
Universitat Pompeu Fabra

Departament d’Economia i Empresa

DOCTORAT EN ECONOMIA, FINANCES I EMPRESA

ESSAYS ON ECONOMIC UNCERTAINTY

Tesi Doctoral de:

Matthieu Soupre

Directora de la tesi:

Professor Barbara Rossi

Director del Doctorat en Economia, Finances i Empresa:

Professor José Apesteguia

Setembre 2018





i

acknowledgements

Those who know me well see this dissertation as a particularly odd

achievement. It represents the accomplishment of a long term academic

goal, the end – at last – of my studies, and the end of a laborious journey

originally supposed be an open sesame to a career as an economist. But

it is my farewell letter of sort to the academic world, at least for now,

before going on to pursue other radically different endeavors of mine.

My first special thanks go to my advisor, Barbara Rossi. She has

supported me and introduced me to exciting research projects throughout

my Ph.D. and help me pull through research dry spells every time I

needed it. She made me discover my passion for applied macroeconomics

and econometrics, a passion that will undoubtedly survive my leaving

these fields after I graduate. More importantly, she respected my decision

to leave economic research, for which I sincerely thank her.

I am also grateful to the econometrics group at UPF: Majid Al-

Sadoon, Christian Brownlees and Geert Mesters. Thank you for your

advice, your kindness, and sitting through my less-than-perfect presen-

tations. At least one chapter of this thesis would probably not be there

without the help of Tatevik Sekhposyan. She brought me on board of a

research paper from day zero, which is an opportunity that is offered

to very few lucky doctoral students. I would also like to thank Marta

Araque, Laura Agust́ı and Mariona Novoa for their fantastic help with

administrative duties and for being so kind and supportive throughout

my time at UPF.

Apart from its professors, Pompeu Fabra gave me the chance to

meet wonderful people who all brightened my days as a student: Dani

and his warming presence in the office, Óscar and his expertise on thesis
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Abstract

These essays propose different measures of economic uncertainty

and evaluate its impact at the microeconomic and macroeco-

nomic level. The first essay in Chapter 2 proposes a measure

of macroeconomic uncertainty that allows to distinguish its vari-

ous components. Metrics of Knightian uncertainty and risk are

proposed, and their respective impact on a number of economic

aggregates is evaluated. Chapter 3 extends the classical approach

to measuring uncertainty – a mean squared error-based quantity –

to entropy methods in econometrics. Several information-theoretic

measures of uncertainty are motivated, derived, and estimated

on two data sets: the Survey of Professional Forecasters used in

Chapter 2, to show that the conclusions hold with this different

approach; and the Survey of Economic Expectations, to show

how information theoretic measures of uncertainty can help study

different situations not afforded by the mean-squared error ap-

proach. Chapter 4 studies uncertainty from the point of view of

forecasting and propose a measure of forecasting uncertainty to

study how business cycles can affect this particular dimension of

Knightian uncertainty. Chapter 5 considers the question of the

efficacy of fiscal policy in periods of uncertainty, and does so in a

way that accounts for the comovements of economic uncertainty

with recessions through an conditional adjustment to the classical

smooth-transition state dependent models. Chapter 6 concludes.
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Resum

Aquesta tesi proposa diferents mesures d’incertesa econòmica i

avalua el seu impacte a nivell microeconòmic i macroeconòmic. El

primer assaig, al Caṕıtol 2, proposa una mesura de la incertesa

macroeconòmica que permet distingir entre les seves múltiples

components. Es proposen mètriques d’incertesa i risc de Knight, i

se n’avaluen els seus respectius impactes sobre diverses magnituds

econòmiques. En el Caṕıtol 3 s’amplia l’enfocament clàssic per

la mesura de la incertesa – l’error quadràtic mig – als mètodes

d’entropia en econometria. Les diverses mesures d’incertesa que fan

servir la teor̀ıa la informació estan motivades, derivades i estimades

en dos conjunts de dades: el Survey of Professional Forecasters,

que s’utilitza al Caṕıtol 2 per demostrar que les conclusions es

mantenen amb aquest nou enfocament; i el Survey of Economic

Expectations, que es fa servir per mostrar com aquestes mesures

d’informació poden ajudar a estudiar situacions diferents que els

metods classics amb error quadràtic mig. El Caṕıtol 4 estudia la

incertesa des del punt de vista de la predicció i proposa una mesura

d’incertesa de previsió per estudiar com els cicles econòmics poden

afectar aquesta dimensió particular de la incertesa knightiana.

El Caṕıtol 5 examina la qüestió de l’eficàcia de la poĺıtica fiscal

en peŕıodes d’incertesa, i ho fa de manera que ajusta per als

moviments de la incertesa econòmica amb les recessions. També es

proposa una nova clase de models depenents de l’estat que inclou

condicionalitat. El Caṕıtol 6 conté les conclusions.
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Resumen

Esta tesis propone diferentes medidas de incertidumbre económica

y evalúa su impacto a nivel microeconómico y macroeconómico.

El primer ensayo en el Caṕıtulo 2 propone una medida de la

incertidumbre macroeconómica que permite distinguir entre sus

diversos componentes. Se proponen métricas de incertidumbre

y riesgo de Knight, y se evalúan sus respectivos impactos sobre

diversas cantidades económicas. El Caṕıtulo 3 ampĺıa el enfoque

clásico para medir la incertidumbre - del error cuadrático medio

-, a los métodos de entroṕıa en econometŕıa. Varias medidas

de incertidumbre que utilizan la teoŕıa de la información están

motivadas, derivadas y estimadas en dos conjuntos de datos: el

Survey of Professional Forecasters que se utiliza en el Caṕıtulo 2

para demostrar que las conclusiones se mantienen con este nuevo

enfoque y el Survey of Economic Expectations, para mostrar cómo

estas medidas de información pueden ayudar a estudiar situaciones

diferentes de las que los métodos clásicos con error cuadrático

medio permiten. El Caṕıtulo 4 estudia la incertidumbre desde el

punto de vista de la predicción y propone una medida de incer-

tidumbre de previsión para estudiar cómo los ciclos económicos

pueden afectar a esta dimensión particular de la incertidumbre

knightiana. El Caṕıtulo 5 examina la cuestión de la eficacia de

la poĺıtica fiscal en peŕıodos de incertidumbre, y lo hace de una

manera que tiene en cuenta los movimientos de la incertidumbre

económica con las recesiones. Además, se propone una nueva clase

de modelos dependientes del estado que incluye condicionalidad.

El Caṕıtulo 6 concluye la tesis.
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INTRODUCTION

On the other hand, who would doubt that he lives, remembers,

understands, wills, thinks, knows, and judges? For even if he

doubts, he lives; if he doubts, he remembers why he doubts;

if he doubts, he understands that he doubts; if he doubts, he

wills to be certain; if he doubts, he thinks; if he doubts, he

knows that he does not know; if he doubts, he judges that

he ought not to consent rashly. Whoever then doubts about

anything else ought never to doubt about all of these; for if

they were not, he would be unable to doubt about anything at

all.

— Saint Augustine of Hippo, On The Trinity
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1. Introduction

Aristotle’s Metaphysics opened with the following: “All men by nature

desire to know” and for a long time knowledge was confined to pure

determinism. Although the concept of uncertainty stands at the crux of

epistemology, the science of knowledge, it has been given varying atten-

tion throughout the ages. Artistotle’s concept of truth was limited by the

sensible and measurable, and consequently by the mathematical systems

of his time. His epistemology accepted and left room for uncertainty but

saw it as belonging to the realm of divine action. Medieval knowledge

theory embraced the amount of determinism that escaped the cognitive

capacity of men until modern science emerged in the seventeenth century.

Perhaps Galileo and Newton’s most understated contribution was their

putting of Nature and its rules within mathematical law and above

simple categories of understanding that they belonged to in the past.

By doing so, scientific knowledge on the laws of Nature inherited the

strength of mathematical theorems. And it would not be long before the

scientific community started having similar demands for other domains

of knowledge. Past then, certainty progressively became a convenient

crutch to rely on in the quest to fulfill the “desire to know” of the

philosopher.

Fast forward to modern times, advances in probability and statistics

have given a seemingly very precise meaning to the concept of uncertainty.

In a desire to understand increasingly complex problems, the second half

of the twentieth century saw the development of advanced computational

methods applied to a variety of domains followed by an increase in

computing power. Together, they allow scientists to turn their efforts

to bigger, more complex models consisting of thousands of variables

and parameters under the idea that the greater number of parameters,

the closer to reality and the smaller the prediction error. But the sheer

complexity of these models comes with a greater need for data, a need

that is beyond what is available at the moment. Overidentified models’

parameters cannot be accurately estimated. Model simplification is

frowned upon. In economics and in macroeconomics in particular, the

2



inability to validate intricate theories via observations constitutes an

existential crisis for the dismal science. The symptom of this is a

profound epistemological uncertainty.

The idea that unequivocal knowledge need not be achievable is the

pet peeve of a great many scientists. It haunted Immanuel Kant until

he could carry epistemology through the Copernican revolution and

qualify the bounds of human knowledge – safe for metaphysics, there

is no such thing as certain a priori knowledge beyond a reasonable

doubt. Economics is not exempt for this caveat. While the discipline

has strayed through the unrealistic assumption that agents possess a

model of the economy that behaves according to their expectations (a

Kantian a priori judgment of sort), it has recently come back to the

more realistic observation that agents face a good degree of irreducible

uncertainty much like real-world scientists do.

This chapter shows how economics has worked with the concept of

uncertainty for the past few centuries. Because economics was born at

the crossroads of mathematics and philosophy, it is natural to study

how both influenced the frameworks retained to study uncertainty in

economics. From there, we will see how economics converged towards

certain definitions of uncertainty, and how these restrictions affected the

conclusions reached on its effects or its measurement. This in turn will

justify the approaches retained in this dissertation, which are presented

in the last section of this chapter.

a brief history of uncertainty

Uncertainty always was related to probability. The Christian concept

of providence left the undetectable divine actions appear random to

man; any apparent chaos was still a part of the divine purposeful “plan.”

The seeming of chance is simply a reflection of the complexity of the

system in which God acts. A reasonable explanation for putting all

chance to an external, supra-human entity, is that lack of a unified

3



1. Introduction

theory of uncertain outcomes at the time. The first probabilistic grasp

of uncertainty can be attributed to Gerolamo Cardano in his Liber de

ludo aleae (Book on Games of Chance) in 1563, which was essentially the

first version of uniform probability. It was, however, really formalized

in the works of Pascal and Fermat in the seventeenth century. A

devoted Christian, Pascal did not think that chance and the existence of

God conflicted. Through his theory of probability, he “put the certain

in the uncertain.” Christiaan Huygens in the seventeenth century,

Thomas Bayes and Leonhard Euler in the eighteenth century, and

Pierre-Simon Laplace in the nineteenth century, all pursued and built

on Pascal’s earlier breakthrough. In parallel, some progress was made

on trying to understand human behavior in front of uncertainty. The

first theory of behavior under uncertainty can be attributed to Nicolaus

Bernoulli in 1738, explaining the “Saint Petersburg Paradox” proposed

by his cousin Daniel, defining the concept of risk aversion for the first

time. This theory of expected values would later give birth to that of

expected utilities axiomatized by Von Neumann and Morgenstern in

1944 and, albeit very differently, by Savage in 1954. The seventeenth

century also saw the emergence of epistemology as it is known today

and the first attempts at understanding the limits of human reason.

David Hume would assert that the only thing we could have certain

knowledge about was the past. The only way to anticipate the future is

to evaluate and to interpret our knowledge about the past by assuming

the uniformity of the past and future – which is what econometrics

would later call “stationarity.” Kant would later reject such empiricism

and put man at the center of an achievable knowledge that he had so

clearly circumscribed. Great progress was made on understanding risks,

random events, and knowledge, but little was done, however, on the

actual definition of uncertainty. The concept started to be applied to a

wider array of sciences, such as physics and biology but was still confined

to “what is not known with certainty.” And whatever was not (yet)

understood under the laws of probability was considered an area that

4



science would later go on to unveil.

Laplace was first to recognize the uncertainty in making predictions

but like many he attributed such uncertainty to ignorance.

We ought then to regard the present state of the universe as

the effect of its anterior state and the cause of the one which

is to follow. Given for one instant an intelligence which could

comprehend all the forces by which nature is animated and

the respective situation of the beings who compose it – an

intelligence sufficiently vast to submit this data to analysis

– it would embrace in the same formula the movements of

the greatest bodies of the universe and those of the lightest

atom; for it, nothing would be uncertain and the future, as

the past, would be present in its eyes.

Laplace, 1814

Laplace speaks of an intelligence that can grasp the movements of all

bodies, but does not claim that such intelligence exists and leaves a

question mark on the possibility of human omniscience. It is to Frank

Knight that we owe the earliest distinction between uncertainty and

risk. Knight starts by pursuing Laplace’s idea that at least some of

the observable events unraveling around us do not seem to have easily

calculable odds. There exist even more “radical” situations of uncertainty

where the possible outcomes are unknown. In an oversimplification of

his concepts, risk meant to Knight situations in which one could assign

probabilities to outcomes and by uncertainty situations in which one

could not. Knight’s uncertainty is often thought to be something different

than it really is – a homothetic transformation of our ignorance. It

is important to note, however, that Knight maintained that (radical)

uncertainty was in essence a probabilistic phenomenon:

It is true, and the fact can hardly be over-emphasized, that

a judgment of probability is actually made in such cases.

Knight, 1921

5



1. Introduction

(Knight called these probabilities “estimates”.) Although they sharply

disagreed on political economy issues, Keynes did borrow a lot from

Knight’s theory of uncertainty. Keynes view the importance of probabil-

ities more for how decision makers could order them to form a decision,

even though the actual numbers may not be possible to figure out. Chap-

ter 12 of the General Theory of Employment, Interest and Money even

discusses the implication of radical uncertainty (without giving much

credit to Knight). Shackle offered a different take on “non-probabilistic

beliefs” by introducing the concept of “potential surprise”, echoing

Knight’s unknown outcomes and odds. Some decades later, Savage will

go on to build a theory around subjective probabilities to solve the yet

unanswered question of how probabilities come to agents – a stone which

Knight had left unturned. Some years later, Savage would build the

first alternative to expected utility with an axiomatic characterization of

expected subjective utility. Related to the subjectiveness of uncertainty,

Ellsberg introduces in 1961 the concept of “ambiguity” to describe a

particular type of uncertainty:

The nature of one’s information concerning the relative like-

lihood of events... a quality depending on the amount, type,

reliability and ‘unanimity’ information, and giving rise to

one’s degree of ‘confidence’ in an estimation of relative like-

lihoods.

Ellsberg, 1961

An important feature that subjective probability theory introduced is

that even though agents might not form actual probabilities in their

utility maximization, they behave as if they did. More and more,

models featuring uncertainty became the norm, culminating in macroe-

conomics with dynamic stochastic general equilibrium (DSGE) models

and bounded rationality in microeconomics. All it took was a down-

turn of the amplitude of the Great Recession to bring it back to the

center of the attention of (macro)economists. In a seminal 2009 paper,

6



Bloom analyzed the effects of uncertainty shocks. Back then, uncertainty

was defined in a purely probabilistic and aggregate sense, much like

macroeconomic volatility.

While I have directed the content of this historical review towards

economics, it should be noted that similar concerns emerged in other sci-

ences. Advances in “hard sciences” allowed refinements of the taxonomy

of uncertainty – parameter uncertainty, model uncertainty, experimental

uncertainty, etc. – all of which are fertile grounds for understanding the

uncertainty faced by the homo œconomicus. Perhaps the most famous

example is Heisenberg’s uncertainty principle in quantum mechanics in

1927 which some “heterodox” economists try to include in the discipline.

Overall, the second half of the twentieth century was marked by a

clear trend in trying to think deeper on the concept of uncertainty, but

not until very recently has uncertainty been paid more attention to in

economic modeling.

the growing place of uncertainty in macroe-

conomics

It is often forgotten that Adam Smith’s Wealth of Nations already

discussed the pernicious effects of “incertitude.” Smith pointed that a

lack of safety in society could result in money being diverted away from

its primary function of facilitating the exchange of present consumption

goods and capital, which were the prerequisite to an increase in the

wealth of nations. Lowering “incertitude” and increasing security was

the main mission of the regalian state. Taxation uncertainty would have

the same effect. Jean-Baptiste Say voices a very similar concern:

The greatest encouragement for circulation is the desire

everyone has, especially producers, to lose as little interest

as possible on the funds engaged in the exercise of their

industry. Circulation slows more due to the obstructions it

7



1. Introduction

faces than due to an absence of encouragements it might

have received. Wars, embargoes, onerous fees to discharge,

the danger or difficulty of communication obstruct it. It is

also slow in periods of fear and uncertainty, when public

order is threatened and all types of enterprise hazardous. It

is slow when one expects arbitrary taxation, and is forced

to hide his resources. It is slow in periods of speculation

when sudden variations caused by wagering on commodities

causes some people to hope for a sudden windfall caused

by a simple variation in prices. Consequently, merchandise

awaits a rise in price and money a fall; and both reflect idle

capital, useless to production.

Say, 1803

Contrary to the presentation of early microeconomic theory that is made,

uncertainty was not put aside during the Marginal Revolution at the

end of the nineteenth century. Jevons considered that uncertainty was

the true reason for discounting future utility and not simply the time

difference. He even went as far as claiming that future outcomes known

with certainty should not be discounted. While he centered his analysis

around individual behavior, Jevons claimed that “ignorant” – from not

being able to reduce uncertainty – discounting was the root of a sub-

optimal savings rate and could explain differences in development and

poverty. It is clear, however, that while uncertainty was not forgotten it

didn’t have nearly the role that it has in modern economic theory. Léon

Walras’s general equilibrium is, for that matter, completely exempt of

such considerations.

It was not until after World War I and macroeconomics was born that

economists starting really theorizing on uncertainty. Keynes’s analyzes

uncertainty in chapters 6 and 26 of the Treatise on Probability in 1921.

For Keynes uncertainty is a decreasing function of the weight of evidence

rather than a properly defined probability distribution; his vision of

8



uncertainty is sometimes referred to as “distribution intervals.” In the

General Theory, Keynes actually had a grasp of uncertainty similar to

that of Smith:

By “uncertain” knowledge, let me explain, I do not mean

merely to distinguish what is known for certain from what

is only probable. The game of roulette is not subject, in

this sense, to uncertainty; nor is the prospect of a Victory

bond being drawn. Or, again, the expectation of life is only

slightly uncertain. Even the weather is only moderately

uncertain. The sense in which I am using the term is that in

which the prospect of a European war is uncertain, or the

price of copper and the rate of interest twenty years hence,

or the obsolescence of a new invention, or the position of

private wealth-owners in the social system in 1970. About

these matters there is no scientific basis on which to form

any calculable probability whatever. We simply do not

know. Nevertheless, the necessity for action and for decision

compels us as practical men to do our best to overlook this

awkward fact and to behave exactly as we should if we

had behind us a good Benthamite calculation of a series of

prospective advantages and disadvantages, each multiplied

by its appropriate probability, waiting to be summed.

Keynes, 1936

Keynes believed that removing all uncertainty was virtually impossible,

but additional information can tilt the scale of evidence and help rational

decision making. To discuss the impact of uncertainty in the economy,

Keynes brought about the concept of “animal spirits”: in the face of

deep uncertainty, only a manic strong-willed person would put capital at

risk. When animal spirits are strong, investment is sufficient to maintain

aggregate demand; when they lag, aggregate demand falls, and the

economy lapses into depression. It is because animal spirits may not be

9



1. Introduction

readily present that uncertainty may make the economy plunge into a

recession. It is often thought that “animal spirits” refer to factors that

may hinder agents from investing, whereas it is precisely the opposite.

Animal spirits described the psychological urge to invest in spite of

uncertainty; animal spirits for him were neither rational nor irrational.

However large the role of uncertainty in Keynesian economics, there

is absolutely nothing in the General Theory on how expectations are

formed.

The 1950s saw major advancements in mathematical economics and

consequently on the modeling of uncertainty. In 1954, Arrow and Debreu

proved the existence of competitive equilibria mathematically. Five years

later, Debreu extended the framework to uncertain states using what

would later be known as “Arrow-Debreu securities.” Only a couple of

months later John Muth would start what is known as the “Rational

Expectations Revolution” in macroeconomics. Not only did Muth make

uncertainty a sine qua non feature of any respectable macroeconomic

model, but it also dictated how agents should perceive and experience

uncertainty. Deirdre McCloskey writes about rational expectations:

Muth’s notion was that the professors [of economics], even if

correct in their model of man, could do no better in predict-

ing than could the hog farmer or steelmaker or insurance

company. The notion is one of intellectual modesty... The

common sense is “rationality”: therefore Muth called the

argument “rational expectations”.

McCloskey, 1998

Furthermore, all agents form predictions such that they are never sur-

prised by outcomes. Lucas later worked on putting Muth’s ideas into

application in standardized macroeconomic models. Macroeconomics

worked under rational expectations for decades until some started ex-

pressing concerns on the veracity of such a framework. Gilboa and

Schmeidler in 1989 and several years later Chistopher Sims blew the
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whistle on the representativeness of such perfect forecasters in economic

models. Since then, research on modeling uncertainty in macroeconomics

has been very active and the agenda is extremely wide.

Macroeconomics only recently touched the issue of the difficulty of

defining uncertainty. Representative agents models miss the mark by

making uncertainty a purely exogenous phenomenon that applies to

everyone in the same degree. Heterogeneous agents models, too, still

struggle to find a credible source of aggregate uncertainty that is not

the only the result of agents expectations. This central ambiguity is

why Ian Hacking called probability “Janus-faced” in 1984: Probability

has a (statistical) connection with the tendency of certain processes

to show stable long-run frequencies on repeated trials, and it is also

(epistemologically) concerned with how the human agent forms degrees

of belief or credence on the basis of knowledge of such frequencies

and other things, and hence how he or she decides to act. The same

naturally applies to uncertainty. At the same time, the macroeconomics

of uncertainty have eschewed the question of defining uncertainty at

aggregated and disaggregated levels of the economy. Is macroeconomic

uncertainty the uncertainty of a representative agent? Is it the sum

of individual uncertainties? Is it measured by how much expectations

diverge from one another? All these questions have not been really

addressed and in these four essays I try to bring some answers.

a roadmap

I summarized and at times bastardized theories that have been devel-

oped over the past centuries with the sole purpose of demonstrating

that in the study of economic uncertainty, a stance has to be taken.

Saint Augustine of Hippo had seen that doubt and uncertainty defined

existence. Instead of eschewing those, economics should embrace them

and make them the center of the behavior of the agents it studies. This

dissertation contributes to this goal by laying out elements of research

11
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on the modeling and measure of uncertainty in macroeconomics.

The second chapter represents a first attempt at distinguishing

unknown unknowns from predictable risk. The decomposition that is

presented relies on the use of density forecasts and their high information

content on agents’ beliefs. While the first person has been changed

for consistency of speech with the rest of this dissertation, all the

research presented in the second chapter is joint work with Barbara

Rossi and Tatevik Sekhposyan, to which I am immensely grateful for

including me in such an exciting project. The third chapter presents a

different approach that uses the tools from Claude Shannon’s theory of

information. Beyond tying the previous chapter’s results into perhaps

the most influential mathematical theory of uncertainty ever conceived,

this chapter generalizes measures of uncertainty to other situations than

simple forecast errors. The fourth chapter bounces on the concept of

“confidence” and Knightian “impossibility to formulate odds” to offer a

measure of forecasting model uncertainty. While a very specific part

of uncertainty, forecasting uncertainty has important implications from

the point of view of policy makers. The fifth chapter tries to pin down

how uncertainty affect economic policy; more specifically if uncertainty

warrants government intervention as advised by Keynes himself. The

sixth and last chapter concludes.
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2

UNDERSTANDING THE SOURCES

OF MACROECONOMIC

UNCERTAINTY

My biggest concern is concern. The biggest risk we face is

uncertainty.

— Patrick T. Harker, 2017

2.1 introduction

There are a lot of ways to understand the notion of uncertainty in

economics. Beyond the simple intellectual debate, however, it is crucial

to understand which type of uncertainty is dealt with because they

may very well have different macroeconomic impacts. An increase
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2. Understanding The Sources Of Macroeconomic Uncertainty

in predictable risk can be (optimally) insured against. A blurring

of the distribution of next period’s states cannot. Patrick Harker’s

paraphrasing of Franklin D. Roosevelt’s: “the only thing we have to fear

is fear itself” displays a confusing mix of concepts. Uncertainty and risk

are very different objects. And whether there is really one to be feared

above all others can’t be decided upon without a proper measurement

of each one’s effects.

In this chapter I1 will adopt the simplifying distinction of Knightian

and “non-Knightian” uncertainty, also commonly coined “risk.” Risk

refers to situations where one can pin down the odds of the unknown with

near perfect accuracy,2 that is, one knows the probability distribution of

the stochastic states of nature in the future. Knight, much like Keynes,

refers to “uncertainty” as the absence of such knowledge. This could

either happen because there is no sensible ways of forming odds on

future events, or because the range of possibles is unfathomable. In

probability theory terms, either the density or its support is unknown.

Another related concept that is often thought to be uncertainty is

disagreement, following the logic that if agents disagree on something –

e.g., a probability distribution – then they are facing uncertainty.

It should be clear by now that uncertainty is a fundamentally proba-

bilistic concept and that any attempt to measure it should rely on beliefs.

Note that while uncertainty appears to fall upon ex-ante predictions, the

unraveling of it makes it a phenomenon of ex-post nature all the same.3

In spite of these well accepted qualifications of uncertainty, the literature

has made very sparse use of probability data thus far. Attempts at

quantifying uncertainty have been made using either point forecasts

(Jurado et al., 2015) or non-probabilistic data (Baker et al., 2015). Most

1This chapter is joint work with Barbara Rossi and Tatevik Sekhposyan, with can
be found on SSRN as “Understanding The Sources Of Macroeconomic Uncertainty.”

2Say, the odds of each face of a fair die.
3In fact, Knight explains the existence of profit even under near perfect competi-

tion by the unraveling of uncertainty. Knight’s theory discarded rational expectation
equilibria before they even existed.
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2.2. A New Synthetic Measure of Uncertainty

efforts have been directed at the measurement of economic uncertainty

together with quantities that are believed to share a relationship with

it, such as disagreement. Yet, none of the measures that were developed

depict more than one aspect of economic uncertainty, and it is not clear

how they relate to each other to start with. Nor is there a distinction

made between ex-ante and ex-post uncertainty.

In this chapter, I propose a decomposition of forecast errors to

distinguish between Knightian uncertainty (ambiguity) and risk using

survey forecast data from the Survey of Professional Forecasters. The

decomposition quantifies overall uncertainty as well as the evolution of

the different components of uncertainty over time and investigates their

importance for macroeconomic fluctuations. Furthermore, I investigate

how the different sources of uncertainty resolve over time as forecasters

get closer in time to the event. The behavior and evolution of the various

components of the decomposition matches that of a macroeconomic

model that features ambiguity and risk, comforting the observations

made in the data.

2.2 a new synthetic measure of uncertainty

The new uncertainty index measures the distance, on average across

forecasters, between the forecast distribution provided by an individual

forecaster and the perfect forecast corresponding to the realization, where

both are represented by cumulative distribution functions (CDFs).4 The

perfect forecast is denoted by xt+h, which formally is a random variable

equal to one when the actual realization yt+h is below some threshold r

and it is zero otherwise: xt+h (r) ≡ 1 (yt+h < r).5 Note that xt+h (r) is

defined over the support r, r ∈ R; by varying r, we can focus on different

parts of the predictive distribution. Let Ps,t+h|t(r) be the probability

4As explained later, this measure of uncertainty is similar to a Continuous Rank
Probability Score (CRPS).

5This notation is consistent with Hersbach (2000).
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2. Understanding The Sources Of Macroeconomic Uncertainty

forecast of the outcome xt+h(r) being equal to one made by forecaster

s, s = 1, ..., N , i.e. Ps,t+h|t(r) = P (xt+h(r) = 1|Ωs,t) = E(xt+h(r)|Ωs,t),

where Ωs,t is the information set available at time t. We measure the s-th

forecaster’s uncertainty as the Mean Squared Forecast Error (MSFE) of

their probabilistic forecast about a particular outcome, i.e.:6

us,t+h|t (r) = EQ

[(
xt+h (r)− Ps,t+h|t (r)

)2]
=

∫ (
xt+h (r)− Ps,t+h|t (r)

)2
dQt+h, (2.1)

whereQt+h is the true probability distribution. The outcome is compared

to the forecaster’s probability density forecast for it.

Similarly to Jurado et al.’s measure, Equation (2.1) is an MSFE.

In sharp contrast to their forecast error, it is an MSFE applied to a

forecast distribution. As such, it measures the unpredictable component

associated with each possible value in the domain of the predictive dis-

tribution, or in simpler terms, the failure to predict odds with precision.

In fact, us,t+h|t (r) compares the probability that forecaster s assigns

to the different states of nature with the realization, while error-based

measures à la Jurado et al. (2015) compare the point forecast with the

realization.7 The overall measure of uncertainty is then defined as the

average of the individual uncertainty across forecasters:

ut+h|t (r) =
1

N

N∑
s=1

us,t+h|t (r)

=
1

N

N∑
s=1

EQ

[(
xt+h (r)− Ps,t+h|t (r)

)2]
. (2.2)

The full support of the predictive distribution is explored by letting r

vary. The overall measure of uncertainty (which I’ll label “Uncertainty”)

6In the meteorological forecasting literature, this quantity is known as the Brier
score and is typically computed on binary forecasts.

7In fact, if one associates the value r ∈ R with the corresponding quantile of
the distribution, the uncertainty index measures an average squared error for that
quantile.
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Figure 2.1: Brier Score Illustration

integrates the squared forecast errors over the whole domain of the

distribution, that is:8

Ut+h|t =

∫ +∞

−∞
ut+h|t (r) dr. (2.3)

A graphical interpretation is provided in Figure 2.1. In the figure, the

actual realization equals −2, denoted by a vertical bar on the left panel;

the predictive density is the Gaussian distribution. The panel on the

right shows the CDF of the Normal distribution, as well as that of the

perfect forecast, for a particular threshold, r = −1. Thus, the perfect

forecast assumes ones for values less than −1 (since the realization of −2

is indeed less than −1) and zero otherwise. For any given r, the distance

between the CDF of the forecast distribution and the perfect forecast,(
xt+h(r)− Ps,t+h|t(r)

)
, is depicted by a solid vertical line. The measure

of uncertainty in Equation (2.3) squares this measure and integrates it

over the various values of r.

As said in the introduction to this chapter, the existing literature

has focused mainly on quantifying and understanding uncertainty as-

8Note that Equation (2.3) is the negative of the CRPS, as defined in Gneiting
and Raftery (2007). In fact, the CRPS is the integral of Brier scores (Hersbach, 2000,
Equation (7)).
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2. Understanding The Sources Of Macroeconomic Uncertainty

sociated with point forecasts, for example by mapping uncertainty to

forecasters’ prediction errors. An issue that render probabilistic forecast

data would be that they are inconsistent with average (point) forecasts,

which many practitioners use in practice. Zarnowitz and Lambros (1987)

found that individual point forecasts were on average consistent with

the weighted mean of their predictive probability distributions, which

makes the use of density forecast compelling because of the undoubtedly

richer information they contain. The superior informational content

of probabilistic forecasts is precisely what allows to quantify Knight-

ian uncertainty and distinguish among various sources of uncertainty.

An important difference between this measure of uncertainty and the

existing literature is that it uses the probabilistic forecasts provided

by the U.S. Survey of Professional Forecasters (SPF) to measure and

decompose uncertainty.9 The focus is on output growth forecasts, which

are indicative of business cycle fluctuations and therefore better match

what one would understand as “macroeconomic” uncertainty.

Furthermore, a large number of uncertainty measures considered

in the literature are ex-post in that they depend only on realizations

(such as the uncertainty measures recently proposed by Jurado et al.,

2015; Rossi and Sekhposyan, 2015 and Rossi and Sekhposyan, 2016; and

Scotti, 2013. Such ex-post measures are arguably difficult to square

with the notion of economic agents’ forward looking decision making,

and as stressed in the introduction to this dissertation, they tell only

half of the story. Zarnowitz and Lambros (1987) define uncertainty as

9The analysis can be done with any predictive density. We choose to use predictive
densities from the SPF since they are produced by professional forecasters monitoring
a wider range of indicators rather than a specific parametric model. Furthermore, the
SPF is known for its superior forecasting performance from a point forecasting point
of view, as shown in Giannone et al. (2008) and McCracken et al. (2015), among
others.
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2.2. A New Synthetic Measure of Uncertainty

the “difuseness” of a forecaster’s predictive density as follows:∫ +∞

−∞
E
[(
xt+h(r)− Ps,t+h|t(t)

)2 |Ωs,t

]
dr = (2.4)∫ +∞

−∞
Ps,t+h|t(t)(1− Ps,t+h|t(t)) dr; (2.5)

and they emphasize how uncertainty differs from disagreement. They

do not, however, consider Knightian uncertainty. As I will show below,

this new framework is able to distinguish between ex-post measures of

uncertainty (for instance, realized risk or bias) and ex-ante risk (also

termed ambiguity). The capacity of this new measure of uncertainty to

distinguish between Knightian uncertainty (which is essentially ex-ante)

and risk (ex-post).

Forecast densities and their probabilistic dimension are the corner-

stone of that feature.10 This will become clearer with the decomposition

that I will now expose. One of the goals of this chapter is to link exist-

ing measures of uncertainty based on aggregate data with uncertainty

measures based on disagreement among forecasters. To do so, define

an aggregate probability density
{
Pt+h|t (r) , r ∈ R

}
, which is related to

the individual ones
{(
Ps,t+h|t (r)

)
, 1 6 s 6 N, r ∈ R

}
by:

Pt+h|t (r) =
1

N

N∑
s=1

Ps,t+h|t (r) . (2.6)

The corresponding uncertainty measure for the aggregate predictive

density is:

uAt+h (r) ≡ EQ
[(
xt+h (r)− Pt+h|t (r)

)2]
.

10Knightian uncertainty is defined as the agents’ inability to correctly characterize
probability distributions or their disagreement on them. Clearly, it is impossible to
quantify uncertainty associated with the agents inability to characterize all possible
states of nature or situations where they have no opinions on the probability dis-
tributions associated with known states of the nature. Thus, one can think of this
Knightian uncertainty measure as a lower bound on the actual Knightian uncertainty
present in the economy.
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I show in the Appendix to this chapter that the overall uncertainty

measure can be broker down as follows:

ut+h|t (r) = EQ

[(
xt+h (r)− Pt+h|t (r)

)2]
. . .

+ EQ

[
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]
= uAt+h|t (r) + dt+h|t (r) , (2.7)

where:

dt+h|t (r) ≡ 1

N

N∑
s=1

EQ

[(
Pt+h|t (r)− Ps,t+h|t (r)

)2]
(2.8)

measures the disagreement between individual forecast densities and the

aggregate forecast density, similar to the disagreement defined in Patton

and Timmermann (2010) for point forecasts. Lahiri and Sheng(2010, eq.

18) discuss a similar decomposition for point forecasts.

Note that the decomposition in Equation (2.7) holds for a particular

threshold r, thus it accounts for a forecast error associated with the bi-

nary outcome 1 (yt+h < r). The overall measure of uncertainty accounts

for uncertainty at all possible values of r by considering the integral of

the decomposition in Equation (2.7) over r. “Uncertainty” breaks down

into “Aggregate Uncertainty” and “Disagreement”:11

Ut+h|t ≡
∫ +∞

−∞
ut+h|t (r) dr =

∫ +∞

−∞
uAt+h|t (r) dr +

∫ +∞

−∞
dt+h|t (r) dr

≡ UAt+h|t︸ ︷︷ ︸
“Aggregate Uncertainty”

+ Dt+h|t︸ ︷︷ ︸
“Disagreement”

(2.9)

11A reason why the aggregate probability distribution, measured with a simple
average of the individual probability distributions, is a good measure of aggregate
uncertainty is that, as in the context of point forecasts, combinations constructed
by simple averages result in more accurately calibrated densities. Furthermore, the
average of probability distributions is a measure widely used in a variety of central
banks and policy institutions and a (surprisingly) well performing forecast.
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This decomposition represents a first step towards the separation between

ex-ante and ex-post uncertainty. While the aggregate uncertainty term

is by construction ex-post, disagreement is purely ex-ante and mirrors

the inability of forecasters to pin down the “correct” probabilities of

future states of the world.

A finer distinction between ex-post and ex-ante uncertainty can be

obtained by breaking down the aggregate uncertainty term. As shown

in the Appendix, the aggregate uncertainty, UAt+h|t (r) decomposes into

components that measure mean bias, dispersion of probability forecasts,

realized risk and a covariance term between the forecast and the ideal

distribution as follows:

uAt+h (r) =
([
EQ
(
Pt+h|t (r)

)
− EQ (xt+h (r))

]2)
. . .

+ VQ(Pt+h|t (r)) . . . (2.10)

+ VQ (xt+h (r)) . . .

− 2CovQ(xt+h (r) , Pt+h|t (r)),

where VQ(.) denotes the variance taken with respect to the probability

measure Qt+h. Since the covariance term turns out to be rather small

empirically, we summarize aggregate uncertainty with the following

additive decomposition:

UAt+h|t≈ Bt+h|t︸ ︷︷ ︸
“Mean-Bias”

+ Vt+h|t︸ ︷︷ ︸
“Dispersion”

+ Volt+h|t︸ ︷︷ ︸
“(Realized) Risk”

(2.11)

where:

– Bt+h|t ≡
∫∞
−∞EQ

[(
Pt+h|t (r)

)
− EQ (xt+h (r))2

]
dr is the mean

squared bias of the forecast distribution;

– Vt+h|t ≡
∫∞
−∞ VQ(Pt+h|t (r)) dr is the uncertainty about the ex-ante

subjective probabilities in the aggregate distributional forecast
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– Volt+h|t ≡
∫∞
−∞ VQ (xt+h (r)) dr is the realized variance of the

binary outcome, xt+h (r) ≡ 1 (yt+h < r), and thus stands for the

inherent risk in the data.

The three component decomposition in Equation (2.11) has an in-

teresting interpretation. The realized volatility component Volt+h|t is a

measure of the underlying uncertainty in the data, and thus a measure

of realized risk. On the other end, the bias component Bt+h|t measures

how far the predictive density is from the perfect prediction on average,

and the dispersion, Vt+h|t, gives an estimate of the variability in the

predictive density. As it will be shown later Vt+h|t is empirically small,

so it can be ignored. Knightian uncertainty is proxied as the sum of bias,

dispersion and disagreement, as all these terms represent a different

“incapacity” to perfectly estimate odds. The realized variance or realized

volatility, instead, is a measure of risk. In short, we have the following

“Knightian uncertainty/(Realized) Risk” decomposition:

Ut+h|t≈ Volt+h|t︸ ︷︷ ︸
“(Realized) Risk”

+ Bt+h|t +Dt+h|t︸ ︷︷ ︸
“Knightian Uncertainty”

.

2.3 ex-ante v. ex-post uncertainty

It is important to note that the proposed measure of uncertainty, Ut+h|t,

as well as aggregate uncertainty UAt+h|t, are constructed using ex-post

realizations of the data. Thus, it is interesting to refine our measure

by distinguishing between an ex-ante component (that does not include

the realizations) and an ex-post component (which does). Also, one

might wonder how the expected mean and the variance embedded in the

forecast distribution affect our measure of uncertainty. Let the aggregate

predictive distribution for the forecast of yt+h made at time t be Normal

with mean µt+h|t and variance σ2
t+h|t and the data be i.i.d. We have the

following “Ex-ante/Ex-post” decomposition:
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UAt+h|t = EQ

[
2σt+h|tφ

(
yt+h − µt+h|t

σt+h|t

)]
. . .

+ EQ

[(
yt+h − µt+h|t

)(
2Φ

(
yt+h − µt+h|t

σt+h|t

)
− 1

)]
. . .

−
σt+h|t√

π
; (2.12)

where φ (.) and Φ (.) denote the PDF and the CDF of the Normal

distribution, respectively. The first two terms (in square brackets) are

ex-post in that they depend on the realization of the forecast; the last

term is purely ex-ante. The proof is provided in the Appendix and

follows Gneiting and Raftery (2007).12

The rightmost component, σt+h|t/
√
π, is the only component that

is not affected by the realization, hence its “ex-ante”denomination. In

fact, as the proof suggests, this is the component that arises from

the average distance of random draws from a given predictive distri-

bution. Moreover, it is a function of the standard deviation of the

forecaster’s density forecasts, and a common measure used in the un-

certainty literature as a measure of ex-ante uncertainty. Note that

the ex-ante measure of uncertainty is simply σt+h|t/
√
π, which, under

normality, is a monotone function of the width of the predictive distri-

bution. Thus, the ex-ante measure is linked to the inter-quantile range

measure proposed by Zarnowitz and Lambros (1987), among others.13

The ex-ante component might be viewed as a measure of ex-ante risk.

Note that, from Equations (2.11) and (2.12), we have that Ex-post

≈ Bt+h|t + Vt+h|t + Volt+h|t + Ex-Ante. Thus, the ex-post measure of

aggregate uncertainty combines components of Knightian uncertainty,

Bt+h|t + Vt+h|t, realized risk (measured by the volatility in the economy,

Volt+h|t) and ex-ante risk (measured by the variance of the predictive

12Note that even if UAt+h|t is the difference of two components, it is always positive;
thus, the ex-post component is always bigger than the ex-ante one.

13For a Gaussian distribution, the inter-quantile range is 1.34σ.
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densities of the forecasters, Ex-Ante). Note the difference between

Vt+h|t and Ex-ante: the first measures the variability of the probability

distribution, while the second measures the width of the distribution at

a particular point in time. Thus, if the aggregate density forecast does

not changed over time, Vt+h|t would be zero. However, Ex-Ante will not

be zero as long as the forecasters provide a distributional forecast.

There is a major difference between the two decompositions in that

the “Ex-ante”– “Ex-post” decomposition is written in terms of the

moments of the original predictive distribution, while the “Knightian

Uncertainty – (Realized) Risk” decomposition is in terms of distribu-

tional quantile outcomes summarized by xt+h (r). As such, the latter

decomposition could be applied to general situations (general forms of

distribution and non-iid data), while the former one relies unequivocally

on the assumption of Gaussianity and independence in the underlying

predictive distribution. D’Amico and Orphanides (2014) and Giordani

and Söderlind (2003) provide empirical support in favor of Gaussianity

for the Survey of Professional Forecasters, and the iid assumption would

be satisfied for correctly calibrated density forecasts.

A general remark that applies to all proposed decompositions is

that the resulting components are a priori not orthogonal to each other.

This is in line with the rest of the empirical literature which typically

finds that a variety of uncertainty measures, constructed from different

sources and measuring different aspects of uncertainty, are correlated

with each other.

2.4 the data

We use density forecasts from the Survey of Professional Forecasters

(SPF) to calculate our uncertainty measures. The Federal Reserve Bank

of Philadelphia provides the aggregate (mean probability distribution)

forecasts, as well as the underlying disaggregate density forecasts of a
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panel of professional forecasters.14 I use the real GNP/GDP growth

density forecasts to extract measures of macroeconomic uncertainty, as

real GNP/GDP fluctuations are indicative of the state of the business

cycle, and are therefore reflective of macroeconomic uncertainty (Stock

and Watson, 1998).

SPF forecasters are asked to assign a probability value (over prede-

fined intervals) to inflation and output growth for the current and the

following (one-year-ahead) calendar years. The growth rate is defined

as the rate of change in the average GDP from one year to another.

The forecasters update the assigned probabilities for the current-year

and the one-year-ahead forecasts on a quarterly basis. Thus, by con-

struction, SPF forecasters provide four quarterly forecasts of the same

target variable each year; this type of forecasts are typically referred to

in the literature as “fixed-event ”or “moving-horizon” forecasts. Being

fixed-event forecasts, their horizon changes over the quarter. Dovern et

al. (2012) propose a method to transform SPF fixed-event forecasts into

fixed-horizon forecasts by constructing a weighted average of current-

year and next-year forecasts. More specifically, for each quarter the

survey contains a pair of “fixed-event” density forecasts for the current-

year, denoted by f̂FEt+k|t, and for the following year, labeled f̂FEt+k+4|t. The

four-quarter-ahead (fixed-horizon) forecast at time t f̂FHt+4|t is calculated

as the average of the two fixed event forecasts using weights that are

proportional to their share of the overlap with the forecast horizon. Let

k denote the number of quarters from time t until the end of the year.

In quarter one, k = 4, while in quarter four, k = 1. For instance, in

the third quarter of the year, the four-step-ahead fixed-horizon forecast

overlaps with the current year forecasts and next year forecasts 50%

of the time. A natural estimate for 4-quarter growth averages the two-

fixed event forecasts with weights equal to 2/4 and 2/4. In general, for

14The composition of the forecasters can change over time.
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Figure 2.2: Brier Score Illustration

k = 1, 2, 3, 4:

f̂FHt+4|t =
k

4
f̂FEt+k|t +

4− k
4

f̂FEt+k+4|t. (2.13)

Panels A and B in Figure 2.2 show the evolution of the current

and next year densities over time. The figures plot the mean as well

as several quantiles of the distribution, together with the realization.

Panel C, on the other hand shows the fixed horizon forecast, Equation

(2.13). The fixed-horizon forecast is by construction less smooth than

the fixed-event forecasts. However, both share the same feature that

ex-ante uncertainty was higher earlier in the sample, in the sense that
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both density forecasts have a wider distribution prior to the mid-1980s

relative to the later part of the sample; this suggest that forecasters

noticed the Great Moderation starting mid-1980s. There appears to

be no dramatic shift in the densities forecast after the Great Recession.

Some descriptive statistics on the SPF distributions is provided in the

Appendix to this chapter.

The analysis of SPF probability distributions is complicated since

the SPF questionnaire has changed over time in various dimensions:

there have been changes in the definition of the variables, the intervals

over which probabilities have been assigned, as well as the time horizon

for which forecasts have been made. To mitigate the impact of these

problematic issues, I truncate the data set and consider only the period

1981:III-2014:II.15

As noted, our uncertainty measure depends on realizations. The real-

ized values of output growth are from the real-time data set for macroe-

conomists, also available from the Federal Reserve Bank of Philadelphia.

The four-quarter-ahead growth rates of output and prices are calculated

from the first release of the realization. For instance, in order to get

the 4-quarter-ahead realization at the start of our sample, 1981:III, the

growth rate between 1982:III and 1981:III is computed using the 1982:IV

vintage of the data.

2.5 classifying uncertainty over time

Figure 3, Panel A, shows the evolution of the estimated measure of

uncertainty and its components, aggregate uncertainty and disagreement,

over time. The figure highlights two interesting facts: disagreement is, in

magnitude, only a small portion of the overall measure of uncertainty;16

15See instead Ferrara and Guérin (2015) for a high-frequency analysis of uncertainty
shocks.

16The magnitudes of Uh+h|t and UAh+h|t are reported on the y-axis on the left
while that of disagreement is reported on the y-axis on the right. The magnitude of
disagreement is small. This could be due to the fact that, unlike the existing measures
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2. Understanding The Sources Of Macroeconomic Uncertainty

in addition, it is trending down until the financial crisis of 2007. This

is in sharp contrast with the overall measure of uncertainty, as well

as aggregate uncertainty, which have clear spikes in the early 1980s,

early 2000s and the financial crisis. Using disagreement as a measure

of uncertainty may result in underestimating both the overall level of

uncertainty in the economy as well as its fluctuations over time, as

currently the level of disagreement is similar to what it was in the

mid-1990s and lower than its value in the late 1980s. In addition, most

would agree that the early 2007-2008 were probably the most uncertain

times in the latest decades, and while disagreement increases during

that period, it peaks only much later – after the end of the recession, in

2009. Thus, disagreement (i.e., the component of Knightian uncertainty

due to disagreement among forecasters) may not be a timely measure

of macroeconomic uncertainty. Note that this result is not an artifact

of constructing disagreement measures based on density forecasts: Sill

(2014, Figure 1) shows a similar delay. In particular, Sill (2014) plots the

dispersion of the mean one-year-ahead real GDP growth rate forecasts

measured by the inter-quantile range: the first peak in the disagreement

does not appear until the middle of the recession.

Panel B in Figure 2.3 depicts the decomposition of aggregate uncer-

tainty into Knightian uncertainty and realized risk. The figure suggests

that realized risk (measured by Volt+h|t) was an important component of

uncertainty throughout the last three decades, as was Knightian uncer-

tainty, measured by the mean bias component. Some differences between

the two are important to note, however. The realized risk component

was high during the latest financial crisis, and sharply decreased as soon

as the recession was over; Knightian uncertainty (measured by the mean

bias component, Bt+h|t) remained persistently high even after the end of

of disagreement on point forecasts, we measure disagreement in probabilities, not in
the mean forecast. Another possible explanation is that professional forecasters all
use similar models or have comparable information sets, making their forecasts agree
for the most part.
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the crisis. Overall uncertainty remained persistently high after the end

of the latest recession mostly because of forecasters’ errors as opposed to

risk being high. The role of dispersion in probability forecasts (Vt+h|t) as

well as the co-movement between prediction and realization (Covt+h|t)

are negligible for the cyclical dynamics of aggregate uncertainty.

Turning to the ex-ante and ex-post components, depicted in Panel

C of Figure 3 together with the aggregate uncertainty measure (UAt+h|t),

it is interesting to note that ex-ante uncertainty is quite constant in the

1980s and up to 2007. This provides support to the idea that movements

in uncertainty during that period cannot be attributed to changes in

ex-ante uncertainty. Ex-ante uncertainty does increase during the latest

recession, but only towards its end, and spikes much later than the

peak of the recession. This suggests that measures of volatility in the

forecasters’ predictive distributions are, themselves, not timely measures

of uncertainty, and reinforces the idea that risk (realized volatility) and

forecast uncertainty are different objects.

Finally, it is also of interest to investigate how the various components

of uncertainty evolve as the forecasters get closer in time to the realization

date, that is, as the forecast horizon becomes shorter. We separately

consider forecasts for h = 1, 2, ..., 7, 8 and compare them with the fixed-

event realization. Both uncertainty as well as aggregate uncertainty

decrease as the forecast horizon increases (Panel A in Figure 2.4, top

left and right graphs). It may seem counter-intuitive that uncertainty

decreases at longer horizons. One would think that the longer the forecast

horizon, the harder it is to forecast and the higher the uncertainty. This

surprising finding, however, can be better understood by looking at the

types and sources of uncertainty. Clearly, disagreement decreases as

forecasters get closer to the realization: in fact, disagreement decreases

on average as the horizon decreases (cf. bottom graph in Figure 2.4,

Panel A). This finding is reassuring, as it is reminiscent of what Patton

and Timmermann (2010) discovered for point forecasts, and our results

show that similar results hold for disagreement calculated on density
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forecasts. The mean bias also decreases as the horizon decreases (Panel

B in Figure 2.4). On the other hand, the dispersion of the density

forecasts increases, thus increasing the aggregate uncertainty. The

realized variance and covariance are constant over the horizons, and the

latter hovers around zero.

The most striking patterns are displayed by ex-ante and ex-post

uncertainty, depicted in Figure 2.4, Panel C. Clearly, ex-ante uncertainty

decreases monotonically as the forecast horizon decreases; that is, fore-

casters’ predictive densities become more spread out when the forecast

horizon increases, thus reflecting more uncertainty in the economy when

looking at events that are further in the future. However, there is no

clear pattern in ex-post uncertainty. This means that, even though

the forecasters’ predictive densities become tighter as the realization

gets closer in time, the uncertainty in the actual realizations does not

diminish, as the size of the forecast errors does not diminish with the

horizon. The closer forecasters find themselves to the actual realization,

the more “clear-cut” their forecast, and the more potential error if one

considers the whole density forecast.

Comparing the evolution of the ex-ante uncertainty in Panel C and

the dispersion of the aggregate predictive density, Vt+h|t in Panel B,

it can be noted that, although forecasters, on average, become less

confident about the future as the forecast horizon increases, their views

about uncertainty does not seem to be updated often for forecasts that

are further in the future, thus resulting in the low variability of the

predictive distribution over time. Moreover, as the distribution becomes

more spread out with the forecast horizon, it has a higher chance of

including the realization, thus resulting in a decline in the aggregate

and overall uncertainty.
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2.6 the impact of knightian uncertainty and

risk

Let us now shift the analysis to of the effects of uncertainty “shocks.”

The decomposition allows to distinguish between disagreement and

aggregate uncertainty on the one hand,17 and between measures of

realized volatility, ex-ante uncertainty and bias on the other. These

various components have all been used in the literature as measures of

uncertainty, but only the decomposition presented in this chapter allows

distinctions to be drawn among them and understand their relationship.

How do the various components relate to existing measures of un-

certainty? The top panel in Figure 2.5 plots Jurado et al.’s (2015)

uncertainty measure together with Baker et al.’s (2015) index.18 Both

indices are standardized for comparison. The figure shows that the for-

mer is overall smaller than the latter until 1995, then it becomes overall

larger, and in particular spikes up earlier than the latter during the latest

financial crisis of 2007-2008. The lower panel plots the decomposition

of aggregate uncertainty index into ex-ante and ex-post components.

The ex-post component is lower than the ex-ante component up to

mid-1992, then it becomes systematically more prevalent, and spikes

up around 2007-2008, behaving similarly to how Jurado et al.’s (2015)

behaves relative to Baker et al.’s (2015). Thus, it seems that the Baker

et al. (2015) uncertainty measure is driven more by ex-ante uncertainty,

while the Jurado et al. (2015) uncertainty measure is clearly affected by

ex-post uncertainty, namely uncertainty due to misspecification in the

predictions.

To estimate the effects of the uncertainty and its components on

the economy, we estimate a Vector Autoregression (VAR) that includes

17similar to that of Lahiri and Sheng (2010), who consider the relationship between
aggregate uncertainty and disagreement over the business cycle, yet measure it in
terms of uncertainty and disagreement about the mean of the distribution, as opposed
to the whole distribution.

18Using Jurado, Ludvigson and Ng’s (2015) one-year-ahead uncertainty index.
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Figure 2.5: Comparison of Uncertainty Measures

Notes: The figure compares the Jurado, Ludvigson and Ng (2015) and Baker, Bloom
and Davis (2016) uncertainty indices (top panel) with the ex-ante and ex-post
components of our uncertainty measure in the bottom panel.

(the log of) real GDP, (the log of) employment, the Federal Funds

rate, (the log of) stock prices and the specific uncertainty indices one

at a time. Identification is achieved via a classic Cholesky procedure,

which follows the order in which the variables are listed. The VAR

specification is the same as in Baker et al. (2015), although ours is at

the quarterly frequency, and accordingly we use GDP instead of real

industrial production. The variables are ordered as in Jurado et al.’s

(2015) benchmark specification, i.e. from slow to fast moving. For

completeness, the robustness of the results in a larger VAR are exposed

in the Appendix. To better interpret and compare the magnitude of the

effects of the uncertainty indices, the uncertainty indices are demeaned

and standardized.

Panel A in Figure 2.6 shows the effects of our uncertainty index

on the economy. Clearly, an increase in uncertainty has recessionary
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2.6. The Impact of Knightian Uncertainty and Risk

effects: both GDP and employment decrease, as well as the interest rate

and the S&P 500. Panels B and C describe the effects of each of the

components in the decomposition. Panel B shows the effects of a shock

to aggregate uncertainty, which is in line with that of uncertainty since

aggregate uncertainty is the main determinant of the total. Panel C

focuses on disagreement; it also decreases employment although by a

smaller magnitude; at the same time, it has no significant effects on the

remaining variables.

Figure 2.7 shows the effects of uncertainty measured by mean bias,

realized volatility and the dispersion in the probability forecasts. The

mean bias and realized volatility appear to have recessionary effects

(Panels A and C). Dispersion in the density forecasts (Panel B) drives

down employment, while it increases stock prices and output. It is

important to note that, in magnitude, the mean bias and realized

volatility have similar macroeconomic impact, though these effects are

statistically significant for the first but not for the second.

The effects of ex-ante and ex-post uncertainty on other macroeco-

nomic variables are depicted in Figure 2.8. They both lead to decreases

in employment, interest rates and stock prices of similar magnitude; an

increase in ex-ante uncertainty, however, has a small negative impact

effect on GDP, while the medium run effect is positive and small, and

the longer run effect is again negative; the effects of ex-post uncertainty

on GDP are, instead, negative and large.

Figure 2.9 compares the results with those in the existing literature;

the latter are also obtained by estimating VARs that include (the log of)

real GDP, (the log of) employment, the Federal Funds rate, (the log of)

stock prices, and the alternative uncertainty index, which is demeaned

and standardized as well. The alternative uncertainty indices include:

Bloom (2009), labeled “VXO”; Baker et al.’s (2015) policy uncertainty

index, labeled “BBD”; Jurado et aL. (2015), labeled “JLN”; and the

Scotti (2013) macroeconomic surprise-based uncertainty index.

Panel A in Figure 2.9 shows that the VXO and BBD indices have
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Figure 2.6: Effects Of Uncertainty On The Economy
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Figure 2.7: Effects Of Uncertainty On The Economy, Continued
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Figure 2.8: Effects Of Uncertainty On The Economy, Continued
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Figure 2.9: Effects Of Uncertainty On The Economy, Continued

similar effects on the economy, while an increase in uncertainty measured

by the Jurado, Ludvigson and Ng’s (2015) index are qualitatively similar

but much larger in magnitude, and, thus, are similar to the effects

uncovered ex-post uncertainty. The effects of Scotti’s index are again

recessionary for GDP, employment and stock markets, and lead to an

increase in the interest rate. The effects of this index are small and

overall insignificant. The effects of our realized volatility measure are

more similar to those of the VXO.

In sum, the decomposition of uncertainty puts several components
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into light that are related to uncertainty measures used in the literature.

This analysis helps understand why the various measures of uncertainty

differ from each other, which phenomenon they actually measure, and

which one is more appropriate to use depending on the goals of the

researcher. This represents the second contribution of this chapter to

the understanding of the effects of economic uncertainty.

2.7 knightian uncertainty and risk in an eco-

nomic model

Last, I now discuss the interpretation of the components of uncertainty

in the presence of time-varying macroeconomic risk and ambiguity using

a stylized model featuring these aspects. This allows the mapping of the

various components in the decompositions to the sources of uncertainty

that the model controls for, therefore giving support to the interpretation

of the different components of uncertainty that were estimated.

The model of ambiguity follows that of Ilut and Schneider (2014).

The model is built as follows. GDP growth, Zt+1, evolves according to

an autoregressive model with a time varying mean, µ∗t :

Zt+1 = ρzZt + µ∗t + ut+1, (2.14)

where ut+1 is i.i.d. N(0, σ2
u) and µ∗t is deterministic such that its empirical

sequence converges to an iid stochastic process N(0, σ2
µ), where σ2

µ =

σ2
z − σ2

u. Consequently, the observed values of zt ≡ Zt+1 − ρzZt look

like realizations from an i.i.d. process with mean zero and variance

σ2
z . For all practical purposes, we treat µ∗t as a realization from a

stochastic process N(0, σ2
µ). Moreover, µ∗t and ut are assumed to be

independent. Thus, GDP growth is driven by two sources of uncertainty

in the economy: the first source is the unpredictable shocks, ut+1; the

second, µ∗t , is a proxy for ambiguity, as we discuss below.

Agents in this model know that the data generating process for

GDP growth is autoregressive with persistence ρz, and are subject to
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two sources of uncertainty. They do not observe, however, either µ∗t
or ut+1, even though they know the probability distribution of ut+1.

They gather intangible information about µ∗t , which sometimes makes

them relatively confident that the correct forecast of future GDP growth

is ρzZt, and sometimes less confident, i.e. the signal is can be more

or less ambiguous. One could think of a situation where the agents

acquire poor quality information or conflicting news from newspapers

or professional forecasters. The ambiguity is modeled by letting agents

form their beliefs about GDP growth dynamics based on the following

law of motion:

Zi,t+1 = ρzZi,t + µi,t + ut+1, i = 1, 2, ..., N (2.15)

where µ∗it ∈ [−ai,t,−ai,t + 2|ai,t|], N is the total number of agents (equal

to 100), and ut+1 is i.i.d. N(0, σ2
u). The bounds on µ∗it formalize the idea

that sometimes agents are more ambiguous regarding the second source

of disturbance to output growth: those situations are associated, in the

model, with a larger value of ai,t, which implies a larger set of beliefs

and more ambiguity perceived at time t by agent i. Thus, ai,t is akin to

the ambiguous component of uncertainty, i.e. Knightian uncertainty.19

Furthermore, agents receive signals about µ∗i,t from the process:

ai,t+1 − āi = ρa,i(ai,t − āi) + σa,iε
a
t+1, (2.16)

where εat+1 is iid N (0, 1). One can view εat+1 as a signal that the agent

gets about the ambiguity component, whose volatility depends on σa,i.

In some periods the signal results in a higher ai,t; in such cases, there

is more ambiguity and the set of beliefs is larger. In other periods,

depending on the information received, the set can be smaller, in which

case the agents are less ambiguous about the stochastic disturbances in

the data generating process. To ensure that the average ambiguity is

19This notion of Knightian uncertainty is similar to that of Ilut and Schneider
(2014). It should be noted, however, that they assume that the total factor productivity
shocks are ambiguous, while here the same is done for output growth.
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less than the total uncertainty about the process of Zt+1, ambiguity is

restricted by the constraints that āi = niσz and σa,i = σnσz for n ∈ (0, 1)

for every agent i, where ni and σn are parameters (one can think of āi

as the unconditional mean and σ2
a,i as the unconditional variance of the

shock to perceived ambiguity). In particular, ni ∼iid N(n, σ2
n,I , where

σ2
n,I controls the cross sectional variability of N .20

Finally, when faced with ambiguity, modeled with Equation (2.16),

the agents choose:

µ∗∗i,t = min([−ai,t,−ai,t + 2|ai,t|]). (2.17)

The effective perceived law of motion for agent i becomes:

Zi,t+1 = ρzZi,t + µ∗∗i,t + ut+1. (2.18)

Note that when ai,t is bigger, ambiguity is higher, the set of beliefs is

bigger, and the wider interval implies a lower worst case mean that the

agents choose.

The model is a simplification of Ilut and Schneider (2014). To be sure,

they model ambiguity and risk about the technology process. However,

under the assumption of fixed inputs, this would directly translate into a

similar output growth dynamics. Thus, for simplicity, only the dynamics

of output growth are modeled and the parameters of the output growth

process, ρz and σz, are calibrated using an AR(1) model estimated

on the quarterly growth rate for the U.S. GDP. On the other hand,

the ambiguity parameters, i.e. ρa, n and σn, are borrowed from their

posterior mode estimates with the caveat that their estimates apply to

the ambiguity in total factor productivity rather than output growth.

Table 1 summarizes the baseline parameter values. Since µt and ut+1

can not be identified separately, the values for their respective variances

are assigned arbitrarily. σµ = 0.5 is set, while σu is assigned a value to

20Alternatively, one could model the level of ambiguity to be uniformly distributed
across the forecasters. This would attenuate ambiguity.
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ρz 0.625 Estimated from an AR(1) model fitted to GDP growth
ρa 0.887 Ilut and Schneider’s (2014) mode
n 0.995 Ilut and Schneider’s (2014) mode
σu 0.780 Estimated from an AR(1) model fitted to GDP growth (σz)
σµ 0.500 Arbitrary, as the parameter is not separately identified
σn 0.134 Ilut and Schneider (2014) mode

Table 2.1: Baseline Parameter Values

match the total conditional volatility in the output growth observed in

the data, σz.

Four scenarios are considered. In the first three scenarios, there is no

cross-sectional heterogeneity in ambiguity, i.e. σ2
n,I = 0 and ni = n for

every agent; in the fourth scenario we consider heterogeneity by letting

ni 6= n.

Scenario 1: Ambiguity. Only the level of ambiguity increases in the

model, i.e. the level of n. More specifically n shifts from 0.2 to 0.8.

While the data is generated by equation (2.14), the agents forecast

output growth using the law of motion in Equation 2.18. In this context

the set of possible values that µt can take changes: as n increases, both

the conditional and unconditional means of at+1 increase – see Equation

(2.14), and the signals the agents get about the additional source of

uncertainty, denoted by the set [−at,−at + 2|at|]), become noisier.

Scenario 2: Risk and ambiguity. The level of risk by increases with the

value of σu going from 0.3 to 1. In this experiment the model is still

described by Equation (2.14), the perceived law of motion is described by

Equation (2.18), while learning under ambiguity occurs under Equation

(2.16). In this case, increasing the level of uncertainty increases both the

objective and perceived level of uncertainty. However, given that ni = n,

ā = nσz and σa = σnσz for n ∈ (0, 1), where σ2
z = σ2

µ + σ2
u, both the

level of ambiguity (ā) and the uncertainty about ambiguity (σa) increase.
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An increase in σu increases both risk and Knightian uncertainty in the

model.

Scenario 3: Risk but no ambiguity. Similar to Scenario 2, the level of

risk increases, but agents are now forecasting based on the true model:

µ∗∗t = µ∗t , effectively turning down ambiguity. In other words, the true

model is still the one described by Equation (2.14), while the model used

for forecasting is not determined by Equation (2.18), but instead by

equation (2.14) itself. The design in this scenario intends to explore how

the ex-post and overall uncertainty evolve when there is no ambiguity.

Scenario 4: Disagreement. The variance of ambiguity across agents

in the model, i.e. σn,I , now increases, implying that agents are not

all equally ambiguous about the signal. σn,I goes from 0.5 to 1 and

ρa,i ∼ N(ρa, 0.01) is left heterogeneous across agents. Agents differ both

in the volatility of the signal they receive and in its persistence. Note

that, in this case, agents disagree on the level of ambiguity, although

the aggregate level of ambiguity in the data is unchanged; that is, on

average, ā equals nσz, which does not change as σn,I increases.

The model is simulated for 254 periods for each of these scenarios

(using an additional 100 periods as a burn-in sample). The components

of the proposed decompositions are then computed from the simulated

data and and plotted over time.

Panel A in Figure 2.10 depicts the results for Scenario 1. The increase

in ambiguity increases the Mean-Bias and the Ex-Post components of

uncertainty, as well as the overall uncertainty. On the other hand, there

is no change in either the perceived or the realized volatility, that is,

the Ex-ante and Realized Risk components, respectively. This follows

from the fact that: (i) the data generating process has not changed,

and, thus, the realized variance (σ2
z) has remained the same; and (ii) as

Equation (2.18) suggests, the overall level of the ex-ante variance (σ2
u)

does not depend on n.

Panel B of Figure 2.10 shows the simulation results for the second
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(a) Scenario 1: Ambiguity
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(b) Scenario 2: Increase in Risk with Ambiguity

Figure 2.10: Simulation Results
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(a) Scenario 3: Increase in Risk, No Ambiguity
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(b) Scenario 4: Increase in Dispersion of Ambiguity

Figure 2.11: Simulation Results, Continued
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scenario. Here the increase in σu increases the measures of ex-ante (σ2
u

itself) and ex-post risks. It is also important that there is feedback

from risk to ambiguity. As discussed in the description of Scenario 2,

both the mean (a) and the variance (σ2
a) of ambiguity are affected by

the increase in the overall risk. Consequently, the overall measure of

uncertainty increases due to both sources: increase in risk and increase

in ambiguity.

Panel A of Figure 2.11 shows the dynamics of uncertainty and its

components when there is an increase in risk in a model with no ambigu-

ity. In this setup it appears that both ex-ante and ex-post components

of uncertainty increase. However, this increase is proportional such that

the average level of overall uncertainty increases due to the upward shift

in ex-ante uncertainty and its volatility mimics that of ex-post uncer-

tainty (in the right panel). Thus, comparing Panels B and C suggests

that, in the presence of ambiguity, uncertainty increases proportionally

more than the increase of risk.

Finally, Panel B of Figure 2.11 shows the dynamics when there is an

increase in the cross-sectional dispersion of ambiguity while the overall

level of ambiguity remains unchanged. Note that the component that is

most largely affected by the increase in the cross-sectional dispersion in

ambiguity is disagreement, as we would expect.

To summarize, the simulations show that the increase in ambiguity

can increase the ex-post component, as well as the mean bias, thus

resulting in an overall increase in uncertainty. The increase in the true

volatility of the DGP increases both the realized volatility as well as

the ex-ante volatility measures. However, the increase in the overall

uncertainty affects the ex-post volatility and mean-bias as well. In

the absence of ambiguity, the impact on the bias is negligible (it is

more similar to noise), thus the increase in the aggregate uncertainty

reflects the increase in the ex-post volatility. On the other hand, the

increase in the ex-post uncertainty is twice as much the increase in

the ex-ante uncertainty, such that the resulting measure of aggregate
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uncertainty still reflects the increase in the ex-ante uncertainty. Now,

in the presence of ambiguity, on the other hand, the bias goes up and

the ex-post uncertainty goes up proportionally more, such that the

aggregate uncertainty reflects the increase in all sources of uncertainty.

These simulation results match the empirical findings. The model

has a potential to generate an ex-ante uncertainty measure that is

smoother than the realized variance and at the same time relatively

volatile measures of bias and ex-post uncertainty. The simulations also

suggest the existence of ambiguity in the empirical setup as the aggregate

uncertainty does not move proportionally with the variance. In fact,

the predominant sources of aggregate uncertainty are the Knightian

measures.21

2.8 inflation uncertainty

The indicator of macroeconomic uncertainty that I have exposed in the

previous section can be applied just as well to inflation forecasts, which

are also available from the U.S. Survey of Professional Forecasters. This

last section does precisely that.

Understanding inflation uncertainty is important for several reasons.

High uncertainty about future inflation, possibly spurred by high infla-

tion itself, may have effects on real variables (Ball, 1990). For example,

Gürkaynak and Wright (2012) and Wright (2011) have argued that

inflation uncertainty matters because it might help explain the behavior

of bond risk premia, and therefore help economists understand why

monetary policy differently affects short term rates (the instrument of

monetary policy) and the long term rate (the rate that is of interest for

investors and consumers). In fact, Wright (2011) has found a positive

and strong relationship between long-term inflation uncertainty and

21Note that it is possible that the effect of the Knightian uncertainty is underesti-
mated, since it is possible that the data generating process, thus realized volatility,
can also change in response to ambiguity.

48



2.9. Conclusion

bond term premia in a large cross-section of countries. The important

policy implication of Wright’s (2011) findings is the possibility that elim-

inating long-run inflation uncertainty might facilitate the transmission of

monetary policy to the economy. Also, D’Amico and Orphanides (2014)

consider ex-ante measures of risk for inflation forecasting and Caporale

et al. (2010) have shown that inflation uncertainty has decreased in the

Euro area, possibly due to the fact that inflation decreased steadily since

the beginning of the Euro.

Figure 2.12 depicts the measure of inflation uncertainty (Panel A)

and its components (Panels B,C). Inflation uncertainty was high in the

early 1980s, possibly due to oil price shocks, and decreased substantially

afterwards; typically, it tends to be high around recessions. The behavior

over time of uncertainty is very different from that of disagreement,

which instead does not necessarily peaks around recession times. While

the volatility component is pretty constant over time, the majority of

the fluctuations in aggregate inflation uncertainty are associated with

the bias component and the ex-post components; interestingly, ex-ante

inflation uncertainty seems to have decreased monotonically since the

early 1980s.

The empirical results suggest that the most effective policies to

decrease inflation uncertainty are those that influence ex-post uncertainty.

In other words, policies should aim at ensuring that ex-post realizations

of inflation are in line with the average expected inflation (for example,

by minimizing shocks to inflation), not those that decrease the agents’

ex-ante uncertainty (i.e. not those that affect the agents’ expectation

formation process), although the latter can also be effective.

2.9 conclusion

After having insisted on the importance of probabilistic assessments in

the definition of economic uncertainty, I have exposed an alternative

measure of uncertainty based on survey density forecasts that provide
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such assessments. This new measure has the advantage that it can be

used to decompose uncertainty into components that can help researchers

understand what existing uncertainty indices relate to. In particular, this

measure of uncertainty can be decomposed into aggregate uncertainty

and disagreement, and aggregate uncertainty can itself be decomposed

into Knightian uncertainty and realized risk. The latter inherently

measure different phenomena, have specific business cycle dynamics and

different macroeconomic impact. These sources of uncertainty resolve

differently across prediction horizons, which is a new fact uncovered in

these data.

The proposed uncertainty index is an ex-post measure of uncertainty

– which is only half of the picture –, but it can be decomposed into a

component that only reflects ex-ante uncertainty, which can be related

to existing measures of uncertainty based on the inter-quantile spread

of the forecast distribution, and a component that measures ex-post

uncertainty. Some existing measures of uncertainty capture ex-ante

uncertainty (such as existing measures of uncertainty based on policy

uncertainty), while others capture ex-post uncertainty.

Finally, while an increase in overall uncertainty has recessionary

effects, the effects of the various components of uncertainty differ. For

example, disagreement is only a small portion of the overall uncertainty,

and may both underestimate and lag the actual degree of uncertainty

in the economy; thus it may not be a timely measure of uncertainty. In

addition, both realized risk and Knightian uncertainty were important

components of uncertainty over the last three decades, although the

former sharply decreased as soon as the financial recession of 2007-2008

ended while the latter remained high even after the end of the crisis.

This suggests that the high overall uncertainty that persisted after the

end of the latest recession was mostly due to agents’ being unable to

assign the correct probability to the economic outcomes and disagreeing

on them, rather than because risk was high. Simulation results from a

stylized macroeconomic model suggest that the behavior of uncertainty
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and its components is largely reconcilable with a macroeconomic model

with ambiguity. Ambiguity can be a source of its own in increasing the

overall level of uncertainty; alternatively, it can also act as an amplifying

mechanism for the increase in the level of risk.

The quantity of information that can be uncovered using density

forecast from forecasters surveys suggests that there is possibly even

more to discover by understanding how those forecasts were made to

begin with, which is the subject of Chapters 3 and 4.
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2.10 appendix

Proofs of the Uncertainty Decompositions

The appendix provides the proofs for the results in this chapter. For

simplicity of notation, the proofs are written for the unconditional

expectation, but they all naturally hold in conditional form with the

information set.

Proof of Equation (2.7)

The proof is a mechanical consequence of adding and subtracting the

average forecast in the individual Brier scores averaged over the set of

forecasters. Namely:

U = E

[
1

N

N∑
s=1

[
xt+h (r)− Ps,t+h|t (r)

]2]

= E

[
1

N

N∑
s=1

[
xt+h (r)− Pt+h|t (r) + Pt+h|t (r)− Ps,t+h|t (r)

]2]
.

Therefore:

U = E

[
1

N

N∑
s=1

(
xt+h (r)− Pt+h|t (r)

)2]

+ 2E

[
1

N

N∑
s=1

(
xt+h (r)− Pt+h|t (r)

) (
Pt+h|t (r)− Ps,t+h|t (r)

)]

+ E

[
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]
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The first term is the uncertainty of the average forecast. The other two

terms need a bit of rewriting:

U = UA + 2E

[(
xt+h (r)− Pt+h|t (r)

) 1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)]

+ E

[
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]

= UA + 2E

[(
xt+h (r)− Pt+h|t (r)

)(
Pt+h|t (r)− 1

N

N∑
s=1

Ps,t+h|t (r)

)]

+ E

[
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]

= E
[(
xt+h (r)− Pt+h|t (r)

)2]
+ 0 + E

[
1

N

N∑
s=1

(
Pt+h|t (r)− Ps,t+h|t (r)

)2]
.
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Proof of Equation (2.10)

uAt+h (r) ≡ E
[(
xt+h (r)− Pt+h|t (r)

)2]
= E

[(
xt+h (r)− E (xt+h (r)) + E (xt+h (r))− Pt+h|t (r)

)2]
= E

[
(xt+h (r)− E (xt+h (r)))2

]
+ E

[(
E (xt+h (r))− Pt+h|t (r)

)2]
+ E

[
2
(
xt+h (r)− E (xt+h (r)) (E (xt+h (r))− Pt+h|t (r)

)]
= E

([
Pt+h|t (r)− E (xt+h (r))

]2)
+ V (xt+h (r))

− 2Cov(xt+h (r)Pt+h|t (r)),

where the last line follows from the fact that:

E
[
2
(
xt+h (r)− E (xt+h (r)) (E (xt+h (r))− Pt+h|t (r)

)]
= 2E

[(
xt+h (r)− E (xt+h (r)) (E (xt+h (r))− Pt+h|t (r)

)]
= 2E

[
Pt+h|t (r)Ext+h (r)− xt+h (r)Pt+h|t (r)

]
= 2

[
EPt+h|t (r)Ext+h (r)− E(xt+h (r)Pt+h|t (r))

]
= −2Cov(xt+h (r)Pt+h|t (r)).

Furthermore, note that

E
[
Pt+h|t (r)− E (xt+h (r))

]2
=
[
E
(
Pt+h|t (r)− E (xt+h (r))

]2)
+ V (Pt+h|t (r)).

This identity is found by adding and substracting E(Pt+h|t) in the

squared term.
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Proof of Equation (2.12)

Our measure of uncertainty is the negative of the CRPS (Gneiting and

Raftery, 2007). Note that CRPS(F, yt+h) = −
∫∞
−∞(F (r) − 1{yt+h <

r})2 dr = −UAt+h, where F (r) is the aggregate predictive distribution.

Let G(r) denote the ideal – perfect forecast – distribution, i.e. G (r) =

1{yt+h < r}; then by Lemma 2.2 of Baringhaus and Franz (2004), we

have:

uAt+h =

∫ ∞
−∞

(F (r)− 1{yt+h < r})2 dy

= E|Y1,t+h − y1,t+h| −
1

2
E|Y1,t+h − Y2,t+h| −

1

2
E|y1,t+h − y2,t+h|,

where Y1,t+h and Y2,t+h are i.i.d draws from F , while y1,t+h and y2,t+h

are i.i.d. draws from G (r), and both of these variables have finite

expectations. Given Lemma 2.1 of Baringhaus and Franz (2004),

E|y1,t+h − Y1,t+h| =
∫ ∞
−∞

F (r)(1−G(r)) dr +

∫ ∞
−∞

G(r)(1− F (r)) dr.

Now for y1,t+h and y2,t+h, we have:

E|y1,t+h − y2,t+h| = 2

∫ ∞
−∞

G(r)(1−G(r)) dr

= 2

∫ ∞
−∞

1{yt+h < r}(1− 1{yt+h < r}) dr

= 0,

where the last equality follows from the fact that, for a particular value

of r, either 1{yt+h < r} or 1− 1{yt+h < r} will be zero, and, thus, the

product will always equal zero. Therefore,

uAt+h =

∫ ∞
−∞

(F (r)− 1{yt+h < r})2 dr (2.19)

= E|Y1,t+h − y1,t+h| −
1

2
E|Y1,t+h − Y2,t+h|. (2.20)
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This means we can rewrite aggregate uncertainty as the sum of expected

absolute distance measures of random variables coming from the predic-

tive distribution, and that coming from the predictive distribution and

the true distribution which generates the realization. If F (r) is Gaussian,

i.e. if Yt+h ∼iid N(µt+h, σ
2
t+h), then because the difference of iid normal

random variables is normally distributed (in this case centered around

zero with a variance of 2σ2
t+h), and the fact that the absolute value of a

mean zero normal random variable has a half-normal distribution with

mean
2σt+h√

π
, we have

1

2
E|Y1,t+h − Y2,t+h| =

σt+h√
π
. (2.21)

To obtain E|Yt+h − yt+h|, we use the properties of Dirac delta function.

We denote the PDF of yt+h by a Dirac delta function δ(r− yt+h). From

the properties of the Dirac function, E(yt+h) = yt+h and V (yt+h) = 0.

Then, Y1,t+h − y1,t+h ∼ N(µt+h − yt+h, σ2
t+h). By property of the folded

normal distribution, we have:

E|Yt+h − yt+h| = σt+h2ϕ

(
−µt+h − yt+h

σt+h

)
. . .

+ (µt+h − y1,t+h)

(
1− 2Φ

(
−µt+h − yt+h

σt+h

))
.

(2.22)

Substituting (2.22) and (2.21) into (2.20), and taking expectations with

respect to Q we get the result:

UAt+h = EQ(Ex-Post) + EQ(Ex-Ante) (2.23)

where:

Ex-Post = 2σt+hφ

(
yt+h − µt+h

σt+h

)
+ (yt+h − µt+h)

(
2Φ

(
yt+h − µt+h

σt+h

)
− 1

)
Ex-Ante = −σt+h√

π
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Reliability and Resolution Analysis

Note that an additional, interesting decomposition for uAt+h|t (r) can be

obtained following Murphy (1973):

uAt+h|t (r) ' RELt+h|t (r)−RESt+h|t (r) + V (xt+h (r)) (2.24)

where:

– RELt+h|t (r) ≡ E
([
Pt+h|t (r)− E

(
xt+h (r) |Pt+h|t (r)

)]2)
measures

the reliability of the forecast and scores the calibration of the fore-

cast. A forecast is said “reliable” when the observed frequency is

consistent with the probabilistic forecast made for a given event.

For instance, forecasts that predict a probability of recession of 30

percent will be reliable if the economy effectively enters a recession

30 percent of the time every time such a forecast is made. Hence,

reliability measures the unconditional (un)biasedness of the proba-

bilistic forecasts. Because the term is expressed as a squared error,

the smaller the calibration error, the better (i.e., the lower) the

Brier score.

– RESt+h|t (r) ≡ E
([
E
(
xt+h (r) |Pt+h|t (r)

)
− E (xt+h (r))

]2)
is the

resolution, i.e. the average squared differential of the conditional

and unconditional means of the observed outcomes. It captures the

“decisiveness” of forecasts by comparing the forecast probability

and the long-term average of the underlying process. The larger

the term, the lower the Brier score.

As we show below, Eq. (2.24) holds up to an approximation error

that involves within bin variation. The decomposition can be estimated

as follows. Reliability is estimated as follows. For each t, determine

which of the forecast bins Pt+h|t (r) falls into. Let
{
P

(k)
t+h|t (r)

}
be the

collection of probabilities in the k-th bin and let PEt+h|t (r) denote the
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unconditional expected value over the bin. We estimate PEt+h|t (r) using

a Uniform distribution over the bin, so that PEt+h|t (r) is the midpoint of

the bin.22 In addition, let the number of probabilities in each bin be nk.

Let xk be the average of the realizations conditional on the forecaster

having made the probability forecast associated with the collection of

probabilities in bin k,
{
P

(k)
t+h|t (r)

}
. Reliability is the average square

calibration error, that is,

REL(r) =
1

T

K∑
k=1

nk

(
PEt+h|t (r)− xk (r)

)2
. (2.25)

Thus, reliability measures the squared deviation of the predicted

probability from the observed outcome conditional probability of the

event. This effectively tells the user how often (as a percentage) a

forecast probability actually occurred. In theory, a perfect forecasting

model will result in forecasts with a probability of α% being consistent

with the eventual outcome α% of the time. Note that a forecast is

reliable if the average square calibration error (REL) is small. Figure

2.13 provides intuition to understand reliability. The x-axis reports

the forecast probability,23 while the y-axis reports the observed relative

frequency. A reliable forecast would be the 45-degree line, where the

observed frequency of realizations equals the forecast probability; the

data clearly show departures from reliability in our sample.

Resolution is the squared average difference between the conditional

mean (given the forecast) and the unconditional mean: RES(r) =

22In the 3-terms decomposition that we discuss here, we abstract from within
bin variance and within bin covariance; thus, the unconditional expected value over
the bin is indeed the midpoint of the bin and all forecasts in the bin are imposed
to be equal to the midpoint (so their average is also the midpoint). We derive a
5-term decomposition which includes within bin variance and within bin covariance
(Stephenson, Coelho and Joliffe, 2008). In that case, the reliability will be calculated
using the average forecast in the bin without imposing that all forecasts in the bin
are equal. That is, p

(k)

t+h|t (r) (which is the average of the collection of probabilities in

the k-th bin,
{
P

(k)

t+h|t (r)
}

), replaces PEt+h|t (r) in eq. (2.25).
23The forecast probability is the mid-point of the bin in the forecast distribution.
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Figure 2.13: Reliability Diagram

Notes. The figure plots the reliability diagram for SPF forecasts of current

year (CY) GDP growth.

1
T

∑K
k=1 nk (xk (r)− x (r))2 . Note that good forecasts have high resolu-

tion.

Figure 2.14 shows the evolution of the components of the alternative

decomposition over time.24

Proof of Equation (2.24)

In practice, the Murphy decomposition requires partitioning the range

of forecasts – essentially, the [0,1] line – into K sub-segments. Let r be

a number along the real line; let p(k) denote the average probability in

segment k;25 and let nk denote the number of forecast probabilities that

24Finally, note that the practical implementation of the Brier score involves
“binning”. Binning smooths the data and makes them less noisy, as larger bins
limit the “sparseness” problem (Stephenson et al., 2008). Some information is lost,
however, by approximating continuous probability densities with a discrete number
of bins.

25Alternatively, one could consider p(k) as the midpoint of the k-th segment
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Figure 2.14: Aggregate Uncertainty, Reliability, Resolution and (Real-
ized) Risk

Notes. The figure displays Aggregate Uncertainty, Reliability, Resolution and

Realized Risk.

fall in the k-th sub-segment, for k = 1, . . . ,K. Given all forecasts in the

sample, the Brier score can be broken down as follows:

1

T

T∑
t=1

[xt+h(r)− Pt+h|t(r)]2 =
1

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− P (j)

t+h|t(r)
]2

which further equals:

=
1

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(k)

t+h(r) + x
(k)
t+h(r)− p(k)

t+h|t(r) + p
(k)
t+h|t(r)− P

(j)
t+h|t(r)

]2
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=
1

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(k)

t+h(r)
]2

+
1

T

K∑
k=1

nk∑
j=1

[
x

(k)
t+h(r)− p(k)

t+h|t(r)
]2

+
1

T

K∑
k=1

nk∑
j=1

[
p

(k)
t+h|t(r)− P

(j)
t+h|t(r)

]2

+
2

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(k)

t+h(r)
] [
x

(k)
t+h(r)− p(k)

t+h|t(r)
]

+
2

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(k)

t+h(r)
] [
P

(k)
t+h(r)− P (j)

t+h|t(r)
]

+
2

T

K∑
k=1

nk∑
j=1

[
P

(j)
t+h|t(r)− p

(k)
t+h|t(r)

] [
x

(k)
t+h(r)− p(k)

t+h|t(r)
]

=
1

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(k)

t+h(r)
]2

+
1

T

K∑
k=1

nk∑
j=1

[
x

(k)
t+h(r)− p(k)

t+h|t(r)
]2

+
1

T

K∑
k=1

nk∑
j=1

[
p

(k)
t+h|t(r)− P

(j)
t+h|t(r)

]2

+
2

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(k)

t+h(r)
] [
P

(k)
t+h(r)− P (j)

t+h|t(r)
]
.

We can already recognize the reliability (REL) in the second term of

this decomposition:

REL(r) =
1

T

K∑
k=1

nk∑
j=1

[
x

(k)
t+h(r)− p(k)

t+h|t(r)
]2

=
1

T

K∑
k=1

nk

[
x

(k)
t+h(r)− p(k)

t+h|t(r)
]2
. (2.26)
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The first term can be expressed as follows:

1

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(k)

t+h(r)
]2

=
1

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(r) + x(r)− x(k)

t+h(r)
]2

=
1

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(r)

]2

+
1

T

K∑
k=1

nk∑
j=1

[
x(r)− x(k)

t+h(r)
]2

+
2

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(r)

] [
x(r)− x(k)

t+h(r)
]

=
1

T

T∑
t=1

[xt+h(r)− x(r)]2

− 1

T

K∑
k=1

nk

[
x(r)− x(k)

t+h(r)
]2

≡ V
(
xt+h (r) |=tt−R

)
−RES(r).

Note that because the outcome variable x is binary, the uncertainty term

can be expressed as V
(
xt+h (r) |=tt−R

)
= x(r)(1− x(r)). To summarize,

we have decomposed the Brier score in the following way:

1

T

T∑
t=1

[xt+h(r)− Pt+h|t(r)]2 = V
(
xt+h (r) |=tt−R

)
+REL(r)−RES(r)

+
1

T

K∑
k=1

nk∑
j=1

[
p

(k)
t+h|t(r)− P

(j)
t+h|t(r)

]2

+
2

T

K∑
k=1

nk∑
j=1

[
x

(j)
t+h(r)− x(k)

t+h(r)
] [
P

(k)
t+h(r)− P (j)

t+h|t(r)
]
.

The last two terms measure the variance of forecasts within the sub-

segments and the co-movement between forecasts within a segment and
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their corresponding outcomes. The decomposition therefore writes:

1

T

T∑
t=1

[xt+h(r)− Pt+h|t(r)]2 = V
(
xt+h (r) |=tt−R

)
+REL(r)−RES(r)

+WSV (r) +WSC(r).

Remark that the last two terms equal zero when all forecasts within the

same segment are assumed identical. Because WSV (r) and WSC(r)

are quantitatively very small in the data, we will work under the simpler

decomposition:

1

T

T∑
t=1

[xt+h(r)− Pt+h|t(r)]2 ' V
(
xt+h (r) |=tt−R

)
+REL(r)−RES(r),

as per the definitions.
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Results For a Large Dimensional VAR

Variable Mnemonics Description

real GDP GDPC96
Real Gross Domestic Product, 3 Decimal (Billions
of Chained 2009 Dollars)

Employment PAYEMS
All Employees: Total nonfarm (Thousands of Per-
sons)

Real Consumption PCECC96
Real Personal Consumption Expenditures (Billions
of Chained 2009 Dollars)

PCE deflator PCECTPI
Personal Consumption Expenditures: Chain-type
Price Index (Index 2009=100)

real new order AMDMNOx
Real Manufacturers’ New Orders: Durable Goods
(Millions of 2009 Dollars),
deflated by Core PCE

real wage AHETPIx
Real Average Hourly Earnings of Production and
Nonsupervisory Employees:
Total Private (2009 Dollars per Hour), deflated by
Core PCE

hours HOANBS
Nonfarm Business Sector: Hours of All Persons (In-
dex 2009=100)

federal funds rate FEDFUNDS Effective Federal Funds Rate (Percent)
S&P 500 Index S&P 500 S&P’s Common Stock Price Index: Composite
M2 M2REALX Real M2 Money Stock (Billions of 1982-84 Dollars)

Table 2.2: Description of Variables Included in the VAR
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Figure 2.15: Results for the Large VAR

Alternative Ex-Ante Uncertainty Measure

The ex-ante uncertainty, σt+h|t/π, can more generally estimated, for any

predictive distribution, as:

∫ +∞

−∞
E
[(
xt+h(r)− Ps,t+h|t(t)

)2 |Ωs,t

]
dr =∫ +∞

−∞
Ps,t+h|t(t)(1− Ps,t+h|t(t)) dr;
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Figure 2.16: Results for the Large VAR

averaged across forecasters. Figure 2.17 shows indeed that they are the

same object and behave very similarly.
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Figure 2.17: Alternative Uncertainty Measure

Estimation

The decomposition is estimated with its sample counterparts:

Ût+h|t =

∫ +∞

−∞
ût+h|t (r) dr, t = R, ..., T

where R is the size of the rolling window,

ût+h|t (r) =
1

R

t∑
j=t−R+1

1

N

N∑
s=1

us,j+h|j (r)

=
1

R

t∑
j=t−R+1

1

N

N∑
s=1

[
xt+h (r)− ps,j+h|j (r)

]2
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and

ÛAt+h|t =

∫ +∞

−∞

(
pt+h|t (r)− xt+h (r)

)2
dr +

∫ +∞

−∞
V̂ (pt+h|t (r)) dr

(2.27)

+

∫ +∞

−∞
V̂olt+h|t (r) dr − 2

∫ +∞

−∞
Ĉov(xt+h (r) , pt+h|t (r)) dr,

where the terms on the RHS of eq. (2.27) are as follows:

– pt+h|t (r) , xt+h (r) are estimated by:

1

R

t∑
j=t−R+1

pj+h|j (r) ,

and
1

R

t∑
j=t−R+1

xj+h (r) ;

– V̂olt+h (xt+h (r)) is an estimate of the variance of xt+h (r), which

is a binary variable, recursively over time:

V̂olt+h (xt+h (r)) = xt+h (1− xt+h) ;

– V̂t+h
(
pt+h|t (r)

)
is an estimate of the variance of pt+h|t (r) recur-

sively over time:

V̂t+h
(
pt+h|t (r)

)
=

1

R

t∑
j=t−R+1

(
pj+h|j (r)− pt+h|t (r)

)2

– Ĉov(xt+h (r) pt+h|t (r)) is estimated as:

Ĉov(xt+h (r) , pt+h|t (r)) =

1

R

t∑
j=t−R+1

(
pj+h|j (r)− pt+h|t (r)

)
(xj+h (r)− xt+h (r))
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While we do not need the Normality assumption to calculate the

decomposition above, in practice we fit a Gaussian distribution to the

predictive density. The main reason is to guarantee that the “Knightian

uncertainty/(Realized) Risk” decomposition is consistent with the“Ex-

ante”/“Ex-post”, since the latter is valid only under Normality. Fur-

thermore, in the empirical implementation we let R = 4, which amounts

to calculating 4-quarter-moving average of the various components of

uncertainty, and we proxy the indefinite integrals with definite ones by

treating the extrema of either the realization or the bins as integral

bounds.
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Detailed Analysis of Uncertainty Across Forecast Horizons

Each plot in Figure 2.18 contains eight forecasts made in a given year:

1 quarter ahead, 2 quarters ahead, etc. Each density is then compared

to the corresponding realization of GDP growth, depicted as a vertical

line. Two things can be noted from those graphs. First, densities tend

to get narrower at shorter horizons. That ı́s what one would expect

based on our analysis: the shorter the horizon, the more concentrated

the forecast will be. This illustrates why ex-ante uncertainty is lower at

short horizons than at a longer horizons, which is what we found with

our uncertainty measure. Second, since densities at longer horizons are

less concentrated, the actual realizations may still end up well inside

the predictive distribution and hence the ex-post error (in terms of

likelihood) need not be greater than that of a concentrated, short-term

forecast. To see this in detail, consider the examples for the following

years:

– 1984: Long horizon forecasts were quite flat and in the end, the

realization fell quite close to the center of the curve. On the other

hand, the short term forecasts were concentrated and missed the

realization substantially. Ex-post error is higher for short term

horizons than for long term.

– 1995: This picture shows the opposite situation. Long-horizon

forecasts missed the realization, but short-term forecasts hit the

nail on the head. Ex-post error is lower at short horizons than at

long horizons.

– 1992: Both long and short term horizon failed in predicting. Ex-

post error should be about the same in both cases.

As one looks across diferent points in time, there are many more cases

where the pictures look like the situation in 1984 than in 1995, which

explains why, on average, the results show that ex-ante uncertainty

decreases as the horizon decreases, but ex-post uncertainty increases.

71



2. Understanding The Sources Of Macroeconomic Uncertainty

Figure 2.18: Examples of Predictive Densities and Realizations
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Number of Forecasters over Time
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Figure 2.19: Descriptive Statistics on the SPF
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3

INFORMATION AND UNCERTAINTY

My greatest concern was what to call it. I thought of calling

it “information”, but the word was overly used, so I decided

to call it “uncertainty.” When I discussed it with John von

Neumann, he had a better idea. Von Neumann told me, “You

should call it entropy, for two reasons. In the first place your

uncertainty function has been used in statistical mechanics

under that name, so it already has a name. In the second

place, and more important, nobody knows what entropy really

is, so in a debate you will always have the advantage.”

— Claude Shannon, Scientific American, September 1971
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3.1 introduction

Claude Shannon’s theory of information has had a tremendous impact

on economic theory, yet little on the study of economic uncertainty as

an object of its own. The rational inattention framework of Christo-

pher Sims and the robustness ideas of Thomas Sargent both read like

information theory between the lines. They inherently rely on the idea

that agents have limited information processing capabilities and are

therefore far from the perfect forecasters that the rational expectations

hypothesis thought they were. Agents are “rationally inattentive”; they

are aware of their limitations and optimize their decisions accordingly.

Neither Sims nor Sargent, however, try to quantify uncertainty. This

chapter does not discuss these ideas nor does it build on them; rather,

it provides a simple framework to estimate uncertainty using entropic

quantities on survey data.

Information theory was originally built with the purpose of better

understanding noisy data and soon became a solution to the classical

statistical dilemma. Statistical estimation always faces the choice of

either imposing a specific a priori structure – which introduces arbitrary

decisions in the estimation – or dealing with inherently under-determined

problems – which leads to infinitely many solutions and interpretations.

Under pre-imposed structures such as maximum likelihood estimation,

information measures are often used as measures of the discrepancy

between distributions, as goodness-of-fit measures and as other informa-

tive statistics for hypothesis testing, or for evaluating the informational

content of the data. Notable examples include information criteria in

econometrics, such as that of Akaike (1974) or Schwarz (1978) also

known as the AIC and BIC criteria. These are, however, “objective”

criteria used to skim through objective standardized econometric mod-

els. But they do not tell much about model uncertainty, nor about the

uncertainty that belies the underlying quantity measured. In contrast,

“maximum entropy” methods were developed as a decision tool to pick
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the most “informative” model, this time in the information theoretic

sense, without putting too much arbitrary structure on the model. The

principle of maximum entropy states that the probability distribution

which best represents the current state of knowledge is the one with

largest entropy. Even if information criteria and maximum entropy

methods proceed from a very different logic, information is defined in a

similar way through logarithms and plays a central role. For example,

the Fisher “information” represents a degree of uncertainty for maxi-

mum likelihood procedures around the true value of the parameter. The

Cramér-Rao bound gives an idea of the amount of incompressible risk

carried by a statistical model under maximum likelihood estimation, is

a direct function of the probabilistic “informativeness” of an estimator.1

Whether one adheres to maximum entropy or maximum likelihood,

distributions convey information that is tied to estimation uncertainty.

Knowing how much statistical theory used entropic measures as

metrics of uncertainty, entropy was surprisingly never used to assess

how much uncertainty probabilistic forecasts contained – in economics

or else. And despite the clear link between probabilistic forecasts and

information most forecast evaluation methods do not use entropy nor

related quantities. Currently used methods include the Brier score

(1950), ranked probability score (Epstein in 1969; Murphy in 1971),

relative operating characteristics (Swets in 1973), or rank histograms

(Anderson in 1996). Leung and North (1990) suggested that a relative

entropy-type measure might be used as the basis of a skill score for

deterministic forecasts. In rarer occasions entropy has been used in

1For an unbiased estimator, the Cramér-Rao (1946) states that:

R(θ̂) >
1

I(θ̂)
; (3.1)

where I(θ̂) is the Fisher information of the estimator – i.e. the curvature of the
log-likelihood around the true parameter value. A high curvature means a more
efficient estimation. A result from Barron (1986) ties convergence in (relative) entropy
and Fisher information in the context of the central limit theorem.
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previous studies to quantify ensemble spread, for example by Stephenson

and Doblas-Reyes (2000). Entropy was then suggested as a predictor

of forecast skill, rather than as a measure of forecast skill. Rich and

Tracy (2010) use some information theoretic measures on the survey of

professional forecasters but their metrics are posited and not derived

from theory. Because of that last point, their measures aren’t related to

one another to any way and fail in explaining the different features of

commonly accepted proxies of uncertainty. Neither do they properly lay

out the benefits of applying entropic measures on survey data.

This chapter aims at filling this gap and showing some possible

applications in economics. With rationally inattentive agents or with

robust decision making the concept of information entropy plays a central

role but there is no measure of uncertainty per se. I start from forecasting

theory and define optimal density forecasts to show how they relate

to entropy and Shannon’s theory of information. I use my results to

develop a measure of uncertainty based on (survey) density forecasts, as

opposed to forecast errors like it has been done in most of the existing

literature. I then try to compare forecast-error type measures based on

entropic quantities to the measures presented in Chapter 2 and try to

uncover some principles linking economic uncertainty, forecast errors

and disagreement.

3.2 information-theoretic measures of uncer-

tainty

3.2.1 Information, Entropy, Uncertainty and Forecasting

Classical information science was founded by Claude Shannon with the

aim of giving a mathematical structure to the concept of information

transmission in the presence of noise. At the crux of information theory

stands the concept of entropy which is a measure of the uncertainty of a

random variable. More specifically, entropy is a measure of the amount
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of information required on the average to describe the random variable.2

Little after Shannon’s breakthroughs, Jaynes (1970) even went on to

claim that the traditional mechanical view of economic systems might

be inaccurate; he favors the thermodynamical view of the economy and

with it the entropy methods that thermodynamics employs.

Without veering into heterodox economics, it can be shown that

entropy and information actually lurk in the typical economic (density)

forecasting problem. This section retains a framework close to that of

Elliott and Timmermann (2016), but the problem is studied in much

greater detail. Assume that agents want to figure out the odds of the

states of nature in the next period, with their ultimate goal being to

provide a predictive density over the states of nature. Nature itself is

unknown to the forecaster, such that the probability density function

of the data generating process is itself picked from a set of densities

{fy : y ∈ Y } which is equipped with a σ-algebra and with a probability

measure PY for a well-defined statistical model.3 Forecasters seek to

minimize the forecast error given a loss function L:

R(f, θ) = EY,Z [L(f(Z, θ), Y, Z)] (3.2)

=

∫
z

∫
y
L(f(Z, θ), y, z) dPY |z,θ(y) dPZ|θ(z).

In the case of density forecasts, a common choice for the loss function is

2This is a consequence of what is known as the asymptotic equipartition property
that was described by Shannon in his original 1948 paper. Loosely, the theorem
establishes that nH(X) bits suffice on average to describe n independent and identi-
cally distributed random variables, or in other words, that a given distribution can
be properly understood with at least nH(X) bits of data.

3In a discrete case, one can think of nature picking a degenerate distribution
at random, where all the mass is put on a given outcome. The mixture of such
distributions produces a proper distribution whose probabilities are given by the
probabilities of selecting a given degenerate distribution.
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the Kullback–Leibler divergence:

K(fi, fy) = Efi

[
ln

(
fi
fy

)]
=

∫
t
fi(t) ln

(
fi(t)

fy(t)

)
dt

The Kullback-Leibler distance possesses almost all properties of a dis-

tance safe that of symmetry. The choice of this ordering between the two

distributions comes from the idea that forecasters will seek to minimize

the error according their own odds, since they are trying to guess those

of nature. Simplifying the writing by omitting the parameter vector

θ and other covariates Z, the forecasting problem takes the form of a

minimization of expected loss and essentially becomes:

min
fi

∫
Y

∫
t
fi(t) ln

(
fi(t)

fy(t)

)
dtdPY such that

∫
t
fi(t) dt 6 1. (3.3)

This is generalized version of a simpler problem known as the minimal

cross entropy problem where the target distribution is known. This

problem solves into:4

fi(t) = e−1+λ+E(ln fy(t)) (3.4)

= e−1+λ−Ht(Y );

where λ is the Lagrangean multiplier tied to the constraint of the problem

and Ht(Y ) is the entropy of nature at event t such that:

H(Y ) = −
∫
Y

∫
t
ln fy(t) dt dPY (y) =

∫
t
Ht(Y ) dt. (3.5)

Remark that with this solution H(fi) = H(Y )+C where C is a constant,

meaning that the optimal forecast will be set in such a way that matches

the entropy of nature. These derivations serve to motivate the estimation

exercise that I conduct later in this chapter: Calculating the entropy of

4The proof can be found in the appendix.
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a (supposedly optimal) density forecast helps uncover the underlying

uncertainty of the process that is forecast.

An important point to make is that this problem is so far very loose.

In practice, forecaster i may want to put some shape constraints on

their forecast, which can be summarized by the following set of moment

constraints:

Gi =

{
γi,j(·) :

∫
γi,j(t)fi(t) dt = µj ; j ∈ Ji

}
; (3.6)

where Ji is finite. This will change the solution to the optimal forecasting

problem into:

fi(t) = e
−1+λ+

∑
j∈Ji

λi,jγi,j(t)−Ht(Y )
(3.7)

where the {λi,j} are the Lagrangean multipliers associated with the

shape constraints of forecaster i. Consequently, H(fi) = H(Y ) + Ci,

which allows for individual differences in uncertainty. When individ-

ual uncertainties are averaged out over the whole sample, this identity

provides a condition for the consensus to arrive at the exact entropy

of nature: All individual moment constraints “balance out”, such that∫
Ci dS(i) ' 0, where S is a probability measure over the set of fore-

casters S. It can be further be established that such a choice of density

maximizes entropy over the set of constraints, see for example Cover and

Thomas (2006) for a treatment in the context of the maximal entropy

problem. Finally, remark that the “true” density that is being forecast

may be the laws of nature that impose themselves to everyone or the

idiosyncratic probabilities for someone’s life events tomorrow.

Murphy (1993) argued that it is possible to distinguish three different

dimensions of forecast “goodness”: (i) Consistency – the correspondence

between forecasts and judgments; (ii) Quality – the correspondence

between forecasts and observations; and (iii) Value: incremental benefits

of forecasts to users. Forecast consistency is an assumption implicitly

made when using expectations conditional on the information set of the
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forecaster.5 Building from the forecasting problem presented in this

section, information theory can help us study forecast uncertainty from

the point of view of quality and value at the same time. How it can do

so is the object of the next section.

3.2.2 Information-Theoretic Measures of Uncertainty

3.2.2.1 Aggregate Entropy, Average Entropy, Disagreement

The Kullback-Leibler divergence used in the previous section showed

that optimal density forecasts achieve the minimum cross entropy in

such a way that matches the entropy of nature.6 Using entropy isn’t

however, a new practice in the attempt to measure uncertainty. Rich

and Tracy (2010) postulate empirical measures of disagreement and

uncertainty using Shannon’s entropy and comparing their results to the

work of Wallis (2005). They do not show how uncertainty of the average

forecast relates to disagreement and the average uncertainty, which is

an important question when dealing with macroeconomic uncertainty.

In particular, uncertainty measures should be able to disentangle the

effects of individual divergences in guesses and the change in information

in the consensus, which is simply an “aggregate density”:

fA =

∫
S

fs dS(s); (3.8)

5Say that the forecast takes the form y∗t+h = E(yt+h|It); Doob’s lemma in
probability theory tells us that y∗t+h is a random variable that is σ(It)-measurable.

6It can be shown that maximal entropy (i.e. maximal uncertainty) is reached
for a uniform distribution in a discrete world (and for the Gaussian distribution in
the continuous one). This is consistent with what is often called the Principle of
insufficient reason, corresponding to highest “uncertainty.” Keynes (1921) strongly
rejected the principle of insufficient reason as he argued that probabilities need not be
“numerical” and judgments of uncertainty even less so; he very much agreed Knight
(1921) in that sense. Until neuroscience takes a great leap, however, the data will
always be numerical and the principle of insufficient reason is a good approximation
for the highest uncertainty.
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where the fs stand for individual density forecasts, and forecasters are

distributed over a set S.7 It can be easily checked that fA is indeed a

probability density function as long as the set of forecasters is normalized

to have mass 1. Consider disagreement to be the average divergence of

individual forecasts to the consensus:

D ≡
∫
S

K(fs, f
A) dS(s) (3.9)

=

∫
S

∫
fs(t) ln(fs(t)/f

A(t)) dt dS(s)

=

∫
S

∫
fs(t) ln(fs(t)) dtdS(s)−

∫
S

∫
fs(t) ln(fA(t)) dtdS(s)

= −
∫
S

H(s) dS(s)−
∫

ln(fA(t))

∫
S

fs(t) dS(s) dt

= −
∫
S

H(s) dS(s) +HA (3.10)

where H(s) ≡ −
∫
fs(t) ln(fs(t)) dt is the individual entropy (which

measures uncertainty) for forecaster s, and HA ≡
∫
fA(t) ln(fA(t)) dt

denote aggregate entropy (uncertainty). In essence, we have just shown

that, with density forecasts:

Aggregate Uncertainty = Uncertainty + Disagreement. (3.11)

Note that this decomposition echoes what we had found with the CRPS

in Chapter 2. Uncertainty can be high either when forecasters disagree

a lot (but they are not individually uncertain), or when they are indi-

vidually uncertain and don’t disagree much about it (that is, when no

one knows what happens next).

While the decomposition on its own does not uncover anything that

wasn’t known in Chapter 2, it presents several practical advantages.

7In the case of binned forecasts as in the Survey of Professional Forecasters, the
aggregate forecast would be:

pA = {pA1 , . . . , pAK} where pAk =
1

N

∑
s∈S

ps,k and
∑
k

pAk = 1.
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First, these quantities are completely agnostic. They do not rely on

any model nor econometric estimation method; they merely need survey

forecasts to be estimated and simply assume their consistency with

the information set available to forecasters. Moreover, these measures

tie into the limited information macroeconomic literature and can be

very simply implemented in a macroeconomic model in which agents

form density forecasts over the possible states of the world. Finally

and most importantly, the decomposition is purely based on beliefs.

Unlike the CRPS or most measures of uncertainty developed until now,

the uncertainty does not take the form of a forecast error.8. In that

sense, these quantities are all ex-ante. An alternative version of ex-post

information theoretic measures is presented in the following section,

while a simple example of these quantities in the case of Gaussian

forecasts is presented in the Appendix.

3.2.2.2 Forecast Errors, Knightian Uncertainty and Relative Entropy

A common vision of uncertainty that, in a sense, also matches Knight’s

view, is that of a forecast mismatch. In probabilistic language, distri-

bution languages do not match the distribution that nature seems to

be working with, and agents are as uncertain as they are far from the

“true distribution.” With the same Kullback-Leibler distance as we used

before:

EGuess ln

(
fGuess

fTrue

)
(3.12)

This is essentially the forecast error as in the forecasting problem solved

at the beginning of this chapter, and this has been the approach retained

by most of the uncertainty measurement literature so far. Let fs denote

the (observed) density forecast of forecaster s, and define the uncertainty

8Baker et al. (2015) is another such measure, but much more costly in terms of
estimation.

84



3.2. Information-Theoretic Measures of Uncertainty

as a forecast error: Us ≡ K(fs, f
true); then:

Us =

∫
fs(t) ln

(
fs(t)

f true(t)

)
dt

=

∫
fs(t) ln

(
fs(t)

fA(t)

)
dt . . .

+

∫
fs(t) ln

(
fA(t)

f true(t)

)
dt (3.13)

Integrating over the set of forecasters to get the total uncertainty for

the panel:

U =

∫
S

K
(
fs, f

A
)

dS(s) +

∫
fA(t) ln

(
fA(t)

f true(t)

)
dt (3.14)

This last decomposition echoes Equation (3.11): Uncertainty = Ag-

gregate Uncertainty + Disagreement. Also, note that for the average

forecast uncertainty breaks down as such:∫
fA(t) ln

(
fA(t)

f true(t)

)
dt =

∫
fA(t) ln fA(t) dt−

∫
fA(t) ln f true(t) dt;

(3.15)

which says mathematically that uncertainty decomposes into an ex-ante

component – the entropy of fA – and an ex-post term – the cross entropy

between fA and f true. This is the exact same finding as in Chapter

2. In a perfect world where the randomness of nature is known with

decent precision, this measure can be immediately estimated from survey

forecasts. Finally, remark that such a measure makes sense only in the

situation where the “true” density that is predicted is the same for

everyone. Adrian and coauthors’ (2016) entropies follow a similar logic

but assume that the true distribution is the unconditional distribution

of GDP growth estimated from the data. While this is not inherently a

misguided approach, it comes with a number of drawbacks.

The issue is that the randomness of nature isn’t known and such

estimated densities are still very much window-dependent. Add the
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consideration that the underlying process may be non-stationary and

one may really want to stray away from any assumption that estimated

densities faithfully represent the true data generating process. Fortu-

nately, forecasting practitioners have reverted to some simplifications to

circumvent that issue. Brier (1950) used 0-1 forecast outcomes, that is,

the true density puts all the weight on the event that actually occurred.

Hersbach (2000) turns density forecasts into binary forecasts before

integrating them over the whole support of the distribution to arrive

to the continuous-rank probability score.9 Either of these options is

not feasible in this case because neither is well defined for the Kullback-

Leibler distance. One possible solution is to use the Jensen-Shannon

divergence, which unlike the Kullback-Leibler divergence, is symmetric,

always well defined and bounded. The Jensen-Shannon divergence was

introduced by Amari et al. (1987) and is defined, for two densities f1

and f2, as follows:

J(f1, f2) = H

(
1

2
f1 +

1

2
f2

)
− 1

2
H
(
f1
)

+
1

2
H
(
f2
)

; (3.16)

where H denotes the Shannon entropy attached to the respective dis-

tributions. It can readily be seen that this divergence is symmetric – a

property that had been forgone with the Kullback-Leibler divergence –,

continuous and always properly defined, even for binary distributions.

The assumption made here is that the “true” distribution of nature

puts all the mass on one particular event, similar to that of Hersbach

(2000).10 With such definitions, the following decomposition holds:∫
J(fs, f

true) dS(s) +
1

2

∫
H(s) dS(s) = J(fA, f true) +

1

2
HA . . .

+

∫ [
H

(
1

2
fs +

1

2
f true

)
−H

(
1

2
fA +

1

2
f true

)]
dS(s)

(3.17)

9This is what is done in Chapter 2.
10The entropy of a distribution that puts all weight on one outcome is zero.
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which, once the following substitution is made:

1

2
HA − 1

2

∫
H(s) dS(s) =

1

2

∫
K(fs, f

A) dS(s); (3.18)

results in the following:∫
J(fs, f

true) dS(s) ' J(fA, f true) +
1

2

∫
K(fs, f

A) dS(s) (3.19)

All in all, that is tantamount to saying the same as before:

Uncertainty = Aggregate Uncertainty + Disagreement.

The last “noise” term (the difference in entropy) is bounded as follows:11

∣∣∣∣∫ [H (1

2
fs +

1

2
f true

)
−H

(
1

2
fA +

1

2
f true

)]
dS(s)

∣∣∣∣
6 −1

2
ES

(
‖fs − fA‖1 ln

1

2κ
‖fs − fA‖1

)
(3.20)

where κ is defined as:

κ ≡ e
1
2

(1+ln 2πσ2); for some σ2 > sup
s∈S

∫
t2
(
|fs(t)− fA(t)|
‖fs − fA‖1

)
dt (3.21)

Because it is independent of the “true” density and involves only a

comparison of the individual forecast against the aggregate, this bound

justifies considering the “difference in entropy” term a “noise” of dis-

agreement; it rewrites as a direct expected value of (a function of)

the L1 distance between the individual and consensus forecasts.12 In

particular, as ES‖fs − fA‖1 → 0, that is, all individuals converge to a

11Under some regularity conditions detailed in the appendix together with the
proof.

12Alternatively, one could also consider that the term in question is “the other half”
of disagreement that is missing in the equation, since the average of Kullback-Leibler
is affected with a factor of exactly 0.5.
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consensus, the disagreement “noise” term disappears as well.13 While

the Jensen-Shannon doesn’t have the same theoretical foundation and

is not immediately apparent from the forecasting problem presented

in the first section of this chapter,14 the decomposition still mirrors

the properties of aggregate uncertainty that were obtained in other

approaches. More importantly, the Jensen-Shannon approach allows to

extend information-theoretic measures to a feasible forecast-error based

approach.

3.2.2.3 State-Dependent Uncertainty and Total Uncertainty

An important question when trying to capture the underlying uncertainty

of density forecast is that of the extent to which it captures moments

of the distribution. I have shown that the solution to the forecasting

problem indeed factors in moment conditions through their associated

multipliers. Large deviation theorists Donsker and Varadhan linked the

relative entropy to (cumulant) moment generating functionals, but the

intuition of how the overall entropy is linked to the conditional distribu-

tions implied by the division of the support. This sections presents a

simple decomposition to break down the entropy of a distribution over

its support.

To lighten the notation I will assume that the density forecast made

since the beginning of this chapter represents the density of a random

variable of interest X with density f with respect to the Lebesgue

measure λ over R. The forecast is made conditional to the information

13Jensen’s inequality applied to t 7→ −t ln t (which is concave) allows to rewrite
the bound as:∣∣∣∣∫ [H (1

2
fs +

1

2
f true

)
−H

(
1

2
fA +

1

2
f true

)]
dS(s)

∣∣∣∣
6 −1

2
ES
(
‖fs − fA‖1

)
ln

1

2κ
ES
(
‖fs − fA‖1

)
→ 0;

as ES‖fs − fA‖1 → 0 – forecasters all converge to the same consensus.
14It nevertheless easy to check that the minimum “loss” is attained at the true

density.
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available at the beginning of the period, which I omit from the notation

for simplicity. I show in the Appendix of this chapter that:

H(X) = P (X ∈ A)H(X|X ∈ A) + [1− P (X ∈ A)]H(X|X /∈ A) . . .

+ ψ[P (X ∈ A)], (3.22)

where ψ[P (X ∈ A] denotes the binary entropy of the event (X ∈
A) = {ω ∈ Ω;X(ω) ∈ A}. In common terms, the uncertainty of a

given variable of interest can be decomposed into a weighted sum of

the uncertainty of the variable in a given state and outside of it, to

which the uncertainty around that state is added. One advantage of

such a decomposition is to emphasize asymmetries in different areas

(or “states” of the distribution forecast being made. A simple example

will make this idea clearer. Imagine that GDP growth X can take

4 different values – x1 and x2 denote recessionary states, x3 and x4

denote expansionary states. Consider Situation 1 where the forecast

predicts PX(x1) = 0.2; PX(x2) = 0.2; PX(x3) = 0.3 and PX(x4) = 0.3;

and Situation 2 where PX(x1) = 0.2; PX(x2) = 0.3; PX(x3) = 0.3

and PX(x4) = 0.2. Both distribution forecasts have the same entropy

since one is simply a rearrangement of the other. Note, however, that

in the second case there is more uncertainty in either state (recession

or expansion) than in the first case. Looking solely at entropy would

not have been able to uncover this fact. More generally, as long as all

quantities have been properly normalized15, this decomposition helps

understand where uncertainty changed along the distribution and where

it did not. To be sure, such a decomposition makes sense only when

the underlying density forecast is not perfectly symmetric around the

states, say for example, with the normal distribution around its mean.

It allows me to escape some simplifying assumption made in Chapter 2.

15See the estimation sections below for a proper explanation of the normalization
of entropy when working in a discrete setting.
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Finally, note that for a joint process (X,Y ) the following is true:

H(X,Y ) = P (Y ∈ A)H(X,Y |Y ∈ A) + [1− P (Y ∈ A)]H(X,Y |Y /∈ A)

+ ψ[P (Y ∈ A)], (3.23)

which could be useful in looking at the regimes of growth in different

states of, say, inflation. Obviously this can be estimated provided that

one has joint predictive densities to feed in. While I restrict my esti-

mation to the marginal densities provided in the Survey of Professional

Forecasters, some ways of generating joint predictive densities from this

survey exist, see for instance Odendahl (2017).

This decomposition is a generalization of what is commonly known as

the “recursiveness” of the Shannon differential entropy. Such a decompo-

sition has not been exposed nor used in the entropy literature and much

less so in the economic uncertainty literature. The closest concept to

this decomposition would be Adrian and coauthors’ (2016) “downward”

and “upward” entropy concepts, but they use estimated densities and

focus about the distance between conditional and unconditional densities

under and above the median. For the sake of comparison, let m denote

the median of the distribution of X, that is, PX{(−∞,m)} = 0.5. My

decomposition would read as follows:

H(X) =
1

2
H(X|X > m) +

1

2
H(X|X 6 m) + ln 2. (3.24)

In fact, the upside and downside entropies are related to the total

(Kullback-Leibler) divergence as follows:

K(f̂yt|xt+h , ĝyt) =
1

2
LUt +

1

2
LDt + ln 2, (3.25)

although Adrian et al.’ (2016) upward and downward measures are not

linked to one another as such in the current version of the paper. For a

density forecast conditional on the information available in the previous

period, this decomposition highlights how total uncertainty related to

uncertainty under and above the median. A direct application to survey

90



3.3. Estimating Entropy-Based Uncertainty Measures

forecasts will be conducted later in this chapter for introduction. Finally,

note that the breakdown of entropy can be extended to any quantile,

or more generally, to any partition of the support of X. In the case of

growth, this means that distribution forecasts can be studied in and out

of recessions, as opposed to simple quantiles.

3.3 estimating entropy-based uncertainty mea-

sures

3.3.1 Job Market Uncertainty in the Survey of Economic Expectations

I begin this illustrative section using data that is not purely macroeco-

nomic nor comes from professional forecasters, and more importantly,

with which typical mean-squared error based measures of uncertainty

would be impossible to estimate. The Survey of Economic Expectations

(SEE) was run between 1992 and 2002 (over 12 waves) by the Univer-

sity of Wisconsin Survey Center (UWSC). The goal of the SEE was

to elicit probabilistic expectations of significant personal events, such

as personal security, unemployment, insurance and income. While the

methodology can be applied to all questions in the survey, I choose to

focus on employment outcomes. Participants were asked the following

questions:

– On job loss (All waves): “I would like you to think about your

employment prospects over the next 12 months. What do you

think is the percent change that you will lose your job during the

next 12 months?”

– On finding as good a job (All waves): “If you were to lose your job

during the next 12 months... What do you think is the percent

chance (or chances out of 100) that the job you eventually find

and accept would be at least as good as your current job, in terms

of wages and benefits?
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– On leaving job voluntarily (All waves): “What do you think is the

percent change that you will leave your job voluntarily during the

next 12 months?”

Note that these questions constitute a complete probability distribution

over the following events: Losing one’s job and not finding as good a job

in the following 12 months, losing one’s job and finding as good a job

in the following 12 months, leaving one’s job voluntarily, and leaving

things as they are.16 However, the outcomes are individual and because

the support is discrete only the “ex-ante” entropy measures presented

in Section 3.2.2.1 are really relevant in this case.17

The entropy measure is estimated directly on the probabilities given

in the survey. The entropy is normalized by ln(n), where n is the

number of events considered, to make it a index bounded between zero

and one.18 The estimated job market uncertainty is presented in Figure

3.1. Uncertainty remained quite low over the 1992-2002 decade and

seems to vary little except from a clear ”down then up” period towards

the end of the sample period. In the latter, uncertainty remained

stable while aggregate uncertainty went up together with disagreement.

These data provide support to the idea that disagreement is a non-

negligible part of uncertainty. The continuous line in the graph depicts

the evolution of the importance of disagreement in overall uncertainty.

In the case of job market uncertainty, disagreement represents between

20 and 25 percent of overall uncertainty. In Chapter 2, I had found that

disagreement was a very small fraction of overall uncertainty; the finding

that disagreement is high in the case of job market uncertainty begs

16The conditional probabilities are inferred from the survey data. Note that in
a minority of cases people give a set of probabilities that sum to slightly over 1. I
exclude these cases from the estimation.

17The state dependent entropy decomposition gives better insights on various
quantiles of a continuous distribution than on a discrete distribution with only four
outcomes.

18This is for consistency with the following sections where the number of bins
changes and needs to be accounted for in the normalization.
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the question of what drives disagreement in the Survey of Economic

Expectations. A possible explanation for disagreement being such an

important part of uncertainty is that agents are forecasting “individual”

events, in the sense that individuals in the survey may have different

underlying conditions that will shift their beliefs toward one direction

or another. In what follows, I confirm that the level of studies may be

an explanation for the uneven levels of uncertainty in the survey.

5
1
0

1
5

2
0

2
5

D
is

a
g
. 
%

.1
6

.1
8

.2
.2

2
.2

4
U

n
c
e
rt

a
in

ty

0 5 10 15
Wave

Aggregate Unc Unc (Consensus)

Disagreement, %

Figure 3.1: Job Market Uncertainty, Aggregate Uncertainty and Dis-
agreement Estimated in the Survey of Economic Expectations

One advantage of survey data like the SEE is that they provide a

number of socio-demographic characteristics of individuals together with

the individuals’ stated beliefs. An obvious question that is subject of

a vivid debate nowadays is that of gender inequality on labor market

outcomes and the resulting uncertainty. In the Survey of Economic

Expectations, as far as job market uncertainty goes, women do not

appear to face starkly higher uncertainty levels than men. A simple
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t-test for difference in means yields a p-value of approximately 0.5. The

data is pooled across different periods of time; the low variation in

uncertainty over the sample period leads to believe that there isn’t much

time effect to account for.19 This statement holds true when the level

of education is accounted for – in particular, when jobs mostly occupied

by women (for instance, nursing) are excluded. Therefore, the data do

not seem to point at a significant difference between the two sexes in

regards to job market uncertainty.

Finally, I consider the impact of education on the level of uncertainty.

A sensible prior would be that higher levels of education confer more

stable job outcomes and better prospects on the job market overall. To

address this question, I run an analysis of variance (ANOVA) across the

different education categories in the survey. The results barely meet the

requirements for statistical significance with a p-value stopping dead

on the 0.1 threshold, but given how simple the procedure is, they do

indicate a trend. A box plot summarizing the differences across groups

is presented in Figure 3.2. Higher levels of education seem to experience

consistently lower levels of uncertainty over the sample period. While

it may seem surprising that nurses have the lowest level of average

uncertainty, it is important to remember that the United States has

been facing a shortage of nurses for decades (Buchan and Aiken, 2008)

and population ageing only contributes to make the situation more

severe. Therefore, nurses are likely to enjoy a higher “bargaining” power

on the job market and consequently lower labor uncertainty.

Beyond a skin-deep discussion on the determinant of uncertainty

faced by survey respondents, the data point to some interesting facts.

First, aside from signaling purposes, educational choices translate into

a different set of beliefs later in life, not simply to initial outcomes

after education as some claim. To be sure, in a signaling framework,

agents choose education, reach a certain job; yet little is said about the

19As a robustness check, I ran the same exercises – this and the former – wave by
wave and found similar results.
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Figure 3.2: Mean Uncertainty by Education

sequential job searching uncertainty. The data of the SEE seems to

show that the initial signaling choice also matters further down the road.

Similarly, there is an argument to be made about agents internalizing

their more or less volatile job market outcomes and formulating beliefs

that agree with it. Finally, this fact gives credit to the idea that different

social categories may need different levels of labor insurance for other

reasons than the sheer difference in wage.

Provided that the data were made available to the public, such

uncertainty measures could be estimated on more recent periods. For

instance, the Michigan Survey of Consumer does ask some probabilistic

forecast survey questions, but the data is not available in disaggregated

form to the public and the questions are still binary for the most part.

Similarly, the Manpower Employment Outlook Survey (MEOS)20 could

serve as a great dataset to estimate firm level job market uncertainty

20See https://www.manpowergroup.us/meos/.
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and compare it to household job market uncertainty, but once again

the data are not available to the general public. In particular, this data

could help estimate firm-level job market uncertainty at two levels of

disaggregation, following the decomposition for subgroups presented in

the Appendix.

Entropy based measures go against the idea that uncertainty cannot

be directly observed, but needs to be indirectly inferred from decisions

that are influenced by uncertainty. The latter approach is defended by

Ernst and Viegelahn (2014), and while that approach is not inherently

wrong, it is more likely to result in an estimate of ex-post uncertainty, i.e.

risk, than ex-ante Knightian uncertainty. In the context of labor market

uncertainty, the determinants of economic decisions are likely to be a

covariate of firm-level business uncertainty, which is only one dimension

of job market uncertainty and imperfectly reflects the uncertainty that

consumers face when making their decisions. Furthermore, entropy

based measures are “agnostic” and do not rely on an assumed reduced

form macroeconomic model to be estimated.

3.3.2 Macroeconomic Uncertainty in the Survey of Professional Fore-

casters

In this section, I estimate the information theoretic uncertainty measures

I developed over the data of the Survey of Professional Forecasters – the

same that I use in Chapter 2. The entropy measures are normalized to

one by dividing the total entropy by lnn where n denotes the number of

bins. This is to ensure consistency in the metric displayed, because the

SPF changed the number of different scenario for growth outcomes a

number of times over the sample period.21 For the sake of comparison,

I retain the same sample period as before.

21To be sure, if there are n outcomes, the maximum unnormalized entropy is
lnn which is an increasing function of the number of bins. This was originally a
requirement of Claude Shannon for his uncertainty measure, but in this case a finer
grid need not mean a higher level of uncertainty.
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Figure 3.3: Uncertainty and Disagreement in the Survey of Professional
Forecasters

Some very similar observations can readily be made: Uncertainty

is definitely correlated with business cycles in that it increases after

recessions. Disagreement is once again a small fraction of overall un-

certainty – that of the aggregate forecast, in this case. In light of the

previous example with job market outcomes, a possible explanation for

this fact is the strong convergence in forecasts of practitioners. Indeed,

it isn’t unreasonable to expect that professional forecasters, who have

studied similar courses and have been taught which models work and

which do not, will provide similar forecasts. (This idea that professional

forecasters may use a similar reduced set of models will give support to

the measure of forecasting uncertainty that is presented in Chapter 4.)

Finally, as claimed throughout this chapter, the entropy-based measure

is very much like the ex-ante measure developed in the previous chapter.

Figure 3.4 depicts the entropic uncertainty measure against the ex-ante
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and ex-post measures of uncertainty estimated in Chapter 2, and it can

be seen that ex-ante uncertainty is almost a mirror of entropy in this

case. Note that the apparent divergence between the ex-ante measure

from Chapter 2 around 1992 has a simple “mechanical” explanation.

In Chapter 2, the predictive densities are fitted to Gaussian densities.

In 1992, the Survey of Professional Forecasters introduced a finer grid

for the questionnaire, such that forecasters were now able to provide

more “concentrated” forecasts than before – over fewer bins, the variance

parameter of the fitted Gaussian density will likely appear larger than

over a finer grid. Because the ex-ante measure of Chapter 2 is a direct

function of the fitted variance, it sharply decreases at the moment where

the questionnaire was changed, while the (normalized) entropy is robust

to such (arbitrary) changes.
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Figure 3.4: Entropic Uncertainty v. CRPS Based Uncertainty Mea-
sures

I now proceed to estimate the “forecast error” version of my informa-
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tion theoretic measures. Given the format of SPF forecasts, the outcome

vector is a vector of 0s and a 1, where the 1 falls in the bin corresponding

to the realized growth number. The estimated measure is presented

in Figure 3.5. Some clear similarities with the uncertainty measures

presented in Chapter 2 stand out. First, as it was to be expected, the

introduction of a forecast error component in the uncertainty measures

renders their behavior much more akin to that of ex-post uncertainty.

Interestingly, the inclusion of the forecast outcome also introduced more

variability in the uncertainty indices, even more so than in the ex-post

and ex-ante CRPS based measures. This likely comes from the definition

of the “distribution outcome” with the Jensen-Shannon distance. Here,

the outcome is a vector of 0s and one 1 in the bin corresponding to the

growth outcome for the period. In the measures presented in Chapter

2, the outcome was made “binary” through the setting of a threshold

and compared to a binary forecast built from the complete forecast

density. The squared error was then integrated over the real line to

allow the threshold to cover the complete support of the distribution.

To the extent that the outcome is harder to guess – since after all, there

are more possibilities – it is natural to expect the forecast error to be

greater. Finally, the two measures display a very similar finding than

in the previous chapter in regards to the importance of disagreement

in overall uncertainty. The disagreement seems to contribute extremely

little to the overall variation of uncertainty, as the difference between the

two lines of
∫
J(fs, f

true) dS(s) and J(fA, f true) is hardly noticeable. In

this Jensen-Shannon decomposition, disagreement (including the noise

term) represents a mere 4 percent of uncertainty on average. This hints

at the more general idea that when considering uncertainty as a forecast

error, disagreement becomes secondary. This comes in sharp contrast

to the purely ex-ante aspect of uncertainty, where disagreement was a

non-negligible part.

Finally, the conditional entropy decomposition can be estimated

on the average forecast in the SPF over time. I consider the two
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Figure 3.5: Entropic Uncertainty, CRPS Measures and Jensen-Shannon
Uncertainty

states of interest to be recessions and expansions, that is, at each point

in time, I compute the (conditional) uncertainty in the recessionary

and expansionary scenarios for the average forecast.22 Because the

decomposition presented in Equation 3.22 is not normalized and I want

to compare entropies on a level ground, I adopt the following normalized

version of the decomposition:

H = pEH(E) + pRH(R) + h(pE , pR), (3.26)

where pE (pR) denotes the normalized probability of being in an ex-

pansion (recession), H(E) (H(R)) denotes the normalized conditional

22It does not really make sense to average these decompositions calculated over
individual forecasts unless the weights are kept the same for all forecasters, which is
the case when the analysis is restricted to quantiles. In my case, the two different
scenarios are expansions and recessions because they mark the movements of business
cycles.
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entropy in an expansion (recession), and h(pE , pR) denotes the scaled

entropy of the business cycle movements considered. The normalized

probabilities are such that:

pE
lnn

lnnE
+ pR

lnn

lnnR
= 1; (3.27)

where nE and nR denote the number of bins in expansion and recession

in the SPF forecast such that n = nE +nR. The entropies are computed

with actual conditional probabilities and properly normalized to fall

between 0 and 1. The scaled entropy of business cycle movements is

the normalized entropy of the binary distribution of recessions and

expansions multiplied by ln(2) · ln(n)−1. Note that the weights do not

actually matter as they are very much arbitrary, but this is merely

to keep track of the proper breakdown of uncertainty. The estimated

uncertainties are presented in Figure 3.6.
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Figure 3.6: Conditional Uncertainties and Business Cycle Uncertainty
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A few interesting facts stand out from the evolution of conditional

entropies. First, business cycle uncertainty is a clear correlate of ex-ante

uncertainty it was presented in the earlier part of this chapter and in

Chaper 2. This hints at the fact that using probabilities of recessions and

expansions, such as those provided by the Federal Reserve Board (see

Chauvet, 1998) can provide a very “quick” indicator of macroeconomic

uncertainty at very little computational cost. Second, it is clear that

within either regime, uncertainty is quite high. Forecasters in the SPF

do not provide extremely “clear cut” forecasts, even with the business

cycle uncertainty is apparently at its lowest (see, for instance, after the

dotcom bubble crash). Finally, uncertainties in either state show very

little correlation. They do seem to cross and diverge in certain periods,

but there is no pattern to be discerned with business cycles. Nevertheless,

both are objects of interest because they exhibit movements that would

not be visible by looking solely at the entropy of the whole forecast.

In the first half of the 1980s, expansion uncertainty went very high,

indicating that forecasters could not foresee the overheating that the

Fed was trying to prevent. Similarly after the dotcom crash, business

cycle uncertainty went down while recession uncertainty went close to its

maximum, showing little visibility of forecasters in the negative scenarios.

In short, the measures presented in this section bring some light on new

uncertainty facts that existing measures of uncertainty overlook.

3.4 conclusion

Because of its breakthrough in understanding noisy data, information

theory and entropy methods had a great influence in theoretical eco-

nomics and statistics. But so far little has been done to take these

methods to the data in the actual measurement of economic uncertainty.

This is precisely the void that this chapter aimed at filling.

Starting from an optimal forecasting problem, I have shown how and

why entropy appears to be an adequate proxy of economic uncertainty.
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From there, the decompositions presented either served to parallel what

the mean-squared approach of economic uncertainty would consider as

measures, or to extend them to situations that cannot be studied in the

traditional framework. The consistency that was observed in this new

approach gave credit to its validity, and at the same time shed light on

the important distinction between ex-ante and ex-post uncertainty.

The choice between mean-squared errors and entropy to measure

economic uncertainty seems to have limited consequences on the con-

clusions when ex-post proxies of uncertainty are considered. There is

one situation, however, where entropy wins without a fight: when the

outcomes – that we’d use in a mean-squared forecast error – are not

available, which is often the case with microeconomic data. This chapter

presented several options that can be used in this case, all of them

employing entropy and proceeding from the same theoretical motivation.

In that sense, information theory allows the estimation of Knightian

ex-ante uncertainty in situations that were not accessible to the usual

approach.

In the forecasting problem that we started from, an important

assumption is that computing odds is a straightforward task. But in

practice forecasters may be hard pressed to know which data generating

process they should fit their data to. The difficulty in the choice of

the proper statistical model represents a last layer of uncertainty that

Chapter 4 explores.
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3.5 appendix

In this section, all densities and probability measures involved are

assumed to be well defined on a probability space (Ω,A, P ) or on the

real space equipped with the Borelian σ-algebra (Rm,B(Rm), P·), as

needed.

A Simple Gaussian Forecasting Problem

This section presents a more concrete setting where forecasters form

Gaussian density forecasts following based on parameter priors.23 Here,

the forecaster guesses the mean and variance to try to form a Gaussian

density forecast.24 Forecasters have different priors; each forecaster i

has priors:25

πi(µ|σ2) = N(µi, σ
2) and πi(σ

2) = IG(`i, si);

where IG denotes the inverse Gamma distribution. Given those priors,

the forecaster will choose (µi, σ
2
i ) to solve:

min

∫
µ

∫
σ2

K(fi, fy)πi(µ, σ
2) dµ dσ2. (3.28)

Using the fact that the Kullback-Leibler divergence between two Gaus-

sian densities is given by:

K(fi, fy) = ln
σ2

σ2
i

+
σ2
i + (µi − µ)2

2σ2
− 1

2
;

23In the context of a classic linear regression where y = xβ + ε, making a density
forecast of the dependent variable given data x is tantamount to estimating the
coefficients β and the variance of the error term σ2.

24Under non-multicollinearity in a linear regression this is equivalent to guessing
β. Here, the “priors” already represent the state of knowledge of the forecaster at
that point in time.

25The distributions have been chosen to provide a parallel to the Bayesian regression
literature.
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the forecaster will choose the parameters to solve:

min

{∫
µ

∫
σ2

ln
σ2

σ2
i

πi(µ, σ
2) dµ dσ2

+

∫
µ

∫
σ2

σ2
i + (µi − µ)2

2σ2
πi(µ, σ

2) dµ dσ2 − 1

2

}

Thanks to the assumptions on the priors and the Bayesian identity

πi(µ, σ
2) ∝ πi(µ|σ2)πi(σ

2):∫
µ

∫
σ2

ln
σ2

σ2
i

πi(µ, σ
2) dµdσ2 =

∫
µ

∫
σ2

lnσ2πi(µ|σ2)πi(σ
2) dµdσ2

−
∫
µ

∫
σ2

lnσ2
i πi(µ|σ2)πi(σ

2) dµdσ2

= − lnσ2
i +

∫
µ

∫
σ2

lnσ2πi(µ|σ2)πi(σ
2) dµ dσ2

The second integral is E(lnZ), and under the Inverse Gamma distri-

bution this expected value is best found using the moment generating

function of the inverse gamma distribution itself since E(et lnZ) = E(Zt).

It can be easily shown that:

E(Zt) =
(si)

tΓ(`i − t)
Γ(`i)

,

where Γ denotes Euler’s Gamma function. Furthermore, the derivative

at t = 0 of the moment generating function is:

E(lnZ) = ln si −
Γ′(`i)

Γ(`i)
.

(The ratio in the identity above is also known as the digamma function.)

Therefore:∫ ∫
ln
σ2
i

σ2
πi(µ, σ

2) dµ dσ2 = − lnσ2
i + ln si −

Γ′(`i)

Γ(`i)
. (3.29)
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I now proceed to the second part of the objective function:∫ ∫
σ2
i + (µi − µ)2

2σ2
πi(µ, σ

2) dµdσ2 = σ2
i

∫ ∫
1

2σ2
πi(µ, σ

2) dµ dσ2

+

∫ ∫
(µi − µ)2

2σ2
πi(µ, σ

2) dµ dσ2

=
σ2
i

2
E(Z−1)

+

∫
πi(σ

2)
1

2σ2

∫
(µi − µ)2πi(µ|σ2) dµ dσ2

=
σ2
i

2
E(Z−1) +

1

2

∫
πi(σ

2)
1

σ2
[(µi − µi)2 + σ2] dσ2

=
σ2
i

2
E(Z−1) +

1

2

(
(µi − µ)2E(Z−1) + 1

)
.

For the Inverse Gamma distribution, the expected value can be computed

directly E(Z−1) = `i/si. Substituting yields:∫ ∫
σ2
i + (µi − µ)2

2σ2
πi(µ, σ

2) dµdσ2 =
σ2
i

2

`i
si

+
1

2

(
(µi − µ)2 `i

si
+ 1

)
.

(3.30)

Putting it all together, the forecasters solve with respect to (µi, σ
2
i ):

min

{
− lnσ2

i + ln si −
Γ′(`i)

Γ(`i)
+
σ2
i

2

`i
si

+
1

2
(µi − µi)2 `i

si

}
(3.31)

The objective function is convex in (µi, σ
2
i ) and the first order conditions

for this problem make the forecaster set:

σ2∗
i = 2

si
`i

(3.32)

µ∗i = µi. (3.33)

Remark that the variance is set at exactly twice the harmonic mean

of the mean and the mode of the prior. Unless the location parameter

of the distribution is known, however, the parameters are not identi-

fied. Note that in the most likely case where forecasters will have a
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similar location prior for the mean (since they all observe the same long

term history of data), there will be no disagreement on the mean of

the density forecast. Disagreement will be a function of the “ex-ante”

uncertainty around the variance – the scale parameter of the Inverse

Gamma distribution. This example supports the idea that disagreement

is an imperfect proxy for uncertainty but should not be considered as a

quantity completely orthogonal to it. In either case, the average entropy

(Aggregate Uncertainty) is given by:∫
H(s) dS(s) =

1

2
+ ln(

√
2π) +

1

S

S∑
i=1

ln

(√
2si
`i

)
; (3.34)

which is an increasing function of the individual variances. There is no

closed form for entropies of Gaussian mixtures26 but some approxima-

tions exist, see for instance Huber et al. (2008).

Solution of the General Forecasting Problem

The forecasting problem is the following:

min
fi

R =

∫
Y

∫
t
fi(t) ln

(
fi(t)

fy(t)

)
dtdPY such that

∫
t
fi(t) dt 6 1.

(3.35)

The Kullback-Leibler being weakly convex, the problem is well defined.

The Lagrangean of the problem is given by:

L({fi}, λ) =

∫
Y

∫
t
fi(t) ln

(
fi(t)

fy(t)

)
dtdPY − λ

(∫
t
fi(t) dt− 1

)
.

(3.36)

The first order conditions of the problem are given by:

∂L({fi}, λ)

∂fi(t)
=

∫
Y

ln

(
fi(t)

fy(t)

)
dPY + 1− λ = 0; (3.37)

26The average density can be seen as the density of an equal-weight mixture of
Gaussians.
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and the constraint. The conditions solve into:

fi(t) = e−1+λ+E(ln fy(t)), (3.38)

as stated.

A Bound on the Disagreement Term in the Jensen-Shannon Decomposi-

tion

Let p ≡ 1
2fs + 1

2f
true and q ≡ 1

2f
A + 1

2f
true. |p− q| = 1

2

∣∣fs − fA∣∣ and it

follows that:∫
|p(t)− q(t)| dt =

1

2

∫ ∣∣fs(t)− fA(t)
∣∣ dt =

1

2

∫
fA 6=fs

∣∣fs(t)− fA(t)
∣∣ dt

Assuming that the integral term is less than 1:

1

2
‖fs − fA‖1 =

∫
|p(t)− q(t)|dt 6 1

2
.

Now, remark that the function t 7→ −t ln t is concave, positive on [0, 1]

and equals 0 at 0 and 1. Consider the chord of the function between t

and t+ h, where h 6 0.5. The maximum absolute slope of the chord is

at either end of it, meaning that for 0 6 t 6 1− h:

| − t ln t+ (t+ h) ln(t+ h)| 6 max[−h lnh,−(1− h) ln(1− h)] = −h lnh.

It follows that:

|H(p)−H(q)| =
∣∣∣∣∫ −p(t) ln p(t) + q(t) ln q(t) dt

∣∣∣∣
6
∫
|−p(t) ln p(t) + q(t) ln q(t)| dt

6
∫
− |p(t)− q(t)| ln |p(t)− q(t)| dt

where the last inequality follows the convexity inequality established

above. Finally, the last term is:

= −1

2
‖fs − fA‖1 ln

1

2
‖fs − fA‖1 +

1

2
‖fs − fA‖1H

(
|fs − fA|
‖fs − fA‖

)
6 −1

2
‖fs − fA‖1 ln

1

2
‖fs − fA‖1 +

1

2
‖fs − fA‖1

1

2
(1 + ln 2πσ2), ∀s
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for some σ2, using the fact that in the continuous case the Gaussian

distribution is the maximal entropy distribution. Note that:

σ2 = sup
s∈S

∫
t2
(
|fs(t)− fA(t)|
‖fs − fA‖1

)
dt

always exists (as long as all distributions admit second moments) and

suffices. Let κ ≡ e0.5(1+ln 2πσ2), then:

|H(p)−H(q)| 6 −1

2
‖fs − fA‖1 ln

1

2κ
‖fs − fA‖1,

The inequality follows from taking expected values with respect to the

distribution of forecasters on both sides.

A Decomposition of Uncertainty For Subgroups

Assume that the set of forecasters S contains G subgroups and that

there exists a transition probability Sg for every subgroup g such that

the aggregate forecast can be rewritten

fA =

∫∫
fs ln fs dSg(s) dG(g). (3.39)

The aggregate forecast of subgroup g is naturally defined as:

fAg =

∫
fs ln fs dSg(s). (3.40)

The intra-group identity can be derived just like the simple case was:

Dg = Disagreement in g = −Uncertainty in g +HAg . (3.41)

Similarly, remark that:

K(fAg , fA) = −HAg −
∫
fAg ln fA. (3.42)

Averaging this last identity over all subgroups;∫
K(fAg , fA) dG(g) = −

∫
HAg dG(g) +HA; (3.43)
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and substituting the identity of intra-group disagreement integrated

over g,

∫
K(fAg , fA) dG(g) = −

∫
Dg dG(g)−

∫∫
H(s) dSg(s) dG(g) +HA.

(3.44)

All in all, this provides us a very similar decomposition where disagree-

ment breaks down into inter and intra-group disagreement:

Aggregate Uncertainty = Uncertainty + Intra-group Disagreement

+ Inter-group Disagreement. (3.45)

State-Dependent Entropy and Total Uncertainty

Consider a random variable X with distribution PX and Radon-Nikodym

density dPX/ dλ = fX with respect to the Lebesgue measure on Rm;

m > 1. Let A be a subset of the support of X such that P (X ∈ A) > 0.

Let B(Rm) denote the set of Borelian sets on Rm; the Radon-Nikodym

density of PX|X∈A is given by:

∀C ∈ B(Rm) : PX|X∈A =
P [X−1(C) ∩X−1(A)]

P [X−1(A)]

=
1

P [X−1(A)]

∫
Ω
1X−1(A)∩X−1(C)(ω) dP (ω)

=
1

P [X−1(A)]

∫
Ω
1X−1(A)(ω)1X−1(C)(ω) dP (ω)

=

∫
C

1A(x)

P [X−1(A)]
dPX(x);

which means that dPX|X∈A/ dPX = 1A(·)/P [X ∈ A] and by extension:

dPX|X∈A/ dλ = 1A(·)fX/P [X ∈ A]. With that in mind, the Shannon
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entropy of X is given by:

H(X) = −E[ln f(X)]

= −
∫

ln f(x) dPX(x)

= −
∫
A

ln f(x) dPX(x)−
∫
6A

ln f(x) dPX(x)

= −P (X ∈ A)

∫
A

1A(x)

P (X ∈ A)
ln
f(x)1A(x)

P (X ∈ A)
dPX(x) . . .

− [1− P (X ∈ A)]

∫
6A

16A(x)

1− P (X ∈ A)
ln

f(x)1 6A(x)

1− P (X ∈ A)
dPX(x) . . .

+ ψ[P (X ∈ A)]

= −P (X ∈ A)

∫
Rm

ln fX|X∈A(x) dPX|X∈A(x) . . .

− [1− P (X ∈ A)]

∫
Rm

ln fX|X∈A(x) dPX|X∈6A(x) + ψ[P (X ∈ A)];

where ψ denotes the entropy function of a binary distribution with

parameter p, that is, ψ(p) = −p ln(p) − (1 − p) ln(1 − p).and the final

result is achieved by recognizing the conditional entropies in the first two

terms. Note that this method can be effectively applied to any partition

of the space X(Ω) and to discrete distributions just as well by taking

densities with respect to the counting measure. This decomposition is

a generalization and extension of the recursiveness of entropy in the

discrete case to the continuous case.

Extensions to Weighted Entropy

This section extends the previous framework where agents attribute

different utility values to the outcomes that they are trying to forecast.

Imagine that the forecaster puts a weight wi(t) > 0 at event t to indicate

the “importance” of event t relative to others. The weighted loss function
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and minimization problem become:

min
fi

R =

∫
Y

∫
t
wi(t)fi(t) ln

(
fi(t)

fy(t)

)
dt dPY such that

∫
t
fi(t) dt 6 1.

(3.46)

The first order conditions of the new weighted problem are given by:

∂L({fi}, λ)

∂fi(t)
=

∫
Y
wi(t) ln

(
fi(t)

fy(t)

)
dPY + wi(t)− λ = 0; (3.47)

and the constraint. The conditions solve into:

fi(t) = e−wi(t)+λ/wi(t)+E(ln fy(t)), (3.48)

as stated.
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4

FORECASTING, UNCERTAINTY

AND BUSINESS CYCLES

Taken together, [...] SPF panelists are quite flexible in their

approach to forecasting. They use a combination of models

in forming their expectations, rather than just one model.

And, they vary their methods with the forecast horizon.

— Tom Stark, “SPF Panelists’ Forecasting Methods: A Note

on the Aggregate Results of a Nov. 2009 Special Survey”,

2013

4.1 introduction

The overwhelming improvement in collecting information seen in the

past two decades has made forecasting exercises at the same time easier
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and harder. The “big data” revolution supposedly allows forecasters to

grasp a greater information set, which under the proper assumptions

will always result in better predictions in a regression framework. But

this slew of new potential predictors also leaves more room for mis-

specification and greater model uncertainty. The blurred lines between

forecasting models makes economic policy decisions more complicated,

hence the importance of quantifying how much one can trust their

models.

Also known as model inadequacy, model bias, or model discrepancy,

model uncertainty represents the lack of knowledge of the underlying

law of nature governing the object being modeled. It is a measure of how

accurately a mathematical model describes the true “laws of nature”,

notwithstanding that models can be approximations or simplifications of

the reality they aim at describing. When economists try to capture the

movement of economic aggregates with structural models, they know

very well that the model itself is inaccurate since there always exists other

“frictions” that are impossible to account for, either because the data

are lacking at the moment or simply because those aren’t measurable.

And even if there is no unknown parameter in the model, a discrepancy

is still expected between the model and true data generating process –

the model itself, though, is as close as it gets to the laws of nature. In

econometric analysis, model uncertainty represents a challenge because

estimates will in most cases depend on the model estimated. Leamer and

Leonard (1983) warn about the sensitivity of classical regression analysis

to the selection of regressors. And only recently has macroeconomic

theory started to account for model uncertainty to better describe the

reality of agents’ utility maximizing decisions, as seen in Hansen and

Sargent’s defense of the concept of robustness in macroeconomic models

(Hansen and Sargent, 2010).

The push for more reliable models to describe economic aggregates

truly began with the Great Recession when quite all models failed. The

problem is that the complexity of identification increases exponentially
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as the number of variables and “shocks” grows, not to mention the

absence of any guarantee of closing in on a realistic representation

of the true data generating process.1 What is more, these models

involve – for the most part – few variables of interest and a vast number

of potential explanatory controls. The perceived need to control for

large numbers of potential confounds has led to over-specified models

that decrease efficiency without necessarily guaranteeing the absence of

omitted variable bias (Montgomery and Nyhan 2010). Because of the

uncertainty around the truthfulness of the assumptions is indisputable,

the common “hand waving” solution is to assert that reality is a convex

combination of different representations of it. In rigorous economics,

this takes the form of model averaging to formulate predictions, also

known as optimal forecast combinations.

Forecast combinations date back to much further back than the Fed’s

panel of forecasters. Knight (1921) already considered a rudimentary

form of model uncertainty in his definition of uncertainty. Even under

what Knight calls true “uncertainty” agents estimate the veracity of

their own model: “The business man himself not merely forms the best

estimate he can of the outcome of his actions, but he is likely also to

estimate the probability that his estimate is correct” (Knight, 1921, p.

226). In other words, agents facing uncertainty trust their forecasting

models to a degree proportional to the probability of that model being a

correct representation of nature. Tom Stark’s words in epigraph of this

chapter confirm Knight’s predictions, at least for the Fed’s forecasters.

In practice, economists neither rely on a single model to formulate their

predictions, nor do they seem to keep their set of models identical over

time, mostly because they are aware of the risk of model misspecification,

or have incomplete access to information, or trivially because the data

do not remain available at all times. Second and most importantly, the

exercise of forecasting at its deepest prone to uncertainty around the

1Romer (2016) describes the process of adding further nuts and bolts to a model
as ”putting lipstick on the pig.”
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“true” data generating process and the flexibility of forecasters aims at

mitigating that risk by letting each model’s likelihood be contingent.

Finally and at a more philosophical level, the idea that there is such a

thing as a “best” model is somehow vain in many situations of social

science, where unequivocal proofs that one specification is the “true

model” represent an impossible standard.

In this chapter, I try to estimate forecasting uncertainty by focusing

on the level of trust – in the probabilistic sense – one may attribute to

various forecasting models. I do so using Bayesian model averaging over

a broad range of predictors and motivate my choice using statistical

decision theory. Unlike survey forecasts whose merits I starkly defended

in Chapter 2, measuring uncertainty solely with macroeconomic data

gives a readily and “objective” – in that it does not depend on other

people’s estimated – proxy for what I argue to be another dimension of

Knightian uncertainty.

4.2 building a measure of model uncertainty

4.2.1 Optimal Forecast Combination and Model Uncertainty

Model combination and weighting is a customary practice of forecasters

and has been successfully applied in several areas of forecasting, in

particular for GDP growth and inflation. By allowing the forecaster

to eschew the challenge of selecting a single model, model combination

precisely aims at circumventing uncertainty surrounding the model

selection process. Claeskens and Hjort (2008) and Moral-Benito (2015)

provide an excellent review of selection mechanisms, but I focus on

model combination rather than model selection. Indeed, the latter may

be undesirable for at least two reasons. First, the model selected might

not be the one which is the closest to the true DGP since the definition

of “best model” is up to the econometrician. Second, even if the model

selected is the best one, it is rarely optimal to ignore the evidence from
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other “imperfect” models – at least in the sense of forecast risk.

In practice, forecast performance is one of many forecast combination

strategies. Combination methods that are founded upon forecast errors

are sometimes classified as frequentist model averaging. In the context

of density forecasts, the complexity of evaluating forecast performance –

what is the “realized density” and what is the mean squared forecast

error of a density forecast? –, other approaches are preferable. Gánics

(2018) proposes the Probability Integral Transform (PIT) as a tool for

density forecast combinations. Another popular and general combination

method is Bayesian model averaging, which given the definitions of

uncertainty that we have been working with so far, might be the most

natural framework to build a measure of model uncertainty. A more

recent approach as presented in George and McCulloch (1993) and

Raftery et al. (1997) is to include model uncertainty by assuming that

there is uncertainty surrounding the population parameters and in the

inclusion of certain predictors in a model. Such methods are called

Bayesian model averaging (BMA). While the jury is still out on whether

Bayesian model averaging and selection is preferable to their frequentist

counterparts, I retain Bayesian model averaging for several reasons.

First, these methods do seem to perform quite well in economics. In a

thorough comparison exercise, Rossi and Sekhposyan (2014) find that

forecasts obtained via Bayesian model averaging are the best calibrated

for predicting output growth and inflation in the United States. Second,

BMA has a very intuitive interpretation in statistical theory as I will

present in greater detail below. Finally, it ties to the theory of uncertainty

presented by Knight (1921).

For the sake of clarity, I remind the forecasting problem described

in Chapter 3. Forecasters seek to minimize the following loss function:

R(f, θ) = EY,Z [L(f(Z, θ), Y, Z)] (4.1)

=

∫
z

∫
y
L(f(Z, θ), y, z) dPY |z,θ(y) dPZ|θ(z).
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I assume that the data generating process (DGP) of y is unknown in

two dimensions: the (econometric model) form and the parameters for

each model. For simplicity, I will not write out integrals with respect

to the parameter vector θ, but all formulas and claims hold just the

same. The statistical model is given by (M,M, PM ) where M is the set

of models that forecasters know and can estimate, M is the smallest

σ-algebra containing M and PM a probability measure on M that is

absolutely continuous with respect to the counting measure µ defined

over N. Up to a normalization, the Radon-Nikodym density of PM with

respect to µ is π(m) ≡ dPM (m)/dµ(m). The decision problem can be

rewritten in a Bayesian setting, integrating over the set of models M

where µ(M) <∞:

min
f

∫
M
R(f,m) dPM (m) =

∫
M

∫
Z

∫
Y

L(f(Z,m), y, z)× . . .

π(m) dPY |z,m(y) dPZ|θ(z) dµ(m).

(4.2)

Note that this expression is general enough to allow for M to be a set

of classes of models. Forgoing the exogenous covariates and replacing

them with the information set available at that time, integrals can be

rewritten as:2

min
f

∫
M
R(f,m) dPM (m) =

∫
M

∫
Y
L(f,m, y)π(m|y,=) dPY |= dµ(m).

(4.3)

A forecast f is a decision made on the space of possible outcomes Y.

In the case of a squared-error type of loss function the solution to the

statistical decision problem is:

f∗ =

∫
M
E(y|m,=)π(m|=) dµ(m) (4.4)

2See Monfort (1982) for a proof.
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which essentially means that the optimal forecast is the Bayesian average

over all possible models. Furthermore, assuming that the set of possible

models M is of finite measure, the equal weights forecast is strictly

worse in terms of quadratic risk that the Bayesian weights forecast

combination. In a discrete setting for a point forecast with M models

and a squared error loss function, the optimal forecast combination is:

yBMA
t+h|t ≡

M∑
m=1

E(yt+h|Mm,=t)P (Mm|=t) (4.5)

The Appendix of this chapter provides an alternative non-probabilistic

framework that reaches similar conclusions. By now it should be clear

that classical forecasting decision theory naturally turns toward Bayesian

averaging as optimal forecast combination.

The previous derivations taught us two features of the forecasting

problem: under imperfect knowledge (of the underlying DGP) Bayesian

forecast combination is optimal, and the most “uneducated guess” of

putting equal weights on all models is the worst possible combination

in the quadratic risk sense. Hence, it is natural to map forecast model

uncertainty to how close one forecaster is to making the worst possible

combination. Any distance or pseudo-distance fits the purpose and

a natural candidate would be the Kullback-Leibler divergence. But

because combination weights are not probability statements on the

states of nature like I considered in Chapter 3 prefer to discard it in

favor of a more traditional choice and define forecast model uncertainty

as follows:

FMU ≡

[√∫
M

[π(m|y)− µ(M)−1]2 dµ(m)

]−1

. (4.6)

Intuitively, this metric will go up whenever the optimal weights get

close to equal weights and conversely go to zero when they stray away

from them. Note that this measure is bounded below by
√

1−M−1−1
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in a discrete setting with M models.3 This lower bound is attained

for any “ultra-confident” guess where all weight is put on one model,

which provides further intuitive support for this measure. It’s also worth

noting that in this measure need not make sense to estimate on survey

forecasts. Say that every forecaster picks a different model; ex-ante

model uncertainty would stand at the lower bound for each forecaster

since each seems quite sure which model to pick. Model uncertainty

averaged across the panel would be at its lowest. It is clear, however,

that forecasters disagree on the right model to choose and hence some

form of Knightian uncertainty is present.4 As an aside, the choice of the

Euclidian distance in the denominator is arbitrary but of little impact

since I am considering finite dimensional model spaces. Weights vectors

therefore are all in RM – a Euclidian space on which all distances will

be equivalent. In other words, any other distance would fall within a

reasonable range around the one I chose. Another non-distance based

approach would have been to take the entropy over the set of posterior

probabilities, but because this would be somehow a repetition of Chapter

3 I prefer to take an alternative, less ideological, approach.5

4.2.2 Data and Models Retained

The data consist of measures of asset prices, real economic activity, wages,

prices and money supply, similar to that of Stock and Watson (2003)

from January 1959 through January 2011. The data are transformed to

3See the appendix of this chapter for a proof.
4This reinforces the idea that disagreement is a key component of Knightian

uncertainty, as Chapter 3 concluded.
5Note that if we were to consider total uncertainty as in Equation (3.23), uncer-

tainty would write as:

H(Y,M) =
M∑
i=1

H(Y |M = mi)pi +H({pi}); where pi = P (M = mi).

This decomposition highlights two components of uncertainty: that of Y under the
different DGPs that it is assumed to follow, and that of the overall model selection
process.
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eliminate stochastic or deterministic trends and seasonality, as in Rossi

and Sekhposyan (2014). I use a fixed rolling window estimation scheme

of 40 periods (10 years).

Marcellino (2008) provides an exhaustive list of forecasting models in

economics without comparing their performance per se. Giannoni (2016)

offers a restricted list that Fed forecasters allegedly use: a combination

of (S)VAR, autoregressive, factor and DSGE models. Given the number

of times the estimation has to be run, Bayesian estimation of a DSGE

is not feasible considering the computational time6 Hence, I choose

to focus on autoregressive and factor models. More specifically, I use

autoregressive distributed lag (ADL) models where I let the regressor

change over the whole collection available in the data set, and factor

models with factors being selected within the data set. While this choice

may seem simplistic, there are at least two pitfalls to incorporating a

broader set of forecasting models: nested models and over-fitting. ADL

models are estimated through Bayesian least squares to account for

parameter uncertainty and avoid the measure of model uncertainty to

be driven by it. The ADL forecasting equation can be written as follows:

yt+h|t = βk,0 + βk,1(L)Xt,k + βk,2(L)yt + εt+h; (4.7)

where the dependent variable is annualized GDP growth (using loga-

rithmic growth rates), Xt,k denote the k-th regressor in the database

for k = 1, . . . ,K; K = 32. The error term is normally distributed:

εt+h ∼ N(0, σ2
ε). I consider one and four-quarter ahead forecasts. The

lag polynomials β,̇1 and β,̇2 are left to have different lag orders for a

given regressor and across regressors where lag orders are optimally

selected using a Bayesian information criterion (BIC). The lag order is

first selected for the autoregressive component and then augmented for

the additional predictor. The variance of the error term is estimated and

corrected for serial correlation with a Newey and West (1987) estimator.

6Furthermore, the relatively small time window might be insufficient for model
estimation.

121



4. Forecasting, Uncertainty and Business Cycles

The variant of the ADL forecasting that I consider is the principal

components model that augments the original DGP with factors ex-

tracted from the set of all regressors. This inclusion is motivated by

two features of factor models. First, they have gained a lot of attention

in the (economic) forecasting literature in the past few years, notably

after Stock and Watson (2002) diffusion indices and Bernanke et al.’s

(2004) Factor Augmented VAR or FAVAR. More specifically, I estimate

the following static7 factor model:

yt+h|t = β0 + λF̂t + β2(L)yt + ut+h (4.8)

where F̂t denote the estimated ` factors among the 32 predictors of the

database; ` being set recursively to capture at least 60% of the total

variation present in the predictors. (Overall, two to three factors end

up selected for output growth or inflation). As in the ADL model the

error term is normally distributed and its variance is estimated in a

heteroskedasticity and autocorrelation robust manner.

This choice of models to estimate ties in to the work done by Wright

(2011) with two salient differences: I do not try to forecast GDP growth

for the sake of the exercise, and I average over a greater span of econo-

metric models. The set I chose is a simple yet representative choice of

practitioners. In the following section, I describe the estimation strategy

for my measure of forecasting uncertainty.

4.2.3 Econometric Methodology

Traditionally, Bayesian model averaging uses the identity π(m|y) ∝
π(y|m)π(m) to estimate posterior weights. As a prior I assume that

each model is of the same likelihood, that is: π(m) = µ(M)−11M . In

practice, this supports my claim that the most naive guess for a forecast

combination is the prior. Because each model estimation spans over

7Bai and Ng (2007) explain that there is little gain in extending the framework
to a dynamic factor model
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certain parameter spaces and because of the choice of prior:

P (y|m) =

∫
θm

π(y|m, θm)π(m, θm) dθm

and π(mi|y) =

∫
θmi

π(y|mi, θmi)π(mi) dθmi∫
m

∫
θm
π(y|m, θm)π(m) dθm dµm

(4.9)

The estimation of these weights is usually done via Markov Chain Monte

Carlo-type methods (MCMC), but in my case such a strategy is not

feasible given the number of models that I consider. Instead, I use

a result from Kass and Wasserman (1996) and Wasserman (2000) to

approximate these weights. In the latter, the authors establish that:∫
θmi

π(y|mi, θmi)π(mi) dθmi = µ̂i(mi|y)(1 +OP (1))

where log µ̂i = log π(m̂i|y)− 1

2
di log n.

(4.10)

The last property gives credit to the idea that the estimated model

can be used to give a reasonable approximation to the posterior of the

model π(mi|y).8 Under this approximation and with the assumption of

a uniform prior on models:

π(mi|y) ' π(y|mi, θ̂mi)∫
m π(y|m, θ̂m) dm

(4.11)

From there the estimation strategy becomes clear. Once a set of ac-

ceptable forecasting models has been settled, one needs to estimate all

models separately and compute the weights using the predicted param-

eters as in equation (4.11). In the case of a discrete and finite set of

models, the integrals become discrete sums, hence:

P (Mm|y) ' P (y|Mm, θ̂Mm)∑
m P (y|Mm, θ̂Mm)

. (4.12)

8Note that µ̂i need not converge to the true prior in probability, but Kass and
Wasserman (1996) establish that the error of approximation does.
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This can be readily computed from the estimated models according to

the assumptions placed on the error terms (cf the previous section).

4.3 estimating forecasting model uncertainty

4.3.1 Model Uncertainty is Countercyclical

The estimates of forecasting uncertainty for GDP growth at horizon h = 1

and h = 4 in Figures 4.1 and 4.2. Intuitively, forecasting uncertainty

could have gone either down or up during a downturn. Economic

recessions can be understood as unforeseen negative “shocks”9 hitting

the economy, meaning that economic predictions failed. All models

stop working, become equally bad, and forecasters are hard pressed to

prefer one to another. On the other hand, many practitioners consider

that several predictors (such as real estate metrics) become particularly

relevant during recessions and therefore forecasting in these periods is

somehow “easier.” In that case model uncertainty would actually fall

during recessions. The data show that this second theory is not wrong

for the forecasting framework that I consider. Business cycles and model

uncertainty are indeed very much linked. The gray areas indicating

NBER recessions over the sample period show that model uncertainty

tends to increase sharply after recessions rather than decrease. This was

particularly salient after the dotcom crisis or in the 1980s. Furthermore,

forecasting uncertainty doesn’t seem to change much with the forecast

horizon, and nor does its dynamics. While some strand of the literature

has found uncertainty to typically increase with the forecasting horizon,

I have shown in Chapter 2 that this need not be true for all types of

uncertainty. In particular, for Knightian uncertainty, forecast horizon

seems to have little effect.

9The term “shock” does have a random connotation. To be sure, recessions
always happen for a reason and they are, to a certain degree at least, possible to
anticipate.
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Figure 4.1: Forecasting Uncertainty for GDP, 1-quarter ahead forecasts

Coming back to the idea that some models may perform better

during recessions, one could think that one or some model systematically

outperform in tranquil times and fails during recessions, which would

explain the pattern of model uncertainty that I observed. This could be

true either in the broad sense of the class of models, or simply because

some predictor always becomes relevant during downturns. This is not

the case. A quick look at the Bayesian posterior weights as displayed

in Figure 4.3 shows that there is no “star” model outperforming the

rest. The factor model does seem to do quite well overall, even more

so in the Great Recession. This is to be interpreted as the positive

consequence of including more relevant information in the model, and

has been documented in the literature. But at times some regressors to

better and do worse in other periods.
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Figure 4.2: Forecasting Uncertainty for GDP, 4-quarter ahead forecasts

Another important issue was to know what type of uncertainty this

measured “forecasting uncertainty” could fit in. Following Knight’s

typology, forecasting uncertainty would fall right under what is com-

monly coined Knightian uncertainty – not “radical” uncertainty nor

risk. I claimed in the introduction that posterior weights nicely matched

Knight’s claim that under uncertainty agents would still try to estimate

how likely their guesses were. (Only under radical uncertainty is such a

judgment impossible to make.) Looking at how my measure correlates

with the aggregates measured in Chapter 2 does however indicate that

such a statement is partly false. In absolute forecasting uncertainty

correlates the most with ex-post measures of uncertainty (about 0.4-0.5

v. 0.2-0.3 for ex-ante items). This most likely comes from the fact

that model weights are estimated ex-post (since they depend on the
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Figure 4.3: Posterior Weights, 1-quarter ahead forecasts

data) while Knight’s probability statements do not depend on the past.

In a sense, measured forecasting uncertainty behaves more like that

of Jurado et al. (2015) (about 0.36 for h = 1). Note, however, that

those correlations are quite small and give comfort in the idea that this

measure is measuring a somehow different phenomenon.

Overall, the measured forecasting uncertainty confirms that forecast-

ing isn’t as trivial as some practitioners will assert – there is not one

true model that always does better than the rest – and that it’s even

less so in periods of economic turmoils. This finding hasn’t really been

studied empirically nor theoretically since there are so few economic

models using forecasts as an endogenous variable. The next section

looks at a simple macroeconomic model to see if such findings could be

replicated in simulations.
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4.4 bayesian model averaging in a reduced form

macroeconomic model

4.4.1 Forecast Combination Equilibria

I have briefly touched in the introduction to this dissertation that rational

expectations let room for only a very specific type of uncertainty. It

is therefore natural to turn to models that account for the bounded

rationality of agents (forecasters) to model uncertainty in the economy.

But letting go of rational expectations need not mean discarding all

the conclusions that were reached while working with them. Perhaps

the most underrated contribution of general equilibrium models with

rational expectations was to show that macroeconomic aggregates are

forward looking. Therefore, modeling forecasting uncertainty has to

include a feedback effect of expectations on macroeconomic aggregates,

in my case output.

The literature including these two features is very sparse. In fact,

most models available to this date are versions of Branch and Evans

(2007). Agents are modeled as econometricians that select the best

forecast out of a menu of methods available to them using “dynamic

predictor selection.” This behavior imposed to the model generates

more exotic economic fluctuations, including endogenous time varying

volatility. It is unlikely, however, that agents behave according to model

selection instead of model combination, which is a known practice among

professional forecasters (cf. Tom Stark’s quotation in epigraph of this

chapter). What is more, some forecasts are directly published as forecast

combinations, such as the Michigan Survey of Consumers and most

Bloomberg forward looking data. Evans and Honkapohja (2013) stated

that when abstracting from rational expectations, economic agents

should be modeled to be “as smart as (good) economists”, and it seems

that good economists combine their forecasts rather than pick them.

I use a variant of Gibbs’s (2017) model where forecasts are optimally
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combined. The weight are derived minimizing the expected squared

forecast error; and as a reference equal weights combinations represents

the most naive and uninformed forecast combination.

4.4.2 The Reduced Form Economy

The simplistic economy I consider is described by a self-referential

stochastic process driven by a vector of observable and unobservable

exogenous shocks. The model takes the following form:

yt = µ+ αEt−1yt + β′xt−1 + εt; (4.13)

where yt denotes output, xt−1 is a vector of immediately observable

exogenous shocks and ε is an unobservable, iid exogenous shock. This

economy can be seen as a reduced form version the cobweb of Muth

(1961) when α < 0 and the aggregate supply model of Lucas (1973) for

0 < α < 1. Under rational expectations agents form expectations like

econometricians would: they use linear regressions. In mathematical

terms:

Et−1yt = β̂′i(1, xt−1). (4.14)

The orthogonality of forecast errors to agents information sets constitutes

the sole condition that pins down the rational expectation equilibrium.

Much like Gibbs (2017) I consider a world in which agents under-

parameterize their models to form imperfect forecasts they’ll wish to

combine. There are as many misspecified models as observables shocks,

meaning that each model’s forecast is given by: Et−1yi,t = β̂′i(1, xi,t−1).

The under-parameterized models represent the fact that forecasters,

while they could observe the shocks, have limited access to data and

limited information capacity (cf. Chapter 3). Following the cognitive

consistency principle, agents choose to combine the k different forecasts

to create a single forecast of output using a weighted sum approach:

Et−1yt =
∑
k

γiEt−1yi,t = γiβ̂
′
i(1, xi,t−1). (4.15)
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I work under the same forecast combination equilibrium as Gibbs (2017),

meaning that agents’ beliefs satisfy the following equilibrium conditions:

Et−1(1, xi,t)[yt − β̂′i(1, xt−1)] = 0,∀k. (4.16)

These conditions require agents to consider only “econometrically coher-

ent” models in equilibrium where the conditional expected forecast error

of each model is zero. A Forecast Combination Equilibrium is reached

when given weights {γ} the equilibrium conditions are met.10 I consider

that all agents settle on the same combination strategy, which isn’t

too unrealistic given that my ultimate study population is professional

forecasters.

Unlike Gibbs (2017) my forecasters combine weights according to

Bayesian combination strategies. Despite the importance of forecast

combination in the literature and among practitioners, macroeconomic

models generally study agents that select, rather than combine forecasts.

Some examples can be found with Brock and Hommes (1998), Branch

and Evans (2007 and 2011), or Branch and McGough (2008). I show in

the appendix that under the assumption that misspecified models cover

the whole range of possibilities such combination strategies are optimal,

which warrants the existence of a forecast combination equilibrium that

coincides with rational expectations.11 Shocks are independent and

identically distributed to guarantee that agents can’t forecast them.

The misspecified regressions simply help implicitly figuring out the β

coefficients.

4.4.3 Simulating The Reduced Form Economy

In this chapter, however, I worry less about model equilibria and use the

framework solely for simulation purposes. I simulate the reduced form
10For an explicit algebraic version of those, simply replace Et−1yt with its forecast

combination expression of (4.15) in the equilibrium conditions. Also see the appendix
of Gibbs (2017).

11Also called a “Fundamental Forecast Combination Equilibirum”, see Gibbs
(2017).
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economy to see how forecast weights and the uncertainty measure that I

built react with business cycles. I simulate the reduced form economy for

100 periods, 10,000 times with the ultimate goal of understanding how

forecasting model uncertainty behaves closes to recessions (following the

same definition as the NBER). I use a very standard calibration of the

model and keep all coefficients to unity besides α, the strength of the

feedback mechanism, that I let vary from zero to one. I try to match

basic business cycle facts with an average growth of about 3% and a

turning point (defined as two periods of consecutive decline) every ten

years.

I then look at the importance of the self referential component of

the reduced form economy. For that, I consider the measure of model

uncertainty and run a regression on a dummy indicating a recession of

the form: m = a+ b1Recession + error, for different values of α ranging

from zero to 0.9 (1 being off the table for stationarity reasons). I find,

quite naturally, that the stronger the self referential component, the

more model uncertainty correlates with recessions. Standard errors are

estimated using Newey and West (1987) estimation procedures since the

error term is very likely to be serially correlated. Figure 4.4 displays the

estimated value and confidence interval in the simple regression that I

run.

Though the interaction term is barely significant, the trend seems to

be clear. Also note that the self referential component is still a minor

determinant of the outcome variable. Consider the gradient of output

at time t: Oyt = (α, β, 1) (considering the trend to be deterministic.)

To warrant non-explosiveness α < 1, meaning that in the direction

of, for instance, the steady-state the self referential component is still

very much dominated by other shocks, and in particular always strictly

dominated by the non-observable shocks.
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Figure 4.4: Reaction of Forecasting Model Uncertainty to Recessions

4.5 conclusion

Knight’s treatise on uncertainty has been interpreted in a great number

of ways, but most agree that Knightian uncertainty denotes an incapacity

to formulate a probability statement. Few, however, tried to center their

attention on Knight’s further observation that “probability estimates”

were still given in situations of uncertainty, and that agents would further

try to esteem the probability that their “estimates” got it right. This

chapter used Bayesian econometric theory to try to measure such a

feature of Knigthian uncertainty.

It appears that forecasting uncertainty, the inability to decide on

a forecasting model, behaves much like other measures of Knightian

uncertainty that I have presented in the previous chapters of this thesis.

Recessions seem to represent the occasion for forecasters to re-think their

paradigm, and at a much deeper level than the simple “best predictor”

for the situation. There is not one model that performs better than the

rest in a given situations, and if there were, everyone’s using it would

make it useless. All in all, this gives credit to the Lucas critique and

the idea that historical forecasting is useful at best in hindsight.

132
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Because the benefits of forecast combinations become clearer, a

branch of economic theory has grown to study their effect in stan-

dardized theoretical economies. Simulating such economies under the

forecast combination scheme that I retain here seems to confirm the

conclusion that I have reached with the help of the data. Nevertheless,

macroeconomic models including forecast combinations are few and far

between and the conclusions that one can derive from their use are still

to be considered with care.

Forecasting uncertainty represents the last piece of uncertainty that

I wanted to estimate as it is a key metric to look at for economic policy-

making. Because there seems to be a tight link between business cycle

movements and uncertainty and Keynes had made this a central point

in his plea for government intervention. The next and last chapter of

this thesis tries to empirically challenge Keynes’s hypothesis.
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4.6 appendix

An Alternative Framework

In the particular example where the loss function is the mean squared

forecast error and if some structure is put on the MSE and correlations

of MSEs, the problem of forecast combination can be solved analytically.

Let y denote the variable to forecast, f = (f1, . . . , fm) the vector of

(unbiased) forecasts and e = ι.y − f the vector of forecast errors with

variance Σe. The forecast combination problem can be written as follows:

min
w′ι=1

w′Σew. (4.17)

Setting a standard Lagrangean one can show that the solution to this

problem is w∗ = (ι′Σ−1
e ι)−1Σ−1

e ι. Furthermore, in the particular case

where forecasts have the same MSE σ2 and identical correlation ρ, it

can be shown that the optimal forecast will put equal weight on all

models. In other words, when model uncertainty is at its highest – no

forecast performs better than the other and correlations do not allow

proper diversification of model risk – the optimal forecast will be the

equal weight forecast. I summarize this idea in the following proposition:

Proposition Let M unbiased forecast models in a vector f for the

variable y be such that:

MSE(f) = Σe =


σ2 ρ . . . . . . ρ

ρ σ2 ρ . . . ρ
...

. . .
. . .

. . .
...

ρ . . . . . . ρ σ2

 ; (4.18)

then the optimal forecast combination puts equal weight on every fore-

cast.
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Proof The forecast combination problem amounts to finding w that

solves:

min
w′ι=1

w′Σew. (4.19)

Setting a standard Lagrangean one can show that the solution to this

problem is w∗ = (ι′Σ−1
e ι)−1Σ−1

e ι: L = 0.5w′Σew− µ(w′ι− 1); differenti-

ate with respect to w to get: w = µΣ−1
e ι. Plug this in the constraint to

get the value of µ = (ι′Σ−1
e ι)−1.

To get the explicit form of the weights, note that Σe = (σ2−ρ)IM+ρJ

where J is a matrix of ones such that J2 = M.J As long as ρ 6= σ2, Σe

is invertible and its inverse takes the form aIM + bJ where:

a =
1

σ2 − ρ
; (4.20)

b =
ρ

(ρ− σ2)(σ2 + (M − 1)ρ)
. (4.21)

This allows us to compute:

Σ−1
e ι =

1

σ2 + (M − 1)ρ
; (4.22)

ι′Σ−1
e ι =

M

(σ2 + (M − 1)ρ)
; (4.23)

which entails that w = 1
M ι and finishes the proof. In other words, when

all models are equal on the ground of forecast error and there is no

reason to prefer one to another, the optimal combination is the most

naive one.

Properties of the Forecasting Uncertainty Measure

In a discrete setting with M models the Forecast Uncertainty Measure is

bounded below by
√

1−M−1−1
. To see that, remark that the identity:

M∑
m=1

(
pm −

1

M

)2

=
M∑
m=1

p2
m −

1

M
(4.24)
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holds true thanks to the fact that
∑
pm = 1. Because all weights are

between zero and one,
∑
p2
m 6

∑
pm = 1 which finishes the proof. This

lower bound is naturally reached in the “ultra-confident” guesses where

all weight is put on one model. In the continuous case, the lower bound

becomes zero; “ultra-confident” guesses become even more confident

as each model is infinitesimal and betting on an infinitesimal class of

models is tantamount to betting on an even of probability zero.
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5

FISCAL MULTIPLIERS IN

UNCERTAIN TIMES

Keynes’ views on private spending and public spending are

illustrative. We cannot leave investment decisions to busi-

nessmen in the private sector because they do not know

enough about the future to make their “parting with liquid-

ity” worthwhile. By contrast, when government spending on

public works is under consideration, the debilitating uncer-

tainty goes into remission. And the question of whether the

spending is worthwhile somehow becomes irrelevant.

— Roger W. Garrison, The Kaleidic World of Ludwig

Lachmann, 1987
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5.1 introduction

The battle for government intervention resurfaces every time the economy

seems to be put at risk. Such interventions can take various forms –

changing regulations, modifying taxes, infrastructure spending, etc. –

and economists are likely bound to keep on debating upon the scope

and usefulness of these nearly forever.

One idea that most do agree upon is that government intervention

need not be the same throughout the business cycles ebbs and flows.

Which policy tools should be countercyclical, and to what extent they

should be so, are still open questions. However, the dichotomy between

recessions and expansions is reductive and may overlook other situations

that warrant government intervention. Specifically, downturns and

upswings might not be the only metric to look at. An completely

unforeseen downturn may shift behaviors in a way that makes them

more risk averse and bolster precautionary spending, thus reducing the

consumption multiplier effect of government spending. The converse

would be true for any situation where clear expectations for the future

do not warrant more prudent consumption, be it during recessions or

expansions. While it only recently gathered some interest, the question of

the role of uncertainty has been the pet peeve of economic policy for more

than seven decades. Standing at both ends of the economic spectrum,

Keynes and Hayek had agreed on the importance of uncertainty in

the determination of equilibrium outcomes, and made Frank Knight’s

theory of uncertainty a cornerstone of their own. But Keynes and Hayek

evidently reached diametrically opposite conclusions, and even more

so saliently on the question of state intervention. Keynes argued that

the systematic incoordination caused by uncertain and irrational forces

required correction through deliberate changes in public spending and

taxation. Hayek believed that no central planning authority could gather

nearly enough information to efficiently coordinate uncertain agents,

thus axing every form of government intervention.
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The confrontation between Keynes and Hayek’s ideas is no news but

little has been done to try to settle the debate. Some empirical work has

been done to analyze the role of government under different regimes but

not without limitations. In the case of uncertainty as with many other

covariates, a crucial issue in the method is that economic downturns

do tend to correlate with periods of heightened uncertainty in practice.

This raises the issue of specious conclusions if one were to retain only

an indicator of uncertainty and separating history according to its level.

To a certain extent, all methods aimed at estimating regime switching

model suffer from that flaw insofar as the indicator of regime changes

may well be correlated with another series, rendering any causal analysis

more a judgment of values than anything else.

Instead of attempting to solve an unsolvable debate, this chapter

tries to fill part of a policy practice gap by assessing whether government

spending is more effective in uncertain than in tranquil times. I do so

using data over the whole 20th century in the United States, both on eco-

nomic aggregates and acceptable proxies of economic uncertainty. I find

that government intervention appears to effect more when perceivable

economic uncertainty is high, while spending in tranquil times seems

to bring insignificant benefits in terms of output. Because spuriousness

easily sneaks in discussions on the impact of uncertainty, I propose a new

way to make estimation tools robust to some stylized facts of uncertainty,

in particular that measured uncertainty is highly counter-cyclical. This

encouraging result seems, however, quite sensitive to the sample window

retained. I consider this evidence of a possible structural break in the

relation between fiscal multipliers and uncertainty, calling for a deeper

investigation of the microeconomic channels it relies on, for which the

data is unfortunately still lacking.
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5.2 uncertainty and fiscal policy

5.2.1 Lessons from Economic Modeling

This section exposes some intuitive reasons why the effects of policy may

depend on the degree of economic uncertainty. Interestingly, neither

theory nor intuition provide an unequivocal answer.

The role of expectations in equilibrium outcomes is an old idea dating

back to Keynes (1936) General Theory. Loosely summarizing, Keynes

(1936) states that as perceived uncertainty increases, so does “liquidity

preference”, which conditions the size of the liquidity traps where he sees

government intervention to be more potent. For Keynes, uncertainty

begs government intervention. Akin to the idea of liquidity preference,

firms may delay investment decisions during uncertain times, even after

having observed a positive fiscal spending shock. The reason is that

investment is (at least partially) irreversible, and firms may be unwilling

to risk suffering the adjustment cost given the uncertain outlook. That

is, economic uncertainty induces “wait-and-see” behaviors that could

potentially dampen the effects of fiscal policy. Conversely, uncertainty

can unveil growth options for firms, and have the opposite effect. By

spurring “effective demand” (Keynes, 1936), government spending could

potentially increase the value of these options, causing agents to “exercise”

the option and invest. Fiscal stimuli can also send mixed signals and

entail unclear effects during uncertain times. Indeed, a government

spending shock during times of heightened uncertainty may confirm

some pessimistic views, in turn producing a decline in consumption and

activity. Or it could, as explained before, constitute a positive signal on

“effective demand”, justifying an increase in investment and output.

These ideas are apparent in a bare-bones macroeconomic model.

The simplified model abstracts from private capital accumulation, habit

formation in consumption, a fixed cost in production, wage stickiness,

and price dispersion, following that of Sims and Wolff (2017). I do

not consider formally the firms’ optimization problem, taking the price
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markup as a measure of the overall level of distortion in the economy.

This simplified economy can be summarized by the following conditions:

Yt = Ct +Gt +GI,t (5.1)

Yt = AtK
ϕ
G,tNt

wt = µ−1
t AtK

ϕ
G,t

Ut = u(Ct, Gt)− `(Nt)

`N (Nt) = uC(Ct, Gt)wt

KG,t+1 = GI,t + (1− δG)KG,t.

The penultimate condition is the optimality condition for the consumers

supply of labor; the last condition is the accumulation dynamic for

the government’s capital stock (there is no private capital). I assume

with little originality that uC > 0, uCC < 0, uCG > 0, `N > 0 and

`NN > 0. Taking differentials of these conditions in the vincinity of a

steady state, the government consumption and investment multipliers

can be expressed as follows:

dYt
dGt

=
−uCC + uCG

`NN
µ

(AKϕ
G)2
− uCC

− uC
`NN

µ
(AKϕ

G)2
− uCC

dµt/µ

dGt
; (5.2)

dYt
dGI,t

=
−uCC

`NN
µ

(AKϕ
G)2
− uCC

− uC
`NN

µ
(AKϕ

G)2
− uCC

dµt/µ

dGI,t
. (5.3)

The takeaways from these formulas are that the response of the wage

markup is critical.1 The markup will typically fall after an increase in

either type of government expenditure. Furthermore, the “uncertain”

part about the response of the markup lies in the productivity shock,

and any shift in its underlying variance will drive the sensitivity of the

markup upward. The expression of the markup allows to claim that:

E

(
dµt/µ

dGI,t

)
sign
∝ E (At) . (5.4)

1Note that in a frictionless economy, the second term in each equation equals zero
and government multipliers are deterministic. In particular, the government investor
multiplier is exactly one, that is, government investment is completely neutral.
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From the government’s standpoint, the risk associated in spending is

proxied by the variance of the response of the markup to government

spending, which with an argument akin to the one I just made is a

multiple of the variance of the productivity process. Any increase

in “uncertainty” – which is exactly the variance of At, at least in

Bloom’s (2009) terms – leads to higher government multipliers. Note,

however, that the closer to the frictionless ideal where µ ∼ 0, the less

that statement holds true. For a more general discussion around state

dependent government multipliers in a medium scale DSGE framework,

see Sims and Wolff (2017). Overall, there are many channels through

which uncertainty may affect the efficiency of fiscal policy, most of which

are likely to interact. Because these channels might well cancel each

other out, this thesis takes a first step and empirically assesses whether

uncertainty has an actual effect on fiscal multipliers.

5.2.2 Current Research Frontier

Keynes (1936) original intuition has been wanting a formal theoretical

framework for decades. The importance of uncertainty in economic fluc-

tuations is, however, a much more recent concern in economic modeling.

In a partial equilibrium setting, Bloom (2009) showed that “uncertainty

shocks” expanded firms’ “inaction region”, thus generating sharp reces-

sions and recoveries. Christiano et al. (2014) assessed the importance of

risk shocks in a dynamic stochastic general equilibrium (DSGE) frame-

work, and concluded that “risk shocks” – shocks to the variance of

capital returns – have the greatest contribution to fluctuations along the

business cycle, trumping that of government spending shocks. Christiano

et al. (2014) do not discuss, however, whether the impact of fiscal policy

is mitigated, or augmented, in periods of higher “risk.” Taschereau-

Dumouchel et al. (2013) describe an economy in which multiple steady

states of uncertainty exist. In particular, the economy endogenously

creates “uncertainty traps”, which are episodes of long-lasting recessions,
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where high uncertainty meets low activity, even though fundamentals

are strong. While the authors do not address economic policy’s potential

recourse to exit such inefficient situations, Taschereau-Dumouchel et al.

(2013) nonetheless mention that optimal policy interventions can be

hamstrung by economic uncertainty, hinting at lower multipliers in these

eras.2 Finally, Saijo (2013) considers feedback effects: an endogenous

rise in aggregate uncertainty hinders economic activity, generating more

uncertainty in return, and so forth. None is said on fiscal stimulus, and

whether it may or may not offset the “uncertainty multiplier.”

Beyond the still unsettled role of uncertainty in generating fluc-

tuations, there is nary a consensus on how it affects the efficiency of

government intervention. Indeed, Keynes (1936)’ intuition for “animal

spirits” as a cause of economic fluctuations is still a rather controversial

point in empirical work (Barsky and Sims, 2012). As regards fiscal

multipliers, the empirical literature has extensively studied how they

varied over the business cycle; yet there are few assessments of the effi-

ciency of fiscal policy when the economy is more “uncertain.” Without

having created a proper consensus, the data seem to have confirmed

the Keynesian intuition (Keynes, 1936) that government spending is

more potent in dire times. For instance, fiscal multipliers have been

found to be higher in liquidity traps (Farhi and Werning, 2012). Using

data from the OECD countries, Auerbach and Gorodnichenko (2011)

find evidence of larger multipliers during recessions, mirroring smaller

multipliers in expansions. In a more general setting, Fazzari et al. (2013)

document how fiscal policy can have non-linear effects in certain states

of the business cycle; they find that fiscal multipliers are substantially

higher when there is considerable “economic slack” (unused resources

in the economy). Ramey and Zubairy (2014) investigate whether U.S.

government spending multipliers differ according to the amount of slack

2Their definition of uncertainty – as the dispersion of the subjective beliefs about
the fundamental – differs from that of the common uncertainty-driven business cycle
literature. A key difference is that there can be uncertainty without volatility.
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and whether interest rates are near the zero lower bound, using a new,

extended quarterly dataset. Using a different estimation technique than

that of Fazzari et al. (2013), Ramey and Zubairy (2014) find that the

magnitude of multipliers does not seem to depend on the amount of

slack in the economy, while the proximity to the zero lower bound has

an unclear effect. (Note that their conclusions radically discord with

those of Fazzari et al. (2013) on the state-dependence of multipliers.)

With all that research in mind, there is still no answer provided to the

question of fiscal multipliers in the face of higher economic uncertainty.

This chapter’s question is closest to that of Bachmann and Sims

(2012), who look at consumer and business confidence as a potential

channel for fiscal policy to effect. Bachmann and Sims find that confi-

dence rises following an increase in spending during periods of economic

slack, rendering multipliers much larger then. The systematic response

of confidence is irrelevant for the output multiplier during normal times,

but critical in downturns. In unpublished work, Alloza (2014) reproduces

the exercise of Bachmann and Sims, but tries to compare periods of high

uncertainty – measured by indices of consumer confidence and financial

volatility – to periods of low economic activity. Alloza concludes that

multipliers are highest in periods of low uncertainty and expansion,

contrary to the conclusions reached by a large strand the literature

on state-dependent multipliers. In front of these existing papers, my

approach stands out in at least three ways. First, I employ long term

quarterly data over the 20th century. Second, the econometric method-

ology retained imposes little restrictions on the behavior of impulse

response functions, contrary to the (structural) VAR methods used by

the papers mentioned. Third, I allow for smoother transitions between

states of high and low uncertainty, rather than arbitrarily splitting the

sample into seasons of high and low uncertainty. Finally, in the state

transitions, I factor in that uncertainty tends to correlate with recessions

(Bloom, 2014) and propose a way to adjust for the state of the business

cycle directly in the transition function. This affords me to substantially
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refine the conclusions previously reached by the literature.

5.3 methodology

5.3.1 Data

Historical, quarterly macroeconomic data for the United States on GDP,

the GDP deflator, government spending, population, and the unemploy-

ment rate, come from various sources described in the Appendix.3 In

addition, I use Ramey (2011) “news” variable reflecting changes in the

expected present value of government spending in response to military

events. The sample ranges from the first quarter of 1890 to the last

quarter of 2010. To these data items, I append constructed measures

of uncertainty. These include Baker et al. (2012) news-based economic

policy uncertainty index (available from 1900), Jurado et al. (2015)

composite uncertainty measure (available from the second quarter of

1960), the Consumer confidence index from the Michigan Survey of

Consumers, and a proxy for quarterly stock market volatility based on

stock prices collected by the Yale NYSE Research Project. The resulting

series (off-trend deviations) is exposed in Figure 5.1. In the regressions,

all aggregate variables are expressed in real terms and transformed to

logarithms.

5.3.2 Government Multipliers and Smooth Transition Local Projections

The literature has considered several methods to estimate state-dependent

effects, but without agreeing on one best way to do so. Auerbach and

Gorodnichenko (2012) consider a “smooth transition” vector autoregres-

sive model (STVAR) to compare the effects of fiscal policy in recessions

and expansions in the United States. In an ensuing exercise, Auerbach

and Gorodnichenko (2013) extend their study to a broader array of

3The extended macroeconomic data is essentially the same as that of HERE for
the United States
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OECD countries, this time using direct projection methods following

Jordà (2005) seminal paper .

I opt for Jordà (2005) local projection method to estimate impulse

response functions for a number of reasons. Using direct projections

rather than the SVAR approach to estimate multipliers affords us to

relax the orthogonality assumptions imposed by the SVAR method,

which ultimately constrain the shape of the impulse response functions,

especially in the long run. Because causality is still a widely open

question on the subject, not having to posit any form of relationship

between uncertainty and other sorts of shocks is, in a sense, preferable.

Additionally, direct projections do not constrain how long the economy

remains in a given state and whether the shock entails leaving the

state. As we will see later on, the method obviously carries a number

of minor shortcomings. Finally, a good share of the literature has used

that method in the context of transition models; using local projections

therefore makes more sense for the sake of comparison.

I also use the transformation recommended by Hall (2009) and

Barro and Redlick (2011) to steer clear of issues related to units of

measurement:

Xt+h −Xt−1

Yt−1
' (lnXt+h − lnXt−1) · Xt−1

Yt−1
; (5.5)

where X denotes the aggregate variable whose reaction to government

spending shocks are assessed. Formally, the state-dependent impulse

responses are estimated with sequential regressions of the form:

zt+h = Quartic Trend + It−1(αHU,h + ΦHU,h(L)yt−1 + βHU,hηt)

+ (1− It−1)(αLU,h + ΦLU,h(L)yt−1 + βLU,hηt) + εt+h; (5.6)

where It is a variable that retains information on the state (here the

economy being in “high uncertainty”); ΦHU,h and ΦLU,h are quartic

lag polynomials, and εt+h is an error term. The responses of the

dependent variable zt+h h periods after the shock η are given by βHU,h
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in the high-uncertainty state and βLU,h in the low-uncertainty state.

In the sequential regressions, the standard errors are corrected for

serial correlation using Newey and West (1987) autocorrelation robust

estimator.

5.3.3 Conditional Smooth Transition Models

Smooth transition autoregressive (STAR) models were first proposed by

Terasvirta and Anderson (1992) as a combination of the self-exciting

threshold autoregressive (SETAR) and the exponential autoregressive

(EAR) models. The smooth transitions allow the model to be interpreted

in two ways. On the one hand, STAR models are similar to Markov

switching models but allow for smoother, more realistic transitions. On

the other hand, STAR models can be interpreted as multi-state models

with a continuum of states Terasvirta (1996)

The main advantage in favor of STAR models is that changes in

economic aggregates are influenced by changes in the behavior of many

different agents and it is highly unlikely that all agents react simultane-

ously to a given economic signal. In financial markets, for example, with

a large number of investors, each switching at different times (probably

due to heterogeneous objectives), a smooth transition or a continuum of

states between the extremes appears more realistic.

On the other hand, smooth transition models do suffer from a

significant “design flaw” that applies to most regime switching models

where the state transition is estimated with a single observable. Indeed,

in most cases, the state transition variable is merely a proxy for the true

state. This does not violate the underlying assumptions of a typical

smooth transition model, but it does make the conclusion one draws from

it spurious at best. For a more formal example, consider the following

simplified situation. The two processes X and Y evolve structurally as
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follows:

Xt = a1Xt−1 + a2Yt−1 + εX,t

Yt = a3Yt−1 + a4Xt−1 + εY,t; (5.7)

where εX,t and εY,t are uncorrelated shocks, exogenous to X and Y . Xt

can be rewritten as follows:

Xt = a1Xt−1 +
∞∑
k=2

a2(a3)k−2a4Xt−k + a2

∞∑
k=1

(a3)t−kεY,t−k + εX,t;

(5.8)

which entails that X depends on past shocks to Y . In the context of

(smooth) state transitions, this implies that the transition to a new

state in the variable X may be the consequence of past shocks to the

variable Y ; therefore the transition function should control for the

level of Y . Note that I have still assumed that shocks to X and Y

were uncorrelated; in the context of economics and business cycles that

assumption is likely to hold false for any representation that is estimated,

even if the theoretical existence of such shocks gives support to that

enterprise. In the case of uncertainty, whichever indicator is retained

is very likely to be affected by other economic trends at play, such as

recessions, financial market crashes, wars, etc. While these phenomena

do correlate with uncertainty, they are not economic uncertainty as I

have described it in the previous chapters or as the fathers of economic

uncertainty theory would have defined it.

It is to this purpose that I propose an adjustment to the typical

logistic STAR model to account for mutual influences among state

variables. Consider the typical LSTAR model equation:

yt = I(st, γ)Φ1(L)yt−1 + (1− I(st, γ))Φ2(L)yt−1 + εt; (5.9)

where I(st, γ) = 1− (1 + e−γst)−1. The logistic state transition factor

does not, in its current form, account for the potential mutual influence
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business cycle indicators. I propose an adjustment based on a result

established in the Appendix of this chapter. Let x = (x0, x1, . . . , xn) be

a multidimensional logistic vector with parameter γ = (γ0, γ1, . . . , γn)

such that the first line of Σ = E(xx′) = (σi,j) contains at least one

non-zero value other than σ1,1. Let x−0 = (x1, . . . , xn). Then:

i. x−0 is a multidimensional logistic vector;

ii. The density of x is given by:

f(x) =
(n+ 1)!

(∏
γi
γi

)(
e
∑
xi

e−γixi
)

(
1 +

∑
xi∈{x0,x−0} e−γixi

)n+2 ; (5.10)

iii. The density of x0 conditional on x−0 is given by:

f(x0|x−0) =
γ0(n+ 1)e−γ0x0

(
1 +

∑
xi∈{x−0} e−γixi

)n+1

(
1 +

∑
xi∈{x0,x−0} e−γixi

)n+2 ; (5.11)

iv. The transition factor conditional on x−0 is given by:

I∗(x0|x−0) = 1−

(
1 +

∑
xi∈{x−0} e−γixi

)n+1

(
1 +

∑
xi∈{x0,x−0} e−γixi

)n+1 . (5.12)

This result allows me to build a “conditional” smooth transition model

where the positive mutual influence between different business cycle

aggregates is factored directly in the transition factor. To be sure, the

model can be written down as follows:

yt = I∗(x0,t, γ|x−0,t)Φ1(L)yt−1 + (1− I∗(x0,t, γ|x−0,t))Φ2(L)yt−1 + εt;

(5.13)

where:

I∗(x0,t, γ|x−0,t) =

(
1 +

∑
xi∈{x−0} e−γixi

)n+1

(
1 +

∑
xi∈{x0,x−0} e−γixi

)n+1 . (5.14)
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I call I∗ the conditional smooth transition factor, which accounts for the

level of other covariates in the state transition function, and summarize

the properties of the conditional model as follows:

i. The conditional factor I∗t tends to one, that is, to the high state,

if and only if the underlying index of interest x0 tends to +∞, i.e.

the high state

ii. If the underlying index of interest x0 tends to −∞, i.e. the low

state, the conditional factor I∗t tends to zero, that is to the low

state. It does so too when one of the other covariates tends to the

low state.

iii. If {ε} is a martingale difference sequence, local projection esti-

mates of the impulse response functions are consistent (and robust

to misspecification).

The limits of the new conditional term imply that the new factor does

not over-weigh uncertainty and fits what one would like to have. First,

if the state of interest goes to infinity (minus infinity), the indicator goes

to 1 (to 0). Additionally, if all other covariates tend to infinity (that is,

other metrics converge to high states), the indicator is still “weighed

down” by the level of the state of interest. If all other state covariates

tend to the low state, the indicator tends to that of the low state too,

as one would expect under a careful choice of the covariates. On the

other hand, the unconditional term would have converged towards the

low state in the same way, so the conditional version is at worst a

non-improvement – not a distortion from the previous method.

In contrast to the scant literature considering the effects of fiscal

policy under uncertainty, I do not specify the state It factor as a step

function and follow the procedure that I have described earlier in this

section. It allows me to eschew the arbitrary classification of states

with high or low uncertainty. Alloza (2014) considers states in which

uncertainty is 1.65 standard deviations off its long term mean. My

state transition variable of interest is st which denotes (normalized)
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deviations from the trend for a given measure of uncertainty.4 I prefer

this specification – the logistic STAR (LSTAR) model – to their expo-

nential counterpart (ESTAR), where the transition function is given

by It = 1 − exp(−µs2
t ). It can readily be seen that this specification

allows for “symmetric” states, where highs and lows are treated equally.

In my case and with the data series that I retain, it seems natural

that high uncertainty and low uncertainty should have different effects.

Furthermore, it allows me to apply the previous lemma and improve

upon the typical “unconditional” model and factor comovements of

business cycles and uncertainty. To account for the fact that higher

uncertainty usually comes with recessions (without assuming any causal

direction), I specify It as a conditional probability as follows:

I∗t ≡ 1− (1 + e−γgt)2

(1 + e−µst + e−γgt)2
; (5.15)

where gt denotes a seven-quarter moving average of quarterly real GDP

growth, as in Auerbach and Gorodnichenko (2012). The challenge of

such specification – and also of the unconditional one – lies in the

calibration of the parameters γ and µ, which is done to match business

cycles facts (probability of recessions and observed high uncertainty

periods.5 This new specification factors in that uncertainty tends to rise

during recessions, in an attempt to avoid observing spurious results. I∗t
is close to one in when uncertainty is high, but corrects for the fact that

the economy might be in a recession and “penalizes” high uncertainty

states where the economy is at the same time undergoing a recession –

which is documented to affect the size of the multipliers. The deeper

the recession for a given level of uncertainty, the lower the weight on

that state. By comparing the results between the specifications with

It and I∗t , it will then be clear whether uncertainty alone is justifies

4I transformed the series of deviations from the trend such that a large negative
value indicates a reading of uncertainty high above the trend.

5γ = 10 and µ set to a similar value in the uncertainty transition function seem
to work quite well.
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government intervention, or if the effect appears to be more linked to

recessions than uncertainty per se.

5.4 do uncertain times conjure higher multi-

pliers?

5.4.1 Estimated Responses to Government Spending Shocks

For illustration purposes, I first present the responses to a government

spending shock in a linear, non state-contingent setting. The results

are exposed in Figure 5.3. In all the different specifications, I use the

constructed historical stock market volatility as a proxy for economic

uncertainty. The series of government spending shocks is that of Ramey

(2011) so as to consider admittedly exogenous shocks. Other proxies

will be considered in section 5.4.3. In short, basic linear models point

towards positive effects of government spending, peaking at around 12

quarters after the shock. The estimated peak multiplier comes out at

approximately 0.9.

Escaping from the linear world, I first run through a state-dependent

estimation using It – the unconditional transition function – to distin-

guish between uncertain and tranquil times. The results of the estimation

are presented in Figure 5.4. The somewhat oscillating impulse response

functions are an unfortunate side effect of local projection methods.

The results are however clear. In uncertain times, government spending

appears to have a positive effect on output, fading to zero after roughly

4 years. On the flip side, these effects are hardly significant in tranquil

times. The effects of government spending shock under different levels

of uncertainty are no different than in confident times. Moreover, the

effects of government spending shocks are essentially nil in both states.

Finally, to account for the fact that uncertainty rises during reces-

sions, I use a conditional version of the probability of switching to a

higher uncertainty state, as defined by I∗t in the previous section. The
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estimated impulse response functions are presented in Figure 5.5. In-

terestingly, the estimated responses are very similar to those obtained

in the unconditional model, although somehow a bit smoother in the

low uncertainty state with conditional transition function. While the

conditional transition function is not the nail in the coffin of spurious-

ness, it does comfort the conclusions reached in the unconditional model.

The fact that the results are very similar to those of the unconditional

model comes from the notable similarity between the unconditional and

the conditional transitions, which can be observed in Figure 5.6. Note,

however, that the conditional version accentuates non-contractionary

periods, in particular that of the 1930s. The conditional transition

strongly adjusts before the unconditional transition, then kicks back

when uncertainty plateaus even though the economy picks up.

Besides that of the similarity between the two measures, another

concern that I had was that despite the adjustment, I was still capturing

the effects of recessions in these estimates. An informal comparison

between the conditional transition factor and that of Auerbach and

Gorodnichenko (2012) in Figure 5.6 shows that this is far from the truth.

To comfort this fact, I replicated the Auerbach and Gorodnichenko (2012)

results in the Appendix, using local projection methods for comparability.

Multipliers appear higher in recessions, but the estimated responses

have very different shapes. Interestingly, the differences between I∗t and

the Auerbach-Gorodnichenko state transition go both ways – although

I∗t > It does appear more often than its contrapositive. This supports

the idea that the effect estimated here is genuinely different.

5.4.2 Fiscal Multipliers in Uncertain Times

I now turn to actual fiscal multipliers. For state-dependent models,

multipliers are derived from the estimated coefficients from both states,

for GDP and government spending. I compute multipliers over three

horizons: as the cumulative responses through two years, four years,
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and at the peaks of each response. Formally, the cumulative multiplier

at horizon H MY (H), and the peak multiplier M∞Y (H), are defined by:

MY (H) =

∑H
h=1 β

Y
S,h∑H

h=1 β
G
S,h

; (5.16)

M∞Y (H) = max
h6H

{
βYS,h

βGS,h

}
. (5.17)

Multipliers derived from these formulas are presented in table 5.1. The

comparative interpretations from the impulse response functions hold.

An interesting observation is that the linear model appears to under-

estimate multipliers. Surprisingly, multipliers are much higher when

I distinguish between low and high uncertainty levels. The estimated

levels are consistent with the conclusions from the previous sections.

Albeit they appear surprisingly high, multipliers in tranquil times are

likely insignificant.

Table 5.1: Estimated fiscal multipliers for all models

Model 2-year cumul 4-year cumul 4-year peak

Linear 0.78 0.87 0.92
High σ (unconditional) 1.68 2.04 1.36
Low σ (unconditional) 0.86 1.25 0.93
High σ (conditional) 1.79 2.81 1.37
Low σ (conditional) 0.90 1.33 0.96
In recession (A-G) 0.78 0.87 0.93
In expansion (A-G) 0.90 0.56 n.m

Notes: Cumulative multipliers calculated according to the formula in equation (5.16),
and peak multipliers according to the formula in (5.17). “n.m.” stands for “not
meaningful”, which can happen when the quantities aren’t statistically significant (for
instance a denominator extremely close to zero, pushing the value of the multiplier).
“A-G” stands for my replication of Auerbach and Gorodnichenko (2013) exercise.

My conclusions differ in some aspects with the existing literature.

Alloza (2014) found that fiscal policy was more efficient during times
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of lower uncertainty and in expansions, contrary to what most of the

empirical literature has uncovered. To account for his results, Alloza

suggests that precautionary savings effects outweigh that of the hike in

anticipated demand. Pessimism, which reportedly increases in response

to government spending shocks, annihilates the positive effects of fiscal

stimuli. A first remark is that Alloza’s question is somehow misguided,

as recessions tend to coincide with high uncertainty (whatever causal

direction one is willing to assume). An crucial precaution to take on

this question is to try to partial out the effects of economic recessions

on multipliers before asking whether uncertainty affects the efficiency

of fiscal policy. Here, I did not assume any more than the fact that

uncertainty and recessions were a joint “random” process, and I derived

a conditional version of the transition function. Another concern with

Alloza (2014) study is that the state switching process It for expansions

and recessions is ultimately as precise as the NBER’s business cycle

dating; while transitions between high and low levels of uncertainty

are very much arbitrarily decided. In particular, the effects of fiscal

policy under both regimes could be estimated with little precision if

fiscal policy shocks are observed close to a change of regime that could

be “misdated” (be it for recessions or uncertainty spikes). Although this

argument does not really apply to state indicators based on the data,

I believe that the current state of knowledge on uncertainty does not

afford such a clear cut distinction.

5.4.3 Robustness Checks

I first evaluate the robustness of results to different versions of the data.

Until now, the estimation has been carried out with the market volatility

index constructed from the Yale NYSE History Project. I get very similar

results by substituting Baker et al. (2012) measure of uncertainty to

my initial proxy. The reason why I did not use this measure in the

first place is that it essentially is a metric of policy uncertainty rather
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than aggregate economic uncertainty, for which stock market volatility

is considered a more appropriate instrument (Bloom, 2014). In the same

vein, I consider different forms of uncertainty detrending. A Hodrick-

Prescott detrending method yields almost identical results in both the

unconditional and conditional models. I keep quartic detrending for

simplicity. Because they start much later than my main proxy for

uncertainty, I cannot run the estimation with series from the Michigan

Survey of Consumers nor with Jurado et al. (2015) data.

I also compare my results with a different series of government

spending shocks. With the same data, I reproduce the estimation

procedure of Blanchard and Perotti (2002), identifying shocks as the

residuals in a structural VAR that imposes the exclusion restriction

that government spending cannot react within one quarter to shocks

to output and tax revenues. The results are qualitatively robust to

the new data in the sense that impulse response functions have a very

similar shape. The confidence bands, however, appear much wider than

before. While the similar shapes of impulse responses are comforting,

the broader confidence bands are somehow worrisome. It means that

conclusions on the actual size of multipliers, namely those in section

5.4.2, need to be taken with caution.

An important verification to carry out was that of the sample window.

Considering only the post-WWII era measurably modifies the results.

The shape of the impulse responses in the high uncertainty state is

roughly the same, but that of the low uncertainty state is starkly affected.

The response of aggregates basically oscillates in that state, which I

only partially attribute to local projections. The most likely culprit

is that the way uncertainty influenced the transmission of government

spending shocks has changed in the sample. The further away we push

the beginning of the sample, the less significant the differences between

the two states, whatever uncertainty proxy is retained. This puts a clear

limit to the conclusions, as it now appears that the results were driven

by the earlier part of the sample considered.
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On a side note, another important robustness check would be to

confront such a study to data from different countries. My conclusions

are essentially confined to the United States. Even then, the sensibility to

the sample window calls for an investigation of the structural break that

generates it, and more importantly, to the elaboration of an estimation

technique that is robust to such a change.

5.5 takeaways for fiscal multipliers

Overall, the response of output (and other aggregates) to fiscal spending

shocks appears sharply different in periods of high and low uncertainty.

As highlighted by the literature, there could be many explanations for

this fact. Nevertheless, the exercise appears highly reliant on the sample

window retained. A policy lesson would be that existing proxies of

uncertainty are not relevant metrics to consider for the efficiency of

government stimuli. Pre-1945, the story would be that the “effective

demand” shock may outweigh the negative signal sent by government

intervention, or that the irreversibility of investment is generates quanti-

tatively negligible differences from a frictionless equilibrium. Post-1945,

there is disappointingly no story to be told, at least at this stage and

with the measures of uncertainty available at the moment. Still, a major

challenge remains to stop guessing the story and actually find out which

effect dominates.

Of the possible extensions of this work, none is more important

than understanding the mechanism though which uncertainty might

condition the potency of fiscal stimuli, why it likely has changes and

whether it may change again or back. Further trying to partial out

the effects of recessions and expansions on economic uncertainty in this

question, as well as in empirical exercises that involve uncertainty in

general, only comes second by a nose. A formal test for non-linearity

could give further support to the study. The linear model is indeed

nested in the (L)STAR version retained (take µ → ∞), and a proper
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calibration of the transition function is paramount to consolidate the

conclusions. The fact that there is no perceivable differences between

the two regimes gives some support to this objection. Another possible

specification would be to try to adapt multiple-regime LSTAR (MR-

LSTAR) models to this question. MR-LSTAR models formally allow for

more than two states, which, in the case of uncertainty, would consist in

distinguishing between normal times, high-uncertainty states (“panic”)

and low-uncertainty states (“tranquility”). Given the noisiness of the

current proxies of uncertainty available, this other version comes last to

the other issues to fix here, such as that of endogeneity or spuriousness.

5.6 conclusion

We began from the Keynesian assertion that the level of uncertainty

may affect the efficiency of fiscal policy. From there, I estimated state-

dependent responses to government spending shocks, and showed that

the data pointed at higher fiscal multipliers in uncertain times. Im-

portantly, these results were obtained by correcting for the fact that

uncertainty rises during recessions, an issue that haunts many discussions

on the effects of uncertainty on the economy.

Although using century-long series seemed like an improvement on

the existing literature, the solidity of the results seemed to largely

rely upon the sample window selection. Spending multipliers do appear

higher in uncertain times over the whole course over the 20th century, but

the data hardly support this conclusion if one considers only post-WWII

history. To be sure, this suggests that a structural change occurred

before the soaring second half of the century. The Great Moderation is

the most likely culprit of that fact.

Rather than disappointing, I see this difficulty as leaving a challeng-

ing research agenda to understand the channels through which fiscal

spending effects. A thin literature, and to some extent this chapter’s ex-

ercise, seems to support uncertainty as a determinant of the efficiency of
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fiscal policy. Because there are countless ways uncertainty could matter,

the next step will boil down to deciphering these links and sorting out

the meaningful ones. The growing availability of microeconomic data

will – without a doubt – make this possible soon enough.

159



5. Fiscal Multipliers in Uncertain Times

5.7 appendix

data sources

GDP and GDP deflator

1947 – 2010: Quarterly data on chain-weighted real GDP, nominal GDP,

and GDP deflator from BEA NIPA

1889 – 1946: Annual data from 1929 – 1946 from BEA NIPA

For 1889 – 1928, Historical Statistics of the United States, Earliest

Times to the Present: Millennial Edition, edited by Susan B. Carter,

Scott Sigmund Gartner, Michael R. Haines, Alan L. Olmstead, Richard

Sutch, and Gavin Wright. New York: Cambridge University Press, 2006.

1889 – 1938: Quarterly data on real GNP and GNP deflator from

Nathan Balke and Robert J. Gordon, The Estimation of Prewar Gross

National Product: Methodology and New Evidence, Journal of Political

Economy, 97, February 1989. Data available at: http://www.nber.

org/data/abc/

Uncertainty

1900 - 2010: Bloom, Baker and Davis uncertainty measure, available at

www.policyuncertainty.com

Properties of Multivariate Logistic Distributions

Multivariate logistic distributions were first introduced by Malik and

Abraham (1973). The first part of the lemma announced is simply the
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definition of the multivariate logistic density function:

f(x) =
(n+ 1)!

(∏
γi
γi

)(
e
−

∑
xi
γixi
)

(
1 +

∑
xi∈{x0,x−0} e−γixi

)n+2 .

It follows that the density of X0 conditional on all following components

is equal to:

fX0|X−0
(x) =

fX(x)

fX−0(x−0)
.

The marginal density in the denominator can be readily obtained by

integrating over x0:

∫
fX(x) dx0 = n!

 ∏
γi 6=γ0

γi

(e
−

∑
−x0

γixi
)∫ (n+ 1)γ0e−γ0x0(

1 +
∑

xi∈{x0,x−0} e−γixi
)n+2 dx0

The integral term can be computed analytically:

∫
fX(x) dx0 = n!

 ∏
γi 6=γ0

γi

(e
−

∑
x−0

γixi
) −1(

1 +
∑

x−0
e−γixi

)n+1


+∞

−∞

=
n!
(∏

γi 6=γ0 γi

)(
e
−

∑
x−0

γixi
)

(
1 +

∑
x−0

e−γixi
)n+1 .

The conditional density now boils down to:

(n+ 1)!
(∏

γi
γi

)(
e
−

∑
xi
γixi
)

(
1 +

∑
xi∈{x0,x−0} e−γixi

)n+2

(
1 +

∑
x−0

e−γixi
)n+1

n!
(∏

γi 6=γ0 γi

)(
e
−

∑
x−0

γixi
)

=
(n+ 1)γ0e−γ0x0

(
1 +

∑
x−0

e−γixi
)n+1

(
1 +

∑
xi∈{x0,x−0} e−γixi

)n+2 .
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5. Fiscal Multipliers in Uncertain Times

The cumulative distribution function – i.e the “conditional transition

factor” – is obtained by immediate integration for a set value of x0:

F (x0|X−0 =

∫ x0

−∞

(n+ 1)γ0e−γ0t
(

1 +
∑

x−0
e−γixi

)n+1

(
1 +

∑
x−0

e−γixi + e−γ0t
)n+2 .

Transition Functions for Two Joint Underlying Processes

Assume that the transition to different states is determined by a joint

process (X,Y ), where no assumption is placed on the dependence be-

tween X and Y . Let FX and FY denote the transition functions for X

and Y , respectively:

FX(x) =
e−µx

1 + e−µx
; FY (x) =

e−γy

1 + e−γy
.

Those can be seen as survival functions for two logistic distributions.

The two marginal distributions of (X,Y ) are logistic, making (X,Y ) a

bivariate logistic distribution, with marginal densities fx and fY defined

by:

fX(x) =
µe−µx

(1 + e−µx)2
; fY (x) =

γe−γy

(1 + e−γy)2
.

It can be shown that the joint density and cumulative distribution

functions are given by:

f(X,Y )(x, y) =
2µγe−µx−γy

(1 + e−µx + e−γy)3
; F(X,Y )(x, y) =

1

1 + e−µx + e−γy
.

In this context, the conditional density of X can be computed as follows:

fX |Y (x | y) =
f(X,Y )(x, y)

fY (y)

=
2µ(1 + e−γy)2e−µx

(1 + e−γy + e−µx)3
; (5.18)
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implying the following form of the conditional cumulative distribution

function:

FX |Y (x | y) =
(1 + e−γy)2

(1 + e−γy + e−µx)2
; (5.19)

with survival function:

SX |Y (x | y) = 1− (1 + e−γy)2

(1 + e−γy + e−µx)2
. (5.20)

Result: With loose notation,

lim
x→−∞

SX |Y (x | y) = 1 (5.21)

lim
y→−∞

SX |Y (x | y) = 0 (5.22)

Proof – (5.21) simply comes from SX |Y being a survival function. For

(5.22), remark that the expression can be factored as follows:

SX |Y (x | y) = 1− 1

1 + 2e−µx

(1+e−γy)
+ e−2µx

(1+e−γy)2

;

which goes to zero as y goes to −∞.

fiscal multipliers in recessions and expansions

I reproduced Auerbach and Gorodnichenko’s exercise and compared the

responses of GDP, government spending and tax receipts in recessions

and in expansions.
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(a) Trailing twelve month stock return volatility
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(b) Normalized deviations from the quartic trend in uncertainty

Figure 5.1: Historical data for uncertainty through the 20th century
business cycles

Notes: The shaded gray bands denote NBER-dated recessions. The upper graph
shows the uncertainty data over the 20th century, computed as the trailing-twelve
month market volatility for each quarter. The lower graph displays deviations from
the quartic trend. A reading high above zero indicates high economic uncertainty.
(For ease and consistency of exposition in the transition function, I take the negative
of this measure.)
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5.7. Appendix

Figure 5.2: Comparison of the unconditional and conditional factors

Notes: The upper graph depicts two artificial time series. The series of interest is
correlated (ρ = 0.5 to the second series) but still subject to an idiosyncratic shock.
This is problematic when considering typical smooth transition models, as they are
impossible to partial out the changes in the underlying covariate in the variable of
interest. The second graph compares the usual unconditional factor (the orange
line) to the conditional adjustment that I suggest. Some sample periods showing
the importance of this distinction are highlighted. In the first period, the variable of
interest persists and shoots up while the covariate goes down. The usual unconditional
factor goes down to the low state, which is erroneous since the variable of interest
keeps increasing to the high state. In the second period, the unconditional factor
is “late” in identifying the high state. In the third period, the unconditional factor
completely misrepresents what happens to the variable of interest: It stays in the low
state while the variable of interest is clearly picking up, then goes up only when the
covariate goes up and there is a slight fall in the variable of interest. In the fourth
and last sample period, the unconditional factor remains higher than the conditional
factor while the variable of interest is clearly headed towards the low state.
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Figure 5.3: Impulse response in the linear model

Notes: Solid lines denote the estimated responses to a government shock; shaded
areas around the lines represent 95 percent confidence bands (using Newey-West
corrected standard errors).
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Figure 5.4: Impulse response in the unconditional, state dependent
model

Notes: Solid lines within red areas denote the estimated responses to a government
shock when uncertainty is high, while they denote the estimated responses for lower
uncertainty levels within green areas. Shaded areas around the lines represent 95
percent confidence bands (using Newey-West corrected standard errors).

167



5. Fiscal Multipliers in Uncertain Times

0 10 20
−0.4

−0.2

0

0.2

0.4

0.6
Government Spending

Quarter

0 10 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Government Spending

Quarter

5 10 15 20

−0.1

0

0.1

0.2

0.3

GDP

Quarter

5 10 15 20
−0.4

−0.2

0

0.2

0.4

0.6

GDP

Quarter

5 10 15 20

−0.05

0

0.05

0.1

0.15

0.2

0.25

Tax Receipts

Quarter

5 10 15 20

−0.1

0

0.1

0.2

0.3

0.4

Tax Receipts

Quarter

Figure 5.5: Impulse response in the conditional state-dependent model

Notes: Solid lines within red areas denote the estimated responses to a government
shock when uncertainty is high, while they denote the estimated responses for lower
uncertainty levels within green areas. Shaded areas around the lines represent 95
percent confidence bands (using Newey-West corrected standard errors).
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(a) Unconditional (blue line) v. conditional (green line) transitions
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(b) Difference between conditional and Auerbach-Gorodnichenko transitions

Figure 5.6: Transition functions throughout recessions

Notes: In both graphs, the shaded gray bands denote NBER-dated recessions. The
upper graph compares the unconditional transition function It (in blue) against the
conditional version I∗t (in green). The lower chart plots the difference between the
conditional transition function I∗t and Auerbach and Gorodnichenko (2012) transition
(F (zt) in the original article.) In the bottom graph, periods in which the two measures
coincide correspond to those when the line hits the zero axis.
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Figure 5.7: Impulse response in recessions and expansions

Notes: Solid lines within red areas denote the estimated responses to a government
shock in recessions, while within green areas they denote the estimated responses
in expansions. Shaded areas around the lines represent 95 percent confidence bands
(using Newey-West corrected standard errors). These impulse response functions are
estimated using the Jordà (2005) method, following Auerbach and Gorodnichenko
(2013)
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CONCLUDING REMARKS

Economics has progressively accepted uncertainty. From trying to ab-

stract from it and attributing it to “sunspots” like William Stanley

Jevons, economists started modeling it in a predictable way with ra-

tional expectations; only recently was uncertainty brought back to the

research agenda and made an interesting object on its own. And there

is a legitimate hope that the bounty of data that progresses of infor-

mation technology and growing “connectedness” will eventually bridge

economics and other disciplines such as psychology or neuroscience,

which will open the door to a much more profound understanding of

uncertainty faced by the homo œconomicus.

Until then, studying uncertainty means making the most of what
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economic data has to offer. Backed by historical definitions of uncer-

tainty, this dissertation strongly hinges on the premise that probabilistic

data would provide the most accurate approximation of true uncertainty

– what is now better known as Knightian uncertainty. I have shown

that applying the typical “forecast error” approach to probabilistic data

allowed to isolate Knightian and non-Knightian uncertainty components

that empirically behaved in accordance to what a macroeconomic model

featuring Knightian uncertainty would lead to believe. I then turned to

a theory of uncertainty that originated outside of economics – Claude

Shannon’s information theory – and shown how it not only applied to

the study of economic uncertainty, but also how it could match the

findings that I had uncovered in the fist chapter. Furthermore, the tools

provided by Shannon’s mathematical theory of uncertainty, and entropy

above all else, do apply to a broader range of uncertainty situations, be

it labor market uncertainty, security, meteorology, or pretty much any

topic as long as the probabilistic forecast data are available. Applying

my uncertainty measures also showed that disagreement was not to

be left out of the uncertainty landscape, and perhaps with a leap of

faith in generalizing, that uncertainty need not be a “representative

agent” phenomenon. Because forecasting is at the root of any probability

statement, I then turned to study uncertainty from the angle of forecast

model uncertainty. Using a tool more commonly used for (optimally)

combining predictions – Bayesian model averaging –, I built a measure

of forecasting uncertainty and showed how it matched the movements

of Knightian uncertainty as I had measured it in the previous chapters.

While the scarcity of macroeconomic models featuring forecasting un-

certainty calls for avoiding any peremptory conclusion, I was able to

match the models’ findings with my data. Finally, the ultimate chapter

of this dissertation studied the fiscal policy implications of economic

uncertainty. Because state dependent models in econometrics are far

from robust to specious conclusions, I proposed a way of factoring in

the correlation of uncertainty with other covariates to show that fiscal
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policy would likely have greater effects in uncertain times. Keynes’

“animal spirits” hypothesis was insightful, after all. Whether and when

uncertainty is a cause or an effect of policy is still an open question to

which the current data are unlikely to provide an answer.

While measures of uncertainty like the ones I have presented may

very well have little predictive value, they at least do show the extent

of our failures in business cycle reversals. Be it for forecast errors,

ambiguity or for model uncertainty, crises sadly brings much light on

our inability to predict what comes next. In that sense, the uncertainty

I tried to measure shows a striking pattern. Perhaps this fact should

be remembered when some strive to find ways to “predict crises” or

“understand cycles.” Because uncertainty is so prevalent one might be

tempted to ask the following questions: What does it imply for policy,

and can or should it be reduced? Because the latter is loaded with

political implications, I have only tried to contribute to the first. But

there is no reason why some experiments in the lab should not be

conducted to understand how much uncertainty is tolerable, productive,

and when there is simply too much uncertainty to go forward. The

latest financial crisis showed how uncertainty can, when it reaches

unprecedented levels, completely paralyze the economy. There is likely

a fine line to walk between letting agents be uncertain enough and

letting them be too uncertain, and delineating this limit is to me one of

potentially most insightful research agenda that stands unexplored.

Studying uncertainty does not entail trying to eschew it. Many

a philosopher have explained how uncertainty is an inescapable part

of being human. This dissertation opened with a quotation of Saint

Augustine making uncertainty a sort of ontological proof, a cogito before

Descartes’s. This relatively long essay on uncertainty has hopefully

shown that uncertainty is better understood than avoided. Sisyphus

lived with the perpetual uncertainty that the boulder he relentlessly

pushed up his hill would remain atop, and in Albert Camus’s own words,

one must imagine Sisyphus happy.
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Paolo Giordani and Paul Söderlind. Inflation Forecast Uncertainty.

European Economic Review, 47(6):1037–1059, December 2003.

Tilmann Gneiting and Adrian E Raftery. Strictly Proper Scoring Rules,

Prediction, and Estimation. Journal of the American Statistical

Association, 102(477):359–378, 2007.

Gergely Gánics. Optimal Density Forecast Combinations. Banco de

España Working Paper 1751, Banco de España, January 2018.

Refet S. Gürkaynak and Jonathan H. Wright. Macroeconomics and the

Term Structure. Journal of Economic Literature, 50(2):331–67, June

2012.

I. Hacking. The Emergence of Probability. Cambridge University Press,

1984.

Robert E. Hall. By How Much Does GDP Rise if the Government Buys

More Output? NBER Working Papers 15496, National Bureau of

Economic Research, Inc, November 2009.

Lars Peter Hansen and Thomas J. Sargent. Wanting Robustness in

Macroeconomics. In Benjamin M. Friedman and Michael Woodford,

editors, Handbook of Monetary Economics, volume 3 of Handbook of

Monetary Economics, chapter 20, pages 1097–1157. Elsevier, 2010.

180



Bibliography

P. T. Harker. The U.S. Economy in 2017: Why Uncertainty Is the

‘Biggest Risk’. Knowledge At Wharton, 2017.

Hans Hersbach. Decomposition of the Continuous Ranked Probability

Score for Ensemble Prediction Systems. Weather and Forecasting, 15

(5):559–570, 2000.

M. F. Huber, T. Bailey, H. Durrant-Whyte, and U. D. Hanebeck. On En-

tropy Approximation for Gaussian Mixture Random Vectors. In 2008

IEEE International Conference on Multisensor Fusion and Integration

for Intelligent Systems, pages 181–188, Aug 2008.

Cosmin L. Ilut and Martin Schneider. Ambiguous Business Cycles.

American Economic Review, 104(8):2368–99, August 2014.

E. T. Jaynes. How Should We Use Entropy In Economics? February

1970.

W. S. Jevons. The Theory of Political Economy. London: Macmillan

and Co., 1888.
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et Statistiques Avancées”. Economica, 1982.

182



Bibliography

Jacob M. Montgomery and Brendan Nyhan. Bayesian Model Averag-

ing: Theoretical Developments and Practical Applications. Political

Analysis, 18(2):245–270, 2010.

Enrique Moral-Benito. Model Averaging in Economics: An Overview.

Journal of Economic Surveys, 29(1):46–75, 2015. ISSN 1467-6419.

A. H. Murphy. What Is a Good Forecast? An Essay on the Nature

of Goodness in Weather Forecasting. Weather and Forecasting, 8:

281–293, June 1993.

Allan H. Murphy. A Note on the Ranked Probability Score. Journal of

Applied Meteorology, 10(1):155–156, 1971.

John F. Muth. Rational Expectations and the Theory of Price Move-

ments. Econometrica, 29(3):315–335, 1961.

Whitney K Newey and Kenneth D West. A Simple, Positive Semi-

definite, Heteroskedasticity and Autocorrelation Consistent Covari-

ance Matrix. Econometrica, 55(3):703–08, May 1987.

Florens Odendahl. Survey-Based Joint Density Forecasts. Working

paper, October 2017.

Andrew J. Patton and Allan Timmermann. Why Do Forecasters Dis-

agree? Lessons From The Term Structure Of Cross-Sectional Dis-

persion. Journal of Monetary Economics, 57(7):803–820, October

2010.

Adrian E. Raftery, David Madigan, and Jennifer A. Hoeting. Bayesian

Model Averaging for Linear Regression Models. Journal of the Amer-

ican Statistical Association, 92(437):179–191, 1997.

Valerie A. Ramey. Identifying Government Spending Shocks: It’s all in

the Timing. The Quarterly Journal of Economics, 126(1):1–50, 2011.

183



Bibliography

Valerie A. Ramey and Sarah Zubairy. Government Spending Multipliers

in Good Times and in Bad: Evidence from U.S. Historical Data. NBER

Working Papers 20719, National Bureau of Economic Research, Inc,

November 2014.

Robert Rich and Joseph Tracy. The Relationships among Expected

Inflation, Disagreement, and Uncertainty: Evidence from Matched

Point and Density Forecasts. The Review of Economics and Statistics,

92(1):200–207, February 2010.

P. Romer. The Trouble With Macroeconomics. Available on Paul

Romer’s website, 2016.

Barbara Rossi and Tatevik Sekhposyan. Evaluating Predictive Densities

of US Output Growth and Inflation in a Large Macroeconomic Data

Set. International Journal of Forecasting, 30(3):662–682, 2014.

Barbara Rossi and Tatevik Sekhposyan. Macroeconomic Uncertainty

Indices Based on Nowcast and Forecast Error Distributions. American

Economic Review, 105(5):650–55, May 2015.

Barbara Rossi and Tatevik Sekhposyan. A Macroeconomic Uncertainty

Index for the Euro Area. mimeo, 2016.

Epstein Edward S. Stochastic Dynamic Predictions. Tellus, 21(6):

739–759.

Hikaru Saijo. The Uncertainty Multiplier and Business Cycles. UTokyo

Price Project Working Paper Series 016, University of Tokyo, Graduate

School of Economics, November 2013.

J.-B. Say. A Treatise on Political Economy. Philadelphia: Claxton,

Remson and Haffelfinger, translated from the 4th French edition, 1803.

Gideon Schwarz. Estimating the Dimension of a Model. The Annals of

Statistics, 6(2):461–464, 1978.

184



Bibliography

Chiara Scotti. Surprise and Uncertainty Indexes: Real-Time Aggregation

of Real-Activity Macro Surprises. Technical report, 2013.

Eric Sims and Jonathan Wolff. The State-Dependent Effects of Tax

Shocks. Working paper, August 2017.

D. B. Stephenson, C. A. S. Coelho, and I. T. Jolliffe. Two Extra Com-

ponents in the Brier Score Decomposition. Weather and Forecasting,

23(4):752–757, 2008.

D.B. Stephenson and F.J Doblas-Reyes. Statistical Methods for Inter-

preting Monte Carlo Ensemble Forecasts. Tellus A, 52(3):300–322,

2000.

James H. Stock and Mark W. Watson. Business Cycle Fluctuations

in U.S. Macroeconomic Time Series. NBER Working Papers 6528,

National Bureau of Economic Research, Inc, April 1998.

James H Stock and Mark W Watson. Macroeconomic Forecasting Using

Diffusion Indexes. Journal of Business & Economic Statistics, 20(2):

147–162, 2002.

James H. Stock and Mark W. Watson. Forecasting Output and Inflation:

The Role of Asset Prices. Journal of Economic Literature, 41(3):

788–829, September 2003.

John A. Swets. The Relative Operating Characteristic in Psychology.

Science, 182(4116):990–1000, 1973.

Mathieu Taschereau-Dumouchel, Edouard Schaal, and Pablo Fajgelbaum.

Uncertainty Traps. 2013 Meeting Papers 677, Society for Economic

Dynamics, 2013.

T. Terasvirta and H. M. Anderson. Characterizing Nonlinearities in

Business Cycles Using Smooth Transition Autoregressive Models.

Journal of Applied Econometrics, 7:pp. S119–S136, 1992.

185



Bibliography

Timo Terasvirta. Modelling Economic Relationships with Smooth Tran-

sition Regressions. SSE/EFI Working Paper Series in Economics and

Finance 131, Stockholm School of Economics, November 1996.

Kenneth F. Wallis. Combining Density and Interval Forecasts: A Modest

Proposal. Oxford Bulletin of Economics and Statistics, 67(s1):983–994,

December 2005.

Larry Wasserman. Bayesian Model Selection and Model Averaging.

Journal of Mathematical Psychology, 44(1):92 – 107, 2000.

Jonathan H. Wright. Term Premia and Inflation Uncertainty: Empirical

Evidence from an International Panel Dataset. American Economic

Review, 101(4):1514–34, June 2011.

Victor Zarnowitz and Louis A Lambros. Consensus and Uncertainty in

Economic Prediction. Journal of Political Economy, 95(3):591–621,

June 1987.

186


	List of Figures
	List of Tables
	Introduction
	Understanding The Sources Of Macroeconomic Uncertainty
	Introduction
	A New Synthetic Measure of Uncertainty
	Ex-ante V. Ex-post Uncertainty
	The Data
	Classifying Uncertainty over Time
	The Impact of Knightian Uncertainty and Risk
	Knightian Uncertainty and Risk In An Economic Model
	Inflation Uncertainty
	Conclusion
	Appendix

	Information and Uncertainty
	Introduction
	Information-Theoretic Measures of Uncertainty
	Estimating Entropy-Based Uncertainty Measures
	Conclusion
	Appendix

	Forecasting, Uncertainty and Business Cycles
	Introduction
	Building a Measure of Model Uncertainty
	Estimating Forecasting Model Uncertainty
	Bayesian Model Averaging in a Reduced Form Macroeconomic Model
	Conclusion
	Appendix

	Fiscal Multipliers in Uncertain Times
	Introduction
	Uncertainty and Fiscal Policy
	Methodology
	Do Uncertain Times Conjure Higher Multipliers?
	Takeaways for Fiscal Multipliers
	Conclusion
	Appendix

	Concluding Remarks
	Bibliography

