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ABSTRACT  

Given the growing need in dental implantology field to develop new biomaterials with better and 

better properties, the production and characterization optimization is crucial. Thus, the poor 

correlation shown between in vitro testing and subsequent in vivo experimentation compromises 

the efficiency of this process, giving rise to the need to developing new in vitro methodologies that 

enable the prediction of biomaterial behaviour in a more efficient way. 

After the material implantation in the organism, it comes into contact with tissues and body fluids 

such as blood, and this interaction results in the formation of a protein layer on its surface. This 

protein layer plays a key role in the biological processes triggered as a response to the implant 

presence in the body, leading to its success or failure. 

Considering the important role of these proteins in the implantation outcome, this doctoral thesis 

focuses on the proteomic characterization of serum protein adsorption onto distinct biomaterials 

by the use of liquid chromatography-tandem mass spectrometry. Hence, biomaterials with 

different properties are systematically designed to control their biological response. These 

materials were characterized by proteomics, in vitro and in vivo assays. This information enabled 

the correlation between the movements detected in the protein patterns and the material 

biological response, obtaining biomarkers that could predict the in vivo response of new 

biomaterials. 

This methodology has allowed to identify as biomarkers a cluster of proteins related to 

biocompatibility problems. This cluster could be associated with an acute immune reaction, which 

may suppose an excessive inflammatory response and provoke the implant failure. In parallel, the 

study of different materials with specific biological effects, positively associated with the implant 

osseointegration capacity, has allowed to identify movements in protein patterns linked to these 

biological responses. In this sense, a common affinity pattern has been detected for the proteins 

vitronectin and apolipoprotein E, which role on tissue regenerative processes is well-known and 

described in literature.  

Therefore, the work presented in this doctoral thesis has allowed an improvement on the 

understanding of both biomaterial-protein and protein-tissue response interactions, as well as to 
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identify biomarkers associated with different biological responses, which could form the basis for 

the development of new in vitro methodologies based in proteomics.
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RESUMEN 

Dada la creciente necesidad en el campo de la implantologia dental de desarrollar nuevos 

biomateriales con cada vez mejores propiedades, resulta crucial la optimización de su producción 

y caracterización.  Así, la poca correlación mostrada entre la caracterización in vitro y su posterior 

ensayo in vivo compromete la eficiencia de este proceso dando lugar a la necesidad de desarrollar 

nuevas metodologías in vitro que permitan predecir el comportamiento real de los biomateriales 

de un modo más eficaz.  

Tras la implantación de un material en el cuerpo, éste entra en contacto con tejidos y fluidos 

corporales como la sangre, y esta interacción da lugar a la formación de una capa de proteínas en 

su superficie. Esta capa de proteínas desempeña un papel clave en los procesos biológicos que se 

desencadenan como respuesta a la presencia del implante, pudiendo llegar a disponer su éxito o 

fracaso.  

De esta manera, considerando la importante función de estas proteínas en el resultado de la 

implantación, esta tesis doctoral se centra en la caracterización proteómica de la adsorción de 

proteínas séricas sobre distintos biomateriales mediante el uso de cromatografía liquida acoplada 

a espectrometría de masas en tándem. Así, biomateriales con distintas propiedades son 

sistemáticamente diseñados para controlar su respuesta biológica. Estos materiales son 

caracterizados mediante proteómica, ensayos in vitro e in vivo. Esta información hace posible la 

correlación entre los movimientos detectados en los patrones de proteínas y la respuesta biológica 

del material, obteniendo biomarcadores que podrían predecir la respuesta in vivo de futuros 

biomateriales.  

Esta metodología ha permitido identificar como biomarcadores un clúster de proteínas que 

podrían estar asociadas a problemas de biocompatibilidad. Este clúster estaría relacionado con una 

reacción inmune aguda que podría suponer una excesiva respuesta inflamatoria, culminando en el 

fallo del implante.  En paralelo, el estudio de distintos materiales con efectos biológicos específicos, 

asociados positivamente a la capacidad de osteointegración de un implante, ha permitido 

identificar movimientos en patrones de proteínas ligados a estas respuestas biológicas. En este 
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sentido, se ha detectado un patrón común de afinidad hacía las proteínas vitronectina y 

apolipoproteína E, cuyo papel clave en la regeneración tisular se encuentra descrito en la literatura.  

Por tanto, el trabajo expuesto en esta tesis doctoral ha permitido mejorar la comprensión de las 

interacciones biomaterial-proteína y proteína-respuesta tisular, así como identificar 

biomarcadores asociados a distintas respuestas biológicas, que constituirían las bases para el 

desarrollo de nuevas metodologías in vitro basadas en proteómica. 
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RESUM 

Donada la creixent necessitat en el camp de la implantologia dental de desenrotllar nous 

biomaterials amb cada vegada millors propietats, resulta crucial l'optimització de la seua producció 

i caracterització. Així, la poca correlació mostrada entre la caracterització in vitro i el seu posterior 

assaig in vivo compromet l'eficiència d'este procés donant lloc a la necessitat de desenrotllar noves 

metodologies in vitro que permeten predir el comportament real dels biomaterials d'una manera 

més eficaç.  

Després de la implantació d'un material en el cos, este entra en contacte amb teixits i fluids 

corporals com la sang, i esta interacció dóna lloc a la formació d'una capa de proteïnes en la seua 

superfície. Esta capa de proteïnes exerceix un paper clau en els processos biològics que es 

desencadenen com a resposta a la presència de l'implant, podent arribar a disposar el seu èxit o 

fracàs. D'esta manera, considerant la important funció d'estes proteïnes en el resultat de la 

implantació, esta tesi doctoral es centra en la caracterització proteòmica de l'adsorció de proteïnes 

sèriques sobre distints biomaterials per mitjà de l'ús de cromatografia liquida acoblada a 

espectrometria de masses en tàndem. Així, biomaterials amb distintes propietats són 

sistemàticament dissenyats per a controlar la seua resposta biològica. Estos materials són 

caracteritzats per mitjà de proteòmica, assajos in vitro i in vivo. Esta informació fa possible la 

correlació entre els moviments detectats en els patrons de proteïnes i la resposta biològica del 

material, obtenint biomarcadors que podrien predir la resposta in vivo de futurs biomaterials. 

Aquesta metodologia ha permès identificar com biomarcadors un clúster de proteïnes que podrien 

estar associades a problemes de biocompatibilitat. Aquest clúster estaria relacionat amb una 

reacció immune aguda que podria suposar una excessiva resposta inflamatòria, culminant en la 

fallada de l'implant. En paral·lel, l'estudi de distints materials amb efectes biològics específics, 

associats positivament a la capacitat d'osteointegració d'un implant, ha permès identificar 

moviments en patrons de proteïnes lligats a aquestes respostes biològiques. En aquest sentit, s'ha 

detectat un patró comú d'afinitat a les proteïnes vitronectina i apolipoproteïna E, estant descrit en 

la literatura el seu paper clau en la regeneració tissular. 
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Per tant, el treball exposat en esta tesi doctoral ha permès millorar la comprensió de les 

interaccions biomaterial-proteïna i proteïna-resposta tissular, així com identificar biomarcadors 

associats a distintes respostes biològiques, que constituirien les bases per al desenvolupament de 

noves metodologies in vitro basades en proteòmica. 
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1. Introduction 

 Motivation 

Our society is experiencing an aging process. According to the United Nations practically every 

country in the world is experiencing growth in the number and proportion of older persons in their 

population. In fact, Europe presents the highest percentage of population over 60 years of age. 

This ageing is considered to become one of the most important social transformation of twenty-

first century, having wide impacts in nearly all sectors of society [1]. New challenges arise as a 

result of this problem.  

In this sense, the Horizon 2020 program establishes as one of its strategic objectives to investigate 

the major issues affecting European citizens in terms of health, demographic change and wellbeing. 

One of the challenges to achieve is the active aging, that is, finding solutions that allow the aging 

population to lead active daily life for as long as possible [2]. 

The development of new biomaterials with better and better performance that allow to recover 

or substitute biological functions that have been lost in the body can improve human’s quality of 

life, being that essential to support persons to be healthy and active, ensuring their wellbeing. 

From a board point of view, a biomaterial is a material, which is set to interact with biological 

system in order to assess, increase, restore or heal altered tissues, organs or functions [3]. 

However, the biomaterial concept has evolved as its field of research has advanced, developing 

new systems and technologies. In 1987, the European Society of Biomaterials defined that a 

biomaterial was a material used in a medical device, intended to interact with biological systems 

[4]. Later, in 2009, Williams refined the biomaterial concept as ‘‘a substance that has been 

engineered to take a form which, alone or as part of a complex system, is used to direct, by control 

of interactions with components of living systems, the course of any therapeutic or diagnostic 

procedure, in human or veterinary medicine” [5].  
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Until now, several biomaterial generations have been developed, being the first materials for 

biomedical application used to replace lost and damage tissues. During this generation, the goal 

was achieving materials with an inert behaviour, avoiding carcinogenicity effects, toxicity, allergy 

and inflammatory reactions. Nevertheless, the advances in the field allowed the development of 

bioactive materials, designed to promote specific responses by the surrounding tissues, which 

constitute a second biomaterial generation. The third biomaterial generation are now created to 

promote an appropriate response for a given application, e.g. being able to stimulate the tissue 

regeneration [6].  

One of the main biomaterial characteristics is its biocompatibility, property that has evolved in 

parallel to the biomaterial field development. By the 1970s, this concept was associated to 

toxicology, stablishing that a biomaterial must be no toxic and not does any harm to the biological 

system. In this line, biocompatibility was defined as the ability of a material to perform with an 

appropriate host response in a specific application [4]. Williams proposed a more accurate version 

of this definition, describing the biocompatibility as the biomaterial ability to perform its desired 

function with respect to a medical therapy, without eliciting any undesirable local or systemic 

effects in the recipient or beneficiary of that therapy, but generating the most appropriate 

beneficial cellular or tissue response in that specific situation, and optimizing the clinically relevant 

performance of that therapy [7]. However, in 2011, Ratner offered a new definition, considering 

that biocompatibility is the material ability to locally trigger and guide non-fibrotic wound healing, 

reconstruction and tissue integration; which differs from the term biotolerability, defined as the 

material ability to reside in the body for long periods of time with only low degrees of inflammatory 

reaction [8]. 

During the last years, technological advances have allowed a high level of development and 

selection of the most suitable biomaterials with specific biological responses for each application, 

promoted by the increasing necessity of these materials as consequence of population aging. 

Specifically, this research arises within the existing need in dental field to improve the present 

implant systems for the replacement of missing tooth. Despite the good results obtained with the 

current titanium implants, with a reported percentage of failure varying from 3 % - 5 % for healthy 

persons and reaching up to 10 % for patients with risk factors [9], there is a continuous demand to 
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improve these figures and reduce the recovering times. This issue is especially relevant in risk 

patients with poor bone quality, either due to their age or systemic pathologies which impair bone 

metabolism (e.g. osteoporosis, diabetes). Consequently, the development of bioactive implants 

that favour the bone regeneration process and display better success rates results crucial. Taking 

in account that around 800.000 dental implants are placed in Spain, technological advances in this 

field can have a great impact on society. In fact, global dental implant market was valued at $3.4 

billion in 2011, and is expected to be $6.6 billion in this 2018 [10]. 

Thus, great efforts are made in the design and development of new materials for its application in 

dental implantology. The development of these new biomaterials is based on a complex screening 

process in which after ensuring adequate physicochemical properties, the biological evaluation 

establishes their efficiency in the corresponding application. This iterative process allows the 

development of materials with better properties, each time more secure and with more precise 

functions. However, it needs a large investment of both time and money [11].   

The biomaterial biological evaluation is carried out through its in vitro, in vivo and clinical studies. 

The international organization of standards details in ISO 10993 the steps to follow for the 

biological evaluation of a biomaterial. In this way, in vitro experimentation is used as an initial 

screening method to characterize the material biosecurity and biofunctionality. This 

characterization aims to test the cell viability, proliferation and differentiation potential of a certain 

cell line through its direct or indirect contact with the evaluated material [12].  In vitro studies 

indicate which materials would show a greater biological potential and then the materials with 

better in vitro performance would be tested in an in vivo model, observing their behaviour in a real 

biological system. 

However, cell cultures are relatively simple compared to the complexity of living tissues. As a 

consequence, unfortunately, correlation problems are evidenced between the results obtained in 

the in vitro evaluation and the subsequent in vivo. In recent years, this traditional methodology 

has proved not to be efficient enough.  

Despite the enormous effort that is being made to improve dental implants and the 

implementation of a large number of trials associated with this process, in a significant number of 

cases the final results are contradictory and a material that has shown excellent in vitro qualities 
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can result in a disastrous in vivo outcome. This low efficiency supposes a great wastage of the 

resources, both economic and time. Additionally, the scientific use of animals supposes ethical 

problems in society, detecting a growing social demand towards its reduction or even its total 

prohibition [13]. In fact, the European law that regulates animal experimentation according to 

directive 2010/63/EU establishes as a principle the in vivo tests substitution by in vitro 

experimentation or computer simulations whenever possible, aiming the use of animals in 

research reduction to the minimum [14]. 

This problem is shown more clearly when the type of material to be tested is intended for bone 

tissue regeneration, resulting from the special complexity of this system. These in vitro tests tend 

to focus on the ability of bone formation, forgetting other vital aspects in the bone healing process 

and remodelling that would occur in vivo, such as for example, the interaction of bone cells with 

cells associated to the immune system [15]. Hulsart-Billström et al. [16] evaluated the correlation 

between in vitro and in vivo results in a multi-center study involving 8 different universities and 

compared the results of 93 different materials, finding a surprisingly poor in vitro-in vivo correlation 

of 58 %. These data show the current in vitro test deficiencies and the need to develop new 

methodologies, which allow to test biomaterials with greater reliability and thus reduce the in vivo 

studies need. On the other hand, although in vivo tests are considered the "gold standard" to 

establish the real implant behaviour in the body, its use is limited by ethical issues and its high 

economic cost, in addition to the increasing social pressure to reduce the use of animals in this 

type of research [17]. Additionally, some authors also point out the in vivo experimentation 

limitations and the problems that it would be found in their subsequent correlation with clinical 

studies. This fact reinforces the need to develop new in vitro methodologies, which allow to obtain 

a greater knowledge of how a biomaterial will behave when it is implanted in the human body [18].  

Then, these facts highlight the need to stablish new methodologies for the development of 

biomaterials based on new in vitro studies that allow a greater knowledge of how the material will 

behave in a living system and thus be able to face in vivo experimentation with greater safety and 

efficiency [19]. 

In this sense, different measures are being taken to try to solve these limitations of the traditional 

in vitro testing. Most are based on increasing the design complexity of existing in vitro cell cultures 
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with the aim of obtaining more representative systems that can reproduce the biological response 

of the human body to a biomaterial with greater accuracy. Proposals in this line of research are the 

development of co-cultures [15] and 3D cell cultures [20,21], which perform a more realistic 

biomechanical and biochemical environment.  

Alternative approaches to this problem are based on carrying out further characterizations to 

biomaterials in order to acquire additional information. In this sense, many efforts are being made 

in understand the material-protein-cell interactions since the body's response to the biomaterials 

are determined largely by the extent and nature of the initial protein adsorption [22,23]. 

The study of protein-biomaterial interactions could improve the knowledge about the events 

which are triggered after implantation. This better comprehension of phenomena happening on 

this material-tissue interfaces can be helpful for future biomaterial designs.  

Although great efforts are being made in the biomaterial field to understand the material 

interaction with proteins, in most cases the followed research lines are based on studies between 

a variety of materials and model monoprotein solutions (e.g. fibronectin, fibrinogen, albumin, 

immunoglobulin) or as much, mixtures of a small number of these proteins. These systems are too 

simplistic to reproduce the complex mechanisms on which the protein adsorption process onto 

surfaces is based, in which hundreds of these proteins participate.  
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 Theoretical framework 

1.2.1.  Bone tissue 

Aiming a better understanding about complex interactions between biomaterials in field of bone 

tissue regeneration and this biological system, a brief description of this organ is going to be 

exposed. 

Bone is the major structural element of the skeleton, providing locomotor support and protection, 

but also a dynamic mineral and protein reservoir. Two phases, a mineral and another organic 

constitute this highly dynamic form of connective tissue. This hybrid composition gives bone 

rigidity, but at the same time mechanical strength and flexibility [24]. The inorganic part constitutes 

60-70 % of this tissue, being formed by a set of inorganic mineral salts and ions such as phosphates, 

carbonates, Ca2+, Mg2+ or F-1, which are distributed in a hydroxyapatite nanocrystal matrix 

(Ca10(PO4)6(OH2)). On the another hand, the organic part is formed by collagen fibers, mainly 

type I (90 %), as well as other types of proteins such as growth factors, osteocalcin, osteopontin or 

bone morphogenetic proteins. Additionally, this tissue contains different types of cells such as pre-

osteoblasts, osteoblasts and osteocytes, which are derived from the differentiation of 

mesenchymal cells, and osteoclasts which are polynucleated cells, derived from hematopoietic 

precursors supplied by the bone marrow and blood vessels [3]. Bone system is being continuously 

repaired and renewed, through a remodelling process based on a dynamic equilibrium of 

resorption and tissue formation, being osteoblasts and osteoclasts the main cells involved in this 

process as is exposed in Figure 1.1. Osteoclasts degrade the bone matrix in two-phase process: the 

hydrochloric acid secretion dissolves the mineral part, while proteolytic enzymes degrade the 

organic one. Osteoblasts are responsible for bone tissue formation, synthesizing collagen fibers 

and, subsequently, carrying out its mineralization based on the deposition of inorganic salts. During 

this process, the osteoblasts remain enclosed in the extracellular matrix, differentiating into 

osteocytes. These cells are responsible for detecting the effects of mechanical loads to which the 

system is subjected and, thus, regulate their homeostasis depending on their functional demand, 

allowing bone to maintain its correct architecture [15]. 
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Figure 1.1. Bone remodelling process.  

In addition, mainly two types of structures form bone: cortical and trabecular. The cortical tissue 

forms a homogeneous and compact structure, being composed of bone lamellae that can be 

arranged in a parallel or concentric way around channels, named Haversian Canals, through which 

blood vessels and nerves provide the necessary nutrients to cells. On the other hand, the trabecular 

bone has a spongy structure with lower density and greater surface area, as it is constituted by a 

network of interconnected bone segments, which generate large empty space, inside of which is 

the bone marrow [25]. 

 

1.2.2.  Bone regeneration around implants and osseointegration concept  

When a biomaterial is implanted in bone, such as a dental prosthesis, as a consequence of surgical 

intervention, different tissues and blood vessels are damaged. This trauma, together with the 

biomaterial presence, provoke multiple stimuli in the system, which give rise to a series of events 

with the aim of achieving the damaged tissue healing.  
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In dental implantology field, the success of this process is measured in terms of osseointegration, 

concept which was used for first time in 1985 by Brånemark to define the structural and functional 

intimate connection between ordered and live bone and the load-bearing implant [26]. 

Nevertheless, Brånemark subsequently modified his own definition, establishing that the implant 

osseointegration is a continuing structural and functional coexistence, possibly in a symbolic 

manner, between differentiated, adequately remodelling, biologic tissues and strictly defined and 

controlled synthetic components providing lasting specific clinical functions without initiating 

rejection mechanism [27]. 

The bone regeneration process carried out around implants is similar to fracture healing. In both 

cases, the immune system response, the neovascularization process and the osteoprogenitor cell 

recruitment are observed. However, during the bone fracture healing these cells differentiate into 

both chondrocytes and osteoblasts carrying out an endochondral ossification; whereas when 

regeneration occurs around an implant, progenitor cells differentiate into osteoblasts, carrying out 

intramembranous ossification. Likely, this different mechanism is due to the biomaterial influence 

on molecular and cellular responses [28].  

Below the bone-implant interactions during the healing process are going to be explained, always 

starting from the premise that the surgical intervention has been carried out correctly, achieving 

and adequate primary mechanical implant stability (direct contact between the implant and bone 

walls), which does not prevent reaching a good osseointegration level [29].  

Immediately after implantation, the biomaterial comes in contact with different body fluids such 

as blood, consequently proteins and biomolecules adsorb on its surface, activating a cascade of 

complex physiological mechanisms with the aim of achieving implant osseointegration [30].  

The first host response to the biomaterial is the formation of hematoma and the activation of the 

immune system. When the trauma is made, the stage of haemostasis begins with the objective of 

stopping the haemorrhage associated with the surgical intervention. This stage can last from 

minutes to hours. Both, the presence of platelets and the coagulation cascade activation lead to 

fibrin polymerization and the consequent blood clot formation, which serves as a support for 

neoangiogenesis, the extracellular matrix deposition and the reception of osteoprogenitor cells 

[31]. 
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Likewise, after the first implantation minutes, an inflammatory phase is generated, which may last 

for several days. Inflammatory mediators such as interleukin-1 (IL-1), IL-6, IL-11, IL-18 and tumor 

necrosis factor-α (TNF-α) are activated to initiate the tissue healing, setting up a microenvironment, 

which promotes cell recruitment. Inflammatory cells (lymphocytes, polymorphonuclear leukocytes 

or macrophages), growth factors (transforming growth factor- β (TGF-β) and platelet-derived 

growth factor (PDGF)) and progenitor cells move to the healing place [15]. Inflammatory cells, 

neutrophils and monocytes, allows the necrotic tissue and pathogens removal. Moreover, the 

monocytes differentiate into macrophages, which release fibroblast growth factor (FGF) and 

epidermal growth factor (EGF), to mediate the growth of fibroblasts and new blood vessels [32]. 

The biomaterial characteristics could influence the behaviour of immune cells, marking the 

intensity of this immune reaction. Depending on the development of this process the regeneration 

could achieve a properly bone formation and matrix vascularization or leading to a fibrotic body 

reaction [33]. 

Then a proliferative phase begins, characterized by the formation of extracellular matrix and 

angiogenesis. At the same time, the fibrinolytic system ensures the fibrin clot degradation allowing 

the tissue remodelling.  

In the early stage, large part of repairing tissue is composed of soft callus derived from fibroblast. 

The formation of blood vessels allows the arrival of necessary nutrients during the regenerative 

process.  The progenitor cells at the injured tissue periphery attach to extracellular matrix proteins 

via integrin. Then, they differentiate into osteoblasts, beginning the formation of new bone with 

the secretion of a collagen matrix. The mineralization during this first stage is a rapid process, but 

at the same time unorganized [34]. This new formed bone is named woven bone and it may grow 

directly from the bony walls, process known as osteoconduction, or from isolated areas within the 

regenerating area (osteoinduction) [35]. Additionally, during this stage, there could be periods in 

which both new bone and soft connective tissue are present. During the remodelling phase, this 

woven bone is retired by osteoclast, replacing it by structured lamellar bone. This process could 

take 6 months or longer [31]. 
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1.2.3.   Protein adsorption phenomena at biomaterials 

First step after the biomaterial / prosthesis implantation in a living organism is the adsorption of 

protein on its surface. In addition, it is widely accepted that these proteins have the ability to 

catalyse, mediate or moderate the subsequent biochemical reactions that determine the success 

or failure of implantation [36]. Therefore, understanding the interaction that takes place between 

the complex multicomponent mixtures that are the biological fluids and the biomaterial surfaces 

is essential to be able to design new biomaterials with better performances [37]. 

Blood plasma contains many hundreds of proteins with a variety of biological functions and 

activities, which are present in distinct concentrations [38]. Proteins are complex biopolymers 

whose primary chemical structure is based on a central sequence of amino acids, which can present 

large variations between different molecules, and possible additional side chains such as 

phosphates, oligosaccharides or lipids. This structural and functional complexity makes it difficult 

to establish simple hypotheses about its adsorption processes [39].  

This protein adsorption is a thermodynamic process that occurs spontaneously whenever protein-

containing aqueous solutions contact solid surfaces. Once the biomaterial comes into contact with 

blood and interstitial fluids, its surface hydration instantaneously occurs, as a consequence of the 

water molecules anchoring through hydrogen bonding; then the proteins diffuse into this new 

interface creating the protein layer. During its formation process, a decrease in its volume is 

observed, associated with the expulsion of water molecules and/or proteins initially adsorbed. The 

water molecules expulsion during the process is due to the fact that the adsorption of each protein 

is associated with a water previously adsorbed displacement equivalent to the protein volume [40].   

Therefore, this protein adsorption will depend on surface-water-protein interactions, which may 

favour or hinder the phenomena. This process is based on the dehydration of the proteins and the 

surface, the redistribution of charges in the interface and the conformational changes of the 

proteins [41]. Thus, the interfacial water displacement requires a certain amount of energy 

depending on chemistry and energy characteristics of the surface on which the process is carried 

out, so that the more hydrophilic the material, the higher the energy cost required for this 

dehydration [42]. 
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On the other hand, in this first stage the adsorption increases with time and protein concentration, 

at least until reaching the surface coverage. Thus, the adsorption rate decreases as fewer binding 

positions are available, being the process increasingly dependent on the affinity between the 

protein and the material [41]. 

In addition, the composition of the layer could change with time as a consequence of the 

displacement of proteins associated with different degrees of affinity with the biomaterial. The 

proteins with the greatest number of anchoring positions have a greater potential for adsorption 

on the biomaterial surface. However, in complex mixtures of proteins, such as blood, the proteins 

of smaller size and with a greater concentration have a higher diffusion speed and, therefore, reach 

first the biomaterial surface. Then, they are displaced by higher molecular weight proteins with 

higher affinity. This competitive phenomenon is known as Vroman effect; which, still is not 

completely understood, despite having been widely investigated [43].   

The simultaneous and potentially nonlinear development of microscopic processes in terms of 

adsorption, desorption, diffusion or conformational changes, represents a challenge when 

mechanism models to explain this competitive diffusion process at the biomaterial - biological fluid 

interface are proposed [44]. In this sense, the Langmuir adsorption isotherm theory, which 

describes the adsorption of gas molecules to surfaces, could serve as starting point for the 

development of theoretical descriptions of protein adsorption, even though this theory is too 

simple to match the high-complex protein behaviour [45].  

Several exchange processes were identified as partial interpretation of this phenomenon. On the 

one hand, desorption / adsorption model supposes that adsorbed proteins naturally desorb into 

the bulk solution and leaves available space on the surface, where a distinct protein could be 

adsorbed. Nevertheless, this model is not consistent with the fact that protein exchange is also 

detected in surfaces exposed to single protein solution, which is strongly adsorbed to prevent the 

desorption, consequently this phenomenon could not explain by itself the Vroman effect. The time 

constant for the protein exchange was only consistent with the desorption time constant at long 

time scales, suggesting that the exchange observed on the shorter time scales could be because of 

competing displacement process, which supposes that protein with higher surface affinity could 

displace other earlier-adsorbed proteins. However, the displacement mechanism of this process is 
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still understand, although it may occur via a “transient complex” protein exchange based in three 

steps: the adsorption of the initial layer and the subsequent adhesion of a new protein layer on 

the initial one, forming a protein multilayer. Thus, a rotary movement would expose the initial layer 

to the solution, enhancing its desorption and obtaining as a result a final layer enriched in the 

second adsorption proteins [46]. 

1.2.4.  Factors controlling protein adsorption 

The protein layer formation depends on multiple factors associated to the external solution 

characteristics, the surface properties, as well as the characteristics of the deposited proteins 

themselves. In this way, the conditions in which the adsorption process is carried out will influence 

the final layer conformation. 

The main external factors associated to the protein solution are temperature, pH, ionic strength, 

and buffer composition. Temperature can affect both the protein adsorption kinetics and its final 

equilibrium, since a higher temperature is related to faster protein diffusivity and, consequently, 

increased adsorption rates. Therefore, a temperature increase could suppose a higher amount of 

adsorbed proteins on the biomaterial surface [47]. The pH establishes the protein charge 

depending on its isoelectric point. For pH equal to isoelectric point, the protein shows a neutral 

state since positive and negative charges are balanced. When the pH decreases or increases with 

respect to the isoelectric point, proteins have positive or negative charge, respectively. Then, 

depending on pH, the electrostatics forces could affect the final layer packing density, being that 

at the isoelectric point, the lower repulsions allow higher density conformations. On the other 

hand, the ionic strength conditions the Debye length, related to the damping distance of the 

electric potential of a fixed charge in an electrolyte. Then, charged proteins adsorption is hampered 

in oppositely charged substrates, whereas the adsorption to like-charged substrates is enhanced 

[39].  

As expected, proteins characteristics such size, net charge or its structure have high influence 

during the protein layer deposition. Depending on which proteins constitute the layer, both 

protein-protein and protein-material interactions could display different affinities, resulting in 

distinct protein packing, orientations and water contents [39].   
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Many studies establish arbitrary values regarding parameters related to physiological medium 

properties as well as its proteomic composition. However, these properties are fixed in a living 

system during the implantation of a prosthesis, being the optimization of the physical-chemical 

biomaterial properties the main strategy to achieve controlling the protein layer deposition 

process. 

The surface properties can mark the protein layer features since surface chemistry, wettability, 

charge and morphology are important parameters affecting protein adsorption (Figure 1.2). 

Surface chemistry and functional groups can mark some surface properties such as wettability and 

charge, and affect to protein adsorption, denaturation, and functional activity [48,49]. 

 

Figure 1.2. Biomaterial properties affecting protein adsorption. 

Surface wettability is a key parameter, which determines the adsorption kinetics and the amount 

of attached proteins on the material [50].  In hydrophilic surfaces, the stronger interaction between 

the surface and water difficult the protein-material interaction, fact that could increase protein 

desorption. Therefore, generally the affinity of proteins to biomaterial increases on hydrophobic 

surfaces and decreases on hydrophilic surfaces [51]. Otherwise, proteins tend to adsorb more 

strongly to charged materials than to uncharged ones [39,52] and the surface charge can condition 

the protein orientation at the solid interface [53].  Biomaterial topography might influence the way 

that proteins interact with the surface, allowing the control of total protein adsorption levels and 

influencing the ratio of different proteins, the spatial distribution, protein conformation, and 

surface binding affinity [54]. As protein size are on the nanometer range, nanoscale topographies 
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are thought to affect more protein adsorption, than micro-topographies. Then morphology factors 

in term of roughness, geometry or porosity on the nanoscale could allow controlling the protein 

layer properties, regarding both composition and conformation [43].  It was found that surface 

nano-topography influence the amount of attached proteins, showing increased saturation uptake. 

Moreover, the surface geometry could display important effects on protein orientation, which 

determines which part of the protein interact with the material and which part is exposed [55].   

 

1.2.5.  Protein layer composition – Biological implications 

An appropriate biological response to implanted materials is essential for tissue regeneration and 

integration. It has been exposed that the surface characteristics could determine the protein 

binding onto the biomaterials, being this process described as the first step after implantation. 

Consequently, actually the cells would not directly interact with the material surface at all, but 

instead only see the layer of proteins adsorbed on it [56]. In this sense, Lim et al. [57] found that 

cell adhesion was unaffected by nanotopography when the assay was performed in the absence 

of serum, whereas this effect was observed in the presence of proteins. This result is an example 

how the adsorbed proteins are to which cells initially respond, rather than the surface itself [43]. 

Therefore, the attached proteins on the biomaterial could have a pivotal role controlling the 

subsequent events required for tissue repair, apart from the influence of the material.  

As it was explained in point 1.2.2, the implant osseointegration success requires the proper 

initiation and development of coagulation, angiogenesis, immune response, fibrinolysis and 

osteogenesis processes (Figure 1.3).   

Hence, depending on the protein layer composition, these events could be positive stimulated, 

favouring the tissue regeneration, or in the opposite way, the erroneous or disproportionate 

protein signalling could suppose the development of a fibrous capsule or even the material 

rejection by the biological system.  



1. Introduction 

44 

 

 

Figure 1.3. Biological implication of the protein layer formed onto implants during the osseointegration 

process.  

In the following points, it is going to be developed in greater profundity the most important 

proteins involved in coagulation, angiogenesis, immune, fibrinolysis and osteogenesis events. 

 

1.2.6.  Coagulation system: proteomic point of view 

In a similar way to the process occurring after blood vessel injury, biomaterial surfaces can induce 

the coagulation of contacting blood. Then, after implantation, one of the first step in bone healing 

process is the blot clot formation and how the clots are formed can influence the subsequent steps 

during bone regeneration [58]. 

The coagulation process involves a series of zyminogen-enzime conversions, which can be 

activated through intrinsic and extrinsic pathways as is shown in Figure 1.4. Both converge in the 

activation of factor X to Xa, resulting in a common pathway. Following injury, the extrinsic pathway 

is initiated by tissue factor protein (TF) secreted by cells surrounding the damage area, which binds 
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to the active serine protease factor VIIa (FVIIa), resulting from the circulating factor VII conversion, 

and forms the extrinsic tenase TF-FVIIa complex [59]. 

Figure 1.4. Coagulation cascade diagram. 

In parallel, the intrinsic pathway is initiated by the proteins prekallikrein, high molecular weight 

kininogen and factor XII contact surface activation. This cascade results in the intrinsic tenase 

complex formation, through the binding of factor IX to FVIIIa (FIX-FVIIIa). Then, both complexes 

can activate factor X, leading factor Xa, which binds to activated factor V (FVa) and forms the 

prothrombinase complex (FXa-FVa) [58]. This complex results in the conversion of prothrombin to 

small amounts of thrombin, which displays multiple procoagulant effects as the activation of 

factors V, VIII, XI and XIII and the activation of platelets, amplifying the reaction and forming most 

of the thrombin [60]. Thrombin cleaves fibrinogen to fibrin monomers leading the fibrin clot [61]. 

Despite the extrinsic pathway was related to the haemostatic control and the response to vascular 

injury, there is evidence that this cascade is involved in biomaterial associated coagulation as well 

[62]. Although, it is likely the intrinsic pathway the most important in this process around the 

implants, being known to trigger coagulation on artificial surfaces [63,64].  
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An adequate level of coagulation proteins is crucial to achieve a correct development of this 

process [65]. Additionally, to the obvious role of these proteins in the coagulation cascade, it is also 

remarkably its interaction with cells such bone cells [66] and platelets [64], which play key role 

during the blood clotting process. The preferential biomaterial adhesion of proteins such 

vitronectin and fibrinogen can bind to platelets via membrane protein GPIIbIIIa, promoting platelet 

adhesion and formation of stable platelet aggregates [64,67]. These platelets contain growth 

factors, such as PDGF, vascular endothelial growth factor (VEGF) and FGF, which are known to 

support revascularization and osseointegration [68]. Therefore, the superior osseointegrating 

properties of some biomaterials could be consequence of its thrombogenicity behaviour [69]. 

On the other hand, the coagulation mediators activate the production of cytokines, chemokines, 

growth factors and other proinflammatory compounds. The interaction between the immune 

system and the coagulation cascade supposes that an excessive coagulation could contribute to 

inflammatory events [62,70].   

The coagulation pathway is regulated to avoid a disproportionate clot formation. Then, the 

adsorption of anticoagulant proteins takes part in the control of this cascade activation and 

ensures its correct development. An adequate balance between activator and inhibitor proteins of 

this complex process is pivotal to obtain a proper clot architecture which expedites the healing 

process. Specific regulators of the coagulation system are proteins as antithrombin, vitamin K-

dependent proteins C and S, tissue factor pathway inhibitor, heparin cofactor II, α2-macroglobulin, 

α2-antiplasmin, protein C inhibitor or corn trypsin inhibitor [71–73]. 

 

1.2.7.  Fibrinolytic system 

Bone healing process after biomaterial implantation is associated to the extravascular deposits of 

a fibrin-rich matrix, being this fibrin the primary product of the coagulation cascade. Fibrinolysis is 

the process through which fibrin clots are degraded to form fibrin monomers and other fibrin 

degradation products [74]. The biochemical mechanism of this system is centered around protein 

plasminogen, an inactive proenzyme, which can be activated to plasmin. The plasminogen system 

plays a relevant role during the regeneration of oral tissues, which in addition to fibrinolysis include 
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extracellular matrix degradation, inflammation, immune response, angiogenesis, tissue 

remodelling, cell migration and wound healing [75].  In fact, reduced levels of plasminogen was 

observed in chronic wounds of diabetic patients, which could be associated to its defective healing 

[76]. 

As is shown in Figure 1.5, plasmin is generated from plasminogen when it is activated by 

plasminogen activators, being tissue-type plasminogen activator (t-PA) and urokinase-type 

plasminogen activator (u-PA) the most important [77]. t-PA is synthesized and released by 

endothelial cells, while u-PA is produced by monocytes, macrophages, and urinary epithelium [78]. 

Plasmin presents a crucial role in wound healing due to its role in the extracellular matrix 

degradation, promoting cell migration and tissue remodelling [79]. In this line, loss of plasmin was 

related to impaired hard tissue callus formation and heterotopic ossification during bone healing, 

indeed plasmin seems to be key for achieving a proper endochondral-mediated vascularization of 

fracture callus, as well as, the soft tissue callus remodellation to newly woven bone [80].  

 

 

Figure 1.5. Scheme of the fibrinolysis process. Red items represent the inhibitory mechanism of this system. 
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Similar to the coagulation, the fibrinolytic system is highly regulated in order to restrict the 

fibrinolysis to the clot site. The inhibition of this process may occur during the plasminogen 

activation, mainly by plasminogen activator inhibitor 1 and 2 (PAI-1, PAI-2) or by thrombin-

activatable fibrinolysis inhibitor (TAFI); and at the level of plasmin by α2-antiplasmin (A2AP). Others 

plasmin inhibitors are α2-macroglobulin, C1-esterase inhibitor, and compounds related to the 

coagulation contact pathway, which can also contribute in plasmin inhibition [74].  

 

1.2.8.  Angiogenesis 

Angiogenesis is a fundamental process by which new blood capillaries arise from pre-existing 

vessels. In this process, the endothelial cells, which form the blood vessels, proliferate and migrate 

forming new canals. This angiogenic trial is essential during the bone tissue regeneration, since it 

involves the construction of new vessels to ensure the supply of nutrients, energy and signals that 

the process requires [81]. 

The oxygen deficiency, due to the destruction of blood vessels as a result of trauma, activates the 

hypoxia-inducible program driven by hypoxia inducible factor 1-α protein (HIF-1α). This program 

provokes endothelial cells response to angiogenic signals. As consequence of integrin signalling, 

endothelial cells migrate to the healing site. Proteases liberate angiogenic molecules such as VEGFs 

and FGFs, creating an environment conducive to angiogenesis [82]. The vessel growth is based in 

two endothelial cell behaviours. First, so-called tip cells spearhead new sprouts and probe the 

environment for guidance cues. Then, following tip cells, stalk cells extend establish a lumen and 

proliferate to support sprout elongation [83]. Thus, signals such as platelet-derived growth factor 

B (PDGF-B), angiopoietin-1 (ANG-1), TGF-β, ephrin-B2 and NOTCH, as well as protease inhibitors 

such as tissue inhibitors of metalloproteinases and PAI-1, regulate the correct formation of new 

functional vessels [84,85]. 
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1.2.9.  Immune reaction: Complement system  

The complement system has a key role in the initial host recognition of the implanted biomaterial, 

being essential in the subsequent immune and inflammatory reactions [86]. This system comprises 

numerous plasma and membrane-bound proteins and regulators, as it can be seen in Figure 1.6. 

These complement proteins collaborate as a cascade, being initiated by pattern recognition 

molecules or by the direct bonding of complement components to nonself surfaces [87]. The 

cascade can be initiated via three distinct pathways: the classical pathway, the lectin pathway and 

the alternative pathway, each conducting to a common terminal pathway [88].  

 

Figure 1.6. Complement system activation mechanisms. Diamonds display the inhibitory proteins, which 

belong to this system, in their possible action sites. 

The molecular mechanisms which conduct the initiation and development of this cascade have 

been widely described in different reviews [88,89].  Briefly, respective pathway is activated through 

different recognition molecules. Complement component C1q activates the classical pathway by 

its binding to ligands as immunoglobulins (IgM and IgG) or pentraxins (C-reactive protein (CRP) and 

pentraxin-3), while the lectin pathway is initiated by mannose-binding lectin, ficolins-1, 2 and 3 and 

collectins. The alternative pathway can be triggered directly by foreign surfaces such as 



1. Introduction 

50 

 

biomaterials. The cascade initiation results in the formation of C3 convertases. In the classical 

pathway the C1q complex formation activates the C1r and C1s proteases. C1s cleaves complement 

component C4 into C4a and C4b, then C4b bound C2 into C2a and C2b. These reactions generate 

C4b2a convertase.  Otherwise, the recognition lectin pathway molecules convene with the serine 

proteases associated to mannose binding lectins, activating C2 and C4 in turn and obtaining C4b2a 

convertase, similarly to classical pathway. In parallel, the alternative pathway allows the 

generation of C3bBb convertase by spontaneous activation of C3, by hydrolysis (C3H2O) and 

binding to Factor B via Factor D or by C3b binding to properdin [90]. This C3 convertases activate 

C3, being this protein the central component of the complement system, into C3a and C3b. The 

resulting C3b is deposited, leading the formation of more alternative pathway complexes C3bBb, 

amplifying the response. C3b activates the cleavage of C5 into C5a and C5b, initiating the terminal 

phase. C5b interacts with C6, C7, C8 and C9 which ultimately forms the C5b-9 complex [91]. The 

generated C3a and C5a act as potent chemoattractants, recruiting immune cells such as monocytes 

and macrophages to the biomaterial site [92]. 

The complement system is strictly controlled to avoid a disproportionate immune response. 

Plasma proteins such as C1-inhibitor, anaphylotoxin inhibitor, factors H and I, C4b-binding protein 

(C4BP), clusterin (CLUS), vitronectin (VTNC) and several complement receptors restrict the cascade 

enzymatic reactions avoiding the host tissue damage [93,94].  These regulators can recognize 

specific surface patters, supporting the complement inhibition on surfaces [95].  

The layer of proteins immediately and spontaneously adsorbed onto the biomaterial surface could 

trigger this cascade. The type, concentration and conformation of complement proteins presents 

in the protein layer play an important role in the initiation and intensity of this system, determining 

wound healing and foreign body reaction. In this line, some studies tried to stablish correlations 

between the adsorption of complement proteins onto biomaterials and its subsequent biological 

response. In this line, some studies suggest the binding of protein C3 on artificial surfaces as 

biocompatibility indicator [96,97]. Similarly, Engberg et al. [98] proposed the C4/C4BP binding ratio 

as a predictor of the biomaterial inflammatory response. These adsorbed complement proteins 

could interact with the biological system surrounding the implant, modelling the inflammatory 

response and the recruitment of immune cells [86]. Therefore, the adsorption of this proteins can 

trigger the production of different cytokines and chemokines via integrin-ligand interactions [99]. 
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The severity of the immune reaction will mark the production of this activating and inhibiting 

substances able to modulate macrophage activity and consequently its polarization into pro-

inflammatory (M1) or pro-regenerative phenotypes (M2) [100]. These macrophage phenotypes 

modulate the balance between the tissue repair and the chronic inflammation, thus playing a key 

role in the implant failure or success [101,102]. 

Additionally, to the complement proteins, the presence of adsorbed proteins such as albumin, 

fibrinogen or fibronectin can modulate the host inflammatory cell response [103].  

In fact, the complement activation and its impact in the biomaterial outcome reaches a high 

complexity as consequence of the interconnection existing between this system and both 

fibrinolytic and coagulation cascades [104].  

 

1.2.10.  Osteogenesis 

Osteogenesis consists in the development of new bone tissue, in which bone cells play a pivotal 

role [105]. This process is highly regulated by important signalling pathways such as Wnt/β-caterin, 

Notch, BMP/TGF-β, PI3K/Akt/mTOR, mitogen-activated protein kinase (MAPK), PDGF, insulin-like 

growth factor (IGF), FGF and Ca2+, which result crucial for bone regeneration. The functions of these 

signalling pathways in osteogenesis is widely described in literature, intervening in their activation 

and molecular mechanism development a wide range of proteins [106–108]. These proteins (i.e. 

bone morphogenetic proteins (BMPs), PDGFs and IGFs) act as signalling molecules and are involved 

in cell proliferation, differentiation and maturation, regulating directly the osteoblast activity and 

then bone repair [107].  

BMP/ TGF-β pathways are the main cascades responsible for osteogenesis. Both BMPs and TGF- βs 

belong to the same superfamily of proteins, which are greatly abundant in bone tissue. They have 

the ability to induce new bone formation, promoting osteoblast differentiation and reducing 

osteoclastogenesis [109–111]. Wtn/ β-caterin pathway is formed by Wnt, a family of glycoproteins, 

which activate the pathway central player, β-caterin. This pathway promotes osteoblastogenesis, 

having a key role in skeletal development and bone mass maintenance and remodelling [112,113]. 
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IGFs and insulin growth factor binding proteins take part in IGF signalling pathway, being important 

regulators of bone [114]. Similarly, PI3K/Akt [115], Ca2+ [116], PDFG [117] and MAPK [118] 

pathways play vital roles in the regulation of numerous cell functions in bone, promoting its 

formation and remodelling. Notch pathway displays a direct osteinductive effect on osteoblasts, 

resulting in the alkaline-phosphatase (ALP) and bone sialoprotein osteoblast gene expression 

increases [119]. Some FGF proteins also have pivotal functions in osteogenesis, regulating the 

proliferation and differentiation of both osteoblasts and fibroblasts [120].  

Otherwise, ample evidence relates the extracellular matrix (ECM) proteins to the promotion of 

osteogenesis. The interaction between bone cells and ECM proteins supposes the activation of 

integrin on the cell surface, originating different signals which might regulate cell adhesion, 

proliferation and mineralization.  In that sense, proteins such as collagen and vitronectin are 

described to promote osteogenic differentiation of human mesenchymal stem cells (MSCs) [121]. 

In fact, the presence of collagen onto titanium implant surfaces was found to enhance the in vivo 

osseointegration rates compared to non-collagen coated Ti [122]. Collagen integrin receptors are 

said to regulate osteoblast differentiation, through activation of BMP pathway [123].  On the other 

hand, osteogenic differentiation of MSCs as a consequence of the presence of vitronectin was 

related to an enhanced focal adhesion formation, and to a lower activation of MAPK and PI3K 

pathways [124].  Another ECM protein, fibronectin, it is a glycoprotein which has a key role not 

only in blood clotting, but also as a regulator of cell functions during tissue repair [125]. In fact, a 

study refers that fibronectin can be related with the osteogenic differentiation of MSCs, in a 

density-dependent manner [126]. Similarly, fibrinogen is documented to promote osteogenic 

development of stem cells via runt-related transcription factor 2 activation (RUNX2) [127]. 

Moreover, other proteins such as apolipoprotein E [128] and vitamin D [129], which are present in 

blood plasma, can display osteogenic potential by their positive effect on osteoblastogenesis.   

Additionally, it is necessary take in account the interplay between osteogenesis and the others key 

processes in bone regeneration (i.e. coagulation and immune reaction), since their signalling 

molecules can show important regulatory effects in bone cells. In this sense, during last years the 

osteoimmunology field is studying the complicated interactions between immune and skeletal 

systems [130]. Immune cells (i.e. macrophages and T and B cells) arrive at the healing site and 

release different immunomodulatory molecules such as cytokines and chemokines, which finally 
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affect to the bone healing process [131]. An optimum immune environment could ensure the 

proper release of factors to achieve a favourable osteoblast and osteoclast regulation [132,133]. 

Thus, the adhesion of proteins such as complement proteins onto the biomaterial could affect to 

the material osteogenic properties and then, to their osseointegration capability [134].  

 

1.2.11.  Biomaterial protein layer characterization 

Variety of methods have been employed to study the protein behaviour on biomaterials, including 

atomic force microscopy, ellipsometry, quartz crystal microbalance, Western blot, immunoassays 

and ELISA. However, these techniques were limited in scope since they were suitable only for 

analyse a restricted number of proteins/samples, being difficult to get a wider picture of protein-

biomaterial interactions [22].  

Proteomics is defined as the large scale analysis of proteins [135]. During the past years, the 

progress in proteomic technologies, in terms of resolution, mass accuracy and speed, enabled the 

sensitive and specific identification and quantification of proteins in complexes mixtures, achieving 

its global analysis. This situation has turned proteomics into a powerful tool to investigate protein 

profiles. Techniques such protein microarrays, gel electrophoresis, chromatography and mass 

spectrometry (MS) are allowing the proteomic comparative and quantitative composition analysis, 

which results are potentially interesting for biomaterial researches [19,136]. 

Proteomic based on mass spectrometry have demonstrated its power in a large-scale study of 

proteins as consequence of the high resolution detecting proteins displayed by current MS 

equipment. Mass spectrometers are based on an ionizing source, being matrix assisted laser 

desorption ionization (MALDI) and electrospray ionization (ESI) the most commonly used; and one 

or more analysers. Time-of-flight (TOF), ion trap, quadruple, Orbitrap and Fourier transform ion 

cyclotron resonance (FTICR) are the five types of analysers, which are usually used in tandem 

(MS/MS) to obtain a higher degree of ion separation and identification [137].  

The use of MS as proteomic technique in the biomaterial field is growing and new measurement 

strategies are adopted to obtain improving sensitivity, reproducibility and to be able to analyse 
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more complex samples [138]. In this sense, Griesser et al. reviewed the use of MALDI-TOF MS to 

study protein-biomaterial interactions [139]. More recent studies have opted for the combination 

of MS/MS with liquid chromatography (LC) as a separation method. This particular LC-MS/MS 

combination has turned in a powerful technique in the proteomic field, being able to detect even 

proteins present in small amounts with high reproducibility [22,140]. Due to this potential 

investigating proteomic profiling, this technique was widely employed to discover biomarkers 

related to pathologic diseases as osteoporosis, osteoarthritis or bone tumours [36].  

Otherwise, LC-MS/MS has been applied in biomaterial research in different ways. Some authors 

made use of LC-MS/MS to study the expressed protein profiles of cells cultured on new materials 

[141,142]. Although is followed by limited number of studies, another LC-MS/MS approach focus 

on the comparative analysis of proteomic profiles expressed during the in vivo bone regeneration 

around biomaterials [143]. On the other hand, LC-MS/MS proteomic studies were performed to 

characterize protein adsorption onto biomaterials. This type of works is mainly focused on the 

protein attachment on nanoparticle surfaces and the evaluation of their nanotoxicity 

[136,144,145]. Some authors have also applied LC-MS/MS to characterize the protein adsorption 

onto biomaterials used in implantology. The limited studies focusing on this specific approach are 

shown in Table 1.1.  

Table 1.1.  LC-MS/MS proteomic studies focusing on the characterization of protein adsorption onto 

biomaterials used in implantology. 

Protein source Technology Biomaterial 
Detected 

proteins 
Reference 

Human blood 

plasma 
LC-MS/MS Rough Ti 25 [146] 

Platelet rich plasma LC-MS/MS PolyNaSS/Ti 29 [147] 

Rat serum LC-MS/MS OCP/HA 138 [148] 

Pig bone proteins LC-MS/MS TiO2 151 [149] 

MatrigelTM 
LC-ESI-

MS/MS 

alginate, Ti, PHEMA, nylon 6, 

nylon 12, PMMA and PDLLA 
149 [150] 

FBS LC-MS/MS PEG-hydrogel 391 [151] 
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Dodo et al. [146] characterized the protein layer adsorbed to a rough Ti surface, after being 

incubated with blood plasma. LC-MS/MS analysis revealed that this layer was mainly composed of 

proteins related to cell adhesion, molecular transportation and coagulation. Otherwise, the 

differential analysis of the proteins attached onto poly sodium styrene sulfonate (PolyNaSS) 

showed a higher level of protein adsorption on this surface than on the un-grafted titanium after 

being incubated with platelet rich plasma [147].  Kaneko et al. [148] determined which rat serum 

proteins were differentially adsorbed onto two bone substitute materials, octacalcium phosphate 

(OCP) and hydroxyapatite (HA) crystals. Similarly, Sugimoto et al. [149] investigate the specific 

bone-related proteins adhered on the titanium dioxide surface (TiO2) after their incubation with 

proteins extracted from pig bone. The attached proteins were analysed through both sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and LC-MS/MS, resulting in the 

identification of extracellular matrix components, enzymes, growth factors and some proteins with 

mineralization capacity. On the other hand, Abdallah et al. [150] studied the adsorption of proteins 

from MatrigelTM on distinct material surfaces: alginate, Ti, poly (2-hydroxyethyl methacrylate) 

(PHEMA), nylon 6, nylon12, polycaprolactone (PCL), poly (methyl methacrylate) (PMMA) and poly 

(D,L-lactic acid) (PDLLA). The proteomic analysis showed that biomaterial surface chemistry 

determines the surface proteomic profile and due to this fact PMMA and PDLLA surfaces promoted 

the selective adsorption of key basal lamina proteins and consequently also displayed greater 

interactions with epithelial cells. Swartzlander et al. [151] studied the protein adsorption of fetal 

bovine serum (FBS) proteins onto distinct poly (ethylene glycol) (PEG) hydrogels using LC-MS/MS, 

founding that the majority of detected proteins were related to an acute inflammatory response. 

These results were concordant with the in vivo foreign body response triggered by these materials.  

Overall, these studies demonstrate the high potential of LC-MS/MS as proteomic technique to 

perform a large-scale characterization of the proteins adsorbed onto biomaterial surfaces. 
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1.2.12.  Dental implants and its surface modification 

A dental implant is defined as an artificial tooth root that is placed into mandible aiming to hold a 

replacement tooth [152]. In 1965, the Per-Ingvar Brånemark’s titanium screw implant system 

supposed the beginning of the modern oral implantology [26]. Since then, titanium has emerged 

as the gold standard material in implant dentistry. The choice of titanium and its alloys for dental 

implants is based on its favourable characteristics such as good mechanical properties, chemical 

stability and excellent biocompatibility. However, titanium and its alloys are defined as inert 

materials [153]. For this reason, a variety of surface treatments, including physico-chemical, 

morphological and biochemical approaches, have been developed to bioactivate the titanium 

implant surfaces, aiming their clinical performance enhancement. These surface modifications are 

widely described in literature (for more information see reviews [154–162]). 

Nowadays, the application of silica hybrid coatings to dental implants is a promising research line 

to achieve a proper surface functionalization, providing beneficial characteristics that allow 

obtaining a desirable biological response for bone healing implants.  

 

1.2.13.  Silica hybrid sol-gel coatings 

Since Larry Hench developed the first bioactive glass for being used in tissue engineering 

applications in 1969, novel silica materials with improved features such hybrid sol-gel compounds 

have been appeared providing new possibilities in the field [163]. 

The sol-gel route is based in two type reactions, which can occur simultaneously. Both hydrolysis 

and condensation of alkoxysilanes give rise to a solid silicate network, as it is shown in Figure 1.7. 

In the first step, the alkoxysilane precursor is hydrolysed via its reaction with water to form silanol 

groups. Then, during condensation a silanol group come into contact with another silanol group or 

a not hydrolysed alkoxy (-OR), crosslinking the silicon atoms through siloxane bonds (Si-O-Si), and 

forming silica nanoparticles (Reaction 1.1) [164].  
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��(��)� + ���� → ��(��)���(��)� + ��(��) 

������ + �����′�  → ���� − � − ���′� + ��� 

������ + �����′�  → ���� − � − ���′� + �(��) 

Reaction 1.1. Hydrolysis-condensation reactions of sol-gel process. 

Gelation occurs when siloxane links are generated between the scattered colloid particles forming 

a three-dimensional structure that encloses the liquid phase. Finally, these materials can be 

synthetized with heat treatments at low temperatures [165]. 

Figure 1.7. Sol-gel route scheme: chemical reactions and coating formation. 

The sol-gel processing allows the use of organically modified alkoxysilanes, being possible the 

incorporation of functional groups in the network achieving hybrid compounds [166]. Another 

advantage of this technique is its versatility designing materials. Networks with different attributes 

in term of hydrophilicity, morphology, porosity, chemistry or degradability can be developed 

controlling preparation parameters such the precursor nature, the degree of functionalization, 

temperature, pH, H2O:Si ratio and the type of solvent [167].  

Additionally, hybrids have been proved to be biocompatible compounds with great potential in 

biomedical applications [168].  Silica sol-gel networks showed promising results for bone 

regeneration since these materials support osteoblast attachment, proliferation and 
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differentiation boosting the expression of multiple genes which lead osteogenesis [169]. In this 

sense, such materials can be applied as a coating on prosthesis (Figure 1.7), in the scope of implant 

bioactivation [170]. These coatings, during its degradation process, release silicon compounds in 

the Si(OH)4 form, giving the implant osteoinductive properties [171]. Being that Si has a positive 

effect on bone metabolism by enhancing osteoblastogenesis [172,173]. The good performance of 

these organic-inorganic coatings when are applied on titanium dental implants have been 

described in literature [174,175]. In fact, in our group several hybrid compounds have been 

developed for this application [176–178].  

Moreover, these hybrids can be used as delivery systems due to the possibility of controlling its 

biodegradability kinetic [179]. Therefore, these networks can be enriched with therapeutic 

compounds providing added values to the implant, since the coating not only bioactivates the 

titanium surface but also performs as a delivery vehicle supplying agents with specific functions 

(i.e. antibacterial, anti-inflammatory, osteogenic) to the healing site [180]. In this sense, several 

authors worked in the incorporation of osteogenic compound to these sol-gel biomaterials, aiming 

the increase their positive effects during bone tissue healing [181,182].   

 

1.2.14.  Hybrids as delivery vehicles: Osteogenic role of Ca and Sr 

The sol-gel networks allow the superficial modification of dental implants, being able to achieve 

that these prostheses have the desired biological outcome due to the control of properties such 

their functionalization degree or the incorporation of bioactive compounds. For that reason, 

hybrids are a proper choice to design biomaterials to provoke different biological responses to 

perform the aim of this thesis.  

In this sense, the incorporation of ions with recognized positive effects in bone tissue healing can 

be an interesting strategy to follow in order to obtain that these materials provide specific 

biological responses. Indeed, ions such as Ca2+ and Sr2+ are related to bone metabolism and play a 

physiological role in the growth and mineralization of bone tissues which makes their use attractive 

as therapeutic agents to stimulate regeneration [183]. 
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Calcium is one of the main structural components of bone, playing a very important role in the 

formation and resorption of this tissue through its interaction with bone cells. In this sense, 

extracellular Ca have a stimulating effect on osteoblasts in vitro via the activation of CaR receptors 

that have the capacity to regulate the activity of osteoblasts and osteoclasts. Valerio et al. [184] 

observed Ca2+ increases the release of glutamate which is an important signal for bone 

mechanosensitivity, therefore Ca would act as a bone formation stimulator. Other authors 

observed that Ca2+ induces an increase in insulin pathway signalling via insulin growth factors I and 

II (IGF-I, IGF-II), which regulate osteoblasts proliferation [185]. In vitro studies have also revealed 

that the presence of Ca2+ supposed an overexpression of osteogenic markers such as type I collagen, 

alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2), osteopontin and osteocalcin 

[116,186]. Then, calcium ions display a positive effect on osteoblastic proliferation and 

mineralization, as well as on bone remodelling, which implies that the release of Ca ions from 

biomaterials can trigger bone healing [183,187]. However, it is important to take in consideration 

that these effects are dependent on the Ca concentration. In this sense, Maeno et al. [188] 

observed that low concentrations of Ca2+ (2-4 mM) were adequate for the survival and proliferation 

of osteoblasts, whereas higher concentrations (6-8 mM) favoured osteoblastic differentiation and 

mineralization. Nevertheless, concentrations over 10 mmol of Ca2+ were found cytotoxic. 

Additionally, to this osteogenic potential, Ca2+ also play an important role in blood clotting 

conditioning clot formation and its stability, fact that might finally affect to the tissue healing 

process [189].  

Otherwise, strontium shows a positive effect on bone formation in vivo and is a promising agent 

for osteoporosis treatments [183]. This element plays a role in bone remodelling, decreasing bone 

resorption through both osteoclastogenesis inhibition and osteoblastic proliferation promotion. 

These effects are dose dependent, being observed that at low concentrations Sr increases 

osteoprogenitor cell differentiation, while at high concentrations it impairs osteoblastogenesis 

[190]. Indeed, optimal Sr2+ presence supposed an enhancement of in vitro osteoblast proliferation 

and mineralization [191]. This cation up-regulates osteogenic expression markers such as ALP, 

Runx2, type I collagen and osteocalcin [192]. Moreover, in vivo studies revealed the safety and 

effectiveness of Sr enriched biomaterials for stimulating bone growth and remodelling [193]. In 

fact, this element has been incorporated into different biomaterials in order to foster their bone 
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regeneration capabilities. Examples are its addition into hydroxyapatites [194], hydrogels [195], 

bioglasses [191,192] or hybrids [181,196]; reporting in all cases an improvement of 

osseointegration potential compared to controls without the presence of strontium. This 

osteogenic behaviour makes interesting the incorporation of these elements into the sol-gel 

networks, aiming the development of bioactive materials with specific functionalities. 
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 Objectives  

The main goal of this thesis is the proteomic analysis of serum protein deposition phenom on 

distinct biomaterials through liquid chromatography-tandem mass spectrometry (LC-MS/MS) in 

order to find correlations between protein deposition patterns onto biomaterials and their 

respective biological outcomes, to establish protein biomarkers capable of anticipating the 

material in vivo response.   

The specific objectives to accomplish the above-cited goal are listed below:  

I. The systematic development of different surface treatments to control different in vitro 

and in vivo biological responses.  

II. The analysis of the specific biological outcome of previously designed treatments by 

performing in vitro and in vivo experimentation, as well as the differential proteomic 

characterization of serum proteins adsorbed onto these materials using liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). 

III. Correlation between the differential proteins and the biological results that could allow 

the identification of two types of proteomic biomarkers: 

 Biomarkers capable of predicting more effectively biocompatibility problems in 

biomaterials. 

 Biomarkers that could allow an improved material selection to be evaluated in 

vivo in terms of regenerative efficiency. 
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 Research strategy  

The approach to attain this objective is schematically presented in Figure 1.8. 

 

Figure 1.8. Thesis approach. 

The first step to approach the final aim is the systematic development of different surface 

treatments based on hybrid sol-gel coatings and their physico-chemical characterization in order 

to optimize the employment of these networks as delivery vehicle of osteogenic compounds 

(Chapter 1). 

Moreover, the strategy to achieve the identification of the different proteomic biomarkers is 

exposed below: 

Identification of proteomic biomarkers related to biocompatibility problems (Figure 1.9):  

 To achieve this goal, in Chapter 2, the first protein layer adsorbed on titanium pre-treated 

with four distinct hybrid silica sol-gel formulations is going to be characterized. Two of the 

formulations induce the formation of a fibrous connective tissue surrounding the implant 

(poor biocompatibility), whereas the other two show good osseointegration (good 

biocompatibility). Then, the comparative proteomic analysis between these two groups 

of biomaterials with distinct in vivo outcome could stablish the proteins related to this 

biocompatibility question.  
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Figure 1.9. Approach for the identification of biomarkers related to biocompatibility problems. 

 

Identification of proteomic patterns related to a more efficient osseointegration ability: 

The followed strategy to detect biomaterial efficacy is based on trying to know how the protein 

patterns vary in various group of materials previously designed for it, trying to establish a common 

pattern of biocompatibility and effectiveness among them (Chapters 3, 4, 5 and 6). Then, 

systematic proteomic studies to different implant surface treatments are performed with the 

purpose of detect the common efficiency biomarkers (Figure 1.10). 

 Characterization and comparison of the protein layers adsorbed onto two types of Ti 

surfaces, smooth Ti and sandblasted acid-etched Ti (SAE), currently used in commercial 
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dental implants, after their incubation in human serum, assessing the correlation between 

proteomic results and in vitro outcomes of these surfaces (Chapter 3). 

 The proteomic characterization and comparison of sandblasted, acid-etched titanium and 

a hybrid silica sol-gel coating applied onto this substrate in order to bioactivate it. The 

correlations between proteomic results and both in vitro and in vivo behaviours (Chapter 

4).  

 The previous developed silica hybrid sol-gel composition enrichment with various 

amounts of an osteogenic compound such SrCl2 to be applied onto titanium as coatings. 

The evaluation of Sr increasing content effects on the in vitro interactions with both 

osteoblasts and macrophages. Proteomic analysis to identify the protein patterns affected 

by Sr addition and the correlations between proteomic results and in vitro testing 

(Chapter 5). 

 Incorporation of increasing CaCl2 amounts in the silica hybrid sol-gel composition in order 

to obtain coatings with specific biological behaviours. The proteomic analysis of human 

serum protein deposited onto these Ca-enriched surfaces, with the aim of characterize 

the protein pattern movements between materials with distinct CaCl2 concentrations. The 

correlation between these results and the in vitro characterization, regarding the 

biomaterial osteogenic potential and its interactions with immune cells (Chapter 6). 

 

As has been mentioned above, the strategy followed in this doctoral thesis is based on the use 

of human serum as a protein medium. This fact allows achieving a greater real biological 

environment mimicry than monoprotein or few protein mixtures. In addition, it is a 

commercial product that can be acquired without problems. This fact would facilitate the 

standardization of a future in vitro methodology based on proteomics. The use of more 

complex protein resources such as human plasma, whose commercialization is not legal in 

Europe, would imply the need for donors and the consequent approval of ethics committees. 
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Figure 1.10. Approach for the identification of biomarkers related to regenerative efficiency. 

The approach of this work would not have been possible without the collaboration of a 

multidisciplinary team with members specialized in different fields.  For that, the experiments were 

performed at different places due to the availability of analysis instruments.  

The required in vitro and in vivo characterization was carried out by biologists members of 

Department of Medicine at Universitat Jaume I, and histologists from Pathology Department at 

University of Valencia. The mass spectrometry analyses were performed by proteomic platform 

members at the CIC bioGUNE. 



1. Introduction 

67 

 

 Statement of significance 

This research work is part of a RETOS project entitled “Development of dental implants with 

osteogenic properties for the universalization of receptors. Determination of protein patterns of 

regenerative efficacy - PROTEODENT” with financial support provided by the Spanish Ministry of 

Economy and Competitiveness and by Universitat Jaume I, Universidad del País Vasco and an 

industrial partner Ilerimplant S.L. 

Our research group has been working in the development of degradable coatings synthesized via 

sol-gel process to bioactivate dental implants for 10 years. Several theses about this issue have 

been presented during this period, thereby Miriam Hernández Escolano (2011), María Jesus Juan 

Díaz (2013), Irene Lara Sáez (2015), María Martínez Ibánez (2015) and Sara Maria Da Silva Barros 

(2016) worked on the development and characterization of different sol-gel compositions for this 

application. In an important number of cases, it was disappointing that after all the effort the in 

vivo results showed behaviours totally opposite to what was expected according to the rest of 

characterizations, showing the poor existing in vitro - in vivo correlation testing biomaterials for 

bone regeneration. 

Taking into account this situation, our research group decided to start a new research line, which 

focus in the study of protein-biomaterial interactions in order to develop new tools to predict the 

in vivo outcome of future compositions.  

This doctoral thesis develops an innovative strategy based on the proteomic characterization of 

systematically synthetized biomaterials, with different functionalities, and their correlation with 

the material biological behaviour, looking for the identification of biomarkers associated with their 

biological responses. 

This research could contribute to improve the existing understanding in regard to the interaction 

of proteins with biomaterials and its consequent effect on their biological response, establishing 

the knowledge bases for the construction of a new methodology in vitro which could lead to a 

better prediction on in vivo response of new materials. 
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This greater efficacy would be associated with a reduction of in vivo experimentation, since 

proteomics would allow efficient discarding of a greater number of materials that would be 

considered suitable with the current in vitro trials, but then rejected in vivo. This fact could mean 

a significant reduction of both the number of animals destined for in vivo experimentation and its 

associated economic cost, assuring the highest safety standards for patients. This last point is of 

great interest as a result of the ethical problems related to this type of experimentation and the 

increasing social rejection against animal testing. Indeed, the development of this new in vitro 

methodology could contribute to the 3R principle applied in European laboratories that aims to 

reduce the number of animals used in research to the minimum strictly necessary following the 

2010/63/EU directive instructions. 

Additionally, the different formulations of silica hybrid sol-gel materials systematically designed to 

be applied as coatings in dental implants, trying to achieve their bioactivation, can result useful in 

dental implantology field, being able to suppose an advance in the development of this type of 

treatments. Moreover, the proteomic characterization carried out on these materials could aid to 

better understand their interaction with tissues and as these systems bioactivate implants 
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ABSTRACT  

Hybrid materials obtained by sol-gel process are able to degrade and release Si compounds that 

are useful in regenerative medicine due to their osteoinductive properties. The present work 

studies the behaviour of new organic-inorganic sol-gel coatings based on triple mixtures of 

alkoxysilanes in different molar ratios. The precursors employed are methyl-trimethoxysilane 

(MTMOS), 3-glycidoxypropyl-trimethoxysilane (GPTMS) and tetraethyl-orthosilicate (TEOS). After 

optimization of the synthesis conditions, the coatings were characterized using 29Si nuclear 

magnetic resonance (29Si-MNR), Fourier transform infrared spectrometry (FT-IR), contact angle 

measurements, hydrolytic degradation assays, electrochemical impedance spectroscopy (EIS) and 

mechanical profilometry. The degradation and EIS results show that by controlling the amount of 

TEOS precursor in the coating it is possible to tune its degradation by hydrolysis, while keeping 

properties such as wettability at their optimum values for biomaterials application. The corrosion 

properties of the new coatings were also evaluated when applied to stainless steel substrate. The 

coatings showed an improvement of the anticorrosive properties of the steel which is important 

to protect the metal implants at the early stages of the regeneration process.  

Keywords: Si release, corrosion resistance, TEOS, biomaterials, coatings. 
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Graphical abstract 

 

 

 

Figure 2.0. Graphical abstract of the work named “Control of the degradation of silica sol-gel hybrid coatings 

for metal implants prepared by the triple combination of alkoxysilanes”. 
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 Introduction 

In implantology, metal implants are the most frequently used materials, being titanium and its 

alloys the most widely used. This is due to their low density, high resistance to corrosion, good 

mechanical properties and its biocompatibility [1]. However, these materials are bio-inert and 

damage in their protective oxide layer that provides their corrosion resistive properties, can 

produce implant failure. Studies about implants failure suggest that some of the faults may be due 

to the diffusion of corrosion products through the surrounding tissues as a result of the 

degradation of the titanium dioxide layer [2,3]. Another problem in the use of titanium as an 

implant is its high cost, which is the reason behind the still significant demand for surgical grade 

stainless steel implants in some countries. Stainless steel possesses worse properties and a higher 

risk of failure than titanium [4]. Both, the need to protect the metal to prevent the release of 

corrosion products and the functionalization of metal implants surface in order to improve their 

biological interaction are required for the development of new implant coatings.  

The sol-gel technique allows developing coatings in a relatively inexpensive way which confers the 

implant surface the desired properties by means of an appropriate selection of precursors and the 

optimization of the synthesis parameters. These coatings are biocompatible, able to release Si 

compounds with osteoinductive properties, protecting the implant against corrosion, and enable 

the functionalization of the metal surface to achieve the desired cellular response to improve tissue 

regeneration [5–9].  

Within the sol-gel materials, there is a growing interest in organic-inorganic silicon materials 

synthesized via sol-gel [10]. For this reason, this work focuses on the implant surface bioactivation 

via hybrid sol-gel coatings from alkoxysilanes, which are used due to their possibility to more easily 

regulate key properties such as the hydrophilic behaviour and degradability [11]. These materials 

have already been used in biomedical applications due to their osteoinductive capabilities [12,13], 

as delivery vehicles of drugs [14,15], or as antibacterial agents to enhance the strength of implants 

to yeast infections [16,17]. 

This osteoinductive capability of the hybrid sol-gel materials is attributed to their ability to release 

silicon compounds during the hydrolytic degradation of the sol-gel network [7,18]. Silicon is an 
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essential element for the metabolic processes associated with the formation and calcification of 

bone [19]. It develops a biological crosslinking agent role, which contributes to the resistance 

architecture and connective tissues [20]. In addition, the presence of Si in the Si(OH)4 form 

promotes the synthesis of collagen type I and enhances osteoblastic differentiation [20,21]. 

Consequently, the degradation control is a way to regulate the bioactivity degree of coatings. 

Ballarre et al. developed hybrid sol-gel coatings based on the combination of several layers on 

surgical grade stainless steel to enhance their anticorrosive properties, demonstrating their 

protective capabilities [22]. Catauro et al. succeeded in improving the bioactivity and 

biocompatibility of grade 4 titanium dental implants by employing sol-gel hybrid coatings 

synthesized from polyethylene glycol (PEG) and TEOS in different ratios [13]. Juan-Diaz et al. 

developed hybrid sol-gel coatings, using methyl-trimethoxysilane (MTMOS) and TEOS as 

alkoxysilanes in 10:0, 9:1, 8:2 and 7:3 molar ratios and studied their degradation. This 

characterization suggested the ability to regulate the degradation of such materials by modifying 

their composition in order to design suitable controlled-released vehicles [14]. Another research 

study developed hybrid sol-gel coatings with different percentages of MTMOS and 3-

glycidoxypropyl-trimethoxysilane (GPTMS) as precursors to enhance the osseointegration ability 

of titanium dental implants [18]. These materials showed a good in vitro behaviour with an 

improvement in the proliferation and mineralization respect to titanium, being this effect more 

pronounced for the 1:1 MTMOS:GPTMS ratio. However, the in vivo response was not as good as 

was expected due to the formation of a fibrous capsule, probably as a consequence of the poor 

degradation kinetics. 

The aim of this work is the development of organic-inorganic sol-gel coatings through triple-

precursor compositions based on the combination of alkoxysilanes (MTMOS, GPTMS and TEOS). 

The addition of TEOS into MTMOS:GPTMS coatings, which already show a good in vitro behaviour 

[18] is expected to allow the control of the degradation kinetics and hence improve the 

osseointegration ability of metallic implants. Simultaneously, the coating should protect the 

implant during the first stage post-implantation, being then necessary a balance between 

degradation and protection. The study of this compromise is conducted by hydrolytic degradation 

and electrochemical impedance spectroscopy (EIS) tests. 



2. Chapter 1 

97 

 

 Materials and methods 

2.2.1.  Sol-gel synthesis 

The synthesis process of the hybrid coatings was based in a sol-gel route employing MTMOS, TEOS 

and GPTMS (Sigma-Aldrich, St. Louis, MO, USA) as precursors. Different compositions of these 

precursors were used as shown in Table 2.1. 2-Propanol (Sigma-Aldrich) was used in the process 

to improve the mixing of the siloxanes in a volume ratio alcohol:siloxane 1:1. Precursor hydrolysis 

was performed by adding the corresponding stoichiometric amount of an acidified aqueous 

solution 0.1 M HNO3 (Panreac, Barcelona, Spain) to catalyze the reaction. The solution was kept 1 

h under stirring and then 1 h at rest. The samples were prepared from the corresponding sol-gel 

solution immediately after this time. 

Table 2.1. Molar percentage of the materials under study. 

 MTMOS (%) GPTMS (%) TEOS (%) 

50M50G 50 50 0 

45M45G10T 45 45 10 

35M35G30T 35 35 30 

25M25G50T 25 25 50 

15M15G70T 15 15 70 

5M5G90T 5 5 90 

 

2.2.2.  Coating preparation 

Three different processes were adopted for the sample preparation as required by the different 

characterization methods. Firstly, AISI 316-L stainless steel plates (5 cm x 5 cm, RNSinox S.L.) were 

used as substrates. The surfaces of the plates were polished and then cleaned with acetone to 

remove impurities. After cleaning, the film deposition was performed employing a dip-coater (KSV 

DC; KSV NIMA, Espoo, Finland). Plates were immersed into the previously prepared sol-gel 

solutions at a speed of 60 cm min-1, then kept immersed for one minute, and finally they were 

removed at a 100 cm min-1 speed. After the corresponding heat treatment (Table 2), the adhesion 

was evaluated by means of the cross-cut test (UNE EN-ISO 2409:2013). Once proved that the 
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highest adherence value, i.e. 0, was obtained, the thickness of the coatings prepared was measured 

by mechanical profilometry (Dektack 6; Veeco, NY, USA). Two distinct samples identically prepared 

were tested, performing 3 measurements per sample.  

Secondly, glass slides were used as substrates of the coatings. The glass surfaces were previously 

cleaned in an ultrasonic bath (Sonoplus HD 3200) for 20 min at 30 W with nitric acid solution at 

25 % volume. Then a further cleaning was carried out with distilled water under the same 

conditions. After being dried at 100 °C, the glass slides were coated by the flow-coating technique.  

Finally, free films of materials were obtained by pouring the sol-gel solutions into non-stick Teflon 

molds. Samples were cured under the conditions described in Table 2.2, which shows the minimum 

temperatures required to obtain homogeneous and well-cured films. 

Table 2. Heat treatment conditions applied to each sol-gel composition. 

Composition 50M50G 45M45G10T 35M35G30T 25M25G50T 15M15G70T 5M5G90T 

Curing 
temperature 
(ºC) 

140 100 80 80 80 80 

Curing time 
(min) 

120 120 120 120 120 120 

 

2.2.3.  Chemical characterization  

Attenuated total reflection (ATR) analysis was performed on the free film samples using a Fourier-

transform infrared spectrometer (Model FTIR 6700, NICOLET) to analyse the chemical composition 

of the sol-gel materials. Before each measurement, a background FTIR spectrum was taken and 

deducted from the sample spectra. All spectra were recorded in the 600 - 4000 cm-1 wavelength 

range. 

Solid-state 29Si-NMR spectroscopy was used to evaluate the crosslinking density of the silicon 

network after the thermal processing. Free films were used for this purpose. The spectra were 

obtained using a Bruker 400 AVANCE II WB Plus spectrometer, equipped with a Cross Polarization 

Magic Angle Spinning (CP-MAS) probe. The samples were placed inside a 4 mm rotor sample tube. 
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The spinning speed was 7.0 kHz. The pulse sequence employed was the Bruker standard:  79.5 MHz 

frequency, spectral width of 55 KHz, 2 ms contact time and 5 s delay time. 

2.2.4.  Physico-chemical characterization  

The wettability of the sol-gel coating was determined by the measurement of the contact angle. 

An automatic contact angle meter Dataphysics OCA 20 (DataPhysics Instruments, Filderstadt, 

Germany) was used to measure this parameter. 10 µL of ultrapure water were deposited on the 

hybrid sol-gel coated steel plates at room temperature. The drops were formed with a dossing rate 

of 27.5 μL s-1 and the angles were determined with the aid of SCA 20 software. Reported values 

are the average of 60 measurements obtained at different spots of three different samples 

identically prepared. Roughness of the material on coated steel plates was assessed using a 

mechanical profilometer Dektack 6 (Veeco). Three individual measurements were performed to 

obtain each value.  

The anticorrosive properties of the sol-gel coatings were evaluated by EIS measurements, which 

were carried out on the samples deposited on the steel substrates at different exposure times to 

3.5 % wt. NaCl in deionized water for up to 48 h. The exposure surface area was 3.14 cm2. A three-

electrode electrochemical cell was employed. The sample without coating acted as the working 

electrode, a Ag/AgCl electrode was used as reference and a graphite sheet was employed as 

counter-electrode. Measurements were obtained using an Autolab Ecochemie PGSTAT30 

potentiostat equipped with a frequency response analyser module. The tests were conducted at 

the free corrosion potential. A frequency ranges from 10 mHz to 100 kHz with a sinusoidal voltage 

perturbation of 10 mV amplitude was applied to the system. Experiments were performed inside 

a Faraday cage in order to minimize external interference. Measurements were carried out at 0, 

1.5, 3, 4, 6, 8, 10, 24 and 48 h of exposure at room temperature. All tests were repeated at least 

three times in order to check reproducibility. Two equal results are considered valid and the results 

shown are from the most representative sample.  

The hydrolytic degradation of the coatings was evaluated using the materials deposited on glass 

slides. The kinetics of degradation was determined by means of the weight loss in the samples 

before and after soaking in 100 mL distilled water at 37 ºC for periods of 7, 14, 28, 42 and 63 days. 
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The samples were dried in a vacuum oven at 37 ºC for 48 h before and after soaking. Each data 

point is the mean of three measurements performed in three different samples identically 

prepared. 

 Results  

2.3.1.  Chemical characterization 

The degree of condensation of the materials synthesized from the alkoxysilanes was studied by 29Si 

solid NMR. The nomenclature used in the analysis of the results was described in reference [23]. 

Tn and Qn represents the trifunctional and tetrafunctional silicon, respectively, while the 

superscript n shows the number of bonded oxygens to silicon.  Figure 2.1 shows the NMR spectra 

of the fabricated films.  

 

Figure 2.1. 29Si solid NMR of (a) 50M50G, (b) 45M45G10T, (c) 35M35G30T, (d) 25M25G50T, (e) 15M15G70T 

and (f) 5M5G90T films. 

For the composition 50M50G, the signal associated to T1, T2 and T3 species can be observed, being 

the most intense and the weakest the signals with two (T2) and only one (T1) oxygens bonded to 



2. Chapter 1 

101 

 

the silicon atom, respectively. It should be mentioned that the recorded signal for the 50M50G 

spectrum only covers the -40 to -80 ppm chemical shift range since no response is usually observed 

for chemical shifts more negative than -80 ppm [18]. 

The NMR spectra when TEOS precursor is introduced in the films are also given in Figure 2.1 

(spectra b to f). These spectra, apart from Tn species from MTMOS and GPTMS, show Q2, Q3 and 

Q4 signals from TEOS. When the ratio of TEOS is increased it is observed that the signals Qn become 

more intense and Tn are attenuated, due to the reduced number of MTMOS and GPTMS species in 

the sol-gel network. The addition of TEOS causes the almost total suppression of T1 signal and the 

intensity increase of T3 peak, especially at low TEOS content (spectra b and c). Thus, in materials 

45M45G10T and 35M35G30T the intensity of the signals from T2 species is quite similar to T3 

(spectra b and c in Figure 2.1). However, when the percentage of TEOS increases, T2 becomes more 

intense than T3 (spectra d, e and f) and Q2 increases respect to Q4 (spectra e and f). 

Figure 2.2 shows the IR spectra of the sol-gel networks. The bands associated with the vibrational 

modes of the Si-O-Si chains were detected at ~780, ~1010 and ~1100 cm-1, which are due to the 

formation of the inorganic network [24,25]. The bands related to the vibrational modes of OH 

groups (3200-3500 cm-1) and Si-OH terminals (~890 cm-1) were also observed [24,25]. The bands 

detected between 2870 and 2950 cm-1 indicate the presence of C-H bonds and the band at ~1265 

cm-1 correspond to Si-C [25]. All these signals show the presence of organic matter introduced 

through the MTMOS and GPTMS precursors. These signals become less intense in those materials 

with the highest proportion of TEOS and nearly disappear for the 5M5G90T composition (spectrum 

f). 
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Figure 2.2. FTIR spectra of (a) 50M50G, (b) 45M45G10T, (c) 35M35G30T, (d) 25M25G50T, (e) 15M15G70T and 

(f) 5M5G90T films. 

 

2.3.2.  Contact angle 

The wettability of the formulations was studied by means of contact angle measurements. Results 

are shown in Figure 2.3. It is observed that the addition of TEOS to the sol-gel network in moderate 

amounts decreases the contact angle, i.e., the material becomes more hydrophilic. However, the 

contact angle increases after reaching a minimum for the 30 % TEOS film when the TEOS 

percentage is increased further. 
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Figure 2.3. Contact angle results for films deposited on stainless steel substrates with different 

MTMOS:GPTMS:TEOS molar ratios. Bars indicate standard deviations. 

 

2.3.3.  Morphological characterization 

Figure 2.4 shows the coating thickness measurements. When is added up to 70 % of TEOS, the 

coating thicknesses have a value between 0.87 – 1.18 µm without statistically significant 

differences between them. However, the 5M5G90T composition shows a markedly smaller 

thickness compared with the other materials. 
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Figure 2.4. Coating thickness measured by mechanical profilometry of sol-gel coatings prepared onto stainless 

steel plates by dip-coating. Statistically significant differences were found in the 5M5G90T coating thickness 

respect the other materials (ANOVA, * p < 0.05). Bars indicate the standard deviations. 

Table 2.3 shows the average surface roughness values (Ra) and their standard deviations. The 

reference material 50M50G shows a Ra value of 288.7 ± 73.1 Å. When TEOS is introduced into the 

structure, it is observed that Ra increases to a maximum (788.5 ± 3.5 Å) for the 35M35G30T 

composition. However, further TEOS addition produces a less rough surface and a value of 475.7 ± 

81.7 Å is reached for 5M5G90T composition. 

Table 2.3. Ra values and their standard deviations for steel plates coated with MTMOS:GPTMS:TEOS materials 

in different ratios. 

Material Ra (Å) 

50M50G 288.7 ± 73.1 

45M45G10T 659.5 ± 50.2 

35M35G30T 788.5 ± 3.5 

25M25G50T 646.3 ± 33.3 

15M15G70T 496.7 ± 26.8 

5M5G90T 475.7 ± 81.7 
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2.3.4.  EIS  

Stainless steel plates were coated with 50M50G, 45M45G10T, 35M35G30T, 25M25G50T, 

15M15G70T and 5M5G90T materials to perform the EIS tests. After 48 h of testing, the coatings 

showed degradation signs, being this more significant in the case of the compositions with higher 

TEOS percentages (70% and 90%). Figure 2.5 shows the results obtained.  

 

Figure 2.5. (a) Impedance modules and (b) phase angel bode plots for stainless steel, 50M50G, 45M45G10T, 

35M35G30T, 25M25G50T, 15M15G70T and 5M5G90T sol-gel coatings at 8 h of immersion in the electrolyte. 

Fitted results are represented by the solid lines. 
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It is observed that the impedance values decrease when TEOS is added in the sol-gel network 

(Figure 2.5a). It should be noted that the variation in the impedance module values with time is 

less significant at the highest TEOS content, reaching nearly no variation (Figure 2.5a) for the films 

with the highest TEOS composition. Despite the introduction of this precursor in the sol-gel 

structure both impedance module and phase angle maintain a similar shape to the plot obtained 

for the 50M50G material, so no additional process is introduced by the presence of TEOS. 

The EIS spectra were fitted to equivalent circuits using Z-view software. For the coating with bare 

stainless steel only the natural formation of the oxide layer in the steel was observed. However, 

samples with sol-gel coatings present two processes, the first one related to the coating at high 

frequencies and the other at low frequencies to do with the native oxide layer. Therefore, the 

coating free system was fitted with an equivalent circuit of one time constant (Figure 2.6a) and 

two time constants were employed for coated samples (Figure 2.6b). This type of equivalent 

circuits is widely used by many authors [9,11,14,26–28]. 

Figure 2.6. Equivalent circuits used for (a) non-coated and (b) coated stainless steel substrates. They 

correspond to the presence of one and two time constants, respectively. 

In the model of Figure 2.6a, Rox and CPEox correspond to the oxide layer. In Figure 2.6b the coating 

response is added in Rcoat and CPEcoat. By fitting the EIS data to the equivalent circuits 

information about the corrosion properties of the system can be extracted from the parameters 

obtained [29–31]. Rcoat can be related to the porosity and the deterioration of the coating and 

allows to study the deterioration of the sol-gel materials, hence, its capability to protect the metal. 

The CPEcoat is related to the water absorption. Rs is the electrolyte resistance. 

The CPE equivalent circuit element provides values in sn Ω-1 units, being n an exponent which is 

fitted. Capacitance values, in F units, can be obtained when n is known [32]. All fittings were quite 

good (Chi-squared < 0.01) as observed in Figure 2.5. 
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It should be mentioned that in some systems with two time constants, the second time constant 

signal appears at such low frequencies that it is not possible to obtain all the characteristic 

parameters for the measured frequency range. In any case, as the aim of these measurements is 

to study the process of coating degradation, the attention is more focused on the representative 

parameters of this process (Rcoat and CPEcoat). Figures 2.7 and 2.8 show the values of Rcoat and 

CPEcoat from the coating and Rox and CPEox from the oxide layer, respectively.  

 

Figure 2.7. Evolution of (a) Rcoat and (b) CPEcoat along the time of contact with electrolyte (3.5 % wt. NaCl) 

for 50M50G, 45M45G10T, 35M35G30T, 25M25G50T, 15M15G70T and 5M5G90T coatings. 



2. Chapter 1 

108 

 

As CPE elements were used instead of pure capacitors, the values of the parameter n are given in 

Table 2.4. 

Figure 2.7a shows the evolution of Rcoat with the exposure time. This parameter decreases with 

time, more significantly at shorter times, until a nearly constant value is achieved. This is due to 

the degradation of the coatings by hydrolysis. When TEOS is added to the coating, a significant 

decrease of Rcoat was observed (see Figure 2.7a). When the presence of TEOS is increased further, 

Rcoat continues decreasing but more monotonically. The distinct behaviour between materials 

may result from different initial porosity of the coatings, which can be produced by changes in the 

compositions. For the case of the 5M5G90T film, the different thickness could also influence. In 

some curves of Figure 2.7a it can be seen that the value of Rcoat increases with time, this could be 

due to the formation of deposits that clog the pores of the coating [31]. 

CPE parameters are directly related with Cc, which represents the capacitance of the coating and 

relates to the permeability to water penetration as [11,14]. 

Increasing the value of Cc can be correlated directly with the increase in permittivity by the 

Equation 2.1, where ε is the dielectric constant of the material, ε0 the permittivity of vacuum, A is 

the area of coating in contact with the electrolyte and d is the thickness.  

dACc 0                Eq. 2.1 

Hence, the behaviour of the capacitance allows studying water absorption by the coating. In Figure 

2.7b it is shown that the CPE value increases with the exposure time to the electrolyte in all cases. 

In the initial stage, this increase is more intense which could be due to initial water absorption in 

the coating [18]. At the longest times, the higher value of CPE observed is associated to the 

degradation of the sol-gel network, which facilitates the penetration of water. This behaviour was 

also observed in MTES:TEOS coatings and was related to a decrease of organic groups that 

introduces a more hydrophobic character and provides more resistive capabilities to the film [5]. 

Figure 2.8 shows the evolution of Rox and CPEox, which are representative parameters of the 

dielectric properties of the oxide layer. Rox increased during the early stages of exposure (Figure 

2.8a). At the same time, CPEox decreased, except for the bare substrate (Figure 2.8b). This might 
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be due to the passivation of steel by the formation of chrome oxides as a result of the presence of 

dissolved oxygen in the electrolyte [33]. At longer exposure times Rox and CPEox values remain 

nearly constant, showing that the oxide layer becomes quite stable. An increase of Rox and a 

decrease of CPEox are observed respect to the bare steel substrate when the coating is applied, 

showing an increase of the steel passivation. 

 

Figure 2.8. Evolution of Rox (a) and CPEox (b) versus time of contact with electrolyte (3.5 % wt. NaCl) for 

Stainless steel, 50M50G, 45M45G10T, 35M35G30T, 25M25G50T, 15M15G70T and 5M5G90T coatings. 

 



2. Chapter 1 

110 

 

Table 4. Parameters n1 and n2 of CPEcoat and CPEox elements, respectively, for each formulation and 

measuring time. 

Material n 0 h 1.5 h 3 h 4 h 6 h 8 h 10 h 24 h 48 h 

Stainless steel n2 0.89 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.93 

50M50G n1 0.95 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.90 

n2 0.81 0.85 0.86 0.87 0.87 0.88 0.88 0.89 0.89 

45M45G10T n1 0.94 0.94 0.94 0.94 0.93 0.93 0.92 0.91 0.89 

n2 0.83 0.86 0.86 0.87 0.87 0.87 0.88 0.89 0.90 

35M35G30T n1 0.93 0.91 0.91 0.91 0.91 0.91 0.90 0.87 0.86 

n2 0.81 0.85 0.86 0.86 0.87 0.87 0.87 0.90 0.90 

25M25G50T n1 0.95 0.93 0.92 0.92 0.91 0.93 0.93 0.90 0.89 

n2 0.78 0.81 0.82 0.82 0.86 0.83 0.83 0.85 0.87 

15M15G70T n1 0.93 0.90 0.90 0.91 0.91 0.90 0.90 0.90 0.89 

n2 0.79 0.80 0.81 0.81 0.81 0.82 0.82 0.83 0.84 

5M5G90T n1 0.91 0.85 0.82 0.81 0.80 0.78 0.77 0.74 0.73 

n2 0.80 0.80 0.81 0.81 0.81 0.83 0.83 0.84 0.84 

 

2.3.5.  Hydrolytic degradation 

The polysiloxane network degrades in contact with water by hydrolysis following the Reaction 2.1 

[11,14]: 

SiO2 (s) + 2H2O ↔ Si(OH)4 (aq) 

Reaction 2.1. SiO2 hydrolytic degradation. 

In Figure 2.9, the evolution with time of the degradation curves (weight loss) is shown. It is 

observed that in all cases the materials degrade, however, the kinetics of degradation depends on 

the composition. 

Incorporating TEOS to the sol-gel network increases the number of Si-O-Si bonds, as a result, the 

materials present higher degree of degradation after 63 days for higher TEOS content. For the case 

of 25M25G50T and 35M35G30T compositions, a similar response occurs (it should be noted that 

error bars overlap). Coatings with a 10 % TEOS showed a 12.88 % weight loss after 62 days of 

exposure to water, this degree of degradation is just slightly higher than 50M50G material, which 
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showed a 10.22 % value, so the variation is not significant. However, both 35M35G30T and 

25M25G50T coatings show a similar rate of degradation (around 20 %) after 62 days, whereas 

compositions 15M15G70T and 5M5G90T reached values of weight loss around 30 % after 62 days 

in contact with water. These higher variations respect to the 50M50G material can be more 

beneficial if higher release kinetics is needed. 

 

Figure 2.9. Weight loss versus time during the hydrolytic degradation for 50M50G, 45M45G10T, 35M35G30T, 

25M25G50T, 15M15G70T and 5M5G90T coatings. 
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 Discussion 

Hybrid sol-gel materials from the triple mixture of alcoxysilanes: MTMOS, GPTMS and TEOS were 

successfully synthesized. Furthermore, it has been possible to obtain homogeneous, transparent 

and well adhered coatings to the metal substrate, showing adequate properties for implants 

handling requirements. Sol-gel network condensation process has been demonstrated using 29Si 

solid NMR (Figure 2.1). Thus, the chemical characterization showed that the addition of TEOS 

promotes the sol-gel reticulation of MTMOS and GPTMS molecules, probably due to the small size 

and higher functionality of TEOS molecules, which favour the access and binding to the silicon 

atomic positions that do not react in the 50M50G composition. However, when the percentage of 

TEOS is higher than 30%, it becomes more difficult to reach these free positions for condensation 

and the cross-linking becomes slightly lower.  

It should be mentioned that despite the lower curing temperature of 45M45G10T with respect to 

50M50G (see Table 2), a higher degree of condensation is obtained for 45M45G10T. This shows 

that the differences observed in the NMR results have a minor dependency on the curing 

temperature and are more significantly influenced by composition. FT-IR results corroborate that 

the condensation reactions have been properly produced and the Si-O-Si network successfully 

formed, demonstrating the feasibility of the sol-gel process in all cases. As can be seen in Figure 

2.2, the processing has been able to incorporate organic moieties in the structure, and the integrity 

of these functional groups has been maintained.  

Contact angle results (Figure 2.3) show that the moderate addition of TEOS to the sol-gel network 

increases hydrophilicity, reaching the maximum hydrophilic behaviour for the 30% TEOS 

composition. After that, a higher percentage of TEOS in the composition supposes an increase of 

contact angle. This behaviour is not completely understood and further experiments should be 

needed for a clear understanding. However, we believe that the initial increase in hydrophilicity 

could be due to the opening of the GPTMS epoxy rings, which produces an increase of silanol 

groups in the structure [18], and is enhanced by the presence of TEOS. Nevertheless, despite the 

further increase of TEOS content, a decrease of hydrophility takes place due to the more dominant 

reduction of GPTMS species. Hydrophilicity values are important for the cells behaviour and the 

values found are in the optimal range (60º - 90º) for an adequate cell attachment [34,35]. 



2. Chapter 1 

113 

 

Furthermore, a maximum roughness value was measured for the composition 35M35G30T.The 

biomaterial surface roughness is a critical parameter to obtain suitable tissue regeneration. Wirth 

et al. found in cell culture with rat osteoblasts that cell proliferation activity is modulated by 

roughness [36]. Consequently, it is possible to produce a better bone fixation with rough surfaces 

than employing smooth surfaces [37]. Hence, the coating with 30% TEOS is the material with the 

most suitable roughness. 

EIS tests show that the impedance values decrease when TEOS is added in the sol-gel network 

(Figure 2.5). This behaviour was reported before in VTES:TEOS coatings [11] and for MTMOS:TEOS 

materials [14]. From the analysis of Rcoat and CPEcoat parameters (Figure 2.7), it has been clearly 

shown that the presence of TEOS in the material reduces its capability as a protective coating, but 

increases its degradability. Furthermore, weight loss results (Figure 2.9) are in agreement with the 

EIS results. Thus, 50M50G sol-gel network has the lowest rate of degradation from the weight loss 

analysis, which is in agreement with the higher pore resistance and lower capability of water 

absorption observed by EIS. Moreover, the higher degradability of coatings with more TEOS can be 

due to the increase of the porosity and the presence of higher quantities of water in the coatings. 

Since hydrolytic degradation of these sol-gel networks leads to the release of Si compounds with 

positive properties on bone regeneration [19], this behaviour is considered crucial for the purpose 

of these coatings. 

Therefore, for applications in implants, a compromise between degradation (silicon release) and 

protection of the metal during the early stages of the curing process is very important. In this work, 

it has been demonstrated that the use of different compositions allows tuning the balance 

between the adequate protective character and the gradual coating degradation kinetics. Finally, 

considering all the results obtained, the materials with 30% and 50% TEOS show an interesting 

intermediate compromise between degradation and protection. Besides, as 35M35G30T coating 

showed the highest roughness, it could be a good candidate for being used in the proposed 

application too. However, in a next step, biological assessments will be needed to shed more light 

on what is the optimal composition as biomaterial. 
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 Conclusions 

In this study it was possible to obtain homogeneous and well bonded hybrid coatings from a triple 

mixture of alkoxysilanes by the sol-gel technique, achieving high degrees of condensation. 

Furthermore, it has been found by electrochemical impedance spectroscopy and hydrolytic 

degradation tests that the variation of TEOS percentage in the composition allows regulating the 

degradation of the material without impairing other properties such as wettability. Adding TEOS 

to the reference composition (50 % GTPMS and 50 % MTMOS) improved the roughness of the 

material. These results suggest that the increment achieved in the degradation could significantly 

improve the in vivo behaviour of the reference composition 50M50G, and coatings with this new 

series of materials could be used in metal implants to improve their osseointegration. As the next 

step in this work, testing these materials in biological assays will be very interesting to confirm 

their promising properties. 
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ABSTRACT  

Biomaterials interact with the host organism, determining the success or failure of an implantation. 

In vitro testing is used to assess the biocompatibility of a material. Unfortunately, in vitro and in 

vivo results are not always concordant. New methods for biomaterial characterisation are needed 

for an effective prediction of in vivo outcome. The first layer of proteins conditions the host 

response. Four distinct hybrid sol-gel biomaterials were tested. No differences were observed in 

vitro, although in vivo show distinct material behaviour. Mass spectrometry analysis was 

performed to characterize the first layer of proteins adsorbed onto the different surfaces. Six of 

the 171 proteins adsorbed onto the surfaces were significantly more abundant on the materials 

with weak biocompatibility, with known relation to the complement pathway. This could indicate 

that protein analysis might be a suitable tool for the prediction of the in vivo outcome of 

implantations using new biomaterials. 

 

Keywords: hemocompatibility, osteoimmunology, fibrous capsule, bone regeneration, dental 

implants, C-reactive protein. 
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Graphical abstract 

 

 

 

Figure 3.0. Graphical abstract of the work named “proteomic analysis of silica hybrid sol-gel coatings: a 

potential tool for predicting biocompatibility of implants in vivo”. 
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 Introduction 

Newly developed biomaterials used in the field of medical engineering and regenerative medicine 

require in vitro testing to assess their safety and efficacy. One of the major drawbacks of 

implantations is the induction of foreign body reaction, which might include an acute and chronic 

inflammation and scar tissue formation [1,2], conditions that cannot be tested in vitro. 

Consequently, the in vitro outcome does not predict well the in vivo behaviour of a given 

biomaterial. It is, therefore, necessary to develop new methods for characterisation of biomaterials, 

with sufficient accuracy to predict the outcome of implantation [3]. 

Biomaterials interact with the host organism on several levels of biological organization, and this 

interface with the host organism might determine the success or failure of the implant. In particular, 

the surface properties of the implanted device (e.g., hydrophilicity, roughness or surface energy) 

are important for defining a path of tissue remodelling [4]. 

When a biomaterial interacts with the bodily fluids of the host, it triggers a natural immune 

response to the foreign body. The immune response starts with the activation of the innate 

immune system, a normal short-term reaction. However, sometimes, the implant might induce 

chronic inflammation and the formation of a fibrous capsule ((myo)fibroblasts, neutrophils and 

foreign body giant cells [5]), leading to implant rejection [1]. 

The understanding of the biological events after the implantation trauma is crucial in the 

development of new biomaterials to prevent or control blood coagulation, infections, immune 

response and, ultimately, implant rejection. It has been suggested that the differences between 

the foreign body reactions induced by different biomaterials are mostly determined by the first 

layer of serum proteins adsorbed onto the implant surface [6,7]. The adsorption mechanisms are 

not yet completely elucidated [8]; however, the first protein layer is likely to be responsible for the 

cell/organism response to the foreign bodies [9]. 

Proteomics has at its disposal powerful tools to examine the proteins adsorbed on different 

surfaces [10]. In a previous study, we have reported differences between the compositions of 

protein layers deposited onto two distinct titanium surfaces [11]. Some authors have proposed the 

C4/C4BP protein ratio as a predictor of biomaterial biocompatibility [9]. Other studies indicate that 
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binding of C3 protein onto biomaterials is correlated with their biocompatibility [12]. It is, therefore, 

tempting to assume a direct link between the proteins absorbed on the biomaterial surface and 

the elicited inflammatory response [13]. However, the mechanisms of the immune response to 

biomaterials remain largely unknown [14]. 

The hybrid sol-gel materials synthesized using alkoxysilanes have shown great potential in 

biomedical applications [15]. These biomaterials, during their degradation process, release silicon 

compounds in the Si(OH)4 form [16], imparting the osteoinductive properties [17]. 

Our research group has been working on sol-gel biomaterials applied as coatings on dental 

implants. A variety of compositions based on mixtures of different alkoxysilanes had been 

developed and widely studied [16,18–20]. In previous studies, a poor correlation between in vitro 

and in vivo results has been observed for some of these biomaterials. Whereas only small 

differences between the two studied surfaces have been found in vitro, a completely diverse in 

vivo behaviour has been observed. The objective of the current study was to characterize the first 

protein layer adsorbed on titanium discs coated with four distinct hybrid silica sol-gel formulations. 

Two of the formulations induced the formation of a fibrous connective tissue surrounding the 

implant (poor biocompatibility), whereas the other two showed good osseointegration (good 

biocompatibility). The correlation between the properties of the first adsorbed protein layer with 

the in vivo outcome of implantation was examined for the four tested coatings. 

 

 Materials and methods 

3.2.1.  Titanium discs 

Titanium (Ti) discs (12 mm in diameter, 1-mm thick) were made from commercially available, pure, 

grade-4 Ti bar (Ilerimplant SL, Lleida, Spain). As substrate were used sandblasted acid-etched (SAE) 

Ti discs, abraded with 4-μm aluminium oxide particles and acid-etched by submersion in sulphuric 

acid for 1 h to simulate a moderately rough implant surface. Discs were then washed in acetone, 

ethanol and 18.2 Ω purified water (for 20 min in each liquid) in an ultrasonic bath and dried under 

vacuum. Finally, all Ti discs were sterilised using UV irradiation. 
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3.2.2.  Sol-gel synthesis and sample preparation 

The silica hybrid coatings were obtained using the sol-gel route. The alkoxysilanes precursors used 

were methyltrimethoxysilane (MTMOS), 3-glycidoxypropyl-trimethoxysilane (GPTMS), tetraethyl 

orthosilicate (TEOS) and triethoxyvinylsilane (VTES) (Sigma-Aldrich, St. Louis, MO, USA). Four 

different compositions were synthesized with molar percentages of 70 % MTMOS and 30 % TEOS 

(70M30T), 35 % MTMOS, 35 % GPTMS and 30 % TEOS (35M35G30T), 50 % MTMOS and 50 % 

GPTMS (50M50G) and 50 % VTES and 50 % GPTMS (50V50G). The compositions to be studied are 

established from previous works [11,16,18,20]. 2-Propanol (Sigma-Aldrich, St. Louis, MO, USA) was 

used as a solvent in the alcohol-siloxane mix (volume ratio 1:1). Hydrolysis of alkoxysilanes was 

carried out by adding (drop s-1) the corresponding stoichiometric amount of acidified aqueous 

solution 0.1 M HNO3 (Panreac, Barcelona, Spain). The solution was stirred for 1 h and left to rest 

for 1 h; the samples were prepared immediately after this stage. SAE titanium discs were used as 

the substrate. The coating was performed employing a KSV DC dip-coater (Biolin Scientific, 

Stockholm, Sweden). The discs were introduced into the appropriate sol-gel solution at a speed of 

60 cm min-1, for one minute, and removed at a 100 cm min-1. Finally, samples were cured for 2 h 

(70M30T and 35M35G30T coatings at 80 ºC, and 50M50G and 50V50G, at 140 ºC). 

3.2.3.  Physicochemical characterisation of coated titanium discs 

The contact angle was measured using an automatic contact angle meter OCA 20 (DataPhysics 

Instruments, Filderstadt, Germany). An aliquot of 10 µL of ultrapure water W04 was deposited on 

the sol-gel coated surface at a dosing rate of 27.5 μL s-1 at room temperature. Contact angles were 

determined using SCA 20 software (http://www.dataphysics.de/startseite/produkte/software-

module/). Five discs of each material were examined (two drops deposited on each). The surface 

topography and specific surface area of coated titanium discs was characterised using atomic force 

microscopy Bruker Multimode 8 (AFM; Newport Multimode, MA, USA) under dry conditions. 

Measurements were carried out at scan size of 60 µm, with a scan rate of 1 Hz. Three 

measurements were made for each coating. A mechanical profilometer Dektack 6M (Veeco, NY, 

USA) was used to determine the roughness. Two coated discs of each composition were tested. 

Three measurements were performed for each disc to obtain the average values of the Ra 

parameter. The coatings were studied using scanning electron Leica-Zeiss LEO microscope (SEM; 
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Leica, Wetzlar, Germany) under vacuum. Platinum sputtering was applied to increase conductivity 

for the SEM. 

3.2.4.  In vitro assays 

3.2.4.1. Cell culture 

MC3T3-E1 (mouse calvaria osteosarcoma cell line) cells were cultured on the sol-gel coated 

titanium discs at a concentration of 1 × 104 cells/well. We used the Dulbecco’s Modified Eagle's 

medium (DMEM) with phenol red (Thermo Fisher Scientific, Waltham, MA, USA), 1 % 100 × 

penicillin/streptomycin (Biowest Inc., Riverside, KS, USA) and 10 % fetal bovine serum (FBS) 

(Thermo Fisher Scientific, Waltham, MA, USA). The cells were incubated for 24 h at 37 ºC in a 

humidified (95%) atmosphere with 5% CO2. Then, the medium was replaced with an osteogenic 

medium composed of DMEM with phenol red 1 ×, 1 % penicillin/streptomycin, 10 % FBS, 1 % 

ascorbic acid (5 mg mL-1) and 0.21 % β-glycerol phosphate, and the cells were incubated again 

under the same conditions. The culture medium was changed every 48 h. Wells without Ti discs 

were used as a control of culture conditions. 

3.2.4.2. Cytotoxicity 

The cytotoxicity of the biomaterials was assessed following the ISO 10993-5 norm.  The 96-Cell 

Titter Proliferation Assay (Promega®, Madison, WI, USA) was employed to measure the cell viability 

after 24-h incubation of the cells with the extract. Cells not exposed to the biomaterial extract were 

used as a negative control. At the same time, cells incubated with latex (known to be cytotoxic) 

were used as a positive control; 70 % of cell viability was considered the limit below which a 

biomaterial was considered cytotoxic.  

3.2.4.3. ALP activity 

The conversion of p-nitrophenylphosphate (p-NPP) to p-nitrophenol was used to assess the ALP 

activity. Aliquots of 0.1 mL of cell lysate were used to conduct the assay. Lysate was obtained by 

adding 100 µL of lysate buffer (0.2 % Triton X-100, 10 mM Tris-HCl pH 7.2) to each well. After a 

period of 7 min of ice, the samples were removed from the wells, transferred to microtubes, and 
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sonicated for 2 min, obtaining the final lysate. Following centrifugation, 100 µL of p-NPP (1mg mL-

1) in substrate buffer (50 mM glycine, 1 mM MgCl2, pH 10.5) was added to 100 µL of the 

supernatant obtained from the lysate. After a 2-h incubation in the dark (37 ºC, 5 % CO2), the 

absorbance was spectrophotometrically measured using a microplate reader, at a wavelength of 

405 nm. ALP activity was read from a standard curve, previously obtained using different solutions 

of p-nitrophenol and 0.02 mM sodium hydroxide. The results were presented as mmol p-

nitrophenol per h (mM PNP h-1). The ALP activity data were normalized to the total protein content 

(µg µL-1) established using Pierce BCA assay kit (Thermo Fisher Scientific, Waltham, MA, USA), at 7 

and 14 days. 

3.2.5.  In vivo assay 

3.2.5.1. In vivo experimentation 

To evaluate the histological response to the selected coatings, dental implants were surgically 

placed in the tibia of New Zealand rabbits (Oryctolagus cuniculus). This implantation model is 

widely used for examining the osseointegration of dental implants [21]. All experiments were 

conducted in accordance with the protocols of Ethical Committee at the University of Murcia 

(Spain), European guidelines, the legal conditions in R. D. 223/1988 of March 14th and the Order 

of October 13rd, 1988 of the Spanish Government law on the protection of experimental animals. 

The rabbits were kept under 12-h span darkness-light cyclic conditions; room temperature was set 

at 20.5 ± 0.5 °C and the relative humidity ranged between 45 and 65 %. The animals were 

individually caged and fed a standard diet and filtered water ad libitum. Dental implants were 

supplied by Ilerimplant SL (Lleida, Spain). The implants were of internal connection type, made 

with titanium grade-4 (trademark GMI dental implants, of 3.75-mm diameter and 8-mm length, 

Frontier model). They had undergone the Advanced Doubled-Grip surface treatment, a 

combination of white corundum micro-bubble treatment and etching with nitric acid and sulphuric 

acid solution. 40 implants were employed, 20 uncoated (controls) and 5 coated (test samples) with 

each material. The control samples and test samples were implanted under the same conditions. 

20 rabbits (5 for each material) with weights between 2000 and 3000 g were used. Their age was 

near the physical closure, which is indicative of an adequate bone volume. The implantation period 
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was 2 weeks. The implants were inserted in the left and right proximal tibiae, two implants per 

animal (one control and one test sample). Animals were first sedated (chlorpromazine 

hydrochloride) and prepared for surgery, and then anesthetized (ketamine chlorhydrate). A 

coetaneous incision was made in the proximal tibia. The periosteum was removed, and the 

osteotomy was made using low revolution micromotor and drills of successive diameters of 2, 2.8 

and 3.2 mm, with continuous irrigation. Implants were put in by press-fit, and the wound was 

sutured, washed with saline solution and covered with plastic spray dressing (Nobecutan, Inibsa 

Laboratories, Barcelona, Spain). At the end of each implantation period, the animals were 

euthanized by carbon monoxide inhalation to retrieve the screws and to study the surrounding 

tissues. 

3.2.5.2. Histological quantification 

Samples for histological examination were processed following the method described by Peris et 

al. [22]. Briefly, the samples were embedded in methyl methacrylate, and 25–30 mm thick sections 

were obtained using EXAKT technique (EXAKT Technologies, Inc., Oklahoma, USA). For optical 

microscopy examination, all the sections were stained using Gomori Trichrome solution. The 

region of interest was delimited using the software ImageJ (https://imagej.nih.gov/ij/, NIH, 

Bethesda, MD, USA). The area occupied by connective tissue surrounding the implant was 

measured (mm2). 

3.2.6.  Statistical analysis 

Data were submitted to one-way analysis of variance (ANOVA) and Newman-Keuls multiple 

comparison post-test, when appropriate. Differences with p ≤ 0.05 were considered statistically 

significant. 

3.2.7.  Adsorbed protein layer 

Ti discs coated with different sol-gel compositions were incubated in 24-well plates for 180 min in 

a humidified atmosphere (37 ºC, 5 % CO2), after the addition of 2 mL of human blood serum from 

male AB plasma (Sigma-Aldrich, St. Louis, MO, USA). After the removal of the serum, the discs were 

rinsed five times with ddH2O and once with 100 mM NaCl, 50 mM Tris-HCl, pH 7.0. The adsorbed 
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protein layer was collected by washing the discs in a 4 % SDS, 100 mM dithiothreitol (DTT), 0.5 M 

triethylammonium bicarbonate buffer (TEAB) solution (Sigma-Aldrich, St. Louis, MO, USA). The 

experimental method was adopted from a study by Kaneko et al. [10]. Four independent 

experiments were carried out for each coating (n=4), each one is the resulting elution of four 

coated-discs.  Total protein content was quantified before the experiment (Pierce BCA assay kit; 

Thermo Fisher Scientific, Waltham, MA, USA), obtaining the value of 51 mg mL-1. 

3.2.8.  Proteomic analysis 

The eluted protein sample was resolved on 10 % polyacrylamide gels, using a Mini-Protean II 

electrophoresis cell (Bio-Rad®, Hercules, CA, USA). A constant voltage of 150 V was applied for 45 

min. The gel was then stained using SYPRO Ruby stain (Bio-Rad®, Hercules, CA, USA) following the 

manufacturer’s instructions. The gel was washed, and each lane was cut into 4 slices. Each of these 

slices was digested with trypsin following a standard protocol [23]. The resulting peptides were 

resuspended in 0.1 % formic acid, separated using online NanoLC and analysed using electrospray 

tandem mass spectrometry. Peptide separation was performed on a nanoACQUITY UPLC system 

connected to a SYNAPT G2-Si spectrometer (Waters, Milford, MA, USA). Samples were loaded onto 

a Symmetry 300 C18 UPLC Trap column of 5 μm, 180 μm × 20 mm (Waters, Milford, MA, USA), 

connected to a BEH130 C18 column of 1.7 μm, 75 μm × 200 mm (Waters, Milford, MA, USA). The 

column was equilibrated in 3 % acetonitrile and 0.1 % FA. Peptides were eluted at 300 nL min-1 

using a 60-min linear gradient of 3−50 % acetonitrile. 

 A SYNAPT G2-Si ESI Q-Mobility-TOF spectrometer (Waters, Milford, MA, USA) equipped with an 

ion mobility chamber (T-Wave-IMS) for high definition data acquisition analyses was used for the 

analysis of the peptides. All analyses were performed using electrospray ionization in a positive ion 

mode. Data were post-acquisition lock-mass corrected using the double-charged monoisotopic ion 

of [Glu1]-fibrinopeptide B. Accurate LC-MS data were collected in HDDA (High Definition Data 

Dependant Analysis) mode, which enhances signal intensities using the ion mobility separation. 

Progenesis LC-MS software (Nonlinear Dynamics, Newcastle-upon-Tyne, UK) was used for 

differential protein expression analysis. Raw files were imported into the program, and one of the 

samples was selected for a reference run to which the precursor masses in all the other samples 
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were aligned. Abundance ratio between the run to be aligned and the reference run were 

calculated for all features at given retention times. These values were then logarithmised and the 

program, based on the analysis of the distribution of all ratios, automatically calculated a global 

scaling factor. Once normalized, the samples were grouped into the appropriate experimental 

categories and compared. A peak list containing the peptides detected in all samples was searched 

against a Swiss-Prot database using the Mascot search engine (www.matrixscience.com). Peptide 

mass tolerance of 10 ppm and 0.2-Da fragment mass tolerance were used for the searches. 

Carbamidomethylation of cysteines was selected as the fixed modification and oxidation of 

methionine as a variable modification for tryptic peptides. Proteins identified with at least two 

peptides with an FDR < 1 % were kept for further examination. Proteins were quantified based on 

the intensity of their 3 most abundant peptides, when available. Proteins with ANOVA p < 0.05 and 

a ratio higher than 1.3 in either direction were considered significantly different. Each material was 

analysed in quadruplicate. 

Finally, the data were entered in the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) Bioinformatics Resources to classify the Progenesis differential protein list into 

functionally related clusters. 

 Results 

3.3.1.  Synthesis and physicochemical characterisation 

Four different sol-gel compositions were coated onto the surface of SAE titanium discs. The 

coatings were homogeneous, without cracks, as can be seen on SEM micrographs (Figure 3.1). The 

70M30T biomaterial conserved the initial titanium topography to a greater extent (Figure 3.1b) 

than 35M35G30T (c), 50M50G (d) and 50V50G (e). AFM images show that the 70M30T surface is 

the roughest (Figure 3.2b). The 35M35G30T, 50M50G and 50V50G coatings display a smoother 

topography (Figures 3.2c, d and e), covering well the initially rough titanium surface (Figure 3.2a). 

The specific surface area measurements showed values of 19.40 ± 2.13 %, 2.54 ± 0.43 %, 0.84 ± 

0.22 %, 0.39 ± 0.16 %, and 0.36 ± 0.16 % for Ti-Control, 70M30T, 35M35G30T, 50M50G and 50V50G 

coatings, respectively. Mechanical profilometer measurements obtained a significantly higher Ra 

value for 70M30T than for 35M35G30T, 50M50G and 50V50G coatings (Figure 3.2f). This result 
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may be due to the GPTMS in the last three biomaterials, which might affect the coating thickness, 

allowing an effective masking of the initial rough features.  

 

Figure 3.1. SEM micrographs of hybrid sol-gel coatings on SAE titanium discs: (a) Ti-Control, (b) 70M30T, (c) 

35M35G30T, (d) 50M50G and (e) 50V50G. Calibration bar 10 µm. 

 

 

Figure 3.2. AFM images of hybrid sol-gel coatings: (a) Ti-Control, (b) 70M30T, (c) 35M35G30T, (d) 50M50G 

and (e) 50V50G. (f) Mechanical profilometer measures of Ra. Bars indicate standard deviations. 
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Contact angle measurements showed that the coatings with TEOS (non-organo-modified 

precursor), 70M30T and 35M35G30T, were the most hydrophilic (Figure 3.3). The 50M50G and 

50V50G coatings had a larger contact angle, probably due to the higher organic matter content. 

 

Figure 3.3. Contact angle results for sol-gel coatings on titanium discs. Bars indicate standard deviations. 

 

3.3.2.  In vitro assays 

None of the biomaterials was cytotoxic (Figure 3.4a). ALP activity measurements showed no 

significant differences between the tested materials (Figure 3.4b). Interestingly, whereas 

normalized ALP activity of control cells (wells without Ti disc) seemed to decrease with time, the 

cells grown on Ti and coated Ti discs maintained or even increased this activity. 
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Figure 3.4. MC3T3-E1 cell viability and mineralization in vitro. (a)  Percentage of cell survival following the 

norm ISO 10993-5. (b) ALP activity (mM PNP h-1) normalized to the amount of total protein (µg µL-1) levels of 

the MC3T3-E1 cells cultivated on titanium discs treated with 70M30T (dotted column), 35M35G30T 

(checkered column), 50M50G (diagonal striped column) and 50V50G (horizontal striped column) formulations. 

Cells on an empty well without disc were used as a positive control (black column), whereas uncoated titanium 

discs (white column) were used as a negative control. There were no statistically significant differences 

between the different formulations at the times measured. 

3.3.3.  In vivo assays 

Histological analysis showed a good osseointegration pattern (it occurs on direct contact between 

the new bone and the implant surface) for 70M30T- and 35M35G30T-coated implants (Figure 3.5b 

and 3.5c). However, using 50V50G (Figure 3.5d) and 50M50G (Figure 3.5e) coatings resulted in a 

formation of a distinct area of fibrous connective tissue between the material and the 

osteoid/newly formed bone. The sizes of these areas were similar for 35M35G30T and 70M30T 

but were larger in the 50V50G and 50M50G samples (Figure 3.6). The materials were categorized 

into two groups according to the in vivo results. The first group, comprising 70M30T and 

35M35G30T, achieved a good level of osseointegration (high biocompatibility). The coatings in the 

second group, composed of the 50M50G and 50V50G materials, caused the formation of fibrous 

connective tissue surrounding the implant surface, blocking the direct contact between the newly 

formed bone and the biomaterial (poor biocompatibility). 
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Figure 3.5. Light microscopy representative images (EXAKT® cut and Gomori Trichrome stain) in vivo implants 

2 weeks post-implantation of: (a) representative photo of the area chosen to analyse the osseointegration 

state (b) 70M30T, (c) 35M35G30T, (d) 50M50G and (e) 50V50G sol-gel coated screws. The white arrows point 

to the area where the fibrous connective tissue was being formed. 
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Figure 3.6. Area in mm2 occupied by the fibrous connective tissue occupied by the four tested coatings. 

Significantly differences between 70M30T/35M35G30T and 50M50G/50V50G were found (ANOVA p ≤ 0.05 

with a Kruskal-Wallis post-test). 

3.3.4.  Proteomic analysis 

The eluted proteins were analysed using LC-MS/MS. Progenesis QI software was employed to 

identify the proteins attached to different materials. The DAVID was used to classify according to 

their function. We detected and identified 171 proteins for each material. When comparing 

70M30T with 35M35G30T (good biocompatibility group), 6 proteins were found to be more 

abundant on the 35M35G30T coating. The largest difference was observed for MYH1 protein 

(17.19-fold), involved in maintenance of cytoskeletal integrity. The other proteins were associated 

with the immune system (C1QA and FCN2) and metal-binding (HBA) functions. However, we found 

3 proteins that adhered to the 70M30T coating in larger amounts than to 35M35G30T. These were 

the proteins involved in the protection against the inflammatory disorders (CLUS) [24], coagulation 

(FAXII) [25] and lipid transport and carbohydrate binding (APOA5) (Table 3.1). 

It was also carried out a comparative study of proteins adhering to 50V50G and 50M50G surfaces 

(poor biocompatibility group, Table 3.1). Two proteins were found adhering in substantially larger 

amounts to the 50V50G coating, both with metal-binding functions (HORN and DSC1). The enzyme 

endopeptidase (LCN1) was found predominantly on 50M50G surfaces. The proteomic analysis 

showed few differences between the coatings in each group. On the two coatings with good 
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biocompatibility, we found 9 differentially predominant proteins and only 3 on the poor 

biocompatible materials. 

Table 3.1. Proteins differentially predominant in 70M30T vs 35M35G30T (above), and 50V50G vs 50M50G 

(below) sol-gel coating comparatives (Progenesis method). ANOVA (p-value < 0.05). DAVID classification 

functions were (1) inflammatory/immune response, (2) hydroxylation, (3) blood coagulation, (4) apoptosis 

regulation, (5) metal binding, (6) phosphorylation, (7) carbohydrate binding, (8) peptidase activity, (9) lipid 

transport and (10) cytoskeleton integrity. 

Description Accession 
Ratio 

35M35G30T/70M30T 
DAVID 

Myosin-1 MYH1_HUMAN 17.19 10 

L-lactate dehydrogenase B chain LDHB_HUMAN 12.18 - 

Glutamate dehydrogenase 1. 

mitochondrial 
DHE3_HUMAN 8.65 - 

Ficolin-2 FCN2_HUMAN 8.28 1-2-7-5-10 

Complement C1q subcomponent 

subunit A 
C1QA_HUMAN 3.06 1-2 

Hemoglobin subunit alpha HBA_HUMAN 1.73 5-10 

Clusterin CLUS_HUMAN 0.61 1-4-9 

Coagulation factor XII FA12_HUMAN 0.58 3-5-8 

Apolipoprotein A-V APOA5_HUMAN 0.53 7-9 

Description Accession 
Ratio 

50V50G/50M50G 
DAVID 

Hornerin HORN_HUMAN 3.41 5-8-10 

Desmocollin-1 DSC1_HUMAN 2.14 5 

Lipocalin-1 LCN1_HUMAN 0.14 8 

 

To find an explanation for the differences in the in vivo outcomes, we compared the proteins 

differentially attached to each of the materials with good biocompatibility (70M30T and 

35M35G30T) with the proteins detected on one of the materials with a negative outcome (poor 

biocompatibility group), 50M50G (Table 3.2). Fifteen proteins were found predominantly adsorbed 

onto the 50M50G surface in comparison with the other two materials. They included the proteins 

involved in bone metabolism and regeneration (VTNC [26], APOE [27–29] and KNG1 [30,31]) and 

proteins related to the immune system and inflammatory response (VTNC, CRP, SAMP, C1QB, 
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C1QC, CO7, C1S and C4BPA). All these proteins seem to favour the complement cascade activation 

[32], except for C4BPA and VTNC (which might inhibit this process [33]).  

Table 3.2. Proteins differentially predominant in both 70M30T vs 50M50G and 35M35G30T vs 50M50G sol-

gel coating comparatives (Progenesis method), ANOVA (p-value < 0.05). DAVID classification functions were 

(1) inflammatory/immune response, (2) hydroxylation, (3) blood coagulation, (4) apoptosis regulation, (5) 

metal binding, (6) phosphorylation, (7) carbohydrate binding, (8) peptidase activity, (9) lipid transport and (10) 

cytoskeleton integrity. 

Description Accession 

Ratio 

50M50G/ 

70M30T 

Ratio 

50M50G/ 

35M35G30T 

DAVID 

C-reactive protein CRP_HUMAN 7.83 5.28 1-5-8 

Lipocalin-1 LCN1_HUMAN 4.28 5.37 8 

Serum amyloid P-component SAMP_HUMAN 3.48 1.93 1-5-7-8 

Apolipoprotein E APOE_HUMAN 2.40 3.09 3-4-5-6-7-9 

Complement C1q subcomponent 

subunit C 
C1QC_HUMAN 2.26 2.12 1-2 

Complement C1q subcomponent 

subunit B 
C1QB_HUMAN 2.24 2.05 1-2 

Complement component C7 CO7_HUMAN 2.22 1.99 1 

Vitronectin VTNC_HUMAN 2.21 1.77 7 

Ig kappa chain V-IV region Len KV402_HUMAN 2.08 1.93 - 

Complement C1s subcomponent C1S_HUMAN 2.07 2.19 1-2-5-8 

C4b-binding protein alpha chain C4BPA_HUMAN 2.06 2.25 1 

Kininogen-1 KNG1_HUMAN 2.02 1.82 1-2-3-4-5-7 

Ig lambda-2 chain C regions LAC2_HUMAN 1.73 1.57 - 

Apolipoprotein A-IV APOA4_HUMAN 1.67 2.23 5 

Ig kappa chain V-II region Cum KV201_HUMAN 1.63 1.79 - 

Keratin. type II cytoskeletal 2 

epidermal 
K22E_HUMAN 0.63 0.62 10 

Keratin. type I cytoskeletal 10 K1C10_HUMAN 0.61 0.55 10 

Keratin. type II cytoskeletal 78 K2C78_HUMAN 0.60 0.56 10 

Hornerin HORN_HUMAN 0.40 0.16 5-8-10 

Filaggrin-2 FILA2_HUMAN 0.35 0.35 5-8 
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However, 5 proteins (3 types of keratins, HORN and FILA2) adsorbed more to 70M30T and 

35M35G30T than to 50M50G coatings. These proteins play a role in the cytoskeleton integrity and 

have a peptidase activity. The proteins on the good biocompatibility materials (70M30T and 

35M35G30T) were also compared with those found on the 50V50G coating (negative outcome). 

Table 3.3 displays the 16 proteins with the highest difference in abundance, among which 15 

adhered more to the 50V50G coating.  

Table 3.3. Proteins differentially predominant in both 70M30T vs 50V50G and 35M35G30T vs 50V50G sol-gel 

coating comparatives (Progenesis method), ANOVA (p-value < 0.05). DAVID classification functions were (1) 

inflammatory/immune response, (2) hydroxylation, (3) blood coagulation, (4) apoptosis regulation, (5) metal 

binding, (6) phosphorylation, (7) carbohydrate binding, (8) peptidase activity, (9) lipid transport and (10) 

cytoskeleton integrity. 

Description Accession 

Ratio 

50V50G/ 

70M30T 

Ratio 

50V50G/ 

35M35G30T 

DAVID 

C-reactive protein CRP_HUMAN 15.26 10.29 1-5-8 

Complement C5 CO5_HUMAN 10.43 5.78 1-6 

Serum amyloid P-component SAMP_HUMAN 3.33 1.84 1-5-7-8 

Complement C1q subcomponent 

subunit B 
C1QB_HUMAN 2.45 2.24 1-2 

Ig kappa chain V-IV region Len KV402_HUMAN 2.45 2.27 - 

Plasma protease C1 inhibitor IC1_HUMAN 2.22 1.66 1-3 

Complement factor H CFAH_HUMAN 2.09 1.73 1 

Complement component C7 CO7_HUMAN 2.07 1.86 1 

Ig kappa chain V-III region SIE KV302_HUMAN 2.03 1.83 - 

Complement C1s subcomponent C1S_HUMAN 1.98 2.10 1-2-5-8 

Vitronectin VTNC_HUMAN 1.98 1.58 7 

Complement C3 CO3_HUMAN 1.93 1.65 1 

Complement C1r subcomponent C1R_HUMAN 1.92 1.79 1-2-5-8 

Ig lambda-2 chain C regions LAC2_HUMAN 1.72 1.57 - 

Complement C1q subcomponent 

subunit C 
C1QC_HUMAN 1.71 1.61 1-2 

Serpin B3 SPB3_HUMAN 0.33 0.41 8 
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All the proteins characteristically associated with the 50V50G coating are directly involved in the 

immune response and acute inflammatory response (CRP, CO5, SAMP, C1QB, IC1, CFAH, CO7, C1S, 

CO3, C1R, VTNC and C1QC). Most of the proteins in this cluster are involved in the complement 

cascade activation [32], except for CFAH and VTNC, the important regulators/repressors of the 

activation of the complement system [33,34]. Only one protein, the endopeptidase SPB, was more 

abundant on both positive-outcome materials than on 50V50G. 

To establish which proteins adhere differentially to both 50M50G and 50V50G (poor 

biocompatibility) in comparison with 35M35G30T and 70M30T (good biocompatibility) sol-gel 

coatings, the data in Tables 3.2 and 3.3 was analysed. The common proteins with increased 

abundance on the poor biocompatibility materials were looked for (Table 3.4). Nine such proteins 

were found, including VTCN, 2 immunoglobulins and 6 proteins related to the acute inflammatory 

response processes of the immune system (CRP, SAMP, C1QB, C1QC, C1S and CO7). 

Table 3.4. Proteins differentially predominant at the same time in both 50M50G and 50V50G respect to 

35M35G30T and 70M30T sol-gel coatings (Progenesis method). ANOVA (p-value < 0.05). 

Description Accession Ref. bone metabolism 

or/and immune response 

C-reactive protein CRP_HUMAN  [43,50,51] 

Serum amyloid P-component SAMP_HUMAN [52,53] 

Complement C1q subcomponent subunit C C1QC_HUMAN [32] 

Complement C1q subcomponent subunit B C1QB_HUMAN [32] 

Complement component C7 CO7_HUMAN [32] 

Vitronectin VTNC_HUMAN [54] 

Ig kappa chain V-IV region Len KV402_HUMAN - 

Complement C1s subcomponent C1S_HUMAN [32] 

Ig lambda-2 chain C regions LAC2_HUMAN - 

 

These results demonstrate that the proteins related to the activation or inhibition of the 

complement cascade have higher affinity to 50M50G and 50V50G coatings. The complement 

system is a highly complex mechanism with the intricate regulation of inhibition and activation. 

Table 3.5 displays the abundance of adsorbed inhibitory proteins (C4BPS, CFAH and VTNC), 

comparing the materials with good and poor in vivo outcome and their respective protein ratios. 
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The complement-inhibiting proteins C4BPA, CFAH and VTNC and two of the principal activating 

proteins of the same system, CRP and SAMP, were the main differentially adhering proteins on the 

poor-outcome materials. Interestingly, the inhibitory proteins were more predominant in the weak 

biocompatibility material group. Nevertheless, the ratio of complement-system inhibitory proteins 

to activating proteins was higher for the biomaterials of good biocompatibility (70M30T and 

35M35G30T) than for those with the poor biocompatibility (50M50G and 50V50G). 

Table 3.5. Inhibitory/activator protein ratio detected in 70M30T, 35M35G30T, 50M50G and 50V50G 

biomaterials. 

Ratios 70M30T 35M35G30T 50M50G 50V50G 

CFAH/CRP 75.19 61.30 17.44 10.32 

CFAH/SAMP 2.04 1.37 1.07 1.28 

C4BPA/CRP 18.53 11.48 4.88 1.89 

C4BPA/SAMP 0.50 0.26 0.30 0.24 

VTNC/CRP 76.05 64.09 21.47 9.87 

VTNC/SAMP 2.06 1.43 1.31 1.23 

 

 Discussion 

Biomaterials and non-biological substances introduced into the human body are exposed to the 

blood and tissue elements. The first event after their introduction is the deposition of a monolayer 

of plasma proteins onto the surfaces of foreign materials. This can induce, among other processes, 

the activation of the complement system and coagulation cascades [35]. In extreme cases, it can 

result in a host reaction to the foreign body, which includes blood-material interactions, provisional 

matrix formation, acute and/or chronic inflammation, granulation tissue development and the 

formation of fibrous capsules [6,36]. The physicochemical properties of the different biomaterials 

used in implants such as their topography, roughness, chemistry and surface energy might affect 

the types and quantities of adsorbed proteins and even their conformation [14] and, consequently, 

the body response. This paper focuses on the characterisation of the protein layer adsorbed onto 

titanium coated with four distinct silica hybrid sol-gel biomaterials (70M30T, 35M35G30T, 50M50G 

and 50V50G). The coatings had been originally introduced to make titanium implant surface more 

bioactive and increase its capacity of osteogenic molecule delivery [16,18]. The different 
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compositions of the coatings change their physicochemical properties [37]. Thus, 70M30T 

formulation resulted in the highest roughness in comparison with the others (all containing 

GPTMS). 50V50G and 50M50G coatings were more hydrophobic than the other surfaces, probably 

due to their higher organic compound content. However, compositions containing TEOS (non-

organo-modified alkoxysilane) displayed a more hydrophilic behaviour. Apart from dissimilarities 

in morphology and hydrophilicity, these coatings also differ chemically, depending on the organo-

modified alkoxysilanes used in their synthesis [38]. All these variations might affect the implant 

biocompatibility and, therefore, the biological response. 

None of the four biomaterials tested in vitro was found to be cytotoxic, and the ALP activity assay 

showed no significant differences. In fact, all the sol-gel compositions showed a good in vitro 

behaviour, even in comparison with the control sandblasted and acid-etched titanium (SAE-Ti), 

whose good properties are widely known [39,40]. 

Although in vitro experimentation is largely used to predict the host response to a biomaterial, it 

cannot accurately predict biocompatibility in vivo. This is because, in such experiments, many of 

the in vivo elements are missing (e.g., the blood and the immune system). These elements strongly 

affect the in vivo result, especially in the field of osteoregenerative materials [3,41]. During the 

bone regeneration process, the vascularisation, stabilisation, scaffolding, cell signalling and 

progenitor cells are all required [42]. Following the implantation, the material is in contact with the 

blood, which contains the innate immune system cells that might degrade the implanted material 

or induce the formation of connective tissue surrounding the implant, hampering the 

osseointegration. The formation of the fibrous capsule surrounding the implant is regarded a 

natural immune response of the host to a foreign body [43]. 

A fibrous connective tissue was found surrounding 50M50G and 50V50G-coated implants; this did 

not happen in the cases 70M30T and 35M35G30T coatings even though they showed similar in 

vitro outcomes. Hence, even though in vitro tests might offer some guidance, neutral or positive 

results of such tests do not guarantee similar outcomes in vivo. 

The implanted biomaterials are exposed to the blood immediately after their insertion. The in vivo 

behaviour of a given biomaterial is difficult to predict; however, it has been proposed that the first 
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layer of adhering serum proteins might be responsible for the different responses of the host 

organism [44]. 

Employing proteomic analysis using LC/MS-MS and the Progenesis software, the first layer of 

proteins was studied. Following examination of the proteins predominately adhered to the 

biomaterials with similar in vivo response (Table 3.1), it was acknowledged that the differences 

within these groups of materials were very limited. However, when the two biomaterials with good 

biocompatibility were compared to either of the coatings inducing the formation of connective 

tissue, a significant number of differentially adhering proteins was detected. Interestingly, proteins 

related to the immune/inflammatory response were found predominantly on the poor 

biocompatibility surfaces 50M50G (Table 3.2) and 50V50G (Table 3.3), when compared 

simultaneously to 70M30T and 35M35G30T (good biocompatibility). 

In parallel, there were also found (Table 3.4) some proteins differentially adhered to the two good 

biocompatibility materials (70M30T and 35M35G30T) in comparison with the poor 

biocompatibility coatings (50M50G and 50V50G). It is compelling that most of these proteins are 

associated with the immune system, including the pentraxins CRP and SAMP, as well as the 

complement proteins (C1QB, C1QC, C1S and CO7). The latter belong, according to the DAVID 

analysis, to a protein cluster related to an acute inflammatory response. Notably, CRP, an activator 

of the classical pathway [45] was particularly more abundant on the two materials with poor 

biocompatibility than on the 70M30T and 35M35G30T coatings. CRP acts by direct binding of the 

globular heads of C1q, the first component of the complement system [32]. It was found that the 

amounts of C1q adhering to 50V50G and 50G50G surfaces were larger than on the coatings that 

achieve a good in vivo osseointegration. Upon the activation of C1q, the classical inflammatory 

pathway follows a series of complement activations, peaking on the generation of C3 and C5 

convertases, which results in the production of C3a and C5b fragments. These are chemoattractant 

proteins with a role in the proliferation of the elements of the innate immunity system, such as 

macrophages [32]. In turn, the macrophages regulate fibrogenesis by releasing the cytokines and 

growth factors. Furthermore, the macrophages modulate fibroblast proliferation and collagen 

synthesis [46]. However, the VTNC, which might participate in the regulation/repression of 

complement activation [33], is vital for interleukin IL-4 adhesion on biomaterial surfaces and 

induces the switch of the macrophages to their M2 reparative phenotype [13]. 
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As this chain of events might lead to the formation of a fibrous capsule (a typical foreign body 

reaction of the host), it may seem paradoxical that the inhibitors of the complement system such 

as VTNC are found predominantly adhering onto 50M50G and 50V50G coatings, whose surfaces 

become surrounded by a layer of connective tissue after implantation. Explanation of this 

apparently contradictory finding might lie in the ratio of inhibitory to activator proteins on each 

surface. It is observed that the 70M30T and 35M35G30T biomaterials showed a higher ratio of the 

complement system inhibitory proteins to activator proteins in comparison with the materials of 

poor biocompatibility. 

These results suggest that the equilibrium between the activating and inhibitory proteins 

regulating the complement system might determine the in vivo success of an implantation. Thus, 

a high ratio of inhibitory to activating proteins should lead to a positive outcome. A low ratio might 

trigger a disproportionate immune response with consequent excessive and chronic inflammation 

reaction, culminating in the formation of the fibrous capsule around the implant [13]. This acute 

inflammation response might alter the normal balance between the coagulation cascade and the 

natural anticoagulant pathway, possibly by suppression of the latter [47]. The anticoagulant 

pathway not only limits the coagulation but also modulates the inflammatory response (e.g., by 

reduction of cytokine expression) [48]. The lack of control in both coagulation and inflammatory 

pathways, a consequence of the anticoagulant system alteration, might cause a negative in vivo 

response after implantation. 

This hypothesis is consistent with other reports, in which the proteins of the complement system 

have been associated with biocompatibility problems [35,49]. Engberg et al. have even proposed 

a method for prediction of biocompatibility by evaluating the ratio of C4/C4BP, assumed to reflect 

the inflammatory response of the host organism to a biomaterial [9]. However, in their study, a 

protein list was preselected; the CRP levels were not analysed in that publication. 

The proteomic approach using the LC/MS-MS might have a significant potential for predicting the 

biocompatibility of biomaterials by analysing the first layer of proteins attached to the tested 

surfaces. 
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 Conclusions  

In summary, four different hybrid sol-gel biomaterials have been tested. These biomaterials have 

distinct physico-chemical properties, which might affect the composition of the protein layer 

adhered to their surfaces. The implants with different coatings had different in vivo outcomes. The 

results of the proteomic analysis suggested some causes for these differences. It was found a 

cluster of proteins differentially adhered to bad biocompatibility coatings, most of them related to 

acute inflammatory response regulation. The formation of a layer of fibrous connective structure 

in vivo surrounding the 50M50G and 50V50G materials might be correlated with the adsorption of 

these proteins. Regardless of the experimental limitations of this study, this correlation (proteomic 

analysis-in vivo) might be the basis for the development of a new methodology to detect 

biocompatibility problems and therefore reduce the number of experimental subjects in vivo. The 

proteins in this group (CRP, SAMP, C1S, C1QB, C1QC, C7 and VTN) should be useful as biomarkers 

in the evaluations of material biocompatibility. 
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ABSTRACT  

Titanium dental implants are commonly used due to their biocompatibility and biochemical 

properties; blasted acid-etched Ti is used more frequently than smooth Ti surfaces. In this study, 

physico-chemical characterisation revealed important differences in roughness, chemical 

composition and hydrophilicity, but no differences were found in cellular in vitro studies 

(proliferation and mineralization). However, the deposition of proteins onto the implant surface 

might affect in vivo osseointegration. To test that hypothesis, protein layers formed on discs of 

both surface types after incubation with human serum were analysed. Using mass spectrometry 

(LC/MS/MS), 218 proteins were identified, 30 of which were associated with bone metabolism. 

Interestingly, Apo E, antithrombin and protein C adsorbed mostly onto blasted and acid-etched Ti, 

whereas the proteins of the complement system (C3) were found predominantly on smooth Ti 

surfaces. These results suggest that physico-chemical characteristics could be responsible for the 

differences observed in the adsorbed protein layer. 

Keywords: titanium, surface properties, human serum, apolipoprotein E, bone regeneration, 

proteomics. 
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Graphical abstract 

 

 

Figure 4.0. Graphical abstract of the work named “Proteome analysis of human serum proteins adsorbed 

onto different titanium surfaces used in dental implants”.
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 Introduction 

Titanium dental implants are commonly used due to their biocompatibility and biochemical 

properties [1–3]. Blood plasma is the main biological fluid interacting with these implants [4]. The 

first event taking place at the biomaterial–tissue interface is the interaction of water molecules 

and salt ions with the surface of the implant. Shortly after the formation of a hydration layer, a 

variety of blood proteins adsorb onto implant surfaces. This occurs within seconds or minutes after 

implantation [5,6]. The resulting protein film mediates all subsequent biological interactions 

between the material and the surrounding environment; the cells are unlikely ever to interact 

directly with the native material surfaces. The concentration, composition and conformation of the 

protein layer on a biomaterial surface may vary. These characteristics of the protein layer are 

important for synergistic interactions promoting either favourable or adverse cellular and tissue 

responses, such as attachment to material surfaces, proliferation, and phenotypic changes [7,8]. 

Rough and blasted acid-etched Ti have replaced smooth Ti after reports of a positive correlation 

between surface roughness and bone integration [9]. Moreover, rough Ti surfaces adsorb more 

proteins than smooth Ti due to the increased surface area [10,11]. Protein adsorption is a dynamic 

process involving non-covalent interactions such as hydrophobic interactions, electrostatic forces, 

hydrogen bonding and Van der Waals forces [12]. Non-covalent interactions are controlled by 

many protein parameters, such as protein size, pI and secondary and tertiary structures [13,14]. 

The specific physico-chemical properties of the biomaterial surface, such as its chemistry, 

wettability, charge and surface morphology, also affect the protein adsorption process [15]. 

For these reasons, the researchers have focused on the elucidation of the mechanisms governing 

protein interactions with various biomaterials including polymers, metals and ceramics [16]. A 

number of surface-sensitive techniques have been used for the quantification of protein 

adsorption: surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, 

quartz crystal microbalance with dissipation and total internal reflection fluorescence 

spectroscopy [17].  

Many studies evaluating the kinetics of protein adsorption onto Ti have been focused on the 

exposure of Ti to single protein solutions or protein mixtures [18–22]. However, the protein 
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adsorption process is a complex phenomenon depending on many parameters, some of which are 

not considered in these studies. For instance, in multi-protein systems such as blood plasma/serum, 

increasing the protein concentration or/and the number of small molecules improves their 

diffusion and accelerates the displacement; thus, they are the first to be adsorbed onto the surface. 

With time, molecules with greater affinity for the surface but slower rate of diffusion (due to their 

low concentration or large size) replace the smaller molecules. This is known as the Vroman effect 

[23,24]. 

A study using mass spectrometry techniques identified fibronectin, albumin, fibrinogen, IgG and 

complement CO3 adsorbed on a modified Ti surface incubated in human plasma for 24 h [10]. The 

same study showed that the adsorption of plasma proteins depends on the roughness of the 

surface. Recently, label-free quantitative proteomics has been used in a study of the composition 

and function of adsorbed protein layers [25]. Dodo et al. characterised the proteome of the protein 

layer adsorbed onto a rough Ti surface, after exposure to human blood plasma. The study has 

shown that the layer adsorbed on this surface is composed mainly of proteins associated with cell 

adhesion, molecular transportation and coagulation processes. This layer creates a polar and 

hydrophilic interface for subsequent interactions with host cells [26]. 

At present, the biological evaluation of medical devices includes a battery of standardised tests, as 

defined in ISO 10993, highly accepted in the biomaterials research field. Typical tests for 

biocompatibility of biomaterials involves cytotoxicity, cell attachment, cells proliferation and 

mineralization assays. However, a lack of correlation between in vitro and in vivo results has been 

observed in many instances. Since the first step before cells attachment on the materials surface 

is protein adsorption, the use of proteomics is proposed to further the understanding of material 

biocompatibility. 

Thus the aim of the present study was to compare the protein layers adsorbed onto two types of 

Ti surfaces, smooth Ti and blasted acid-etched Ti, after incubation in serum. To achieve this goal, 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was employed. 

Furthermore, a comparison of the more relevant results with in vitro tests outcomes was 

performed. Therefore, this work aimed to establish a correlation between protein deposition and 
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in vitro outcomes when testing surfaces, such as those currently used in commercial dental 

implants. 

 Materials and methods 

4.2.1.  Surface disc preparation 

Ti discs (12 mm in diameter, 1-mm thick) were fabricated from a bar of commercially available, 

pure, grade-4 Ti (Ilerimplant SL, Lleida, Spain). Some of the discs, sandblasted-acid-etched (SAE) Ti 

were abraded with 4-μm aluminium oxide particles and acid-etched by submersion in sulfuric acid 

for 1 h to obtain a moderately rough implant surface. All discs were then washed in acetone, 

ethanol and 18.2 Ω purified water (for 20 min in each liquid) in an ultrasonic bath and dried under 

vacuum. Finally, all Ti discs were sterilised using UV radiation. 

4.2.2.  Physico-chemical characterisation of titanium discs 

The surface topography of the Ti discs was characterized using atomic force microscopy Bruker 

Multimode 8 (AFM, Newport Multimode, MA, USA) under dry conditions. Images were taken at 

different amplitudes. Measurements at scan sizes of 60 and 1 µm, with a scan rates of 1 and 0.3 

Hz, respectively, were carried out (n = 3). The results were analysed using the NanoScope Analysis 

software (http://nanoscaleworld.bruker-axs.com/nanoscaleworld/media/p/775.aspx). The 

scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) 

(Leica-Zeiss LEO, Wetzlar, Germany) was used to study these surfaces under vacuum. Platinum 

sputtering was employed to make the samples more conductive for the SEM examination. SEM 

micrographs were analysed by image processing using Image J software 

(https://imagej.nih.gov/ij/). 

The roughness of the samples was determined using a mechanical Dektak 6M profilometer (Veeco, 

Plainview, NY, USA). Two samples of each material were tested, with three measurements for each 

sample to obtain the average values of the parameters Ra and Rt. 

Wettability was evaluated by measuring the contact angle using an automatic contact-angle meter 

DataPhysics OCA 20 (DataPhysics Instruments, Filderstadt, Germany), after depositing 10 μL of 
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ultrapure water W04 on the titanium surface at room temperature. The drops were formed at 

dosing rate of 27.5 μL s-1 and the angles were determined using SCA 20 software 

(http://www.dataphysics.de/startseite/produkte/software-module/). Five discs of each material 

were studied after depositing two drops on each sample. 

4.2.3.  In vitro assays 

4.2.3.1. Cell culture 

MC3T3-E1 (mouse calvaria osteosarcoma cell line) cells were cultured in DMEM with phenol red 

(Gibco–Life Technologies, Waltham, MA, USA), supplemented with 1 % of (100 ×) 

penicillin/streptomycin (Biowest Inc., Riverside, KS, USA) and 10 % of FBS (Gibco–Life Technologies) 

for the first 24 h. Then, the medium was replaced with differentiation medium: DMEM with phenol 

red (1 ×) containing 1 % of penicillin/streptomycin, 1 % of ascorbic acid (5 mg mL-1) and 0.21 % of 

β-glycerol phosphate. Cells were cultured (at a concentration of 1 × 104 cells well-1) with the Ti 

discs in 24-well culture plates (Thermo Scientific, Waltham, MA, USA) at 37 ºC in a humidified (95 %) 

atmosphere of 5 % CO2. The Ti discs were not exposed to blood serum before cell culture. The 

culture medium was changed every 48 h. In each plate, wells with the same concentration of cells, 

but no Ti discs, were used as a control of culture conditions. 

4.2.3.2. Cell proliferation 

For measuring cell proliferation, the commercial cell viability assay alamarBlue® (Invitrogen-

Thermo Fisher Scientific, Waltham, MA, USA) was used. This kit measures the cell viability based 

on a redox reaction with resazurin. The cells were cultured in wells with the discs (3 replicates per 

treatment) and examined following the manufacturer’s protocol after 24, 72 and 120 h. The 

percentage of reduced resazurin was used to evaluate cell proliferation. 

4.2.3.3. ALP activity 

ALP activity was assayed by measuring the conversion from p-nitrophenyl phosphate (p-NPP) to p-

nitrophenol, and the specific activity of the enzyme was calculated. 
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Aliquots (0.1 mL) of the solution used for measuring the protein content were assayed for ALP 

activity. To each aliquot, 100 µL of p-NPP (1 mg mL-1) in substrate buffer (50 mM glycine, 1 mM 

MgCl2, pH 10.5) was added. After incubation for 2 h in the dark (37 ºC, 5 % CO2), absorbance was 

spectrophotometrically measured at 405 nm using a microplate reader. ALP activity was acquired 

from a standard curve obtained using various concentrations of p-nitrophenol in 0.02 mM sodium 

hydroxide. The results were calculated in mmols of p- nitrophenol h-1 (mM PNP h-1), and data were 

expressed as ALP activity normalized to the total protein content after 14 and 21 days. 

4.2.3.4. Total protein 

Total protein content was quantified using Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, 

Walham, MA, USA) for colorimetric protein quantitation based on copper reduction. The culture 

medium was removed from the wells, the wells were washed 3 times with 1 × DPBS, and 100 µL of 

lysis buffer (0. 2 % Triton X-100, 10 mM Tris-HCl pH 7.2) were added to each. After 10 min, the 

lysate was sonicated and centrifuged for 7 min at 13300 rpm and 4 ºC. 20 µL of the supernatant 

were used for colorimetric measurement of BCA at 570 nm on a microplate reader Multiskan FC® 

(Thermo Scientific). The total protein content was calculated from a standard curve for bovine 

albumin and expressed as µg µL-1. These data were used to normalize the alkaline phosphatase 

(ALP) activity after 14 and 21 days. 

4.2.4.  Statistical analysis 

Data were submitted for analysis of variance (ANOVA) and a Newman-Keuls multiple comparison 

test, when appropriate. Differences at p ≤ 0.05 were considered statistically significant. 

4.2.5.  Formation of the protein layer 

Each disc was incubated in a well of a 24-well plate (Thermo Scientific) with 2 mL of human blood 

serum from male AB plasma (Sigma-Aldrich, St Louis, MO, USA) for 180 min (37 ºC, 5 % CO2). The 

use of blood serum may deplete some very high abundant proteins, such as fibrin-related proteins. 

Then, the serum was removed, and the discs were subjected to five consecutive washes with 200µL 

of double-distilled water and a final wash with 100 mM NaCl in 50 mM Tris-HCl, at pH 7.1, to 

remove unadsorbed proteins. The final eluate was obtained by submerging the discs in a solution 
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containing 4 % SDS, 100 mM DTT and 0.5 M TEAB. This method was based on previous studies [27]. 

Three elutions were performed for each surface treatment; each eluate was obtained from four 

separate discs. The total protein of the serum was quantified, using the method described above 

(Pierce™ BCA Protein Assay Kit), yielding a concentration of 51 mg mL-1. 

4.2.6.  Proteomic analysis 

Each eluted protein sample was resolved in 10 % polyacrylamide gels, using a Mini-Protean II 

electrophoresis cell (Bio-Rad, Hercules, CA, USA). A constant voltage of 150 V was applied for 45 

min. The gel was then stained using SYPRO Ruby stain (Bio-Rad) following the manufacturer’s 

instructions. The gel was then washed, and each lane was cut into four slices. Each of these slices 

was digested with trypsin following a standard protocol [28]. 

The resulting peptides were resuspended in 0.1 % formic acid, separated using online NanoLC and 

analysed using electrospray tandem mass spectrometry. Peptide separation was performed on a 

nanoACQUITY UPLC system connected to a SYNAPT G2-Si spectrometer (Waters, Milford, MA, USA). 

Samples were loaded onto a Symmetry 300 C18 UPLC Trap column (5 μm, 180 μm × 20 mm, Waters) 

connected to a BEH130 C18 column (1.7 μm, 75 μm × 200 mm, Waters). The column was 

equilibrated in 3 % acetonitrile and 0.1 % FA. Peptides were eluted at 300 nL min-1 using a 60-min 

linear gradient of 3 % - 50 % acetonitrile. 

 A SYNAPT G2-Si ESI Q-Mobility-TOF spectrometer (Waters) equipped with an ion mobility chamber 

(T-Wave-IMS) for high-definition data acquisition analysis was used for the analysis of the peptides. 

All analyses were performed using electrospray ionization (ESI) in a positive ion mode. Data were 

post-acquisition lock-mass corrected using the double charged monoisotopic ion of [Glu1]-

fibrinopeptide B. Accurate LC-MS data were collected in HDDA mode, which enhances signal 

intensities using the ion mobility separation. Searches were performed using Mascot search engine 

(Matrix Science, London, UK) in Proteome Discoverer v.1.4 software (Thermo Scientific). Mascot 

generic files (MGF) files were generated from the original SYNAPT RAW files using ProteinLynx 

Global Server 3.0.2 (PLGS, Waters) and further processed using the Proteome Discoverer. A peptide 

mass tolerance of 10 ppm and a fragment mass tolerance of 0.2 Da were used as parameters for 

the searches. Carbamidomethylation of cysteines was selected as the fixed modification and 
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oxidation of methionine as a variable modification for tryptic peptides. Proteins identified with at 

least one peptide with an FDR < 1 % were kept for further examination. 

Progenesis LC-MS software (Nonlinear Dynamics, Newcastle-upon-Tyne, UK) was used for 

differential protein expression analysis. Raw files were imported into the programme, and one of 

the samples was selected for a reference run to which the precursor masses in all the other samples 

were aligned. The abundance ratio between the run to be aligned and the reference run were 

calculated for all features at given retention times. These values were then logarithmised and the 

programme, based on the analysis of the distribution of all ratios, automatically calculated a global 

scaling factor. Once normalised, the samples were grouped into the appropriate experimental 

categories and compared. Differences between groups were only considered for peptide 

abundances with an ANOVA p-value < 0.05 and a ratio > 1.5 in either direction. A peak list 

containing the differing peptides was generated for each comparison and searched against a Swiss 

Prot database using the Mascot Search engine (www.matrixscience.com). Proteins with ANOVA p 

< 0.05 and a ratio higher than 1.3 in either direction were considered different. 

 Results 

4.3.1.  Physico-chemical characterisation of Ti discs 

Figure 4.1 shows SEM images of smooth Ti and SAE-Ti surfaces. The different topographies can be 

clearly seen. The particles on the titanium surface (Figure 4.1b) are visible in the image. EDX results 

indicated that these were alumina (Al2O3) particles that may have been encrusted in the material 

after the sandblasting process (Figure 4.2). The area of the disc covered by alumina particles 

comprises around 13.84 % of the disc surface area. AFM images in Figure 4.3, with a scan size of 

60 µm, were analysed and an increase on the surface area was detected after aluminium oxide 

blasting acid-etching treatment. The untreated discs showed a specific surface area of 0.69 ± 

0.16 %, while that of the blasted acid-etched discs was of 19.97 ± 1.40 %. 

Untreated titanium discs, with smoother topography (Figures 4.3a and c), showed a series of 

grooves due to the machining process. The change in the topography of Ti after the surface blasting 

and acid-etching treatment is clearly visible in Figure 4.3b and d. Machining grooves disappeared 

as a result of sandblasting, and the roughness increased significantly (p < 0.05) when the surface 
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was marked by alumina powder. As it can be seen in Figures 4.3c and d, blasting and acid-etching 

resulted in larger irregularities but the surface was smoother in comparison with the untreated Ti. 

This can be attributed to the acid-etching treatment. 

Figure 4.1. SEM images of disc surface: (a) smooth-Ti and (b) SAE-Ti (x1000). 

 

 

Figure 4.2. SEM/EDX images of titanium sandblasted and acid-etched disc for Al2O3 particles identification. 
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The mechanical profilometer revealed that for the smooth Ti surface, Ra and Rt parameters were 

0.14 ± 0.04 and 1.28 ± 0.40 μm, respectively. After blasting and acid-etching, Ra and Rt were 0.93 

± 0.06 and 8.38 ± 0.99 μm, respectively. Thus, the surface roughness of the treated discs was 

significantly higher than the roughness of the untreated samples. 

 

Figure 4.3. AFM images at scan size 60 µm: (a) untreated titanium and (b) SAE treated Ti; and 1 µm: (c) 

untreated titanium and (d) SAE treated titanium. The z-axis could not be normalized to the same scale due to 

the height difference between treatments. 

Contact angle measurements were carried out to determine the wettability of the surface. 

Significantly (p < 0.05) lower contact angles were observed for blasted acid-etched Ti surfaces than 

for the untreated discs, namely, 85.70 ± 2.83° and 94.53 ± 2.59°, respectively. Thus, the treated 

discs showed greater hydrophilicity. 
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4.3.2.  In vitro cultures 

Analysis of cell proliferation (Figure 4.4) clearly showed that disc treatment had no significant 

effect on the cellular growth. Cells proliferated at equal rates on both types of discs during the five-

day protocol. A threefold increase in cell numbers was observed between 24 h and 3 days in culture. 

Proliferation slowed down between 3 and 5 days of incubation, showing a plateau and a reduction 

in proliferation. 

 

Figure 4.4. MC3T3-E1 cell proliferation on different treated discs: Smooth-Ti (white circle), SAE-Ti (black semi-

square with dotted line).  Cells, on an empty well, without disc was used as a control (white circle). No 

statistically significant differences were found between treatments. 

 ALP enzyme activity (Figure 4.5) was not affected by disc topography after 14 and 21 days (ANOVA, 

p > 0.05). Moreover, between these time points, there was a slight decrease in the ALP activity, as 

expected. These in vitro data indicate that the disc topographies examined in this study do not 

affect the metabolic and division processes of MC3T3-E1 cells, related to mineralization. 
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Figure 4.5. MC3T3-E1 cells ALP activity normalized to the total protein (BCA) levels (mM PNP h-1) / (µg µL-1) 

on different treated discs at (a) 14 and (b) 21 days; Smooth-Ti (white column); SAE-Ti (squared/dotted column).  

Cells, on an empty well, without disc was used as a control (black column). No statistically significant 

differences were found between treatments. 

4.3.3. Proteomic analysis 

4.3.3.1. Identification of proteins adsorbed onto the SAE-Ti and smooth Ti 

LC-MS/MS analysis of the protein layers adsorbed to both Ti surfaces resulted in the identification 

of 218 different proteins, 30 of which related with bone metabolism (Table 4.1). Serum proteins 

involved in cell adhesion and extracellular matrix, important for implant integration, were also 

found: vitronectin [29–31] and proteoglycan 4 [32]. Intriguingly, cellular/cytoplasmic components 

of cell adhesion and cell junction adsorbed to the Ti surfaces were found: integrin alpha-V [33–35], 

junction plakoglobin [36], gelsolin [37–39] and actin cytoplasmic 1 [40]. LC MS/MS analysis also 

revealed cellular and secreted proteins associated with bone homeostasis: peptidyl-prolyl cis-trans 

isomerase B [41] and lysozyme C [42,43]. Serum proteins involved in bone formation were also 

found to a certain degree, serum paraoxonase/arylesterase 1 [44], vitamin D binding protein [45–

47] and pigment epithelium-derived factor [48,49]. 
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Table 4.1. Plasma proteins adsorbed on SAE-Ti and Smooth Ti as identified by LC-MS/MS. Spectral counts 

indicates number of MS/MS spectra obtained for each protein. 

 
Spectral counts 

 
Smooth SLA-treated 

Description Accession B1 B2 B3 A1 A2 A3 
Ref. 

related 
to bone 

Beta-2-glycoprotein 1 APOH_HUMAN 5 2 1 2 0 1 [50] 

Complement component 
C8 beta chain 

CO8B_HUMAN 2 0 0 0 0 0 [51,52] 

Metal transporter CNNM2 CNNM2_HUMAN 0 1 0 0 3 1 [53] 

Junction plakoglobin PLAK_HUMAN 1 0 23 4 0 0 [36] 

Vitronectin VTNC_HUMAN 14 3 6 15 10 12 [29–31] 

Serum 
paraoxonase/arylesterase 

1 

PON1_HUMAN 2 0 8 7 0 0 [44] 

Plasminogen PLMN_HUMAN 7 0 2 3 3 7 [54–56] 

Coagulation factor XII FA12_HUMAN 3 0 1 0 0 0 [57] 

Gelsolin GELS_HUMAN 12 2 6 6 6 6 [37,39] 

Integrin alpha-V ITAV_HUMAN 0 2 1 0 0 1 [33,35] 

Alpha-2-macroglobulin A2MG_HUMAN 15 0 23 17 8 6 [58] 

Complement C3 CO3_HUMAN 135 31 115 88 58 75 [59,60] 

Tetranectin TETN_HUMAN 2 2 2 4 0 2 [61,62] 

Pigment epithelium-
derived factor 

PEDF_HUMAN 5 0 2 2 0 0 [48,49] 

Complement C4-A CO4A_HUMAN 54 14 37 34 17 14 [63] 

Alpha-1-acid glycoprotein 
2 

A1AG2_HUMAN 1 0 3 3 0 0 [64] 

Apolipoprotein E APOE_HUMAN 57 20 55 64 43 65 [65–68] 

Proteoglycan 4 PRG4_HUMAN 1 0 3 2 0 3 [32] 

Alpha-1-acid glycoprotein 
1 

A1AG1_HUMAN 0 0 2 2 0 0 [69] 

Peptidyl-prolyl cis-trans 
isomerase B 

PPIB_HUMAN 0 0 0 1 0 1 [41] 

Complement component 
C6 

CO6_HUMAN 0 0 1 1 0 2 [70,71] 

Haptoglobin-related 
protein 

HPTR_HUMAN 3 0 9 5 3 0 [72] 

Vitamin D-binding protein VTDB_HUMAN 2 0 4 1 0 0 [45–47] 
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Actin, cytoplasmic 1 ACTB_HUMAN 10 5 11 19 53 22 [40] 

Lysozyme C LYSC_HUMAN 0 0 2 2 0 1 [42,43] 

Hemoglobin subunit beta HBB_HUMAN 1 0 2 2 0 0 [73] 

Apolipoprotein C-I APOC1_HUMAN 1 0 0 2 0 1 [74] 

Kininogen-1 KNG1_HUMAN 4 0 4 0 0 0 [75] 

Serotransferrin TRFE_HUMAN 15 4 22 12 1 5 [76,77] 

 

4.3.3.2. Gene ontology analysis of the identified proteins 

Proteomic analysis led to the identification of 181 and 162 proteins on smooth Ti and blasted acid-

etched surfaces, respectively. Adsorbed proteins were classified using the PANTHER (Protein 

ANalysis THrough Evolutionary Relationships) classification system (Figures 4.6 and 4.7). The 

results of protein classification according to biological processes were almost identical for the two 

types of surfaces (Figure 4.6a and b).  

 

Figure 4.6. PieCharts showing the biological processes of the proteins adhered to (a) SAE-Ti and (b) Smooth-

Ti.   
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However, classification of proteins according to the pathways in which they are involved revealed 

differences between the two types of surfaces (Figure 4.7a and b). Interestingly, smooth Ti-

adsorbed proteins were observed to participate in a wider range of pathways than those found on 

the blasted acid-etched Ti. Blood coagulation (43.35 %), inflammation mediated by cytokines 

(17.34 %) and integrin signalling (13.29 %) were the three major process-classified protein 

categories found on the treated (SAE) Ti. For smooth Ti, blood coagulation (28.52 %) and 

inflammation (11.91 %) were the most significant categories. However, a major group of proteins 

related to glycolysis (11.91 %) was adsorbed on smooth Ti, which is absent on SAE surfaces. Integrin 

signalling was only represented by a relatively minor proportion of proteins on the smooth Ti 

(4.69 %) in comparison with the treated Ti surfaces. Proteins related to diseases such as Parkinson’s 

and Alzheimer’s and proteins related to CCKR signalling pathways were found on both disc types 

(a very small proportion of the total protein). In addition to these categories, smooth Ti surfaces 

adsorbed a small percentage of proteins involved in apoptotic and plasminogen signalling 

pathways. 

 

Figure 4.7. PieCharts pathways of the proteins adhered to (c) SAE-Ti and (d) Smooth-Ti. 
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4.3.3.3. Specifically enriched proteins 

To find the specifically enriched proteins adsorbed onto the two surface types that might reflect 

their different osteoinduction capabilities, a differential analysis was performed (in triplicate) using 

the Progenesis QI software. This method identified nine proteins differentially enriched/associated 

with each surface (Table 4.2). 

Proteins enriched on the blasted acid-etched Ti were apolipoproteins ApoA-I, ApoE, ApoA-IV, 

plectin, antithrombin III and Vitamin K-dependent protein. The largest difference between the two 

surface types was found for ApoA-IV and plectin. It was also found that complement CO3 and some 

immunoglobulins (Ig gamma and lambda chains) were significantly enriched on the smooth Ti but 

not on the blasted and acid-etched Ti discs. 

Table 4.2. Specific proteins (Progenesis method). 

Accession Description 
Confidence 

score 
Anova 

(p) 
Average 

SLA 
Average 
Smooth 

Ratio 
SLA / 

Smooth 

PLEC_HUMAN Plectin 56.31 2.76E-03 871.54 3.02 288.22 

ANT3_HUMAN 
Antithrombin-

III 
75.68 5.92E-04 2613.27 13.25 197.22 

PROC_HUMAN 
Vitamin K-
dependent 
protein C 

87.11 1.39E-02 3106.36 158.53 19.59 

APOA4_HUMAN 
Apolipoprotein 

A-IV 
247.55 4.48E-03 1326.02 499.46 2.65 

APOA1_HUMAN 
Apolipoprotein 

A-I 
197.75 3.27E-02 21111.07 12019.28 1.76 

APOE_HUMAN 
Apolipoprotein 

E 
438.34 1.97E-02 7706.64 4798.73 1.61 

LV301_HUMAN 
Ig lambda 
chain V-III 
region SH 

37.01 1.21E-02 1040.84 1522.40 0.68 

CO3_HUMAN 
Complement 

C3 
205.15 1.23E-02 2030.88 4398.04 0.46 

IGHG1_HUMAN 
Ig gamma-1 

chain C region 
49.04 2.20E-02 506.02 2040.67 0.25 
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 Discussion 

The main part of this study characterised the protein layer adsorbed onto Ti discs with two 

different surface types: a SAE-Ti and an untreated, smooth Ti. It is reasonable to assume that 

different surface characteristics will affect the adsorption of proteins. 

Roughness is a key parameter in the assessment of the osseointegrative properties of material [78]. 

The two surface types studied in this work have different topography, i.e. SAE-Ti is rougher than 

the untreated Ti surface. These results are consistent with previous studies [79]. Moreover, the 

presence of alumina is also associated with a good bone response [80] and a change in 

hydrophilicity affecting both chemical and physical composition of the surface. All these physico-

chemical features will affect the affinity of the protein layer formed on the material. 

Ti surfaces are widely used in implants; techniques advancing the osteogenesis are needed to 

improve the quality of health care and patient recovery. The surface types described here have 

been extensively used in orthopaedic implants with overall similar outcomes [81]. 

The in vitro experiments, using an osteosarcoma cell line, showed no differences between both 

samples either in proliferation or mineralization. Both surfaces showed very similar cell 

proliferation results with time, increasing gradually throughout the test period. Mineralization in 

cells, measured by ALP activity, an enzyme that becomes very active during osteoblast 

differentiation, decreased on both Ti surfaces with time with no statistically significant differences. 

In similar studies, no significant differences in either proliferation or mineralization were found 

[82]. These results are supported by proteomic analysis of proteins adsorbed onto the different 

discs since the majority of proteins attach on similar way to both surfaces. The extensive list of 

adsorbed proteins shows that at least 30 of these proteins are involved in bone homeostasis in a 

direct or indirect way (Table 4.1). 

However, the blasted and acid-etched Ti surfaces and smooth Ti surfaces showed different 

osteogenic properties in in vivo models [83]. Furthermore, Aparicio et al. [84] showed that high Ra 

values favour osseointegration of dental implants in comparison with smoother surfaces. This 

effect is attributed to a higher implant-bone contact interface as a consequence of increased 

roughness. Nevertheless, in this study chemical differences between treatments were also found. 
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To test this premise a detailed analysis of the proteins adsorbed to the two surface types was 

performed. In order to isolate and identify these surface adsorbed proteins, a protocol was 

established where, following serum incubation, discs were washed and final protein elution was 

obtained with an SDS-containing buffer. This approach permitted washing of the surfaces 

thoroughly and getting a good protein yield for the characterisation of the differences between 

both surfaces. The procedure indicates that under the same regime of washes and the same elution 

strength, a number of different proteins bound more consistently to each of the surfaces at 

statistically significant different concentrations, revealing differences in surface-protein 

interactions. Although other approaches cannot be discarded, the present method has been shown 

to be useful for the intended purpose. One the other hand, the use of a harsher buffer could release 

proteins that might have remained attached after the SDS wash. However, it is believed that 

although the total list of proteins could increase, it should not affect the differential analysis results. 

There was an average of 181 proteins identified in the smooth Ti surface discs, and 162 proteins 

on the blasted and acid-etched Ti surface. This suggests that the differences observed between the 

surfaces is a result of differential binding of certain proteins and not from the total amount of 

protein.  

The proteomics differential quantification analysis performed by Progenesis found some significant 

differences for plectin, antithrombin-III and several other apolipoproteins. Plectin is a cytoskeleton 

protein that links intermediate filaments to other cytoskeletal systems and anchors them to the 

membrane junction sites. It binds mostly to vimentin and is very important for preserving the 

mechanical integrity of the tissue [85]. Plectin is not a typical serum protein; therefore, its presence 

in the protein layer formed by incubation of Ti discs with the serum was unexpected. Antithrombin 

(AT) is a glycoprotein that inactivates several enzymes of the coagulation system. Specifically, AT-

III inactivates thrombin, which catalyses the formation of fibrin from fibrinogen. Fibrin architecture 

at the clot affects bone healing [86]. However, apolipoproteins are important serum proteins 

involved in lipid transport; different isoforms have different properties and activities. 

Apolipoprotein A-IV has antioxidant-like activity and is involved in the inhibition of lipid oxidation 

[87]. It has been reported that patients with osteonecrosis, a skeletal pathology with intense bone 

degeneration, have lower levels of ApoA-IV in comparison with healthy individuals [88]. Lipid 

metabolism and oxidative injury are important processes in the pathophysiology of the disease. 
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Apo A-IV mutations are linked to corticosterone-induced osteonecrosis in patients with renal 

transplants [89]. In the present study, Apo A-IV level was significantly higher on the blasted acid-

etched Ti than on the smooth Ti. This observation might account for a favourable osseointegration 

environment created by the treated discs as the protein acts as an antioxidant. Another important 

apolipoprotein, ApoA1, adsorbed to treated Ti at higher concentrations than to smooth Ti. ApoA1 

is the main component of the high-density cholesterol complex, but it has not been associated with 

bone formation or resorption. Interestingly, ApoE, which is involved in the regulation of bone 

metabolism, was also adsorbed to the SAE-Ti in larger amounts than to smooth Ti. Although still 

somewhat controversial, ApoE has been extensively reported to be involved in bone homeostasis 

[65], possibly via promotion of vitamin K uptake into the osteoblasts [66]. However, various ApoE 

alleles behave very differently in this process. ApoƐ2 is the allele with the lowest involvement in 

the transport of vitamin K [90]. The ApoƐ4 allele has been associated with a low bone mass in 

several studies in postmenopausal women [68,91]. More recently, epidemiological studies have 

confirmed that ApoƐ2 represents an increased risk for trabecular bone fracture [67]. The most 

frequent ApoE allele is ApoƐ3, found with a frequency of 79 %. ApoƐ2 is present in approximately 

7 % of the population, and ApoƐ4 in 14 %. ApoƐ3 is also called the neutral allele because it is not 

associated with any of the human diseases. ApoƐ2 and 4 have been associated with increased 

probability of developing arthrosclerosis and Alzheimer’s disease [92]. 

The method used to characterise the protein layer on Ti surfaces did not allow for the 

determination of the type of ApoE allele adsorbed. Moreover, is not clear whether physico-

chemical properties of the surface discriminate between the allele types. It is tempting to 

hypothesize that SAE-Ti has the ability to enrich the microenvironment of the implant with ApoE. 

However, this could only improve the osseointegration outcome if the patient carried the ApoƐ3 

alleles. Following this line of thought might help to determine the mechanisms of the variability in 

the outcomes of the same implant type in different patients. 

Kaneko et al. [27] published a similar study using different surfaces, octacalcium phosphate (OCP) 

and hydroxyapatite crystals (HA). They have found that ApoE and complement component 3 (CO3) 

were among the proteins differentially associated with these surfaces. They observed that HA 

adsorbed more CO3 than OCP, whereas OCP adsorbed more ApoE. 
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Interestingly, in the present study, CO3 was enriched on smooth Ti discs. CO3 belongs to a family 

of proteins involved in immune and inflammatory responses [93]. Osteoclasts are bone 

macrophages derived from the myeloid lineage that requires complement CO3 and CO5 for 

optimal differentiation [52]. Osteoclasts are necessary for bone resorption and the optimal balance 

between osteoblast and osteoclast differentiation must be reached to achieve healthy bone 

formation. It is not clear whether increased CO3 adsorption onto smooth Ti surfaces alters this 

balance. 

 Conclusions 

To summarise, two types of surfaces smooth and SAE, were studied by physico-chemical, in vitro 

and proteomic analysis. Al2O3 was found in the SAE surface and only Ti in the smooth sample. 

Roughness and hydrophilicity were increased by SAE treatment. In this study, in accordance with 

published literature, no differences in in vitro tests (proliferation and mineralization) were found. 

Proteomic analysis of the proteins adsorbed onto both surfaces showed the presence of proteins 

related to bone generation. Proteins enriched on the SAE-Ti were apolipoproteins ApoA-I, ApoE, 

ApoA-I, plectin, antithrombin III and Vitamin K-dependent protein C. The largest difference 

between the two surface types was found for ApoA-IV and plectin. It was also found that 

complement CO3 and some immunoglobulins (Ig gamma and lambda chains) were significantly 

enriched on smooth Ti but not on the blasted and acid-etched Ti discs. Although significant physico-

chemical differences were found between samples (chemical composition, roughness and 

hydrophilicity), in vitro test did not show any differences. Further work is needed to demonstrate 

that proteomic analysis can correlate with in vivo behaviour. 
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ABSTRACT  

There is an ever-increasing need to develop dental implants with ideal characteristics to achieve 

specific and desired biological response in the scope of improve the healing process post-

implantation. Following that premise, enhancing and optimizing titanium implants through 

superficial treatments, like silica sol-gel hybrid coatings, are regarded as a route of future research 

in this area. These coatings change the physico-chemical properties of the implant, ultimately 

affecting its biological characteristics. Sandblasted acid-etched titanium (SAE-Ti) and a silica hybrid 

sol-gel coating (35M35G30T) applied onto the Ti substrate were examined. The results of in vitro 

and in vivo tests and the analysis of the protein layer adsorbed to each surface were compared and 

discussed.  In vitro analysis with MC3T3-E1 osteoblastic cells, showed that the sol-gel coating raised 

the osteogenic activity potential of the implants (the expression of osteogenic markers, the alkaline 

phosphatase (ALP) and IL-6 mRNAs, increased). In the in vivo experiments using as model rabbit 

tibiae, both types of surfaces promoted osseointegration. However, the coated implants 

demonstrated a clear increase in the inflammatory activity in comparison with SAE-Ti. Mass 

spectrometry (LC-MS/MS) analysis showed differences in the composition of protein layers formed 

on the two tested surfaces. Large quantities of apolipoproteins were found attached 

predominantly to SAE-Ti. The 35M35G30T coating adsorbed a significant quantity of complement 

proteins, which might be related to the material intrinsic bioactivity, following an associated, 

natural and controlled immune response. The correlation between the proteomic data and the in 

vitro and in vivo outcomes is discussed on this experimental work. 

Keywords: dental implants, apolipoproteins, osteoimmunology, osteogenesis, bone regeneration, 

proteomics
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Graphical abstract 

 

 

 

Figure 5.0. Graphical abstract of the work named “Bioactive potential of silica coatings and its effect on the 

adhesion of proteins to titanium implants”.
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 Introduction 

Titanium is a material often used in dental implants due to its high biocompatibility, resistance to 

corrosion and good mechanical properties, such as its strength and relatively low modulus of 

elasticity [1]. These are excellent characteristics for biomedical purposes. However, specific surface 

treatments might enhance the bioactivity of titanium devices, leading to the desired biological 

response [2]. Such surface modifications are designed to boost osseointegration in dental implants, 

improving tissue healing [3]. 

The degree of integration of a biomaterial in a living organism depends on the interaction of many 

factors in the microenvironment formed after the implantation. The first layer of proteins adsorbed 

onto the biomaterial surface might have a strong effect on the development and activation of 

several biological processes. The success of implantation might depend on these proteins, 

spreading and adsorbing on the surface by competitive displacement (Vroman effect) [4]. 

Coagulation cascades, complement system pathways, platelets and immune cells are activated and 

become involved immediately in the microenvironment formed after the surgical procedure, 

starting the process of inflammation [5]. The deposition of the proteins activating these processes 

depends on distinct features of the surfaces. The preferential adsorption of certain types of 

proteins might be associated with the specific physical and chemical properties of these materials 

[6]. Hence, controlling the amount, type and the conformation of the adhering proteins is of the 

utmost importance in promoting the correct, fast tissue regeneration. It is vital to obtain a 

moderate and natural immune response (not a chronic inflammation) to the biomaterial. Such a 

response should favour the regeneration and good osseointegration, thus contributing to the 

success of the implantation [7]. 

The use of silica sol-gel hybrid materials in biomedical applications is becoming increasingly 

widespread [8–10]. The versatility of the sol-gel techniques allows tuning the final physico-

chemical properties of a biomaterial by selection of appropriate precursors and optimisation of 

synthesis parameters [11]. The hybrid silica sol-gel materials can be applied easily as a coating onto 

titanium, bioactivating the surface and conferring the desired properties to the implants. These 

coatings are biocompatible and biodegradable, with osteoinductive properties due to the release 
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of silicon compounds during their hydrolytic degradation [8–10]. Silicon is an essential element in 

bone metabolism and it is involved in the formation and mineralisation of this tissue [12]. 

The behaviour of sandblasted, acid-etched titanium (SAE-Ti) and a hybrid silica sol-gel coating 

applied onto this substrate was compared using in vitro and in vivo tests. The pattern of proteins 

adsorbed onto these two surface types was analysed. Then, the results of the proteomic study of 

protein–biomaterial interactions were compared with the outcomes of in vitro and in vivo studies. 

 Materials and methods 

5.2.1.  Titanium discs 

Ti discs (12 mm in diameter, 1-mm thick) were made from a bar of commercially available, pure, 

grade-4 Ti (Ilerimplant-GMI S.L., Lleida, Spain). To obtain the sandblasted, acid-etched (SAE) Ti, the 

discs were abraded with 4-μm aluminium oxide particles and acid-etched by submersion in sulfuric 

acid for 1 h, to simulate a moderately rough implant surface. Discs were then washed with acetone, 

ethanol and 18.2-Ω purified water (for 20 min in each liquid) in an ultrasonic bath and dried under 

vacuum. Finally, all Ti discs were sterilised using UV radiation. 

5.2.2.  Sol-gel synthesis and sample preparation 

The silica hybrid material was obtained through the sol-gel route. The precursors used were the 

alkoxysilanes: methyltrimethoxysilane, 3-(glycidoxypropyl)-trimethoxysilane and tetraethyl 

orthosilicate (Sigma-Aldrich, St. Louis, MO, USA) in molar percentages of 35 %, 35 % and 30 %, 

respectively. This composition, 35M35G30T, was chosen based on previous studies [8]. 2-Propanol 

(Sigma-Aldrich, St. Louis, MO, USA) was used as a solvent in the synthesis at a volume ratio 

(alcohol:siloxane) of 1:1. Hydrolysis of alkoxysilanes was carried out by adding (at a rate of 1 drop 

s-1) the corresponding stoichiometric amount of acidified aqueous solution of 0.1M HNO3 (Panreac, 

Barcelona, Spain). The mixture was kept for 1 h under stirring and then 1 h at rest. The samples 

were prepared immediately afterwards. SAE-Ti was used as the substrate for the sol-gel coating. 

The coating was performed employing a dip-coater (KSV DC; KSV NIMA, Espoo, Finland). Discs and 

implants were immersed in the sol-gel solution at a speed of 60 cm min-1, left immersed for one 

minute, and removed at a 100 cm min-1. Finally, the samples were cured for 2 h at 80 ºC. 
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5.2.3.  Physico-chemical characterisation of coated titanium discs 

The surface topography of samples was characterised using scanning electron microscopy (SEM) 

employing the Leica-Zeiss LEO equipment under vacuum (Leica, Wetzlar, Germany). Platinum 

sputtering was applied to make the materials more conductive for the SEM observations. An 

optical profilometer (interferometric and confocal) PLm2300 (Sensofar, Barcelona, Spain) was used 

to determine the roughness. Three discs of each type were tested. Three measurements were 

performed for each disc to obtain the arithmetic average values of roughness (Ra). An atomic force 

microscope (AFM; Bruker Multimode, Billerica, MA, USA) was employed to evaluate the 

nanocomponents of roughness. Measurements were carried out at scan size of 1 μm and at scan 

rate of 0.3 Hz (n = 3). The results were analysed using the NanoScope Analysis software 

(http://nanoscaleworld.bruker-axs.com/nanoscaleworld/media/p/775.aspx). The contact angle 

was measured using an automatic contact angle meter OCA 20 (Dataphysics Instruments, 

Filderstadt, Germany). Ten µL of ultrapure water were deposited on the disc surfaces at a dosing 

rate of 27.5 μL s-1 at room temperature. Contact angles were determined using SCA 20 software 

(Dataphysics Instruments, Filderstadt, Germany). Six discs of each material were studied, after 

depositing two drops on each disc. 

5.2.4.  In vitro assays 

5.2.4.1. Cell culture 

MC3T3-E1 (mouse calvaria osteosarcoma cell line) cells were cultured on the 35M35G30T-coated 

and uncoated Ti discs at a concentration of 1 × 104 cells well-1, in 24-well culture NUNC plates 

(Thermo Fisher Scientific, Waltham, MA, USA). The medium contained Dulbecco Modified Eagle 

Medium (DMEM) with phenol red (Gibco-Life Technologies, Grand Island, NY, USA), 1 % 100× 

penicillin/streptomycin (Biowest Inc., Riverside, KS, USA) and 10 % fetal bovine serum (FBS; Gibco-

Life Technologies, Grand Island, NY, USA). After incubation for 24 hours at 37 ºC in a humidified 

(95 %) atmosphere of 5 % CO2, the medium was replaced with an osteogenic medium composed 

of DMEM with phenol red 1×, 1 % penicillin/streptomycin, 10 % FBS, 1 % ascorbic acid (5 mg mL-1) 

and 0.21 % β glycerol phosphate, and incubated again under the same conditions. The culture 

medium was changed every 48 hours. In each plate, a well with cells at the same concentration 
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(1×104 cells) was used as a control of culture conditions. In parallel, cells were allowed to 

differentiate for 7, 14 and 21 days before being harvested for RNA isolation. 

5.2.4.2. Cytotoxicity 

The biomaterial cytotoxicity was assessed following the ISO 10993-5 specifications, measured by 

spectrophotometry, after contact of the material extract with the cell line. The 96-Cell Titter 

Proliferation Assay (Promega®, Madison, WI, USA) was employed to measure the cell viability after 

24-h incubation of the cells with the extract. One negative control (empty well) and a positive 

control with latex, known to be toxic to the cells were used. Seventy-percent cell viability was the 

limit below which a biomaterial was considered cytotoxic. 

5.2.4.3. Cell Proliferation 

For measuring cell proliferation, the commercial cell-viability assay AlamarBlue® (Invitrogen-

Thermo Fisher Scientific, Waltham, MA, USA) was used. This kit measures the cell viability on the 

basis of a redox reaction with resazurin. The cells were cultured in wells with the discs (3 replicates 

per treatment) and examined following the manufacturer’s protocol after 1, 3, 5 and 7 days of 

culture. The percentage of reduced resazurin was used to evaluate cell proliferation. 

5.2.4.4. ALP activity 

The conversion of p-nitrophenylphosphate (p-NPP) to p-nitrophenol was used to assess the ALP 

activity. The culture medium was removed from the wells, the wells were washed 3 times with 1 × 

Dulbecco’s Phosphate Buffered Saline (DPBS), and 100 µL of lysis buffer (0.2 % Triton X-100, 10 

mM Tris-HCl pH 7.2) was added to each. The sample aliquots of 0.1 mL were used to carry out the 

assay. One hundred µL of p-NPP (1 mg mL-1) in substrate buffer (50 mM glycine, 1mM MgCl2, pH 

10.5) was added to 100 µL of the supernatant obtained from the lysate. After two hours of 

incubation in the dark (37 ºC, 5 % CO2), absorbance was measured using a microplate reader at a 

wavelength of 405 nm. ALP activity was obtained from a standard curve obtained using different 

solutions of p-nitrophenol and 0.02 mM sodium hydroxide. Results were presented as mmol of p-

nitrophenol hour-1 (mmol PNP h-1). The data were expressed as ALP activity normalised by the total 
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protein content (µg µL-1) obtained using Pierce BCA assay kit (Thermo Fisher Scientific, Waltham, 

MA, USA) after 7 and 14 days. 

5.2.4.5. RNA isolation and cDNA synthesis 

Total RNA was prepared from the cells grown on the sol-gel coated titanium discs, using Qiagen 

RNeasy Mini kit (Qiagen, Hilden, Germany), following digestion with DNaseI (Qiagen), according to 

the manufacturer’s instructions. The quantity, integrity and quality of the resulting RNA were 

measured using NanoVue® Plus Spectrophotometer (GE Healthcare Life Sciences, Litlle Chafont, 

United Kingdom). For each sample, about 1 µg of total RNA was converted to cDNA using 

PrimeScript RT Reagent Kit (Perfect Real Time) (TAKARA Bio Inc., Shiga, Japan). The resulting cDNA 

was diluted in DNase free water to a concentration suitable for reliable RT-PCR analysis. 

5.2.4.6. Quantitative Real-time PCR 

Prior to the RT-qPCR reaction, primers for ALP and IL6 genes were designed from specific DNA 

sequences for these genes available from NCBI (https://www.ncbi.nlm.nih.gov/nuccore) using 

PRIMER3plus software tool (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). 

Expression levels were measured using primers purchased from Life Technologies S.A. 

(Gaithersburg, MD), GADPH sense TGCCCCCATGTTTGTGATG; GADPH antisense 

TGGTGGTGCAGGATGCATT; ALP sense CCAGCAGGTTTCTCTCTTGG; ALP antisense 

CTGGGAGTCTCATCCTGAGC; IL-6 sense AGTTGCCTTCTTGGGACTGA and IL-6 antisense 

TCCACGATTTCCCAGAGAAC. All primers are listed from 5’ to 3’ and GADPH was used as a 

housekeeping gene to normalise the data obtained from the RT qPCR and calculate the relative 

fold-change between conditions. qPCR reactions were carried out using SYBR PREMIX Ex Taq (Tli 

RNase H Plus) (TAKARA Bio Inc., Shiga, Japan), in an Applied Biosystems StepOne Plus™ Real-Time 

PCR System (Foster City, California, USA). The cycling parameters were as follows: an initial 

denaturation step at 95 ºC for 30 s followed by 95 ºC for 5 s and 60 ºC for 34 s for 40 cycles. The 

final melt curve stage comprised a cycle at 95 ºC for 15 s and at 60 ºC, for 60 s. 
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5.2.5.  Statistical analysis 

Data were submitted to one-way analysis of variance (ANOVA) and to a Newman-Keuls multiple 

comparison post-test, when appropriate. Differences with p ≤ 0.05 were considered statistically 

significant. 

5.2.6.  In vivo experimentation 

To assess the in vivo behaviour of the two biomaterials, the bare and coated dental implants were 

surgically placed in the tibia of New Zealand rabbits (Oryctolagus cuniculus). This implantation 

model is widely used to study the osseointegration of dental implants [13]. All the experiments 

were conducted in accordance with the protocols of Ethical Committee of the Valencia Polytechnic 

University (Spain), the European guidelines and legal conditions laid in R. D. 223/1988 of March 

14th, and the Order of October 13rd, 1988, of the Spanish Government on the protection of 

animals used for experimentation and other scientific purposes. The rabbits were kept under 12-h 

span darkness-light cycle; room temperature was set at 20.5 ± 0.5 ºC, and the relative humidity 

ranged between 45 and 65 %. The animals were individually caged and fed a standard diet and 

filtered water ad libitum. Dental implants were supplied by Ilerimplant S.L. (Lleida, Spain). These 

were internal-connection dental implants, made with titanium grade 4 (trademark GMI), of 3.75-

mm diameter and 8-mm length, Frontier model with SAE surface treatment. Overall, 10 implants 

were used, 5 uncoated (SAE-Ti) and 5 coated with the 35M35G30T sol-gel composition. They were 

all implanted under the same conditions. 

5 rabbits were employed to carry out the assay, all of them weighing between 2000 and 3000 g, 

aging near the physeal closure (indicative of an adequate bone volume). The implantation period 

for the experimental model was 2 weeks. Implants were inserted in both left and right proximal 

tibiae, each animal receiving two implants (one SAE-Ti sample and one sol-gel coated sample). 

Animals were sedated (chlorpromazine hydrochloride) and prepared for surgery, and then 

anaesthetized (ketamine hydrochloride). A coetaneous incision was made to the implantation site 

in the proximal tibia. The periosteum was removed, and the osteotomy was performed using a low 

revolution micromotor and drills of successive diameters of 2, 2.8 and 3.2 mm, with continuous 

irrigation. Implants were placed by press-fit, and surgical wound was sutured by tissue planes, 
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washed with saline water and covered with plastic spray dressing (Nobecutan, Inibsa Laboratories, 

Barcelona, Spain). After the implantation period, animals were euthanized by carbon monoxide 

inhalation, and the implant screws were retrieved to study the surrounding tissues. The samples 

were embedded in methyl methacrylate, and 25–30 µm sections were obtained using EXAKT 

Technique (EXAKT Technologies, Inc., Oklahoma, USA). Slides were sequentially stained with 

Stevenel’s blue and van Gieson’s picro-fuchsin following the procedure described by 

Maniatopoulos et al. [14]. Digital images of the tissues surrounding the implant threads were 

recorded with a bright field Leica DM4000 B microscope and a DFC420 digital camera using 1.6, 5, 

10, 20 and 100x objectives. The bone–implant contact in the cortical region of the implant and the 

length of osteoclast-like and foreign body giant cells in contact with the implant surface of threads 

in the medullar bone cavity were evaluated using the image-processing program ImageJ 1.48 

(National Institutes of Health, USA, http://imagej.nih.gov/ij). 

5.2.7.  Adsorbed protein layer 

Sol-gel-coated and uncoated titanium discs were incubated in a 24-well plate for 180 min in a 

humidified atmosphere (37 ºC, 5 % CO2), after the addition of 1 mL of human blood serum from 

male AB plasma (Sigma-Aldrich, St. Louis, MO, USA). 

The serum was removed, and, to eliminate the non-adsorbed proteins, the discs were rinsed five 

times with ddH2O and once with 100 mM NaCl, 50 mM Tris-HCl, pH 7.0. The adsorbed protein layer 

was collected by washing the discs in 0.5 M triethylammonium bicarbonate buffer (TEAB) with 4 % 

of sodium dodecyl sulphate and 100 mM of dithiothreitol (DTT). Four independent experiments 

were carried out for each type of surface; in each experiment, four discs for each material were 

processed. The protein content was quantified before the experiment (Pierce BCA assay kit; 

Thermo Fisher Scientific, Waltham, MA, USA), obtaining a value of 51 mg mL-1. 

5.2.8.  Proteomic analysis 

Proteomic analysis was performed as described by Romero-Gavilán et al. [6], with minor variations. 

Briefly, the eluted protein was in solution digested following the FASP protocol established by 

Wisnewski et al. [15] loaded onto a nanoACQUITYUPLC system connected online to an SYNAPT G2-

Si MS System (Waters, Milford, MA, USA). Each material was analysed in quadruplicate. Differential 
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protein analysis was carried out using Progenesis software (Nonlinear Dynamics, Newcastle, UK) 

as described before [6], and the functional annotation of the proteins was performed using 

PANTHER (www.pantherdb.org/) and DAVID Go annotation programmes 

(https://david.ncifcrf.gov/). 

 Results 

5.3.1.  Synthesis and physicochemical characterisation 

The sol-gel synthesis was carried out, and a well-adhering and homogenous coating was obtained 

on SAE-Ti discs. SEM micrographs showed substantial morphological differences between the bare 

and coated titanium discs (Figure 5.1a-d). The sol-gel material partly covered the initial roughness 

(shown by the data obtained using optical profilometer). After the 35M35G30T sol-gel treatment, 

Ra decreased to 0.79 ± 0.09 µm from its original value of 1.15 ± 0.10 µm for SAE-Ti surfaces. AFM 

images display the morphological properties of both surfaces on a lower scale (Figure 5.1e and f). 

The uncoated surface showed a Ra value of 19.00 ± 2.05 nm, while the sol-gel coating involved a 

reduction of the roughness nanocomponents displaying a Ra value of 1.75 ± 0.94 nm. The contact 

angle measurements revealed a significant increase in wettability as a consequence of coating. 

Uncoated and coated discs presented angles of 79.55 ± 7.51º and 50.39 ± 3.78º, respectively. Thus, 

the sol-gel-coated material was more hydrophilic than the initial SAE-Ti, possibly due to its hydroxyl 

group content [8]. 
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Figure 5.1. SEM micrographs of (a) and (c) SAE-Ti and (b) and (d) 35M35G30T coating. Scale bars: (a) and (b), 

10 µm and (c) and (d), 1 µm. AFM images of (e) SAE-Ti and (f) 35M35G30T coating.  
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5.3.2.  In vitro assays 

5.3.2.1. Cell cytotoxicity, proliferation and ALP activity 

Neither of the examined materials was cytotoxic (data not shown). The proliferation and ALP 

activity assays do not show significant differences between the two materials at most of the time 

points, except for the proliferation assay at 3-day period, in which the 35M35G30T boosts higher 

values of proliferation (Figure 5.2). 

 

Figure 5.2. MC3T3-E1 in vitro assays: a) MC3T3-E1 cell proliferation after 1, 3, 5 and 7 days of cell culture with 

SAE-Ti (white bar) and 35M35G30T (grey bar); b) ALP activity (mM PNP h-1), normalised to the amount of total 

protein (µg µL-1), in the MC3T3-E1 cells cultivated on SAE-Ti (white bar) and 35M35G30T formulation (grey 

bar). Cells in an empty well were used as a positive control (black bar). Statistical analysis was performed using 

one-way ANOVA with a Kruskal-Wallis post- test (*, p ≤ 0.05). 

 

5.3.2.2. mRNA expression levels 

After 14 days of incubation, there were found large and statistically significant differences (p < 

0.001) between mRNA expression levels for ALP and IL-6 in the cells cultivated on 35M35G30T 

discs and those grown on SAE-Ti and the blank controls (Figure 5.3), showing the bioactive potential 

of this coating formulation. 
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Figure 5.3. Gene expression of osteogenic markers (a) ALP and (b) I-L6 on MC3T3-E1 osteoblastic cells cultured 

on SAE-Ti (white bar) and 35M35G30T (grey bar). Cells in an empty well were used as a positive control (black 

bar). The relative mRNA expression was determined by RT-PCR after 7 and 14 days of cell culture. Statistical 

analysis was performed using one-way ANOVA with a Kruskal-Wallis post-test (***, p ≤ 0.001). 

5.3.3.  In vivo experimentation 

No statistically significant differences were found between osseointegration levels for the 

uncoated (SAE-Ti) and sol-gel-coated implants during the studied period (Figure 5.4, A-B). On the 

coated implants, transparent layers of undegraded material (Figure 5.4, B and D) were observed in 

the deep areas of the screw grooves. This coating layer was thinner or absent in the threads in 

contact with or next to the bone tissue. It was more evident in the grooves of the implant located 

in the medullary cavity of the bone and away from the trabeculae of bone tissue. Along this 

medullary zone, in the implant–tissue interface (SAE-Ti samples) or coating–tissue interface 

(35M35G30T samples), were observed connective tissue, inflammatory components and two types 

of multinucleated cells. One of these cell types had the size and morphological characteristics 

similar to osteoclasts, and the other was composed of larger cells, similar to foreign body giant 

cells (Figure 5.4, C-D and insets). The length of that interface and the length of the osteoclast-like 

and giant cells were measured. The cells shorter than 100 µm were considered osteoclast-like cells 

and the larger cells were classified as giant cells. Osteoclastic cells from the uncoated and coated 

implants were of similar length (44.4 ± 21.6 µm, N = 272 and 40.4 ± 27.9 µm, N = 50, respectively). 

The giant cells were smaller in the SAE-Ti than in 35M35G30T samples (cell length 162.0 ± 73.6 µm, 

N = 66 and 268.0 ± 140.0 µm, N = 46, respectively). The difference was statistically significant (p < 

0.001, non-parametric Mann–Whitney test). In the coated implants, the areas of bone 
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regeneration showed fewer giant cells, and fibrous capsules between the bone tissue and implant 

were not observed. 

 

Figure 5.4. Microphotographs of SAE-Ti and 35M35G30T samples. Panoramic images of (A) SAE-Ti and (B) 

35M35G30T samples show the implant regions close to the cortical bone and in the medullary cavity. The 

regions enclosed in white-edged squares in A and B are shown in panels C and D, respectively. In the panel C, 

several rounded and elongated osteoclast-like and giant cells touch the surface of the implant. In the D panel, 

two giant cells, flanking a region with inflammatory cells, are in contact with the transparent coating of the 
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implant surface. Lower regions of the C and D images are shown magnified in the corresponding insets. 

Stevenel’s blue and van Gieson’s picro-fuchsin staining was used. Scale bars: A and B, 1 mm; C and D, 0.1 mm; 

insets, 0.02 mm. 

 

5.3.4.  Proteomic analysis 

LC-MS/MS analysis detected and identified 133 proteins for each material. Progenesis QI software 

was employed to study differences between protein adsorption on the SAE-Ti and hybrid silica-

treated surfaces. DAVID and PANTHER tools were used to classify these proteins according to their 

function. 

The comparison of the characteristic proteins attached to the two biomaterials showed that 16 

proteins were more abundant on the SAE-Ti than on the coated surfaces (Table 5.1). 

The list in Table 5.1 shows some proteins related to blood coagulation processes, such as FA11, 

THRB and PROC. Notably, a large number of apolipoproteins adsorbed preferentially to the 

titanium surface in comparison with the sol-gel material (APOA, APOA1, APOA4, APOA5, APOC1, 

APOC2, APOC4 and APOE), as well as SAA4, classified as high-density lipoprotein by DAVID. PF4V, 

KCRM, VTNC and SEPP1 were also identified as more abundant in SAE-Ti elutions. 

PANTHER chart in Figure 5.5a displays the classification of biological processes in which the 

proteins characteristic for titanium surfaces are involved. Among the identified processes, the 

most significant were the cellular (14 %) and metabolic (16 %) processes and the response to 

stimulus (16 %). Molecules with functions related to the immune system were also detected 

although they constituted only 2 % of the proteins. 

Table 5.2 shows the 20 proteins more predominant on the 35M35G30T biomaterial than on 

untreated surfaces. A large proportion of these proteins is related to the immune response and 

the complement system, such as C1R, CO5, CO6, CO7, CO8A and CO8B proteins and the 

immunoglobulins IGJ, IGHA1 and IGHM. The proteins AFAM, HPT, A1AT and A2MG were also 

detected. 
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For the 35M35G30T samples, PANTHER analysis identified, among others, protein functions 

associated with cellular (19 %) and metabolic (10 %) processes, in similarity to the titanium-only 

results. However, in this case, the proportion of proteins related to immune system processes 

reached 17 % (Figure 5.5b). 

 

 

Figure 5.5. PANTHER pie chart of the biological processes associated with the proteins differentially adhering 

to (a) SAE-Ti and (b) 35M35G30T. 
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Table 5.1. Progenesis analysis of proteins differentially attached to SAE-Ti. 

Description Accession 
Confidence 

score 
Average 
SAE-Ti 

Average 
35M35G30T 

ANOVA 
(p) 

Ratio SAE-Ti / 
35M35G30T 

Platelet factor 4 variant PF4V_HUMAN 106.83 2.05E+05 3.95E+03 6.62E-04 52.00 

Coagulation factor XI FA11_HUMAN 337.82 2.21E+05 9.18E+03 4.67E-02 24.06 

Apolipoprotein C-IV APOC4_HUMAN 80.60 1.18E+05 5.39E+03 3.91E-05 21.81 

Vitamin K-dependent protein C PROC_HUMAN 124.64 2.08E+05 1.36E+04 4.21E-03 15.27 

Serum amyloid A-4 protein SAA4_HUMAN 150.29 2.24E+06 2.11E+05 1.09E-04 10.60 

Creatine kinase M-type KCRM_HUMAN 104.21 1.58E+04 1.74E+03 1.66E-03 9.06 

Prothrombin THRB_HUMAN 375.17 1.91E+06 2.72E+05 1.15E-03 7.02 

Apolipoprotein E APOE_HUMAN 1836.86 2.54E+07 4.62E+06 9.73E-03 5.51 

Vitronectin VTNC_HUMAN 430.96 1.03E+07 2.06E+06 3.53E-04 4.98 

Apolipoprotein C-I APOC1_HUMAN 163.40 3.22E+06 6.53E+05 9.19E-03 4.94 

Apolipoprotein A-V APOA5_HUMAN 134.27 4.82E+04 1.03E+04 2.61E-04 4.67 

Selenoprotein P SEPP1_HUMAN 242.92 1.99E+05 6.33E+04 4.35E-03 3.14 

Apolipoprotein(a) APOA_HUMAN 108.16 8.15E+04 3.90E+04 3.74E-02 2.09 

Apolipoprotein A-IV APOA4_HUMAN 1044.44 1.36E+06 7.07E+05 2.24E-02 1.92 

Apolipoprotein A-I APOA1_HUMAN 1051.15 1.25E+07 6.68E+06 1.19E-03 1.87 

Apolipoprotein C-II APOC2_HUMAN 133.73 3.20E+05 1.85E+05 4.09E-02 1.73 
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Table 5.2. Progenesis analysis of proteins differentially attached to silica sol-gel coating. 

Description Accession 
Confidence 

score 
Average 
SAE-Ti 

Average 
35M35G30T 

ANOVA (p) 
Ratio 35M35G30T 

/ SAE-Ti 

Complement component C6 CO6_HUMAN 100.06 1.02E+04 3.02E+04 5.20E-03 2.97 

Complement factor H-related protein 2 FHR2_HUMAN 253.29 3.93E+04 1.07E+05 4.31E-03 2.72 

Immunoglobulin J chain IGJ_HUMAN 123.70 1.30E+05 3.41E+05 1.29E-02 2.62 

Ceruloplasmin CERU_HUMAN 338.22 5.49E+04 1.36E+05 8.43E-03 2.48 

Alpha-1-antitrypsin A1AT_HUMAN 466.15 4.73E+05 1.15E+06 6.21E-04 2.44 

Alpha-1-acid glycoprotein 1 A1AG1_HUMAN 171.81 4.74E+04 1.14E+05 1.41E-02 2.41 

Complement component C7 CO7_HUMAN 358.70 7.98E+04 1.85E+05 1.78E-02 2.32 

Ig mu chain C region IGHM_HUMAN 262.24 1.92E+05 4.32E+05 2.25E-02 2.25 

Alpha-1-antichymotrypsin AACT_HUMAN 490.40 7.31E+04 1.63E+05 4.01E-03 2.23 

Serotransferrin TRFE_HUMAN 1935.92 2.56E+06 5.58E+06 1.26E-02 2.18 

Complement C5 CO5_HUMAN 620.04 4.90E+04 1.07E+05 2.10E-02 2.18 

Haptoglobin HPT_HUMAN 755.00 5.13E+05 1.09E+06 7.85E-03 2.13 

Serum albumin ALBU_HUMAN 2067.21 2.34E+07 4.96E+07 1.70E-02 2.12 

Complement component C8 alpha chain CO8A_HUMAN 193.83 8.99E+04 1.88E+05 1.43E-02 2.09 

Complement component C8 beta chain CO8B_HUMAN 96.20 1.45E+04 3.01E+04 8.01E-03 2.08 

Ig alpha-1 chain C region IGHA1_HUMAN 386.53 7.00E+05 1.44E+06 7.20E-03 2.06 

Complement C1r subcomponent C1R_HUMAN 306.85 1.33E+05 2.52E+05 4.79E-03 1.90 

Retinol-binding protein 4 RET4_HUMAN 79.55 7.64E+04 1.42E+05 3.37E-02 1.85 

Alpha-2-macroglobulin A2MG_HUMAN 669.00 1.91E+05 3.45E+05 1.81E-02 1.81 

Afamin AFAM_HUMAN 188.26 3.52E+04 6.32E+04 1.68E-02 1.80 
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 Discussion 

There is an ever-increasing interest and research on the biomaterial science industry for the 

development of implants with bioactive properties in the scope of decreasing the recovery times 

following the post-implantation procedure. Chemical and physical surface modifications of the 

implants are state-of-the-art areas in which researchers focus their attention, due to the fact that 

these modifications can ultimately influence cell behaviour [16]. To a large extent, this behaviour 

is affected by the proteins attached to the surface of the implant, representing a 

microenvironment whose characteristics determine the success of the implantation [17]. It is 

widely known that the titanium is not, by itself, bioactive; even though it has osteoconductive 

properties, it is not osteoinductive [2]. To confer osteoinductive characteristics to the titanium 

devices, imply the modification of the physicochemical properties of their surfaces. This alters the 

conformation, quantity and type of proteins that attach to the implant in contact with biological 

fluids [18]. 

This experimental study was designed to compare and characterise two distinct surfaces, one an 

uncoated sandblasted acid-etched titanium (SAE-Ti), and the other coated with a silica sol-gel 

hybrid 35M35G30T biomaterial, regarding their physico-chemical properties, in vitro and in vivo 

behaviour and the characterization of the protein layer adsorption onto each surface.  

Apart from the obvious chemical differences between the titanium surfaces and silicon coatings, 

their morphological characterisation revealed specific properties of these surfaces, showing that 

the application of the sol-gel coating decreases surface roughness at micro and nano-level and 

increases hydrophilicity. These distinct characteristics might ultimately affect both the protein 

adsorption and the biological behaviour of the biomaterial. Indeed, in vitro results demonstrated 

an increase in the bioactive potential of the sol-gel-coated implant in comparison with the 

uncoated titanium. In particular, it was observed changes in the mRNA expression levels, as it was 

found an almost 4-fold increase in the expression of the ALP mRNA and at least 2-fold increase in 

the expression of the mRNA for IL-6 (Figure 5.3). ALP is expressed early in the development of the 

bone and during cartilage calcification [19] and is a well-known biomarker for osteoblastic 

differentiation. This marker has been used for the assessment of fracture healing [20]. IL-6 is a 

regulator of the differentiation of pre-osteoblastic cells and initiates apoptosis in the mature 
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osteoblasts. Moreover, the expression of its receptor is high during differentiation of osteoblasts 

in vitro [21]. It has also been reported as a direct stimulator of RANKL and OPG mRNA expression 

in the mouse bone tissue [22], promoting prostaglandin production and, thus, modulating the 

inflammatory potential [23]. Interestingly, IL-6 can act as an ALP induction factor during the 

inflammatory phase of wound repair in the skin [24] and even in bone tissue remodelling [25]. 

Therefore, the 35M35G30T material might have a role in promoting osteoblastic activity. 

In vivo results for the two examined surfaces did not show clear differences in bone repair during 

the tested period even though the in vitro experiments demonstrated higher bioactivity in the 

coated samples. Nevertheless, there was a significant increase in the immune complex activation 

on the sol-gel-coated implants. This was demonstrated by the higher abundance of the foreign 

body giant cells (FBGC) surrounding the residual areas of non-degraded material, in comparison 

with the SAE-Ti (Figure 5.4). The presence of FBGCs in degradable materials is quite common as 

their activity is needed for the recovery of the implanted tissue. Without it, immune structures like 

thick fibrous capsules might be formed around the material, with all the associated disadvantages 

[26]. In fact, for the coated surfaces, in the areas of bone regeneration, it occurs a clear decrease 

in the number of giant cells and no presence of fibrotic tissue. 

The comparison between the composition of protein layers on SAE-Ti and 35M35G30T coating 

revealed many proteins differentially attached to these surfaces. This distinct affinity of some 

proteins to these materials could be attributed to their different physico-chemical properties such 

surface chemistry, wettability or roughness [27,28]. In this sense, for example, an increase in 

surface roughness could be involved with changes in the adsorption of specific proteins [29].  

Interestingly, among the protein group characteristic for titanium, the PF4V protein was the most 

abundant (52-fold increase in comparison with the sol-gel treated samples). This protein is a 

platelet chemokine inhibiting both angiogenesis and tumour growth [30]. However, its specific role 

in bone regeneration processes remains unclear. Remarkably, a large number of apolipoproteins 

were attached predominantly to the SAE-Ti surface. Cho et al. [31] have reported that 

apolipoproteins might prevent the activation of innate immunity response, and have an anti-

inflammatory potential. These results indicate that the high biocompatibility of titanium might be 

related to the preferential adsorption of this family of proteins onto its surface. Other studies 
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suggest that the immunomodulatory role of apolipoproteins might be associated with the 

polarisation of macrophages in their anti-inflammatory phenotype [32,33]. Similarly, VTNC has 

been identified as an inhibitor of the complement cascade activation [34]. This protein has an 

important role in the interleukin IL-4 adhesion to biomaterials, leading the macrophage 

polarisation to their M2 reparative phenotype [16]. VTNC also interacts with the coagulation 

cascades, contributing to thrombus formation, and participates in the establishment of vascular 

homoeostasis, wound repair and tissue regeneration [35]. This protein promotes the osteogenesis 

by boosting the osteoblast differentiation [36]. APOE protein was also found predominantly on the 

SAE-Ti surfaces. This protein is involved in the regulation of bone metabolism; its role in the bone 

tissue is probably related to its effect on vitamin K uptake into osteoblasts [37]. Proteins FA11, 

THRB and PROC play an important role in blood clotting. FA11 and THBR participate in the 

activation of the blood coagulation pathway. PROC is involved in the regulation of this pathway, 

through the inactivation of Va and VIIIa factors in the presence of phospholipids [38,39]. 

At the same time, proteomic analysis to the proteins more predominantly found in the silica sol-

gel material (in comparison with the SAE-Ti) revealed a prevalence of proteins belonging to the 

complement system, namely CO5, CO8B, CO8A, CO7, C1R and CO6 [40], as well as the 

immunoglobulins IGJ, IGHM and IGHA1. This result was supported by the PANTHER analysis, which 

found a pronounced increase in the attachment of proteins related to immune system, from 2 % 

on the uncoated SAE-Ti to 17 % on the sol-gel coating (Figure 5.5). Interestingly, there was not 

found C-reactive protein adsorption, which, in a previous study, has been reported as related to 

acute/chronic inflammation processes and put forward as a bad biocompatibility biomarker [41]. 

This data unveils the relationship that an increment in immune response can suppose an increase 

on the activity of osteogenic markers (ALP and IL-6) observed in the in vitro assays. This augmented 

immune system activation was also seen in vivo (Figure 5.4). 

The implantation of biomedical devices entails a natural and significant immune response to the 

foreign material. The migration of white blood cells to the implantation site is caused by 

complement cascade proteins adsorbed on the surface of the implant. The consequent immune 

response is guided by cytokines that are activated and released by white blood cells, e.g., 

macrophages [42]. These cytokines can be responsible for producing a natural inflammatory 
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reaction, giving the kick-start to the healing processes in the damaged tissue. An interaction 

between the host and the implant surface will result in the release of such molecules and trigger 

the activation of a series of cascades, determining the outcome of the implantation. The results 

obtained here show that an increase in the immune response to the implanted material might 

affect its bioactive potential, as a result of the interactions between the immune and skeletal 

systems [43]. Such interactions, as long as the release of the immune product is controlled, might 

help to modulate the bioactivity of material towards the bone cells [44]. 

 Conclusion 

In summary, this study shows the importance of the adsorbed layer of proteins in the bioactivation 

of the material. The proteins from these layers, whose composition depends on the intrinsic 

characteristics of the material, might trigger the bioactivation process. Indeed, it has been found a 

significant deposition of complement-related proteins. These proteins intervene in processes such 

as the maintenance of cellular turnover, healing, proliferation and regeneration, apart from their 

role in the immune processes. This assumes a prolonged presence of the FBCGs on the 

regenerating tissue, and at the same time, a boost in the osteogenic potential, even though no 

effect on the in vivo regenerative potential is found. 
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8. General discussion 

The progressive aging in the population and the appearance of pathologies associated with a lower 

capacity for bone tissue regeneration, such as diabetes or osteoporosis, involve a greater demand 

for dental substitutions, not only in healthy individuals.  

As consequence, the design of new biomaterials for dental implantology able to accomplish better 

results is crucial. However, the development methodologies of these biomaterials show a low 

efficiency because of surprising poor correlation between in vitro and in vivo testing. This fact 

highlights the need to stablish new in vitro techniques which guarantee a better prediction of the 

material in vivo response.   

In this regard, the layer of proteins adsorbed onto biomaterials after their implantation could mark 

the initiation and development of the successive events that take place during tissue healing, and 

therefore the implant success or failure.  

On this basis, this work aims the identification of proteomic biomarkers useful to provide more 

information about the future biomaterial behaviour in vivo, which could support the establishment 

of new in vitro methodologies with better performances.   

To attain this goal, the first step was the design of biomaterials with controlled biological responses. 

For that, a base sol-gel material which can be applied as coating onto implants and, at the same 

time, can be used as controlled release vehicle of different compounds was developed. The 

modelled sol-gel synthesis method allowed design materials with the ability to provoke different 

biological responses. Then, the next step was the physico-chemical, biological and proteomic 

characterization of these compositions. Hence, the comparative analysis of materials with specific 

properties allowed the identification of distinct protein biomarkers. 

For this reason, in chapter 1, a silica hybrid sol-gel synthesis procedure was developed. A triple 

mixture of MTMOS, GPTMS and TEOS alkoxysilanes allowed to obtain homogeneous and well-

adhered coatings, which could be used to bioactivate metallic dental implants. Additionally, both 

the electrochemical and the hydrolytic degradation assays revealed that the composition 
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35M35G30T has an interesting degradation kinetic in order to employ this sol-gel network as 

delivery vehicle of osteogenic compounds.  

Then, building on this previous sol-gel development work, the biological behaviour of a variety of 

treatments were systematically characterized. As well as, the composition of the serum protein 

layer adsorbed onto their surfaces. 

In this way, the results obtained with the comparative analysis of both biocompatible and non-

biocompatible treatments are described in chapter 2. Following the sol-gel synthesis method, 

different materials were obtained altering their chemical composition with the intent to provoke 

distinct biological responses. The 35M35G30T coating together another silica hybrid sol-gel 

composition, 70M30T, showed a good in vivo outcome despite of having distinct physico-chemical 

properties. Similarly, 50M50G and 50V50G materials showed analogous outcomes, but in this case 

the implantation of this materials results in the formation of connective fibrous tissue, fact related 

to a poor biocompatibility. Interestingly, traditional in vitro cell culture did not reveal differences 

between these four material, being all them supposedly biocompatible. So this study underlines 

the poor correlation between in vitro testing and the subsequent in vivo experimentation.  The LC-

MS/MS allowed the identification of 171 different proteins adsorbed onto the sol-gel coatings, fact 

that emphasizes the potential of this technique to approach the study of protein adsorption on 

biointerfaces. Moreover, the Progenesis comparative analysis found a cluster of proteins 

differentially adhered to the both non-biocompatible compositions respect to the biocompatible 

ones (CRP, SAMP, C1S, C1QB, C1QC, CO7 and VTNC). This cluster was mainly formed by proteins 

related to an acute inflammatory/immune response, which could explain the implant failure. 

Notably, the pentraxin CRP was found as the protein differentially more adhered to the non-

biocompatible materials in all cases. This acute-phase protein is directly associated with the 

complement system activation via the classical pathway, involving proinflammatory effects. 

Nevertheless, VTNC, which was also found more adhered to non-biocompatible compositions, 

inhibits the complement system activation and thus contributes to the inflammatory response 

regulation.  This is not as contradictory as it may seem, since the ratio between activating / 

inhibitory proteins shows a proportionally greater affinity of activating proteins to both 50M50G 

and 50V50G. This higher activating / inhibitory ratio could result in a disproportionate complement 

system activation, culminating in the formation of the fibrous tissue observed in vivo. Then, these 
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results suggest that the ratio between the activating and inhibitory proteins regulating the 

complement system such as CRP / VTNC might constitute a useful biomarker to predict 

biocompatibility problems in vivo. 

In parallel, it would be interesting to identify biomarkers associated to an improved 

osseointegration capability. For this reason, chapter 3 describes the proteomic characterization 

carried out to two distinct titanium surfaces commonly employed in implants: a sand-blasted acid-

etched Ti (SAE-Ti) respect to non-treated one. It is widely accepted the benefits of SAE surfaces for 

dental implantology purposes due to their better osseointegrative properties. Apart from the 

greater roughness they possess other variables that can condition positively cell behaviour, such 

as its possible distinct surface chemistry and wettability. The LC-MS/MS analysis allowed the 

detection of 218 distinct adsorbed proteins, being 37 of those related to bone regenerative 

processes and dental implant integration. It is remarkable the great affinity of both Ti surfaces for 

key proteins related to the coagulation (FA12, PROC, THBR, ANT and KNG1) and fibrinolysis (PLMN) 

systems, as well as, proteins with tissue regenerative potential (TENT, PRG4, ACTB and VTNC). The 

comparative analysis between the proteomic results obtained with each of the Ti surfaces found 

that SAE-Ti, in comparison with non-treated Ti, have a greater affinity to APOE, ANT3 and PROC 

proteins. At the same time, SAE-Ti showed lower affinity to CO3, protein related to an acute 

inflammatory response, and IGHG1, IGHM, LV301 immunoglobulins. Thus, this better 

osseointegration potential associated to the SAE treatment could be related to the increased 

adsorption of osteogenic protein APOE, the higher presence of coagulation inhibitors (PROC and 

ANT3), combined with a lower adsorption of some proteins related to the immune response such 

as CO3. 

Chapter 4 was focused on the comparison between SAE-Ti and the 35M35G30T silica hybrid sol-

gel composition applied as coating onto that Ti surface in order to bioactivate it. At the first sight, 

qRT-PCR assays show a greater gene expression of osteogenic markers when the Ti is treated with 

the sol-gel material, which could be related to a higher osteogenic activity. However, both 

35M30G30T and the non-coated SAE-Ti materials displayed a successful in vivo outcome, without 

significant differences among them. The LC-MS/MS proteomic characterization identified 133 

proteins for each material. A comparative analysis using Progenesis QI software was performed, 

detecting patterns of proteins differentially adsorbed onto each material.  Indeed, osteogenic 
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proteins such as APOE and VTNC, as well as proteins related to blood coagulation process were 

found more adhered onto SAE-Ti. Whereas 35M35G30T treatment showed a greater adsorption 

of proteins related to immune system processes. Then, in view of the similar in vivo outcome 

showed by both biomaterials, the proteomic results suggest that their different protein adsorption 

patterns could suppose the regeneration process development through distinct mechanisms. SAE-

Ti has a greater affinity to proteins described in literature to promote osteoblastogenesis (APOE 

and VTNC), while 35M35G30T coating displayed a higher, although no disproportioned, immune 

activity which could be associated to the osteogenesis boosting, following the subject of 

osteoimmunology. 

Since, it is widely recognized the osteogenic capability of Ca2+ and Sr2+ cations when they are 

introduced into biomaterials such as bioglasses.  The next step was the addition of osteogenic salts 

(SrCl2 and CaCl2) into this 35M35G30T silica hybrid sol-gel material, aiming the enhancement of 

their osseointegration potential.  

In chapter 5, the incorporation of SrCl2 into the sol-gel network provokes physico-chemical changes, 

resulting in a distinct in vitro cell responses in a dose-dependent manner. In this sense, it was found 

an increase in the gene expression of ALP and TGF-β in MC3T3-E1 cells. At the same time, the 

macrophage gene expressions of inflammatory marker TNF-α decreases and the anti-inflammatory 

marker IL-10 increases when Sr was added to the coating.  LC-MS/MS analysis identified 136 

different proteins, detecting variations in the protein patterns adhered onto the coatings as the Sr 

was incorporated. In fact, it is remarkable the higher adsorption of APOE and VTNC as result of the 

increasing amount of SrCl2 incorporated in the sol-gel material. These proteins are not only related 

to osteogenic functions, but also described as promotors of macrophage shift to an anti-

inflammatory phenotype. Thus, it is tempting to think that a greater attachment of proteins such 

as APOE and VTNC can affect the cellular response to the biomaterial, resulting in increased 

osteogenic and anti-inflammatory potential in vitro for Sr-coatings.  

Similarly, chapter 6 shows as the addition of CaCl2 to 35M35G30T supposes physico-chemical 

changes. Regarding the biological responses to these biomaterials, the higher osteoblastic gene 

expression of ALP marker infers that the incorporation of Ca2+ increases the 35M35G30T 

osteogenic potential in a dose-dependent manner. However, in this case, the higher macrophage 
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gene expression of TNF-α and IL1-β markers reveals an increased inflammatory potential 

depending on the CaCl2 concentration. Otherwise, the proteomic characterization found 113 

different proteins adhered to these Ca-coatings. Additionally, important differences in the 

adsorption protein patterns were detected through the Progenesis comparative analysis, as 

consequence of the CaCl2 incorporation into the sol-gel network. Ca-coatings showed a greater 

attachment of APOE and VTNC onto their surfaces, signalling an osteogenic potential which is 

consistent with the in vitro results. These biomaterials also revealed, in turn, a clear higher affinity 

to proteins related to blood coagulation, which is not surprising considering the role of Ca2+ during 

blood clotting. It should be highlighted that this likely greater clotting activity, associated to the 

higher adsorption of coagulation system proteins, seems to be tightly regulated. Thereby, despite 

the greater attachment of pro-coagulating proteins such THRB, the differentially higher adoption 

of inhibitory proteins as ANT3, PROC and PROS could ensure there is no a disproportionate clotting 

reaction. However, more studies in this line would be necessary to stablish what coagulation 

patterns are the most suitable for implant osseointegration.  Regarding to the elevated 

inflammatory gene expression detected mainly in compositions with around 2.5 % molar of CaCl2, 

it is difficult to stablish a correlation between these signals and the adhered protein patterns. In 

this sense, this inflammatory potential could be associated to the increasing adhesion of 

inflammatory proteins (SAMP) or even to the interactions of coagulation system molecules in the 

immune response in vitro of these biomaterials. Despite this higher inflammatory potential, the 

addition of CaCl2 did no suppose an increase of proteins related to an acute inflammatory response 

as CRP, which could indicate their adequate biocompatibility. Nevertheless, it would be necessary 

to know the in vivo outcome of these Ca-treatments in order to obtain conclusive result in regard 

to their biological response and thus, verify these hypotheses.  

Considering together the results obtained in the studies that have been carried out systematically 

to different biomaterials, it seems ambitious to establish a general biomarker to identify their 

osseointegration effectiveness. This fact is consequence of the multitude systems interfering in 

this process. However, it was successively detected a common protein pattern associated to an 

increased osteogenic potential. Then, this protein pattern that consist in the greater affinity to 

APOE and VTNC proteins could be useful as biomarker, since their detection onto biomaterials for 

bone regeneration might be correlated to a higher osteogenic behaviour.
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9. Conclusions 

The partial conclusions of each study carried out are detailed below: 

 Chapter 1 - A general sol-gel synthesis procedure was developed, by which biomaterials 

able to lead different biological responses were designed. The sol-gel technique allowed 

to obtain homogeneous and well-adhered coatings from the mixture of three 

alkoxysilanes (MTMOS, GPTMS and TEOS), being the composition 35M35G30T the one 

that presents the most interesting degradation kinetics to be used as release vehicle in 

dental implants. 

 Chapter 2 - The proteomic analysis of different hybrid sol-gel formulations, which result 

in two differentiated in vivo responses (implant osseointegration and no osseointegration) 

showed that the biocompatibility problems observed in vivo could be associated with the 

adsorption of a protein cluster related to an acute immune / inflammatory reaction. 

 Chapter 3 - The comparative proteomic analysis of sand-blasted acid-etched Ti (SAE-Ti), 

respect to the untreated Ti, resulted in the identification of proteins APOE, ANT3 and 

PROC as more adsorbed on SAE-Ti, which could be associated with the greater 

osseointegration capability of this surface treatment. 

 Chapter 4 - The comparative proteomic analysis between both SAE-Ti and 35M35G30T 

coating resulted in the identification of important differences on the proteomic 

adsorption patterns. The sol-gel material showed greater affinity for proteins associated 

to the immune system, while the SAE-Ti showed more affinity for proteins related to both 

coagulation and bone regeneration (APOE and VTNC). As both materials display succesful 

in vivo outcomes, the detected proteomic differences could indicate relevant information 

regarding the regeneration mechanisms associated to each biomaterial. 

 Chapter 5 - The addition of SrCl2 into the sol-gel network supposed an increase in its 

osteogenic and anti-inflammatory potential in vitro in a dose-dependent manner, which 

was correlated with the greater adsorption of proteins related to both osteogenic 

functions and the regulation / inhibition of the immune system. 
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 Chapter 6 - The addition of CaCl2 to the sol-gel network resulted in an increase in its 

osteogenic potential, as well as a greater inflammatory potential in vitro at determinated 

concentrations. The proteomic analysis showed that the presence of Ca resulted in higher 

affinity for proteins associated to the coagulation cascade, as well as APOE and VTNC, fact 

that could be correlated with the greater osteogenic potential in vitro. 

In this way, the general conclusions that can be drawn from the presented experimental work are: 

 The sol-gel technique allows the design of coatings to superficially modify the properties 

of dental implants, thus enabling the control of their biological response. 

 Proteomics can be used as tool to predict the in vivo response of biomaterials, being able 

to provide more reliable results than traditional in vitro studies. The systematic 

characterization of the serum proteins adsorption onto the surface of different materials 

used in dental implantology has allowed the detection of protein patterns that would 

indicate the best or worst osseointegration capacity of a given biomaterial. 

 Problems related to poor biocompatibility could be associated with a disproportionate 

adsorption of proteins that trigger to an acute inflammatory reaction, such as CRP. Thus, 

the proportion of proteins that activate the immune response in regard of proteins 

capable of regulating and inhibiting this response seems to play a key role on this reaction. 

Based on the results, CRP / VTNC protein ratio is proposed as biomarker for the prediction 

of biocompatibility problems in this type of materials. 

 In turn, the biomaterial regenerative efficiency seems to be a much more complex 

objective since a multitude of systems can participate during bone healing. Additionally, 

this process can be carried out through different mechanisms. Despite this complexity, 

the results show that a greater adsorption of proteins related to the immune system that 

result in a non-disproportionate and well-regulated reaction could be indicative of greater 

material bioactivity and may have positive effects during implant osseointegration. On the 

other hand, the higher affinity to proteins such as VTNC and APOE could mark a greater 

osseointegration capacity and might be regarded as efficiency biomarkers.
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Conclusiones 

Las conclusiones parciales de cada uno de los estudios llevados a cabo se detallan a continuación: 

 Capítulo 1 – Se desarrolló un proceso de síntesis sol-gel por el cual se han diseñado 

biomateriales capaces de der lugar a diferentes respuestas biológicas. Así, la técnica sol-

gel permitió la obtención de recubrimientos homogéneos y bien adheridos a partir de la 

mezcla de tres alcoxisilanos (MTMOS, GPTMS y TEOS), siendo la composición 35M35G30T 

la que presenta una cinética de degradación interesante para ser empleada como vehículo 

de liberación en implantes dentales.  

 Capítulo 2 - El análisis proteómico a distintas formulaciones híbridas sol-gel que dan lugar 

a dos respuestas in vivo diferenciadas, oseointegración y no oseointegración del implante, 

mostró que los problemas de biocompatibilidad observados in vivo podrían estar 

asociados a la adsorción de un clúster de proteínas asociadas a una fuerte reacción 

inmune / inflamatoria. 

 Capítulo 3 -  El análisis proteómico comparativo de una superficie de titanio granallado 

con ataque acido (SAE), respecto al mismo material sin tratar, resultó en la identificación 

de las proteínas APOE, ANT3 y PROC como más adsorbidas en el SAE-Ti, pudiendo estar 

éstas asociadas a la mayor capacidad de osteointegración de este tratamiento superficial.  

 Capítulo 4 – El análisis proteómico comparativo del material SAE-Ti respecto al 

recubrimiento 35M35G30T resultó en la identificación de importantes diferencias en los 

perfiles de proteómica adsorbidos. La superficie sol-gel mostró mayor afinidad por 

proteínas asociadas al sistema inmune, mientras que el SAE-Ti mostró más afinidad por 

proteínas asociadas a la coagulación y a la regeneración ósea (APOE y VTNC). El hecho de 

que ambos materiales den lugar a buenos resultados in vivo, podría suponer que la 

proteómica está aportando información relevante al mecanismo de regeneración 

asociado a cada biomaterial.   
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 Capítulo 5 – La adición de SrCl2 a la red sol-gel supuso un incremento de su potencial 

osteogénico y antiinflamatorio in vitro de un modo dependiente de la concentración, que 

se correlacionó con la detección de patrones de adsorción de proteínas relacionadas con 

la osteogenesis y la regulación / inhibición de la respuesta inmune. 

 Capítulo 6 – La adición de CaCl2 a la red sol-gel supuso un incremento de su potencial 

osteogénico, así como un mayor potencial inflamatorio in vitro a determinadas 

concentraciones. El análisis proteómico de estas superficies mostró que la presencia del 

Ca supuso una mayor afinidad por proteínas asociadas a la cascada de coagulación, así 

como por las proteínas APOE y VTNC, hecho que podría estar correlacionado con el mayor 

potencial osteogénico observado in vitro.  

De este modo, las conclusiones generales que pueden extraerse del trabajo experimental 

presentado son: 

 La técnica sol-gel permite el diseño de recubrimientos para modificar superficialmente las 

propiedades de implantes dentales y así controlar su respuesta biológica.  

 La proteómica puede emplearse como herramienta predictiva de la respuesta in vivo de 

biomateriales, pudiendo llegar a dar resultados más fiables que los estudios in vitro 

tradicionales. Así, la caracterización sistemática de la adsorción de proteínas séricas a la 

superficie de diferentes materiales empleados en implantologia dental ha permitido la 

detección de patrones proteicos que indicarían la mejor o peor capacidad de 

osteointegración de un determinado biomaterial. 

 La falta de biocompatibilidad podría estar asociada a una desproporcionada adsorción de 

proteínas que dan lugar a una fuerte reacción inflamatoria, como por ejemplo la CRP. Así 

la proporción de proteínas activadoras de la respuesta inmune respecto a la de proteínas 

capaz de regular e inhibir esta respuesta parece tener un papel clave. En base a los 

resultados se propone el biomarcador proteico CRP / VTNC para la predicción de 

problemas de biocompatibilidad en este tipo de materiales. 

 A su vez, la eficiencia regenerativa de un biomaterial parece ser un objetivo mucho más 

complejo al poder entrar en juego multitud de procesos y poder ser llevado a cabo 
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mediante distintos mecanismos. A pesar de esta complejidad, los resultados muestran 

que una mayor adsorción de proteínas asociadas al sistema inmune que den lugar a una 

reacción no desproporcionada y bien regulada podría ser indicativo de una mayor 

bioactivación por parte del material y tener efectos positivos en la regeneración ósea. Por 

otro lado, la mayor afinidad de un implante hacía proteínas como VTNC y APOE podría 

señalar una mayor capacidad de osteointegración. En este sentido, la VTNC y APOE 

podrían ser empleadas como biomarcadores de eficiencia.   
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Conclusions 

Les conclusions parcials de cada un dels estudis duts a terme es detallen a continuació: 

 Capítol 1 - Es va desenvolupar un procés de síntesi sol-gel pel qual s'han dissenyat 

biomaterials capaços de donar lloc a diferents respostes biològiques. Així, la tècnica sol-

gel va permetre l'obtenció de recobriments homogenis i ben adherits a partir de la mescla 

de tres alcoxisilans (MTMOS, GPTMS i TEOS), sent la composició 35M35G30T la que 

presenta una cinètica de degradació interessant per a ser empleada com a vehicle 

d'alliberament en implants dentals. 

 Capítol 2 - L'anàlisi proteòmica a distintes formulacions híbrides sol-gel que donen lloc a 

dos respostes in vivo diferenciades, oseointegració i no oseointegració de l'implant, va 

mostrar que els problemes de biocompatibilitat observats in vivo podrien estar associats 

a l'adsorció d'un clúster de proteïnes associades a una forta reacció immune / inflamatòria. 

 Capítol 3 - L'anàlisi proteòmica comparatiu d'una superfície de titani granallat amb atac 

àcid (SAE), respecte al mateix material sense tractar, va resultar en la identificació de les 

proteïnes APOE, ANT3 i PROC com més adsorbides en el SAE-Ti, podent estar estes 

associades a la major capacitat d'osteointegració d'aquest tractament superficial. 

 Capítol 4 - L'anàlisi proteòmica comparatiu del material SAE-Ti respecte al recobriment 

35M35G30T va resultar en la identificació d'importants diferències en els perfils de 

proteòmica adsorbits. La superfície sol-gel va mostrar major afinitat per proteïnes 

associades al sistema immune, mentres que el SAE-Ti va mostrar més afinitat per 

proteïnes associades a la coagulació i a la regeneració òssia (APOE i VTNC). El fet de que 

ambdós materials donen lloc a bons resultats in vivo, podria suposar que la proteòmica 

està aportant informació rellevant al mecanisme de regeneració associat a cada 

biomaterial. 

 Capítol 5 - L'addició de SrCl2 a la xarxa sol-gel va suposar un increment del seu potencial 

osteogènic i antiinflamatori in vitro d'una manera dependent de la concentració, que es 
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va correlacionar amb la detecció de patrons d'adsorció de proteïnes relacionades amb 

l'osteogènesi i la regulació / inhibició de la resposta immune. 

 Capítol 6 - L'addició de CaCl2 a la xarxa sol-gel va suposar un increment del seu potencial 

osteogènic, així com un major potencial inflamatori in vitro a determinades 

concentracions. L'anàlisi proteòmica d’aquestes superfícies va mostrar que la presència 

del Ca va suposar una major afinitat per proteïnes associades a la cascada de coagulació, 

així com per les proteïnes APOE i VTNC, fet que podria estar correlacionat amb el major 

potencial osteogènic observat in vitro. 

D'esta manera, les conclusions generals que es poden extraure del treball experimental presentat 

són:  

 La tècnica sol-gel permet el disseny de recobriments per a modificar superficialment les 

propietats d'implants dentals i així controlar la seua resposta biològica.  

 La proteòmica pot emprar-se com a ferramenta predictiva de la resposta in vivo de 

biomaterials, podent arribar a donar resultats més fiables que els estudis in vitro 

tradicionals. Així, la caracterització sistemàtica de l'adsorció de proteïnes sèriques a la 

superfície de diversos materials empleats en implantologia dental ha permès la detecció 

de patrons proteics que indicarien la millor o pitjor capacitat d'osteointegració d'un 

determinat biomaterial. 

 La manca de biocompatibilitat podria estar associada a una desproporcionada adsorció 

de proteïnes que donen lloc a una forta reacció inflamatòria, com ara la CRP. Així la 

proporció de proteïnes activadores de la resposta immune respecte a la de proteïnes que 

són capaços de regular i inhibir esta resposta sembla tenir un paper clau. En base als 

resultats es proposa el biomarcador proteic CRP / VTNC per a la predicció de problemes 

de biocompatibilitat en aquest tipus de materials. 

 Al seu torn, l'eficiència regenerativa d'un biomaterial sembla ser un objectiu molt més 

complex al poder entrar en joc multitud de processos i poder ser dut a terme mitjançant 

diferents mecanismes. Malgrat aquesta complexitat, els resultats mostren que una major 
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adsorció de proteïnes associades al sistema immune que donin lloc a una reacció no 

desproporcionada i ben regulada podria ser indicatiu d'una major bioactivació per part 

del material i tenir efectes positius en la regeneració òssia. D'altra banda, la major afinitat 

d'un implant per proteïnes com VTNC i APOE podria assenyalar una major capacitat 

d'osteointegració. En aquest sentit, VTNC i APOE podrien ser emprades com a 

biomarcadors d'eficiència. 
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10. Future lines of research 

The future lines of research based on the biomaterial proteomic studies, as well as the 

development of new in vitro methodologies for their biological evaluation are detailed in this 

chapter. Some of these research lines would constitute the continuation of the studies presented 

in the doctoral thesis. 

After the development of new sol-gel coatings doped with CaCl2 and SrCl2 and their subsequent 

biological characterization through in vitro and proteomic analyses, these materials are being 

tested in vivo in order to evaluate their potential enhancing the osseointegration capability of 

dental implants. These tests will be useful to check the osteogenic in vivo potential of these 

materials, allowing a more robust discussion in regard of their proteomic characterization.  

In parallel, following the outlined strategy, it is of great importance for this research line to evaluate 

new compositions in order to obtain more information about the protein-biomaterial interactions, 

as well as the effect of the adsorption of these proteins in the biomaterial in vivo response. In this 

sense, we are already carrying out the analysis, through proteomics, of the effect that the addition 

of different compounds such as MgCl2, ZnCl2, boron, melatonin and gelatin can have on the 

adhesion of proteins on the biomaterial surface. This battery of tests would allow to identify new 

patterns of adsorption of key proteins associated with processes, such as angiogenesis, not 

detected with the design of materials carried out so far; as well as obtaining more conclusive 

results in reference to coagulation and verifying the reproducibility of the patterns associated with 

osteogenesis. 

In this line, the next step would be to carry out an escalation of this proteomic methodology and 

evaluate biomaterials widely recognized and with very diverse properties: calcium phosphates, 

bioglasses, hydrogels, polyethylene, stainless steel etc. The coherence between the results 

obtained with the sol-gel materials and those obtained with this future experimentation would 

validate the use of proteomics as a tool to predict the in vivo response of biomaterials. 

Likewise, based on the results obtained in chapter 2, which shows the relationship between the 

adsorption of proteins associated with an acute immune reaction with the lack of biocompatibility 

in vivo shown by some compositions. A new line of work has been initiated based on the study of 
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macrophage polarization on biomaterials, as a complementary methodology to the traditional in 

vitro studies using osteoblasts. 

On the other hand, in the included studies the protein source composition has been kept constant, 

using a commercial human serum. However, this parameter, in reality, is not constant, but can vary 

depending on the metabolism of each person. For this reason, one of the future research lines is 

based on conducting comparative proteomic studies using serum from different population groups 

associated with pathologies related to a lower capacity for bone regeneration, such as diabetes or 

osteoporosis, compared to a healthy population group, keeping the biomaterial parameter as 

constant. From this research we could extract very useful information to be able to offer 

personalized medicine to future patients associated with this type of risk factors. 

In this line, another parameter that has been kept constant is the serum incubation time, which 

was established in 3 hours based on preliminary studies and bibliography. However, a future 

research line would be the proteomic study of biomaterials using different incubation times, which 

could help to improve the Vroman effect understanding, as well as the evolution of key protein 

patterns over time. 

The conformation that proteins acquire on the material is another factor to take into account 

during the study of biosurface - protein interactions. In this sense, this type of characterization is 

extremely complex when the studies are carried out with multiprotein media. However, being 

aware of its importance, studies based on the characterization of standard proteins adsorption 

kinetics have been carried out on the sol-gel coatings. These studies have been performed using 

the QCM-D technique during a doctoral stay in the Biomaterial Department of the University of 

Oslo. Thus, it would be interesting to evaluate the adsorption kinetics and conformation of proteins 

that are detected as key in the carried out studies (CRP, VTNC, APOE), in order to achieve a better 

understanding of their interaction with biomaterials. 

From the biomaterial design point of view, once the key protein patterns to ensure a good implant 

osseointegration process have been established, it would be necessary to optimize the superficial 

characteristics of implants. In other words, a possible line of work would be opened based on 

evaluating for each biomaterial physical-chemical parameter which values would favour the 

adhesion of key proteins with positive effects and which values would reduce the adhesion of key 
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proteins related to biocompatibility problems; thus we would be able to design biomaterials with 

ideal properties from the proteomic point of view. 

Another line of future research would be based on the correlation of proteomics results carried 

out on the biomaterial surfaces with more complex models such as carrying out proteomic studies 

with cells or in vivo. This type of experimentation would allow us to obtain a more global view of 

the phenomena associated to the osseointegration process and the protein pivotal role during it.  
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General 

A Area of coating  

AFM Atomic force microscopy  

ALP Alkaline-phosphatase  

ANG-1 Angiopoietin-1  

Apo Apolipoprotein 

AT Antithrombin 

ATR Attenuated total reflection  

BMP Bone morphogenetic protein 

C4BP C4b-binding protein  

CaSR Calcium-sensing receptor  

Cc Coating capacitance 

CP-MAS Cross Polarization Magic 

Angle Spinning  

d Coating thickness 

DAVID Database for Annotation, 

Visualization and Integrated 

Discovery 

DMEM Dulbecco’s Modified Eagle's 

medium 

DTT Dithiothreitol 

ECM Extracellular matrix  

EDX Energy-dispersive X-ray 

spectroscopy  

EGF Epidermal growth factor  

EIS Electrochemical impedance 

spectroscopy  

ESI Electrospray ionization  

FBGC Foreign body giant cells 

FBS Fetal bovine serum 

FGF Fibroblast growth factor  

FTICR Fourier transform ion 

cyclotron resonance 

FT-IR Fourier transform infrared 

spectrometry  

FVIIa Factor VIIa  

GPTMS 3-glycidoxypropyl-

trimethoxysilane 

HA Hydroxyapatite 

HDDA High Definition Data 

Dependant Analysis 

HIF-1α Hypoxia inducible factor 1-α 

protein  

IGF Insulin-like growth factor  

IL Interleukin 

LC Liquid chromatography 

LC-

MS/MS  

Liquid chromatography-

tandem mass spectrometry  

MALDI Matrix assisted laser 

desorption ionization  

MAPK Mitogen-activated protein 

kinase  

MGF Mascot generic files 

MS Mass spectrometry  

MSC Mesenchymal stem cell 
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MTMOS Methyl-trimethoxysilane  

OCN Osteocalcin 

OCP Octacalcium phosphate  

OPN Osteopontin 

PAGE Polyacrylamide gel 

electrophoresis  

PAI Plasminogen activator 

inhibitor  

PCL Polycaprolactone 

PDGF Platelet-derived growth factor 

PDLLA Poly(D,L-lactic acid)  

PEG Polyethylene glycol  

PHEMA Poly(2-hydroxyethyl 

methacrylate)  

PMMA Poly(methyl methacrylate) 

p-NPP p-nitrophenylphosphate  

PolyNaSS Poly sodium styrene sulfonate  

QCM-D Quartz crystal microbalance 

with dissipation 

Ra Average surface roughness   

RT-qPCR  Quantitative Real-time PCR 

RUNX2 Runt-related transcription 

factor 2  

SAE Sandblasted acid-etched 

SDS Sodium dodecyl sulfate  

SEM Scanning electron microscope 

29Si-NMR 29Si nuclear magnetic 

resonance 

TAFI Thrombin-activatable 

fibrinolysis inhibitor 

TEAB Triethylammonium 

bicarbonate buffer  

TEOS Tetraethyl-orthosilicate  

TF Tissue factor protein  

TGF-β Transforming growth factor- β  

Ti Titanium 

TNF-α Tumor necrosis factor-α 

TOF Time-of-flight  

t-PA Tissue-type plasminogen 

activator  

u-PA Urokinase-type plasminogen 

activator 

VEGF Vascular endothelial growth 

factor  

ε  Dielectric constant 

ε0 Vacuum permittivity  
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Protein abbreviations  

A1AG1 Alpha-1-acid glycoprotein 1 

A1AG2 Alpha-1-acid glycoprotein 2 

A1AT Alpha-1-antitrypsin 

A2AP Alpha-2-antiplasmin 

A2GL Leucine-rich alpha-2-

glycoprotein 

A2MG Alpha-2-macroglobulin 

A2AP α2-antiplasmin  

AACT Alpha-1-antichymotrypsin 

AFAM Afamin 

ALBU Serum albumin 

ANGT Angiotensinogen 

ANT3 Antithrombin-III 

ANXA2 Annexin A2 

APOA Apolipoprotein(a) 

APOA1 Apolipoprotein A-I 

APOA2 Apolipoprotein A-II 

APOA4 Apolipoprotein A-IV 

APOA5 Apolipoprotein A-V 

APOB Apolipoprotein B-100 

APOC1 Apolipoprotein C-I 

APOC2 Apolipoprotein C-II 

APOC3 Apolipoprotein C-III 

APOC4 Apolipoprotein C-IV 

APOD Apolipoprotein D 

APOE Apolipoprotein E 

APOL1 Apolipoprotein L1 

C1QA Complement C1q 

subcomponent subunit A 

C1QB Complement C1q 

subcomponent subunit B 

C1QC Complement C1q 

subcomponent subunit C 

C1R Complement C1r 

subcomponent 

C1S Complement C1s 

subcomponent 

C4BPA C4b-binding protein alpha 

chain 

CERU Ceruloplasmin 

CFAH Complement factor H 

CLUS Clusterin 

CO3 Complement C3 

CO5 Complement C5  

CO6 Complement component C6 

CO7 Complement component C7 

CO8A Complement component C8 

alpha chain 

CO8B Complement component C8 

beta chain 

CRP C-reactive protein 

DHE3 Glutamate dehydrogenase 1. 

mitochondrial 

DSC1 Desmocollin-1 

FA11 Coagulation factor XI 

FA12 Coagulation factor XII 

FA5 Coagulation factor V 

FCN2 Ficolin-2 
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FHR2 Complement factor H-related 

protein 2 

FIBA Fibrinogen alpha chain 

FILA2 Filaggrin-2 

GELS Gelsolin 

H4 Histone H4 

HBA Hemoglobin subunit alpha 

HBB Hemoglobin subunit beta 

HEMO Hemopexin 

HORN Hornerin 

HPT Haptoglobin 

IC1 Plasma protease C1 inhibitor 

IGHA1 Ig alpha-1 chain C region 

IGHA2 Ig alpha-2 chain C region 

IGHG4 Ig gamma-4 chain C region 

IGHM Ig mu chain C region 

IGJ Immunoglobulin J chain 

IGLL5 Immunoglobulin lambda-like 

polypeptide 5 

ITIH4 Inter-alpha-trypsin inhibitor 

heavy chain H4 

K1C10 Keratin. type I cytoskeletal 10 

K22E Keratin. type II cytoskeletal 2 

epidermal 

K2C78 Keratin. type II cytoskeletal 78 

KCRM Creatine kinase M-type 

KNG1 Kininogen-1 

KV201 Ig kappa chain V-II region Cum 

KV302 Ig kappa chain V-III region SIE 

KV402 Ig kappa chain V-IV region Len 

LAC2 Ig lambda-2 chain C regions 

LCN1 Lipocalin-1 

LDHB L-lactate dehydrogenase B 

chain 

LV301 Ig lambda chain V-III region SH 

MYH1 Myosin-1 

PF4V Platelet factor 4 variant 

PROC Vitamin K-dependent protein 

C 

PROS Vitamin K-dependent protein 

S 

RET4 Retinol-binding protein 4 

S10A7 Protein S100-A7 

SAA4 Serum amyloid A-4 protein 

SAMP Serum amyloid P-component 

SEPP1 Selenoprotein P 

SPB3 Serpin B3 

TGM3 Protein-glutamine gamma-

glutamyltransferase E 

THRB Prothrombin 

TRFE Serotransferrin 

VTDB Vitamin D-binding protein 

VTNC Vitronectin 
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