compuestos (Fase 1)	0,029
Biosíntesis de ácidos grasos	0,004	Ligando GPCR	0,02
Regulación de la secreción de insulina	0,005	Citocromo P450	0,030
Receptores de ácidos grasos libres	0,006	Señalización mediante GPCR	0,033
Integración del metabolismo energético	0,008	Funcionalización de compuestos (Fase 1)	0,040
Señalización G-alfa	0,012	Señal de transducción	0,043
Vía de señalización Gastrina-CREB a través de PKC y MAPK	0,012	Transporte mediado transmembrana SLC	0,045
Moléculas relacionadas con el transporte de vitaminas, nucleósidos	0,017		

Tabla suplementaria 3. Metabolitos diferenciales (p<0,05) según el patrón de recurrencia.

Mass	Retention Time	p-value	Fold change ([1 year] vs [90 days])	Regulation ([1 year] vs [90 days])	Fold change ([1year] vs [>1 year])	Regulation ([1year] vs [>1 year])	Fold change ([90 days] vs [>1year])	Regulation ([90 days] vs [>1year])
213.9809	0.1	0.03332996	9.24154	up	-82.196434	down	-759.6218	down
132.0919	0.3	0.00334169	1354.7067	up	111.582146	up	-12.14089	down
574.0186	0.3	0.02776064	485.0714	up	1113.5663	up	2.2956758	up
787.9711	0.3	0.02318486	326.49127	up	78.10464	up	-4.1801786	down
997.9991	0.3	0.04615991	65.44354	up	-4.795181	down	-313.8136	down
974.996	0.3	0.00590392	2021.4215	up	33.148502	up	-60.980774	down
1079.4844	0.3	0.00448788	1.020888	up	169.48442	up	166.01665	up
1221.986	0.3	0.00491217	178.66957	up	1765.9597	up	9.883943	up
1170.0132	0.3	0.01818556	353.44934	up	93.2376	up	-3.7908452	down
971.9628	0.3	0.04442497	525.79956	up	26.672617	up	-19.713085	down
559.0224	0.4	0.04348179	150.47552	up	373.31177	up	2.4808803	up
461.0361	0.4	0.01884867	765.2596	up	164.1481	up	-4.662007	down
534.0359	0.4	0.04803567	4.5735655	up	472.05264	up	103.213264	up
699.0011	0.4	0.00144605	168.76076	up	168.76076	up	-1	down
208.0834	0.9	0.00208194	797.5383	up	1.4723796	up	-541.6664	down
164.1036	1.6	0.01270285	15.3948	up	-64.351425	down	-990.67737	down
200.0803	1.9	0.04628162	1.9290838	up	-79.03786	down	-152.47067	down
187.0638	2.0	0.0266615	397.02505	up	84.19214	up	-4.715701	down
184.1217	2.4	0.03469322	901.95685	up	598.90564	up	-1.5060083	down
162.1255	4.6	0.04196656	-2.2335439	down	219.7946	up	490.92108	up
431.274	4.7	0.04899789	-2.594648	down	-329.05685	down	-126.82135	down
399.2378	5.2	0.03131305	1.2159919	up	-245.16394	down	-298.11725	down
484.3261	5.7	0.02956034	1.371322	up	-215.1128	down	-294.989	down
322.2246	6.0	0.0132671	13.607079	up	-61.743504	down	-840.14844	down
452.3385	6.1	0.04949943	119.01716	up	-6.155574	down	-732.6189	down
313.2262	6.5	0.02158584	242.07153	up	1.2463279	up	-194.2278	down
308.2211	6.5	1.46E-04	421.99686	up	-9.528265	down	-4020.895	down
248.1059	6.6	0.037517	1.8533356	up	135.11156	up	72.90182	up
190.1563	6.8	0.00993051	77.18214	up	-8.553854	down	-660.2048	down
222.1255	6.8	0.02142375	272.07834	up	1.4512143	up	-187.48323	down
594.3421	6.9	0.02459907	850.6579	up	637.59766	up	-1.3341613	down
238.1227	6.9	0.02450282	1.2263719	up	80.50918	up	65.64826	up
238.1233	7.0	0.02793613	10.644054	up	-53.595432	down	-570.47284	down
681.7631	7.5	0.02481206	69.24156	up	219.03212	up	3.1633043	up
226.169	7.5	0.03017694	1.0325385	up	1.164475	up	1.1277786	up
680.2953	7.5	0.02020324	422.83875	up	101.7008	up	-4.157675	down
776.4711	7.5	0.00791775	1.0268807	up	1.2102461	up	1.1785654	up
227.2619	7.7	0.0361894	605.7071	up	2538.0747	up	4.190266	up
218.1661	7.7	0.01863636	113.92712	up	-1.221487	down	-139.16049	down
446.1227	8.1	0.02529931	-1.0239655	down	70.19218	up	71.87435	up
194.0958	8.1	0.0240628	-3.3793838	down	-3.7467482	down	-1.1087074	down
278.0878	8.1	0.047905	1.1701391	up	-1.4694029	down	-1.7194058	down
287.2827	8.2	0.00392297	-1.1991619	down	2.1036916	up	2.5226667	up

390.213	8.2	0.00815569	29.102226	up	-41.742146	down	-1214.7894	down
471.8123	8.4	0.03126109	-7.893057	down	49.363228	up	389.6269	up
238.1555	8.4	0.03537344	1.1758348	up	-1.184651	down	-1.3929538	down
487.2862	8.6	0.00121057	11.834017	up	4771.4214	up	403.1954	up
475.2389	8.6	0.01902893	4.4841676	up	810.83057	up	180.82076	up
489.2437	8.5	0.00482663	6.52057	up	2101.1152	up	322.2288	up
618.2786	8.6	0.04568508	28.81725	up	227.11049	up	7.88106	up
118.0771	8.6	0.01567665	17.77181	up	5273.75	up	296.74805	up
590.284	8.6	0.04878197	14.747359	up	710.3524	up	48.16809	up
512.1738	8.5	0.00996412	24.346851	up	5158.4834	up	211.87476	up
414.2059	8.7	0.00571235	4.6110954	up	1265.2805	up	274.3991	up
414.2059	8.8	0.01942122	19.817753	up	1459.3337	up	73.63772	up
445.1371	8.9	0.00438993	-1.0534041	down	1.3523881	up	1.4246113	up
428.111	8.9	0.01521916	1.0193195	up	1.4027773	up	1.37619	up
427.8858	8.9	0.01392951	-1.0702027	down	1.0371677	up	1.1099796	up
414.206	9.0	0.03904094	6.0420823	up	500.4215	up	82.82271	up
160.0883	9.1	0.04753784	69.48752	up	-1.2900575	down	-89.6429	down
294.1857	9.4	0.02180543	1.5827209	up	-1.1359705	down	-1.7979242	down
348.0494	9.4	0.02295641	1152.4934	up	64.12957	up	-17.971333	down
326.0719	9.4	0.02202035	-1.1636993	down	-1.0179154	down	1.1432182	up
234.1619	9.4	0.02994488	1.2669412	up	-1.0461748	down	-1.3254418	down
148.0261	9.7	0.01868254	35.638084	up	23174.457	up	650.2723	up
376.1299	9.7	0.02313716	3.5798233	up	1049.1224	up	293.0654	up
278.1651	9.7	0.03395	7.3115535	up	6630.375	up	906.83514	up
56.0711	9.7	3.99E-05	20.513237	up	220029.78	up	10726.227	up
222.097	9.7	0.01415146	749.64764	up	189.48264	up	-3.9562867	down
232.1924	9.7	2.74E-04	4.6462364	up	5670.028	up	1220.3485	up
334.1178	9.7	0.00660495	217.38264	up	2856.6323	up	13.141033	up
204.0811	9.7	4.37E-04	1.0007697	up	3.6628816	up	3.6600642	up
314.1907	9.8	0.0117658	39.264683	up	1168.7736	up	29.766535	up
204.08	9.8	0.02599135	14.678727	up	-591.7833	down	-8686.621	down
546.3533	11.1	0.0457237	117.84107	up	-1.6741825	down	-197.28748	down
479.3374	11.3	0.04170303	41.84067	up	-6.2362814	down	-260.9302	down
523.3644	11.4	0.03990023	12.399241	up	1135.0975	up	91.54574	up
330.2775	11.5	0.04731044	540.9529	up	387.9943	up	-1.3942288	down
550.4275	11.6	0.04919672	3.8985338	up	376.26465	up	96.514404	up
256.2417	11.6	0.01072852	18.47755	up	3086.069	up	167.01721	up
364.2513	11.8	0.008413	126.97893	up	1511.6923	up	11.905065	up
376.2662	12.0	0.00139897	160.88786	up	160.88786	up	-1	down
560.4039	12.1	0.01143664	42.057007	up	1312.4047	up	31.205376	up
606.4865	12.1	0.02238281	-36.204693	down	5.7754807	up	209.09952	up
298.2786	12.1	0.02263157	8.11312	up	741.8691	up	91.44066	up
455.3768	12.4	0.0030416	756.61896	up	-1.1650757	down	-881.5184	down
518.3965	12.4	0.01545452	129.21211	up	377.47565	up	2.921364	up
618.4821	12.5	0.0128065	19.851377	up	1761.796	up	88.749306	up
598.4546	12.8	0.04209208	181.60313	up	4.4752083	up	-40.57982	down

568.3786	12.9	0.01160803	143.2855	up	1.0411661	up	-137.62021	down
676.5412	12.9	0.04865479	2.611027	up	178.2678	up	68.27498	up
369.2511	12.9	0.04722347	9.467358	up	1559.7526	up	164.7505	up
780.4931	13.0	0.0014597	296.10043	up	296.10043	up	-1	down
482.3719	13.0	5.54E-04	111.56212	up	15102.419	up	135.37228	up
430.3797	13.0	0.01792313	966.00696	up	3705.8796	up	3.8362863	up
726.5612	13.0	6.31E-04	89.31713	up	10336.736	up	115.73072	up
797.5566	12.9	0.04828218	-9.721094	down	-932.95734	down	-95.97242	down
510.3698	13.0	0.04118964	102.681305	up	815.29205	up	7.940024	up
643.4159	13.1	0.02278569	1.4015492	up	1.638645	up	1.169167	up
474.3744	13.1	0.0449237	12.9729	up	-48.408146	down	-627.9941	down
563.4375	13.1	0.00750606	95.55999	up	3881.5642	up	40.61915	up
834.4603	13.1	0.0467714	3.3765142	up	286.19873	up	84.76159	up
688.5531	13.1	0.02568223	286.1552	up	67.37264	up	-4.247351	down
818.519	13.1	1.53E-04	2783.1997	up	2432.3782	up	-1.1442301	down
789.5252	13.2	0.03403078	105.353455	up	739.09076	up	7.0153446	up
1072.8229	13.1	0.01158992	42.455563	up	1309.094	up	30.83445	up
428.3662	13.1	2.86E-04	371.8864	up	12144.096	up	32.655388	up
751.0218	13.1	0.02769296	136.14828	up	1257.5184	up	9.236385	up
400.2698	13.1	0.02764172	230.00098	up	615.16864	up	2.674636	up
428.3648	13.2	5.04E-05	998.3407	up	9077.018	up	9.092102	up
500.3905	13.2	0.03816771	-7.121866	down	47.161972	up	335.8813	up
793.5143	13.2	0.01330129	434.31158	up	348.97375	up	-1.2445394	down
570.3949	13.2	0.03971005	-1.2080995	down	-1.1542352	down	1.0466666	up
753.5512	13.3	0.02591598	-1.632022	down	179.36018	up	292.71982	up
829.5506	13.3	0.04034312	8.864128	up	751.3225	up	84.75988	up
811.5151	13.2	0.0037323	48.277336	up	3145.276	up	65.15014	up
662.4861	13.3	0.02491854	126.32698	up	939.00964	up	7.433168	up
779.5461	13.3	0.03557391	26.432749	up	2721.6753	up	102.966034	up
552.3713	13.3	0.02163416	170.33391	up	1.3539115	up	-125.80876	down
725.5508	13.3	0.02167418	228.78516	up	61.840515	up	-3.6996	down
775.5499	13.4	0.00467309	2863.077	up	2018.6481	up	-1.4183136	down
384.2686	13.4	0.01074329	3314.6506	up	26.898478	up	-123.22819	down
787.0374	13.5	0.02589391	75.11092	up	248.11177	up	3.3032713	up
857.5052	13.4	0.04487867	188.3583	up	15.5225	up	-12.134534	down
1234.8186	13.4	0.00837795	94.13487	up	958.52716	up	10.1824875	up
1235.81	13.4	2.22E-04	33.17774	up	9290.524	up	280.02277	up
1247.3037	13.4	0.00660502	28.805052	up	2173.3513	up	75.450386	up
1247.8029	13.4	0.01114227	43.849407	up	1349.2639	up	30.770403	up
1206.8237	13.4	0.037504	7.8578115	up	815.7556	up	103.8146	up
1169.8339	13.5	0.00786014	66.88481	up	1846.9026	up	27.613184	up
1169.3326	13.5	0.02118736	78.374825	up	235.92126	up	3.0101666	up
1188.3041	13.5	0.01095461	495.01364	up	446.49457	up	-1.1086671	down
1192.3157	13.4	0.00626866	-3.7242718	down	402.27588	up	1498.1847	up
766.5725	13.5	0.01160314	900.6038	up	704.3091	up	-1.2787055	down
1575.1145	13.4	0.00913274	57.43052	up	1726.9164	up	30.069664	up

1173.8517	13.6	0.00687035	110.5838	up	1066.832	up	9.647272	up
1170.3282	13.5	0.00227637	1010.8731	up	8667.51	up	8.574279	up
1563.6173	13.5	0.00202664	4634.2544	up	320.82092	up	-14.4449835	down
1180.824	13.5	0.03290914	239.90907	up	748.54095	up	3.1201031	up
1236.3164	13.5	0.01567514	349.48395	up	314.07758	up	-1.1127313	down
1172.3333	13.5	0.00131664	1537.8566	up	3750.3818	up	2.4387083	up
1254.8066	13.5	0.00141744	200.1065	up	200.1065	up	-1	down
1248.8119	13.5	0.02289667	-1.2543728	down	203.28908	up	255.0003	up
791.5708	13.5	0.02527743	1332.383	up	334.85574	up	-3.978974	down
1226.8158	13.5	0.00140666	237.84392	up	237.84392	up	-1	down
1213.8359	13.5	0.03636902	7.2418633	up	576.0483	up	79.544205	up
1244.8065	13.4	0.01131589	12.285921	up	1245.9055	up	101.40921	up
857.5545	13.6	0.02170692	1984.9572	up	419.67148	up	-4.7297873	down
1181.3333	13.5	0.02674954	871.3416	up	201.5205	up	-4.3238363	down
1206.3195	13.5	0.04601886	64.108734	up	846.89703	up	13.210321	up
1236.8081	13.5	0.02220671	81.18582	up	253.31671	up	3.1202092	up
1203.3407	13.5	0.00381249	309.96814	up	2665.6187	up	8.599655	up
717.5635	13.6	0.02562607	55.94681	up	169.55872	up	3.0307126	up
1226.824	13.6	0.00104239	355.86078	up	1081.0106	up	3.0377343	up
1210.3539	13.6	5.63E-07	12983.034	up	3571.7676	up	-3.6349049	down
1159.3333	13.5	0.02766548	60.85055	up	193.74597	up	3.1839645	up
1172.8564	13.6	1.61E-04	2527.6304	up	2166.3804	up	-1.1667527	down
1233.3496	13.6	0.03269113	156.10156	up	359.7002	up	2.3042698	up
1189.848	13.6	0.00846562	18.976273	up	1556.0966	up	82.00223	up
1183.8505	13.6	5.78E-04	1901.5643	up	1767.5563	up	-1.0758153	down
1161.349	13.6	0.00209683	939.69086	up	2957.3481	up	3.1471498	up
1211.867	13.6	0.00151327	16.20302	up	4699.7183	up	290.0521	up
1220.8511	13.6	0.03371685	416.414	up	98.80346	up	-4.214569	down
1225.3676	13.7	0.01841851	256.08295	up	72.28161	up	-3.542851	down
1203.8552	13.6	0.03730917	30.64523	up	596.1939	up	19.454706	up
1174.8553	13.6	8.37E-05	911.1543	up	9154.891	up	10.047576	up
1199.868	13.7	0.0274747	738.98627	up	196.4381	up	-3.7619295	down
1246.8562	13.7	0.04476271	199.41667	up	16.213718	up	-12.299256	down
844.562	13.6	0.0200839	81.787415	up	242.62093	up	2.9664822	up
1217.3611	13.7	0.03414017	154.05722	up	420.0759	up	2.726752	up
1230.3622	13.7	0.00139948	181.28865	up	181.28865	up	-1	down
1242.8599	13.7	0.03328035	50.410007	up	168.19049	up	3.3364508	up
821.0898	13.7	0.03229518	96.65125	up	670.10114	up	6.9331865	up
1233.8597	13.6	0.00516013	134.61397	up	1197.6521	up	8.896937	up
1258.3501	13.7	0.00140365	218.06174	up	218.06174	up	-1	down
821.0999	13.8	0.00145255	252.26329	up	252.26329	up	-1	down
902.5691	13.8	0.03520883	147.00116	up	319.35294	up	2.1724524	up
398.763	13.8	0.03376874	169.92781	up	396.29138	up	2.3321166	up
837.6192	13.8	0.04163771	5.787603	up	472.51498	up	81.642624	up
859.5887	13.8	0.00187687	962.1488	up	2975.457	up	3.0925124	up
893.5824	13.9	0.018357	75.0893	up	210.94446	up	2.8092473	up

419.3146	13.9	0.04622541	122.26321	up	315.95337	up	2.5842073	up
789.6083	13.9	0.00461085	1244.9136	up	32.691143	up	-38.081062	down
720.5686	14.6	0.03371795	9.053651	up	-34.51892	down	-312.52225	down
173.962	0.3	0.03991553	-3.9127858	down	-600.19806	down	-153.39406	down
659.9659	0.3	0.03736546	1.8580694	up	-139.87383	down	-259.8953	down
845.9681	0.3	0.03904013	202.27562	up	655.01013	up	3.2382066	up
1075.9882	0.3	0.00964203	-58.558014	down	-2442.8794	down	-41.71725	down
1169.0037	0.3	0.0151951	-674.06006	down	-2.4242725	down	278.04617	up
1299.9858	0.3	0.02525332	-165.31725	down	1.6080381	up	265.83636	up
972.9842	0.3	0.02101751	-1683.9128	down	-294.3649	down	5.7204933	up
1120.5099	0.3	0.03517679	-1.8578868	down	105.125656	up	195.31155	up
203.1097	0.4	0.02529548	-1544.4458	down	-5.496114	down	281.00684	up
293.1507	0.7	0.042385	-3.7391925	down	-424.1943	down	-113.445435	down
131.0905	0.7	0.02066104	-50.749203	down	6.1744347	up	313.34763	up
246.1192	0.9	0.00633673	-23.85133	down	-7630.99	down	-319.9397	down
327.1316	1.1	0.04474225	-3.4247549	down	-243.82904	down	-71.19607	down
106.0421	1.6	0.04259219	-3.9951427	down	-552.37885	down	-138.26259	down
236.987	1.6	0.0472033	-2.9297462	down	-109.83902	down	-37.49097	down
260.1373	1.7	0.0401151	-7.420185	down	-1449.1726	down	-195.3014	down
242.0963	4.7	0.01920626	1.2388889	up	-340.56088	down	-421.91708	down
224.0852	6.5	0.04396023	-3.7177286	down	-367.2883	down	-98.793724	down
220.0935	6.9	0.04284806	-4.078278	down	-597.8479	down	-146.59325	down
206.1341	6.9	0.00710788	-3.2301931	down	-605.22797	down	-187.36589	down
403.1994	7.7	0.04315073	-39.552956	down	-936.84894	down	-23.68594	down
220.0981	8.6	0.0040469	-329.06253	down	2.2225847	up	731.3691	up
412.2493	8.7	0.0388785	-1.8845845	down	-246.88669	down	-131.00323	down
451.3424	9.4	0.04518941	-3.1846802	down	-172.4077	down	-54.13657	down
314.2028	9.9	0.04453879	-3.303795	down	-210.25694	down	-63.641026	down
326.2268	10.4	0.0417187	-31.6783	down	-720.93713	down	-22.758074	down
330.22	10.6	0.00784668	-3.3044055	down	-598.39355	down	-181.08958	down
436.1752	10.8	0.03304105	-368.26877	down	-7.4681435	down	49.31194	up
496.7541	10.9	0.01754978	-104.248695	down	-1	down	104.248695	up
316.2409	11.0	0.00408951	-47.121586	down	-12836.044	down	-272.40262	down
356.2343	11.0	2.30E-04	-51.18095	down	-37930.508	down	-741.10596	down
704.1715	11.2	0.02111651	-1.7886378	down	-427.8768	down	-239.21942	down
441.263	11.2	0.00201897	-707.48724	down	-1975.5219	down	-2.7923062	down
348.2395	11.5	0.04589876	4.0752416	up	-61.715717	down	-251.50636	down
435.3578	12.1	0.04478552	-3.6249545	down	-313.26376	down	-86.418686	down
484.3729	12.1	0.03871771	-3.0298066	down	-193.76678	down	-63.95352	down
625.5134	12.2	0.0216676	-217.18378	down	-3.2410936	down	67.00941	up
669.5346	12.1	0.01740655	-77.08098	down	-5.2410/50	down	77.08098	up
821.5551	12.9	0.01740033	-1.8211137	down	-837.1249	down	-459.6773	down
724.3564	13.1	0.01897792	-30.558043	down	-1998.5922	down	-65.403145	down
789.2421	13.1	0.00729080	-341.83408	down	-303.90942	down	1.1247889	up
813.5401	13.3	0.00122831	3.4712033	up	361.55627	up	104.158775	up
933.8578	13.3	0.04779133	-60.971302	down	-352.90796	down	-5.7880993	down
933.8378	13.3	0.0412199	-00.9/1302	down	-352.90/96	down	-3./880993	uowii

1224.3138	13.4	0.03634442	-7.1178684	down	35.30426	up	251.29106	up
1235.3055	13.5	0.03917974	-6.073066	down	40.68831	up	247.10278	up
791.5497	13.4	0.02229635	1.580431	up	691.7888	up	437.72153	up
1250.31	13.4	0.01671793	-56.31753	down	5.055093	up	284.69034	up
1191.8174	13.4	0.00286007	-179.47997	down	6.3695006	up	1143.1978	up
867.5101	13.5	0.04259811	-2.91874	down	-132.49234	down	-45.393673	down
1227.3483	13.6	0.03193129	-9.771532	down	30.730186	up	300.28098	up
1210.3174	13.5	0.04879551	27.327122	up	227.84302	up	8.337615	up
808.2249	13.5	0.0175045	-80.68876	down	-1	down	80.68876	up
907.5315	13.7	0.04473049	-28.693192	down	-481.4189	down	-16.778158	down
917.5349	13.7	0.02516984	-9.576343	down	-551.45215	down	-57.58484	down
812.6539	13.8	0.04510636	-7.2236853	down	113.44469	up	819.4887	up
749.5592	13.8	0.04662751	-32.350124	down	-556.4755	down	-17.201649	down
787.6097	13.9	0.02497481	-28.845877	down	-3483.0977	down	-120.74855	down
154.9673	0.2	0.01358946	-1.8271829	down	-2142.1958	down	-1172.4034	down
1041.9769	0.3	0.04311553	-3.4777975	down	-286.8332	down	-82.47553	down
626.0076	0.3	0.00510629	-1	down	-222.21356	down	-222.21356	down
192.1171	7.6	0.00494559	-1	down	-261.0042	down	-261.0042	down
237.1362	9.1	0.02959905	1.8118901	up	-155.37126	down	-281.51572	down
240.1927	10.0	0.04661511	52.292267	up	-4.4079595	down	-230.50218	down
342.2235	10.0	0.03427229	-2.8244367	down	-185.82384	down	-65.79146	down
342.2169	10.5	0.04284344	-3.4833722	down	-295.57986	down	-84.854515	down
632.2593	10.7	0.00496598	-1	down	-142.09477	down	-142.09477	down
704.1557	10.8	2.79E-04	-1	down	-661.34174	down	-661.34174	down
586.2219	11.0	0.03043826	5.3181357	up	-28.300335	down	-150.50502	down
281.2152	11.1	0.03951565	7.462428	up	-26.91244	down	-200.8321	down
396.3199	12.1	0.00494413	-1	down	-172.0692	down	-172.0692	down
413.2635	12.2	0.03301537	5.852661	up	-27.931435	down	-163.47322	down
799.5709	13.0	0.03516466	-2.9681482	down	-230.72354	down	-77.73317	down
1230.7513	13.2	0.01578557	329.31082	up	2.2842798	up	-144.16399	down
777.5332	13.4	0.04519086	-3.7176394	down	-344.65802	down	-92.70885	down
753.5798	13.4	0.00632694	8.208742	up	-127.107666	down	-1043.3939	down
988.4029	13.4	0.00494997	-1	down	-182.61801	down	-182.61801	down
939.5069	13.4	0.00654534	6.874551	up	-72.48177	down	-498.27957	down
831.5586	13.5	0.00500242	7.7467175	up	-165.86992	down	-1284.9475	down
1204.8115	13.5	0.0456943	389.74667	up	89.75467	up	-4.3423553	down
1206.3267	13.5	0.01889474	238.50029	up	68.15949	up	-3.4991496	down
669.6059	13.7	0.00671278	-3.0206437	down	-456.00708	down	-150.96352	down
710.563	14.3	0.0405211	-3.1184256	down	-202.5692	down	-64.95879	down
686.5632	14.4	0.01676359	-8.173816	down	-828.975	down	-101.41836	down
173.9585	15.1	0.04485941	62.203415	up	-5.3396835	down	-332.14655	down
1307.979	0.3	0.02199261	69.06219	up	205.96568	up	2.9823215	up
757.9653	0.3	0.02173864	195.36145	up	1.0168817	up	-192.11818	down
228.1477	0.5	0.01884768	102.16512	up	311.95816	up	3.05347	up
450.3183	10.1	0.00144131	208.21883	up	208.21883	up	-1	down
471.2966	10.2	0.0171229	239.20834	up	70.67562	up	-3.3845954	down

334.2119	10.4	0.02425311	99.26279	up	342.1673	up	3.4470854	up
354.2694	11.2	0.01913322	256.04755	up	71.18209	up	-3.5970778	down
342.2792	13.2	0.0405035	356.21594	up	24.082836	up	-14.791276	down
1220.8108	13.4	0.00140102	238.09955	up	238.09955	up	-1	down
1551.096	13.4	0.02489656	70.72666	up	224.43346	up	3.1732507	up
797.0531	13.5	0.02340211	74.810616	up	233.91486	up	3.1267598	up
1215.347	13.6	0.02358569	60.51274	up	180.27306	up	2.9790924	up
1211.8577	13.6	0.02819956	68.52712	up	230.3718	up	3.3617601	up
1218.8594	13.7	0.02602053	72.474945	up	236.83589	up	3.267831	up
1195.8679	13.6	6.33E-06	1432.7664	up	1432.7664	up	-1	down
1222.3541	13.6	0.00145768	197.59412	up	197.59412	up	-1	down
220.101	8.5	0.01780285	-145.40175	down	-1	down	145.40175	up
278.2046	11.6	0.02648684	128.6698	up	499.70584	up	3.883629	up
1232.8119	13.4	0.01751171	-108.31297	down	-1	down	108.31297	up
1262.3063	13.4	0.01736479	-70.43045	down	-1	down	70.43045	up
1224.8564	13.6	0.02332809	-46.157707	down	6.8115277	up	314.40454	up
748.5819	13.8	0.036502	-7.0196586	down	35.0824	up	246.2665	up
867.9676	0.3	0.02620853	-451.54428	down	-1395.6635	down	-3.0908668	down
200.1162	8.0	0.04112633	2.0246544	up	-109.60282	down	-221.90787	down
497.3406	10.9	0.03821274	-3.2446141	down	-303.27985	down	-93.471794	down
204.2532	9.7	0.04910316	-3.2942727	down	-167.66139	down	-50.89482	down
1587.6039	13.4	0.02145431	83.10201	up	257.32846	up	3.0965374	up
184.0236	0.6	0.02516795	2339.0774	up	368.3764	up	-6.3496947	down
165.079	0.9	0.04081682	1.337346	up	-1.1178044	down	-1.4948913	down
784.5311	7.5	0.02147712	156.10037	up	46.306385	up	-3.371034	down
796.4413	7.5	0.03947714	-1.119547	down	1.236564	up	1.3843917	up
501.2862	10.4	0.0315872	114.30157	up	1114.4227	up	9.7498455	up
274.213	10.4	0.03582833	5.8179913	up	-22.139149	down	-128.80537	down
312.2302	10.4	0.0226024	126.67263	up	447.4711	up	3.5325005	up
300.2101	10.7	0.04357193	-1.0368143	down	-1.2221907	down	-1.1787943	down
1098.6844	10.7	0.04451407	73.22904	up	-3.8114774	down	-279.11093	down
391.2077	10.8	0.01165521	-1049.8433	down	-866.7115	down	1.2112954	up
531.3108	10.9	0.00404632	2.2887895	up	-526.27246	down	-1204.527	down
302.226	10.9	0.03341604	-36.6661	down	-448.00592	down	-12.218531	down
637.3571	10.9	0.04430965	-1.4379165	down	184.88272	up	265.84586	up
290.2276	11.0	0.0301928	1.035552	up	1.123653	up	1.0850763	up
334.235	11.0	0.04963174	1.0905993	up	1.1692036	up	1.0720743	up
596.5043	12.6	0.04433259	466.36276	up	109.67363	up	-4.2522793	down
1029.5872	13.4	0.03788663	6.4825926	up	436.81073	up	67.38208	up
870.6337	13.6	0.00856019	681.747	up	591.2027	up	-1.1531528	down
872.6908	13.8	0.01514659	385.22403	up	274.39313	up	-1.4039123	down
847.6312	13.9	0.00822405	486.797	up	458.18353	up	-1.0624497	down
1034.9965	14.2	0.02160618	716.80194	up	147.04591	up	-4.874682	down
1034.9957	15.0	0.02360125	201.21866	up	825.5593	up	4.102796	up
146.0698	0.4	0.04948839	3.0159135	up	612.3105	up	203.02654	up
893.6142	13.6	0.02313148	1.2030205	up	285.1482	up	237.0269	up

981.0237	0.2	0.01785898	-77.91719	down	-1	down	77.91719	up
272.2395	10.2	0.02434355	-321.57254	down	-3.7682543	down	85.337265	up
390.21	10.8	6.29E-07	-3.2230527	down	-10433.317	down	-3237.0916	down
468.2392	11.2	0.00642687	-265.22433	down	-1715.4591	down	-6.467958	down
340.24	10.3	0.04308045	-3.3229256	down	-232.9278	down	-70.09721	down
302.2262	11.0	0.02127996	-10.890583	down	-1052.6779	down	-96.65946	down

Tabla suplementaria 4. Vías de integración metabolómica de los cambios asociados al patrón temporal de la RI.

Vía	р	Vía	p
Ligando GPCR	8,5e-05	Receptores ligados a amina	0,018
Señalización por GPCR	0,000135	Conjugación de fenilacetato con glutamina	0,0206
Transducción de señal	0,000373	Metabolismo de arginina y prolina	0,0208
Transporte transmembrana SLC	0,000434	Vía del selenio	0,0226
Receptores similares a Rodopsina (Clase A/1)	0,000578	Sinapsis GABAérgica	0,0231
Transporte transmembrana de pequeñas moléculas	0,0007	Metabolismo D-Glutamina y D-Glutamato	0,0231
Receptores de ácidos grasos libres	0,0016	Vía de la pentosa fosfato	0,031
Transportadores dependientes de Na ⁺ /Cl ⁻	0,00267	Señalización G-alfa (z)	0,031
Síntesis y interconversión de aminoácidos	0,00284	Transporte de ácidos grasos	0,023
Transporte de aminoácidos a través de la membrana plasmática	0,00284	Señalización disreguladora de GPCR	0,0235
Transportadores SLC del compuesto amino	0,00339	Transportador ABC	0,0244
Metabolismo de aminoácido y derivados	0,00404	Metabolismo D-arginina y D- ornitina	0,0256
Señalización G-alfa	0,00487	Transporte monoamino	0,0256
Vía de señalización gastrina-CREB a través de PKC y MAPK	0,00487	Síntesis de UDP-N-acetil- glucosamina	0,082
Adrenoreceptores	0,00517	Agregación plaquetaria	0,0282
Señalización de adrenalina a través del receptor alfa2-adrenérgico	0,00517	Conjugación de ácidos carboxílicos	0,0382
Transportadores SLC de aminoácidos y oligopéptidos	0,00533	Conjugación de aminoácidos	0,0382
Transporte de aniones/cationes inorgánicos yaminoácidos/oligopéptidos	0,00607	Metabolismo de la creatinina	0,0382
Biosíntesis de ácidos grasos insaturados	0,00658	Síntesis biogénica de amina	0,0407
Vía de vesículas sinápticas	0,00775	Reclamación del bicarbonato en el túbulo proximal	0,0432
Señalización SREBP	0,00775	Vía de la pentosa fosfato	0,045
Transporte de vitaminas, nucleósidso y moléculas relacionadas	0,00945	Metabolismo nucleótido	0,045
Inhibición de secreción de insulina por adrenalina/noradrenalina	0,0103	Biosíntesis de catecolaminas	0,045
Metabolismo de aminoácidos y derivados	0,0104	Transporte de nucleósidos, purina libre y bases de pirimidina a través de la membrana	0,0457
Metabolismo	0,0118	Regulación de la secreción de insulina	0,045
Ciclo de liberación de glutamato	0,019	Transporte y metabolismo retinoide	0,0457
Conjugación de aminoácidos	0,0129	Agregación, señalización y activación plaquetaria	0,0482
Señalización G-alfa (12/13)	0,0129	Metabolismo y captación de neurotransmisores en células gliales	0,0155
Regulación del metabolismo lipídico por el receptor alfa activado por proliferador peroxisoma	0,0129	Trasnporte de glucosa y otros azúcares, sales biliares y ácidos orgánicos, iones metálicos y compuesto amino	0,0178
Metabolismo y captación astrocítica de glutamina-glutamato	0,0155	Sinapsis glutametérgica	0,018
		GPCR monoamino	0,018

Tabla suplementaria 5. Metabolitos diferenciales (p<0,05) entre no AGV y AGV.

			unerenciales (p<0,03)	
Mass	Retention Time	p-value	regulation (LAA vs. Non LAA)	Fold change
495.9544	0.302 0.339	0.03837744		4.727384
887.9994 161.1095	0.374	0.03265425 0.03136968	up down	5.4550467 -5.216701
162.1255	4.641	0.00323311	up	23.425304
220.111	6.736	0.03176881	up	1.4662975
216.1161	6.971	0.01780487	down	-11.422778
238.1561	8.592	0.02072791	down	-8.814008
148.0179	9.688	0.00563997	down	-30.058405
232.18	9.640	0.02829089	up	8.585399
296.2	9.855	0.02583346	up	9.199295
274.2174	9.840	0.00776533	down	-2.789409
370.3196	9.893	0.04079422	down	-4.382242
290.2298 402.2248	10.028 10.520	0.01382809	up up	8.701142 3.9965777
567.3318	10.716	0.03931342	ир	2.880091
507.3311	10.828	0.00124976	up	17.17
608.2714	10.930	0.01068026	up	9.815748
430.3084	10.943	0.02922501	up	7.9516845
678.1571	10.961	0.00113469	up	17.441816
721.495	11.055	0.00414445	down	-13.332704
402.2075	11.231	0.0331327	down	-3.8874636
507.3694	11.511	0.02182496	up	6.764667
306.2563	12.169	0.02394908	up	9.083944
800.5467 648.3712	12.717 13.056	0.01961488 0.01062711	up down	5.5569205 -2.078023
747.5215	13.160	0.04155823	up	5.763957
767.5474	13.288	0.04805276		4.0645485
688.1585	13.356	0.03737642	down	-1.655508
921.4914	13.422	0.04817667	up	5.435879
422.2572	13.405	0.03137987	up	9.290953
421.7554	13.390	0.02954046	up	10.237894
780.0411	13.482	0.02470828	up	9.529143
762.1846	13.543	0.04183053	up	4.4328346
793.5872 833.0508	13.600 13.617	0.02492699 0.03239571	up up	10.348644 7.611648
889.5402	13.607	0.03239371	ир	8.941458
831.2313	13.703	0.02811525	down	-5.538683
798.6504	13.724	0.03667828	up	6.274284
813.0509	13.691	0.02391475	up	6.939037
891.5614	13.716	0.02098374	up	8.288946
859.5463	13.722	0.0028997	up	14.472682
855.5621 880.7487	13.743 15.369	2.65E-04 0.03812479	up down	20.89892 -7.0471106
854.7348	15.464	1.95E-05	up	34.004845
1108.989	0.340	0.02970448	up	7.5625777
1212.982	0.342	0.01758923	up	8.398306
896.4857	0.341	0.03289927	up	6.2494397
264.1122	2.842	0.04481618	up	8.042057
414.2059	8.645	0.03089401	up	12.286757
309.1954	8.843	0.03663548	up	5.8881125
256.1459	9.402	0.0178858	up	9.740454
281.2155 619.3166	11.075 11.108	0.0363529	•	5.9541297 6.8264604
267.2365	11.108	0.03899363	up up	11.774489
284.2732	12.124	0.02464987		-11.084285
739.5143	13.094	0.01828425		10.585112
729.5829	13.228	0.01541854	up	10.576616
398.7591	13.458	0.01448881	up	9.83829
398.7639	13.710	0.01162157		11.803704
814.6862	14.001	0.00251899	•	15.251894
906.7627	15.413	0.02486085	•	7.6697545
884.9884 608.2185	0.331 10.707	0.03034656 0.02946737		6.698138 7.0078545
552.3728	13.327	0.02946737	ир	9.017873
873.5052	13.585	0.02205087		7.713134
417.2048	10.533	6.03E-04		-26.43959
588.479	13.363	0.00932155	up	10.893413
804.0747	13.632	0.00178221	up	19.510155
455.3758	12.397	0.01819135		8.700604
431.8789	8.840	0.01378496		-3.841581
696.3937 392.2045	10.831 10.834	0.0012602 0.01163719	up down	15.244803 -2.0277627
406.2218	11.205	0.001763719	up	8.086285
316.0489	0.770	0.03265123	ир	8.79529
			•	

Tabla suplementaria 6. Vías metabólicas comunes en ambas cohortes en relación al patrón temporal

Señalización por GPCR

Transducción de señal

Transporte transmembrana SLC

Receptores similares a Rodopsina (ClaseA/1)

Trasnporte transmembrana de pequeñas moléculas

Receptores de ácidos grasos libres

Transportadores de neurotransmisores dependientes de Na⁺/Cl⁻

Transporte de aminoácidos a través de la membrana plasmática

Transportadores SLC de compuestos amina

Transportadores SLC de aminoácidos y oligopéptidos

Trasnporte de cationes/aniones inorgánicos y aminoácidos/oligopéptidos

Biosíntesis de ácidos grasos insaturados

Transporte de vitaminas, nucleósidos, y moléculas relaciondas

Tabla suplementaria 7. Metabolitos diferenciales en función de la DF de la cohorte 1.

Metabolito	p.value	Metabolito	p.value
139.0636@0.40001464	6,98E-05	184.0242@0.61721057	0.023136
159.0294@0.39463043	0,00059534	115.0474@0.39666668	0,025119
205.132@1.5204664	0,00070557	679.0542@7.512175	0.025281
414.2048@9.171	0,00098421	1104.006@0.3429553	0,025527
256.1455@0.39744005	0,0010571	376.1223@9.6615925	0,026087
138.0535@0.64599997	0,0013101	433.8765@8.8875	0,027071
168.0296@0.61285967	0,0016766	218.0125@0.2871095	0,027722
161.1095@0.3739232	0,0017746	418.3093@12.513534	0,027842
155.0368@0.3967031	0,0026832	115.0657@0.40386248	0,027876
129.0514@0.6500699	0,0030574	852.7166@14.996918	0,027925
168.037@0.6359706	0,0045233	794.5921@13.57194	0,028706
440.3369@6.9429083	0,0045819	C6 H4 Cl2	0,029006
370.3085@12.259406	0,004952	327.2573@10.530975	0,030449
220.1105@9.128685	0,0060369	263.226@5.953243	0,030572
117.0615@0.40916666	0,0060409	390.2785@12.089403	0,031364
186.0492@0.40365914	0,0062834	204.2532@9.699461	0,031827
1184.3387@13.550759	0,0066575	312.1458@9.652378	0,032416
216.0723@0.4259394	0,0073858	131.0717@0.39058214	0,032932
194.0814@3.8993082	0,0078166	831.2313@13.703026	0,033075
103.1019@0.3653894	0,0084837	184.0317@0.58293945	0,03409
343.273@8.251169	0,008506	425.3098@13.849647	0,034131
C22 H34 O4	0,0085064	254.2218@11.050311	0,035562
670.5659@15.4990015	0,0092945	106.0422@1.6255661	0,03585
523.9638@0.32402447	0,0096983	222.0757@10.878599	0.036497
805.564@13.654622	0,01055	157.9891@0.29625	0,039269
71.0754@0.41229078	0,011008	129.0444@0.6452794	0,041306
452.3369@5.981718	0,011199	378.2587@11.434725	0,041366
289.0752@0.38251168	0,012082	274.2509@10.866366	0,041414
578.2891@9.791646	0,012791	214.1682@4.6434255	0,04186
523.9691@0.32459307	0,013858	284.2163@10.8533745	0,04244
539.9393@0.32759616	0,014954	238.085@4.8355575	0,042824
180.0648@2.7623043	0,015194	804.04@13.418083	0,043608
420.1695@10.861324	0,015677	C8 H20 N6	0,043656
539.9418@0.32759994	0,016918	463.9571@0.34625	0,043943
797.5573@12.879267	0,016969	699.6198@14.552372	0,044615
242.1639@5.4946003	0,018064	855.5333@13.510546	0,044891
347.3033@11.345807	0,018742	220.0932@6.865829	0,045288
1180.33@13.4328	0,019118	1180.3254@13.459726	0,045462
146.0743@0.4073913	0,019281	825.5864@13.125104	0,046579
431.274@4.691425	0,019657	794.5895@13.669715	0,048154
780.0411@13.481999	0,020317	71.0681@0.41105878	0,049014
154.9668@0.14147058	0,022679	113.061@0.37787277	0,049882
99.069@1.396057	0,022701	1156.823@13.440999	0,049897
370.3088@12.1436615	0,022989	184.0242@0.61721057	0,023136

Tabla suplementaria 8. Metabolitos diferenciales en función de la DF de la cohorte 2.

Tabla suplementaria 8	. Metabolitos diferencial	es en función de la DF de la	cohorte 2.
Metabolito	p.value	Metabolito	p.value
542.3984@12.890575	2,34E-05	471.8113@6.069378	0,0030895
865.9783@0.33222955	8,16E-05	214.9825@0.18661292	0,0031282
287.2463@9.395551	0,00010037	913.2708@7.4700756	0,0031521
C15 H34 N8 O	0,00016437	233.1993@4.6364117 366.3303@13.057825	0,0033459
286.262@6.209396 636.8372@11.835604	0,00017122 0,00022387	199.0163@0.2912759	0,003401 0,0035774
497.3946@6.0739594	0,00022387	398.2528@4.60402	0,0036932
365.9818@0.33119023	0,00029017	604.5029@13.56181	0,0038193
444.281@7.3047404	0,00046599	344.2906@11.607278	0,0039165
618.4717@9.491957	0,00047773	1292.6064@11.671416	0,0039494
466.2946@7.469009	0,00048456	162.0358@8.048222	0,0039607
452.3366@6.2140584	0,00050983	122.0405@8.067875	0,0040619
532.316@7.6263337	0,00052387	586.2222@10.842429	0,0042519
678.5049@7.545569	0,00052598	392.3041@9.169374	0,0042576
C34 H42 N4 S5	0,00054084	612.2559@11.590667	0,0045617
364.2398@11.179421	0,00058569	595.2745@11.126343	0,0046181
532.8276@7.775509	0,00059952	526.2599@6.0554647	0,0046951
495.3339@10.79397	0,00082021	148.0232@9.809176	0,004733
685.5301@11.845539	0,0009565	496.0797@10.925166	0,0049718
348.2577@5.65126 388.1466@7.9533153	0,0010168 0,0010309	170.9589@0.1667193 138.9952@0.29120246	0,0049882 0,0050358
114.0166@0.28954086	0,0010416	606.2287@10.6918335	0,0050665
596.0342@0.3303846	0,0010410	502.3092@7.7268	0,0051089
388.1454@7.8742414	0,0010894	563.3366@10.684999	0,0052331
C14 H12 N2 O12 S	0,0011428	250.1216@6.7087502	0,0052624
593.2615@10.672421	0,0012203	123.0175@0.29050013	0,0053148
283.0915@0.94077426	0,0013119	245.9982@0.3105257	0,0054532
280.2404@10.563168	0,0013329	921.0026@0.27129817	0,0056332
380.2741@10.193933	0,001466	148.0229@9.5984335	0,0058621
711.2768@11.671	0,001583	207.147@0.5770263	0,005939
255.9567@0.23754998	0,0017083	C13 H25 N O3	0,006054
536.4806@13.395847	0,0017177	566.4382@13.243409	0,0061216
480.2955@7.624193	0,002126	222.0039@0.29186857	0,0063222
662.4486@13.440018	0,0021268	776.0059@0.32923412	0,0064658
554.3474@8.024438	0,0022938	296.2357@10.730937	0,006539
464.1306@7.5220904 C4 H8 O2 S	0,002299 0,0024034	315.9285@0.33655742 382.3308@12.857094	0,0065403 0,0066639
148.0148@9.675296	0,0024034	382.3508@12.857094	0,0066668
470.3466@4.201277	0,0030741	302.2263@10.376417	0,0067965
974.4567@11.671792	0,0068548	Gamma-Glu-Leu	0,008134
549.282@3.9464617	0,0069411	644.2059@10.725879	0,0082124
510.3219@7.766932	0,0071988	185.9932@0.32947102	0,0082287
400.2579@7.080311	0,0072135	1318.07@11.671341	0,0082689
218.0112@0.20946968	0,0074227	396.3423@12.612049	0,0083712
199.2296@7.7996593	0,0074827	342.2993@6.0656886	0,0086546
220.1112@9.131984	0,007514	568.3358@10.6597185	0,0086868
198.1328@11.870784	0,0078958	292.0913@0.52473336	0,0087684
183.0395@0.29067454	0,0079287	644.2115@10.685887	0,0089166
164.0475@0.45464545	0,0080441	272.2161@10.229915	0,009283
558.3929@12.873533	0,0093333	685.315@10.914328	0,010611
136.1246@11.336369	0,0094457	135.9379@0.33658975	0,011039
576.8616@8.140906 392.2945@11.409483	0,0094544 0,0095071	C34 H68 Cl2 O2 478.4734@13.860869	0,011156 0,011213
753.6025@13.262712	0,0095071	478.4734@13.860869 370.2121@7.512041	0,011213
197.0463@0.6603146	0,009/548	608.224@10.529197	0,011252
658.8275@1.4305882	0,0098686	370.2594@4.0160623	0,011419
632.2309@10.676019	0,0099975	114.0681@3.2951999	0,011518
252.175@8.499484	0,010065	175.9625@0.21299998	0,011735
550.3037@6.043738	0,010361	113.0579@0.37825444	0,011741
362.2489@11.943222	0,011772	630.7958@1.5144	0,012666
694.0001@0.32921723	0,011798	339.2525@7.4940853	0,012794
588.8315@7.765829	0,011857	216.0782@0.5635802	0,012911
655.3051@10.698015	0,01196	386.1748@7.643404	0,013019
431.8781@8.923742	0,012089	479.941@0.3339012	0,013036
699.7809@11.675889	0,012146	981.0154@0.3304928	0,01304
1001.4232@11.665249	0,01225	330.9431@0.17096551	0,013158
278.1516@0.18240002	0,012289	154.967@0.28086463	0,013201
314.2873@0.648	0,012299	447.984@0.3300561	0,013248
396.2719@11.334458	0,012302	395.3248@10.304837	0,013308
324.229@10.810297	0,013424	711.9811@0.41015553	0,014527
296.9844@0.29192597 510.464@13.517	0,013794 0,01383	488.3073@7.6271086 246.0015@0.3106286	0,014609 0,014648
C27 H42 N2 O	0,01383	246.0015@0.3106286 260.0001@0.36890814	0,014648
135.9415@0.335676	0,014001	658.8262@1.6304284	0,01543
262.0944@7.3253217	0,014064	125.0153@0.29045692	0,015619
	0,011001	120.0100@0.270400/2	0,015017

361.2343@7.5527434 C18 H30 O3	0,014094 0,014115	56.0633@9.764523 388.1447@8.020166	0,015645 0,015752
281.0076@0.29096305	0,014379	450.3207@6.119241	0,015706
685.3081@11.011133	0,014387	120.0436@9.692272	0,016118
554.3304@7.768297	0,016252	356.2754@11.323402	0,016468
658.8269@1.4838572	0,016332	292.0907@0.6016598	0,016474
510.313@7.622304	0,016537	567.1853@12.235454	0,017683
157.9895@0.22846939	0,016548	886.9025@11.402026	0,017711
685.9856@0.3366482 514.8103@10.928623	0,017062 0,01732	176.0798@0.5393362 452.9337@6.1222496	0,017714 0,01788
2-Hexyldecanoic acid + 11.399178	0.017324	171.1499@6.0734553	0,018192
209.1432@6.1036882	0,017567	100.0889@4.657621	0,018297
598.3738@8.25271	0,017574	384.2@7.4796586	0,018372
234.0859@0.71995	0,017638	173.962@0.2878033	0,018589
335.3038@10.928998	0,017673	781.5687@13.514846	0,018623
278.2204@10.644181	0,017674	168.1032@7.0810013	0,018662
871.177@0.6548153 724.5084@12.67424	0,018694 0,018932	457.7795@7.471822 296.2365@10.774166	0,019995 0,020087
213.9807@0.14742497	0,018935	119.9643@0.33526656	0,020353
C17 H24 O3	0,019092	C27 H52 O3	0,020407
636.9259@11.685778	0,01916	767.9911@0.33708334	0,020442
198.162@10.276973	0,019342	C15 H34 N6	0,020861
C42 H45 N5 O S	0,019582	521.7862@10.882361	0,020863
266.173@11.072909	0,019819	240.0515@0.660867	0,021168
1290.1241@11.671404	0,019952	262.2309@10.195422	0,021169
283.1371@6.0716147 234.0861@0.7021369	0,019979 0,021214	423.9788@0.32775 310.1831@8.114489	0,021191 0,022645
577.9698@0.30845454	0,021214	340.2982@12.001823	0,022856
204.9807@0.13828	0,021299	354.2166@6.266048	0,02303
C24 H53 N5 O2 S2	0,021598	220.1113@8.06709	0,023187
261.119@0.47116664	0,021656	246.0862@0.5887819	0,023552
397.3165@11.197967	0,021928	849.9884@0.3307567	0,023789
809.9937@0.33714706	0,021968	201.9698@0.33332077	0,023978
413.3506@10.323316 N-Tris[hydroxymethyl]methyl-2-	0,022265	643.5505@13.561473	0,024036
aminoethanesulfonic acid [TES]	0,022425	725.9656@0.33174998	0,024409
760.0249@0.3289144	0,022426	635.5696@13.263429	0,024747
517.9558@0.30923077	0,02481	753.6121@13.305889	0,028098
692.6025@12.679464	0,024955	235.9837@0.1996229	0,028185
56.0626@9.713337	0,025033	657.516@13.120418	0,028539
681.9688@0.31354544 216.1@3.8915002	0,025041 0,025454	224.1776@9.151642 C18 H22 N4 O	0,028652 0,028709
641.5069@11.796257	0,025499	452.3368@6.060694	0,028873
216.1001@4.026342	0,026123	440.377@13.035486	0,029023
1016.5887@11.854842	0,026235	110.1096@8.493471	0,029772
284.2365@3.4831614	0,026368	716.2633@11.673073	0,029818
C37 H50 C1 N3 O2 S2	0,026519	612.0041@0.32950795	0,030193
327.2078@8.097068	0,026693	692.605@12.661329	0,030276
C7 H2 Cl3 N5 O4 S4	0,027068	341.2573@7.7716813 591.493@13.487834	0,030295 0,030382
756.3405@11.669426 185.9924@0.26935413	0,027161 0,027368	280.2401@10.505275	0,030643
941.9846@0.32810527	0,027396	564.4749@13.072547	0,030701
C18 H14 N2 O13 S2	0,027514	227.1659@6.142667	0,030806
201.9748@0.3337199	0,02761	246.0868@0.6388513	0,03099
388.2066@8.9662485	0,027938	347.7659@5.309534	0,031027
258.2059@10.7358465	0,028082	190.9651@0.17638464	0,031059
119.9629@0.33602977	0,028088	503.2709@10.828578	0,03114
836.028@0.32666668 638.1345@11.691667	0,031172 0,031176	300.136@9.878215 684.265@11.672174	0,033178 0,033242
278.152@0.1475	0,031324	669.3227@11.567696	0,033242
455.5382@6.0916667	0,031395	212.1707@6.0624666	0,033575
388.1457@7.901	0,031432	1018.4341@11.659348	0,034128
656.1137@11.7023325	0,031566	468.4179@13.250272	0,03423
C4 H8 N2 O4 S	0,031596	825.9755@0.33489066	0,034419
154.9671@0.15766667	0,031632	148.0159@0.18022223	0,034827
279.2576@10.131626	0,031793	340.2155@10.685113	0,034886
683.029@7.512481 437.1427@3.406	0,031815	495.3337@10.780594	0,035429
437.1437@3.496 609.5686@12.209	0,031831 0,031865	166.0367@12.09479 729.5561@11.860808	0,035477 0,035788
176.0799@0.5881066	0,031987	222.1193@6.770067	0,035962
359.2285@7.5411525	0,032006	246.1321@11.674382	0,036174
373.3013@11.626332	0,032062	630.7944@1.5883335	0,036283
289.1531@1.6523333	0,032135	284.2378@13.513632	0,036435
814.1665@11.635865	0,032145	611.2282@10.685538	0,036588
756.3416@11.785822	0,032302	471.2951@9.840227	0,036645
342.1102@2.891149	0,032843	783.976@0.3320877	0,036934
294.189@12.783478	0,032962	284.2357@10.546079	0,037097

663.9691@0.33327907	0,037108	704.155@10.690506	0,039772
678.591@12.563594	0,037131	479.3378@11.2207155	0,039916
489.4205@13.294838	0,037426	148.0271@9.7506485	0,039932
596.0245@0.3291082	0,037508	265.0296@0.29148573	0,039933
454.395@13.238646	0,037526	177.9586@0.19890909	0,040314
685.1951@13.575216	0,037599	110.1092@11.872963	0,04084
642.1819@10.919674	0,037728	783.9611@0.33033332	0,040936
216.1002@3.9859161	0,037757	399.3524@10.697544	0,041274
566.437@13.234795	0,037797	620.2147@10.942474	0,0413
146.0682@0.38516834	0,037816	C27 H44 O3 S	0,041533
C18 H30 S2	0,03785	374.3013@11.206279	0,041707
972.9397@11.57451	0,038134	C28 H49 N3 O6	0,041787
282.2568@10.889482	0,038137	457.9355@0.32109895	0,041867
929.1817@0.72995013	0,038283	637.0927@0.7744274	0,041925
387.3164@11.353839	0,038546	713.5622@12.160841	0,041992
210.1983@10.67588	0,038906	760.052@0.33009088	0,042055
440.3845@12.985891	0,039222	723.5622@7.511513	0,042295
234.0868@0.63543755	0,039355	644.2015@10.605364	0,042391
368.1192@10.353328	0,039546	C34 H2 Cl3 N O2 S5	0,042675
174.036@0.28963453	0,039735	120.0436@18.070166	0,042866
155.0949@3.1134999	0,042928	126.0659@0.9467599	0,046731
832.2338@13.842	0,042936	716.4601@7.505818	0,046901
435.279@11.498829	0,043531	599.9644@0.31071427	0,047014
358.3092@13.572001	0,043583	439.3501@10.388587	0,047119
732.4181@7.5052867	0,043643	563.9528@0.30988097	0,047386
627.9885@0.33200002	0,043855	244.1791@1.557854	0,047388
330.8532@11.516083	0,043897	C34 H47 N O2	0,047571
311.2096@9.1796665	0,043941	590.4903@13.49984	0,047586
384.3075@11.858621	0,044053	232.9758@0.20885335	0,047746
365.9886@0.3320769	0,044455	488.8094@7.624139	0,048244
316.2439@10.995297	0,044665	181.1469@6.151663	0,048485
412.3272@12.706718	0,045245	248.1452@0.39177552	0,048639
344.2617@9.81088	0,045396	284.2757@11.863982	0,048779
472.3524@11.074256	0,0454	523.2832@10.533558	0,048916
336.205@7.086543	0,045489	215.1885@4.1450696	0,049285
827.9986@0.32538462	0,045575	211.1116@2.8855329	0,049338
245.1398@6.0608997	0,0456	161.9831@0.29138526	0,04943
738.0222@0.3273937	0,045689	C18 H14 N2 O14 S	0,046707
717.5356@12.8897705	0,046029		

Tabla suplementaria 9. Metabolitos diferenciales en función del volumen de la lesión isquémica aguda de la cohorte 1 (p<0,05).

Metabolito	correlation coefficient (Pearson)	p-value
821.5556@12.865539	0,50844	3,12E-07
830.5581@13.412775	0,39822	0,00010144
198.1619@8.398842	0,37664	
176.0946@1.8051666	0,36057	
342.2888@8.815709	0,34775	
260.1378@1.7251732	0,32994	0,0014943
103.9876@0.3595	0,32882	0,0015542
506.3206@10.89341	0,32744	0,001631
880.749@15.465149	0,31834	0,0022295
292.2367@1.0282058	0,31118	0,0028328
819.5374@13.134601	0,30816	
131.0945@0.55935377	0,29993	
202.0849@6.1496954	0,29146	0,0053168
593.3013@10.840889	0,29031	0,0055091
802.0556@13.482436	0,28903	0,0057301
85.0882@0.5582229	0,28594	0,0062949
142.0169@0.38310525	0,26939	
804.04@13.418083	0,26488	
788.6189@13.828199	0,26063	0,013102
885.5245@13.448302	0,25863	0,013842
180.0648@2.4854925	0,25553	0,015064
370.3196@9.893019	0,25185	0,016641
809.5964@13.793842	0,25155	0,016774
312.243@6.873625	0,24958	0,017677
849.988@0.34047824	0,24729	0,018784
413.2926@10.074945	0,24135	0,021929
115.0657@0.40386248	0,24006	0,022664
302.2457@10.682393	-0,23205	0,027753
839.5256@13.62662	0,23199	0,027792
222.0755@11.231134	0,22952	0,029547
148.052@0.8604857	0,22803	0,030648
730.5894@13.415696	0,22642	0,031881
577.9421@0.35042858	0,22586	0,032312
653.3252@11.665079	-0,22393	0,033863
246.1191@0.90358645	0,2212	0,036156
468.3312@5.798207	0,21601	0,040878
430.2321@9.217699	0,21479	0,042056
213.9809@0.13865854	0,21463	0,042211
832.572@13.427406	0,2086	0,048485
760.0261@0.34239823	-0,20844	0,048661
380.2909@12.032932	0,20817	0,048967
165.0799@0.85942173	0,20776	0,049421
419.3132@12.469489	0,20766	0,049535

Tabla suplementaria 10. Metabolitos diferenciales en función del volumen de la lesión isquémica aguda de la cohorte 2 (p<0,05).

Metabolito	correlation coefficient (Pearson)	p-value	Metabolito	correlation coefficient (Pearson)	p-value
368.2412@11.418	0,63709	0	889.9765@0.3299788	0,24172	0,0027884
292.3006@0.6534529	0,49269	1,31E-10	384.3003@11.963142	0,24037	0,0029499
519.9593@10.650616	0,44917	7,25E-09	155.0276@0.38986662	0,2403	0,0029583
210.1996@10.724	0,44697 0,41572	8,76E-09	341.0002@7.51365	0,23978	0,0030227
234.2721@0.6523333 97.9686@0.20366669	0,41372	1,11E-07 2,34E-07	611.2282@10.685538 C8 H17 Cl3 N2 O3 S	0,2391 0,23684	0,0031101
122.0296@0.289	0,39301	5,99E-07	831.2316@13.907276	0,23545	0,0034110
368.1865@11.0315	0,36762	3,43E-06	C37 H N O6 S4	0,23413	0,0038097
387.0749@6.1754994	0,36726	3,51E-06	495.3333@10.928916	0,23401	0,0038294
312.268@13.695499	0,36519	4,02E-06	292.0915@0.46923825	0,2331	0,0039726
753.6091@13.283371	0,36302	4,63E-06	113.054@0.46618178	0,22995	0,0045062
138.9951@13.7705	0,35246	9,07E-06	432.0224@0.3311176	0,22981	0,0045309
113.0488@0.49699995 225.1842@6.082333	0,34492 0,3443	1,44E-05 1,50E-05	718.273@11.683593 136.0387@0.77786255	0,22797 0,2271	0,004875
447.344@12.672	0,34324	1,60E-05	979.273@14.136512	0,2269	0,0050839
415.3505@11.922286	0,34038	1,90E-05	644.2115@10.685887	0,22622	0,0052212
678.0397@0.3296	0,33864	2,11E-05	452.3366@6.3129997	0,22563	0,0053425
687.9842@0.32138464	0,33849	2,13E-05	252.2089@10.230545	0,22442	0,005601
694.017@0.33033332	0,33768	2,23E-05	411.3343@11.387335	0,22316	0,0058817
643.9625@0.32924137	0,33682	2,35E-05	108.0929@11.384999	0,21978	0,0066983
254.2601@0.25	0,33448	2,70E-05	1053.9807@0.33108884	0,21961	0,0067423
238.2305@11.561 638.145@11.689	0,33448 0,33448	2,70E-05 2,70E-05	691.9901@0.33698216 363.2503@11.70379	0,21778 0,21769	0,0072258 0,0072526
282.2923@12.363	0,33448	2,70E-05	240.1665@8.117125	0,21764	0,0072526
188.0717@1.209	0,33448	2,70E-05	545.3504@10.7605715	0,21731	0,0073574
563.9528@0.30988097	0,33058	3,39E-05	398.2439@10.229333	0,21703	0,0074337
162.0909@6.5066605	0,33037	3,43E-05	372.2807@10.649577	0,21697	0,0074522
497.3388@11.06756	0,32043	6,04E-05	915.2661@7.516655	0,2167	0,0075274
697.2495@13.6125	0,31986	6,24E-05	246.0862@0.5887819	0,21605	0,0077129
661.4768@12.456924	0,31853	6,72E-05	347.3046@11.417894	0,21353	0,0084767
341.0336@7.510429 842.0551@0.3296	0,30556 0,30286	0,00013602 0,00015689	655.3053@10.712833 747.5828@13.251114	0,21325 0,2132	0,0085648 0,0085802
255.9591@0.29044166	-0,29817	0,0002004	293.0967@0.6587778	0,2121	0,0089363
678.5041@7.795275	0,29572	0,00022742	783.976@0.3320877	0,2097	0,0097596
C49 H30 Cl N O	0,29561	0,00022861	468.4179@13.250272	0,20889	0,010054
530.0036@0.33142856	0,29372	0,00025189	316.0749@0.5893513	0,20886	0,010063
567.3336@10.894827	0,28992	0,00030524	698.5904@14.048	0,20864	0,010144
342.0317@7.5008335 251.1617@9.834846	0,28525 0,28346	0,00038502 0,00042053	314.2678@11.412724 669.9874@0.33777547	0,20799 0,20781	0,010387 0,010455
414.3633@12.647845	0,28134	0,00042033	659.9582@0.30999067	0,20696	0,010433
110.1096@8.571667	0,28089	0,00047674	694.0001@0.32921723	-0,20664	0,010908
291.8975@0.34639996	0,27755	0,00056002	621.0217@0.51150006	0,20627	0,011053
388.1447@8.020166	0,27717	0,00057032	632.24@10.700231	0,20454	0,01176
980.9267@11.680333	0,27638	0,00059217	1030.0035@0.33131692	0,20404	0,011973
521.3352@10.799391	0,27167	0,00073999	725.9656@0.33174998	0,2032	0,012334
353.0216@6.668	0,27123	0,00075559	830.4423@7.5986657	0,20234	0,012717
662.452@13.602 138.9945@15.47	0,27123 0,27123	0,00075559 0,00075559	234.0858@0.530124 704.1722@11.139749	-0,20227 0,20143	0,012752 0,013132
138.9949@15.753	0,27123	0,00075559	636.5182@11.725	0,20121	0,013234
353.0229@6.758	0,27123	0,00075559	754.2453@11.683	0,20016	0,013736
159.0531@0.49675012	0,27076	0,00077225	457.9355@0.32109895	0,19954	0,014033
637.0916@0.4725045	0,26628	0,00095066	162.0861@3.9308622	0,1992	0,014203
571.2564@10.90175	0,2654	0,00098974	319.9127@8.887606	0,1978	0,014909
381.9572@0.3342023	0,26499	0,0010084	220.1118@6.7692523	0,19743	0,015105
418.3099@12.510638 608.2214@10.621836	0,26484 0,2635	0,0010154 0,001079	519.5343@10.684 233.2726@2.882	0,19718 0,19691	0,015238 0,015381
989.0167@0.33233333	0,26269	0,001079	519.3331@10.615709	0,19682	0,015381
760.052@0.33009088	0,257	0,0011138	709.9774@0.33040002	-0,1962	0,015759
387.4197@6.1879997	0,25616	0,0014996	389.7187@7.5135	0,19563	0,016072
637.0924@0.59892195	0,25607	0,0015058	982.094@0.60002404	0,19546	0,016168
681.0747@7.523143	0,25536	0,0015534	142.0128@0.28985217	-0,19499	0,01643
242.1635@3.1575716	0,25421	0,0016343	272.1845@9.956316	-0,19252	0,017869
150.0207@9.697416	0,25329	0,0017014	298.267@12.509186	0,19252	0,017874
659.7656@11.7347765	0,253	0,001723	665.0208@11.668874 2-Hexyldecanoic acid +	0,19209	0,018135
370.2875@11.299402	0,24898	0,0020504	11.399178	0,19143	0,018545
681.3581@11.878035	0,24719	0,0022139	180.0178@0.2886	0,19138	0,018573
378.3129@10.812906	0,24653	0,002277	411.3278@11.55343	0,1907	0,019005
663.7819@11.676749	0,24594	0,0023353	629.5405@13.497547	0,18965	0,019685
593.2598@10.582306 1018.4341@11.659348	0,24479 0,24428	0,002452 0,0025053	299.9558@0.3355754 312.2674@11.54154	0,18954 0,18922	0,019756 0,01997
358.3094@12.013703	0,24392	0,0025033	71.0728@0.40852177	0,24236	0,0027153
743.9521@0.33662507	0,24291	0,0026538	375.3361@11.97615	0,18845	0,020491

1177.9948@0.3306338	0,18828	0,020603	382.3291@12.835895	0,17445	0,032167
340.1354@7.5157695	0,1881	0,020731	693.6118@13.348343	0,17376	0,03287
179.9812@0.33536366	0,18778	0,02095	655.5032@12.212287	0,17342	0,033212
201.1734@7.705236	0,18741	0,021209	373.3009@11.359363	0,17336	0,033278
501.2903@10.415399	0,18674	0,021681	637.0927@0.7744274	0,17312	0,03353
1177.9948@0.3306338	0,18828	0,020603	447.9951@0.3322105	0,17292	0,033728
340.1354@7.5157695	0,1881	0,020731	312.2674@13.514637	0,17253	0,034148
179.9812@0.33536366	0,18778	0,02095	681.3573@11.774888	0,17251	0,034168
201.1734@7.705236	0,18741	0,021209	564.4713@13.007466	0,17245	0,034227
501.2903@10.415399	0,18674	0,021681	673.4981@10.5176525	0,17207	0,034634
1177.9948@0.3306338	0,18828	0,020603	461.3164@11.34447	0,17203	0,034672
340.1354@7.5157695	0,1881	0,020731	344.2554@9.810207	0,1715	0,035245
282.2896@12.396	0,18622	0,022061	924.0306@0.32953396	-0,17127	0,035492
294.1867@9.409456	0,18511	0,022874	477.2967@10.383148	0,1698	0,037124
921.0026@0.22384815	0,18462	0,023245	771.6051@12.5939665	0,16897	0,038082
586.2222@10.842429	0,18418	0,023582	226.1693@6.0694985	-0,16885	0,03822
617.2914@10.733296	0,18353	0,024088	803.3695@7.5342903	0,1688	0,038274
929.1799@0.6233685	0,18205	0,025275	358.3094@11.8517	-0,1683	0,038863
543.3331@11.100715	0,18121	0,025964	216.1@3.8915002	0,16786	0,03938
208.1473@8.34149	-0,18076	0,026341	483.0753@6.6256	0,16742	0,039905
292.0907@0.6016598	0,18074	0,026365	563.3327@10.69425	0,16728	0,040076
375.7418@11.904304	0,17895	0,027913	293.0948@0.7432758	0,16685	0,040597
510.464@13.517	0,17889	0,027966	713.5617@12.19719	0,16657	0,040944
414.2053@8.7115	0,17837	0,028437	456.2781@11.958	0,16613	0,04148
457.3435@10.77137	0,17803	0,028743	568.5094@13.50477	0,16594	0,041717
417.308@11.387147	0,17719	0,029517	621.0212@0.13571429	0,16482	0,04314
366.3303@13.057825	0,17703	0,029664	451.3142@9.970349	-0,1644	0,04368
184.108@4.739128	0,17559	0,031041	356.2759@11.410445	0,16424	0,043886
726.1566@10.716974	0,17534	0,031282	356.2923@10.689628	0,16408	0,0441
216.1147@6.8130403	0,17525	0,031373	760.0249@0.3289144	-0,1638	0,04446
865.9783@0.33222955	0,17489	0,031734	242.201@9.2369995	0,16365	0,044658
754.0023@0.32150468	-0,17457	0,032051	633.443@10.979151	0,16223	0,046575
188.0802@0.7503334	0,16207	0,046799	348.3037@11.592231	0,16091	0,048408
597.479@11.791929	0,16199	0,046899	848.4207@7.517643	0,16062	0,048822
452.3368@6.060694	-0,16182	0,047137	520.4376@12.722348	0,1605	0,048993
729.2398@13.290025	0,16164	0,047383	Paraxanthine	0,16021	0,049403
452.4209@13.506493	0,16158	0,047477	468.4134@13.209506	-0,15998	0,049739

Tabla suplementaria 11. Metabolitos diferenciales en función del patrón de la DF de la cohorte 1 (n<0.05).

Metabolito	p.value	FDR	Fisher's LSD
· · · · · · · · · · · · · · · · · · ·	privatue	TDR	Multiples territories - Isolated cortical lesion; Normal DWI - Isolated cortical
376.1223@9.6 615925	0,00018915	0,14434	lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
823.5677@12. 931999	0,0002293	0,14434	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
139.0636@0.4 0001464	0,00051344	0,21547	Normal DWI - Isolated cortical lesion; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory
205.132@1.52 04664	0,00083706	0,25256	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
648.3712@13. 055613	0,001044	0,25256	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
161.1095@0.3 739232	0,0013319	0,25256	Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory
138.0535@0.6 4599997	0,001639	0,25256	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
113.061@0.37 787277	0,0016798	0,25256	Isolated cortical lesion - Multiples territories; Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
362.2134@7.0 398383	0,0019471	0,25256	Multiples territories - Isolated cortical lesion; Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
299.1971@6.8 042703	0,0020355	0,25256	Isolated cortical lesion - Multiples territories; Scattered 1 territory - Isolated cortical lesion; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical – Multiples territories
347.3033@11. 345807	0,0022066	0,25256	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
129.0514@0.6 500699	0,003426	0,33525	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DW
168.0296@0.6 1285967	0,0034617	0,33525	Normal DWI - Scattered 1 territory
168.037@0.63 59706	0,0055877	0,50249	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DW
17.079@0.42 77823	0,0065648	0,53691	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory
159.0294@0.3 9463043	0,0068234	0,53691	Normal DWI - Scattered 1 territory
256.1455@0.3 9744005	0,0089958	0,63268	Normal DWI - Isolated cortical lesion; Normal DWI - Scattered 1 territory
155.0368@0.3 967031	0,0093181	0,63268	Normal DWI - Scattered 1 territory
350.003@0.34 1394	0,011121	0,63268	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
71.0754@0.41 229078	0,011678	0,63268	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory
217.1223@2.2 105	0,012465	0,63268	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
801.5443@13. 481795	0,012579	0,63268	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
69.0487@0.39 657143	0,012767	0,63268	Multiples territories - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Subcortical
567.3324@10. 57636	0,014553	0,63268	Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion
839.5239@13. 715541	0,015363	0,63268	Scattered 1 territory - Isolated cortical lesion; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Scattered 1 territory - Subcortical

284.2732@12. 124484	0,01541	0,63268	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory
440.3369@6.9 429083	0,015666	0,63268	Scattered 1 territory - Normal DWI
479.3374@11. 26483	0,015854	0,63268	
825.9731@0.3	0.015005	0.62269	Scattered 1 territory - Subcortical
4613043 287.2823@7.8	0,015885	· ·	Scattered 1 territory - Normal DWI; Subcortical - Normal DWI Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical
183784	0,016178	0,63268	lesion
798.6533@13. 746083	0,016237	0,63268	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
209.0745@0.4 0415385	0,016528	0,63268	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Normal DWI - Subcortical
256.0987@0.3 9790908	0,016583	0,63268	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
220.111@6.73 58093	0,017753	0,64553	Isolated cortical lesion - Multiples territories; Isolated cortical lesion - Subcortical; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Normal DWI - Subcortical; Scattered 1 territory - Subcortical
662.4869@11.	0.017046	0.64552	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical
7656145	0,017946	0,64553	lesion; Subcortical - Isolated cortical lesion
220.1108@6.7 6498	0,01868	0,65328	Multiples territories - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory
512.1731@8.5 13899	0,02037	0,66437	Subcortical – Multiples territories; Normal DWI - Scattered 1 territory; Subcortical – Scattered 1 territory
495.3341@10. 767867	0,020461	0,66437	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
580.4484@12. 981106	0,02058	0,66437	Subcortical - Normal DWI; Subcortical - Scattered 1 territory
56.0683@9.67 9461	0,02137	0,67263	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
129.0444@0.6 452794	0,024259	0,70883	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical – Scattered 1 territory
470.7316@4.8 055553	0,024373	0,70883	· · · · · · · · · · · · · · · · · · ·
C10 H11 N3 O2	0,025134	0,70883	Isolated cortical lesion - Subcortical; Scattered 1 territory - Multiples territories; Scattered 1 territory - Subcortical
831.2313@13. 703026	0,025152	0,70883	Isolated Cortical lesion - Multiples territories; Normal DWI - Multiples territories; Normal DWI - Scattered 1 territory
C25 H26 N4 O2	0,025649	0,70883	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal
204.0811@9.6 84952	0,026308	0,70883	Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Subcortical - Scattered 1 territory
779.547@13.3 20779	0,027315	0,70883	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
279.2556@11. 064029	0,028158	0,70883	Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory
C22 H34 O4	0,028882	0,70883	Normal DWI - Isolated cortical lesion
186.0492@0.4 0365914	0,029708	0,70883	Normal DWI - Scattered 1 territory
413.2926@10. 074945	0,030686	0,70883	Isolated cortical lesion - Scattered 1 territory; Multiples territories – Scattered 1 territory; Normal DWI - Scattered 1 territory
370.3085@12. 259406	0,030885	0,70883	Subcortical - Normal DWI
523.9691@0.3 2459307	0,031033	0,70883	Subcortical - Normal DWI
490.3646@12.	0,031374	0,70883	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI
091774 776.4943@13. 112258	0,032672	0,70883	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories;
801.5283@13.	0,033167	0,70883	Subcortical - Normal DWI Scattered 1 territory - Normal DWI; Subcortical - Normal DWI

376448			
441.2948@12.	0,033313	0,70883	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory
533411	0,033313	0,70883	37
674.5372@12. 863	0,033352	0,70883	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
283.9551@5.5 69586	0,034043	0,70883	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI
326.0019@7.8 854637	0,034143	0,70883	Subcortical - Isolated cortical lesion; Subcortical - Scattered 1 territory
1174.3517@13 .572097	0,035088	0,70883	Subcortical - Normal DWI; Subcortical - Scattered 1 territory
276.122@6.15 01937	0,035317	0,70883	Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
214.1682@4.6 434255	0,035469	0,70883	Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI
328.2375@11. 536448	0,036896	0,72569	Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Subcortical - Scattered 1 territory
242.1639@5.4 946003	0,037569	0,72569	Scattered 1 territory - Normal DWI
200.1763@8.2 57264	0,038114	0,72569	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
202.0344@0.2 9078484	0,038619	0,72569	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
643.4151@13. 05569	0,039863	0,73588	Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Subcortical – Scattered 1 territory
148.0179@9.6 87561	0,041552	0,73588	Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion
795.5393@12. 951568	0,042312	0,73588	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory
103.1019@0.3 653894	0,042401	0,73588	Scattered 1 territory - Normal DWI; Subcortical - Normal DWI
1170.3389@13 .535571	0,042453	0,73588	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI
97.9687@0.29 370785	0,042668	0,73588	Normal DWI - Subcortical; Scattered 1 territory - Subcortical
302.2244@10. 430186	0,043554	0,74101	Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
523.9638@0.3 2402447	0,044234	0,74254	Normal DWI - Subcortical
306.2563@12. 168757	0,045129	0,7476	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Subcortical; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
290.2434@10. 108017	0,045856	0,74978	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
250.1232@8.7 51307	0,046843	0,75203	Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
457.2282@8.5 53286	0,047953	0,75203	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory
760.0261@0.3 4239823	0,048227	0,75203	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion
363.251@12.9 80447	0,048929	0,75203	Multiples territories - Scattered 1 territory; Subcortical - Scattered 1 territory
1173.3484@13 .548473	0,049796	0,75203	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory

Tabla suplementaria 12. Metabolitos diferenciales en función del patrón de la DF de la cohorte 2 (p<0,05).

Metabolito	p.value	FDR	Fisher's LSD
166.0285@2.44	5,94E-11	2,16E-07	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
886.4005@11.404305	5,67E-08	0,00010286	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
759.5795@13.663	1,36E-05	0,016432	Multiples territories - Subcortical
634.4999@13.728874	6,49E-05	0,051349	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
215.1059@3.0609999	7,51E-05	0,051349	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
519.3335@10.530935	8,49E-05	0,051349	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
511.0833@0.8502882	0,00018669	0,087801	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
126.1043@3.2037501	0,0001935	0,087801	Subcortical - Isolated cortical lesion; Subcortical - Multiples territories; Subcortical - Normal DWI; Subcortical - Scattered 1 territory
736.0102@0.33522218	0,00030797	0,10624	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
517.9447@0.30889246	0,00032586	0,10624	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory
767.9868@0.33496663	0,00035648	0,10624	Isolated cortical lesion - Scattered 1 territory; Isolated cortical lesion - Subcortical; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical; Normal DWI - Scattered 1 territory; Normal DWI - Subcortical
542.3984@12.890575	0,00037434	0,10624	Normal DWI - Isolated cortical lesion; Normal DWI - Scattered 1 territory; Normal DWI - Subcortical
586.2222@10.842429	0,00038047	0,10624	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
286.262@6.209396	0,00045735	0,1161	Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI
287.2128@5.1527076	0,00051884	0,1161	Scattered 1 territory - Isolated cortical lesion; Isolated cortical lesion – Subcortical; Multiples territories - Subcortical; Scattered 1 territory - Normal DWI; Normal DWI - Subcortical; Scattered 1 territory - Subcortical
489.4205@13.294838	0,00053993	0,1161	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
114.0166@0.28954086	0,00056233	0,1161	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI
759.576@13.7512	0,00057571	0,1161	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI;
392.3041@9.169374	0,00070194	0,12769	Isolated cortical lesion - Multiples territories; Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
681.9688@0.31354544	0,00070351	0,12769	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
497.3946@6.0739594	0,00082974	0,13284	Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI
470.3466@4.201277	0,0008326	0,13284	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
426.4939@0.3116667	0,00084166	0,13284	Subcortical - Isolated cortical lesion; Subcortical - Multiples territories; Subcortical - Normal DWI; Subcortical - Scattered 1 territory
291.8827@0.34566665	0,00089319	0,13348	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
486.0022@0.3082609	0,00097144	0,13348	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
568.5094@13.50477	0,0009838	0,13348	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
685.315@10.914328	0,00099283	0,13348	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Normal DWI - Scattered 1 territory
170.1102@6.5159173	0,0012968	0,16017	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
579.3538@11.082965	0,0013803	0,16017	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI
495.3339@10.79397	0,0014598	0,16017	Isolated cortical lesion - Multiples territories; Isolated cortical lesion - Normal DWI; Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI
224.1776@9.151642	0,0015219	0,16017	Multiples territories - Isolated cortical lesion; Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion

171.1499@6.0734553	0,0015353	0,16017	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
354.2177@6.219	0,0015725	0,16017	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
340.2981@13.669666	0,001629	0,16017	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
495.3337@10.780594	0,0017099	0,16017	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory	
636.8372@11.835604	0,0017245	0,16017	Isolated cortical lesion - Multiples territories; Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
435.279@11.498829	0,0017409	0,16017	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion	
865.9783@0.33222955	0,0017734	0,16017	Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
348.2577@5.65126	0,0017842	0,16017	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
929.4199@11.494099	0,0017924	0,16017	Isolated cortical lesion - Multiples territories; Isolated cortical lesion - Subcortical; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Normal DWI - Subcortical; Scattered 1 territory - Subcortical	
128.046@0.36416665	0,0018091	0,16017	Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
106.0641@0.1735	0,0019848	0,17155	Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
131.0613@0.679	0,0021059	0,17778	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
532.8276@7.775509	0,0021664	0,17873	Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
238.0844@4.8048944	0,0022162	0,17877	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Isolated cortical lesion - Subcortical; Multiples territories - Normal DWI; Multiples territories - Subcortical	
220.0844@2.6850002	0,0023158	0,18274	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
618.4717@9.491957	0,0024355	0,18811	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
365.9818@0.33119023	0,0025629	0,19356	Normal DWI - Scattered 1 territory	
401.8248@7.070214	0,0026128	0,19356	Multiples territories - Isolated cortical lesion; Scattered 1 territory – Isolated cortical lesion; Multiples territories - Subcortical; Scattered 1 territory – Normal DWI; Scattered 1 territory - Subcortical	
287.2463@9.395551	0,0027105	0,19678	Normal DWI - Scattered 1 territory; Normal DWI - Subcortical	
956.0219@0.33066666	0,0027771	0,19767	Multiples territories - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Subcortical; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
C13 H25 N O3	0,0031941	0,22297	Multiples territories - Normal DWI; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
181.1469@6.151663	0,0033052	0,22638	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory - Normal DWI	
725.9656@0.33174998	0,0037476	0,25192	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory	
466.2946@7.469009	0,0039369	0,25694	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
767.9911@0.33708334	0,0039638	0,25694	Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Subcortical - Multiples territories; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
773.5807@11.88525	0,0040753	0,25849	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
322.978@0.46058574	0,0041663	0,25849	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
388.1454@7.8742414	0,0042013	0,25849	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
532.316@7.6263337	0,0045009	0,262	Scattered 1 territory - Normal DWI	
685.5301@11.845539	0,0045467	0,262		
	0,0045473	0,262	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
674.2562@11.681	0,0043473			
674.2562@11.681 485.9967@0.30815864	0,0046154	0,262	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
		0,262	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion;	

148.0148@9.675296	0,0049426	0,262	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI	
471.8113@6.069378	0,0050266	0,262	Multiples territories - Isolated cortical lesion; Normal DWI - Isolated cortical lesion	
468.4179@13.250272	0,005116	0,262	Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
554.3474@8.024438	0,0051204	0,262	Scattered 1 territory - Normal DWI	
444.281@7.3047404	0,0051373	0,262		
C18 H16 O17 S3	0,0051536	0,262	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
455.054@6.069389	0,0051967	0,262	Subcortical - Isolated cortical lesion; Subcortical - Multiples territories; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
662.4486@13.440018	0,0056728	0,28209	Scattered 1 territory - Normal DWI	
C15 H34 N8 O	0,005759	0,2825	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI; Subcortical – Normal DWI	
711.2768@11.671	0,0060704	0,29381	Scattered 1 territory - Normal DWI	
466.7966@7.46848	0,0062235	0,29725	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
158.0991@0.27866668	0,0063549	0,29884	Subcortical - Isolated cortical lesion; Multiples territories - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
400.2579@7.080311	0,0064213	0,29884	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
C14 H14 O16 S2	0,0065762	0,30217	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
940.0344@0.3297143	0,0067565	0,30658	Isolated cortical lesion - Normal DWI; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
752.2429@11.677412	0,0068598	0,30742	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
C34 H42 N4 S5	0,0071137	0,31491	Normal DWI - Isolated cortical lesion; Normal DWI - Subcortical	
113.0579@0.37825444	0,0075317	0,3272	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
234.0863@0.640614	0,0075717	0,3272	Multiples territories - Isolated cortical lesion; Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion	
501.9828@0.31086957	0,0079247	0,33843	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
138.9952@0.29120246	0,0081844	0,34546	Normal DWI - Scattered 1 territory	
C18 H16 O18 S2	0,0086664	0,35914	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
1026.9774@0.33054432	0,0088585	0,35914	Isolated cortical lesion - Multiples territories; Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
313.2275@6.246513	0,008863	0,35914	Isolated cortical lesion - Subcortical; Scattered 1 territory - Multiples territories;	
199.0163@0.2912759	0,008988	0,35914	Normal DWI - Subcortical; Scattered 1 territory - Subcortical Normal DWI - Scattered 1 territory	
608.224@10.529197	0,0090033	0,35914	Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Normal DWI	
424.3512@12.508151	0,0093586	0,3691	- Multiples territories; Subcortical - Multiples territories Isolated cortical lesion - Multiples territories; Scattered 1 territory - Isolated cortical lesion; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
C21 H39 N O4	0,0097213	0,3691	Isolated cortical lesion - Subcortical; Normal DWI - Subcortical; Scattered 1 territory – Subcortical	
148.0169@9.4755	0,0098102	0,3691	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
452.3366@6.2140584	0,0098226	0,3691	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
779.5555@13.520165	0,0099766	0,3691	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
1082.007@0.3283617	0,01001	0,3691	Subcortical - Multiples territories; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
384.3075@11.858621	0,010141	0,3691	Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
179.9789@0.3079091	0,010148	0,3691	Multiples territories - Normal DWI; Scattered 1 territory - Normal DWI	
518.3194@11.073201	0,010168	0,3691	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	

278.109@81.13953					
C41810.25	278.109@8.133053	0,010865	0,3905		
12.2.799&7.6842904	C4 H8 O2 S	0,011242	0,39774		
21,23,0175@0,20950013	129.0393@0.37869868	0,011286	0,39774	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory	
222.0039@0.29186857 0.011981 0.40346 Scattered I territory - Normal DWI	412.2798@7.6842904	0,011426	0,39882		
20,205@10.902933 0,012098 0,40346 solated cortical lession - Normal DWI, Scattered 1 territory - Normal DWI 438.3688@12.643956 0,012143 0,40346 solated cortical lession - Normal DWI - Subtract Certifical solated cortical lession Normal DWI - Subtract Certifical solated cortical lession Normal DWI - Subtract Certifical solated cortical lession Normal DWI - Scattered 1 territory - Normal DWI; Scattered territory - Normal DWI - Multiples territories Subcortical Multiples territories Scattered territory - Normal DWI - Multiples territories Scattered territory - Normal DWI -	123.0175@0.29050013	0,011622	0,40178	Normal DWI - Scattered 1 territory	
A38.368&Q12.643956 0.012143 0.40346 Seatment Internory - Multiples territories Souther Certification - Normal DWI - Multiples territories Souther Certification - Normal DWI - Souther Internory - Multiples territories Souther Certification - Normal DWI - Souther Internory - Normal DWI - Multiples territories - Normal DWI - Normal	222.0039@0.29186857	0,011981	0,40346	Scattered 1 territory - Normal DWI	
Seattered territory - Multiples territories, Subcortical - Multiples territories	620.205@10.902933	0,012098	0,40346	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
337.9629@0.30419275	438.3688@12.643956	0,012143	0,40346	Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
18.094@3.9380753 0.012491 0.40346 Subcortical - Scattered I territory - Multiples territories. Subcortical - Multiples territories. Scattered I territory - Multiples territories. Subcortical - Multiples territories. Scattered I territory - Multiples territories. Subcortical - Multiples territories. Scattered I territory - Multiples territories. Subcortical - Multiples territories. Scattered I territory. Multiples territories. Subcortical - Multiples territories. Scattered I territory. Multiples territories. Subcortical - Multiples territories. Scattered I territory. Multiples territories. Subcortical - Multiples territories. Scattered I territory. Multiples territories. Subcortical - Multiples territories. Scattered I territory. Multiples territories. Subcortical - Multiples territories. Scattered I territory. Multiples territories. Subcortical - Multiples territories. Scattered I territory. Normal DWI - Subcortical - Multiples territories. Subcortical - Multiples territories. Subcortical - Normal DWI - Multiples territories. Subcortical - Normal DWI - Multiples territories. Subcortical - Normal DWI - Multiples territories. Subcortical - Multiples territories. Subcortical - Normal DWI - Multiples territories. Subcortical - Normal DWI - Multiples territories. Subcortical - Multi	136.0542@8.073125	0,012173	0,40346	Scattered 1 territory - Subcortical	
10.0049/0.9388/1755	337.9629@0.30419275	0,012369	0,40346	Subcortical - Scattered 1 territory	
Salabase Salabase	108.094@3.9380753	0,012491	0,40346	Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
Seattered Lerritory - Multiples territories - Subcortical - Multiples territories - Normal DWI;	842.0551@0.3296	0,012539	0,40346	Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
214.9825@0.18661292	368.321@12.290747	0,012574	0,40346	Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
398.2528@4.60402 0,013391 0,41335 Scattered I territory - Normal DWI 563.3366@10.684999 0,013539 0,41335 Scattered I territory - Normal DWI; Subcortical I esion - Normal DWI; Subcortical - Normal DWI 277.9528@0.31457755 0,013544 0,41335 Isolated cortical lesion - Multiples territories; Subcortical - Multiples territories; Scattered I territory - Multiples territories; Subcortical - Multiples territories; Scattered I territory - Normal DWI 302.2467@10.672244 0,013665 0,41335 Isolated cortical lesion - Multiples territories; Subcortical - Multiples territories; Scattered I territory - Multiples territories; Subcortical - Multiples territories; Subcortical - Solated cortical lesion, Multiples territories - Normal DWI; Multiples territories - Normal DWI; Multiples territories - Normal DWI; Multiples territories - Subcortical - Solated cortical lesion, Multiples territories - Normal DWI; Multiples territories - Subcortical - Solated cortical lesion, Multiples territories - Subcortical - Subcortical - Scattered I territory, Normal DWI - Scattered I territory; Normal DWI - Scattered I Subcortical - Solated cortical lesion - Solated cortical lesion, Multiples territories - Subcortical - Solated cortical lesion, Normal DWI; Solated cortical lesion - Subcortical - Solated cortical lesion - Normal DWI; Solated cortical lesion - Subcortical - Solated cortical lesion - Normal DWI; Solated cortical lesion - Subcortical - Solated cortical lesion - Solated ortical lesion - Subcortical - Solated cortical lesion - Scattered I territory; Insolated cortical lesion - Scattered I territory; Insolat	548.4794@12.924666	0,012684	0,40346		
	214.9825@0.18661292	0,012782	0,40346	Normal DWI - Scattered 1 territory; Normal DWI - Subcortical	
563.3366@10.684999 0,013539 0,41335 Subcortical - Normal DWI 277.9528@0.31457755 0,013544 0,41335 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory; Multiples territories; Scattered 1 territory; Multiples territories - Solated cortical lesion, Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical - Multiples territories - Scattered 1 territory; Multiples territories - Subcortical - Multiples territories - Scattered 1 territory; Multiples territories - Subcortical - Multiples territories - Scattered 1 territory; Multiples territories - Subcortical - Multiples territories - Scattered 1 territory; Multiples territories - Normal DWI; Multiples territories - Normal DWI; Multiples territories - Normal DWI; Multiples territories - Subcortical - Scattered 1 territory; Multiples territories - Normal DWI; Multiples territories - Normal DWI; Multiples territories - Subcortical - Scattered 1 territory; Multiples territories - Scattered 1 territory; Multiples territories - Scattered 1 territory; N	398.2528@4.60402	0,013391	0,41335	· · · · · · · · · · · · · · · · · · ·	
277.9528@0.31457755	563.3366@10.684999	0,013539	0,41335	Subcortical	
526.2599@6.0554647 0,013634 0,41335 Isolated cortical lesion - Normal DWI, Scattered 1 territory - Normal DWI 302.2467@10.672244 0,013665 0,41335 Solated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Satched 1 territory - Multiples territories; Solated - Multiples territories; Solated - Multiples territories 536.4806@13.395847 0,014077 0,4223 Normal DWI - Scattered 1 territory; Multiples territories - Normal DWI; Multiples territories - Solated cortical lesion; Multiples territories - Subcortical 483.9734@0.32 0,014621 0,43463 Multiples territories - Solated cortical lesion; Multiples territories - Subcortical 170.1381@5.1990747 0,015017 0,43962 Solated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory; Normal DWI - Scattered 1 territory; Multiples territories - Subcortical - Scattered 1 territory; Normal DWI - Scattered 1 territory; Multiples territories - Subcortical - Scattered 1 territory; Normal DWI - Scattered 1 territory; Multiples territories - Subcortical - Scattered 1 territory; Multiples territories - Subcortical - Normal DWI - Scattered 1 territory; Multiples territories - Subcortical - Normal DWI - Scattered 1 territory; Multiples territories - Subcortical - Normal DWI - Scattered 1 territory; Normal DWI - Scattered 1 territory - Normal DWI - Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI - Scattered 1 territory; Normal DWI - Scattered 1 territory; Mult	277.9528@0.31457755	0,013544	0,41335	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories;	
302_2487(@10.672244 0,015065 0,41335 Scattered 1 territory - Multiples territories: Subcortical - Multiples territories 356.4806@13.395847 0,014077 0,4223 Normal DWI - Scattered 1 territory: Multiples territories - Normal DWI; Multiples territories - Subcortical lesion; Multiples territories - Subcortical 1 territory: Multiples territories - Subcortical 1 territory: Normal DWI - Subcortical 1 territory: Normal DWI - Subcortical 1 territory: Normal DWI - Scattered 1 territory; Normal DWI - Scattered 1 territory: Normal DWI - Scattered 1 territory: Subcortical 1 territory: Subcortical - Scattered 1 territory: Normal DWI - Scattered 1 territory: Subcortical - Scattered 1 territory: Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory: Multiples territories - Subcortical 1 solated cortical lesion - Scattered 1 territory: Multiples territories - Subcortical 1 solated cortical lesion - Normal DWI; Multiples territories - Normal DWI; Multiples territories; Scattered 1 territory; Normal DWI 380.1748.@7.643404 0,015946 0,44576 Scattered 1 territory - Normal DWI; Multiples territories; Scattered 1 territory - Normal DWI 403.1998.@7.625902	526.2599@6.0554647	0,013634	0,41335		
483.9734@0.32 0,014621 0,43463 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 364.2398@11.179421 0,014727 0,43463 Normal DWI - Scattered 1 territory; Mormal DWI - Subcortical 170.1381@5.1990747 0,015017 0,43962 Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory 168.0572@0.3635 0,015236 0,44245 Multiples territories - Isolated cortical lesion; Multiples territories - Subcortical 658.8269@1.4838572 0,015544 0,44576 Isolated cortical lesion - Normal DWI; Multiples territories - Subcortical 359.2285@7.5411525 0,015768 0,44576 Isolated cortical lesion - Normal DWI; Multiples territories - Normal DWI; Multiples territories - Subcortical 280.2413@10.599354 0,015877 0,44576 Scattered 1 territory - Multiples territorie; Scattered 1 territory; Normal DWI - Scattered 1 territory - Normal DWI - Scattered 1 territory; Normal DWI - Scattered 1 territory - Normal DWI - Scattered 1 territory -	302.2467@10.672244	0,013665	0,41335		
Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 364.2398@11.179421 0,014727 0,43463 Normal DWI - Scattered 1 territory; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical Scattered 1 territory; Multiples territories - Scattered 1 territory; Multiples territory - Normal DWI Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI Scattered 1 territory; Normal DWI Scattered 1 territory - Normal DWI Scattered 1 territory; Normal	536.4806@13.395847	0,014077	0,4223	Normal DWI - Scattered 1 territory	
170.1381@5.1990747	483.9734@0.32	0,014621	0,43463		
Subcortical - Scattered 1 territory	364.2398@11.179421	0,014727	0,43463		
188.05/2@0.3635	170.1381@5.1990747	0,015017	0,43962		
359.2285@7.5411525	168.0572@0.3635	0,015236	0,44245		
Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	658.8269@1.4838572	0,015544	0,44576	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Subcortical	
280.2413@10.399334 0,015877 0,44576 Normal DWI - Scattered 1 territory 386.1748@7.643404 0,015946 0,44576 Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI 403.1998@7.625902 0,015964 0,44576 Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Scattered 1 territory - Normal DWI 678.5049@7.545569 0,016281 0,45114 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 211.1116@2.8855329 0,016486 0,45338 territory; Normal DWI - Scattered 1 territory 175.9625@0.21299998 0,017112 0,46704 Scattered 1 territory - Normal DWI 596.0342@0.3303846 0,017321 0,46923 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 148.0229@9.5984335 0,017773 0,47162 Scattered 1 territory - Normal DWI 342.2993@6.0656886 0,01785 0,47162 Scattered 1 territory - Normal DWI 183.0395@0.29067454 0,018008 0,47162 Normal DWI - Scattered 1 territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	359.2285@7.5411525	0,015768	0,44576		
403.1998@7.625902 0,015964 0,44576 Scattered 1 territory - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Scattered 1 territory - Normal DWI 678.5049@7.545569 0,016281 0,45114 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 211.1116@2.8855329 0,016486 0,45338 Isolated cortical lesion - Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI - Scattered 1 territory 175.9625@0.21299998 0,017112 0,46704 Scattered 1 territory - Normal DWI 596.0342@0.3303846 0,017321 0,46923 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 148.0229@9.5984335 0,017773 0,47162 Scattered 1 territory - Normal DWI 342.2993@6.0656886 0,01785 0,47162 Scattered 1 territory - Normal DWI 183.0395@0.29067454 0,018008 0,47162 Normal DWI - Scattered 1 territory 317.2362@10.680616 0,018153 0,47162 Isolated cortical lesion - Multiples territories; Subcortical - Multiples territories	280.2413@10.599354	0,015877	0,44576		
403.1998@1.025902 0,015964 0,44576 Scattered 1 territory - Normal DWI 678.5049@7.545569 0,016281 0,45114 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 211.1116@2.8855329 0,016486 0,45338 territory; Normal DWI - Scattered 1 territory 175.9625@0.21299998 0,017112 0,46704 Scattered 1 territory - Normal DWI 596.0342@0.3303846 0,017321 0,46923 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 148.0229@9.5984335 0,017773 0,47162 Scattered 1 territory - Normal DWI 342.2993@6.0656886 0,01785 0,47162 Scattered 1 territory - Normal DWI 183.0395@0.29067454 0,018008 0,47162 Normal DWI - Scattered 1 territory 317.2362@10.680616 0,018153 0,47162 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	386.1748@7.643404	0,015946	0,44576	Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI	
Isolated cortical lesion - Scattered 1 territory; Multiples territories - Scattered 1 territory; Normal DWI - Scattered 1 territory	403.1998@7.625902	0,015964	0,44576		
211.1116@2.8855329 0,016486 0,45338 territory; Normal DWI - Scattered 1 territory 175.9625@0.21299998 0,017112 0,46704 Scattered 1 territory - Normal DWI 596.0342@0.3303846 0,017321 0,46923 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 148.0229@9.5984335 0,017773 0,47162 Scattered 1 territory - Normal DWI 342.2993@6.0656886 0,01785 0,47162 Scattered 1 territory - Normal DWI 183.0395@0.29067454 0,018008 0,47162 Normal DWI - Scattered 1 territory 317.2362@10.680616 0,018153 0,47162 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	678.5049@7.545569	0,016281	0,45114	-	
175.9625@0.21299998 0,017112 0,46704 Scattered 1 territory - Normal DWI 596.0342@0.3303846 0,017321 0,46923 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 148.0229@9.5984335 0,017773 0,47162 Scattered 1 territory - Normal DWI 342.2993@6.0656886 0,01785 0,47162 Scattered 1 territory - Normal DWI 183.0395@0.29067454 0,018008 0,47162 Normal DWI - Scattered 1 territory 317.2362@10.680616 0,018153 0,47162 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	211.1116@2.8855329	0,016486	0,45338	territory;	
148.0229@9.5984335 0,017773 0,47162 Scattered 1 territory - Normal DWI 342.2993@6.0656886 0,01785 0,47162 Scattered 1 territory - Normal DWI 183.0395@0.29067454 0,018008 0,47162 Normal DWI - Scattered 1 territory 317.2362@10.680616 0,018153 0,47162 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	175.9625@0.21299998	0,017112	0,46704	•	
342.2993@6.0656886 0,01785 0,47162 Scattered 1 territory - Normal DWI 183.0395@0.29067454 0,018008 0,47162 Normal DWI - Scattered 1 territory 317.2362@10.680616 0,018153 0,47162 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	596.0342@0.3303846	0,017321	0,46923	Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
183.0395@0.29067454 0,018008 0,47162 Normal DWI - Scattered 1 territory 317.2362@10.680616 0,018153 0,47162 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	148.0229@9.5984335	0,017773	0,47162	Scattered 1 territory - Normal DWI	
317.2362@10.680616 0,018153 0,47162 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	342.2993@6.0656886	0,01785	0,47162	Scattered 1 territory - Normal DWI	
317.2362@10.680616 0,018153 0,4/162 Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	183.0395@0.29067454	0,018008	0,47162	Normal DWI - Scattered 1 territory	
	317.2362@10.680616	0,018153	0,47162		
	255.9567@0.23754998	0,018243	0,47162		

168.1032@7.0810013	0,018288	0,47162	Isolated cortical lesion - Subcortical; Normal DWI - Subcortical	
129.0887@0.38125	0,018319	0,47162	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI;	
417.308@11.498182	0,018713	0,47614	Multiples territories - Subcortical; Scattered 1 territory - Normal DWI Subcortical - Isolated cortical lesion; Subcortical - Multiples territories; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
154.9671@0.15766667	0,018774	0,47614	Normal DWI - Isolated cortical lesion; Normal DWI - Scattered 1 territory; Subcortical – Scattered 1 territory	
250.0408@10.91466	0,018888	0,47614	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
296.2357@10.730937	0,01938	0,48517		
302.2464@10.835305	0,019959	0,49625	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI	
246.1267@11.810185	0,020905	0,51623	Subcortical - Isolated cortical lesion; Normal DWI - Scattered 1 territory; Subcortica - Scattered 1 territory	
724.5084@12.67424	0,021139	0,51734	Normal DWI - Scattered 1 territory	
380.2741@10.193933	0,021485	0,51734	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
84.0963@11.863165	0,021623	0,51734	Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory - Normal DWI	
125.0153@0.29045692	0,021699	0,51734		
292.8324@0.62375	0,02192	0,51734	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Isolated cortical lesion - Subcortical	
695.0141@0.32878575	0,021964	0,51734	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
245.9982@0.3105257	0,022234	0,51734	Normal DWI - Scattered 1 territory; Normal DWI - Subcortical	
135.9415@0.335676	0,022327	0,51734	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI	
716.2633@11.673073	0,022338	0,51734	Multiples territories - Scattered 1 territory; Normal DWI - Scattered 1 territory	
530.5216@0.3305	0,02268	0,51734	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI	
638.2781@10.698696	0,022713	0,51734	Isolated cortical lesion - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
366.3303@13.057825	0,0231	0,51734	-	
400.9573@7.076572	0,023192	0,51734	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
423.3549@11.054702	0,023301	0,51734	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
723.4013@11.682252	0,023325	0,51734	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
C10 H23 C1 N4	0,023663	0,51734	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
809.9816@0.33585966	0,023813	0,51734	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory	
272.2161@10.229915	0,023831	0,51734	Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
760.0249@0.3289144	0,023978	0,51734	Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
281.0076@0.29096305	0,024072	0,51734	· · · · · · · · · · · · · · · · · · ·	
576.5114@13.133722	0,024331	0,51734	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
296.9844@0.29192597	0,024539	0,51734	Normal DWI - Scattered 1 territory	
C15 H34 N6	0,024665	0,51734	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI	
C33 H67 Cl O3 S	0,025132	0,51734		
274.2506@10.8738	0,025168	0,51734	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Isolated cortical lesion - Subcortical	
506.3946@12.908709	0,025751	0,51734	Multiples territories - Isolated cortical lesion; Multiples territories - Scattered 1 territory; Normal DWI - Scattered 1 territory	
C4 H14 N2 O2	0,025811	0,51734	·	
753.6025@13.262712	0,025849	0,51734	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI	
213.9807@0.14742497	0,025871	0,51734	Normal DWI - Scattered 1 territory	
271.2275@2.8668005	0,025894	0,51734	Isolated cortical lesion - Multiples territories; Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Isolated cortical lesion - Subcortical	

Maliples territories - Subcortical					
1912.003@(10.934937 0.02936 0.51734 Subcortical - Inolated cortical lesion, Subcortical - Multiples territories; Subcortical - Normal DWI 1903.003@(10.73407 0.026069 0.51734 Substitution 1903.003@(10.73407 0.026069 0.51734 Substitution 1903.003@(10.73407 0.026069 0.51734 Substitution 1903.003@(10.73407 0.026039 0.51734 Substitution 1903.003.003@(10.73407 0.026618 0.51734 Substitution 1903.003@(10.73407 0.026618 0.51734 Substitution 1903.003@(10.73407 0.026618 0.51734 Substitution 1903.003@(10.73407 0.026618 0.51734 Substitution 1903.003@(10.73407 0.026727 0.51734 Substitution 1903.003@(10.73407 0.02718 0.51734 Substitution 1903.003@(10.73407 0.02718 0.51734 Substitution 1903.003@(10.73407 0.02718 0.51734 Substitution 1903.003@(10.73407 0.02718 0.51734 Substitution 1903.003@(10.7342 0.02718 0.51734 Substitution 1903.003@(10.7342 0.02718 0.51734 Substitution 1903.003@(10.7342 0.02718 0.51734 Substitution 1903.003@(10.7342 0.02718 0.02718 0.51734 Substitution 1903.003@(10.7342 0.02718 0.02718 0.51734 Substitution 1903.003@(10.7342 0.02718 0.51873 Substitution 1903.003@(10.7342 0.02718 0.51873 Substitution 1903.003@(10.7342 0.02718 0.51873 Substitution 1903.003@(10.7342 0.02718	454.9847@6.072	0,025913	0,51734	Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory;	
1988 3.50 (2010 7.23 (4017 19.00 26.016 19.51734	591.3003@10.934937	0,025936	0,51734	Subcortical - Isolated cortical lesion; Subcortical - Multiples territories; Subcortical	
	C24 H53 N5 O2 S2	0,025963	0,51734	Multiples territories - Normal DWI; Scattered 1 territory - Normal DWI	
	398.3505@10.723607	0,026069	0,51734	Subcortical - Scattered 1 territory	
	598.2281@10.920599	0,026193	0,51734		
182.1052@0.38179177	234.0861@0.7021369	0,026221	0,51734	$\label{eq:multiples} \mbox{Multiples territories - Isolated cortical lesion; Normal DWI - Isolated cortical lesion}$	
1290.1241@11.671404	1292.6064@11.671416	0,026638	0,51734	Normal DWI - Scattered 1 territory	
207.147@0.5770263	382.1052@0.38179177	0,026727	0,51734	Normal DWI - Scattered 1 territory	
154,9677@0.24624999	1290.1241@11.671404	0,02681	0,51734	Normal DWI - Scattered 1 territory	
Multiples territories - Scattered 1 territory: Subcortical - Scattered 1 territory: Scattered 1 territory: Subcortical - Scattered 1 territory: Scattered 1 territ	207.147@0.5770263	0,02718	0,51734	Normal DWI - Multiples territories; Normal DWI - Subcortical	
	154.9677@0.24624999	0,027294	0,51734	Multiples territories - Scattered 1 territory; Subcortical - Scattered 1 territory	
	783.976@0.3320877	0,027344	0,51734		
131,3086@9.871 0,027438 0,51734 Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory Isolated cortical lesion - Scattered 1 territory - Normal DWI - Multiples territories; Normal DWI - Scattered 1 territory - Normal DWI - Multiples territories; Normal DWI - Scattered 1 territory - Multiples territories; Normal DWI - Subcortical - Multiples territories; Normal DWI - Subcortical - Scattered 1 territory - Multiples territories; Normal DWI - Subcortical - Scattered 1 territory - Multiples territories; Normal DWI - Scattered 1 territory - Normal DWI - Scattered 1 territory - Subcortical - Scattered 1 territory - Normal DWI - Scattered 1 territory - Normal DWI	593.2615@10.672421	0,02735	0,51734	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
122.1093@11.866905	431.8781@8.923742	0,027402	0,51734	Scattered 1 territory - Normal DWI	
122.1093@11.866905	431.3086@9.871	0,027438	0,51734		
1010.408@11.672766	122.1093@11.866905	0,027506	0,51734	Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory - Normal DWI	
148.0154@9.748191 0,028121 0,52348 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 346.2588@7.8691583 0,028474 0,52736 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 346.2588@7.8691583 0,028474 0,52736 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 346.2588@7.8691583 0,028908 0,53267 Scattered 1 territory - Normal DWI; Subcortical - Normal DWI 346.3356@10.271913 0,029139 0,53421 Subcortical - Multiples territories Subcortical - Multiples territories 346.8356@12.71913 0,029407 0,53575 Isolated cortical lesion - Subcortical; Normal DWI - Subcortical 346.8356@12.71913 0,02959 0,53575 Isolated cortical lesion - Subcortical; Normal DWI - Scattered 1 territory 346.8356@12.71913 0,02959 0,53575 Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory 346.8356@12.71913 0,02959 0,53575 Isolated cortical lesion - Scattered 1 territory - Normal DWI 347.8406@7.4557433 0,029918 0,53764 Normal DWI - Subcortical; Scattered 1 territory - Subcortical 348.825.9755@.0.33489066 0,030409 0,5411 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 348.825.9755@.0.33489066 0,030409 0,54257 Multiples territories - Scattered 1 territory; Multiples territories - Normal DWI 348.8278@7.550099 0,030827 0,54322 Scattered 1 territory - Normal DWI 348.8288@7.550099 0,030827 0,54322 Scattered 1 territory - Normal DWI 348.8278@7.550099 0,03148 0,54521 Scattered 1 territory - Normal DWI 349.82976 0,03148 0,54521 Scattered 1 territory - Normal DWI 349.820976 0,03148 0,54521 Scattered 1 territory - Normal DWI 349.820976 0,03167 0,54521 Scattered 1 territory - Normal DWI 349.820976 0,03167 0,54521 Normal DWI - Scattered 1 territory 349.820976 0,03167 0,54521 Normal DWI - Scattered	1010.408@11.672766	0,027723	0,51873	Isolated cortical lesion - Multiples territories; Isolated cortical lesion - Subcortical Scattered 1 territory - Multiples territories; Normal DWI - Subcortical; Scattered territory	
Seattered 1 territory - Subcortical Normal DWI Subcortical - Seattered 1 territory - Normal DWI - Subcortical - Isolated cortical lesion; Subcortical - Multiples territories Subcortical - Multiples territories Subcortical - Subcortical Subcortical - Multiples territories Subcortical - Subcortical Subcortical - Subcortical Subcortical - Subcortical Subcortical - Subcortical Subcortical Subcortical - Subcortical Subcortica	148.0154@9.748191	0,028121	0,52348		
Normal DWI - Isolated cortical lesion; Subcortical - Isolated cortical lesion; Subcortical - Multiples territories	346.2588@7.8691583	0,028474	0,52736		
194.1168@0.23915628	611.255@10.910106	0,028908	0,53267	Scattered 1 territory - Normal DWI; Subcortical - Normal DWI	
Isolated cortical lesion - Subcortical; Normal DWI - Subcortical; Scattered 1 territory - Subcortical; Southered 1 territory - Subcortical	194.1168@0.23915628	0,029139	0,53421	Subcortical	
630.7958@1.5144 0,029665 0,53575 Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI 612.4096@7.4557433 0,029918 0,53764 Normal DWI - Subcortical; Scattered 1 territory - Subcortical 694.0001@0.32921723 0,030111 0,53844 Normal DWI - Scattered 1 territory 825.9755@0.33489066 0,030409 0,5411 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 683.0869@7.523105 0,030641 0,54257 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories; Subcortical - Multiples territories 810.1831@8.114489 0,031217 0,54521 Scattered 1 territory - Normal DWI 913.2703@7.5542192 0,031483 0,54521 Scattered 1 territory - Normal DWI 913.2703@7.5542192 0,031675 0,54521 Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion 962.9804@13.497684 0,031691 0,54521 Normal DWI - Scattered 1 territory 962.9806@12.12988 0,032194 0,5486 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territories	468.3356@12.71913	0,029407	0,53575	Isolated cortical lesion - Subcortical; Normal DWI - Subcortical; Scattered 1 territory	
512.4096@7.4557433 0,029918 0,53764 Normal DWI - Subcortical; Scattered 1 territory - Subcortical 594.0001@0.32921723 0,030111 0,53844 Normal DWI - Scattered 1 territory 3825.9755@0.33489066 0,030409 0,5411 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 583.0869@7.523105 0,030641 0,54257 Multiples territories - Isolated cortical lesion; Multiples territories - Subcortical 388.2278@7.550099 0,030827 0,54322 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories 310.1831@8.114489 0,031217 0,54521 Scattered 1 territory - Normal DWI 554.3304@7.768297 0,031483 0,54521 Scattered 1 territory - Normal DWI 913.2703@7.5542192 0,031595 0,54521 Normal DWI - Isolated cortical lesion; Subcortical - Normal DWI 154.967@0.28086463 0,031675 0,54521 Normal DWI - Scattered 1 territory 362.9804@13.497684 0,032104 0,5486 Multiples territories - Isolated cortical lesion; Multiples territories - Subcortical 366.2596@12.12988 0,032191 0,5486 Scattered 1 territo	1039.4167@11.671583	0,02959	0,53575	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory	
0,030111 0,53844 Normal DWI - Scattered 1 territory 0,030409 0,5411 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 0,583,0869@7.523105 0,030641 0,54257 Multiples territories - Isolated cortical lesion; Multiples territories - Subcortical Isolated cortical lesion; Multiples territories - Subcortical Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories 10,030427 0,54322 Isolated cortical lesion - Multiples territories; Subcortical - Multiples territories; Scattered 1 territory - Normal DWI 10,031217 0,54521 Scattered 1 territory - Normal DWI 10,031483 0,54521 Scattered 1 territory - Normal DWI 10,031695 0,54521 Normal DWI - Isolated cortical lesion; Subcortical - Normal DWI 10,031695 0,54521 Subcortical - Isolated cortical lesion; Subcortical - Normal DWI 10,032104 0,5486 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical Scattered 1 territory - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical Scattered 1 territory - Normal DWI; Scattered 1 territory - Normal DWI Scattered 1 territory - Normal D	630.7958@1.5144	0,029665	0,53575	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
325.9755@0.33489066 0,030409 0,5411 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 383.0869@7.523105 0,030641 0,54257 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 3858.2278@7.550099 0,030827 0,54322 Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories 310.1831@8.114489 0,031217 0,54521 Scattered 1 territory - Normal DWI 354.3304@7.768297 0,031483 0,54521 Scattered 1 territory - Normal DWI 354.3304@7.5542192 0,031595 0,54521 Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion 3677.9698@0.30845454 0,031675 0,54521 Subcortical - Isolated cortical lesion; Subcortical - Normal DWI 362.9804@13.497684 0,031691 0,54521 Normal DWI - Scattered 1 territory 362.9804@13.497684 0,032104 0,5486 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 366.2596@12.12988 0,032191 0,5486 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 369.2771@10.923357 0,03321 0,56333 Isolated cortical lesion - Normal DWI; Subcortical - Scattered 1 territory	612.4096@7.4557433	0,029918	0,53764	Normal DWI - Subcortical; Scattered 1 territory - Subcortical	
0,030641 0,54257 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Scattered 1 territories; Scattered 1 territories; Scattered 1 territories; Subcortical - Multiples territories and Italian - Multiples territories; Scattered 1 territory - Normal DWI 554.3304@7.768297 0,031483 0,54521 Scattered 1 territory - Normal DWI 913.2703@7.5542192 0,031595 0,54521 Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion 577.9698@0.30845454 0,031675 0,54521 Subcortical - Isolated cortical lesion; Subcortical - Normal DWI 154.967@0.28086463 0,031691 0,54521 Normal DWI - Scattered 1 territory 662.9804@13.497684 0,032104 0,5486 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical Scattered 1 territory; Multiples territories - Subcortical Scattered 1 territory; Multiples territories - Subcortical Scattered 1 territory - Normal DWI; Subcortical lesion - Scattered 1 territory; Subcortical lesion - Scattered 1 territory; Subcortical lesion - Scattered 1 territory; Subcortical - Scattered 1 territory	694.0001@0.32921723	0,030111	0,53844	Normal DWI - Scattered 1 territory	
Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 1	825.9755@0.33489066	0,030409	0,5411	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI	
Scattered 1 territory - Multiples territories; Subcortical - Multiples territories 310.1831@8.114489 0,031217 0,54521 Scattered 1 territory - Normal DWI 554.3304@7.768297 0,031483 0,54521 Scattered 1 territory - Normal DWI 013.2703@7.5542192 0,031595 0,54521 Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion 577.9698@0.30845454 0,031675 0,54521 Subcortical - Isolated cortical lesion; Subcortical - Normal DWI 154.967@0.28086463 0,031691 0,54521 Normal DWI - Scattered 1 territory Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; 662.9804@13.497684 0,032104 0,5486 Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 0,032191 0,5486 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	683.0869@7.523105	0,030641	0,54257		
0,031483 0,54521 Scattered 1 territory - Normal DWI 013.2703@7.5542192 0,031595 0,54521 Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion 077.9698@0.30845454 0,031675 0,54521 Subcortical - Isolated cortical lesion; Subcortical - Normal DWI 054.967@0.28086463 0,031691 0,54521 Normal DWI - Scattered 1 territory 0562.9804@13.497684 0,032104 0,5486 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Subcortical - Normal DWI; Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 0569.2771@10.923357 0,03321 0,56333 Isolated cortical lesion - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	358.2278@7.550099	0,030827	0,54322		
0,031595 0,54521 Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion 577,9698@0.30845454 0,031675 0,54521 Subcortical - Isolated cortical lesion; Subcortical - Normal DWI 154.967@0.28086463 0,031691 0,54521 Normal DWI - Scattered 1 territory 1662.9804@13.497684 0,032104 0,5486 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 1662.9806@12.12988 0,032191 0,5486 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 1669.2771@10.923357 0,03321 0,56333 Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	310.1831@8.114489	0,031217	0,54521	Scattered 1 territory - Normal DWI	
577.9698@0.30845454 0,031675 0,54521 Subcortical - Isolated cortical lesion; Subcortical - Normal DWI 154.967@0.28086463 0,031691 0,54521 Normal DWI - Scattered 1 territory 662.9804@13.497684 0,032104 0,5486 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Subcortical 7.5486 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 7.569.2771@10.923357 0,03321 0,56333 Scattered 1 territory - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	554.3304@7.768297	0,031483	0,54521	Scattered 1 territory - Normal DWI	
154.967@0.28086463 0,031691 0,54521 Normal DWI - Scattered 1 territory 662.9804@13.497684 0,032104 0,5486 Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 806.2596@12.12988 0,032191 0,5486 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 869.2771@10.923357 0,03321 0,56333 Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	913.2703@7.5542192	0,031595	0,54521	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion	
Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical O,032191 0,5486 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	577.9698@0.30845454	0,031675	0,54521	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI	
Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 0,032191 0,5486 Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI 569.2771@10.923357 0,03321 0,56333 Multiples territories - Scattered 1 territory; Multiples territories - Subcortical 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI Scattered 1 territory; Multiples territories - Subcortical 1 territory - Normal DWI Scattered 1 territory; Multiples territories - Subcortical 1 territory - Normal DWI Subcortical - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	154.967@0.28086463	0,031691	0,54521	`	
569.2771@10.923357 0,03321 0,56333 Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	662.9804@13.497684	0,032104	0,5486		
Subcortical - Normal DWI; Subcortical - Scattered 1 territory	306.2596@12.12988	0,032191	0,5486	<u> </u>	
C14 H12 N2 O12 S 0,033418 0,56422 Normal DWI - Isolated cortical lesion; Normal DWI - Scattered 1 territory	569.2771@10.923357	0,03321	0,56333		
	C14 H12 N2 O12 S	0,033418	0,56422	Normal DWI - Isolated cortical lesion; Normal DWI - Scattered 1 territory	

356.2759@11.410445	0,033703	0,565	Isolated cortical lesion - Scattered 1 territory; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
921.0026@0.11480394	0,033775	0,565	Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
392.08@11.663263	0,034036	0,56523	Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories	
907.9788@0.33443186	0,0341	0,56523	Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
315.9285@0.33655742	0,034282	0,56565	Normal DWI - Scattered 1 territory; Normal DWI - Subcortical	
204.9807@0.13828	0,03459	0,56815	Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
170.9589@0.1667193	0,035064	0,56984	Scattered 1 territory - Normal DWI	
233.1993@4.6364117	0,035139	0,56984	Normal DWI - Scattered 1 territory; Normal DWI - Subcortical	
279.1301@0.43673682	0,035308	0,56984	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
510.8233@7.7605	0,035369	0,56984	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
217.9519@0.33668748	0,035477	0,56984	Scattered 1 territory - Normal DWI	
246.0862@0.5887819	0,035851	0,57143	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory	
454.395@13.238646	0,035899	0,57143	Scattered 1 territory - Normal DWI	
135.9379@0.33658975	0,036049	0,57143		
356.2906@11.4725	0,036291	0,57277	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical	
584.2225@10.785456	0,036451	0,57281	Isolated cortical lesion - Multiples territories; Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Isolated cortical lesion - Subcortical	
C17 H34 N6 O2	0,036762	0,57478	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
921.0026@0.27129817	0,036893	0,57478	Normal DWI - Scattered 1 territory	
772.5725@11.864494	0,037246	0,57728	Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
C24 H45 N7 O19	0,037577	0,57728	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory	
C12 H22 N2 O2	0,037703	0,57728	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory	
517.3188@10.78623	0,037919	0,57728	Multiples territories - Normal DWI; Multiples territories - Subcortical; Scattered 1 territory - Normal DWI	
198.162@10.276973	0,038109	0,57728	Normal DWI - Scattered 1 territory	
1067.9929@0.33024	0,038304	0,57728	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories	
234.0859@0.71995	0,038351	0,57728	Multiples territories - Scattered 1 territory; Normal DWI - Scattered 1 territory	
C30 H15 Cl3 N4 O13	0,038483	0,57728	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI	
1357.575@11.673024	0,038572	0,57728	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Subcortical - Multiples territories; Normal DWI - Scattered 1 territory	
618.5209@13.653475	0,038876	0,57728	Normal DWI - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Normal DWI - Subcortical; Scattered 1 territory - Subcortical	
276.1728@8.068	0,038947	0,57728	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI	
704.155@10.690506	0,039022	0,57728	Multiples territories - Isolated cortical lesion; Normal DWI - Isolated cortical lesion; Normal DWI - Scattered 1 territory	
662.4525@13.667	0,039509	0,57728	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Isolated cortical lesion - Subcortical	
370.2121@7.512041	0,039743	0,57728	<u> </u>	
402.3353@11.7549515	0,039823	0,57728	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
454.3932@13.253962	0,039837	0,57728	Isolated cortical lesion - Normal DWI; Isolated cortical lesion - Scattered 1 territory; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical	
717.5356@12.8897705	0,039943	0,57728	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory	
322.2235@11.859871	0,040229	0,57728	Isolated cortical lesion - Multiples territories; Subcortical - Multiples territories; Subcortical - Normal DWI; Subcortical - Scattered 1 territory	
			I1-4-44:11: C4114: N1 DWI C4114:	
1272.5966@11.671334	0,040261	0,57728	Isolated cortical lesion - Scattered 1 territory; Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory	
1272.5966@11.671334 641.7935@11.7166815	0,040261 0,040389	0,57728 0,57728		

			Subcortical - Normal DWI; Subcortical - Scattered 1 territory
286.9971@0.55782086	0,040838	0,57728	Subcortical - Isolated cortical lesion; Subcortical - Multiples territories; Subcortical - Normal DWI; Subcortical - Scattered 1 territory
1295.5826@11.671851	0,040897	0,57728	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
971.9777@11.671778	0,041084	0,57728	Isolated cortical lesion - Subcortical; Normal DWI - Subcortical; Scattered 1 territory - Subcortical
653.9687@11.6380005	0,041106	0,57728	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical Scattered 1 territory
595.2745@11.126343	0,041189	0,57728	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI
510.464@13.517	0,041446	0,57865	Subcortical - Normal DWI
Gamma-Glu-Leu	0,041746	0,58061	Isolated cortical lesion - Normal DWI; Scattered 1 territory - Normal DWI
C37 H50 C1 N3 O2 S2	0,042171	0,58428	Subcortical - Normal DWI
550.5007@13.683049	0,042439	0,58576	Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Normal DWI - Subcortical; Scattered 1 territory - Subcortical
C17 H27 N O3	0,042609	0,58588	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories
388.1447@8.020166	0,043046	0,58628	Scattered 1 territory - Normal DWI; Subcortical - Normal DWI
198.1328@11.870784	0,043227	0,58628	Normal DWI - Scattered 1 territory; Normal DWI - Subcortical
366.1427@1.4195777	0,043359	0,58628	Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
340.2982@12.001823	0,043548	0,58628	Normal DWI - Isolated cortical lesion; Normal DWI - Scattered 1 territory
330.9431@0.17096551	0,043622	0,58628	Scattered 1 territory - Normal DWI
479.7947@7.625187	0,043628	0,58628	Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI
292.0907@0.6016598	0,043769	0,58628	Isolated cortical lesion - Normal DWI; Subcortical - Normal DWI
502.3092@7.7268	0,04592	0,609	Isolated cortical lesion - Normal DWI
535.3359@10.934509	0,045989	0,609	Isolated cortical lesion - Subcortical; Scattered 1 territory - Normal DWI; Scattered 1 territory - Subcortical
283.1371@6.0716147	0,046087	0,609	Normal DWI - Scattered 1 territory
C38 H42 N2 O13	0,046328	0,609	Isolated cortical lesion - Multiples territories; Normal DWI - Multiples territories; Scattered 1 territory - Multiples territories; Subcortical - Multiples territories
1328.0531@11.672338	0,046385	0,609	Subcortical - Isolated cortical lesion; Subcortical - Normal DWI; Subcortical - Scattered 1 territory
971.4765@11.671829	0,046726	0,609	Isolated cortical lesion - Subcortical; Normal DWI - Subcortical; Scattered 1 territory - Subcortical
159.1294@0.40213335	0,046771	0,609	Scattered 1 territory - Normal DWI
706.1702@11.115785	0,046828	0,609	Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory
634.4974@13.649333	0,046975	0,609	Multiples territories - Scattered 1 territory; Normal DWI - Scattered 1 territory
776.0296@0.33	0,047941	0,61777	Multiples territories - Isolated cortical lesion; Multiples territories - Normal DWI; Multiples territories - Scattered 1 territory; Multiples territories - Subcortical
678.0254@0.32877952	0,047992	0,61777	Normal DWI - Scattered 1 territory; Subcortical - Scattered 1 territory
989.0017@0.33100006	0,048185	0,61806	Scattered 1 territory - Multiples territories; Scattered 1 territory - Normal DWI
663.7656@13.5668	0,048493	0,61982	Subcortical - Normal DWI
620.2666@10.694472	0,049479	0,62808	Normal DWI - Subcortical; Scattered 1 territory - Subcortical
324.229@10.810297	0,049485	0,62808	Normal DWI - Scattered 1 territory; Normal DWI - Subcortical
625.9881@0.33124003	0,04977	0,6295	Multiples territories - Isolated cortical lesion; Scattered 1 territory - Isolated cortical lesion; Scattered 1 territory - Normal DWI

9.4. Primer artículo. Jové M, Mauri-Capdevila G, Suárez I, Cambray S, Sanahuja J, Quílez A, Farré J, Benabdelhak I, Pamplona R, Portero-Otín M, Purroy F. Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology. 2015;84(1):36-45.

http://n.neurology.org/content/84/1/36.long

Metabolomics predicts stroke recurrence after transient ischemic attack

Mariona Jové, PhD*
Gerard Mauri-Capdevila,
MD*
Idalmis Suárez
Serafi Cambray, PhD
Jordi Sanahuja, MD
Alejandro Quílez, MD
Joan Farré, MD
Ikram Benabdelhak
Reinald Pamplona, MD,
PhD
Manuel Portero-Otín,
MD, PhD
Francisco Purroy, MD,
PhD

Correspondence to Dr. Purroy: fpurroygarcia@gmail.com

ABSTRACT

Objective: To discover, by using metabolomics, novel candidate biomarkers for stroke recurrence (SR) with a higher prediction power than present ones.

Methods: Metabolomic analysis was performed by liquid chromatography coupled to mass spectrometry in plasma samples from an initial cohort of 131 TIA patients recruited <24 hours after the onset of symptoms. Pattern analysis and metabolomic profiling, performed by multivariate statistics, disclosed specific SR and large-artery atherosclerosis (LAA) biomarkers. The use of these methods in an independent cohort (162 subjects) confirmed the results obtained in the first cohort.

Results: Metabolomics analyses could predict SR using pattern recognition methods. Low concentrations of a specific lysophosphatidylcholine (LysoPC[16:0]) were significantly associated with SR. Moreover, LysoPC(20:4) also arose as a potential SR biomarker, increasing the prediction power of age, blood pressure, clinical features, duration of symptoms, and diabetes scale (ABCD2) and LAA. Individuals who present early (<3 months) recurrence have a specific metabolomic pattern, differing from non-SR and late SR subjects. Finally, a potential LAA biomarker, LysoPC(22:6), was also described.

Conclusions: The use of metabolomics in SR biomarker research improves the predictive power of conventional predictors such as ABCD2 and LAA. Moreover, pattern recognition methods allow us to discriminate not only SR patients but also early and late SR cases. Neurology® 2015;84:36-45

GLOSSARY

ABCD2 = age, blood pressure, clinical features, duration of symptoms, and diabetes scale; IDI = integrated discrimination improvement; LAA = large-artery atherosclerosis; Lp-PLA = lipoprotein-associated phospholipase A; NRI = net reclassification improvement; LysoPC = lysophosphatidylcholine; MS/MS = tandem mass spectrometry; PLS-DA = partial least squares discriminant analysis; ROC = receiver operating characteristic; SLC = solute carrier; SR = stroke recurrence.

Stroke is the leading cause of acquired neurologic incapacity. In almost 20% of cases, stroke is preceded by TIA, providing a great opportunity for prevention. Thus, the risk of stroke is particularly high during the few days after the onset of TIA symptoms. However, TIA patients are a heterogeneous group in terms of symptoms, risk factors, underlying pathology, and early prognosis. The presence of large-artery atherosclerosis (LAA) has been the main established predictor of subsequent stroke^{4–6} so far, but a definitive prognostic tool for stroke recurrence (SR) is not defined.

Recently, in stroke research, there has been significant interest in biomarker development for predicting SR. Candidate approaches have rendered few biomarkers to be useful in the prognosis of TIA patients such as C-reactive protein, copeptin, and lipoprotein-associated phospholipase A (Lp-PLA), but the validity of the proposed biomarkers is debated. Regarding biomarker discovery for etiology classification, only the activity of Lp-PLA2 has been shown effective for the detection of LAA, and very recently pro-brain natriuretic peptide levels have been associated with the diagnosis of atrial fibrillation.

Editorial, page 17

Supplemental data at Neurology.org

From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; Spain.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article

36

© 2014 American Academy of Neurology

^{*}These authors contributed equally to this work.

New techniques such as metabolomics provide the opportunity to identify new biomarkers.¹³ This has been applied in stroke research^{14,15} but no description of SR after early recovery such as that present in TIA patients appeared.

The aim of the present study was to perform a metabolomic analysis of plasma from a cohort of TIA patients in order to find (1) new candidate biomarkers associated with SR, (2) temporal patterns of recurrence, and (3) the potential impact of LAA in the plasma metabolomic profile. Results were then validated in an independent cohort, thus ensuring robustness of the resulting candidate biomarker.

METHODS Standard protocol approvals, registrations, and patient consents. The study was approved by the ethics committee of the Arnau de Vilanova University Hospital. Patient consent was obtained from all the donors.

Subjects. We prospectively recruited consecutive patients with transient neurologic deficit who were attended by a neurologis in the emergency department during the first 24 hours after the onset of symptoms (REGITELL registy).

16 These patients were aleatorized into 2 cohorts (e-Methods on the Neurology® Web site at Neurology org). TIA was defined as acute onset of focal cerebral or monocular symptoms lasting <24 hours attributable to brain ischemia. The number of TIA patients attended in our hospital during the study period (January 2008 to January 2012) determined the sample size. Risk factor profile; clinical characteristics; age, blood pressure, clinical features, duration of symptoms, and diabetes score (ABCD2)¹⁷; ultrasound; and neuroimaging protocols were recorded as described in e-Methods.

Follow-up and clinical endpoints. Endpoint event was SR. A stroke physician performed clinical visits during the follow-up at 7 days, 3 months, and every 6 months. Imaging data were required to confirm brain ischemia in all SR patients considered. Recurrence of a TIA was not considered an endpoint.

Metabolomic analysis. For nontargeted metabolomics analysis, metabolites were extracted from plasma samples and analyzed using liquid chromatography coupled to mass spectrometry as described in e-Methods.

Statistical analysis. Statistics calculations were performed using SPSS software for Macintosh, version 20 (SPSS, Chicago, IL), R software, or the Stata 11 statistics package (StataCorp, College Station, TX). Further information for tests used appears in e-Methods.

RESULTS Clinical characteristics of the study population. Table 1 shows baseline characteristics of both cohorts, comprising 293 patients. As confounders for the metabolomic analyses, we excluded significant differences in characteristics for vascular risk factors, clinical symptoms, ABCD2 score, etiologic subtypes, or discharge treatments between the 2 cohorts. Previous anticoagulation tended to be more frequent among those patients from the first cohort. The cohorts did not differ significantly in terms of SR.

A total of 35 patients had SR. Two patients died due to recurrent ischemia. In the univariate analysis (table 2), only LAA and ABCD2 score were associated with SR. Clopidogrel and anticoagulation at discharge were associated with SR.

Subsequent stroke risk exhibits a specific metabolomic profile. Untargeted metabolomic analysis in cohort 1 indicated plasma biomarker potentially indicating future SR. Molecular features detected (present in at least 50% of samples in the same group) are represented in the heat map (figure 1B). TIA patients with SR had a specific metabolomic signature, as shown by partial least squares discriminant analysis (PLS-DA) (figure 1C), reaching an accuracy ranging from 66% (in positive ionization, specificity = 0.63, sensitivity = 0.95) to 73% (in negative ionization, specificity = 0.68, sensitivity = 1). The individual importance of molecules in the model is presented in the supplemental data (dataset 1).

Univariate statistics revealed that 94 ions differentiated SR from non-SR patients (p < 0.05) (dataset 2, supplemental data). By using orthogonal approaches (exact mass, isotope distribution, tandem mass spectrometry [MS/MS], and retention time database), 6 molecules were identified: 1-monopalmitin, dodecanoic acid, meso-erythritol, threonate, and lysophosphatidylcholine (LysoPC[16:0]) downregulated and myristoyl-ethanolamine upregulated (p < 0.05) in SR patients. After pathway analysis, these molecules clustered into free fatty acid metabolism, energy metabolism, and solute carrier (SLC)–mediated transmembrane transport pathways (dataset 3, supplemental data).

Temporal patterns of stroke recurrence define specific metabolomic profiles. The results (figure 1D) show that PLS-DA of metabolomic profiles has a high accuracy in differentiating early SR from later SR groups (dataset 1). A total of 325 ions differentiated the groups by analysis of variance (p < 0.05, dataset 2). These molecules (14 metabolites identified among all the differential ions), indicating early recurrence, clustered into different metabolic pathways with 13 common between recurrence and temporal patterns of recurrence, including fatty acid metabolism (biosynthesis, transport, and receptors) and regulation of insulin secretion (table e-1, dataset 3).

Patients with LAA have a specific metabolomic pattern. We focused on LAA etiology because of its importance as a SR predictor. 4-6 We evaluated metabolomic profiles of patients with symptomatic carotid or intracranial stenosis of at least 50%. The results (figure 1E) revealed that metabolomic profiles are able to offer a high accuracy predicting presence of LAA (PLS-DA accuracy 91%–98%, positive: specificity = 0.79,

Neurology 84 January 6, 2015

Table 1 Comparative characteristics,	treatments, and stroke re-	currence	
/ariable	Cohort 1 (n = 131)	Cohort 2 (n = 162)	Total (n = 293
/ascular risk factors			
Age, y, mean (SD)	70.5 (11.4)	72.1 (11.2)	71.7 (10.8)
Male	85 (64.9)	94 (58.0)	179 (61.1)
Previous stroke	28 (21.4)	35 (21.6)	63 (21.5)
Hypertension	91 (69.5)	111 (68.5)	201 (68.8)
Coronary disease	18 (13.7)	21 (13.0)	39 (13.3)
Diabetes mellitus	41 (31.3)	47 (29.0)	88 (30.0)
Smoking	18 (13.7)	19 (11.7)	37 (12.6)
Hypercholesterolemia	49 (37.4)	61 (37.7)	110 (37.5)
Previous atrial fibrillation	17 (13.0)	17 (10.5)	34 (11.6)
Basal treatments			
Aspirin	30 (22.9)	36 (22.4)	66 (22.6)
Clopidogrel	9 (6.9)	18 (11.2)	27 (9.2)
Anticoagulation	19 (14.5)	12 (7.5)	31 (10.6)
Statins	43 (32.8)	46 (28.6)	89 (30.6)
Renin-angiotensin system blockers	65 (49.6)	78 (48.1)	144 (49.1)
Clinical symptoms			
Duration			
<10 min	12 (9.3)	17 (10.8)	29 (9.9)
10-59 min	50 (38.2)	61 (37.7)	111 (37.9)
1 h	69 (52.7)	84 (51.9)	153 (52.2)
Cluster TIA	36 (27.5)	33 (20.4)	65 (22.2)
Weakness	70 (53.4)	85 (52.4)	155 (52.9)
Isolated sensory symptoms	12 (9.2)	13 (8.0)	25 (8.5)
Speech impairment	78 (59.5)	103 (64.0)	181 (62.0)
Vertebrobasilar	10 (7.6)	12 (7.5)	22 (7.5)
ABCD2	5.2 (4.0-6.0)	5.1 (4.0-6.0)	5.1 (4.0-6.0)
tiologic subtypes			
Large artery atherosclerosis	33 (25.2)	32 (19.9)	65 (22.3)
Cardioembolism	23 (17.6)	37 (23.0)	60 (20.5)
Small vessel disease	28 (21.4)	30 (18.6)	58 (19.9)
Undetermined cause	47 (35.9)	62 (38.5)	109 (37.3)
OWI (n = 251)	59 (45.7)	56 (36.8)	115 (40.9)
ime points			
Stroke recurrence at 7 days follow-up	6 (4.6)	5 (3.1)	11 (3.8)
Stroke recurrence at 90-day follow-up	8 (6.1)	7 (4.3)	15 (5.1)
Stroke recurrence at 1-year follow-up	13 (9.9)	10 (7.2)	23 (8.5)
Stroke recurrence during the follow-up	20 (15.3)	15 (9.3)	35 (11.9)

 $Abbreviations: ABCD2 = age, blood\ pressure,\ clinical\ features,\ duration\ of\ symptoms,\ and\ diabetes\ scale;\ DWI = diffusion-weighted\ imaging.$

sensitivity = 1; negative: specificity = 0.86, sensiti- molecules identified after MS/MS analyses being

vity = 1; dataset 1). A total of 73 metabolites androsterone, stearic acid, ascorbic acid, and were significantly different (Student t test) between LysoPC(22:6), all upregulated in patients with LAA and non-LAA (dataset 2), with the resulting LAA (p < 0.05).

Neurology 84 January 6, 2015

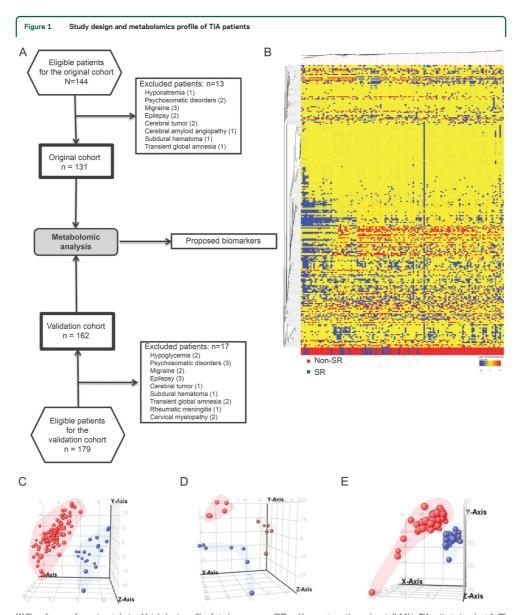
Table 2 Variables associated with stroke recurrence in both cohorts of patients	ith stroke recurre	nce in both co	ohorts of pati	ents								
	Stroke recurrer	Stroke recurrence at 7-day follow-up	dn-wol	Stroke recurrer	Stroke recurrence at 90-day follow-up	dn-wol	Stroke recurre	Stroke recurrence at 1 year follow-up	dn-wol	Stroke recurre	Stroke recurrence during the follow-up	dn-wol
Variable	No (n = 282)	Yes (n = 11)	ď	No (n = 278)	Yes (n = 15)	۵	No (n = 247)	Yes (n = 23)	Ь	No (n = 258)	Yes (n = 35)	۵
Vascular risk factors												
Age, y, mean (SD)	71.6 (10.9)	75.5 (8.6)	0.247	71.6 (10.9)	74.5 (8.2)	0.318	71.3 (11.01)	75.6 (7.5)	0.073ª	71.7 (11.6)	76.1 (6.5)	0.148
Male	175 (62.1)	4 (36.4)	0.115	172 (61.9)	7 (46.7)	0.239	152 (61.5)	11 (47.8)	0.198	157 (60.9)	22 (62.9)	0.819
Previous stroke	63 (22.4)	1 (9.1)	0.295	63 (1)	1 (6.7)	0.204	51 (20.7)	6 (26.1)	0.548	55 (21.4)	9 (25.7)	0.627
Hypertension	193 (68.4)	9 (81.8)	0.347	191 (68.7)	11 (73.3)	0.706	165 (66.8)	19 (82.6)	0.120	174 (67.7)	28 (80.0)	0.307
Coronary disease	39 (13.8)	(0) 0	0.370	39 (14.0)	(0) 0	0.234	30 (12.1)	4 (17.4)	0.468	30 (11.7)	8 (22.8)	0.403
Diabetes mellitus	83 (29.4)	5 (45.5)	0.255	81 (29.1)	7 (46.7)	0.158	71 (28.7)	9 (39.1)	0.341	69 (26.8)	19 (54.3)	0.103
Smoking	37 (13.1)	(0) 0	0.370	37 (13.3)	(0) 0	0.231	35 (0)	(0) 0	0.053	35 (13.6)	2 (5.7)	0.220
Hypercholesterolemia	105 (37.2)	5 (45.5)	0.752	105 (37.8)	5 (33.3)	0.792	88 (35.6)	10 (43.5)	0.500	97 (37.7)	13 (37.1)	0.859
Previous atrial fibrillation	32 (11.3)	2 (18.2)	0.487	32 (11.5)	2 (13.3)	0.688	25 (6 (10.1)	6 (26.1)	0.034	25 (9.7)	9 (25.7)	0.211
Basal treatment												
Aspirin	63 (22.4)	3 (27.3)	0.706	63 (22.7)	3 (20.0)	₽	52 (21.1)	6 (26.1)	0.581	57 (22.2)	9 (25.7)	0.637
Clopidogrel	27 (9.6)	(0) 0	0.607	27 (9.7)	(0) 0	0.376	19 (7.7)	4 (17.4)	0.119	23 (8.9)	4 (11.4)	0.635
Anticoagulation	29 (10.3)	2 (18.2)	31 (10.6)	29 (10.5)	2 (13.3)	0.726	24 (9.8)	6 (26.1)	0:030	22 (8.5)	9 (25.7)	0.016
Statins	84 (30.0)	5 (45.5)	0.321	84 (30.4)	5 (33.3)	0.164	72 (29.4)	10 (43.5)	0.161	77 (30.0)	12 (34.3)	0.637
Renin-angiotensin system blockers	134 (48.0)	9 (81.8)	0.033	132 (48.0)	11 (73.3)	0.066	116 (47.5)	14 (60.9)	0.221	121 (46.9)	22 (62.9)	0.105
Clinical symptoms												
Duration												
<10 min	29 (10.2)	(0) 0	0.482	30 (10.8)		0.175	23 (9.3)	(0) 0	0.297	28 (10.9)	1 (2.9)	0.913
10-59 min	107 (37.9)	4 (36.4)		107 (38.4)	(0) 0		93 (37.7)	10 (43.5)		100 (38.9)	11 (31.4)	
1 h	146 (51.9)	7 (63.6)		141 (50.7)	4 (26.7)		131 (53.0)	13 (56.5)		126 (49.0)	27 (77.1)	
Cluster TIA	60 (21.3)	5 (45.5)	0.071	60 (21.6)	5 (33.3)	0.336	55 (22.3)	5 (21.7)	0.954	60 (23.3)	5 (14.3)	0.738
Weakness	147 (52.1)	8 (72.7)	0.227	145 (52.2)	10 (66.7)	0.302	145 (52.2)	10 (66.7)	0.907	132 (51.4)	23 (65.7)	0.290
Isolated sensory symptoms	25 (8.9)	(0) 0	0.607	23 (8.3)	2 (13.3)	0.372	23 (9.3)	2 (8.7)	0.922	22 (62.9)	3 (8.6)	0.834
Speech impairment	171 (60.9)	10 (90.9)	0.057	169 (6.0)	12 (80.0)	0.140	148 (60.2)	17 (73.9)	0.264	155 (60.3)	26 (74.3)	0.138
Vertebrobasilar	21 (7.5)	1 (9.1)	0.842	21 (7.6)	1 (6.7)	0.896	18 (7.3)	1 (4.3)	н	21 (7.6)	1 (0.0	0.954
											•	

Neurology 84 January 6, 2015

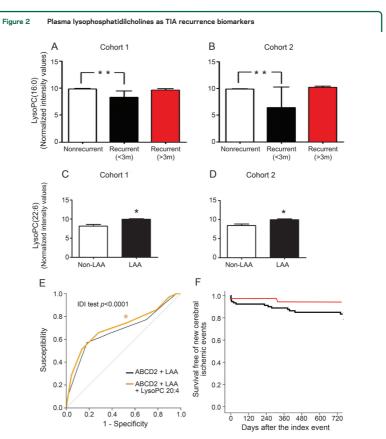
9. Anexos

Table 2 Continued												
	Stroke recurre	Stroke recurrence at 7-day follow-up	dn-w	Stroke recurrer	Stroke recurrence at 90-day follow-up	dn-wol	Stroke recurrer	Stroke recurrence at 1 year follow-up	dn-wo	Stroke recurre	Stroke recurrence during the follow-up	dn-woll
Variable	No (n = 282)	Yes (n = 11)	Ь	No $(n = 278)$ Yes $(n = 15)$	Yes (n = 15)	Ь	No $(n = 247)$ Yes $(n = 23)$	Yes (n = 23)	Ь	No (n = 258)	Yes (n = 35)	Ь
ABCD2	5.0 (4.0-6.0)	6.0 (4.0-7.0)	0.058ª	5.0 (4.0-6.0)	6.0 (4.0-7.0)	0.056	5.0 (4.0-6.0)	6.0 (4.0-7.0)	0.335	5.0 (4.0-6.0)	6.0 (4.0-7.0)	0.005
Etiology												
Large artery atherosclerosis	57 (20.3)	87 (72.7)	0.002	56 (20.2)	(0.09) 6	0.007ª	47 (19.1)	12 (52.2)	0.002	49 (19.1)	16 (45.7)	0.008
Cardioembolism	59 (21.0)	1 (9.1)		59 (21.3)	1 (6.7)		47 (19.1)	6 (26.1)		52 (20.2)	8 (22.9)	
Small vessel disease	57 (20.3)	1 (9.1)		55 (19.9)	3 (20.0)		51 (20.7)	3 (13.0)		53 (20.6)	5 (14.3)	
Undetermined cause	96 (34.2)	1 (9.1)		95 (34.3)	2 (13.3)		89 (36.2)	2 (8.7)		103 (40.1)	6 (17.1)	
DWI abnormalities	113 (41.4)	2 (25.0)	0.478	110 (40.9)	5 (41.7)	0.957	101 (42.3)	10 (20.0)	0.502	(39.8)	16 (50.0)	0.267
LysoPC 20:4 <1,14,000 (MS counts)	135 (48.0)	7 (63.6)	0.310	132 (47.7)	10 (66.7)	0.189	118 (47.8)	15 (65.2)	0.109	116 (45.1)	26 (74.3)	0.001
LysoPC 16:0 >0.710 (MS counts)	206 (72.0)	10 (90.1)	0.57	202 (72.7)	14 (93.3)	0.172	175 (70.9)	20 (87.0)	0.313	183 (70.9)	32 (91.4)	0.107

Abbreviations. ABCD2 = age, blood pressure, clinical features, duration of symptoms, and diabetes scale; DWI = diffusion-weighted imaging; LysoPC = lysophosphatidy/choline; MS = mass spectrometry.


Results validation using an independent cohort. The multivariate analysis of an independent cohort (cohort 2) confirmed (1) metabolomic signature of SR; (2) metabolomics-based differentiation of SR temporal patterns; and (3) differences between LAA and non-LAA (figure e-1, A-C). Common pathways affected by temporal patterns of recurrence between the 2 independent cohorts included biosynthesis of unsaturated fatty acids and SLC-transport-related pathways (dataset 3). In both cohorts, LysoPC(16:0) was significantly decreased in early SR patients (figure 2, A and B), whereas LysoPC(22:6) was upregulated in LAA patients (figure 2, C and D).

Predictive potential of SR biomarkers described. In order to define the capacity of these potential biomarkers, receiver operating characteristic (ROC) curves were performed using metabolites present in at least 70% of the samples in the same group (SR and non-SR), pooling both cohorts, due to low number of SR. The results (figure 2E, table 3, and table e-2) support the role of plasma LysoPC(20:4) as a potential biomarker, increasing significantly the predictive power of ABCD2 or LAA score from 64%-67% to 71%, as assessed by net reclassification improvement (NRI) or integrated discrimination improvement (IDI) tests (see supplemental data). The Hosmer-Lemeshow test for calibration of the risk of prediction models shows that while the ABCD2 model was well-calibrated (χ^2 7.05, p = 0.069), the ABCD2 + LAA model was not (χ^2 13.79, p = 0.003). The ABCD2 + LAA LysoPC(20:4) model showed the highest calibration (χ^2 3.58, p = 0.309), whereas the ABCD2 + LAA + LysoPC(16:0) model showed the lowest calibration values (χ^2 17.33, p = 6e-04).


When only early SR was considered, an unidentified metabolite (figure e-1D) arose as a potential biomarker also increasing the predictive power of ABCD2 or LAA score (from 62%–67% to 71%).

DISCUSSION The results demonstrate the feasibility and utility of the metabolomic approach to reveal potential biomarkers for SR after TIA, and for its most frequent independent predictor, LAA. We identified candidate biomarkers for both SR prediction and LAA detection, both belonging to LysoPC family. These biomarkers arose after analysis in 2 independent cohorts (n = 131; n = 162), reinforcing potential study generalizability.

We initially identified that a small set of metabolites are different between SR and no SR. Considering only this small set of metabolites, we reach an accuracy of >60% in segregating these 2 populations, suggesting that a combination of relatively low number of metabolites is, at least, as good as previous

(A) Flow diagram of experiment design. Metabolomic profile of stroke recurrence (SR) and large-artery atherosclerosis (LAA) in TIA patients in cohort 1. (B) Heat map representation of hierarchical clustering of molecular features found in each sample. Each line of this graphic represents an accurate mass ordered by retention time, colored by its abundance intensity and baselining to median/mean across the samples. The scale from -10 blue (low abundance) to +10 red (high abundance) represents this normalized abundance in arbitrary units. Tridimensional partial least squares discriminant analysis (PLS-DA) graphs demonstrate that SR ((C) blue spots represent SR plasma samples; red ones represent non-SR samples) and TIA temporal patterns recurrence ((D) early recurrence |<90 days| is represented in blue spots, medium |>90 days and <1 any| in red, and late |>1 year| in brown) determine a plasma metabolome. (E) Tridimensional PLS-DA graphs show differences between patients with LAA. Blue spots represent LAA and red ones non-LAA plasma samples.

(A) Lysophosphatidylcholine (LysoPC) (16:0) arose as a potential blood biomarker of stroke recurrence ([A] cohort 1; [B] cohort 2]. **Indicates significant differences (p < 0.0001) by analysis of variance test with Tukey multiple comparison test. LysoPC(22:6) as a blood biomarker of large-artery atherosclerosis (LAA) ([C] cohort 1; [D] cohort 2]. **Indicates significant differences by Student t test (at least p < 0.05). (E) The inclusion of LysoPC (20:4) levels to age, blood pressure, clinical features, duration of symptoms, and diabetes scale (ABCD2) and LAA score to receiver operating characteristic curve increase the predictive power of stroke recurrence (areas: ABCD2 = 0.045, ABCD2 + LAA = 0.678, p = 0.001; ABCD2 + LAA + LysoPC(20:4) = 0.711, p < 0.001; integrated discrimination improvement ([D]) test for comparison of prediction models: p < 0.0001, ([F) Kaplan-Meier estimates of the proportion of patients remaining free from any cerebral ischemic event. Red line indicates LysoPC(20:4) > 1,14,000 MS counts, MS = mass spectrometry.

clinical, imaging, or etiologic variables in predicting SR. Future work devoted to identify these and new metabolites will help to increase the accuracy of the test and ultimately develop a more scalable tool for patients to assess their risk of SR.

Low plasma levels of LysoPC(16:0) arose as a potential predictor of recurrence, especially in patients with early SR. This compound is one of the products of Lp-PLA2 whose levels have been shown to be increased in adverse prognosis after stroke.^{11,18} Moreover, high levels of Lp-PLA2 and LysoPC(16:0)

are associated with symptomatic carotid plaques.¹⁹ LysoPC(16:0) by itself increases on brain after stroke^{20,21} where it mediates phagocyte recruiting²² that can contribute to ischemic brain injury²³ and also produces neuroinflammatory effects when applied on CNS.²⁴ All these results could pinpoint a beneficial effect of reduced LysoPC(16:0) levels that argue against our claim that it marks an early SR risk, but although high levels of plaque LysoPC(16:0) are correlated with high plasma and plaque levels of Lp-PLA2, plasma LysoPC(16:0) levels are not.²⁵ It

		Stroke recurrence at 7-day follow-up	ıt 7-day	Stroke recurrence at 90-day follow-up	t 90-day	Stroke recurrence at 1-year follow-up	t 1-year	Stroke recurrence during the follow-up	uring the
Biomarker	Cohort	AUC (CI 95%)	۵	AUC (CI 95%)	۵	AUC (CI 95%)	٩	AUC (CI 95%)	а
ABCD2	Both cohorts	0.65 (0.47-0.84)	0.085	0.64 (0.47-0.80)	0.075	0.56 (0.42-0.69)	0.359	0.65 (0.54-0.76)	0.005
	Validation cohort	0.70 (0.42-0.98)	0.126	0.68 (0.43-0.93)	0.110	0.55 (0.34-0.76)	0.608	0.68 (0.51-0.85)	0.023
ABCD2 plus LAA	Both cohorts	0.72 (0.55-0.89)	0.013	0.68 (0.52-0.84)	0.019	0.60 (0.46-0.74)	0.103	0.68 (0.57-0.79)	<0.001
	Validation cohort	0.77 (0.53-1.00)	0.038	0.73 (0.49-0.97)	0.039	0.61 (0.39-0.83)	0.257	0.72 (0.55-0.89)	0.004
ABCD2 plus LAA plus LysoPC 20:4 <1,14,000	Both cohorts	0.72 (0.54-0.89)	0.014	0.70 (0.54-0.85)	0.011	0.62 (0.49-0.75)	0.048	0.71 (0.60-0.82)	<0.001
	Validation cohort	0.75 (0.49-1.00)	0.054	0.74 (0.51-0.96)	0.035	0.61 (0.40-0.83)	0.228	0.74 (0.57-0.91)	0.002
ABCD2 plus LAA plus LysoPC 16:0 ≥0.710	Both cohorts	0.64 (0.45-0.82)	0.110	0.64 (0.45-0.81)	0.111	0.57 (0.43-0.72)	0.293	0.67 (0.56-0.79)	0.002
	Validation cohort	0.72 (0.37-1.00)	0.192	0.67 (0.56-0.79)	0.002	0.56 (0.31-0.81)	0.590	0.72 (0.53-0.90)	0.010
Abbreviations. ABCD2 = age, blood pressure, clinical features, duration of symptoms, and diabetes scale; AUC = area under the receiver operating characteristic curve; CI = confidence interval; LAA = large-artery	I features, duration of s	symptoms, and diabet	es scale; AUC	S = area under the re	seiver operat	ing characteristic cur	ve; CI = conf	idence interval; LAA =	large-artery

Predictive accuracy of clinical variables and biomarkers derived from the metabolomic study for recurrant stroke at the 7-day, 90-day, and 1-year follow-up, and during all follow-up

Table 3

has been demonstrated that plasma LysoPC(16:0) can inhibit Lp-PLA2 activity both in vitro and in vivo,26 thereby suppressing their neuroinflammative properties.27 Apart from suppressing Lp-PLA2 activity, plasmatic LysoPC(16:0) is neuroprotective on brain ischemia models,28 mainly through activation of TREK-1 potassium channels.29 Finally, it is known that LysoPC(16:0) is a potent inducer of superoxide ion production in endothelial cells30 and controlled levels of superoxide serve as angiogenic factors in ischemic angiogenesis.31 Due to all these neuroprotective properties, decreased plasma levels of LysoPC (16:0) could contribute to an early SR risk. Nonetheless, when we evaluated potential risk models accounting LysoPC(16:0), it did not add a significant value over the clinical parameters explained by ABCD2 and LAA presence. This fits with the fact that ABCD2 and LAA are closely related to pathophysiologic events previously invoked in the homeostasis of LysoPC16:0 (enumerated above).

The potential implication of LysoPC metabolism in SR was further reinforced by the finding of LysoPC(20:4) as a potential biomarker of SR based on ROC curves of aggregated cohorts. Interestingly, after the use of NRI, IDI, and Hosmer-Lemeshow test, the statistics indicated that LysoPC(20:4) significantly improves prediction capacities of combined ABCD2 and LAA scores. These data are in line with other LysoPC species containing fatty acids of 20C length, decreased in plasma in experimental models of ischemia.³² This molecule exhibits antiinflammatory potential in preclinical models,33 reinforcing the role of inflammation in ischemic recurrence or tolerance. Interestingly, as with other biomarkers, $^{8,11}\,$ LysoPCs exhibit the potential to increase the prognostic accuracy of clinical scores or LAA and could help management decisions, a hypothesis to be validated in further studies.

Finally, we identified LysoPC(22:6) as a potential LAA biomarker. As far as we know, no previous studies have focused on the role of LysoPC(22:6) on carotid plaque formation or stability but increased levels in symptomatic LAA patients could point to a role in this processes. N-3 polyunsaturated fatty acids, such as docosahexaenoic acid (22:6), are precursors of molecules implicated in the resolving phase of inflammation. Therefore, the higher levels of LysoPC(22:6) in LAA could be an indicator of reactive response to inflammation associated with atheroma plaque development.

As limitations of the present work, we recognize the significant heterogeneity and small sample size for SR among the studied population. The metabolome, even in healthy phenotypically similar patients, exhibits a considerable variance across the time.³⁴⁻³⁶ Furthermore, the samples were taken in the emergency

Neurology 84 January 6, 2015

room, without controlling for previous food intake. Nevertheless, the results provided were strengthened by the use of 2 independent cohorts. Further, we are not able to identify an important percentage of metabolites present in samples, due to the major bottleneck in metabolomics: the lack of comprehensive metabolite databases.³⁷ However, the use of databases repositories with accurate mass and retention time in reproducible chromatographic systems will ease the future identification of these metabolites.

In the future, metabolomics could be useful to detect new biomarkers related to other interesting phenomena related to transient ischemia, the ischemic tolerance. Nonlacunar ischemic stroke patients with recent previous episodes of TIA have a favorable outcome, suggesting a neuroprotective effect of TIA by inducing a phenomenon of precondition ischemia.³⁸

AUTHOR CONTRIBUTIONS

Mariona Jové: design and conceptualization of the study, analysis and interpretation of the data, drafting and revising the manuscript for intellectual content. Gerard Mauri-Capdevila: design and conceptualization of the study, analysis and interpretation of the data, drafting and revising the unuscript for intellectual content. Idalmis Suárez: an revising the manuscript for intellectual content. Serafi Cambray: design and conceptualization of the study, interpretation of the data, revising the manuscript for intellectual content. Jordi Sanahuja: analysis and interpretation of the data, revising the manuscript for intellectual conte Alejandro Quílez: analysis and interpretation of the data, revising the manuscript for intellectual content. Joan Farré: analysis and interpretation of the data, revising the manuscript for intellectual content. Ikram Benabdelhak: analysis and interpretation of the data, revising the manu script for intellectual content. Reinald Pamplona: design and conceptualization of the study, revising the manuscript for intellectual content Manuel Portero-Otín: design and conceptualization of the study, analysis and interpretation of the data, drafting and revising the manuscript for intellectual content. Francisco Purroy: design and conceptualization of the study, analysis and interpretation of the data, drafting and revising the manuscript for intellectual content.

ACKNOWLEDGMENT

The authors thank the plasma donors for their support and permission.

STUDY FUNDING

Supported by the Autonomous Government of Catalunya (2009SGR-735), the Spanish Ministry of Health (FIS 11-02033), and the Marató of TV3 Foundation (95/C/2011). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Samples were obtained with the support of IRBLleida biobank and RETICS BIOBANCOS (RD090/076/00059).

DISCLOSURE

The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Received February 23, 2014. Accepted in final form August 19, 2014.

REFERENCES

 Heuschmann PU, Di Carlo A, Bejot Y, et al. Incidence of stroke in Europe at the beginning of the 21st century. Stroke 2009;40:1557–1563.

- Rothwell PM, Warlow CP. Timing of TIAs preceding stroke: time window for prevention is very short. Neurology 2005;64:817–820.
- Merwick A, Kelly PJ. Transient ischaemic attack clinics and management of transient ischaemic attacks. Curr Opin Neurol 2011;24:50–58.
- Purroy F, Montaner J, Molina CA, Delgado P, Ribo M, Alvarez-Sabín J. Patterns and predictors of early risk of recurrence after transient ischemic attack with respect to etiologic subtypes. Stroke 2007;38:3225–3229.
- Ois A, Gomis M, Rodríguez-Campello A, et al. Factors associated with a high risk of recurrence in patients with transient ischemic attack or minor stroke. Stroke 2008;39: 1717–1721.
- Purroy F, Jiménez Caballero PE, Gorospe A, et al. Prediction of early stroke recurrence in transient ischemic attack patients from the PROMAPA study: a comparison of prognostic risk scores. Cerebrovasc Dis 2012;33: 182–189.
- Purroy F, Montaner J, Molina CA, et al. C-reactive protein predicts further ischemic events in transient ischemic attack patients. Acta Neurol Scand 2007;115:60–66.
- Katan M, Nigro N, Fluri F, et al. Stress hormones predict cerebrovascular re-events after transient ischemic attacks. Neurology 2011;76:563–566.
- Delgado P, Chacón P, Penalba A, et al. Lipoprotein-associated phospholipase A(2) activity is associated with large-artery atherosclerotic etiology and recurrent stroke in TIA patients. Cerebrovase Dis 2012:33:150–158.
- Whiteley W, Tian Y, Jickling GC. Blood biomarkers in stroke: research and clinical practice. Int J Stroke 2012;7: 625–630
- Cucchiara BL, Messe SR, Sansing L, et al. Lipoproteinassociated phospholipase A2 and C-reactive protein for risk-stratification of patients with TIA. Stroke 2009;40: 2332–2336.
- Purroy F, Suárez-Luis I, Mauri-Capdevila G, et al. N-terminal pro-brain natriuretic peptide level determined at different times identifies transient ischaemic attack patients with atrial fibrillation. Eur J Neurol 2014;21:679–683.
- Mauri-Capdevila G, Jove M, Suarez-Luis I, Portero-Otin M, Purroy F. Metabolomics in ischaemic stroke, new diagnostic and prognostic biomarkers [in Spanish]. Rev Neurol 2013;57:29–36.
- Jung JY, Lee HS, Kang DG, et al. ¹H-NMR-based metabolomics study of cerebral infarction. Stroke 2011;42: 1282–1288.
- Jiang Z, Sun J, Liang Q, et al. A metabonomic approach applied to predict patients with cerebral infarction. Talanta 2011;84:298–304.
- Purroy F, Begué R, Gil MI, et al. Patterns of diffusionweighted magnetic resonance imaging associated with etiology improve the accuracy of prognosis after transient ischaemic attack. Eur J Neurol 2011;18:121–128.
- Johnston SC, Rothwell PM, Nguyen-Huynh MN, et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet 2007; 369:283–292.
- Tsai TH, Chen YL, Lin HS, et al. Link between lipoprotein-associated phospholipase A2 gene expression of peripheral-blood mononuclear cells and prognostic outcome after acute ischemic stroke. J Atheroscler Thromb 2012;19:523–531.

Neurology 84 January 6, 2015

- Mannheim D, Herrmann J, Versari D, et al. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke 2008;39:1448–1445.
- Shanta SR, Choi CS, Lee JH, et al. Global changes in phospholipids identified by MALDI MS in rats with focal cerebral ischemia. J Lipid Res 2012;53:1823–1831.
- Koizumi S, Yamamoto S, Hayasaka T, et al. Imaging mass spectrometry revealed the production of lysophosphatidylcholine in the injured ischemic rat brain. Neuroscience 2010;168:219–225.
- Zhang Z, Lee YC, Kim SJ, et al. Production of lysophosphatidylcholine by cPLA2 in the brain of mice lacking PPT1 is a signal for phagocyte infiltration. Hum Mol Genet 2007;16:837–847.
- Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010; 87:779–789.
- Farooqui AA, Horrocks LA. Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 2006;12:245–260.
- Gonçalves I, Edsfeldt A, Ko NY, et al. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol 2012;32:1505–1512.
- Cunningham TJ, Yao L, Lucena A. Product inhibition of secreted phospholipase A2 may explain lysophosphatidylcholines' unexpected therapeutic properties. J Inflamm 2008;5:17.
- Pinto F, Brenner T, Dan P, Krimsky M, Yedgar S. Extracellular phospholipase A2 inhibitors suppress central nervous system inflammation. Glia 2003;44:275–282.
- Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux C. A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 2002;22:821–834.

- Heurteaux C, Guy N, Laigle C, et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 2004;23:2684–2695.
- Rao SP, Riederer M, Lechleitner M, et al. Acyl chaindependent effect of lysophosphatidylcholine on endotheliumdependent vasorelaxation. PLoS One 2013;8:e65155.
- Bir SC, Shen X, Kavanagh TJ, Kevil CG, Pattillo CB. Control of angiogenesis dictated by picomolar superoxide levels. Free Radic Biol Med 2013;63:135–142.
- Liu Y, Jia H, Chang X, Ding G, Zhang H, Zou ZM. The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics. Mol Biosyst 2013;9:2823–2834.
- Hung ND, Kim MR, Sok DE. Anti-inflammatory action of arachidonoyl lysophosphatidylcholine or 15-hydroperoxy derivative in zymosan A-induced peritonitis. Prostaglandins Other Lipid Mediat 2009;90:105–111.
- Krug S, Kastenmüller G, Stückler F, et al. The dynamic range of the human metabolome revealed by challenges. FASEB J 2012;26:2607–2619.
- Enea C, Seguin F, Petitpas-Mulliez J, et al. (1)H NMRbased metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal Bioanal Chem 2010;396:1167–1176.
- Anal Bioanal Chem 2010;396:1167–1176.
 36. Park Y, Kim SB, Wang B, et al. Individual variation in macronutrient regulation measured by proton magnetic resonance spectroscopy of human plasma. Am J Physiol Regul Integr Comp Physiol 2009;297:R202–R209.
- Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012;13:263–269.
- Arboix A, Cabeza N, García-Eroles L, et al. Relevance of transient ischemic attack to early neurological recovery after nonlacunar ischemic stroke. Cerebrovasc Dis 2004; 18:304–311.

20 Minutes Pack a Punch

Neurology® Podcasts

- Interviews with top experts on new clinical research in neurology
- Editorial comments on selected articles
- Convenient—listen during your commute, at your desk, or even at the gym
- On demand—it's there when you want it
- Fun and engaging
- · New topic each week
- FREE

Listen now at www.aan.com/podcast

9.5. Segundo artículo. Purroy F, Cambray S, Mauri-Capdevila G, Jové M, Sanahuja J, Farré J, Benabdelhak I, Molina-Seguin J, Colàs-Campàs L, Begue R, Gil MI, Pamplona R, Portero-Otín M. Metabolomics predicts neuroimaging characteristics of transient ischemic attack patients. EbioMedicine. 2016;14:131-138.

https://www.ebiomedicine.com/article/S2352-3964(16)30514-X/fulltext

EBioMedicine 14 (2016) 131-138

Contents lists available at ScienceDirect

EBioMedicine

Research Paper

Metabolomics Predicts Neuroimaging Characteristics of Transient Ischemic Attack Patients☆

Francisco Purroy, MD, PhD a.*, Serafi Cambray, PhD a.1, Gerard Mauri-Capdevila, MD a.1, Mariona Jové, PhD b.1, Jordi Sanahuja, MD^a, Joan Farré^c, Ikram Benabdelhak^a, Jessica Molina-Seguin^a, Laura Colàs-Campàs^a, Robert Begue ^a, M. Isabel Gil ^a, Reinald Pamplona, MD, PhD ^b, Manuel Portero-Otín, MD, PhD ^{b,a}

- ^a Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Leida, Clinical Neurosciences Group IRBLleida, Spain
 ^b NUTREN-Nutrigenomics Center, Department of Experimental Medicine, Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLLEIDA, Lleida, Spain
 ^c Laboratori Clinic, Universitari Arnau de Vilanova de Lleida, Clinical Neurosciences Group IRBLleida, Spain

ARTICLE INFO

Article history: Received 2 August 2016 Received in revised form 6 November 2016 Accepted 7 November 2016 Available online 9 November 2016

Diffusion magnetic resonance imaging Metabolomic

ABSTRACT

Background: Neuroimaging is essential for the diagnosis and prognosis of transient ischemic attack (TIA). The discovery of a plasmatic biomarker related to neuroimaging findings is of enormous interest because, despite its relevance, magnetic resonance diffusion weighted imaging (DWI) is not always available in all hospitals that attend to TIA patients.

Methods: Metabolomic analyses were performed by liquid chromatography coupled to mass spectrometry in order to establish the metabolomic patterns of positive DWI, DWI patterns and acute ischemic lesion volumes. We used these methods with an initial TIA cohort of 129 patients and validated them with a 2nd independent cohort of 152 patients.

Findings: Positive DWI was observed in 115 (40.9%) subjects and scattered pearls in one arterial territory was the most frequent lesion pattern (35.7%). The median acute ischemic lesion volume was 0.33 (0.15–1.90) cm³. We detected a specific metabolomic profile common to both cohorts for positive DWI (11 molecules including creatinine, threoninyl-threonine, N-acetyl-glucosamine, lyso phosphatidic acid and cholesterol-related molecules) and ischemic lesion volume (10 molecules including lysophosphatidylcholine, hypoxanthine/threonate, and leucines). Moreover lysophospholipids and creatinine clearly differed the subcortical DWI pattern from other pat-

Interpretation: There are specific metabolomic profiles associated with representative neuroimaging features in TIA patients. Our findings could allow the development of serum biomarkers related to acute ischemic lesions and specific acute ischemic patterns

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

Magnetic resonance diffusion weighted imaging (DWI) remains the best neuroimaging technique to detect acute ischemia, above all since the new tissular definition of transient ischemic attack (TIA) has become essential in the evaluation of TIA patients (Easton et al., 2009). According to a recent meta-analysis, despite transient clinical symptoms, one out of three patients with definite TIA has an acute DWI lesion

 Authors report non-disclosures.
 Correspondence to: F. Purroy, Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, Clinical Neurosciences Group IRBLIeida, Avda Rovira Roure, 80, Lleida 25198, Spain.

** Corresponding author.

E-mail address: fpurroygarcia@gmail.com (F. Purroy).

These authors contributed equally to this work.

(Brazzelli et al., 2014). Moreover, DWI has been shown to be an important predictor of early stroke recurrence (Purroy et al., 2004) and it has been proposed to add to clinical prognostic scales like ABCD2I (Giles et al., 2011) and ABCD3I (Merwick et al., 2010). Furthermore, not only the presence but also the patterns of DWI are important both for the etiological classification and for patient prognosis (Purroy et al., 2011). However, despite the increased availability of magnetic resonance imaging (MRI) not all TIA patients undergo DWI. Therefore, the discovery of a plasmatic biomarker related to neuroimaging findings is of enor-

The use of metabolomics on TIA patients has started a new era in biomarker discovering for clinical purpose (Jove et al., 2015a). Metabolomics allows the study of the complete set of low-molecular-weight intermediates (metabolites), which vary according to the pathologic state of the cell, tissue, organ, or organism and are context-dependent (Jove et al., 2014; Mauri-Capdevila et al., 2013).

http://dx.doi.org/10.1016/j.ebiom.2016.11.010 2352-3964/© 2016 The Authors, Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

132

The aim of the present study was to perform a metabolomic analysis to find new biomarkers associated with the presence of acute DWI lesion and the volume and patterns of these lesions. As previously (Jove et al., 2015a), results were validated in an independent cohort.

2. Methods

2.1. Subjects

This study was approved by the ethics committee of the Arnau de Vilanova University Hospital. The main methodology has been previously described (Jove et al., 2015a). We prospectively recruited two independent cohorts of consecutive TIA patients who were attended to by a neurologist during the first 24 h after the onset of symptoms. Both cohorts shared the same methodology but were recruited at different times (Fig. 1). We excluded 12 patients with contraindications to MRI from the original study. We therefore analyzed 129 patients from cohort 1 and 152 patients from cohort 2. TIA was defined according to the classical definition as acute onset of focal cerebral or monocular symptoms lasting < 24 h and thought to be attributable to a brain ischemia (Anon, 1990). In order to avoid ethnic differences in the observed metabolomic profiles, all the patients included were Caucasian in origin. Patients were classified etiologically according to the Trial of ORG 10172 (TOAST) (Adams et al., 1993). Undetermined territory included patients without higher brain function disturbance such us aphasia, hemianopsia, neglect, or vertebrobasilar symptoms. Vertebrobasilar TIA was characterized by the following symptoms: bilateral or shifting motor or sensory dysfunction, complete or partial loss of vision in homonymous fields, dizziness, vertigo, or any combination thereof (Purroy et al., 2011).

2.2. Neuroimaging Protocol

A MRI was acquired using a 1.5-T whole-body system with a 24-mT/m gradient strength, 300 ms rise time, and an echo-planar-capable

receiver equipped with a gradient overdrive (Philips Intera 1.5 T, MRI scanner). The images obtained included axial T2-weighted turbo spinecho (TR/TE: 4800/120), T1-weighted spin-echo (TR/TE: 540/15), axial turbo fluid-attenuated inversion recovery (TR/TI/TE: 8000/2200/120), and echo-planar diffusion images (TR/TE: 3900/95). The field of view was 230 mm and the matrix was 256 \times 256 in all sequences. The DWI were obtained with a single-shot spin-echo echo-planar pulse sequence with diffusion gradient b values of 1000 s/mm2 along orthogonal axes over 20 axial sections, using 6 mm thick sections, and an interslice gap of 1 mm. Tissue abnormality (positive DWI) was defined as areas of high signal intensity on isotropic DWI reflecting an acute ischemic lesion. Patterns of DWI were determined according to a previous definition (Purroy et al., 2011): DWI normality, scattered pearls in one arterial territory (SPOT), multiple vascular territories, a single cortical lesion in one vascular territory and a subcortical pattern. Two Neuroradiologists blinded to clinical features established the presence and patterns of DWI abnormalities. The interobserver agreement (kappa value) is 1.0 for identifying positive DWI and 0.98 for identifying DWI patterns. Furthermore, OsiriX V.4.0 imaging software (Rosset et al., 2004) was used to calculate the total volume of DWI abnormality. We manually outlined the respective abnormalities using the OsiriX closed polygon tool, thereby creating a region of interest (ROI). ROIs in between the segmented slices were interpolated automatically. The resulting DWI abnormality volume was then determined.

2.3. Metabolomic Analysis

For non-targeted metabolomic analysis, plasma samples were obtained in the morning in order to avoid diurnal variations and metabolites were extracted with methanol according to previously described methods (Wikoff et al., 2008). Briefly stated, 90 μ l of cold methanol (containing phenylalanine-C13 as an internal standard) were added to 30 μ l of plasma, incubated for one hour at $-20\,^{\circ}\text{C}$ and centrifuged for three minutes at 12,000g. The supernatant was recovered, evaporated

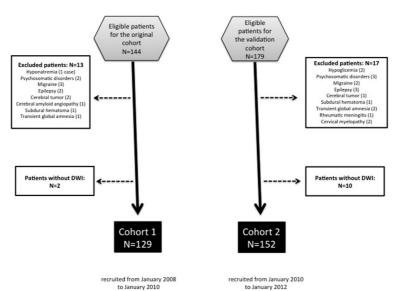


Fig. 1. Patient inclusion chart.

using a Speed Vac (Thermo Fisher Scientific, Barcelona, Spain) and resuspended in water containing 0.4% acetic acid/methanol (50/50).

We used an ultra-high pressure liquid chromatography (UHPLC) scheme with an Agilent 1290 LC system coupled to an electrospray-ionization quadruple time of flight mass spectrometer (Q-TOF) 6520 instrument (Agilent Technologies, Barcelona, Spain). A column with a particle size of 1.8 µm was employed. The preliminary identification of differential metabolites was performed using the PCDL database from Agilent (Agilent Technologies, Barcelona, Spain), which uses retention times, exact mass and isotope distribution in an standardized chromatographic system as an orthogonal searchable parameter to complement accurate mass data (AMRT approach) according to previously published works (Sana et al., 2008). The version of the PCDL database used had retention times and accurate mass data for 679 compounds.

2.4. Statistical Analysis

Statistics calculations were performed using the SPSS software version 20 (SPSS, Chicago, IL) or the Stata 11 statistics package (StataCorp, College Station, TX). Normal distribution of the variables was checked by the Kolmogorov-Smirnoff test. Partial least discriminate analysis (PLS-DA) was performed using Mass Molecular Profiler software (Agilent Technologies, Barcelona, Spain). Briefly stated, the number of components chosen for PLS-DA was 4, and data were scaled using an auto scaling algorithm. Validation of the model was achieved with a N-fold validation type with 3 folds and 10 repeats as validation parameters. In all cases, significance was considered for p < 0.05.

Statistical significance for intergroup differences was assessed using the X^2 test for categorical variables and the Student's L-test, ANOVA test and Mann-Whitney U test for continuous variables. Univariate analyses were performed to detect variables associated with the presence of positive DWI and DWI patterns. Assuming that the ischemia volume determined on DWI could be considered to constitute a continuous variable, we tested whether any circulating metabolite could be correlated with it. Receiver operating characteristic (ROC) curves for metabolomic data were performed using the ROCCET platform. ROC curves were plotted to predict the presence of positive DWI and DWI patterns.

3. Results

As we have published previously, we did not find any statistically significant differences between the two cohorts based on vascular risk factors, clinical characteristics and neuroimaging data (Jove et al., 2015b). We observed DWI abnormalities in 115 (40.9%) patients. Moreover, SPOT pattern, present in 41 (35.7%) patients, was the most frequent pattern (Table 1). Clinical features, vascular risk factors and etiology varied significantly among the different DWI patterns (Table 2). Patients who had DWI abnormalities in multiple territories were older than patients with other patterns. Motor weakness was more frequent among subcortical lesion and multiple territories pattern. LAA was the most frequent etiology among SPOT. Moreover, SPOT and multiple territories pattern had higher volumes of DWI lesion. The median acute ischemic lesion volume was 0.33 (0.15–1.90) cm².

3.1. Metabolomics and Positive DWI

Following metabolomic analyses of the discovery and validation cohorts, a distinctive pattern of metabolites was found. As shown in the heatmap (Fig. 2A), positive DWI exhibited a differential metabolomic profile in the discovery cohort. For PLSDA modeling, a three-component model with a high degree of accuracy (0.62, R2 = 0.85) was obtained in the discovery cohort (Fig. 2A). Similarly, the PLSDA model in the validation cohort also reached a high degree of accuracy (0.64, R2 = 0.96, Fig. 2B). In addition to the separation offered by the PLSDA plot, whose axis showed the integration of multiple compounds, we explored the capacity of individual metabolites to explain separation between DWI and

Table 1Risk factors, clinical characteristics and neuroimaging data of both cohorts.

Variable	Cohort 1 (n = 129)	Cohort 2 (n = 152)	Total $(n = 281)$	p
Vascular risk factors		, ,	,	
Age, mean (SD)	71.1 (10.4)	71.8 (11.2)	71.5 (10.8)	0.623
Male	83 (64.3)	91 (59.9)	174 (61.9)	0.442
Previous stroke	28 (21.7)	34 (22.5)	62 (22.1)	0.894
Hypertension	89 (69.0)	102 (67.1)	191 (68.0)	0.735
Coronary disease	17 (13.2)	20 (13.2)	37 (13.2)	0.996
Diabetes mellitus	40 (31.0)	44 (28.9)	84 (29.9)	0.707
Smoking	18 (14.0)	18 (11.8)	36 (12.8)	0.598
Hypercholesterolemia	49 (38.0)	59 (38.8)	108 (38.4)	0.886
Previous atrial	17 (13.2)	15 (9.9)	32 (11.4)	0.384
fibrillation				
Basal treatments				
Aspirin	30 (23.3)	36 (23.8)	66 (23.6)	0.908
Clopidogrel	8 (6.2)	17 (11.3)	25 (8.9)	0.139
Anticoagulation	19 (14.7)	10 (6.6)	29 (10.4)	0.026
Statins	43 (33.6)	46 (30.5)	89 (31.9)	0.576
Renin-angiotensin	64 (49.6)	71 (47.7)	135 (48.6)	0.744
system blockers				
Clinical features				
Duration				
< 10'	12 (9.3)	16 (10.5)	28 (10.0)	0.925
10-59'	49 (38.0)	56 (36.8)	105 (37.4)	
1 h	68 (52.7)	80 (52.6)	148 (52.7)	
Cluster TIA	35 (27.1)	33 (21.7)	68 (24.2)	0.290
Weakness	69 (53.5)	78 (51.3)	147 (52.3)	0.716
Isolated sensory	12 (9.3)	13 (8.6)	25 (8.9)	0.826
symptoms				
Speech impairment	76 (58.9)	94 (62.3)	170 (60.7)	0.569
Vertebrobasilar	10 (7.8)	12 (7.9)	22 (7.9)	0.952
ABCD2, median (IQR)	5.2 (4.0-6.0)	5.1 (4.0-6.0)	5.1	0.753
ent to to to			(4.0-6.0)	
Etiological subtypes	22 (240)	DO (40 D)	64 (04.0)	0.500
Large artery atherosclerosis	32 (24.8)	29 (19.2)	61 (21.8)	0.509
Cardioembolism	22 (17.0)	25 (22.2)	50 (20 7)	
Small-vessel disease	23 (17.8)	35 (23.2)	58 (20.7)	
Undetermined cause	28 (21.7) 46 (35.7)	29 (19.2) 58 (38.4)	57 (20.4) 104 (37.1)	
Neuroimaging features	40 (55.7)	36 (36.4)	104 (37.1)	
DWI abnormality	59 (45.7)	56 (36.8)	115 (40.9)	0.145
Scattered pearls on one	18 (14.0)	23 (15.4)	41 (14.7)	0.145
territory		23 (13.4)	41 (14.7)	0.403
Multiple territories	4 (3.1)	3 (2.0)	7 (2.5)	
Single cortical lesion	18 (14.0)	16 (10.7)	34 (12.2)	
Subcortical lesion	19 (14.7)	14 (9.4)	33 (11.9)	
DWI normality	70 (54.3)	93 (62.4)	163 (58.6)	
DWI volume, mean (SD)	0.36	0.33	0.33	0.987
	(0.15-1.91)	(0.15-2.45)	(0.15-1.90)	

Percentages are shown in parentheses as appropriate.

DWI, diffusion-weighted images; TIA, transient ischaemic attacks; SD, standard deviation; IOR, interquartile range.

non-DWI groups. The results (Fig. S1) revealed that several molecules could differentiate these groups, with receiving operating characteristic curves consistent in both cohorts. Univariate statistics showed that a total of 87 molecular features in the discovery cohort were significantly different between positive DWI and normal DWI patients (Student's ttest, p values between 6.98 E-5 and 0.05, supplemental dataset 1). After applying the same approach to the validation cohort, 379 molecular features showed significant differences between these two groups (Student's t-test, p values between 2.34 E – 5 and 0.05, supplemental dataset 1). When searching for common differential molecular features shared by these two cohorts, 11 molecular features were found (Table 3). When we applied a database search using the PCDL software (integrating exact masses, isotope distribution and retention time identity with an identical LC/MS system) it was possible to propose several iden tities (Table 3), including creatinine, threoninyl-threonine, *N*-acetyl-glucosamine, lysophosphatidic acid (LPA) and a cholesterol-related molecule. Most differential compounds showed ROC areas (data not shown) between 0.6 and 0.65, demonstrating that these molecules could serve as potential biomarkers for acute ischemic lesions on DWI.

134

F. Purrov et al. / EBioMedicine 14 (2016) 131-138

Table 2 Risk factors and clinical features by DWI patterns

Variable	All cases (n = 281)	DWI normality (n = 166)	Scattered pearls one territory $(n = 41)$	Multiple territories $(n = 7)$	Single cortical lesion $(n = 34)$	Subcortical lesion $(n = 33)$	p
Vascular risk factors							
Age, mean (SD)	71.5 (10.8)	73.4 (9.9)	69.2 (11.3)	74.1 (5.5)	68.8 (13.8)	67.2 (10.2)	0.005
Male	174 (61.9)	95 (57.2)	32 (78.0)	5 (71.4)	20 (58.8)	22 (66.7)	0.165
Hypertension	191 (68.0)	118 (71.1)	27 (65.9)	4 (57.1)	20 (58.8)	22 (66.7)	0.687
Previous stroke	62 (22.1)	42 (25.3)	8 (19.5)	2 (28.6)	7 (20.6)	3 (9.1)	0.340
Diabetes mellitus	84 (29.9)	58 (34.9)	7 (17.1)	1 (14.3)	9 (26.5)	9 (27.3)	0.175
Coronary disease	37 (13.2)	23 (13.9)	6 (14.6)	1 (14.3)	6 (17.6)	1 (3.0)	0.448
Smoking	36 (12.8)	13 (7.8)	8 (19.5)	0 (0)	7 (20.6)	8 (24.2)	0.020
Hypercholesterolemia	108 (38.4)	64 (38.6)	17 (41.5)	5 (71.4)	18 (52.9)	4 (12.1)	0.003
Previous atrial fibrillation	32 (11.4)	20 (12.3)	9 (22.0)	1 (14.3)	1 (2.9)	1 (3.0)	0.054
Clinical features							
Cluster TIA	68 (24.2)	31 (19.0)	13 (31.7)	3 (42.9)	9 (26.5)	10 (30.3)	0.216
Speech impairment	170 (60.7)	103 (63.6)	20(48.8)	3 (42.9)	19 (55.9)	22 (66.7)	0.317
Motor weakness	147 (52.3)	68 (41.0)	27 (65.9)	5 (71.4)	21 (61.8)	26 (78.8)	< 0.001
Isolated sensory symptoms	25 (8.9)	20 (12.0)	1 (2.4)	1 (14.3)	0 (0)	3 (9.1)	0.096
Vertebrobasilar symptoms	22 (7.9)	11 (6.7)	4 (9.8)	1 (16.7)	3 (8.6)	3 (9.1)	0.867
Lacunar syndrome	105 (37.5)	61 (36.6)	15 (36.6)	0(0)	9 (25.7)	20 (62.5)	0.007
Duration $(n = 272)$							0.087
< 10'	28 (10.0)	22 (13.3)	3 (7.3)	1 (14.3)	0 (0)	2 (6.1)	
10-59'	105 (37.4)	58 (34.9)	16 (39.0)	2 (28.6)	20 (58.8)	9 (27.3)	
1 h	148 (52.7)	86 (51.8)	22 (53.7)	4 (57.1)	14 (41.2)	22 (66.7)	
ABCD2, median (IQR)	5.1 (4.0-6.0)						
Etiological subtypes							
Large artery disease	61 (21.8)	30 (18.1)	16 (39.0)	2 (28.6)	11 (32.4)	2 (6.1)	< 0.001
Cardioembolism	58 (20.7)	34 (20.5)	13 (31.7)	2 (28.6)	7 (20.6)	2 (6.1)	
Small vessel disease	57 (20.4)	33 (19.9)	0 (0)	(0)	(0)	29 (87.9)	
Undetermined	99 (35.2)	68 (41.0)	12 (29.3)	3 (42.9)	16 (47.1)	0(0)	
DWI volume, mean (SD)	0.33 (0.15-1.90)	-	0.67 (0.28-2.99)	0.49 (0.04-1.19)	0.27 (0.07-7.17)	0.23 (0.17-0.68)	0.079

Percentages are shown in parentheses as appropriate.

DWI, diffusion-weighted images; TIA, transient ischaemic attacks; SD, standard deviation; IQR, interquartile range

3.2. Metabolomics and Acute Ischemic Lesion Volume

In the discovery cohort, 43 molecules showed a significant correlation with acute ischemic lesion volume (Pearson correlation test, p values between 3.12 E -07 and 0.05, Supplementary dataset 2). In the validation cohort 211 molecules showed this feature (Pearson correlation test, p values between 1.31 E $-\,10$ and 0.05, supplementary data set 2). After searching for common molecules, a total of 7 different molecules were found including lysophosphatidylcholine, hypoxanthine/ threonate, and leucine (Table 4). Globally, these molecules showed a significant direct relationship with ischemia volume.

3.3. Metabolomics and DWI Patterns

The results for the discovery cohort suggest specific metabolomic profiles that cluster patients according to their DWI pattern. Subcortical pattern patients were therefore clearly different from those with isolated cortical lesions and those with normal DWI according to a PLSDA model with a moderate degree of accuracy (two-component model 0.503, R2 0.63, Fig. 3A). This was confirmed by the analysis in the confirmation cohort, where accuracy increased (two-component model 0.58, R2 0.92, Fig. 3B). This supported the notion that, according to the metabolomic profiles, the subcortical DWI pattern could be clearly differed from other patterns, such us isolated cortical lesions and DWI negative patients. A random forest classification scheme confirmed these findings, with subcortical patterns being classified with lower margin of error (<0.05) in both cohorts.

In the case of univariate measurements, in the first cohort a total of 81 molecules were seen to be significantly different from these patterns (p values ranging between 2E-04 and 0.05, Supplemental dataset 3). In the confirmation cohort, 285 molecules differed across the DWI pattern (p values between 5.94E-11 and 0.05, Supplemental dataset 3). Confirming the existence of potential biomarkers for the DWI pattern, 8 molecules were found to be common between these two cohorts

(Table 5). These comprised lysophospholipids, as well as creatinine and other unknown metabolites

4. Discussion

To the best of our knowledge, this is the first time that a metabolomics approach has revealed potential biomarkers related to neuroimaging findings after TIA. Previous data from different groups related metabolomics data with neuroimaging in the context of bipolar disorder (McIntyre et al., 2014), multiple sclerosis (Vingara et al., 2013), dementia such as Alzheimer's disease (Lista et al., 2015), schizophrenia (Waddington, 2007), Parkinson disease (Ren et al., 2015) and even pediatric cerebral infections (Pappa et al., 2015). We found a specific metabolomic profile related to acute ischemic lesions, volume and specific acute ischemic patterns. In a previous report, Bivard et al. (2014), using magnetic resonance spectroscopy, discovered in ischemic stroke patients with posttreatment hyperperfusion signs of increased glutamate, N-acetylaspartate and lactate. These changes were related to increased metabolism and potentially enhanced ulterior neuroplasticity. In our case, positive DWI was linked to changes in several other metabolites, such as creatinine, N-acetyl-glucosaminylamine and LPA. Interestingly, *N*-acetyl-glucosaminylamine, that is structurally related to *N*-acetyl-glucosamine, and other similar molecules are modulators of immune response (Srikrishna et al., 2001) when expressed at the endothelial membrane. Assuming the important role of microglia and activated neutrophils in brain ischemia response (Amantea et al., 2015), the present findings could be in line with changes in expression and cleavage of glycoprotein components. It should be noted that, one of the potential markers for DWI positivity was a low level of LPA. These molecules, and their signaling through their cognate receptor LPA1, have been implicated in the generation of ischemia-related neuropathic pain (Halder et al., 2013). Moreover, some molecules from this family are also considered angiogenic factors (Ren et al., 2011; Binder et al., 2013). Therefore, diminished levels may be associated with a lower capacity to withstand hypoxia-induced apoptosis (Liu et al., 2009). Interestingly, other

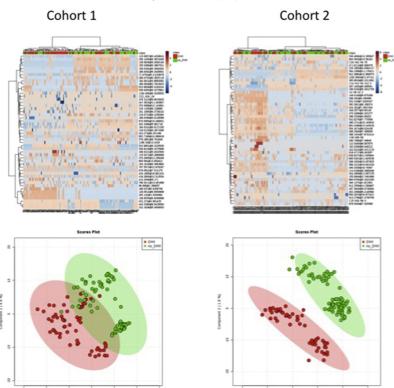


Fig. 2. Association of DWI with differential metabolomic patterns, Upper panels: heatmap showing major metabolites differentiating plasma metabolomic profiles from DWI positive versus non DWI positive patients, both in the discovery cohort (A) and in the validation cohort (B). A PLSDA model could be designed with a high accuracy, as shown in the lower panels, both for the discovery cohort (A) and for the validation cohort (B).

researchers have found increased LPA in plasma from patients with vascular cerebral ischemia (Li et al., 2008). In this context, both activated platelets and atheroma plaque are known sources of LPA (Haseruck et al., 2004). The fact that LPA is a platelet activator and thrombotic agent reveals the potential involvement of these molecules in cerebral

changes linked to hypoxia. In order to explain whether the decreased LPA observed in our DWI positive patients is a protective trait (in light of its thrombogenic role) or a negative feature (based on the antiapoptotic properties), it should be taken into account that we have specifically found an increase in LPA (O-20:0). Furthermore, the

 Table 3

 Molecular features differing between positive DWI and negative DWI patients.

Metabolite	Discovery of	ohort		Validation	cohort	
Identification ^a	Mass	RT (min)	p value ^b	Mass	RT (min)	p value ^b
LysoPA(O-20:0)/5alpha-cholestane-3alpha,7alpha,12alpha,23,25-pentol	452.34	5.98	0.011	452.34	6.21	0.001
Unknown 1	218.01	0.29	0.028	218.01	0.21	0.007
Unknown 2	220.11	9.13	0.006	220.11	9.13	0.008
Creatinine	113.06	0.38	0.050	113.06	0.38	0.012
Threoninyl-Threonine/N-acetyl-b-glucosaminylamine/DiHDPA	362.25	11.67	0.009	362.25	11.94	0.012
Unknown 3	216.07	0.43	0.007	216.08	0.56	0.013
Unknown 4	154.97	0.14	0.023	154.97	0.28	0.013
Unknown 5	157.99	0.30	0.039	157.99	0.23	0.017
Unknown 6	146.07	0.41	0.019	146.07	0.39	0.038

RT, retention time; LysoPA, lysophosphatidic acid.

^a Potential identities, based on retention time and exact mass are presented. When it is not possible to attribute only one identity, two or three potential identities are shown.

^b After Student's t-test between positive DWI and negative DWI patients.

Table 4 Molecular features correlating with acute ischemic lesion volume

Identification ^a	Discover	y cohort			Validatio	n cohort		
	Mass	RT (min)	Pearson correlation coefficient ^b	p value	Mass	RT (min)	Pearson correlation coefficient ^b	p value
LysoPC (22:6)	567.33	10.72	0.20	0.06	567.33	10.89	0.29	0.00
Hypoxanthine/threonate	136.04	0.78	0.20	0.06	136.04	0.78	0.23	0.01
Unknown 1	294.19	9.36	0.18	0.09	294.19	9.41	0.19	0.02
LysoPC (20:4) ^c	543.33	10.68	0.18	0.08	543.33	11.10	0.18	0.03
Unknown 2	760.03	0.34	-0.21	0.05	760.02	0.33	-0.16	0.04
Isoleucine/leucine/norleucine	131.09	0.56	0.30	0.00	131.09	0.55	0.16	0.05
Unknown 3	85.09	0.56	0.29	0.01	85.09	0.55	0.16	0.06

RT, retention time; LysoPC, lysophosphatidylcholine

- Potential identities, based on retention time and exact mass are presented. When it is not possible to attribute only one identity, two or three potential identities are shown. Correlation coefficient with ischemia volume.
- Note the difference in RT between the two cohorts. No peak with similar exact mass and isotope distribution was found closer to the first retention time.

structure-function relationships for LPAs are strongly dependent on the side chain (Haseruck et al., 2004).

As in our previous work (Jove et al., 2015b), specific patterns of LysoPC were again relevant. LysoPC (22:6) and LysoPC (20:4), that were previously related to LAA and stroke recurrence respectively, were now associated with lesion volume. Furthermore, LysoPC (16:0), that was low in those TIA patients who suffered a subsequent stroke, was now related to SPOT and cortical patterns. All these associations made sense because SPOT and cortical patterns which are overrepresented in LAA patients (Purroy et al., 2011) had the biggest lesion volume.

Our work shows some inherent limitations. The fact that the patients were heterogeneous in fasting time, as well as differences in gender, etiology, pharmacological treatment or age, to name a few, could hinder some potential biomarkers. Moreover, plasma metabolites levels could be influenced by many factors such as diet, medications, age and clinical variables (Mauri-Capdevila et al., 2013). However, the use of two cohorts allows overcoming these potential limitations, increasing the robustness of the resulting data (Jove et al., 2015a; Shi et al., 2004). A further limitation of the present work is the fact that many molecules where not identified, although it is a common circumstance for these kind of analyses (Vaniya and Fiehn, 2015). However, the use of orthogonal approaches, such as the use of retention time in standardized chromatographic systems, exact mass and isotope pattern, could help to overcome this limitation, leading to the formulation of potential

biomarkers (Sana et al., 2008). Additionally, there is an important step left to be done in order to implement our results in the everyday clinical practice. We have to recognize that metabolomic analysis is too expensive and requires extensive temporal and personal resources. So once potential biomarkers are identified, economic and fast techniques, amenable to most clinical laboratories, need to be developed to detect them. Finally, we included only TIA patients even we knew that the diagnosis of transient ischemia could sometimes be problematic as many conditions mimic this situation. Further research should be done in big tissue-defined ischemia cohorts to confirm our results.

Globally, our data support the existence of metabolic patterns associated with neuroimaging features after transient brain ischemia that could allow the development of serum biomarkers related to acute ischemic lesions and specific acute ischemic patterns

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.ebiom.2016.11.010.

This work has been supported by the Government of Catalonia-Agència de Gestió d'Ajuts Universitaris i de Recerca [2009SGR-735 and 2014SGR-1418], the Spanish Ministry of Health [FIS 11-02033, 14-001115 and 14-00328] and the Marató of TV3 Foundation [95/C/ 2011]. It was also supported by the European Regional Development Fund (PI 14/01115) "A way to build Europe".

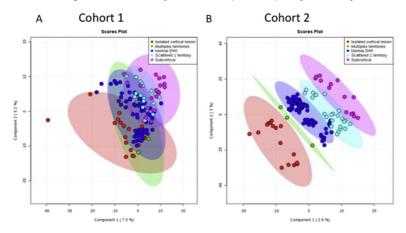


Fig. 3. Imaging patterns of ischemia are associated with differential metabolomic profiles. PLSDA model showing association of different ischemia imaging patterns with specific metabolomic profiles, both for the discovery cohort (A) and for the validation cohort (B).

Molecules differing across DWI patterns

Identification ^a	Discove	ry coho	rt		Confirm	nation co	ohort	
	Mass	RT (min)	p value ^b	Fisher's LSD ^c (n of patients)	Mass	RT (min)	p value ^b	Fisher's LSD ^c (n of patients)
LysoPC(16:0)/LysoPE(19:0)	495.33	10.77	0.02	Normal DWI (70)- Isolated cortical lesion (18); SPOT(18) - Isolated cortical lesion (18); Subcortical (19) - Isolated cortical lesion (18)	495.33	10.78	0.00	Isolated cortical lesion (16) - SPOT (23); Normal DWI (83) - SPOT (23)
2-Oxo-4-methylthiobutanoic acid	148.02	9.69	0.04	Normal DWI(70) - Isolated cortical lesion (18); Subcortical - Isolated cortical lesion (18)	148.01	9.68	0.00	SPOT (23) - Isolated cortical lesion (16); SPOT (23) - Normal DWI (83)
Creatinine	113.06	0.38	0.00	Isolated cortical lesion (18) - Multiples territories (4); Normal DWI(70) - Isolated cortical lesion (18); Subcortical (19) - Isolated cortical lesion (18); Normal DWI(70) - Multiples territories (4); Scattered one territory - Multiples territories (4); Subcortical (19) - Multiples territories (4)	113.06	0.38	0.01	Isolated cortical lesion (16) - SPOT (23); Normal DWI (83) - SPOT (23); Subcortical (14) - SPOT (23)
Pyroglutamic acid/N-Acryloylglycine/Pyrroline hydroxycarboxylic acid/4-Oxoproline ^d	129.04	0.65	0.02	Isolated cortical lesion (18) – SPOT (18); Normal DWI (70)- SPOT(18); Subcortical (19) – SPOT (18)	129.04	0.38	0.01	Isolated cortical lesion (16) - SPOT (23); Normal DWI (83) - SPOT (23)
Unknown1	760.03	0.34	0.05	Normal DWI (70)- Isolated cortical lesion (18); SPOT (18) - Isolated cortical lesion (18); Subcortical (19) - Isolated cortical lesion (18)	760.02	0.33	0.02	Normal DWI (83) - Isolated cortical lesion (16); Subcortical (14) - Isolated cortical lesion (16); Normal DWI (83) - SPOT (23); Subcortical (14) - SPOT (23)
Unknown2	825.97	0.35	0.02	SPOT(18) - Normal DWI(70); Subcortical (19) - Normal DWI (70)	825.98	0.33	0.03	SPOT (23) - Isolated cortical lesion (16); SPOT (23) - Normal DWI (83)
Eicosatrienoic acid	306.26	12.17	0.05	Isolated cortical lesion (18)- Normal DWI(70); Isolated cortical lesion (18) - Subcortical (19); SPOT(18) - Normal DWI(70); SPOT (18) - Subcortical (19)	306.26	12.13	0.03	SPOT (23) - Isolated cortical lesion (16); SPOT (23) - Normal DWI (83)

RT, retention time; LysoPC, lysophosphatidylcholine; SPOT, scattered pearls in one arterial territory; DWI, diffusion-weighted images; LysoPE, lysophosphatidylethanolamine.

^a Potential identities, based on retention time and exact mass are presented. When it is not possible to attribute only one identity, two or three potential identities are shown

Author Contributions

Francisco Purroy - Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

Serafí Cambray - Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

Gerard Mauri-Capdevila - Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

Mariona Jové - Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

Jordi Sanahuja - Analysis and interpretation of the data. Revising the manuscript for intellectual content.

Joan Farré - Analysis and interpretation of the data. Revising the manuscript for intellectual content.

Ikram Benabdelhak - Analysis and interpretation of the data. Revising the manuscript for intellectual content. Jessica Molina-Seguín - Analysis and interpretation of the data, Re-

vising the manuscript for intellectual content.

Laura Colàs-Campàs - Analysis and interpretation of the data. Revising the manuscript for intellectual content. Robert Begue - Analysis and interpretation of the data. Revising the

manuscript for intellectual content. M. Isabel Gil - Analysis and interpretation of the data. Revising the manuscript for intellectual content.

Reinald Pamplona. Analysis and interpretation of the data. Revising the manuscript for intellectual content and editorial style.

Manuel Portero-Otín - Design and conceptualization of the study. Analysis and interpretation of the data. Drafting and revising the manuscript for intellectual content.

Acknowledgments

We are indebted to plasma donors for their support and permission. Samples were obtained with the support of IRBLleida biobank and RETICS BIOBANCOS (RD09/0076/00059) and Metabolomics Service from IRBLleida. We would like to thank Rosa Gómez for her technical

Adams Jr., H.P., Bendixen, B.H., Kappelle, L.J., et al., 1993. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24 (1), 35–41.

Amantea, D., Micieli, G., Tassorelli, C., et al., 2015. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front. Neurosci. 9, 147.

Anon, 1990. Special report from the National Institute of Neurological Disorders and Stroke. Classification of cerebrovascular diseases III. Stroke 21 (4), 637–676.

Binder, B.Y., Sondergaard, C.S., Nolta, J.A., Leach, J.K., 2013. Lysophosphatidic acid enhances stromal cell-directed angiogenesis. PLoS One 8 (12), e82134.

Biward, A., Krishnamurthy, V., Stanwell, P., et al., 2014. Spectroscopy of reperfused tissue after stroke reveals heightened metabolism in patients with good clinical outcomes.

J. Cereb. Blood Flow Metab. 34 (12), 1944–1950.

Brazzelli, M., Chappell, F., Miranda, H., et al., 2014. Diffusion-weighted imaging and diagnosis of transient ischaemic attack. Ann. Neurol. 75 (1), 67–76.

Easton, J.D., Saver, J.L., Albers, G.W., et al., 2009. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anestbesia; Council on Cardiovascular Audicing and Intervention; cular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this state-ment as an educational tool for neurologists. Stroke 40 (6), 2276–2293.

After ANOVA considering different DWI patterns.

Post-hoc analyses using Fisher's Least Significant Difference test, indicating significantly different groups separated by semicolon. Identical differences found in both cohorts are marked by a bold font.

d Note the difference in RT between the two cohorts. No peak with similar exact mass and isotope distribution was found closer to the first retention time.

- Giles, M.F., Albers, G.W., Amarenco, P., et al., 2011. Early stroke risk and ABCD2 score p formance in tissue- vs time-defined TIA: a multicenter study. Neurology 258 (1

- formance in tissue- vs time-defined TIA: a multicenter study. Neurology 258 (11), 2107-2109.

 Halder, S.K., Yano, R., Chun, J., Ueda, H., 2013. Involvement of LPA1 receptor signaling in cerebral ischemia-induced neuropathic pain. Neuroscience 235, 10-15.

 Haseruck, N., Erl, W., Pandey, D., et al., 2004. The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte aggregate formation in whole blood: involvement of P2Y1 and P2Y11 receptors. Blood 103 (7), 2585-2592.

 Jove, M., Portero-Otin, M., Naudi, A., Ferrer, I., Pamplona, R., 2014. Metabolomics of human brain aging and age-related neurodegenerative diseases. J. Neuropathol. Exp. Neurol. 73 (7), 640-657.

 Jove, M., Mauri-Capdevila, G., Suarez, I., et al., 2015a. Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology 84 (1), 36-45.

 Jove, M., Mauri-Capdevila, G., Suarez, I., et al., 2015b. Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology 8.

 Li, Z.G., Yu, Z.C., Wang, D.Z., et al., 2008. Influence of acetylsalicylate on plasma lysophosphatidic acid level in patients with ischemic cerebral vascular diseases. Neurol. Res. 30 (4), 366-369.

 Lita, S., O'Byant, S.E., Blemonow, K., et al., 2015. Biomarkers in sporadic and familial Alzheimer's disease. J. Alzheimers Dis. 47 (2), 291-317.

 Liu, X., Hou, J., Shi, L., et al., 2009. lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced appotosis in vivo. Stem Cells Dev. 18 (7), 947-954.

 Mauri-Capdevila, G., Jove, M., Suarez-Luis, I., Portero-Otin, M., Purroy, F., 2013. Metabolomics in sichaemic stroke, new diagnostic and prognostic biomarkers. Rev. Neurol. 57 (1), 29-36.

- (1), 29-36. McIntyre, R.S., Cha, D.S., Jerrell, J.M., et al., 2014. Advancing biomarker research: utilizing Big Data' approaches for the characterization and prevention of bipolar disorder. Bi-polar Disord. 16 (5), 531-547. Merwick, A., Albers, G.W., Amarenco, P., et al., 2010. Addition of brain and carotid imaging
- Merwick, A., Albers, G.W., Amarenco, P., et al., 2010. Addition of brain and carotid imaging to the ABCO(2) core to identify patients at early risk of stroke after transient ischaemic attack: a multicentre observational study. Lancet Neurol. 9 (11), 1060–1069.Pappa, V., Seydel, K., Gupta, S., et al., 2015. Lipid metabolites of the phospholipase A2 pathway and inflammatory cytokines are associated with brain volume in paediatric cerebral malaria. Malar. J. 14 (1), 513.Purroy, F., Montaner, J., Rovira, A., Delgado, P., Quintana, M., Alvarez-Sabin, J., 2004. Higher risk of further vascular events among transient ischemic attack patients with diffusion-weighted imaging acute ischemic lesions. Stroke 35 (10), 2313–2319.

- Purroy, F., Begue, R., Gil, M.I., et al., 2011. Patterns of diffusion-weighted magnetic resonance imaging associated with etiology improve the accuracy of prognosis after transient ischaemic attack. Eur. J. Neurol. 18 (1), 121–128.
 Ren, B., Hale, J., Srikanthan, S., Silverstein, R.I., 2011. Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent signaling pathway. Blood 117 (22), 6036–6045.
 Ren, Z., Yang, N., Ji, C., et al., 2015. Neuroprotective effects of 5-(4-hydroxy-3-dimethoxybenzylidene)-thiazolidinone in MPTP induced Parkinsonism model in mice. Neuropharmacology 93, 209–218.
 Rosset, A., Spadola, I., Ratib, O., 2004. OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 17 (3), 205–216.
 Sana, T.R., Roart, J.C., Li, X., Waddell, K., Fischer, S.M., 2008. Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech. 19 (4), 258–266.
 Shi, H., Paolucci, U., Vigneau-Callahan, K.E., Milbury, P.E., Matson, W.R., Kristal, B.S., 2004. Development of biomarkers based on diet-dependent metabolic serotypes: practical issues in development of expert system-based classification models in metabolomic studies. OMICS 8 (3), 197–208.
 Srikrishna, G., Toomre, D.K., Manzi, A., et al., 2001. A novel anionic modification of N-glycans on mammalian endothelial cells is recognized by activated neutrophils and modulates acute inflammatory responses. J. Immunol. 166 (1), 624–632.
 Vaniya, A., Fiehn, O., 2015. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Anal. Chem. 69, 52–61.
 Vingara, L.K., Yu, H.J., Wagshul, M.E., et al., 2013. Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multible selerosis. Neurolomaes 82, 586–594.<

- spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neurolmage 82, 586-594.

 Waddington, JL, 2007. Neuroimaging and other neurobiological indices in schizophrenia: relationship to measurement of functional outcome. Br. J. Psychiatry Suppl. 50,
- Wikoff, W.R., Pendyala, G., Siuzdak, G., Fox, H.S., 2008, Metabolomic analysis of the cere brospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J. Clin. Invest. 118 (7), 2661–2669.