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Abstract
International cancer sequencing projects have generated comprehensive catalogs of al-
terations found in tumor genomes, as well as germline variant data for thousands of indi-
viduals. In this thesis we describe two statistical methods exploiting these rich datasets
in order to better understand tumor initiation, tumor progression and the contribution of
genetic variants to the lifetime risk of developing cancer. The first method, a Bayesian
inference model named cDriver, utilizes multiple signatures of positive selection acting
on tumor genomes to predict cancer driver genes. Cancer cell fraction is introduced as a
novel signature of positive selection on a cellular level, based on the hypothesis that cells
obtaining additional advantageous driver mutations will undergo rapid proliferation and
clonal expansion. We benchmarked cDriver against state of the art driver prediction
methods on three cancer datasets demonstrating equal or better performance than the
best competing tool. The second method, termed REWAS is a comprehensive frame-
work for rare-variant association studies (RVAS) aiming at improving identification of
cancer predisposition genes. Nonetheless, REWAS is readily applicable to any case-
control study of complex diseases. Besides integrating well-established RVAS methods,
we developed a novel Bayesian inference RVAS method (BATI) based on Integrated
Nested Laplace Approximation (INLA). We demonstrate that BATI outperforms other
methods on realistic simulated datasets, especially when meaningful biological context
(e.g. functional impact of variants) is available or when risk variants in sum explain low
phenotypic variance. Both methods developed during my thesis have the potential to
facilitate personalized medicine and oncology through identification of novel therapeu-
tic targets and identification of genetic predisposition facilitating prevention and early
diagnosis of cancer.
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Resum
Els distints projectes internacionals de seqüenciació de càncer duts a terme en els últims
anys han generat catàlegs complets d’alteracions trobades en els genomes tumorals, aixı́
com informació de variants germinals per a milers d’individus. En aquesta tesi descri-
vim dos mètodes estadı́stics aprofitant aquestes bases de dades per tal d’entendre millor
la iniciació i la progressió dels tumors, i la contribució de variants genètiques al risc
de desenvolupar càncer al llarg de la vida. El primer mètode, anomenat cDriver, es
basa en un model d’inferència Bayesià que utilitza múltiples senyals de la selecció po-
sitiva que ocorre en els genomes tumorals per tal de predir els gens driver del càncer.
En aquest mètode, hem inclòs la fracció de cèl·lules tumorals com a nova senyal de la
selecció positiva a nivell cel·lular. Aquesta es basa en la hipòtesi que les cèl·lules que ad-
quireixen mutacions ventajoses addicionals proliferaran i s’expandiran clonalment més
ràpidament. Per avaluar cDriver, aquest es va comparar amb els mètodes més utilitzats
per a la predicció de gens driver actuals. L’anàlisi es va dur a terme amb conjunts de
dades de tres càncer diferents i els resultats van ser iguals o millors que els obtinguts per
les eines més competitives en el tema. El segon mètode, anomenat REWAS, és un marc
de treball per l’estudi d’associació de variants rares (RVAS) amb l’objectiu de millorar
la identificació dels gens de predisposició al càncer. Tot i això, REWAS es pot aplicar a
qualsevol estudi cas-control de malalties complexes. Per una altra part, a més d’integrar
mètodes RVAS ben establerts, hem desenvolupat un nou mètode d’inferència Bayesiana
RVAS (BATI) basat en Integrated Nested Laplace Approximation (INLA). També de-
mostrem que BATI mostra millors resultats que altres mètodes en dades simulades amb
soroll de fons real, especialment quan el context biològic (p.e. variants amb impacte
funcional) està disponible or quan les variants de risc expliquen en total poca variància
fenotı́pica. Tots dos mètodes desenvolupats durant la meva tesi tenen el potencial de
facilitar la medicina i l’oncologia personalitzada mitjançant la identificació de noves
dianes terapèutiques i la predisposició genètica que faciliti la prevenció i el diagnòstic
precoç del càncer.
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Chapter 1

INTRODUCTION

1.1 Discovering Cancer through history

One of the first links between cancer and genetics was found as early as 1914, when
Theodor Boveri proposed and tested the hypothesis that tumors develop as a result of
abnormal chromosome segregation [Boveri, 1914, Balmain, 2001, Stratton et al., 2009].
He observed that abnormal cell division in sea urchins often led to the death of daughter
cells or, less often, to an aberrant development of daughter cells [Boveri, 1914, Balmain,
2001]. Based on fundamental discoveries in cancer research achieved during the 20th
century, tumors are now defined as clusters of identical cells (clones) having a fitness
advantage over their neighboring “normal” cells. Abnormally increased growth and pro-
liferation of cells are typically used as measures of increased fitness. Moreover, Boveri
hypothesized that tumors arise from a single genetically altered daughter cell when he
observed the same characteristic chromosome abnormalities in all the cells that were
surviving. This concept was at first known as “the stem line concept”, but today we re-
fer to it as the “clonal evolution” model of tumor development. Clonal tumor evolution
can be compared to Darwinian evolution theory where we have two ongoing processes:
(i) random acquisition of mutations in cells and (ii) natural selection acting on pheno-
types (traits) of cells [Stratton et al., 2009]. Half a century after the work of Boveri,
technologies became available that allowed to prove Boveri’s hypothesis. In 1960 a
chromosome aberration, today known as ‘Philadelphia chromosome’, was discovered
in patients diagnosed with chronic myelogenous leukemia (CML) using cytogenetic
techniques [Nowell and Hungerford, 1960, Balmain, 2001]. In the following years, it
was discovered that the Philadelphia chromosome was formed due to a translocation
between chromosomes 9 and 22 [Rowley, 1973], leading to a fusion between the genes
BCR and ABL1, and ultimately to the increased activity of ABL1 [Heisterkamp et al.,
1983]. Thus, ABL1 was defined as an oncogene whose over-expression causes CML.

1



Our knowledge about cancer has been increasing whenever new technologies for ge-
nomics, proteomics, and molecular genetics became available. Today we observe that
cancer forms and develops using different strategies. Besides the large chromosome
abnormalities, it has been shown that accumulation of point mutations (substitution of
one base) can also initiate tumor development [Tabin et al., 1982]. The majority of
causal point mutations have been found in protein coding genes. Mutations giving a
fitness advantage to cancer cells, e.g. allowing the cancer cells to proliferate faster, are
typically called driver mutations. Genes in which these driver mutations reside are com-
monly referred as cancer driver genes. In addition to nucleotide substitutions, deletions,
insertions and translocations of short or long segments of DNA are commonly found
as driver events affecting cancer genes [Yang et al., 2010, Maruvka et al., 2017, Zhang
et al., 2010, Hogenbirk et al., 2016]. Due to the prevalence of whole-exome sequencing
(WES), driver mutations affecting coding genes have been the most intensely studied
by the cancer genomics community. However, the field is slowly moving towards the
use of the more powerful, but also challenging whole genome sequencing technique,
which will allow for better interrogation of structural and non coding driver mutations.
Other known somatic alterations that can contribute to tumor development are DNA re-
arrangements, copy gains, copy losses, elongation of telomeres, as well as epigenetic
changes, or exogenous sources (e.g. bacteria or viruses) introducing completely new
DNA sequences [Forment et al., 2012, Zack et al., 2013, Cox et al., 2005, Meyerson
et al., 1997, Bodnar et al., 1998, Kulis and Esteller, 2010, Talbot and Crawford, 2004].

In addition to the accumulation of somatic genetic alterations, we also know that there
is a heritable genetic basis for cancer susceptibility. This was first discovered based on
the observation that many cancer types are recurrent in some, susceptible families, i.e.
familial clustering of cancer cases [Broca, 1866]. Today, there is strong evidence that
sporadic cancers also have a significant genetic component [Lichtenstein et al., 2000].
There have been several approaches to identify cancer predisposition genes (CPG), each
of which had success for specific types of alterations. Genome-wide linkage analysis
in familial cancer clusters was particular successful for identifying rare but highly pen-
etrant mutations in CPGs [Easton et al., 1993]. Analysis of candidate genes present
in the same pathways as known CPGs, or interacting with known CPGs, or surrogates
of CPGs, revealed new CPGs [Meijers-Heijboer et al., 2002, Seal et al., 2006, Rah-
man et al., 2007, Loveday et al., 2011, Hanks et al., 2004]. Recently, next-generation
sequencing facilitated the discovery of new CPG candidates by whole-exome sequenc-
ing (WES) of the DNA from familial cases as well as by WES of sporadic cases and
healthy controls [Comino-Mendez et al., 2011, Smith et al., 2013]. However, the co-
horts analyzed using WES have often been too small to allow for significant results,
and larger scale efforts are necessary in the future. With an extensive effort of literature
search and database interrogation, Rahman et al. [Rahman, 2014] compiled a list of 114
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CPGs having rare mutations, which is considered a gold standard in the field. Addition-
ally, common mutations in CPGs have been successfully identified with Genome-wide
Association Studies (GWAS) [Varghese and Easton, 2010, Stadler et al., 2010, Chang
et al., 2014]. From work with animal models of cancer, we further learned that several
low-penetrance variants in genes could have tremendous impact when present in com-
bination [Balmain and Nagase, 1998]. As cancer can be seen as a complex disease, and
with rapidly increasing exome sequencing datasets of cancer patients, we can hope that
standard approaches for rare variant association case-control studies could fill the gap
for high-penetrance and low-penetrance rare variants in CPGs.

Based on data gathered trough 2003-2012 it is estimated that the number of new cancer
cases per year ranges from 67 to 434 per 100,000 individuals depending on country and
gender [Torre et al., 2016]. Unfortunately and despite the broad knowledge about can-
cer development, for many cases there is no successful treatment available. Hence, we
are still challenged with 31 to 236 deaths per 100,000 individuals (again depending on
country and gender). Population statistics reveal that today’s newborns have an 18.5%
chance of developing cancer before the age of 75 and a 10.5% chance of dying from can-
cer before the age of 75 [Ferlay et al., 2013a]. Although cancer is one of the most preva-
lent diseases in modern society and has been extensively studied, there are still several
big challenges to be addressed, as for example: identifying the whole spectrum of low
and intermediate frequency cancer driver genes [Lawrence et al., 2014], interrogating
interactions between germline and somatic mutations in cancer genes [Gonzalez-Perez
et al., 2013], identifying low-penetrance and/or low-frequency cancer predisposition
genes [Balmain, 2001, Bodmer and Tomlinson, 2010], and implementation of longitu-
dinal genomic studies of cancer patients [Weinstein et al., 2013]. Ultimately we want
to better understand the causal mutations leading to malignant transformation of cells,
such that patients can be diagnosed at an earlier stage and treated with mutation-profile
specific drugs, i.e. to advance towards ‘precision oncology’.

1.2 Next Generation Sequencing
How and how fast we analyze genomes dramatically changed in the mid 2000s, with
the emergence of the first high-throughput sequencing platforms, including 454 Life
Sciences’ pyrosequencing and Solexa’s SBS technologies (now owned and developed
by Illumina). This generation of sequencing platforms is often referred to as 2nd or
as next generation sequencing (NGS). Prior to the NGS era, Sanger sequencing was
dominating the field. Automation of Sanger sequencing over more than two decades ul-
timately allowed for the completion of the first human genome sequence in 2001 [Lan-
der et al., 2001]. However, finishing a single genome using Sanger required massive
resources, money and the work of hundreds of scientists over ten years. But, with the
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arrival of NGS technologies sequencing cost and hands-on work for sequencing a hu-
man genome have decreased exponentially. First, the amount of nucleotides sequenced
per time unit has skyrocketed due to massive parallelization. For example, through-
put with automated Sanger sequencing can reach 0.166 Mb/hr while NGS reached a
throughput of ~20 Mb/hr in 2008 [Sinville and Soper, 2007, Morozova and Marra, 2008]
and ~10 Gb/hr today (Illumina NovaSeq specifications). Second, the price of sequenc-
ing a human genome to 30 fold coverage came down to ~1,000$ (https://www.
veritasgenetics.com/mygenome). To complete a human genome with Sanger
sequencing technologies required ~24 years since it’s development [Sanger et al., 1977],
but within ~5 years since NGS technologies became broadly available it is estimated that
~30,000 human genomes have been sequenced [News, 2010]. Reasons for exponential
growth of the number of sequenced genomes are both the faster throughput and the brisk
decline of cost per nucleotide since the emergences of NGS. Moreover, NGS sequenc-
ing technology has many advantages over Sanger sequencing technologies in cancer
genome studies. For instance, the analysis of sub-clonal tumor structure of heteroge-
neous tumor samples and the study of low-purity tumor tissue (extensive contaminated
with healthy tissue) benefit from the deep coverage provided by the billions of reads
produced in a single sequencing run [Arsenic et al., 2015].

Driven by the rapidly improving NGS technologies new bioinformatics tools emerged
that enabled the analysis of massive amounts of sequencing reads for various types of
applications. NGS enabled the analysis of genomes, epigenomes, transcriptomes, and
even interactomes (e.g. protein-DNA interactions) and hence forced the development of
novel algorithms and data structures. Two common approaches are widely used in ge-
netics studies, whole-genome sequencing (WGS) and whole-exome sequencing (WES).
WES is based on techniques for enriching specific regions of the genome using oligo
probes complementary to the sequence of interest. In case of WES, the targeted re-
gions of the genome are the exons, units within genes which code for the proteins. The
entirety of all exons is named the ‘exome’. For WGS, no targeted enrichment is used
and hence the whole genome is sequenced without enriching for preferential regions.
As genomic regions that encode for proteins are only ~1.5% of total human genome,
WES is cheaper than WGS. As most of the known disease-causing variants are found in
coding genes, WES is a good compromise between cost and benefit. However, as WGS
is becoming more and more affordable and because regulatory elements and structural
genomic variations are becoming a focus of interest, WGS is expected to completely
replace WES in the near future. As an added advantage, WGS is introducing less tech-
nological biases to the data, because coverage across the genome is more uniform if no
target enrichment methods are applied. Nonetheless, both approaches have shown to be
valuable methods for the discovery of the genetic causes of rare and complex diseases
[Gonzaga-Jauregui et al., 2012], as well as cancer [TCGANetwork, 2008, TCGANet-
work, 2012c, TCGANetwork, 2013].
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Fig. 1.1: Basic work-flow for whole-
exome and whole-genome sequencing
projects.

The essential steps of generating and analyzing
NGS data are shown in figure 1.1. The first step is
library preparation. The exact wet-lab procedure
depends on the sequencing type and differs sub-
stantially for applications like WES, WGS, RNA-
seq or ChIP-seq. For WES an important step is
the enrichment of the targeted coding regions for
which several companies (e.g. Agilent) are offer-
ing specific kits containing the complementary bi-
otinylated oligos that bind to target DNA and are
then ‘pulled’ using magnetic beads. These target
enrichment kits have constantly been updated and
improved over the last years to e.g. include more
genes or to better cover the targeted region. Spe-
cialized kits are available that do not target the
whole exome, but only a specific sub-set of genes.
However, in this work, if not mentioned otherwise,
we have focused on WES. NGS platforms will pro-
duce raw sequence data, i.e. files in FASTA format
containing the reads and per-base quality informa-
tion. The analysis of WES or WGS data goes
trough five steps (Figure 1.1): (i) quality control of
the raw sequence data, (ii) alignment of the reads
to a reference genome, (iii) variant identification,
(iv) functional annotation of the variants and (v)
statistical data analysis (e.g. genotype-phenotype association tests).

First, quality control (QC) is performed to assure that reads are passing defined stan-
dards, as NGS procedures are susceptible to a wide range of chemistry and instrument
failures [Dohm et al., 2008]. Reads can be removed or trimmed if they are not passing
desired quality thresholds. It is possible to detect if any contamination was present, or if
nucleotide distributions are not in the expected range, i.e. if the GC content distribution
differs from the expectation. Second, the quality-checked reads have to be aligned to a
reference genome. For human there are currently multiple reference genome versions
being used such as hg18, hg19, and GRCh38 (listed from earlier to latest version us-
ing UCSC Genome Browser nomenclature). The bet reference genome for alignment
should be chosen taking into account downstream analysis methods, available data, and
compatibility with previous analyses. For example, the choice of tools for functional
annotation of variants might depend on the reference genome version. Next, the align-
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ment information is stored into a file, usually in the BAM format, which is the most
frequently used alignment format to date. During the past ten years many alignment al-
gorithms have been developed including the two most commonly used which are BWA
[Li and Durbin, 2010] and Bowtie/Bowtie2 [Langmead et al., 2009, Langmead and
Salzberg, 2012].

The next step is variant identification, which is performed based on the alignment pro-
vided in the BAM file. A variant is defined as an observed difference between the
genome/exome of the sequenced individual and the human reference genome. There
are many types of variants such as single nucleotide variants (SNVs), insertions, dele-
tions, and other complex variants such as large scale rearrangements and copy number
alterations. For the detection of germline Single Nucleotide Variants (SNVs) and short
insertion-deletion variants (InDels) one of the most commonly used tools is GATK
[DePristo et al., 2011]], which offers the ‘GATK UnifiedGenotyper’ and, more re-
cently, the ‘GATK HaplotypeCaller’ algorithms. Both methods use a Bayesian in-
ference model that returns a posterior probability for each of three genotypes (ho-
mozygous reference, heterozygous alternative or homozygous alternative base) for each
position of the genome. Both methods also work with multiple samples at a time
(multi-sample variant calling) and return all potentially variable positions for all sam-
ples in one ‘variant call format’ (VCF) file. For the identification of common and
medium-rare variants, multi-sample calling is the advised mode, as pooled informa-
tion from multiple samples can increase the quality of the calls. However, for ultra-rare
variants and singletons, it does not provide any advantage compared to single-sample
based methods (software.broadinstitute.org/gatk/documentation/
article?id=4150). GATK furthermore provides quality score recalibration and
depth of coverage analysis, as well as local re-alignment and assembly algorithms to
improve InDel calling. Other tools for detection of SNVs and InDels are also avail-
able and widely used such as SAMtools [Li et al., 2009], VarScan2 [Koboldt et al.,
2012b], SNVer [Wei et al., 2011], among others. Somatic SNV and InDel callers
are trying to identify mutations which are different between tumor and healthy tissue
from the same individual (often referred to as ‘tumor and normal pairs’). There are
several tools specialized for calling somatic SNVs and InDels. The most commonly
used are: Mutect [Cibulskis et al., 2013], Strelka [Saunders et al., 2012], and Somat-
icSniper [Larson et al., 2012], with Strelka being the only one of the three able to call
InDels. In recent years several tools specialized in calling somatic InDels were de-
veloped (e.g. Indelocator http://archive.broadinstitute.org/cancer/
cga/indelocator). However, somatic InDel calling is still prone to high error
rates, leading to substantial differences in call sets from different pipelines [Alioto et al.,
2014]. Numerous tools are also available for calling structural variants and copy num-
ber variations (CNVs), for both somatic and germline variant analysis, but as they are
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out of the scope of this thesis they will not be elaborated here. Pabinger et al. [Pabinger
et al., 2013], Koboldt et al. [Koboldt et al., 2012a], and Nakaga et al. [Nakagawa et al.,
2015] have provided excellent reviews on SNV and CNV calling.

Functional annotation of variants is the last mandatory step before performing associa-
tion and other statistical tests to infer disease causal variants and/or genes. Functional
annotation methods aim at classifying each variant with information necessary to under-
stand the impact of the variant on the phenotype of an individual. Besides basic infor-
mation such as (i) amino-acid change, (ii) affected gene, and (iii) exonic function, most
annotation tools can provide information from multiple variant databases. Such infor-
mation could come in the form of scores estimating evolutionary conservation (e.g. phy-
loP and phastCons), possible damage caused to the protein’s function (e.g. PolyPhen2,
SIFT, CADD, etc.) and allele frequencies observed in different human populations (Ex-
ome Variant Server (evs.gs.washington.edu/EVS/), 1000 Genomes Project,
and ExAC (exac.broadinstitute.org/)). In addition, prior knowledge could
be added from disease or cancer-specific databases such as OMIM, ClinVar, and COS-
MIC. Annotation is an extremely important step as it can help to reduce the number of
variants that could be of interest in disease studies and hence, to significantly reduce
the number of variants participating in association tests. Some of the most used anno-
tation pipelines are ANNOVAR [Wang et al., 2010] and Variant effect predictor (VEP)
[McLaren et al., 2010], but the choice is not limited to those. In this work, the eDiVa
pipeline (ediva.crg.es/) is used for annotation, which is an in-house developed
annotation database and pipeline with a large collection of disease-specific features.

The cancer genomics field is rapidly evolving, and procedures, formats and tools are
in constant development and improvement. Big consortia such as The Cancer Genome
Atlas (TCGA; cancergenome.nih.gov/) and the International Cancer Genome
Consortium (ICGC; icgc.org/ ) have made great efforts to introduce best practice
work-flows, which we have followed in this work whenever possible.

1.3 Cancer study design

1.3.1 Germline versus somatic type of mutations - in cancer context

An affordable strategy to identify the genetic component of tumorigenesis is to sequence
the cancer tissue and the healthy (cancer free) tissue of diagnosed patients (Figure 1.2).
Although it would be optimal to have the same cell lineage for both cancer and normal
cells, only blood is often used as the healthy counterpart (or a non-cancer blood cell
type in case of hematopoietic cancers). As all cells in any human tissue are descendants
of a fertilized egg (through mitotic cell division) sequencing their genome can reveal
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variants either inherited from the parents (‘germline variants’) or acquired after the for-
mation of the fertilized egg (Figure 1.3). The mutations acquired after formation of the
fertilized egg are referred to as somatic mutations to distinguish them from the inherited
germline variants. Also, somatic mutations can accumulate before malignant trans-
formation, a phenomenon often termed ‘mosaicism’, can accumulate after malignant
transformation, or can initiate tumorigenesis. Somatic alterations can be the product of
external and internal mechanisms [Stratton et al., 2009, Alexandrov et al., 2013]. Ex-
amples of external sources could be the exposure to tobacco smoke carcinogens or to
radiation such as ultraviolet light. An example for an internal source of somatic mu-
tations is the accumulation of errors during DNA replication. Although most somatic
mutations can be repaired or identified at multiple check points, leading to arrested pro-
liferation [Massague, 2008] or cell death [Iyer et al., 2006, Larrea et al., 2010]), a small
fraction does not trigger any of these mechanisms and it is passed on to further gen-
erations. Several studies have shown that in cancer cells, DNA repair and check point
pathways are often disabled by somatic driver mutations, ultimately allowing cells to
proliferate uncontrollably.
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Figure 1.2: Process of inferring cancer somatic mutations from hematologic cancer.

As the first step normal and tumor tissue need to be separated. Then, sequencing is done for both tissues
and reads are aligned to a reference genome. Specialized tools (e.g. MuTect) that use BAM files for
normal and cancer tissue are used to infer somatic mutations found only in tumor tissue.

Additionally, the difference between variants found in tumor tissue and variants found
in healthy tissue (Figure 1.2) can reveal the set of tumor-specific mutations. Such strat-
egy reveals those somatic mutations exclusively found in the tumor tissue and remove
all germline and somatic mutations found in the healthy tissue (in Figure 1.3 red mu-
tations). In this thesis, ‘tumor exclusive’ variants are simply referred as somatic muta-
tions. Though we recognize that both normal and cancer cells carry somatic mutations,
mosaicisms in healthy tissue are not a primary interest of this study.
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Often, the tumor tissue is contaminated with healthy tissue due to difficulties during
the physical separation of the two types. This phenomenon is described as the purity
of the tumor tissue or the fraction of the tissue that has cancer properties. Whereas in
hematological tumors it is possible to achieve very high purity thanks to the separation
of normal cells from tumor cells using FACS, in solid tumors the purity is very hetero-
geneous across samples and cancer types [Aran et al., 2015], ranging from below 20%
to close to 100%. The tumor purity can be estimated by pathologists or by using bioin-
formatics tools such as ASCAT [Van Loo et al., 2010] or ABSOLUTE [Carter et al.,
2012]. The latter tools estimate the purity based on the minor allele frequency (MAF)
distribution of predicted somatic SNVs and/or CNVs.

Both, germline and somatic variants, are important for cancer etiology. While some
germline variants are thought to influence cancer predisposition, some somatic muta-
tions can drive malignant transformation and cancer development. Germline risk vari-
ants often affect DNA damage repair genes [Hodgson, 2008, Ponder, 2001], leading to
a reduced repair efficiency and hence to a larger lifetime risk of developing a cancer
[Cybulski et al., 2015, Li et al., 2012a]. Somatic mutations driving cancer can affect
several important functions of the cell, but most importantly they often impair cell cy-
cle control mechanisms allowing for unhindered cell proliferation. The identification of
somatic driver events is seemingly easier than inferring germline risk variants. This is
mostly due to the amount of variants observed since tumors accumulate between tens
to a few hundreds somatic mutations in coding regions [Martincorena and Campbell,
2015, Alexandrov et al., 2013] while individuals carry more than ~40,000 germline
variants in coding regions. Therefore, a smaller pool of candidate variants and less
noise reduces the number of false positives when using somatic mutations for identifi-
cation of causal events. However, prediction methods for somatic mutations typically
have a higher error rate and specifically can mistake germline as somatic variants. Thus,
methods to identify cancer driver genes and cancer risk genes tackle different types of
errors and noise, and require specialized background models and algorithms.

1.3.2 Driver and passenger somatic events in cancer
Somatic mutations contributing to malignant transformation or cancer development are
called driver mutations. Genes carrying driver mutations are defined as cancer genes
(also termed ‘cancer driver genes’). Driver mutations confer a selective advantage and
therefore increase cancer cell fitness [Stratton et al., 2009]. A well-described selec-
tive advantage is the acquisition of a higher proliferation rate compared to surrounding
cells, which is also considered as one of the hallmarks of cancer [Hanahan and Wein-
berg, 2011]. Other somatic mutations that are either neutral or negatively selected, are
called passenger mutations (Figure 1.3) and they do not confer a selective advantage.
Passenger mutations could occur prior to tumor formation or during tumor progression.
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During a selective sweep caused by a highly beneficial driver mutation, passenger mu-
tations can hitchhike within the clonal expansion and reach a high tumor fraction. Some
somatic events can also impair cell survival and will likely be purified in time (negative
selection). However, the impact of negative selection in tumor evolution is still con-
troversial [Ostrow et al., 2014, Pyatnitskiy et al., 2015]. Importantly, the ability of a
mutation to drive tumor initiation or progression depends on the tissue, biological con-
text, and/or the environment. For example, a new independent driver event increasing
a cell’s proliferation rate can make previous somatic mutations neutral or even nega-
tively selected. Also, mutations are not isolated events, and they act together in a given
context, so effects of two or more mutations together might differ from their individual
effects. This phenomenon is known as epistasis. Importantly, many coding mutation
hotspots (e.g. BRAF V600 [Davies et al., 2002, Ascierto et al., 2012, Thiel and Ris-
timaki, 2013]) mainly cause cancer in one or a few tissue types, but have not been
reported as cancer drivers for other tissues. In summary, different cancer genotypes are
in constant competition, and somatic events contributing to cancer development in a
given moment are expected to show signatures of positive selection.

Figure 1.3: The lineage of mitotic cell divisions from the fertilized egg to a single cell within a
cancer mass, showing the timing of somatic mutation events and the processes that contribute to
tumorigenesis. Reproduced from [Stratton et al., 2009]

1.3.3 Driver genes - oncogenes and tumor suppressors
There are two major classes of cancer genes, oncogenes and tumor suppressor genes.
Oncogenes were discovered in 1989 by J. Michael Bishop and Harold E. Varmus, a
discovery which earned these scientists the Nobel prize [Stehelin et al., 1976, Bishop,
1981]. Specifically, genes carrying a mutation or a change of expression that leads to
an increased activity and ultimately an increased cell proliferation rate are classified as
oncogenes. An example of an oncogene is HRAS, a gene which regulates cell division
[Tabin et al., 1982, Taparowsky et al., 1982, Sukumar et al., 1983, Cordova-Alarcon
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et al., 2005]. Often, in a cohort of cancer patients oncogenes accumulate mutations in
specific locations, leading to a gain of function phenotype. Therefore, bioinformatics
tools like OncodriveClust [Tamborero et al., 2013a] are specialized for predicting driver
genes with clusters of mutations, also called mutation hotspots.

Tumor suppressor genes ensure the healthy behavior of cells by either repairing damage
or by initiating cell death. If a stop-gain point mutation or a large deletion impairs
the tumor suppressor function cells with damaged DNA will still be able to divide.
Ultimately, this can lead to uncontrolled cell proliferation and cancer. One of the first
discovered examples of tumor suppressor genes is RB [Friend et al., 1986]. RB prevents
excessive cell growth by inhibiting cell cycle progression, and has been described as a
cell cycle pacemaker [Weinberg, 1995]. It has an important role during the major G1
checkpoint, namely by blocking S-phase initiation and cell growth. In tumor suppressor
genes, mutations causing loss of function or decreased expression allow or promote
tumor formation. Opposite to oncogenes, tumor suppressor genes usually follow the
“Two-Hit Hypothesis” [Knudson, 1971], where both alleles need to be mutated to allow
for malignant transformation. If only one allele is damaged, the second allele would still
be able to produce a sufficient amount of the protein to suppress tumor development.
However, there are several exceptions from the “Two-Hit” rule, e.g. a heterozygous
deletion of TP53 exhibits a dominant effect and can lead to tumor formation [Willis
et al., 2004].

1.3.4 Identification of cancer driver genes
One of the biggest challenges in cancer genomics is to differentiate between driver and
passenger mutations, and to narrow down the set of cancer genes. Currently, there
are several bioinformatics tools available to differentiate between driver and passen-
ger mutations, most of them using positive selection signatures. The most frequently
used signature of positive selection is recurrence, which describes the recurrent ob-
servation (occurrence) of mutations in a gene across several patients affected by the
same cancer type. One published method, MuSiC, estimates somatic background muta-
tion rates (BMR) and subsequently predicts genes that have significantly more somatic
mutations than expected in a given cohort of cancer patients (Figure 1.4) [Dees et al.,
2012]. Accurate estimation of somatic mutation rates is difficult, as background mu-
tation rates may differ between genes, tumor types, and patients [Martincorena and
Campbell, 2015, Lawrence et al., 2013, Supek and Lehner, 2015]. Along the genome,
factors influencing local BMR are chromatin state, replication timing, expression, and
transcription factor binding accessibility [Stamatoyannopoulos et al., 2009, Lawrence
et al., 2013, Supek and Lehner, 2015, Sabarinathan et al., 2016]. Another tool, Mut-
SigCV, estimates local mutation rates based on several of these features as described in
Lawrence et al. [Lawrence et al., 2013].
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Fig. 1.4: Signatures of positive selection used to
identify driver genes. Reproduced from [Tamborero
et al., 2013b]

Illustration of three signatures of positive selection
(recurrence, functional impact, clustering) used to
identify driver genes and the methods that implement
them.

Recently cancer driver identification meth-
ods have been developed that do not
use mutation recurrence but instead use
other signatures of positive selection. For
example, OncodriveFM identifies driver
genes based on the bias towards high
functional impact of mutations in driver
genes (Figure 1.4), as mutations con-
tributing to cancer are expected to al-
ter the function of the protein more
heavily than mutations not contributing
to cancer [Gonzalez-Perez and Lopez-
Bigas, 2012]. Another example is On-
codriveCLUST [Tamborero et al., 2013a]
(Figure 1.4), which identifies driver genes
based on the presence of local clusters of
mutations, as this indicates that the mu-
tated region has an important function.
Studies have shown that clustered muta-
tions often lead to an activation of the gene [Chang et al., 2016]. Similarly, ActiveDriver
identifies driver genes significantly enriched for mutations in phosphorylation sites,
which are usually associated with important functional domains of a protein (Figure 1.4)
[Reimand and Bader, 2013]. All described methods rely on large cohorts of patients se-
quenced using either WES or WGS to be able to obtain significant results. The TCGA
(https://cancergenome.nih.gov/) and ICGC (http://icgc.org/) con-
sortia have been highly productive during the last 10 years and today provide data of
more than 15,000 sequenced tumor and normal samples. TCGA has furthermore pub-
lished a large bulk of papers describing the landscape of somatic mutations in various
cancer types [TCGANetwork, 2008, TCGANetwork, 2011, TCGANetwork, 2012a, TC-
GANetwork, 2012b, TCGANetwork, 2012c, TCGANetwork, 2013, TCGANetwork,
2015]. Importantly for our study, somatic mutations for all cancer types are available
for download in form of MAF files (see Chapter 2 for details), facilitating single or pan-
cancer analysis and benchmarking of newly developed algorithms.

In addition to the tools based on point mutations and short InDels, there are other bioin-
formatics tools exploiting different data types. For example, the HotNet2 method [Leis-
erson et al., 2015] uses information from pathways or networks of genes to overcome
the limitations of single gene testing. Oncodrive-CIS uses copy number changes to in-
fer cancer driver genes [Tamborero et al., 2013c]. Finally, analysis of differential gene
expression with e.g. DEseq [Anders and Huber, 2010] or edgeR [Robinson et al., 2010]
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can be used to identify driver genes. For example, reduced transcription of a tumor
suppressor gene caused by a deletion or down-regulation of the gene can increase the
fitness of cancer cells, as could the up-regulation of oncogenes. Nonetheless, in recent
years many methods have focused on point mutations as their main source of informa-
tion, mainly due to the rapid increase of freely available exome sequencing data from
cancer patients [Weinstein et al., 2013]. But despite the massive efforts of the research
community and the availability of several tools we have still not been able to identify
the complete catalog of cancer genes and driver alterations [Lawrence et al., 2014].
Therefore, efforts to develop new approaches, combining multiple methods, data sets or
cancer signatures, are still in high demand.

Remarkably, all mentioned methods use a frequentist approach to generate p-values for
genes. High-throughput sequencing technologies and data coming from big consortium
projects like ICGC and TCGA have enabled the community to test all genes or even all
regulatory elements, typically reaching above 20,000 tests. With such large test numbers
and weak signals (mostly due to cancer intra tumor heterogeneity and high variability
between tumor types) frequentist methods are prone to miss true cancer genes after
multiple testing correction. Also, frequentist inference does not allow to include prior
knowledge in an easy and consistent way, and the combination of multiple signatures is
problematic. Moreover, different tools have different stringency. For example, on the
TCGA PanCancer dataset MuSic predicts more than 2000 significant genes, while On-
codriveClust predicts less than 300 and MutSigCV [Lawrence et al., 2013] only around
100 genes. Hence, in recent years there was an effort to develop methods using Bayesian
statistic approaches. Such an example is MADGiC [Korthauer and Kendziorski, 2015],
a model based approach that infers cancer driver genes using multiple signatures of
positive selection. Although it has been recognized that an ensemble of methods and a
combination of cancer signatures improve the recall of cancer genes [Tamborero et al.,
2013b] the majority of tools accepted by the cancer community still use a frequentist
approach and a single feature (e.g. only recurrence or only clustering etc.) to identify
driver genes.

1.3.5 Cancer evolution and heterogeneity
Cancer is a heterogeneous disease. Three main levels of heterogeneity have been de-
scribed: (i) inter-patient heterogeneity, (ii) intra-tumor heterogeneity, (iii) and metastatic
heterogeneity [Vogelstein et al., 2013]. Inter-patient heterogeneity refers to the variabil-
ity of the same tumor type in different patients and is dependent on multiple factors
such as tumor type, age of patients, environmental factors, among others. The tumors
of two patients affecting the same tissue, and with a similar phenotype, might still differ
substantially on a molecular (genomic) level. These patients may show different driver
genes and somatic mutation profiles. Exposure to UV light or tobacco typically results
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in tumors with large numbers of mutations (high mutation rate) and specific mutational
signatures [Alexandrov et al., 2013]. Hence, lung cancer caused by smoking will have
a substantially different mutation profile than a lung cancer found in a non-smoker. The
mutation profiles found in pediatric cancers (cancer in children) can differ substantially
from the respective adult cancer type, and they often exhibit very low somatic mutation
rates.

Intra-tumor heterogeneity describes differences within tumor(s) found in the same pa-
tient. This type of heterogeneity could also be related to treatment effects, i.e. relapsing
tumors are often more aggressive than the original tumor and can have differing muta-
tions. Intra-tumor heterogeneity was described in 1976 when Peter Nowell recognized
clonal evolution of cancer [Nowell, 1976]. It has been suggested and later supported
that different cancer subpopulations of the same cancer mass have a common ancestral
origin, but evolve in a way that they can contain different sub-clonal mutations [Nowell,
1976, Fialkow, 1979, Gerlinger et al., 2012].
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Figure 1.5: Genetic Intra-tumor Heterogeneity and Phylogeny in Patient with renal carcinoma.
Reproduced from [Gerlinger et al., 2012].

a) For one patient, multiple sites were sampled and sequenced, including biopsies of the pretreatment
primary tumor (PreP) and chest-wall metastasis (PreM), nine primary-tumor regions of the nephrectomy
specimen (R1 to R9), three metastasis sites (M1, M2a and M2b), and germline DNA. Regions R6 and R7
were excluded from analyses since only one nonsynonymous variant passed filtering. b) Phylogenetic tree
of the sequenced tumor regions based on somatic variants showing ancestral relationships of subclones.

Indeed, construction of the phylogenetic tree using DNA sequences obtained from mul-
tiple geographical specimens of a solid tumor show common ancestor mutations for the
majority of specimens [Gerlinger et al., 2012]. In the example shown in Figure 1.5,
mutations in the gene VHL were common to all specimens taken from eight locations
of one tumor mass. VHL is known to regulate apoptosis and was likely the original
driver gene leading to malignant transformation. The mutation in VHL is called a trunk
mutation, with respect to forming the trunk of the phylogenetic tree of the tumor. In
addition, all specimens have some private mutations that occurred during tumor de-
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velopment, supporting the hypothesis of intra-tumor heterogeneity and the continuous
evolution of tumor cells. The observed data is best described by an asexual evolutionary
model similar to bacteria colonies, in which mutations occurring in a single cell of the
tumor are purified, if detrimental, or selected, if they increase the fitness of the cell. As
private mutations in small subclones are hard to detect, as this would require ultra-deep
or large-scale single-cell sequencing, the extent of intra-tumor heterogeneity is usually
underestimated. It has been suggested that the number of low-cell-fraction or private
mutations in a single cell is exponentially higher than the number of clonal mutations,
i.e. the are affecting most cells of the tumor [Williams et al., 2016]. Considering such
a large number of low-fraction mutations and hence subclones it is not surprising that
tumors can quickly develop a drug resistance after treatment, where one of the many
coexisting subclones becomes predominant in the relapsed tumor [Gerlinger and Swan-
ton, 2010, Wu, 2012, Greaves and Maley, 2012]. There is still a debate if the mutations
conferring drug resistance typically already exist in a sub-clone prior to treatment, or if
they occur after treatment, or if both mechanisms play an important role in the devel-
opment of treatment resistance. Nonetheless, all evidence supports the hypothesis that
tumors are under Darwinian evolution driven primarily by positive selection [Nowell,
1976, Merlo et al., 2006, Pepper et al., 2009].

1.4 Using signatures of selection to identify cancer driver
genes

In previous sections we introduced the concept of tumor evolution based on the obser-
vation that cancer development shows properties of Darwinian evolution such as signa-
tures of positive selection on mutations beneficial for cancer cell proliferation. There-
fore, if we could identify the alterations in cancer genomes that are positively selected
we would narrow down list of candidate cancer driver genes. Positive selection in tumor
evolution has been measured using multiple approaches such as recurrence, functional
impact, and clustering of mutations.

1.4.1 Mutation recurrence as a signature of positive selection

One of the most obvious and widely used signatures of selection is recurrence. Somatic
mutations that are recurrently observed in the tumors of a cohort of patients, but can-
not be explained by high local mutation rates, can be considered good candidates of
causal cancer driver genes for the studied cancer type. Furthermore, to increase statis-
tical power we often look for recurrence of mutations in a genomic locus or functional
unit, e.g. a gene, instead of only considering a single position. The biggest challenge
for recurrence approaches is to distinguish the true causal mutations from random and
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non-random noise, technical biases, as well as biological or environmental effects not
related to cancer.

When analyzing somatic mutations in tumor tissue we typically do not use a healthy
control group for comparison as we only aim to link cancer exclusive mutations to the
phenotype. The somatic mutation load of tumors is known to vary strongly depending
on tissue type, but also between patients with the same tumor type [Martincorena and
Campbell, 2015, Alexandrov et al., 2013]. Furthermore, mutational load as measured
in mutations per megabase also varies across the genome [Lawrence et al., 2013, Supek
and Lehner, 2015]. Therefore, simple counting of mutations in genes and correcting for
the length of genes would result in a large number of false positives, as some genes have
a substantially higher background mutation rate than the genome wide average. To infer
true driver genes, the standard strategy is to estimate the expected number of mutations
in genes with respect to the local background mutation rate (BMR) and then check if
the observed number is significantly higher than expected. Obstacles for achieving good
estimations of BMR are, for instance, high diversity across patients of a cohort or a low
number of somatic mutations in specific genomic regions or for a tumor type in general.
Lawrence et al. [Lawrence et al., 2013] have suggested a background mutation rate
model, which is used in the tool MutSigCV.

1.4.2 Functional impact bias and mutation clustering as signatures
of selection

In addition to recurrence, another successfully exploited signatures of positive selection
is the functional impact (FI) bias of variants found in a gene. Various methods have
been developed to assess the functional impact of mutations on the protein function
[Eilbeck et al., 2017]. FI has been used mostly to (i) filter out benign variants, and (ii)
as measure of unexpected bias. While the former is simply a filter reducing the total
number of mutations in consideration, the latter approach uses functional impact bias as
a surrogate measure of positive selection. This strategy is based on the hypothesis that
the functional impact (damage score) of somatic variants per gene in a cohort follows a
specific distribution, when there is no selection. The type of distribution depends on the
number of important regions in a gene and the number of possibilities that a variant can
significantly change the function of the protein. Any deviation of this expected distri-
bution can be considered a signature of positive or negative selection.

Similarly, the position of variants within a gene can reflect a measure of selection. If
there is no selection somatic variants will be distributed uniformly across the gene (as-
suming that BMR is the same across one gene). Therefore, observing a cluster of mu-
tations in a specific locus of the gene indicates that positive selection of mutations in an
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important functional site has occurred, unless the predicted variants are false and caused
by a systematic calling error. Recently, it has been shown that many tumor types show
strong mutational signatures caused by specific environmental effects like smoking or
UV light [Alexandrov et al., 2013]. For instance, UV light causes a huge excess of
C→T changes due to deamination of methylated cytosines. A strong mutational signa-
ture could lead to false recurrence, clustering, or FI bias signatures, i.e. false signatures
of selection, if not corrected properly [Martincorena et al., 2017].

1.4.3 Ka/Ks ratio as signature of selection

Ka/Ks is the ratio between the number of nonsynonymous substitutions per nonsynony-
mous site (Ka) and the number of synonymous substitutions per synonymous site (Ks)
that occur during a given time frame in a defined genomic region (usually a gene). Typ-
ically, two or more genomes of different species are compared to identify synonymous
and nonsynonymous SNPs. The time frame is defined by the last common ancestor. The
term Ka/Ks comes from evolutionary biology and it is used to measure rates of evolution
[Makalowski and Boguski, 1998]. If a gene has been under purifying selection, it has
avoided the accumulation of nonsynonymous mutations and it has conserved his origi-
nal protein function, therefore the value of Ka/Ks would be less than one. If mutations
are happening completely at random and without any selection pressure, the Ka/Ks ra-
tio would be one. Finally, if positive selection acted on variants changing the function
of the protein, and leading to a higher fitness, there would be more nonsynonymous
mutations than expected, and Ka/Ks would be higher than one. Most genes are sub-
ject to purifying selection with selective constraints for nonsynonymous as compared to
synonymous mutations (which are considered to be neutral). Therefore, a Ka/Ks ratio
below one for most genes when analyzing germline variants has been observed.

Cancer tissues can be seen as a micro-environment where evolution is happening fast,
and in an asexual manor. Mutations that are advantageous to the cancer cell will be
selected for, while neutral mutations (passengers) are expected to happen following the
BMR distribution. Although selective sweeps following the acquisition of a highly ad-
vantageous driver mutation will also raise the prevalence of passenger mutations present
in the cell, this will not lead to a pattern of linkage disequilibrium, as no cross-over hap-
pens during cell divisions. If we generalize the idea of Ka/Ks to a cohort of cancer
patients, passengers mutations (both nonsynonymous and synonymous SNVs) are un-
der neutral evolution, while nonsynonymous driver mutations are positively selected.
Genes which harbor true driver mutations in a substantial fraction of patients would
therefore show a Ka/Ks ratio above one, while most genes not contributing to increased
fitness of tumor cells show a Ka/Ks around one.
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1.4.4 Mosaicism as a signature of selection

In tumor tissues it is often observed that two or more populations of cells with different
genotypes are coexisting (1.5), and we refer to this phenomenon as mosaicism (also
termed tumor heterogeneity or sub-clonal tumor structure). This is actually not exclu-
sive to cancer tissues, as we continuously generate cell variants even in healthy (normal)
tissue [Fernandez et al., 2016]. In normal tissue, a heterozygous germline mutation is
expect to be seen in ~50% of the sequenced reads covering the variant locus. But in case
of mosaicism the minor allele frequency (MAF) of the heterozygous mutations diverges
more or less from 0.5, depending if it is present in large fraction of the cells (AF ≈ 0.5)
or a small fraction (AF � 0.5). Identifying mutations that are having very small al-
lele fraction but are not sequencing errors is still challenging and it requires ultra-deep
sequencing of tumor tissue. In tumor tissues, if there are no external constraints (e.g.
physical barrier), cells with a genotype that gives a selective advantage over other cells
will proliferate faster. The mutations that reside in these cells will increase in cancer
cell fraction (CCF), i.e. the percent of tumor cells that harbor the mutation increases.
Mutations happening very early in tumor development, or that are highly advantageous
will be found in the majority of tumor cells and are called clonal mutations. Mutations
that are present in smaller fractions of the tumor tissue are called sub-clonal. In diploid
loci and at 100% tumor purity (no normal contamination in the tumor sample) the CCF
can be easily computed from MAF by multiplying with 2. However, copy number vari-
ants or low tumor purity make estimation of CCF from MAF a challenging task, solved
by tools as e.g. PyClone [Roth et al., 2014] or Absolute [Carter et al., 2012]. Using low
to medium coverage bulk sequencing of tumor tissues will mostly reveal clonal muta-
tions (high MAF), while sub-clonal mutations are missed. However, sub-clonal events
are also of great importance during cancer development for several reasons: 1) two or
more clones can coexist in symbiosis and one without another would decrease fitness
of all sub-clones, 2) after treatment sub-clones can gain (or already have) resistance
and become the new dominant clonal population within the changed environment, 3) a
sub-clone could become metastatic, 4) high tumor heterogeneity (as measured by the
fraction of sub-clones) has been associated with worse treatment outcome and shorter
survival. As rates of relapse in cancer are very high, obtaining a fine-grained picture of
clonal and sub-clonal tumor structure is an important step on our way to precision on-
cology. But more importantly for the goals of this study, ignoring sub-clonal mutations
results in a loss of statistical power for identification of driver mutations, as the power
of basically all available driver prediction tools depends on the number of mutations in
the cohort used for prediction.
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1.5 Cancer Predisposition
In recent years a wide range of germline mutations that are contributing to the lifetime
risk of developing cancer have been identified [Rahman, 2014]. Various strategies have
been employed to identify cancer predisposition genes, i.e. genes harboring variants
that increase the risk of developing cancer, including the study of families with high
cancer prevalence, or Genome-wide association studies (GWAS) using large cohorts of
sporadic cases and controls.
Maybe the most widely known examples are germline variants in the genes BRCA1 or
BRCA2 that dramatically increase the risk of developing breast and ovarian cancer [Miki
et al., 1994, Wooster et al., 1995, Ponder, 2001]. It is estimated that 25% of ovarian
cancer cases [Stafford et al., 2017] and 15-20% of breast cancer cases [Economopoulou
et al., 2015] are due to inherited genetic factors. Mutations in BRCA1 and BRCA2 ac-
count for about ~25-30% of all familial cases of hereditary breast and ovarian cancer
[Nielsen et al., 2016, Siegel et al., 2013]. Although BRCA1 and BRCA2 together account
for the largest fraction of heritability, more then 25 other genes, most of which are hav-
ing a function in the same pathways as BRCA1 and BRCA2, have also been implicated
with familial breast and/or ovarian cancer susceptibility [Nielsen et al., 2016, Stafford
et al., 2017, Economopoulou et al., 2015]. However, even in sum these genes cannot
explain all hereditary cases [Couch et al., 2014, Cybulski et al., 2015], a phenomenon
termed missing heritability. Therefore, discovery of more genetic factors that can ex-
plain the missing heritability for hereditary breast and ovarian cancer is expected in
coming years, as well as for other cancer types.
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Fig. 1.6: Feasibility of identifying genetic variants by risk al-
lele frequency and strength of genetic effect (odds ratio). Re-
produced from [Manolio et al., 2009]

Different statistical approaches
are developed or adopted to iden-
tify risk variants and risk genes,
depending on a variants effect
size (odds ratio) and allele fre-
quency in the population (Figure
1.6). Very rare variants that seg-
regate in a risk family typically
have large effect size (strongly
raise the risk to develop cancer)
and have most often been iden-
tified using linkage analysis or
positional cloning [Miki et al.,
1994, Kontham et al., 2013]. The
‘weaker variants’ (or genes) are
found less often in familial cases and therefore must be identified using other ap-
proaches. Checking for a difference in frequency of candidate genetic variants in large
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cases-control cohorts is a common approach for detection of variants that have inter-
mediate to low effect size. The most commonly applied method called genome-wide
association study (GWAS) facilitated the identification of many common variants that
cause a small increase in risk of developing cancer [Varghese and Easton, 2010, Chang
et al., 2014]. Similarly, GWAS helped to identify thousands of risk loci for many other
genetic diseases (https://grasp.nhlbi.nih.gov/Overview.aspx [Eicher
et al., 2015]) . However GWAS has limitations, specifically with respect to finding asso-
ciations using rare and ultra-rare variants. Moreover, GWAS works solely on the level
of a single nucleotide and does not support aggregation of variants across functional
units such as genes or pathways. In case-control studies is important to have two well-
matched groups. Optimally one would use cases and controls from the same population
and age group, and with balanced gender. Also, the preparation and sequencing of sam-
ples would be done in a single batch using the same technologies, such that technical
biases are reduced to a minimum. For all post-sequencing analysis steps (e.g. mutation
calling) the same methods and parameters need to be applied. Often, some of these
recommendations are not possible to fulfill, and frequently controls are reused for dif-
ferent studies and therefore are not processed using the same technologies and methods
as used for cases. Some association tests allow integration of covariates into the model,
that can to some extent solve issues with existing biases between cases and controls.

1.5.1 Rare variants and complex diseases
In recent years there have been strong efforts to identify low-frequency and rare cancer
risk variants that GWAS is not able to ‘pick up’; that at the same time have intermediate
or low effect size such that they were also not identified with linkage analysis [Decker
et al., 2017, Lin et al., 2017]. Gene-based Rare-Variant Association Studies (RVAS)
have proven their potential to identify rare, moderate effect size variants in many com-
plex traits and diseases [Cruchaga et al., 2014, Shtir et al., 2016, Ruiz-Pinto et al.,
2017, Nho et al., 2017]. Still, not many cancer risk studies have been exploiting RVAS
or RVAS-like methods. Region-based RVAS methods are testing genomic regions or
functional units (usually a gene) instead of individual variants to gain statistical power.
A variety of RVAS methods has been developed and each has pros and cons depending
on the architecture of the disease and the cohort size.

The most straightforward gene-based RVAS tests are burden tests [Li and Leal, 2008,
Madsen and Browning, 2009, Morgenthaler and Thilly, 2007]. As the name suggests
this is a class of tests that compare number of variants in cases and controls, by col-
lapsing (‘aggregating’) information for all variants in a focal gene (or defined genomic
region) into a single score. This can be done by simply counting the number of minor al-
leles across all variants that participate in the test. Additionally, variants can be weighted
by meaningful biological features (e.g. allele frequency reported in public databases).
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The association test statistics is computed between the score and a trait. Numerous
burden tests have been proposed differing in how variant aggregation across genes and
the association test are performed. Most notable versions of burden tests are collapsing
regression models (e.g. CMC [Li and Leal, 2008]), weighted sum methods (e.g. KBAC
[Liu and Leal, 2010]) and permutation-based summary count methods (e.g. BUR-
DEN https://atgu.mgh.harvard.edu/plinkseq/assoc.shtml). Bur-
den tests are powerful when a large proportion of variants are causal and effects are in
the same direction. Therefore, they lose power if the architecture of disease is such that
both protective and risk variants are present in a gene, or a large fraction of variants in a
gene is neutral.

Contrary, variance component tests (e.g. SKAT [Wu et al., 2011]) do not suffer when
variants have different directions (e.g. some variants are protective and some are in-
creasing risk) and/or only a small proportion of the variants in a gene is causal. Rather
than collapsing variants, variance component tests evaluate the distribution of the ag-
gregated score test statistics of individual variants. However, variance component tests
lose power, compare to burden tests, when the majority of variants have the same direc-
tion. Therefore, the SKAT-O test has been proposed that combines burden and variance
component tests [Lee et al., 2012b]. SKAT-O computes a weighted linear combination
of two tests and weights are automatically estimated from the data. Other new types of
association tests have recently been proposed, that can in addition utilize characteristics
of variants, such as the MiST test [Sun et al., 2013]). For example, if a gene has no true
association with a trait, distributions of functional impact (FI) scores for the variants
between cases and controls would be similar. Contrary, if a gene is a true carrier of risk
variants, distributions of FI score are expected to be significantly different. Moreover,
a risk gene would more likely harbor loss of function (LoF) variants in cases than in
controls.

For all RVAS tests it is of great importance to account for possible biases and to have
well-matched cases and controls, otherwise tests might fail to reject associations that are
not truly related to the trait, but appear due to confounding factors. Most of RVAS meth-
ods can account for some biases in the data by having the option to include covariates.
Unfortunately, the majority of the available cancer cohorts are lacking well-matched
control groups (for instance have not enough healthy controls, controls from a different
population, controls sequenced and analyzed with different protocols, etc.).

There is some skepticism in the community if the impact of low-effect risk variants
is relevant when compared to risks caused by lifestyle or the environment [Holtzman
and Marteau, 2000]. Nonetheless, several successful stories on the hunt for cancer
predisposition genes demonstrate that the field is not doomed (yet).
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1.6 Objectives
During the last decade big consortia, like The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC), generated rich resources of NGS
data for large cohorts of cancer patients from more than 30 tumor types. The trend
of sequencing larger and larger cancer cohorts is expected to continue in the near fu-
ture and one can utilize this valuable data in various ways. The scope of this thesis
was to statistically analyze mutations and short insertions and deletions (SNVs and In-
Dels) identified using whole exome and whole genome sequencing of cancer cohorts
and healthy controls in order to increase our knowledge about cancer driver genes and
cancer predisposition genes. Thus, this thesis work is divided in two parts: (i) inference
of cancer driver genes using signatures of positive selection, and (ii)development of a
comprehensive gene-based rare variant association analysis framework for identifica-
tion of risk genes in case-controls studies.

In the second chapter, we answer how positive selection signatures in tumor evolution
can be exploited to obtain a complete landscape of cancer driver genes in various tu-
mor types. We describe and benchmark cDriver, a novel Bayesian inference method
developed by the author for identifying cancer driver genes. cDriver identifies and ex-
ploits signatures of positive selection in tumor evolution where some of the signatures
(e.g. recurrence and functional impact) have been used before by competing meth-
ods. However, to the best of our knowledge, cDriver is the first software that exploits
mosaicism (tumor heterogeneity) and Ka/Ks as signatures of positive selection to infer
cancer driver genes. We have studied several questions, for instance: How to capture
mosaicism from NGS data? Are clonal mutations enriched in cancer driver as compared
to passenger genes? Are p-values the optimal (or only) way to measure significance?
Can we re-purpose ‘strong’ driver genes in one cancer type as evidence (prior knowl-
edge) to increase sensitivity for detection of the same gene as driver in other cancer
types? Can we identify gene functions important for tumor development that have pre-
viously been under-appreciated? Our novel method and new findings on cancer driver
genes have been revised by experts in the field and accepted for publication by Nature
Scientific Reports.

In the third chapter, we describe the development of a comprehensive framework for
identification of cancer or disease predisposition genes using NGS of case-control co-
horts. Taking into account that the majority of known cancer predisposition genes have
been found due to common risk variants or variants with high-penetrance effect size,
we have focused on rare variant association study (RVAS) approaches, which promise
to find genes previously missed. Besides integrating well-established RVAS methods we
aimed at implementing and benchmarking a new RVAS approach that can fully utilize
variant characteristics (e.g. functional impact), quality control data, population variant
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allele frequencies and clinical information. Additionally, we addressed problems arising
from insufficiently matched cases and controls, or other sources of biases between cases
and controls, and provide solutions to some degree. Finally, we addressed the issue of
population stratification for studying populations that are not well represented in public
variant allele frequency databases using the example of Iberian case-control cohorts. A
manuscript describing the REWAS framework, the novel BATI association test methods
and benchmarking results for five RVAS methods is in preparation.
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Bayesian Rare Variant Association Test
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imation

Hana Susak*, Georgia Escaramis-Babiano*, Laura Serra-Saurina, Mattia Bosio, Kelly
Rabionet, Laura Domenech-Salgado, Selen Ozkan, Xavier Estivill, and Stephan Os-
sowski

* These authors contributed equally

3.1 Background

Rapid growth of next generation sequencing (NGS) technology and the dramatically
improved cost-effect ratio are changing the landscape of medical and human genetics
research, providing a unique opportunity to study the association of all types of ge-
netic variants with complex diseases at a genome-wide scale. Other than genome-wide
association studies (GWAS) that are based on counting of genotypes at predefined ge-
nomic positions with alternative alleles of high minor allele frequency in the population
(MAF >5 %), new sequencing technologies enable us to study rare genetic variants
(RV) across the whole genome. Rare variant association studies promise to identify
novel disease genes based on the enrichment of rare variants with low to medium ef-
fect size by aggregation of genotypes across genes or other functional units, thereby
allowing to fill the gap left by GWAS studies and to address the phenomenon of missing
heritability.

It has been previously shown that RVs play an important role in complex genetic disease
etiology [Cohen et al., 2004, Chassaing et al., 2016, Priest et al., 2016, Tan et al., 2017].
Furthermore, it has been demonstrated that RVs are more likely than common variants
to affect structure, stability and function of proteins [Tennessen et al., 2012, Nelson
et al., 2012]. Therefore, statistical analysis of the combined set of rare variants across all
genes or regulatory elements promises to reveal new insights into the genetic heritability
of complex diseases and cancer.
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One of the major difficulties of rare variant association studies (RVAS) is the lack of
power when using traditional statistical methods like GWAS. Given that few individuals
are carriers of the rare alternative allele, association studies based on single variant po-
sitions would require extremely large sample sizes. To overcome this obstacle and in or-
der to increase statistical power, studies of RV consider simultaneously multiple variants
within functional biological units, such as genes, promoters or pathways, for association
to disease. Different statistical methods have been proposed recently that address the
problem of aggregated analysis of rare variants in functional units. For example, score
based methods pool minor alleles per unit into a measure of burden, and then this burden
score is used for association with a disease or phenotypic trait [Li and Leal, 2008, Price
et al., 2010, Madsen and Browning, 2009, Liu and Leal, 2010]. Burden tests are power-
ful when a high proportion of RVs found in a gene are deleterious or at least their effect
on the disease are one-sided, i.e. either protective or deleterious. But this is rarely the
case since usually few deleterious variants coexist with many neutral and possibly some
protective variants. Hence, other methods have been developed that consider heteroge-
neous effects among RVs on the disease (or trait), which are mainly based on variance-
component tests, e.g. SKAT and C-alpha [Wu et al., 2011, Neale et al., 2011]. These
methods are more powerful than burden tests when the hypothesis of unidirectional ef-
fects does not hold. More recently, methods have been developed that contemplate the
possibility that both types of genetic architectures may coexist throughout the genome,
by being constructed as a linear combination between burden and variance-component
tests, e.g. SKAT-O [Lee et al., 2012b]. Following this idea [Sun et al., 2013] developed
a mixed effects test (MiST) within the framework of a hierarchical model, for which
they further considered the possibility of incorporating biological characteristics of the
variants into the statistical approach. Thus, the hierarchical method is implemented in
the way that individual variants are assumed to be independently distributed, with the
mean modeled as a function of variant characteristics and certain variance that accounts
for variant heterogeneous effects. The resulting model is a type of generalized linear
mixed effects model (GLMM), were variant-specific effects are treated as the random
part of the model and patient and variant characteristics as fixed part. The authors claim
that under the assumption that associated variants share common characteristics such
as similar impact on protein function (e.g. primarily loss of function), using this prior
information in the test increases power. [Sun et al., 2013]further argue that attempting
to estimate the full model for inference purposes requires multiple integration, such that
it becomes computationally intensive in a genome-wide scan. Instead, they propose a
score test under the null hypothesis of no association avoiding multiple integration.

Building on the ideas of [Sun et al., 2013], but with the motivation of making inference
based on full model estimation, we propose a Bayesian alternative to the GLMM, which
is based on Integrated Nested Laplace Approximation (INLA)[Rue et al., 2009]. In a
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Bayesian framework, maximizing likelihoods for model estimation becomes unfeasible
in complex data structures, hence, the traditional model estimation procedure is Markov
Chain Monte Carlo (MCMC) [Sorensen and Gianola, 2007]. MCMC is a very flexible
approach that can be used to make inference for any Bayesian model. However, evaluat-
ing the algorithm’s performance in terms of convergence is not straightforward [Cowles
and Carlin, 1996]. Another concern with MCMC is extensive computation time, espe-
cially in large-scale analyses such as genome-wide scans. INLA is a non-sampling
based numerical approximation procedure, developed to estimate hierarchical latent
Gaussian Markov random field models. Being based on numerical approaches instead
of simulations makes INLA substantially faster than MCMC. Furthermore, [Rue and
Martino, 2007] show for several models that INLA is also more accurate than MCMC
when given the same computational resources. The flexibility of modeling within the
Bayesian framework combined with rapid inference approaches opens new possibilities
for genetic association testing. Here, we present a novel Bayesian rare variant Asso-
ciation Test using INLA (BATI), implemented as part of the REWAS framework. We
demonstrate using realistic benchmark tests that BATI outperforms existing methods,
including Burden, SKAT-O, KBAC and MiST, if categorical or numerical data on the
effect of variants on protein function is available. We further suggest how to use ‘differ-
ence in deviance information criterion’ (DIC) for model selection.
Furthermore we describe the ‘Rare variant Exome Wide Association Study’ (REWAS)
framework, which combines all steps required for RVAS, including quality control
(QC), population stratification and functional variant annotation, and integrates four
commonly used RVAS test methods (Burden, SKAT-O, KBAC, MiST) as well as the
novel BATI test.

3.2 Results

3.2.1 A novel test statistic and a comprehensive framework for RVAS

We developed the ‘Rare variant Exome Wide Association Study’ (REWAS) framework,
an all-in-one tool designed for RVAS analysis using case-control cohorts. REWAS sup-
ports rare variant association using genes or any other biological units such as promoters
or enhancers. It provides all essential steps and functionalities to perform the com-
plete analysis of whole-exome sequencing (WES) or whole-genome sequencing (WGS)
based case-control study designs: (1) facilitates comprehensive quality control and fil-
tering, (2) enables user created patient-based and/or variant-based characteristics in an
easy and intuitive fashion, (3) integrates five conceptually different rare-variant associ-
ation methods, and (4) provides a novel approach to address population stratification. It
is implemented in a modular way and provides great flexibility, allowing to analyze a
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wide range of association study designs. Figure 3.1 shows a flowchart of the REWAS
framework.
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Figure 3.1: REWAS framework summary.
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Three methods, KBAC, SKAT-O, and MiST, were chosen to be included in the REWAS
framework due to their superior performance compared to eight other RVAS methods
in a recent benchmark study by Moutsianas et al.[Moutsianas et al., 2015]. In addition
we included the classical Burden test as a baseline and for representing the most sim-
plistic and intuitive form of RVAS tests. Finally, we developed a new association test,
Bayesian RVAS Test using INLA (BATI), which better leverages available biological
information (numerical or categorical) such as functional impact of variants. Despite
being a Bayesian inference method BATI is fast and requires reasonable computational
resources. This is achieved by using Integrated Nested Laplace Approximation (INLA)
instead of the computationally demanding Markov chain Monte Carlo (MCMC) ap-
proach for estimating parameters (see Methods 3.4). MiST and BATI have same theo-
retical postulation, however, BATI approximates the full model parameters that can fur-
ther help understanding disease architecture, while MiST obtains score statistics only
for the null model. Note that only these two methods (from five included in REWAS)
can benefit from biological variant characteristics (e.g. functional impact cores, mis-
sense vs. LoF etc.). We have extensively benchmarked Burden, KBAC, SKAT-O, MiST
and BATI demonstrating that BATI outperforms other approaches in WES-based RVAS
if functional characteristics of variants are available.

3.2.2 Benchmarking RVAS Tests Using Simulated Genetic Disease
Architectures

In order to benchmark BATI and four competing RVAS tests, Burden, SKAT-O, KBAC
and MiST, we chose a previously published benchmark dataset [Moutsianas et al., 2015]
in which 6 genetic disease architectures were simulated (see Methods 3.4). Each of the
architectures consist of 24 or 25 genes with 100 sets of simulated disease associated
variants. Using our REWAS framework we applied all five RVAS methods to each of the
six simulated architectures. As the simulated datasets were devoid of measurable noise,
technical biases or population stratification, we did not perform any QC or filtering steps
available in REWAS. Furthermore, we did not use variant-specific characteristics such
as functional impact, as variants were introduced randomly, and therefore do not have
meaningful biological nor evolutionary context.

False Positive Rate estimates

To properly evaluate the statistical power of each method we first estimated appropriate
significance thresholds for each method producing comparable type I errors. Candi-
date genes are evaluated using p-values in BURDEN, KBAC, SKAT-O and MiST, and
DIC difference value is used in BATI, further referred simply as DIC (see Methods
3.4). We estimated significance thresholds for p-values and DIC at three levels: (i) 5%
expected false positives rate (FPR), (ii) 0.1% expected FPR, and (iii) 0.01% expected
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FPR. Genome-wide rare variant association tests consider around 20,000 genes as can-
didates. Hence, a FPR of 0.01% would result in approximately 2 false positive gene
associations (20 false positives (FPs) for 0.1% and 1000 FPs for 5%). To estimate an
appropriate threshold we permuted the labels for cases and controls 100 times for each
of the six datasets, resulting in 240,000 permutation tests per architecture. (24 genes x
100 simulations x 100 permutations of case and control labels), none of which should
be significant. Distributions of obtained p-values and DICs for each of the architectures
are shown in Supplementary Figure S3.1. Table 3.1 shows the median of estimated
thresholds from 6 architectures per test. Figure 3.2 shows estimated thresholds for each
architecture-method pair. As expected, we found that in most cases estimated p-value
thresholds are close to the specified FPR we aimed to obtain. To evaluate and compare
the power of the different statistical tests we used the thresholds listed in Table 3.1 and
labeled a gene as significant according to them in each method.

Method 0.05 FPR 0.001 FPR 1e-04 FPR

BURDEN 4.941e-02 9.124e-04 7.981e-05
KBAC 4.299e-02 7.809e-04 7.574e-05
SKAT-O 5.084e-02 9.319e-04 7.049e-05
MiST 5.265e-02 1.083e-03 9.776e-05
BATI 3.866 14.54 22.47

Table 3.1: AR1–6 P-value and DIC threshold estimates for 3 FPR levels.
FPR stands for False Positive Rate
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Figure 3.2: Boxplot for P-value and DIC thresholds estimated on 3 FPR levels.

Each boxplot is representing p-value or DIC value estimates for six disease architecturess
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Power analysis

We calculated power for each architecture-method pair by counting how many times
each of the 24 (or 25) simulated disease genes was significant within the 100 simula-
tions. Genes are considered significant if their p-value generated by the benchmarked
method (or DIC value in case of BATI) was bellow (for DIC above) the corresponding
threshold listed in Table 3.1.
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Figure 3.3: Boxplot for power of methods for 3 FPR levels.
Each dot in plots represent a gene, and y axis value is a fraction of the simulations in which the gene was
called as significant.
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Figure 3.3 shows the estimated statistical power for each method and architecture on
three FPR levels. All methods performed similar with MiST being the best in almost all
architectures. SKAT-O performed slightly better than MiST on architectures 1, 2, and 3,
but only at 0.05 FPR level. As expected, BATI performs comparably, but slightly worse
than SKAT-O in this random simulation benchmark, as no biological features (neither
categorical nor numerical) were available, eliminating one of the main strengths of the
BATI test. We therefore developed a new, more realistic simulation for benchmarking of
RVAS tests with the goal to utilize real exome data, real disease variants and biological
context information, as described next.

3.2.3 A realistic simulation of whole-exome sequencing based case-
control studies

Simulated genetic architectures for benchmarking of disease association tests have been
based on randomized variants in small subsets of genes, with population variants sam-
pled from e.g. HapMap. They lack the realistic distribution of variants, background
noise and false positive variant calls found in real whole-exome sequencing (WES) data
of hundreds of individuals from a typical disease study cohort. But more importantly,
the random variants introduced as ‘disease-causing variants’ lack the biological features
of real disease-causing variants, e.g. they do not necessarily change the function of the
protein. Therefore, we developed a new disease cohort simulator combining 1167 WES
datasets from various real cohorts, in which we introduce known breast cancer predispo-
sition variants found in ClinVar. We simulated a breast cancer risk cohort by introducing
risk variants in six genes: BRCA1, BRCA2, PALB2, BRIP1, CHEK2 and BARD1 (see
Methods 3.4). Cohorts included in this simulated cohort, as well as the target enrich-
ment kits used for each study are shown in Supplementary Table S3.1.

In total we had more than 2,194 WES samples available to form the simulation cohort,
which were sequenced at CNAG–CRG Barcelona during 2011 and 2016. However,
many of these samples were not from individuals of Spanish descent, some libraries
were prepared with target enrichment kits other than Agilent SureSelect 51 or 70, or
Nimblegen SeqEz v3 or had low quality. To form a high quality cohort containing
individuals with highly similar genetic background we therefore used the quality control
(QC) modules of REWAS (see Methods 3.4) to select 1167 samples meeting the QC
criteria. For benchmarking purposes we only considered variants in regions that are
targeted by all three enrichment kits. We further observed that a small subset of regions
that supposed to be targeted consistently showed low coverage in a kit-specific manor,
leading to strong biases as shown by PCA (Supplementary Fig. S3.2a). We solved
this issue by excluding regions with less than 10x average coverage in at least one kit
(Supplementary Fig. S3.2b).
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Figure 3.4: QC plots for 1167 Samples used for simulation
All figures in the panel are after removing outliers. a Histogram for number of mutations per sample. b Histogram for Ti/Tv ratio
per sample. c Percentage of explained variance on first 9 PCA components. d Bar-plot for number of mutations per sample, colored
by mutation’s classification. e Projection on first nine PCA components, with zoom-in of first two PCA components projection.
Samples are colored by DNA analysis kit, and in zoom-in plot samples shape correspond to the project.
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Samples included in the final simulation cohort show no biases in any of the first nine
components of the PCA (Figure 3.4e), and the explained variance per PCA component
is low (Figure 3.4c). Furthermore, samples in the cohort show a normal distribution of
the number of mutations (Figure 3.4a) and Ti/Tv ratio (Figure 3.4b), and show no bias
in the fractions of InDels and synonymous, nonsynonymous or LoF SNVs (Figure 3.4d).

ClinVar variants labeled as breast cancer (BRCA) risk variants have been introduced
such that three realistic complex disease architectures are obtained in which for each
gene we aimed for 0.5%, 1% or 2% of the phenotypic variance explained (VE), respec-
tively (see Methods 3.4). For some of the genes desired levels of VE were not reached
in fraction of simulations. The reason is that some genes had low number of candidate
ClinVar variants and possible ‘unlucky’ samplings for variants relative risk. Exact levels
of reached VE for each architectures and gene are shown in Figure 3.5.
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Figure 3.5: Phenotypic Variance Explained, for the six gene after introducing risk variants.

Every boxplot in the Figure is created from cumulative VE for 100 simulations (done for each gene). For
some genes desired levels of VE (a 0.5%, b 1% and c 2%) are not reached in all 100 simulations because
of low number of candidate risk variants.

ClinVar variants with a MAF between 0 and 0.01 in public databases (EVS, ExAC, and
1000 Genome project) were used as the pool for sampling risk variants. An overview of
the total number of ClinVar risk variants available for the simulations per gene is shown
in Table 3.2.

Gene # of candidate variants # of indels # of splicing variants # of stopgain SNVs # of nonsynonymous SNVs

BRCA2 1213 825 44 283 61
BRCA1 1037 656 65 262 54
PALB2 49 31 0 15 3
BRIP1 25 11 1 9 4
CHEK2 17 8 1 7 1
BARD1 7 1 0 5 1

Table 3.2: ClinVar BRCA risk variants used for simulatation

Relative risk (RR) of introduced variants was sampled from a distribution that reflects
the behavior such that higher RR is more common for variants with lower MAF (Supple-
mentary Fig. S3.3, see Methods 3.4). The simulation procedure was repeated 100 times
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for each gene to allow for power calculation. As we are using real WES data, primarily
from Spanish population cohorts, the simulation cohort already contained variants in the
six genes prior to the introduction of ClinVar risk variants, which are listed in Table 3.3.
These pre-existing variants are not expected to be associated to cancer risk, however we
cannot completely rule out this possibility.

Gene
total # of
mutations

# of possible
cases

# of possible
controls

# of mutations
in cases

# of mutations
in controls

# of affected
cases #

# of affected
controls

BRCA2 54 387 776 21 42 30 60
BRCA1 30 389 777 16 20 24 37
PALB2 14 386 773 6 12 10 16
BRIP1 17 386 776 8 12 15 17
CHEK2 14 389 778 6 11 7 14
BARD1 9 389 778 3 7 4 15

Table 3.3: Number of mutations in six BRCA risk genes in the cohort before introducing any
causal mutations.

Only mutations participating in testing (the one after filtering by multiple criteria, like MAF<0.01, no
synonymous, etc.) are counted. In few samples some positions could not be called, therefore number of
possible cases and controls that could have a variant(s) can be lower then total number of cases (389) and
controls (778).

In order to simulate a case-control study for benchmarking of RVAS methods we ran-
domly split the 1,167 samples in one third cases (389 samples) and two third controls
(778 samples). Interestingly the random split let to a relatively high fraction of controls
with pre-existing BRCA2 variants (found in the WES data prior to introducing ClinVar
variants), coinciding with a generally high number of rare variants in BRCA2 (Table
3.3), which made RVAS for this gene specifically difficult for all benchmarked meth-
ods. Otherwise case and control cohorts showed no biases in number of variants per
sample (Supplementary Fig. S3.4a) or number of variants per gene (Supplementary
Figure S3.4b and c) (Note: this QC plot was performed using a different case-control
split with chronic lymphocytic leukemia samples as cases. I will redo this plot for the
final paper using the correct cohort split.)

3.2.4 Benchmarking RVAS Tests Using WES cohorts with ClinVar
BRCA risk variants

Similar to the benchmark test using simulated disease architectures with randomly in-
troduced variants described in 3.2.2 we used the REWAS framework to benchmark the
five RVAS tests Burden, SKAT-O, KBAC, MiST and BATI on the new WES simulation
cohort, described in the previous paragraph.
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False Positive Rate estimates

To properly estimate the significance thresholds for the WES cohort we randomly chose
one third of the samples as cases and two third as controls using the baseline WES
dataset (without introduced ClinVar risk variants, see Methods 3.4), and performed
RVAS with all 5 tests. By doing so we are considering that significant associations
should only be found by random chance and therefore we can adjust proper thresholds
for desired false positive rates (FPRs).

Prior to RVAS we filtered out all variants that had European AF>0.01 in any of the
databases: 1) ExAC, 2) EVS, and 3) 1000 Genome Project. Additionally, all variants
that in controls had AF>0.01 were removed. Furthermore, all variants that were an-
notated as synonymous or had CADD score bellow 10 (likely benign) were removed.
For BATI and MiST we used CADD scores as numeric characteristic for variants and
exonic function (missense, loss-of-function, frameshift) as categorical characteristic for
variants. We repeated the whole process (from case-control sub-sampling to RVAS) 10
times.

We noticed that MiST has inflated zero p-values, i.e. many genes had a p-value of
exactly zero, even in these randomized case-control cohorts where no gene should be
significantly associated to any trait (Figure 3.6c). We found that these unexpected zero
p-values occur exclusively for genes with few variants (/10) across the cohort. Hence,
we removed all genes with p-value 0 from MiST results (Figure 3.6d). All other meth-
ods behaved similar as in the first benchmark (six simulated disease architectures) and
did not show the zero p-value artefact or unexpectedly high DIC values (Figure 3.6 and
Supplementary Fig. S3.1).

0
3k
6k
9k

12k

0.00 0.25 0.50 0.75 1.00
p value

BURDEN

0.00 0.25 0.50 0.75 1.00
0

5k
10k
15k
20k
25k

KBAC

p value

0
3k
6k
9k

12k

0.00 0.25 0.50 0.75 1.00

0

2k

4k

6k

0.00 0.25 0.50 0.75 1.00

a

b

c

d

MiST

MiST, no zeros

0
2.5k

5k
7.5k
10k

0.00 0.25 0.50 0.75 1.00

0
10k
20k

40k

-10 0 10 20

e

f

SKAT-O

BATI

30k

p value

p value p value

DIC value

Figure 3.6: Distribution of p-values and DIC values on baseline WES data with randomized
cases and controls.

Histograms are done on aggregation of p-values or DIC values from tests on 10 randomized datasets (each
consisting of ~17000 genes), where no gene is expected to be significant.
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Next, we calculated on each of these 10 RVAS results the p-value significance threshold
for BURDEN, KBAC, SKAT-O and MiST methods to achieve 5%, 0.1% and 0.01%
FPRs. Similarly, for BATI we calculated DIC significance thresholds for obtaining the
same FPR levels. Estimated thresholds across the 10 randomized case-control datasets
are highly similar (Figure 3.7). At 0.01% FPR estimated thresholds we have only 2
genes above the threshold, and therefore observed small fluctuation of estimated signif-
icance thresholds across 10 datasets is not surprising (note that p-values axis is in log
scale in Figure 3.7). Therefore, we used the median as thresholds for subsequent power
analyses (see Table 3.4).
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Method 0.05 FPR 0.001 FPR 1e-04 FPR

BURDEN 5.392e-02 7.984e-04 9.602e-05
KBAC 7.229e-02 1.520e-03 1.813e-04
SKAT-O 5.834e-02 1.265e-03 2.400e-04
MiST 8.077e-02 1.160e-14 1.110e-16
BATI 2.738e+00 12.64 18.38e

Table 3.4: P-value and DIC threshold estimates for 3 FDR levels on Exome Sequencing dataset.
FPR stands for False Positive Rate

Power analysis and Type-1 Error

We applied each of the benchmarked methods to each of the three simulated WES
datasets (including ClinVar BRCA risk variants with cumulative variance explained
(VE) of ~0.5%, ~1% and ~2% per risk gene, respectively), using the REWAS frame-
work as described for the first benchmark above. Significance thresholds for power
calculation at 5%, 0.1% and 0.01% FPR were chosen for each method as described
above. We observed that all methods perform well (power close to 100% for all six
simulated risk genes) if VE is high (2%) and expected FPR is 5% (Figure 3.8c, left).
However, all methods except for BATI and MiST show reduced power at the same sig-
nificance level, but with lower VE (see 3.8a and b for VE of 1% and 0.5%, respectively).

We note that all five methods failed to detect BRCA2 at low VE (Figure 3.8a, left) due
to the high number of variants in this gene found in our original WES cohort used for
the simulation (90 samples affected, see Table 3.3). For comparison, a VE of 0.5%, 1%
and 2% translate to approximately 10, 20 and 40 cases affected by a damaging variant,
respectively. We conclude that genes harboring large numbers of rare variants in the
population pose a substantial problem for RVAS tests, which could potentially be over-
come by better annotation of functional impact of variants in the future.

We observed greater differences in performance between the five RVAS tests for lower
FPR thresholds (0.1% and 0.01%) and at lower VE (1% and 0.5%). Specifically, the
MiST method failed to identify any gene at lower FPR, which is especially surprising
considering the good performance of MiST in the randomly generated disease architec-
tures used in the first benchmark. Importantly, at the lowest FPR level of 0.01% only
BATI is able to identify some of the risk genes in a large fraction of simulations (except
for BRCA2, see Figure 3.8a-c, right). Similarly, at medium FPR level only BATI can
identify risk genes reliably if VE is 0.5% and power is ~100% when VE is increased
to 1% (again, excluding BRCA2, which cannot be identified by any method at these
thresholds).
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Figure 3.8: Boxplot for power of methods for 3 FPR levels.

Each dot in the plots represents a gene, and y axis value shows the fraction of the simulations in which
the gene was called as significant. In a are shown results with simulations where variance explained is
~0.5%, in b with simulations where variance explained is ~1%, and in c with simulations where variance
explained is ~2%.
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Figure 3.9 shows the distribution of p-values (or DICs for BATI) across the 100 simula-
tions for each of the six risk genes. We observe that BATI reaches significance levels for
each of the tested FPR levels and each of the VE levels for 5 out of 6 risk genes (close
to 100% of tests when VE is 1% and 2%, but only ~50% of tests when VE is 0.5%).
BURDEN, KBAC and SKAT-O performed well for 4 out of 6 genes, BRCA1, PALB2,
BRIP1 and CHEK2, but have problems with BARD1. This is not surprising because for
most of the simulations BARD1 did not reach the desired level of VE, due to a low num-
ber of candidate risk variants found in ClinVar (see Methods 3.4). BATI did not perform
worse for BARD1, indicating that the method can handle even lower levels of VE than
benchmarked here. MiST fails to call significant genes in all tests using 0.1% or 0.01%
as FPR thresholds. We note that at FPR of 5% we expect around 1000 false positive
calls. Hence, the performance at that FPR threshold is not relevant for applications of
the tests to genome-wide studies, but can indicate how tests perform in targeted studies
of up to 100 genes.
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Figure 3.9: Boxplot of p-values and DICs for all simulated BRCA risk genes and methods.
In a are shown results with simulations where variance explained (VE) is ~0.5%, in b with simulations
where VE is ~1%, and in c with simulations where VE is ~2%. Each gene had 100 simulations for each
VE dataset. Lines in boxplots mark: 5% (red), 1% (green) and 0.1% (blue) FPR thresholds.
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In addition to benchmarking how RVAS tests behave on ‘real’ WES data with real
sources of noise, another specific goal was to ascertain the impact of using biologi-
cal features such as functional impact scores for variants (here CADD score) and cat-
egorical classification of variant function (i.e. missense vs. loss of function). For one
gene, BRCA1, we only incorporated LoF variants from ClinVar. Indeed, the two tests
that account for functional classification, MiST and BATI, always show the best per-
formance for BRCA1 (Figure 3.9), while Burden, KBAC and SKAT-O perform best on
BRIP1. Specifically at the lowest FPR threshold and VE (FPR = 0.01% and VE = 0.5%)
BATI is still able to identify BRCA1 at close to 100% of tests (Figure 3.9a, left). We
conclude that the novel BATI test is able to leverage categorical biological features of
variants resulting in an improved performance compared to existing methods at low VE.

In BRCA2 we only incorporated missense variants from ClinVar (but no LoF or splic-
ing). This might contribute to the bad performance of MiST and BATI in that gene,
although this cannot be distinguished from the issue of high background variant rates
explained above, as all methods preformed poorly on BRCA2.

Finally, we tested if the observed type I error is close to the FPRs we were aiming for,
which we found to be the case for most of the methods (see 3.5). Again, we observed
a problem with the MiST, as 0 p-values are inflated for all genes with low number of
mutations. If genes with 0-values are ignored, then the type 1 error of MiST is in an
acceptable range similar to other methods.

Method 0.05 FPR 0.001 FPR 1e-04 FPR

BURDEN 4.854e-02 9.402e-04 1.763e-04
KBAC 5.001e-02 6.464e-04 0
SKAT-O 4.883e-02 1.175e-03 1.763e-04
MiST 1.025e-01 5.500e-02 5.412e-02
MiST without zero p values 4.842e-02 8.814e-04 0
BATI 4.936e-02 9.989e-04 5.876e-05

Table 3.5: T1 error with estimated P-value and DIC threshold from Table 3.4.
FPR stands at which False Positive Rate estimated threshold we used to calculate type I error

3.3 Discussion
In this work we presented the REWAS framework for rigorous rare-variant association
testing using case-control cohorts sequenced with WES or WGS. Besides including five
RVAS tests, it offers extensive quality control and filtering steps, which can help to pre-
pare the data for association analysis such that a minimal rate of false positive findings
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is achieved. We presented a newly developed Bayesian inference based association test
using Integrated Nested Laplace Approximation (BATI). We demonstrated that BATI
outperforms other methods when simulated dataset is based on a real cohort analyzed by
WES combined with real cancer risk variants obtained from ClinVar, providing mean-
ingful biological features to the variants. Notably, BATI showed better power when
phenotypic VE is low, a realistic scenario for many genes involved in complex disease
etiology, such as cancer predisposition. Finally, we demonstrated that variant charac-
teristics are an important source of information that RVAS tests based on hierarchical
mixed-effect can leverage to improve performance. We expect that improved variant an-
notation methods will further increase the potential of this feature for studying various
disease architectures.

Bayesian approaches have been less popular for biologists possibly due to the fact that
inference is not based on classical hypothesis testing about parameters of interest, but
on posterior distributions of parameters, which is a concept less familiar to those who
are not specialists. Also, using Bayesian inference for estimating parameters of the gen-
eralized linear mixed models was for years requiring usage of MCMC method that are
not feasible for genome-wide studies. The novel Integrated Nested Laplace Approxi-
mation approach can directly compute highly accurate approximations of the posterior
marginals, that enables usage of Bayesian inference methods for genome-wide studies.
Still, evaluation of the parameters of the model is not straightforward, as there are no
p-values for coefficients as in classical frequentist approaches. Here we suggested us-
ing DIC difference between the full model and the null model, but the distribution of
this value is not following a uniform distribution (as a distribution of p-values does).
Therefore, we empirically calculated quantiles for DIC-difference, by repeating analy-
sis on datasets with permuted case and control labels. We did not investigate how this
distribution would change (if at all) with different sample sizes, different populations,
or when changing any of the test parameters. We will approach this question in a future
study using the larger 1000 Genomes Project cohort, currently providing close to 3000
WES samples.

We also observed that benchmark results can vary greatly depending on simulated
datasets used for assessing the power of methods. Simulated datasets are often used
for testing and evaluating methods mostly because they enable cheap creation of very
large cohorts. Unfortunately, they do typically not capture all noise that is expected
in real life studies and lead to overly optimistic benchmark results. For instance, we
found that MiST outperformed all other methods when evaluated with the purely (and
fairly unrealistic) simulated dataset, but under-performed when applied to a simulation
based on a real WES cohort. We observed that the MiST test inflated 0 p-values when
genes with low number of variants are present in the dataset (a common characteristic of
highly conserved genes). Therefore, MiST became ineffective in our WES benchmark,
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as the type 1 error would be above expectation, unless some post-filtering of genes with
low number of variants is implemented.

Population stratification is a big issue of association tests. RVAS tests specifically re-
quire the identification of rare variants in the cohort (and the filtering of common vari-
ants). This is problematic if the studied cohort is from a population that is not suffi-
ciently represented in AF databases such as ExAC. REWAS provides the capability of
splitting control cohorts to gain one group of samples used for AF estimation for the
population and a second group as actual control. This approach benefits from large con-
trol groups and is not always feasible. Nonetheless, it can avoid AF estimation biases
as an independent set of samples is used for the estimation of allele frequencies. The
control-split functionality of REWAS has not been benchmarked in this study due to the
limited size of our cohort used for simulations.

To conclude, REWAS and BATI facilitate discovery of new cancer predisposition genes
using medium to large sized case-control studies. Large cancer cohorts, as the one ex-
pected to be released by PCAWG http://docs.icgc.org/pcawg/, are usually
conglomeration of efforts from several research centers all over the world, and hence
are prone to have population stratification issues and many possible biases. Therefore,
quality control and filtering is mandatory functionality provided by REWAS. With large
proportions of missing heritability in cancer predisposition, there is hope that we can
still find new risk genes (or regulatory elements) with moderate to high effect size on
phenotype. This would have great value in predictive medicine and early diagnostics.
Still, genes with rare variants and low effect size on phenotype are might also play an
under-appreciated role. A majority of rare variants does show low effect size [Auer and
Lettre, 2015], but in sum they could fill the gap called missing heritability.

3.4 Methods

3.4.1 Data
Simulated datasets

Six simulated disease architectures (termed AR1–6) used for benchmarking of RVAS
methods were obtained from [Moutsianas et al., 2015]. These datasets were created to
model complex disease type 2 diabetes, and were generated using HAPGEN2 [Su et al.,
2011]. For each architecture genotypes for 1500 case and 1500 controls have been sim-
ulated on 24-25 human genes of average coding length located on on chromosome 10.
For every gene 100 simulations have been performed to facilitate statistical power anal-
ysis. In brief, AR1 and AR4 mimic strong selection AR2 and AR5 simulate moderate
selection and AR3 weak selection of risk variants. For the first three architectures risk
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variants were simulated across the full site frequency spectrum (SFS) while in AR4 and
AR5 risk variants had minor allele frequency (MAF) below 1%. Finally, AR6 simulates
moderate selection of risk variants, using variants selected from the full SFS similar to
AR2, however 50% of simulated variants were deleterious and 50% protective. In Table
3.6 all 6 architectures are summarized.

Simulated architecture Direction of effects Causal variant frequencies Selection on causal alleles

AR1 All deleterious Across full SFS Strong
AR2 All deleterious Across full SFS Moderate
AR3 All deleterious Across full SFS Weak
AR4 All deleterious MAF < 1% Strong
AR5 All deleterious MAF < 1% Moderate
AR6 50% deleterious, 50% protective Across full SFS Moderate

Table 3.6: AR1–6 Locus architectures modeled at simulated loci.
doi:10.1371/journal.pgen.1005165.t001

Simulating disease variants in a real cohort

To allow for benchmark in a highly realistic dataset, which correctly represents all ex-
pected noise typically observed in cohorts analyzed by whole exome sequencing (WES)
we simulated known cancer predisposition variants into a background of a real WES
cohort from patients diagnosed with various conditions and healthy individuals. We
used an in-house dataset combining 2,194 samples, which were subjected to whole ex-
ome sequencing during 2012 to 2017. The samples were collected within more than
30 different projects. The complete cohort includes individuals from eight popula-
tions: Spanish (1350), British (487), Italian (141), French (122), South African (16),
Japanese (4), Moroccan (3) German (2), as well as 69 samples with unknown ori-
gin. Computational analysis and variant calling was performed according to GATK
best practice guidelines (https://software.broadinstitute.org/gatk/
best-practices/), including alignment with bwa-mem, GATK indel realignment
and base quality recalibration and finally variant calling by GATK HaplotypeCaller.

To simulate a realistic case-control study we sub-select samples in order to minimize
biases coming from different populations and different DNA analysis kits. To this end
we only included unrelated samples (only one family member in case of e.g. trios) that
belong to the Spanish population. WES libraries were prepared using seven different
DNA analysis kits. We only included samples that were prepared for sequencing using
one of the three exome enrichment kits: (1) Agilent SureSelect 50, (2) Agilent Sure-
Select 71, and (3) Nimblegen SeqEz V3. Furthermore, only SNPs and InDels located
in targeted genomic regions, which were covered with an average of at least 10 reads
in each kit group were included in the case-control study, as inclusion of low-coverage
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regions led to strong biases in QC (see Supplementary Fig. S3.2).

Samples that were identified as outliers with regard to number of called variants, transi-
tion to transversion (Ti/Tv) ratio, or on the projection of the first two PCA components
were removed from further analysis. Moreover, genomic loci for which no genotype
call was possible in more than 15% of samples (call rate ¡ 85%) were removed. The re-
maining cohort consisted of 1,167 unrelated Spanish samples, which harbored 285,658
unique loci with a non-reference genotype called in at least one of the samples. De-
scription of the samples used for further analysis and benchmarking is s shown in Sup-
plementary Table S3.1 and Figure 3.4.

Next, we randomly chose one third of the samples (389) to form the case group. The
remaining 778 samples are treated as controls. To introduce realistic disease variants we
queried the ClinVar (www.ncbi.nlm.nih.gov/clinvar/) database for breast
cancer risk variants. We removed variants that had European MAF higher than 0.01
in any of the three databases: EVS, 1000 genomes project or ExAC. Also, variants that
were not annotated as exonic or splicing were removed. We found that six genes had
more than five annotated disease variants in ClinVar satisfying our criteria: BRCA2,
BRCA1, PALB2, BRIP1, CHEK2 and BARD1. Description of all ClinVar variants for
these six genes is shown in Table 3.2.The selected variants form the pool of disease
variants that were introduced into the WES cohort to simulate a cancer risk cohort, and
we refer them as risk variants.

As expected, all six genes already had variants in our original cohort that are very likely
not related to the trait breast cancer predisposition we are trying to simulate by intro-
ducing causal variants from ClinVar. This type of noise is expected in any case-control
study using WES data, and hence increases the realistic level of the simulation. Existing
exonic or splicing variants in the genes BRCA2, BRCA1, PALB2, BRIP1, CHEK2 and
BARD1 with MAF < 0.01 are shown in Table 3.3.

Moutsianas et al. generated the six architectures mentioned above by simulating loci for
which the phenotypic variance explained (VE) by genetic variants is ~1% [Moutsianas
et al., 2015]. For the WES case-control simulation, we chose to test statistical power
of methods in more detail by generating datasets with three different levels of VE, i.e.
where the phenotypic VE by introduced ClinVar genetic variants is 1) ~0.5%, 2) ~1%,
and 3) ~2%a. For BARD1 it was not possible to reach the desired VE due to an insuffi-
cient number of breast cancer risk variants found in ClinVar. Figure 3.5 shows the exact
levels of VE simulated for each gene and for each simulation (100 simulations per gene).

Similar to the simulation of AR1-6 by Moutsianas et al. we used the method of So et
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al., which is available on-line as an R script [So et al., 2011], for calculation of variance
explained (VE) at each locus. Calculate of VE requires three parameters per each variant
as input: the prevalence of the trait, the population frequency of the risk allele, and the
genotype relative risk. As we were simulating breast cancer risk in a Spanish population,
prevalence was assumed to be 0.00085 [Ferlay et al., 2013b]. We aimed at generating
realistic genotype relative risk (RR) distributions where more common risk variants
(e.g. MAF≈0.01) were more likely to have lower RR, while very rare risk variants (e.g.
MAF≈0) have a higher chance to have high RR. To this end, RR for each risk variant
has been determined using the following algorithm:

1. MAF of introduced variants is estimated using the ExAC database. We define
minimum MAF as 1e-10 to avoid zeros.

2. To take into account the expected exponential decay in RR variability based on
the MAF range of values, we used the probability density function beta, that is
a family of continuous probability distributions defined on the interval [0, 1], the
range of values that MAF can take, and parameterized by two positive shape pa-
rameters. The beta distribution with shape parameters α = 0.005 and β = 1
best emulates the expected behavior, therefore we generated quantiles from this
beta distribution to obtain reasonable values of RR variability across the range of
MAF values. As the resolution for very rare variants (MAF<5e-04) is limited, a
minimum between the computed value and 10 will be taken as standard deviation
in next step.

3. For variants with different MAF values we sample RR from a normal distribution
with mean equal to zero and standard deviation calculated as described in step 2.
Then we take the absolute value and add 1.5 (as we have twice more controls,
and minimum RR should in general be above 1). As final relative risk (RR) we
take the minimum between the computed value and 16, as we want to avoid very
extreme scenarios (e.g. a single risk variant affecting 10% or more cases).

Using the RR generation algorithm results in an RR distribution in which risk variants
with MAF≈0.01 have RR around 2, while for very rare risk variants (MAF≈0.001)
RRs between 1.5 and 16 are generated. All parameters were chosen such that the RR
distribution resembles the RR distribution presented in Moutsianas et al. in Supplemen-
tary Fig. S3 [Moutsianas et al., 2015]. The RR distribution is shown in Supplementary
S3.3. Given the case-control nature of our design, we have used the odds ratio (OR)
instead of RR, but since the prevalence of the simulated disease is very small, the OR is
a good approximation to RR. The population frequency of the risk allele can simply be
estimated from the cohort.
We assumed independence between risk variants at a given locus, and thus estimated the
total percentage of VE as the sum of the VE by each individual variant. The following
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procedure was used for introducing risk variants for each of the six simulated breast
cancer risk genes:

1. Pick randomly a variant from the pool of the ClinVar candidate variants for a gene

2. Estimate MAF for this variant with ExAC database

3. Introduce an effect by sampling from the generated RR distribution

4. With MAF from (2) estimate number of affected controls. With a number of
affected controls and sampled RR from (3) estimate number of affected cases

5. If number of affected cases and controls is 0 go back to step (1)

6. Introduce variant into the estimated number of cases and controls by sampling
randomly cases and controls

7. Remove the risk variant from the pool of candidate variants for this simulation

8. Stop if there are no more variants in the pool of candidate variants

9. If the cumulative variance explained by variants introduced in a gene is below the
specified threshold (0.5%, 1% or 2%), go to step (1) and repeat

10. If the variance is above the specified threshold stop with introducing risk variants

Additionally, for BRCA2 we only introduced missense SNVs (but not loss of function–
LoF variants) as risk variants, while for BRCA1 we only introduced stop gain and splic-
ing SNVs (i.e. only LoF variants). This was done so we could test if methods like MiST
and BATI (see below) can benefit from categorical features that capture biological func-
tion and context of variants. The simulation procedure is repeated 100 times for each of
the six simulated risk genes in order to generate 100 datasets for statistical power and
false positive rates analysis.

3.4.2 Framework for Rare Variant Association Studies (RVAS)

We have implemented the ‘Rare variants Exome Wide Association Study’ (REWAS)
framework that integrates various gene-based rare variant association study methods,
quality control procedures, covariates and variants characteristics construction, approach
to estimate local population AF, as well as visualization methods. REWAS is imple-
mented as an sequence of R scripts, and is available on-line at https://github.
com/hanasusak/REWAS.
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Quality Control (QC)

The first module of REWAS implements various quality control procedures and meth-
ods. REWAS–QC checks if cases and controls are homogeneous and that there are no
biases in data that could cause high false positive rates. To do so we developed an
interactive R script that in user friendly way computes essential quality control (QC)
measures and prepares data for association testing. The script has two mandatory in-
put parameters: 1) sample information file path and 2) variant information file path.
The sample information file has only one mandatory column specifying the names of
the samples. Additional columns can be provided giving useful information about each
sample, e.g. library preparation and target enrichment kits, gender, population, etc. The
variant information file is similar to multi-sample VCF (variant call format) files with a
few changes facilitating functional annotation of variants. A header line is used for spec-
ifying the content of columns, where column names that are associated with functional
annotation start with # and column names that are imported from the original VCF do
not start with #. Another difference to VCF is that sample genotypes are annotated as:
NA (no call available for the sample), 0 (both alleles called as reference), 1 (heterozy-
gous SNV) and 2 (homozygous SNV). All columns are tab separated and the following
annotation columns are mandatory: #Chr, #Position, #Reference, and #Alteration. Sam-
ple names in the header have to match the names given in the sample information file.
(If this is not the case there is an optional parameter allowing to specify a translation
file with two columns. The first column represents the names of the samples from the
variant information file and the second column is the corresponding sample name in the
sample information file.)
Example of file with samples information
Samples ID DNA kit Gender P o p u l a t i o n P r o j e c t
Sample1 A g i l e n t 7 1 F S p a n i s h CLL
Sample2 A g i l e n t 7 1 F S p a n i s h CLL
Sample2 A g i l e n t 5 0 F S p a n i s h OCD

Header of example file with variants information
#Chr # P o s i t i o n # R e f e r e n c e # A l t e r a t i o n #Gene Sample1 Sample2 Sample3
1 808861 G A FAM41C 0 NA 1
1 808922 G A FAM41C 1 0 0
1 808928 C T FAM41C 1 1 0
1 808984 A G FAM41C NA 0 2
1 808991 C T FAM41C 0 1 0

If InDels are stored in a separate file the user can provide the additional file. The InDel
file should have the same format as the genetic variants file. SNV and InDel files will be
joined prior to association analysis, but an additional column will be added indicating if
a variant is a SNV or an InDel.

The QC script is interactive and offers the user to perform the following steps:

1. Users will be offered to remove any samples based on any column from the sample
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information file. For example, the user can choose to remove all samples that in
the ‘Population’ have an entry different from ‘Spanish’

2. . Next, users could remove variants based on any annotation column. If an annota-
tion column is categorical the user can specify specific entries to keep or remove,
e.g. remove anything other than ‘exonic’ or ‘splicing’. If an annotation column is
numerical users will be briefly informed on quantiles for the column and can then
specify thresholds for minimum or maximum values. Such example of a column
could be ‘#Segmental duplication’, where the user would filter out all variants
that have 0.9 or higher value in this column.

3. If for some variants genotypes were not called (NAs) users will be offered to
remove variants based on percentage of NAs in the cohort (i.e. variant call rate).

4. A histogram of number of variants per sample is presented ( Figure 3.4a). Samples
that have a number of variants outside of the limits specified by the user will be
removed.

5. A histogram of transition to transversion (Ti/Tv) ratio per sample is presented
(Figure 3.4b). Samples that have a Ti/Tv ratio outside of the limits specified by
the user will be removed.

6. Users can choose the type of variants for calculating a PCA. Given large enough
variant sets, synonymous SNVs are recommended for PCA calculation as they are
mostly neutral (no selection, no effect on disease). In addition very rare variants
(MAF<0.005) can be removed from PCA, as they are not informative. Further-
more, all variants in linkage disequilibrium (LD ≥ 0.2) are removed from PCA
analysis automatically. Optionally, user can choose color and shape for visualiza-
tion of samples in the PCA projection. For PCA any genotype labeled NA will
be replaced with 0, in order to significantly gain on speed with a cost of possible
inaccurate projection of samples on PCA components. Still, variance explained
by each component is not expected to change drastically. Then the first 20 PCA
components will be calculated for selected variants and the percentage of variance
explained by each PCA component will be shown to the user (Figure 3.4c). Addi-
tionally, pairwise projection of first 10 components will be shown (Figure 3.4e).
Based on these plots users need to choose the number of PCA components (n) to
be included as covariates in association testing.

7. With information from previous step n PCA components are recalculated, but this
time not replacing NA values by 0 (therefore projection on PCA components will
be accurate). Numerically this is solved with the Non-linear Iterative Partial Least
Squares (NIPALS) [Wold, 1966] function. Samples are projected on the first two
PCA components where each sample is colored and given shapes by previously
chosen attributes (Figure 3.4e upper right corner). Users can choose minimum
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and maximum values for the first two components where everything outside of
chosen limits will be removed.

8. Informative (not interactive) barplot of number of variants per sample, colored
by variants type/class is also produced. Users can choose any annotation column
(starting with #) from the variants information file that is categorical to be used
as color class. Additionally, users can aggregate and/or rename values from this
column (e.g. in column ‘#Exonic Function’ stop gains and stop losses could be
renamed to stop gain/loss). An example of such a plot is shown in Figure 3.4d.

9. Finally, if the sample information file contains a column specifying cases and
controls, additional informative plots will be generated:

• Barplot of number of mutations, colored by cases and controls. An example
of such plots is shown in Supplementary Fig. S3.4a. In case one color is bi-
ased towards the upper end of the plot users should check why the respective
group has inflated number of variants (or the other group deflated numbers).

• Number of variants per gene in cases versus controls. An example of such
plots is shown in Supplementary Fig. S3.4a and b. Here, user can assess
if the number of variants per gene is balanced (equally distributed) between
cases and controls.

Plots in this step are performed on filtered data from previous steps and users can
again compare cases and controls on specific types/classes of variants.

The output of the QC scripts will be all mentioned plots, before and after filtering if
applicable. Additionally, two text files will be generated, one with sample information
for all samples passing all filtering steps plus added n number of PCA component pro-
jections. The second text file is a variant information file with variants passing the all
filters. These files are used as input for RVAS methods. All user choices and any other
relevant information from QC is saved in the log file.

Rare Variant Association Study (RVAS) Methods

The current REWAS version implements five RVAS test methods, including the four
published methods” BURDEN [Lee et al., 2012b], KBAC [Liu and Leal, 2010], SKAT-
O [Lee et al., 2012b][Lee et al., 2012a] and MiST [Sun et al., 2013]. These four RVAS
tests have been selected based on their superior performance (power) compare to other
tests in previous benchmark papers [Moutsianas et al., 2015]. Furthermore, each of
these methods is available as implementation in R. Moreover, the four methods are
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complementary, as they address different difficulties with rare-variant association test-
ing.

BUDREN Test
BURDEN is a unidirectional test that aggregates the rare variants within a focal gene
(or any other defined region or functional unit) as a single burden variable, which can
then be tested for association with any trait of interest. It is more powerful when a large
fraction of rare variants in the set is causal and the effects are mainly deleterious with
similar magnitude. If some of these assumptions do not hold we expect that power with
BURDEN tests will be significantly reduced.
In REWAS the BURDEN test was implemented using the package SKAT (cran.
r-project.org/web/packages/SKAT/index.html) version 1.3.0. The Null
model, which only contains covariates, was generated using the SKAT_Null_Model func-
tion with output set to dichotomous outcome (out_type ="D") and no sample adjustment
(Adjustment=FALSE). All other parameters were set to default. For the actual Burden test
with genetic information and covariates we used the function SKATBinary with all param-
eters at default values except for method, which was set to "Burden" and for weights, for
which we used MAF of variants transformed with the Get_Logistic_Weights function with
default parameters.

KBAC
KBAC is a unidirectional test that combines variant classification and association testing
in a coherent framework. Compared to BURDEN test it is expected to have better power
if there is a mixture of non-causal and causal variants in a gene.
KBAC is available as R implementation (tigerwang.org/software/kbac), but
with some restrictions in parameter options as compared to the KBAC standalone soft-
ware implementation. For example, with the KBAC R package version 0.1 there was no
possibility to include covariates. For association testing we used the function KbacTest

with parameters alpa=2.5e-06, num.permutation=1000000, and with all other parameters set
to default values.

SKAT-O
SKAT-O approach is a weighted linear combination of a unidirectional burden test and
the SKAT variance component bidirectional test. SKAT uses a multiple regression
model to directly regress the phenotype on genetic variants in a defined region and on
covariates, and therefore allows for variants to have different directions and/or effects
size [Wu et al., 2011]. Therefore, SKAT-O automatically infers from the data what test,
burden or SKAT, is more appropriate and optimize for the best of both.
SKAT-0 was implemented in REWAS using the package SKAT, the same package as
used for BURDEN test. The Null model, which only contains covariates, was generated
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using the SKAT_Null_Model function with output set to dichotomous outcome (out_type
="D") and no sample adjustment (Adjustment=FALSE). All other parameters were set to
default. For SKAT-O association testing with genetic information and covariates we
used the function SKATBinary with all default parameters except for method, which was
set to "optimal.adj" corresponding to SKAT-O test, and for weights, for which we used
MAF of variants transformed with the Get_Logistic_Weights function with default param-
eters.

MiST
The MiST test is based on a type of mixed-effect models implemented using hierar-
chical modeling, which can utilize known characteristics of variants as e.g. functional
impact. Apart from continuous damage score this could also benefit from inclusion of
categorical variables as e.g. missense vs. LoF SNV. It tests for fixed and random effects
in two steps, and similar to SKAT-O can handle causal variants with different directions
and magnitude of effects. For additional details about MiST implementation we refer to
Sun et al. [Sun et al., 2013].
MiST was developed as standalone R package and is available at CRAN repository:
cran.r-project.org/web/packages/MiST/index.html. Here we used
MiST R package Version 1.0 and we used the function logit.weight.test with all default
parameters to perform the MiST association test.

BATI
We have developed a novel genetic association test (BATI) based on Integrated Nested
Laplace Approximation (INLA; [Rue et al., 2009]). INLA allows implementation of
Bayesian inference on the generalized linear mixed model framework. The method is
conceptually similar to the method MiST [Sun et al., 2013] in the sense that it consid-
ers heterogeneous effects by specifying individual effects of variants as random effects,
allowing the inclusion of prior knowledge about the variants (such as functionality or
damaging scores) and incorporation of confounders at patient level (such as gender or
population stratification).

Integrated Nested Laplace Approximation
Integrated Nested Laplace Approximation (INLA) is a new approach to implement
Bayesian inference on latent Gaussian models, which are a very wide and flexible class
of models ranging from (generalized) linear mixed models (GLMMs) to spatial and
spatio-temporal models. Thanks to this, INLA can be used in a great variety of appli-
cations [Li et al., 2012b, Ruiz-Cárdenas et al., 2012, Martino et al., 2011, Roos and
Held, 2011, Schrödle et al., 2011, Schrödle and Held, 2011, Paul et al., 2010]. Unlike
MiST, BATI thanks to INLA can make inference based on full model estimation, and
therefore allows us to obtain more information about estimates of model parameters.
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INLA provides approximations to the posterior marginals of the latent variables, which
are both very accurate and extremely fast to compute [Rue et al., 2009]. In particular,
it has been developed as a computationally efficient alternative to MCMC and presents
two main advantages over MCMC techniques. On the one hand, it is worth noting that
INLA’s fast speed allows to work on models with huge dimensional latent fields. On the
other hand, INLA treats latent Gaussian models in a unified way thus allowing greater
automation of the inference process. A detailed description of the INLA method and a
thorough comparison with MCMC results can be found in [Rue et al., 2009].

Model specification
Assume we have N individuals, and let yi (i = 1, · · · , N) be the observed trait of the
ith individual that belongs to an exponential family

yi ∼ π(yi; µi, θ) (3.1)

where the expected value µ = E(Yi) is linked to a linear predictor ηi through a known
link function g(·), so that g(·) = ηi. In our case Yi is a binary variable which is assumed
to follow a Bernouilli probability distribution, and the common specification for g(·)
is the logit function. Instead, we propose to construct the likelihood of the data based
on a logistic distribution and use the identity function for g(·). The linear predictor ηi
is defined to account for potential confounding covariates at individual-level and RVs
effects:

ηi = X t
iα +Gt

iβ (3.2)

where Xi is a m× 1 vector of confounding covariates and Gi denotes a p× 1 vector of
genotypes for p RVs and each genotype is coded as 0, 1, or 2, representing the number
of minor alleles. α and β are the regression vectors of coefficients.

As proposed by [Sun et al., 2013] we can allow to account as well for individual variant
characteristics under the assumption that similar variant-specific characteristics have
similar effect on the trait, while still allowing for potential individual heterogeneity
effect. Therefore β can be modeled in a hierarchical way as:

βj = Zt
jω + δj (3.3)

where ω is a vector of q × 1 (j = 1, · · · , q) variant-specific regression coefficients, Zt

is a p × q matrix, and δ is a p × 1 random effects vector which is assumed to follow a
multivariate Gaussian distribution with mean 0 and covariance matrix τQ . If no depen-
dency structure is defined across variants as in [Sun et al., 2013] Q is a p × p identity
matrix. However, if one thinks that the variants have a certain correlation structure such
as physical distance dependency across the variants, then Q is constructed so that it re-
flects this structure. The advantage of INLA is that the Laplace approximation of the
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posterior distributions allows the estimation of the full model for complex structures of
random effects.
Plugging expression 3.3 into expression 3.2 we have the expression of a generalized
linear mixed effects model (GLMM):

ηi = X t
iα + (Gt

iZ)ω +Gt
iδ (3.4)

with α and ω as fixed effects coefficients and δ as random effects coefficients.

Assuming that the vector of parameters is represented by θ = {α, ω, δ}, the objectives
of the Bayesian computation are the marginal posterior distributions for each of the
elements of the parameters vector p(θs|y) and for the hyper-parameter p(τ |y).
Thus, firstly we need to compute p(τ |y) and p(θs|τ, y), which is needed to compute the
marginal posterior for the parameters. The INLA approach exploits the assumptions of
the model to produce a numerical approximation to the posteriors of interest, based on
the Laplace approximation [Tierney and Kadane, 1986].

More details on these methods can be found in [Rue et al., 2009, Martins et al., 2013,
Blangiardo et al., 2013].

Model selection
For association test we use a model selection criteria comparing the likelihood of a null
model with no genetic effects and the likelihood of an alternative model with some
genetic effects:

H0 : ηi = X t
iα (3.5)

H1 : ηi = X t
iα + (Gt

iZ)ω +Gt
iδ (3.6)

Therefore we use the difference in deviance information criteria (DIC) between models
[Spiegelhalter et al., 2002].

Computational implementation
INLA is implemented as an R-package within the R freeware statistical program, which
offers a friendly framework and a very good tool for inference on latent Gaussian mod-
els. In our REWAS pipeline we used R package INLA version 17.6.20. To run the
null model as independent variables we used only covariates, and for full model we
added genetic information. In full model as the latent Gaussian field we used classical
random effect model (by specification of INLA it is equivalent to setting model="z" in
formula for random effects). In both models variable family was set "logistic", vari-
able control.compute to list of values dic=TRUE, cpo=TRUE, config=TRUE, number of threads
("num.threads") to number of available cores specified by user (default 1), and the step-
length for the gradient calculations for the hyperparameters (h) to value specified by
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user (default 1e-3). All other parameters are left to default values.

Rare Variant Association Study – Running the REWAS pipeline

All tests are implemented in an R package called REWAS requiring as input two manda-
tory parameters, path to the samples information file and path to the variants information
file, that are produced in QC step of analysis. Optional parameters are allele frequency
threshold (default is 0.01 if not set), path to the file with list of genes (or another analo-
gous list) to be tested, and path to the output folder. If output folder is not defined a new
folder will be automatically created in the current directory starting with ‘Risk analysis’
and ending with the current date (format Y-m-d-HMS) where all results will be saved.
The QC part of the analysis can be performed in two ways, running the R script interac-
tively or running the R script as bash job (which can be distributed on a compute cluster
or cloud if necessary). The Interactive way is more intuitive and easier for users with
no Linux experience but requires a stable connection with the server where the analysis
is performed. It is important to mention that analysis can take ~9 days if genes of the
whole exome are tested (~20000 genes) on relatively small cohort (~1200 cases and
controls together) if one core is only available and all 5 tests are performed. For this
reason we developed an alternative way to perform analysis where users need to setup
a config file and submit the script as a batch job to a server or compute cluster. BATI is
the slowest association test from the five, but it can benefit from multiple cores if they
are available. From our experience with REWAS, times drop linearly with increase of
numbers of available cores. For example, for the same dataset, on the same computer
architecture and the same type of analysis, with 1 core it was necessary ~9 days to finish,
while with 5 cores available it took a bit less then 2 days.
All the variables that user can set in config file with some examples are:
READ_FROM="bash" # mode for the script, default ’stdin’ - interactive mode
R_MAX_MC_CORES=1 # number of cores available, default 1
R_SEED=160185 # random seed, default 160185
R_PERMUTATIONS=1 # number of random splits of controls in two datasets

R_INLA="T" # logical indicator (T or F) if BATI test should be performed, default T
R_MIST="T" # logical indicator (T or F) if MiST test should be performed, default T
R_KBAC="T" # logical indicator (T or F) if KBAC test should be performed, default T
R_SKATO="T" # logical indicator (T or F) if SKAT-O test should be performed, default T
R_BURDEN="T" # logical indicator (T or F) if BURDEN test should be performed, default T
MAF_LOGICAL="F" # logical indicator (T or F) if MAF of the variants should be uses as

weights for BATI test, default F
H_STEP= 0.001 # step for gradient decent in INLA, default 1e-3. In case INLA is not

converging step should be reduced

R_COV_MAT_COLS="PC1, PC2, PC3" # column names in samples info file that should be
used as covariates, default "". If not set it will not use covariates for test
where possible

R_AGG_COL="#Gene" # column name in variants info file indicate what should be used to
aggregate variants. This is usually Genes name column.

104



R_PROJECT_COL="case_ind" # column name in samples info file that contain information
what are cases and what are controls samples

R_CASES_NAME="case" # in R_PROJECT_COL what are the cases. If multiple values, they
should be comma separated

R_CONTROLS_NAME="control" # in R_PROJECT_COL what are the controls. If multiple
values, they should be comma separated. If not provided all values different form
R_CASES_NAME in R_PROJECT_COL will be used as controls.

R_CHAR_FILT_COL="#ExonicFunction" # column names in variants info file that are
categorical and we want to filter from. Separated with |

R_CHAR_FILT_VAL="synonymous SNV" # Values for each of the columns in R_CHAR_FILT_COL
that we want to filter out. When starting with values from different
R_CHAR_FILT_COL column separate with |, but in-between one R_CHAR_FILT_COL
column separate with comma

R_NUM_FILT_COL="#EurEVSFrequency|#Eur1000GenomesFrequency|#ExAC_NFE|#Cadd2" # column
names from variants info file that are numerical and we want to filter on.
Separated with |

R_NUM_FILT_VAL="h|h|h|l" # If we want to filter out higher (h) or lower (l) then
specific threshold. separated with |

R_NUM_FILT_TRH="0.01|0.01|0.01|10" # Threshold for each column in R_NUM_FILT_COL,
separated with |

R_DUMMY_VAR="#ExonicFunction" # column name from variants info file that you want to
use as variants categorical description

R_DUMMY_MERGE="frameshift deletion, frameshift insertion, nonframeshift deletion,
nonframeshift insertion | stopgain SNV, stoploss SNV, splicing" # values from
column R_DUMMY_VAR that you want to merge and/or rename. Groups for
merging/renaming are separated with |, and values from same group with comma.

R_DUMMY_RENAME="indels|stop_gain_loss_splicing" # new names for each group in
R_DUMMY_MERGE, separated with |

R_NUMERIC_VAR="#Cadd2" # column name from variants info file that you want to use as
variants numerical description

R_CONTROLS_NUM=778 # number of samples to be used as controls from available amount.
If not set all available controls will be used as controls.

If user wants to run RVAS analysis as batch job than mandatory variables to set are:
READ FROM, R AGG COL, R PROJECT COL and R CASES NAME. Others or have
default value or are not obligatory. For example, if user wants to run only one specific
test, e.g. BATI, few lines of bash script would be sufficient:

#!/bin/sh
export READ_FROM="bash"
export R_INLA="T" # not nessesary to put here as it is default value
export R_MIST="F"
export R_KBAC="F"
export R_SKATO="F"
export R_BURDEN="F"
export R_AGG_COL="#Gene"
export R_PROJECT_COL="case_ind"
export R_CASES_NAME="case"

Rscript RVAS_tests.R -m "path to variant info file" -d "path to
samples info file" -f 0.01
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Here, all the variants that have AF estimated from controls higher then a given thresh-
old (0.01) will be removed from analysis. If user wanted to filter out all variants
that have AF higher then given threshold in public databases he would need to use
R NUM FILT COL variable and specify the columns or follow instruction when done
in interactive mode. It is reasonable to argue that using controls to estimate AF might
cause biases in analysis. Therefore, there is an option of splitting controls in two
datasets, where user choose on which fractions he wants to split controls. One frac-
tion of controls will be used to estimate allele frequency (AF), while the other frac-
tion will be used as regular controls dataset. All the variants that have AF in the first
dataset higher then AF threshold that is passed as parameter, will be removed from anal-
ysis. To avoid unlucky random splits this process can be repeated N times. Default is
100, but user can controls this with R PERMUTATIONS variable or follow instruction
when done in interactive mode. If multiple cores are available and set with variable
R MAX MC CORES every spit-controls analysis will take first available core. If there
is more then one core available and controls are not divided in two datasets, then BATI
analysis will take all available cores as it is possible to parallelize process for estimating
parameters and it speeds up time linearly.

Each of the five tests will produce one output file. All output files will have following
columns

genes Aggregation column values

total.mut Total number of unique variants participating in analysis for this gene (or
other specified aggregation unit)

cases.mut Number of unique variants in cases.

controls.mut Number of unique variants in controls

num.cases Number of affected cases

num.controls Number of affected controls

no.na.cases Number of cases that participated in analysis

no.na.controls Number of controls that participated in analysis

p.val.pi Only MiST results have this column. P-value for test π = 0

p.val.tau Only MiST results have this column. P-value for test τ = 0

p.val.overall P-value for the gene. BATI results do not have this column

adjust P-value corrected for multiple testing (BH). BATI results do not have this col-
umn
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dic.diff Only BATI results have this column. Difference between DIC values for mod-
els when genetic information is used and when only covariates are used. The
higher the DIC difference, the more likely the genotypes in the gene can explain
the trait.

cpo.diff Only BATI results have this column.. Difference between CPO values for
models when genetic information is used and when only covariates are used. The
higher the CPO difference, the more likely the genotypes in the gene can explain
the trait.

All columns except genes have suffix permX, where X goes from 1 to the N (number
of random splits of controls in two sets). In addition, a log file is saved in the results
folder. A flowchart of the pipeline is shown in Figure 3.1.

3.5 Supplementary Information
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Figure S3.1: Distribution of p-values and DIC for each method and architecture
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Project
DNA kit

Agilent 50 Agilent 71 Nimblegen v3

Alopecia Areata 0 25 0
Chronic Lymphocytic Leukemia 276 160 0
Controls 0 0 63
Centenarians 1 0 0
Cystic Fibrosis 10 16 0
Essential Tremor 0 0 4
Fibromyalgia 39 0 49
Intellectual Disability 79 0 1
Neuromyelitis Optica 14 0 0
Obsessive Compulsive Disorder 0 0 260
Parkinson 0 0 38
Sezary 0 6 0
Stroke 0 0 79
Ataxia 0 0 12
ChiariMalformation 0 0 2
Immunodeficiency 0 0 9
Myasthenia 0 0 6
Progressive Encephalopathy 0 0 4
Vitiligo 0 14 0

Total per DNA kit 419 221 527

Table S3.1: Description of WES samples used for simulation .
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Chapter 4

DISCUSSION

In this thesis I have presented two projects: (i) A Bayesian statistical model for infer-
ring cancer driver genes, and (ii) A comprehensive statistical framework for rare-variant
association studies. Looking back in history, most of the ideas used in this study to im-
prove statistical methods for precision medicine and large cohort analysis have their
roots in research performed decades ago. For instance, the hypothesis that clonal mu-
tations are enriched for driver genes in most cancer types has been proposed by Peter
Nowell in 70’s, and later observed by other groups [McGranahan et al., 2015].
Still, late driver mutations that had no time to expand (until the time that specimen was
sampled from the patient in a biopsy), driver mutations that are observed in subclones
that are physical limited to expand, and driver mutations that are in subclones that opti-
mally ‘co-operate’ in specific fractions, will not show strong clonal signatures, if at all.
Thus, we believe that there is no one ‘magical’ signature of positive selection that can
identify all driver events in cancer, as cancers are a complex and highly heterogeneous
disease on multiple levels. Considering many signatures of selection at the same time is
the way that promises to identify the complete landscape of cancer driver genes. In this
work we have made a first step by integration of three signatures of selection. However,
other signatures and variant types could be added, e.g. differential expression, copy
number variants or mutation clustering. Bayesian inference as well as other machine
learning based methods are powerful tools able to integrate large number of features
(signatures) and are furthermore able to learn from prior knowledge. We expect to see
more of these approaches in the future used to tackle the issue of identifying all causes
of cancer in a comprehensive manor.

Rare-variant association studies (RVAS) gained huge interest once the GWAS method
started to show limitations and the issue of the missing heritability became obvious [Lee
et al., 2014, Manolio et al., 2009]. Especially the advent of NGS allowing for whole-
genome or whole-exome sequencing made new approaches necessary that can utilize
rare variants. Most loci identified by GWAS have a modest effects on disease risk,
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which in practice often means a long journey until clinical diagnostics (or treatment)
can benefit from this knowledge. That rare variants play important role in complex dis-
eases has been shown in many studies [Roth et al., 2012, Stein et al., 2012, Rivas et al.,
2011, Jonsson et al., 2012], and several rare risk variants influencing cancer risk are
known [Gudmundsson et al., 2012]. With the emergence of sequencing data for large
cancer cohorts generated by TCGA and ICGC consortia and the release of predicted
somatic and germline variants, we saw the opportunity to analyze the germline genome
of cancer patients in order to identify new cancer risk genes. Although, most of the
samples in this cohorts are not familial, we know that many sporadic cancers have a
strong genetic component [Lichtenstein et al., 2000]. Lack of good matching controls
motivated us to develop a comprehensive framework for rare-variant association test-
ing of case-control cohorts not only incorporating state of the art RVAS methods, but
also modules for quality control and population stratification. RVAS approaches used
on cancer cohorts have the potential to reveal a number of moderate to strong effect
variants/genes, which will prove useful in predictive personalized medicine, and could
represent new drug targets.

As result from the first project (Chapter 2), we presented the standalone R package
cDriver that is focusing on analysis of somatic mutations from tumor tissue. It utilize
multiple signatures of positive selection, from which cancer cell fraction (CCF) is for
the first time used as part of any software to infer cancer driver genes. We first demon-
strate that CCF is a potent signature of positive selection, and subsequently we used
CCF with other signatures as evidence (or not) for mutations to be true drivers, all in-
tegrated in Bayesian statistical inference model. Further, we have performed extensive
benchmarking of cDriver and four other commonly used driver prediction tools. From
benchmark analyses we came to conclusion that cDriver performs as good or better then
the best of the four competing tools. Nonetheless, we found that ensembles of two or
more methods still outperformed any single method. Importantly, we could show that
cDriver contributes to an improved result of the ensemble of methods.

In second part of Chapter 2 we focused on driver genes that are mutated in a very small
fraction of cancer patients (lowly recurrent driver mutations). Methods that exploit re-
currence as sign of positive selection where not successful in identifying driver genes
that are found in <5% of cancer patients [Vogelstein et al., 2013]. We exploited the
observation that many cancer driver genes are shared as driver events between different
tumor types. We identified ‘tumor type-driver gene’ (TTGD) connections for genes that
are not frequently mutated in that particular tumor type, but frequent in another tumor
type. These novel cancer driver genes were enriched for chromatin modifiers. Interest-
ingly we found that mutations in chromatin modifiers are frequent in almost all tumor
types, with more than 40% of patients presenting with at least one mutated chromatin
modifier.
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In Chapter 3 we contributed to the fields of cancer heritability and genetic associa-
tion study in two ways, first by implementing a novel powerful RVAS method, and
second, by developing a comprehensive framework (REWAS) facilitating user-friendly
and intuitive analysis of case-control cohort studies. We demonstrated that new RVAS
method have better power then other methods when tested on datasets that resemble real
case-control studies. More importantly, the new method shows moderate to high power
for identification of genes that have low percentage of phenotypic variance explained
(0.5%) when other methods did not reach exome-wide significance (0.01% of false pos-
itives expected). We observed different results in simulated datasets that do not reflect
real case-control studies. Using these simulated datasets that are depleted of any kind
of noise and utilize randomized disease variants the performance order of tested tools
inverted as compared to the more realistic simulation. This might question the validity
of many benchmark tests based on purely simulated data for evaluation RVAS methods
and conclusions drown from such evaluations are likely not applicable to real WES or
WGS datasets. In the end, the best method is the one that can handle noise and biases
in the data that are regularly present in WES case-control datasets and hence the simu-
lations need to represent these biases and noise sources.

We did not benchmark REWAS in real case-control study (yet) as we would not be able
to measure power without costly replication studies. Nevertheless, we did use REWAS
on various disease studies, including chronic lymphocytic leukemia, obsessive compul-
sive disorder, breast cancer and the PanCancer Analysis of Whole Genomes cohort. For
OCD a replication study is in process, for breast cancer results were highly overlapping
between methods but of unknown functional significance (the cohort was also of very
limited size), and for CLL and PCAWG the results are still being analyzed (although un-
fortunately no ‘low hanging fruit’ was found which immediately jumped into the eye).

Here we neglected any analysis of common variants which also play an important role
in cancer predisposition [Varghese and Easton, 2010, Chang et al., 2014]. However,
there is strong evidence that mechanisms for cancer predisposition genes with rare risk
variants and high effects differ from cancer predispositions genes that have common
risk variants and low effects [Rahman, 2014]. Thus, their analysis and identification
can be done separately without loosing power or information about disease mechanisms
(e.g. pathways analysis). Nonetheless our REWAS framework is readily able to include
common variants in the association test, or to integrate other biological features which
in the future could help to improve results.
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4.1 Future perspective
In this work somatic and germline events in cancer genomes have been considered and
analyzed separately. It is clear that a cancer patient is a carrier of both types of vari-
ants, a fact that in this work has been neglected. It has been shown that there is a great
overlap between cancer predisposition genes and cancer driver genes [Rahman, 2014].
Moreover, the “Two-Hit Hypothesis” [Knudson, 1971] proposes that tumor suppressor
genes are often affected by a Heterozygous germline variant affecting one allele, while
the function of the second allele is lost later in life by a somatic event. Finally, it has
been demonstrated that germline variants in some genes can affect somatic mutation
profiles (e.g. variants in the APOBEC3 gene cluster [Middlebrooks et al., 2016]). Some
attempts to integrate these two types of cancer mutations within a single statistical anal-
ysis of an ovarian cancer cohort gave promising results [Kanchi et al., 2014]. Recently,
germline-somatic interactions was used in almost 6,000 patients to infer germline vari-
ants that affect cancer evolution (without any controls dataset) and classifying tumors
based on germline profiles revealed new driver genes [Carter et al., 2017]. I have con-
tributed myself to a study (manuscript in preparation) by the PCAWG consortium in
which the analysis of germline and somatic mutations in 2834 WGS datasets revealed
new connections between germline variants and somatic mutation profiles. This is a
promising sign that cancer genomics will benefit from aggregating information from
multiple sources (like different types of alternations, somatic and germline mutations,
multiple signatures of selection, other OMICs types etc.). More complex models and
more complex ‘Big Data’ approaches will be necessary to tackle this type of multi-
dimensional data analysis. Another way to approach complex datasets would be ‘divide
and conquer’, where smaller problems are first solved (e.g. every method applied to
only one signature) and then results from multiple sources are aggregated. Tamborero
et al. showed that this approach, sometimes termed ’ensemble method’ can yield novel
results, by showing that combining results of driver prediction methods was superior to
individual results of any method alone [Tamborero et al., 2013b]. However, using this
approach any interaction between signatures is lost and hence we propose to continue
with the development of integrative statistical analysis methods using Bayesian infer-
ence and other machine learning methods.
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Chapter 5

CONCLUSIONS

• Signatures of tumor evolution are highly informative for prediction of cancer
driver genes, as mutations ‘beneficial’ for cancer cells are showing properties of
positive selection.

• Cancer cell fraction of somatic mutations is one of the signatures of positive se-
lection, and it can be used to approximate fitness gains by different genotypes
detected in heterogeneous cancer tissues.

• Exploitation of multiple signatures of positive selection helps to generate a com-
prehensive landscape of cancer driver mutations and genes, especially for drivers
that have low recurrence (‘long tail of driver genes’).

• Genes identified as drivers in a particular tumor type have a higher probability
to be drivers for other tumor types. Therefore, exploiting this prior knowledge
allowed us to identify new connections between tumor types and lowly recurrent
mutated genes.

• The R package (cDriver) was implemented, using Bayesian statistical inference
and three signatures of positive selection to predict cancer driver genes. The
package additionally provides a sophisticated background mutations rate model,
a CCF calculation method, various visualizations of results and input data.

• Quality Control and filtering methods are of great importance for statistical anal-
ysis of case-control studies, as natural and/or artificial noise are evident in almost
all datasets. Failing to address this issue will lead to high false positive rates in
genotype-phenotype association studies.

• Biological characteristics of genetic variants (e.g. functional impact) improve the
identification of disease risk genes in association tests.
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• The BATI approach developed in this thesis, using Bayesian Inference combined
with parameter estimation by Integrated Nested Laplace Approximations (INLA)
approach, demonstrated to have the best power to detect risk genes in a benchmark
using a real WES cohort and ClinVar risk variants.

• We developed the REWAS framework, an all-in-one solution for association stud-
ies, offering modules for: quality control and filtration of case-control datasets,
preparation of covariates and variant characteristics for downstream analysis, and
five different rare-variant association tests.
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