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Abstract 
 

During the last century the nervous system has been mainly studied from a reductionistic 

approach, based on the hypothesis that understanding in depth single neurons or limited 

neuronal populations would lead to general conclusions on brain function.  However, to 

what extent anatomical details of single neurons can affect the wiring of the networks they 

form is a largely overlooked question. Intellectual disability provides an excellent opportunity 

to explore the relevance of fine structural details, because many disorders show specific 

architectural alterations that correlate with cognitive performance. 

In this Thesis, I aimed to study how the network topology of neuronal circuits is affected by 

dendritic architectural features in a mouse model of intellectual disability, namely Down's 

syndrome, and upon the rewiring effect of pro-cognitive treatment. I did so from three points 

of view: 

1. The exploration of a 2D minimal computational model of cortical layer II/III 

parameterized by experimental data on dendritic tree architecture of healthy mice and  two 

Down syndrome mouse models 

2.  The study of within-region morphological variations of hippocampal CA1 pyramidal 

neurons and their dependency of spatial embedding and cellularity in healthy mice and a 

Down syndrome mouse model. 

3.  The development of an experimental and computational framework for whole brain 

multiscale assessment and reconstruction.  

 

My work revealed that the dendritic tree architecture and the distribution of synaptic contacts 

have significant implications on how optimal single neurons are for information processing 

efficiency and storage capacity, and that those single-neuron features permeate to the 

network level, determining the computational capacities of neural ensembles.   

Also, I found position-dependent neuromorphological inhomogeneities in CA1 pyramids 

along with variations of  neuronal cell density, suggesting that intrinsic properties of CA1 

can vary across its extension. Those inhomogeneities were different in healthy and 

TgDyrk1A mice, possibly affecting emergent functional aspects.  
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In my Thesis I faced challenges to bridge structure and function and to study 

morphological  inhomogeneities at different scale (single cell and cell population). To solve 

those challenges, I developed computational methods for 3D mapping cellular population 

and dendritic density and assessed their validity. I also developed a computational modeling 

framework that allows the instantiation of multi-scale biologically realistic networks. Finally, 

I optimized the CLARITY whole-brain clearing technique and developed a pipeline to apply 

our population-based analysis and multi-scale modeling methods to the structural 

interrogation of whole brains, and to study the implications of the neuronal morphospace 

on the topology of neuronal circuitry. 
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Resum 

 

Durant l’últim segle, el sistema nerviós s’ha estudiat des d’un punt de vista reduccionista, 

basant-se en la hipòtesi que entendre en profunditat neurones individuals o fraccions petites 

de poblacions neuronals portaria a conclusions generals sobre la funció del cervell. De totes 

maneres, fins a quin punt detalls anatòmics de neurones individuals poden afectar la 

connectivitat de les xarxes que formen, és una qüestió que en gran part s’ha passat per alt. 

Les discapacitats intel·lectuals proporcionen una oportunitat excel·lent per explorar la 

rellevància de detalls estructurals, perquè molts trastorns cognitius mostren alteracions 

arquitectòniques específiques que correlacionen amb habilitats cognitives. 

En aquesta Tesi, pretenia estudiar com la topologia dels circuits neuronals és afectada per 

característiques arquitectòniques en un model murí de discapacitat intel·lectual, en concret 

de síndrome de Down, i per tractaments pro-cognitius amb efectes de remodel·lació de la 

xarxa. Ho he fet des de tres punts de vista:  

1. L’exploració d’un model computacional 2D mínim de la capa cortical II/III parametritzat 

amb dades experimentals d’arquitectura dendrítica ens els nostres models de síndrome de 

Down. 

2. L’estudi de neurones individuals, la seva diversitat i propietats morfològiques d’escala 

mesoscòpica en el model murí TgDyrk1A de síndrome de Down. 

3. El desenvolupament d’un marc experimental i computacional per a l’estudi del problema 

des d’una perspectiva multi-escala. 

 

La meva feina ha mostrat que l’arquitectura dendrítica i la distribució de contactes sinàptics 

tenen implicacions significatives en l’optimalitat de neurones individuals per a l’eficiència en 

el processat d’informació i per a la capacitat d’emmagatzemar memòries, i que aquestes dues 

quantitats permeen al nivell de xarxa, determinant les capacitats computacionals de conjunts 

de neurones. 

També, he trobat variacions neuromorfològiques a CA1 dependents de la posició en 

neurones piramidals, acompanyades per variacions en densitat cel·lular, apuntat que 

propietats intrínseques de CA1 poden variar al llarg de la seva extensió. Aquestes 
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inhomogeneitats eren diferents en ratolins sans i TgDyrk1A, possiblement tenint efectes en 

aspectes funcionals emergents concrets. 

 

En la meva Tesi he afrontat reptes en lligar estructura i funció i en l’estudi de les 

inhomogeneïtats morfològiques en múltiples escales (de cèl·lula individual i de poblacions). 

Per a assolir aquests reptes, he desenvolupat mètodes computacionals per al mapejat 3D de 

poblacions cel·lulars i de densitats dendrítiques i he avaluat la seva validesa. També he 

desenvolupat un marc de modelització que permet l’instanciació multi-escala de xarxes 

neuronals biològicament realistes. Finalment, he optimitzat la tècnica de clarejat de cervell 

sencer CLARITY i he desenvolupat un pipeline per a aplicar les nostres eines d’anàlisi de 

poblacions i els mètodes multi-escala de model·lizatió per a l’anàlisi estructural de cervells 

sencers, i per a l’estudi de les implicacions del morfoespai neuronal en la topologia de la 

circuiteria neuronal.   
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Preface 

 

Despite being far from a complete description of the nervous system, the cellular architecture 

of neurons has an important role in determining the function of neuronal networks that gives 

rise to neural functions or dysfunctions. However, how anatomical details of single neurons 

affects the wiring of the networks they form, and consequently their function, is a largely 

overlooked question. Given that many pathological conditions, such as Alzheimer’s disease, 

intellectual disability, epilepsy or chronic stress present aberrant dendritic morphologies, 

those scenarios provide an excellent opportunity to explore fine structural alterations that 

correlate with cognitive performance.  

 

This Thesis originates from the interest of the Cellular and Systems Neurobiology group at 

the Center for Genomic Regulation in further understanding the mechanisms underlying the 

neuropathology of intellectual disability. Pioneering studies in our lab showed 

microstructural alterations in Down syndrome (DS) dendritic trees that could be partially 

rescued upon pro-cognitive treatments that correct the overdosage of a DS candidate gene, 

DYRK1A, which encodes for a member of the Dual-specificity tyrosine phosphorylation-

regulated kinase (DYRK) family and is sufficient and necessary to recapitulate some of the 

DS phenotypes.  

 

A key concept behind my Thesis is that dendritic architecture changes in intellectual disability 

may have a strong impact on complex network topologies. Consequently, I aimed at gaining 

a broader view by profiling dendritic trees in different mouse strains and Down syndrome 

models, gather a comprehensive view of the possible strain-dependent variation in the 

normal dendritic phenotypes, and their pathological deviations in intellectual disability. 

During my Thesis I have implemented a variety of analytic frameworks and theoretical 

perspectives keeping in mind the challenge of using brain samples and datasets of different 

spatial scales (microscopic to mesoscopic), and of developing theoretical frameworks to test 

my hypothesis. The outcomes of my Thesis have set the basis for further research lines in 

Dierssen lab involving new computational modeling to interrogate the structure-function 

relationship. This theoretical and Systems Neuroscience approach was also supervised by 

Prof. Jordi García-Ojalvo (University Pompeu Fabra), co-director of my work. I used 
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computational models to explore how alterations in single-neuron morphostructural features 

in mouse models of intellectual disability, and neuronal reformatting and network rewiring 

upon pro-cognitive treatments known to rescue the cognitive phenotypes in DS impact local 

network topology. 

I also applied graph theoretical analysis of organizational principles in neuronal connectivity 

at the cellular scale and experimentally explored within-class variability in a well-defined 

canonical neuronal population, such as CA1 pyramidal neurons as a function of their spatial 

location. These experiments provided initial population level descriptions that revealed an 

unexpected position-dependent level of variability that suggests continuous heterogeneity as 

an important feature of neural circuits.  

 

In the final part of my Thesis, I made some steps to obtain whole brain structural information 

with microscopic resolution using state-of-the-art brain clearing techniques, to explore how 

micro-connectomic disturbances in local networks may impact on large-scale connectivity 

and imply specific topology alterations and suboptimal computational capacities at the 

systems level. Charting cellular localizations, projections, and network activity throughout 

the whole brain is a mandatory step to understand network properties, but the tools for 

combining these levels of description are not available yet. I started filling this gap by 

providing suite of unified software to construct multiscale structural maps from brain-

clearing experiments, with specific subworkflows for understanding topological structure-

function dependencies on a brain-wide scale. The set of tools I propose are a first step 

towards a systems perspective description of neuronal circuits’ microscopic structural and 

population-based properties.  

 

During the present Doctoral Thesis, I had the opportunity to be part of several international 

and national scientific collaborations with renowned research groups in the systems 

neuroscience. For applying the concept of optimality, I had the opportunity to discuss 

directly with Prof Hermann Cuntz. For the study of cortical basal trees, I had the opportunity 

to discuss directly with Prof. Inma Ballesteros. To perform whole-brain imaging I have 

established a long-term collaboration with James Sharpe’s lab. For the implementation of the 

2D model I had the opportunity to discuss directly with Jordi Soriano and Javier Orlandi. 

For the molecular dynamics study of fluorescent protein quenching I had the opportunity to 

assess my work with Gianni De Fabritiis. 
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During this Doctoral Thesis, I had the opportunity to present my work in four national and 

two international meetings, and I have participated also in other outreach activities of the 

laboratory. 
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GENERAL INTRODUCTION 

Last century’s Neuroscience was founded on the seminal studies of Ramón y Cajal. Guided 

by the neuron doctrine, neuroscientists deepened in the understanding of the nervous system 

focusing on the study of the individual cells forming it. Detailed molecular, cellular and 

electrophysiological studies have identified an increasing number of cell types that can be 

broadly grouped in neuronal cell types. During those years, a tendency towards excessive 

classification and reductionism has governed Neuroscience. But over the last decades, the 

community has noticed that, to understand the emergence of cognition, an important 

building block is missing: the complex connectivity patterns of the individual cells forming 

the brain are crucial to understand the emergence of neural activity dynamics that ultimately 

leads to cognitive function. In this sense, cognitive impairments are particularly revealing in 

two aspects. First, studies of neuromorphological alterations show that a precise interplay 

between dendritic architecture and axonal projections is necessary for proper function. And 

second, the fact that seemingly opposite morphological alterations can have the same 

implications at the behavioral level (e.g. increased or reduced spine densities in Fragile X and 

Down syndrome, respectively) reflects that emergent properties of the system are not well 

understood. I think that the study of relatively subtle neuromorphological alterations 

constitute a largely unexplored scenario that can be useful to identify fundamental structural 

properties of the nervous system, and to understand how these properties relate to cognitive 

function. 

 

Systems neuroscience, both through the study of groups of neurons involved in a specific 

neural computation and through whole-brain neuroimaging techniques, has performed 

important steps in the direction of understanding the emergence of cognition. However, on 

the one hand the study of neuronal circuits at the cellular scale has been limited to highly 

specific questions and is still missing the description of fundamental properties of neuronal 

networks. And on the other hand, while whole-brain systems neuroscience is paving the way 

to theoretical frameworks that can well be used to identify such fundamental properties, it is 

still missing a wealth of important details at the microscopic scale. One of the concepts that 

seems to permeate through multiple scales of description of neuronal networks is wiring 

optimality. It has been proposed that dendritic trees grow to fill optimally a target space. A 

power law relating the total length and the number of dendritic branches in single neurons 
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has been derived from Cajal’s principle for conservation of cytoplasm and conduction time. 

I interpret single-neuron wiring optimality studies as a first step towards a generic framework 

for understanding fundamental properties of the nervous system, and propose that graph-

theoretical analyses of neuronal circuits at the cellular scale will allow (1) to identify neuronal 

subcircuits involved in specific functions, (2) to disentangle the implications of multi-scale 

morphological properties on neuronal wiring, and ultimately, (3) to identify the rules 

governing it. 

 

To explore those concepts, I compared the brain of wild-type mice with those of mice with 

suboptimal cognitive function. Since in most cases the experimental tools to link 

microstructural properties with network topology do not exist, I first took a computational 

modeling approach and developed a framework that allows to quantitatively explore the 

neuromorphological space and assess its implications on the optimality for signal processing 

and storage capacity, linking single cell architecture with network contact topology. 

Subsequently, I obtained single neuron morphology experimental data in a brain region 

responsible of specific cognitive functions and analyzed how morphological alterations relate 

to cognitive impairment in intellectual disability. And, finally, I gathered multi-scale 

experimental data and developed an extensible computational modelling framework that 

allows a systems perspective analysis of the link between neuromorphology and network 

connectivity. 

 

In the scope of this Thesis I hypothesize that dendritic neuromorphological alterations in 

intellectual disability lead to suboptimal connectivity and signal integration that (1) have 

significant implications on the network topology, leading to suboptimal computational 

capacities in intellectual disability, and (2) can explain specific cognitive impairments at the 

single cell level. 

 

From the network perspective, I use a minimal computational model in order to explore the 

impact of dendritic architectural features on graph theoretical representations of the 

connectivity in neuronal layers. The rather abstract perspective taken is only generally linked 

to cognitive function, and circuit-specific details are missing. However, this perspective 

allows to disentangle, in a simplified context, the contribution of various architectural 

properties on neural connectivity, assessing the fundamental goal of this Thesis. Specifically 
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I hypothesize, using a minimal model of a stereotypical computing unit in the cortex (layer 

II/III), that healthy neuronal networks lay on a close-to-optimal organization for multiple 

objectives (Pareto optimality) including information processing, storage capacity and material 

cost, and that intellectual disability mouse models of Down’s syndrome (Ts65Dn, TgDyrk1A 

and Dyrk1A+/-) deviate from this optimality. 

 

To study the implications of detailed architectural properties on cognitive function, I focus 

on the well-studied hippocampal circuit and its percept contextualization function. The 

existing evidence points that layer CA1 is involved on the comparison of memories stored 

in CA3 and on the perceived experience encoded in the sensory cortex. Given that the inputs 

of the Medial Entorhinal Cortex (mainly encoding spatial information) innervate 

preferentially the stratum lacunosum of medial subiculum and lateral CA1 pyramidal 

neurons, I hypothesize that TgDyrk1A mice will show dendritic abnormalities accounting 

for imbalanced connectivity mainly in those regions.  

 

Additionally, I also hypothesize that (1) a graph theoretical analysis of the hippocampal 

circuit at the cellular scale will underline the existence of subcircuits involved in specific 

functions (such as the lamellar organization of the hippocampus or subregional specific 

functionalities), (2) neuromorphological alterations throughout the hippocampal trisynaptic 

circuit associated with intellectual disability exhibit a Pareto suboptimal organization with 

specific effects on spatial memory formation, retrieval and contextualization, and (3) 

deviations from optimality will reveal network topological properties necessary for proper 

cognitive function. Even though testing these hypotheses is beyond the scope of this Thesis, 

I have developed computational tools that will allow such a validation in the near future. 
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HYPOTHESIS AND OBJECTIVES 

During the last century the nervous system has been studied from a reductionistic approach 

based on the conviction that understanding in depth single neurons or limited neuronal 

populations would lead to general conclusions on brain function.  However, to what extent 

anatomical details of single neurons can be affecting the wiring of the networks they form is 

a largely overlooked question. This is especially challenging when acknowledging for the 

unexpected morphological variety, and the structural inhomogeneities along each brain 

region, and most importantly along the cerebral cortex. A prevailing alternative approach has 

been to statistically characterize subpopulations of a canonical cell type, which has already 

uncovered traces of complex network topologies. Considering that dendritic morphology 

can undergo significant changes in many pathological conditions, such as Alzheimer’s 

disease, intellectual disability, epilepsy, schizophrenia or chronic stress, those scenarios 

provide an excellent opportunity to explore the relevance of fine structural details. Pioneering 

studies in our lab indicate that Down syndrome, the most frequent genetic cause of 

intellectual disability is characterized by specific architectural alterations in pyramidal neurons 

that correlate with defective cognitive performance. In some cases, the neuronal structure 

and connectivity damage characteristic of this disorder may potentially be reversed by 

treatments with pro-cognitive effects. Specifically, we found that structural deficits can be 

partially rescued upon pro-cognitive treatment in Down syndrome (DS), which corrects the 

overdosage of a candidate gene, DYRK1A. We conjecture that both the dendritic tree 

architecture and distribution of synaptic contacts have significant implications on how 

optimal single neurons are for information processing efficiency and storage capacity, and to 

what extent that those single-neuron features permeate to the network level, determining the 

computational capacities of neural ensembles.  

 

Hypothesis 

We hypothesize that  dendritic neuromorphological alterations of single neurons in 

intellectual disability lead to suboptimal signal integration and connectivity that (1) have 

significant implications on the network topology resulting in suboptimal computational 

capacities in intellectual disability, and (2) can explain specific pathological impairments. 
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Objectives 

To prove the hypothesis above, the specific aims of this Thesis are: 

 

Objective #1/ To investigate how alterations in single-neuron morphostructural features in 

mouse models of intellectual disability sculpt local network topology, through in silico 

exploration of the resulting morphospace.  

 

Objective #2/ To assess the neuronal reformatting and network rewiring effect of proven 

pro-cognitive  treatments known to rescue the cognitive phenotypes in DS. 

 

Objective #3/ To develop new tools that will allow us to (1) explore how micro-connectomic 

disturbances in local networks may impact on large-scale connectivity, and (2) determne 

whether micro-connectomic aberrations imply specific topology alterations and suboptimal 

computational capacities at the systems level. 
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1. CHAPTER I. NEUROMORPHOLOGY IMPLICATIONS 

ON LOCAL NETWORK CONNECTIVITY IN A MINIMAL 

MODEL OF CORTICAL LAYER II/III 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cortical pyramids reconstructions and drawings by Cajal.  From. 

Cajal's Butterflies of the Soul. Science and Art. Javier DeFelipe 
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"To know the brain—we said to ourselves in our 

idealistic enthusiasm—is equivalent to 

discover the material course of thought and will. [ . . . ] 

Like the entlogist hunting for 

brightly coloured butterflies, my attention was drawn to 

the flower garden of the grey matter, 

which contained cells with delicate and elegant forms, the 

mysterious butterflies of the soul, the beating of whose 

wings may some day (who knows?) clarify the secret of 

mental life. " 

 

Santiago Ramón y Cajal, Recuerdos de mi vida 
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1.1. Introduction 

There is consensus among neuroscientists that the cellular architecture of neurons, despite 

being far from a complete description of the nervous system, has an important role 

determining the function of neuronal networks. The spatial organization of synaptic 

connections in individual cells constrains the dynamics of a neural circuit, shaping the 

repertoire of collective activities that gives rise to neural functions or dysfunctions. This is 

studied by a new discipline called micro-connectomics, which deals with the graph theoretical 

analysis of organizational principles in neuronal connectivity at the cellular scale. A growing 

body of data  on  the  anatomical  microcircuitry  at  the  cellular  and  synaptic level, in the 

form of  ‘microconnectomes’, has shed light on information processing in specific neural 

systems. For complex structures such as the mammalian neocortex, which is related to many 

high-level computational processes such as sensory processing, planning, motor control, 

perception and language, detailed microconnectomes may still be years away. An alternative 

approach has been to statistically characterize connectivity patterns between different pairs 

of cell types(Hill, Wang, Riachi, Schürmann, & Markram, 2012), but few studies have been 

devoted to analyze connectivity patterns that could uncover complex network topologies. 

 

 

Basics elements of neuronal architecture and their role in neuronal computation 

Cellular anatomy has been the focus of intense investigation since the early days of 

neuroscience. A typical neuron may be divided into three distinct parts (Figure 1): a cell body 

or soma, an axon, and dendrites. The latter two are specialized extensions of membrane that 

constitute the neuron’s communication interfaces. Dendrites are membranous 

protoplasmatic projections branching from the body of a neuron. They are usually 

subdivided extensively, forming a dense arborization surrounding the neuron, called a 

dendritic tree. The area occupied by the dendritic tree is larger than the soma, and 

consequently the dendritic membrane covers a much greater surface. The main objective 

described of the dendrites is to get information from other cells and deliver that information 

to the cell body. Moreover, dendritic spines are the membranous protrusions of the dendrites 

that actually synapse with the axon’s terminal bulbs. A single dendrite has tens of thousands 

of dendritic spines, and they represent the excitatory inputs of information. 
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Most neurons also have an axon, which carries information from the soma to other cells. 

Axons terminate in terminal boutons (buttons), or endfeet, which transmit information to 

the receiving cell. The influence of the axonal morphology on activity was also demonstrated 

in experimental studies. Already in the 1970s, Ramon et al. showed action potential 

modifications at sites of abrupt increase in axonal diameter (Ramón, Moore, Joyner, & 

Westerfield, 1976)(Ramón et al., 1976). Branching is also an important factor. For example, 

high frequency current modulations in unbranched axons lead to abnormal patterns such as 

fragmented trains, quasi-periodic, and chaotic responses (Smith, 1977). Measurements along 

axonal branching points with two different radii exhibited different temporal responses in 

the two daughter branches (Sasaki, Matsuki, & Ikegaya, 2012). Stockbridge showed that if 

branching consisted of short and long daughter branches, only the first of adjacent spike pair 

invades the long branch, while the two spikes propagate along the short one (Stockbridge & 

Stockbridge, 1988). Sasaki et al. examined changes in action potential width caused by 

modulations of axonal length and branching order (Sasaki, Matsuki, & Ikegaya, 2011). 

 

 

Figure 1. Camera lucida reconstruction of a pyramidal neuron from a rat neocortex. The reconstruction 
shows thick-tufted layer 5 pyramidal neuron. Dendritic morphology of the neuron is drawn in black, and axonal 
arborization in red. The red dots indicate contacts established onto basal and oblique dendrites by the axon. 
Note the extensive vertical axonal collaterals, some of which could be followed up to layer 1 (2.5 mm from the 
soma). (Lübke, Markram, Frotscher, & Sakmann, 1996) 

 



 

 21 

In this Thesis I have focused in the study of the dendrites. This is in part because their 

microanatomical details are accessible, which is not the case for the axon, but also because 

of their prominent role in information acquisition and processing. Mammalian dendrites 

have a rich repertoire of electrical and chemical dynamics, making individual neurons capable 

of very sophisticated information processing (Yuste & Tank, 1996). Experimental and 

computational studies have shown a strong interdependence (Segev and Rall 1998; Van 

Elburg and van Ooyen 2010; Eyal et al. 2014), although the underlying mechanisms are 

poorly understood, and the impact of morphology on electrical activity remains elusive. 

  

Dendritic geometry appears to be an important factor modulating the pattern of neuronal 

firings (action potentials) (Mainen, Sejnowski, & Others, 1996). In addition, the size of 

dendritic arbors modulates the shape of the action potential onset, which determines the 

capability of the axonal spikes to encode rapid changes in synaptic inputs (Ilin, Malyshev, 

Wolf, & Volgushev, 2013) being accelerated in neurons with larger dendritic surface area 

(Eyal et al., 2014). Interestingly, dendritic morphology is dynamic and can undergo significant 

changes in many pathological conditions. Using computational models of neocortical 

pyramidal cells (van Elburg & van Ooyen, 2010), it has been shown that not only the total 

length of the apical dendrite but also the topological structure of its branching pattern 

markedly influences inter- and intra-burst spike intervals and even determines whether or 

not a cell exhibits burst firing. In fact, there is only a range of dendritic sizes that supports 

burst firing, and that this range is modulated by dendritic topology. Either reducing or 

enlarging the dendritic tree, or merely modifying its topological structure without changing 

total dendritic length, can transform a cell's firing pattern from bursting to tonic firing.  

 

 

The concept of optimality 

At the end of the 19th century, Ramón y Cajal proposed the idea that dendrites optimize 

connectivity by minimizing conduction time in a tradeoff with total cable length cost1. During 

the last decades, the interest for the concept of optimality in neuronal cells and networks has 

                                                
1 “The laws of time, space, and material conservation, which must be considered the final cause of all 
variations in the shape of neurons... All that remains is to substantiate the influence of these laws on the 
conformation of particular neurons.” (Ramón y Cajal, 1909) 
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been growing  (Chen, Hall, & Chklovskii, 2006; Chklovskii, 2004; Chklovskii, Schikorski, & 

Stevens, 2002; Cuntz, Mathy, & Häusser, 2012). It has been proposed that dendritic trees 

grow to fill optimally a target space. A power law relating the total length and the number of 

dendritic branches in single neurons has been derived from Cajal’s principle for conservation 

of cytoplasm and conduction time (Cuntz et al., 2012). Since Cuntz et al. proposed this 

optimal wiring scaling law for single neurons, some studies have used the concept to describe 

specific neuronal populations(Iyer et al., 2013; Polavaram, Gillette, Parekh, & Ascoli, 2014), 

and neuronal diversity in specific layers or regions (Leguey et al., 2016) or throughout 

development (Lefebvre, Sanes, & Kay, 2015). There is a wide variety of different neuronal 

morphologies in the brains of different animal species (Bullock & Horridge, 1965; 

Nieuwenhuys & Nicholson, 1998; Strausfeld, 2012), in different brain regions of the same 

species (Shepherd et al., 1998), or even in the same brain region (Markram et al., 2004), but 

all follow this optimal wiring. Even so, the high structural variability among neuronal classes, 

and the brain region and genetics for the same cell type makes it difficult to define an optimal 

range of variance. This may be achieved by capitalizing on the scenario provided by 

neuropathological models, using comparative analysis of micro-connectomics (Schröter, 

Paulsen, & Bullmore, 2017).  

 

 

Linking single-neuron neuromorphological properties with network architecture and 

computational capacities 

As highlighted above, research on neuronal morphology is essential both for the 

investigation of the basic structure–activity relationship in the brain, and in connection with 

studies on development, ageing, pathology and pharmacology. One approach is to linking 

the local properties of neuronal arborizations to network computation could be attained by 

embodying morphological reconstructions in computational simulations. Still, most 

computational models have commonly disregarded fine morphological features involved in 

network connectivity (Orlandi, Soriano, Alvarez-Lacalle, Teller, & Casademunt, 2013; Vegue, 

Perin, & Roxin, 2017; Voges, Schüz, Aertsen, & Rotter, 2010), and only some have simulated 

connectivity based on neuronal reconstructions with micrometric detail in specific layers or 

regions (Markram, 2006; Reimann et al., 2017), or whole organisms (Szigeti et al., 2014). A 

relevant example is the Blue Brain Project, that simulated cell to cell connectivity in a portion 

of rat cortex taking into account a wealth of multi-scale biological features(Markram, 2006). 
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While those examples have increased the level of detail used to parameterize the simulations, 

a systematic exploration of the relevance of microscopic neuromorphological architecture 

for the network connectivity is missing.  

 

To link the single-neuron and network scales of description, I have applied the graph theory 

conceptual framework used in the neuroimaging field, has been applied to micro-

connectome topology, often informed by economic principles that conceptually originated 

with Ramón y Cajal’s conservation laws (see above). Neuronal networks are studied as graphs 

formed by the neurons (nodes) and the connections among them (directed edge) (Artzy-

Randrup, Fleishman, Ben-Tal, & Stone, 2004). Mixed theoretical and experimental studies 

have found fundamental properties in neuronal networks (such as their clustered, hierarchical 

organization (Bullmore & Sporns, 2009; Sporns, Chialvo, Kaiser, & Hilgetag, 2004) that have 

been observed across organisms and along evolution.  

 

More specifically, I used the concept of Pareto optimality, which is built on the idea that a 

system devoted to various functions, in order to be globally optimal, must obey tradeoffs 

between the performances in the diverse functions. One single study has applied this concept 

to human tractography data, and explored how genetic algorithms can modulate the 

capacities of whole-brain networks and displace them towards Pareto-optimal configurations 

(Griffa et al., 2014). Here, I aimed to use this concept in order to test whether neuronal 

networks are Pareto-optimal and, if they deviate in brain pathology, to dissect how 

differential neuromorphological properties contribute to such deviations. 

 

 

Our model system: basal dendritic trees of neocortical pyramidal cells 

Even though studying the wiring of circuits involved in specific functions will ultimately 

provide novel insights into network connectivity fundamental laws, it is reasonable to first 

assess the question in a simplified context and explore the relationship between diverse 

neuromorphological features and network connectivity in a manageable framework. Here I 

specifically selected the pyramidal cells of layers II and III of the motor cortex.  
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The cerebral cortex 

The cerebral cortex is the brain zone (2-3 mm thick) that consists of an outer region of neural 

tissue (gray matter) and covers the two hemispheres. The primary cortices are defined as the 

cortical regions that present somewhat simpler functions. These include areas that directly 

receive the sensory input (vision, hearing, somatic sensation) or that are involved in the 

display of limb or eye movements. The association cortices perform more complex functions 

(Figure 2). 

 

 

Figure 2. Sagital view of the rat brain indicating the different brain areas. Motor cortices (M1 and M2) 

are highlighted in yellow. From The Rat Brain in Stereotaxic Coordinates. (Paxinos, Watson, Pennisi, & Topple, 

1985)  
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The great majority of the cerebral cortex is represented by the neocortex. It is 

morphologically divided in six layers and holds from 10 to 14 billion neurons of the human 

brain. These six layers are numbered with Roman numbers from the surfice to the inner part. 

The molecular layer (layer I) contains very few neurons; layer II is the external granular; layer 

III the external pyramidal; layer IV the internal granular; layer V the internal pyramidal; and 

layer VI the multiform, or fusiform layer. Each cortical layer involves different neuronal 

shapes, sizes and densities as well as different distributions of nerve fibers. 

 

Functionally, the layers of the cerebral cortex can be divided into three parts. The 

supragranular layers involve layers I to III. The supragranular layers are the starting and 

ending point (?) of intracortical connections, which can be either associational (i.e., with other 

areas of the same hemisphere), or commissural (i.e., connections to the opposite hemisphere, 

through the corpus callosum). The supragranular region of the cortex is highly developed in 

humans and allows communication between one portion of the cortex and the other regions. 

 

The internal granular layer receives thalamocortical connections, especifically from the 

specific thalamic nuclei and it is the most prominent in the primary sensory cortices. The 

infragranular layers (layers V and VI) primarily connect the cerebral cortex with subcortical 

regions. These layers are mainly developed in motor cortical regions. The motor areas present 

significantly small or non-existent granular layers and are often called "agranular cortex". 

Layer V provides all of the principal cortical efferent projections to basal ganglia, brainstem 

and spinal cord. Layer VI, the multiform or fusiform layer, projects primarily to the thalamus. 

 

Here, I focused on the supplementary motor area (MII, superiomedial part of area 6), is a 

part of the premotor cortex that extends onto the medial side of hemisphere. This area shows 

projections to the primary motor cortex, basal ganglia, thalamus, brainstem and also to the 

contralateral supplementary motor area. This area is active before movement and is thought 

to be involved in initiation of motion. It consists of local circuit neurons, with short axons 

that exert their effects in the local region of their cell bodies and dendrites. They are located 

in brain areas served by the long-axoned principal neurons and act to affect the activity in 

these pathways. Local circuit neurons perform integrative and modulating functions in local 

brain regions (Paxinos & Franklin, 2004) 
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The pyramidal neuron 

There are several identifiable cell types in the cerebral cortex. Pyramidal neurons are the most 

abundant cell type in the cerebral cortex of mammals, birds, fish and reptiles, indicating an 

adaptive value for the organism, and are found in most mammalian forebrain structures 

associated with cognitive functions, including the cerebral cortex, the hippocampus and the 

amygdala. The lone axon of each pyramidal neuron typically emanates from the base of the 

soma and branches profusely, making many excitatory glutamatergic synaptic contacts along 

its length. Of interest to my work, current research demonstrates that in the case of cortical 

neurons, about 98% of the synapses are axodendritic and only 2% synapse with the 

soma(Barrett & Others, 2010). 

 

The dendritic tree of a pyramidal neuron has two distinct domains: the basal and the apical 

dendrites, which descend from the base and the apex of the soma, respectively. Usually, one 

large apical dendrite connects the soma to a tuft of dendrites. This main apical dendrite 

bifurcates before giving rise to the tuft at a variable distance from the soma. In some cases 

the resulting ‘twin’ apical dendrites each bifurcate again. Oblique apical dendrites emanate 

from the main apical dendrite at various angles. All pyramidal neurons have several relatively 

short basal dendrites. Pyramidal neurons are covered with thousands of dendritic spines that 

constitute the postsynaptic site for most excitatory glutamatergic synapses. The number of 

spines represents thus a minimum estimate of connectivity of a neuron.  

 

In my work, I chose to study local horizontal connections of cortical layer II/III. The reasons 

for this choice are: (1) The abundance of horizontal recurrent connectivity in this layer 

(Voges et al., 2010), which justifies the simplification of the layer to a 2D homogeneous 

neuronal mosaic, (2) the stereotypical connectivity patterns found in the neocortex, which 

are conserved among cortical areas devoted to very diverse processing roles2, and (3) the fact 

that Down-syndrome-related intellectual disability mouse models show dendritic alterations 

in cortical layers II/III in the M2 cortex implies that our computational modelling results 

can be contextualized by experimental data providing a link between our computational study 

and the biological reality.  

                                                
2 Understanding the role of subtle neuromorphological properties on the network connectivity and its 
computational capacities in a subsampled cortical area can be reasonably extrapolable to other areas in the 
neocortex 
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Intellectual disability as a model of suboptimal networks 

Abnormalities in dendritic structure are a characteristic feature of many brain disorders. One 

clear example are individuals with intellectual disability that presents reduced dendritic 

branching patterns, shortened dendritic lengths, loss of spines and changes in spine shape 

and size (Kulkarni & Firestein, 2012). These alterations may most probably have strong 

implications on single-neuron wiring and its optimality. However, while in healthy 

phenotypes the studies assessing optimality questions are still limited (Schröter et al., 2017), 

the analysis of intellectual disability models has not even been used. Thus, our study 

constitutes a first step towards the identification of fundamental properties for optimal 

wiring through the comparative analysis of intellectual disability (P R Huttenlocher, 1970; 

Peter R Huttenlocher, 1974; Purpura, 1974).  

 

Since the discovery in the 1970s that dendritic abnormalities in cortical pyramidal neurons 

are the most consistent pathologic correlate of intellectual disability, research has focused on 

how dendritic alterations are related to reduced intellectual ability. The recent identification 

of the genetic bases of some mental retardation associated alterations, and the introduction 

of powerful sophisticated tools in the field of microanatomy, has led to a growth in the 

studies of the alterations of pyramidal cell morphology in these disorders. Specifically, studies 

in Down syndrome, allow the analysis of the relationships between cognition, genotype and 

brain microanatomy.  

 

Our laboratory has extensively studied Down syndrome mouse models to understand the 

microanatomical changes driven by specific genetic perturbations. The varied approaches 

used to study the consequences of increased gene dosage in DS and to investigate 

phenotype/genotype relationships of HSA21 genes in mice (see Cairns 2001; Galdzicki and 

J Siarey 2003 for review) are: (1) transgenic animals overexpressing single or combinations 

of genes, (2) mouse models that carry all or part of MMU16, which has regions of conserved 

homology with HSA21 and (3) chimaeric mice that carry a fragment of human chromosome 

21 (Tomizuka et al., 1997). 

In this Thesis I focused in a well validated model of partial trisomy and two models with 

dosage changes of a candidate gene for Down syndrome. The Ts65Dn mouse model 

(Davisson, Schmidt, & Akeson, 1990) contains three copies of mouse chromosome 16 

(MMU16 from App to Mx1). Using intracellular injections with Lucifer Yellow to visualize 



 

 28 

the whole basal dendritic tree, I found that pyramidal cells are smaller, less branched and 

24% less spinous in Ts65Dn mice than those in controls. These effects on pyramidal cell 

structure parallel those obtained in humans. The structural changes in the Ts65Dn mice are 

paralleled with slight changes by the single overexpression of DYRK1A (Dual specificity 

tyrosine phosphorylation-regulated kinase 1A) possibly the most extensively studied 

chromosome 21 gene during the last decade, due to the remarkable correlation of its 

functions in the brain with important DS neuropathologies, such as neuronal deficits, 

dendrite atrophy, spine dysgenesis, and cognitive and behavioral deficits. 

 

 

Environmental enrichment as a model of dendritic rewiring 

The morphological and physiological characteristics of the central nervous system are the 

result of a combination of genetic and environmental factors(Bartoletti, Medini, Berardi, & 

Maffei, 2004).Several studies report anatomical and physiological consequences of exposure 

to a sensory enriched environment (EE)(Diamond, Krech, & Rosenzweig, 1964; Volkmar & 

Greenough, 1972). Many studies report the effects of EE on synaptic transmission in the 

hippocampus (Artola et al., 2006; Duffy, Craddock, Abel, & Nguyen, 2001; Foster & Dumas, 

2001; Irvine & Abraham, 2005) as well as in the prefrontal cortex (Kolb & Gibb, 1991; Seib 

& Wellman, 2003) and in the parietal cortex (Leggio et al., 2005).  

EE has been reported to increase synaptic plasticity that has been proposed as the cellular 

substrate of information processing and memory formation, consolidation, retrieval and 

extinction. These processes are probably dependent on structural modification of synaptic 

connectivity, with long-term potentiation (LTP) and long-term depression (LTD) initiating 

structural modifications in dendritic spines.  

 

This is specially interesting in Down syndrome, since abnormalities in synaptic plasticity (that 

is, LTP) are seen in Down syndrome mice (see Mara Dierssen, Herault, and Estivill 2009 for 

review).  A key finding in Down syndrome mouse models has been the imbalance of the 

excitation–inhibition at the network level (Belichenko et al., 2009; Kurt, Davies, Kidd, 

Dierssen, & Flórez, 2000; Kurt, Kafa, Dierssen, & Davies, 2004), over inhibition being 

observed that may explain the LTP and LTD disturbances (R J Siarey, Stoll, Rapoport, & 

Galdzicki, 1997; Richard J Siarey et al., 1999). In adult trisomic mice, treatment with a 

GABAA receptor antagonist normalized NMDA-type glutamate receptor-mediated currents 
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and induction of LTP was restored (Nambu, Lewis, Wharton, & Crews, 1991). Regarding in 

vivo studies, experience-dependent neural plasticity is of time-critical nature (Escorihuela, 

Fernandezteruel, et al., 1995). The main problem in DS is the lack of stability of the effects, 

probably due to alterations in the translation of transient synaptic changes into stable 

structural modifications. 



 

 30 

1.2. Methods 

In this first part of the Thesis I took a mixed experimental and computational modeling 

approach for analyzing the repercussion of single-cell neuromorphological properties on the 

neuronal network. Computational models allow the exploration of theoretical relationships 

between morphology and connectivity; however, the physiological relevance of the findings 

is not always clear. In this regard, mouse models showing different alterations of the dendritic 

morphospace along with cognitive impairment provide a convenient scenario for testing 

those findings.  

 

First I extracted functional properties (dendritic wiring optimality) from specific 

neuromorphological metrics that I obtained from neuronal reconstructions of two mouse 

models (Ts65Dn and a Dyrk1A heterozygous) showing Down syndrome-like neuronal 

structure abnormalities and cognitive deficits. In order to explore the impact of dendritic 

architectural properties on the horizontal connectivity of cortical layer II/III, I implemented 

a computational model to explore and instantiate 2D homogeneous neuronal networks based 

on an existing model (Orlandi et al., 2013). I used this model to explore how the modification 

of dendritic tree size, its complexity and the density of synaptic contacts modulates the 

network topology and computational capacities. Finally, using published experimental data 

from our lab, I instantiated networks recapitulating the neuromorphological alterations 

found in Down syndrome mouse models. 

 

 

1.2.1. Optimal dendritic wiring of cortical pyramidal neurons of Ts65Dn 

and Dyrk1A+/- 

To identify how neuromorphological changes may affect dendritic wiring optimality , I used 

published neuronal reconstructions of single pyramidal neurons manually selected and 

injected with Lucifer Yellow (LY) (G N Elston & Rosa, 1997; Guy N Elston, Benavides-

Piccione, & DeFelipe, 2001). Briefly, pyramidal neurons of layers II/III of motor cortices 

(M2) in 150 µm vibratome sections tangential to the cortical surface that contain whole basal 

dendritic trees are filled with LY by continuous current injection. A camera lucida 
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microscope attachment was used to draw the basal dendritic arbor, and those drawings are 

the actual information I used.  

 

I used reconstructions of mouse models that show relevant genotype-specific dendritic arbor 

abnormalities along with cognitive deficits:  

(1) The first dataset (M Dierssen et al., 2003) were neuronal reconstructions of 

Ts(1716)65Dn (Ts65Dn) a Down’s syndrome (DS) and wild-type (wild-type) mice. The 

chromosomal rearrangement in B6EiC3Sn a/A-Ts (1716)65Dn (Ts65Dn) female was 

originally generated by radiation inducing a spontaneous reciprocal translocation of the 

telomere proximal region of Mmu16 to the centromere and pericentromeric region of 

Mmu17 (1716) and mice derive crossings of a B6EiC3Sn a/A-Ts (1716)65Dn (Ts65Dn) 

female to B6C3F1/J males (The Jackson Laboratory). Euploid littermates were used as 

controls. 

(2) For the second dataset (Benavides-Piccione et al., 2005) neuronal reconstructions were 

obtained from heterozygous Dyrk1A mice (C57BL/6J-129Ola mixed genetic background, 

Harlan Ibérica, S.L.), a candidate gene for DS. Wild-type littermates were used as controls.  

 

Of note, the controls of these two strains have different genetic backgrounds, and thus the 

study was separated in four different experimental groups, so that I could also compare non-

pathological variations in dendritic structure. 

 

 

Neuromorphological analysis 

From the 82 neuronal reconstructions published in (M Dierssen et al., 2003)(Ts65Dn) and 

(Benavides-Piccione et al., 2005)(Dyrk1A+/-), I selected six pyramidal neurons from two 

mice per genotype. In the published work, metrics obtained included dendritic length and 

dendritic complexity obtained by the Sholl analysis. Even though the original datasets also 

include spine density measurements, I have focused here on the dendritic branching 

phenotype. These measures were obtained manually for the Ts65Dn experiment and using 

the Neurolucida package for the heterozygous mice. However, Neurolucida morphology files 

(∗.asc; http://www.mbfbioscience.com/neurolucida) were not available. I re-analyzed the 

original data to obtain measurements that were comparable across models and that are 

needed for estimating dendritic wiring optimality.  

http://www.mbfbioscience.com/neurolucida
http://www.mbfbioscience.com/neurolucida
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I used the Simple Neurite Tracer plugin (Longair, Baker, & Armstrong, 2011) (available via 

http://fiji.sc/Simple_Neurite_Tracer as part of the package Fiji) to obtain *.swc format 

morphology files from the original camera lucida dendritic tree drawings. The software semi-

automates the reconstruction procedure by finding the highest intensity path between 

manually selected points in an image. The obtained paths can be saved in standard neuronal 

reconstruction formats and subsequently analyzed. Figure 3 shows a schematic overview of 

this procedure. 

 

Simple Neurite Tracer morphological files for Ts65Dn, Dyrk1A+/- and their wild-type 

littermates were then exported to Trees Toolbox in *.swc format to obtain morphological 

metric statistics using the stats_tree function (Cuntz, Forstner, Borst, & Häusser, 2010).  

Briefly, the function provides a set of measurements that describe in detail the  (1) dendritic 

tree size: total length, maximum and mean path length, mean branch length and dendritic 

spanning area; (2) dendritic complexity: number of branch points, maximum and mean 

branching order and dendritic area (surface occupied by dendrite); and  (3) other 

morphological aspects: mean straightness of dendritic branches, mean branching angle, mean 

asymmetry, center of mass in different directions and the ratio between width and height 

(see Table 1).  

 

 

Table 1: Neuromorphological metrics. Summary of the studied neuromorphological metrics used in this 
Thesis, with their units and a short description. 

Name Unit Description 

Total length µm Total length of dendrite, including all the branches of the dendritic tree 

Path length µm Length from a terminal point to the root of the tree 

Branch length µm Length of a single branch, including dendritic segments between branch 
points 

Spanning area µm2 Area covered by the tree 

Number of branch points - Number of branches in a tree 

Branch order - Property of every branch. Starts from value 0 at the root of the tree and 
increases by 1 after every branch point 

Dendritic area (density) µm2 Area occupied by dendritic segments 

http://fiji.sc/Simple_Neurite_Tracer
http://fiji.sc/Simple_Neurite_Tracer
http://fiji.sc/Simple_Neurite_Tracer
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Straightness - Ratio between the path length and the euclidean distance between a 
terminal point and the root of the tree 

Branching angle rad Angle between two daughter branches at any branch point 

Asymmetry - At any branch point, the ratio between the number of terminal points 
of the less complex and the more complex daughter branch  

Center of mass µm Center of mass of the tree in a single dimension 

Width vs Height ratio - Ratio between the width of a tree (size in x) and its height (size in y) 

 

 

Figure 3: Schematic representation of the workflow for single neuron reconstruction and 

morphometric analysis. LY injections were performed and camera lucida drawings obtained as part of 

previous studies in our lab. 2D reconstructions were obtained using Simple Neurite Tracer in Fiji. A statistical 

analysis of the morphological metrics summarized in Table 1 was done using the Trees Toolbox.  

 

Sholl analyses were done in the mutant models by quantifying the number of branches 

intersecting circles at equispaced radii from the soma with a radius step = 25 µm (dendritic 

branches smaller than 25 µm might not be counted) in the camera lucida drawings (M 

Dierssen et al., 2003). High magnification imaging (x100 Zeiss immersion lens) was used to 

quantify spine densities by counting the number of spines per 10 µm increments of 20 

randomly selected dendritic segments (M Dierssen et al., 2003). 

 

Principal Component Analysis 

To identify the metrics that better separate the Ts65Dn, Dyrk1A +/- and their respective 

controls, I performed a Scaled Principal Component Analysis (Wold, Esbensen, & Geladi, 
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1987) (PCA) of dendritic tree architectural metrics using the PCA function of R. Plots were 

constructed in R (version 3.4.1) using ggplot2 (version 2.2.1) to reduce the number of 

variables into a smaller number of principal components (artificial variables) that account for 

most of the variance.  

The purpose of this analysis was to identify which morphological variables explain most of 

the variance in the analyzed neurons, and to what extent combinations of those variables 

explain the differences between genotypes. All metrics were statistically tested for their 

variance among groups using ANOVA (ggpubr implementation, version 0.1.5). Pairwise 

comparisons were performed using two-way unpaired t-tests. Shapiro-Wilk tests were used 

to check whether the distributions are normal.   

 

Optimal dendritic wiring 

Cuntz found that dendritic trees optimally wired to connect to sets of points (synapses) in 

space follow a power law between the total tree length and the amount of branch 

points(Cuntz et al., 2012) . The power law was derived mathematically based on Cajal’s law 

for conservation of cytoplasm and conduction time (Ramón y Cajal 1995). Here I explored 

whether trisomic and heterozygous neurons were optimally wired, and also if the differences 

in morphological metrics between the controls of the trisomic and heterozygous strains 

detected in the PCA, affected optimality. This is important since there is a strain-dependent 

motor behavior difference.  

 

Optimality was assessed by fitting a power law to the relation between total tree length and 

amount of branch points (described in detail in Cuntz, Mathy, and Häusser 2012). The code 

used for the analysis, including reconstruction datasets, the morphological metric statistical 

analysis and the power law fit to the reconstructed trees can be found at 

https://bitbucket.org/linusmg/2d_model_bitbucket. 

 

https://bitbucket.org/linusmg/2d_model_bitbucket
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1.2.2. A 2D minimal model to determine the impact of dendritic wiring 

features on network properties 

The next question was if single cell neuromorphological properties (namely dendritic tree 

size, its variability, dendritic complexity and synaptic density) had an effect on network 

connectivity. To this aim I used a 2D minimal computational model, that allowed us an in 

silico exploration of the most important neuromorphological variables and an instantiation 

of the DS networks.  

The model mimics the growth process of a homogeneous network (Orlandi et al., 2013) 

providing a synthetic instantiation of a 2-dimensional homogeneous neuronal population. 

The assumption of a bi-dimensional homogeneous local cortical network (Orlandi et al., 

2013) is justified given that our experimental data derive from “mosaic-like” basal dendritic 

trees. This computational model allows to explore the changes in the morphospace driven 

by the dendritic properties (in this case of different mouse models), and determine the 

topological properties of the instantiated “mutant” networks, relating them to computational 

capacities of neuronal networks. 

 

I used the numerical values derived from the neuromorphological analysis performed in 

datasets of the previously described models (Ts65Dn and Dyrk1A +/-) and a transgenic 

mouse model (Altafaj et al., 2001), over-expressing DYRK1A (TgDyrk1A, Altafaj et al., 

2001). In this model the full-length rat DYRK1A sequence is under the control of an 

inducible sheep metallothionein-Ia promoter in a C57BL6/SJL background. Littermates not 

expressing the transgene were used as controls. This third dataset was obtained from (de 

Lagran et al., 2012). 

Finally, to test dendritic rewiring effects I used environmental enrichment (See Chapter I). 

Briefly, after weaning (21 days of age), TgDyrk1A and wild-type mice were randomly reared 

under non-enriched (NE) or enriched (EE) conditions. The NE mice were reared in 

conventional Plexiglas cages (20 x 12 x 12 cm height) in groups of two to three animals. EE 

mice were reared in spacious (55 x 80 x 50 cm height) Plexiglas cages with toys, small houses, 

tunnels, and platforms. The arrangement was changed every 3 days to maintain the novelty 

of the environment. To stimulate social interactions, six to eight mice were housed in each 

EE cage. Both groups were maintained under the same 12 h (8:00 to 20:00) light-dark cycle 

in controlled environmental conditions of humidity (60%) and temperature (22 ± 1ºC), with 

free access to food and water. In both experiments, only females were used given that 
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transgenic male mice showed hierarchical behavior, as similarly seen in Ts65Dn mice 

(Martinez-Cué et al. 2005).  

 

 

Computational model 

A family of models with similar assumptions to ours have been used to explore spontaneous 

activity generation in primary neuronal cultures (Orlandi et al., 2013), horizontal connectivity 

in the mammalian cortex (Voges et al., 2010) and basic features of cortical networks (Feldt, 

Bonifazi, & Cossart, 2011). Here I implemented and refined a computational generative 

model developed by (Orlandi et al., 2013) (originally devised for neuronal cultures) in order 

to simulate the local horizontal connectivity of cortical layers II/III in which I then introduce 

detailed dendritic tree neuromorphological properties (dendritic tree size, its variability, 

dendritic complexity and spine density). Figure 4 schematically shows the circuit building 

process.  

All the software development and computational analysis was performed in an HP-Z620 

Workstation (equipped with an Intel Xeon E5-2620, 64GB RAM, Nvidia Quadro K4000 

and 1TB SSD drive) running Ubuntu 16.04. In order to introduce the dependence on 

neuromorphological metrics and to have an efficient instantiation, I implemented the model 

in C++. Random number generators and optimization of the compiled code required the 

libraries GSL (Gough, 2009) and BOOST (Siek, Lee, & Lumsdaine, 2001). The source code 

can be found at https://bitbucket.org/linusmg/2d_model_bitbucket.  

 

Our implementation homogeneously locates somata (defined as circles with diameter d s) in 

a synthetic 2D space. Subsequently, from each soma emerges a quasi-straight path (axon) 

given by a biased random walk (10 µm segments are subsequently located forming an angle 

with previous segments given by a uniform distribution). The average length of the axons is 

and each single axon length is obtained from a Rayleigh distribution with mean and scale 

parameter 𝜎𝑎. Dendritic trees for each soma are generated as circles with radii given by a 

gaussian distribution with mean 𝑟𝑑̅ and sigma 𝜎𝑑 (See Parametrization of the 2D minimal model 

and Table 2 for an overview of the parameters from the literature used). 

 

https://bitbucket.org/linusmg/2d_model_bitbucket
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Figure 4: Schematic representation of the circuit building process. Circles with diameter 𝑑𝑠representing 

somas are located randomly in a synthetic 2D space. From the somas emerge quasi-straight paths representing 

axons. Each single axon length is obtained from a Rayleigh distribution with mean 𝑙𝑎̅ and scale parameter 𝜎𝑎. 

Dendritic trees are circles with radius 𝑟𝑑̅  and sigma 𝜎𝑑. In every point of the synthetic 2D space having an 

overlap between an axon and a dendritic tree, a new connection between the two neurons is added with 

probability 𝛼.  

 

A connection between the two neurons is obtained in every point of the 2D space where a 

dendritic tree and an axon overlap, with a probability α that has been assumed to be constant 

in existing models (see Figure 4). However, this does not take into account fine 

neuromorphological aspects such as dendritic complexity and spine density that are relevant 

since they determine the spatial distribution of synaptic contacts in neuronal trees. In order 

to introduce those in the model, I assumed that the probability of finding a spine at a specific 

radius of the tree overlapping with an axon is equivalent to the probability of a synaptic 

contact. I defined the probability for a synaptic contact α(r) at a given radius r from the soma 

as the probability of finding a dendrite at r, and a spine in a dendritic fragment of length 𝛥𝑙. 

This probability is given by the spine 𝑠𝑑(𝑟) and dendritic 𝑏𝑝(𝑟) densities at r:  

 

𝛼(𝑟) = 𝑏𝑝(𝑟)⋅𝑤
2𝜋𝑟 ⋅ 𝑠𝑑(𝑟) ⋅ 𝛥𝑙      Equation 1 

 

Where 𝑤 is the diameter of a dendrite (set as 1µm in our model), and 𝛥𝑙 = 1𝜇𝑚 is determined 

by the spatial discretization of the model. 

Thus, the synaptic contact probability in our modified 2D model depends on the radial 

distributions of both dendritic branches and spine densities. Interestingly, using the wild-

type experimental data for spine and dendritic densities, the mean synaptic contact 
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probability 𝛼(𝑟)̅̅ ̅̅ ̅̅  is approximately 0.3. This proved to be anatomically correct by being close 

to estimated connection probability values in the mammalian cortex (Markram, 2006; 

Orlandi et al., 2013). Once all the neurons have been positioned, scanning all the points in 

the 2D space, and calculating the synaptic contact probability in each axon overlapping a 

dendritic tree, allows to obtain pairwise connections between all the neurons in the network. 

Taking into account that redundant synapses can occur between a pair of neurons leads to 

the generation of a weighted adjacency matrix. 

 

 

Parameterization of the 2D minimal model 

To study the implications of single-neuron morphology on network connectivity, it has been 

necessary to perform a systematic revision and selection of existing data. I parameterized 

generic neuronal properties with data from previously published articles (Ballesteros-Yáñez, 

Benavides-Piccione, Elston, Yuste, & DeFelipe, 2006; Komulainen et al., 2014; Orlandi et 

al., 2013) accounting for cortical layer II/III morphological properties including soma 

diameter, axonal length and tortuosity, and synaptic contact probability in wild-type mice. 

The values and sources used are summarized in Table 2. 

 

Among the generic properties introduced in the model it is worth mentioning the neuronal 

density and axon parameterization chosen. Using a realistic neuronal density is not possible 

due to computational limitations (Orlandi et al., 2013; Voges et al., 2010). Thus, I subsampled 

to a reduced neuron density by, instead of assuming a projection of the complete layer II/III, 

simulating a thin sublayer of the width of a single soma diameter. This subsampling leads to 

a neuron 2D density of 1350 neurons/mm2, obtained by multiplying the neuronal density in 

the 3D layer by the width of the thin layer modeled. Based on this assumption, I located 

randomly 3037 neurons in the area of the synthetic circuit, set to 2.25mm² (1.5mm sided 

square with periodic boundary conditions). The axonal mean length used is 500µm in order 

to simulate only local horizontal connections (given by the local axonal tree in layer II/III) 

following experimental data in the mouse M2 cortical layer II/III (Voges et al., 2010), and 

disregarding horizontal patchy connections, connections between cortical layers and 

interhemispheric projections.  
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Table 2: Neuromorphological parameter set for the instantiation of the 2D model. Values and units for 
each parameter are specified along with the literature reference they were obtained from.  

Variable Description Value Units Reference 

𝑑𝑠 Soma diameter 15 μm (Komulainen et al., 2014)  

𝑟𝑑̅ Dendritic mean radius 150 μm (Ballesteros-Yáñez et al., 2006) 

𝜎𝑑 
Sigma of the dendritic radius Gaussian 

distribution 
40 μm (Orlandi et al., 2013) 

𝛼 Synaptic contact probability 0.3 - 
(Markram, 2006; Orlandi et al., 

2013) 

𝑙𝑎̅ Axon mean length 500 μm (Voges et al., 2010) 

𝜎𝑎 
Scale parameter of the axonal length 

Rayleigh distribution 
100 μm (Orlandi et al., 2013) 

𝑑𝑙 
Axonal biased random walk segment 

length 
10 μm (Orlandi et al., 2013) 

𝜎𝜃 
Sigma of the axonal biased random walk 

angle Gaussian distribution 
6 º (Orlandi et al., 2013) 

 

 

To introduce dendritic morphological information of Table 4 in the model, I need to include 

the synaptic contact probability, which is defined by Equation 1. I obtained the 𝑏𝑝(𝑟) and 

𝑠𝑑(𝑟) distributions for cortical layer II/III basal trees of wild-type C57BL/6J mice based on 

data from the literature (Ballesteros-Yáñez et al., 2006) (see Figure 5). To obtain 

mathematical expressions, I performed polynomial regressions on the dendritic and spine 

density distributions. Fitting was done using the lm function in R, and 5th and 6th degree 

polynomial expressions were obtained. The obtained polynomials were introduced in 

Equation 1 to calculate the synaptic contact probability at any radius of the modeled 

dendritic trees. 
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Figure 5: Dendritic and spine numbers dependency on the dendritic tree radius in wild-type C57BL/6J 

mice. Distributions of dendrite (a) and spine (b) numbers in function of the distance from the soma. Mean 

values obtained from the literature characterizing basal dendritic trees of M2 in the layer II/III of the cortex 

(Ballesteros-Yáñez et al., 2006).  

 

1.2.3. Network topology characterization using graph theory 

I analyzed the adjacency matrices (square matrices that represent all the vertices of a graph 

and the connections among them) of the instantiated networks using graph theory. Due to 

the properties of the model, I expect the generated networks to be close to random, but to 

deviate slightly from purely random (Erdös-Rényi) networks by the fact that neurons close 

to each other have higher probability of connection. Previous studies have shown that 

expected consequences of the distance-dependent connection probability on topological 

properties of the network are: an excess of reciprocal connections (if neuron i is an afferent of j, 

the probability of j being an afferent of i increases), an increased clustering coefficient (probability 

to find a connection between adjacent neurons to a given neuron i) (Vegue et al., 2017), the 

existence of neurons with high values in the degree distribution (with the degree of a node being 

the amount of connections received and sent by that neuron) (Girvan & Newman, 2002) and 

increased small-worldness (ratio between the clustering coefficient and the path length of a 

network)(Bassett & Bullmore, 2006). Those metrics were obtained using the iGraph package 

in R.  

 

To study properties of the network as proxies of behavior, I focused on three topological 

metrics that can be related to computational capacities of networks processing information: 

routing efficiency, storage capacity and cost, that have been previously defined for whole-
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brain tractography-based networks (Griffa et al., 2014) or single cells (Poirazi & Mel, 2001) 

and defined what I call the efficiency space.  

 

Routing efficiency 

Routing efficiency is the shortest path length 𝜑ij between any pair of nodes (neurons) i and 

j. 𝜑ij is inversely proportional to the amount of intermediate nodes separating i and j. Thus, 

when two neurons in the network are closely connected or have more synapses, the efficiency 

gets higher. The shortest path length matrices were obtained using the “distances” function 

in iGraph (http://igraph.org/r/doc/distances.html), which computes pairwise distances 

taking into account weighted connections using the Dijkstra algorithm (Ahuja, Mehlhorn, 

Orlin, & Tarjan, 1990). Then, the formal definition for the routing efficiency is as follows:  

 

𝐸𝑟𝑜𝑢𝑡 = ∑
1/𝜑𝑖𝑗

𝑁(𝑁−1)𝑖,𝑗 , 𝑖 ≠ 𝑗       Equation 2 

 

Where 𝜑𝑖𝑗 is the graph path length between the nodes i and j, and N is the total number of 

nodes in the graph. 

 

 

Storage capacity 

I estimated the storage capacity of the instantiated  network as the total number of non-

redundant possible states for a given neuron receiving 𝑠 synapses provided by 𝑑 presynaptic 

neurons as previously defined by Poirazi and Mel (Poirazi & Mel, 2001). Briefly, assuming 

that the dendritic location of inputs (synapses) does not affect the integration of the signal 

in a given neuron (linear model), the combinatorial “n chose k” quantification of possible 

states for a post-synaptic neuron expressed in bits (basic unit of information) is given by: 

 

𝐵𝐿 = 2𝑙𝑜𝑔2(𝑠+𝑑−1
𝑠

)       Equation 3 

  
 

Where s is the number of received synaptic connections and d is the number of unique 

afferents providing them. 

 

http://igraph.org/r/doc/distances.html
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Cost 

The cost of the network is given by the product of the number of synapses and the physical 

distance between any pair of neurons. Thus, the cost is proportional to the connection weight 

(amount of synapses to be maintained) and physical distance between any pair of neurons. 

This measure quantifies the cost of making and maintaining anatomical connections between 

neurons (Griffa et al., 2014). The cost of a connection between neurons i and j can be 

expressed as the product between the amount of synapses connecting them (synaptic weight 

wij) and the physical distance separating them (lij). Then, the total wiring cost of the whole 

network is: 

 

𝑐𝑜𝑠𝑡 = ∑ 𝑤𝑖𝑗𝑙𝑖𝑗
𝑁
𝑖<𝑗         Equation 4 

 

 

Where 𝑤𝑖𝑗  is the number of synaptic connections between neurons i and j, and 𝑙𝑖𝑗 the 

physical distance between them. 

 

 

Pareto optimality 

Cajal’s law for conservation of cytoplasm and conduction time suggests that there is a 

tradeoff between material cost and signal integration efficiency in single neurons. I here 

propose that a similar tradeoff exists between the cost of wiring a network and its routing 

efficiency or storage capacity, so that that neuronal networks are optimally wired to maximize 

routing efficiency and storage capacity while preserving material cost. This concept is closely 

related to the single-neuron wiring optimality mentioned in Section 1.2.1. The concept of 

maximizing more than one property simultaneously (multi-objective optimality) is not novel 

and was first tackled by Vilfredo Pareto (Griffa et al., 2014) in the scope of economical 

sciences. Following his definition, a Pareto-optimal system implies that no change can be 

made to improve any aspect (i.e.increasing routing efficiency or storage capacity, or reducing 

the material cost) without deteriorating another one. Thus, a Pareto-suboptimal system can 

undergo a Pareto improvement by improving an aspect without deteriorating any other (e.g. 

by a rearrangement of connections, a neuronal network could have higher routing efficiency 

without increasing its cost).  
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In order to include this concept in our analyses, once computational capacities were obtained 

for each point in the dendritic morphospace, I identified the Pareto front of the explored 

region in the efficiency space with the MATLAB function prtp 

(https://es.mathworks.com/matlabcentral/fileexchange/22507-calculation-of-pareto-

points) and compared relative distances between instantiated networks and the Pareto front 

to assess their multi-objective optimality. 

 

  

https://es.mathworks.com/matlabcentral/fileexchange/22507-calculation-of-pareto-points
https://es.mathworks.com/matlabcentral/fileexchange/22507-calculation-of-pareto-points
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1.3. Results 
 

1.3.1. Single-neuron wiring optimality in models of intellectual disability 

In order to assess putative implications of dendritic alterations for signal integration I 

obtained and analyzed basal dendritic tree reconstructions of LY stained neurons of Ts65Dn 

and Dyrk1A +/- and compared them with their respective wild-type littermates (6 neurons 

from 2 animals per group, Figure 6). The studies previously performed in our laboratory 

showed morphological alterations in the basal dendritic trees of layer II/III motor cortex 

pyramidal neurons in intellectual disability mouse models. Specifically, dendritic tree size and 

complexity, and synaptic density were reduced in the Ts65Dn (M Dierssen et al., 2003), and 

Dyrk1A+/-(Benavides-Piccione et al., 2005) models.  

 

 

Figure 6: Camera lucida drawings of the basal dendritic trees of layer II/III motor cortex pyramidal 

neurons of Ts65Dn, Dyrk1A +/- and their respective controls. The drawings represent a 2D projection of 

the basal tree seen in the tangential plane to the cortical layers. Qualitatively, Ts65Dn and Dyrk1A+/- appear 

to be smaller and less complex than their wild-type counterparts. Scale bar = 100µm. 
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Here I used camera lucida drawings (Figure 6) to evaluate dendritic tree morphological 

features and performed a statistical analysis using Trees Toolbox. An overview of metrics 

summarizing the analysis can be seen in Figure 8. A Trees Toolbox workspace with all the 

reconstructions can be found at https://bitbucket.org/linusmg/2d_model_bitbucket. 

 

Dendrograms of representative trees provide an overview of the morphological differences 

between the two mouse models and their controls. Regarding the impact of genetic 

background, the comparison of wild-type mice of two strains (B6EiC3Sn and C57BL/6J-

129Ola) showed similarly long dendrites reaching a maximum length close to 200 µm. 

However, dendritic complexity for those single trees was higher in the Ts65Dn control, with 

44 branches, and slightly lower in the Dyrk1A+/- control, with 36 branches.  Both Ts65Dn 

and Dyrk1A+/- neurons show reduced branch length, reaching maximum dendritic lengths 

close to 125 µm for Ts65Dn neurons and slightly below 120 µm in Dyrk1A+/- and reduced 

dendritic complexity (31 branches in Ts65Dn neurons and 25 branches in Dyrk1A+/- 

neurons, respectively).  

 

 

 

https://bitbucket.org/linusmg/2d_model_bitbucket


 

 46 

 

Figure 7: Dendrograms for four representative neurons. The plot represents the amount of branches versus 

their length. Ts65Dn and Dyrk1A+/- neurons show reduced dendritic complexity and shorter dendritic 

segments than controls. 

 

To assess the morphological differences in detail, I used the series of metrics described in 

Table 3. Those provide a complete description of the dendritic tree size, complexity and 

morphological properties of the dendrites (length, straightness and branching angle). First, I 

performed a one-way ANOVA test to identify significant differences among the four 

conditions and two-way unpaired t-tests with post-hoc Bonferroni corrections to identify 

pairwise significant differences. 
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Figure 8: Overview of the neuromorphological metrics obtained in the statistical analysis with the 

Trees Toolbox. Each panel shows series of distributions of morphological metrics for Ts65Dn control  

(black), Dyrk1A+/- control, Ts65Dn and Dyrk1A+/- mice. Each line is a density plot of a single metric for all 

the branches of a single neuron. The square colored dots and lines indicate the mean and standard deviation of 

the distributions.  

 

The total dendritic length (sum of the lengths of dendritic segments) is severely reduced in 

both mutant models (F(3,20) = 46.357, p = 3.44 x 10-9; Figure 9 upper left panel) as compared 

to their controls. Ts65Dn neurons show a statistically significant reduction respect to their 

controls (2251 ± 99 µm versus 3954 ± 403 µm, respectively,  Bonferroni post-hoc correction; 

p = 7.10 x 10-8). In a similar trend, Dyrk1A+/- neurons have reduced dendritic length than 

their wild-type controls (2143 ± 334 µm and 3415 ± 352 µm respectively; Bonferroni-

corrected p = 6.34 x 10-6). Finally, the comparison between the two control groups 

(B6EiC3Sn and C57BL/6J-129Ola) show a tendency to have trees with less dendritic 

material (sum of the lengths of dendritic segments: 3954 ± 403 µm and 3415 ± 352 µm 

respectively; Bonferroni-corrected p = 0.051) in the C57BL/6J-129Ola strain. Spanning area 

(Figure 9 bottom left panel), maximum path length (Figure 9 upper middle panel) and mean 

density (Figure 9 middle right panel) follow similar trends, with a marked reduction in both 

mutant mouse models and subtle differences between control strains, if any (see Table 3). 

Interestingly, the number of branch points (Figure 9 middle left panel), which provides an 

estimation of tree complexity, shows also significant overall differences (F(3,20) = 7.39, p = 

1.60 x 10-3). Specifically, it is reduced in Ts65Dn neurons compared to their controls (27.8 ± 

2.6 and 37.3 ± 5.9 respectively; Bonferroni-corrected p = 7.35 x 10-3), but also in C57BL/6J-
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129Ola versus B6EiC3Sn neurons (28.5 ± 4.3 and 37.33 ± 5.9 respectively; Bonferroni-

corrected p = 0.014). This trend is also observed for the mean branch order (see Table 3), 

indicating that less complex dendritic trees tend to have reduced branching hierarchies. 

Our analysis shows that both Ts65Dn and Dyrk1A+/- neurons have reduced mean branch 

length (Figure 9 upper right panel) compared to controls (F(3,20) = 29.85, p = 1.39 x 10-7).  

There are significant differences between Ts65Dn and their controls (45.2 ± 3.9 µm and 57.8 

± 5.2 µm respectively; Bonferroni-corrected p = 1.53 x 10-3), and between Dyrk1A+/- and 

their controls (43.2 ± 2.7 µm and 66.5 ± 6.9 µm respectively; Bonferroni-corrected p = 4.79 

x 10-7). The neurons from mixed background C57BL/6J-129Ola mice have longer segments 

than B6EiC3Sn neurons (66.5 ± 6.9 µm versus 57.8 ± 5.2 µm respectively; Bonferroni-

corrected p = 0.039). The mean density is also lower in both Ts65Dn and Dyrk1A+/- versus 

their controls, and increased in C57BL/6J-129Ola versus B6EiC3Sn (see Table 3).  

 

Finally, straightness (Figure 9 bottom middle panel) and the mean branching angle (Figure 

9 bottom right panel) show similar values in Ts65Dn, Dyrk1A+/- and the C57BL/6J-129Ola 

control groups. However, ANOVA revealed significant overall differences F(3,20) = 10.35, p 

= 2.53 x 10-4 for  straightness and F(3,20) = 3.52, p = 0.034 for mean branching angle) mainly 

driven by the different phenotype of the B6EiC3Sn control neurons. Specifically, compared 

to the B6EiC3Sn strain, C57BL/6J-129Ola wild-type neurons show reduced straightness 

(0.884 ± 0.017 and 0.911 ± 0.017 respectively; Bonferroni-corrected p = 0.023), and 

increased mean branching angle (0.96 ± 0.13 rad and 1.14 ± 0.12 respectively; Bonferroni-

corrected p = 0.031). 

 

One-way ANOVA tests among the four groups did not show significant differences for the 

center of mass of the trees, the maximum branch order, the width vs. height ratio and the 

mean asymmetry (data not shown). 
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Figure 9: Boxplots of single-neuron morphological metrics. Each panel shows violin and boxplots for 

metrics having significant differences in one-way ANOVA tests between the Ts65Dn, Dyrk1A+/- and their 

respective controls, the p-value of the test is shown on top of each panel. Each metric units are specified in the 

panel label. Each colored box/violin plot represents the distribution of the metric for each group. Spanning 

area, mean and maximum path length, mean branch length and dendritic area are reduced in both Ts65Dn and 

Dyrk1A+/- mice. Dyrk1A+/- control littermates show decreased total length and branch points, increased 

mean branch length (accompanied by reduced straightness), increased mean branching angle and increased 

mean density. 
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Table 3: Statistical comparisons between single-neuron morphological metrics. The table summarizes 
both the mean and standard deviation values for  controls and mutant mouse models, the t-values, degrees of 
freedom and Bonferroni-corrected p-values for pairwise t-tests between each mutant mouse model and its 
respective control. The three last columns show Bonferroni corrected p-values for comparisons between wild-
type strains, the variation between sample means F and the one-way ANOVA test p-value.  

 

Principal component analysis 

To identify metrics that explain the differences found in those intellectual disability models 

or account for the strain-dependent neuromorphological variability, I performed a Principal 

Component Analysis (PCA) of the mutant and wild type mice. The two first principal 

components explain 59.7% of the variance in the data (Figure 10). Principal Component 1 

(PC1, 45.7% explained variance) is mainly contributed by measures that account for the size 

of the tree: the dendritic spanning area, the total length of the tree and the maximum and 

mean path length. Following those metrics, straightness, branch order and density show 

considerable contributions to PC1. Principal Component 2 (PC2, 14.0% explained variance) 

is mainly contributed by the mean branching angle, followed by the number of branch points, 

the horizontal center of mass and the mean branching asymmetry. 
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Figure 10: Principal component analysis. PCA of the variables, where arrows represent the direction of 

each variable in the PCA space. Longer arrows belong to variables that are well represented by the two principal 

components. Each of the points represents one neuron, colored by the group they belong to. 68% confidence 

normal data ellipses for each group are drawn with solid lines. Bottom Bar plots showing the percentage of 

explained variance for each principal component. Bars represent the contribution (%) of each variable and the 

red dashed lines indicate the expected average contribution. The first principal component is a composite 

variable accounting for the dendritic tree size and the total dendrite length. The second principal component is 

a composite variable accounting for other morphological measurements, mainly the branching angle, the 

number of branch points and the horizontal center of mass and mean asymmetry.   
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A 2D projection overview of those principal components shows that the neurons clustered 

by genotype, being the wild-type and mutants mainly separated in PC1, while the different 

genetic background by PC2. Thus genetic background dependent neuromorphological 

differences are mainly related to mean branching angle and number of branch points. 

Instead, the variables contributing more to the difference between wild-types and mutants 

are mostly related to the tree span, its complexity and the straightness of the branches, being 

the most relevant metrics for dendritic wiring optimality. These results suggest that 

intellectual disability mouse models could have an excess of branches in small trees. 

 

Wiring optimality 

Cuntz, Mathy, and Häusser 2012 demonstrated using a large set of morphological 

reconstructions from the NeuroMorpho.org database, that dendrites of the various neuronal 

classes balance wiring costs differently, but the relationships between key features in their 

morphology followed scaling laws that could be predicted by models based on wiring 

minimization principles. If a set of n points is distributed in 2D with a density 𝑑 = 𝑛/𝑆, the 

average surface occupied by a single point is 𝑠′ = 𝑑−1, and the average minimal distance 

between points is proportional to the square root of 𝑠′: 𝑟 = 𝑐 ⋅ 𝑑−1/2 with proportionality 

constant c. If the average distance between connected points is minimal, the total length of 

dendrite connecting the n points is proportional to S and given by 𝐿 = 𝑐 ⋅ 𝑆 ⋅ 𝑑 ⋅ 𝑑−1/2 = 𝑐 ⋅

𝑆 ⋅ 𝑑1/2. Assuming a constant ratio between the number of contact points and the number 

of branch points (Cuntz et al., 2012), the total dendritic length scales with the number of 

branch points following a ½ power law in any optimally wired 2D tree. I thus asked whether 

the differences in dendritic arborization that I detected in behaviorally affected mouse 

models (Ts65Dn and Dyrk1A+/-) and between two different strains could affect wiring 

optimality. 

 

In our reconstructions, I assumed branch points as the target points of the dendrites, since 

those can unambiguously be counted. Thus, to test the optimality, I fitted a power law to the 

total dendritic length vs. number of branch points, both normalized by the dendritic tree 

spanning area. I found that the B6EiC3Sn Ctrl-Ts65Dn trees follow a close-to-optimal space 

fitting a power law of 0.45 s.e.= 0.13,  while both the Ts65Dn and Dyrk1A +/- neurons 

deviate from the 0.5 optimal value, with power laws of 0.74 s.e.=0.15 and 0.75 s.e.=0.16, 

respectively. Interestingly, the Ctrl-Dyrk1A+/- group (C57BL/6J-129Ola), present an 
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intermediate phenotype, with a power fit of 0.65  s.e.=0.11 indicating slightly suboptimal tree 

wiring.  

 

 

Figure 11: Power law relations between total dendritic length and branch number for layer II/III basal 

tree reconstructions of Ts65Dn and Dyrk1A+/- neurons, and their respective controls. The ½ optimal 

power for 2D trees is only followed by the B6EiC3Sn Ts65Dn control trees (power = 0.45±0.13), while both 

Ts65Dn (0.74±0.15) and Dyrk1A+/- (0.75±0.16) show a strong deviation, and C57BL/6J-129Ola Dyrk1A+/- 

controls (0.65±0.11) slightly deviate. The number of branch points and total length were normalized by the 

dendritic surface (S=10.000 µm²). Shaded regions indicate 95% confidence level interval of the power law fit. 

 

 

1.3.2. Network computational capacities  

In order to investigate whether the micropatterning properties of dendritic trees can have a 

significant impact on network topology, I used a minimal model (see Section 1.2.3) and as a 

first step, I did an in silico exploration of the impact of specific variables on the efficiency of 

a cortical layer II/III morphospace.  

 

 

 

 



 

 54 

Exploration of the wild-type cortical layer II/III local network morphospace 

The 2D minimal model parameterized as described in Section 1.2.2 is a template of a wild-

type cortical layer II/III local network. By modifying its parameterization, new networks can 

be instantiated and this allows the exploration of the effects of neuromorphological 

variations of dendritic trees on the network connectivity and, ultimately, on the network 

topological properties as defined in Section 1.2.3.  

To explore the dendritic morphospace I scaled the parameters mean 𝑟𝑑̅ (mean dendritic 

diameter), 𝜎𝑑 (standard deviation of the dendritic diameter), and αc (synaptic contact 

probability, contributed by dendritic complexity and spine density). I scaled the parameters 

above and below the values estimated for the wild-type template (from 0.5 times to 1.5 times 

the control mean value with a step of 0.1 in the case of 𝑟𝑑̅, and from 0.4 to 2.4 times the 

control mean value with a step of 0.2 in the case of  𝜎𝑑). Those parameterizations imply 

variations in dendritic size and its variability, dendritic complexity and spine density.  

 
Figure 12: Synaptic contact probability extraction from experimental data. Schematic example for (a) 

dendritic and (b) spine density distributions of a pyramidal layer II/III basal tree, and for the synaptic contact 

probability as calculated Equation 1. The colored lines represent arbitrarily scaling of the synaptic contact 

probability along the y axis, which simulates scaling at the same time the numbers of dendrites and/or spines 

found along the dendritic tree radius.  

 

Dendritic and spine density distributions are not homogeneous in real neurons, and they 

imply a variable distribution of synaptic contacts along the space covered by the dendritic 
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tree. A common point of view is that dendritic tree morphology determines the balance of 

received inputs and is constrained by (1) the computations to be done in specific neuronal 

layers (ultimately determined by neurodevelopment) (Wen, Stepanyants, Elston, Grosberg, 

& Chklovskii, 2009), and (2) the wiring optimality discussed by (Cuntz et al., 2012) and 

described further in Section 1.3.1.  

 

I asked how relevant the basal tree synaptic contact distribution observed in cortical layer 

II/III is for the local network connectivity.  To answer this question, I explored variations 

in the synaptic contact probability by performing two sets of simulations. In the first set of 

simulations I used a constant synaptic contact probability αc. This contact probability has 

been estimated to be between 0.1-0.2 in overlapping axons and dendritic trees in the rat 

cortex (Markram, Lübke, Frotscher, Roth, & Sakmann, 1997). This probability is ultimately 

dependent on the morphology of the neurons, thus neurons with highly complex and big 

amounts of synaptic contacts will have high synaptic contact probability, and a low one for 

low complexity trees making few synapses. To explore how variations among these cases 

would affect the network topology and given the reduced dimensionality of our network 

(Orlandi et al., 2013), I scaled its values between 0.1 and 1 with a step of 0.1 in order to 

explore values around a biologically meaningful range (Markram et al., 1997). In the second 

set of simulations, the analytic expressions for the control dendritic and spine density 

distributions were scaled between 0.5 times to 1.5 times the control mean value with a step 

of 0.1 to explore a range of synaptic density values that could be modulated by environmental 

conditions or pharmacological treatments. 

For each combination of parameters I generated 10 networks, following Orlandi et al.  and 

analyzed their topological properties and computational capacities(Orlandi et al., 2013). 

Those are defined in Section 1.2.3 and the model source code and analysis R scripts can be 

found at https://bitbucket.org/linusmg/2d_model_bitbucket.  

 

 

Synaptic contact probability and dendritic tree size modulate routing efficiency and 

storage capacity 

First, inspired by already existing similar models of local 2D networks, I explored the 

morphospace by assuming that the synaptic contact probability is constant along the 

https://bitbucket.org/linusmg/2d_model_bitbucket
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dendritic trees (Figure 13; blue symbols). After, I introduce a synaptic contact probability 

extracted from experimental data. In the constant synaptic contact probability condition, the 

cost of wiring the network grows linearly when increasing synaptic contact probability. The 

superlinear growth network cost detected when increasing dendritic tree size, suggests that 

the amount of contacts in the network depends less of the radius and more of the spanning 

area of the neuron. As compared to those parameters, increasing dendritic tree size variability 

only produces a slight linear increase of the cost (see Figure 13, lower panel). 
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Figure 13: Implications of the morphospace exploration on the computational capacities of the cortical 

layer II/III local network model. Box plots for routing efficiency (1st row), storage capacity (2nd row) and 

cost (3rd row) in the 2D model upon the variation of the synaptic contact probability (1st column), normalized 

dendritic tree size (2nd column) and dendritic tree size variability (3rd column). In blue, instantiations of the 

network with a constant synaptic probability 𝛼, in green instantiations with synaptic contact probability 

dependent on the radius 𝛼(𝑟) (Equation 1). Each box plot represents 10 simulations with the same 

parameterization.  
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Both increases in dendritic tree size and synaptic contact probability (contributed by dendritic 

complexity and synaptic density), increase linearly the network routing efficiency (Figure 13, 

upper panel). However, the impact of increasing synaptic or dendritic densities is stronger 

than that of increasing dendritic tree size. A similar effect was encountered when increasing 

dendritic tree size variability, which only slightly increases the network routing efficiency.  

 

Regarding storage capacity of the network, I found that it is increased linearly by increasing 

dendritic tree size and asymptotically with synaptic contact probability (Figure 13, middle 

panel). Again, increasing dendritic tree size variability only slightly increases storage capacity. 

Interestingly, I observed that storage capacity gets to a plateau for synaptic contact 

probability values of the magnitude reported in the mammalian cortex (0.1-0.4) (Markram, 

2006). This might be counterintuitive, since it would suggest that if assuming that storage 

capacity is constant along the dendrite, then it would be saturated in basal conditions. Thus, 

in a second round of simulations, I explored the same morphospace while introducing the 

radial dependence on the synaptic contact probability (Section 1.2.31.2.3. Network 

topology characterization using graph theory see Figure 13; green symbols).  

 

In fact, even considering its radial dependence, the mean synaptic contact probability gets to 

the same plateau as above (disregarding radial dependency), for synaptic contact probability 

values (0.1-0.4), I found that in this case the amount of connections is higher than in the case 

of constant synaptic probability (∝𝑐), as shown by the shape of the curve of the network 

cost, which is directly proportional to the number of connections (Figure 13, lower panel). 

The increased number of connections implies slightly increased storage capacity and routing 

efficiency (Figure 13, upper and middle panels). It should be noted that storage capacity 

starts to saturate for α(r) values for which the amount of synaptic contacts (cost) is still 

growing. This implies that the saturation is not produced because the trees are not making 

new contacts, but because those are coming from the same afferents. Also, the routing 

efficiency grows asymptotically for increasing dendritic tree size. Together with the increased 

storage capacity, this defines a “sweet spot” around the wild-type values, where storage 

capacity and routing efficiency are maximally increased in comparison to the constant 

synaptic contact probability instantiations. 
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Finally, when the dendritic tree size is increased, the higher amounts of contacts (cost) 

introduced by the radial dependency does not grow superlinearly, meaning that the contacts 

do not increase proportionally to the dendritic tree area, but to its radius, and the increasing 

dendritic tree size variability again produced a slight linear increase in both cost, storage 

capacity and routing efficiency. 

 

To test if the explored morphospace could also be constraining topological properties such 

as deviations from randomness, promoting higher clustering in the network and a small-

world organization.  I obtained mean degree distributions, small-worldness ratios and 

reciprocities. The analysis shows that log degree distributions do not deviate from 

exponential, implying that the networks have a random network topology (data not shown). 

Increased synaptic contact probability does not increase clustering, decreases small-

worldness asymptotically and increases reciprocity asymptotically. A similar behavior is 

observed with increased dendritic tree size: clustering and reciprocity increase but the small-

worldness ratio decreases. Dendritic tree size variability increases clustering linearly, and 

decreases small-worldness ratio and reciprocity linearly. 
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Figure 14: Implications of the morphospace exploration on topological properties of the cortical layer 

II/III local network model. Box plots for clustering (1st row), small-worldness ratio (2nd row) and 

reciprocity (3rd row) in the 2D model upon the variation of the synaptic contact probability (1st column), 

normalized dendritic tree size (2nd column) and dendritic tree size variability (3rd column). In blue, 

instantiations of the network with a constant synaptic probability 𝛼, in green instantiations with synaptic contact 

probability dependent on the radius 𝛼(𝑟)  (Equation 1). Each box plot represents 10 simulations with the 

same parameterization. 

 

Dendritic abnormalities of mutant mouse models lead to reduced computational 

capacities 

Our computational model allows to directly incorporate the neuromorphological metrics 

obtained previously in our laboratory, allowing us to also incorporate in the analysis a mouse 

model overexpressing DYRK1A, the TgDyrk1A published neuromorphological data (de 
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Lagran et al., 2012) along with the Ts65Dn and Dyrk1A+/-. This provided the opportunity 

to explore subtle gene dosage effects and the influence of slightly different genetic 

background on dendritic arborization. To do so, I used the published Sholl and spine density 

quantifications of our models but since I had no access to the cell density, axonal length and 

axon tortuosity, I used published control values. For this reason, in our instantiation of 

mutant networks I focus on dendritic architecture and do not assess the putative 

contributions of these other morphological properties on the network connectivity. 

 

The published Sholl analysis data for all the models and their wild-type counterparts are 

listed in Table 4 and Table 5. Those parameters provide a description of the dendritic 

complexity and synaptic densities in all the biological conditions that I aim to assess in our 

simulations.  

 
Table 4: Sholl analysis average values for Ts65Dn, Dyrk1A+/- cortical layer II/III basal trees and their 
wild-type counterparts. Mean numbers of dendritic branches intersecting radii at increasing 25µm steps of 
distance to the soma for the Ts65Dn and Dyrk1A+/- DS mouse models and their respective controls.The last 
row indicates the references from which those values were obtained. 

 
Ctrl-

Ts65Dn Ts65Dn 

Ctrl-

Ts65Dn-

EE 

Ts65Dn-

EE 

Ctrl-

TgDyrk1A TgDyrk1A 

Ctrl-

Dyrk1A+/- Dyrk1A+/- 

Distance 

from soma  

(µm) 

Number of dendrites (Sholl analysis) 

25 12 16 13 16 26 19 17 17 

50 22 23 25 23 39 25 26 22 

75 24 16 27 13 33 22 27 18 

100 21 7 22 5 22 14 22 10 

125 15 2 13 2 9 5 13 4 

150 7 0 5 0 2 1 5 1 

175 3 0 1 0 0 0 2 0 

200 0 0 0 0 0 0 1 0 

Reference Dierssen et al. 2003 
Martinez de Lagran et 

al. 2012 

Benavides-Piccione et al. 

2005 
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Table 5: Average synaptic densities along the radius of Ts65Dn, Dyrk1A+/- cortical layer II/III basal 
trees and their wild-type counterparts. Mean numbers of spines in 10µm segments (see Section 1.2.1) in 
function of the distance to the soma for the Ts65Dn and Dyrk1A+/- DS mouse models and their respective 
controls.The last row indicates the references from which those values were obtained.       

 

Ctrl-

Ts65Dn Ts65Dn 

Ctrl-

Ts65Dn-

EE 

Ts65Dn-

EE 

Ctrl-

TgDyrk1

A 

TgDyrk1

A 

Ctrl-

Dyrk1A+

/- 

Dyrk1A+

/- 

Distance 

from 

soma (um) 

Number of spines 

10 0 0 0 0 0 1 3 1 

20 1 7 6 6 5 5 9 6 

30 5 15 14 14 12 10 13 11 

40 9 17 20 17 16 14 15 12 

50 12 19 25 20 17 15 15 12 

60 15 19 25 20 18 15 17 11.5 

70 15 18 24 20 19 16 16 11 

80 17 19 24 19 19 15 15 12 

90 16 17 22 19 15 13 15 11.5 

100 16 15 23 17 - - 14.5 11 

110 15 15 21 17 - - 14 11 

120 15 13 21 16 - - 13.5 10.5 

130 14 18 21 17 - - 13 9 

140 15 - 19 12 - - 13 11 
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150 14 - 18 12 - - 11 12 

160 14 - 17 - - - 9 10 

170 13 - 20 - - - 14 - 

180 14 - 19 - - - 13 - 

190 13 - 10 - - - 13 - 

200 12 - 9 - - - 15 - 

210 13 - - - - - - - 

220 14 - - - - - - - 

230 14 - - - - - - - 

Reference 
Dierssen et al. 2003 

Martinez de Lagran et al. 

2012 

Benavides-Piccione et al. 

2005 

 

 

Even though the experimental conditions and procedures were very similar in the three 

published experiments, the cross comparison among experimental controls showed 

variations in the amount and radial distributions of dendrites and spines ( 

Figure 15 a), but to ensure a meaningful comparison between experimental conditions, and 

even though  these differences may be biologically relevant and possibly represent genetic 

background-dependent differences, I curated the data as follows: all the dendritic and spine 

density distributions were normalized to their respective control values for each single 

experiment and, in order to compare experimental conditions, I scaled the normalized 

distributions to a common control curve obtained from the literature data of layer II/III 

basal trees in M2 for B6EiC3Sn wild-type mice ( 

Figure 15 b and Tables 4 and 5). 
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Figure 15: Normalization of dendritic radial distributions to the C57BL6/J strain wild-type data. (a) 

Distributions of dendrite numbers in function of the distance from the soma obtained from experimental data 

of different experiments. Each colored set of points shows the mean values obtained in the experiments, each 

line is a polynomial fit to those data points: in red, the common control used in our 2D computational model 

(C57BL6/J strain); in brown, the TgDyrk1A control; in green, the Ts65Dn control; in blue, the TgDyrk1A DS 

mouse model; and in purple, the Ts65Dn mouse model. Mean values obtained from the literature specified in 

the main text, characterizing basal dendritic trees of M2 in the layer II/III of the cortex. (b) Distributions of 

dendrite numbers along the radius of the tree for the Ts65Dn and TgDyrk1A DS mouse models normalized 

to a common control (C57BL6/J strain). 

 

I obtained analytic expressions for dendritic and spine density distributions by performing 

polynomial regressions on the normalized distributions. Fitting was done using the lm 

function in R as described in Section 1.2.2. Normalized experimental data and polynomial 

regressions are shown in Figure 16. The obtained polynomials were directly introduced in 

the model in order to compute the synaptic contact probability in function of the distance 

from the soma as explained in Section 1.2.2. 

Figure 16: Dendritic and spine radial distributions normalized to wild-type C57BL6/J mice. 

Distributions of dendrite (a) and spine (b) numbers along the radius of the tree for the Dyrk1A+/- (green), 

TgDyrk1A (blue) and Ts65Dn (purple) DS mouse models normalized to a common control (C57BL6/J strain: 

in red). 

 



 

 65 

I then introduced experimental dendritic and synaptic spine distributions from the Down 

syndrome mouse models (Ts65Dn, TgDyrk1A and Dyrk1A+/-) and generated 10 networks 

using the normalized distributions. These normalized distributions were used to assess the 

impact of the specific alterations found in the different DS mouse models on the topology 

and computational capacities of the modeled network.  

 

I performed a one-way ANOVA test to identify significant differences among all the groups, 

and two-way unpaired t-tests with post-hoc Bonferroni corrections to identify pairwise 

significant differences. The three studied mouse models show reduced routing efficiency 

(F(5,54) = 7681, p = 1.07 x 10-75) and storage capacity (F(5,54) = 8202, p = 1.83 x 10-76). Storage 

capacity is strongly reduced, in Ts65Dn (587.2 ± 5.1 bits; Bonferroni-corrected p = 6.34 x 

10-71) and Dyrk1A+/- (560.7 ± 4.9 bits; Bonferroni-corrected p = 3.02 x 10-72) networks, and 

to a lower extent in TgDyrk1A (857.9 ± 3.9 bits; Bonferroni-corrected p = 6.55 x 10-50) as 

compared to the C57BL/6J control (1042.6 ± 9.0 bits). Routing efficiency is also reduced in 

Ts65Dn (7.23 ± 0.07 A.U.; Bonferroni-corrected p = 3.71 x 10-66), TgDyrk1A (7.45 ± 0.07 

A.U.; Bonferroni-corrected p = 3.22 x 10-65) and Dyrk1A+/- (6.21 ± 0.09 A.U.; Bonferroni-

corrected p = 4.33 x 10-70) networks in comparison to the wild-type (12.80 ± 0.05 A.U.). 

From the position of the different models in the efficiency space, I can infer that while the 

three models deviate from the computational capacities of the wild-type, the one with worse 

implications in our simulations is the Dyrk1A+/- that shows 49% routing efficiency and 

54% storage capacity of the control group. The comparison between the Ts65Dn and the 

TgDyrk1A is worth mentioning: while they show similar levels of routing efficiency (56% 

and 58% respectively), the Ts65Dn shows much less storage capacity (56%) than the 

TgDyrk1A (82%). This difference is caused mainly by the reduced tree size of the trisomic 

mice. At the same time, the fact that Ts65Dn and Dyrk1A+/- mice have very similar tree 

size, implies that the reduction almost exclusive in routing efficiency for Dyrk1A+/- 

networks versus Ts65Dn (-14%) is produced by the lower spine density observed in the 

heterozygous model. 
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Figure 17: Overview of the morphospace exploration in the cortical layer II/III local network model. 

3D representation of the data points for routing efficiency, storage capacity and cost, for (1) the morphospace 

exploration of our computational 2D model shown in Figure 13 and Figure 14, and (2) the different mouse 

models instantiated. The red points were obtained by scaling the dendritic tree size; in yellow, the synaptic 

contact probability; in brown, the dendritic tree size variability; in tones of blue the DS mouse model 

instantiations (see legend). A 3D animation can be seen in: 

https://www.youtube.com/watch?v=tAwNar6VTo0, stop at seconds 0, 1 and 3 for 2D projections of each 

combination of dimensions.     

 

 

 

1.3.3. Dendritic rewiring effects on network computational capacities 

 

I investigated how neuromorphological variations detected upon treatment with 

environmental enrichment, which has shown beneficial effects in Ts65Dn and wild-type 

mice (M Dierssen et al. 2003; Martínez-Cué et al. 2002), affect the routing efficiency and 

storage capacity of our model cortical layer II/III networks.  

As expected by the mild effect produced by environmental enrichment at the morphological 

level, the Ts65Dn mice only show a modest (yet significant) increase in storage capacity (7%) 

versus the non-enriched situation (625.3 ± 5.8 bits and 587.2 ± 5.1 bits; Bonferroni-corrected 

https://www.youtube.com/watch?v=tAwNar6VTo0
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p = 3.35 x 10-16). A similar change is seen in routing efficiency (7% increase; 7.74 ± 0.10 A.U. 

and 7.23 ± 0.07 A.U.; Bonferroni-corrected p = 3.85 x 10-14).  

 

In the case of wild-type mice reared in environmental enrichment conditions, strikingly, the 

storage capacity drops by a 15% with respect to non-enriched conditions (893.0 ± 9.3 bits 

and 1042.6 ± 9.0 bits; Bonferroni-corrected p = 4.68 x 10-45) while routing efficiency is mildly 

reduced by a 3%. From this exploration, I can hypothesize how putative treatments could 

imply a rescue of the computational capacities in the network. While an increase in synaptic 

density reaches storage capacity saturation at a high cost, an increase in dendritic tree size 

(even subtle) would efficiently rescue the studied capacities and provide a stronger 

therapeutical effect. 

 

 

1.3.4. Pareto optimality for computational capacities 

By focusing on the two dimensions of the efficiency space given by the cost and the 

routing efficiency, I can link conceptually our single-neuron wiring optimality study with 

the exploration made at the network level, as described in the Methods section. Taking a 

similar routing efficiency for Ts65Dn, Tg Dyrk1A and 0.6 times downscaled wild-type 

networks (7.22 ± 0.07, 7.45 ± 0.07 and 6.90 ± 0.13 A.U. respectively), I observe that the 

parametrized mutant networks show higher cost than the wild-type networks that 

underwent dendritic tree size 0.6 times downscaling (4.00 ± 0.12 x 106, 5.00 ± 0.13 x 106 

and 3.18 ± 0.07 x 106 A.U. respectively). This implies that mutant networks are not Pareto 

optimal for routing and material efficiency, a situation that could be explained by the fact 

that for the same spanning area, mutant dendritic trees have increased number of branches 

compared to their wild-type counterparts ( 

Table 4). At the same time, the increased dendritic complexity for the spanning area of the 

trees in both Ts65Dn, environmentally enriched Ts65Dn and TgDyrk1A in comparison to 

0.6 times downscaled wild-type trees implies an increase in storage capacity (587.2 ± 5.1, 

857.9 ± 3.9 and 422.1 ± 2.4 bits respectively), pointing at a possible self-regulation to 

increase the amount of synaptic contacts received by single neurons. 
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1.4. Discussion and conclusions 

Single-neuron wiring optimality 

Our morphological analysis of Ts65Dn, Dyrk1A+/- mice and their respective controls has 

confirmed previous observations. The original studies (Benavides-Piccione et al., 2005; M 

Dierssen et al., 2003) already pointed in the direction of a similar phenotype for both models. 

Here I confirmed that both Ts65Dn and Dyrk1A+/- neurons show reduced dendritic length 

and complexity, and higher amount of branches per normalized dendritic length. A 

substantial number of studies have associated morphological differences in ID mouse 

models with cognitive impairment measured by performance indices in cognitive tasks 

(Escorihuela, Fernández-Teruel, et al., 1995; Sago et al., 1998). Lesion and 

activation/inactivation studies in the M2 cortex have been shown to affect motor function 

(Manita et al., 2015). Ts65Dn mice show hyperactivity in various behavioral tests: open field 

lighting or open arms of the raised cross-shaped maze; being also hyperactive when 

surrounded with plenty of new stimuli, as with environmental enrichment (Coussons-Read 

& Crnic, 1996) . Conversely, Dyrk1A +/- mice show marked hypoactivity (de Lagran et al., 

2007). In fact Dyrk1A+/- neurons have more marked alterations than Ts65Dn in the case 

of the mean branch order and spanning area that were significantly smaller in heterozygous 

mice.  

 

However, our analysis suggests that those could be driven by the strain differences between 

B6EiC3Sn and C57BL/6J-129Ola wild-type mice. Among those differences, the reduced 

number of branch points and straightness and higher dendritic area and mean branching 

angle versus the B6EiC3Sn wild-type. In fact, those are relevant features for signal integration 

that could be involved in the mild behavioral impairment observed in this strain. 

 

Until now these structural differences have been assumed to determine functional changes 

in these mutant strains. Here I decided to analyze if those differences of dendritic branching 

patterns still fit to an optimal dendritic wiring law. The optimal wiring comparison shows 

that cortical layer II/III basal trees are sub-optimally wired in the Ts65Dn and Dyrk1A+/- 

mouse models and in C57BL/6J-129Ola wild-type mice. Interestingly, Ts65Dn and 

Dyrk1A+/- neurons apart from showing a clear deviation from optimality in the proportion 

of branches per total dendritic length, they also show a reduced proportion of area occupied 
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by dendrites. This quantity has been used as a proxy for wiring optimality as proposed by 

Chklovskii et al (Chklovskii et al., 2002). The interesting point is that C57BL/6J-129Ola wild-

type mice show the same dendritic occupation ratio than B6EiC3Sn mice, implying that the 

deviation seen in the power law for those neurons is  given by the amount of branches per 

length of dendrite (too high for small dendritic trees) and not by the dendritic occupation 

ratio. If the subtle morphological differences of C57BL/6J-129Ola wild-type could be 

causally linked to their behavioral phenotype, this would suggest that Cuntz’ approximation 

to dendritic wiring optimality is more complete than the dendritic occupation ratio. 

 

Based on our single-neuron morphology and wiring optimality studies, I could speculate that 

the Ts65Dn and TgDyrk1A mouse models could have altered signal integration efficiency at 

the single cell level, leading to over-represented connections from the same afferent neurons 

(optimal wiring, Figure 11, and increase in the occupied area fraction, Figure 9). This 

hypothesis could be tested functionally by checking whether neurons deviating from 

optimality have increased synaptic response to groups of neurons innervating the region (e.g. 

thalamic or cortical projections from other sensory areas) (Grillner, 2015). This scenario 

could ultimately lead to an overactivation of M2 contributing to the hyperactive phenotype 

of those mouse models. In fact, unpublished data from our laboratory showed increased 

excitability in the motor cortex of Down syndrome patients (Principe et al, unpublished) 

using functional studies analyzing motor evoked potentials upon transcranial magnetic 

stimulation. 

 

In contrast, the reduced straightness found in the C57BL/6J-129Ola strain, suggests that 

afferent synaptic signals could have delayed integration, possibly altering their response and 

introducing alterations in the activity dynamics of the region upon activation. Nevertheless, 

this explanation does not stand for all the behavioral phenotypes. While the dendritic 

architecture of the Dyrk1A+/- neurons is very similar to the Ts65Dn phenotype, 

behaviorally Dyrk1A+/- show marked hypoactivity (in contrast with the hyperactivity of 

Ts65Dn mice). Of course I need to bear in mind other aspects accompanying Dyrk1A 

underexpression. Previous work in our lab (de Lagran et al., 2007), showed decreased striatal 

dopamine levels and a reduced number of dopaminergic neurons in the substantia nigra pars 

compacta, that certainly contribute to the final motor behavior phenotype in this strain. Thus, 

understanding the hyper/hypo-activity phenotype also requires disentangling the 
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morphological and functional contributions at the higher-order network level. Even so, 

instantiating local networks in a systematic way can provide interesting information about 

the emergent functional phenotypes. 

 

As the main limitation of this analysis, it should be noted that the numbers of neurons used 

in this study are very small, and thus in my opinion should not be generalized to the whole 

population. Even so, the important morphological differences among wild-type and mutant 

neurons, imply statistically significant differences. However, increasing the number of 

biological replicates, reproducing the study and complementing this knowledge with other 

models of intellectual disability in cortical layer II/III remains a necessary task. Additionally, 

the design of studies combining behavioral information of single animals and their 

morphological characterization, even though not allowing a full prediction as discussed 

above, would provide interesting correlations between the architectural traits and behavioral 

differences. 

 

In conclusion, single-cell reconstructions have been extensively used to understand the 

relationship between dendritic morphology and the computations performed by neurons. 

However, the impact of neuronal geometry on the network properties is much less 

understood even though a wealth of knowledge about the physiology and morphology of 

some of these neurons is established. I here took a computational approach that can serve 

as a ‘‘hypothesis tester’’. For example, I can ask if the morphologies of the optimized neurons 

resemble the mutant neurons, or it can also be used in an exploratory manner, in which case 

the model neurons are used to identify the morphological parameters of theoretical interest. 

In this way, my approach can serve as a ‘‘hypothesis pump’’.  

 

Network exploration 

Our first goal was to disentangle the differential contributions of various 

neuromorphological features to the network computational capacities. Our in-silico 

exploration suggests that the density of synaptic contacts has less impact than dendritic tree 

size on the connectivity of the network and its computational capacities. Increasing dendritic 

tree size and synaptic contact densities implies a linear growth in the routing efficiency and 

cost of the network. Storage capacity grows asymptotically with synaptic contact probability 

and linearly with dendritic tree size. Of note are the facts that taking into account the radial 
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dependency in synaptic contact probability increases the number of contacts made by the 

neurons, and increases the small-worldness ratio of the network. Thus, contributing to the 

deviation from purely random topologies in neuronal networks (Vegue et al., 2017) and 

showing that taking the radial dependency into account in simple neuronal models can be 

contributing significantly to the network properties (concept not underlined in existing 

approximations to our knowledge).  

 

The cortical layer II/III network instantiation parameterized with experimental data from 

our Down syndrome mutant models shows slightly differential affectations at the network 

level, given by small differences in their dendritic and spine radial distributions (see Figure 

16). I first discuss the implications of those differences for wiring optimality, and second 

their connection with behavioral studies.  

 

The analysis of the network routing efficiency seems to accompany the optimal wiring 

proposed by Cuntz et al. (derived from Cajal’s laws for cytoplasm and conduction time), 

showing that morphologically altered neurons lead to suboptimal network connectivity. The 

mutant networks have excessive material in regards of the routing efficiency reached, while 

wild-type optimal morphologies lead to network topologies that are Pareto-optimal for 

routing and material efficiency. Even though the two optimality concepts seem to be related, 

it remains to be tested whether all network configurations non Pareto-optimal for routing 

efficiency also imply suboptimal dendritic tree wiring/occupation. 

 

While our results appear to be consistent regarding the single-neuron and network optimality, 

associating them with the behavioral perspective does not clarify the doubts raised by the 

wiring optimality study. However, they suggest testing whether the network stimuli 

processing efficiency (and its dynamics) could be impaired differentially in Ts65Dn and 

Dyrk1A+/- mice, possibly linking the single-neuron description with the network dynamics 

through altered intercolumnar communication.  

By taking into account that the M2 local connectivity participates into a larger network 

involved in the learning of motor repertoire (Barthas & Kwan, 2017), the impairment in 

storage capacity for the DS mouse models can be discussed in relation to executive function 

tasks. In this case, the literature available only consists in a single study assessing the Puzzle 

Box task performance in TgDyrk1A mouse model. Their impairment suggests that the 
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reduction in storage capacity seen in our model can be associated with the behavior. To test 

whether the relationship between architectural features and storage capacity follows the 

relationship I assumed, behavioral experiments comparing the executive function and/or 

motor repertoire acquisition capabilities of the different DS mouse models are needed. 

The parameterization of data obtained from mice undergoing pro-cognitive treatment 

tackling dendritic rewiring can also contribute to the comparative analysis between 

neuromorphological conditions and cognitive capacities. In the case of environmental 

enrichment, an increase in spine densities in both wild-type and Ts65Dn mice has been 

shown (M Dierssen et al., 2003). In the case of wild-type mice the treatment also improved 

cognitive performance in the Puzzle Box task (O’Connor, Burton, Leamey, & Sawatari, 

2014). The subtle 7% increase in routing efficiency and storage capacity for Ts65Dn in our 

computational model should undergo behavioral testing. However, the marked reduction in 

storage capacity (15%) and almost unchanged routing efficiency (3%) obtained with the 

environmentally-enriched wild-type parametrization imply that the model contradicts the 

improved Puzzle Box performance of wild-type mice. The storage capacity reduction 

originates in the subtly smaller dendritic trees of environmentally-enriched wild-type mice 

and is magnified by the high sensitivity of storage capacity towards dendritic tree size. While 

experimental data in the hippocampus shows a clear increase in dendritic tree size (Beauquis, 

Roig, De Nicola, & Saravia, 2010), additional experiments in cortical layer II/III to 

corroborate the subtle shrinkage observed in the dataset I used is lacking. Nevertheless, the 

strong effect of dendritic tree size in storage capacity suggests a cautious interpretation of 

their relationship. To assess whether the definition of storage capacity used is meaningful, a 

better estimate could be obtained by training neuronal networks with the instantiated 

topologies to store combinations of connectivity patterns and assessing their reliability in 

function of the morphospace exploration I have done (Poirazi & Mel, 2001).  

Additionally, an important limitation of our model is the assumption of homogeneity, which 

forces a strong constraint hindering the modular and hierarchical organization of neuronal 

circuits(Bassett & Bullmore, 2006). Similarly, I have not explored other questions of interest, 

such as the subpopulation of abnormal neurons needed to impair significantly the network 

computational capacities, how neuronal densities could be affecting the obtained results, how 

detailed branching patterns could be modulating the network connectivity or how dynamical 

activity patterns emerging from different network topologies would differ. However, I 

consider it as a manageable test scenario for a conceptual framework that I aim to apply to 
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whole circuits involved in specific cognitive functions (e.g. entorhinal cortex - hippocampal 

circuit and its involvement in spatial/single item recognition learning). I think that this study 

can be a useful founding piece for comparative micro-connectomics in the frame of 

intellectual disabilities. 
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2. CHAPTER II. IMPACT OF SINGLE-NEURON 

STRUCTURAL DIVERSITY IN HIPPOCAMPAL CA1 

POPULATIONS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Different Types of Neurons. A. Purkinje cell B. Granule cell C. 

Motor neuron D. Tripolar neuron E. Pyramidal Cell F. 

Chandelier cell G. Spindle neuron H. Stellate cell (Credit: Ferris 

Jabr; based on reconstructions and drawings by Cajal) 
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"Unfortunately, nature seems unaware of our intellectual 

need for convenience and unity, and very often takes 

delight in complication and diversity." 

 

Santiago Ramón y Cajal, in his 1906 Nobel 

lecture The structure and connexions of 

neurons 
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2.1. Introduction 
 

The results presented in Chapter I showed that morphological properties of single cells are 

relevant for the network connectivity. Their wiring depends on 1) the 3D morphology of 

dendritic trees, which determines the balanced integration of afferent synapses carrying 

diverse information, and 2) the arrangement of those trees throughout the layers they are 

embedded into, which ultimately determines the specific computations done in each 

neuronal layer. However, to explore the relationship between the morphospace and network 

topology in networks responsible for specific cognitive functions, it is necessary to account 

for population level descriptions of neuronal circuits.  

 

Cytoarchitectonic variation in cortical regions 

A number of studies in the literature have revealed that the cerebral cortex is characterized 

by regional variations in its structure across different spatial planes. Conel (J LeRoy Conel 

1941, 1947, 1955, 1959, 1963, 1967) thoroughly examined these regional differences by 

quantifying cell structure variation in several cortical areas in the cortex of a developing 

human brain. Thus, the question that immediately arises is: do the intrinsic properties of a 

specific brain structure vary across its extension, along with the within-class neuronal 

structure variability, or is the neuronal circuitry structure fixed and performing a conserved 

computation along a structurally non-homogeneous structure?  

 

In fact the most frequently regarded paradigm to address this question has been a 

reductionist approach based on cell types, according to which discrete cell types are assumed 

to be homogeneous in terms of structure and function. Following this approach, identifying 

how different types of cells interact and contribute to a system allows for studying the 

emergent processing of the system as a whole. 

Neurons in the brain are commonly grouped into discrete cell types based upon morphology, 

marker-gene expression, electrophysiology, and location within their respective circuit 

motifs. Each of those cell classes has been assumed to retain constant properties, and thus 

they have been used in computational models as “clonal” stereotypic elements. For example 

pyramidal neurons, the most abundant type of neuron in the neocortex, display notably 

similar dendritic arborization patterns among different areas of the brain and between 
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different cortical layers, in spite of their broad functional range. Dense arborizations of basal 

dendrites with multiple proximal branches wreathe the cell bodies of pyramidal neurons, with 

a single apical dendrite projecting towards the pial surface, which eventually branches as it 

enters layer I (Larkman & Mason, 1990). This conserved shape justifies the application of 

systematic morphological analyses without considering morphologic peculiarities of 

individual neurons. Although the effects of such peculiarities on the function of pyramidal 

neurons are not known, apical and basal dendrites likely correspond to different circuit inputs 

producing specific contributions to pyramidal cell excitability and long term synaptic 

plasticity (Cauller, Clancy, & Connors, 1998; Dudman, Tsay, & Siegelbaum, 2007). 

 

However, a number of studies have demonstrated that differences in organizational 

principles may also be present, wherein within-class variability may be an important aspect 

of neuronal systems (Solstez, 2006). This question has been systemically investigated using 

microanatomical and gene-expression studies of pyramidal cells. Several lines of anatomical 

and physiological evidence have identified differences in CA1 in each of the dorsal-ventral 

(Amaral and Witter 1989; Dougherty et al., 2012, Dougherty et al., 2013, Malik et al., 2015), 

proximal-distal (Graves et al., 2012; Igarashi, Ito, Moser, & Moser, 2014; Jarsky, Mady, 

Kennedy, & Spruston, 2008), and superficial-deep (S.-H. Lee et al., 2014; Mizuseki, Diba, 

Pastalkova, & Buzsáki, 2011; Slomianka, Amrein, Knuesel, Sørensen, & Wolfer, 2011) axes 

of the hippocampus.  

 

Similar variations have been reported also for other brain regions, such as the cerebral cortex 

(Defelipe, González-Albo, Del R’\io, & Elston, 1999) or the striatum (Cossette, Lecomte, & 

Parent, 2005)  that may account for the well-established extensively reported notorious 

functional variability, both among different neurons, but even within the same neuron neural 

responses: the same stimulus can evoke a different response on each presentation (Henry, 

Bishop, Tupper, & Dreher, 1973; Tomko & Crapper, 1974). However, even though there 

have been great advances in characterizing the detailed patterns and statistical structure of 

cortical variability (Ecker et al., 2014; Feng, Zhao, & Kim, 2015; Goris, Movshon, & 

Simoncelli, 2014; Kohn & Smith, 2005), it has mainly been considered as pure noise or 

nuisance (Carandini, 2004; Moreno-Bote et al., 2014; Shadlen & Newsome, 1998; Tolhurst, 

Movshon, & Dean, 1983), and only recently some authors have suggested that it underlies 

functional aspects such as the representation of perceptual uncertainty (Sancristóbal, 
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Rebollo, Boada, Sanchez-Vives, & Garcia-Ojalvo, 2016; von Helmholtz, 1962). In fact, 

during neocortex development, the molecular specification cues exhibit smooth, graded 

profiles that span multiple cortical areas, suggesting graded cell properties (Sansom & 

Livesey, 2009). Also, in primates (Bernard et al., 2012) and humans (M. J. Hawrylycz et al., 

2012) spatial proximity correlates with gene-expression similarity for neocortical regions and 

continuously variable immunohistochemical (Kondo, Hashikawa, Tanaka, & Jones, 1994; 

Xu, Tanigawa, & Fujita, 2003), morphological (Guy N Elston, 2002), and anatomical(Freese 

& Amaral, 2005) neocortical properties have been found, suggesting that continual variation 

may be a general feature of repeated, spatially extended circuit motifs in the brain. 

 

Population-based analyses 

Until now, however, I only have incomplete descriptions of the within-class variation in 

neuronal networks, and most studies neglect the underlying spatial structural variation that 

shapes connectional topology. To address this, efforts are being done to atlasing individual 

neurons, from their molecular phenotype to generating complete morphological 

reconstructions of individual neurons from datasets of whole mouse brains imaged at sub-

micron resolution (https://www.janelia.org/project-team/mouselight) or obtaining 

complete subanatomical descriptions (i.e. Electron Microscopy) of tissue volumes containing 

big populations of neurons, but this is still an important challenge given the low throughput 

of the technique (Zheng et al., 2017) and the fact that it is difficult to identify what subcellular 

structures correspond to bona-fide neurons. 

 

Single-neuron reconstructions provide enough anatomical detail to explore such within-class 

variability. However, until now, the reductionistic cell-type specific perspective taken in most 

neuroanatomical studies has left an empty gap regarding its study. For example, the most 

complete single-neuron morphology database (https://neuromorpho.org, Ascoli, Donohue, 

and Halavi 2007) contains at this moment more than 70000 single neuron reconstructions, 

but those cells lack information about their position. Similarly, the more recent Allen 

Institute neuron cell type database (http://celltypes.brain-map.org/) combines 

morphological, electrophysiological and transcriptomic layers of information, but still misses 

the link with topological or functional segregation. This is starting to be resolved through 

the latests efforts in mapping whole single neurons (including axonal projections), accounting 

https://neuromorpho.org/
http://celltypes.brain-map.org/
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for their position (Mouselight, https://www.janelia.org/project-team/mouselight), but until 

now only few have been completely traced. 

 

Thus, a systematic characterization of neuromorphological properties while considering the 

topographical positioning of the neurons is required. In order to generalize the detailed 

knowledge obtained with single-neuron data, it could be combined with population-based 

information (such as immunostainings or transgenic population labeling). In this regard, 

population-based measurements could be taken as descriptors of neuromorphological 

properties that can be relevant for within-class variability.  

 

Even so there is a need for more comprehensive studies characterizing those 

inhomogeneities. To this end three aspects are necessary: first, the systematic study of 

neuronal morphology across single neuronal layers. Second, the developments of population-

based measurements are able to account for within-class neuromorphological diversity. And 

third, a computational modeling framework that enables the exploration of their impact in 

the connectivity of neuronal circuits. The aim of this part of the Thesis is to assess those 

three aspects. 

 

The hippocampus as a model system 

The hippocampus is a privileged model system to clarify the extent to which higher-level 

(e.g., functional and behavioral) and lower-level (e.g., cellular and circuit) properties covary 

across space. A wealth of evidence has illustrated that there is profound functional 

segregation across the long hippocampal axis (Moser & Moser, 1998; Strange, Witter, Lein, 

& Moser, 2014), with both input to (Dolorfo & Amaral, 1998) and output from (Gibble, 

Kishi, & Peake, 2006; Groenewegen, te der Zee, Te Kortschot, & Witter, 1987; Risold & 

Swanson, 1996) the hippocampus exhibiting graded topographical mapping across the long 

axis. 

 

Most of the cerebral cortex is neocortex. However, there are phylogenetically older areas of 

cortex termed the allocortex. These more primitive areas are located in the medial temporal 

lobes and are involved with olfaction and survival functions such as visceral and emotional 

reactions. In turn, the allocortex has two components: the paleocortex and archicortex. The 

https://www.janelia.org/project-team/mouselight
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paleocortex includes the piriform lobe, specialized for olfaction, and the entorhinal cortex. 

The archicortex consists of the hippocampus, which is a three-layered cortex. 

 

The hippocampal formation has long been recognized as necessary for the integrity of 

memory in mammals and other vertebrates, and relatively limited disturbances of the 

hippocampal circuitry have been reported to produce serious memory impairment. The 

anatomical basis of this system is the so called trisynaptic circuit formed by the perforant 

path arising in the entorhinal cortex, which terminates onto the dendrites of the granule cells 

of the dentate gyrus. The axons of the dentate gyrus granule cells form the mossy fibers that 

make synaptic contact with the pyramidal cells of the CA3. The axons of CA3 pyramidal cells 

form the Schaffer’s collaterals that make synaptic contact with the pyramids of CA1. 

 

Despite involving only three layers of processing, has been shown to be fundamental for 

encoding declarative memory and spatial information (Marr, Willshaw, & McNaughton, 

1991). Sensory information is received in the dentate gyrus, that has been proposed to 

perform pattern separation (Hasselmo & Wyble, 1997; Marr et al., 1991; McNaughton & 

Morris, 1987; O’reilly & McClelland, 1994; Treves & Rolls, 1994). Axonal projections from 

the dentate gyrus innervate CA3 (Perforant Path), which has extensive recurrent connectivity 

and has been proposed to form associations between encoded memory patterns (Hasselmo, 

Schnell, & Barkai, 1995; Hasselmo & Wyble, 1997; Norman & O’reilly, 2003; Treves & Rolls, 

1992, 1994). Finally, CA1 receives input from both CA3 (Schaffer collaterals, innervating the 

stratum pyramidale sublayer) and the entorhinal cortex (Perforant Path, innervating the stratum 

lacunosum sublayer), and has been suggested to behave as a comparator between the stored 

memories in CA3 and the sensory input from the entorhinal cortex (Gray, 1982; Hasselmo 

& Schnell, 1994; Hasselmo & Wyble, 1997). 

 

In this chapter, I focused on the dorsal CA1 given the existing information regarding its 

anatomical and functional proximal-distal inhomogeneities (Cembrowski et al., 2016; Graves 

et al., 2012; Igarashi et al., 2014; Jarsky et al., 2008). In the rodent, area CA1 of the 

hippocampus has a C shape that extends millimeters in the anterior-posterior, medial-lateral, 

and dorsal-ventral axes (Figure 18). 
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Figure 18: 3D rendering of the mouse  hippocampus. (Left) 3D view of a whole mouse brain (gray) and its 

hippocampus (green) obtained from Allen Brain Explorer (Jones, Overly, & Sunkin, 2009). (Right) 3D 

rendering of a brain showing its anatomical axes.   

 

As viewed in coronal sections, near its most rostral point, CA1 occupies approximately the 

top half of the continuous CA field. More caudally, the full dorsal-ventral extent of the CA1 

region can be visualized; here, the most lateral band of cells comprises CA1. Conventionally, 

this 3D structure is described by three axes: the most prominent axis (dorsal-ventral) is 

typically referred to as the long axis and spans the length of CA1. Two-dimensional cross-

sections perpendicular to the long axis reveal the proximal-distal axis (spanning from the 

CA2/CA1 “proximal” border to the CA1/subiculum “distal” border) and the superficial-

deep axis (spanning from “superficial” cell bodies located closest to stratum radiatum to 

“deep” cell bodies located closest to stratum oriens). 

 

Those subregions define functionally relevant differences. The dorsal hippocampus has been 

related to spatial and contextual memories, while the ventral region has been suggested to be 

involved in fear conditioning and anxiety (Fanselow & Dong, 2010). Additionally, recent 

studies have shown functional segregation along the proximo-distal axis of the dorsal 

hippocampus, being the proximal part more related to spatial memories and the distal one 

to contextual memories (stronger/weaker place cell firing) (Igarashi et al., 2014). 
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Down syndrome presents hippocampal structural and functional abnormalities 

Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet 

the neural network basis of this pathology and its contributions to different facets of 

cognitive impairment remain unclear.  

 

The adult Down syndrome brain has a characteristic morphology that includes reductions in 

overall brain weight and volume, with disproportionate volume reductions in the frontal and 

temporal lobes (Table 6). In addition, the brain is brachycephalic, with disproportionately 

small cerebellar volumes, a simplified gyral appearance, and a narrow superior temporal 

gyrus. Conversely, the parahippocampal gyrus is larger than normal in Down syndrome, 

although greater gray matter reductions have been described in the frontal lobe, the 

hippocampus and at the level of cerebellum (Menghini, Costanzo, & Vicari, 2011; Pinter, 

Eliez, Schmitt, Capone, & Reiss, 2001; Rigoldi et al., 2009). No abnormalities in pattern of 

brain asymmetry have been noted(Pinter et al., 2001). 

 

Structural neuroimaging studies have confirmed the findings of post-mortem studies 

showing reduced volume of the hippocampus system and disproportionately smaller frontal 

lobe in adults with Down syndrome(Beacher et al., 2010; Jernigan, Bellugi, Sowell, Doherty, 

& Hesselink, 1993; White, Alkire, & Haier, 2003). Neuroimaging investigations have also 

shown that such individuals have decreased volume of grey matter tissue in the cerebellum, 

frontal lobe, right middle–superior temporal gyrus, and the left CA2–CA3 region of the 

hippocampus, and have highlighted that these brain areas have major roles in the specific 

mnesic alterations that are exhibited in this disorder(Krasuski, Alexander, Horwitz, 

Rapoport, & Schapiro, 2002; Raz et al., 1995; Teipel et al., 2004). 

 

In contrast to cortical regions, subcortical regions show relatively preserved volumes in 

Down syndrome(Jernigan et al., 1993; Pinter et al., 2001). In the context of significantly 

smaller overall cerebral volumes, the relatively large size of these latter structures, suggests 

that there is a dissociation of the development of cortical versus subcortical regions, which 

will affect neurological development with some functions being compensated for while 

others are not. Along with these structural alterations, atypical patterns of brain activation 

have been demonstrated in Down syndrome(Jacola et al., 2011), allowing predictions on 

structural–functional maps in this disorder (Colom, Karama, Jung, & Haier, 2010). For 
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example, the poor performances of individuals with Down syndrome in linguistic tasks could 

be partially explained in terms of impairment of the connectivity of frontocerebellar 

structures that are involved in articulation and verbal working memory (Fabbro, Libera, & 

Tavano, 2002), whereas the reduced long-term memory capacities may be related to the 

frontotemporal lobes and, specifically, to hippocampal dysfunction (Pennington, Moon, 

Edgin, Stedron, & Nadel, 2003).  

 

In DS mouse models, and specifically the Ts65Dn model, significant learning deficits in 

various behavioral tasks that are putatively hippocampal-dependent (Demas, Nelson, 

Krueger, & Yarowsky, 1998; Hunter, Bimonte, & Granholm, 2003; Stasko & Costa, 2004). 

Also, significantly lower numbers of neurons in the dentate gyrus of Ts65Dn mice compared 

to control animals have been reported (Insausti et al., 1998). The presence of these 

‘hippocampal phenotypes’ in Ts65Dn mice has acquired renewed importance with the 

finding that, in persons with DS, hippocampal function may be disproportionally affected in 

the general context of their cognitive disabilities(Pennington et al., 2003). In fact a significant 

reduction in the number of neurons has been reported in the granule cell layer of the dentate 

gyrus in Ts65Dn. This may well lead to a concomitant decrease in the number of synaptic 

sites available in the dentate gyrus for receiving information through the perforant path; it 

may well provide the morphologic basis of spatial memory impairment since fewer granule 

cells would decrease the total number of mossy fibers that could make synapses onto CA3 

neurons. Furthermore, stereological studies have revealed a significant increase in the 

number of CA3 neurons in Ts65Dn mice. This result may be explained as an attempt to 

compensate for the loss of mossy fiber synaptic terminals by making available a larger 

postsynaptic territory. 

 

 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0304394005003253#bib3
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Table 6: Brain alterations in Down syndrome. Alterations found in Down syndrome subjects shown by 
brain area and age (newborns, adults  between 20 and 50 years old, and individuals aged over 50). 

Brain alterations in Down syndrome 

Brain region Newborns Adults (20-50) Aged individuals (> 

50) 

Whole brain Almost normal 

weight 

Reduction in weight; 

brachicephalic 

Smaller overall cerebral 

volumes 

Prefrontal cortex Reduction in volume Reduction in volume Reduction in volume 

Parietal cortex Normal or reduction 

in volume 

Reduction in volume Unknown 

Temporal cortex Narrow superior 

temporal gyrus 

Reduction in volume of 

right middle or superior 

temporal gyrus 

Decreased gray matter 

volume in posterior 

cingulate and entorhinal 

cortex 

Hippocampus Unknown Reduction in volume Early degeneration 

Parahippocampal 

region 

Unknown Increase in size of the 

parahippocampal gyrus 

Reduction in volume 

Cerebellum Reduction in volume Reduction in volume Reduction in volume 

Brain stem Reduction in volume Increase in gray matter 

volume 

Degeneration of locus 

coeruleus 

Subcortical areas Almost normal size Normal Degeneration of basal 

prosencephalon 

cholinergic nuclei 

(nucleus of Meynert); 

reduction in amygdala 

volume 
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2.2. Methods 

 

In this part of the Thesis, I combined histological experiments and classical technique for 

neuronal reconstruction and cellularity estimations, with the development of a computational 

framework for population analysis and a generative model.  

The first step was to characterize within-class variability of single-cell morphology in the 

hippocampus of healthy and perturbed scenarios such as those provided by Down syndrome 

models. Those might either show generalized abnormalities or, more interestingly, show 

partial alterations implicating specific segregated functions, providing additional information 

about the relevance of within-class variability. 

I focused on the dendritic tree architecture of pyramidal CA1 cells (stratum radiatum) across 

the proximal-distal axis. To identify relevant structural features, I used again transgenic mice 

overexpressing Dyrk1A (TgDyrk1A; see Chapter I, Section 1.2.1 and (Altafaj et al., 2001) 

and their wild-type controls, that would define the “healthy” structural features.  

I first used classical single-cell reconstruction methods to identify within-class 

neuromorphological variability along the proximo-distal axis in pyramidal neurons of both 

wild-type and TgDyrk1A mice. In a second series of experiments, I used a genetic approach, 

crossing TgDyrk1A to a strain expressing yellow fluorescent protein (YFP) in a subset of 

pyramidal cells, to obtain population-based measurements accounting for cellular and 

dendritic density. 

Finally, I obtained cellular density measurements along the antero-posterior axis to feed a 

custom-developed computational framework that enables the study of neuronal network 

connectivity from a multi-scale data-driven perspective. 

 

 

2.2.1. Single-cell analysis: morphological within-class variability of CA1 pyramidal 

neurons along the anterio-posterior hippocampal axis in wild-type and TgDyrk1A 

For  single-cell analysis I used transgenic mice overexpressing Dyrk1A (TgDyrk1A) obtained 

as previously described (see Chapter I, Section 1.2.1 and Altafaj et al. 2001). All animal 

procedures were approved by the local ethical committee (CEEA-PRBB, MDS-08-1060P1 

and JMC-07-1001P2-MDS), and met the guidelines of the local (Real Decreto 53/2013) and 

European regulations (EU directive 2010/63/EU and 2007/526/EC) and the Standards for 
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Use of Laboratory Animals n° A5388-01 (NIH). The CRG is authorized to work with 

genetically modified organisms (A/ES/05/I-13 and A/ES/05/14).  

 

Lucifer Yellow injections in TgDyrk1A mice in single CA1 pyramids 

To compare dendritic tree architecture in the stratum radiatum of pyramidal CA1 cells across 

the proximal-distal axis I used Lucifer Yellow injections in manually selected single cells, of 

hippocampal CA1 pyramidal neurons and reconstructed 3D dendritic trees (see below). Four 

wild-type and TgDyrk1A two-month-old mice (N=4) were used. Animals were perfused with 

4% PFA, and 150 μm coronal sections were obtained with a vibratome. Intracellular 

injections by continuous current of fluorescent Lucifer Yellow (LY) (described in detail in 

(Benavides-Piccione et al., 2005; M Dierssen et al., 2003) were performed in CA1 pyramidal 

neurons. The injections were performed in the dorsal hippocampus according to the 

stereotaxic coordinates Bregma, -1.34 to -2.34 mm, obtained from a mouse brain atlas 

(Paxinos & Franklin, 2004) 4 to 12 neurons were injected in each section along the 

mediolateral axis of CA1. The sections were counterstained with antibodies against LY. 

Sections were washed with PBS and 0.3 % PBS-T to make the cells permeable. To minimise 

the background staining, the slices were treated with 50 mM glycine (minimum 99 % TLC, 

Sigma-Aldrich,) in 0.3 % PBS-T for 20 min. After washing with 0.3 % PBS-T, the samples 

were treated for 2 h at room temperature with 3 % bovine serum albumin (BSA, Sigma-

Aldrich) in 0.3 % PBS-T as a blocking agent and were incubated overnight at 4 ºC in 

polyclonal rabbit IgG fraction anti-Lucifer yellow (1:500, Life Technologies, Thermo Fisher 

Scientific, Cat # A-5750) in 0.3 % PBS-T and 1 % BSA. After washing with 0.3 % PBS-T, 

they were incubated 2 h at room temperature in goat anti-rabbit IgG 488 (1:200, Invitrogen, 

Thermo Fisher Scientific, Cat # A11034) in 1 % BSA in 0.3 % PBS-T. Finally, sections were 

washed with 0.3 % PBS-T and PBS and were coverslipped using mowiol mounting medium. 
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Neuronal reconstruction and neuromorphological analysis 

The preparations obtained as described in the previous section were used for accurate 

neuronal reconstruction. To position the reconstructed neurons in CA1, I mapped their 

coordinates in a common reference space. I defined an anteroposterior position given by the 

Bregma coordinates between -1.34 and -2.34 mm (obtained from a mouse brain atlas, 

Paxinos and others 2013). The mediolateral and dorsoventral coordinates were measured in 

low magnification (11.5x) images of the brain sections taking the dorsal tip of the 3rd 

ventricle as the origin. The low magnification images were obtained using a stereomicroscope 

MZ16F (Leica Microsystems, Wetzlar, Germany). 

Single apical tree stacks were acquired with a confocal microscope (SP5 Upright; Leica 

Microsystems) with a 20x air objective and 0.347µm z steps (final voxel size of 0.296x0.296 

µm). Three stacks per sample were collected, aligned, and averaged to reduce noise. I used 

Leica Smart Gain in the Leica Application Suite software to adjust brightness, in order to 

equalize the fluorescence signal intensity in depth in the samples.  

The signal to noise ratio was measured for each of the obtained stacks at 100 µm depth to 

account for a representative dendritic segment and an equivalent area of the same depth 

containing only background. Images with SNR<1.2 were discarded for subsequent analysis. 

The stacks underwent 2 pixel wide 2D gaussian blurring, background subtraction (50 pixel 

sliding paraboloid without smoothing) and contrast enhancement (with 0.3% saturated pixels 

and using the stack histogram) in Fiji.  

Dendritic trees of 20 neurons per genotype obtained from 4 wild-type and 4 TgDyrk1A 

animals were reconstructed with NeuTube1.0 (Feng et al., 2015) (see Chapter I) given that 

the semi-automatic tracing of this software outperforms other open-source applications in 

processing time and usability, allowing neuronal reconstruction with minimal interaction.   

 

Statistical and principal component analysis 

To analyze the reconstructed trees, I followed the procedure described in Section 1.2.2 

(Chapter I). Briefly, morphological metric statistics were obtained with the Trees Toolbox 

(Cuntz, Forstner, Borst, & Häusser, 2011)function stats_tree, a scaled PCA was performed in 

R, and wiring optimality was assessed by fitting a power law to the relation between total tree 
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length and amount of branch points (see Section 1.2.2 and Cuntz, Mathy, and Häusser 2012). 

In this case, the numbers of Sholl intersections were obtained using the sholl_tree function in 

the Trees Toolbox. In order to get a precise distribution of dendritic densities, I used a Sholl 

radius step of 1µm. 

In order to use as many neurons as possible, in this study I used an unbalanced block design, 

that allows an unequal number of observations per groups (in our case, numbers of neurons 

reconstructed per genotype and areas). The neuromorphological metric distributions were 

compared among positions by fitting a mixed-effect linear model with the residual maximum 

likelihood (REML) method and blocking for biological replicates, the analysis was performed 

using R (version 3.4.1) and its package lme4 (version 1.1-13). P-values were obtained from 

the adjusted denominator degrees of freedom for linear estimates and t distributions 

calculated using the Kenward-Roger approximation (pbkrtest R package, version 0.4-7). 

Results were considered significant when p<0.05. 

2.2.2. Population-based analysis 

For population-based analysis, I required a systematic view of the cells along the whole 

structure that cannot be obtained through labour intense single neuron injections, but are 

also not conveniently obtained through immunohistochemical techniques that would stain 

the whole population of cells making estimations more complicated. 

I thus generated double transgenic mice (Thy1-YFP/TgDyrk1A)  by crossing TgDyrk1A 

male mice with Thy1-Yellow Fluorescent Protein (YFP) female mice (strain B6.Cg-Tg(Thy1-

YFPH)2Jrs/J nº003782; The Jackson Laboratories), that expresses yellow fluorescent protein 

in a proportion of pyramidal cells driven by the Thy1 promoter and their non-transgenic 

littermates as controls. The Thy1-YFP line H has been reported to express the fluorescent 

protein in a large number of pyramidal neurons in several fields of the hippocampal 

formation. This model offers the advantage of having sparse YFP-stained pyramidal neurons 

that will also serve the purpose of population based analysis.  

I first used classical stereology methods for unbiased “bona-fide” estimations of 

hippocampal CA1 volumes and neuronal density that thereafter served for validating a 

computational framework for population-based analysis that I developed to:  
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1) estimate the spatial embedding by determining the volume of the specific hippocampal 

subregion (CA1); 2) estimate the number neurons; and 3) estimate dendritic densities. 

 
Unbiased cellularity estimations along the antero-posterior axis of CA1 in 
TgDyrk1A 

 

The relative importance of the intrinsic and extrinsic factors determining the variety of 

geometric shapes exhibited by dendritic trees remains unclear but important extrinsic 

determinants of dendritic shape are the spatial embedding and the cellularity, that constrain 

geometrical properties of dendritic trees. To this aim I investigated variations in cellularity 

and the volume occupied by CA1 along the anteroposterior axis.  

For the study of cellular and dendritic densities across CA1, two-month-old Thy1-YFP mice 

(N=4) were sacrificed and perfused intracardially with phosphate buffered saline (PBS), 

followed by chilled 4% paraformaldehyde (PFA; Sigma). The brains were removed from the 

skull, postfixed in the same fixative at 4ºC overnight, and cryoprotected in 30% sucrose. 

One-hundred fifty μm coronal brain sections were obtained using a vibratome (VT1000S, 

Leica Microsystems), washed extensively with 0.1M PBS, and mounted and coverslipped 

with mowiol reagent.  

Total neuronal densities were also analyzed using a NeuN staining in a similar setup with 

samples from TgDyrk1A and their wild-type littermates (N=3). To ensure the antibody 

penetration throughout the sample, forty μm coronal sections were obtained using a cryostat 

(CM3050 S, Leica Microsystems). Then, sections were permeabilized with 0.5 % Triton X-

100 (Merck) in PBS (PBS-T 0.5 %) (3x15’), and blocked with 10% of Normal Goat Serum 

(NGS) for two hours at room temperature. Sections were incubated overnight at 4ºC in 

mouse IgG anti-NeuN (1:500, Millipore, Cat # MAB377), PBS-T 0.5% and NGS 5 %. Slices 

were washed with PBS-T 0.5 % (3x15’) and incubated for two hours at room temperature in 

488 goat anti-mouse IgG (1:500, Invitrogen, Cat # A11001) antibodies in incubation buffer 

(PBS-T 0.5 % + NGS 5 %) and protected from light. Finally, sections were washed with 0.3 

% PBS-T and PBS and were coverslipped using mowiol mounting medium. 
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Stereological estimations 

I used design-based stereology methods for neuronal counting (Optical Disector, Harding, 

Halliday, and Cullen 1994; Rosen and Harry 1990) and and volume estimation (Rosen & 

Harry, 1990). This method eliminates the need of information about the geometry of the 

objects to be counted, resulting in more robust and unbiased estimates of total neuron 

number, because potential sources of systematic errors in the calculations are eliminated. I 

used 150 μm Thy1-labeled and NeuN-stained coronal sections that are thick enough to allow 

many focal planes through the disector and to allow for guard zones. There must be multiple 

focal planes through the disector so that: one particle can be told apart from another; there 

will be a small leading edge that is detected; and there is room to focus up and down and 

make a good decision about whether the leading edge of the particle is contained in the 

disector or not. 

I used a Leica DMI 6000B inverted microscope (Leica Microsystems, Wetzlar, Germany) 

equipped with a 20x air objective, a motorized scanning stage and a microcator and a digital 

camera connected to a PC to obtain microscopic captures. Images were analyzed with the 

newCASTTM software (Version: 5.3.0.1562, Visiopharm, Denmark) from Visiopharm 

Integrator System.  

Volume estimation of the selected ROIs was calculated according to the Cavalieri principle. 

A specific point configuration was configured to ensure that more than 200 points in total 

were counted for every ROI across all the selected slices. 100% coverage of the area of each 

ROI was chosen for sampling. Volume estimation for the whole ROI and for every slice was 

calculated according to:  

𝑉𝑟𝑒𝑓 = 𝑇 ⋅ 𝑎(𝑝) ⋅ ∑ 𝑃       Equation 5 

 
Where T is the spacing between sections, a(p) the area per point (dependent on each specific 

configuration), and  ∑ P the sum of points inside the ROI. 

 

To obtain Thy1+ cell densities, seven Thy1-labeled 150 µm thick consecutive slices (Bregma, 

-1.34 to -2.34 mm, mouse brain atlas, Franklin & Paxinos, 2012) were quantified. NeuN 

quantifications, due to the thinner sectioning, were performed in every 4th slice, discarding 3 

consecutive slices between quantifications. I used an Optical Disector and sampled 21-24 
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counting frames in each analyzed region of interest (ROI). I obtained an estimate of the real 

thickness of the planar sections (60μm) by measuring the z-axis distribution of the cell 

number and identifying the z extent having a uniform distribution of counts. Each counting 

frame covered 1% of field of view given by the 20x objective having the following 

dimensions: 58.1 x 58.1 x 60 µm. the optical plane was moved throughout the whole 

thickness of the preparation section to ensure correct cell identification. Cell densities (Nv) 

were calculated according to the following equation (Dorph-Petersen & Lewis, 2011): 

 

𝑁𝑣 =
𝑡𝑄−̅̅ ̅̅ ̅̅

𝐵𝐴
⋅

𝛴𝑄⁻

ℎ⋅(𝑎/𝑝)⋅𝛴𝑃
       Equation 6 

 

Where tQ
- is the number-weighted mean section thickness, BA is the Block Advance (the cut 

thickness of the section on a calibrated cutting device), h the disector height, (a/p): a is the 

area of the CF and p the number of points associated to the frame (1 - using the upper right 

corner of the CF), and ∑ P: is the sum of corner points hitting reference tissue. 

The total number of cells (N) was estimated by the product of the cell density (Nv) and the 

volume (Vref) obtained from Cavalieri estimations.  

𝑁 = 𝑉𝑟𝑒𝑓 ⋅ 𝑁𝑉         Equation 7 

 

All the estimations were performed in one hemisphere, chosen at random as no differences 

are reported to exist between both hippocampal formations. Stereological estimations were 

performed in the CA1 pyramidal cell layer of the hippocampus. ROIs were manually 

delineated according to (Paxinos & Others, 2013) mouse brain atlas. 
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2.2.3. Development of a customized pipeline for population-based 

analysis in histological sections 

As described above, neuron morphologies capture some features of selected cell types, but 

they are hard to generalize to the whole cell population, given the inhomogeneities that have 

been reported. One bottleneck is that describing the shape of neurons requires quantitatively 

specifying many morphological features, examples of which are the length and branching 

patterns of neurites, and their spatial distribution. Another is that obtaining accurate 3D 

digital representations of neurons has traditionally been a slow, expensive, manual process. 

Here I developed a computational analysis pipeline to obtain population-based 

measurements semi-automatically and define dendritic and cellular density maps. 

Experimental data were obtained from Thy1-labeled mice in dorsal CA1 thus allowing the 

comparison with single-cell reconstructions and stereological.    

 

Imaging and segmentation 

Images of the dorsal hippocampus according to the stereotaxic coordinates Bregma, -1.34 to 

-2.34 mm, obtained from a mouse brain atlas (Paxinos & Others, 2013) have been taken 

using a widefield microscope (Zeiss Cell Observer HS) with a 10x magnification objective 

with a field view of 895.26 x 670.80 μm and resolution of 0.643 μm/pixel. Using the 

Panorama acquisition module (ZEN blue edition, Zeiss) adjacent images with 5% 

overlapping edges were taken covering the whole brain section for each of the 6-8 brain 

sections analyzed per animal.  

 

Images covering the whole section were reconstructed using the ImageJ Grid/Collection 

Stitching plugin with 5% tile overlap, the Linear Blending fusion method and its default 

thresholds, a regression threshold of 0.30, an average displacement threshold of 2.50 and an 

absolute displacement threshold of 3.50. Stacks containing the whole section images of each 

animal were downsampled 20 times in the X-Y dimensions and aligned using the 

RegisterVirtualStacks plugin with the Rigid feature extraction and registration model and 

applying shrinkage constraint. The obtained transformations were multiplied by the 

downsampling factor and applied to the original large stacks.  
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Masks for the whole section and the left hemisphere regions CA1 and its somatic layer 

stratum pyramidale (CA1-sp) were manually segmented according to the Allen P56 mouse 

brain Reference Atlas (Dong, 2008) using Fiji’s Segmentation Editor ( 

Figure 19). 

 

Figure 19 : Overview of the imaging, stitching, alignment and segmentation procedure. (Top left) Serial 

images covering the whole section were obtained with a 5% tile overlap. (Left) Stitching was performed using 

the ImageJ Grid/Collection Stitching plugin. (Middle) Consecutive sections were aligned using the 

RegisterVirtualStacks plugin. (Right) 2D segmentations for CA1 dendritic (top) and pyramidal (bottom) layers  

were manually delineated using the Fiji’s Segmentation Editor and based on the Allen P56 mouse brain 

Reference Atlas. 

 

In order to increase the extensibility of our approach I chose Fiji plugins as basic tools for 

our quantifications. I selected Fiji because it is an open source image processing package 

based on ImageJ with many bundled plugins. Fiji features an integrated updating system and 

provides a high number of users with a coherent menu structure, extensive documentation 

in the form of detailed algorithm descriptions and tutorials, and the ability to avoid the need 

to install multiple components from different sources. 

 

For both cell and dendritic density mapping, the processing done in Fiji is aided by Matlab 

and Python scripts developed in-house that can be easily used in processing pipeline 

management tools. I first describe the examples of population metrics for which I have 

developed analysis algorithms and subsequently an interactive pipeline structure that allows 

a user-friendly application of our methods and their extension. 

https://en.wikipedia.org/wiki/ImageJ
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Cell density 

A first requirement to obtain whole-CA1 cell density maps is to locate nuclei in the imaging 

datasets. An extensive literature on computational methods has tackled this challenge 

(Irshad, Veillard, Roux, & Racoceanu, 2014). Developing an optimal method to identify cells 

in microscopy imaging datasets is beyond the scope of this Thesis, but I aim to show that, 

by analyzing 2D datasets, I can obtain 3D cell density maps that are representative of the 

macroscopic scale properties of the tissue and give unprecedented detail and allow innovative 

analysis methods.  

 

I wrote a Fiji macro that locates nuclei in segmented somatic layers of 2D microscopy images 

(CA1 stratum pyramidale in this case) and creates 2D cell density maps along them. The 

macro can either use Fiji’s simplest method for identifying cells (2D maxima detection 

plugin) or can generate the density maps based on lists of cell coordinates provided by the 

user. It is important to note that the datasets used have been background subtracted with a 

rolling ball (radius = 15 µm) in order to highlight signal coming from somas and reduce 

signal intensity in thin neurites. The script needs as inputs the binary segmentation of the 

analyzed layer and either the original image or a list of 2D coordinates obtained with an 

alternative method. It first obtains the midline of the layer and subsequently quantifies the 

amount of identified cells in adjacent circular areas following the midline (Figure 20). The 

circles are located along the midline so that they are big enough to cover tenths of cells 

(radius = 160 µm in our datasets) and have some amount of overlap among them (distance 

= 130 µm in our datasets). In each circular area, a cell density (cells/1e7µm³) is calculated 

based on the measured cell quantity, the somatic layer area covered by the circle and the 

depth of the imaged sections. The 1e7µm³ scaling factor is introduced in order to obtain gray 

intensity values in the range of an 8-bit image. In the areas covered by overlapping circles, 

the cell density is set as the average of repeated measurements. Finally, the macro applies a 

gaussian blur (radius = 30 µm) and creates a 16-bit image expressing the cell density as the 

image intensity at each point. The resulting maps represent inhomogeneous cell body 

distributions along the analyzed layers (Figure 20). 
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Figure 20: Overview of the cell density mapping procedure. A segmented somatic layer is preprocessed 

with a background subtraction of rolling ball radius = 15µm in order to highlight somas. The amount of cells 

in equispaced (130 µm) circles (radius = 160 µm) is measured and shown as image intensity. A gaussian blur 

(radius=30 µm) is applied and the intensity map masked again. (Right) 3D rendering of an interpolated (see 

Section 2.2.2) cell density map for the CA1 pyramidal layer (Bregma from -1.34 to -2.34). 

 

Dendritic density 

While population-based labeling (Thy1-like) has been used to quantify cells and axonal 

projections, information related to dendritic complexity has been disregarded. I developed a 

novel method to quantify dendritic density that can be understood as an extension of the 

Sholl analysis for single neurons. In the classical single-cell version of the analysis, the amount 

of dendritic branches crossing concentric circles of increasing radius is quantified. The 

information obtained can be seen as a signature of dendritic tree architecture and has been 

studied in depth in neuronal cells from several organisms, brain regions and neuronal 

subtypes. In order to analyze similarly population-labeled 2D section microscopy images, I 

have developed a method to quantify the density of dendritic branches along the axis normal 

to any studied layer. I implemented it in a Fiji macro that computes the midline of a layer 

and uses it to scan the space surrounding it. A fluorescence intensity profile is obtained along 

the scanning line and local maxima accounting for dendritic segments are quantified. The 

quantification is subdivided in curved rectangles with height = 2 µm and length = 40 µm, 

allowing the detection of spatial inhomogeneities. In each curved rectangle, a 16-bit pixel 

intensity codes for the measured dendritic density (# dendrites/106µm³). The 1e6µm³ scaling 

factor is introduced in order to obtain gray intensity values in the range of a 16-bit image. 

Finally, a gaussian blur (radius = 30 µm) is applied and a smoothed image/stack containing 
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the dendritic density map is created. The resulting maps represent dendritic density 

accounting for both sublayer inhomogeneities (e.g. Stratum Oriens, Radiatum and 

Lacunosum in CA1) and variations along the somatic layer (e.g. Medio-Lateral axis in a 

coronal section).  Figure 21 shows an overview of this procedure. 

 

 

Figure 21: Overview of the dendritic density mapping procedure. A segmented somatic layer is 

preprocessed with a background subtraction of rolling ball radius = 2µm in order to highlight neurites. The 

amount of intersections in neighboring curved rectangles (height = 2µm and length = 40µm) along lines parallel 

to the somatic layer is measured and shown as image intensity. A gaussian blur (radius=30 µm) is applied and 

the intensity map masked again. (Right) 3D rendering of an interpolated (see Section 2.2.2) dendriticl density 

map for the CA1 pyramidal layer (Bregma from -1.34 to -2.34). 

 

Interpolation 

The advantages of generating 3D maps are apparent when those are put in the context of a 

global analysis pipeline. However, usually researchers work with sparse histological sections. 

Thus the numerical values of the intermediate positions are not available, and for generating 

3D maps I have to use interpolation methods to attain bona fide numerical values. 

 

Intensity-based interpolation and triangulation methods could not generate satisfactory 3D 

masks, given that these methods lead to artifacts in the reconstructed morphology of thin 

structures. I explored the usage of contour information for constructing the interpolated 

masks. Even though methods based on distance transforms have been proposed to improve 

segmentation quality (Grevera & Udupa, 1996), they were not sufficient for the interpolation 

of thin somatic layers. Thus, I decided to use the information of the contour in order to 
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guide the interpolation. To do so, I wrote an ImageJ macro that (1) obtains n equispaced 

points ordered along the contour of each of two consecutive slices, (2) linearly interpolates 

the X-Y positions of the obtained points for as many slices needed to fill the Z dimension 

and (3) creates the mask defined by the interpolated points in each of the interpolated slices. 

The only additional requirement that the algorithm has is the definition of a starting point 

for each originally segmented slice that should lay on the same anatomical landmark of the 

reconstructed region (e.g. CA1 distal tip). Despite its simplicity, this algorithm has yielded 

optimal results in our analysis, recapitulating bona fide the results obtained by single-cell 

reconstruction.  

 

Another caveat in the use of single-dimension intensity interpolation is the introduction of 

artifacts derived from inhomogeneous density maps, that may produce a mismatch when 

trying to interpolate values between section embedding structural displacements.. In order 

to avoid those artifacts, I generalized the contour-informed interpolation method to generate 

3D density maps. I developed a Fiji macro that obtains the contour of two consequent 

intensity map 2D slices. The basic algorithm evaluates the intensity signal at n points of each 

of the contours and generates an intermediate slice with interpolated coordinates and 

intensity. This is iteratively done for concentric contours until the whole area has been 

interpolated. The resulting 3D volumes show a qualitative improvement with respect to 

intensity- and triangulation-based interpolation methods. Figure 22  shows a schematic 

representation of the interpolation procedure. 

The developed source-code, a user-friendly ImageJ plugin and supplementary information 

can be found in https://bitbucket.org/linusmg/population_analysis. 

 

 
Figure 22 : Schematic representation of interpolation method developed. I show the third-dimension 

reconstruction of a dentate gyrus somatic layer as an example. (Left) Segmentations for each hippocampal 

https://bitbucket.org/linusmg/population_analysis


 

 103 

region were defined manually on each of the consecutive slices, according to YFP labeling and mouse brain 

atlas. (Middle) Blank slices were interleaved in between each 2 slices in order to fill the spatial gaps, according 

to voxel size (the figure represents in detail the space between 2 specific slices). Coordinates of the sorted 

contour points of each pair of consecutive original segmentations were used to interpolate the coordinates for 

the contour of each in-between slice. In the image only 5 of the 1000 analogous points used to do the 

interpolation are shown. (Right) Resulting reconstructed volume for the region in-between two slices. 

 

Voxel-based analysis of interpolated cellular and dendritic density maps 

The analysis of Thy1-labeled mouse brain sections using the tools described above, assess 

cellular or dendritic densities at specific Bregma coordinates from a 2D perspective, 

interpolating missing values, and allowing to provide semi-generative 3D maps. I here a 

developed a standardized 3D common coordinate framework and provided a simplified the 

statistical analysis to the application of already existing methods and software.  

I took advantage of existing methods for MRI analyses and devised a pipeline that is based 

on three major steps: (1) the segmentation of the analysed ROIs and generation of sample 

group templates, (2) the generation of neuromoporphological metric 3D maps and (3) the 

registration of maps to their templates and their voxel-based statistical analysis.  

The segmentation of the ROIs is implemented as previously described. In order to generate 

group-specific templates, I used state-of-the-art methods based on minimum deformation 

averaging (Janke & Ullmann, 2015). MDA is the iterative registration of all the group samples 

to their average and the inverse registration of this average towards the original sample 

morphologies. The iterative procedure tends to zero deformation of the average, after some 

iterations (10-20) a template of the group is obtained. In the field of pediatric neuroimaging 

it has been proposed as a high accuracy method for obtaining templates of small groups of 

samples. I implemented it on our wild-type dorsal hippocampus segmentations by using the 

Nipype port of Volgenmodel. Figure 23 shows a schematic representation of the template 

generation procedure. 
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Figure 23: Schematic representation for the MDA procedure to the generation of anatomical 

templates. (Left) Three segmentations of CA1 dendritic field obtained from individual mouse brains. (Middle) 

First, an average of the three structures is obtained. All the samples are registered to the average and the 

transformations are used to perform an inverse registration from the average towards the original sample 

morphologies. The iterative procedure tends to zero deformation of the average, after some iterations (10-20) 

a template of the group is obtained. 

 

Whole layer (CA1 dendritic field in this case) binary segmentations were registered to the 

wild-type template by automatic multiple step (rigid followed by non-linear) mutual 

information-based ANTs (Avants, Tustison, & Song, 2009) sample to template registration. 

In order to assess volumetric variability around the generated template, I saved displacement 

and volumetric change (Jacobian determinant) voxel-based maps of the non-linear 

registration. The transformations obtained with the binary masks were also applied to the 

3D cellular and dendritic density maps. Finally, the registered 3D maps were compared 

statistically by using RMINC (https://github.com/Mouse-Imaging-Centre/RMINC), a 

versatile R package that facilitates fast fit of statistical models and false discovery rate (FDR) 

analysis in a voxel-based manner and user-friendly visual representation of the results.  

 

Analysis of genotype dependent and environmentally driven dendritic modifications 

Using the methods described above I aimed at characterizing the genoptype dependent 

abnormalities of CA1 cellular and dendritic maps and their possible modification with 

environmental conditions. To test dendritic rewiring effects I used environmental 

enrichment (See Chapter I).  

https://github.com/Mouse-Imaging-Centre/RMINC
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Data lineage 

In order to integrate the developed toolbox with a focus on data lineage, parameter 

exploration and interactive simultaneous visualization and analysis of multiple datasets, I 

implemented part of the described workflow in VisTrails by contributing modules calling the 

used and developed tools. The open-source code of our workflow and all the software tools 

can be found at https://bitbucket.org/linusmg/population_analysis. 

 

2.2.4. Development of computational tools for generative modeling of 3D 

neuronal circuits 

To interrogate the organizational principles underlying the architecture of brain networks, I 

developed a customizable simulation environment (Figure X) that allows to directly 

investigate how morphostructural features of brain circuits sculpt the emergent functional 

activity, and quantify the effects of targeted in silico perturbations. In that way, the model 

offers the unique opportunity to define the functional relevance of the network morphospace 

underlying the brain circuit of interest. 

 
 

 
Figure 24: Our aim is to use population-based structural properties to parametrize a generative model 

leading to realistic network templates. These will be used to quantify topological properties of the network 

at an unprecedented level of detail, and enable posterior dynamical activity simulation. These properties depend 

on the morphostructural parameters used to generate the templates, that can be manipulated to obtain new 

templates showing desired topological characteristics, allowing to simulate network activity after targeted 

perturbation of the underlying topology. 

 

https://bitbucket.org/linusmg/population_analysis
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My approach builds upon existing tools, supplying an easy-to-use and customizable unified 

toolkit to obtain, manipulate and visualize realistic 3D templates of network connectivity 

from population and single-cell structural data.   

 

The model integrates self-developed MATLAB scripts and functionalities of the Trees 

Toolbox (Cuntz et al., 2011), and consists on a generative model of circuit connectivity in 

defined synthetic 3D Regions Of Interest (in our case, the layers of the hippocampal 

trisynaptic circuit). This model can incorporate realistic neuromorphological features both at 

the single-cell and at the population level.  

 

First, ROI segmentations are used to define a 3D synthetic space in Matlab. This space is 

formed by multi-resolution HDF5 3D matrices representing the simulated region. Regions 

of the space that can be occupied by somata, dendritic trees or axonal projections are labeled 

with integer indices. Using the HDF5 memory-mapped format allows to generate volumes 

as large as needed with on-the-fly compression, scalable and parallelizable access and 

processing of subvolumes. 

 

I instantiated empty pyramidal layers using synthetic 3D ROIs of the layers of the 

hippocampal trisynaptic circuit, in Matlab (see methods). In this model I incorporated 

realistic neuromorphological features both at the single-cell and at the population level.  

Specifically, I used a parallel algorithm to locate spherical somata in the pyramidal layers 

(DG, CA3 and CA1 in our case) at a specified cell density obtained from our stereological 

countings. However, the cell density can be introduced either with a single homogeneous 

value, or by constraining it locally using cell density maps. Given that the soma location is 

done in local subvolumes, the local density can easily be adjusted in function of experimental 

3D cellularity maps. Once each soma was located, its coordinates and the tangential angle to 

the dendritic layer boundary were saved for the posterior orientation and embedding of 

dendritic trees. At the same time, a supplementary HDF5 volume stored, in each voxel of 

the synthetic space, a neuronal identification number. Scanning for spatially close pairs of 

voxels belonging to different neurons allowed the generation of the connectivity matrix at 

the end of the instantiation. 
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Based on groups of single neuron *.swc experimental reconstructions obtained from wild 

type animals aligned along their principal axis, a 3D branch density cloud for a stereotypical 

morphology (e.g. CA1 dendritic or axonal tree) was generated with the gdens_tree function 

using the Trees Toolbox.  

 

To obtain arbitrarily large neuronal populations, the dendritic density cloud was then used 

to generate clones. This was done by obtaining a subset of points in a 3D space. The 

probability of selecting a specific coordinate was given by the 3D branch density cloud. Thus, 

coordinates in regions with high dendritic density have more probability to be chosen. Each 

new clone was generated using the obtained set of points and the xMST_tree function, which 

generates a minimum spanning tree connecting the selected points.  

 

This procedure allowed not only to generate as many clones as needed to fill any neuronal 

layer, but also to modify the morphological properties of the trees by modulating the branch 

density clouds, the amount of points used to generate the trees and the options of the 

xMST_tree function. By scaling the branch density cloud with a population-based 

experimental dendritic density map obtained from either histological sections (see Section 

2.2.2) or 3D imaging data (Chapter III), the tree embedding is constrained across neuronal 

layers, e.g. a thinner neuronal layer would imply smaller trees and a less intense dendritic 

density map, less complex trees.  

 

Each neuron grows first an axon by translating (to the soma coordinates) and rotating (along 

the direction tangential to the layer) an axonal tree clone obtained as specified above. The 

translated and rotated tree is embedded by indexing free voxels in the HDF5 volume and 

taking into account the radius of the tree segments. An equivalent procedure is used to grow 

dendritic trees. When a tree segment intersects another, the minimum circumventing path is 

found by obtaining an obstacle distance map and performing a 3D fast marching between 

the two points of the tree that remain unconnected with the perform_fmstar_3d Matlab 

function.  

 

Once axonal and dendritic trees were embedded, the HDF5 volume was visualized with 

Vaa3D. Finally, the populated synthetic space generated a connectivity matrix based on axon-

dendrite, axon-soma, dendrite-dendrite and axon-axon pairs proximity (Stepanyants & 
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Chklovskii, 2005) for all the synthetic cells. I introduced information about dendritic tree 

properties (such as cell type, branch order, distance from the soma, spine densities etc.) that 

could modulate synaptic contact probability.  

 

Programming environment 

The development of the computational modeling framework required Matlab (version 

2014b) including the Trees and the Statistics Toolboxes. A repository with the source code 

and all the Matlab functions required for compilation can be found at 

(https://bitbucket.org/linusmg/nem4o-generative_model) 

 

 

 

 

  

https://bitbucket.org/linusmg/nem4o-generative_model
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2.3. Results 

2.3.1. Morphological properties of TgDyrk1A CA1 pyramidal neurons  

In order to assess within-class variability in the dorsal hippocampus, I analyzed the 

morphology of apical trees from pyramidal CA1 neurons by comparing LY stained neurons 

from wild-type mice and also compared them with TgDyrk1A littermates (20 neurons from 

4 animals across different positions for each genetic condition).  

 

After obtaining 20 neuronal reconstructions, I generated mean density plots of the 

neuromorphological metrics distributions for the two genotypes. The analysis revealed that 

the tip-to-soma path length distribution is skewed to larger values for the wild-type (Figure 

25), showing significant differences in the number of short (plen<120 µm) and intermediate-

length (260µm<plen<310µm) branches. This indicates that the dendritic branches of wild-

type animals reach further distance than those of TgDyrk1A littermates. Similarly, the wild-

type vs TgDyrk1A branch length distributions shown significantly higher probability density 

for intermediate length branches and lower probability for short branch fragments in the 

wild-type (data not shown). Conversely, the branch order distribution did not show 

differences among the two groups, indicating that tree span, rather than dendritic complexity, 

are altered in the model.  

 

Figure 25: Genotype-dependent dendritic tree architectural modifications. (a) Box and violin plots 

showing the distributions of maximum path length, number of branch points and straightness of CA1 apical 

dendritic reconstructions from wild-type (blue) and TgDyrk1A (red) mice. (b) The thick line represents the 

mean number of branches for each genotype in function of the radius, the shaded region indicates the standard 

deviation around the mean values. (c) Representative reconstructions of wild-type and TgDyrk1A neurons. 
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The comparison of the maximum path length distributions shows a significant difference 

(t=4.39, p=5.94e-3, mixed effects linear model blocking for biological replicates) when 

comparing TgDyrk1A (427 ± 80 µm) vs. wild-type (298 ± 63 µm) neurons.  

 

When I analyzed the center of mass of the trees (see “Neuromorphological analysis in 

Chapter 1), I observed that in the transgenic model it was displaced towards the pyramidal 

layer in the dorso-ventral (D-V) axis (-100 ± 28 µm vs. -139 ± 21 µm; t=-4.99 p=6.03e-3), 

indicating shorter trees in this direction. Finally, the spanning volume shows a tendency 

(2.17x106 ± 1.11x106 µm3 vs. 5.31x106 ± 4.36x106 µm3; t=2.11 p=8.23e-2) to be higher in the 

wild-type, also showing higher variance. These results are shown in Supplementary Figure 1. 

 

Given that the branching order distribution is similar in the two genotypes (Supplementary 

Figure 1), I performed the Sholl analysis to check whether the distribution of branches along 

the dendritic trees is the same in both genotypes. The analysis shows that even though in 

both cases the trees reach maximum branching of about 20 branches per Sholl radius, in the 

case of the TgDyrk1A the distribution is skewed to smaller radii, reaching its maximum at 

~200 µm vs ~300 µm in the case of the wild-type (Figure 25 b).  

 

Principal component analysis 

To identify metrics that explain the differences found in TgDyrk1A and account for the 

genotype-dependent neuromorphological variability, I performed a PCA with all of them 

(Figure 26 top). The two first principal components explain 54.15% of the variance in the 

data. Principal Component 1 (PC1, 31.45% explained variance) is mainly contributed by 

measures that account for the size of the tree: the total length of the tree, the amount of 

branch points and the dendritic spanning volume. Principal Component 2 (PC2, 22.70% 

explained variance) is mainly contributed by measures that account for the symmetry of the 

trees (Figure 26 bottom).: the center of mass in the dorso-ventral axis, followed by the mean 

path length, the mean branching asymmetry and the center of mass on the medio-lateral and 

antero-posterior axes. An overview provided by a 2D projection on those principal 

components shows that the neurons cluster by genotype, and that the variables contributing 

more to the difference among groups are the maximum and mean path length, and the center 

of mass in the dorso-ventral axis, followed by the spanning volume. 
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Figure 26: Principal component analysis (PCA) of the neuromorphological and geometric variables of 

the dendritic tree. PCA of the variables, where arrows represent the direction of each variable in the PCA 

space. Longer arrows belong to variables that are well represented by the two principal components. Each of 

the points represents one neuron, colored by the group they belong to. 68% confidence normal data ellipses 

for each group are drawn with solid lines. (Bottom) Bar plots showing the percentage of explained variance for 

each principal component. Bars represent the contribution (%) of each variable and the red dashed lines indicate 

the expected average contribution. The first principal component is a composite variable accounting for the 

dendritic tree size and the total dendrite length. The second principal component is a composite variable 
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accounting for other morphological measurements, mainly the branching angle, the number of branch points 

and the horizontal center of mass and mean asymmetry.   

 

Wiring optimality 

Understanding the implication of these architectural abnormalities on the hippocampal 

circuit and its functional capacities is beyond the scope of this study. However, as for cortical 

neurons, I explored how optimal are the wild-type and TgDyrk1A dendritic trees. When 

comparing wild-type vs TgDyrk1A reconstructions and their scaling laws between total 

length and amount of branch points, I found that both wild-type and TgDyrk1A follow 

closely the ⅔ optimal power found to be conserved among organisms and brain regions 

(exponent 𝑏 = 0.72 ± 0.06 and 0.66 ± 0.06respectively; Figure 27). This result indicates 

that hippocampal transgenic neurons are as optimal as their wild-type counterparts for signal 

integration. 

 

Figure 27: Power law relations between total dendritic length and branch number for layer II/III basal 

tree reconstructions of wild-type and TgDyrk1A neurons. The ⅔ optimal power for 3D trees is followed 

by the control trees (power = 0.72±0.06) and TgDyrk1A (0.66±0.06). The number of branch points and total 

length was normalized by the dendritic surface (S=10.000 µm²). Shaded regions indicate 95% confidence level 

interval of the power law fit. 

 

Within-class CA1 pyramidal dendritic morphology variability along the proximal-

distal axis 
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To address the question of within-class variability I selected CA1 pyramidal neurons 

positioned along the proximal-distal axis and analyzed whether their microstructural 

variability could be explained by their position along CA1. I here grouped the reconstructed 

neurons in two subgroups depending on their position: distal and central. Figure 29 shows 

box plots of the mean path length and maximum branch order in neurons at distal and central 

positions along the proximal-distal axis of CA1. The analysis shows that  in wild-type mice, 

there are subtle changes in the mean path length and branching, suggesting that CA1 

pyramidal cells increase their dendritic length while decreasing their complexity from distal 

to central positions (path length: distal 185 ± 25 µm vs. central  203 ± 25 µm; maximum 

branching order: distal 17.7 ± 3.3 vs. central 14.7 ± 3.8). 

 
Figure 28: CA1 along the proximal-distal axis. Schematic representation of the hippocampus using a 

modified drawing by Ramon y Cajal showing orientative positions for the reconstructed and analyzed neurons 

in this section. 

 

TgDyrk1A also show a similar positional dependency of their microstructure. However, even 

though the path length shows the same tendency to increase observed in wild-type (path 

length: distal 131 ± 24 µm vs. central 150 ± 22 µm), complexity shows the opposite tendency, 

being increased in central positions (maximum branching order: distal 12.5 ± 4.0 vs. central 

16.7 ± 4.9). 

 

Regarding genotype-dependent differences, the mean path length shows a tendency to be 

lower in TgDyrk1A neurons vs wild-type for both distal (131 ± 24 µm vs. 185 ± 25 µm) and 

central (150 ± 22 µm vs. 203 ± 25 µm) positions (t=3.35, p=0.057; and t=4.18, p=0.27 

respectively). However, the maximum branching order shows a tendency to be lower in distal 



 

 114 

TgDyrk1A neurons (12.5 ± 4.0 vs. 17.7 ± 3.3; t=1.68, p=0.20) while in central positions this 

tendency is lost (16.7 ± 4.9 vs. 14.7 ± 3.8; t=-0.85, p=0.65), leading to similar branch order 

distributions in the pooled analysis. 

 

 
Figure 29: Genotype-dependent differences in neurite path length and branch order in TgDyrk1A. Box 
and violin plots representing mean path length (left) and maximum branch order (right) distributions for wild-
type (blue) and TgDyrk1A (red) CA1 apical dendritic trees. The two labels in the x axis indicate the proximal-
distal position along the pyramidal layer (see Figure 28). 
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2.3.2. Cellularity and volume variations along the antero-posterior axis of 

dorsal CA1 in TgDyrk1A  

Stereological estimations 

The representativeness of variations in neuromorphological properties that I have detected 

have to be considered in the scope of the volume and neuronal density of the layer. 

Specifically, Thy1 transgenic mice express fluorescent proteins in neuronal subpopulations 

but, even though its expression is seemingly consistent, quantitative studies estimating the 

percentage of fluorescent cells are lacking. To this aim, I obtained stereological volume and 

Thy1-labeled cell quantifications along the dorsal CA1 of wild-type and TgDyrk1A mice 

(N=3).  

 

I first performed the same analysis using NeuN (a general marker of neurons) stained slices 

and found that neuronal densities show significant variation along the antero-posterior 

position, with an increase between Bregma -1.34 and -1.94 mm and a decrease between 

Bregma -1.94 and -2.34 mm  (3.78 ± 0.68 x105 cells/mm3, 5.64 ± 0.63 x105 mm3, 3.40 ± 0.72 

x105 mm3 respectively; Figure 30 right), while the volume of the layer increases linearly 

(Figure 30 left). Conversely, TgDyrk1A mice show a slight tendency to decreased densities 

towards posterior Bregma, while the volume follows a similar increase in TgDyrk1A than in 

wild-type mice. 

 

I compared the NeuN densities with the Thy1-labeled cell population in the wild-type 

(Figure 30 middle). Cell density increases from 0.89 ± 0.27 x104 cells/mm3 at Bregma -1.34 

to a maximum at Bregma -1.94 (1.66 ± 0.94 x104 cells/mm3), decreasing again towards 

Bregma -2.34 (1.15 ± 0.17 x104 cells/mm3). Conversely, TgDyrk1A mice show a consistent 

increase in the amount of labeled cells (1.45 ± 0.68 x104 cells/mm3, 1.97 ± 0.91 x104 

cells/mm3, 2.39 ± 0.77 x104 cells/mm3; at Bregma -1.34, -1.94 and -2.34 respectively). 

 

By comparing the Thy1 labeling with respect to NeuN positive cells, I found that the 

proportion of neurons labeled with Thy1 is in the range of 2-3%. Instead, TgDyrk1A mice 

show a constant Thy1+ neuronal density in all slices analyzed (2.38 ± 0.29 x105 mm3, 2.56 ± 

0.34 x105 mm3, 2.45 ± 0.43 x105 mm3; at Bregma -1.34, -1.94 and -2.34 respectively).  
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These results indicate that Thy1-labeled cells do not provide reliable estimates for neuronal 

density in the wild-type case, and suggest that Thy1-driven expression may be altered in 

TgDyrk1A.  

 

Figure 30: Stereological estimations for volume (left) and cellular density of Thy1-labeled (middle) and 
NeuN immunostained (right) neurons in CA1 pyramidal layer. Data are shown for wild-type (blue and 
black) and TgDyrk1A mice (red) estimated at increasing Bregma (in mm), as defined in Paxinos. Left panel: 
Volume estimations using Cavalieri. Note that increases linearly for both genotypes, with no genotype-
dependent differences. Central panel:  Thy1 labeled cellularity estimations obtained using the optical dissector 
in newCAST. Thy1 estimations show a peak in cellularity at Bregma -1.94 in wild-type mice and a consistent 
increase in TgDyrk1A mice. Right panel: NeuN labeled cellularity estimations obtained using the optical 
dissector in newCAST. Note that a maximum for NeuN stained neurons is detected in wild-type while no 
changes or even a slight decrease is detected in TgDyrk1A mice. Points indicate mean values and error bars 
standard deviations.  *  (P ≤ 0.05) (ANOVA one-way test). 

 

Population-based structural metrics through computational cellular and dendritic 

density mapping 

In order to link the detailed information obtained by microscopy imaging of sliced 

histological samples with a population perspective, I have developed an analysis pipeline 

allowing 3D neuromorphological mapping in 2D sectioned brain.  

 

I developed algorithms for obtaining 3D maps of the 2D population-based metrics (see 

Section 2.2.2): (1) the volume of neuronal layers, (2) the location and densities of cell bodies, 

and (3) the density of dendritic branches. Using the software I developed, I could obtain 

semi-automatic measures of the layer volume and cellular densities. Those semi-automatic 

quantifications broadly recapitulate the stereological measurements (Figure 31). 

Quantifications in the wild-type samples show again a convex curve along Bregma 

coordinates (1.31 ± 0.52 x104 cells/mm3, 1.77 ± 0.49 x104 cells/mm3, 0.87 ± 0.09 x104 
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cells/mm3; at Bregma -1.34, -2.14 and -2.54 respectively), and  TgDyrk1A show the 

consistent increase mentioned in the previous section (1.22 ± 0.89 x104 cells/mm3, 2.61 ± 

1.00 x104 cells/mm3, 2.75 ± 0.60 x104 cells/mm3; at Bregma -1.34, -2.14 and -2.54 

respectively). 

 

 
Figure 31: Volume and cellular density quantifications of CA1 pyramidal layer with the computational 

methods for population analysis. Volume shows a linear increase towards posterior Bregma for both wild-

type (blue) and TgDyrk1A (red) mice. Cellular density in wild-type mice shows a plateau from Bregma -1.54 to 

-2.34, while in TgDyrk1A increases towards posterior positions. Points indicate mean values and error bars 

standard deviations.  

In order to validate our computational method (Section 2.2.2), I obtained Bland-Altman 

plots for analyzing the agreement between our methods and the stereological quantifications 

of wild-type dorsal CA1 volume and cellularity.  The mean and the difference between the 

two alternative measurements are obtained and plotted against each other. Also, lines 

showing the magnitude of 1.96 standard deviations with a 95% confidence interval are drawn 

in the plot (Altman & Bland, 1983).  

 

The Bland-Altman plots of the pyramidal layer volume show (Figure 32) that differences 

between stereological and computational quantifications were distributed around 0, 

indicating that volumetric estimations were similar with both methods. Instead, the 

differences between stereological and computational cellularity estimations are distributed 

around ~3000 cells/mm3 difference, indicating that cellularity is systematically overestimated 

by our computational method. 

It is important to note that for both volume and cellularity the variance is in the order of the 

smallest measurements and does not seem to depend on the magnitude of the volume and 
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cellularity values. Such high variance is found in both methods, as seen by the error bars (s.d. 

~ 0.5-1 x 104 cells/mm3; Figure 30 and Figure 31). This suggests that most probably the 

variance can be explained by the small size of our sample (N=3) rather than low precision in 

the measurements.  

 

 
Figure 32: Bland-Altman plots of differences between the computational method and stereology vs. 

the mean of the two measurements. Plots for CA1 pyramidal layer volume (left) and cellular density (right) 

quantifications. Bold dashed lines in the centre of the plot represent the mean of the difference between to the 

estimations while bold dashed lines in top and bottom of the plot represents 2 times the standard deviation of 

the mean value. Light dashed lines indicate the 95% confidence intervals around those quantities. 

To assess whether our method is able to detect gross morphological properties with 

biological meaning, I compared the cellular and dendritic densities between hippocampal 

layers CA1 and CA3. The marked reduction in CA3 cell density (Figure 33 left), along with 

the quantifications validated with stereology in CA1, show that our method captures relevant 

changes in cellular density. Similarly, to assess whether our method for dendritic density 

quantification is meaningful, I compared the dendritic occupancy ratio between CA1 and 

CA3 after normalizing the amount of measured dendrites by the amount of labeled cells. The 

ratio between CA3 and CA1 is 1.46, indicating higher dendritic occupancy as seen in previous 

estimations found in the literature. 
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Figure 33: Cell density and dendritic occupancy in CA1 and CA3. (Left) Cellular density quantifications 

of CA1 (red) and CA3 (blue) pyramidal layers with the computational methods I developed. Points indicate 

mean values and error bars standard deviations.  (Right) Dendritic occupancy ratio in CA1 and CA3 as 

calculated by our dendritic density measurements (up) and as estimated by Ropireddy, Bachus, and Ascoli 2012. 

Bars indicate mean values and error bars standard deviations.  

 

Voxel-based morphometry in dendritic density maps recapitulates single-neuron 

dendritic alterations 

The neuronal reconstruction and stereological measurements obtained, highlight the fact that 

the percentage of cells labeled with Thy1 is very low and that there is a high within-cell 

variability. Thus, sampling small numbers of neurons is not representative for neurons 

throughout neuronal layers. To overcome this problem I here assumed that Thy1 labeling 

defines a Single-cell class.  

To study their morphological properties from a population perspective, I use the 

computational methods I developed for quantifying cell and dendritic density (see Section 

2.2.2) and generating 3D maps. As part of my method, I create a standardized spatial 

registration to a common coordinate framework for the analyzed samples, controlling for 

spatial variability and physical deformations that commonly arise during sample processing. 

The 3D mapping of those features is inspired in the field of neuroimaging, where statistical 

differences between groups of datasets are identified in a voxel-based manner. Thus, the 

generated maps allow neuroimaging-like 3D statistical comparisons among sample groups 

by the application of methods based on Voxel-Based-Morphometry (VBM)(White et al., 

2003). 
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As a proof of concept, I used the analysis pipeline exposed in Section 2.2.2 in two groups 

(wild-type vs TgDyrk1A; N=4) of Thy1-labeled samples to map cellular and dendritic 

densities across the dorsal CA1 (Bregma -1.34 to -2.34). Even though the statistical power 

of our analysis is too low to identify significant differences after the False Discovery Rate 

analysis, Figure 34 shows the t-statistic of a voxel-wise linear model testing whether the 

genotype of the samples predicts (wild-type respect to TgDyrk1A; voxels with t>0.83, have 

a 20% probability of being false discoveries, Table 7) the measured dendritic density values 

of each voxel along the antero-posterior axis in dorsal CA1. A close-up at Bregma -1.94 

shows a tendency to increased dendritic density in distal CA1 of wild-type mice and slightly 

decreased in proximal CA1. The results in distal CA1 are consistent with the lower dendritic 

complexity observed in our single-neuron reconstructions (Figure 29).    

 

 
 

Figure 34: VBM analysis of dendritic density in CA1 from wild-type vs. TgDyrk1A mice. (Left) Series 

of coronal slices from Bregma -1.54 to -2.34. The colored scales show positive (fire) and negative (blue) values 

for the t-statistic of the linear model applied to each voxel. (Right) Close-up visualization to a coronal CA1 slice 

at Bregma -1.94. Values t<4.83 have been masked in the images. 

 
Table 7: FDR analysis of the VBM dendritic density in CA1 comparison between wild-type vs. 
TgDyrk1A mice. The table summarizes the F-statistic, the t intercept and its value for various false disovery 
rates.  
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Linking single neuron reconstructions to whole-layer dendritic density maps 

In order to assess to what extent the population-based dendritic density maps are 

representative of single neuron dendritic tree morphology, I have compared measurements 

with the Sholl analysis and our modified-Sholl method in synthetic 2D trees arranged in an 

homogeneous layer. The analysis of synthetic 2D trees shows that both Sholl’s and our 

method give comparable signatures (k=1.62, int=-2.04, R²=0.951 for the Sholl analysis and 

k=1.70, int=-1.64, R²=0.947 for our method). When a population of cloned trees is analyzed 

with our method, the dendritic density signature is also clear (k=1.77, int=-1.48, R²=0.958), 

even showing qualitatively dendritic tree subregions in the Sholl Linear fit (i.e. Stratum 

Radiatum and Lacunosum). 

        

       

 
Figure 35: Comparison between single-cell and population-based Sholl analyses. (Left) Schematic 

representations of the analyses. (Middle) Linear Sholl plot of the number of intersections in function of the 

distance to the soma, a polynomial fit (blue and black parameters). (Right) Loglog Sholl analysis plot of the 

logarithm of the number of intersections per area versus the logarithm of the distance to the soma. In blue and 

red linear fit and parameters for a 95% of the data points and all points respectively. (Top) Single-cell default 

sholl analysis. Analysis done only for the apical tree. 
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Rewiring effects of environmental enrichment in CA1 apical dendritic trees: proof of 

concept 

Thus, our population-based analysis can be used to identify dendritic complexity variations 

throughout neuronal layers. I used it to assess whether environmental enrichment could be 

rewiring CA1 neuromorphology. By focusing on the distal region seen to have lower 

dendritic density in TgDyrk1A, I obtained “layer-Sholl” plots along the layer perpendicular 

axis (from stratum lacunosum, through stratum radiatum until stratum oriens). Plotting the 

dendritic density obtained in the maps I generated, I can observe a dendritic signature 

characteristic from CA1 pyramidal neurons. Even though the tendencies are not significant 

(N=3), the plots show a tendency towards smaller and less complex stratum radiatum in 

TgDyrk1A mice compared to wild-types. Both TgDyrk1A and wild-type mice show an 

increase in dendritic complexity in the stratum radiatum upon environmental enrichment. In 

the case of the environmentally enriched wild-types, the analysis shows a reduction of the 

span in stratum lacunosum and an increase in dendritic density in stratum oriens (Figure 

36). 

 

Figure 36: Dendritic density plot for distal CA1. Projection of the voxel values obtained from the CA1 

dendritic density maps of wild-type (green), TgDyrk1A (red), and both groups upon environmental enrichment 

(blue and purple respectively). Mean (line) ± S.E.M. (shade) is represented. 

 

 

 



 

 123 

Generation of realistic trisynaptic circuit templates  

Even though I could not present here an exploration in the generative model I have 

developed, the developed software allows the synthetic instantiation of circuits I are 

interested in Figure 37 shows a snapshot of a 3D rendering of the trisynaptic circuit in dorsal 

CA1. The model allows to generate circuits based on minimal input: Dendritic, somatic and 

axonal layer segmentations, cellular density values, and a group of tree reconstructions. 

 

 

Figure 37: 3D model for the instantiation of biologically realistic neuronal circuitry. An overview of an 

instantiation of the hippocampus. The levels of grey indicate the layer segmentations and instantiated nuclei 

and, with increased brightness 10 embedded neurons. 
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2.4. Discussion and conclusions 

 

Overall, the work done in this Chapter contributes to two main aspects: first, the 

characterization of neuromorphological properties by taking into account within-class 

variability in wild-type and TgDyrk1A mice. Second, the development of computational 

methods to visualize, quantify and incorporate population-based neuromorphological 

quantification methods in a neuronal circuitry simulation framework.  

 

Dendritic architecture of TgDyrk1A CA1 apical trees 

Altogether, the dendritic tree alterations found suggest that the transgenic mouse model 

could have an imbalance in the integration of afferent signals to the stratum radiatum and 

stratum lacunosum (including long-range incoming axons from CA3 and the Entorhinal Cortex, 

and short-range CA1 intrinsic modulation). 

 

Morphological within-class variability of hippocampal neurons 

Even though anatomical inhomogeneities across neuronal layers have been well known for 

decades(Ahmad & Henikoff, 2002; Jinno & Kosaka, 2009; Rihn & Claiborne, 1990) but 

largely overlooked in the study of neuronal circuits, assuming they are irrelevant for function. 

Recent evidence suggests that functional segregations is linked with such variations(Igarashi 

et al., 2014). Our systematic study of dendritic trees in a small region of the dorsal 

hippocampus suggests that within-class variability depends on the neuron location along the 

proximal-distal axis. However, the power of our analysis is very low due to the small numbers 

of neurons per location. Thus, a completion (ongoing work) of the dataset is necessary to 

detect significant differences among positions, and dissect the variability of within-class 

neuromorphological properties along the proximal-distal and antero-posterior axes of dorsal 

CA1. 

 

Nevertheless, interestingly, I found that dendritic tree span is reduced in the neurons of 

TgDyrk1A mice both in distal and central positions along the proximal-distal axis, while 

dendritic complexity is selectively reduced in the distal region of the dorsal CA1. Those 

differences are concomitant with a marked behavioral impairment in single object 

recognition tests(Pons-Espinal, de Lagran, & Dierssen, 2013) , and a mild impairment in 
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spatial learning(Torre et al., 2014). Given the recent evidence for functional segregation 

between distal (contextual) and proximal (spatial) regions of CA1(Igarashi et al., 2014), this 

suggests that the reduced dendritic branching reaching the stratum lacunosum observed in 

TgDyrk1A neurons could be impairing the integration of sensory information provided by 

entorhinal cortex afferents. 

   

Cellularity along the antero-posterior axis of CA1 in TgDyrk1A 

Moreover, the stereological analysis of NeuN-immunostained neurons in dorsal CA1, 

indicates that gross morphological features, i.e. cellularity and volume, of the pyramidal layer 

tend to vary with antero-posterior coordinates at a local spatial scale (~500µm). While 

cellularity variations along the septo-temporal axis of the hippocampus had been described 

at the scale of few millimetres(Gaarskjaer, 1978; Jinno & Kosaka, 2009), I show that those 

variations can be relevant at a shorter spatial range. Thus, the position-dependent variability 

is a confounding factor to take into account when analyzing the properties of neuronal 

populations even locally.  

 

Computational methods for population-based analysis of cellular and dendritic 

density 

 

To overcome the small number sampling issue, population based labelings (such as Thy1 

induced fluorescent protein expression) can provide a holistic perspective to properties of 

neuronal layers, while tailoring the studies by constraining the analysis to specific cell classes. 

However, our stereological quantifications using NeuN and Thy1-labeled cells show that 

selecting a specific neuronal class as a representative set must be done carefully. In our study, 

cell density quantifications differ between the two labelings, and the Thy1 expression pattern 

in dorsal CA1 seems to be affected by the transgenic expression of Dyrk1A in the studied 

DS mouse model. Thus, a systematic validation and cautious interpretation of conclusions 

drawn from Thy1-dependent population-based labeling is needed. 

 

In order to tackle the population-based measurements that can overcome the issue of small 

number samplings, and taking into account that stereological measurements have too low 

throughput for systematic detailed studies, I explored the development of population-based 

computational analysis tools. I developed algorithms for mapping cellular and dendritic 
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density on Thy1-labeled neuronal populations. The obtained quantifications are consistent 

with the stereological measurements and our single-neuron morphology analysis. Thus, being 

sensitive enough to identify local variations. This unprecedented sensitivity suggests that the 

developed tools, beyond the issues related to the Thy1 labeling, allow comparative 

morphological analysis with unprecedented detail that could help understanding functional 

segregation, explaining specific behavioral traits in the TgDyrk1A DS mouse model.  

Previous studies have shown an increase in dendritic tree size and complexity in CA1 

pyramidal neurons upon environmental enrichment in wild-type mice (Beauquis et al., 2010) 

I observed increased dendritic density in the stratum radiatum and stratum lacunosum fields. 

However, our data suggests that the span of the dendritic trees is smaller. Our results show 

a similar tendency in the case of TgDyrk1A mice. This recovery, mainly relevant for the 

stratum lacunosum region of the tree, could explain cognitive improvement in spatial memory 

tasks by environmental enrichment. Ongoing experiments to obtain single neuron 

reconstructions in environmental enrichment conditions will confirm the tendencies seen in 

the population-based analysis. 

 

Generation of realistic trisynaptic circuits 

Despite the extensive and ever-growing literature about the functional implications of 

topological properties of large-scale anatomical brain networks, the methodological 

limitations of the microscopic description of neuronal morphology have bounded the ability 

to analyze and characterize the topological organization of brain microcircuits from a systems 

perspective. Computational attempts to reproducing in silico the dynamical properties 

exhibited by different brain regions (Blue Brain Project, Markram 2006; Human Brain 

Project, Shepherd et al. 1998) do not provide the versatility needed to assess the impact of 

subtle neuromorphological alterations, neither the possibility of parameterizing the models 

with CLARITY experimental data. Thus, the neuroscientific community lacks a simple open-

source extensible tool able to bridge this gap.  

 

Even though our modeling framework has not been tested yet, our analysis in Chapter I 

suggests that interesting outcomes will be obtained once the model is instantiated, the 

morphospace explored, and the wild-type and TgDyrk1A cases parameterized based on 

experimental. I think that, together with the population-based computational analysis tools I 

developed, the studies enabled by the first steps presented here will be relevant for 
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understanding functional segregation and, ultimately, the impact of subtle 

neuromorphological properties on the computations performed by specific neuronal layers. 
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3. CHAPTER III. RECONSTRUCTING AND MODELING 
THE TRANSPARENT WHOLE BRAIN 

 

 

 
 

The “arrows” of Cajal. The drawing represents with arrows direction of information flow in cortical neurons. 

Courtesy of Instituto Cajal 
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"To understand mental activity it is necessary to 
understand molecular modifications and changes in 
neuronal relationships. Of course one must know the 
complete and exact histology of cerebral centres, and their 
tracts, but that is not enough" 

 
Santiago Ramón y Cajal 
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3.1. Introduction 

Charting cellular localizations, projections, and network activity throughout the whole brain 

is a mandatory step to understand network properties, but the tools for combining these 

levels of description are not available yet. Many efforts in the Neuroscience field are devoted 

to build cellular-resolution, brain-wide neuroanatomical atlases of the mouse brain, but 

technical limitation to obtain whole brain structural information with microscopic resolution 

has hampered our capability of understanding micro-connectomics at a system level. I are 

usually faced with having either poor spatial scale (examining only a small part of a larger 

brain network) or poor spatial resolution (examining a large network but at the cost of 

understanding microstructure). Most experiments still involve slicing the brain into relatively 

thin sections (20-50 µm) before histological staining, imaging, and quantification. These 

techniques have yielded very good results for atlasing (e.g. Allen Brain Atlas) and are still 

being used in high-throughput mapping projects. For example, the MouseLight Project 

(https://www.janelia.org/project-team/mouselight) of Janelia that is mapping the complete 

axonal projections of individual neurons across the entire mouse brain (

 

Figure 38). However, sectioning the brain has its own drawbacks. For instance, light continues 

to be scattered even within relatively thin brain sections (limiting axial resolution), sectioning 

may damage and/or distort the tissue, and much of the rich structural information may be 

lost in sectioned tissue, even if attempts are made to accurately reconstruct 3D images.  

 

https://www.janelia.org/project-team/mouselight
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Figure 38: 3D structural analysis of whole mouse brains. A reconstruction of three neurons that span the 

mouse brain. MOUSELIGHT PROJECT TEAM, Janelia Reseach Campus. Scale bar = 2000µm. 

 
A recent technique called CLARITY, allows rendering intact biological tissues transparent 

by lipid-exchange, by embedding the tissue in an anatomically rigid, 

imaging/immunostaining compatible, tissue hydrogel (Chung et al., 2013). The technique 

overcomes existing limitations to produce transparent tissue without quenching endogenous 

fluorescence, and this tissue can also be labeled via immunohistochemistry. This provides a 

unique opportunity to bridge anatomical scales from subcellular to whole brain. In the last 

years, a number of research groups have implemented new tissue clearing techniques 

(CLARITY, CUBIC, Lumos, STP, 3DISCO, Sca/e, or SeeDB)X allowing comprehensive 

microscopic imaging of rodent whole brains. The power of these techniques relies on 

bridging de facto the macroscopic and microscopic scale descriptions of the system, allowing 

high-throughput imaging of whole brains with cellular resolution.  

The CLARITY protocol was originally published by the Deisseroth lab (Chung et al. 2013; 

see Figure 39) and methods to optimize the imaging component subsequently added 

(Tomer, Ye, Hsueh, & Deisseroth, 2014). A modified CLARITY protocol, using only passive 

clearing techniques to avoid the possible tissue damage produced by electrophoretic current, 

was also recently described (Tomer et al., 2014; Yang et al., 2014; Zhang et al., 2014). 

However, to effectively take advantage of CLARITY, it is crucial to obtain brains that are 

highly transparent (for deep imaging) and rigid (to facilitate registration to a reference atlas). 

While passive clearing may produce transparent tissue, electrophoresis is necessary to achieve 

the full potential of CLARITY.  The original protocol for CLARITY proposes FocusClear 

as a refractive index matching (RIM) medium for clear imaging, as well as a glycerol solution 

http://mouselight.janelia.org/
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as an alternative (Chung et al., 2013). However, previous results in the lab show that the 

resolution decreases when trying to track axons on more than 3 mm in depth in the sample. 

Different media have been reported in order to improve the transparency and, so, the 

resolution in depth, such as a solution based on diatrizoic acid (M. J. Hawrylycz et al., 

2012)(Kim et al., 2015).  

 
 

 

Figure 39: Schematic representation of CLARITY protocol basis. Tissue is crosslinked with formaldehyde 

(red) in the presence of hydrogel monomers (blue), covalently linking tissue elements to monomers that are 

then polymerized into a hydrogel mesh. Electric fields could be applied across the sample to actively transport 

ionic detergent micelles into the tissue, carrying the lipids out of the sample and leaving fine-structure and 

crosslinked biomolecules in place. Step 3 can also be done passively implying higher clearing time. Figure from 

(Chung et al., 2013). 

 
Another limitation is that, up to date a relatively low effort has focused on developing 

standardized, extensible, and scalable analysis tools. Although whole brain imaging would 

enable multiscale and population-based analysis, at the moment many data arise from 

classical neuromorphological studies by histological sectioning. In order to avoid reductionist 
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or homogeneity-assuming perspectives, this work aims to develop a computational toolset 

for multiscale and population-based characterization of brain regions by brain slices data 

reconstruction.  

 
The aim of this part of my Thesis was to implement a new cost-efficient CLARITY protocol, 

and to start filling the analysis gap by developing a suite of unified softwares to construct 

multiscale structure-function maps from brain-clearing experiments, with specific 

subworkflows for understanding topological dependencies on a brain-wide scale. The set of 

tools I propose are a first step towards a systems perspective description of neuronal circuits’ 

microscopic structural and population-based properties. Such framework can help to link the 

extensive kinds of information available from cellular and molecular neuroscience with whole 

brain perspective studies. Besides, the proposed suite of tools can be used to bridge structural 

data with functional descriptions.   
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3.2. Methods 

The aim of this chapter was to integrate the approaches and tools developed in chapters I 

and II in the scope of studying whole neuronal circuits in the mouse brain. To this end, a set 

of tools for imaging, analyzing and modelling whole brain data needed to be implemented. I 

first implemented and modified the CLARITY technique in our lab. To reach high quality 

whole mouse brain imaging I assessed existing alternatives for steps of the experimental 

protocol important for imaging quality and optimized them. Second, I searched, modified 

and gathered together a set of tools for the visualization and analysis of CLARITY datasets, 

setting up an analysis pipeline for whole brain imaging. Finally, I developed a 3D generative 

modelling platform for the instantiation of multi-scale neuronal networks, able to account 

for fine details in neuronal architecture, to be parameterized accounting CLARITY 

experimental data, and to simulate neuronal connectivity in arbitrarily large volumes. 

 

3.2.1. Brain clearing technique (CLARITY) 

To implement and optimize the CLARITY technique, I used the same Thy1-Yellow 

Fluorescent Protein (YFP) transgenic mice (strain B6.Cg-Tg(Thy1-YFPH)2Jrs/J nº003782; 

The Jackson Laboratories) used in Chapter II. Housing conditions, breeding and genotyping 

are described in the Methods Section of Chapter II. All animal procedures and housing 

conditions followed the guidelines of local and European regulations. 

 

 

Brain sample obtention and clearing 

For the clearing experiments I used eighteen 3-month-old adult wild-type mice. The mice 

were sacrificed and transcardially perfused with cold phosphate buffered saline (PBS), 

followed by cold CLARITY hydrogel solution, prepared as previously described (Chung, K.; 

Wallace et al., 2013). The brains were removed from the skull, immersed in 20 mL of 

hydrogel solution and stored at 4ºC shielded from light. After 2-3 days at 4ºC, hydrogel 

polymerization was induced by 3h incubation at 37ºC. Contact with oxygen was prevented 
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with a vegetal oil layer. Thereafter, the already polymerized surrounding hydrogel was 

removed. Entire brains were immersed in 50 mL of clearing solution (Chung, K.; Wallace et 

al., 2013) and stored in a water bath at 45ºC. Slices were arranged in a 48 well plate with 800 

μL of clearing solution and stored in an incubator at 45ºC. After 2 months of incubation in 

clearing solution for passive clearing, optical transparent brains were washed with 50 mL 

PBST (0.1% TritonX in 1X PBS) twice for 24 hours each, at 45ºC. After that the samples 

were immersed in a Refractive Index Matching (RIM) medium for 2 days before imaging. 

 
 
Refractive index matching (RIM) solution preparation and transparency evaluation 

The first step was to optimize transparency in our samples. To this aim, I tested four RIM 

solutions: FocusClear, glycerol solution (Glycerol 87% + 2.5 mg/mL DABCO), diatrizoic 

acid solution (75 g diatrizoic acid, 70 g d-sorbitol and 23 g n-methyl-d-glucamine in 100 mL 

of water) and TDE solution (2,2-thiodiethanol 83% + 4 mg/mL n-methyl-d-glucamine). All 

reagents are from Sigma. 

 
Transparency was evaluated on whole brain cleared samples under exposure to RIM media 

candidates. Four brain samples (N=4) were incubated with 50 mL of each RIM medium 

candidate during 4 days at 45ºC. Transparency of the samples was assessed at days 2 and 4 

after incubation by measuring the light transmittance. The samples were immersed in the 

corresponding medium in a Petri dish, which was situated on a white light source covered 

by a white paper with a printed grid. Images were taken by means of a stereomicroscope 

(LEICA MZ16F), using different sets of filters for increasing wavelengths: CFP (Cyan-

Fluorescent Protein_excitation wavelengths (exc.) 426-446 nm, emission wavelengths (em.) 

460-500 nm), GFP3 (Green-Fluorescent Protein 3_exc. 450-490 nm, em. 500-550 nm), DSR 

(DsRed_exc. 510-560 nm, em.590-650 nm), Cy5 (exc. 590-650 nm, em.663-738 nm). Also 

the total white light transmittance was evaluated by using no filter. Using ImageJ, the mean 

grey value was measured in the area occupied by the sample. This value was normalized by 

the mean grey value in the same area for the image taken, with the same filter and exposure 

conditions, when only the corresponding medium without the sample was in the Petri dish.  

Sharpness measurements were obtained by using the Matlab sharpness function 

(https://es.mathworks.com/matlabcentral/fileexchange/32397-sharpness-estimation-

from-image-gradients). Sharpness is estimated by measuring the magnitude of intensity 

https://es.mathworks.com/matlabcentral/fileexchange/32397-sharpness-estimation-from-image-gradients
https://es.mathworks.com/matlabcentral/fileexchange/32397-sharpness-estimation-from-image-gradients
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gradients in an image. The function was run on the images used for measuring the 

transmittance. 

The deformation of the samples (Swelling Ratio) upon RIM incubation was assessed by 

measuring the linear expansion of the sample under exposure to each RIM media candidate. 

Measurements of pixel areas covered by the samples 2d and 4d after immersed in the RIM 

media candidates are normalized for pixel areas of images taken to the same samples at day 

0 (0d) in PBS-T. The pixel area was measured by making polygonal selections around the 

brain contour were done using ImageJ tool. 

 

 
Fluorescence signal to Noise Ratio  

One of the possible problems in using specific RIM media is the loss of the sample 

fluorescence, and I had some problems with fluorescence loss after passive CLARITY. This 

is especially important for endogenous YFP, since I use transgenic mouse lines that express 

this fluorescent protein to visualize specific cell populations. Thus I aimed at finding 

optimum clearing protocol for genetically labeled neurons. In my experiments, I used cleared 

half brain coronal sections (1 mm) to assess the fluorescence signal under exposure to RIM 

media candidates. Four sections (N=4) of the same region were incubated in a 48 well plate 

with 800 μL of RIM media candidates at 45ºC during 10 days. I assessed the fluorescence 

signal of the cleared sample at days 2 and 10. Stacks of 100 μm of depth with a step size of 

2.98 μm were taken for each of the samples in the cortical area using a confocal microscope 

(Leica TCS SP5 CFS) with a 20x objective and the appropriate set of filter for YFP. All the 

imaging parameters were maintained constant for all the images. Z-projections at maximum 

intensity of the stacks were thresholded using Otsu’s method (Otsu, 1979). Mean intensity 

and standard deviation were measured both in the thresholded zone and also in the 

background. These parameters were used to evaluate Contrast-to-Noise Ratio (CNR) as 

previously described (Magliaro et al., 2016). 

 

 

3.2.2. CLARITY Whole-brain imaging and data preprocessing 

I have developed a framework for visualization and analysis of 3D images of cleared brains. 

I combined existing open-source computational tools and self-developed scripts and 

developed simplified user interfaces for integrated processing, visualization, and analysis. 
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Imaging 

Tissues cleared using the above methods were then imaged in 3D. Briefly, cleared whole 

brains were immersed in 50 mL of Diatrizoic Acid solution (DA; 75 g diatrizoic acid, 70 g d-

sorbitol and 23 g n-methyl-d-glucamine in 100 mL of water) at 45ºC for 48hr. After 

incubation in DA the samples were imaged in a custom-built Single Plane Illumination 

Microscopy (SPIM) set-up. SPIM is a fluorescence microscopy technique that uses a focused 

light-sheet to illuminate the specimen from the side. SPIM achieves excellent resolution at 

high penetration depths while being minimally invasive at the same time. SPIM offers a 

number of advantages over established techniques such as strongly reduced photo-bleaching, 

high dynamic range, and high acquisition speed. The idea behind SPIM and other light-sheet-

based microscopy techniques is to illuminate the sample from the side in a well-defined 

volume around the focal plane of the detection optics. The microscope, built in James 

Sharpe’s lab and used in collaboration with Jim Swoger, is designed to image 3D samples 

with sizes of about 1 cm. I used a detection lens with magnification 5x and a laser wavelength 

of 488 for fluorescence excitation. The sample is mounted to a micro-manipulation stage 

that allows translation in 3 dimensions and rotation about the vertical axis, to allow 

orientation for optimal imaging, inside a cuvette filled with 50 mL of RIM. The SPIM 

software has been written in Labview to control the instrument and automates scanning of 

samples that require up to 10s of thousands of individual images. Acquiring complete data 

sets covering a whole mouse brain hemisphere takes ~36h for a single-channel and generates 

~0.5Tb, uncompressed data.  

 
 
 
 
Tera-voxel sized dataset stitching 

The most common format in which fluorescence microscopy data is obtained in 

neurobiology labs is adjacent image stacks covering the regions of interest. In case of being 

interested on features at the mesoscale or macroscale of the samples, the first necessary step 

is to stitch the tiled data obtaining a unique dataset for the whole system of interest (in our 

case, the whole brain). The recently developed Terastitcher software allows this kind of 

preprocessing using small RAM amounts and by a user-friendly straightforward procedure 

that is compatible across platforms. Furthermore, it allows the export of the data in both the 

multi-resolution pyramid format used by Vaa3D Teramanager or single stacks in a variety of 
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image formats that can then be used in any other image analysis software. This has been 

already assessed in Bria and Iannello, 2012.  

 
Visualization 

Once the dataset has been stitched a first visualization of the raw data is important in order 

to both check its quality and to allow the investigators to identify cues that can be informative 

of the analyzed samples and can orient subsequent analysis steps. As mentioned above there 

are currently two solutions for the visualization of teravoxel-sized imaging datasets, Vaa3D’s 

TeraFly (Bria, Iannello, Onofri, & Peng, 2016) and Fiji’s BigDataViewer (Pietzsch, Saalfeld, 

Preibisch, & Tomancak, 2015) plugins.  

 
Segmentation 

In the rodent brain case, the regions to be segmented are given by anatomical regions of the 

brain and are already well defined in atlases such as (Allen Nissl). However, the kind of 

processing performed here can also be compatible with self-generated 

compartmentalizations of any sample of interest.  

 

Registration and template generation 

As assessed in chapter II, the voxel-based statistical comparison of volumetric data requires 

both a reference space, and the spatial registration of the analyzed the datasets to the 

common reference. While the tools used in chapter II ANTs and Volgenmodel are the robust 

tools for spatial normalization and template generation, they are not devised to process 

teravoxel sized datasets. To overcome this problem I also used Fiji’s BigWarp plugin 

(https://imagej.net/BigWarp), which allows landmark-based spatial registration of arbitrarily 

large datasets.  

 

 
Mouse brain common coordinate framework 

In order to instantiate our 3D generative model in a reference volume, I used the Allen 

Institute Common Coordinate Framework (CCF v3) of the adult (P56) mouse brain(M. 

Hawrylycz et al., 2011). The 10um precision volume with its segmentation labels was used. I 

generated binary hippocampal reference volumes by isolating single labeled regions for DG 

(Molecular, granule cell and polymorph layers), CA3 (Stratum oriens, pyramidale and 

https://imagej.net/BigWarp
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radiatum) and CA1 (Stratum oriens, pyramidale, radiatum and lacunosum) in Fiji. This was 

done by thresholding the original volume above and below the value of the label of interest. 

Multi-resolution copies of the obtained volumes were saved in the HDF5 format using Fiji 

(default parameters in the BigDataViewer plugin) as ready-to-use input files for the 

generative model.  

 

 
Computational environment 

A programming environment in a workstation running Ubuntu 16.04 was set in order to 

fulfill all necessary software and library dependencies, including: Python 2.7, Fiji(Schindelin 

et al., 2012), Vaa3D (Peng, Bria, Zhou, Iannello, & Long, 2014), Terastitcher (Bria & 

Iannello, 2012), MINC-TOOLS (Vincent et al., 2004), ANTS(Avants et al., 2009), nipype 

(Gorgolewski et al., 2011), Volgenmodel (Janke & Ullmann, 2015), R and RMINC. 

Additional Python wrappers and source-code can be found at 

(https://bitbucket.org/linusmg/nem4o-analysis). Big datasets were stored locally in a series 

of RAID system hard-drives (3x16GB WD MyBook Duo).  

 

3.2.3. Statistical analysis 

Data for transmittance, CNR and deformation were expressed as mean ± S.E.M. Two-way 

analysis of variance (ANOVA) were performed using R commander package for Windows, 

version 3.1.1. In the case of transmittance, one ANOVA for each filter was performed, 

considering the factors medium and time. For both fluorescence and deformation, one 

ANOVA was done, considering the medium and the time as the factors. Effects for each 

factor were considered statistically significant when p<0.05.  Bonferroni was used for post-

hoc analysis when a significant, or a trend to, medium x time interaction was found (p<0.09).  

 

Voxel-based comparisons of neuromorphological metric 3D maps were performed 

implementing the mixed-effect linear model in RMINC (version 1.4.2.1). Significance for 

observed relationships were assessed with a False Discovery Rate (FDR) analysis.  

 

 

https://bitbucket.org/linusmg/nem4o-analysis
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3.3. Results and discussion 

3.3.1. Cost-effective optimization of tissue clearing techniques  

I have implemented cost-effective optimizations in the CLARITY protocol achieving in-

depth imaging quality improvement. Clearing of ~2 cm3 samples has been implemented in 

our lab on intact mouse brains achieving > 5 mm depth imaging with a custom-built Single 

Plane Illumination Microscope (SPIM). 

 
Transparency  

I tested brains cleared with the four candidate RIM media and compared their transparency 

as measured by light transmittance after two and four days of incubation, as compared to 

transmittance before incubation. 

 

 

Figure  40: Comparison of transparency of RIM candidates. Light transmittance evaluated on different 
increasing wavelengths for the cleared samples under exposure to each of the four RIM media candidates (DA: 
diatrizoic acid based solution; FC: Focus Clear; Gly: glycerol-based solution; TDE: 2,2-thiodiethanol based 
solution). For each group the mean and the standard error are represented (n=4).   
 
 

The results of the evaluation at different wavelengths reveals that samples exhibit better light 

transmittance at higher wavelengths and relative differences among media are maintained at 

different wavelengths. YFP has an excitation wavelength of 488-512 nm and an emission 

wavelength of 532-554 nm. In this way, when imaging the endogenous fluorescence of the 

sample, values of transmittance will be considerably close to 1. Overall, it can be seen that 

2’-Thiodiethanol (TDE) transparency is comparable to that of the original proposed 
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FocusClear (FC), being one of the best RIM medium regarding transmittance. The diatrizoic 

acid-based (DA) solution presents the lowest values of transmittance, and glycerol shows 

intermediate values. Figure  40 shows a representative sample for each group before 

exposure to the RIM medium candidate Quantitative measures are consistent with qualitative 

evaluation of the samples (Figure 42).  

 

However, our observations when imaging whole brains in a SPIM setup were not consistent 

with these results, given that imaging in DA produced clear and sharp images through 6mm 

in depth in the samples (see Figure 42 for a representative example). Thus, I revised the 

method for assessing transparency. Instead of using the transmittance, I measured the 

sharpness in the images. By normalizing this measure after RIM exposure to its value in PBS-

T, I obtained a sharpness ratio with respect to the original conditions. The measurements 

obtained (Figure 41), shown that after 48hr incubations, 87%-Glycerol has the lowest 

sharpness ratio (1.09 ± 0.10), followed by DA (1.16 ± 0.03), while showing impressive results 

with 83%-TDE (1.41 ± 0.11). Unfortunately, due to its cost, I could not include FC in this 

experiment.  

 

 

Figure 41: Comparison Sharpness ratio for RIM media candidates. Normalized sharpness evaluated on 
different increasing wavelengths for the cleared samples under exposure to three RIM media candidates (DA: 
diatrizoic acid based solution; Gly: glycerol-based solution; TDE: 2,2-thiodiethanol based solution). For each 
group the mean and the standard error are represented (n=4).  
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Figure 42: Stereomicroscope images for the assessment of sample transmittance under the different 
RIM media candidates. DA: diatrizoic acid based solution; FC: Focus Clear; Gly: glycerol-based solution; 
TDE: 2,2-thiodiethanol based solution. Samples are shown immersed in PBS-T at day 0 and after 2 days of 
incubation with the respective medium on day 2. Above the images the filters that were used to take the images 
on day 2 are indicated. 
 
 
Fluorescence 

Slices of the Thy-YFP mouse brain were used to measure the signal quality after 2 and 10 

days of immersion to RIM media candidates. Confocal microscope imaging shows that TDE 

causes a significant decrease in YFP signal after 2 days, being more evident after 10 days. 

TDE slices conserve the labelling in some regions of the cortex, although the intensity of the 

signal is decreased with respect to other media (Figure 43). Quantification of the signal 

quality by Contrast to Noise Ratio (CNR) (Figure 44) demonstrate that TDE caused 

complete quenching of the signal compared to the other media. In the case of TDE slices, 

images were taken in specific regions were labelling was found, so the CNR characterization 

is not a reliable measure for the signal quality in the whole brain. Measures for TDE after 10 

days cannot be done because of lack of signal. 
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Figure 43: Comparison of fluorescence intensity in Thy1-YFP brain samples. Z-projection of the 
maximum intensity in a 100 um stack of cortical region in Thy-YFP brain slices, after incubation of 2 days in 
RIM media candidates (DA, TDE83%, Glycerol87% and FocusClear). 
 

 

Figure 44: Contrast to Noise Ratio of the fluorescence microscope images obtained from slices under 
exposure to each of the four RIM media candidates. DA, TDE83%, Glycerol87% and FocusClear 
incubation during 2 days (2d) and 10 days (10d). Measure for 10 days for TDE is not available as no fluorescence 
was observed on the slices. For each group the mean and the standard error are represented (n=4).  
 
Deformation 

Deformation of the samples was assessed by measuring the variation of linear size of the 

brains immersed in the RIM candidate medium with respect to their initial expanded size in 

PBS-T. Taking into account that samples suffer an expansion when immersed in PBS-T, 

Figure  45 represents the degree of recuperation of the original physiological size due to the 

incubation in RIM medium during 2 and 4 days. It can be seen that FocusClear is the best 
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one at reversing the expansion in a permanent way. Diatrizoic acid solution also presents a 

permanent effect, although it is no so hard. In any case, the qualitative evaluation of the 

samples evidence that no shrinkage with respect to the original size is caused. TDE 83% 

presents values similar to FocusClear, although the variability is higher and the effect not so 

durable, being at 4 days similar to diatrizoic acid solution values. Finally, glycerol presents a 

low recuperation of sample size, joined with high variability and low permanence of the 

results.    

 

 

Figure  45: Deformation of the samples under 2 days (2d) and 4 days (4d) of incubation in RIM media 
candidates: Chung (diatrizoic acid solution), TDE83 (TDE 83% solution), Gly (glycerol 87% solution) and FC 
(FocusClear). The value is obtained by normalizing the area inside the brain contour in each medium by the 
same parameter of the brain immersed in PBS-T at day 0. For each group the mean and the standard error are 
represented (n=4).   
 
 

3.3.2. Computational pipeline for CLARITY based whole-brain 

structural interrogation 

To establish and prove that our pipeline is suitable for the data analysis I aim to do implied 

a significant amount of time. Despite the fact that I cannot show a quantitative analysis 

comparing TgDyrk1A and wild-type mice, I have done a proof of concept of all the necessary 

steps.  

Six brains have already been scanned. Three have undergone stitching and both multi-

resolution datasets and subsets of the imaged volumes have been used for the proof of 

concept. 
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The stitching has been done using Terastitcher (Section 3.2.2). While the processing time is 

slow (~2d per sample), the procedure is reliable and the latest updates of the software allow 

doing the processing in a computing cluster. Figure 46 shows an overview of a high-

resolution maximum projection of a representative stitched imaging volume of a whole 

mouse hemisphere.  

 

Figure 46: Maximum-value projections (inverted contrast) through one hemisphere of a B6.Cg-Tg(Thy1-
YFP)HJrs/J mouse brain scanned at 5x magnification (scale bar = 1000µm). Close-up magnification of an 
unspecific region in the frontal cortex. Thy1-labeled cortical layer V nuclei and their apical dendrites can be 
appreciated (scalebar = 200µm).  
 
 
Following our protocol optimizations, samples will undergo passive clearing for 45 days to 

obtain high transparency and imaging quality, with adequate refractive index matching. 
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Figure 47 shows the qualitatively the improvement reached with the the information of the 

experiments shown in Section 3.3.1.  

Figure 47: Snapshots of 3D views of whole brain imaging datasets in different imaging media. The 
three samples undergone 45 days-long passive clearing and were incubated in the imaging medium for 48hr 
previous to imaging. Note the difference in background fluorescence. The higher the signal to noise ratio, the 
less background can be appreciated in the 3D volume. Each sample was imaged in the following RIM: (a) 
diatrizoic acid solution, (b) 87% glycerol and (c) 87% TDE. 
 
 

The stitched volumes were visualized in Vaa3D Terafly (see Section 3.2.1). The visualization 

was also tested in modest computers showing to be efficient and compatible across 

platforms. Figure 48 (a,b,c) shows snapshots of the 3D visualization at different 

magnifications in the dataset. The improved imaging quality reached provides a high amount 

of detail, Figure 48 (c) shows a high magnification maximum-value projection of the volume 

below cortical layer V. Axonal projections from layer V pyramidal neurons can be easily seen 

and tracked. 
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Figure 48: Multi-resolution imaging in a cleared whole mouse brain. (a,b,c) Snapshots of 3D views at 
different magnifications in a single dataset. (b) Maximum-value projection of an imaged volume showing 
partially layer V pyramidal neurons and their axonal projections. 
 
 

Any quantitative analysis on volumetric data requires the previous step of the spatial 

registration to a common coordinate framework for all the analyzed samples. The basic step 

required for this procedure, is 3D spatial registration. I already developed a pipeline for 

mutual information-based spatial registration in Section 2.2.3. I here have adapted the 

procedure to teravoxel-sized datasets. To overcome the requirement of using the whole 

datasets, I have downsampled the whole brain volumes to an isotropic resolution of 10µm 

per voxel. The downscaled volumes can undergo all the procedures required for generating 

a common template and to spatially register each sample to this template. Once the 

transformations among the samples are known, it is applied to the coordinates of a set of 

markers (grid of points in the 3D space). The marker sets can then be scaled back to the 

original full resolution and can be used to warp the high resolution volume to a high 

resolution common coordinate space. Figure  49 shows a sagittal view of an optical slice of 
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a whole hemisphere 3D dataset before (a) and after (b) mutual information-based registration 

to another sample. 

 

Figure  49: Deformation-based morphometry. (a,b,c) Sagittal view of a 2D slice of a whole hemisphere 3D 
dataset before (a) and after (b) mutual information-based registration to another sample. (d) 2D horizontal slice 
of deformation and compression maps obtained from a manually segmented CA1 volume nonlinear registration 
to a previously obtained MDA template of the region. In green, the Jacobian determinants of volumetric 

compression and in red displacements for each voxel in the image.   

 

Proper definition and management of regions of interest (ROI) is needed at all levels of 

processing, visualization, and analysis. The 3D spatial registration is a basic step for further 

analysis because it allows automatic segmentation for posterior analysis. Figure 50 shows a 

sagittal view of an optical slice of a whole hemisphere volume that has been manually 

registered (via landmark selection) to the segmentation of the Allen Institute Common 

Coordinate Framework (CCF v3) of the adult (P56) mouse brain. Thus, the high resolution 

annotated volume allows to choose ROI-specific processing. Manual segmentation is also 

possible the combination of our self-developed Fiji scripts, allowing high quality 

interpolation of thin structure segmentations. 
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Figure 50: Registration to a common template for automatic segmentation. (a) Sagittal view of a 2D slice 
of a whole hemisphere 3D dataset after a landmark-based registration to the segmentation of the Allen Institute 
Common Coordinate Framework (CCF v3) of the adult (P56) mouse brain (b). Different shades of gray indicate 
standard delineated brain regions. 

 
The steps until now, allow to obtain comparable whole brain volumes. To analyze them, I 

take advantage of the methods developed in Chapter II (Section 2.2.2). The multi-resolution 

structure of the data, allows to access small chunks and analyze them in parallel, generating 

small subvolumes containing cellular and dendritic density maps. I aim to generate python 

wrappers that will allow to apply any Fiji plugin throughout multi-resolution CLARITY 

datasets. 

One of the great opportunities provided by whole brain imaging techniques, is the possibility 

of obtaining information about axonal projections with higher resolution than Diffusion 

Tensor Imaging (DTI). I propose to use the fluorescence structure tensor for large sample 

fluorescence microscopy datasets to study axonal pathways from densely labeled axonal 

projections of studied circuits (HC-mPFC in our case). I have developed Python code for 

obtaining and transforming multi-shell HARDI-like structure tensor datasets from 

CLARITY imaging datasets. This allows to generate Fibre Orientation Distribution (FOD) 

maps, robust FOD-based tractography and perform the structural connectomics and fixel-

based analysis that MRtrix3 offers (Figure 51).  



 

 153 

 

Figure 51: Structural tensor for axonal tracking. Snapshot showing an optical slice with representations of 
structural tensors in every voxel of the image (magnified in the lower left panel). The color indicates the 
orientation and white lines in each voxel represent the direction of maximum anisotropy of each tensor. The 
same optical slice in the original whole brain imaging dataset (lower right). 

 

Altogether those tools allow the structural interrogation of whole brain datasets with a focus 

on a holistic perspective for the analysis of cellular, dendritic and axonal densities. But also 

provide a robust framework to elaborate on quantitative mapping that could be of interest 

for any particular application (e.g. analyzing patterns of genetic expression, or presence of 

specific proteins). Also, the direct link with the in-silico parametrization of neuronal 

networks in the generative model presented in Chapter II opens many possibilities for the 

interaction between experimental interrogation of whole brains and the simulation of 

neuronal circuits. 
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Figure 52: Overview of the whole-brain analysis and modelling workflow. I obtain structural experimental 
data from cleared brains which constrain computational modelling and analysis tools to explore neuronal circuit 
topology. Thus, providing a tool to investigate the organizational principles of mammalian neuronal networks. 
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3.4. Discussion and conclusions 

The development, refinement, and use of techniques that allow high-throughput imaging of 

whole brains with cellular resolution will help us understand the complex functions of the 

brain. Such techniques are crucial for the analysis of complete neuronal morphology—

anatomical and functional—connectivity, and repeated molecular phenotyping. Recently 

developed tissue clearing protocols like Scale(Hama et al., 2011), CLARITY(Chung et al., 

2013) or iDisco (Renier et al., 2014), together with the possibility of imaging whole brains at 

microscopic resolution in confocal or light-sheet fluorescence microscopes, allow virtually 

any neurobiology lab to obtain datasets that until now were only considered in the framework 

of big collaborative projects. However, many laboratories that try to use the techniques 

realize that the implementation of the clearing and labeling protocols is not straightforward 

and that many times the resulting imaging quality is not sufficient for the detailed microscopic 

analysis pursued. Thus, in the field of whole brain imaging, optimization of the protocols is 

a recurrent topic (Epp et al., 2015; H. Lee, Park, Seo, Park, & Kim, 2014). Our experiments 

modifying specific steps of the CLARITY technique have shown that the refractive index 

matching medium is crucial for imaging quality.  

 

I have corroborated that FC is an optimal imaging medium regarding transparency, native 

fluorescence conservation, and deformation of the samples. Our results also point at DA as 

a good candidate, showing relatively high sharpness ratio and very stable fluorescence 

conservation (higher than in FC) while preserving sample size. This has been corroborated 

by our experience when imaging whole brains in SPIM. Nevertheless, the striking capacity 

of TDE to render cleared samples highly transparent, highlights its potentiality for whole 

brain imaging. The quenching effect I have observed, has also been observed in previous 

studies (Aoyagi, Kawakami, Osanai, Hibi, & Nemoto, 2015; Staudt, Lang, Medda, 

Engelhardt, & Hell, 2007), and it seems to be highly dependent on TDE concentration 

(Hasegawa et al., 2016). Our trials shown that adjusting to basic pH does not avoid 

quenching, and that in some cases, even at 83% concentration quenching does not occur 

(data not shown). This, together with the fact that the red fluorescent protein mutant (RFP) 

is not quenched by TDE(Staudt et al., 2007) suggests that the observed quenching must 

depend on very specific properties of GFP-like mutants (GFP, eGFP and eYFP). To 

investigate this I have explored molecular dynamics simulations of the protein at different 

solvation concentrations of TDE (see ANNEX II). 
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It is worth mentioning, that our quantifications also highlighted the importance of a robust 

methodological framework and standardized measurements to compare the effectiveness of 

clearing protocols. I highlight the importance of normalization among measurements done 

in different samples and propose the sharpness ratio and CNR as consistent measures for 

transparency and fluorescence signal level.  

 
Computational pipeline for whole-brain structural interrogation 

The characterization done, allowed us to obtain high quality imaging datasets, that contain 

big amounts of structural information that characterizing neuronal circuitry in our mice. 

Whole rodent brain light-sheet imaging not only allow the generation of brain structural maps 

with unprecedented resolution, but also offer multiplexed molecular interrogation of the 

studied samples. Some efforts following the appearance of the first whole-brain microscopy 

imaging studies have generated basic tools needed to take advantage of the wealth of 

information they contain (atlas registration, fluorescence signal raw statistics (Renier et al., 

2014), cell counting (Frasconi et al., 2014) and axonal projection density (Ye et al., 2016)). 

However, except for axonal projection densities, those analyses still miss a link between the 

information at the microscopic level and a meaningful analysis for its implications on brain 

function. Specifically, in the samples I image, I choose the study of transgenically labelled 

neuronal subpopulations as sufficient to show how detailed microscopic properties and a 

whole-brain perspective can be linked. 

 

The challenges that remain to be solved for any possible quantification in those datasets are 

two: (1) to determine which measures can be informative of populations of labeled cells or 

molecules and (2) to analyze those data taking into account the topographical information 

throughout the whole sample. The solution to those challenges has already been thoroughly 

explored in the neuroimaging field and has already been discussed in Chapter II. I have 

proposed novel methods for analyzing volumetric datasets and obtaining population-based 

cellular and dendritic density maps, and developed a computational generative model that 

will allow to assess the implications of multi-scale morphological properties on network 

topology.  
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Our proof of concept in this part of the Thesis, takes advantage of the framework developed 

for population-based analysis and modelling, and puts it in the context of whole brain 

imaging. By solving the spatial registration and generating wrappers that allow to perform 

common image analyses in whole brains by chunks, I open many possibilities for the analysis 

and development of neuromorphological metric mapping. Thus, in the framework presented 

here, I gathered together many existing tools that by being combined provide a powerful and 

extensible platform to study neuronal circuits from a systems perspective. 
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GENERAL DISCUSSION 
 

More than 100 years ago, Santiago Ramón y Cajal found that neurons are polarized cells with 

dendrites and axons, the input and output ends of neurons respectively. His discoveries were 

based on optical microscopy of histological preparations and single neuron reconstructions. 

I now know that a neuron's structure is intimately related to its function. Neuronal geometry 

shapes how synaptic inputs are integrated and predicts a neuron’s position within a circuit. 

The arborization zones of neuronal axons determine which downstream neurons and brain 

areas receive information from the neuron, thus forming the basis of circuit organization. 

 

Recent anatomical tracing studies have yielded substantial amounts of data on the areal 

connectivity underlying distributed processing in cortex, yet the fundamental principles that 

govern the large-scale organization of cortex remain unknown. I here took a different 

approach: a mixed experimental and computational modeling approach for analyzing the 

repercussion of single-cell neuromorphological properties on the neuronal network. 

Computational models allow the exploration of theoretical relationships between 

morphology and connectivity, however, the physiological relevance of the findings is not 

always clear. In this regard, mouse models showing different alterations of the dendritic 

morphospace along with cognitive impairment provide a convenient scenario for testing 

those findings.  

 

First I extracted functional properties (dendritic wiring optimality) from specific 

neuromorphological metrics that I obtained from neuronal reconstructions of two mouse 

models (Ts65Dn and a Dyrk1A heterozygous) showing Down syndrome-like neuronal 

structure abnormalities and cognitive deficits. In order to explore the impact of dendritic 

architectural properties on the horizontal connectivity of cortical layer II/III, I implemented 

a computational model to explore and instantiate 2D homogeneous neuronal networks  

based on an existing model (Orlandi et al., 2013). I used this model to explore how the 

modification of dendritic tree size, its complexity and the density of synaptic contacts 

modulates the network topology and computational capacities.  

 

The in-silico exploration done in healthy neurons, was performed in a highly simplified 

scenario (2D homogeneous population of simplified neurons), in the supplementary motor 
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cortices layer II/III pyramidal neurons. This could be viewed as a disadvantage, but, in 

contrast to the large and sparsely connected architecture of many networks of the brain, 

cortical areal networks are relatively small and densely connected: the mouse neocortex 

consists of roughly 40 areas per hemisphere with ∼50% of the possible connections present 

(Oh et al., 2014; Zingg et al., 2014). In such networks, the properties that define conventional 

complex networks, such as the degree distribution (number of areas connected to an area), 

average path length (smallest number of connected steps between a pair of areas), and 

clustering (density of connections among areas connected to the same area), are by 

themselves informative, thus providing a fruitful scenario for exploring the morphospace-

network topology/computational capacities relationship.  

 

Existing complex network models provide an incomplete description of the cortical areal 

network because they neglect the underlying spatial structure that shapes connectional 

topology (Chklovskii et al., 2002; Ercsey-Ravasz et al., 2013; Klimm, Bassett, Carlson, & 

Mucha, 2014; Raj & Chen, 2011). In this Thesis, the theoretical exploration of the 

morphospace has shown that dendritic architectural features have differential effects on the 

network connectivity and dendritic tree size is especially relevant both for its routing 

efficiency and its storage capacity. The introduction of a synaptic contact probability 

dependent on the position in the radius of the dendritic tree has shown to imply a series of 

interesting effects on the network topology. Being the most important one, the increase in 

the quantity of synaptic contacts made while conserving the mean synaptic contact 

probability along the tree radius. The fact that both storage capacity and routing efficiency 

saturate for increased values of dendritic tree size or synaptic contact probability indicates 

that the wild-type parameterization is optimal for reaching computational capacity with 

minimal cost. 

 

Moreover, our analysis highlighted genetic background differences between the B6EiC3Sn 

and C57BL/6J-129Ola, underlining increased tortuosity in C57BL/6J-129Ola wild-type mice 

as the responsible for a slight deviation from optimal wiring. This also could imply that the 

wiring optimality concept related to optimal space filling by number of branches per dendritic 

length is more sensitive than previous approximations using proportion of occupied 

volume/area as a proxy. While the conclusions of this part of the work should not be 
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generalized to the whole population of M2 layer II/III basal trees due to the small numbers 

of neurons used, they provide an interesting starting point for addressing the fundamental 

aim of this Thesis: linking single neuron architecture with neuronal network wiring.  

 

Intellectual disability optimality and its impact on network topology 

Abnormalities in dendritic structure are a characteristic feature of many brain disorders. One 

clear example are individuals with intellectual disability that presents reduced dendritic 

branching patterns, shortened dendritic lengths, loss of spines and changes in spine shape 

and size (Kulkarni & Firestein, 2012). These alterations may most probably have strong 

implications on single-neuron wiring and its optimality. However, while in healthy 

phenotypes the studies assessing optimality questions are still limited (Schröter et al., 2017), 

the analysis of intellectual disability models has not even been used. Thus, our study 

constitutes a first step towards the identification of fundamental properties for optimal 

wiring through the comparative analysis of intellectual disability.  

 

I found in fact that basal tree architecture in M2 cortical layer II/III has shown that the 

Ts65Dn and Dyrk1A+/- DS mouse models have suboptimal dendritic wiring. This indicates 

dendritic integration disturbances that could alter the dynamics of cortical networks and lead 

to imbalanced patterns of activity and, ultimately, to the motor activity abnormal behavior 

observed in the mouse models. In fact, combining functional, anatomical, and computational 

approaches, previous work in our lab identified decreased neuronal firing rate and deficits in 

gamma frequency in the prefrontal cortices of transgenic mice overexpressing Dyrk1A (Ruiz-

Mejias et al., 2016). In that work, I also identified a reduction of vesicular GABA transporter 

punctae specifically on parvalbumin positive interneurons, that was assumed to be causal in 

the alterations of oscillatory activity. Our present data suggest that dendritic tree 

dismorphology should be accounted for in these assumptions. The instantiation of different 

DS mouse models in our computational model, led to differential affectations regarding 

computational capacities, which were severely reduced in all the cases, thus reinforcing this 

argument. This provides an interesting line of investigation, where comparative studies 

between the different mouse models could corroborate or discard the hypotheses drawn 

from our computational exploration. In the model, the relationship between the network 

cost and the routing efficiency seems to be related to the single neuron optimal wiring, and 

this is differentially disrupted in the different mouse models used. 
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Impact of single-neuron structural diversity in hippocampal CA1 populations 

 

Altogether, this statistical and computational exploration of the cortical morphospace served 

as a founding stone for building a conceptual framework that can now be extended and used 

to develop a computational hypothesis generation - experimental testing feedback loop. 

However, it was important to proof its validity in other complex neuronal circuits such as 

the hippocampus. To do so, in Chapters II and III I tackled the analysis and simulation of 

neuromorphological properties in a neuronal circuit fundamental for learning and memory, 

the hippocampal trisynaptic circuit.  

 

The hippocampal formation has long been recognized as necessary for the integrity of 

memory in mammals and other vertebrates, and relatively limited disturbances of the 

hippocampal circuitry, such as those found in Down syndrome, have been reported to 

produce serious memory impairment. The anatomical basis of this system is the so called 

trisynaptic circuit formed by the perforant path arising in the entorhinal cortex, which 

terminates onto the dendrites of the granule cells of the dentate gyrus. The axons of the 

dentate gyrus granule cells form the mossy fibers that make synaptic contact with the 

pyramidal cells of the CA3. The axons of CA3 pyramidal cells form the Schaffer’s collaterals 

that make synaptic contact with the pyramids of CA1. 

 

The CA1 pyramidal neurons have been assumed to retain constant properties, and thus they 

have been used in computational models as “clonal” stereotypic elements, regardless of the 

variability in the details of individual neuronal morphology. Although the functional 

implications of the peculiar morphology of pyramidal neurons are not known, it is likely that 

apical and basal dendrites correspond to different circuit inputs producing specific 

contributions to pyramidal cell excitability and long term synaptic plasticity (Cauller et al., 

1998; Dudman et al., 2007). 

 

I here explored the degree of similarity in the dendritic arborization pattern, along different 

areas of the hippocampus. I have shown that the neuronal class defined by Thy1+ cells 

presents spatial inhomogeneities in cellularity. This supports several lines of anatomical and 

physiological evidence have identified differences in CA1 in each of the dorsal-ventral 

(Amaral & Witter, 1989), proximal-distal (Graves et al., 2012; Igarashi et al., 2014; Jarsky et 
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al., 2008), and superficial-deep (H. Lee et al., 2014; Mizuseki et al., 2011; Slomianka et al., 

2011) axes of the hippocampus.  

 

I also showed that neuromorphological properties at a local scale of pathological neurons of 

TgDyrk1A, present neuromorphological inhomogeneities that tend to correlate with the 

positioning in CA1. Interestingly, TgDyrk1A inhomogeneities are different to those shown 

in a healthy hippocampus, and are concomitant with behavioral alterations in the Tg Dyrk1A 

mouse model. 

 

For this work I used mice expressing Thy1-Yellow Fluorescent Protein (YFP) (strain B6.Cg-

Tg(Thy1-YFPH)2Jrs/J nº003782; The Jackson Laboratories), that expresses yellow 

fluorescent protein in a proportion of pyramidal cells driven by the Thy1 promoter. 

Specifically, the Thy1-YFP line H has been reported to express the fluorescent protein in a 

large number of pyramidal neurons in several fields of the hippocampal formation (Porrero, 

Rubio-Garrido, Avendaño, & Clascá, 2010).  

 

Of course this offers the advantage of having sparse YFP-stained pyramidal neurons that 

allows to perform population-based analysis, and estimate the spatial embedding by 

determining the volume of the specific hippocampal subregion (CA1) However, there are no 

published data on the proportion of Thy1 labeled cells with respect to the total number of 

neurons (Neu-N staining). This is important in the context of the present work, since it 

would constrain how representative are our findings of the total pyramidal cell population. 

In fact, I found that the Thy1-YFP population only represents 2-3% of the total NeuN 

population. Even taking into account that inhibitory cells are 20% of the neuronal 

population, the numbers are still very low. This is obviously a limitation in our analysis. 

 

Moreover, it should be noted that the spatial changes in the density of Thy-labeled cells do 

not coincide with the NeuN general neuronal marker, suggesting that the expression of Thy 

may not follow the same spatial-dependent changes than neuronal dendritic architecture.   

 

Also, the proportion of YFP positive cells along the hippocampal anterio-posterior axes, are 

different in wild type and transgenic mice, thus suggesting that Thy1 expression may be 
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affected by Dyrk1A overexpression. Overall, thus conclusions drawn from the analysis of 

Thy1-dependent labelings have to be interpreted with caution. 

 

Thus, the question that still arises is: do the intrinsic properties of a specific brain structure 

vary across its extension, along with the within-class neuronal structure variability, or is the 

neuronal circuitry structure fixed and performing a conserved computation along a 

structurally non-homogeneous structure?  

 

Reconstructing the whole brain with cellular resolution 

 

Although single-neuron reconstructions have revealed much about neural computation, 

mapping and analysing larger neuronal populations and topologies can lead to fundamentally 

different insights. To promote a holistic perspective on neuromorphological characterization 

of neuronal networks I have developed and validated population-based computational 

analysis methods for cellular and dendritic density. The classical techniques only allow to 

structurally map a fraction of the number of neurons in the brain, typically tiny. This is 

limitation arises from constraints on the number of neurons that can be imaged at the same 

time and the total brain size of the animal under study. Thus, interactions between neurons 

in different brain areas are easily missed, and functionally related ensembles of neurons are 

undetectable. Not only would the ability to simultaneously map all neurons in a brain make 

it possible to address questions that cannot be answered with conventional techniques, it also 

would vastly speed up the throughput of experiments that can be performed with existing 

approaches. 

 

CLARITY (Chung et al., 2013) overcomes these limitations to produce transparent tissue 

without quenching endogenous fluorescence, and this tissue can also be labeled via 

immunohistochemistry. This provides a unique opportunity to bridge anatomical scales from 

subcellular to whole brain.  

 

In the last years, a number of research groups have implemented new tissue clearing 

techniques (CLARITY, CUBIC, Lumos, STP, 3DISCO, Scale, or SeeDB) allowing 

comprehensive microscopic imaging of rodent whole brains (Hama et al., 2011). The power 

of these techniques relies on bridging de facto the macroscopic and microscopic scale 
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descriptions of the system, allowing high-throughput imaging of whole brains with cellular 

resolution.  

 

However, previous results in the lab show that the resolution decreases when trying to track 

axons on more than 3 mm in depth in the sample. Different media have been reported in 

order to improve the transparency and, so, the resolution in depth, such as a solution based 

on diatrizoic acid (Kim et al., 2015). Thus, I implemented and optimized the CLARITY 

technique, and generated and proof of concept of an analysis pipeline, allowing now to 

generate high quality whole mouse brain datasets that are providing a wealth of data to 

investigate morphological differences between wild-type and DS mouse models. 

 

Another limitation is that, up to date a relatively low effort has focused on developing 

standardized, extensible, and scalable analysis tools. Thus, I also aimed at implementing a 

new suite of unified softwares to construct multiscale structure-function maps from brain-

clearing experiments, with specific subworkflows for understanding topological 

dependencies on a brain-wide scale. Moreover, I developed computational generative model 

for instantiating biologically realistic neuronal circuits with a focus on the integration of 

information at multiple scales, from single neuron wiring architecture, to macroscopic 

morphology.  

 

While the mean weakness throughout the work is the small numbers of samples and relatively 

low statistical power, its strength is the focus on the development of a conceptual and 

methodological framework that I think will be useful to investigate fundamental properties 

of neuronal wiring by means of the comparative analysis of cognitive impairment. 
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CONCLUSIONS 

The work of this Thesis has revealed that the size and shape of dendritic trees are strong 

determinants of neuronal information processing because of their influence on network 

topology, and that pathological perturbations of dendritic trees impair this topological 

properties. I have also provide new computational tools to interrogate biological networks 

about the best strategy to rewire neuronal connectivity. 

 

1. Within the neuromorphological parameters analyzed, dendritic tree size and synaptic 

contact probability of single pyramidal neurons are those that exert an influence the 

topology of modeled cortical layer II/III local networks. Network routing efficiency is 

mainly given by synaptic contact probability, while storage capacity, clustering and small-

worldness ratio is mostly determined by dendritic tree size.  

2. The dendritic architecture abnormalities in cortical layer II/III basal trees of intellectual 

disability models (Ts65Dn, Dyrk1A+/- and C57BL/6J-129Ola) determines suboptimal 

target space filling. This possibly contributes to an impaired integration of afferent 

synapses at the single-neuron level. 

3. Introducing a distribution of synaptic contacts along dendritic trees extracted from 

experimental data modifies the topology of modeled networks, increasing the amount of 

contacts made by the neurons, the routing efficiency of the network and, to a lower 

extent, its storage capacity and small-worldness ratio. 

4. Ts65Dn and Dyrk1A+/- Down syndrome mouse models mouse show a 40-50% 

reduction in storage capacity and routing efficiency with respect to the wild type.  

5. Environmental enrichment increase in 7% routing efficiency and storage capacity in 

Ts65Dn mice, suggesting that therapeutical approaches modifying dendritic tree size 

rather than synaptic contact probability could have stronger impact on the functionality 

of Down syndrome neuronal networks.  

6. Mice overexpressing DYRK1A show dendritic abnormalities in dorsal CA1 stratum 

radiatum with reduced storage capacity (18%). However, differential architectural 

phenotypes are detected along the proximal-distal axis, being aberrations more marked 

in distal CA1.  

7. The population-based neuromorphological analysis methods developed in this work 

presented a strategy towards the assessment of neuronal circuitry composition and 
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architecture, providing a first step towards a holistic perspective in the study of neuronal 

networks at the cellular scale. 

8. The multi-scale generative model for the instantiation of biologically realistic neuronal 

circuits allows the exploration of the morphospace impact on neuronal network topology 

based on multi-scale experimental data. 

9. The analysis pipeline for population-based structural interrogation of whole brains allows 

population-based structural interrogation methods from a systems perspective. 

10. Altogether, the analyses and tools developed in this Thesis constitute a methodological 

and conceptual framework that can now be used to explore a computational hypothesis 

generation - experimental testing feedback loop in the scope of comparative 

microconnectomics. 
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ANNEX I: Supplementary Figure 

Supplementary Figure 1. Boxplots of single-neuron morphological metrics. Each panel shows violin and 
boxplots for metrics having significant differences in one-way ANOVA tests between the Ts65Dn, Dyrk1A+/- 
and their respective controls, the p-value of the test is shown on top of each panel. Each metric units are 
specified in the panel label. Each colored box/violin plot represents the distribution of the metric for each 
group. 
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ANNEX II: Computational and experimental approaches for 

optimizing cleared whole-brain fluorescence microscopy imaging 
In recent decades, development of fluorescent proteins and laser scanning microscopy 

techniques that can achieve deep tissue imaging of the fluorescently labeled tissues opened 

new venues for the application of tissue clearing. However, the use of most of the methods 

degrades the fluorescent signal quickly, and hence limited its application to small tissues with 

strong fluorescence expression. Fluorescence microscopy of genetically encoded fluorescent 

proteins (FPs) is helpful for tracking neuronal morphology in fixed, cleared tissue. In well-

cleared tissue, FPs can be imaged if the signal is strong, but FPs expressed at endogenous 

levels may not be bright enough to be seen over background, and fluorescence can be 

quenched if imaging is not done carefully or if a solvent-based clearing procedure, needed 

for lipid removal, is used. Most FPs require an aqueous environment to fluoresce. The 

selection of media is usually done by essay-error, which is labour-intensive, and not cost-

effective. Here I capitalized on molecular dynamic techniques to develop a method for 

predict the clearing agents that would better avoid FP quenching and lessen scatter. 

 

Channel identification 

Crystallographic structures for fluorescent protein mutants with a ~2A resolution were 

obtained from the Protein Data Bank (PDB): eYFP-3V3D, YFP-1F0B, eGFP-2Y0G, GFP-

1EMB, RFP-2VAD, mCherry-2H5Q, BFP-1BFP, eCFP-2WSN. The MolAxis standalone 

version 1.0 was used in order to identify the barrel holes that allow proton exchange and 

chromophore resonance. The obtained channels were visualized with VMD. 

 

Molecular dynamics simulations 

Pymol was used in order to obtain net charge, hydrophobicity and Van der Waals surfaces 

in the analyzed proteins based on the mention PDB files. All the molecular dynamics system 

building and simulations were performed using HTMD. The original PDB files were 

automatically prepared with proteinprepare, including the titration of the protonation states 

using PROPKA 3.1, addition of missing atoms and overall optimization of the H-network 

using PDB2PQR 2.1. Topology and parameter files for small molecules of interest (TDE, 

Glycerol, Diatrizoic acid, N-Methyl-D-Glucamine, DEG, TEA and D-Sorbitol) in the 

CHARMM format were obtained with the parameterize tool. This HTMD subroutine 
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optimizes the parametrization including minimization and Quantum Mechanics calculations. 

Default full QM calculations were used with the PSI4 open-source engine. The system was 

built with the parametrized solvents at specific concentrations in water using periodic cell 

boundaries and equilibrated for 40ns at 310K. 20ns (310K) simulations were run in high 

throughput using HTMD’s adaptive sampling (attach source code). 

Docking simulations 

A molecule library was generated from the ZINC15 database with ready-to-dock 3D mol2 

format structures for compounds being hydrophilic (logP<=0), having mid-reference pHs, 

all the available sizes (from 200 to >500 Daltons) and charge between -2 and +2. To define 

a docking volume surrounding previously identified holes in the fluorescent protein barrel, 

the biggest compound of the library was used in the rDock cavity generation functionality. 

A high-throughput exhaustive docking with 50 runs per molecule was performed in a 

computing cluster. 

Computational resources 

The workstation used to run all the HTMD simulations has been described previously (HP-

Z620 equipped with an Nvidia Quadro K4000 graphics card). Additionally, the ligand 

parametrization and docking was run on a high performance computing cluster (3,020 Linux 

cores, 200 computing nodes and a total storage capacity of 5 PB). I used 32 nodes by setting 

batch jobs. 

Protein denaturation assay 

Purified fluorescent protein mutants were obtained from BioVision inc. Tryptophan intrinsic 

fluorescence was measured in candidate buffers using an Infinite M200 plate reader (Tecan 

Life Sciences). Temperature was raised to 42ºC at a rate of 1ºC/minute. 

Development of a computational pipeline for the assessment of XFP fluorescence 
conservation 

I investigated whether molecular dynamics simulations could explain the highly specific 

fluorescent protein quenching upon immersion in TDE at high concentration. E-YFP and 

https://docs.google.com/document/d/1WzsiAB7JkMGSiwx-rFAujd4BBphLcdmzbB5x2aNEUSw/edit#heading=h.ts02r2h5g6dq
https://docs.google.com/document/d/1WzsiAB7JkMGSiwx-rFAujd4BBphLcdmzbB5x2aNEUSw/edit#heading=h.ts02r2h5g6dq
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RFP crystallographic structures were solvated (pure H2O, 87% glycerol, 63% TDE, 83% 

TDE and DA solution) and their molecular dynamics simulated at 310K for 20 ns. 

 
Absence of protein denaturation or direct interaction between solvent molecules 
and the chromophore 
The simulations shown that the Root-Mean-Square Deviation of the chromophore 

coordinates was low (~1 ± 0.3 Å) and almost the same for the tested solvating media, 

indicating that TDE quenching is not caused by direct interaction with the chromophore. 

Similarly, the whole protein RMSD was similar in the studied solutions and in water (~2.5 ± 

0.5 Å), pointing that at the simulated timescales the protein is not undergoing denaturation.  

 
Water density around the fluorophore is solvent concentration-dependent 
In order to check whether the water tunnel between the e-YFP chromophore and the bulk 

necessary for protonation and fluorescence is formed, I measured the water density in a shell 

containing the chromophore and the channel for all the combinations of proteins and 

solvents. Our simulations show that the amount of water molecules is significantly reduced 

in 83% TDE versus 63% TDE or H2O solvation, as expected by the reduction of water 

molecules in the solution.  

 
Small molecules can increase water density in the fluorophore 
Give the results obtained in the molecular dynamics simulations, I focused on the water 

channels connecting the chromophore with the bulk. A quick analysis of channel sizes and 

paths using MolAxis in both mutants (e-YFP and RFP) shows that RFP has more and thicker 

channels (nRFP=4, neYFP=3, rmax,RFP=1.2, rmax,eYFP=0.7 Å). Additionally, when plotting 

hydrophobicity and net charge on the protein surface around the channels necessary for the 

water tunnel formation, it can be qualitatively observed that those properties have different 

spatial distributions. Those observations, together with the fact that TDE is significantly 

more hydrophobic than the other solvents, point at the possibility of avoiding e-YFP 

quenching by the addition of highly hydrophilic small molecules with high affinity for the 

protein surface region around the channel. In order to find those anti-quenching candidates, 

I have screened all the hydrophilic, commercially available, small molecules in the ZINC15 

database. In order to assess their affinity for the surface around the channels, I obtained 3D 

representations of those molecules and used rDock to run high throughput docking 

simulations. A PCA combining the available information of the molecules and the docking 

scores obtained, shows that the physico-chemical properties of the molecules do not 
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correlate with docking scores, meaning that those are not reliable proxies for pinpointing 

candidates with high affinity for the protein surface around the channel. Thus, I selected 

some candidates based on their docking score and hydrophilicity. The selected molecules, 

constrained by commercial availability, were Guanosine 5’-DiPhosphate and D-Fructose. I 

then simulated molecular dynamics of e-YFP in 83% TDE concentration with small 

quantities of the putative anti-quenching molecules.  

 
 
Computational pipeline for the assessment of XFP fluorescence conservation 

I first aimed at identifying channels in the fluorescent proteins and differences among 

mutants. I specifically explored the presence of water-filled channels connecting the 

chromophore to the β-barrel exterior  

 

 

                  Hydrophobicity                   Charge 
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I then explored how concentration and hydrophobicity of imaging media has an impact on 

XFP fluorescence. In particular, hydrophobicity has a strong influence on interactions with 

the substrate, thus highlighting the importance of the water tunnel and the need of molecular 

dynamic simulations. Here I already showed that different concentrations of Tidioethanol 

(TDE, see Figure below), affect water tunnels. 

 
 

 

                            TDE 83%                  TDE 63% 

I performed docking simulations for screening of compounds that could be useful for 

imaging. The results are provided below, representing the Root Mean Square Deviation 

(RMSD) value for the protein and chromophore, and the water density in a shell containing 

the water. 
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Finally, I aimed to find an optimal candidate for imaging and to introduce possible 

optimizations based on the computational pipeline based on this computational pipeline I 

selected. 
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