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Abstract
Communication amongst various regions of our brain makes it possible for us to
perform a wide array of cognitive tasks. To capture these communications at a
local level has remained challenging in the field of neuromaging due to the sheer
number of functional brain links that is needed to be explored. Different methods
aimed at investigating these links either focuses on selection biases or increases
the complexity of the method. The current thesis addresses this issue, by intro-
ducing a new simple method, namely Link Wise Median Splitting, which remains
free of any selection biases. With the aid of simulations, we first demonstrated the
higher sensitivity of this method over traditional approaches. Furthering the versa-
tility of the method, we applied it to three different study designs involving resting
state functional connectivity. The three study designs aimed to understand three
distinct cognitive processes, revealed crucial information about the resting state
brain. In sum, this thesis concluded by showing the benefits of using Link Wise
Median Splitting over traditional methods to investigate functional brain links.

Resum
La comunicació entre diverses regions del nostre cervell fa possible que fem una
àmplia gamma de tasques cognitives. Capturar aquestes comunicacions a nivell
local és encara un repte en el camp de la neuroimatge degut a la gran quantitat de
connexions cerebrals funcionals que cal explorar. Els diferents mètodes destinats
a investigar aquestes connexions es centren o bé en els biaixos de selecció o bé
en augmentar la complexitat del mètode. La tesi actual aborda aquest assumpte
introduint un nou mètode senzill, l’anomenat Link Wise Median Splitting, que
queda lliure de biaixos de selecció . Amb l’ajuda de simulacions, primer hem
demostrat la major sensibilitat d’aquest mètode respecte als enfocaments tradi-
cionals. Aprofundint en la versatilitat del mètode, l’hem aplicat a tres dissenys
d’estudi diferents de connectivitat funcional en l’estat de repòs. Els tres dissenys
d’estudi, adreçats a comprendre tres processos cognitius diferents, han revelat in-
formació crucial sobre el cervell en l’estat de repòs. En resum, aquesta tesi mostra
els beneficis de l’ús de Link Wise Median Splitting sobre mètodes tradicionals per
investigar connexions funcionals del cervell.
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Preface

According to an old English proverb ’An idle brain is the devil’s workshop’.
Indeed there is some truth to this proverb. Scientifically, no experiment can prove
or disprove whether the workshop, that is in our brain can be devilish or not. How-
ever, the existence of a ’workshop’ which is constantly active even during ’rest’,
has been shown in the previous decades. Biologically speaking, this finding is
mind-boggling because not only does the brain consume a large amount of en-
ergy, relative to its mass but also the amount of energy consumed when we are
idle, is rather high. The only explanation for such high consumption is the need
of a baseline which is required to perform different cognitive tasks. In support of
this view, Smith and colleagues [Smith et al., 2009] have shown a high correlation
between the ’task’ state and idle or ’resting’ state of the brain. In fact resting state
studies have now boomed in understanding of various disorders arising from the
argument that the difference in baseline will cause differences observed in behav-
ioral and cognitive deficits. Since subjects are not required to perform anything at
all during the acquisition of resting state brain scans, we can finally learn about
vegetative and coma patients, thanks to this phenomenon.

An important issue then, is the information obtained from the resting state
scans at different levels. At a global level graph theoretical techniques are often
used to understand the communication pattern between the different brain regions
revealing crucial information. At a local level, researchers face various compli-
cations due the sheer number of brain connections or activation in brain regions
leading to the problem of multiple comparisons. Different analysis methods work
around this problem by choosing the regions of analysis prior to the analysis or
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clustering or pattern algorithms and then selecting the clusters that ’make sense’.
Most of the methods, however suffer from a pre or post selection bias as elab-
orated in the Introduction. The rest of the methods which reduce the extent of
selection bias do so at the cost of increasing the complexity, making it difficult to
interpret the analysis results. The current thesis introduces a new method aimed
to deal with these issues.

The Introduction talks in detail, the need of understanding the resting state at
a local method and the problems faced by different analysis methods. Chapter
2 introduces the method called Link Wise Median Split and compare its perfor-
mance with traditional non-parametric methods with the aid of various simula-
tions. We show that Link Wise Median Split increases the sensitivity and therefore
the chance of detecting salient changes. The chapter ends with an applicability of
LWA on a case-control data previously used to distinguish between rest and natu-
ral viewing conditions. LWA as opposed to non-parametric analysis detected three
brain links encompassing visual, auditory and attention regions.

Chapters 3 and 4 are two more applications of Link Wise Median Split encom-
passing different study designs. These applications are primarily aimed to exhibit
the versatility of Link Wise Median Split. In Chapter 3 participants are divided
into groups randomly. Each participant either listened to an artificial language
audio stream consisting of statistical regularities or a random audio stream de-
void of any statistical pattern. We acquired resting state scans and the aim was to
compare the changes in the resting state scan after subjects listened to the stimuli
while controlling for their baseline activity. Using Link Wise Median Split we de-
tected functional brain link between left Superior Parietal Lobe and right Posterior
Cingulate Cortex which was significantly different between artificial language and
control conditions showing the effect of attention and working memory in learning
statistical regularities in auditory stream.

Chapter 4 shows the utilization in a study design devoid of case-control sce-
nario showing the versatility of Link Wise Median Split. For this study, partici-
pants performed a social task used previously to test social hierarchy perception.
We used a combination of Event Related Potential along with resting state func-
tional neuroimaging to determine resting state neural correlates responsible for
social hierarchy perception. Using Link Wise Median Split we detected two func-
tional brain links, right Insula – left Parahippocampal Gyrus, and left Superior
Frontal Medial – left Superior Temporal Sulcus which correlated with social hier-
archy perception across all subjects. In the end, the Discussion ties all the results
together and includes future directions of this work.
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Chapter 1

INTRODUCTION

1.1 General Overview: Resting State Brain

Our brain is the most wonderful organ of our body. It is constantly active and con-
sumes a large percentage of energy. In fact, even though the brain only amounts
to 2% of the body weight, it consumes 20% of the oxygen [Clarke and Sokoloff,
1999]. This could only arise from an extremely high metabolic rate owing to its
high energy requirement. Surprisingly, a large part of this energy is consumed
during ’rest’, when we are doing nothing. On the other hand, only 5% - 10% of
this energy is consumed during cognitive tasks, even during most vigorous per-
ceptual and motor activities [Raichle and Mintun, 2006]. It is attractive to assume
that the high amount of energy consumed during rest must be used for mainte-
nance purposes because what can the brain possibly be doing! Surely, it cannot
be firing its neurons because what would be the purpose of that? But it has been
shown that indeed up to 80% of the entire energy consumption of the brain at rest
is for neural processes [Shulman et al., 2004].

This brings us to the idea of ’resting state brain’, a concept introduced by
[Biswal et al., 1995]. They showed that the correlation patterns between brain
voxels activated during a simple finger tapping task is very similar to the corre-
lation pattern of the same voxels during ’rest’. They found this pattern even for
voxels located anatomically in different hemispheres. They claimed that the os-
cillations they found under 0.1 Hz must be of neural origin. [Smith et al., 2009],
extended this finding by showing that the networks obtained from ’resting state
brain’ are quite similar to that of a wide repertoire of tasks. Several other studies
have also confirmed these claims [Britz et al., 2010, de Pasquale et al., 2010]. This
concept revolutionized functional neuroimaging, as evidenced by high number of
studies published every year with ’resting state fMRI’ as one of the keywords.

1
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So what exactly is ’resting state’ and how much do we really know about it?
As of now, the underlying reason for its existence is unknown [Biswal, 2012].
But we do know that the ’resting state’ consists of sets of brain regions that acti-
vate and deactivate together. These sets are called Resting State Networks (RSNs)
where each network is thought to be responsible for certain cognitive tasks. This
idea arises from the fact that often only one of the RSNs is activated during cer-
tain ’tasks’, while the others remain deactivated. This keeps the communication
pattern amidst the RSNs similar even during ’tasks’ [Cole et al., 2014]. This
phenomenon has made it possible to identify networks that are activated during
certain tasks without making the subjects perform them [Cordes et al., 2002, De
Luca et al., 2005]. This feature of RSNs has been exploited to determine the po-
tential biomarkers of various disorders removing possible confounds arising from
the task performance.

For example, if a study is aimed to explore the neural correlates of Parkin-
son’s disease, specifically the correlates responsible for slowness of movement,
the difference of performance during motor tasks will not lead to possible con-
founds in the study. If one cannot perform the task as well as the control group,
how can their neural activity be possibly compared? Correlating just the differ-
ence of performance of the two groups with the differences of neural activity can
never rule out the possible confound of individual differences in the performance.
Sure, one can argue that if the estimation of performance is done on proper sam-
ple population, individual variation hardly possesses any risk. However, gathering
high number of patients and controls for proper estimation remains a challenge in
the field of neuroimaging. Thankfully, this problem is now solved with the help
of RSNs. Now researchers can just observe the differences in the activity of the
RSN(s) responsible for motor task.

This makes the identification of RSNs responsible for motor as well as other
tasks extremely important. This also makes one think of RSNs as stable networks
making their numbers in our brain constant for all individuals. Any change in any
aspect of these RSNs therefore, could be predicted as the presence of a disorder.
Interestingly though, the sets of regions for each RSNs and therefore, the number
of RSNs vary in the range of 6-10 depending on the method used [Damoiseaux
et al., 2008, Beckmann et al., 2005]. The most prominent ones are: Default Mode
Network (DMN), left and right Executive Control Network (ECN), Salience Net-
work (SAL), Sensorimotor Network (SMN), Auditory, and Visual networks (Fig-
ure 1.1).

The DMN, which is the one of the most widely studied RSN, was discovered

2
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Figure 1.1: Resting State Networks as shown in [Heine et al., 2012]

by [Raichle et al., 2001]. They showed that a set a regions decrease its activation
in light of attention-oriented tasks. The DMN roughly consists of ’core’ regions
and two distinct sub-systems [Yeo et al., 2011]. Core regions are anterior medial
Prefrontal Cortex (amPFC), Posterior Cingulate Cortex (PCC), bilateral Angu-
lar Gyrus (AG), lateral Temporal Lobes, and Superior Frontal Gyrus (SFG). The
two subsystems are ’dorsomedial subsystem’ and ’medial temporal subsystem’.
Dorsomedial subsystem comprises of dorsal medial Prefrontal Cortex (dmPFC),
Temporo-Parietal Junction (TPJ), lateral Temporal Cortex, Temporal Pole, and
Inferior Frontal Gyrus (IFG).

The dorsomedial subsystem has been constantly implicated in mentalizing,
which refers to the cognitive process of inferring thoughts, beliefs, etc., of oth-
ers [Mar, 2011, Schilbach et al., 2008]. The medial temporal subsystem on the
other hand, has been implicated in mental simulation and imagination [Andrews-
Hanna, 2012]. The ’core’ regions are implicated in a wide array of cognitive
processes, but the most common ones are ’self-related’ tasks [Brewer et al., 2013,
D’Argembeau, 2013]. This makes one think that DMN must be responsible for
thinking about ’self’, which is an essential step for social processes. This thought
has been previously voiced by [Mars et al., 2012] who showed that there is a major
overlap between the DMN and the brain regions involved in social cognition.

3
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The ECN comprises of dorsolateral Prefrontal Cortex (dlPFC), bilateral In-
ferior Parietal Lobes (IPL), Anterior Cingulate Cortex (ACC) or Supplementary
Motor Area (SMA), and bilateral Insular Cortices. The left part of the ECN is in-
volved with language tasks while the right side is implicated in perceptual, somes-
thetic, and nociception processing [Laird et al., 2011]. The ECN arguably hosts
the most versatile regions of the brain, i.e., all the region of ECN are involved in a
multitude of tasks ranging from decision making to reading to even pain percep-
tion [Krawczyk, 2002, Henseler et al., 2014, Uddin, 2014, Simons et al., 2014].
The one common feature of all these tasks is that they are mostly higher order
cognitive processes. Owing to this feature, the ECN is thought to be the ’goal-
directed’ network [Littow et al., 2015].

The SAL network comprises of frontoinsular areas and ACCs along with
connections to subcortical and limbic structures. The subcortical areas consist
of the amygdala, ventral striatum, and ventral tegmental area, which are impli-
cated in context-specific access to affective and reward cues [Lindquist et al.,
2012](Lindquist et al., 2012; Menon, 2015). It shares its regions with the DMN
and ECN making it act like a bridge between them [Menon and Uddin, 2010].
This makes it possible for our brains to switch between task state and resting
state. It has also been implicated in orientation towards salient emotional stimuli,
conflict monitoring, information integration, acute pain perception, and response
selection [Cole and Schneider, 2007, Roberts and Hall, 2008, Tracey and Mantyh,
2007, Seeley et al., 2007].

The SMN hosts the original activations observed by Biswal et al., 1995. It
consists of midcingulate cortex/SMA, bilateral Primary Motor Cortex (PMC), and
bilateral Middle Frontal Gyri (MFG). The SMN is largely associated with motion
and sensory processes related to motion. In fact, the activations in SMN have been
observed even before occurrence of a movement or when the subjects were shown
an object that can be grasped [Nachev et al., 2008, Grèzes and Decety, 2002].
The PMC, a major hub of SMN, is said to contain the muscular map of the body
where the head is represented laterally, the leg is represented medially and the rest
by intermediate locations [Colby, 2009].

Both Auditory and Visual Networks as their names suggest, are activated dur-
ing auditory and visual tasks, respectively. The Auditory Network not only plays
a role in classic auditory tasks like tone/pitch discrimination or music but also for
speech [Laird et al., 2011]. This shows that the Auditory Network is also respon-
sible for higher order cognitive processes which go beyond the auditory modality.
The Auditory Network encompasses primary and secondary auditory cortices, in-
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cluding Heschl’s Gyrus (HG), bilateral Superior Temporal Gyri (STG), and pos-
terior Insular Cortex. Similar to the PMC, the primary auditory cortex possesses
topographical map of the cochlea, which is the sensory epithelia in the auditory
modality [Winer and Schreiner, 2009].

The Visual Network can be subdivided into lateral, medial and occipital parts.
The lateral and medial parts of the Visual Network are responsible for simple
visual processing while the occipital part is implicated in higher order visual pro-
cessing [Damoiseaux et al., 2006, Castellazzi et al., 2014]. The area that is often
not associated with any RSN is the Cerebellum. Even though it is sometimes
linked with the Auditory Network, its function sets it apart [Castellazzi et al.,
2014]. It was thought to only play a role in planning and execution of move-
ments [Buckner, 2013]. However, recent findings have changed this perspective
by showing its role in a wide range of cognitive tasks like single word-processing
[Petersen et al., 1998], completion of a puzzle [Kim et al., 1994], among others
[Buckner, 2013].

It seems that these RSNs are clearly defined separate faculties of the brain,
only activating when specific functions are needed to be performed. Even though,
we have stopped thinking about one-to-one mapping of brain regions we still think
of RSNs as departments which perform similar set of functions. For example,
DMN is often associated with mentalizing and self-related tasks while SMN is
only associated with movements. This tendency can be traced back to Broca
himself, who wanted to find evidence of language localization and discovered
Broca’area [Berker, 1986]. More than a century later, Broca’s area is still largely
associated only with language, even though it has been implicated for domain
general mechanisms like working memory [Santi and Grodzinsky, 2007]. A sim-
ilar tendency can also be observed with RSNs, where we think of them as stable
departments which perform their designated functions.

We think of these departments to consist of exactly the same regions in dif-
ferent studies, even though it is clearly not the case. An example is that of ECN,
which along with the Dorsal Attention Network (DAN) is referred as Central Ex-
ecutive Network (CEN) [Littow et al., 2015].The DAN consists of Intraparietal
Sulcus (IPS)/Superior Parietal Lobule (SPL), frontal eye fields, and extrastriate
visual areas. The reason why these are paired together is the similarity of the
goal-oriented tasks performed by them. But depending on the study, these terms
are used interchangeably [Littow et al., 2015].

It is important to remember that these RSNs often communicate between each
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other for normal functioning instead of just increasing/decreasing their activation
as suggested by. This exhibits that instead of a one-to-one mapping of different
cognitive functions on different brain areas, it is much more likely that multiple ar-
eas communicate between each other for a single task. Hence, we should look for
functional connections instead of just the areas that are activated. One of the most
prominent of these connections, that received considerable attention, is the ’anti-
correlation’ between DMN and the DAN (Figure 1.2). This relationship has been
questioned by [Murphy et al., 2009], who showed that regressing out the global
signal, which is one of the preprocessing steps in fMRI, will automatically induce
anti-correlations. Even though, [Fox et al., 2013], demonstrated the presence of
anticorrelations without this step, the situation remains unsolved and depends on
the method of analysis [Murphy and Fox, 2017].

Several other important functional connections have been observed by acquir-
ing two resting-state scans, before and after certain stimuli, and then comparing
them. One such study has shown the alteration of functional connection between
the visual cortex and SPL by ”life kinetik” training [Demirakca et al., 2016].
Similarly, training of a novel visual discrimination task has been shown to alter
the functional connection between visual cortex and anterior Insula [Baldassarre
et al., 2012]. A simple button pressing task has been shown to induce changes
in resting state functional connection between left and right motor cortices [Tung
et al., 2013]. [Gordon et al., 2014] in a similar fashion, exhibited changes in the
connection between DMN and SAL Network induced by working memory task.
Taken together these studies show that the functional connections between two
brain regions can be changed by certain tasks, which points to the fact that these
functional connections must be needed to perform these tasks. This highlights
the importance of understanding the role of functional connections to understand
neural mechanisms underlying different cognitive processes.

1.2 Resting State Functional Connectivity
We can clearly see that there is enough evidence to show the importance of func-
tional connections in cognitive tasks and resting state scans can be used to under-
stand these connections. Another set of compelling evidence comes from explor-
ing the functional connections in patients suffering from disorders. Of particular
interest are ’dysconnectivities’, i.e., functional connections during rest that are dif-
ferent in a group suffering from a particular disorder compared to that of healthy
individuals. Apart from giving possible insight about a particular functional con-
nection, understanding these dysconnectivities also give us a unique window to
identify the possible causes of the disorders themselves. One can argue that func-
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Figure 1.2: Anti-correlations observed between DMN and the DAN/ECN. The
regions that are negatively correlated with the DMN are shown in blue and those
that are positively correlated are shown in red. Used from [Buckner et al., 2009]

tional dysconnectivities can always be estimated using anatomical information.
But, not all functional dysconnetions arise from altered anatomical connections, as
is the case with Schizophrenia [Friston, 1998]. This makes observing the resting
state dysconnectivities very special. These dysconnectivities can be categorized
into two types, hyperconnectivity, i.e., higher connectivity between two brain re-
gions as compared to that of normal individuals, and hypoconnectivity, i.e., lower
connectivity.

Both hyper- and hypoconnectivity are observed in Alzheimer’s patients and
patients suffering from Mild Cognitive Impairment (MCI). Hypoconnectivity be-
tween left and right hippocampus, while hyperconnectivity in the SAL network
have been shown in Alzheimer’s and MCI patients [Li et al., 2002, Badhwar
et al., 2017]. Hypoconnectivity in dorsal ACC (dACC) and hyperconnectivity
in DMN areas have been consistently observed in depressed individuals [Anand
et al., 2005, Greicius et al., 2007]. A key region of dysconnectivity in the DMN
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is the PFC showing both hypoconnectivty and hyperconnectivity with other brain
regions in depressed cohorts [Mulders et al., 2015]. Combining depression with
other dysfunctions like TBI (Traumatic Brain Injury) has shown the importance of
functional connection between amygdala and SAL network as well as with CEN
[Han et al., 2015].

Studies published in the previous decade have provided conflicting evidence
regarding functional connections in Schizophrenia [Greicius, 2008]. Recent stud-
ies have shown hypoconnectivity between dlPFC and temporal regions and hy-
perconnectivity in the PFC in patients affected by Schizophrenia [Mingoia et al.,
2012]. [Ćurčić-Blake et al., 2015] found increased connectivity from several
DMN areas but lower white matter integrity in anatomical connections pointing to
a possible reason of conflicting evidences found before. Another reason was de-
termined by [Whitfield-Gabrieli et al., 2009] who showed toggle between DMN
and TPN regions in not only schizophrenic patients but also in patients suffering
from schizoaffective and schizophreniform disorder along with their first-degree
relatives.

Autism is marked consistently by hypoconnectivity in the DMN [Jung et al.,
2014, Murdaugh et al., 2012, Hull et al., 2017]. One prominent example of
hypoconnectivity in Autism is between amygdala of the SAL network [Ypma
et al., 2016]. Hypoconnectivity in DMN has been reported both for Attention
Deficit Hyperactivity Disorder (ADHD) and ageing, pointing towards the domain
general role of DMN [Castellanos et al., 2008, Damoiseaux et al., 2008].

Taken together, these studies highlight possible roles of the functional con-
nections mentioned above. However, one has to remember that usually a disorder
comprises of multiple symptoms and multiple dyconnectivities. Hence, it is more
difficult to infer whether a functional connection is responsible for all the symp-
toms or only one of the several symptoms. Consider for example the hypoconnec-
tivity of DMN in patients suffering from Autism Spectrum Disorder (ASD). We
know that ASD is marked with lower social skills. Therefore, one can presume
that the hypoconnectivity of DMN must be responsible for altered social skills.
This can be furthered by the fact that DMN is associated with mentalizing and
social tasks, as mentioned in the section above. However, many individuals with
ASD also show higher perception and attention skills [Plaisted Grant and Davis,
2009]. Now, a key feature of the DMN is deactivation during attention tasks.
Adding this key information into the picture makes one ask whether dysconnec-
tivity of DMN can only be associated with lower social skills or only for higher
attention or for both. Since, anti-correlation between DMN and DAN is exhibited
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in healthy individuals and DAN is known for its role in attention, can we then rule
out the possible effect of DAN or rather its dysconnectivities in ASD?

This again raises the issue of understanding the roles of functional connections
rather than just looking into the activations and deactivations of different brain
regions. From the studies mentioned above, about changes in the resting-state
brain either in a pre-post paradigm or in disease-control paradigm, one can infer
the importance of looking into the differences/changes in resting-state functional
connectivity (rsFC). The power of resting-state to explore various paradigms due
to its simplicity is undeniable. However, a major challenge for the researchers
then is to analyze them properly. If the analysis is affected by biases, the results
obtained will not give a complete picture. This may seem straightforward, but we
will see in the next subsections that pre- or post-analysis biases are quite common.
These are usually put in place owing to the various restrictions imposed by the
complexity of the brain. To understand these restrictions and the various ways
different methods go around them, we will first have to understand what functional
connectivity is.

1.2.1 What exactly is FC?
Functional Connectivity (FC) has been defined as ’temporal dependence of neu-
ronal activity patterns of anatomically separated brain regions’ [van den Heuvel
and Hulshoff Pol, 2010]. It is evident that there is an underlying assumption of
inter-areal synchronization of the neuronal activity in this definition [Bastos and
Schoffelen, 2015]. Another assumption is that we can capture this activity as neu-
ronal oscillations either through invasive or non-invasive techniques. Regardless
of the method of detection, once these oscillations are recorded, the studies face
the challenge of characterizing the ’temporal dependence’. A recent review has
identified 42 distinct methods [Wang et al., 2014] exhibiting the sheer number of
choices the researchers usually have. Since this is not the primary focus of the
thesis, I will talk about only the most prominent ones.

All the methods can be classified on the basis of two parameters: directional-
ity and the presence/absence of a model. Directionality signifies the direction of
the neuronal interaction that can be captured with the method and the other cat-
egory signifies whether an underlying model has been used to calculate the FC.
Just the combination of different possibilities arising from these parameters gives
us four different methods, depicted in Figure 2.1. The simplest and the most used
method is the Pearson’s correlation coefficient which is a non-directed model-
based method. This method only captures the linear interaction. It is now com-
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mon to transform the correlation coefficient values with Fisherâs z transform to
ensure normality [Fisher, 1995, Valencia et al., 2009]. A more general approach
which captures non-linear interactions as well is mutual information [Kraskov
et al., 2004].

Both of the methods assume that the FC obtained will be the same even if
the time-series of the areas concerned are shuffled. However, in real data when
one of the time-series is shifted with respect to the other, the correlation value
changes. This can be captured with cross-correlation function which evidently
is a function of time. This has been used successfully to capture dominant one-
directional interactions and the time-delay at which they have largest influence
[Usrey et al., 1998]. However, complications arise with bi-directional interactions
which are the case for majority of brain connections. In the case of bi-directional
interactions, cross-correlation function lack clear peaks and have significant ef-
fects at both positive and negative time-lags [Bastos and Schoffelen, 2015]. This
problem can be solved by using Granger Causality, which evaluates the extent of
which the past value of one time-series can predict the future value of another
time-series [Granger, 1969]. A similar approach is to calculate ’Effective Con-
nectivity’ which has been defined as ’the influence that one neural system exerts
over another, either at a synaptic or population level’ [Friston, 2011].

Finally, there are also model-free approaches to calculate directed FC values.
One such method is transfer entropy which is a generalized information-theoretic
approach to study delayed (directed) interactions [Lindner et al., 2011]. Unlike
Granger Causality it is capable of capturing non-linear interactions. However, be-
cause of its generalized nature, the results can become difficult to interpret. It can
be attractive to use transfer entropy even at the cost of difficulty of interpretation,
to capture all possible interactions. But, it has been shown that time-series are
mostly Gaussian in nature and therefore non-linear interactions does not amount
to more information than linear ones [Hlinka et al., 2011]. All the aforementioned
methods are calculated in the time domain which fails to capture rhythmic neu-
ronal interactions. To do this it is beneficial to calculate FC in frequency domain
which can be done by the application of non-parametric (Fourier decomposition,
wavelet analysis, or Hilbert transformation after bandpass filtering) or paramet-
ric techniques (autoregressive models) [Bastos and Schoffelen, 2015]. Neuronal
interactions in the frequency domain can be captured by determining the consis-
tency (or lack thereof) in phase differences of the oscillations of the time-series.
This is due to the fact that a non-random distribution of phase differences is most
likely the result of synchronization between two oscillating neural populations.
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Figure 1.3: Most common methods to calculate FC. Image taken from [Bastos
and Schoffelen, 2015]

The domain equivalent of Pearson’s correlation coefficient in frequency do-
main is coherence coefficient. Its squared value denotes the extent to which the
variance of one of the signals can be explained by the other, and vice-versa. Other
methods include phase locking value, phase slope index, pairwise phase consis-
tency and Granger Causality in frequency domain. There are also methods explor-
ing the amplitude of the time-series which have been used successfully to quantify
large-scale brain networks [Foster et al., 2015]. Since the current thesis focuses
mainly on FC matrices calculated in the time domain, I will not go into the details
of these methods.

1.2.2 FC Analyses

Just like calculation of FC, analyses on FCs can also be done with a large-array
of methods. Here, I will only revisit the most used ones. In this section, I will
assume that the FC matrices are calculated with Pearson’s correlation coefficient
since it is the most prevalent method used. However, all the methods listed below
can be used on any kind of FC regardless of the way they are calculated. The
methods can be broadly classified as ’local’ or ’global’ methods. Global methods
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look into the global topological properties of the resulting FC network while local
methods focus into determining the significance of local interactions.

1.2.2.1 Graph Theory

This is one of the most common global methods used to characterize FC. Math-
ematically, the ability of considering each and every voxel/region as a node and
the connections associated with the region to be edge makes it possible to explore
FCs as graphs. An edge can be assigned between two nodes when the correlation
coefficient is above a particular threshold value or they can be weighted. For these
weighted and unweighted graphs, various graph theoretical parameters can be cal-
culated. An important such parameter is the path, which is the sequence of edges
that are connected and the minimum number of edges travelled to reach one node
from the other is called path-length of the two nodes. Taking the average of all
possible combinations of node pairs for a graph will give average path length,
which gives information about the connectedness of the graph.

Another important parameter of the graph is the degree of a node, which sig-
nifies the number of edges the particular node possess. Just like average path
length, average degree is the mean of degree across all nodes of the graph. This
particular value gives an idea of how dense the graph is. But a better measure for
that is the density of the graph, which is the proportion of existing connections
divided by number of possible connections. Another parameter that can be cal-
culated from the degree is the degree distribution of the graph which can tell us
about the hubs of the graph. Hubs are usually nodes that are highly connected in
the graph and are quite important as they bind various parts together. Using this
concept Buckner and colleagues [Buckner et al., 2009], reported that brain areas
with high ’hubness’ deteriorate with higher probability in Alzheimer’s Disease.
Eigenvector Centrality, which uses a similar concept, has also been applied to
analyze FC [Lohmann et al., 2010].

Degree distribution can also be used to test the resiliency of the graph. To per-
form such a test nodes of the graphs are ’attacked’ by using either random error
or targeted attack. In ’random error’ a random node is repeatedly deleted from
the graph, while ’target attack’ repeatedly deletes the node with the actual highest
degree. After each attack the vulnerability of the graph is measured by using vari-
ous graph theoretical parameters. Using these approaches Achard and colleagues
[Achard et al., ] showed that resting-state FC is more resilient than random scale-
free graphs, while using random error but they perform equally bad with targeted
attacks. An important parameter measuring local structure of the graph is local
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clustering-coefficient which is the probability of an existing triangle given that
there is a connection between two nodes via a third one. In other words it calcu-
lates the number of triangles when we know that the one of the nodes involved
is definitely connected with the other two nodes. One can see that this can also
be used to measure resiliency of the graph since removal of one of the edge will
still ensure connectivity across all the three nodes. Using this measure combined
with path-length [Rubinov et al., 2009] showed local and global differences in the
resting-state FC of schizophrenic patients as compared to healthy individuals.

Modularity talks about how our brain is divided into different modules so
that functions are segregated and are easier to perform. Using modularity mea-
sures [He et al., 2009], found that sensory and cognitive systems can be separated
as modules which have sparse intermodule connections. Combining the two mea-
sures of modularity and hubness one can characterize the graph as a small-world
network. Originally defined by Watts & Strogatz [Watts and Strogatz, 1999],
a small-world network is a network with ideal balance between segregation and
integration. Segregation in a network is required to compartmentalize the infor-
mation while integration of the processing from these segregated ’departments’ or
modules, is required for proper functioning. Think of a small-world network as
the government.

For proper functioning, the government needs to be divided into various de-
partments. Each department is specialized to handle their own issue, e.g., the
department of housing deals with housing issues ensuring most citizens with de-
cent and fair housing (at least that is what they are supposed to do). The depart-
ment of finance on the other hand, is supposed to solve financial problems of the
state. These two departments should talk to each other every so often to figure
out optimal solutions. If the ideal house costs the government a fortune, then the
department of housing is definitely not consulting the department of finance about
the costs. On the other hand if the state debt becomes so high that most people
cannot afford decent houses, then we can be sure that the department of finance is
not talking enough with the department of housing to ensure affordable houses.

As one can imagine, our brain can also be categorized as a small-world net-
work. This is because it is known to be extremely efficient in compartmentalizing
and integrating information. The extent to which a network is small-world can be
measured by small-worldness which compares clustering-coefficient and path-
length of the graph to that of a random graph. [Nakamura et al., 2009], used this
concept successfully to exhibit that ’small-worldness’ increases in the recovery
process of patients suffering from Traumatic Brain Injury (TBI). Another way of
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measuring small-worldness of a network is to calculate global efficiency which
signifies the network’s ability to transmit information. This parameter has been
used to show the effect of ageing in frontal and temporal regions of the brain.

Most of the parameters described above can only be applied on unweighetd
networks losing a lot of information in the process. Also, most of the graph met-
rics deals with global differences, which might not be the case for a large number
of cases. In fact, after performing a task, our brain should only show changes at
a local level, since inducing global changes in the brain to perform a simple task
is energy consuming. The few local measures are often complex in terms of their
calculation and interpretation. Finally, we cannot use each and every voxel as a
node for the graph since it will be computationally expensive. To overcome this
challenge researchers often define groups of voxels or only care about particular
regions and construct graphs from them. This assumption leads to a priori biases
in the studies.

1.2.2.2 Seed-Based Approach

This approach is the most predominantly used ’local’ method. It investigates the
FC between the regions that have been chosen a priori, called seed-region or
region of interest (ROI). Another common approach is to investigate all the FC
of the seed region or a group of ROIs. [Biswal et al., 1995] used this approach to
discover resting-state. This technique relies on the extraction of time-series from
the ROI and then characterizing the relationship with time-series of other voxels
or other ROIs. The most basic step calculates the average value at each time
point, arguably cancelling out the noise. More advanced method like Principle
Component Analysis can also be used for this purpose. The next step is to define
the relationship of the extracted time-series with those of others. Since I have
talked about this in the previous section, I will not go into much detail here. When
comparing two population or conditions using this method, the final step often
involves performing t-test on the FCs and correcting for multiple comparisons. As
one can see, this method gives more power by reducing the number of multiple
comparisons.

This method has been incredibly helpful in recognizing functional subdivi-
sions in striatum [Di Martino et al., 2008], ACC [Margulies et al., 2007], cere-
bellum [O’Reilly et al., 2010], amygdala [Roy et al., 2009] among other brain re-
gions [Eckert et al., 2008, Margulies et al., 2007]. This feat has been possible with
rsFC, since usage of task FC would have required meta-analyses to perform the
same functional distinctions. This method has also been extremely beneficial in
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cross-species animal research. The DMN as well as parahippocampal network has
already been identified in anesthetized monkey [Vincent et al., 2010] highlighting
the evolutionary tracing of these networks. This technique has also been used to
identify potential biomarkers in various neurological disorders (see above).

As we observed above, there is a predominance of DMN in the results. This
highlights one of the major limitations of this method, which is the a priori selec-
tion bias. Even though, the ROIs used in the study are usually based on well-
founded hypotheses, exploring new FCs with this method is quite difficult to
achieve. This bias is compounded by the low sample size which is quite prevalent
in the field of neuroimaging. Furthermore, the size and even shape of the ROI can
lead to quite different results making the results of the same regions, inconsistent.
This concern has been voiced by multiple reviews examining potential biomarkers
of disorders [Hull et al., 2017, Greicius et al., 2007].

1.2.2.3 Independent Component Analysis Clustering

Independent Component Analysis (ICA) performs on the assumption that the
brain can be organized into a number of discreet networks. These networks can
be decomposed using blind source separation. Unlike seed-based approach, it
provides the advantage of having minimal a priori selection. Another major ad-
vantage of ICA is that it requires minimal preprocessing since noise can be de-
composed into a separate component. ICA can be applied on both spatial and
temporal axes, however spatial ICA is most common since fMRI data consists of
more spatial points than temporal ones. Performing ICA at a group level is quite
challenging since same components have to be selected across all individuals.
Multiple approaches are proposed to overcome this issue.

A very commonly used approach is template matching, where individual-
level components are first discarded on the basis of temporal properties and then
the rest are compared to a researcher-defined template for ’goodness-of-fit’. This
step requires judgment of the researcher to define the template since gold-standards
do not exist. A proposed solution to this issue is to perform group-level ICA on
co-registered and concatenated individual datasets. This approach has been suc-
cessfully used to characterize distinct cortico-cerebellar networks [Habas et al.,
2009]. Another approach is dual-regression ICA, where after the creation of
template, spatial regression is performed on the individual level to extract a tem-
poral model for a second temporal regression. This method has been successfully
used to identify distinct networks in resting-state brain [Zuo et al., 2010]. ICA has
also been successfully used to identify biomarkers in Alzheimer’s disease [Sorg
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et al., 2007], mild cognitive impairment [Qi et al., 2010], depression [Greicius
et al., 2007], schizophrenia [Jafri et al., 2008], Huntington’s disease [Wolf et al.,
2008], lateral sclerosis [Mohammadi et al., 2009] temporal lobe epilepsy [Zhang
et al., 2009b], and non-communicative brain damaged patients [Vanhaudenhuyse
et al., 2010].

Although ICA is quite successful as a data-driven approach, its performance
relies on possible interpretation of the components. This step asks the researchers
to discard one of the components as ’noise component’ adding a posteriori bias
to the analysis. Another disadvantage of ICA is the complexity involved in calcu-
lating, especially for group-level ICA. Furthermore, the difficulty in interpretation
of the components makes it quite challenging to obtain results with this method.
Since ICA algorithm begins with a random assumption with each iteration, repli-
cation using ICA can be quite daunting. If we go back to the primary assumption
of ICA that our brain consists of independent networks, we can see that the results
obtained will suffer from a particular bias. Since our brain is known to have mod-
ules which are interconnected, such an assumption can be quite harmful. This
concern has been voiced by [Daubechies et al., 2009] who argued that ICA is
designed to detect sparsity of the brain modules instead of independence.

To eliminate the a posteriori selection bias induced by ICA, clustering method
is gaining popularity in the field of neuroscience. Clustering refers to a set of
mathematical tools which are designed to detect patterns in the data. Unlike ICA,
which is designed to identify large-scale networks in the FC, clustering is de-
signed to ’break’ the brain network into smallest detectable distinct functional
units. Mathematically, clustering refers to a family of techniques, which I would
not elaborate in much detail. But any discussion on clustering is incomplete with-
out its most prominent three approaches: hierarchical clustering, partitional clus-
tering and spectral clustering. Hierarchical Clustering start by treating each data
point as one cluster, and as the number of clusters is decreased these are merged
together depending on their similarity. Partitional Clustering on the other hand
works to identify all the clusters together at once. Spectral Clustering requires
the performance of eigen-decomposition first as a data-reduction step and then
uses standard partitioning procedures (like k-mean clustering) to obtain clusters.

[Cordes et al., 2002] has successfully used clustering methods to detect func-
tionally distinct clusters of sensorimotor cortex, auditory cortex, fusiform gyrus
and primary visual cortex, as well as ’nuisance’ cluster signifying Cerebrospinal
Fluid (CSF) and other nuisance covariates. Salvador and colleagues [Salvador
et al., 2005], identified even more networks using anatomical location as a group-
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ing criterion. Van den Heuvel et al. [van den Heuvel et al., 2008], recently used a
more advanced clustering method in a group of 26 healthy participants to charac-
terize seven distinct networks in rsFC. They also calculated a consistency matrix
which quantified the frequency with which voxels were assigned to the same clus-
ter across participants. Almost all of the studies using clustering algorithms are
often limited because of the computational cost of the method. To overcome this
issue, often studies reduced the volume of the data either by acquiring data from
only a limited number of slices, rather than the whole brain (Cordes et al., 2002)
or by resampling the brain according to a parcellation scheme (e.g., Salvador et
al., 2005).

Another limitation of clustering techniques and ICA is the requirement of
defining the number of components beforehand. This can be quite difficult since
lower number of components will result into concatenation of two distinct net-
works together, or worse, breaking of a single component into two to accom-
modate them in already existing clusters. However, choosing a high number is
computationally costly especially for group data. Just like ICA, the clusters can
be often difficult to interpret and henceforth induces human judgment, making it
subjective. We can see here that even though both ICA and clustering techniques
offer respite from a priori selection bias, they both require a posteriori selection
bias. This could be more beneficial in certain cases, but due to the complexity
of these methods, the gain after using these methods has to be evaluated by the
researcher themselves.

1.2.2.4 Multivariate Pattern Analysis

Multivariate Pattern Analysis (MVPA) has gained traction in the recent neu-
roimaging literature [Norman et al., 2006]. Like ICA and clustering techniques,
MVPA looks for multi-voxel patterns. Information contained in these patterns can
then be decoded by applying powerful pattern-classification algorithms. A major
advantage of using MVPA arises from the fact that it is highly data-driven, not re-
quiring any template to validate the data. This is often accomplished by dividing
the data into two subsets, ’training set’ and ’testing set’. This requires the method
to be used only for large data-set, which is difficult to obtain in neuroimaging
studies. Using this method on typical neuroimaging samples of 20-30 subjects
can lead to misleading results. Another problem of using this method is feature
selection. This can be done mathematically [Singh et al., 2011]. However the
features are then difficult to interpret and are computationally costly. On the other
hand, manual feature selection (like limiting it to specific ROIs) will again lead to
selection biases.
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MVPA has been primarily used for disease-state prediction to successfully
distinguish between healthy individuals and patients. Some well-known examples
are its use in classifying ADHD [Zhu et al., 2008], Schizophrenia [Jafri et al.,
2008] and Alzheimer’s disease [Wang et al., 2006]. Due to its computational
complexity this method remains to be less used and hence the limitations are still
largely unknown. One specific question arises in mind regarding feature selection.
While some studies using MVPA do compare features, they are used in a very
narrow context, making it difficult to assess the strength and weaknesses of feature
comparisons and the ideal methods to choose them. Another limitation comes
from spatial resolution. While spatial resolution remains an important issue for
most methods, it is of particular interest in case of MVPA. This is due to the
fact that it looks for subtle patterns in the data. However, high spatial resolution
makes it more difficult to calculate because of computational complexity. Another
limitation is the difficulty of interpretation of the results.

1.2.2.5 ”Local” Methods

Since we are talking about capturing ’local’ effects, this section will remain in-
complete without talking about amplitude of low frequency fluctuations (ALFF)
and regional homogeneity (ReHo). These two methods have gained quite some
popularity in the neuroscience community. ALFF is defined as the total power in
the low frequency range. Fractional ALFF (fALFF) is a measure depicting the
ratio of the low-frequency power to the sum across the whole frequency range
[Zou et al., 2008]. [Fan et al., 2013], used fALFF to show that depressed patients
with suicidal tendencies had an increased fALFF in right STG and low fALFF in
right ventral MFG. This made them claim right STG as a potential biomarker for
suicidal tendencies in depressed individuals. This claim has been supported by
Cao and colleagues [Cao et al., 2016], who also showed abnormal fALFF value
for right STG in depressed patients with suicidal history.

ReHo was originally proposed by Zang and colleagues [Zang et al., 2004]
to measure coherence/homogeniety of a given voxel with its nearest neighbours.
Homogeneity is measured using Kendall’s coefficient of concordance, a similar-
ity measure which uses ranking. Pattern of networks in rsFC obtained by ReHo
has been shown to be similar to DMN [Long et al., 2008]. This method has been
successfully used to show decreased Reho values in bilateral frontal, temporal,
occipital, cerebellar posterior, right parietal and left limbic lobes in patients suf-
fering from Schizophrenia [Liu et al., 2006]. It has also been successfully used
to characterize boys suffering from ADHD [Cao et al., 2006]. Both Reho and
fALFF methods are quite useful however they come with their own set of caveats.
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ALFF measurements have been shown to be higher in grey matter than white mat-
ter [Biswal et al., 1995] inducing potential confounds. Other studies have shown
that it can be affected by possible artefactual findings in the vicinity of blood ves-
sels and cerebral ventricles [Zuo et al., 2010]. ReHo analysis on the other hand
is affected by magnitude of spatial smoothing and the size of the ”neighborhood”
[Zang et al., 2004].

In this section, I have reviewed the most widely used methods for analyzing
rsFC. The one common feature in all the methods is that they come with their own
pros and cons. There is a common pattern that clearly emerges though, and that
is the need of a simple method which does not need any pre or post selection cri-
terion. Banishing selection bias should not come at a cost of computational com-
plexity. It is of no doubt that these methods whether they require some assumption
or not, gives unique information about the human brain. They have been success-
ful in wide-array of situations and have been tested and re-tested. However, the
need for a much simpler method with higher sensitivity and without any bias is
much needed. Higher sensitivity will increase the chances of detecting differences
in rsFC, which in turn will allow us to be free from pre- or post-selection biases.

1.3 Scope of the Current Thesis
The current thesis introduces a new method aimed to be more sensitive than tra-
ditional methods. The method called Link-Wise Analysis (LWA) is tested in the
second chapter using simulations, where it is compared with traditional t-tests to
detect differences in the rsFC. The limitations of both these methods are explored
with respect to number of subjects, brain parcellation, and deviation of the FC dis-
tribution from normal distribution. By simulating various conditions, we showed
that LWA has the potential to detect resting-state functional brain links that are
significantly different. This chapter finishes with an application on a previously
published data-set [Hlinka et al., 2011, Mantini et al., 2012, Ponce-Alvarez et al.,
2015, Gilson et al., 2017]. The goal of the application was to find rsFCs that are
significantly different in resting state vs natural viewing of a movie. The next two
chapters are applications of this method with different designs.

The goal of using three different designs is to show the versatility of LWA.
Traditionally, neuroimaging methods are only tested in classical two group de-
signs. However, the current thesis goes further by demonstrating the power of a
simple method like LWA to detect rsFC in more complex designs. To this end, the
third chapter presents a study design with two groups and two resting-state scans
increasing the complexity and thereby decreasing the power of analyses methods.
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The fourth chapter shows another design altogether, where significant correlations
between rsFCs and social-hierarchy perception are explored. Adapting LWA to
detect significant correlations instead of differences takes it a step further.

To further elaborate, the goal of the third chapter is to find FC(s) which is
responsible for statistical learning. For this purpose 36 right-handed participants
listened to a four-minute audio either depicting artificial language or random au-
dio stream. Resting-state scans were obtained before and after the stimuli. After
performing LWA, we obtained a significant FC between left SPL and right PCC,
revealing a link which might have been undetected with seed-based or cluster-
based approaches. The fourth chapter is aimed to find FC(s) which is significant
for social hierarchy perception. For this project, we combined event-related po-
tentials (ERPs) and rs-fMRI obtained for 20 individuals. Participants played a
game with simulated player who was either superior or inferior (previously used
in [Santamarı́a-Garcı́a et al., 2015]. Social-hierarchy perception was measured
using ERPs [Santamarı́a-Garcı́a et al., 2013] which was in-turn investigated for
correlation with all the possible rsFCs. Using LWA, we showed the significance
of the link between right Insula and left Parahippocampal Gyrus as well as, left
MFG and left Superior Temporal Sulcus (STS) for social hierarchy perception.

Along with the versatility of LWA, the results from the three applications pro-
vide a very interesting picture of the resting-state brain. Both these issues are dis-
cussed in the Discussion which ties all the results together to formulate a clearer
picture of the rsFC. Finally, this thesis hopes to add a new simple and effective
method in the neuroimaging literature. Even though the applications here are only
on rsFC, LWA can also be used for other modalities and combined with other
methods.
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Chapter 2

IDENTIFYING SALIENT
FUNCTIONAL BRAIN LINKS BY
MEANS OF MEDIAN SPLIT

Pallabi Sengupta, Gorka Zamora-López, Miguel Burgaleta,
Maurizio Corbetta, Gustavo Deco, Nuria Sebastian-Galles

2.1 Introduction

Different regions of our brain communicate with each other to perform various
functions signifying the underlying functional ’connectivity’ required to perform
the cognitive tasks. Understanding this brain connectivity between different brain
regions is investigated as the temporal dependency of the two brain regions and
has become quite important in the field of neuroscience. This can be observed by
numerous findings of differences in the functional connectivity of healthy indi-
viduals when compared with several neuropsychiatric disorders like Alzheimer’s
disease [Liu et al., 2008], Attention Deficit Hyperactivity Disorder [Konrad and
Eickhoff, 2010], Autism Spectrum Disorder [Kennedy et al., 2006, Weng et al.,
2010], Schizophrenia [Li et al., 2012] among others [Mulders et al., 2015, Dichter
et al., 2014, Greicius, 2008]. Another application of comparing functional con-
nectivity occurs in understanding the effectiveness of various drugs by comparing
the functional connections at ’rest’ before and after the drug administration [Cera
et al., 2014]. Moreover, comparing functional connectivity of participants per-
forming social tasks, in the presence of two different kind of social hierarchy is
yet another application of functional brain connectivity aimed to understand cog-
nitive processes like social hierarchy perception [Zink et al., 2008].
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These examples highlight the importance of understanding functional connec-
tivity in a case-control design, where one group of participants is compared to
the other (e.g., patients vs healthy) or two conditions are compared (e.g., before
vs after administration of drug). The information obtained by these comparisons
could either be global information or local information. Information at a global
level focuses on the topological properties of the neural network using graph the-
oretical tools [Li et al., 2012]. However, global scale differences could only be
the result of large scale changes in the brain connectivity network requiring large
amount of energy. Such changes would be absent in normal day to day cognitive
processes [Ponce-Alvarez et al., 2015] limiting the scope of such studies. Local
level information on the other hand, deals either with activation or deactivation
of certain brain areas [Zink et al., 2008] or changes in functional connections [Li
et al., 2014b].

A major hindrance in exploring these local changes in functional connectivity
is the number of multiple comparisons required to capture the true effect. This is
especially true in the case of investigating functional connections since increasing
the number of functionally separate brain regions in a study via different parcella-
tion usage will lead to an exponential rise in the number of functional connections
giving rise to more number of corrections required. To elaborate further let us
take an example of a study employing a parcellation of 50 brain regions. This
will give rise to

(
50
2

)
= 1225 functional connections. If we wish to increase the

spatial resolution of the study by using a brain parcellation of 100 regions, the
number of functional connections would be

(
100
2

)
= 4950. If the study focuses on

exploring activation or deactivation at a higher spatial resolution then the number
of corrections required would only double in number, while in case of functional
connections it would be quadruple.

Different methods are used by researchers that tries to solve this problem of
multiple comparisons. One of the most common methods is to preselect the func-
tional connections on the basis of existing literature in the topic. This leads to a
priori bias in the results, which is solved by clustering methods like Independent
Component Analysis or other clustering techniques. However, after the analy-
sis researchers would often have to interpret the clusters giving rise to a posteriori
bias. Another set of methods focuses on pattern analyses, which are the most data-
driven methods, but are often complex to use and require large amount of time.
This mandates a new method which does not demand pre or post selection biases
without increasing the complexity of the analysis. The current study addresses
this issue by proposing a new method to explore salient functional connections in
a case-control scenario.
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The new method uses median-splitting to threshold the correlation values of
the functional connections aimed to increase sensitivity of the statistical analysis.
Median splitting has been successfully used previously to determine the effect of
gesture sequences in captive chimpanzees [McCarthy et al., 2013], glycoprotein
inhibitors and heparin for myocardial infarction [Kastrati et al., 2011], driving
behavior in teenagers using a Bayesian Model [Kim et al., 2013] among oth-
ers [MacCallum et al., 2002]. The contribution of this paper hence is validating
median-splitting to identify salient functional brain links in a case-control scenario
by comparing its performance to traditional methods used on weighted functional
connections like Student’s t test or Mann-Whitney U test. For the sake of sim-
plicity we call this method Link Wise Median Splitting and we call the traditional
Student’s t or Mann Whiteny U test as Link Wise Weighted Test.

The paper is mainly divided into two sections: in the first section we tested
the performance of Link Wise Median Splitting and compared it with Link Wise
Weighted Test by simulating differences in functional brain links; in the second
section we applied Link Wise Median Splitting in a real case-control scenario
comparing resting state connectivity with functional imaging acquired while sub-
jects were watching a movie mimicking natural viewing. The case-control data
has been used previously to test Gaussanity of functional connectivity values
[Hlinka et al., 2011], compare natural-viewing activity correlation between hu-
man and monkey subjects [Mantini et al., 2012], explore spontaneous synchro-
nization networks [Ponce-Alvarez et al., 2015] and, investigate cortical Effective
Connectivity [Gilson et al., 2017]. By the aid of simulations, we showed that
the Link Wise Median Splitting is much more sensitive to true differences and
therefore, increases the chances of identifying significant changes in functional
connections. This finding is bolstered by the results obtained in the case-control
application data-set, where Link Wise Median Splitting successfully identified
salient links, while the non-parametric method failed to do so. It is important to
remember that Link Wise Median Splitting can be used to explore salient connec-
tions in any imaging modality since it does not use any assumptions pertaining to
the calculation of the brain connections.

2.2 Methods
The goal of this paper is to detect salient links without any selection bias before
or after the analysis. To achieve this we propose a new method called Link Wise
Median Splitting (LW-MS) and compare it with traditional methods used on with
the correlation values of the functional connections, which we call Link Wise LW-
WT (LW-WT). To perform LW-MS and LW-WT the functional connectivity (FC)
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matrices are needed to be computed first using Pearson’s correlation between all
possible node combinations giving rise to anN×N matrix, where N is the number
of brain regions. The ith and the jth component of the matrix denotes the temporal
dependence between the ith and the jth brain regions. These FC matrices are then
transformed using Fisher’s r to z transformation which ensures normality [Fisher,
1995, Valencia et al., 2009]. There can also be other ways of calculating FC
matrices using mutual information [Bassett et al., 2009], transfer entropy [Vicente
et al., 2011], phase synchronization [Kitzbichler et al., 2009, Palva et al., 2010],
or synchronization likelihood [Stam, 2004], which can give information about
non-linear trends unlike Pearson’s correlation.

2.2.1 Analysis Methods

Since the methods would be the same across all links, here we focused on the
performance of the two methods on only one link, which is different across two
populations A and B. To perform LW-MS, the first step was to threshold the FC
matrices. Threholding was done at link level by using median splitting where ev-
ery link was thresholded using the median value of that specific link after concate-
nating the group of subjects together. All the link values higher than the median
were then denoted as 1 and those who were below the median were denoted as 0.
This lead to the number of subjects in population A with link value 0 to be A0 and
the number of subjects in population A with link value 1 to be A0. For population
B, the number of subjects with the link value denoted as 1 and 0 were B1 and B0,
respectively. This data was used to construct contingency table (Table 2.1). The p
value obtained by using Fisher’s Exact Test was then corrected for multiple com-
parisons encompassing all possible links using Bonferroni’s correction. In case
of LW-WT, we performed Mann Whitney U Test to ensure that non-normality (if
any) of the data sets would not affect the outcome. Similar to LW-MS, the p value
obtained after performing the Mann Whitney U test was corrected for multiple
comparisons using Bonferroni’s correction.

No. of subjects with link value 0 No. of subjects with link value 1
Population A A0 A1

Population B B0 B1

Table 2.1: Contingency table used by LW-MS to determine the significance of
each link between two populations A and B.
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2.2.2 Performance Evaluation
To compare the performance of LW-MS with LW-WT in a case-control scenario,
we created two different distributions X and Y mimicking a functional brain link
from two different groups. The aim was to investigate the performance of LW-MS
and compare it with that of the LW-WT. We varied the mean (µ) and the skewness
(γ) of the distributions for this purpose. We also varied the number of data points
in each distribution from m = 10 to m = 150, mimicking the number of subjects.
We iterated each and every scenario 10,000 times to have a proper estimation of
the sensitivity of the two methods. For all the scenarios, we assumed the number
of nodes to be, N = 100, until explicitly stated otherwise, leading to

(
100
2

)
= 4950

unique functional brain links. Hence, we corrected for 4950 multiple comparisons
using Bonferroni’s correction and calculated the number of times the corrected p
value obtained by each method was p ≤ 0.05. The detection rate, in percentage,
was then obtained by normalizing the number of time corrected p was significant
by 10,000.

Case 1: To test the detection rate as a function of the difference of means,
µ(X) and µ(Y ) , we varied µ(X) from -1 to 1 while keeping µ(Y ) constant at 0
(Figure 2.1(a)). We kept the other parameters like skewness (γ), kurtosis (κ) and,
variance (σ) constant (γ = 0, κ = 3, σ = 1).

Case 2: Since real data can sometimes be skewed, the distributions X and Y
were created with different skewness values while keeping the remaining param-
eters constant (µ(X) = 0, µ(Y ) = 1, κ = 3, σ = 1). The skeweness of Y was kept
to γ(Y ) = 0, similar to normal distribution, while γ(X) was varied from -1 to 1
(Figure 2.1(b).

Case 3: Since a higher number of nodes should lead to a larger number of
unique links and therefore, larger number of multiple comparisons, we also ex-
amined the effect of altering the number of nodes, N. We chose two effect sizes
-1 and 0.5, to check whether the effect size also modulates the relationship of sen-
sitivity with N. We varied the number of nodes from N = 50 to N = 1000 while
keeping the rest of the parameters constant (µ(X) = 0, µ(Y ) = 1/-0.5, κ = 3, σ =
1).

Case 4: Finally, we explored the effect of altering the number of subjects on
the sensitivity of the two methods further by considering a range of m = 5 to m =
11 data points per link, mimicking the presence of only 5 to 11 subjects in each
group. Even though such small data-sets are undesirable in studies, this extreme
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µ(X) = -1

µ(Y) = 0

µ(X) = 1

µ(Y) = 0

µ(X) = 0

µ(Y) = 0

Changing the Mean

(a)

γ(X) = -1

γ(Y) = 0

γ(X) = 1

γ(Y) = 0 γ(X) = 0

γ(Y) = 0

Changing the Skewness

(b)

Figure 2.1: We wanted to test the detection rate of the two methods, LW-MS and
the LW-WT while changing the parameters of the distributions: (a) Mean of dis-
tribution X is changed from µ(X) = -1 to µ(X) = 1; (b) Skewness of distribution
X is changed from γ(X) = -1 to γ(X) = 1

case explored the possible limitations of LW-MS and the LW-WT. We contrasted
the results with sample sizes of m = 10 to m = 150.

2.2.3 Control Case-Study

In order to provide a real test-case and to compare the performance of LW-MS
with that of the LW-WT, we applied the two methods to a previously published
dataset. The experimental setup consisted of measuring functional magnetic reso-
nance during rest and during viewing of a movie for a cohort of participants. Using
this data-set Gaussanity was observed in FC measures [Hlinka et al., 2011]. The
same dataset has also been used to show the similarities between natural-viewing
neural correlates of humans and monkey (by [Mantini et al., 2012]), to show the
temporal alternation of spontaneous synchronization communities in resting state
FC [Ponce-Alvarez et al., 2015] and to show an increment in homotopic connec-
tions in temporal and parietal areas during natural viewing [Gilson et al., 2017].
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2.2.3.1 Participants

24 right-handed young, healthy participants (15 females, 20-31 years old) took
part in the study. They were informed about the experimental procedures, and
signed a written informed consent. The procedures were approved by the Ethics
Committee of the Chieti University. We obtained resting state scans with eyes
opened and a natural viewing condition for 22 participants. 2 participants were
discarded because they only had recordings at rest. In the resting state, participants
were instructed to fixate on a red target with a diameter of 0.3 visual degrees on a
black screen. Participants watched 30 minutes of the movie ’The Good, the Bad
and the Ugly’ in a window of 24 × 10.2 visual degrees for the natural viewing
condition. Participants viewed the movie through a mirror tilted by 45◦while it
was projected on a translucent screen using an LCD projector. Auditory stimuli
were provided using MR-compatible headphones.

2.2.3.2 Data acquisition

A 3T MR scanner (Achieva; Philips Medical Systems, Best, The Netherlands) at
the Institute for Advanced Biomedical Technologies in Chieti, Italy was used to
obtain functional images. T2*-weighted echo-planar images (EPI) with BOLD
contrast using SENSE imaging was used to obtain functional images. 32 axial
slices were acquired in ascending order, covering the entire brain (230 × 230 in-
plane matrix, TR/TE=2 s/3.5 s, flip-angle = 90◦, voxel size=2.875 × 2.875 × 3.5
mm3). For each subject, 2 scanning runs of 10 minutes were obtained for resting
state while for natural viewing 3 scanning runs of 10 minutes were obtained. How-
ever, for the purpose of the current study only the first 2 movie scans were used
for a fair comparison between the rest and the natural viewing condition. Each run
had 5 dummy volumes - allowing the MRI signal to reach steady state and an ad-
ditional 300 functional volumes that were used for analysis. During scanning, eye
position was monitored using a pupil-corneal reaction system at 120 Hz (Iscan,
Burlington, MA, USA).

2.2.3.3 Preprocessing

Data were preprocessed using SPM8 (Wellcome Department of Cognitive Neu-
rology, London, UK) running under MATLAB (The Mathworks, Natick, MA).
The preprocessing steps involved: (1) slice-time correction (2) correction of head-
motion, (3) coregistration of the 90 mean functional image, and (4) spatial nor-
malization of all images to a standard stereotaxic space (Montreal Neurological
Institute, MNI) with a voxel size of 3 × 3 × 3mm3. Artifacts related to blood
pulsation, head movement and instrumental spikes were removed by using spatial
independent component analysis (ICA) on the BOLD time series. This procedure
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was performed by using the GIFT toolbox (Medical Image Analysis Lab, Uni-
versity of New Mexico). No global signal regression or spatial smoothing was
applied. We extracted the mean BOLD time series from the N = 66 regions of
interest (ROIs) of the brain 100 atlas used in [Hagmann et al., 2008], for every
subjects per condition. These time series were used to calculate the Functional
Connectivity (FC) matrix using Pearson’s correlation coefficient. The FC matri-
ces were transformed using Fisher’s z transform to normalize correlation values.

2.2.3.4 Statistical Analysis

To explore the possible functional brain links that are significantly different be-
tween resting state and natural viewing, we extracted 2145 unique links from the
FC matrices. Each of these links were thresholded using their own median so that
link values higher than the median were considered to be 1 and those which were
lower were considered to be 0. On each of these thresholded links, we performed
Fisher’s Exact test to investigate the relationship between condition (rest vs natu-
ral viewing) and binarized link value. To compare our results we also performed
Mann-Whitney U test on the unthresholded values of each link. For both analyses,
we corrected for multiple comparisons using Bonferroni’s correction and looked
for significant links at p ≤ 0.05.

2.3 Results

The goal of the present paper is to detect salient links that are significantly dif-
ferent in a case-control scenario. To do this we tested the performance of two
methods Link Wise Analysis (LW-MS) and Weighted Method. We started by
testing the performance and limitations of the method by numerically simulating
different scenarios in which either the properties of the distributions or the number
of subjects or number of ROIs in the parcellation were altered. Then we showed
the use of the method by applying it to a control dataset which has been previously
well studied. It consists of the comparison between functional connectivity during
rest and during natural movie viewing [Hlinka et al., 2011].

2.3.1 Performance Evaluation

In order to evaluate the limits of LW-MS with respect to variations in the prop-
erties of the link distribution, number of nodes and, number of participants, we
simulated two distributions, X and Y. For each variation of these parameters, we
calculated the detection rate of significantly different functional links. We looked
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into roughly four case situations pertaining to alterations in terms of difference in
mean (µ), skewness (γ), number of nodes (N) and, number of subjects (m).

As mentioned in the Methods Section, the first case scenario investigated was
the effect of mean (µ) and number of subjects (m). For this purpose, we varied
mean of one of the distributions from µ(X) = -1 to µ(X) = 1, while keeping the
other one constant at µ(Y ) = 0. We also varied the number of subjects m = 10 to m
= 150 to see whether the sensitivity of the method can be modulated by the number
of subjects. We calculated the detection rate for each scenario and exhibited the
results in heatmap (Figure 2.2(a) and Figure 2.2(b)). Different colours represent
different detection rates in the heatmap, where the green end represents lower
detection rate while the yellow end represents high detection rate. We observed
from the heatmaps in Figure 2.2(a) and Figure 2.2(b), that performing LW-MS
was beneficial to determine salient links that are significantly different in FC. We
observed that the detection rate remained high even for lower number of subjects
(m = 25) in case of LW-MS while for LW-WT the detection rate dropped pretty
quickly irrespective of the difference in mean. The picture became clearer for
snapshots at different values of µ(X). For both extremities, i.e., when µ(X) is
either 1 or -1 (Figure 2.2(c) and Figure 2.2(d)), LW-MS performed better than
LW-WT especially for low sample sizes. LW-WT became almost as sensitive
as LW-MS when the number of subjects for each group reached m ≈ 60. The
difference between the two methods became clearer for lower mean values of
µ(X) = 0.5 and µ(X) = -0.5 (Figures 2.2(e) and Figure 2.2(f)), where LW-WT
never became as sensitive as LW-MS. However, the detection rate was also lower
for these scenarios.

Since most real distributions do not satisfy the assumption of normality very
strictly, we also looked into the effect of skewness (γ) in our second scenario.
Similar to the first scenario, we varied the skewness of the distribution X from
γ(X) = -1 and γ(X) = 1, while keeping γ(Y ) constant at 0. Like in the first case,
we again varied the number of subjects from m = 10 to m = 150. We calculated
the detection rate for each scenario and exhibited the results in heatmap (Figure
2.2(a) and Figure 2.2(b)) with same color code as Figure 2.2(a) and Figure 2.2(b).
As observed in the heatmaps in Figure 2.3(a) and Figure 2.3(b), the difference in
performance was not that different for the two methods across different skewness
differences. However, detection rate of LW-MS was higher than LW-WT when
the number of subjects ranged from m = 20 to m = 30. We also observed that
the difference between the two methods were not modulated much by the value
of difference in skewness (Figure 2.3(c), Figure 2.3(d), Figure 2.3(e) and, Figure
2.3(f)). We did observe however, that both methods were affected by the direc-
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(a) Heatmap: LW-MS (b) Heatmap: LW-WT
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Figure 2.2: Detection rate changes with the difference in the mean (µ) and number
of subjects (m) in the data. Heatmaps of the detection rate are shown for (a) LW-
MS and (b) LW-WT. The colorbars represent the detection rate where the green
end represents low number of detection of the true difference while the yellow
end represents high detection rate. Slices of the heatmap showing difference in
detection rate of the two methods are observed for four different scenarios: (c)
Difference in mean = 1 (µ(X) = -1, µ(Y ) = 0), (d) Difference in mean = -1 (µ(X)
= 1, µ(Y ) = 0), (e) Difference in mean = 0.5 (µ(X) = -0.5, µ(Y ) = 0) and, (f)
Difference in mean = -0.5 (µ(X) = 0.5, µ(Y ) = 0). The differences are more
pronounced for lower effect sizes; however the detection rate is also lower.
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tionality of the skewness (Figure 2.3(e) and Figure 2.3(f)). We observed this only
for smaller value of skewness (γ(X) = 0.5 and γ(X) = -0.5). Even though the sen-
sitivity of the two methods became similar when the number of subjects in each
group was m≈ 90, a different trend emerged when the difference in skewness was
-0.5. At this difference, LW-WT performed mildly better than the LW-MS when
the number of subjects were in the range of m = 80 to m = 100. When the number
of subjects was m = 100, the two methods performed similarly. This makes us
suspect that the performance of LW-MS is modulated by the direction of skewnes,
when the difference of skewness of two distributions is small.

We then studied the performance of the methods when the number of nodes
(N) is varied resulting from different parcellation. Since higher number of nodes
will lead to higher number of unique brain links and therefore, higher number
of multiple comparisons, we were interested in exploring the limitations of the
two methods in terms of number of nodes. We can clearly see from Figure 2.4(a)
that the sensitivity of the LW-WT decreased gradually with increasing number of
nodes. On the other hand, the sensitivity of LW-MS decreased in steps. Even
though the detection rate of the true difference remained higher for LW-MS, one
can extrapolate the trend and speculate that for extremely high number of nodes
the two methods will be similar in terms of their detection rates. We observed a
similar trend even for smaller difference in mean (µ(X) = 0.5, µ(Y ) = 0). How-
ever for smaller difference in the mean, the detection rate was also lower (Figure
2.4(b)).

Finally, to determine the limitations of the LW-MS and LW-WT with respect to
the number of subjects, we varied the number of subjects in the range of m = 5 to
m = 11 along with m = 10 to m = 100 while keeping the other parameters constant.
As evident in Figure 2.4(a) and Figure 2.4(b), differences in the detection rate are
inversely proportional to the number of subjects. Also, we observed that when
the number of subjects was relatively high, i.e, m > 70, the detection rate of
the two methods converged. Another observation was that both methods reached
their lowest limit when m = 10. For very small samples, e.g., m = 5, the LW-WT
became better at detecting salient links, see Figure 5b. However, the detection
rate was of both methods was smaller than 1%, and thus negligible. We found
a sudden jump in the detection rate of LW-MS when the sample size became m
> 10 while the power of LW-WT increased slowly. Now that we have shown
that LW-MS is more sensitive than the LW-WT in different scenarios, in the next
section we applied both methods to a dataset comparing resting state to natural
viewing (Hlinkaa et al., 2011) to compare their applicability.
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Figure 2.3: Effect of skewness (γ) on the percentage of detection of true difference
varies with the number of subjects as shown by heatmaps for (a) LW-MS and (b)
LW-WT. Again, the colorbars represent the detection rate where the green end
represents low number of detection of the true difference while the yellow end
represents high detection rate. Skewness of one of the distribution is kept constant
at 0, while the other is changed. The slices of the heatmap showing difference in
detection rate of the two methods are observed for four different scenarios: (c)
Difference in skewness = 1 (γ(X) = 1, γ(Y ) = 0), (d) Difference in skewness = -1
(γ(X) = -1, γ(Y ) = 0), (e) Difference in skewness = 0.5 (γ(X) = -0.5, γ(Y ) = 0)
and, (f) Difference in skewness = -0.5 (γ(X) = -0.5, γ(Y ) = 0).32
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Figure 2.4: Effect of the number of nodes on detection rate when (a) difference
of mean is -1 (µ(Y ) = 0, µ(X) = 1), (b) difference of mean is -0.5 (µ(Y ) = 0,
µ(X) = 0.5). As the number of nodes increases, so does the number of multiple
comparisons leading to a decline in power. The decline is gradual for LW-WT
whereas for LW-MS, it decreases in steps. The sensitivity of LW-MS however,
aLW-MSys remains higher than the LW-WT.
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Figure 2.5: Variation of detection rate with the number of subjects (m): (a) m =
10 - 100; and (b) m = 5 - 11. We kept the number of nodes to be constant at 100.
The difference between the two distributions were also kept constant in terms of
skewness, variance, and kurtosis and the difference in the mean was 1.
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Sl. No. Link Uncorrected p value
1 right Parahippocampus Gyrus (rPG) - 2.0484× 10−8

left Pars Opercularis (lPO)
2 right Parahippocampus Gyrus (rPG) - 1.6751× 10−6

left Supramarginal Gyrus (lSpG)
3 right Caudal Anterior Cingulate Cortex (rcACC) - 1.6751× 10−6

left Superior Parietal Lobule (lSPL)
4 right Posterior Cingulate Cortex (rPCC) - 1.6751× 10−6

left Superior Parietal Lobule (lSPL)

Table 2.2: The functional brain links that were significantly different in rest vs
natural viewing conditions along with the uncorrected p value. All these links
were identified using LW-MS while the LW-WT failed to identify any.

2.3.2 Practical Application Results

As outlined in the Methods section we compared resting state FC with FC ob-
tained during natural-viewing using LW-MS and the LW-WT. The goal was to
detect salient links that were significantly different without using a pre or post
selection bias. After correcting for multiple comparisons, LW-MS identified four
functional brain links (Figure 6) to be significantly different between resting state
and natural viewing conditions: 1) right Parahippocampus Gyrus - left Pars Oper-
cularis (uncorrected p = 2.0484 × 10−8), 2) right Parahippocampus Gyrus - left
Supramarginal Gyrus (uncorrected p = 1.6751× 10−6), 3) right Caudal Anterior
Cingulate Cortex - left Superior Parietal Lobule (uncorrected p = 1.6751× 10−6)
and, 4) right Posterior Cingulate Cortex - left Superior Parietal Lobule (uncor-
rected p = 1.6751× 10−6). Thus, there were two triads at play, one connected by
right Parahippocampal Gyrus and the other by left Superior Parietal Lobule. No
links were identified using LW-WT.

2.4 Discussion

The identification of significant differences at the population level in the func-
tional connectivity is a very important issue. Observing these differences while
comparing patients with healthy population, can help us identify potential biomark-
ers for various disorders. And for healthy population cohorts, FC differences be-
tween resting state before and after a task or even comparing resting state with
a task, similar to the case-study used here, can reveal precious details about the
neural mechanisms underlying different cognitive processes. Studies have looked
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Figure 2.6: The links obtained by performing median splitting. No links were
identified using Mann-Whitney U test on non-thresholded data after correcting
for multiple comparisons. Two different triads are obtained one linked with right
Parahippocampal Gyrus and the other with left Superior Parietal Lobule. We used
BrainNet Viewer developed by [Xia et al., 2013] to show the functional brain
links.
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into these differences at a global level using graph theoretical applications while
studies looking into local processes have often used pre or post selection biases
to explore salient functional links. However, these approaches do not let us ex-
amine all the functional connections, potentially loosing precious information. In
this study we tested the use of median splitting for every link which increases the
sensitivity of capturing significant differences among all potential functional con-
nections. In this way we can ensure that all brain links are investigated without
loosing statistical power. We also applied LW-MS to successfully detect salient
links between auditory, linguistic, visual and attention areas when resting state FC
was compared with FC obtained during natural-viewing.

We noted that median splitting has been successfully used previously in other
fields [McCarthy et al., 2013, Kastrati et al., 2011, MacCallum et al., 2002]. By
simulating different scenarios, we showed that by using median splitting we in-
creased the probability to detect true FC differences after correcting for multiple
comparisons. It has been shown before that the use of a median split may enhance
type I errors [Rucker et al., 2015, McClelland et al., 2015]; however we found
that the detection rate of differences was 0% for both methods in the absence of
a true difference. One can understand that this may be due to using Bonferroni’s
correction for multiple comparisons which is known to be particularly stringent.
Another possibility is that the FC is not highly multicollinear, which has been
shown to work well with median splits [Iacobucci et al., 2015]. But, this can be
difficult to assume with linear correlations, which is used here.

The current study also highlighted some limitations of using both methods, the
LW-MS and the LW-WT. Unsurprisingly, we observed that the number of subjects
and the number of nodes affect the detection rate of both methods. We observed
that for both LW-MS and LW-WT, sensitivity increased with high sample size.
But LW-MS was able to detect salient links with high differences between the
two distributions even when the sample size was m = 25 unlike LW-WT. For a
sample size of m = 10 the detection rate of LW-MS dropped profoundly and the
LW-WT is favoured. However, the overall detection rate of both methods was
smaller than 1% at this point, and thus negligible. This strongly illustrates that
studies with sample sizes smaller than 20 participants are unreliable. In respect
with the performance sensitivity to number of nodes, the detection rate dropped
gradually in case of LW-WT as expected. However, for LW-MS the detection
rate lowered in steps regardless of the effect size. This is because the binarization
employed by LW-MS is known to render step functions. Specifically, binarization
typically gives rise to same p-value across a range of differences in mean of two
distributions leading to a step function as observed here.
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Another interesting observation was related to the modulations induced by
changes in the skewness of the FC distributions. Unlike the mean effect size there
were minimal variations over the change of skewness for both methods. Again
we observed that unlike LW-WT, LW-MS performed better with low sample size
of m = 15. However, for higher sample sizes (m ≥ 50) the sensitivity was pretty
similar for both methods. By comparing the trend at skewness values of γ = 1,
γ = -1, γ = 0.5 and γ = -0.5, we can clearly see LW-MS performed better across
all sample sizes and the trend was pretty similar for all values of skewness. For
lower skewness of γ = 0.5 and γ = -0.5 we did observe an asymmetrical trend for
both methods though. For the skewness value of γ = 0.5, the sensitivity of the
LW-WT became better when the number of subjects reached the range of m = 80
to m = 100. This asymmetry could be possibly arising from the skewness in the
contingency tables originating from skewness of the data. We also observed that
when the sample size was m ≈ 90, the detection rate of two methods converged
at ≈ 100% for larger skewness values of γ = -1 and γ = 1. However, for smaller
skewness values of γ = 0.5 and γ = -0.5 the convergence happened later when the
sample size was m = 100.

Overall we demonstrated that using LW-MS has the potential to more accu-
rately identify salient functional links between two empirical conditions as com-
pared to conventional methods. We also emphasize that the use of the LW-MS
method is not restricted to FC networks but could be also applied to comparisons
of other connectivity datasets such as Structural Connectivity (SC) and Effective
Connectivity (EC). We are aware that there are other methods like Network Based
Statistic (NBS) [Zalesky et al., 2010] which specifically aims to tackle the prob-
lem of multiple comparisons via network based approach. LW-MS however does
not aim to directly deal with the number of multiple comparisons per se, it is sim-
ply aimed to be more sensitive to capture the differences. The p values obtained
by this method can even be paired with NBS since these methods are aiming to
make it easier for us to detect salient links at different steps of the analysis.

2.4.1 Natural Viewing vs Rest

The functional brain links which were found to be significantly different between
resting-state and natural viewing condition were right Parahippocampus Gyrus –
left Pars Opercularis, right Parahippocampus – left Supramarginal gyrus, right
Caudal Anterior Cingulate Cortex – left Superior Parietal Lobule and, right Pos-
terior Cingulate Cortex – left Superior Parietal Lobule. Right Parahippocampal
Gyrus has been shown to activate when subjects are viewing passive scenes espe-
cially the ones depicting bare spatial layout [Epstein and Kanwisher, 1998, Reil-
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hac et al., 2013, Zeidman et al., 2012]. Its functional connection with left Pars Op-
ercularis shows the binding between higher order visual area and language area.
Left Pars Opercularis has also been implicated for motion learning [Fazio et al.,
2009, Clerget et al., 2011] hinting at a dual role for the link between right Parahip-
pocampal Gyrus and left Pars Opercularis obtained in this analysis. Another link
of right Parahippocampal Gyrus has been found with left Supramarginal Gyrus,
which is thought to create communication between perceptual and motor systems
[Parker et al., 2005]. It has also been linked with sentex complexity, grammatical
errors and other language tasks in auditory domain [Raettig et al., 2010, Friederici
et al., 2009, Obleser and Kotz, 2010]. These findings show two functional links
which are connecting language and visual areas.

The remaining two links, right Caudal Anterior Cingulate Cortex â left Supe-
rior Parietal Lobule and, right Posterior Cingulate Cortex - left Superior Parietal
Lobule are well known for their role in attention. Right Caudal Anterior Cingu-
late Cortex (cACC) has been shown to play an important role in focusing visual
attention in the presence of distractions [Weissman et al., 2006]. Its activation has
also been observed during auditory Stroop task [Haupt et al., 2009] showing its
modality independent role in modulating attention. In resting state imaging, it has
been shown to be negatively correlated with Default Mode Network (DMN) and
positively correlated with other attention areas like left Superior Parietal Lobule
(SPL) [Fox et al., 2005]. Just like cACC, the left SPL has been shown to be im-
portant for both auditory and visual attention [Pugh et al., 1996, Shomstein and
Yantis, 2006, Corbetta et al., 1993, Szczepanski et al., 2010]. Its anticorrelation
with the DMN areas specifically with the right Posterior Cingulate Cortex (PCC)
has been repeatedly observed [Fox et al., 2005, Margulies et al., 2007, Clare Kelly
et al., 2008]. Specifically the right PCC has been shown to decrease activation in
the presence of attention. Taken together, one can suspect that left SPL along
with right cACC is activated during the natural viewing since focusing attention is
required for this task. However, this outward attention could be the cause of deac-
tivation of right PCC forming a network with left SPL via direct communication
and right cACC via an indirect one.

2.5 Conclusion
This study presented a new method to study localized differences between func-
tional brain links by thresholding the correlation using the median, namely LW-
MS. With the use of simulations, we showed that it is more powerful than using
traditional method of using un-thresholded data and performing non-parametric
test. We also showed that the sensitivity of LW-MS and traditional methods are
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unaffected by skewness of the distribution and LW-MS performs better especially
for low sample sizes. We also tested the limits of the method and showed that
in case of extremely low sample size (m ≤ 10), both traditional method and our
method performed marginally (≤ 1%). Also, there is an inverse relationship be-
tween the power of the method and the number of brain functional regions result-
ing from different parcellations as expected. However the power decreased step-
wise unlike for the LW-WT where it decreased gradually. We showed a practical
application of LW-MS by using a case-control study aimed to detect differences
between resting state and natural viewing conditions. We successfully identified
functional brain links binding higher order visual area via right Parahippocam-
pal Gyrus and language areas like left Pars Opercularis and left Supramarginal
Gyrus. We also identified functional brain links responsible for modulating atten-
tion via DMN area (right PCC) and attention areas like left SPL and right cACC
highlighting the underlying role of attention in natural viewing process. We be-
lieve that LW-MS will be helpful in exploring local differences of functional brain
networks in the future.
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Chapter 3

TRACES OF STATISTICAL
LEARNING IN THE BRAIN’S
FUNCTIONAL CONNECTIVITY
AFTER ARTIFICIAL LANGUAGE
EXPOSURE

Sengupta P, Burgaleta M, Zamora-López G, Basora A, Sanjuán A, Deco G, et al. 
Traces of statistical learning in the brain’s functional connectivity after artificial 
language exposure. Neuropsychologia. 2019 Feb 18;124:246–53. DOI: 10.1016/
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Chapter 4

RESTING STATE NEURAL
CORRELATES OF SOCIAL
HIERARCHY PERCEPTION: A
COMBINED EEG-FMRI
STUDY

Pallabi Sengupta, Miguel Burgaleta, Gorka Zamora-López, Hernando San-
tamarı́a-Garcı́a, Gustavo Deco, Nuria Sebastian-Galles

4.1 Abstract

Perceiving social hierarchy is a fundamental step in the social interactions
in human lives. Previous studies investigating the underlying neural mech-
anism of this cognitive process revealed the role played by the sense of self
arising from resting state activity. Till date no study has looked directly into
this aspect by exploring the role played by intrinsic functional connectivity
in driving individual differences in social hierarchy perception. Here we
combined resting state fMRI with event-related potentials to reveal resting
state neural correlates of social hierarchy perception. We used a previously
validated procedure [Santamarı́a-Garcı́a et al., 2015] to create simulated hi-
erarchical scenario, where participants played a visual discrimination task
either with a high or a low ranking individual. In accordance with previous
studies [Santamarı́a-Garcı́a et al., 2015], we used the difference in the value

59



“output” — 2017/10/27 — 11:58 — page 60 — #78

of N170 component when participants viewed a superior player and when
they viewed an inferior player as an indicator of social hierarchy percep-
tion. We investigated significant correlations between this ERP marker and
resting state functional couplings revealing links between right Insula and
left Parahippocampal Gyrus, as well as, left Superior Frontal Gyrus and left
Superior Temporal Sulcus. We conclude that individual differences in the
perception of social hierarchy are induced by functional connections bind-
ing social and emotional evaluation on the one hand, and mentalizing and
automatic face perception on the other.

4.2 Introduction

Humans, non-human primates, and a variety of other species are organized
in social dominance hierarchies. Recognizing hierarchical social marks are
crucial in regulating group resources, avoiding conflicts, and favouring re-
productive success [Rushworth et al., 2013, Cheney and Seyfarth, 1990]. In
addition, the social status affects health and well-being of human [Boyce,
2004, Sapolsky, 2004] and non-human primates [Sapolsky, 2004, Sapolsky,
2005]. In humans, perceiving social status in others is an implicit process
that affects how an individual experiences one’s own social status [Santa-
marı́a-Garcı́a et al., 2015] and modulates different cognitive processes from
the most basic perceptual processes [Santamarı́a-Garcı́a et al., 2013, Zink
et al., 2008] to more cognitive â reflexive and executive processes [Boksem
et al., 2012, Santamarı́a-Garcı́a et al., 2017]. Hierarchical social cues can
be conveyed by implicit sources including face features, voice marks, verbal
assignment, or body postures, among others [Karafin et al., 2004, Oosterhof
and Todorov, 2008].

Our understanding of the underlying neural mechanism responsible for such
social status interaction remains incomplete. In this regard, some brain
regions have been consistently identified by task-based functional Mag-
netic Resonance Imaging (fMRI) studies, namely, Fusiform gyrus, Superior
Temporal Gyrus/Sulcus, Amygdala, Intraparietal Sulcus, rostro medial Pre-
frontal Cortex, Posterior Cingulate Cortex, Insula, and the Ventral Striatum
[Chiao et al., 2008, Grill-Spector et al., 2004, Kumaran et al., 2012, Zink
et al., 2008]. Extending this knowledge further to neuroanatomy, [Santa-
marı́a-Garcı́a et al., 2015] found individual differences in social hierarchy
perception to be modulated by the morphology of a network of cortico-
subcortical network consisting of superior temporal sulcus, the right poste-
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rior cingulate cortex, the anteroventral temporal lobe, fusiform gyrus, the
right insula and, the caudate nucleus. In a similar vein, [Bickart et al.,
2012] investigated intrinsic functional connectivity inducing individual dif-
ferences in social network size of humans, and found the intrinsic connec-
tivity of amygdale to be a key factor in inducing differences in the size
and complexity of social network at an individual level. Indeed, individual
differences in intrinsic connectivity strength has been reported to predict
individual differences in a wide range of cognitive tasks like motor func-
tion [Fox and Raichle, 2007], memory [Wang et al., 2010], and executive
function [Seeley et al., 2007]. However, intrinsic connectivity modulating
individual differences in social hierarchy perception remains to be investi-
gated. The current study is aimed to complete this part of the puzzle, by
combining Event Related Potential (ERP) and resting state fMRI (rsfMRI)
to investigate individual differences in fine-grained temporal dynamics of
hierarchy perception and to explore the rsFC inducing these individual dif-
ferences. Combination of ERP and MRI has already been employed by
multiple studies to connect brain morphology with cognitive abilities [Fjell
et al., 2007, Walhovd et al., 2005, Westlye et al., 2009], including social hi-
erarchy perception [Santamarı́a-Garcı́a et al., 2015]. Here we have gone one
step forward by combining rsfMRI and ERP markers in a similar fashion.

In this study, a simulated social hierarchy was built using a procedure pre-
viously used and validated [Zink et al., 2008, Santamarı́a-Garcı́a et al.,
2015, Santamarı́a-Garcı́a et al., 2013]. Participants were shown two sim-
ulated players, Superior Player (SP) and Inferior Player (IP) against whom
they performed a visual discrimination task. ERPs were recorded while
participants watched the faces of their opponents along with explicit marks
denoting their status; three stars for the SP and one star for the IP (Figure
4.1). Using the same procedure, [Santamarı́a-Garcı́a et al., 2013] reported
that participants were faster while performing the visual discrimination task
with SP showing modulation of social hierarchy in decision making pro-
cesses. They also found an effect of social hierarchy in the amplitude of
the N170 component, indicating this component as a potential ERP marker
signalling social hierarchy perception.

Bolstering these findings, [Santamarı́a-Garcı́a et al., 2015] used the differ-
ence in the amplitude of N170 when the participants viewed two simulated
opponents (superior minus inferior) as an ERP marker signalling social hier-
archy perception. This ERP marker, which they denoted as ∆N170 was then

61



“output” — 2017/10/27 — 11:58 — page 62 — #80

used to successfully reveal anatomical correlates driving individual differ-
ences in social hierarchy perception. It is of note that the authors also used
other ERP components C1 and P1, which were also reported by previous
studies to be affected by social hierarchy perception in faces [Santamarı́a-
Garcı́a et al., 2013]. Unlike ∆N170, the authors failed to find any results
using other ERP components, making us also choose ∆N170 for the current
analysis.

Here we focused on the association between ∆N170 and rsFCs in a data-
driven fashion, by investigating all the functional connections (i.e., link)
between parcellated anatomical brain regions. To make the analysis more
sensitive, we binarized each and every link using median splitting. This
method which we refer to as Link Wise Median Splitting (LW-MS) has
been proven to be a sensitive method to detect functional brain links in a
case-control scenario (Sengupta et al., in preparation). Furthermore, me-
dian splitting has been successfully used in a variety of applications [Kas-
trati et al., 2011, Kim et al., 2013, MacCallum et al., 2002, McCarthy et al.,
2013], showing its utility across different scenarios. Here, we extended the
applicability of this method by using it in a study design unlike case-control
paradigm. Based on previous literature we hypothesized significant cor-
relation between ∆N170 and links comprising brain areas are reported to
be sensitive to perceiving social cues, i.e., fusiform gyrus, parahippocam-
pal gyrus, superior frontal gyrus, superior temporal sulcus, insula, striatum,
amygdala, and, parahippocampal gyrus [Kumaran et al., 2012, Mars et al.,
2012, Santamarı́a-Garcı́a et al., 2015, Zink et al., 2008].

4.3 Methods

Since we followed the exact same procedure as [Santamarı́a-Garcı́a et al.,
2015], the current section is adapted from the same.

4.3.1 Participants

Twenty-one participants took part in this study. Eleven of them were fe-
male and they were all right-handed. They were undergraduate students
from Universitat Pompeu Fabra (Spain) in the age range of 18-27 years
(23.39 years± 2.4 years). Participants received 10 Euros per hour and were
invited via an open call for participation. None of the participants reported
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psychiatric or neurological conditions and all of them reported normal vi-
sual accuracy. Before partaking in the study, informed consent was obtained
from all the participants. The study was approved by the ethics committee
of Universitat Pompeu Fabra and it was in compliance the Code of Ethics
of the World Medical Association (Declaration of Helsinki). This sample is
a subset of the participants included in [Santamarı́a-Garcı́a et al., 2013].

4.3.2 Materials and procedure

We utilized a well-used social hierarchical paradigm to create a social hi-
erarchical environment [Santamarı́a-Garcı́a et al., 2013, Santamarı́a-Garcı́a
et al., 2015, Zink et al., 2008]. To initialize the hierarchical setting we used
brief samples of profile videos, followed by an interactive game in which
participants performed a visual discrimination task in presence of simulated
opponents. A schematic for the whole experiment design is depicted in
Figure 4.1.

4.3.3 Profile videos

We used eight different videos of ≈ 2 min each showing simulated play-
ers’ profiles. The simulated profiles were created for different sex (male,
female) and hierarchy (high, low status), and were played by four actors
(two males, two females, ≈ 25 years old). Each actor followed two scripts
in which personal, work, and academic achievements of the characters were
reported (the SP reported many successes in the professional, academic,
business, and social fields, whereas the IP reported low education, few job
opportunities, and social difficulties). Implicit cues indicating social dom-
inance was controlled by avoiding substantial differences in their clothing,
posture, facial expressions, and age.

4.3.4 Simulated game

Participants played a visual discrimination task at the same time with one
of the two simulated opponents. On average SP was shown, to have better
performance than the participant and consistently held a high rank status.
On the other hand, IP was shown to perform worse in a similar fashion to
have a lower rank. The SP and the IP, previously shown in social videos
constantly had a high and low rank in the game phase, respectively. Profiles
of both actors (SP and IP) were counterbalanced across participants. In
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Figure 4.1: Hierarchy game structure. The procedure had three stages: social
video profiles (stage 1), neutral trials (2), and social trials (3). During stage 1,
two confederates represented the superior and the IP. During stage 2, participants
performed 70 trials in a neutral context (here, hierarchical scenario was avoided).
During stage 3, participants performed the visual discrimination task while com-
paring their performance with the simulated players. The figure is relpicated from
[Santamarı́a-Garcı́a et al., 2015]
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each trial, after participants performed the visual task, feedback of their
own performance, along with that of the simulated player, were displayed
on the screen.

4.3.5 Hierarchical stimulus

A photograph of the simulated opponent was displayed with its correspond-
ing hierarchical status at the beginning of each trial (three stars for SP and
one star for IP). The simulated player always maintained a neutral position
and the gaze to the front in the photographs.

4.3.6 Visual decision task

We presented two rectangles of red dots on a black background, one at the
top of the screen and the other at the bottom. Participants were situated ≈
50 cm in front of a 19-inch screen with an angle of vision of ≈ 35◦. All
dots had the same diameter, shape, and brightness. Each rectangle had a
different percentage of red dots which were more than 1000 dots in total.
The percentage of red dots was complementary between the rectangles (e.g.,
if one had 30% of the dots, the other had 70%).We displayed screenshots of
each rectangle in every trial, with nine levels of dot percentages (44, 46, 48,
49, 51, 52, 54, and 56).

4.3.7 Procedure

We controlled for possible interactions between sex and hierarchy, i.e., male
participants played with male-simulated players and female participants
with female-simulated players. Participants were informed that they would
play visual discrimination game and their performance would be compared
with that of two players who had already completed the task and ranked
accordingly. Participants were informed about the possibility that their per-
formance could be compared with future subjects.

Subjects were placed in an electrically shielded room located in the Neuro-
science Laboratory of the Center for Brain and Cognition (Universitat Pom-
peu Fabra, Barcelona) where EEG activity was measured. The experiment
began right after electrode application. Initial hierarchy was established by
displaying a 2 min video of the other players (Fig. 4.1) in the beginning.
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Participants performed 70 practice trials where they played the game solo
and received feedback after each response. Participants had up to 1s to de-
cide which rectangle contained more red dots using the corresponding lever
(up/down) of a joystick. The game began right after training with five blocks
of 36 trials (180 total, 90 with each simulated player). In each block which
lasted around 5 min, participants played nine consecutive trials with each
player twice, followed by presentation of the updated ranking. Participants
could rest for up to 2 min between blocks. As mentioned above ranks of the
participant were always fixed by manipulating the SP’s or IP’s behaviour.
Each trial lasted ≈ 5s and started with a 1s presentation of the opponent’s
photograph (hierarchical stimulus) with its corresponding ranking. Then,
participants performed the visual discrimination task lasting 1s followed by
feedback for 2s: pictures of the participant and opponent above, and out-
come (a coin meaning correct, an ”X” meaning incorrect or a ”time over”
message) below. Both players could win or lose in a trial which ended with
the fixation cross for 1s.

4.3.8 EEG/ERP recording

EEGs were recorded from 31 scalp sites. Two bipolar electrodes were
placed above and below the participant’s left recording eye movements, two
electrodes on the mastoids, and a reference electrode on the nose. EEG
recordings were digitized at 250 Hz. All electrode impedances were <
3 KOhms. The EEG data were low- and high-pass filtered (30-0.03 Hz).
Two different kinds of analyses were used: stimulus-locked and response-
locked analysis. In the stimulus-locked analysis, EEG was segmented into
1100 ms epochs ranging from 100 ms before stimulus onset to 1000 ms
after onset (visual discrimination task). Before averaging, segments were
baseline corrected by subtracting the mean amplitude of the pre-stimulus
interval (-100-0 ms). All EEG data were semi automatically screened of-
fline for eye movements, muscle artefacts, electrode drifting, and amplifier
blocking wherein segments containing such artefacts were discarded. We
calculated the social hierarchy perception of each participant by calculating
the difference in the N170 component when the participant viewed the face
of SP minus the one when they viewed the face of the IP and denoted this
component by ∆N170. This measure has been successfully used before by
[Santamarı́a-Garcı́a et al., 2015].
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4.3.9 Resting State Scans

Participants were instructed to rest with their eyes closed and not to sleep
or think about anything in particular. Images were obtained in a GE 1.5 T
scanner using a gradient-echo T2*- weighted echoplanar imaging sequence
in the axial plane (TR, 2000 ms; TE, 50 ms; matrix, 64 × 64; voxel size,
3.75× 3.75 mm; flip angle, 90◦; slice thickness, 4 mm; FOV = 240) and 120
volumes. During audio exposure, fMRI was also acquired, with identical
parameters to the rs-fMRI sequence and 106 volumes.

4.3.9.1 Image Preprocessing

Rs-fMRI datasets were processed using the Data Processing Assistant for
Resting-State fMRI (DPARSF; [Chao-Gan Y, 2010]). The rs-fMRI pre-
processing included the slice-timing correction for interleaved acquisitions
using sinc interpolation and resampling with respect to the middle slice in
time, head motion correction, spatial normalization to the MNI standard
space, and spatial smoothing with an isotropic Gaussian kernel of 4 mm
FWHM. Further preprocessing steps included: (1) removing the linear trend
in the time series, (2) temporally bandpass filtering (0.01-0.08 Hz) to reduce
the effect of low-frequency drift and high-frequency noise [Biswal et al.,
1995, Lowe et al., 1998], and (3) controlling the nonneural noise in the seed
region time series [Fox et al., 2005]. Several sources of spurious variance
were removed from the data through linear regression: six parameters from
rigid body correction of head motion, the global mean signal, the white
matter signal, and the CSF signal.

4.3.9.2 Functional Connectivity (FC) Matrices

To generate FC matrix for each subject, Pearson’s correlation was calcu-
lated between time-series of every combination of 90 AAL regions leading
to a 90 × 90 matrix. To transform Pearson’s correlation value, r into nor-
mally distributed values, Fisher’s z-transformation was applied to all the
correlation matrices. These matrices represented the underlying network
connectivity where the correlation value between ith row and jth column
represents the functional link between ith and jth nodes of the network.

We binarized the FC matrices using median splitting. This method that we
referred to as Link Wise Median Splitting (LW-MS) has been previously
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shown to be able to successfully detect salient functional connections in a
case-control scenario (Sengupta et al., in preparation). It has also been used
in a wide variety of applications from detection of the effect of glycopro-
tein inhibitors and heparin for myocardial infarction [Kastrati et al., 2011],
to study gesture sequences in captive chimpanzees [McCarthy et al., 2013],
or to characterize driving behaviour in teenagers using a Bayesian Model
[Kim et al., 2013] among other examples [MacCallum et al., 2002], further
showing its applicability. In this study we extended its versatility by apply-
ing median splitting in a paradigm unlike a case-control design. For this
purpose, we calculated the median of all the link values across all subjects.
All the links which were below this median value were denoted the value of
0 and all the links above the median was denoted to be 1. For some links the
correlation value was ≈ 0.9 across all subjects rendering their new values
to be 1. For some links on the other hand the link value was lower than the
median across all subjects rendering their new values to be 0. Our inter-
est lied with the links with some variation across subjects which could be
correlated with their ∆N170 value.

4.3.10 Statistical Analysis

After binarization, we calculated the correlation between every possible
functional brain link and the ÎN170 component for each participant using
biserial correlation. We selected all the links with uncorrected p < 0.0001.
We also corrected all the p values for multiple comparisons using FDR
[Storey, 2002] and rechecked the corrected p value for the chosen links.
Before performing the analysis we checked if all the assumptions for run-
ning biserial correlation are satisfied by ∆N170. The normality of ∆N170
was tested using Shapiro-Wilk test while the assumption that continuous
variable should have equal variances for each category of the dichotomous
variable was tested using Levene’s test of equality of variances. Finally, the
number of outliers was determined by plotting a boxplot of ∆N170 which
came out to be 0. All the analyses were performed in MATLAB, Python
and RStudio.
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4.4 Results

4.4.1 Functional Brain Links are Linked to ∆N170

Results revealed that two links were significantly correlated after FDR cor-
rection (Figure 4.2): 1) right Insula - left Parahippocampal Gyrus and, 2)
left Medial Frontal Gyrus - left Superior Temporal Gyrus/Sulcus. The p
values as well as the correlation values obtained from the two links were
pretty similar (uncorrected p = 6.9504 × 10−4, r = -0.7419). After correc-
tion for multiple comparisons, we obtained the same links with corrected
p ≈ 0.05. Both links were anticorrelated with ∆N170 component reveal-
ing that for better perception of social hierarchy, the correlation between
right Insula and left Parahippocampal Gyrus as well as between left Medial
Frontal Gyrus and left Superior Temporal Sulcus/Gyrus should decrease.
This hinted at the presence of anticorrelations between right Insula and left
Parahippocampal Gyrus as well between left Medial Frontal Gyrus and left
Superior Temporal Sulcus/Gyrus required for social hierarchy perception.

4.5 Discussion

The current study combined ERPs and resting-state fMRI to determine the
resting state neural correlates driving inter-individual differences in social
hierarchy perception. The combination of ERPs and resting-state fMRI has
been previously used successfully to model top-down attentional processes
[Crottaz-Herbette and Menon, 2006], and provided us a unique opportunity
to use a fine-grained ERP-based measure to investigate the rsFC driving
differences in social hierarchy perception at an individual level. We revealed
the role of two resting state functional couplings, one between right Insula
and left Parahippocampal Gyrus and the other between left Medial Frontal
Gyrus and left Superior Temporal Gyrus inducing individual differences in
social hierarchy perception.

One of the regions obtained by our analysis, right Insula (rIn) has been
shown to be involved in recognition of contextual social information asso-
ciated to faces [Eisenberger, 2003] and in categorization of faces according
to their learned social status [Eger et al., 2013]. Exhibiting a more general
role played by the Insula, [Bzdok et al., 2012] found activation of bilat-
eral Insula among other regions to be involved in social judgments of faces,
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Figure 4.2: Resting state functional brain links between right Insula and left
Parahippocampal Gyrus along with left Superior Frontal Medial and left Supe-
rior Temporal Sulcus were found to be important. The presence or absence of
these links are significantly correlated with social hierarchy perception after cor-
recting for multiple comparisons. We used BrainNet Viewer developed by [Xia
et al., 2013] to show the functional brain links.
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which is a key step in contextualizing social hierarchy. A more direct evi-
dence of the involvement of rIn in social hierarchy perception comes from
[Santamarı́a-Garcı́a et al., 2015], who reported the morphology of rIn to be
correlated with individual differences in social hierarchy perception. It is
important to remember that the involvement of rIn could also arise from an
emotional component associated with hierarchy recognition Indeed Insula
has been consistently identified as a brain area responsible arousal regu-
lation [Craig and Craig, 2002, Paulus and Frank, 2003, Turk et al., 2004],
which a key component of hierarchy recognition [Boyce, 2004, Mehta et al.,
2008].

In this study we found that rIn was linked with left Parahippocampal Gyrus
(PG). Its role has been reported for emotional evaluation and emotional
learning [Lane et al., 1997, Tabert et al., 2001, Trautmann et al., 2009, Win-
ston et al., 2002, Wood et al., 2005]. A more direct evidence of the involve-
ment of left PG in social hierarchy perception comes from the findings of
[Zink et al., 2008] who reported differential activation of bilateral PG de-
pending on the status of the opponents. It is also implicated in associated
learning suggesting that participants might have adjusted their performance
in the task after recognizing the social order and then changing their ex-
pectance in that social context [Aminoff et al., 2007]. Its role is well known
in Social Anxiety Disorder (SAD), where patients experience fear and anxi-
ety from social situations [Hattingh et al., 2013]. [Hattingh et al., 2013] ob-
served higher activation in left PG in SAD subjects as compared to healthy
individuals showing that deactivation of left PG is required for social inter-
actions. This made us speculate that an activation of rIn and deactivation
of left PG might be at play during social hierarchy perception leading to an
anticorrelation between the two.

Another significant link observed in this study was between the medial part
of the Left Superior Frontal Gyrus (SFG), which has been consistently ob-
served to play a role in perceiving ’social’ dominance as part of the Pre-
frontal Cortex [Watanabe and Yamamoto, 2015] and the Left Superior Tem-
poral Sulcus (STS), which has been thought to be part of a distributed neural
system for face perception [Haxby et al., 2000]. The medial part of Supe-
rior Frontal Gyrus (SFG), has been shown to be involved in differentiating
between self and other [Vanderwal et al., 2008] especially for face process-
ing [Zhang et al., 2009a]. Its high activity has been consistently reported
in cognitive-affective brain disorders like internet addiction (Yuan et al.,
2013), attention deficit hyperactivity disorder [Li et al., 2014a, Yang et al.,
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2011], depression [Liu et al., 2014, Xu et al., 2014], and anxiety disorders
including obsessive-compulsive disorder [Hou et al., 2012] and posttrau-
matic stress disorder [Yan et al., 2013] showing that for normal social func-
tioning, its activity should decrease.

Left STS is linked to emotional and social cues in faces [Marsh et al.,
2009, Mende-siedlecki et al., 2013, Muscatell et al., 2012, Stanley and
Adolphs, 2013, Trautmann et al., 2009]. Its activation has also been reported
by [Vanderwal et al., 2008] during self vs other referential task, hence impli-
cating STS in wider social processes, especially in distinguishing between
self and other. This view is bolstered by its activation while viewing parental
faces [Zhai et al., 2016]. Since the current study found status-related dif-
ferences in the ’face selective’ ERP component, which was in turn used as
a marker of social hierarchy perception, the involvement of the left STS
was unsurprising. This view is consistent with the findings of [Santamarı́a-
Garcı́a et al., 2015], who reported that that cortical surface area (CSA) of
the left STS correlates with ∆N170, ERP marker of social hierarchy per-
ception. This shows that its activation along deactivation of SFG is required
for normal social functioning giving rise to an anticorrelation observed in
this study.

Taken together, we have observed two rsFCs modulating individual differ-
ences in early social status recognition, captured by the N170 component.
Even though the corrected p values obtained for both links were at trend (p
≈ 0.05), it is important to remember that we did not pre select the regions,
which is quite common in the neuroimaging literature. We believe that a
replication with larger sample size will be able to confirm these findings.
One of the rsFC obtained in this finding is an anticorrelation between rIn
and left PG, binding social and emotional evaluations together. But since
PG is also responsible for memory we cannot rule out the possibility that
the link between rIn and left PG is to modulate the social evaluation based
on memory and one’s sense of self arising from that.

Another important link observed in this study was between left SFG, a
DMN area, and left STC which might serve as a link between mentalizing
and social aspects of face perception. The two links thus can point to the
direction of the required basic steps for social hierarchy perception. First,
left STC must be activated to comprehend social cues from the faces of the
opponents while deactivation of SFG will enable the subjects to distinguish
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between self and the other. To construct the social hierarchy and put oneself
in it, rIn will be activated while left PG will be deactivated leading to a con-
nection between social and emotional evaluation of the situation preparing
the subjects to act accordingly. Since the links obtained were in the resting
state, the aforementioned scenario shows the possible steps that our brain
needs to be ’prepared’ for during rest itself. Indeed correlations between
resting state couplings and task networks have been consistently reported
[Biswal et al., 1995, Smith et al., 2009], hinting at the ’preparedness’ of our
brain. The extent of this ’preparedness’ influences the extent to which we
can perceive social cue around us and interact accordingly.

Conclusion

The current study highlighted the importance of the functional coupling be-
tween rIn and the left PG along with left SFG and left STS in the resting-
state brain for perception of social hierarchy using a combination of rs-fMRI
and ERPs. We speculate that the negative correlation between the links and
∆N170 is the result of an anticorrelation emerging from inhibition of left
PG and left SFG and activation of rIn and left STS.
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Chapter 5

DISCUSSION

The goal of this thesis was to introduce a method designed to detect salient func-
tional links without a priori or a posteriori selection bias. In Chapter 1, we gave
a general introduction of the field of resting state functional connectivity and the
importance of looking into local information namely the functional brain links in
the resting state brain. We also discussed the various methods available to the
researchers to explore salient functional connections in the simplest study design,
case-control scenario. The different limitations highlighted in Chapter 1, called
for a method free of pre or post selection bias without increasing the complexity
of the method. In Chapter 2, we introduced a new method, namely Link Wise Me-
dian Splitting (LW-MS) which was aimed to solve these issues raised in Chapter
1. With the aid of simulations, we exhibited that LW-MS is more sensitive than
traditional non-parametric methods to true differences in functional connections
in a case-control scenario, especially across small sample sizes.

In Chapter 2, we applied LW-MS in a simple case-control study design aimed
to reveal functional connections responsible for natural viewing. Unsurprisingly,
LW-MS was capable of detecting four functional brain links hinting towards the
neural mechanism underlying the complex process of natural viewing. On the
other hand, non-parametric method that we referred to as Link Wise Weighted
Test (LW-WT) failed to detect any salient link. To further test the capability of
LW-MS, we applied it to a more complex study design in Chapter 3, where we
aimed to understand the resting state salient functional brain link responsible for
statistical learning in the auditory domain. Again, LW-MS was able to detect
change in the resting state functional brain link between right Posterior Cingulate
Cortex (PCC) and left Superior Parietal Lobule (SPL), after participants listened
to auditory stimuli consisting of statistical properties. The control stimulus con-
sisting of similar sounds while devoid of any statistical pattern ensured that the
link obtained was solely responsible for statistical learning.
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Chapter 4 was aimed to investigate the resting state functional connections in-
ducing inter-individual differences in social hierarchy perception. In this chapter
we pushed the limits of LW-MS in terms of study design since we were not inter-
ested in group differences but in individual differences. Using LW-MS, we were
successful in capturing two functional brain links albeit the significance was at
trend level after correcting for multiple comparisons (p = 0.05). The low level of
significance pointed to the need of testing the LW-MS in a design akin to the one
presented in Chapter 4 and adapting it further to detect functional links in a study
design aimed to explore individual differences. It is worth noting that traditional
parametric method performed much worse in this study design, again highlighting
the increased sensitivity of LW-MS independent of the paradigm. The high value
of significance, as pointed out later in this Chapter, might be arising from low
sample size.

Overall, this thesis highlighted the advantage of using LW-MS in detecting
salient functional links in the resting state brain. It is noteworthy that LW-MS
does not require any assumption pertaining to the resting state functional connec-
tivity, and therefore, can be used on any connectivity obtained in any imaging
modality. In the current thesis, the resting state functional connectivity was cal-
culated using Pearson’s pairwise correlation, which is the most common method
used in neuroimaging studies. However, LW-MS does not require any assumption
pertaining to Pearson’s correlation, and henceforth can be used on any of the FC
methods mentioned in the Introduction (section 1.2). Therefore, it is safe to claim
that LW-MS is quite versatile when it comes to its application across different
FC methods and imaging modalities. And its application across different study
designs presented in this thesis aimed to have furthered its claim of versatile ap-
plicability. However, LW-MS also comes with its own sets of limitations in terms
of different parameters and it is important to understand them in detail. Some of
these parameters as we will observe in the next section can affect connectivity
analysis at both local and global level while others are more affective at a local
level. After understanding the limitations of LW-MS and its affects in the differ-
ent studies presented in this thesis, I will present the information revealed about
the resting state brain obtained by the three experiments presented in this thesis.
Since, all three experiments presented here explored resting state information, I
will attempt to combine all the results and make sense of the underlying resting
state neural mechanisms underpinning various cognitive processes.

76



“output” — 2017/10/27 — 11:58 — page 77 — #95

5.1 Parameters Affecting the Analysis
Understandably, several parameters from the FC matrices or the study design can
affect the performance of various analysis methods. In this section, these pa-
rameters and their effect will be discussed to provide a much clearer picture of
LW-MS. As we will see, these parameters also provide the glimpse of limitations
of the method.

5.1.1 Parcellation

Brain parcellation or rather segmentation is a renowned image segmentation prob-
lem in computer vision and there are various approaches ranging from edge based
approaches [Chan and Vese, 2001] to clustering techniques [Chuang et al., 2006]
to graph cuts [Shi and Malik, 2000]. However, segmenting neuroimages espe-
cially functional neuroimages brings forth additional challenges. One of the first
major challenges faced by researchers trying to segment functional images face is
the absence of clear boundaries which are present in anatomical brain images.

A clear example of this phenomenon can be seen with IFG, which can be at
least divided into two subdivisions [Cox et al., 2014]. However, the huge vari-
ability in the structure itself, along with inconsistencies in the functional divi-
sions, makes the task difficult. Another kind of discrepancy can be observed with
DLPFC, which can be further subdivided in different regions [Cox et al., 2014].
The areas giving rise to DLPFC vary quite differently depending on the study.
While some studies combine SFG and MFG to label DLPFC (e.g., [Croxson,
2005]), other studies separate SFG and only combine IFG and MFG (e.g., [Prasad
et al., 2005]). These inconsistencies make the identification of important func-
tional brain links or activations in a study more difficult to interpret. Moreover,
labelling the areas differently can cause minor differences in the results observed
leading to more inconsistency in the literature. Another effect of different par-
cellations is the number of brain regions which often lead to different number of
functional connections. Higher number of brain regions often led to higher num-
ber of functional connections leading to higher number of multiple comparisons
making it more difficult to detect significant functional connections.

To examine the effect of parcellation, in Chapter 2 we simulated different sce-
narios with different parcellation values from 50 to 150. We simulated difference
in a functional connection by sampling 50 participants from two different link dis-
tributions with different mean values. As elaborated in Chapter 2, we compared
the performance of LW-MS with that of LW-WT and found that LW-MS per-
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formed much better than non-parametric methods across different parcellations.
Another interesting observation was the step-wise decrease in the performance of
LW-MS with increasing parcellation unlike gradual decrease of non-parametric
methods. If one extrapolates the trend, it is inevitable that the performance of
LW-MS and LW-WT would coincide at a very high parcellation value. But such
parcellations, are not used in practice and might lead to further complications of
interpretations.

Both Chapters 3 and 4 utilized AAL 90 parcellation, which makes the results
easy to interpret. In the case application of Chapter 2, we used Hagmann 66
parcellation which is used extensively by various studies. For both 90 and 66
brain regions, we can clearly observe (Figure 2.4) that the performance of LW-MS
is much better than that of LW-WT, reconfirming the advantage of using LW-MS
over traditional methods. This observation is bolstered by the findings in Chapters
3 and 4 where LW-WT did indeed fail to identify functional brain links unlike LW-
MS.

5.1.2 Number of Participants

Sample size has been consistently shown to play an important role in neuroimag-
ing studies irrespective of the designs as pointed out by various studies [Pajula and
Tohka, 2016, Button et al., 2013]. Low sample size is the case for large number of
neuroimaging studies especially fMRI studies because of the expensive cost of ob-
taining each scan. A trivial fact is that large sample size produces more consistent
results and higher statistical power [Suckling et al., 2010]. Low power resulting
from low sample size can lead to multiple problems like overestimation of the
effect size of a true effect or requiring stringent thresholds to find if the effect is
there or not [Button et al., 2013]. Moreover, low power will automatically mean
that the chance that a study is reporting a true effect is extremely low making it
highly unreliable.

These situations only exist for simple case-control scenarios or when groups
are present and compared. In the case where only one group is present, a simple
technique like Inter Participant Correlation (ISC) is used. In the ISC technique, the
time series of the fMRI for a brain region is correlated across different participants
[Pajula et al., 2012]. For this technique to work properly, [Pajula and Tohka, 2016]
estimated that the studies should at least have 30 participants, which is often not
observed in neuroimaging. They reported that the lower limit of having acceptable
sample size is 20. If a study has less than 20 participants, their simulation showed
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disastrous results in terms of reproducibility. They also observed that having more
than 30 participants did not improve the scenario much further.

Most of these studies which estimated the ideal sample size however, only
considered traditional parametric or non-parametric methods. But as pointed out
in Chapter 2, LW-MS is more sensitive than traditional methods. Yet to observe
the limitations of LW-MS in terms of sample size, we simulated true differences
in link distributions and compared the detection rate across various sample sizes
with that of traditional non-parametric method (Chapter 2). As detailed in Chap-
ter 2, the performance of LW-MS was better across different scenarios, except
when the number of participants was below 20. However, the performance of
both methods was extremely low for this situation, making such low sample sizes
undesirable. This is similar to the finding of [Pajula and Tohka, 2016] who sug-
gested that sample size should be between 20 to 30. An important observation was
that for LW-WT, which is the statistical test used by neuroimaging studies, the per-
formance was worse than that of LW-MS across all sample sizes, but specifically
in the case for smaller sample sizes. This might be one of the reasons that the
authors reported the ideal sample size to be 30. In all the data-sets used in this
thesis, we had more than 20 participants. Even then, LW-WT failed to capture the
salient links across all study designs. For Chapter 4, the number of participants
was 21, which is lower than the optimal sample size suggested by [Pajula and
Tohka, 2016]. This might be one of the reasons that the p value corresponding to
the obtained links was not low enough to pass multiple comparisons corrections.
As mentioned in Chapter 4, a replication with higher sample size should be able
confirm the findings without pre selection biases.

Finally, I would like to mention that all these limitations about sample size
mostly focus on only Type I error, which indicates the number of false positives
reported by a study. On the other hand, Type II error remains largely ignored by
the neuroscience community [Lieberman and Cunningham, 2009]. Ironically (or
non-ironically), both these errors could be limited by larger sample sizes, which
is often not possible because of high costs of neuroimaging. A possible solution
to this problem is collaborative work instead of individual studies. This view has
indeed been suggested by multiple studies [Button et al., 2013, David et al., 2013].
In fact, replication studies with large number of participants would be taken more
seriously. This is due to the fact that negative results cannot be explained away
by low power, battling the problem of publication bias since these results would
most likely have to be published.

I would also like to point out, that one of the major factor that is causing low
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power for most of the true effects reported is publication bias. This bias works
at multiple levels, where at a higher level only studies having positive results are
published. At a lower level, labs are often forced to focus only on obtaining
positive results to publish. Another level is added to this bias, when replication
studies especially with negative results are not published often. This bias, as one
can imagine, leads to considerable amount of bias regarding the power of the
effects. Due to the fact that, only positive results are published, the true effect sizes
must be considerable low as compared to the ones reported in individual studies
and even meta-analyses. This brings forth two ideas to address the issues of low
power often reported in neuroscience. First, more collaborative works should be
performed to increase the sample size. Second, negative studies especially with
large sample sizes should also be published for us to be able to estimate true
effect-sizes.

5.1.3 Study Design
Even though not explicitly mentioned before, study design is an important part
of neuroimaging analysis. The statistical tests would be different depending on
the study design, as well as the interpretation. To illustrate further, let me give an
example where the resting state FC is compared between two conditions where
one set of participants viewed a simulated social ranking based on gender while
other set of participants viewed a simulated social ranking based on race. To
compare the extent of changes induced by the two different social conditioning
will utilize Student’s t test or Mann-Whitney Test. If the study, however, focused
on the individual differences in extent of change in the resting state FC induced by
the simulated social ranking based on gender, Pearson’s correlation or Spearman’s
correlation will be employed.

The functional connections obtained in both studies must be playing roles in
perceiving social hierarchy solely based on one’s appearance. However, their roles
and importance might be different depending on the case. The FCs detected by the
first study will point to the domain specific mechanisms while the ones detected
by the second study will reveal a combination of both domain general as well
as domain specific mechanisms. It is very interesting to observe the two very
different types of information obtained by the two studies and the very different
types of statistical methods that had to be utilized to obtain the information.

In a similar fashion, the methods used for different study designs are also
different. The most important difference in the methods is often driven by the
questions asked by the study and therefore, the research field. Having said, it
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is apparent that a lot of analysis methods are used by multiple fields. Some of
the most famous examples of such crossovers are graph theoretical techniques
[Achard et al., 2006] and to a certain extent Network Based Statistics [Zalesky
et al., 2010]. As detailed in the Introduction (section 1.2.2.1), graph theoretical
techniques are basically used to explore topographical properties of the commu-
nication patterns in the brain. This technique has been ’brought over’ from social
studies, where the network formed by social interactions is investigated. The Net-
work Based Statistics is the use of network based clustering approaches aimed to
address multiple comparisons in exploring functional connections.

For both crossovers, the assumptions and the questions, especially the ques-
tions asked by the methods in both fields are quite similar. For the case of graph
theory, its application in both social science and neuroscience, gives the similar
information. To give a specific example of this similarity, we can look into the
investigation of terrorism networks, which are quite important to understand. For
this network, important information is held by the person who is a key hub in the
network. If this terrorist can be identified, a lot could be learnt about the terror-
ist network in question among other things. Similarly, key information about the
resting state brain network could be obtained by identifying the key hubs in the
brain network. In case, of Network Based Statistics, clustering techniques on net-
works has been in neuroscience itself [Nichols and Holmes, 2002]. The current
thesis itself demonstrated the utility of median splitting which is used in other
fields showing another crossover in neuroscience.

These crossovers show that the same method can be used to investigate a wide
variety of studies. The method presented in this thesis does precisely the same.
Even though, in Chapter 2, we only showed better performance of LW-MS in
a case-control scenario, different applications presented in this thesis, shows the
applicability of LW-MS across different studies. In Chapter 2, the application
is a classic case-control study, where LW-MS successfully detected three func-
tional connections. In Chapter 3, the study design involved two groups, with
two resting state scans obtained from each group, which is more complex than
the case-control study. In Chapter 4, the study design involved only one group
and a combination of Event Related Potential and resting state FC to determine
functional brain links responsible for social hierarchy perception. The different
designs used in this thesis, shows the versatility of LW-MS.

Looking through the different parameters that can affect analysis methods to
detect salient functional brain links, it is quite apparent that the method introduced
in this thesis is quite useful. A major advantage of using Link Wise Median Split,
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that was not mentioned before is the limit over type I error. As apparent from
Chapter 2, irrespective of the parcellation or sample size, in the absence of true
differences, the detection rate for both LW-MS and non-parametric method be-
comes 0%. The absence of any type I error is quite unnerving given that it must
come at a price of higher type II error.

As mentioned in Chapter 2, the absence of any type I error comes from the
use of Bonferroni’s correction. Even though the true difference is only simulated
in one functional link, in all the simulations we are correcting for all the possi-
ble functional connections. Even when the number of brain regions is only 50,
the number of brain connections are (50 2) = 1225, leading to more than 1000
multiple comparisons. Considering that the number of simulations would still
lead to 5% error rate, the error rate detected after Bonferroni’s correction would
be ≈ 0.0041%. As mentioned earlier, even though this would mean extremely
negligible chances of finding false positives, restrictive corrections for multiple
comparisons is actually making us miss a lot of salient links with true effect due
to higher type II errors.

In the current thesis, our only aim was to detect salient links free of any a
priori or a posteriori selection bias. For this purpose, we used LW-MS on resting
state for three different stimuli revealing crucial information about the functional
connections that change in the resting state itself. In the application of Chapter
2, we compared resting state FC with FC obtained during natural viewing. Us-
ing LW-MS, we identified three functional brain links encompassing language,
visual, auditory and attention areas. In Chapter 3, we compared two resting states
obtained after auditory stimuli pertaining to either statistical learning or random
audio stream after controlling for the baseline obtained from resting state before
the stimuli. Using LW-MS, we observed one functional brain link between right
PCC and left SPL, showing the effect of working memory and attention.

In Chapter 4, we correlated functional brain link with Event Related Poten-
tial indicating the extent of social hierarchy perception. Using LW-MS at a global
level, using the median of all the functional connections across all participants, we
observed two functional connections, one between right Insula and left Parahip-
pocampal Gyrus, and the other between left Superior Frontal Medial Lobe and left
Superior Temporal Sulcus. These links showed the involvement of emotional per-
ception, facial perception, memory and, self perception. The link between right
PCC and left SPL has been observed in both Chapters 2 and 3, even though the
studies addressed very different cognitive processes. In Chapter 2, the applica-
tion aimed to understand natural viewing, while in Chapter 3 the project aimed to
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understand statistical learning in the auditory domain. The detection of the same
brain link in two very distinct processes reveals interesting information about rest-
ing state as we will see in detail in the next section.

5.2 The Resting State Brain: What did we learn?
This section is aimed to understand the information revealed by the three exper-
iments presented in this thesis. As mentioned above, Chapter 4 was aimed to
understand the intrinsic functional connectivity inducing individual differences in
social hierarchy perception. Even though, the links obtained by performing LW-
MS did not pass FDR test, they were still significant after chance level without
doing any pre selection biases. Of considerable interest is the link between right
PCC and left SPL, which was obtained in both Chapters 2 and 3 aimed to un-
derstand two different cognitive processes with diverse study designs. So let us
first focus on this link and try to understand its involvement in natural viewing
(Chapter 2) and statistical learning in auditory domain (Chapter 3).

To understand the role played by the link between left SPL and right PCC, we
should first understand the roles played by the two regions separately. The right
PCC is a major ’hub’ of DMN, partially because of the anatomical properties
that it possesses [Hagmann et al., 2008]. As elaborated in the Introduction (sec-
tion 1.1), the DMN is a network that is ’active’ during rest and often deactivates
during task performances. As expected, the deactivation of the right PCC has
been observed in various tasks including visual discrimination, working memory,
among others [Leech and Sharp, 2014, Clare Kelly et al., 2008].

Left SPL on the other hand, is most widely known for its involvement in the
fronto-parietal attention network, which is part of the DAN [Corbetta et al., 2008].
Moreover, it is also part of executive control system [Duncan, 2010] and working
memory [Linden, 2007]. The functional connection between DAN and DMN, as
you might remember from the Introduction (section 1.1), is arguably one of the
most well-known functional brain link that has been reported in neuroscientific
literature [Buckner et al., 2009]. The ’anticorrelation’ between these two net-
works, forming the functional connection between right PCC and left SPL, has
aLW-MSys been associated with attention. This anticorrelation has been ques-
tioned by [Murphy et al., 2009] who showed that global signal regression would
lead to the presence of false anticorrelations. In this thesis, the data-set used in
Chapter 3 had global signal regression as one of the preprocessing steps, while the
one in Chapter 2 did not. Since both studies detected the same link, I do not think
that global signal regression played a role in their detection. This also cements the
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importance of the link between DMN and DAN, which is in line with the findings
of [Fox et al., 2013].

The two studies in which this link has been detected involved Statistical Learn-
ing (Chapter 3) and Natural Viewing (Chapter 2). In Chapter 2, natural viewing
was explored by showing the participants a movie, and then comparing the FC
obtained during natural viewing and resting state FC. Watching a movie, involves
auditory and visual stimuli along with attention demands. This point to the possi-
ble roles played by the communication between right PCC and left SPL, involving
visual and auditory attention. Along with the involvement of attention, this link
also hints at the possibility of working memory.

The involvement of working memory arguably can also be observed in Chapter
3, which was aimed to explore the neural underpinnings of Statistical Learning. In
Chapter 3, we investigated statistical learning in the auditory domain and left SPL
has been mostly implicated only in the visual domain. However, its implication
has also been reported in the auditory attention, showing its domain general role.
Since, we told the participants prior to the experiment, that they might be listen-
ing to ’alien language’; we think that working memory and executive role of the
attention might be at play here. Participants must be expecting ’language’ stimuli
with statistical regularities and voluntarily allocated attention to the audio stream.
Since the audio stream with ’artificial language’ (for more details see Chapter 2
Methods section), does contain statistical regularities, the working memory must
have been activated. This in turn would lead to major changes between the two
conditions as observed.

One might also think that since watching a movie will involve language and
will lead to the same involvement of statistical learning as observed in Chapter
2, maybe the link between right PCC and left SPL is just signifying the role of
SL in natural viewing. However, we should remember the multiple roles like vi-
sual attention and executive attention control played by this link. We should also
remember that our brain is a highly efficient organ, where a simple function can re-
cruit a set of functional brain links to be more efficient or a more complex function
can recruit one brain link to perform multiple functions. This again reminds me,
of the one-to-one mapping that we often have of the neural mechanisms, which is
most likely not true.

Another possibility that might be at play here is the simultaneous involvement
of top-down as well as bottom-up attention systems. This is assuredly true in the
application case study in Chapter 2, since participants would employ bottom-up
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system, when they received the auditory and visual stimuli. Even if they were not
told prior to the experiment about the stimuli, they would also have to employ
top-down attention system to comprehend the ’story’ behind the movie. In Chap-
ter 3, as well one can suspect the involvement of both attention systems, where
participants would first employ top down system expecting to decipher the ’alien’
language. They would also have to utilize bottom-up attention after the employ-
ment of auditory stimuli. Both these situations are equally likely, and since they
both activate and deactivate the same brain regions [Katsuki and Constantinidis,
2014], namely right PCC and left SPL, it is not possible to choose one of the two
explanations.

We observed the involvement of attention in one form or the other in both
tasks, and we observed the employment of the same brain link between right PCC
and left SPL in both projects. This observation might make one think that when-
ever attention is involved, this brain link must be involved. Indeed the involvement
of right PCC also gives the same idea, since it must deactivate for the attention
system to start working and this link might as well be the first link to ’start’ the
process. We note that this might not be the case, and all the links possibly in-
volved in attention might start working together. However, the extent of its role in
attention cannot be denied in light of its detection even after performing stringent
multiple comparisons correction in two very different scenarios.

But to think of this link as the ’attention’ link will be a grave mistake. It has
been shown that attention could be divided into two distinct categories namely ’ex-
ternal’ and ’internal’ [Jack et al., 2013]. In fact this distinction has been brought
forth by William James himself, who described one type of attention to be pas-
sive, reflexive, involuntary, while the other to be active and voluntary [James,
1890]. Internal attention, which is mostly passive, is focused on tasks that involve
the sense of ’self’ and hence mostly social tasks. External attention on the other
hand is more active and is utilized in tasks that has nothing to do with the idea
of self, like a mechanical task or statistical learning. [Jack et al., 2013] presented
two attention demanding tasks either in the form of reading a text or watching a
movie either involving social condition or involving mechanical condition. They
found that social task invoked DMN regions while mechanical task invoked DAN
regions, showing that even attention tasks can employ DMN areas as long as the
task involves social stimuli.

This brings forth a new explanation of the resting state brain, which instead
of being understood as just a baseline, should be looked as a ’self-aware’ organ.
Indeed, it has been proposed that the DMN is likely observed during social tasks
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because during ’rest’, our brain is involved in self-related thoughts [Mars et al.,
2012] This view can be further supported by the findings presented in Chapter 4,
where we found the involvement of social areas like STS, SFG, parahippocampal
gyrus and the insula even in the resting state brain. In fact according to our finding,
the links reported between these regions, correlated with their social hierarchy
perception, showing further that our brain at rest is involved in self-referencing.
Therefore, I urge us to shift our focus of trying to divide the two anticorrelated
states of our brain not in terms of tasks, and more in terms of the type of tasks.

5.3 Concluding Remarks
Understanding the functional connections in the human brain remains to be a ma-
jor challenge in the neuroimaging literature. Even though, comprehending their
involvement in different cognitive processes provides unique information about
the underlying neural mechanism, the sheer number of functional connections to
look through makes this an extremely difficult feat. To bypass this challenge,
various methods exist from pre selecting the brain links to clustering techniques.
However, most methods suffer from pre or post selection bias. The avoidance of
these biases come at a cost of high complexity making it more difficult to use the
method and also more difficult to interpret the results.

In this thesis, we introduced a new method, namely Link Wise Median Split-
ting (LW-MS), which addresses these issues by using median splitting. Median
splitting has successfully been used previously in other fields like consumer psy-
chology. The contribution of this thesis, therefore, is to show its usage in under-
standing functional connections. With the aid of various simulations, we have
shown its advantage over the use of traditional non-parametric methods. We have
also applied the method to three different study designs exploring three different
cognitive processes, which further proves its usefulness. Unsurprisingly, LW-MS
has successfully identified salient brain links in all three studies unlike its non-
thresholded counterpart.

In sum, we claim Link Wise Median Splitting to be a useful method to explore
functional connectivity without worrying about complexity, selection bias or error
prone results. We hope that in the future more studies will use this method to
reveal crucial neural mechanisms.
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small sample size undermines the reliability of neuroscience. Nature Reviews
Neuroscience, 14(5):365–376.

[Bzdok et al., 2012] Bzdok, D., Langner, R., Hoffstaedter, F., Turetsky, B. I.,
Zilles, K., and Eickhoff, S. B. (2012). The modular neuroarchitecture of social
judgments on faces. Cerebral Cortex, 22(4):951–961.

[Cao et al., 2016] Cao, J., Chen, X., Chen, J., Ai, M., Gan, Y., Wang, W., Lv,
Z., Zhang, S., Zhang, S., Wang, S., Kuang, L., and Fang, W. (2016). Resting-
state functional MRI of abnormal baseline brain activity in young depressed
patients with and without suicidal behavior. Journal of Affective Disorders,
205:252–263.

[Cao et al., 2006] Cao, Q., Zang, Y., Sun, L., Sui, M., Long, X., Zou, Q., and
Wang, Y. (2006). Abnormal neural activity in children with attention deficit

90



“output” — 2017/10/27 — 11:58 — page 91 — #109

hyperactivity disorder: a resting-state functional magnetic resonance imaging
study. Neuroreport, 17(10):1033–1036.

[Castellanos et al., 2008] Castellanos, F. X., Margulies, D. S., Kelly, C., Ud-
din, L. Q., Ghaffari, M., Kirsch, A., Shaw, D., Shehzad, Z., Di Martino, A.,
Biswal, B., Sonuga-Barke, E. J. S., Rotrosen, J., Adler, L. A., and Milham,
M. P. (2008). Cingulate-Precuneus Interactions: A New Locus of Dysfunc-
tion in Adult Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry,
63(3):332–337.

[Castellazzi et al., 2014] Castellazzi, G., Palesi, F., Casali, S., Vitali, P., Wheeler-
Kingshott, C. A., Sinforiani, E., and D’Angelo, E. (2014). A comprehensive as-
sessment of resting state networks: Bidirectional modification of functional in-
tegrity in cerebro-cerebellar networks in dementia. Frontiers in Neuroscience,
8(8 JUL):223.

[Cera et al., 2014] Cera, N., Tartaro, A., and Sensi, S. L. (2014). Modafinil alters
intrinsic functional connectivity of the right posterior insula: A pharmacologi-
cal resting state fMRI study. PLoS ONE, 9(9):e107145.

[Chai et al., 2016] Chai, X. J., Berken, J. A., Barbeau, E. B., Soles, J., Callahan,
M., Chen, J.-K., and Klein, D. (2016). Intrinsic Functional Connectivity in
the Adult Brain and Success in Second-Language Learning. Journal of Neuro-
science, 36(3):755–761.

[Chan and Vese, 2001] Chan, T. F. and Vese, L. A. (2001). Active contours with-
out edges. IEEE Transactions on Image Processing, 10(2):266–277.

[Chao-Gan Y, 2010] Chao-Gan Y, Y.-F. Z. (2010). DPARSF: a MATLAB tool-
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