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Abstract

In terms of the Bias/Variance decomposition, very 
exible (i.e., complex) Su-
pervised Machine Learning systems may lead to unbiased estimators but with high
variance. A rigid model, in contrast, may lead to small variance but high bias.
There is a trade-o� between the bias and variance contributions to the error, where
the optimal performance is achieved.

In this work we present three schemes related to the control of the Bias/Vari-
ance decomposition for Feed-forward Neural Networks (FNNs) with the (sometimes
modi�ed) quadratic loss function:

1. An algorithm for sequential approximation with FNNs, named Sequential Ap-
proximation with Optimal Coe�cients and Interacting Frequencies (SAOCIF).
Most of the sequential approximations proposed in the literature select the new
frequencies (the non-linear weights) guided by the approximation of the residue
of the partial approximation. We propose a sequential algorithm where the
new frequency is selected taking into account its interactions with the previ-
ously selected ones. The interactions are discovered by means of their optimal
coe�cients (the linear weights). A number of heuristics can be used to select
the new frequencies. The aim is that the same level of approximation may be
achieved with less hidden units than if we only try to match the residue as
best as possible. In terms of the Bias/Variance decomposition, it will be pos-
sible to obtain simpler models with the same bias. The idea behind SAOCIF
can be extended to approximation in Hilbert spaces, maintaining orthogonal-
like properties. In this case, the importance of the interacting frequencies lies
in the expectation of increasing the rate of approximation. Experimental re-
sults show that the idea of interacting frequencies allows to construct better
approximations than matching the residue.

2. A study and comparison of di�erent criteria to perform Feature Selection (FS)
with Multi-Layer Perceptrons (MLPs) and the Sequential Backward Selection
(SBS) procedure within the wrapper approach. FS procedures control the
Bias/Variance decomposition by means of the input dimension, establishing
a clear connection with the curse of dimensionality. Several critical decision
points are studied and compared. First, the stopping criterion. Second, the
data set where the value of the loss function is measured. Finally, we also
compare two ways of computing the saliency (i.e., the relative importance)
of a feature: either �rst train a network and then remove temporarily every
feature or train a di�erent network with every feature temporarily removed.
The experiments are performed for linear and non-linear models. Experimental
results suggest that the increase in the computational cost associated with
retraining a di�erent network with every feature temporarily removed previous



to computing the saliency can be rewarded with a signi�cant performance
improvement, specially if non-linear models are used. Although this idea could
be thought as very intuitive, it has been hardly used in practice. Regarding
the data set where the value of the loss function is measured, it seems clear
that the SBS procedure for MLPs takes pro�t from measuring the loss function
in a validation set. A somewhat non-intuitive conclusion is drawn looking at
the stopping criterion, where it can be seen that forcing overtraining may be
as useful as early stopping.

3. A modi�cation of the quadratic loss function for classi�cation problems, in-
spired in Support Vector Machines (SVMs) and the AdaBoost algorithm,
named Weighted Quadratic Loss (WQL ) function. The modi�cation con-
sists in weighting the contribution of every example to the total error. In the
linearly separable case, the solution of the hard margin SVM also minimizes
the proposed loss function. The hardness of the resulting solution can be con-
trolled, as in SVMs, so that this scheme may also be used for the non-linearly
separable case. The error weighting proposed in WQL forces the training pro-
cedure to pay more attention to the points with a smaller margin. Therefore,
variance tries to be controlled by not attempting to over�t the points that are
already well classi�ed. The model shares several properties with the SVMs
framework, with some additional advantages. On the one hand, the �nal so-
lution is neither restricted to have an architecture with so many hidden units
as points (or support vectors) in the data set nor to use kernel functions. The
frequencies are not restricted to be a subset of the data set. On the other
hand, it allows to deal with multiclass and multilabel problems in a natural
way. Experimental results are shown con�rming these claims.

A wide experimental work has been done with the proposed schemes, including
arti�cial data sets, well-known benchmark data sets and two real-world problems
from the Natural Language Processing domain. In addition to widely used acti-
vation functions, such as the hyperbolic tangent or the Gaussian function, other
activation functions have been tested. In particular, sinusoidal MLPs showed a very
good behavior. The experimental results can be considered as very satisfactory.
The schemes presented in this work have been found to be very competitive when
compared to other existing schemes described in the literature. In addition, they
can be combined among them, since they deal with complementary aspects of the
whole learning process.
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Chapter 1

Introduction

The main objective of this thesis is to study three di�erent components of the learn-
ing process with Feed-forward Neural Networks (FNNs): the network architecture,
the input dimension and the loss function. These components are related to the
Bias/Variance trade-o�.

1.1 Motivation

The main objective of a Supervised Machine Learning (SML) system is that of ob-
taining good generalization performance from a �nite set of examples. The goal is
not to learn an exact representation of the data set, but rather to build a model of
the underlying process which generates the data. In this case, it will be possible to
make good predictions on points that do not belong to the data set. Unfortunately,
this is a very di�cult task. In terms of the Bias/Variance decomposition of the error
[Geman et al. 1992; Domingos 2000a], very 
exible (i.e., complex) systems may lead
to unbiased estimators but probably with high variance. A rigid model, in contrast,
may lead to small variance but high bias. The bias re
ects the adjustment of the
output function to the target values whereas the variance re
ects the sensitivity
to the training data set. Either high bias or variance can contribute to poor per-
formance. There is a trade-o� between the bias and variance contributions to the
error, where the optimal performance is achieved. This is related to the Occam's
razor principle, which states that simple models (whenever capable of representing
the data) should be preferred to complex ones.

Several schemes can be found in the literature related to the Bias/Variance trade-
o�. Some of them try to reduce the variance term while keeping a low bias. Other
ones try to reduce the bias termwith a limited 
exibility. The rest try to control both
terms at the same time. Although many of them were developed in an independent
way, they can be seen in terms of the Bias/Variance decomposition. Some of them

13



14 Chapter 1. Introduction

are general and others are speci�c for FNNs (the following list does not aim to be
an exhaustive one):

1. Feature Selection [Kittler 1978; Liu and Motoda 1998].

2. Models related to Regularization Theory [Tikhonov and Arsenin 1977], such
as Regularization Networks [Poggio and Girosi 1990; Girosi et al. 1995].

3. Statistical Learning Theory [Vapnik and Chervonenkis 1971; Vapnik 1982,
1995, 1998a] and Support Vector Machines [Boser et al. 1992; Cortes and
Vapnik 1995].

4. Sparse representations [Daubechies 1992; Chen et al. 1998; Graepel et al. 2000].

5. Bayesian Neural Networks [MacKay 1992].

6. Sequential approximations, also named constructive, growing or incremental
[Kwok and Yeung 1997a].

7. Pruning algorithms for FNNs [Reed 1993].

8. Speci�c heuristics for FNNs, such as

(a) Weight decay [Hinton 1987; Krogh and Hertz 1992].

(b) Early stopping [Morgan and Bourlard 1990; Prechelt 1998].

(c) Training with noise [Sietsma and Dow 1991; Grandvalet et al. 1997].

(d) Soft weight sharing [Nowlan and Hinton 1992].

9. Ensembles of estimators and voting methods, such as

(a) Committees [Hansen and Salamon 1990; Perrone and Cooper 1993].

(b) Mixtures of experts [Jacobs et al. 1991; Jordan and Jacobs 1994].

(c) Boosting [Schapire 1990; Schapire and Singer 1999].

(d) Bagging [Breiman 1996a].

Some of these schemes have been proved to be related among them (see, for
example, [Bishop 1995b; Breiman 1998; Poggio and Girosi 1998; Girosi 1998; Smola
et al. 1998; Evgeniou et al. 2000; Xu et al. 2001; R�atsch et al. 2002; Andr�as 2002]).

This work is placed in three of these frameworks: Sequential Approximations
with Feed-forward Neural Networks, Feature Selection with Multi-Layer Perceptrons
and Margin Maximization, which are brie
y described in the next subsections.
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1.1.1 Sequential Approximations with FNNs

Sequential approximations (also named constructive, growing or incremental) are
iteratively constructed by adding terms to the previously obtained partial approxi-
mations. We will focus on sequential approximations with FNNs.

In terms of the Bias/Variance decomposition, as far as the number of hidden units
(i.e., the number of terms of the approximation) of an FNN grows, bias decreases
and variance increases. This happens because the 
exibility of the model grows
with the number of hidden units [Geman et al. 1992; Barron 1994]. Therefore,
choosing an adequate architecture is a very important point in order to obtain good
generalization performance.

Sequential approximations with FNNs allow to dynamically construct the net-
work, starting from scratch, without setting a priori the architecture [Kwok and
Yeung 1997a]. These methods start with a small network (usually with no hidden
units), and sequentially add hidden units until a satisfactory solution is found. They
can help to �nd a proper trade-o� between bias and variance by controlling, among
other things, the number of hidden units.

1.1.2 Feature Selection with Multi-Layer Perceptrons

The problem of Feature Selection (FS) can be de�ned as follows [Liu and Motoda
1998]: given a set of I candidate features, select a subset that performs the best
under some evaluation criterion. We will focus on FS from an SML point of view.
That is, our major concern is to improve the predictive performance of the system. In
addition to reducing the input dimension, the storage requirements and increasing
the computational speed, FS may lead to improve the performance of an SML
system, as it has been known for a long time [Kittler 1978, 1986; Siedlecki and
Sklansky 1988].

From an SML point of view, FS procedures control the Bias/Variance decom-
position by means of the input dimension, establishing a clear connection with the
curse of dimensionality [Liu and Motoda 1998]. When too many variables are con-
sidered, the system can (surely) �t very well the data set but it may also be too
complex, increasing the variance term (whenever the complexity of the system is not
controlled by other ways or there is not enough data to �lter irrelevant variables, for
example). As far as the number of variables decreases, the complexity is reduced,
together with the capacity of �tting the data set.

We will deal with speci�c FS methods for Multi-Layer Perceptrons (MLPs). In
general, there is no reason to think that, during the learning process of an MLP,
irrelevant variables will not be used by the system in order to �t the training set.
For new data, the performance of a system that takes into account this kind of
variables can be far to be optimal. This problem can be worsened if some important
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features are missing or the number of available examples for the problem is small.
Unfortunately, it is not possible to know a priori whether we are in these situations
or not. This problem is shared by all SML approaches (both linear and non-linear),
including MLPs, so that FS procedures become necessary.

FS procedures for MLPs found in the literature usually search the space of fea-
ture subsets with the Sequential Backward Selection (SBS) algorithm. It starts by
training a network with the whole set of features. Then, the saliencies (i.e., the rela-
tive importances) of every feature are computed. The input with the lowest saliency
is removed. The weights of the network are adjusted, and the loop starts again until
a certain criterion is satis�ed. SBS may help to detect irrelevant variables in the
�rst steps, since (in theory) generalization should improve when the system does
not use this kind of variables. We will also use the SBS algorithm.

1.1.3 Margin Maximization, Support Vector Machines and
AdaBoost

1.1.3.1 Support Vector Machines

The idea behind Support Vector Machines (SVMs) can be described as follows [Vap-
nik 1995; Cristianini and Shawe-Taylor 2000]: the input vectors are mapped into a
(usually high-dimensional) inner product space through some non-linear mapping
�, chosen a priori. In this space (the feature space), an optimal hyperplane is con-
structed. By using a kernel function K(u; v) the mapping can be implicit, since the
inner product de�ning the hyperplane can be evaluated as h�(u); �(v)i = K(u; v).
In the linearly separable case, an optimal hyperplane means a separating hyper-
plane with maximal distance with respect to the data set (hard margin). That is
equivalent to a hyperplane with maximum normalized (or geometrical) margin with
respect to the data set. When the data are not linearly separable (either in the
input space or in the feature space), some tolerance to noise is introduced in the
model (soft margin case). The most usual kernel functions K(u; v) are polynomial,
Gaussian-like or some particular sigmoids.

Using Lagrangian and Kuhn-Tucker theory, the maximal margin hyperplane for
SVMs is obtained by solving a constrained optimization problem. In the soft margin
case, the Bias/Variance trade-o� is controlled by a parameter C which expresses the
importance given to the violation of the margin constraints and limits the complexity
of the model. When C = 0 the variance is also 0, but the bias may be very high.
When C = 1, the hard margin hyperplane (if exists) is a solution with low bias
(it allows to classify correctly every point in the data set), but probably with high
variance. In some sense, the parameter C acts as a regularization parameter.

In their original de�nition, SVMs are designed for 2-class problems. In addition,
as a consequence of the constrained optimization problem posed, the output function
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of an SVM is restricted to be a linear combination of kernel functions dependent on
a subset of the data set (the support vectors).

1.1.3.2 AdaBoost

The AdaBoost algorithm is a particular boosting algorithm introduced in [Freund
and Schapire 1996, 1997] and later improved in [Schapire and Singer 1999]. In
AdaBoost, the weak hypotheses are learned sequentially, one at a time. Conceptu-
ally, at each iteration the weak hypothesis is biased to classify the examples which
were most di�cult to classify by the preceding weak hypotheses. The functional
margin of every example is considered in order to construct every weak hypothesis,
which are linearly combined into a single output rule named the combined hypothesis.

The learning bias of AdaBoost is proven to be very aggressive on maximizing the
functional margin of the training examples, since it concentrates on the examples
with the smallest margins [Schapire et al. 1998]. This makes a clear connection to
the SVMs learning paradigm.

1.2 Contributions

In this thesis we present three schemes related to the control of the Bias/Variance
decomposition for FNNs with the (sometimes modi�ed) quadratic loss function:

1. An algorithm for sequential approximation with FNNs.

2. A study and comparison of di�erent criteria to perform Feature Selection with
MLPs and the SBS procedure within the wrapper approach.

3. A modi�cation of the quadratic loss function for classi�cation problems, in-
spired in Support Vector Machines and the AdaBoost algorithm.

A wide experimental work has been done with the proposed schemes, showing
a very good performance and allowing to extract interesting conclusions and future
lines of research.

In the next subsections we brie
y describe these contributions.

1.2.1 SAOCIF : A Sequential Algorithm for FNNs

The problem of �nding good weights in sequential approximations with FNNs is
a very hard non-linear problem. Most of the sequential approximations proposed
in the literature select the new frequency (the non-linear weights) guided by the
approximation of the residue of the partial approximation. Although this strategy
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leads to approximations convergent towards the target function, it may be far from
being the best one.

An algorithm for sequential approximations with FNNs is described, named
Sequential Approximation with Optimal Coe�cients and Interacting Frequencies
(SAOCIF ). The new frequency is selected taking into account the interactions of
this frequency with the previously selected ones. The interactions are discovered
by means of their optimal coe�cients (the linear weights). The aim is that it may
be able to obtain better approximations, with the same number of hidden units,
than just matching the residue as best as possible. Likewise, the same level of ap-
proximation may be achieved with less hidden units. In terms of the Bias/Variance
decomposition, it will be possible to obtain simpler models with the same bias. In
the proposed algorithm, a number of heuristics can be used to select the new fre-
quencies. The idea behind SAOCIF can be extended to approximation in Hilbert
spaces, maintaining orthogonal-like properties. In this case, the importance of the
interacting frequencies lies in the expectation of increasing the rate of approxima-
tion. Experimental results show that the idea of interacting frequencies allows to
construct better approximations than that of matching the residue.

Some author's publications related to these ideas are [Romero and Alqu�ezar
2002a, 2004].

1.2.2 Performing Feature Selection with MLPs

Although from an SML point of view trying to minimize the value of the loss function
is surely the optimal saliency for FS (and that will be the saliency used in this work),
there is no commonly accepted criterion about neither when to stop the training
phase nor which is the best data set to measure the saliency. In addition, the saliency
of a variable is almost always computed when the network has been trained with
that feature, in contrast to the alternative of computing the saliency in a network
trained without it. In order to compute the value of the loss function, as in our
case, it may be very di�erent �rst train the network and then remove temporarily a
feature than �rst remove temporarily the feature and then train the network. There
exists a lack of comparative results among these issues in the literature.

A study and comparison of di�erent criteria to perform FS with MLPs and the
SBS procedure is described. Several critical points are studied and compared:

1. The stopping criterion of the network training. We compared the point where
the minimum loss function in a validation set is achieved with the (probably
overtrained) point where a minimum of the training set is obtained.

2. The data set where the value of the loss function is measured. In our experi-
ments, the loss function was computed either in the training set or a validation
set.
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3. The network retraining with respect to the computation of the saliency: �rst
train the network and then remove temporarily the feature in order to compute
the saliency or �rst remove temporarily the feature and then train the network
previous to computing the saliency.

The experiments were performed for linear and non-linear models.

This scheme has generated several author's publications [Sopena et al. 1999b;
Mijares et al. 2001; Selva et al. 2002, 2003; Armadans et al. 2003; Romero et al.
2003; Sopena and Romero 2004; Romero and Sopena 2004].

1.2.3 Maximizing the Margin with FNNs

A modi�cation of the quadratic loss function for classi�cation problems is proposed.
We will refer to this scheme as Weighted Quadratic Loss (WQL) function. The mod-
i�cation consists in weighting the contribution of every example to the total error.
This weighting depends on the margin and is inspired in the AdaBoost algorithm.
In the linearly separable case, the solution of the hard margin SVM also minimizes
the proposed loss function. The hardness of the resulting solution can be controlled,
as in SVMs, so that this scheme can also be used for the non-linearly separable
case. The error weighting proposed in WQL forces the training procedure to pay
more attention to the points with smaller margin: during the training procedure,
the contribution of every point decreases with its margin. Therefore, variance tries
to be controlled by not attempting to over�t the points that are already well clas-
si�ed. The model shares several properties with the SVMs framework, with some
additional advantages. On the one hand, the �nal solution is neither restricted to
have an architecture with so many hidden units as points (or support vectors) in
the data set nor to use kernel functions. The frequencies are not restricted to be
a subset of the data set. On the other hand, it allows to deal with multiclass and
multilabel problems in a natural way. Experimental results are shown con�rming
these claims.

Some author's publications related to this approach can be found in [Romero
and Alqu�ezar 2002b; Romero et al. 2004a,b].

1.2.4 Experiments

The previously described schemes have been empirically tested in a variety of situ-
ations:

1. In arti�cial data sets.

2. In well-known benchmark data sets.
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3. In two real-world problems from the Natural Language Processing domain.

The experimental results can be considered as very satisfactory. The schemes
presented in this thesis have been found to be very competitive when compared to
other existing methods described in the literature.

In addition to widely used activation functions, such as the hyperbolic tangent
or the Gaussian function, we worked with other activation functions through the
experiments. In particular, the behavior of sinusoidal MLPs (i.e., MLPs where the
activation function of the hidden units was either the sine or the cosine) was very
satisfactory.

1.2.4.1 Experiments with SAOCIF

Experimental results for SAOCIF show that the idea of interacting frequencies al-
lows to obtain better results than matching the residue for both approximation and
generalization purposes. Surprisingly, selecting the frequencies from the points in
the data set allows to obtain similar (and sometimes superior) results than other
more sophisticated strategies, with a much smaller computational cost. In addition,
selecting the frequencies from the points in the data set seems well suited not only
for Radial Basis Function Networks, as commonly used, but also for Multi-Layer
Perceptrons. In this case, the resulting model shares with SVMs the property that
their frequencies are a subset of the data set.

1.2.4.2 Experiments with the SBS Procedure for MLPs

Experimental FS results using the SBS procedure for MLPs suggest that the high
computational cost associated with retraining the network with every feature tem-
porarily removed previous to computing the saliency can be rewarded with a signif-
icant performance improvement, specially if non-linear models are used. Although
this idea could be thought as very intuitive, it has been hardly used in practice.
Regarding the data set where the value of the loss function is measured, it seems
clear that the SBS procedure for MLPs takes pro�t from measuring the loss function
in the validation set. Again, this is a quite intuitive idea, although many models
in the literature do not take this approach. A somewhat non-intuitive conclusion is
drawn looking at the stopping criterion, where it is suggested that forcing overtrain-
ing may be as useful as using early stopping within the SBS procedure for MLPs.
There exist an important improvement in the overall results with respect to learning
with the whole set of variables and compared with other existing FS wrappers in the
literature. Although the model can be further improved, the good results obtained
are mainly due, in our opinion, to a proper detection of irrelevant variables.



1.3. Thesis Overview 21

1.2.4.3 Experiments with WQL

Experiments on arti�cial data sets show that models equivalent to hard margin
SVMs can be obtained by training FNNs with WQL in linearly separable cases,
both for two-class and multiclass problems. In addition, models similar to non-
linear hard SVMs can be obtained without an \SVM architecture" (i.e., with so
many hidden units as points in the data set or support vectors) and without kernel
functions, whenever the WQL is minimized. In the real-world problems tested, a
consistent correlation was observed between FNNmodels obtained minimizingWQL
and SVM models. Both linear models and non-linear ones (with and without kernel
functions) had this behavior, in two-class and multiclass problems.

1.2.5 Combination of the Proposed Ideas

The schemes presented in this work can be combined among them, since they are
related to complementary aspects of the entire learning process:

1. The SBS procedure may be performed with SAOCIF.

2. SAOCIF can be modi�ed so as to deal with the WQL function.

3. The SBS procedure can also be performed minimizing the WQL function.

1.3 Thesis Overview

Chapter 2 includes some background material and a description of the previous work
found in the literature related to the contributions of this thesis. The algorithm for
sequential approximation with FNNs is described in chapter 3, together with its
experimental evaluation. In chapter 4, the experimental study of di�erent criteria
to perform FS with MLPs for classi�cation problems is carried out. Chapter 5 is
devoted to motivate, describe and test the proposed modi�cation of the quadratic
loss function. The document ends with some concluding remarks and a prospect for
future work. The appendices contain the description of the data sets used in the
experiments and several author's publications related to the contents of this thesis.
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Chapter 2

Background Material

We will focus our work on Feed-forward Neural Networks (FNNs) and their most
usual models, namely Multi-Layer Perceptrons (MLPs) and Radial Basis Function
Networks (RBFNs). In this chapter, an overview of some concepts is given in order
to make the whole document more self-contained. First, general concepts are vis-
ited, namely SupervisedMachine Learning, the quadratic loss function, Feed-forward
Neural Networks and the Bias/Variance decomposition. Most of this material will
probably be already known to the reader. In the last three sections of this chapter
we brie
y describe the three frameworks where this thesis is placed: Sequential Ap-
proximations with FNNs, Feature Selection with MLPs and Margin Maximization,
with special attention to their relationships with the Bias/Variance decomposition.

2.1 Notation

The following acronyms are used in this work, listed in alphabetical order within
three categories:

� General acronyms:

{ BGA: Breeder Genetic Algorithm.

{ BP: Back-Propagation.

{ CV: Cross-Validation.

{ FNNs: Feed-forward Neural Networks.

{ FS: Feature Selection.

{ MLPs: Multi-Layer Perceptrons.

{ RBF: Radial Basis Function.

{ RBFNs: Radial Basis Function Networks.

23
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{ SBS: Sequential Backward Selection.

{ SFS: Sequential Forward Selection.

{ SML: Supervised Machine Learning.

{ SVMs: Support Vector Machines.

{ TC: Text Categorization.

{ VC-dimension: Vapnik-Chervonenkis dimension.

{ WSD: Word Sense Disambiguation.

� Acronyms for other authors' work:

{ CC: Cascade-Correlation, described in [Fahlman and Lebiere 1990].

{ DNC: Dynamic Node Creation, described in [Ash 1989].

{ GMDH: Group Method of Data Handling, described in [Ivakhnenko 1971].

{ HEA data sets: Data sets used in [Hwang et al. 1994].

{ ILQP: Incremental Linear Quasi-Parallel, described in [K _urkov�a and Be-
liczy�nski 1995a,b].

{ KMP: Kernel Matching Pursuit, described in [Vincent and Bengio 2002].

{ MN: Meiosis Networks, described in [Hanson 1990].

{ MP: Matching Pursuit, described in [Mallat and Zhang 1993].

{ OLSL: Orthogonal Least Squares Learning, described in [Chen et al.
1991a].

{ OMP: Orthogonal Matching Pursuit, described in [Pati et al. 1993].

{ PPLN: Projection Pursuit Learning Network, described in [Hwang et al.
1994].

{ PPR: Projection Pursuit Regression, described in [Friedman and Stuetzle
1981].

{ RAN: Resource-Allocating Network, described in [Platt 1991].

{ ZM98: The sequential learning algorithm for MLPs described in [Zhang
and Morris 1998].

� Speci�c acronyms in this work:

{ BPW : Back-Propagation minimizing the WQL function.

{ MFT : Maximum Fourier Transform.

{ OCMFT : Optimal Coe�cients after Maximum Fourier Transform.
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{ SAOCIF : Sequential Approximation with Optimal Coe�cients and In-
teracting Frequencies.

{ WQL : Weighted Quadratic Loss.

2.2 Supervised Machine Learning

The main problem in Supervised Machine Learning (SML) is that of �nding a func-
tion which predicts the target in the best possible way from a �nite set of examples.
More generally, a model of the conditional probability distribution of the target with
respect to the input is desired [Bishop 1995a; Vapnik 1998a; Anthony and Bartlett
1999]. In this context, several basic issues need to be de�ned:

1. The problem model, which can be usually described with two components:

(a) A generator of input vectors x2X, drawn independently from a �xed but
unknown distribution P (x).

(b) A supervisor that returns a target vector y2Y for every input vector x,
according to a conditional distribution P (yjx), also �xed but unknown.

Several important problems can be enclosed within this model:

(a) Regression, where y represents a (maybe noisy) measurement of some
real-valued quantity.

(b) Classi�cation, where y belongs to a �nite set of classes. The classi�cation
problem can also be considered as a particular case of the regression
problem.

In this work we will concentrate on these problems. We will suppose that
Y � R. The extension to Y � RO is straightforward. We will also assume
that X � RI.

The distributions P (x) and P (yjx) in the problemmodel are usually unknown.
Instead, a data set of examples

D = f(x1; y1); � � � ; (xL; yL)g � X � Y (2.1)

is given. The observations1 are assumed to be independent and identically
distributed, drawn according to P (x; y) = P (yjx) � P (x).

1Without distinction, we will refer to the elements of D as examples, observations, points or
vectors.
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2. The loss (or error) function L : Y � Y ! R+ is the function that measures
the discrepancy between two values in Y . Loss functions use to be distances.
Usual choices for L are the quadratic loss function (L2(u; v) = (u � v)2, see
section 2.3) for regression problems, and the 0=1 loss function (L0=1(u; v) = 0
if u = v, and 1 otherwise) only for classi�cation problems.

3. The hypothesis class H is a subset of functions from X � � to Y where the
solution will be selected from. � is the space of parameters of the hypothesis
class H. Therefore, once �2� is �xed, we have a function from X to Y .

The loss function and the hypothesis class can be chosen by the user. In SML,
the goodness of a function f : X ! Y is measured by the expected value of the loss
function L, the expected risk functional:

R(L; f) = EX�Y [L(y; f(x))] =
Z
X�Y

L(y; f(x)) P (x; y) dx dy: (2.2)

The objective of an SML system is to �nd a function f : X ! Y so as to minimize
the expected risk functional (2.2). The learning algorithm will attempt to model the
behavior of the target by constructing an output function fo 2 H. Therefore, the
objective is that of �nding ��2� so that the discrepancyR(L; fo(�; ��)) between the
target and the output function is minimum. The set of parameters ��2� is usually
adjusted during the learning process. In practice, the choice of the output function
(or equivalently, ��) is based on the data set of examples D in (2.1) and maybe
some prior information on the problem2. The generalization ability derived from
the minimization of (2.2) implies that it will be possible to predict (with minimum
expected error according to L) the function behavior on points that do not belong
to the data set D.

As an approximation to the expected risk, the empirical risk functional is de�ned
as the risk evaluated in the data set D:

Re(L; f) = 1

L

LX
i=1

L(yi; f(xi)): (2.3)

2.3 The Quadratic Loss Function

We will mainly work with the quadratic loss function:

L2(u; v) = (u� v)2: (2.4)

2From now on, we will omit the parameter � in fo(x; �)
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The functional R(L2; f) is the squared norm of (y � f(x)) in the Hilbert space
L2 of squared integrable functions, where the integral is de�ned with regard to the
probability measure of the model3. We will suppose that the functions involved in
our work belong to L2 when necessary.

The quadratic error function has some desirable properties for both regression
and classi�cation problems, as explained next.

As it is well known, the regression function EY [yjx] =
R
Y
y P (yjx) dy minimizes

the expected risk

R(L2; f) =

Z
X�Y

(y � f(x))2 P (x; y) dx dy (2.5)

for the quadratic loss function (2.4). This is so because (see, for example, [Richard
and Lippmann 1991; Geman et al. 1992; Niyogi and Girosi 1999])

R(L2; f) = EX�Y
�
(y � EY [yjx])2

�
+ EX�Y

�
(f(x)� EY [yjx])2

�
= EX�Y

�L2(y;EY [yjx])
�
+ EX

�
(f(x)� EY [yjx])2

�
: (2.6)

for any f : X ! Y . This result is similar to the Pythagoras' Theorem, and it is
a consequence of the orthogonality of (y � EY [yjx]) and (f(x) � EY [yjx]) for any
f : X ! Y .

The �rst term in the right hand of (2.6) does not depend on f . Therefore,

1. Regardless of the hypothesis class, the expected risk may not be zero, since it
will be at least EX�Y [L2(y;EY [yjx])]. When the target is a function of the
input values y = g(x), this term vanishes, since EY [yjx] = g(x).

2. The minimum expected risk is achieved when f(x) = EY [yjx], as previously
said. Therefore, we can consider that EY [yjx] is the target function.

For classi�cation problems, when a 1-of-C target coding scheme is used (the
correct class unity, all others zero), EY [yjx] is the Bayesian posterior probabilities
that the input belong to the class (see, for example, [Richard and Lippmann 1991]).

3An inner product space (or pre-Hilbert space) is a vector space with an inner product h�; �i :
H �H ! C such that 8�1; �22C 8x1; x2; x; y2H

1. hx; yi = hy; xi.
2. h�1 � x1 + �2 � x2; yi = �1 hx1; yi + �2 hx2; yi.
3. hx; xi > 0 (in particular hx; xi2R).
4. hx; xi = 0 if and only if x = 0.

A Hilbert space is a complete inner product space [Yosida 1965]. Sometimes, a Hilbert space is
de�ned as an inner product space, and complete Hilbert spaces are used [Achieser 1956].
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Linear transformations of the target values (from f0; 1g to f�1;+1g, for example)
maintain, in essence, this property. Other nice properties of the quadratic error
function for classi�cation problems can be found in [Kearns and Schapire 1990,
1994].

For the quadratic loss function, the empirical risk takes the form of a sum-of-
squares:

Re(L2; f) =
1

L

LX
i=1

L2(yi; f(xi)) =
1

L

LX
i=1

(yi � f(xi))
2: (2.7)

For classi�cation problems, the minimization of the sum-of-squares function leads,
asymptotically, to the approximation of the Bayesian posterior probabilities [Ruck
et al. 1990b].

2.4 Feed-forward Neural Networks

The hypothesis class we will work with in this thesis is the class of FNNs with one
hidden layer of units. An extensive description of FNNs can be found in [Haykin
1994; Bishop 1995a], for example.

The well-known architecture (number of hidden units, activation functions and
connectivity) of an FNN is structured by layers of units, with connections between
units from di�erent layers in forward direction. A fully connected FNN with one
output unit and one hidden layer of units computes the function foFNN : RI ! R:

foFNN(x) = '0

 
b0 +

NX
k=1

�k 'k (!k; x; bk)

!
!k2RI �k; b0; bk2R; (2.8)

where N is the number of units in the hidden layer. Whereas output activation
functions '0 : R! R use to be sigmoidal or linear, di�erent models of FNNs can be
obtained by changing the activation functions of the hidden units 'k. FNNs with
several output units can also be de�ned, in a natural way. For convenience, we will
divide the weights into frequencies f!kgNk=1, coe�cients f�kgNk=1 and biases fbkgNk=0.

Note that the appearance of the output function given by (2.8) is determined by
the architecture of the FNN.

The objective of the training process in an FNN is to choose adequate parameters
to minimize a predetermined cost function. The previously de�ned sum-of-squares
loss function (2.7) is the most usual:

E(D) =
1

L

LX
i=1

(yi � foFNN (xi))
2; (2.9)
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where we have omitted the factor L for convenience. For C-class problems, archi-
tectures with C output units are used [Bishop 1995a], and the objective is recast to
minimize

EC(D) =
1

L

LX
i=1

CX
c=1

(yci � fo;cFNN(xi))
2: (2.10)

Although the global minimum of (2.9) or (2.10) exists, it cannot be found with
a low computational cost in the general case [Scarselli and Tsoi 1998]. Most of the
times, a local minimum is found.

According to their de�nition, FNNs can deal with regression and classi�cation
problems in a natural way. The most common models of FNNs are Multi-Layer
Perceptrons (MLPs) and Radial Basis Function Networks (RBFNs).

2.4.1 Multi-Layer Perceptrons

An MLP with one hidden layer of units and a linear output unit computes a function
foMLP : RI ! R as follows:

foMLP (x) = b0 +

NX
k=1

�k ' (!k � x+ bk) !k 2RI �k; b0; bk2R; (2.11)

where !k � x represents the inner product in RI, !k is the weight vector associated
with the connections between the input layer units and the unit k of the hidden layer.
The biases bk are external parameters for each unit, and they can be considered as
weights with a simple transformation. The activation function ' : R! R is usually
the same for all the hidden units. The most usual activation functions are sigmoidal-
like (continuous, non-constant, increasing and bounded), such as the logistic function
'(x) = 1

1+e�x or the hyperbolic tangent function '(x) =
1�e�x

1+e�x , although many other
functions may be used [Leshno et al. 1993]. MLPs with several layers of hidden units
can also be de�ned in the same way.

The architecture is usually �xed a priori, whereas the weights are learned during
the training process. The most celebrated training algorithms with �xed architecture
are gradient descent with Back-Propagation (BP) [Werbos 1974; Rumelhart et al.
1986] and its many variations. There exist, however, other schemes that sequentially
construct the architecture (see section 2.6).
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2.4.2 Radial Basis Function Networks

An RBFN with a linear output unit computes a function foRBFN : RI ! R as follows:

foRBFN(x) = b0 +

NX
k=1

�k '

�
x� !k
bk

�
!k2RI �k; b0; bk2R; (2.12)

where ' : RI ! R is the Radial Basis Function (RBF), which is usually the same
for all the hidden units. The most frequent RBFs are radially symmetric, such as
'(x) = e�kxk

2

. In this case, !k is the center of the function, whereas bk is the RBF-
width. As for MLPs, many other functions may be used [Liao et al. 2003], but the
architecture only contains one layer of hidden units, and the output units use to be
linear.

The learning process of an RBFN is usually divided in two consecutive steps:

1. The selection of the frequencies (the centers), usually in an unsupervised way.
The k-means algorithm [McQueen 1967] or the expectation maximization al-
gorithm [Duda and Hart 1973] are commonly used to this end.

2. The computation of the coe�cients, which are usually found through gradient
descent on the quadratic loss function.

The whole set of weights of the RBFN can also be optimized with a global gradi-
ent descent procedure. As for MLPs, there exist other techniques that sequentially
construct the architecture (see section 2.6).

2.4.3 Universal Approximation of FNNs

The universal approximation capability (see section 2.5.1) is a desirable property
for a hypothesis class, since it allows to have the possibility of choosing the output
function that minimizes the expected risk.

FNNs have been shown to be universal approximators for several \well-behaved"
classes of functions (including, for example, continuous, integrable or square inte-
grable functions) with many families of activation functions and several metrics
[Leshno et al. 1993; Liao et al. 2003]. In particular, MLPs and RBFNs are universal
approximators with the quadratic loss function, provided that no constraints are
imposed on the number of hidden units and the size of the weights.

In practice, however, when a data set is used to compute the output function,
the universal approximation capability may not be very useful, even if the global
minimum of the empirical risk can be found. Other elements, such as the number
of available examples, the input dimension or the particular hypothesis class used4,

4In practice, the number of hidden units and the weights must be constrained. In addition, the
same data set may be approximated with many di�erent functions.
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are involved in the whole process. Section 2.5 is devoted to the discuss some of these
issues.

2.5 Expected Risk and the Bias/Variance Decom-

position

2.5.1 Approximation Error and Estimation Error

Let us return to the main problem of SML. For any output function fo, there are
two components that contribute to the expected risk R(L; fo) (see, for example,
[Barron 1994; Niyogi and Girosi 1999]):

1. The approximation error is the distance, in terms of the expected risk, be-
tween the target and its closest (i.e., optimal) function f� in the hypothesis
class H. In other words, the approximation error indicates how well can the
target be approximated in H. A hypothesis class is said to have the universal
approximation property when it is broad enough to contain the target function
or an arbitrarily close approximation to it. When the target is not a function
of the input values, the distance is measured with respect to the function
which minimizes the expected risk (EY [yjx] for the quadratic loss function,
for example). The rate of the approximation error indicates how changes the
approximation error when H varies. For example, if the hypothesis class con-
tains �nite linear combinations of simple functions, the rate of approximation
may depend, among other things, on the number of terms of the approxima-
tion. An approximation scheme is said to have the convergence property if
it is able to produce a sequence of output functions convergent to the target
function. The approximation error does not depend on the data set, and it is
studied within the Approximation Theory.

2. Since the output function is constructed from a particular set of observations,
it may happen that the information contained in the data set does not allow
to �nd a good enough approximation of f�. The estimation error is related to
the di�culty of estimating the optimal parameters with �nite data, and it is
a typical problem of the Statistics framework. There are several de�nitions of
the estimation error. In [Barron 1994], for example, it is de�ned as the distance
(in terms of the expected risk) between the output function and the optimal
approximation f� in H. Within the Statistical Learning Theory (see [Vapnik
1998a], for example), the estimation error is usually de�ned as the di�erence
between the expected and the empirical risk of the output function. Most
of the times, the output function is such that minimizes the empirical risk,
so that in Statistical Learning Theory the estimation error is related to the
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suitability of minimizing the empirical risk in order to minimize the expected
risk. The sample complexity is related to the number of examples needed to
guarantee a near-optimal estimation error.

Roughly speaking, the expected risk is bounded by the sum of the approximation
and the estimation error. Therefore, minimizing both terms is a su�cient condition
to achieve the desired objective. Ideally, we would like to have a hypothesis class

exible enough to approximate well large classes of targets (i.e., to have small ap-
proximation error). However, for a �xed number of examples, the estimation error
is expected to increase with the 
exibility of the hypothesis class. There are many
results that support this statement, both for FNNs and other approaches. The next
section discusses some of these results.

2.5.2 Theoretical Bounds on the Expected Risk

For the quadratic loss function, in [Barron 1994] it is shown that the expectation
(over data sets of �xed size L) of the expected risk of a sigmoidal MLP (2.11) with

bounded weights
�
j!kj1 6 �N ; jbkj 6 �N ;

PN
k=1 j�kj 6 Cf

�
which minimizes the em-

pirical risk is, under several conditions, bounded by:

O

�
C2
f

N

�
+O

�
N � I � logL

L

�
; (2.13)

where N is the number of hidden units, �N satis�es certain technical conditions
related to sigmoidal functions, I is the input dimension, L is the number of obser-
vations, and Cf is the �rst absolute moment of the Fourier magnitude distribution
of the target function f (which must be �nite). The term Cf may grow with I,
although there are a number of interesting functions for which Cf exhibits only a
moderate growth O(I), as shown in [Barron 1993]. The important point is that
the �rst term in (2.13) is a bound on the approximation error, whereas the second
one is related to the estimation error. An increase in the number of hidden units
(number of terms in the approximation) leads to more 
exible models that allow to
approximate more target functions. However, this fact has the e�ect of making more
di�cult the estimation of f�. As it was expected, the number of examples and the
input dimension also in
uence the estimation error. For RBFNs, a slightly di�erent
bound can be found in [Niyogi and Girosi 1994, 1999], also for the quadratic loss
function but with a di�erent technical approach. In particular, it is proved that
with probability at least 1 � � the expected risk for the RBFNs (2.12) with Gaus-

sian activation function and bounded coe�cients
�PN

k=1 j�kj 6 C
�
minimizing the
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empirical risk is bounded by:

O

�
1

N

�
+O

 r
N � I � log(N � L)� log �

L

!
; (2.14)

Starting from a di�erent point of view, the Statistical Learning Theory provides
probabilistic bounds on the distance between the empirical and the expected risk.
In particular, it can be proved that with probability at least 1 � � the following
inequality holds for all functions fo 2 H such that 0 6 L(y; fo(x)) 6 B [Vapnik
1995, 1998a]:

R(L; fo) 6 Re(L; fo) + B � E
2

 
1 +

r
1 +

4Re(L; fo)
B � E

!
; (2.15)

where

E = 4
h
�
log 2L

h
+ 1
�� log �

4

L
;

L is the number of observations and h is the Vapnik-Chervonenkis dimension (VC-
dimension) of H. In the particular case of the 0=1 loss function, a simpler expression
can be proved:

R(L; fo) 6 Re(L; fo) +
p
E

2
: (2.16)

The VC-dimension of a set of indicator functions (functions which take only the
values zero and one) is the maximum number h of vectors which can be separated
in all 2h possible ways with functions of this set [Vapnik and Chervonenkis 1971;
Vapnik 1982]. Roughly speaking, the VC-dimension measures the capacity of the
hypothesis class to separate an arbitrary set of vectors (i.e., its 
exibility). The
�rst terms in the right hand of (2.15) and (2.16) are related to the approximation
error, whereas the second are related to the estimation error, similar to (2.13) and
(2.14). An increase in the VC-dimension leads to more 
exible models that allow to
�t better the data set, reducing the empirical risk. However, large VC-dimensions
must be compensated with a large number of examples in order to reduce the second
term in (2.15) or (2.16). Although the quadratic loss function is not bounded in the
general case, the previous result can be applied to FNNs minimizing the quadratic
loss function with bounded weights and a limited number of hidden units.

A di�erent result can be found in [Bartlett 1998], where some bounds of the
expected risk for classi�cation problems are shown. In particular, it is proved that
with probability at least 1� � every fo2H satis�es that its expected risk (with the
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0=1 loss function) is bounded by

jfi2D j yifo(xi) < 
gj
L

+

vuut2
�
d ln

�
34Le
d

�
log2(578L) + ln

�
4
�

��
L

; (2.17)

where 
 > 0 and d is the fat-shattering dimension [Kearns and Schapire 1990] of H
with margin 
. The fat-shattering dimension is a 
exibility measure that generalizes
the concept of VC-dimension to classes of real-valued functions: in addition to
shattering the vectors, a margin greater or equal than 
 is required. In the limit,
when 
 ! 0, it is referred to as combinatorial dimension [Haussler 1989] or pseudo-
dimension [Haussler 1992]. The fat-shattering dimension decreases as 
 increases
[Anthony and Bartlett 1999].

As a consequence, in [Bartlett 1998] it is proved that with probability at least
1� � every MLP fo in (2.11) with

1. Activation function ' : R! [�1;+1] non-decreasing,
2. Bounded coe�cients

PN
k=1 j�kj 6 A, with A > 1.

satis�es that its expected risk (with the 0=1 loss function) is bounded by

jfi2D j yifo(xi) < 
gj
L

+

vuutB
�
A2I

2

log
�
A



�
log2 L+ log

�
1
�

��
L

; (2.18)

where 0 < 
 6 1, L is the number of observations and B is a universal constant.
For the quadratic loss function, a similar bound can be obtained, sincePL

i=1 (yi � fo(xi))2

L
< " implies

jfi2D j yifo(xi) < 
gj
L

<
"

(1 � 
)2
;

whenever 0 < 
 < 1 and yi2f�1;+1g. Similar to (2.13), (2.14), (2.15) and (2.16),
the �rst terms in the right hand of (2.17) and (2.18) are related to the approximation
error and the second one to the estimation error. The margin 
 controls the trade-o�
between both terms. However, the di�erence is specially important with respect to
(2.15), since the MLPs in (2.18) have in�nite VC-dimension but �nite fat-shattering
dimension. The bound on the 1-norm of the coe�cients plays a crucial role in this
result.

Results like (2.13), (2.14), (2.15), (2.16), (2.17) or (2.18) suggest the Structural
Risk Minimization principle [Vapnik 1982, 1992, 1998a, 1999], based on the simul-
taneous minimization of the two terms in these expressions. In practice, a nested
sequence of hypothesis classes

H1 � H2 � � � � � HM
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is de�ned, where each Hk has �nite (and increasing with k) complexity measure.
Then, given a set of observations, the Structural Risk Minimization principle chooses
the particular element fok from every Hk such that the corresponding upper bound
on the expected risk is minimized. Finally, the best fok is selected. When the upper
bound is similar to (2.16), then it is reasonable to choose fok minimizing the empirical
risk inHk. These ideas lead to the development of Support Vector Machines (SVMs)
[Boser et al. 1992; Cortes and Vapnik 1995], based on the VC-dimension of the set
of hyperplanes and its relationship with the maximal geometric margin (see section
2.8).

There are many other results similar (in a somewhat wide sense) to (2.13), (2.14),
(2.15), (2.16), (2.17) or (2.18) (see [Pollard 1984; Dudley 1984; Haussler 1989; Baum
and Haussler 1989; Barron 1990; Moody 1991, 1992; Haussler 1992; Farag�o and
Lugosi 1993; Lugosi and Pint�er 1996; Lee et al. 1996; Schapire et al. 1998; Cheang
and Barron 1999; Graepel et al. 2000; Herbrich et al. 2000], for example).

In summary, some common features of these results are:

1. The 
exibility of the hypothesis class is controlled (and limited) by a number
of parameters, such as the number of hidden units and the size of the weights
in (2.13) and (2.14), the VC-dimension in (2.15) and (2.16), the fat-shattering
dimension in (2.17) or the 1-norm of the coe�cients in (2.18). The 
exibility
of the model may also be controlled by means of the activation function, for
example.

2. As a general rule, very 
exible models lead to small bounds on the approxima-
tion error and large bounds on the estimation error. Little 
exibility implies
large bounds on the approximation error and small ones on the estimation
error.

3. The bounds on the estimation error may be diminished by increasing the
number of examples L in the data set.

4. Increasing the input dimension I a�ects negatively to the expected risk, as a
sign of the curse of dimensionality [Bellman 1961].

Lower bounds on the expected risk and the sample complexity can also be found
in the literature (see [Baum and Haussler 1989; Kearns and Schapire 1990, 1994;
Devroye and Lugosi 1995; Bartlett 1998], for example). These bounds also depend on
some measure of the 
exibility of the model. In this case, increasing the 
exibility
of the model also increases the lower bounds on the expected risk or the sample
complexity.

Regarding the 
exibility of FNNs, the universal approximation capability implies
that their VC-dimension and fat-shattering dimension are in�nite in the general case.
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However, they are �nite if some of the parameters of the model are constrained,
such as the number of hidden units, the magnitude of the weights or the type of the
activation function (see [Maass 1995; Bartlett and Williamson 1996; Sontag 1998;
Bartlett 1998; Bartlett and Maass 2003], for example).

Note that upper bounds take the form of inequalities. Lower bounds are the
result of the worst-case analysis. Therefore, these theoretical results do not imply
that an algorithm that chooses the output function in a very 
exible hypothesis
class will have bad generalization performance.

2.5.3 The Bias/Variance Decomposition

Despite certain obvious di�erences, results in the previous section are in analogy to
the Bias/Variance decomposition [Geman et al. 1992; Domingos 2000a]. Knowing
that the minimum expected risk of the quadratic error is achieved for EY [yjx] (see
(2.6)), and taking into account that it is independent on the data, it is possible to
derive

ED
�
(foD(x)� EY [yjx])2

�
=

= (ED [foD(x)]� EY [yjx])2 + ED
�
(foD(x)� ED [foD(x)])

2
�

= L2 (ED [foD(x)] ; EY [yjx]) + ED
�L2 (foD(x); ED [foD(x)])

�
; (2.19)

where ED [�] represents the expectation with respect to all the possible data sets
D of �xed sample size L, and foD is the output function obtained by the learning
algorithm with the training set D. The �rst term in the right hand of (2.19) is the
(squared) bias of ED [foD(x)] as an estimator of EY [yjx], whereas the second is the
variance of foD(x) with respect to the ensemble of possible data sets.

Putting (2.6) and (2.19) together we have

ED
�
R(L2; foD)

�
= EX�Y

�
(y �EY [yjx])2

�
+ EX

�
ED
�
(foD(x)� EY [yjx])2

��
= EX

�
EY
�L2(y;EY [yjx])

��
+

EX
�L2(ED [foD(x)] ; EY [yjx])

�
+

EX
�
ED
�L2(foD(x); ED [f

o
D(x)])

��
: (2.20)

This result is a particular case of the uni�ed Bias/Variance decomposition for the
quadratic and the 0=1 loss functions [Domingos 2000a,b], where it is proved that for
certain loss functions we have

ED [R(L; foD)] = EX [C1(x)N(x)] + EX [B(x)] + EX [C2(x)V (x)] ; (2.21)

where
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1. foD is the output function obtained by the learning algorithm with the training
set D.

2. The Noise N(x) = EY [L(y; f�)], where f�(x) = argminfEY [L(y; f)] is the
optimal prediction, the closest function to the target in the hypothesis class.
The noise is the unavoidable component of the error, regardless of the learning
algorithm. For the quadratic loss function, f�(x) = EY [yjx]. For two-class
problems with the 0=1 loss function, f�(x) is given by the Bayesian posterior
class probabilities.

3. The Bias B(x) = L(fm; f�), where fm(x) = argminfED [L(f; foD)] is the main
prediction, the function whose average loss relative to the output functions
foD(x) is minimum. The bias is the loss of the main prediction as an estimator
of the optimal prediction. For the quadratic loss function, fm(x) = ED [foD(x)].
For two-class problems with the 0=1 loss function, fm(x) is the mode (the most
frequent prediction) of the output functions.

4. The Variance V (x) = ED [L(fm; foD)] is the average loss of the output functions
foD(x) relative to the main prediction.

5. C1(x) and C2(x) have di�erent expressions for di�erent loss functions:

(a) For the quadratic loss function, (2.20) is obtained by taking C1(x) =
C2(x) = 1.

(b) For two-class problems with the 0=1 loss function, (2.21) holds with
C1(x) = 2PD (foD(x) = f�(x)) and C2(x) = (1 � 2B(x)). PD is the prob-
ability over data sets D of �xed sample size L.

Similar results are proved in [Domingos 2000a,b] for multiclass problems with the
0=1 loss functions, and for two-class problems with other loss functions satisfying
several weak conditions. Other decompositions of the 0=1 loss functions can be
found in [Kong and Dietterich 1995; Kohavi and Wolpert 1996; Tibshirani 1996;
Breiman 1996b; Friedman 1997]. Finding a decomposition for the multiclass case
with functions di�erent from the 0=1 loss function is an open problem. Similarly,
�nding a decomposition for regression problems with loss functions such as L(u; v) =
ju� vj is another open problem.

For the 0=1 loss functions, the main consequence of a decomposition as in (2.21)
is the non-strict additive behavior of bias and variance. For example, when f�(x) =
fm(x), we have B(x) = 0, and therefore C2(x) = 1. In this case bias and variance
have an additive behavior as for the quadratic loss function. In contrast, when
f�(x) 6= fm(x), it holds that C2(x) = �1. In this case generalization performance
increases by increasing the variance. Hence, the increase in average loss caused by
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variance on correctly classi�ed examples may be partly compensated by its decrease
on incorrectly classi�ed ones. It may help to explain why very simple methods for
classi�cation are often competitive and sometimes superior to more sophisticated
ones [Friedman 1997; Sargent 2001].

Either high bias or variance can contribute to poor performance. Typically, very

exible models can nearly �t every point in every data set, leading to unbiased
estimators but probably with high variance. A rigid class of hypothesis, in contrast,
may lead to small variance but high bias (a constant function is the extreme case).
By limiting the 
exibility, the �tting capability can be lost. There is a trade-
o� between the bias and variance contributions to the error, where the optimal
performance is achieved. In this sense, bias is related to the approximation error
and variance to the estimation error. As an example, the number of hidden units
and the size of the weights, the VC-dimension, the fat-shattering dimension and
the 1-norm of the coe�cients control the bias and variance contribution in (2.13),
(2.14), (2.15), (2.16), (2.17) and (2.18) respectively. Note that the Bias/Variance
decomposition takes the form of equality, di�erent from the aforementioned bounds
on the expected risk, which take the form of inequalities. In contrast, it gives no
information about how to control both quantities. Anyway, the number of examples
in the data set and the input dimension, related to the curse of dimensionality, play
a crucial role for a proper estimation of the parameters.

Several schemes can be found in the literature related to the Bias/Variance trade-
o�. Some of them try to reduce the variance term while keeping a low bias. Other
ones try to reduce the bias termwith a limited 
exibility. The rest try to control both
terms at the same time. Although many of them were developed in an independent
way, they can be seen in terms of the Bias/Variance decomposition. Some of them
are general and others are speci�c for FNNs (the following list does not aim to be
an exhaustive one):

1. Feature Selection [Kittler 1978; Liu and Motoda 1998].

2. Models related to Regularization Theory [Tikhonov and Arsenin 1977], such
as Regularization Networks [Poggio and Girosi 1990; Girosi et al. 1995].

3. Statistical Learning Theory [Vapnik and Chervonenkis 1971; Vapnik 1982,
1995, 1998a] and Support Vector Machines [Boser et al. 1992; Cortes and
Vapnik 1995].

4. Sparse representations [Daubechies 1992; Chen et al. 1998; Graepel et al. 2000].

5. Bayesian Neural Networks [MacKay 1992].

6. Sequential approximations, also named constructive, growing or incremental
[Kwok and Yeung 1997a].
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7. Pruning algorithms for FNNs [Reed 1993].

8. Speci�c heuristics for FNNs, such as

(a) Weight decay [Hinton 1987; Krogh and Hertz 1992].

(b) Early stopping [Morgan and Bourlard 1990; Prechelt 1998].

(c) Training with noise [Sietsma and Dow 1991; Grandvalet et al. 1997].

(d) Soft weight sharing [Nowlan and Hinton 1992].

9. Ensembles of estimators and voting methods, such as

(a) Committees [Hansen and Salamon 1990; Perrone and Cooper 1993].

(b) Mixtures of experts [Jacobs et al. 1991; Jordan and Jacobs 1994].

(c) Boosting [Schapire 1990; Schapire and Singer 1999].

(d) Bagging [Breiman 1996a].

Some of these schemes have been proved to be related among them (see, for
example, [Bishop 1995b; Breiman 1998; Poggio and Girosi 1998; Girosi 1998; Smola
et al. 1998; Evgeniou et al. 2000; Xu et al. 2001; R�atsch et al. 2002; Andr�as 2002]). In
addition, they can be combined [Raviv and Intrator 1996; Avnimelech and Intrator
1999; Intrator 1999].

The next sections are devoted to describe the three frameworks where this thesis
is placed: Sequential Approximations with FNNs, Feature Selection with MLPs
and Margin Maximization, with special attention to their relationships with the
Bias/Variance decomposition.

2.6 Sequential Approximations with FNNs

Sequential approximations (also named constructive, growing or incremental) are
iteratively constructed by adding terms (usually one at a time) to the previously
obtained partial approximations. Regarding the terminology, there exists some am-
biguity on the adjective \sequential", since it is used in several frameworks to express
di�erent concepts. The same happens with the adjectives \constructive", \growing"
and \incremental". We will use the word \sequential" for approximations that se-
quentially add terms to the previously obtained partial approximations. We will
focus on sequential approximations with FNNs.

The selection of the optimal number of hidden units for FNNs has been widely
discussed through the literature. In terms of the Bias/Variance decomposition, as
far as the number of hidden units of an FNN grows, bias decreases and variance in-
creases. As pointed out in [Geman et al. 1992], this happens because the 
exibility
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of the model grows with the number of hidden units. Theoretical results like (2.13)
and (2.14) also support this claim (see section 2.5). Although the number of hidden
units is not the only factor involved in the resulting generalization performance5, it
remains desirable to �nd solutions with a number of parameters as small as possi-
ble, as pointed out in [Lawrence et al. 1996, 1997]. Therefore, choosing an adequate
architecture is a very important point in order to obtain good generalization perfor-
mance.

Sequential approximations with FNNs allow to dynamically construct the net-
work, starting from scratch, without setting a priori the architecture [Kwok and
Yeung 1997a]. These methods start with a small network (usually with no hid-
den units), and sequentially add hidden units until a satisfactory solution is found.
They can help to �nd a proper trade-o� between bias and variance by controlling
the number of parameters.

Pruning methods are an alternative to sequential ones [Reed 1993]. Pruning
algorithms work roughly as follows. A larger than needed network is trained until
an acceptable solution is found. Subsequently, some hidden units or weights are re-
moved (pruned) if they are considered useless. Then, the network may be retrained,
and the process starts again.

The sequential approach, however, presents a number of advantages over the
pruning approach [Kwok and Yeung 1997a]. First, it is straightforward to specify
an initial network for sequential algorithms, whereas for pruning algorithms it is not
clear how large the initial network should be. Second, pruning algorithms spend
most of the time training networks larger than necessary, whereas sequential algo-
rithms always search for small solutions �rst. Therefore, sequential methods are
more likely to obtain smaller networks with less computational cost than pruning
methods.

Of course, sequential algorithms also have shortcomings. For example, it is not
clear when to stop the addition of hidden units. Obtaining the weights of the added
hidden units is also a di�cult non-linear optimization problem [Horst and Tuy 1993].
In addition, it is well known that greedy approaches may be suboptimal in many
cases. If the �rst hidden units are not properly chosen, the rest of the process will
be negatively a�ected.

In spite of these shortcomings, sequential approximations can be very interesting
in several ways:

1. The non-linear optimization problem posed at every step in sequential ap-
proximations is, in theory, easier to solve than for a non-sequential one [Huber

5The activation functions, the complexity of the target function, the noise level in the data
or the number of training patterns also play an important role (see [Martin and Pittman 1991;
Prechelt 1994; Lawrence et al. 1996, 1997; Caruana et al. 2001], for example).
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1985; Jones 1992; K _urkov�a 1998], since they take place in a lower dimensional
space.

2. Although it cannot be guaranteed that the solution obtained is minimal, it is
expected to have few terms. Approximations with a low number of terms are
cheaper to store and compute.

3. Di�erent activation functions can be chosen at every step, so that the network
adapts its architecture to the speci�c target.

4. The system can be controlled by monitoring the training process after every
new term is added: error decreasing on the training set, performance on an
independent validation set, etc.

5. It is possible to save the parameters of the intermediate steps of the training
and recover them if desired (to test, for example, a di�erent training strategy).

We will mainly concentrate on sequential methods for regression. A number of
other constructive methods that can only be applied to classi�cation problems will
not be discussed here. Some surveys on these methods can be found in [Parekh et al.
1997, 2000]. Indeed, classi�cation problems can be considered as particular cases of
regression problems.

Sequential approximations with FNNs cannot be described without referring
to other sequential methods for regression found in the literature. In Statistics and
Signal Processing literature, for example, several sequential schemes related to FNNs
have been described. The following sections are devoted to a summary of sequential
methods for regression with (or related to) FNNs. These methods are related to
SAOCIF, the sequential algorithm that we propose in chapter 3. Some of them were
originally designed for pure approximation purposes and others for generalization,
but we will not make any distinction among them. Our aim has been to carry out
a review as complete as possible. The original notations of the described works
have been maintained as much as possible. A summary and discussion of several
important aspects of the described schemes are included in section 2.6.8.

2.6.1 Dynamic Node Creation

The Dynamic Node Creation (DNC) method [Ash 1989] is a simple sequential
method where, during the training, a new hidden node is added when the rate of
decrease of the average squared error is less than a certain value. More precisely, a
new node is added if both of the following conditions are satis�ed:

t� w > t0
et � et�w

et0
< �
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where et is the average squared error at time t. The width of the window w and
� are de�ned a priori. The value t0 is the time where the last node was added
to the hidden layer (with an initial value of 0). The new node receives complete
connections from the inputs, it is connected to all outputs, and its weights are
initialized to small random values. The rest of the weights are not initialized, so
that the obtained weights prior to the addition of the new hidden unit are the initial
guess to train the next network. After a new node is added, the whole network is
trained with standard BP until the solution is satisfactory or another node is needed.

Several variants of the original DNC procedure can be found in the literature.
The main di�erences lie on:

1. The existence of a subsequent pruning procedure of hidden units [Hirose et al.
1991; Bartlett 1994; Hern�andez and Fern�andez 2002]. Hidden units or lay-
ers may also be pruned during the construction of the network [Nabhan and
Zomaya 1994] (in this case, new hidden layers can also be added between the
last hidden layer and the output one).

2. The algorithms used to train the network [Bello 1992; Azimi-Sadjadi et al.
1993; Setiono and Hui 1995].

3. The type of hidden units [Bartlett 1994; Shin and Ghosh 1995; Leerink et al.
1995].

4. The number of hidden units of the starting network [Bastian 1994].

5. The criteria to add new hidden units [Wang et al. 1994].

6. The addition of patterns to the training set during the training process [Zhang
1994; Chung and Lee 1995].

7. The di�erent ways of connecting the new hidden unit to the previously existing
ones [Vinod and Ghose 1996].

Convergence to the target function of these methods follows directly from the
universal approximation property of the underlying architecture [Kwok and Yeung
1997a].

We have not found, in the revised literature, either a comparative study among
these modi�cations of the DNC procedure or other sequential schemes. When com-
pared with �xed-architecture MLPs trained with gradient descent, they usually
obtain similar or better performance with faster convergence, specially when the
resulting networks are small.
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2.6.2 Meiosis Networks

The main idea behind Meiosis Networks (MN) [Hanson 1990] is that the changes
in the standard deviation of the weight distribution can be taken as an uncertainty
measure of the weight strength. Hidden units with signi�cant standard deviation
are not desired (in [Hanson 1990], a weight is a random variable with a �nite mean
and variance, adjusted with a \stochastic delta rule"). When this situation occurs
during the learning process, the unit splits into two units each copying half the
variance to each of the new units. Di�erent strategies to split the hidden units are
applied in several subsequent works:

1. In [Wynne-Jones 1992], Principal Component Analysis is used to compute the
direction and size of the weights of the new hidden units.

2. In [Khorasani and Weng 1994; Weng and Khorasani 1996] the unit with the
highest 
uctuation rate is splitted. The 
uctuation rate is the product of the
di�erences between weights and output values. Several units can be splitted
at a time.

A similar procedure is described in [Sanger 1991a,b], where the learning proce-
dure constructs a tree using unidimensional functions of �xed frequencies, based on
the hypothesis that successful approximations will not always require all the dimen-
sions of the input data. Additional input dimensions are incorporated, in principle,
only when needed. In order to work, the activation functions used must be separable
(i.e., they can be written as a product of unidimensional functions). The large vari-
ance of a weight is decreased by inserting a subnetwork at that point. The insertion
of every subnetwork can, in principle, create a new hidden layer.

Similar to the DNC scheme, convergence to the target function of these meth-
ods follows directly from the universal approximation property of the underlying
architecture.

The experiments performed with these models, although they are not very ex-
haustive, allow to reduce the training time with respect to gradient descent in �xed-
architecture MLPs.

2.6.3 Resource-Allocating Network

In [Platt 1991], the Resource-Allocating Network (RAN) is described. When
the network performs well on a presented pattern, the whole network is trained. Oth-
erwise, a new localized RBF unit, centered on that pattern, is allocated. Therefore,
a specialization process results, in some sense, when the network does not perform
well on a presented pattern. Due to this learning strategy, RAN is well suited for
on-line learning. The adjustment of the parameters (coe�cients, output bias and
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centers) between the addition of two hidden nodes is performed by gradient descent
(for the coe�cients and the output bias, the Least Mean Squares algorithm is used).
The width of the RBF unit is �xed a priori.

A very similar algorithm can be found in [Lee and Kil 1991]. The use of Gaus-
sian RBFs and the adjustment of all the parameters of the network (including the
widths of the RBF units) with BP are the main di�erences with respect to the RAN
algorithm.

Independently, a similar method named Growing Cell Structures was devel-
oped in [Fritzke 1994a,b], combining an unsupervised self-organizing neural network
model with the RBFN approach.

Several modi�cations of the original RAN algorithm have been proposed (all of
them are speci�c for RBFNs):

1. Replacing the Least Mean Squares algorithm by another one based on the
Extended Kalman Filter algorithm [Kadirkamanathan and Niranjan 1993;
Jankowski and Kadirkamanathan 1997], Lyapunov techniques [Liu et al. 1996,
1999] or the QR decomposition [Rosipal et al. 1998; Salmer�on et al. 2001].

2. Replacing the multi-dimensional Gaussian basis functions by a layer of one-
dimensional Gaussian functions and a layer of Pi-neurons [Deco and Ebmeyer
1993].

3. Modifying the growth criterion of the network, replacing it by a statistical
criterion under Gaussian assumptions [Kadirkamanathan 1994; Jankowski and
Kadirkamanathan 1997].

4. Including a pruning procedure [Jankowski and Kadirkamanathan 1997; Ying-
wei et al. 1997a,b; Rosipal et al. 1998; Liu et al. 1999; Salmer�on et al. 2001;
Alexandridis et al. 2003].

5. Adapting the algorithm to time-series prediction, by modifying dynamically
the number of inputs considered [Salmer�on et al. 2001].

6. Allowing direct connections between the input and output layer [Lee and Street
2003].

7. Adjusting the learning parameters to the partially constructed network [Lee
and Street 2003].

8. Selecting the frequencies among the points of a variable grid [Liu et al. 1996,
1999] or the centers of a fuzzy partition of the input space into a number of
subspaces [Alexandridis et al. 2003]. In [Lee and Street 2003], some hidden
units are initialized to prede�ned values, speci�c to the problem at hand.



2.6. Sequential Approximations with FNNs 45

As pointed out in [Kwok and Yeung 1997a], the convergence properties of these
algorithms are unknown.

Several comparisons of some of these variants of the RAN procedure can be
found in [Kadirkamanathan and Niranjan 1993; Kadirkamanathan 1994; Yingwei
et al. 1997a; Rosipal et al. 1998; Salmer�on et al. 2001]. In general, the proposed
modi�cations allow to obtain simpler models (in terms of the number of hidden
units) with better generalization performance than the original RAN procedure and
the previously described modi�cations. In [Platt 1991; Alexandridis et al. 2003],
the RAN algorithm compares favorably with standard RBFN models. There exist,
to our knowledge, a lack of comparative results with standard MLPs and other
sequential schemes.

An important property of these models is that they can be usually trained with
little computational e�ort.

2.6.4 Cascade Correlation

The most celebrated sequential method for Neural Networks is, probably, Cascade-
Correlation (CC) [Fahlman and Lebiere 1990]. CC combines two key ideas. The
�rst is the cascade architecture, in which the newly added hidden unit receives inputs
from both the input layer and the previously added hidden units. The second is the
learning algorithm. For each new hidden unit, the algorithm tries to maximize the
correlation between the output of the new unit and the residual error of the network.

The input weights of the hidden unit are frozen at the time the new unit is
added to the network. Only the output connections are trained repeatedly (output
units may have non-linear activation functions). The learning algorithm works as
follows. It begins with a network without hidden units, and the direct input-output
connections are trained over the training set. To create a new hidden unit, it begins
with a candidate unit that receives trainable input connections from all of the inputs
of the network and from all the pre-existing hidden units. The output of this unit
is not yet connected to the active network. The input weights of the candidate unit
are adjusted to maximize the correlation (or, more precisely, the covariance)

S =
X
o

jCov (Eo;H)j =
X
o

�����
X
p

(Ep;o � Eo)(Hp �H)

�����
where o varies over all the output units, p varies over the training patterns, Ep;o is
the residual error observed at unit o (without the candidate unit, which is not yet
connected), and Hp is the activation of the candidate. The quantities H and Eo
are the values of Hp and Ep;o averaged over all patterns. In order to maximize S, a
gradient ascent is performed. Once again, only a single layer of weights is trained.
When S is considered to be maximized, the candidate is installed as a hidden unit,
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its input weights are frozen, and all the output layer connections are trained over the
training set. The cycle continues until the performance of the network is satisfactory.
Instead of a single candidate unit, it is possible to use a pool of candidate units, each
with a di�erent set of random initial weights. Alternatively, the candidates might
have di�erent non-linear activation functions, and let them compete to be chosen
for addition to the active network.

In [Prechelt 1997], two main drawbacks of CC are pointed out:

1. The covariance may be an ill-suited objective function for training the can-
didates. Maximizing covariance trains candidates to have a large activation
(large deviation from average activation) whenever the error at their output
is not equal to the average error.

2. Cascading the hidden units results in a network that can represent very strong
non-linearities. Although this power is in principle useful, it can be a disad-
vantage if such strong non-linearity is not required to solve the problem.

There exist many variants in the literature of the original CC procedure. Some
of them are related to the two drawbacks exposed in [Prechelt 1997]:

1. The optimization of a function di�erent from the covariance, usually the sum-
of-squares error [Littmann and Ritter 1992a,b; Lehtokangas 1999, 2000; Islam
and Murase 2001] or a related function [Courrieu 1993; Lahnaj�arvi et al. 1999].

2. Modi�cations of the learning architecture (with a covariance-based optimiza-
tion function):

(a) Not allowing cascaded connections, either maintaining the direct connec-
tions between the input and output layers [Yeung 1991; Sj�gaard 1992;
Yeung 1993] or not [Ma and Khorasani 2000, 2003, 2004]. New hidden
layers also can be added in [Ma and Khorasani 2003].

(b) Modifying the type of the hidden units [Littmann and Ritter 1992a;
Leerink et al. 1995].

(c) Allowing the addition of several units in the same layer [Littmann and
Ritter 1992b; Fang and Lacher 1994; Mohraz and Protzel 1996].

(d) Restricting the depth and the connectivity of the architecture [Phatak
and Koren 1994; Mohraz and Protzel 1996; Treadgold and Gedeon 1998;
Islam and Murase 2001].

(e) Adapting the previously added hidden units, or even removing some of
them depending on the evolution of the learning process [Treadgold and
Gedeon 1998; Lehtokangas 1999, 2000].
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(f) Adapting the architecture speci�cally to regression problems [Lehtokan-
gas 2000].

3. Representing the hidden units in the transformed domain of the coe�cients
which constitute an orthogonal prede�ned basis [Vy�sniauskas et al. 1995].

4. Scaling the network error to the range of sigmoidal units [Ma and Khorasani
2000, 2004].

5. Including a pruning procedure [Smotro� et al. 1991; Islam and Murase 2001;
Ma and Khorasani 2000, 2004; Liang and Ma 2004].

6. Incorporating regularization [Kwok and Yeung 1996a; Treadgold and Gedeon
1999a].

7. Retraining the whole network after the addition of a hidden unit [Treadgold
and Gedeon 1997a,b, 1999a; Islam and Murase 2001].

8. Using a genetic algorithm to �nd the initial weights [Liang and Dai 1998].

9. Adding the new hidden units by splitting existing units [Islam and Murase
2001].

In [Kwok and Yeung 1997b] the convergence property of CC is proved, under
certain assumptions, with similar ideas to the theoretical results of convergence for
Projection Pursuit Regression (see section 2.6.5).

Some experimental studies have shown that the idea of maximizing the corre-
lation tends to produce saturate units [Hwang et al. 1996]. Moreover, the decision
boundary may be very zigzag and unsmooth. This makes the CC algorithm more
suitable, in principle, for classi�cation problems than for regression ones. Similar to
DNC, these models usually obtain smaller networks with similar or better perfor-
mance and faster convergence than �xed-architecture MLPs.

A comparison of some of these variants for CC can be found in [Prechelt 1997;
Treadgold and Gedeon 1999b; Lahnaj�arvi et al. 2002], for example. Results in
[Prechelt 1997] suggest that error minimization is usually superior to correlation
maximization. In addition, not cascading hidden units often allow to obtain better
results than cascading them. When these two properties hold (error minimization
without cascading hidden units), the resulting method is similar to Projection Pur-
suit Regression (see section 2.6.5). In [Treadgold and Gedeon 1999b] it was observed
that, for cascade architectures, the combination of early stopping and regularization
resulted in better generalization performance and smaller networks than the use of
early stopping alone. Results in [Lahnaj�arvi et al. 2002] show similar performance
for the models tested, although it was pointed out again that error minimization is
usually superior to correlation maximization.
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2.6.5 Projection Pursuit Regression: Matching the Residue
and Convex Approximations

Projection Pursuit Regression is a method for sequential approximation based in the
approximation of the previous residue. It was originally described in the Statistics
literature, although several works with the same underlying ideas can also be found
in the areas of Signal Processing and FNNs. Previous to describe FNN models in-
spired in Projection Pursuit Regression (section 2.6.5.3), the most relevant works in
Statistics and Signal Processing are described (sections 2.6.5.1 and 2.6.5.2). Finally,
section 2.6.5.4 describes several objective functions that can be used with the aim
of matching the residue.

2.6.5.1 Projection Pursuit Regression in Statistics

Projection Pursuit is a family of optimization methods described in the Statis-
tics literature. Its name is derived from the fact that the data are linearly projected
onto several interesting directions, which are selected to maximize a certain objec-
tive function. The notion of interesting projections is motivated by the observation
that for most high-dimensional data clouds, most low-dimensional projections are
approximately normal [Diaconis and Freedman 1984]. Hence, a projection is less
interesting the more nearly normal it is, and the discovery of interesting projections
may lead to obtain useful information. An early version of Projection Pursuit for
clustering was implemented in [Friedman and Tukey 1974]. These ideas were ex-
tended to Projection Pursuit Regression (PPR) [Friedman and Stuetzle 1981],
Projection Pursuit Density Estimation [Friedman and Stuetzle 1984] and Projection
Pursuit Classi�cation [Friedman 1985].

A detailed description of Projection Pursuit can be found in [Huber 1985]. In
general, given a random variable X with values in Rd, the methods based in Pro-
jection Pursuit search for a linear projection A optimizing an objective function
Q(FA), where FA is the distribution of the random variable A � X. A linear pro-
jection A : Rd ! Rk is any linear map (or equivalently a k � d matrix) of rank k.
By changing the objective function Q(FA), the particular Projection Pursuit meth-
ods are obtained. Projection Pursuit generalizes classical methods in multivariate
analysis (Principal Components and Discriminant Analysis) and in factor analysis
(the Quartimax and Oblimax methods, for example). Finally, it allows to create
new families of penalty terms by combining, for example, unsupervised and super-
vised training, as in [Intrator 1993]. As a drawback, they use to be computationally
high-demanding. Due to this computational cost, and to the interest in getting an
ordered set of projections, stepwise methods like PPR become very attractive.

As a particular case of function approximation, PPR [Friedman and Stuetzle
1981] estimates the conditional expectation of a random variable Y 2R givenX 2RI



2.6. Sequential Approximations with FNNs 49

by means of a sum of ridge functions

E [Y j X = x] = f(x) �=
NX
j=1

gj(a
t
j � x)

with the quadratic loss function Q(FA) = E

��
f(x)�PN

j=1 gj(a
t
j � x)

�2�
as the ob-

jective function as follows. Let f0(x) = 0 and suppose that the �rst n � 1 terms
of the approximation (the frequencies aj and the functions gj) have already been
determined. Let

fn�1(x) =
n�1X
j=1

gj(a
t
j � x)

be the approximation at step n� 1, and de�ne gj;aj(x) = gj(a
t
j � x). Find an and gn

such that E
�
(rn�1 � gn;an)

2� is the minimum, where rn�1(x) = f(x)�fn�1(x) is the
residue at step n � 1. Then, fn(x) = fn�1(x) + gn(a

t
n � x). This process is repeated

until the residue is smaller than a user-de�ned threshold. That is, at every step the
residue is approximated as best as possible with a single term, which is added to
the solution obtained at the previous step.

Some properties of the approximations with PPR are discussed in [Diaconis and
Shahshahani 1984]. They studied necessary and su�cient conditions for functions to
be exactly represented as linear combinations of ridge functions and the uniqueness
of that representations.

In the original de�nition of PPR [Friedman and Stuetzle 1981], the approxima-
tion is de�ned from a set of observations (discrete version). For a given an, the
function gn is non-parametrically constructed from the scatterplot of rn�1 against
atn�X, so that gn is smooth and �ts the scatterplot. This process may be improved by
back-�tting : omit some of the earlier summands gj , determine better replacements,
and then iterate. Usually, the directions aj during the back-�tting process are kept
�xed.

In the abstract version, the function itself is available instead of just a set of
observations [Huber 1985]. In order to be well-de�ned, f 2 L2 and the integral is
de�ned with regard to a probability measure, so that E [h2] = khk2. In this case it
can be proved that, for a �xed an, the function gn minimizing E

�
(rn�1 � gn;an)

2� is
gn(z) = E

�
rn�1(X) j atn �X = z

�
; (2.22)

and

E
�
(rn�1 � gn;an)

2� = E
�
r2n�1

�� E
�
g2n;an

�
: (2.23)

Thus, the problem at every step is to �nd the minimizing direction an (or, equiva-
lently, a maximizing direction for E

�
g2n;an

�
). In [Huber 1985] it is conjectured that,
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under mild smoothness conditions, the minimizing direction an exists for every n,
and limn!1 E [r2n] = 0 (i.e., PPR has the convergence property). In [Jones 1987]
those conditions are generalized: given 0 < � < 1, let an be any direction such that

E
�
g2n(a

t
n�X)

�
> � sup

bt�b=1
E
�
g2n(b

t�X)
�
;

with gn as de�ned in (2.22). Then, PPR converges to f . The convergence property
of Matching Pursuit ([Mallat and Zhang 1993], see below) is based on this result.

Later, in [Jones 1992] it was proved that the convergence may be accelerated if
the approximation is made with a convex combination. Given a function set Pn and
a sequence of functions fn, we can de�ne

sn = inf
06�61; �2Pn

kf � ((1� �)fn + ��)k :

A sequence of functions fn is said to be relaxed with respect to f if kf � fn+1k 6 sn,
and asymptotically relaxed if lim sup(kf � fn+1k � sn) 6 0. Clearly, a relaxed se-
quence is asymptotically relaxed. In [Jones 1992] it is proved that any asymptotically
relaxed sequence converges to f , under reasonable convexity conditions. In addition,
if f lies on the closure of the convex hull of some bounded function set G (kgk 6M
for every g 2 G), and G � Pn for every n, the approximation error of a relaxed
sequence fn is O(1=

p
n). The later derived upper approximations bounds for FNNs

in [Barron 1993] or [K _urkov�a and Beliczy�nski 1995b] are based on this result. With
these ideas, a relaxed variant of PPR is de�ned

fn(x) = (1� �n)fn�1(x) + �ngn(a
t
n � x);

where Pn is, for every n, the set of all ridge functions, f0(x) = 0 and �n, an and gn
minimize kf � ((1� �)fn + �gn;ak at every step.

In practice, once gn has been determined, the previous expression is minimized
over � and a (usually in a non-linear manner). Moreover, in [Jones 1992] it is
suggested that the coe�cients of the previously selected terms can be optimized
after gn and �n have been selected. Several variants to construct the function gn
can be found in the literature, both parametric and non-parametric, in di�erent
areas [Flick et al. 1990; Zhao and Atkeson 1991; Saha et al. 1993; Verkooijen and
Daniels 1994; Roosen and Hastie 1994; Zhao and Atkeson 1996]. For FNNs, gn is
�xed a priori.

2.6.5.2 Projection Pursuit Regression in Signal Processing

Some methods with the same underlying ideas as PPR can be found in the area of
Signal Processing. The probably most celebrated one is the Matching Pursuit

(MP) algorithm, described in [Mallat and Zhang 1993]. MP decomposes any signal
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into a linear expansion of waveforms that are selected from a (possibly redundant)
dictionary of functions. Given a set of parameters (frequencies) �, a dictionary is
de�ned as a family D = (g
)
2� of vectors in a certain Hilbert space H, such that
kg
k = 1 for all 
2�. The theoretical results proved in [Mallat and Zhang 1993] are
general in the sense that they can be applied to any vector f inH. The MP algorithm
works roughly as follows. Let R0f = f , suppose that fn is the approximation at
step n (f0 = 0) and the nth order residue Rnf is already computed, for n > 0
(Rnf = f � fn). Choose an element g
n 2D which matches the residue Rnf almost
as much as the best, that is6

jhRnf ; g
nij > � sup

2�

jhRnf; g
ij ; (2.24)

where � is an optimality factor satisfying 0 < � 6 1. The residueRnf is decomposed
into

Rnf = hRnf; g
ni g
n +Rn+1f;

so that

kRnfk2 = jhRnf; g
nij2 +


Rn+1f



2 (2.25)

and

f =
nX
i=0



Rif; g
i

�
g
i +Rn+1f:

Therefore, we can de�ne the approximation at step n+ 1 as

fn+1 =
nX
i=0



Rif ; g
i

�
g
i = fn + hRnf; g
ni g
n :

That is, at every step the residue is approximated as much as possible (and a certain
tolerance, de�ned in (2.24)) with a single term, which is added to the solution
obtained at the previous step. Although there exist some di�erences with PPR
(for example, the fact that a previously de�ned dictionary is needed in MP), the
links between both methods are quite clear: rn and gn;an in PPR are Rnf and
hRnf ; g
ni g
n in MP, respectively. Therefore, (2.23) is equivalent to (2.25).

In [Mallat and Zhang 1993] it is proved that, if the dictionary D spans H,
then f =

P1
i=0 hRif ; g
ii g
i . If D is an orthogonal basis, the MP decomposition is

equivalent to an orthogonal expansion of f in the basis D. In practice, a recalculation
of the coe�cients can be made after n steps, named back-projection (a particular
case of back-�tting in PPR), to approximate f at best with the selected vectors.

6The element which best matches the residue is sup
2� jhRnf; g
ij (see Lemma 2 in chapter 3).
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In practice, when we only have a data set, we can consider that the dimension
of H is �nite. A vector is an element of RL, where L is the number of patterns. In
the same way, the dictionary is a set of vectors in RL, obtained by applying every
g
 to every point in the data set. If the dictionary is �nite, several optimization
strategies can be used. First, it is possible to �nd exactly the element g
n that
matches the residue as best as possible simply with a pass through the dictionary.
In addition, this element may be optionally tuned searching for a better frequency

0n in its neighborhood. A Newton method, for example, can be used to that end.
Finally, since 


Rn+1f ; g

�
= hRnf; g
i � hRnf ; g
ni hg
n ; g
i ;

it is possible, at every step, to store hRnf ; g
i for every g
 2D so that the compu-
tations at next iterations can be made more e�ciently.

An application of MP with a dictionary of Gabor time-frequency atoms for a
signal processing task is described in [Mallat and Zhang 1993], showing the usefulness
of the method.

Similar results are obtained in [Qian and Chen 1992, 1994], but with a particular
set of functions: the normalized Gaussian functions with adjustable width and time-
frequency center.

The approximations of a Matching Pursuit procedure can be improved by orthog-
onalizing the directions of projection [Pati et al. 1993]. The idea of the Orthogonal
Matching Pursuit (OMP) procedure works as follows. The vector g
n selected by
MP is not necessarily orthogonal to the previously selected vectors, and therefore
the algorithm reintroduces new components in the directions of fg
ig06i<n. To avoid
this fact, the residue Rnf is projected, after g
n has already been selected as in MP,
on a vector un (substituting but obtained from g
n) orthogonal to the previously
selected vectors. It can be done by solving a linear equations system, and it is
equivalent to the Gram-Schmidt orthogonalization procedure. As a consequence,
the coe�cients of the selected vectors are optimal at every step, and the whole pro-
cedure is equivalent to performMP with back-projection at every iteration. Bordered
systems are used to solve e�ciently the linear equations system. To expand f over
the original dictionary vectors, a change of basis must be performed, inverting the
orthogonalization procedure.

2.6.5.3 Projection Pursuit Regression with FNNs

PPR was �rst introduced in the context of FNNs by [Barron and Barron 1988],
showing that the two layer architecture of a neural network is well suited to construct
a PPR in a natural way.

A \direct implementation" of PPR with MLPs is described in [Moody 1994].
The new frequencies are trained, from small random values, to a local minimum
while keeping the weights of the previous units �xed (i.e., the previous residue is
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tried to be approximated as best as possible). After a new unit is added, the whole
network is trained (back-�tting). In [Jutten and Chentouf 1995], a similar procedure
is described.

The rest of the section is devoted to a description of two di�erent learning
schemes with FNNs based on PPR: the Projection Pursuit Learning Network and
the Incremental Linear Quasi-Parallel algorithm.

The Projection Pursuit Learning Network (PPLN) described in [Hwang
et al. 1994], following their previous work in [Maechler et al. 1990; Hwang et al.
1991, 1992a,b], is modeled as a two-layer (one hidden layer) fully connected MLP

ŷi = yi +
mX
k=1

�ikgk

 
pX
j=1

�kjxj

!
;

with yi = EL [yi], EL [gk] = 0, EL [g2k] = 1 and
Pp

j=1 �
2
kj = 1. The parameters �kj

and �ik are, as usual, the frequencies and the coe�cients respectively, and gk is the
unknown (trainable) \smooth" activation function of the kth hidden unit. Output
units have linear activation functions. The training of all the parameters is based
on the criterion of minimizing the error function

LW2 =

qX
i=1

Wi �E
�
(yi � ŷi)

2
�
;

where q is the number of output units. The weightings Wi allow to specify the
relative contribution of each output to the total error.

A PPLN learns unit by unit, and layer by layer cyclically after all the training
patterns are presented. All the parameters to be estimated are hierarchically divided
into m groups (each associated with one hidden unit), and each group, say the kth
group, is further divided into three subgroups: the coe�cients f�ik : i = 1; � � � ; qg,
the smooth non-linear function gk of the kth hidden unit, and the frequencies f�kj :
j = 1; � � � ; pg. The PPLN starts by setting the parameters associated with the �rst
hidden unit (i.e., the �rst group). It updates each subgroup, f�1jg, g1 and f�i1g
consecutively (layer by layer) to minimize the error function LW2 . It then estimates
the parameters associated with the second hidden unit by consecutively updating
f�2jg, g2 and f�i2g. A complete updating pass ends when the parameters associated
with themth (the last) hidden unit are updated. Repeated updating passes are made
over all the groups (i.e., back-�tting for every unit) until convergence. As it can be
seen, PPLN is not, strictly speaking, a sequential method, since it needs to de�ne a
maximum number of hidden units a priori. In contrast, the weights are learned in
a sequential manner and taking into account the residue at the previous step, as in
PPR. The process stops when ��LW2 (new)� LW2 (old)

��
LW2 (old)
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is smaller than a prespeci�ed small constant in two consecutive cycles. The kth
group parameters are estimated as follows. Least Squares is applied to estimate f�ikg
(given gk and f�kj : j = 1; � � � ; pg, LW2 is quadratic in the f�ikg), gk is estimated by
a one-dimensional data smoother, and a non-linear optimization algorithm (Gauss-
Newton) estimates f�kjg. Each layer weights are learned while the other layer
weights remain �xed, and no global optimization of the coe�cients is performed.

With the aim of optimizing the non-linearity degree and relaxing the necessity
of prede�ning it, the Pooling Projection Pursuit Networks [Lay et al. 1994] use a
pool of Hermite functions of several degrees during the training of a new candidate
hidden unit. Some hybrid models can be found that attempt to take pro�t from the
advantages of PPR and CC. In [You et al. 1994] the Cascaded Projection Pursuit
Network is de�ned, which implements a PPLN with cascaded connections among
the hidden units to allow high-order non-linearities.

A comparative study between PPLNs and standard FNNs was performed in
[Hwang et al. 1994] with arti�cial problems. PPLNs were trained using as activation
functions a non-parametric smoother named supersmoother [Friedman 1985] and
parametric Hermite functions, based on the Hermite polynomials. Standard FNNs
were trained with a Gauss-Newton optimization procedure. Both methods had
quite comparable training speed, but PPLNs always outperformed standard FNNs
on independent test data, specially with Hermite functions, when both use the same
number of hidden units. When allowed to use di�erent number of hidden units,
both achieve comparable accuracy, but PPLNs are considerably more parsimonious
in that fewer units are required to approximate the desired function. In addition, the
frequencies may be very di�erent between di�erent simulations of standard FNNs
with di�erent number of hidden units, whereas PPLNs are more consistent in that
sense. A comparison between PPLN and CC can be found in [Hwang et al. 1996],
showing that the strong non-linearities generated by the cascade architecture may
also be constructed with PPLNs trained with adequate parameters.

In [Kwok and Yeung 1995a,b, 1996b] it is proved that PPLNs with Hermite
functions, as de�ned in [Hwang et al. 1994], do not have the universal approximation
property. This is a consequence of the particular parametric approach. However,
universal approximation capability can be achieved, in the same conditions as PPR,
simply by including a bias term into each linear combination of the predictors, that
is

ŷi = yi +
mX
k=1

�ikgk

 
pX
j=1

�kjxj + �j

!
:

Experiments in [Kwok and Yeung 1996b], with the same arti�cial problems as in
[Hwang et al. 1994], con�rmed the suitability of using biases. The proposed model
also compared favorably with CC.

The Incremental Linear Quasi-Parallel (ILQP) algorithm, a sequential al-
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gorithm for neural networks based on the ideas of PPR and MP was described in
[K _urkov�a and Beliczy�nski 1995b]. A tolerance term is introduced in the de�nition
of the approximation, giving an asymptotically relaxed approximation as de�ned
in [Jones 1992]. Given a Hilbert space H, an asymptotically optimal convex quasi-
parallel incremental approximation of f with respect to G � H is a sequence

fn = (1� �n)fn�1 + �ngn

where gn2G so that

hf � fn�1; gni+ "n > sup
g2G

hf � fn�1; gi

and
kf � fnk 6 inf

�
kf � ((1� �)fn�1 + �gn)k+ "n

with limn!1 "n = 0. An asymptotically optimal linear quasi-parallel incremental
approximation is de�ned analogously, but allowing (with the same de�nition of gn)
complete 
exibility of the coe�cients at every step. Output units have linear activa-
tion functions. The �rst condition on hf � fn�1; gni is similar to the condition (2.24)
for MP in the sense of approximately matching the residue, and it is equivalent to
say that gn is as parallel as possible to f � fn�1 with a certain tolerance.

The convergence property is satis�ed by both de�nitions, if f lies on the closure
of the convex hull of G. For the convex version, following [Jones 1992] and [Barron
1993], the approximation error is O(1=

p
n) if the vectors in the approximation are

bounded (kgk 6 B for every g 2G). For the linear version, it is pointed out that
the same result holds. In the ILQP algorithm, following the linear de�nition, every
iteration consists of two steps. In the �rst one, the frequency of a new hidden unit is
determined. In the second one, all output weights are recalculated. The frequencies
are calculated trying to �nd gn 2 G so that nearly maximizes jhf � fn�1; gij over
g 2 G. This optimization step depends on the set of functions G and it can be
done by any optimization method (gradient descent, for example). In the second
step, output weights are optimized so that the error is minimized with the selected
frequencies. Therefore, the resulting method is similar to OMP, where there exists
a back-projection procedure at every iteration. A version for RBFNs with regular-
ization can be found in [K _urkov�a and Beliczy�nski 1995a].

A re�nement of the ILQP algorithm can be found in [Beliczy�nski 1996a,b], where
an almost analytical incremental algorithm is described. The algorithm does not in-
volve any searching method, but the hidden units must have an MLP activation
functions invertible and bipolar (with range in (�1;+1)), such as the classical hy-
perbolic tangent function. Although the possibility of using di�erent activation
functions in the same network is suggested, it is not tested. Results in [Beliczy�nski
1996a,b] suggest that a precise maximization of jhf � fn�1; � (! � x)ij is not strictly
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necessary. This idea can also be found in [Beliczy�nski and K _urkov�a 1997], where the
frequencies are selected heuristically, with elliptic RBF Gaussian activation func-
tions in the hidden units. The coe�cients are optimal at every step.

Several variations of the ILQP algorithm can be found in the literature. All
of them construct convex approximations, and obtain the new frequency trying to
approximate the previous residue with a single term and a certain tolerance:

1. In [Draelos and Hush 1996], the frequencies are searched heuristically par-
titioning the surface of the target function (driven by the training set) into
hyperplanar regions. Piecewise linear functions are used as activation func-
tions in order to obtain the �nal convex combination.

2. A convex sequential procedure is described in [Dunkin et al. 1997], based on
a theoretical result described in [Koiran 1994] and similar to that in [K _urkov�a
and Beliczy�nski 1995b]. The new frequencies are obtained with BP. The main
di�erence lies in the restriction that the coe�cient of the new added term is
bounded in advance.

3. A sequential algorithm for approximations of functions in the closure of �nite
subsets of a Hilbert space is de�ned in [Hlav�a�ckov�a and Sanguinetti 1998]. The
theoretical result is based on the concept of variation of a function with re-
spect to a subset [K _urkov�a 1998], and is similar, in essence, to that of [K _urkov�a
and Beliczy�nski 1995b]. The particular algorithm constructs a convex approx-
imation, with a �nite dictionary, whose approximation error is bounded by
O(1=

p
n). A weight decay term is added to the cost function in [Hlav�a�ckov�a

and Fischer 2000].

Slightly di�erent theoretical approaches can also be found, obtaining similar
approximation error bounds. In [Dingankar and Sandberg 1996], �n is �xed at
every step to 1=n, and the convex approximation is obtained by choosing gn such
that

kf � fnk 6 inf
g2G

kf � ((1� �n)fn�1 + �ng)k+ "n:

In [Zhang 2002], the minimization is performed over gn and �n at the same time.
No tolerance is allowed.

The experiments in these works are not very exhaustive. Many of them are
more focused on theoretical results than in experimental ones. Most of the times,
the experiments are performed without comparing the results with other existing
methods. As an exception, the procedure described in [Dunkin et al. 1997] shows
better generalization performance than CC, specially on noisy data sets.
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2.6.5.4 Objective Functions with the Aim of Matching the Residue

In [Kwok and Yeung 1997b], a number of objective functions to obtain the new
frequency are explored with the aim of matching the residue. In particular, it is
proved that the convergence property is satis�ed if the function gn computed by the
nth hidden unit maximizes one of the following objective functions:

� S1 =
jhf�fn�1;gnij

kgnk
, the function maximized by PPR, MP, OMP7 and ILQP (in

some particular cases);

� S2 = jhf � fn�1; gnij, the function maximized by ILQP (in the general case);

� S3 =
jCov(f�fn�1;gn)j

kgnk
;

� S4 = jCov (f � fn�1; gn)j, the function maximized by CC;

or their respective squared functions. Output units must have linear activation
functions, the coe�cients must be optimized after the selection of every term and
0 < kgnk < B for every kgnk. In contrast to ILQP, convexity is not required. Note
that, in practice, these functions can be computed with computational cost O(L),
where L is the number of points in the data set. In order to maximize these functions
there is no need, in principle, to back-propagate any error, although the non-linear
optimization problem is still very di�cult to solve.

Experiments in [Kwok and Yeung 1997b], with the same arti�cial problems as in
[Hwang et al. 1994], show that although theoretical results apply to many di�erent
objective functions, their performance can be very di�erent in practice. In general,
S1 and S3 show the best performance. For noiseless data, S3 slightly ouperforms
S1, but shows a higher sensitivity to the particular training set used. S1 is better
than S4, con�rming other comparative results that stated that error minimization is
usually superior to correlation maximization (see [Prechelt 1997; Kwok and Yeung
1996b; Dunkin et al. 1997; Lahnaj�arvi et al. 2002]). The normalization performed in
S1 and S3 (with respect to S2 and S4) allows to obtain better solutions. It is worth
noting that the comparison is performed with the lowest mean test error among 15
networks ranging from 1 to 15 hidden units in 100 trial, but the authors do not give
the number of hidden units where the results are achieved.

2.6.6 Orthogonal Least Squares Learning

In this section, several sequential methods that do not select the new frequency with
the aim of matching the residue are described. The previously selected frequencies

7It can also be considered that MP and OMP maximize S2, since the vectors in the dictionary
have norm 1.
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are kept �xed, and an (implicit or explicit) orthogonalization is performed in order
to select the new frequency. SAOCIF, the method that we propose in chapter 3, is
also based on this idea.

2.6.6.1 The Orthogonal Least Squares Learning Algorithm

In [Chen et al. 1991a] theOrthogonal Least Squares Learning (OLSL) algorithm
is proposed, a learning procedure for RBFNs with the same underlying ideas that
orthogonal least squares methods for the selection of the signi�cant monomials in
non-linear control systems modelling [Billings et al. 1988; Chen et al. 1989]. Every
RBFN unit is considered as a regressor in a linear regression model, and the selection
of the centers can be regarded as a problem of subset model selection. The procedure
starts with a single Gaussian RBF hidden unit and it sequentially increases the
number of hidden units, one at a time, until the model error is su�ciently small.
The frequency of the new hidden unit (the center) is selected among the points in
the data set. The classical Gram-Schmidt orthogonalization method is used at each
step to form an orthogonal basis for the space spanned by the output vectors of the
previously selected hidden units. In this context, an output vector is an element of
RL, where L is the number of patterns, obtained by applying the Gaussian RBF
to every point in the data set. For every point in the data set, the orthogonal
component of its output vector to that space is obtained. After computing its
optimal coe�cient (with the sum-of-squares loss function), the point in the data set
maximizing the error reduction ratio is selected. The procedure is terminated when
a predetermined percentage of the total error is reduced.

Several extensions, optimizations and variations of the original OLSL can be
found in the literature, although there is no theoretical result of convergence in any
of them:

1. Extension to multi-output RBFNs [Chen et al. 1991b, 1992], computing the
optimal coe�cients for every output.

2. Reduction of the computational cost in some special cases [Chng et al. 1994,
1995], premultiplying the linear regression model by an orthonormal matrix.

3. Reduction of the computational cost in the general case [Chen and Wigger
1995], directly updating scalar inner products instead of updating column
vectors (it is an internal optimization of the implementation).

4. Introduction of a regularization term [Chen 1995; Orr 1995; Chen et al. 1996].

5. Use of Genetic Algorithms to adjust the two key learning parameters, the
regularization parameter and the hidden unit width [Chen et al. 1995, 1999].
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Most of the optimizations are possible due to the fact that the set of frequencies
is �nite and known a priori. Although the algorithm does not always obtains the
smallest possible network [Shertinsky and Picard 1996], its results are usually quite
good (see, for example, [Lin et al. 2001]). In particular, it compares favorably with
standard RBFN models.

2.6.6.2 ZM98

With similar underlying ideas to [Chen et al. 1991a], a sequential orthogonal scheme
to the building and training of single hidden layer neural networks is described
in [Zhang and Morris 1998] (we will refer to this method as ZM98). The main
di�erence with respect to the OLSL algorithm lies in the selection of the frequencies.

The Gram-Schmidt orthogonalization is used at each step to form a set of
orthogonal vectors G1(!1); � � � ; Gn(!n) for the space spanned by the output vec-
tors of the hidden units. Hidden layer weights !n are found through gradient
descent over kRn�1 � �nGn(!n)k2 with random initialization, where Rn�1 is the
network error with the previously added hidden units and Gn(!n) is orthogonal to
G1(!1); � � � ; Gn�1(!n�1). As in [Chen et al. 1991a], an output vector is an element of
RL, where L is the number of patterns, obtained by applying the activation function
to every point in the data set. Output units have linear activation functions. Output
layer weight �n is the optimal coe�cient if Rn�1 was approximated by Gn(!n) with

minimum squared error (i.e., �n = hRn�1;Gn(!n)i

kGn(!n)k
2 , see Lemma 2 in chapter 3), and

it is computed at every iteration of the gradient descent procedure for !n. When
the training procedure is terminated, output layer weights must be recalculated in
order to accommodate the e�ects of the non-orthogonal part of the output vectors
of the hidden units, using the Gram-Schmidt orthogonalization results obtained at
each step. Small kGn(!n)k may lead to numerical problems. Therefore, the cost
function is modi�ed to penalize small kGn(!n)k. This is done by including the ad-
dition of a regularization term 


kGn(!n)k
2 in the cost function to be minimized. An

extended version of the algorithm with mixed types of hidden units (linear, simoidal
and Gaussian) is also described.

As in OLSL, there is no theoretical result of convergence. In [Zhang and Morris
1998] the method is tested with very promising results when compared with standard
MLPs. A comparison with OLSL is also described, showing similar performance with
less hidden units. It is not compared with other sequential schemes.

2.6.6.3 Kernel Matching Pursuit

Recently, [Vincent and Bengio 2002] described the Kernel Matching Pursuit

(KMP) algorithm, an extension of MP that can be used to build kernel-based solu-
tions to SML problems. The emphasis of the KMP approach is put on the building
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of an alternative to SVMs that controls the sparsity of the solution (i.e., the number
of support vectors). As in SVMs, the frequencies of the resulting network are a
subset of the points in the data set. Whereas good generalization abilities of SVMs
are related to margin maximization, KMP is designed to build sparse kernel-based
solutions minimizing the sum-of-squares error function. The idea behind KMP is
simply the application of the MP family of algorithms to problems in SML using a
kernel-based dictionary. The model compexity is directly controlled by the sparsity
of the solution.

Three versions of KMP are de�ned:

1. Basic KMP, similar to classical MP.

2. KMP with back-�tting at every step, similar to OMP.

3. KMP with pre-�tting, similar to OLSL.

All three versions share the dictionary de�nition (needed inMP): Given a data set
D, the dictionary D is de�ned as the set of functions D = fK(x; xi) : xi2Dg, where
K may be, for example, a symmetric positive de�nite kernel function. Whereas
basic KMP and KMP with back-�tting work as the original versions, in KMP with
pre-�tting the following function is optimized at the nth step:

min
g2D;�1;��� ;�n2Rn






y �
 
n�1X
k=1

�kgk + �ng

!





2

;

where y is the target vector and g1; � � � ; gn�1 are the previously selected vectors.
Similar to OLSL and ZM98, a vector is an element of RL, where L is the number of
patterns. This optimization problem can be solved exactly because a �nite dictio-
nary is used: A pass through the data set allows to �nd the required vector g, since
the optimal coe�cients (for the sum-of-squares error function) can be computed
for every frequency. In addition, several optimization strategies can be used, as in
OLSL.

In the experiments described in [Vincent and Bengio 2002], Gaussian kernels
are tested. However, the model is not restricted to Gaussian RBF units. In fact,
it is suggested that additional 
exibility can be obtained by using other activation
functions, whenever a �nite dictionary is used:

1. There is no restriction on the shape of the kernel (no positive-de�niteness
constraint, symmetry, etc).

2. The dictionary could include more than a single �xed kernel shape.

3. The dictionary can even incorporate non-kernel based functions.
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4. For huge data sets, a reduced subset can be used as the dictionary to speed
up the training.

Although it is possible to extend the same ideas to any error function di�erent
from the sum-of-squares, the solution of the optimization problem at every step may
lead to an important computational e�ort, since the optimal coe�cients may not be
exactly computable.

Besides the similarities with SVMs by using kernels associated with the training
examples, some links with other methods are pointed out. As it can be easily seen,
squared-error KMP with pre-�tting and Gaussian kernels is identical to OLSL. KMP
in its basic form but generalized to non-quadratic error functions is also quite similar
to boosting algorithms [Schapire 1990]. In this sense, Leveraged Vector Machines
[Singer 2000] are very closely related to KMP with a di�erent loss function. A very
similar method to KMP, but particular for Gaussian processes, can be found in
[Smola and Bartlett 2001]. The main di�erence also lies in the loss function to be
optimized. Due to the hypothesis of the Gaussian processes, speci�c optimizations
can be performed in order to reduce the computational cost of the procedure. As in
OLSL and ZM98, there is no theoretical result of convergence.

In an arti�cial separable binary classi�cation problem, the basic version of KMP
was unable to separate the data points with the same number of frequencies as the
number of support vectors in the SVM model. In the same conditions, the back-
�tting and pre-�tting versions were able to �nd good solutions, although they chose
di�erent points as frequencies. The solution obtained by the pre-�tting version of
KMP was very similar to that of SVMs. The same behavior was observed for the US
postal service database with Gaussian activation functions. In addition, only a slight
loss of performance is observed when using half of the number of support vectors of
the SVM model, similar to [Smola and Sch�olkopf 2000; Smola and Bartlett 2001].
Classical RBFNmodels obtained worse results than SVMs and KMP with pre-�tting.
When a validation set was used to select the �nal number of frequencies (for KMP) or
the parameter C (for SVMs), the experimental comparisons between KMP with pre-
�tting and SVMs for several benchmark classi�cation problems showed comparable
results with typically much sparser models for KMP with pre-�tting.

2.6.7 Sequential Polynomial Approximations

Sequential polynomial approximations are also related to FNNs, although they do
not share most of the features of the previously described ones. The use of polyno-
mials allows to avoid non-linear optimization problems, because of the absence of
non-linear frequencies. In contrast, the number of monomials (i.e., the number of
terms) grows very fast with the input dimension and the degree.
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The Group Method of Data Handling (GMDH) [Ivakhnenko 1971], for ex-
ample, constructs polynomial approximations that can be implemented with FNNs.
The construction of the network is made layer by layer as follows. For every two
input variables, a second-order polynomial is constructed. The coe�cients are com-
puted by solving the normal equations in a minimum mean-square error sense with
respect to the true target values on a training set. After the coe�cients are com-
puted, the performance index is determined by computing the sum-of-squares error
on a test set. Only those elements (hidden units) whose performance index exceeds
a certain threshold are allowed to be used in the second layer. These elements are
used as the basis to construct, in the same way, the (more complex) elements of the
third layer, an so on. The maximum number of layers is �xed a priori. For a review
of GMDH see, for example, [Ivakhnenko and Ivakhnenko 1995]. Other models and
applications inspired by GMDH can be found, for example, in [Tenorio and Lee
1990; Parker and Tummala 1992; Nikolaev and Iba 2003].

The works where the OLSL algorithm is inspired can be seen, in fact, as sequen-
tial polynomial approximations [Billings et al. 1988; Chen et al. 1989]. The selection
of the monomials is performed trying to maximize the increment to the explained
variance of the desired output, based on orthogonal least squares methods. In [Liu
et al. 1998], after a �xed a priori number of monomials is selected, new monomi-
als are added to the network as new observations are received, similar to the RAN
approach. Lyapunov techniques are used to modify the coe�cients.

In [Rivals and Personnaz 2003a], an orthogonal least squares procedure is used, as
in OLSL, to iteratively select the monomials such that, together with the previously
selected ones, decrease the residual error at most. The procedure is stopped based
on Fisher tests or leave-one-out errors. In addition, Feature Selection is performed
by selecting only the input variables present in those monomials. These variables
are used in subsequent learning steps with MLPs.

2.6.8 Summary and Discussion

In this section we will use neural network terminology.

The construction of a sequential approximation can be formulated as a state
space search problem [Kwok and Yeung 1997a].

The state space corresponds to the collection of functions that can be obtained
by the model. In this sense, several points have been adressed in the literature:

1. The connectivity of the resulting network, which shows a large variety: from
the classical FNN with one-hidden layer of units (with or without input-to-
output connections) to cascade architectures with any number of units per
layer.
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2. The type of hidden units used. In addition to MLP or RBF units, Pi-Sigma
networks or Product units are (exceptionally) used. The activation functions
of the hidden units are more heterogeneous, depending not only on the method
but also on the �eld of application: smoothers, sigmoidal functions, Gaussian
functions, Hermite polynomials, �xed dictionaries, wavelets or kernel func-
tions, among others.

3. The activation function of the output layer, which usually is sigmoidal or
linear.

The initial state usually is a network with no hidden units. When input-to-
output connections are used, they are trained (or computed) in the initial step of
the procedure.

The evaluation criterion is, most of the times, an estimation of the network
performance, although it may also be the training error.

The termination of the search happens either when the performance of the
model is satisfactory or it begins to deteriorate. As an alternative, the search can be
terminated when the addition of several hidden units does not reduce substantially
the training error.

The search strategy determines how the model evolves during the construction.
This is the most interesting part of the algorithm, and includes:

1. The number of hidden units added at every step and their connectivity with
the other units. This point is strongly related to the state space de�ned. The
most usual strategy consists in adding one hidden unit at every step, with the
same kind of connectivity between two consecutive steps.

2. The activation function of the new hidden units, which is usually prede�ned
a priori.

3. The training steps, which can be performed with any non-linear optimization
algorithm.

4. How the new hidden units are obtained, together with the modi�cation of the
weights (frequencies and coe�cients) of the whole network:

(a) Obtaining the new frequencies without keeping the previously selected
ones �xed:

� Adding a new hidden unit when the error does not decrease sig-
ni�cantly during the training process, following the Dynamic Node
Creation scheme [Ash 1989]. The rest of the weights are not ini-
tialized, so that the obtained weights prior to the addition of the
new hidden unit are the initial guess to train the next network. The
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whole network is trained after the addition of every new hidden unit
[Hirose et al. 1991; Bello 1992; Azimi-Sadjadi et al. 1993; Bastian
1994; Bartlett 1994; Nabhan and Zomaya 1994; Wang et al. 1994;
Zhang 1994; Chung and Lee 1995; Leerink et al. 1995; Setiono and
Hui 1995; Shin and Ghosh 1995; Vinod and Ghose 1996; Hern�andez
and Fern�andez 2002].

� Splitting hidden units that have high variance during the training
process, as in the Meiosis Networks procedure [Hanson 1990; Sanger
1991a,b; Wynne-Jones 1992; Khorasani and Weng 1994; Weng and
Khorasani 1996].

� Combining a standard training process with a specialization process
when the network does not perform well on a presented pattern, fol-
lowing the ideas of Resource-Allocating Network [Platt 1991], as in
[Lee and Kil 1991; Fritzke 1994a,b; Kadirkamanathan and Niran-
jan 1993; Kadirkamanathan 1994; Liu et al. 1996; Jankowski and
Kadirkamanathan 1997; Yingwei et al. 1997a,b; Rosipal et al. 1998;
Liu et al. 1999; Salmer�on et al. 2001; Lee and Street 2003; Alexan-
dridis et al. 2003]. All of them are speci�c for RBFNs.

(b) Keeping the previously selected frequencies �xed, and training only the
new frequency and the coe�cients. The disavantage of weight freezing is
that each optimization step is not optimal, and this can result in larger
networks than those in which all the weights are optimized [Kwok and
Yeung 1993]. In contrast, the di�culty and the computational cost of
solving the underlying optimization problem is reduced. The coe�cients
are usually optimized (if needed) after the selection of the frequencies
(back-projection):

i. The new frequencies are selected to optimize a certain objective func-
tion, which usually depends on the previous residue [Kwok and Yeung
1997b]. Most of the existing methods choose the new frequencies ei-
ther to maximize the correlation between the output of the new unit
and the residual error or to match the previous residue as best as
possible (equivalently, the selected frequency maximizes the Fourier
transform of the residue). Relevant works with these underlying ideas
are:

� Cascade-Correlation [Fahlman and Lebiere 1990] and its many
variations, (usually) constructing cascade architectures with the
new frequencies (usually) maximizing the correlation between the
new unit and the residual error [Smotro� et al. 1991; Yeung 1991;
Littmann and Ritter 1992a,b; Sj�gaard 1992; Courrieu 1993; Ye-
ung 1993; Fang and Lacher 1994; Phatak and Koren 1994; Leerink
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et al. 1995; Vy�sniauskas et al. 1995; Kwok and Yeung 1996a;
Mohraz and Protzel 1996; Prechelt 1997; Treadgold and Gedeon
1997a,b; Liang and Dai 1998; Treadgold and Gedeon 1998; Lah-
naj�arvi et al. 1999; Treadgold and Gedeon 1999a; Lehtokangas
1999, 2000; Ma and Khorasani 2000; Islam and Murase 2001; Ma
and Khorasani 2003, 2004].

� Projection Pursuit Regression [Friedman and Stuetzle 1981; Di-
aconis and Shahshahani 1984; Huber 1985; Jones 1987, 1992],
originally described in the Statistics framework, with a two-layer
architecture and matching the residue at every step, with or with-
out convex approximations [Flick et al. 1990; Zhao and Atkeson
1991; Intrator 1993; Saha et al. 1993; Moody 1994; Verkooijen
and Daniels 1994; Roosen and Hastie 1994; Jutten and Chentouf
1995; Zhao and Atkeson 1996].

� Matching Pursuit [Mallat and Zhang 1993] and Orthogonal Mat-
ching Pursuit [Pati et al. 1993], in the context of Signal Process-
ing, similar to Projection Pursuit Regression with a previously
�xed dictionary.

� Projection Pursuit Learning Network, a speci�c Projection Pur-
suit Regression algorithm for MLPs [Maechler et al. 1990; Hwang
et al. 1991, 1992a,b; Lay et al. 1994; Hwang et al. 1994; Kwok
and Yeung 1995a,b, 1996b].

� The Incremental Linear Quasi-Parallel algorithm, similar to Pro-
jection Pursuit Regression but constructing convex approxima-
tions with classical FNNs [K _urkov�a and Beliczy�nski 1995a,b; Be-
liczy�nski 1996a,b; Dingankar and Sandberg 1996; Draelos and
Hush 1996; Beliczy�nski and K _urkov�a 1997; Dunkin et al. 1997;
Hlav�a�ckov�a and Sanguinetti 1998; Hlav�a�ckov�a and Fischer 2000;
Zhang 2002].

ii. Important exceptions to the idea of matching the residue, where an
(implicit or explicit) orthogonalization is performed in order to select
the new frequency, are:

� The Orthogonal Least Squares Learning algorithm [Chen et al.
1991a] and its extensions, optimizations and variations, speci�c
for RBF units and the quadratic loss function. The frequencies
are selected from the points in the data set [Chen et al. 1991b,
1992; Chng et al. 1994; Chen 1995; Chen and Wigger 1995; Chng
et al. 1995; Orr 1995; Chen et al. 1996, 1999].

� ZM98 [Zhang and Morris 1998]. The selection of the frequencies
are found through gradient descent with random initialization.
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A regularization term is added to the quadratic loss function to
avoid numerical problems derived from small norms.

� Kernel Matching Pursuit with pre-�tting [Vincent and Bengio
2002], similar to the Orthogonal Least Squares Learning algo-
rithm, but with the aim of constructing kernel-based solutions
for the quadratic loss function and not restricted to RBF units.
Similar schemes to Kernel Matching Pursuit can be found in
[Singer 2000; Smola and Bartlett 2001]

iii. Sequential polynomial approximations [Ivakhnenko 1971; Ivakhnenko
and Ivakhnenko 1995; Billings et al. 1988; Chen et al. 1989; Tenorio
and Lee 1990; Parker and Tummala 1992; Liu et al. 1998; Nikolaev
and Iba 2003; Rivals and Personnaz 2003a]. In this case, the use
of polynomials allows to avoid non-linear optimization problems, be-
cause of the absence of non-linear frequencies. In contrast, the num-
ber of monomials (i.e., the number of terms) grows very fast with the
input dimension and the degree.

In practice, sequential approximations have been found to be very competitive
in di�erent tasks, such as detection and classi�cation of buried dielectric anoma-
lies [Azimi-Sadjadi et al. 1993], speech recognition [Mallat and Zhang 1993], elec-
troencephalogram automatic epileptic seizure detection [Weng and Khorasani 1996],
voltage and current fault detection [Lin et al. 2001], image compression [Ma and
Khorasani 2002], handwritten digit recognition [Vincent and Bengio 2002] or detec-
tion and classi�cation of breast cancer nuclei [Lee and Street 2003]. Experiments on
well-known benchmark problems for classi�cation and regression have also shown
the good properties of sequential methods.

Most of the aforementioned methods use families of functions that have the uni-
versal approximation property. In the same way, the convergence property in L2 is
satis�ed by many of them. When the convergence property is satis�ed, the approx-
imation error is upper bounded by B=

p
N , where N is the number of terms of the

approximation. The constant B depends on the target function f and the particular
hypotheses of the theoretical developments. This rate for sequential approximations
has been several times rediscovered with di�erent constants and hypotheses [Jones
1992; Barron 1993; Darken et al. 1993; Koiran 1994; K _urkov�a and Beliczy�nski 1995b;
DeVore and Temlyakov 1996; Lee et al. 1996; Dingankar and Sandberg 1996; Kwok
and Yeung 1997b; Hlav�a�ckov�a and Sanguinetti 1998; Zhang 2002]. Many of them
are based on the results in [Jones 1992]. In principle, this rate of approximation
suggests that the curse of dimensionality can be avoided, since the dimension is
not explicitly involved. However, it seems to be implicitly present in at least two
ways [Kainen 1998]. First, the class of functions for which the approximation rate
holds is smaller with increasing dimension. Second, the constant B also depends
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implicitly on the dimension, because depends on f . One of the common features of
these results is that they have always been proved (to our knowledge) either when
the new term is selected so as to approximate the previous residue or for sequential
convex approximations following the scheme

kf � fNk 6 inf
g;�N

kf � ((1� �N)fN�1 + �Ng)k+ "N ;

where the approximation of the residue is also present.
As it can be seen, most of the existing sequential methods that keep the pre-

viously selected frequencies �xed choose the new frequency looking at its approx-
imation capability of the residue. Although this strategy leads to approximations
convergent towards the target function, it may be far from being the best strategy,
as it will be seen in chapter 3, even if the coe�cients are optimized after the selection
of the frequencies. Regardless of the coe�cients optimization, trying to approximate
the residue does not take into account the interactions with the previously selected
terms.

2.7 Feature Selection with MLPs

2.7.1 Feature Selection

There exist many situations where one does not have a priori neither a model that
could describe the phenomenon nor the knowledge of which variables are adequate
to describe it. This is a very common situation in Medicine or Psychology, for
example. The expert may have several intuitions about the variables related to a
certain problem, but by no means has neither the security that those are all the
variables needed to explain the phenomenon nor the con�dence that all of them are
useful. When important variables are missing, the problem cannot be solved. If
some variables are irrelevant, models that consider them as important will probably
have performance problems. In addition, the number of available examples is usually
small and they may be noisy or incomplete.

Therefore, features8 in an SML system are not equally informative. Some of
them may be noisy, redundant or meaningless for the task at hand. The problem
of Feature Selection (FS) can be de�ned as follows [Liu and Motoda 1998]: given a
set of I candidate features, select a subset that performs the best under a certain
evaluation criterion. In addition to reducing the storage requirements and increasing
the computational speed, FS may lead to improve the performance of an SML
system, as it has been known for a long time [Kittler 1978, 1986; Siedlecki and

8Sometimes, the term \variable" is used for the raw input, and \feature" for any input con-
structed from the original variables. We will not distinguish between variables and features.
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Sklansky 1988]. Nowadays, FS is still an active line of research [Guyon and Elissee�
2003].

We will focus on FS from the SML point of view. That is, our major concern
is to improve the predictive behavior of the system. From an SML point of view,
FS procedures control the Bias/Variance decomposition by means of the input di-
mension, establishing a clear connection with the curse of dimensionality [Liu and
Motoda 1998]. When too many variables are considered the systemmay be too com-
plex, increasing the variance term (whenever the complexity of the system is not
controlled by other ways or there is not enough data to �lter irrelevant variables, for
example). As far as the variables are eliminated, the complexity is reduced, but the
bias term may increase. Likewise, when too many variables are considered, there
may be many di�erent solutions capable of �tting the same data set. But only a
few number of these solutions will lead to good generalization. If the system gives
some importance to irrelevant variables in order to �t the data set, it will use this
information for new data, probably leading to poor generalization even if we try to
control the over�tting. This problem is shared by all SML approaches, and it is one
of the most important motivations for FS from an SML point of view.

As pointed out in [Blum and Langley 1997; Liu and Motoda 1998; Molina et al.
2002], there is no commonly accepted de�nition of the relevance of a variable. Given
a data set, we will consider that a variable is irrelevant for an SML system when
its optimal performance is not a�ected negatively by the absence of that variable,
following [Liu and Motoda 1998] (page 29). Note that this is a dynamic de�nition,
since the relevance of a variable may be a�ected by the presence or absence of other
ones. For example, redundant features may be considered as irrelevant. In addition,
observe that this de�nition of relevance is dependent of the particular SML system
used.

From a computational point of view, the previous de�nition of FS leads to a
search problem in a space of 2I elements. Therefore, two components must be
speci�ed: the feature subset evaluation criterion and the search procedure

through the space of feature subsets.

2.7.1.1 Feature Subset Evaluation Criteria

Many di�erent evaluation criteria to select the subset of features can be found in the
literature, based on di�erent measures, such as distance, information, consistency,
dependence or accuracy, among others (see [Liu and Motoda 1998; Molina et al.
2002] for details). These measures are extremely related to the motivation of the FS
procedure. For pure SML objectives, the accuracy of the induced model is surely the
most appealing measure. From other points of view (data reduction, noise removal,
for example), di�erent measures can be adequate [Liu and Motoda 1998]. These
two FS perspectives are in turn related to the wrapper and the �lter approaches
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respectively, as explained next.
In the wrapper approach [John et al. 1994], the feature subset selection is done

using an SML algorithm as a black box (i.e., no knowledge of the algorithm is needed,
just the interface). The evaluation criterion of a feature subset is the accuracy of the
induced SML system with those features. The �lter approach, in contrast, selects
the features as in a preprocessing step, without speci�cally taking into account the
e�ects of the selected (or discarded) features in the future performance of a particular
SML system.

In the comparison performed in [Kohavi and John 1997], a signi�cant improve-
ment in accuracy is achieved by the wrapper approach with respect to the �lter one.
The independence of the SML system is precisely the main disadvantage of �lter
models for SML objectives. Wrappers, in contrast, are very sensitive to the SML
algorithm, so that sometimes it is di�cult to determine the \real" relevance of a
feature for the problem. Regarding the computational cost, wrapper approaches are
computationally more expensive than �lter ones.

A di�erent scheme is used in the embedded approach, where the SML algorithm
has its own FS procedure (either implicit or explicit). Decision trees and several FS
methods for MLPs, for example, can be seen from this point of view.

2.7.1.2 Search Procedures

Concerning the search procedure, there exists a wide range of methods to avoid the
computationally prohibitive (in the general case) exhaustive search. Some of them
are able to determine the optimal feature subset under certain assumptions, such as
the Branch and Bound algorithm [Narendra and Fukunaga 1977], which needs the
evaluation criterion to be monotone. Most methods seek for a suboptimal solution
heuristically (the accuracy of an SML system is not necessarily monotone).

Rather well-known heuristic methods are the sequential ones, where features are
deleted from (or added to) the partial solution at every step. The simplest ones
are the Sequential Backward Selection (SBS) and the Sequential Forward Selection
(SFS) procedures (see [Kittler 1978], for example). SBS is a top-down process. Start-
ing from the complete set of available features, one feature is deleted at every step
of the algorithm. The selected feature is that whose removal gives rise to the best
value of the evaluation criterion. SFS is a bottom-up process. The procedure begins
with an empty subset of selected features. At every step, the feature which gives
rise, together with the already selected features, to the best value of the evaluation
criterion is added to the subset. Ideally, it is expected that performance improves as
far as features are deleted (added), but at some point the elimination (inclusion) of
further features results in performance degradation [Kittler 1986]. Several features
may be deleted (added) at the same step. On the basis of these two algorithms,
bidirectional methods apply SFS and SBS alternatively or simultaneously, as in a



70 Chapter 2. Background Material

Plus-m-Minus-n procedure. As an example, the Sequential Backward Floating Se-
lection method de�ned in [Pudil et al. 1994] works at every iteration in two steps. In
the �rst step (unconditional exclusion), the least signi�cant feature is deleted. In the
second step (conditional inclusion), the most signi�cant of the remaining features is
added only if the resulting subset is the best subset with the same size found so far.
This second step is repeated until no improvement is found. The procedure stops
when the number of features required is obtained.

Non-sequential heuristic methods are usually characterized by the property that
the next state is determined in a nondeterministic manner. The simplest idea is to
generate random subsets of features [Liu and Setiono 1996], but there also exist more
sophisticated strategies, based on simulated annealing or genetic algorithms, as in
[Siedlecki and Sklansky 1988; Yang and Honavar 1998]. Other FS methods weight
the features in a continuous way, so that the search is performed in the (continuous)
weight space rather than in the (discrete) feature space [Kira and Rendell 1992].

The search stopping criterion is dependent on the particular feature subset eval-
uation and search procedure used. For wrapper approaches, the most commonly
stopping criterion used depends on the accuracy of the induced SML system with
the feature subset (the training error or an estimation of the generalization error,
for example).

2.7.2 Speci�c Feature Selection Algorithms with MLPs

Many FS algorithms for MLPs share underlying ideas with pruning algorithms [Reed
1993]. In fact, some pruning procedures can be used to perform FS. In this sense,
many FS procedures for MLPs use as evaluation criterion some variation of the
concept of saliency used in some pruning methods. A feature is considered more
important whenever its saliency is larger, so that input units with small saliencies
can be eliminated. There exist other FS algorithms for MLPs that also de�ne a
saliency but they are not based on pruning. Regarding the search procedure, most
FS schemes for MLPs use the SBS algorithm.

The next subsections are devoted to a more detailed description of speci�c FS
methods with MLPs, classi�ed according to their saliencies. Our aim has been to
carry out a review as complete as possible. A discussion of several important aspects
of the described schemes is also included, which motivates our work presented in
chapter 4.

2.7.2.1 FS Using Unit Saliencies Based on Weight Saliencies

The saliency of a weight is de�ned with the aim to be a measure of its relative
importance in the network. The weights with lower saliency are the candidates
to be pruned (weight saliency was originally de�ned for pruning algorithms). The
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saliency of a unit based on weight saliencies is de�ned as the summation of the
saliencies of the weights of that unit.

Some de�nitions of weight saliencies can be found in the literature with di�erent
criteria:

1. Depending only on the magnitudes of the weights, as in [Lee et al. 1993; Wikel
and Dow 1993; Tetko et al. 1996; Messer and Kittler 1998]. These models
consider that small weights are less important than large ones.

2. As a function of the variance of the weights during the training process, as
in [Lee et al. 1993; El-Deredy and Branston 1995; Cibas et al. 1994a, 1996].
The idea behind these models is that weights with small variance are not very
active, and can be eliminated.

3. Approximating the di�erence in the loss function (usually the sum-of-squares)
when the weight is set to zero, as in [Cibas et al. 1994b, 1996; Stahlberger and
Riedmiller 1997; Attik et al. 2004], related to the wrapper approach. These
saliencies are based on the Optimal Brain Damage model [Le Cun et al. 1990]
and its later improvements [Hassibi and Stork 1993; Pedersen et al. 1996],
where an approximation to the di�erence in the loss function is given in terms
of the Hessian matrix.

2.7.2.2 FS Using Unit Saliencies Not Based on Weight Saliencies

The saliency of a unit may also be de�ned independently on the weights magnitudes:

1. As the estimated relative strength of the connections of the input unit, com-
puted using the weights and the activation values of a trained network on a
data set [Tetko et al. 1994]. Input units with low relative strengths are the
candidates to be removed.

2. As the di�erence between the respective output vectors when the features are
removed from a trained network (equivalently, set to 0) [De et al. 1997; Bahbah
and Girgis 1999]. The underlying idea is that the di�erence will not di�er too
much for less important attributes.

3. As the minimum variation of the weights when the input unit is temporarily
removed [Castellano and Fanelli 2000]. The selected input unit is such that,
when deleted, the weights in the �rst layer can be analytically modi�ed as least
as possible so that the net-input of the hidden units remains approximately
unchanged.
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4. As the contribution of the input unit to the variance of the net-input of the
hidden units [Boger and Guterman 1997; Boger 2003]. The underlying hy-
pothesis is that input units that make relatively small contributions to the
variance of the net-input of the hidden units can be considered as constants
and replaced by a �xed bias.

5. Computing (or approximating) the sensitivity (in terms of the derivative) of
the outputs with respect to the input units, either in the whole space or a data
set [Ruck et al. 1990a; Priddy et al. 1993; Sano et al. 1993; Engelbrecht and
Cloete 1996; Zurada et al. 1997; Hsu et al. 2002]. These methods are based
on the hypothesis that irrelevant features produce smaller variations in the
output values than relevant ones.

6. Back-propagating an estimation of the mutual information between the out-
puts and the targets [Sindhwani et al. 2004]. This model tries to take pro�t
of information measures.

7. As the value in the loss function when the feature values are substituted by
its average value (in an already trained network) [Moody and Utans 1992; Lee
et al. 1993; Baesens et al. 2000], following the wrapper approach. This heuristic
assumes that the replacement of a variable by its average value removes its
in
uence on the network output.

8. Simply as the value (or an approximation of it) in the loss function when
the feature is removed from the network (after the network has already been
trained) [Mozer and Smolensky 1989; Mao et al. 1994; Setiono and Liu 1997;
Egmont-Petersen et al. 1998; Van de Laar et al. 1999; Verikas and Bacauskiene
2002], following the wrapper approach. As an exception, in [Onnia et al.
2001] every candidate feature is temporarily added before training the net-
work. Some of them approximate this value in several ways, instead of directly
computing it from the data set [Mozer and Smolensky 1989; Mao et al. 1994;
Egmont-Petersen et al. 1998].

2.7.2.3 Other Feature Selection Schemes for MLPs

In [Belue and Bauer 1995; Steppe and Bauer 1996], the de�nition of saliency in
[Ruck et al. 1990a] is used to compare the saliency of an arti�cially introduced
noisy variable with that of the original features. The average saliency of the noisy
variable is assumed to be normally distributed, and features whose saliency falls
inside a certain con�dence interval are removed. In [Bauer et al. 2000], another
saliency measure is de�ned where the magnitudes of the weights of every input unit
are compared to those of an injected noise feature.
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Similar to a pruning procedure, hidden and input units are removed in an inte-
grated way in [Steppe et al. 1996]. Starting with a full network, hidden and input
units are sequentially removed from the network whenever the performance of the
reduced network improve. The procedure stops when the elimination of any feature
does not lead to a better performance. A similar idea can be found in [Rivals and
Personnaz 2003b], where the elimination of hidden and input units are based on
statistical tests.

In [Grandvalet 2000], the input values are perturbed with the injection of Gaus-
sian noise. The variance of the injected noise is allowed to be di�erent for every
feature, and it is modi�ed during the training procedure. This variance gives a
measure of the relevance of the variable.

An ensemble of neural networks is the basis for the FS procedure described in
[Van de Laar and Heskes 2000]. A set of subsets of features is maintained at every
step (initially the set of all possible subsets with one variable less than the original
features). The basis of the scheme is the SBS procedure but, similar to bidirectional
FS methods, subsets of features may also be added. For every subset of features,
the generalization performance is estimated for each neural network in the ensemble.
The procedure stops when all variables are removed.

2.7.2.4 Critical Points of Feature Selection with MLPs

Many variants of FS procedures with MLPs have been proposed. The following list
describes the most interesting points, in our opinion, for FS with MLPs, namely the
saliency (evaluation criterion), the search procedure, the stopping criterion of the
network training, the data set where the value of the loss function is measured and
the network retraining previous to computing the saliency.

1. Regarding the saliency, trying to minimize the value of the loss function is
surely the optimal criterion for FS from an SML point of view [Liu and Mo-
toda 1998]. As explained in the previous sections, it is the most commonly
used. Saliencies di�erent from this one are mainly motivated and justi�ed by
computational cost reasons. Although there are situations where they may
work, there is a lack of theoretical results that support them.

2. Regarding the search procedure:

(a) Some authors only de�ne a saliency measure, and do not de�ne a real FS
procedure [Sano et al. 1993; Tetko et al. 1994; Engelbrecht and Cloete
1996; De et al. 1997; Grandvalet 2000].

(b) Sometimes, the features are ranked according to their saliency, and the
higher ranked features are selected in a single step as in a preprocessing



74 Chapter 2. Background Material

procedure [Ruck et al. 1990a; Moody and Utans 1992; Priddy et al. 1993;
Wikel and Dow 1993].

(c) In general, FS with MLPs follows the scheme of the SBS procedure. It
starts by training a network with the whole set of features. Then, the
saliencies are computed and the input variable with the lowest saliency
is removed. The weights of the network are modi�ed, and the loop starts
again until a certain criterion is satis�ed. Some particular variations of
the procedure are:

i. Sometimes, a regularization term is added to the original loss function
in order to encourage the network to contain removable units (see,
for example, [Cibas et al. 1994a; Setiono and Liu 1997; Verikas and
Bacauskiene 2002]).

ii. After a feature has been de�nitively removed, the most usual way to
modify the weights of the network is by retraining the whole network
(either from scratch or from the current state), although several mod-
els recalculate analytically the weights (see, for example [Stahlberger
and Riedmiller 1997; Egmont-Petersen et al. 1998; Van de Laar et al.
1999; Castellano and Fanelli 2000; Attik et al. 2004]).

iii. Sometimes, several features are eliminated in the same step, as in
[Cibas et al. 1994a,b; Belue and Bauer 1995; Steppe and Bauer 1996;
Zurada et al. 1997; Boger 2003], maybe losing the possibility of �nd-
ing the interactions among the eliminated variables.

Only exceptionally the SBS procedure is not used. In [Onnia et al. 2001],
for example, a classical SFS procedure is performed. In [Hsu et al. 2002], a
heuristic subset selection is used where at every step a certain percentage
of the best features are selected according to the de�ned saliency and the
results in previous steps. In [Sindhwani et al. 2004], a direct search is
performed among feature subsets of the desired size. Other models that
do not use the SBS procedure [Steppe et al. 1996; Van de Laar and Heskes
2000] have also been brie
y described (see previous section). In general,
we also think that the SBS procedure is a proper search procedure, since
it may help to detect irrelevant variables in the �rst steps.

3. Regarding the stopping criterion of the network training, the networks are
trained, in most cases, until a local minimum of the loss function with the
training set, where the saliencies de�nitions are supposed to work well9. There

9Many authors do not specify this point in their papers. We suppose that the training process
under expressions like \Train a network for a number of epochs on the training data" or \After
the network was trained,: : :" tries to �nd a local minimum of the loss function with the training
set.



2.7. Feature Selection with MLPs 75

are several exceptions [Wikel and Dow 1993; Tetko et al. 1996; Steppe et al.
1996; Van de Laar et al. 1999; Van de Laar and Heskes 2000; Baesens et al.
2000; Onnia et al. 2001; Hsu et al. 2002; Verikas and Bacauskiene 2002], where
an early stopping procedure is performed (usually with a validation set).

4. Regarding the data set where the saliency is measured (when a data set is
needed to compute the saliency), most of existing methods only use the train-
ing set. Several exceptions are [Moody and Utans 1992; Cibas et al. 1994b;
Steppe et al. 1996; Van de Laar et al. 1999; Van de Laar and Heskes 2000;
Onnia et al. 2001; Hsu et al. 2002; Verikas and Bacauskiene 2002; Sindhwani
et al. 2004], where a validation or test set is used to compute the saliency
(usually to estimate the generalization error).

5. Regarding the network retraining previous to computing the saliency, most
of the existing procedures compute the saliency of every feature by looking
at the behavior of a network trained with that feature. For example, the
input values are temporarily modi�ed (removed or substituted by its average
value) in a trained network. The only models that, in order to compute the
saliency, retrain the network at every step with every feature temporarily
removed/added are (to our knowledge) those described in [Steppe et al. 1996;
Onnia et al. 2001], and none of them is a pure SBS procedure.

In general, there is no commonly accepted criterion about some of the previously
described issues when performing FS with MLPs:

1. When to stop the training phase.

2. Which is the best data set (when needed) to measure the saliency.

3. Whether it is better to compute the saliency of a variable when the network
has been trained with that feature, as opposed to the alternative of computing
the saliency in a network trained without it.

There exist a lack of comparative results among these issues in the literature. In
[Leray and Gallinari 1999] several methods are compared with arti�cial problems.
In [Fern�andez and Hern�andez 1999] a more exhaustive comparison is performed
with benchmark data sets. But these studies are focused on the performances of
the original methods rather than testing the aforementioned points. Chapter 4 is
devoted to a comparison of these criteria when performing FS with MLPs.
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2.8 Margin Maximization, Support Vector Ma-

chines and AdaBoost

2.8.1 Margin Maximization

As previously said (see (2.15) and (2.16) in section 2.5), some theoretical results in
Statistical Learning Theory provide probabilistic bounds on the distance between
the empirical and the expected risk. These bounds depend on a measure of the

exibility of the class of functions under study, such as the VC-dimension, and they
are related to the Bias/Variance trade-o�. In practice, unfortunately, this measure
is often neither easily computable nor very helpful [M�uller et al. 2001]. But for
the class of hyperplanes, the VC-dimension can be bounded by another quantity,
the inverse of the margin, which is related to the minimal distance of a vector to a
hyperplane [Vapnik 1995]. This combination of results allows to consider the margin
maximization as a good heuristic to try to minimize the VC-dimension, which in
turn bounds the expected risk.

2.8.2 Support Vector Machines

Suppose the classi�cation task given by a data set D as in (2.1), where each yi
belongs to f�1;+1gC and C is the number of classes10.

SVMs can be described as follows [Boser et al. 1992; Cortes and Vapnik 1995;
Vapnik 1995; Cristianini and Shawe-Taylor 2000]: the input vectors are mapped into
a (usually high-dimensional) inner product space through some non-linear mapping
�, chosen a priori. In this space (the feature space), an optimal separating hyper-
plane is constructed. By using a kernel function K(u; v) the non-linear mapping
can be implicit, since the inner product needed to de�ne the hyperplane can be
evaluated as h�(u); �(v)i = K(u; v). In SVMs, an optimal separating hyperplane
means a hyperplane with maximal normalized margin with respect to the data set.
The (functional) margin of a point (x; y) with respect to a function fo is de�ned
as mrg(x; y; fo) = yfo(x). The margin of a function fo with respect to a data set
D is the minimum of the margins of the points in the data set. If fo is a hyper-
plane, the normalized (or geometric) margin is de�ned as the margin divided by the
norm of the orthogonal vector to the hyperplane. Thus, the absolute value of the
normalized margin of a point is the distance of that point to the hyperplane, and
the hyperplane with maximal normalized margin with respect to the data set is the
hyperplane whose minimum distance to the points of every class is maximum.

When the data setD is linearly separable, the maximal (hard) margin hyperplane

10For 2-class problems, usually yi2f�1;+1g.
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is obtained by solving

Minimizew;b hw;wi
subject to yi(hw; xii+ b) > 1 i = 1; � � � ; L (2.26)

When the data set is not linearly separable (neither in the input space nor in the
feature space), some tolerance to noise is introduced in the model. In this case, slack
variables �i are introduced to allow the margin constraints to be violated [Cortes
and Vapnik 1995]. The optimization problem related to the 1-norm soft margin is

Minimizew;b;� hw;wi + C
PL

i=1 �i
subject to yi(hw; xii+ b) > 1 � �i i = 1; � � � ; L

�i > 0 i = 1; � � � ; L
(2.27)

for a certain constant C. Using Lagrangian and Kuhn-Tucker theory, the resulting
SVM for a binary classi�cation problem has the form

foSVM (x) =
LX
i=1

yi�iK(xi; x) + b (2.28)

where the inner product has been replaced by its general kernel version and the
vector (�i)

L
i=1 is the (1-norm soft margin) solution of the following constrained op-

timization problem in the dual space:

Maximize� M(D) = �1
2

PL
i;j=1 yi�iyj�jK(xi; xj) +

PL
i=1 �i

subject to
PL

i=1 yi�i = 0 (bias constraint)
0 6 �i 6 C i = 1; � � � ; L

(2.29)

In many implementations, b is treated apart (�xed a priori, for example) in
order to avoid the bias constraint. A point is well classi�ed if and only if its margin
with respect to foSVM is positive. The points xi with �i > 0 (active constraints)
are named support vectors. Bounded support vectors have �i = C. Regarding their
margin value, non-bounded support vectors have margin 1, while bounded support
vectors have margin less than 1. By setting C = 1, one obtains the hard margin
hyperplane. The cost function �M(D) is (plus a constant) the squared norm of the
error function y(x)� foSVM(x) in the Reproducing Kernel Hilbert Space associated
with K(u; v) [Cristianini and Shawe-Taylor 2000]. The most usual kernel functions
K(u; v) are polynomial, Gaussian-like or some particular sigmoids. In contrast to
FNNs, note that the appearance of the SVM solution in (2.28) (a linear combination
of the inner products with the support vectors as frequencies) is a consequence of
the optimization problem solved.

The Bias/Variance trade-o� is controlled by the parameter C. It expresses the
importance given to the violation of the margin constraints, as can be seen in (2.27).
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In the solution (2.28) of (2.29), C bounds the coe�cient of every term. When
C = 0, any constant function is a solution of (2.27). Constant functions have low
variance but high bias. When C = 1, the hard margin hyperplane (if exists)
is the solution with lowest bias (it allows to classify correctly every point in the
data set), but probably with high variance. In some sense, the parameter C acts
as a regularization parameter [Smola et al. 1998]. Related to the Structural Risk
Minimization principle, increasing values of C de�ne a nested sequence of hypothesis
classes with increasing complexity. The hard margin SVM tries to minimize the VC-
dimension (by maximizing the margin) while keeping null empirical risk. The soft
margin SVM minimizes a combination of the complexity measure and some function
related to the empirical risk. Other soft margin SVMs can be obtained by changing
the second term of this combination or the constraints (see [Cortes and Vapnik 1995;
Suykens and Vandewalle 1999a], for example).

Recent years have seen a quick growing of research in SVMs, motivated by both
interesting theoretical and experimental results (see, for example [Cortes and Vapnik
1995; Sch�olkopf et al. 1997; Vapnik 1998a; Pontil and Verri 1998; Chapelle et al.
1999; Drucker et al. 1999; Sch�olkopf et al. 1999; Smola et al. 2000; Cristianini and
Shawe-Taylor 2000; Brown et al. 2000; Ramaswamy et al. 2001; Hua and Sun 2001;
Lodhi et al. 2002; Herbrich 2002; Sch�olkopf and Smola 2002; Van Gestel et al. 2004],
other references in http://kernel-machines.org and some links in the web page of
Isabelle Guyon http://www.clopinet.com/SVM.applications.html). In some cases,
however, it has been shown that the maximal margin classi�er is not the optimal
one [Raudys 1998b, 2000].

2.8.3 AdaBoost

The purpose of boosting [Freund 1990; Schapire 1990] is to �nd a highly accurate
classi�cation rule by combining many weak classi�ers (or weak hypotheses), each
of which may be only moderately accurate. The AdaBoost algorithm is a partic-
ular boosting algorithm introduced in [Freund and Schapire 1996, 1997] and later
improved in [Schapire and Singer 1999]. In AdaBoost, the weak hypotheses are
learned sequentially, one at a time. Conceptually, at each iteration the weak hy-
pothesis is biased to classify the examples which were most di�cult to classify by
the preceding weak hypotheses. The margin of every example is considered in order
to construct every weak hypothesis, which are linearly combined into a single output
rule named the combined hypothesis.

The generalized AdaBoost algorithm for binary classi�cation [Schapire and Singer
1999] maintains a vector of weights as a distributionDt over the examples. At round
t, the goal of the weak learner algorithm is to �nd a weak hypothesis ht : X ! R

with moderately low error with respect to the distribution Dt. In this setting,
weak hypotheses ht(x) make real-valued con�dence-rated predictions. Initially,
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the distribution D1 is uniform, but after each iteration, the algorithm increases
(or decreases) the weights Dt(i) for which ht(xi) makes a bad (or good) predic-
tion, with a variation proportional to the con�dence jht(xi)j. The �nal hypothesis,
foAB : X ! R, computes its predictions using a weighted vote of the weak hypothe-
ses foAB(x) =

Pt
j=1 �jhj(x). For each example x, the sign of foAB(x) is interpreted

as the predicted class (�1 or +1), and the magnitude jfoAB(x)j is interpreted as a
measure of con�dence in the prediction. The concrete weight updating rule can be
expressed as

Dt+1(i) = Dt(i)�exp(��tyiht(xi))
Zt

= : : :

=
exp(�

Pt
j=1 �jyihj(xi))Qt
j=1 Zj

=
exp(�yifoAB(xi))Qt

j=1 Zj
=

exp(�mrg(xi;yi;foAB))Qt
j=1 Zj

(2.30)

In [Schapire and Singer 1999] it is proved that the training error of the AdaBoost
algorithm decreases exponentially with the normalization factor Zt computed at
round t. This property is used to guide the design of the weak learner, which at-
tempts to �nd a weak hypothesis ht minimizing Zt =

PL
i=1 Dt(i) �exp(��tyiht(xi)) .

There is not a direct interpretation of AdaBoost within the Bias/Variance de-
composition. It seems clear that bias is reduced when the number of rounds grows
up (in fact, that was the original goal of boosting). The behavior of variance is not so
clear. On the one hand, variance tends to increase as the number of terms increases
(specially if the examples with the smallest margins are noisy). On the other, the
aggregated nature of AdaBoost controls in some way the variance term. Several
experiments on this issue have been performed in [Schapire et al. 1998; Bauer and
Kohavi 1999], but they cannot be considered as conclusive, since they use de�nitions
of bias and variance for the decomposition of the 0=1 loss function which may not
be very adequate (see [Domingos 2000a]).

The learning bias of AdaBoost is proven to be very aggressive on maximizing the
margin of the training examples [Schapire et al. 1998; Schapire and Singer 1999],
since it concentrates on the examples with the smallest margins. This makes a clear
connection to the SVMs learning paradigm. From (2.30) and the previous expression
of Zt, it can be said that AdaBoost is a stagewise procedure for minimizing a certain
error function which depends on the functional margin �mrg(xi; yi; f). More specif-
ically, AdaBoost tries to asymptotically minimize g(b) =

P
i exp

��1
2yi
P

t btht(xi)
�

[R�atsch et al. 1999], a function that depends on the negative exponential of the mar-
gin of the combined classi�er. More details about the relationship between AdaBoost
and SVMs can be found in [R�atsch et al. 2001, 2002].

2.8.4 Mixed Models Between FNNs and SVMs

The method that we propose in chapter 5 includes a modi�cation of the quadratic
loss function for classi�cation problems related to SVMs. This section is devoted to
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a brief description of mixed models between FNNs and SVMs, related to our work.
We did not �nd many publications in this line.

For the linearly separable case, a learning algorithm that asymptotically obtains
the maximummargin classi�er is described in [Raudys 1998a]. The architecture used
is a Single-Layer Perceptron (an MLP without hidden units and with sigmoidal units
in the output layer), trained with BP. In order to work, the weights must be large,
so that only the points closest to the decision hyperplane contribute signi�cantly to
the error (and to the �nal determination of the hyperplane location). In practice,
learning rates are exponentially increased. No modi�cation of the sum-of-squares
error function is done. A similar idea is described in [Cid-Sueiro and Sancho-G�omez
2001].

The Least Squares Support Vector Machine described in [Suykens and Vande-
walle 1999a] is a soft margin SVM where the 1-norm of the slack vector in (2.27)
is replaced by the 2-norm. In addition, inequality constraints are substituted by
equality constraints. As a consequence, the whole minimization problem can be
seen as that of minimizing the quadratic loss function with a regularization term
(the inverse of the geometric margin). However, the solution is obtained in an SVM
manner, so that the resulting model uses kernel functions and shares with SVMs
the existence of support vectors.

In [Suykens and Vandewalle 1999b], a training procedure for MLPs based on
SVMs is described. The activation function is not necessarily a kernel function, and
the learning process is guided by the minimization of the estimation of an upper
bound of the VC-dimension.

The work in [Vincent and Bengio 2000] investigates learning architectures in
which the kernel function can be replaced by more general similarity measures which
can have internal parameters. The cost function is modi�ed to be dependent on the
margin. In particular, the cost function M(D) =

PL
i=1[0:65� tanh(mrg(xi; yi; f))]

2

is used in the performed experiments. The frequencies are forced to be a subset of
the points in the data set, as in SVMs.



Chapter 3

SAOCIF : A Sequential Algorithm

with Optimal Coe�cients and

Interacting Frequencies

In this chapter we describe an algorithm for sequential approximation with Feed-
forward Neural Networks (FNNs) with optimal coe�cients and interacting frequen-
cies. The contribution of the new frequency is measured in terms of its capability
of approximation to the target vector together with the previously selected frequen-
cies. There is no explicit intention to match the residue. The idea behind the
proposed algorithm can be extended to approximation in Hilbert spaces, maintain-
ing orthogonal-like properties. The algorithm is tested with several arti�cial and
benchmark data sets.

3.1 Introduction

Most of the sequential models found in the literature keep the previously selected
frequencies �xed and train only the new frequency and the coe�cients. Among these
sequential models, many of them choose the new frequency so that it matches the
previous residue as best as possible. Equivalently, the selected frequency tries to
maximize the Fourier transform of the residue at every step. After the selection of
the frequencies, the coe�cients are usually optimized (back-projection). Important
exceptions to the idea of approximating the residue are the OLSL algorithm [Chen
et al. 1991a], ZM98 [Zhang and Morris 1998] and the KMP with pre-�tting algo-
rithm [Vincent and Bengio 2002], where an (implicit or explicit) orthogonalization
procedure is performed (see section 2.6).

Although the strategy of approximating the residue leads to approximations
convergent towards the target function, it may be far from being the best strategy,

81
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Figure 3.1: Sequence of the approximation of a vector f in R2 with v1 and v2 by matching
the previous residue without recalculating the coe�cients. In the �rst step (middle), X1

is obtained. In the second step (right), r1 is approximated with v2. The resulting vector
(X2) is not the best approximation that can be achieved with v1 and v2. In this case,
optimizing the coe�cients (back-projection) allows to obtain f .

as it can be observed in the example in �gure 3.1. When approximating the vector
f with v1 and v2 we obtain X2. Clearly, this is not the best possible approximation,
since v1 and v2 form a basis of R2. In this case, optimizing the coe�cients of the
previously added terms (back-projection) would lead to a much better approximation
(exact, in fact) of the target function. Other examples in this line can be found in
[Diaconis and Shahshahani 1984; DeVore and Temlyakov 1996]. But recalculating
the coe�cients is not enough, as illustrated in the example in �gure 3.2. Suppose
that X1 is a partial approximation of f , and h is the vector which best matches
the residue r1. Since h does not lie on the plane that contains X1 and f , it is
not necessarily the vector that, together with X1, best approximates the target
vector f . Any vector lying on the plane that contains X1 and f (g, for example)
allows an exact approximation of f . Regardless of the coe�cients optimization,
trying to approximate the residue does not take into account the interactions with
the previously selected terms. Any vector lying on the plane that contains f and a
vector of the subspace spanned by the previous terms allows an exact approximation
of the target vector. The vector that best matches the residue does not necessarily
satisfy this property.

In this chapter we describe an algorithm for Sequential Approximation with Op-
timal Coe�cients and Interacting Frequencies (SAOCIF ) for FNNs, which com-
bines these two key ideas. On the one hand, it optimizes the coe�cients (the lin-
ear weights), so that the best approximation with the selected vectors is always
achieved, as in �gure 3.1. On the other, the frequencies (the non-linear weights)
are selected at every step taking into account the interactions with the previously
selected terms, as in �gure 3.2. The interactions are discovered by means of the
optimal coe�cients. The contribution of the new frequency is measured in terms
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Figure 3.2: Approximation of a vector f in R3 matching the previous residue and recal-
culating the coe�cients. The vector h is the vector that best matches the residue r1. The
vector g, which lies on the plane that contains f and X1, allows an exact approximation to
f when combined with X1. The vector h (not on this plane) does not have this property.
In this case g is preferred to h and optimizing the coe�cients is not enough if h is selected.

of its capability of approximation to the target vector together with the previously
selected frequencies. There is no explicit intention to match the residue. In the
example in �gure 3.2, SAOCIF would select g (instead of h), because it allows a
better approximation of f when combined (interacts) with X1. That is the idea of
interacting frequencies. Whereas the approximation of the residue and the poste-
rior optimization of the coe�cients can be seen as two consecutive steps, SAOCIF
performs both steps simultaneously. The resulting scheme combines the locality of
sequential approximations, where only one frequency is found at every step, with
the totality of non-sequential methods, such as Back-Propagation (BP), where every
frequency interacts with the others.

In the proposed algorithm, a number of candidate frequencies are obtained at
every step using di�erent heuristics. Every candidate frequency is installed in the
network, and the whole set of coe�cients are optimized, in order to test the real
contribution of the frequency to the approximation to the target vector. The candi-
date frequency that, together (interacting) with the previously selected frequencies,
allows a better approximation of the target vector is �nally selected. Algorithms
that try to approximate the residue only optimize the coe�cient of the new fre-
quency, while keeping the rest of coe�cients �xed. The (back-projection) procedure
optimizes the coe�cients after the frequency has been selected, but it is not involved
in the process of selection of the frequency.

The proposed algorithm for FNNs can be seen as an extension and generalization
of the OLSL, ZM98 and KMP with pre-�tting algorithms in several ways. First, it
is not restricted to select the candidate frequencies from the points in the data set.
In this sense, a number of di�erent heuristics can be used. Second, it is possible to
further tune the selected frequency.
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The idea of interacting frequencies for sequential approximations may have a
positive in
uence not only for approximation, but also for generalization abilities of
FNNs. As it can be seen in �gure 3.2, the importance of the interacting frequencies
lies in the hypothesis that they allow to �nd better partial approximations, with the
same number of hidden units, than frequencies selected just to match the residue as
best as possible. Likewise, the same level of approximation may be achieved with
less hidden units. In terms of the Bias/Variance decomposition, it will be possible
to obtain simpler models with the same bias. Therefore, an improvement in the
generalization performance is expected.

The idea behind SAOCIF can be extended to approximation in Hilbert spaces,
maintaining orthogonal-like properties. The theoretical results obtained prove that,
under reasonable conditions, the residue of the approximation is (in the limit) the
best one that can be obtained with any subset of the given set of vectors. In this case,
the importance of the interacting frequencies lies in the expectation of increasing
the rate of approximation. In the particular case of L2, SAOCIF can be applied to
approximations by polynomials, Fourier series, wavelets and neural networks, among
others.

Experimental results using a wide range of benchmark data sets show a very
satisfactory performance when compared to other approaches. In particular, it works
better than methods that select the new frequencies based on the idea of matching
the residue, con�rming the suitability of the idea of interacting frequencies. The
selection of the frequencies among the points in the data set, as in OLSL and KMP,
also seems to be a promising heuristic for both Multi-Layer Perceptrons (MLPs) and
Radial Basis Function Networks (RBFNs). In this case, the resulting model shares
with Support Vector Machines the property that their frequencies are a subset of
the data set.

Additionally, the use of sinusoidal MLPs (i.e., MLPs where the activation func-
tion of the hidden units was either the sine or the cosine) showed a very good
behavior. In [Lee and Kil 1991], several simulation results indicate that sinusoidal
activation functions provide better approximation capability when compared to sig-
moidal and Gaussian ones. Theoretical results in [Suzuki 1998] show that sinusoidal
MLPs have better properties, regarding the number of terms in the approximation,
than sigmoidal ones. In practice, the use of sinusoidal activation functions for MLPs
led to very promising results [Sopena et al. 1999a].

The de�nition and the proposed algorithm for SAOCIF can be found in section
3.2. In section 3.3, SAOCIF is brie
y compared with other sequential schemes.
The extension to approximation in Hilbert spaces is described in section 3.4. The
experimental work is carried out in sections 3.5, 3.6 and 3.7. Finally, section 3.8 is
devoted to the proof of the theoretical results.
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3.2 De�nition of SAOCIF and Algorithm

3.2.1 De�nition

De�nition. Let H be the Hilbert space RL, where L is the number of patterns in a
data set D = fx1; � � � ; xLg, f = (f1; � � � ; fL)2H the target vector and 
 a space of
frequencies. A Sequential Approximation with Optimal Coe�cients and Interacting
Frequencies (SAOCIF ) for FNNs is a sequence of vectors fXNgN>0 in H, whose
terms are de�ned as:

1. X0 = 0.

2. XN =
PN�1

k=1 �
N
k v!k + �NNv!N , so that

(a) The coe�cients �N1 ; � � � ; �NN�1; �NN are optimal. That is, the vector XN is
the best approximation of f with vectors v!1; � � � ; v!N�1

; v!N .

(b) The frequency !N is selected taking into account the interactions of v!N
with v!1; � � � ; v!N�1

in order to minimize kf �XNk.
Remarks.

1. In FNNs terminology, every frequency !k2
 is associated with a hidden unit
'k(!k; x). The i-th component of v!k is the value of the hidden unit 'k(!k; x)
at the i-th point inD. That is, v!k = ('k(!k; x1); � � � ; 'k(!k; xL)). The output
function of the network with N hidden units is foFNN(x) =

PN
k=1 �

N
k 'k(!k; x).

2. At step N , a new frequency is considered (!N ), the number of terms of the
approximation is increased by one (�NNv!N ), and the coe�cients �N1 ; � � � ; �NN�1
are optimized in order to obtain the best approximation of f with vectors
v!1; � � � ; v!N�1

; v!N . The frequencies !1; � � � ; !N�1 are kept �xed.
3. As it is well known [Achieser 1956], since XN is the best approximation of f

with v!1; � � � ; v!N�1
; v!N , it holds that

8k : 1 6 k 6 N hf �XN ; v!ki = 0; (3.1)

where h; i is the inner product inH. That is, the residue f�XN is orthogonal to
the space generated by v!1; � � � ; v!N�1

; v!N . Equivalently,XN is the orthogonal
projection of f onto the space spanned by v!1; � � � ; v!N�1

; v!N . By de�nition
of inner product, (3.1) is equivalent to the following linear equations system:0

BBB@
hv!1; v!1i hv!2; v!1i � � � hv!N ; v!1i
hv!1; v!2i hv!2; v!2i � � � hv!N ; v!2i

...
...

. . .
...

hv!1; v!N i hv!2; v!N i � � � hv!N ; v!N i

1
CCCA �

0
BBB@
�N1
�N2
...
�NN

1
CCCA =

0
BBB@
hf; v!1i
hf; v!2i

...
hf; v!N i

1
CCCA : (3.2)
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Solving (3.2) is equivalent to solving the Least Squares problem associated
with the data set. Consequently, once the frequencies !1; � � � ; !N�1; !N 2 

have been selected, the optimal coe�cients �N1 ; � � � ; �NN�1; �NN can be calculated
by solving (3.2). From a geometrical point of view, it is equivalent to �nd the
approximation directions. It can be easily proved that the system has only one
solution if and only if v!1; � � � ; v!N�1

; v!N are linearly independent. Otherwise,
the system has more than one solution. Since the frequencies !1; � � � ; !N�1 are
kept �xed, the proposed system at step N is equal to the system at step N�1,
but with a new row and a new column. The system solution is a continuous
function of the matrix and the independent vector elements at any point where
the matrix is nonsingular [Ortega 1972].

4. The vectors v!1; � � � ; v!N�1
; v!N are not necessarily mutually orthogonal. The

approximation with orthogonal vectors has been widely studied (see, for ex-
ample, [Achieser 1956]). The coe�cients of the best approximation of f 2H
by means of an orthogonal system g1; � � � ; gN only depend on the projections
of f onto the vectors of the system:

YN =
NX
k=1

�k gk =
NX
k=1

hf; gki
kgkk2

gk:

In this case, we have

kf � YNk2 = kfk2 �
NX
k=1

j�kj2kgkk2

= kfk2 �







NX
k=1

�k gk







2

= kfk2 � kYNk2:

In particular, 8N > 1 kf � YN+1k2 6 kf � YNk2. As it can be easily seen,
the information provided by every term is independent on the others. This
allows, for instance, the construction of the approximation in a sequential
manner, where the terms are added one at a time until the approximation is
satisfactory. If the orthogonal system is in�nite, we may wonder about the
behavior of the series

g =
1X
k=1

hf; gki
kgkk2

gk:

If the system spans H, then the series is always convergent, and kf � gk =
0. The main problem of approximating with a �xed system (even if it is
orthogonal) resides on the lack of 
exibility. Linear expansions in a single
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basis are not 
exible enough. The information can be diluted across the whole
basis [Mallat and Zhang 1993]. In L2, for example, the approximation error
with a �xed basis cannot be made smaller than O(1=(d d

p
n)), where d is the

dimension of the input to the function [Barron 1993]. This happens even with
an orthogonal basis. For this reason, to achieve a good approximation, a very
large number of vectors may be needed, even if we order them by jhf; gkij.
SAOCIF keeps the idea of adding terms one at a time, but the residue can
be reduced in a 
exible and (in some sense) optimal manner. So we can
expect to reduce the necessary number of terms to achieve the same degree of
approximation.

3.2.2 Basic properties

As a �rst result, the approximations that satisfy (3.1) are characterized in Lemma
1. As an immediate consequence, every element XN of a SAOCIF satis�es these
properties. As it can be observed, there is a great parallelism between these prop-
erties and those satis�ed by an approximation with orthogonal vectors. The only
di�erences are in (L1a) and (L1b), and both are a generalization. Lemma 2 gives
some insight on the best approximation of the residue with only one vector. Al-
though the results shown in this section are probably known1, they are included
here to make the work self-contained. These results are given for the general case of
a complex inner product, but the same results hold for a real inner product, simply
by replacing C with R. The proofs can be found in section 3.8.

Lemma 1. Let H be a Hilbert space, f 2H and XN =
PN

k=1 �
N
k v!k, such that its

vectors and coe�cients satisfy (3.1). Then,

(L1a) For every 1 6 j 6 N

�Nj =

D
f �PN

k=1;k 6=j �
N
k v!k; v!j

E


v!j

2 :

(L1b) For every 1 6 j 6 N

kf �XNk2 =





f �

NX
k=1;k 6=j

�Nk v!k







2

� ���Nj ��2

v!j

2:
1We did not �nd all of them in the reviewed literature. However, we think that they cannot be

considered as relevant contributions.
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(L1c) kf �XNk2 = kfk2 � kXNk2 (energy conservation).

(L1d) kXNk2 =
PN

k=1 �
N
k hf; v!ki.

(L1e) hf �XN ; fi = kf �XNk2.

Lemma 2. Let H be a Hilbert space, f 2H. Then, the function PN : v(
) ! R

de�ned as
PN (v!) = inf

�2C
kf � (XN�1 + �v!)k2

is always well de�ned
�
�! = hf�XN�1;v!i

kv!k
2

�
, it can be computed as

PN (v!) = kf �XN�1k2 � jhf �XN�1; v!ij2
kv!k2

; (3.3)

and it is continuous on v(
).

3.2.3 Practical properties

SAOCIF satis�es a number of interesting properties to implement it in an e�cient
and reasonably simple fashion.

Since the frequencies !1; � � � ; !N�1 are kept �xed, the proposed system at step
N is equal to the system at step N � 1, but with a new row and a new column.
Therefore, (3.2) can be solved e�ciently with bordered systems techniques [Faddeeva
1959].

In addition, the residue kf �XNk2 can be computed avoiding one pass through
the data set. By (L1c) we have kf �XNk2 = kfk2 � kXNk2, with kfk2 constant.
Therefore, the frequency that minimizes the error is such that maximizes kXNk2.
By (L1d), we know that

kXNk2 =
NX
k=1

�Nk hf; v!ki: (3.4)

The values of fhf; v!kig16k6N are the independent vector of the linear equations
system (3.2) just solved to obtain f�Nk g16k6N , which can be kept stored in memory.
Hence, once the coe�cients have been obtained, we can compute kXNk2 with cost
O(N). Note that the cost of computing kXNk2 or kf �XNk2 directly from the data
set would be O(L�N).

Finally, it can be easily veri�ed that the goodness of a new frequency !0 with
regard to its approximation capability does not depend on the norm of the vector
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v!0. Suppose we are at the step N , and we have just selected !N and calculated
�N1 ; � � � ; �NN�1; �NN . Suppose that we modify the norm of the vector v!N by de�ning
v0!N = h � v!N h 2 R; h 6= 0 (



v0!N

 = jhj � kv!Nk). Proposing again the linear

equations system (3.2), we must �nd �
0N
1 ; � � � ; �0NN�1; �0NN such that0

BBB@
hv!1; v!1i hv!2; v!1i � � � 


v0!N ; v!1
�

...
...

. . .
...


v!1; v!N�1

� 

v!2; v!N�1

� � � � 

v0!N ; v!N�1

�

v!1; v

0
!N

� 

v!2; v

0
!N

� � � � 

v0!N ; v

0
!N

�

1
CCCA �

0
BBB@
�
0N
1
...

�
0N
N�1

�
0N
N

1
CCCA =

0
BBB@

hf; v!1i
...


f; v!N�1

�

f; v0!N

�

1
CCCA :

This system solution is (�
0N
1 ; � � � ; �0NN�1; �0NN ) = (�N1 ; � � � ; �NN�1; �NN=h). Computing

the norm of the new X 0
N =

PN�1
k=1 �

N
k v!k + �

0N
N v0!N using (3.4) we have

kX 0
Nk2 =

N�1X
k=1

�Nk hf; v!ki+ �
0N
N



f; v0!N

�

=
N�1X
k=1

�Nk hf; v!ki+
�NN
h
hf; h � v!N i = kXNk2:

Therefore, kf �XNk2 = kf �X 0
Nk2, as desired. Therefore, we can normalize the

vectors without loss of generality.

3.2.4 Algorithm and Implementation Details

3.2.4.1 An Algorithm for SAOCIF

In �gure 3.3 we describe a sequential training algorithm for FNNs following the ideas
of SAOCIF de�nition. Hidden units are added one at a time, choosing the frequen-
cies in a 
exible manner, so as to adjust the network until we have a satisfactory
model. The algorithm works as follows. Suppose that we are at step N and we have
a procedure to generate frequencies. Every candidate frequency is installed in the
network and the whole set of coe�cients are optimized, in order to test (together
with the previously selectedN�1 frequencies) the real contribution of the frequency
to the approximation to the target vector. There is no explicit intention to match
the residue. That is the idea of interacting frequencies. When the frequency is
satisfactory or there are no more candidate frequencies (criterion 1, see below), the
selected frequency can be optionally tuned, as in MP (see section 2.6).

Concerning the architecture needed to construct the approximation, it must have
the following characteristics:

1. It must be a feed-forward architecture with a hidden layer of units (including
both MLPs with one hidden layer and RBFNs).
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Algorithm

repeat

Increase by 1 the number of hidden units N
Pick an activation function for the new hidden unit
repeat

Assign a candidate frequency ! to the new hidden unit
Compute the optimal coe�cients f�kg16k6N by solving (3.2)

Compute the output norm kXNk2 with (3.4)

Set !N := ! if kXNk2 is maximized
until the frequency !N is satisfactory or there are no more

candidate frequencies (criterion 1)
Optionally, tune the selected frequency !N
Fix the frequency !N in the network

until the network is satisfactory (criterion 2)
end Algorithm

Figure 3.3: An algorithm to construct an FNN following the ideas of SAOCIF.

2. There are no restrictions about the dimension of the input and the output.
There will be as many as the target function have. If there are several outputs,
their optimal coe�cients can be computed by solving their respective linear
equations systems, and the total error can be computed as the summation of
the individual errors for every output.

3. There is no restriction about the weights in the hidden units. The output
units cannot have biases, but this is not a real restriction, since they can
be considered as frequencies with a simple transformation. Another solution
consists in adding a new hidden unit with constant activation function or, as
we will see later, �xing them in advance.

4. There is no restriction about the activation functions in the hidden units.
In particular, they can be sigmoidal, Gaussian, sines, cosines, polynomial,
wavelets, etc. Obviously, di�erent units may have di�erent activation func-
tions, as suggested in CC, ILQP, ZM98 or KMP (see section 2.6). The output
units must have a linear activation function.

As we can see, the only restriction in the architecture is the linear activation
function in the output units. Some important aspects of the algorithm are:

1. The linear system (3.2) can be solved e�ciently with bordered systems tech-
niques, as explained in section 3.2.3.
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2. Since kf �XNk2 = kfk2� kXNk2, to �nd out the minimum error kf �XNk2
we only need to calculate the maximum output kXNk2, and this can be done
e�ciently using (3.4).

3. The frequency and the activation function of the new hidden unit could also
be jointly selected.

4. As it will be shown, the theoretical conditions that guarantee the convergence
of SAOCIF to the target function f involve a global minimization problem
(see (3.6) in section 3.4). We decided to tackle it in a di�erent way. In
this sense, the new frequency is selected from a set of candidates generated
following di�erent strategies. This is probably the most important part of
the algorithm, and some of the experiments are designed to test the di�erent
strategies, which are de�ned in the next subsection.

5. Regarding the criterion 1 in �gure 3.3, every strategy to select the frequencies
has its own one.

6. Regarding the criterion 2 in �gure 3.3, any stopping criterion can be used:
percentage of learned patterns or maximum squared error in the training set,
early stopping with a validation set, low relative rate of decrease of the error,
etc.

The resulting algorithm combines the locality of sequential approximations, whe-
re only one frequency is found at every step, with the totality of non-sequential
methods, such as BP, where every frequency interacts with the others. The inter-
actions are discovered by means of the optimal coe�cients. The importance of the
interacting frequencies lies in the hypothesis that they allow to �nd better partial ap-
proximations, with the same number of hidden units, than frequencies selected just
to match the residue as best as possible. Likewise, the same level of approximation
may be achieved with less hidden units. In terms of the Bias/Variance decomposi-
tion, it will be possible to obtain simpler models with the same bias. Therefore, an
improvement in the generalization performance is expected. Results in section 3.6
experimentally seem to con�rm this hypothesis.

3.2.4.2 Strategies to select the frequencies

In the experiments (see, for example, section 3.6) four strategies are introduced in
order to test the algorithm:

1. Random strategy: the frequencies are selected at random within a certain
range, up to an a priori �xed number of frequencies. This number of frequen-
cies is relative to the number of inputs: when we say \N random frequencies"
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we mean N � I frequencies, where I is the input dimension. This strategy
is closely related to ZM98 (see section 3.3). In its simplest form, it can be
considered as a baseline for the other strategies.

2. BGA strategy: this is a more sophisticated strategy derived from the �eld
of Evolutionary Algorithms, where a population of frequencies evolves driven
by a Breeder Genetic Algorithm (BGA) [M�uhlenbein and Schlierkamp-Voosen
1993] with the squared error as the �tness function. The BGA works roughly
as follows. First, an initial population of � individuals is created. The best
q individuals are directly inserted into the new generation (q-elitism), so that
the new generation contains an individual which is at least as good as the
best individual of the previous generation. Then, a percentage (determined
by the truncation rate � ) of the best individuals of the population are selected
to be recombined and mutated, as the basis to construct a new generation.
The recombination operator is applied by randomly (and uniformly) selecting
two parents. Then, the mutation operator is applied to every o�spring with
a certain probability, and the loop starts again. The BGA �nishes when a
maximum number of evaluations of the �tness function, determined a priori,
is achieved.

The parameters of the BGA must be set in advance. In particular, we need to
establish:

(a) The size of the population �.

(b) The q-elitism.

(c) The truncation rate � .

(d) The maximum number of evaluations of the �tness function. This quan-
tity is, as for the Random strategy, relative to the number of inputs.

(e) The initial population and the range of values that every individual (fre-
quency) can take.

Other internal parameters for recombination and mutation in the BGA algo-
rithm were �xed following the suggestions of the empirical study performed in
[Belanche 1999].

3. Input strategy: the frequencies are selected from the training points in the
data set (as it is often the case in RBFNs) in a deterministicmanner: for every
hidden unit to be added, every point in the training set is tested as a candidate
frequency. The number of points in the data set determines the number of
frequencies to test. This strategy does not need any parameter, and it is the
equivalent of OLSL and KMP with pre-�tting (see section 3.3). Therefore, the
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resulting model shares with Support Vector Machines the property that their
frequencies are a subset of the data set.

4. Grid strategy: the frequencies are chosen from the points in a regular grid
of a hypercube of the input space. This strategy is deterministic and it can
only be used with a low computational cost when the dimension of the input
space is small. The number of points in the grid determines the number of
frequencies to test, and the only parameters needed for this strategy are the
number of points in the hypercube and the length of the edge.

The computational cost (in terms of the number of candidate frequencies) of
every strategy may be very di�erent. Whereas the Input one has �xed compu-
tational cost (given the data set), the Random, Grid and BGA strategies can be
parameterized so that their respective computational costs may be very di�erent.

3.2.4.3 Unifying Parameters for Di�erent Strategies: The Gain Factor

For MLP units, the Random, BGA and Grid strategies need a range where looking
for frequencies. This value must be set in advance, and it will characterize the
maximum and minimum value of any frequency (or every component, when the
input dimension is greater than 1). For the Input strategy, the net-input of the
hidden units must be multiplied by a certain factor, in order to adapt the net-
input to the activation function. This factor must also be �xed a priori, and it is
equivalent to the so called \gain" factor for sigmoidal functions or the inverse of the
\temperature" factor in simulated annealing.

For RBF units, the range of frequencies should be the range of the input values,
whereas the width of the activation function must be set in advance.

These a priori di�erent treatments to select the frequencies for MLP and RBF
units can be uni�ed as follows:

1. The range of frequencies always is:

(a) For MLP units, the interval [�0:5;+0:5], except for the Input strategy.
(b) For RBF units, the range of the input values (the Input strategy already

satis�es this condition).

2. A preprocessing procedure must be run in order to set the gain factor, both
for MLP and RBF units. The gain factor multiplies the net-input of every
hidden unit, previous to the application of the activation function. Therefore,
the gain factor is related to the \real" range of weights for MLP units and to
the width of the activation function for RBF units.
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3.2.4.4 Computation of the MLP-Bias or RBF-Width in the New Hid-

den Units

The MLP-biases and RBF-widths of the hidden units, as a part of the frequencies,
deserve special attention. They could be selected with the same principle as the
rest of the frequency, but it is not clear how to do it in some cases (for the Input
strategy, for example, it is not easy to obtain a bias term from the data set). Another
possibility is to compute them in a deterministic way as a function of the previously
selected frequencies, and �x it before selecting the new frequency. This idea allows
to compare the di�erent strategies to select frequencies in a fair way. Parenthetically,
it could reduce the global computational cost of the algorithm.

We decided to implement the following heuristics:

1. For MLPs, the bias of the new hidden unit is such that, if the rest of the
frequency is 0, the output of the hidden unit is the mean value of the error
obtained with the previously selected hidden units. It can be easily obtained
by computing the residue and then inverting the obtained value with respect to
the activation function of the hidden unit. Finally, it must be scaled dividing
by the gain factor.

2. For RBFNs, the width of the new hidden unit is simply the standard deviation
of the residue. This value will typically be large for the �rst hidden units, when
the system has not learned too much, and smaller as the number of hidden
units grows. In other words, the new hidden units become more specialized
as the learning process advances. In this case, and di�erent from MLP units,
the obtained value must not be scaled by the gain factor.

When they were not computed, the values for the MLP-bias and the RBF-width
were selected as the rest of the frequency for the Random and BGA strategies. For
the Input and Grid strategies, their values were �xed to 0 for the MLP-bias and 1
for the RBF-width.

3.2.4.5 Computation of the Bias in the Output Units

The bias of every output unit was computed to be the mean of the respective tar-
get values, as in [Hwang et al. 1994] (as previously said, output units have linear
activation functions). In classi�cation problems, it is equivalent to the frequency of
every class. The underlying idea of this heuristic is that the important function that
must be learned by the network is the deviation from the mean. Therefore, every
real target value can be replaced by \target value - target mean" everywhere in the
algorithm in �gure 3.3.
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3.2.4.6 Selection of the Activation Function

The algorithm in �gure 3.3 also selects the activation function for every new hidden
unit, as suggested in CC, ILQP, ZM98 or KMP (see section 2.6). Although this
activation function can be always the same, in some of the experiments we allowed to
selected di�erent activation functions for di�erent hidden units, with the expectation
that a better approximation could be obtained with less hidden units. In this case, a
list of prede�ned activation functions is set, and the process of selecting the frequency
is repeated for every activation function in the list. The non-linear MLP activation
functions used in some of our experiments were:

1. Hyperbolic tangent (tnh).

2. Sine (sin).

3. Cosine (cos).

4. Cosine of the Squared Root and Sine (crzsin):

crzsin (x) =

8<
:

cos(�
p�x) if x 6 �1

sin(�
2
x) if � 1 < x < +1

cos(�
p
+x) if x > +1

5. Sine of the Squared Root and Cosine (srzcos):

srzcos (x) =

8<
:

sin(�
p�x) if x 6 �1

cos(�
2x) if � 1 < x < +1

sin(�
p
+x) if x > +1

6. Gaussian (gau):

gau (x) =
1p
2�

e�
x2

2 :

7. Polynomial kernel of degree 2 (kerpol2 ):

kerpol2 (x) = (x+ 1)2:

3.2.4.7 Hidden Units with Linear Activation Function

Similar to the idea of using direct connections between the input and output layer
(see section 2.6), linear hidden units were used in several of our experiments. In



96 Chapter 3. SAOCIF: A Sequential Algorithm with FNNs

this case, the optimal frequencies can be calculated analytically, solving a linear
equations system similar to (3.2), with as many rows as the input dimension I:0

BBB@
hx1; x1i hx2; x1i � � � hxI ; x1i
hx1; x2i hx2; x2i � � � hxI ; x2i

...
...

. . .
...

hx1; xIi hx2; xIi � � � hxI ; xIi

1
CCCA �

0
BBB@
!1k
!2k
...
!Ik

1
CCCA =

0
BBB@
hfk; x1i
hfk; x2i

...
hfk; xIi

1
CCCA : (3.5)

A di�erent linear system must be solved for every output k in the network. There-
fore, there must be as many linear hidden units as outputs in the network. The
bias term may be computed simply by adding a new row and a new column with
the inner products of the constant function with respect to every input xi. The
coe�cients of the output k are set to 1 for the k-th linear hidden unit, and 0 for
the rest. When new non-linear units are added, the coe�cients of the linear hidden
units are modi�ed with the rest of the non-linear units, in order to obtain a mixed
model.

3.2.4.8 Tuning of the Selected Frequency

Similar to MP (see section 2.6.5.2), an optional tuning of the selected frequencies
was allowed. It was implemented with standard BP modi�ed following the tech-
nique proposed in [Vogl et al. 1988; Battiti 1989], where the learning rates change
dynamically as follows. If the error function between two consecutive epochs has
increased, then it is supposed that the learning rates must be too large. In this case
the weights change is undone, and the learning rates are decreased. Otherwise, the
learning rates are increased (�E = Et+1 � Et):

�new =

�
� � �old if �E < 0
� � �old otherwise

The parameter � uses to be slightly larger than 1 (1:1 is a typical value), whereas �
is chosen to be signi�cantly less than 1 (0:5, for example).

The reason to use this technique was to avoid the adjustment of the parameters
of the network. It seems quite clear that di�erent learning rates should be used
depending on the number of hidden units already de�ned in the network (N), the
activation function and the range of values of the frequencies. Therefore, an auto-
matic adjustment of the parameters was considered adequate. The momentum was
always set to 0. After every step of BP, the optimal coe�cients with the new candi-
date frequency are computed and the learning rates are modi�ed (and the weights
change undone if necessary). After a minimum number of epochs, the tuning was
stopped when the relative rate of decrease of the error between two successful epochs
was less than a certain �.
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3.2.4.9 Bounded Coe�cients

The implementation we used had the possibility to upper bound the 1-norm of
the coe�cients (normalized by the number of coe�cients). This option was widely
used in the experiments, and its purpose is twofold. On the one hand, it prevents
numerical problems derived from bad-conditioned linear systems. On the other, it
allows to control the complexity of the resulting model, with the aim of obtaining
better generalization results. This idea is present in several theoretical results, such
as [Barron 1994; Koiran 1994; Lee et al. 1996; Bartlett 1998; Niyogi and Girosi 1999]
(see section 2.5).

Similar to the gain factor, a preprocessing procedure must be run in order to set
the maximum 1-norm of the coe�cients.

3.2.4.10 Algorithms for MFT and OCMFT

With the same scheme of the algorithm described in �gure 3.3, we can de�ne two
additional algorithms:

1. MFT (\Maximum Fourier Transform") is a version \matching the residue"
of SAOCIF : the previous coe�cients are not recalculated, and the new term
tries to approximate the residue as best as possible. That is, �N and !N are
de�ned such that kf �XN�1 � �Nv!Nk2 is nearly minimum. This is equivalent
to say that �N = hf �XN�1; v!N i =kv!Nk2 and jhf �XN�1; v!N ij2=kv!Nk2 is
nearly maximum (see Lemma 2). Therefore, the selected frequency tries to
maximize, at every step, the absolute value of the Fourier transform of the
residue normalized by the vector norm. The coe�cient of the new frequency
is the maximum Fourier transform of the residue normalized by the squared
vector norm. MFT can be implemented with a slight change in the algorithm in
�gure 3.3: the selected frequency should maximize jhf �XN�1; v!N ij2=kv!Nk2
instead of kXNk2 and the coe�cient of the new hidden unit is computed as
�N = hf �XN�1; v!N i =kv!Nk2. The previous coe�cients are not recalculated.
The idea behind MFT is exactly the same as in PPR, PPLN or MP without
back-projection (see section 2.6). When the tuning procedure is performed,
and after every step of BP, the coe�cient of the new frequency is computed
as previously explained. The rest of the tuning procedure is shared with the
SAOCIF algorithm.

2. OCMFT (\Optimal Coe�cients after Maximum Fourier Transform") follows
the same idea as MFT, but the coe�cients are recalculated after the optimal
MFT-frequency is already selected (i.e., just when the frequency is �xed in
the network). This optimization of the coe�cients is shared with methods like
MP with back-projection, OMP or the linear version of the ILQP algorithm
(see section 2.6).
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These two algorithms were tested (see section 3.6) in order to be compared with
the algorithm for SAOCIF in �gure 3.3.

3.2.4.11 Other Implementation Details

The net-input of the hidden units was, in the implementation of the algorithm,
always normalized dividing by the number of inputs. The aim of this normalization
was making the parameters of the resulting systems (ranges of weights for MLP
units, distances for RBF units, etc) more independent on the input dimension.

The linear equations system (3.2) was solved as a bordered system [Faddeeva
1959]. Since the proposed system at step N is equal to the system at step N � 1,
but with a new row and a new column, the system to be solved at step N can be
stated as �

A v

vt 


�
�
�
x

�

�
=

�
b

�

�
;

where A � x = b is the system already solved at step N � 1, v is a vector with N � 1
components, and �, � and 
 are scalars. The above system is equivalent to�

A � x+ �v = b
vt � x+ �
 = �

Therefore, x = A�1 � b � �A�1 � v, and � = ��vt�A�1�b

�vt�A�1�v . This allows to take pro�t

from the solution of the system at the previous step. In this sense, the matrix A can
be inverted only once at every step, previous to the selection of the �rst frequency,
and kept in memory. Whereas the inversion of a matrix A has cubic complexity, the
computational cost of A�1 � u is quadratic. Instead of directly inverting the matrix,
it was decomposed as a QR product, and the corresponding triangular system was
solved when needed (A�1 � u is the solution of A � x = u), also with quadratic cost.
The QR decomposition has good numerical properties [Golub and Van Loan 1996].

3.3 Comparison of SAOCIF with other Sequen-

tial Schemes

Apart from some obvious ones, the main di�erence of SAOCIF with most of the
existing sequential methods for regression lays on the criterion to select the new
frequencies: whereas most of the systems (as, for example, PPR, MP, PPLN, ILQP
or CC, see section 2.6) try to select the frequency that approximates the residue (or
the correlation with the residue) at best, SAOCIF takes into account the interactions
with the previously selected frequencies in order to select the new one. As previously
noted, the frequencies such that their associated vectors match the residue are not
always the best, even if the coe�cients are subsequently optimized (see �gure 3.2).
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With regard to OLSL, ZM98, KMP with pre-�tting and other similar methods
that do not try to approximate the residue, SAOCIF can be seen as an extension
and generalization in several ways. First, it is not restricted to select the candidate
frequencies from the points in the data set. In this sense, a number of di�erent
heuristics can be used. Second, it is possible to further tune the selected frequency
with any non-linear optimization technique. More speci�cally,

1. OLSL and KMP with pre-�tting are equivalent to SAOCIF with the Input
strategy and without tuning.

2. ZM98 is equivalent to SAOCIF with the Random strategy with only 1 candi-
date frequency and tuning of the frequency.

3.4 Extension to Hilbert Spaces

In this section, we will extend SAOCIF de�nition to general Hilbert spaces. The
problem of approximation in Hilbert spaces can be de�ned as follows: \Let H be a
Hilbert space with inner product h; i : H � H ! C , a space of parameters 
, and
f 2H a vector to approximate with vectors v! = v(!), v : 
! H, !2
, such that
kv!k 6= 0 for every ! 2
. We want to �nd !1; !2; � � � 2
 and �1; �2; � � � 2 C such
that

lim
N!1






f �
NX
k=1

�kv!k






 = 0:

As in the previous sections, the term frequency refers to every !1; !2; � � � 2 
, and
coe�cient to �1; �2; � � �2C ".

This de�nition is, in essence, the traditional one in approximation of vectors in
Hilbert spaces. We can suppose that kfk 6= 0. If not, the approximation is trivial.
The condition kv!k 6= 0 is equivalent, by the inner product properties, to that of
v! 6= 0. Observe that every vector v! 2H depends on a parameter ! 2
. Once we
�x the parameter, we have a vector in the Hilbert space. In L2, usually, 
 � C

p .
In this setting, the de�nition of SAOCIF stated in section 3.2.1 is also valid for

a general Hilbert space H.

3.4.1 Convergence

As it is reasonably expected from its de�nition, SAOCIF converges towards the tar-
get vector f under mild conditions. The proofs can be found in section 3.8.

Proposition 1. Let H be a Hilbert space, and f 2 H. Any SAOCIF fXNgN>0
satis�es the following properties:
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(P1a) 8N > 0 kf �XN+1k2 6 kf �XNk2.
(P1b) If M > N , then

(P1b1) kXMk2 > kXNk2.
(P1b2) hf �XM ; f �XN i = kf �XMk2.
(P1b3) hXM ; f �XN i > 0.

(P1c) Suppose that �NN 6= 0. The vector v!N is orthogonal to the space spanned
by fv!1; � � � ; v!N�1

g if and only if the previously selected coe�cients do not
change between the steps N � 1 and N , that is, if

8j : 1 6 j 6 N � 1 �Nj = �N�1j :

(P1d) fXNgN>0 is convergent in H. That is,

9g2H lim
N!1

kg �XNk = 0:

Observe that, by (P1c), the only directions that guarantee that the approxi-
mation is optimal without recalculating the coe�cients are the orthogonal direc-
tions. Hence, if the approximation vectors are not mutually orthogonal, the coe�-
cients must be recalculated. In addition, in order to satisfy (P1d), it is enough for
kf �XNk2 to be decreasing and positive, and XN to satisfy (3.1).

Theorem 1. Let H be a Hilbert space, f 2H and a SAOCIF fXNgN>0. Let g be
such that (by P1d) limN!1 kg �XNk = 0, and suppose that for every � 2 C and
every !02
 we have

kf �XN+1k2 6 kf � (XN + �v!0)k2 + �N (3.6)

for every N > 0. That is, the approximation of f with XN+1 is better (up to �N )
than the best approximation of the residue f �XN that one could achieve with only
one vector v!02v(
). If lim supN!1 �N 6 0, then:

(T1a) The vector g satis�es:

(T1a1) 8!02
 limN!1 hg �XN ; v!0i = 0:

(T1a2) 8!02
 hf; v!0i = hg; v!0i. In particular, we have

(T1a21) 8N > 1 hf � g;XN i = 0.

(T1a22) 8N > 1 8j : 1 6 j 6 N 8M > N


g �XM ; v!j

�
= 0:
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(T1a3) hf � g; gi = 0.

(T1a4) There is no subset of vectors in v(
) that approximate f more than g.
That is,

kf � gk = inf
�k2C
 k2







f �
X
k

�kv k






 :

(T1b) If there exists A � 
 such that the set of vectors fv :  2Ag spans H, then
fXNgN>0 converges towards f . That is,

lim
N!1

kf �XNk = 0:

(T1c) The rate of approximation of SAOCIF is such that for every N > 0

kf �XN+1k2 6 (1 � Cf;N) � kf �XNk2 + �N ;

where 0 6 Cf;N 6 1 is an indicator of the best approximation of f �XN in
v(
), that is

Cf;N = sup
!02


jhf �XN ; v!0ij2
kf �XNk2kv!0k2

:

Observe that these results are not very restrictive, since the universal approx-
imation capability is a necessary condition for the convergence property. Hence,
SAOCIF allows us (by selecting 
 and v(
)) to choose any (or some) of the multi-
ple vector families satisfying this property. The hypothesis about the tolerance �N
is, in essence, the same as in [Jones 1992], [Barron 1993], [K _urkov�a and Beliczy�nski
1995b] or [K _urkov�a 1998].

The rate of approximation has a general structure where an exponential behavior
depending on 1�Cf;N combines with �N . The term Cf;N is the maximum squared
cosine between f �XN and its best approximation in v(
). If v(
) contains a basis
of H, then Cf;N is strictly greater than 0 for every N > 0. But the real rate of
approximation may depend on the target function f . In L2, for example, for any
basis and any predetermined threshold " > 0 there exist functions f such that Cf;0 6
". On the other hand, suppose a space of parameters 
 such that the vectors v! 2
v(
), form an orthonormal basis. Let f =

PN
k=1 �kv!k . In this case,

��
f; v!j���2 =���j��2 and kfk2 =PN
k=1 j�kj2, and therefore Cf;0 = maxj

���j��2=PN
k=1 j�kj2. Imposing

maxj
���j��2 > A and kfk2 6 B we obtain Cf;0 >

A
B
.

Imposing conditions on �N , as in [Barron 1993; K _urkov�a and Beliczy�nski 1995b;
Lee et al. 1996], di�erent expressions of the rate of approximation can be obtained.
Some of them are summarized in the following result.
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Corollary 1. In the same conditions of Theorem 1, the following results hold:

(C1a) If �N 6
Cf;N
2
� kf �XNk2, then for every N > 0 we have

kf �XN+1k2 6 kfk2 �
NY
i=0

�
1� Cf;i

2

�
:

(C1b) Suppose that there exist constants A;B > 0 such that for every N > 0

(a) Cf;N >
1

N+B

(b) �N 6
(A�B+1)(A+1)

(N+B)(N+A)(N+A+1)
� kfk2.

Then, for every N > 0 we have

kf �XN+1k2 6 A+ 1

N +A+ 1
� kfk2:

This rate of approximation has the same order as the optimal ones that can be
found in the literature (see section 2.6), but it has been obtained with a di�erent
approximation scheme.

An important remark must be pointed out. The previous results (see the proofs
for details) are a consequence of the optimality of the coe�cients in SAOCIF (prop-
erty (a) in the de�nition). The importance of the interacting frequencies (property
(b)) lies in the hypothesis that, as it can be seen in �gure 3.2, it seems more plau-
sible to �nd better partial approximations (or equivalently, smaller �N ) selecting
the new frequency taking into account the interactions with the previously selected
frequencies than, for example, matching the residue as best as possible. Therefore,
the rate of approximation is expected to be improved with this strategy.

3.4.2 Speci�c vectors in H = L2

In theory, the approximation of a function in the Hilbert space L2 may consist of an
in�nite number of terms. In practical applications, however, this is not possible. In
addition, linear expansions in a single basis are not 
exible enough. The information
can be diluted across the whole basis [Mallat and Zhang 1993], and the approxima-
tion error cannot be made smaller than O(1=(d d

p
n)), where d is the dimension of the

input to the function [Barron 1993]. This happens even with an orthogonal basis.
Therefore, sequential schemes can be used as an alternative to approximations with
�xed basis in L2.

Suppose that the vector to approximate is a square integrable function f(~x).
In the de�nition of SAOCIF there are hardly any restrictions about the vectors
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v!k(~x) = v(!k; ~x) 2 H used to approximate f . The only required condition is to
have a norm di�erent from 0. Thus, the method can be applied to a number of
vector families very common in the literature: FNNs, including both MLPs and
RBFNs, Fourier series, algebraic polynomials, wavelets, etc. In fact, the universal
approximation capability of a family of functions is enough to apply SAOCIF with
guarantee of convergence to f (whenever the hypotheses of Theorem 1 are satis�ed).

If we only have a data set D, the inner products can be approximated with:



v!i; v!j

� �= 1

L

X
x2D

v!i(x)v!j(x)



f; v!j

� �= 1

L

X
x2D

f(x)v!j(x):

In this case we will suppose that the integral is de�ned with regard to the probability
measure of the problem represented by the data set. This is similar to approximating
the expectation of a random variable by the arithmetic mean.

3.5 Experimental Motivation

We performed some experiments on both arti�cial (section 3.6) and benchmark data
sets (section 3.7). The main objectives of these experiments were twofold.

On the one hand, to compare SAOCIF with MFT and OCMFT (see section
3.2.4.10 for a description ofMFT and OCMFT). In particular, the e�ect of the inter-
acting frequencies for both approximation and generalization purposes was studied.
According to the hypothesis made in the previous sections, the rate of approxima-
tion should be improved. In addition, it would be possible to obtain simpler models
(regarding the number of hidden units) with the same bias, so that, in terms of the
Bias/Variance decomposition, an improvement in the generalization performance is
also expected.

On the other hand, to test the algorithm for SAOCIF and the implementation
details described in section 3.2.4. The main points we were interested to test were:

1. The strategies to select the frequencies (see section 3.2.4.2).

2. The activation functions in the hidden layer (see section 3.2.4.6).

3. The tuning of the selected frequency (see section 3.2.4.8).

The experiments were designed so as to keep a reduced number of parameters
�xed. The rest of parameters were found experimentally. As a consequence, there
was a great number of con�gurations to test, and very di�erent con�gurations with
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very similar results were sometimes found. For every parameter decision, we followed
the strategy that \the (numerically) best one is selected", regardless of similar results
with di�erent parameters.

3.6 Experiments on Arti�cial Data Sets

3.6.1 HEA Data Sets

A brief description of the HEA functions [Hwang et al. 1994] and the data sets used
in our experiments can be found in appendix A. These data sets were mainly used
to compare SAOCIF with MFT and OCMFT.

3.6.1.1 Methodology

The following methodology was used in these experiments:

1. All the experiments were performed:

(a) With MLP units, and selecting the activation function for every unit, in
addition to the frequencies (see section 3.2.4.6).

(b) In the same conditions forMFT, OCMFT and SAOCIF. That is, the only
di�erences among the three algorithms were the selection of the frequency
together with the computation of the coe�cients. The rest of parameters
were the same and they were selected for every model in an independent
way.

2. First, we selected

(a) The gain factor (see section 3.2.4.3),

(b) The bound on the 1-norm of the coe�cients (see section 3.2.4.9),

(c) Whether the bias is computed in a deterministic way or not for every new
hidden unit (see section 3.2.4.4).

for every model (MFT, OCMFT and SAOCIF). To this end, the Grid strategy
(without tuning) was used to select the frequencies. The grid consisted of
625 candidate frequencies. A maximum of 30 hidden units were added to the
initial architecture. This step was performed with the original training and
test sets in [Hwang et al. 1994], considering the latter as a validation set. We
selected the parameter values which allowed to obtain the minimumvalidation
set error, chosen to be a local minimum among a �nite number of values. The
deterministic computation of the bias was selected for most of the models and
data sets.
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3. Second, we tested the Random and BGA strategies with the parameters se-
lected in the previous step for every model (MFT, OCMFT and SAOCIF).
A maximum of 50 hidden units were added to the initial architecture. The
parameters for every strategy were:

(a) Random: 5; 000 random frequencies in [�0:5;+0:5]� [�0:5;+0:5].
(b) BGA:

i. Population size: 100.

ii. q-elitism: 5.

iii. Truncation rate: 40%.

iv. Maximum number of evaluations of the �tness function: 5; 000.

v. The initial population was chosen in [�0:5;+0:5] � [�0:5;+0:5] at
random.

vi. Every component of the frequency is limited to take values within
[�0:5;+0:5].

Observe that the total number of candidate frequencies tested for the Random
and BGA strategies was exactly the same, with identical ranges.

Every strategy was tested, in addition, with and without tuning the selected
frequencies at every step. The parameters for the tuning procedure (see sec-
tion 3.2.4.8) were: � = 1:05, � = 0:5 and � = 0:0005. The minimum number
of epochs was 100, in batch mode. For every function, every parameter con�g-
uration was trained with every one of the 10 di�erent training sets, and tested
on the test set constructed for this problem (see appendix A). Note that the
test set is di�erent from the original one in [Hwang et al. 1994], which was
used in the previous step as validation set.

3.6.1.2 Results

Results are shown in tables 3.1 to 3.4 as the average, over 10 runs with the respec-
tive data sets for every function, of the minimum squared test set errors (i.e., at
the optimal hidden unit). Every table is related to a di�erent strategy and tun-
ing con�guration. Figures in boldface indicate the best results for every function.
Numbers in brackets are �̂n=

p
n, the standard errors2 estimated from the sample

standard deviation �̂n. The average number of hidden units where these minima are
achieved is also shown. For the HEA1-NF data set, SAOCIF stopped with a fewer

2Under normality assumptions, the con�dence interval can be computed from this value. For
example, the deviation of the true value from the observed mean xn will be less than 1:96�̂n=

p
n

with a probability of 0:95 [Flexer 1996].
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Test Error Num. Hidden Units

Data Set MFT OCMFT SAOCIF MFT OCMFT SAOCIF

HEA1-NF 0.06 (0.1) 0.00 (0.0) 0.00 (0.0) 49.3 20.3 9.6

HEA2-NF 29.81 (2.6) 1.18 (0.5) 0.18 (0.1) 49.1 47.1 44.1

HEA3-NF 694.11 (27.2) 31.41 (6.9) 5.57 (2.2) 49.2 45.0 49.1

HEA4-NF 69.29 (6.9) 24.32 (1.8) 9.80 (3.7) 49.4 45.8 47.3

HEA5-NF 49.22 (7.8) 14.79 (3.4) 7.76 (1.0) 49.8 49.4 46.2

HEA1-WN 14.37 (3.1) 10.70 (1.6) 15.37 (2.9) 39.1 4.5 4.4

HEA2-WN 110.85 (6.8) 99.13 (7.1) 89.47 (6.3) 30.9 19.1 15.4

HEA3-WN 704.35 (50.5) 303.65 (18.9) 256.01 (32.6) 49.9 33.6 31.6

HEA4-WN 213.67 (8.0) 202.91 (14.7) 120.58 (11.5) 47.0 27.5 17.4

HEA5-WN 174.63 (9.0) 211.82 (18.0) 173.35 (5.7) 35.0 23.7 19.4

Table 3.1: HEA data sets: Squared test set error and number of hidden units for the
Random strategy without tuning of the selected frequency.

Test Error Num. Hidden Units

Data Set MFT OCMFT SAOCIF MFT OCMFT SAOCIF

HEA1-NF 1.33 (1.2) 0.00 (0.0) 0.00 (0.0) 49.2 17.1 8.0

HEA2-NF 29.50 (2.6) 14.02 (10.4) 0.33 (0.1) 50.0 41.9 46.1

HEA3-NF 689.72 (48.7) 24.35 (5.0) 12.55 (2.3) 49.8 47.4 49.3

HEA4-NF 56.90 (6.0) 28.86 (4.3) 7.13 (1.6) 48.8 49.6 47.0

HEA5-NF 50.88 (6.8) 17.43 (1.4) 14.54 (5.3) 49.7 47.9 47.3

HEA1-WN 64.80 (17.3) 12.44 (2.3) 14.37 (2.9) 25.2 4.6 4.1

HEA2-WN 131.01 (10.0) 99.05 (5.9) 88.38 (12.8) 21.6 18.7 13.7

HEA3-WN 802.32 (33.4) 302.49 (36.3) 232.30 (18.8) 48.7 33.4 31.8

HEA4-WN 274.25 (10.9) 223.88 (10.6) 137.13 (8.9) 40.1 31.4 19.3

HEA5-WN 214.71 (10.6) 217.80 (10.4) 172.53 (6.5) 32.9 28.1 19.3

Table 3.2: HEA data sets: Squared test set error and number of hidden units for the
Random strategy with tuning of the selected frequency.

number of hidden units because the training error was less than 0:000001, so that it
made no sense adding new hidden units. Figures 3.4 and 3.5 show a comparison of
the evolution of the average training and test errors of OCMFT and SAOCIF with
respect to the number of hidden units for the BGA strategy without tuning. Noise
free data sets results are shown in �gure 3.4. Noisy data sets results are shown in
�gure 3.5.

Some conclusions of these experiments can be summarized as follows:

1. Regarding the overall behavior, SAOCIF obtains better results than OCMFT
which in turn compares favorably with MFT. This fact can be understood by
looking at the number of hidden units of the obtained results:
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Test Error Num. Hidden Units

Data Set MFT OCMFT SAOCIF MFT OCMFT SAOCIF

HEA1-NF 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 49.6 20.6 9.6

HEA2-NF 31.03 (2.9) 4.73 (2.4) 0.08 (0.0) 48.8 41.6 42.6

HEA3-NF 687.01 (26.4) 31.24 (10.3) 3.61 (0.9) 49.5 47.8 48.4

HEA4-NF 81.00 (7.4) 32.89 (5.9) 8.14 (2.1) 48.8 43.6 45.4

HEA5-NF 49.00 (7.1) 13.53 (2.2) 8.91 (1.1) 50.0 48.3 48.3

HEA1-WN 12.44 (3.0) 12.15 (2.5) 13.74 (2.9) 35.3 4.7 4.1

HEA2-WN 113.58 (6.2) 102.57 (12.0) 93.49 (8.9) 31.9 20.5 14.9

HEA3-WN 717.01 (47.4) 369.00 (66.4) 216.18 (27.6) 49.4 38.0 27.3

HEA4-WN 219.25 (8.9) 227.41 (14.9) 132.94 (9.3) 45.8 28.1 17.3

HEA5-WN 174.99 (8.9) 203.58 (13.9) 165.82 (5.7) 34.6 26.8 20.1

Table 3.3: HEA data sets: Squared test set error and number of hidden units for the
BGA strategy without tuning of the selected frequency.

Test Error Num. Hidden Units

Data Set MFT OCMFT SAOCIF MFT OCMFT SAOCIF

HEA1-NF 3.33 (2.3) 0.00 (0.0) 0.00 (0.0) 49.7 19.0 7.8

HEA2-NF 31.93 (3.3) 20.62 (8.8) 0.28 (0.1) 49.7 43.4 45.5

HEA3-NF 684.79 (59.4) 25.60 (4.2) 8.83 (2.0) 49.6 48.4 46.9

HEA4-NF 60.73 (4.2) 34.32 (5.4) 5.61 (1.2) 48.5 46.5 46.9

HEA5-NF 50.69 (6.6) 18.21 (2.4) 6.88 (0.7) 49.8 48.3 48.2

HEA1-WN 64.07 (20.4) 12.14 (2.4) 14.49 (2.7) 29.0 4.7 3.9

HEA2-WN 127.65 (7.4) 96.87 (6.6) 86.89 (13.2) 19.6 20.2 13.7

HEA3-WN 780.89 (28.3) 304.99 (26.5) 219.34 (19.4) 48.4 37.1 34.3

HEA4-WN 270.23 (8.1) 213.52 (8.0) 128.35 (11.7) 40.2 29.9 17.9

HEA5-WN 210.53 (11.2) 228.97 (15.9) 168.24 (4.4) 35.3 28.5 19.7

Table 3.4: HEA data sets: Squared test set error and number of hidden units for the
BGA strategy with tuning of the selected frequency.

(a) For noise free data sets the number of hidden units may be around 50,
the maximum number of allowed hidden units. This is due to the fact
that over�tting was not observed during the learning process with these
data sets (see �gure 3.4). Therefore, the best results are obtained by
those models that are able to �t more accurately the data. According
to the claims previously made (see section 3.4), SAOCIF allows to �nd
better approximations with the same number of hidden units as OCMFT
or MFT. The same happens when OCMFT is compared to MFT.

(b) For noisy data sets, there is a high correlation between the number of
hidden units and the goodness of the model: those models that attain
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Figure 3.4: Noise free HEA data sets: Comparison of the evolution of the average training
and test error of OCMFT and SAOCIF with respect to the number of hidden units for
the BGA strategy without tuning.
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Figure 3.5: Noisy HEA data sets: Comparison of the evolution of the average training
and test set error of OCMFT and SAOCIF with respect to the number of hidden units for
the BGA strategy without tuning.
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their minimawith less hidden units usually obtain better results. Looking
at �gure 3.5, we can see that SAOCIF obtains simpler models (in terms of
the number of hidden units), with the same empirical risk, than OCMFT.
According to the Bias/Variance trade-o�, the minimum test set error is
expected to be smaller for SAOCIF than for OCMFT. The same happens
with respect to MFT.

Therefore, the e�ect of the interacting frequencies for both approximation and
generalization purposes is con�rmed. It can be observed that the relative
di�erences among methods are greater for noise free data sets than for noisy
ones.

2. Regarding the strategy to select the frequencies, the BGA strategy appears
to be the best one, specially for SAOCIF. Surprisingly, the Random strategy
achieves results very similar to the BGA strategy, and in some cases superior.
This can be due to the fact that the probability of �nding a good frequency
among 5; 000 random attempts may be high. This is not so probable in prob-
lems where the input dimension is larger (see section 3.7).

3. In these experiments, tuning the selected frequencies does not seem to help
to improve consistently the results, although the obtained networks are better
in some cases. As we will see, however, there exist other problems where an
improvement is obtained when the frequencies are tuned (see section 3.6.2).

Comparing the computational cost among the models, we observed that MFT is
faster than OCMFT, which in turn is faster than SAOCIF, as expected. Taking the
computational cost of MFT as 1, the relative mean computational costs of OCMFT
and SAOCIF are 1:08 and 1:64, respectively.

In the subsequent experiments, only the SAOCIF scheme will be tested.

3.6.2 The Two Spirals Data Set

A description of the Two Spirals data set can be found in appendix A.

3.6.2.1 Methodology

The following methodology was used to test the Two Spirals problem:

1. All the experiments were performed:

(a) For the following four activation functions: hyperbolic tangent (tnh),
sine (sin), cosine (cos), in the MLP model and Gaussian (gau) in the
RBFN one. Hidden units had the same activation function ('Act.F.' in the
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tables). The motivation for the choice of these activation functions was
to test the performance of sinusoidal MLPs and to compare the obtained
results with classical MLP and RBFN activation functions.

(b) Computing the bias for every new hidden unit in a deterministic way,
and �xing it before selecting the new frequency, as explained in section
3.2.4.4, except for the hyperbolic tangent function, where the bias was
computed as the rest of the frequency3.

2. First, we selected the gain factor for every activation function, together with
the bound on the 1-norm of the coe�cients. To this end, the Random strategy
(500 random frequencies) was used to select the frequencies, with the original
training and validation sets. We selected the gain factor and bound of the
1-norm of the coe�cients that allowed to obtain the minimum validation set
error over the mean of 5 runs. The gain factor and the maximum 1-norm were
chosen to be a local minimum among a �nite number of values. The addition
of hidden units was stopped when the training set was completely learned.

3. The second step consisted in selecting the parameters for the three strategies
under study: Random, BGA and Input. These parameters were:

(a) For the Random strategy, the �nal number of random frequencies4. was
selected among 500, 750, 1; 000 and 2; 000. The range of values to look for
component frequencies was [�0:5;+0:5], as explained in section 3.2.4.2.

(b) For the BGA strategy:

i. Population size: 50, 75 or 100 frequencies.

ii. q-elitism: 1 or 5.

iii. Truncation rate: 20%, 30% or 40%.

iv. The initial population was randomly chosen in the same range as the
Random strategy. Every component of the frequency is limited to
take values in that range.

This step was performed with 500 evaluations of the �tness function. For
the subsequent step, the maximum number of evaluations of the �tness
function was 5; 000. The BGA procedure may also be stopped when the
relative error did not decrease more than 0:01% in several consecutive
generations. This number of generations was selected by looking at the
evolution of the BGA procedure for the chosen parameters (population
size, q-elitism and truncation rate).

3For the hyperbolic tangent, we obtained better results without computing the bias of the new
hidden unit. For the Input strategy with this activation function, the bias was set to 0.

4In our experiments, only exceptionally the �nal number of random frequencies selected was
2; 000.
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Act.F. Strategy Tuning Test NHid Tuning Test NHid

tnh Random No 100.00% 103.80 Yes 100.00% 94.40

tnh BGA No 100.00% 92.60 Yes 100.00% 88.60

tnh Input No NP - Yes NP -

cos Random No 99.48% 53.80 Yes 100.00% 48.80

cos BGA No 100.00% 51.20 Yes 100.00% 47.40

cos Input No 100.00% 58.00 Yes 100.00% 31.00

sin Random No 99.48% 51.20 Yes 100.00% 46.40

sin BGA No 100.00% 53.00 Yes 100.00% 47.60

sin Input No 100.00% 58.00 Yes 100.00% 30.60

gau Random No 100.00% 93.40 Yes 100.00% 89.80

gau BGA No 100.00% 86.20 Yes 100.00% 95.20

gau Input No 100.00% 112.00 Yes 100.00% 78.40

Table 3.5: Percentage of correctly classi�ed patterns on the test set for the Two Spirals
data set with SAOCIF and di�erent parameter con�gurations. An 'NP' value means \Not
Possible", indicating that the learning of the training set was unsatisfactory.

(c) For the Input strategy, the gain factor was selected again, since we ob-
served that the value obtained in the previous step was not always well
suited for this strategy.

This step was performed with the same data sets as the �rst step. Similarly,
we selected the parameters that allowed to obtain the minimum validation set
error over the mean of 5 runs.

4. Third, we tested the three aforementioned strategies of selection of frequen-
cies for every activation function with the selected parameters in the previous
steps. This step was performed with the original training, validation and test
sets for this problem. Every strategy was tested with and without tuning the
selected frequencies at every step. The parameters for the tuning procedure
(see section 3.2.4.8) were: � = 1:05, � = 0:5 and � = 0:0005. The minimum
number of epochs was 100, in batch mode. For every function, every param-
eter con�guration was trained 5 times. No more hidden units were added
when the mean sum-of-squares error in the training set was less than 0:01 or
when numerical problems were encountered (this only happened for the Input
strategy with the hyperbolic tangent function).

3.6.2.2 Results

Results are shown in table 3.5 as the percentage of correctly classi�ed patterns on
the test set by the average-output committee of the networks obtained when the
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validation error was minimum (column 'Test'). The average number of hidden units
where this minimum is achieved is also shown (column 'NHid').

In this case, we can observe that:

1. All the strategies achieve similar (and very good) results with all the activation
functions and strategies tested, except for the hyperbolic tangent function
with the Input strategy. It seems very di�cult to learn this problem with
the hyperbolic tangent function when the points in the data set are used
as frequencies. We also obtained unsatisfactory results after an exhaustive
experimentation with Support Vector Machines for this activation function.

2. Consistently, tuning the frequency allows to obtain similar solutions with less
hidden units.

3. The behavior of the Input strategy is very good for the sine, cosine and Gaus-
sian activation functions, specially when the frequency is tuned: the solutions
have less hidden units and they can be obtained with a much lower computa-
tional cost than the Random and BGA strategies (see below).

4. As expected, this is a very hard problem for sigmoidal activation functions,
but it could be adequately learned with SAOCIF and a suitable strategy.

The computational cost was quite variable among the activation functions, since
it depends strongly (and non-linearly) on the number of hidden units of the obtained
solutions. Given an activation function, in contrast, the relative computational cost
among the di�erent strategies was more stable. Anyway, the Input strategy was
always the fastest one. As an example, taking the computational cost of the Input
strategy5 as 1, the relative computational cost for the sine activation function with
tuning (the simplest model in our experiments) was 3:78 and 22:36 for the Random
and the BGA strategies, respectively.

3.7 Experiments on Benchmark Data Sets

In this section the results of the experiments for SAOCIF with benchmark data sets
are shown. A brief description of the data sets used in these experiments can be
found in appendix A.

3.7.1 Methodology

The methodology used to test these benchmark data sets with SAOCIF was quite
similar to that of the Two Spirals problem:

5With the current version of the program, it took 96 seconds on a Pentium IV processor.
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1. All the experiments were performed:

(a) For the following four activation functions: hyperbolic tangent (tnh), sine
(sin), cosine (cos), in the MLP model and Gaussian (gau) in the RBFN
one. The motivation for the choice of these activation functions was to
test the performance of sinusoidal MLPs and to compare the obtained
results with classical MLP and RBFN activation functions.

(b) Computing the bias for every new hidden unit in a deterministic way,
and �xing it before selecting the new frequency, as explained in section
3.2.4.4.

(c) With strati�ed Cross-Validation (CV) [Stone 1974; Kohavi 1995]. Previ-
ous to every CV, the examples in the data set were randomly shu�ed.
For every training, no more hidden units were added when the error on
the validation set (see below) did not improve for 5 consecutive hidden
units. A maximum of 50 hidden units was allowed.

2. First, we selected the gain factor for every activation function, together with
the bound on the 1-norm of the coe�cients. To this end, the Random strategy
(500 random frequencies) was used to select the frequencies. We performed 5
runs of a 5-fold CV with the whole data set. We selected the gain factor and
bound of the 1-norm of the coe�cients that allowed to obtain the minimum
mean validation error over the 5 runs6. The gain factor and the maximum
1-norm of the coe�cients were chosen to be a local minimum among a �nite
number of values.

3. Second, we selected the parameters for the three strategies (Random, BGA
and Input) under study. The parameters were selected as for the Two Spirals
data set (see section 3.6.2). 5 runs of a 5-fold CV with the whole data set
were performed. Similar to the previous step, we selected the parameters that
allowed to obtain the minimummean validation error over the 5 runs. For the
Input strategy, in addition, the computation (or not) of the bias in the new
hidden unit was reconsidered.

4. The third step was devoted to test the three aforementioned strategies of selec-
tion of frequencies for every activation function with the parameters selected
in the previous steps. We constructed FNNs where all the hidden units had the
same activation function and mixed models combining linear and non-linear
activation functions, as explained in section 3.2.4.7. This is indicated in the

6In this CV experiments, we use the folds that are not in the training set as validation data.
In sections 4.5 and 4.6 they are used as test data.
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Act.F. Strategy Tuning Test Mse NHid

gaulin BGA No 77.75% (0.68) 0.64 6.27

coslin BGA Yes 77.73% (0.54) 0.65 5.15

gau Input Yes 77.65% (0.60) 0.63 6.74

gaulin Input No 77.59% (0.48) 0.63 8.62

gaulin Input Yes 77.54% (0.71) 0.63 8.02

sin Random No 77.52% (0.42) 0.64 5.75

sin BGA No 77.49% (0.52) 0.64 4.68

sinlin Random Yes 77.44% (0.83) 0.65 5.96

tnhlin Random Yes 77.33% (0.62) 0.63 7.20

linear - - 77.29% (0.40) 0.65 -

sin Random Yes 77.28% (0.53) 0.64 4.66

cos BGA No 77.28% (0.58) 0.64 6.01

coslin BGA No 77.25% (0.63) 0.64 5.78

tnhlin Random No 77.20% (0.58) 0.64 8.03

tnhlin Input No 77.20% (0.52) 0.63 8.35

tnhlin Input Yes 77.10% (0.40) 0.64 4.99

coslin Random Yes 76.97% (0.43) 0.65 6.33

Table 3.6: Test set results for the Pima Indians Diabetes data set with SAOCIF and
di�erent parameter con�gurations.

tables of results (column 'Act.F.') as 'fun' or 'funlin', where 'fun' is the non-
linear activation function. Every strategy was tested with and without tuning
the selected frequencies at every step, giving 18 parameter con�gurations for
every activation function. The parameters for the tuning procedure (see sec-
tion 3.2.4.8) were: � = 1:05, � = 0:5 and � = 0:0005. The minimum number
of epochs was 100, in batch mode. At this step we performed a double 5-4-fold
CV [Ripley 1995] as follows. We performed a 5-fold CV (the outer CV) to
obtain �ve folds (4 folds to \learn" and 1 fold to test). Then, the 4 folds of the
\learning set" of the outer CV were used as follows: 3 folds to train and 1 fold
to validate, as in a 4-fold CV (the inner CV). Therefore, the number of trained
models in a double 5-4-fold CV is 20. For every activation function, 5 runs
of every parameter con�guration were performed with the double 5-4-fold CV
procedure previously explained, giving a total of 100 runs per model tested.

3.7.2 Results

Results are shown in tables 3.6 to 3.10 as the average percentage of correctly clas-
si�ed patterns on the test sets of the double 5-4-fold CV by the average-output
committee of the networks obtained when the validation error was minimum (col-
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Act.F. Strategy Tuning Test Mse NHid

sin Input No 97.12% (0.21) 0.10 5.46

tnh Random No 96.98% (0.22) 0.11 5.02

tnh BGA No 96.95% (0.26) 0.11 4.94

tnh BGA Yes 96.95% (0.29) 0.11 5.37

gau Input No 96.83% (0.22) 0.11 9.20

cos BGA Yes 96.78% (0.24) 0.11 4.12

sin BGA No 96.78% (0.25) 0.11 4.83

sin BGA Yes 96.75% (0.34) 0.11 4.41

sin Input Yes 96.75% (0.26) 0.11 4.85

gau Random No 96.75% (0.27) 0.11 6.75

cos Random No 96.75% (0.25) 0.11 7.25

coslin Random Yes 96.72% (0.25) 0.11 6.01

coslin Input No 96.69% (0.33) 0.11 8.96

gau Input Yes 96.66% (0.23) 0.11 7.21

gaulin BGA Yes 96.66% (0.26) 0.12 7.96

tnh Random Yes 96.60% (0.27) 0.11 4.87

linear - - 95.86% (0.24) 0.15 -

Table 3.7: Test set results for the Wisconsin Breast Cancer data set with SAOCIF and
di�erent parameter con�gurations.

umn 'Test'). More speci�cally, every committee is formed by the di�erent models
obtained in the inner CV (with the same test set). The mean squared error on the
test set (column 'Mse') and the average number of hidden units where this minimum
is achieved (column 'NHid') are also shown. Numbers in brackets are �̂n=

p
n, the

standard errors7 estimated from the sample standard deviation �̂n.

Every table shows four con�gurations for every non-linear activation function:
the two best con�gurations with and without tuning the selected frequencies. The
tables are ordered top-down by the percentage of correctly classi�ed patterns. Re-
sults for least-squares linear FNNs with the same experimental setting are also shown
('linear' in the tables).

Some conclusions of these experiments can be summarized as follows:

1. Regarding the overall generalization, the results are very satisfactory. The re-
sulting solutions have good generalization results with a few number of hidden
units. SAOCIF results in tables 3.6 to 3.10 are competitive with other results
found in the literature (see table A.2 in appendix A).

7Under normality assumptions, the con�dence interval can be computed from this value. For
example, the deviation of the true value from the observed mean xn will be less than 1:96�̂n=

p
n

with a probability of 0:95 [Flexer 1996].
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Act.F. Strategy Tuning Test Mse NHid

sinlin BGA No 88.65% (1.07) 0.42 3.63

gaulin BGA No 88.39% (0.83) 0.42 5.42

coslin Input No 88.39% (0.93) 0.44 7.19

gaulin BGA Yes 88.13% (0.87) 0.41 5.41

sinlin Input No 88.00% (0.78) 0.43 4.85

gaulin Random Yes 88.00% (0.99) 0.42 5.87

coslin Input Yes 87.87% (1.28) 0.45 4.41

gaulin Random No 87.87% (1.06) 0.45 5.38

coslin BGA Yes 87.74% (0.99) 0.45 4.45

coslin BGA No 87.48% (0.94) 0.45 5.62

linear - - 87.42% (0.83) 0.43 -

sin BGA Yes 87.35% (0.95) 0.43 1.56

sinlin Input Yes 87.35% (0.83) 0.44 2.70

tnhlin Random No 87.35% (0.83) 0.45 6.98

tnhlin Random Yes 87.23% (1.20) 0.43 5.47

tnhlin BGA No 87.23% (1.16) 0.45 5.51

tnhlin Input Yes 86.84% (0.91) 0.47 4.62

Table 3.8: Test set results for the Hepatitis data set with SAOCIF and di�erent parameter
con�gurations.

2. We can observe that there exist data sets, such as the Pima Indians Diabetes,
where the results are very similar among all the systems. Linear FNNs also
achieve similar results. In our opinion, it is quite di�cult to obtain conclusions
from the experiments with this data set. Results in the literature also support
this claim. The Wisconsin Breast Cancer and Hepatitis problems also have
quite similar results among the methods, but it seems clear that they can take
some pro�t from non-linear activation functions. The Ionosphere and Sonar
problems are, in our opinion, the best ones in order to obtain interesting
conclusions, since they are clearly non-linear and with important di�erences
among di�erent con�guration parameters.

3. Tuning the selected frequency sometimes helps to improve the overall results,
but it does not do it either signi�cantly or consistently. Most of the times,
solutions obtained with tuning have less hidden units than without it. How-
ever, this fact is not always translated into a better performance, a somewhat
surprising result, and di�erent from the experiments with arti�cial data sets.

4. Non-linear MLP activation functions di�erent from classical sigmoidal ones,
such as sines or cosines, may be satisfactorily used (the hyperbolic tangent
function obtains, globally, worse results than sinusoidal activation functions).



118 Chapter 3. SAOCIF: A Sequential Algorithm with FNNs

Act.F. Strategy Tuning Test Mse NHid

gau Input No 95.37% (0.44) 0.19 16.19

gau Input Yes 94.57% (0.49) 0.24 14.51

gau BGA No 92.69% (0.57) 0.28 7.79

gaulin BGA Yes 92.17% (0.63) 0.33 12.48

cos Input No 91.37% (0.52) 0.31 10.40

sin Input No 90.00% (0.68) 0.33 10.19

tnh Input No 89.77% (0.70) 0.35 10.75

coslin Input No 89.31% (0.61) 0.38 11.33

sinlin Input No 88.97% (0.76) 0.41 9.92

tnhlin Input No 88.97% (0.79) 0.42 11.83

tnh Random Yes 88.34% (0.55) 0.44 4.07

tnh BGA Yes 88.17% (0.69) 0.40 5.66

cos BGA Yes 87.37% (0.82) 0.45 2.78

cos Random Yes 87.31% (0.53) 0.46 3.09

sin BGA Yes 87.20% (0.93) 0.46 2.50

sin Random Yes 87.20% (0.60) 0.45 3.14

linear - - 87.00% (0.52) 0.54 -

Table 3.9: Test set results for the Ionosphere data set with SAOCIF and di�erent param-
eter con�gurations.

In some particular cases, it seems that there are activation functions better
suited for some problems (for example, Gaussian RBFs for the Ionosphere
data set). Linear hidden units have, in some cases, a positive in
uence on the
results when combined with non-linear ones.

5. Regarding the number of hidden units, we can see that there is not a clear
tendency, and it depends to a great extent on the activation function, the
strategy to select the new frequency and the tuning procedure. Solutions with
Gaussian RBFs, for example, tend to have more hidden units than MLPs.
Solutions obtained using the BGA strategy are usually smaller than for the
Input strategy. Di�erent from the HEA data sets (see section 3.6.1), there is
not a clear correlation between the number of hidden units and the goodness
of the model. We think that the main reason for this fact is the small number
of examples in the data sets with respect to the input dimension. Not to forget
that these results are taken in the minimumof the validation set. The presence
of noisy or meaningless variables in the data sets may also help to introduce
more confusion on this aspect.

6. Regarding the strategy to select the frequencies, both the BGA and the Input
strategies appear to be superior to the Random selection. This is more clear
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Act.F. Strategy Tuning Test Mse NHid

gau Input Yes 82.93% (1.48) 0.62 5.75

sinlin BGA No 81.76% (0.96) 0.73 10.35

gau Input No 81.07% (1.20) 0.54 20.48

sin BGA Yes 80.98% (1.21) 0.59 3.49

coslin BGA No 80.29% (1.14) 0.72 11.26

coslin BGA Yes 80.20% (1.25) 0.75 9.77

sinlin Random No 80.00% (0.94) 0.77 15.13

sinlin BGA Yes 79.80% (1.19) 0.75 10.45

gaulin Input Yes 79.80% (1.16) 0.83 11.55

cos BGA No 79.71% (1.38) 0.64 3.47

gaulin Input No 78.54% (1.31) 0.80 18.75

cos BGA Yes 78.34% (1.63) 0.64 3.12

tnh Input Yes 78.24% (1.14) 0.69 3.72

tnhlin BGA Yes 77.85% (1.27) 0.90 5.28

tnhlin BGA No 77.27% (1.00) 0.96 5.20

tnh Random No 77.27% (1.00) 0.72 5.45

linear - - 74.39% (0.83) 0.99 -

Table 3.10: Test set results for the Sonar data set with SAOCIF and di�erent parameter
con�gurations.

if we look only to the Ionosphere and Sonar problems, the most interesting
ones. In these cases, the dimension of the input space makes more di�cult to
�nd a good frequency at random. In some cases, selecting the frequencies from
the points in the data set seems well suited not only for RBFNs, as commonly
used, but also for MLPs. Since the computational cost for the Input strategy is
quite smaller than that of the BGA one8, the Input strategy is, in our opinion,
the most interesting one for further research.

8The relative computational costs of both strategies was quite variable, although the Input
strategy was always much faster than the BGA one. In the results shown, the Input strategy only
took from a few seconds to a few minutes on a Pentium IV processor, and it was from 30 to 300
times faster than the BGA strategy.
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3.8 Proofs of the Theoretical Results

3.8.1 Proof of Lemma 1

(L1a) By (3.1) we have
D
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(L1c) Expressing f as (f �XN ) +XN we have

kfk2 = kf �XNk2 + kXNk2 + 2Re (hf �XN ;XN i) :
By (3.1), 2Re (hf �XN ;XN i) = 0 holds.
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(L1d) By the de�nition of XN we have

kXNk2 = hXN ;XNi =
*

NX
k=1

�Nk v!k ;XN

+
=

NX
k=1

�Nk hv!k ;XN i:

Since XN satis�es (3.1) we have

8k : 1 6 k 6 N hv!k ;XN i = hv!k ; fi ;

Hence,

kXNk2 =
NX
k=1

�Nk hv!k ; fi =
NX
k=1

�Nk hf; v!ki:

(L1e) kf �XNk2 = hf �XN ; f �XN i = hf �XN ; fi � hf �XN ;XN i.

By (3.1), hf �XN ;XN i = 0 holds.

�

3.8.2 Proof of Lemma 2

Since PN (v!) is the residue of the best approximation of f�XN�1 with the vector v!,
the value of PN (v!) can be obtained as follows. First, impose (3.1) in order to obtain
the optimal coe�cient �! 2C . In this case, �! is such that hf �XN�1 � �!v!; v!i =
0. By inner product's properties, �! = hf�XN�1;v!i

kv!k
2 . This is always well de�ned, since

the vectors norms do not vanish in v(
). Using (L1c) and (L1d) with f = f �XN�1

and XN = �!v!, we have

PN (v!) = kf �XN�1 � �!v!k2
= kf �XN�1k2 � k�!v!k2
= kf �XN�1k2 � �!hf �XN�1; v!i
= kf �XN�1k2 � jhf �XN�1; v!ij2

kv!k2
:

In particular, PN is always well de�ned. Since the norm and the inner product are
continuous functions with regard to every one of its arguments, PN is continuous at
v(
).

�
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3.8.3 Proof of Proposition 1

(P1a) Evident, since the coe�cients of XN+1 are optimal:

kf �XN+1k2 6


f �XN + 0 � v!N+1



2 = kf �XNk2:
(P1b1) Evident, combining (P1a) and (L1c).

(P1b2) Expressing f �XN as f �XM +XM �XN we have

hf �XM ; f �XN i = kf �XMk2 + hf �XM ;XM �XN i :
By (3.1), hf �XM ;XM �XN i = 0 holds.

(P1b3) By (P1b2) and (L1e) we have

kf �XMk2 = hf �XM ; f �XN i = hf; f �XN i � hXM ; f �XN i
= kf �XNk2 � hXM ; f �XN i :

The proof �nishes with (P1a).

(P1c) The necessity is clear by (3.1). To prove the su�ciency, suppose that 8j : 1 6
j 6 N � 1 �Nj = �N�1j . Hence XN = XN�1 + �NNv!N holds. By (3.1) we have

8j : 1 6 j 6 N


f �XN ; v!j

�
= 0;

8j : 1 6 j 6 N � 1


f �XN�1; v!j

�
= 0:

Therefore, 8j : 1 6 j 6 N � 1 we have

0 =


f �XN ; v!j

�
=


f �XN�1 � �NNv!N ; v!j

�
=


�NNv!N ; v!j

�
:

Since �NN 6= 0, the vectors v!N and v!j are orthogonal for every j between 0
and N � 1.

(P1d) Since H is complete, it is enough to prove that limN;M!1 kXM �XNk2 = 0.
Suppose that M > N . Expressing XM � XN as (XM � f) + (f � XN ), and
using (P1b2) we have

kXM �XNk2 = kf �XMk2 + kf �XNk2 � 2Re (hf �XM ; f �XN i)
= kf �XMk2 + kf �XNk2 � 2kf �XMk2
= kf �XNk2 � kf �XMk2:

Since the sequence fkf �XNk2gN>0 is decreasing and positive (see (P1a)), it
is convergent. Hence,

lim
N;M!1

kXM �XNk2 = lim
N;M!1

�kf �XNk2 � kf �XMk2
�
= 0:

�
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3.8.4 Proof of Theorem 1

(T1a1) By Schwartz inequality we have

8!02
 jhg �XN ; v!0ij 6 kg �XNk kv!0k :
Using (P1d),

8!02
 lim
N!1

jhg �XN ; v!0ij 6 kv!0k lim
N!1

kg �XNk = 0:

(T1a2) Let !02
. By hypothesis, for every N > 0 and every �2C
kf �XN+1k2 6 kf � (XN + �v!0)k2 + �N

= kf �XNk2 � 2Re (hf �XN ; �v!0i) + j�j2kv!0k2 + �N

holds. Expressing f �XN as f � g + g �XN we have

kf �XN+1k2 � kf �XNk2 6
j�j2kv!0k2 � 2Re (hf � g; �v!0i)� 2Re (hg �XN ; �v!0i) + �N :

Hence,

2Re (hf � g; �v!0i)� j�j2kv!0k2 6
6 kf �XNk2 � kf �XN+1k2 � 2Re (hg �XN ; �v!0i) + �N

6 kf �XNk2 � kf �XN+1k2 + 2 jhg �XN ; �v!0ij+ �N

= kf �XNk2 � kf �XN+1k2 + 2 j�j jhg �XN ; v!0ij+ �N :

for every �2C . Let �0 = hf�g;v!0i
kv!0k2 , and " > 0.

Using (P1a), (T1a1), and the hypothesis about �N , there exists N0 such that
8N > N0,

kf �XNk2 � kf �XN+1k2 6 "=3;

2 j�0j jhg �XN ; v!0ij 6 "=3;

�N 6 "=3:

Thus we have
2Re (hf � g; �0v!0i)� j�0j2kv!0k2 6 ":

Since

hf � g; �0v!0i = �0 hf � g; v!0i = �0�0kv!0k2 = j�0j2kv!0k2;
2Re (hf � g; �0v!0i) = 2j�0j2kv!0k2 holds, and therefore

8" > 0 j�0j2kv!0k2 = 2Re (hf � g; �0v!0i)� j�0j2kv!0k2 6 ":

Hence, j�0j2kv!0k2 = 0. Since kv!0k2 6= 0, we have �0 = 0. Thus, by de�nition
of �0, hf � g; v!0i = 0 for every !02
. In particular we have
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(T1a21) 8N > 1 hf � g;XN i = 0

(T1a22) Using (3.1), 8j : 1 6 j 6 N 8M > N



g �XM ; v!j

�
=


g; v!j

�� 
XM ; v!j
�
=


g; v!j

�� 
f; v!j� = 0:

(T1a3) Expressing g as g �XN +XN , and using (T1a21), we can derive

hf � g; gi = hf � g; g �XN i+ hf � g;XN i = hf � g; g �XN i :

By Schwartz inequality we have

jhf � g; g �XN ij 6 kf � gk kg �XNk :

Using (P1d), limN!1 jhf � g; g �XN ij = 0. Therefore, hf � g; gi = 0.

(T1a4) By (T1a2), any combination
P

k �kv k in v(
) satis�es hf � g;
P

k �kv ki = 0.
Hence we have

kf � gk2 = hf � g; f � gi =
*
f � g; f �

X
k

�kv k

+
� hf � g; gi :

Using (T1a3) and Schwartz inequality we have

kf � gk2 =
�����
*
f � g; f �

X
k

�kv k

+����� 6 kf � gk





f �

X
k

�kv k






 :
Therefore, kf � gk 6 kf �Pk �kv kk for any vector combination. The other
inequality is clear, since for every N > 0

inf
�k2C
 k2







f �
X
k

�kv k






 6 kf �XNk 6 kf � gk+ kg �XNk :

The proof �nishes using (P1d).

(T1b) It is derived immediately from (T1a4).

(T1c) By hypothesis we have

kf �XN+1k2 6 inf
�2C ;!0 2


kf � (XN + �v!0)k2 + �N = inf
!02


PN+1(v!0) + �N :
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Using Lemma 2 and the de�nition of Cf;N we have

kf �XN+1k2 6 inf
!02


 
kf �XNk2 � jhf �XN ; v!0ij2

kv!0k2
!
+ �N

= kf �XNk2 � sup
!02


jhf �XN ; v!0ij2
kv!0k2

+ �N

6 kf �XNk2 �Cf;Nkf �XNk2 + �N

= (1� Cf;N)kf �XNk2 + �N :

�

3.8.5 Proof of Corollary 1

(C1a) If �N 6
Cf;N
2 � kf �XNk2, then by (T1c) we have

kf �XN+1k2 6 (1� Cf;N) � kf �XNk2 + Cf;N
2

� kf �XNk2

=

�
1 � Cf;N

2

�
� kf �XNk2:

An induction argument �nishes the proof, using that X0 = 0.

(C1b) This property can also be proved by an induction argument. By (L1c), the
result is true for N = 0:

kf �X1k2 = kfk2 � kX1k2 6 kfk2 = A+ 1

A+ 1
� kfk2:

Assume as inductive hypothesis that

kf �XNk2 6 A+ 1

N +A
� kfk2:
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Then, using (T1c) and the hypotheses we have

kf �XN+1k2 6 (1� Cf;N) � kf �XNk2 + �N

6

�
1 � 1

N +B

�
� A+ 1

N +A
� kfk2+

(A�B + 1)(A+ 1)

(N +B)(N +A)(N +A+ 1)
� kfk2

= kfk2 � A+ 1

N +A
�
�
N +B � 1

N +B
+

A�B + 1

(N +B)(N +A+ 1)

�

= kfk2 � (A+ 1) [(N +B � 1)(N +A+ 1) +A�B + 1]

(N +A)(N +B)(N +A+ 1)

= kfk2 � (A+ 1)(N +B)(N +A)

(N +A)(N +B)(N + A+ 1)

= kfk2 � A+ 1

N +A+ 1

as desired.
�



Chapter 4

Performing Feature Selection with

Multi-Layer Perceptrons

This chapter is devoted to the comparison of di�erent criteria to perform Feature
Selection (FS) with Multi-Layer Perceptrons (MLPs) and the Sequential Backward
Selection (SBS) procedure within the wrapper approach. The experimental results
suggest that performance can be signi�cantly improved when some critical decision
points are properly set.

4.1 Introduction

In general, there is no reason to think that, during the learning process of an MLP,
irrelevant variables will not be used by the system in order to �t the training set.
For new data, the performance of a system that takes into account this kind of
variables can be far to be optimal. This problem can be worsened if some important
features are missing or the number of available examples for the problem is small.
Unfortunately, it is not possible to know a priori whether we are in these situations
or not. Therefore, FS procedures become necessary for MLPs.

From an SML point of view, trying to minimize the value of the loss function
is surely the optimal criterion for FS [Liu and Motoda 1998], and that will be the
saliency used in this work. Saliencies di�erent from this one are mainly motivated
and justi�ed by computational cost reasons. Although this kind of saliencies may
work in certain situations, there is a lack of theoretical results that support them.
The sensitivity of the outputs with respect to the input units, or the relative variance
in the hidden layer net-input with respect to the inputs, for example, may be large
for an irrelevant variable if the system uses that variable to learn the training set.
As previously mentioned, it may also depend on whether the number of available
examples for the problem is large enough to �lter irrelevant variables or not.
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As many other authors (see section 2.7.2), we will also use the SBS procedure.
We think that the SBS procedure may help to detect irrelevant variables, specially
in the �rst steps1. As pointed out in section 2.7.2, there exist several models that
remove more than one feature in the same step. Although it can be justi�ed by
computational cost reasons, the elimination of several features in the same step may
lose the interactions among the variables. We will consider the SBS procedure with
the elimination of one feature at every step.

Regarding the evaluation of an FS procedure with MLPs, there are at least three
critical decision points when, as in our case, the saliency used is the value of the loss
function:

1. The stopping criterion in the training phase. That is, which properties must
satisfy the trained network? For example, the network could be trained either
until a (probably local) minimum in the training set or a minimum in the
validation set. Surely, the features to be eliminated using the same saliency
de�nition may be very di�erent depending on the stopping criterion. Suppose
that the model presents the negative e�ect of over�tting. Although it seems
that performing early stopping with a validation set may be a promising idea, it
could also be argued that training the network until a (probably overtrained)
local minimum of the training set forces the system to use all the available
variables as much as possible [Romero et al. 2003]. In this situation, irrelevant
variables could stand out more than in the minimum of a validation set when
the system is not allowed to use them.

2. Where and how should the loss function be measured? In the training set?
In a validation set? As an approximation not only dependent on the data
set? The easiest one is to measure it either in the training or a validation
set. The measurement of the loss function in a validation set is, probably,
the most reasonable choice, since it can be considered as an estimator of the
generalization error. But selecting the minimumnumber of features that allows
to �t the training set as well as the whole set of variables does could also be
thought as a quite reasonable way to eliminate useless features. In this case,
the loss function should be measured in the training set.

3. The network retraining with respect to the computation of the saliency. The
saliency of a feature can be computed following two approaches:

(a) First, the network is trained. Then, every feature is temporarily removed
and the value of the loss function is computed. Therefore, the saliency
of every feature is computed in the same trained network. Most of the

1Recently, the SBS procedure has also been successfully applied with linear Support Vector
Machines [Guyon et al. 2002]
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FS procedures for MLPs described in the literature compute the saliency
in this way (see below). The whole SBS procedure involves to train Nf

networks, where Nf is the number of variables.

(b) For every feature, the network is trained with that feature temporarily
removed. For every trained network, the value of the loss function is
computed. This procedure is, clearly, computationally more expensive

than the previously described one, since it involves to train
Nf �(Nf+1)

2

networks.

Note that these two ways of computing the saliency may give very di�erent
values for the same feature. Suppose that a trained network uses a certain fea-
ture to �t the data and a new network is trained without it. The new network
will use other features to �t the data, obtaining a di�erent solution than that
obtained with all the variables. There is no reason to think that the saliencies
of every feature remain unchanged with respect to the original network. The
same happens if the feature values are substituted by its average value. There-
fore, a more reliable estimation of the saliency is obtained by retraining the
network with every feature temporarily removed. To our knowledge, the only
models that retrain the network at every step with every feature temporarily
removed/added are those described in [Steppe et al. 1996; Onnia et al. 2001],
and none of them is a pure SBS procedure (see section 2.7.2). The reason for
this fact may be, similar to the existence of so many saliency de�nitions, the
high computational cost of the whole process.

There exists a lack of comparative studies among these issues in the literature. In
this chapter we describe an experimental evaluation of the SBS procedure for MLPs
designed on the basis of the previously explained points: the stopping criterion in the
training phase, the data set where the loss function is measured and the retraining
of the network with every feature temporarily removed previous to computing the
saliency. The experiments were performed for linear and non-linear models. We
consider that this study can shed light to the further design of FS methods for
MLPs.

Experimental results (see sections 4.5 and 4.6) suggest that the increase in the
computational cost associated with retraining the network with every feature tem-
porarily removed previous to computing the saliency can be rewarded with a signif-
icant performance improvement, specially if non-linear models are used. Regarding
the data set where the value of the loss function is measured, it seems clear that the
SBS procedure for MLPs takes pro�t from measuring it in a validation set. A some-
what non-intuitive conclusion is drawn by looking at the stopping criterion, where
it can be seen that forcing overtraining may be as useful as using early stopping
within the SBS procedure for MLPs. There exist an important improvement in the
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Algorithm

Let V1 be the whole set of Nf features
for N = 1 up to Nf � 1 do
Train the network with VN until a certain stopping criterion is satis�ed, and
keep its generalization performance

for each v2VN do

Set V = VN � fvg
Optionally, train the network with V (and the same stopping criterion)
Obtain the saliency of v by computing the value of the loss function Ev
on a certain data set (see the text for details)

end for

Set VN+1 = VN � fv�g, where v� is the feature associated to the lowest value
of the loss function Ev� in the previous loop

end for

Return VN�, where N� corresponds to the best generalization performance
of the network at any step of the previous loop

end Algorithm

Figure 4.1: A basic SBS procedure for MLPs with the value of the loss function as the
saliency.

overall results with respect to learning with the whole set of variables. Although
the model can be further improved, the good results obtained are mainly due, in
our opinion, to a proper detection of irrelevant variables.

The basic SBS algorithm for MLPs is described in section 4.2, together with the
critical points tested. The experimental work is described in sections 4.3, 4.4, 4.5
and 4.6.

4.2 A Basic SBS Procedure for MLPs

4.2.1 The Basic Scheme

The basic SBS procedure for MLPs that we used can be seen in �gure 4.1. It
works roughly as follows. The outer loop follows the scheme of the classical SBS
procedure, where a feature is permanently eliminated at every step. The inner loop
selects the variable to eliminate: every feature is temporarily removed, the network
is optionally trained, and the value of the loss function is computed (on a certain
data set). The variable such that, when removed, gives the lowest value of the loss
function is permanently eliminated. Typically, it is expected that, starting from the
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whole set of features, performance improves until a subset of features remains where
the elimination of further variables results in performance degradation. This is the
subset of features returned by the algorithm.

4.2.2 Critical Decision Points in the Algorithm

The algorithm in �gure 4.1 has three critical decision points:

1. The stopping criterion of the network training. This is the �rst critical deci-
sion point discussed in the previous section. We tested two di�erent stopping
criteria. The �rst one is to stop where a minimum of a validation set is
achieved. The second one is to stop at the (probably overtrained) point where
a minimum of the training set is obtained.

2. The data set where the value of the loss function is measured to compute the
saliency. This is the second critical decision point previously discussed. In our
experiments, the loss function was computed either in the training set or a
validation set.

3. Whether the network is retrained or not after the feature is temporarily re-
moved and previous to computing the saliency. That is, whether every feature
is temporarily removed before retraining the network or the network is �rst
trained and then every feature is temporarily removed in the same trained
network. We tested both schemes. This is the third critical decision point
discussed in the previous section.

Therefore, there are four combinations of stopping criterion/loss measurement
data set: Training/Training, Training/Validation, Validation/Training and Valida-
tion/Validation:

1. Training/Training: The network is trained until a minimum of the training
set, and the loss function is computed in the training set. Therefore, variables
that are not necessary to �t the training set will be removed. It could be
thought that this con�guration belongs to the family of methods that only use
the training set to compute the saliency (see section 2.7.2).

2. Training/Validation: The network is trained until a (probably overtrained)
minimum of the training set. The system is forced to use all the available
variables as much as possible. In this situation, a validation set is used to
remove the variables.

3. Validation/Training: It makes no sense.
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4. Validation/Validation: The network is trained until a minimumof a validation
set. The loss function is also computed in the validation set. Intuitively, this
seems the most suitable strategy.

Combined with the two possibilities regarding the retraining of the network, we
have a total of six con�gurations to test and compare.

4.3 Experimental Motivation

We performed some experiments on both arti�cial (section 4.5) and benchmark data
sets (section 4.6) for classi�cation tasks. For every data set, the six aforementioned
con�gurations were tested with the SBS procedure for MLPs described in �gure 4.1:

1. Training/Training with and without retraining.

2. Training/Validation with and without retraining.

3. Validation/Validation with and without retraining.

The experiments were designed so that every con�guration was tested with the
same network architecture and parameters, in order to introduce the least external
variability in the experiments. Similar to SAOCIF, we followed the strategy that
\the (numerically) best one is selected", regardless of similar results with di�erent
parameters.

A computational cost as small as possible was also needed in the whole process.
From our experience (see [Sopena et al. 1999a]), MLPs using sine activation func-
tions (and an appropriate choice of initial parameters, namely range of weights and
di�erent learning rates for every layer) usually needs less hidden units and learns
faster than MLPs with sigmoid functions when both types are trained with Back-
Propagation (BP). Several theoretical results also reinforce this claim [Suzuki 1998].
So then, for non-linear models we decided to use MLPs with one hidden layer of sinu-
soidal units, the hyperbolic tangent in the output layer, and trained with standard
BP in pattern mode.

4.4 General Methodology

The experimental methodologies for the di�erent data sets were very similar among
them, although they were not exactly equal. In the following, their common features
are described:

1. All the experiments were performed with strati�ed Cross-Validation (CV).
Previous to every CV, the examples in the data set were randomly shu�ed.
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2. First, the number of hidden units, the initial range of weights and the learning
rates were chosen so as to achieve a small and smoothly decreasing training
error in a reasonable number of epochs and an acceptable validation error.
5 runs of a 5-fold CV were performed. These parameters were used in the
subsequent steps, and they are di�erent for every data set.

3. Second, we tested the six aforementioned con�gurations with the SBS proce-
dure for MLPs described in �gure 4.1. For the Training/Training con�gura-
tion, 5 runs of a 5-fold CV were conducted. For the Training/Validation and
Validation/Validation con�gurations, 5 runs of a double 5-4-fold CV were per-
formed [Ripley 1995]2 (for a description of the double 5-4-fold CV, see section
3.7). In order to obtain di�erent models for every con�guration, we tested
them with several learning combinations:

(a) With and without bias in the hidden units (bias was always used in
the output units). The main reason for this was the observation that,
while biases in the hidden units are commonly used, they are not always
necessary with sinusoidal hidden units [Sopena et al. 1999a].

(b) Either increasing the number of epochs (in a �xed amount) after the
elimination of every variable or maintaining it constant over the whole
SBS procedure. The reason to increase the number of epochs was to
compensate the loss in the capability of �tting the data set when the
features are eliminated (the network parameters had been adjusted with
the whole set of variables and they were not modi�ed during the SBS
procedure). These parameters are also di�erent for every data set.

4.5 Experiments on Arti�cial Data Sets

4.5.1 The Augmented XOR Data Set

We performed an experimental comparison of the aforementioned con�gurations
with an augmented version of the XOR data set, where we arti�cially added 11
irrelevant features to the two original variables. Some of them were noisy. The
details of the whole set of features can be found in appendix A.

2When we use CV, we consider that the folds that are not in the training set can be used as
validation or test data, depending on the case. For a double CV there is no confusion. For a single
CV, in contrast, they can be test data (as in this step) or validation data (as in the previous step).



134 Chapter 4. Performing Feature Selection with Multi-Layer Perceptrons

Retrain Stopping Criterion/Loss Measurement Test Mse Var

Yes Training/Training 99.40% 0.06 x2 x1
No Training/Training 99.33% 0.06 x1 x6 x7
No Training/Validation 99.28% 0.06 x1 x7 x6
Yes Training/Validation 99.22% 0.05 x7 x1 x2
No Validation/Validation 99.15% 0.07 x1 x6
Yes Validation/Validation 99.08% 0.06 x2 x1

Table 4.1: Test set results for the Augmented XOR data set after the SBS procedure for
MLPs and di�erent combinations of retraining/stopping criterion/loss measurement data
set.

4.5.1.1 Methodology

These are the speci�c parameters for this data set in the general methodology de-
scribed in section 4.4:

1. In the �rst step, the selected number of hidden units was 20, with an initial
range of weights of 3:0 and 500 epochs.

2. In the second step, the number of epochs to increase was 50, when applied.

4.5.1.2 Results

The best results among the di�erent learning combinations for every con�guration
are shown in table 4.1 (column 'Test') as the average percentage of correctly classi�ed
patterns on the respective test sets in the following trained networks:

1. For the Training/Training con�guration, the networks with minimum squared
test set error among the networks with minimum training set error after every
variable is permanently eliminated.

2. For the Training/Validation and Validation/Validation con�gurations, the net-
works with minimumsquared test set error among the networks with minimum
validation set error after every variable is permanently eliminated.

The mean squared error on the test set (column 'Mse') and the variables (column
'Var') which allowed to obtain these results are also shown. The values in table 4.1
are computed as the mean over the di�erent folds in the respective CV. Figure 4.2
shows, for every con�guration, the evolution of the percentage of correct examples
in the training and test sets with respect to the number of eliminated variables in
the SBS procedure.

As expected, the addition of irrelevant features a�ects very negatively to the
performance of sinusoidal MLPs for this problem, even if we try to control the
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Figure 4.2: Percentage of correct examples for the Augmented XOR data set in the
training and test sets with respect to the number of eliminated variables in the SBS
procedure for MLPs with retraining (top) and without it (bottom). These values are
computed as the mean over the di�erent folds in the respective CV.

over�tting. The information needed to learn the problem is present, but the system
is not able to use it in a proper way. The reason for this fact may be the relatively
small number of examples in the data set, that did not allow to �lter this kind of
features. As far as variables are eliminated, performance improves. However, many
variables must be eliminated to obtain good performance. We also observed this
behavior in several preliminary experiments with the hyperbolic tangent function.

If we look at the �nal selected variables (see table 4.1), we can see that there
is a strong coincidence among the di�erent con�gurations, which select the original
variables or some equivalent ones. Results in table 4.1 seem to indicate that there
is no di�erence among the di�erent con�gurations3. But, as we will see in the rest
of the chapter, this behavior is not the general rule. However, it shows that there
exist problems where any of these con�gurations can be used to eliminate irrelevant
variables.

4.5.2 The Augmented Two Spirals Data Set

Similar to the Augmented XOR data set, we performed an experimental comparison
of the aforementioned con�gurations with an augmented version of the Two Spirals

3The small di�erences between models which select the same variables could be explained by
the initial random weights and the di�erent number of points in the respective training sets.
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Retrain Stopping Criterion/Loss Measurement Test Mse NVar

Yes Training/Validation 99.89% 0.01 3

Yes Validation/Validation 99.66% 0.02 3

Yes Training/Training 93.76% 0.19 4

No Training/Validation 92.30% 0.25 6

No Training/Training 92.10% 0.24 7

No Validation/Validation 87.10% 0.39 6

Table 4.2: Test set results for the Augmented Two Spirals data set after the SBS procedure
for MLPs and di�erent combinations of retraining/stopping criterion/loss measurement
data set.

data set, where we arti�cially added 13 irrelevant features to the two original vari-
ables. Some of them were noisy. The details of the added features can be found in
appendix A.

4.5.2.1 Methodology

We joined the three original data sets (training, validation and test) into a single
data set, in order to perform the experiments with strati�ed Cross-Validation.

These are the speci�c parameters for this data set in the general methodology
described in section 4.4:

1. In the �rst step, the selected number of hidden units was 40, with an initial
range of weights of 5:0 and 1; 500 epochs.

2. In the second step, the number of epochs to increase was 100, when applied.

4.5.2.2 Results

The best results among the di�erent learning combinations for every con�guration
are shown in table 4.2 (column 'Test') as the average percentage of correctly classi�ed
patterns on the respective test sets in the following trained networks:

1. For the Training/Training con�guration, the networks with minimum squared
test set error among the networks with minimum training set error after every
variable is permanently eliminated.

2. For the Training/Validation and Validation/Validation con�gurations, the net-
works with minimumsquared test set error among the networks with minimum
validation set error after every variable is permanently eliminated.

The mean squared error on the test set (column 'Mse') and the number of vari-
ables (column 'NVar') which allowed to obtain these results are also shown. Values
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Figure 4.3: Percentage of correct examples for the Augmented Two Spirals data set in
the training and test sets with respect to the number of eliminated variables in the SBS
procedure for MLPs with retraining (top) and without it (bottom). These values are
computed as the mean over the di�erent folds in the respective CV.

in table 4.2 are computed as the mean over the di�erent folds in the respective CV.
Figure 4.3 shows, for every con�guration, the evolution of the percentage of correct
examples in the training and test sets with respect to the number of eliminated
variables in the SBS procedure.

From these results, we can conclude that:

1. Similar to the Augmented XOR data set, the addition of irrelevant features af-
fects very negatively to the performance of sinusoidal MLPs for this problem,
even if we try to control the over�tting (see �gure 4.3). As far as variables
are eliminated, performance improves, although many variables must be elim-
inated to obtain good performance. We observed the same behavior in several
preliminary experiments with the hyperbolic tangent function.

2. Con�rming our intuition, retraining the network with every feature temporar-
ily removed previous to computing the saliency has a positive e�ect on the
SBS procedure for MLPs, both for the number of selected features and the
overall performance.

3. When retraining is performed:

(a) It seems that the SBS procedure uses the validation set to construct a
better subset of variables than if only the training set is used, although
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Retrain Stop. Crit./Loss Meas. Order of Variable Elimination

Yes Training/Validation 4 11 13 14 15 12 10 9 8 3 5 2 I 1 6 7

Yes Validation/Validation 9 7 15 13 14 12 11 10 8 4 3 5 I 6 1 2

Yes Training/Training 1 10 12 6 9 8 7 11 14 13 15 I 4 5 3 2

No Training/Validation 9 1 13 14 15 11 12 10 5 I 2 6 7 4 8 3

No Training/Training 5 10 14 11 15 12 13 1 I 6 2 7 8 9 4 3

No Validation/Validation 14 15 5 13 11 12 10 2 1 I 6 9 7 4 8 3

Table 4.3: Order of eliminated variables for the Augmented Two Spirals data set after the
SBS procedure for MLPs and di�erent combinations of retraining/stopping criterion/loss
measurement data set. Left variables were the �rst eliminated ones. Variables on the
right are the most important variables considered by every con�guration. The symbol I
indicates the point from which the variables have been selected.

there is no signi�cant di�erence with regard to the stopping criterion
(note that the Training/Validation con�guration obtains similar results
to the Validation/Validation one).

(b) Surprisingly, the evolution of the training set error is better using a vali-
dation set than without it (see �gure 4.3).

4.5.3 Analysis

The order of variable elimination for every con�guration can be seen in table 4.3.
Ideally, variables x13, x14 and x15 should never be considered as important, and
variables from x1 to x7 should be more important than variables from x8 to x12 (see
appendix A).

The claim about x13, x14 and x15 is satis�ed by all the con�gurations. However,
when retraining is not performed, we can see that several noisy variables (x8 or
x9, for example) are considered as important. It does not happen when retraining
is performed, and it was not observed for the Augmented XOR data set (see table
4.1). When retraining is performed, the redundancy of the variables allows to obtain
good generalization results with feature subsets di�erent from (although equivalent
to) the two original variables. The Training/Training con�guration seems to select,
however, a wrong noise free subset.

The observed results can be explained by looking at the behavior of every con-
�guration during the SBS procedure. We observed that:

1. When retraining is not performed, the temporary elimination of any variable
leads to large errors in the training set when compared to the training error
with the whole set of features. The third column in table 4.4 shows this fact
for the �rst step of the SBS procedure in the Augmented Two Spirals data
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Variable Augmented XOR Augmented Two Spirals

x1 84.55% 60.56%
x2 83.38% 59.58%
x3 84.40% 51.34%
x4 82.70% 52.39%
x5 - 66.27%
x6 90.60% 59.08%
x7 88.97% 57.59%
x8 98.30% 54.17%
x9 97.90% 52.95%
x10 - 65.12%
x11 96.25% 61.40%
x12 94.73% 59.86%
x13 94.53% 54.94%
x14 97.92% 61.87%
x15 96.32% 61.23%

None 100.0% 100.0%

Table 4.4: Percentage of correct examples in the training set after the temporary elim-
ination of every variable in the �rst step of the SBS procedure when retraining is not
performed. The �rst column indicates the temporarily eliminated variable. The second
and third columns are the percentages for the Augmented XOR and Augmented Two Spi-
rals data sets respectively. Variables with large percentages can be interpreted as variables
that are not very important in the obtained solution. Note that the whole set of features
allows to �t perfectly the training set. Although the selection was made using the sum-
of-squares error, we show the percentages of correct examples since they are easier to
interpret.

set. This happens because the minimum obtained after the training process
uses all the variables in a signi�cant way. Therefore, the elimination of a
feature without recalculating this minimum substantially modi�es the learned
function. In addition, it does not seem that noise free variables (from x1 to x7)
are more used than the rest in order to learn the data set. The same behavior is
observed in several subsequent steps, so that when retraining is not performed
the permanent elimination of a variable is decided, for this data set, in a quite
random way. For the Augmented XOR problem, in contrast, a line can be
drawn which clearly separates variables x1 to x7 from the rest (see the second
column in table 4.4). The reason of that di�erent behavior is not clear, but it
may be related to the di�erence between the percentages of correct examples
in the test set during the �rst steps of the SBS procedure: the Augmented
Two Spirals su�ers a much more strong performance degradation than the
Augmented XOR problem (see �gures 4.2 and 4.3), indicating that irrelevant
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Figure 4.4: Di�erences, at every step of the SBS procedure, between the maximum and
minimum percentages of correct examples in the respective loss measurement data sets
after retraining with every variable temporarily removed. Left plot shows the results for
the Augmented XOR data set. Right plot shows the results for the Augmented Two Spirals
data set. As an example, suppose that (N;P ) is plotted. It means that in the process of
elimination of the Nth variable, and after retraining the network without every remaining
feature temporarily removed, the maximum di�erence among the percentages of correct
examples in the respective loss measurement data sets was P . Very small percentages
indicate that there is hardly any di�erence among the variables. Although the selection
was made using the sum-of-squares error, we show the percentages of correct examples
since they are easier to interpret.

variables are not equally important in the respective obtained solutions.

2. When retraining is performed,

(a) In the Training/Training con�guration, we observed that, for the Aug-
mented Two Spirals data set, the training set is learned almost perfectly
independently on the temporarily eliminated variable, so that no signif-
icant di�erence can be stated among the variables. In our experiments,
it was observed in the elimination of the �rst 9 or 10 variables in all the
performed runs. The right plot in �gure 4.4 shows clearly this behavior.
Therefore, and similar to the case of absence of retraining, the permanent
elimination of a variable is decided in a quite random way during (too)
many steps. For the Augmented XOR data set, signi�cant di�erences
among the variables were observed from earlier steps of the procedure
(see left plot in �gure 4.4).

(b) For the Training/Validation and Validation/Validation con�gurations, in
contrast, the variables are much more clearly di�erentiated from the be-
ginning of the SBS procedure (see �gure 4.4). For the Augmented Two
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Spirals data set, note that the minimum observed at point 10 in the X
axis of the right plot of �gure 4.4 corresponds to the point where all
the noisy variables have already been eliminated (see table 4.3). The
criterion to eliminate permanently a variable does not seem random. Al-
though it does not mean that the order of eliminated variables is ideal
(see table 4.3), it is reasonably acceptable, taking into account that there
exist redundant variables.

A common point of the con�gurations that do not obtain satisfactory results is
the fact that they consider variables x3 and x4 (the squared of the original variables)
as important. Looking at the results, these variables do not seem the most promising
ones for this problem: variables x3 and x4 allow, together with other ones, to �t the
training set, but those feature subsets are not good for generalization purposes. Note
that, when all the variables are present, variables x3 and x4 are signi�cantly used to
�t the training set in both problems (see table 4.4). Therefore, a similar behavior
with respect to these variables could be expected for both data sets, but it was not
observed. Although it is not clear the reason of this di�erent behavior, we think that
the number of examples in the data set can be a key issue. The XOR problem is
easier than the Two Spirals one. The number of examples in the respective data sets
could be enough for the Augmented XOR but not for the Augmented Two Spirals
problem in order to select a proper subset of variables.

These observations allow to explain the results for the Augmented Two Spirals
data set showed in table 4.2 and the di�erences with the results for the Augmented
XOR data set in table 4.1.

4.6 Experiments on Benchmark Data Sets

In this section, the experiments on several benchmark data sets with the SBS pro-
cedure for MLPs described in �gure 4.1 are shown. A brief description of the data
sets used in the experiments can be found in appendix A.

The obtained results show that, although in a di�erent scale, a similar behavior
to that of the Augmented Two Spirals data set is observed.

4.6.1 Methodology

These are the speci�c parameters for these data sets in the general methodology
described in section 4.4:

1. All experiments were performed for \linear" and non-linear MLPs, trained
with standard BP. Linear MLPs had no hidden layers and hyperbolic tangents
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Data Set NHid WRange NEpochs NEpochs+

Pima Indians Diabetes 15 [-0.05,0.05] 2,500 250

Wisconsin Breast Cancer 2 [-0.05,0.05] 1,500 150

Hepatitis 20 [-1.5,1.5] 300 20

Ionosphere 10 [-0.5,0.5] 300 20

Sonar 35 [-1.0,1.0] 125 10

Table 4.5: Learning parameters for the benchmark data sets used in our experiments.
The column 'NHid' shows the number of hidden units, 'WRange' the initial range of
random weights and the column 'NEpochs' the number of epochs. The column 'NEpochs+'
indicates, when applied, the increment in epochs after the elimination of every variable.

in the output layer4. Non-linear MLPs had one hidden layer of sinusoidal
units, as previously explained. The motivation for testing linear MLPs was to
investigate whether it could be possible that after the elimination of several
variables, the remaining data could be reasonably �tted by a linear model or
not, and to study its performance in that case.

2. Table 4.5 shows the selected number of hidden units, range of weights and
number of epochs for every data set in the �rst step. The increment in epochs
after the elimination of every variable for the second step, when applied, is
also shown.

4.6.2 Results

The best results among the di�erent learning combinations for every con�guration
are shown in tables 4.6 to 4.15 (column 'Test') as the average percentage of correctly
classi�ed patterns on the respective test sets in the following trained networks:

1. For the Training/Training con�guration, the networks with minimum squared
test set error among the networks with minimum training set error after every
variable is permanently eliminated.

2. For the Training/Validation and Validation/Validation con�gurations, the net-
works with minimumsquared test set error among the networks with minimum
validation set error after every variable is permanently eliminated.

The mean squared error on the test set (column 'Mse') and the number of vari-
ables (column 'NVar') which allowed to obtain these results are also shown. Results

4MLPs with no hidden layers and hyperbolic tangents in the output layer are not, strictly
speaking, linear models. They are usually referred to as Single-Layer Perceptrons. Since the
decision boundary for classi�cation problems is a hyperplane, we will consider them as linear.
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for linear models are in tables 4.6 to 4.10, whereas the results for non-linear ones
are shown in tables 4.11 to 4.15. Figures 4.5 to 4.7 show, for every con�guration,
the evolution of the percentage of correct examples in the training and test sets
with respect to the number of eliminated variables in the SBS procedure for the
most interesting non-linear problems, namely Hepatitis, Ionosphere and Sonar (see
below). The values in these tables and �gures are computed as the mean over the
di�erent folds in the respective CV.

Several conclusions from these experiments can be summarized as follows:

1. Similar to the experiments for SAOCIF (see section 3.7), we can observe that
there exist data sets, such as the Pima Indians Diabetes and Wisconsin Breast
Cancer, where the results are very similar among all the parameter con�gura-
tions. It is very di�cult to obtain good conclusions from these experiments.
Note that the learning parameters for these two data sets are quite di�erent
to the rest (see table 4.5).

2. Linear models have a di�erent behavior from that of non-linear ones:

(a) Linear models obtain consistently worse results than non-linear ones and
the best resulting linear models have more variables, specially when the
number of original variables is larger (see the results for the Ionosphere
and Sonar data sets). For the Hepatitis data set, similar results are
obtained for linear models with the same variables than non-linear ones
(see below). It is worth noting that the Ionosphere and Sonar data sets
do not have missing values, in contrast to the Hepatitis data set. It may
happen that the missing information does not allow to observe di�erences
between linear and non-linear models for this data set (for example, if
the missing values are present in important variables).

(b) In addition, linear models do not seem to take pro�t from measuring the
loss function in a validation set (the best results are usually obtained
with the Training/Training con�guration, although the networks present
overtraining), in contrast to non-linear models (see below).

(c) Overall, linear models have no clear tendency. A deeper study should be
necessary in order to explain their behavior.

3. Regarding non-linear models for the most interesting problems, namely Hep-
atitis, Ionosphere and Sonar, we can see that:

(a) The best results are always obtained retraining the network with every
feature temporarily removed previous to computing the saliency, as ex-
pected. As previously said, this is a non-common strategy (to the best
of our knowledge, the only models that retrain the network at every step
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with every feature temporarily removed/added are those in [Steppe et al.
1996; Onnia et al. 2001], and none of them is a pure SBS procedure).
Therefore, the usefulness of the SBS procedure for MLPs retraining the
network with every feature temporarily removed previous to computing
the saliency is con�rmed. We consider that the increase in the compu-
tational cost associated with this scheme is rewarded with a signi�cant
performance improvement, and deserves further research.

(b) With respect to the stopping criterion/loss measurement data set, it
seems that the SBS procedure takes pro�t from measuring the loss func-
tion in a validation set, di�erent to linear models, although it is not
clear which is the best stopping criterion. For the Sonar problem the
Validation/Validation strategy seems to work best. For the Ionosphere
problem, in contrast, the Training/Validation strategy selects a better
subset of variables5. For the Hepatitis problem both con�gurations can
be considered as equivalent6. The goodness of the Validation/Validation
con�guration can be intuitively explained. However, forcing overtraining
(in our scheme, training until a minimum of the training set) may help to
improve performance, whenever a validation set is used to measure the
goodness of a variable subset (the Training/Validation con�guration).
This is a non-intuitive result. Therefore, forcing the system to use all the
available features as much as possible helps to detect irrelevant variables
properly.

(c) Although in a di�erent scale, a similar behavior to that of the Augmented
XOR and Augmented Two Spirals data sets is observed in �gures 4.5 to
4.7. First, note that the training set can be �tted with a much smaller
subset of features than the original one. There exists a point where the
remaining features do not allow to �t the training set. Regarding the
test set, performance improves until a subset of features remains where
the elimination of further variables results in performance degradation.
This behavior seems to indicate that there exist irrelevant variables that
the SBS procedure for MLPs has detected and eliminated. However, the
di�erences among the results of the di�erent con�gurations are clearly
more similar to Augmented Two Spirals data set than to the Augmented
XOR one. The reason for these di�erences could be, as in the Augmented
Two Spirals data set, to the existence of several variables that allow to

5For the Ionosphere problem, the variables selected by the Training/Validation con�guration
were fx2; x4; x5; x7; x20g. The rest of con�gurations with 5 features selected fx2; x4; x7; x20; x26g.

6For the Hepatitis problem, the variables selected by the Training/Validation and Valida-
tion/Validation con�guration were fx2; x5; x18g. The rest of con�gurations with 3 features selected
other subsets (fx13; x15; x18g, fx8; x13; x18g or fx13; x17; x18g).
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�t the training set but are not good for generalization purposes. The
number of available examples would not allow to �lter these variables
in some cases. In this sense, we think that the overall results could be
further improved if more examples could be used.

(d) There exists an important improvement in the overall results with respect
to learning with the whole set of variables (see table A.2 in appendix A
and the results for SAOCIF in section 3.7 for MLP architectures, for ex-
ample). Results in these experiments are also quite good when compared
with other existing FS wrappers in the literature (see table A.3 in ap-
pendix A). Note that the number of selected variables for the best models
is smaller than those in table A.3. The good results obtained with the
previously described criteria are mainly due, in our opinion, to a proper
detection of irrelevant variables.
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Retrain Stopping Criterion/Loss Measurement Test Mse NVar

No Training/Training 77.62% 0.63 7
Yes Training/Training 77.41% 0.62 7
Yes Validation/Validation 77.07% 0.62 5
No Training/Validation 77.07% 0.63 8
Yes Training/Validation 76.95% 0.63 7
No Validation/Validation 76.95% 0.63 8

Table 4.6: Test set results for the Pima Indians Diabetes data set after the SBS procedure
and di�erent combinations of retraining/stopping criterion/loss measurement data set with linear
networks.

Retrain Stopping Criterion/Loss Measurement Test Mse NVar

No Training/Validation 96.89% 0.10 7
Yes Validation/Validation 96.76% 0.10 7
Yes Training/Validation 96.72% 0.10 7
No Validation/Validation 96.64% 0.11 7
No Training/Training 96.63% 0.12 5
Yes Training/Training 96.52% 0.11 4

Table 4.7: Test set results for the Wisconsin Breast Cancer data set after the SBS procedure
and di�erent combinations of retraining/stopping criterion/loss measurement data set with linear
networks.

Retrain Stopping Criterion/Loss Measurement Test Mse NVar

Yes Training/Training 93.42% 0.25 3
Yes Validation/Validation 93.10% 0.26 3
Yes Training/Validation 92.71% 0.26 6
No Training/Training 90.06% 0.36 1
No Validation/Validation 89.94% 0.32 10
No Training/Validation 88.90% 0.38 1

Table 4.8: Test set results for the Hepatitis data set after the SBS procedure and di�erent
combinations of retraining/stopping criterion/loss measurement data set with linear networks.

Retrain Stopping Criterion/Loss Measurement Test Mse NVar
Yes Training/Training 92.06% 0.27 14
No Training/Training 90.74% 0.33 17
Yes Training/Validation 90.16% 0.33 16
Yes Validation/Validation 90.04% 0.33 13
No Validation/Validation 89.37% 0.36 12
No Training/Validation 89.20% 0.37 12

Table 4.9: Test set results for the Ionosphere data set after the SBS procedure and di�erent
combinations of retraining/stopping criterion/loss measurement data set with linear networks.

Retrain Stopping Criterion/Loss Measurement Test Mse NVar

No Training/Training 85.46% 0.51 11
Yes Training/Training 85.07% 0.54 22
Yes Training/Validation 83.88% 0.51 20
Yes Validation/Validation 82.51% 0.58 18
No Validation/Validation 80.93% 0.60 7
No Training/Validation 79.37% 0.65 20

Table 4.10: Test set results for the Sonar data set after the SBS procedure and di�erent combi-
nations of retraining/stopping criterion/loss measurement data set with linear networks.
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Retrain Stopping Criterion/Loss Measurement Test Mse NVar

No Training/Training 77.91% 0.63 5
Yes Validation/Validation 77.75% 0.62 4
No Validation/Validation 77.70% 0.62 4
Yes Training/Training 77.65% 0.62 5
No Training/Validation 77.63% 0.62 4
Yes Training/Validation 77.43% 0.62 4

Table 4.11: Test set results for the Pima Indians Diabetes data set after the SBS procedure and
di�erent combinations of retraining/stopping criterion/loss measurement data set with non-linear
networks.

Retrain Stopping Criterion/Loss Measurement Test Mse NVar

Yes Validation/Validation 96.87% 0.11 6
No Training/Training 96.86% 0.10 7
No Validation/Validation 96.70% 0.11 8
Yes Training/Training 96.69% 0.11 5
Yes Training/Validation 96.68% 0.11 8
No Training/Validation 96.64% 0.11 6

Table 4.12: Test set results for theWisconsin Breast Cancer data set after the SBS procedure and
di�erent combinations of retraining/stopping criterion/loss measurement data set with non-linear
networks.

Retrain Stopping Criterion/Loss Measurement Test Mse NVar

Yes Training/Validation 93.90% 0.24 3
Yes Validation/Validation 93.77% 0.25 3
Yes Training/Training 92.26% 0.25 3
No Training/Training 92.13% 0.26 3
No Validation/Validation 88.97% 0.40 1
No Training/Validation 88.26% 0.36 3

Table 4.13: Test set results for the Hepatitis data set after the SBS procedure and di�erent
combinations of retraining/stopping criterion/loss measurement data set with non-linear networks.

Retrain Stopping Criterion/Loss Measurement Test Mse NVar
Yes Training/Validation 93.61% 0.22 5
No Validation/Validation 92.77% 0.24 5
Yes Validation/Validation 92.73% 0.24 5
No Training/Validation 92.57% 0.24 5
No Training/Training 92.40% 0.25 5
Yes Training/Training 90.51% 0.33 3

Table 4.14: Test set results for the Ionosphere data set after the SBS procedure and di�erent
combinations of retraining/stopping criterion/loss measurement data set with non-linear networks.

Retrain Stopping Criterion/Loss Measurement Test Mse NVar

Yes Validation/Validation 89.73% 0.33 14
Yes Training/Training 88.59% 0.37 7
Yes Training/Validation 87.95% 0.36 11
No Training/Training 87.41% 0.40 57
No Training/Validation 85.02% 0.46 46
No Validation/Validation 84.49% 0.47 50

Table 4.15: Test set results for the Sonar data set after the SBS procedure and di�erent combi-
nations of retraining/stopping criterion/loss measurement data set with non-linear networks.
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Figure 4.5: Percentage of correct examples for the Hepatitis data set in the training and
test sets (non-linear models) with respect to the number of eliminated variables in the
SBS procedure for MLPs with retraining (top) and without it (bottom). These values are
computed as the mean over the di�erent folds in the respective CV.
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Figure 4.6: Percentage of correct examples for the Ionosphere data set in the training
and test sets (non-linear models) with respect to the number of eliminated variables in
the SBS for MLPs procedure with retraining (top) and without it (bottom). These values
are computed as the mean over the di�erent folds in the respective CV.
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Figure 4.7: Percentage of correct examples for the Sonar data set in the training and
test sets (non-linear models) with respect to the number of eliminated variables in the
SBS procedure for MLPs with retraining (top) and without it (bottom). These values are
computed as the mean over the di�erent folds in the respective CV.
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Chapter 5

WQL : Weighting the Quadratic

Loss Function to Maximize the

Margin

In this chapter we describe a modi�cation of the quadratic loss function for classi-
�cation problems inspired in Support Vector Machines (SVMs) and the AdaBoost
algorithm. In the linearly separable case, the hyperplane that maximizes the normal-
ized margin also minimizes asymptotically the loss function proposed. The hardness
of the resulting solution can be controlled, as in SVMs, so that this model can also
be used with Feed-forward Neural Networks (FNNs) for the non-linearly separable
case. The modi�cation proposed is tested with arti�cial and real-world data sets.

5.1 Introduction

As previously said (see chapter 2), FNNs and SVMs are two alternative Supervised
Machine Learning (SML) frameworks for approaching classi�cation and regression
problems developed from very di�erent starting points of view. The minimization
of the sum-of-squares error and the maximization of the margin performed by FNNs
and SVMs, respectively, lead to a very di�erent inductive bias with very interesting
properties [Bishop 1995a; Vapnik 1998a].

We will consider the classi�cation task given by a data set D as in (2.1), where
each instance xi belongs to the input space RI, yi2f�1;+1gC and C is the number
of classes1. Looking at the similarities and di�erences between FNNs and SVMs,
it can be observed that the main di�erence between the sum-of-squares minimiza-
tion problem of an FNN and the margin maximization problem of an (1-norm soft
margin) SVM lies in the constraints related to the objective function. Since these

1For 2-class problems, usually yi2f�1;+1g.
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constraints are responsible for the existence of the support vectors, their behav-
ior will give the key to propose a new learning model for FNNs related to margin
maximization.

A weighting of the sum-of-squares error function is proposed, that will be referred
to as Weighted Quadratic Loss (WQL ) function. During the learning process, the
WQL function reinforces the contribution of misclassi�ed points to the total error,
and reduces the contribution of well classi�ed ones. The reinforcement or reduction
of every point depends on its margin, and it is inspired in the AdaBoost algorithm.
The proposed error weighting forces the training procedure to pay more attention
to the points with a smaller margin. In terms of the Bias/Variance decomposition,
variance tries to be controlled by not attempting to over�t the points that are already
well classi�ed.

In the linearly separable case, the hyperplane that maximizes the normalized
margin also minimizes asymptotically the WQL function proposed. The hardness
of the resulting solution can be controlled, as in SVMs, so that this model can be
used for the non-linearly separable case as well.

The classical FNN architecture of the new proposed scheme presents some advan-
tages. On the one hand, the �nal solution is neither restricted to have an architecture
with so many hidden units as points in the data set (or support vectors) nor to use
kernel functions. The frequencies are not restricted to be a subset of the data set.
On the other hand, it allows to deal with multiclass and multilabel problems in a
natural way as FNNs usually do. This is a non-trivial problem for SVMs, since they
are initially designed for binary classi�cation problems.

Both theoretic and experimental results are shown con�rming these claims. Sev-
eral experiments have been conducted on arti�cial and two real-world problems
from the Natural Language Processing domain, namely Word Sense Disambigua-
tion and Text Categorization. Several comparisons among the new proposed model
and SVMs have been made in order to see the agreement of the predictions made
by the respective classi�ers. The obtained results seem to con�rm the hypothesis
made about the new proposed scheme.

In section 5.2, the comparison between FNNs and SVMs is performed. The
weighting of the sum-of-squares error function is described in section 5.3. Sections
5.4, 5.5 and 5.6 are devoted to the experimental work.

5.2 A Comparison Between FNNs and SVMs

In this section, a comparison between FNNs and (1-norm soft margin) SVMs is
performed. After comparing the respective output and cost functions, it will be
clear that the main di�erence lies in the presence or absence of constraints in the
optimization problem.
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5.2.1 Comparing the Output Functions

As pointed out elsewhere (see, for example, [Vapnik 1998b]), the output function
foSVM (2.28) of an SVM can be expressed with a fully connected FNNwith one output
unit and one hidden layer of units foFNN (2.8) with the following identi�cations:

1. Number of hidden units: L (the number of examples in D)

2. Coe�cients: �k = yk�k

3. Frequencies: !k = xk

4. Biases: every bk vanishes, and b0 = b

5. Activation functions:

(a) Hidden layer: 'k(xk; x; bk) = K(xk; x)

(b) Output layer: '0 linear

As in SVMs, the only parameters to be learned in such an FNN would be the
coe�cients and the biases. So, the main di�erences between FNNs and SVMs rely
on both the cost function to be optimized and the constraints. Speci�c learning
algorithms are a consequence of the optimization problem to be solved.

5.2.2 Comparing the Cost Functions

De�ning

KL =

0
BBB@

K(x1; x1) K(x1; x2) � � � K(x1; xL)
K(x2; x1) K(x2; x2) � � � K(x2; xL)

...
...

. . .
...

K(xL; x1) K(xL; x2) � � � K(xL; xL)

1
CCCA

y = (y1; : : : ; yL)
T , y� = (y1�1; : : : ; yL�L)

T , neglecting the bias term b, and consider-
ing the identi�cations stated in section 5.2.1 we have that foFNN(xj), which is equal
to foSVM (xj), is the j-th row of the vector y�T�KL. Therefore, we can express the
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respective cost functions (2.9) and (2.29) as2:

E(D) =
LX
i=1

foFNN(xi)
2 � 2

LX
i=1

yif
o
FNN (xi) +

LX
i=1

y2i

= y�T�KL �KL � y�� 2 � y�T�KL � y + L

M(D) = �1

2
y�T�KL � y�+ y�T�y

Regardless of their apparent similarity, we may wonder whether there is any di-
rect relationship between the minima of E(D) and the maxima of M(D) (or equiv-
alently, the minima of �M(D)). The next result partially answers this question.

Proposition 2. Consider the identi�cations in section 5.2.1 without the bias term
b. If KL is non-singular, then the respective cost functions E(D) and �M(D) attain
their unique minimum (without constraints) at the same point

(y1�
�
1; :::; yL�

�
L)
T = K�1

L � y:

Proof. As E(D) and �M(D) are convex functions, a necessary and su�cient con-
dition for y�� to be a global minimum is that their derivative with respect to y�
vanishes:

@E(D)

@y�
= 2 �KL �KL � y�� 2 �KL � y = 0

�@M(D)

@y�
= KL � y�� y = 0

Since KL is non-singular, both equations have the same solution.

�

If KL is singular, there will be more than one point where the optimum value
is attained, but all of them are equivalent. In addition, KL has rows which are
linearly dependent among them. This fact indicates that the information provided
(via the inner product) by a point in the data set is redundant, since it is a linear
combination of the information provided by other points. If the bias b is �xed a
priori, the same result holds.

2For the sake of simplicity, in this chapter we will consider the empirical risk as E(D) =
PL

i=1 (yi � foFNN (xi))
2, neglecting the 1

L
term.
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5.2.3 Towards a common model

The optima of E(D) and M(D) can be very di�erent depending on the absence or
presence of the constraints. Therefore, it seems that the main di�erence between
the respective optimization problems for FNNs and (1-norm soft margin) SVMs lies
in the constraints.

At this point, at least two questions can be posed:

1. Which constraints could be added to the sum-of-squares error to imitate an
SVM?

2. How can the sum-of-squares error be modi�ed to simulate the behavior of an
SVM?

To answer the �rst question it seems necessary to identify the arguments of
the constraints. They could be the coe�cients, but it is not clear, since they play
a di�erent role in FNNs than in SVMs. Another possibility could be to de�ne
constraints involving the outputs of the network in the points of the data set, but
the resulting optimization problem would not have linear constraints. The next
section gives an answer to the second question above.

5.3 An FNN that Maximizes the Margin

In this section we explore the e�ect of the constraints in the solution obtained by
the SVMs approach. Since these constraints are responsible for the existence of
the support vectors, their behavior will give the key to propose a weighting of the
sum-of-squares error function, inspired in the AdaBoost algorithm.

5.3.1 Contribution of Every Point to the Cost Function

The existence of linear constraints in the optimization problem to be solved in
SVMs has a very important consequence: only some of the �i will be di�erent from
zero. These coe�cients are associated with the so called support vectors. Thus,
the remaining vectors can be omitted, both for optimizing M(D) and computing
the output (2.28). The problem is that we do not know them in advance. In the
linearly separable case (either in the input space or in the feature space), with hard
margin solutions, support vectors have margin 1 (i.e., fSVM(xi) = yi), while the
remaining points (that will be referred to as super-classi�ed points) have a margin
strictly greater than 1. Super-classi�ed points can be omitted.

In contrast, for FNNs minimizing the sum-of-squares error function, every point
makes a certain contribution to the total error. The greater is the squared error,
the greater will be the contribution, independently on whether the point is well or
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wrongly classi�ed. With linear output units, there may be points (very) well clas-
si�ed with a (very) large squared error. Super-classi�ed points are a clear example
of this type. Sigmoidal output units can help to solve this problem, but they can
also create new ones (in the linearly separable case, for example, the solution is not
bounded). An alternative idea to sigmoidal output units could be to reduce the
contribution of super-classi�ed points and reinforce those of misclassi�ed points, as
explained in the next section.

5.3.2 Weighting the Contribution

Unfortunately, we do not know in advance which points will be �nally super-classi�ed
or misclassi�ed. But during the FNN learning process it is possible to treat every
point in a di�erent way depending on its error (or, equivalently, its margin). In
order to simulate the behavior of an SVM, the learning process could be guided by
the following heuristics:

1. Any well classi�ed point contributes less to the error than any misclassi�ed
point.

2. Among well classi�ed points, the contribution is larger for smaller errors in
absolute value (or equivalently, smaller margins).

3. Among misclassi�ed points, the contribution is larger for larger errors in ab-
solute value (or equivalently, smaller margins).

These guidelines reinforce the contribution of misclassi�ed points and reduces
the contribution of well classi�ed ones. Therefore, variance tries to be controlled
by not attempting to over�t the points that are already well classi�ed. As it can
be seen, this is exactly the same idea as the distribution (2.30) for the AdaBoost
algorithm. Similarly, the contribution of every point to the error can be modi�ed
simply by weighting it individually as a function of the margin with respect to the
output function foFNN(x). We will call this error function aWeighted Quadratic Loss
(WQL ) function. In order to allow more 
exibility to the model, two parameters
�+; �� > 0 can be introduced into the weighting function as follows:

W (xi; yi; �
+; ��)=

8><
>:

e�jmrgj�
+

if mrg > 0

e+jmrgj�
�

if mrg < 0 and �� 6= 0
1 otherwise

(5.1)

where the margin mrg = mrg(xi; yi; foFNN) = yif
o
FNN (xi). Figure 5.1 shows several

weighting functions corresponding to di�erent values of �+. As it can be observed,
for very large values of �+ it is very similar to a heavy-side function.
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Figure 5.1: The weighting function (5.1) depending on �+.

There are (at least) two di�erent ways of obtaining the behavior previously
described:

1. Weighting the sum-of-squares error:

Ep = (yi � foFNN (xi))
2 �W (xi; yi; �

+; ��) (5.2)

2. Weighting the sum-of-squares error derivative (when the derivative is involved
in the learning process):

Ep such that � @Ep
@foFNN

= (yi � foFNN(xi)) �W (xi; yi; �
+; ��) (5.3)

where Ep = Ep(foFNN (xi); yi; �
+; ��). Graphically, the right branch of the squared

error parabola is bended to a horizontal asymptote, as it can be seen in �gure 5.2.
Weighting the sum-of-squares error derivative also implies a kind of weighting the
sum-of-squares error, although in a slightly di�erent way3.

The following result justi�es that the previously suggested WQL functions (5.2)
and (5.3) are well founded. In addition, it allows to construct new error functions
with the same underlying ideas.

Theorem 2. Let f 2 R, y 2 f�1;+1g, �+; �� > 0 and Ep(f; y; �+; ��) an error
function satisfying:

1. There exists a constant A such that for every f; y; �+; �� we have

Ep(f; y; �
+; ��) > A:

3Note that (5.3) does not derive from (5.2). Abusing of notation, we indicate that the weighting
can be made either at the error level or at the error derivative level.
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Figure 5.2: Individual error Ep for the WQL (5.2) (left) and the WQL derivative (5.3)
(right) for �+ = 1; 2 (�� is �xed to 0). The target value is +1 and the X axis indicates
the output function.

2. For every �� and every y; f satisfying yf > 1 we have

lim
�+!1

Ep(f; y; �
+; ��) = A:

Then, if D = f(x1; y1); : : : ; (xL; yL)g is a linearly separable data set, the hyper-
plane h(x) that maximizes the normalized margin also minimizes asymptotically
(�+ !1)

EP (f;D) =
LX
i=1

Ep(f(xi); y; �
+; ��): (5.4)

Proof. Since A is a lower bound for Ep, we have EP (f;D) > L � A for any function
f(x). Since D is linearly separable, h(x) satis�es that support vectors have margin
yih(xi) = 1, whereas yih(xi) > 1 for non-support vectors. The second hypothesis
implies that, for every xi2D, Ep(h(xi); y; �+; ��) = A asymptotically (�+ !1).

�

Remarks.

1. The theorem holds true independently on whether the data set D is linearly
separable either in the input space or in the feature space.

2. The previously suggested weighted error functions (5.2) and (5.3) satisfy the
hypothesis of the theorem, with the additional property that the absolute
minimum of Ep is attained when the margin equals 1.
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3. The reciprocal may not be necessarily true, since there can be many di�erent
hyperplanes which asymptotically minimize EP (f;D). However, the solution
obtained by minimizing EP (f;D) is expected to have a similar behavior than
the hyperplane of maximal margin. In particular, using (5.2) or (5.3):

(a) It is expected that a large �+ will be related to a hard margin.

(b) For the linearly separable case, the expected margin for every support
vector is 1.

(c) For the non-linearly separable case, points with margin less or equal than
1 are expected to be support vectors.

Experimental results with several arti�cial and real-world problems suggest that
these hypotheses seem to be well founded (see sections 5.5 and 5.6).

The relationship among �+, the learning algorithm, and the hardness of the
margin deserves special attention. Suppose that EP is minimized with an iterative
procedure, such as Back-Propagation (BP), and the data set is linearly separable.
For large �+, the contribution of super-classi�ed points to EP can be ignored. Far
away from the minimum there exist points whose margin is smaller than 1 � ",
for a certain small " > 0. Very close to the minimum, in contrast, the margin
value of every point is greater than 1 � ". Using the same terminology as in the
SVMs approach, the number of bounded support vectors decreases as the number
of iterations increases, leading to a solution without bounded support vectors. In
other words, for linearly separable data sets and large �+, the e�ect of an iterative
procedure minimizing EP is the increase of the hardness of the solution with regard
to the number of iterations. For small �+, in contrast, the contribution of super-
classi�ed points cannot be ignored, and the solutions obtained probably share more
properties with the regression solution (i.e., the solution minimizing the standard
quadratic loss function).

For non-linearly separable data sets, it seems that the behavior could be very
similar to the linearly separable case (in the sense of the hardness of the solution).
In this case, the existence of misclassi�ed points will lead to solutions having a bal-
anced combination of bounded and non-bounded support vectors. As a consequence,
solutions close to the minimum may lead to over�tting, since they are being forced
to concentrate on the hardest points to classify, which may be outliers or wrongly la-
beled points. The same sensitivity to noise was observed for the AdaBoost algorithm
in [Dietterich 2000].

Since the contribution of every point to the error is di�erent in both the WQL
and regression models, the respective solutions may also be very di�erent depending
on the distribution of the points in the data set. For example, well classi�ed outliers
far away from the decision boundary have a great in
uence for standard quadratic
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loss function and null in
uence for WQL. In contrast, outliers near the decision
boundary a�ect WQL much more than if the contribution is not weighted.

5.3.3 Practical Considerations

Some bene�ts can be obtained by minimizing an error function as the one de�ned
in (5.4), since there is no assumption about the existence of any predetermined
architecture in the FNN:

1. In the �nal solution, there is no need to have as many hidden units as points
in the data set (or any subset of them), nor the frequencies must be the points
in the data set. Therefore, a more \classical" FNNs approach may be used.

2. There is no need to use kernel functions, since there is no inner product to
compute in the feature space.

In addition, it allows to deal with multiclass and multilabel problems as FNNs
usually do:

1. For C-class problems, an architecture with C output units may be constructed,
so that the learning algorithm minimizes the multiclassWQL, de�ned as usual
[Bishop 1995a]:

EC
P (f

o;c
FNN ;D) =

LX
i=1

CX
c=1

Ep(f
o;c
FNN (xi); y

c
i ; �

+; ��): (5.5)

2. The error function de�ned in (5.5) also allows to deal with multilabel problems
with the same architecture.

5.4 Experimental Motivation

We performed some experiments on both arti�cial (section 5.5) and real data (sec-
tion 5.6) in order to test the validity of the new model and the predicted behavior
explained in section 5.3.

Regarding to the new proposed FNNs training model, we were interested in
testing:

1. Whether learning is possible or not with a standard FNN architecture when a
WQL function EP (f;D) is minimized with standard methods.

2. Whether the use of non-kernel functions can lead to a similar behavior to that
of kernel functions or not.
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3. The e�ect of large �+, together with the number of iterations, on the hardness
of the margin.

4. The identi�cation of the support vectors, simply by comparing their margin
value with 1.

5. The behavior of the model in multiclass and multilabel problems minimizing
the error function de�ned in (5.5).

6. The behavior of the model in both linearly and non-linearly separable cases,
with linear and non-linear activation functions.

All WQL experiments were performed with Multi-Layer Perceptrons (MLPs)
trained with standard BP weighting the sum-of-squares error derivative (5.3). The
parameter �� was set to 0 in all experiments, so that misclassi�ed points had always
a weight equal to 1 (i.e., no modi�cation of their contribution). From now on, we will
refer to this method as BPW. If not stated otherwise, every architecture had linear
output units. Arti�cial problems were trained in batch mode, whereas real-world
problems were trained in pattern mode.

In real-world problems, we made several comparisons among FNNs trained with
BPW (for several activation functions and number of epochs) and SVMs with dif-
ferent kernels. Our main interest was to investigate the similarities among the
partitions that every model induced on the input space. We can approximately
do that by comparing the outputs of the di�erent learned classi�ers on a test set,
containing points never used during the construction of the classi�er.

5.5 Experiments on Arti�cial Data Sets

5.5.1 Two Linearly Separable Classes

The �rst experiment consisted in learning the maximal margin hyperplane of two
linearly separable classes. We constructed two di�erent linearly separable data sets
(L1 and R1), shown in �gure 5.3. Despite of their apparent simplicity, there is a big
di�erence between the maximal margin hyperplane (dashed line) and the minimum
sum-of-squares hyperplane (dotted line), used as the initial weights for BPW in an
MLP without hidden layers.

Solid lines in �gure 5.3 show the resulting hyperplanes after the training (until
numerical convergence) for di�erent values of �+. As it can be observed, the maximal
margin hyperplane was obtained for �+ = 9, so that the e�ect of large �+ together
with the number of iterations on the hardness of the resulting solution was con�rmed.
When looking at the output calculated by the network, we could see that every point
had functional margin strictly greater than 1 except:
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Figure 5.3: Separating hyperplanes (solid lines) for BPW and di�erent values of �+ in the
two-class linearly separable problems L1 (left) and R1 (right). Dotted and dashed lines
represent the minimum sum-of-squares and the maximal margin hyperplanes, respectively.

� for L1, points f(9; 2); (10; 3); (4; 5); (7; 8)g;
� for R1, points f(10; 3); (1; 4); (10; 6)g;

which had margin very close to 1. These points are, respectively, the support vectors
of the maximal margin hyperplane of the data sets, con�rming the prediction about
the support vectors just by looking at their margin value.

5.5.2 Three Linearly Separable Classes

The second experiment consisted in learning three linearly separable classes. As in
the previous experiments, we constructed two di�erent linearly separable data sets
(L2 and R2), shown in �gure 5.4. In this case, the constructed MLPs had three
output units, and the training algorithm minimized (5.5). In the same conditions
as in the previous section, solid lines in �gure 5.4 show the resulting hyperplanes
(the output function for every output unit) after the minimization of the weighted
sum-of-squares for �+ = 9. We looked at the output calculated by the network for
every point in the data set, in order to identify the support vectors. Splitting the
resulting network into one network for every class, we observed that every output
unit of every network, as in the two linearly separable case, had functional margin
strictly greater than 1 for every point in the data set except

� for L2:

{ f(9; 3); (3; 3); (9; 7)g for the circled points class;
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Figure 5.4: Separating hyperplanes for BPW multiclass (see (5.5)) for �+ = 9 in the
three-class linearly separable problems L2 (left) and R2 (right).

{ f(9; 1); (5; 5); (7; 9)g for the crossed points class;

{ f(11; 3); (3; 7); (9; 7)g for the squared points class;

� for R2:

{ f(9; 3); (3; 3); (11; 6)g for the circled points class;

{ f(9; 1); (5; 5); (5; 8)g for the crossed points class;

{ f(11; 3); (3; 7); (5; 8)g for the squared points class;

which had margin very close to 1. These vectors are the support vectors obtained
after solving the one-vs-all binarization of the problem. It con�rms our hypothesis
about the applicability of the model for multiclass problems.

5.5.3 The Two Spirals Data Set

A description of the Two Spirals data set can be found in appendix A. An SVM
with Gaussian kernels and standard deviation 1 was constructed using the SVMlight

software [Joachims 1999]4. We did not obtain satisfactory results either for polyno-
mial or sigmoidal kernels. The hard margin solution contained 176 support vectors
(0 bounded). In order to make a comparison with an FNN with the same activation
functions and frequencies, we constructed a network with 194 hidden Gaussian RBF
units (also with standard deviation 1). The frequencies were �xed to be the points

4Available from http://svmlight.joachims.org.
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Figure 5.5: Generalization obtained by SVMlight (left), BPW with Gaussian functions
(center) and BPW with sine functions (right) for the Two Spirals data set. The results
for BPW are the mean over 10 runs.

in the data set, and the initial range for the coe�cients was 0:001. Since it is a
separable problem with Gaussian kernels, we set �+ = 9. After 10 runs of a training
with BPW, the mean of the number of points with functional margin less than 1:05
(\support vectors" in our model) was 168. These points were always a subset of the
support vectors obtained with the SVMlight software. None of them had functional
margin less than 0:95.

We also constructed an MLP with a hidden layer of 24 sinusoidal units, as in
[Sopena et al. 1999a]. Initial frequencies for BPW were randomly assigned to an
interval [�3:5; 3:5], and the initial range for the coe�cients was 0:0001. We set
again �+ = 9. After 10 runs of a training with BPW, the mean of the number
of points with functional margin less than 1:05 was 101:6, and none of them had
functional margin less than 0:95. These results con�rm that there is no need to use
either an \SVM architecture" or kernel functions (the sine is not a kernel function)
when minimizing the WQL proposed.

The good generalization obtained by these models can be seen in �gure 5.5,
where the corners are (�6:5;�6:5) and (+6:5;+6:5). It is worth noting that all the
points in the training and test sets are radially equidistant inside a disk of radius
6:5. Therefore, while Gaussian functions are expected to have a good behavior for
this problem (the radial equidistance should favor radial functions), it is not so clear
a priori for sine functions.

5.6 Experiments on Real-World Data Sets

We have concentrated on two classic classi�cation problems from the Natural Lan-
guage Processing domain, namelyWord Sense Disambiguation and Text Categoriza-
tion, for carrying out the experimental evaluation with real data. These experiments
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were possible due to the collaboration of the author with Dr. Llu��s M�arquez and
Xavier Carreras [Romero et al. 2004b].

5.6.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) or lexical ambiguity resolution is the problem
of automatically determining the appropriate meaning or sense to each word in a
text or discourse. Resolving the ambiguity of words is a central problem for Natural
Language Processing applications and their associated tasks, including, for instance,
natural language understanding, machine translation, and information retrieval and
extraction [Ide and V�eronis 1998]. Although far from obtaining satisfactory results
[Kilgarri� and Rosenzweig 2000], the best WSD systems up to date are based on
SML algorithms. SVM-based classi�ers are among the top systems for this problem
[Lee and Ng 2002]. A brief description of the WSD data set used in our experiments
can be found in appendix A.

5.6.1.1 Methodology

Mainly due to the high number of features, the problem is linearly separable (note
that this does not imply that the problem should be easy to resolve, and in fact it is
not). This is why we have compared only linear models of BPW and SVMs in this
experiment.

More speci�cally, we trained two linear FNN architectures for 200, 500, 1;000
and 2;000 epochs. Both models were trained using BPW. The �rst ones (bpw-1) used
a value of �+ = 1, while the second ones (bpw-7) were trained with �+ = 7. The
problem was not binarized, so that BPW was trained to minimize (5.5). Regarding
SVMs, an extensive exploration of the C parameter was done for linear models in
order to determine the ranges in which some di�erences in accuracy took place. We
determined that a value of C = 1 corresponds to a hard-margin solution, while a
value of C between 10 and 20 times lower can be considered a soft margin. Therefore,
we compared three SVM linear models using C values of 0.05, 0.1, and 1 (from soft
to hard). The SVM model was trained on a one-vs-all binarized version of the
training corpus.

5.6.1.2 Results

Table 5.1 contains the basic information about the learning models and the global
accuracy results obtained by each of them on the WSD problem. Note that the
accuracy �gures have been calculated by averaging over the 4 words under study
(see appendix A), considering all the examples together (micro-average).
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Identi�er Algorithm Act.F. NEpochs Accuracy

bpw-1-200 BPW lin 200 72.45%
bpw-1-500 BPW lin 500 73.99%
bpw-1-1000 BPW lin 1,000 73.37%
bpw-1-2000 BPW lin 2,000 73.37%
bpw-7-200 BPW lin 200 72.76%
bpw-7-500 BPW lin 500 73.68%
bpw-7-1000 BPW lin 1,000 74.30%
bpw-7-2000 BPW lin 2,000 73.37%

Identi�er Software Kernel C-value Accuracy

svm-C005 SVMlight lin 0.05 73.37%
svm-C01 SVMlight lin 0.1 73.99%
svm-C1 SVMlight lin 1 72.45%

Table 5.1: Description and accuracy results of all models trained on the WSD problem.

It can be seen that all methods achieve accuracy rates that are signi�cantly
higher than the baseline 48.54% determined by the most-frequent-sense classi�er.
Additionally, all induced classi�ers achieve comparable accuracy rates (ranging from
72.45% to 74.30%) con�rming that both approaches are competitive in the WSD
domain. Parenthetically, the best result, 74.30%, corresponds to the bpw-7-1000
model. It should be noted that, although it could seem quite a low accuracy, the
�ve best performing systems in the SensEval-2 competition (including Boosting-
based and SVM-based classi�ers) achieved a global accuracy between 60% and 65%
on the whole set of 73 words. Our �gures are mostly comparable to these systems
when restricting to the 4 words treated in this study. It is also worth mentioning
that a moderate over�tting to the training examples is observed by both methods.
BPWmodels slightly over�t with the number of epochs and SVMs with the hardness
of the margin (i.e., large values of the C parameter).

But the main goal in this experiments is to compare the similarities and di�er-
ences among the induced classi�ers rather than solely the accuracy values achieved.
For that, we calculated the agreement ratio between each pair of models on the
test set (i.e., the proportion of test examples in which the two classi�ers agree in
their predictions). Additionally, we have calculated the Kappa statistic5. Table 5.2
contains a subset of these comparisons which allows us to extract some interesting
conclusions about the similarities and di�erences among the models learned. It can
be observed that:

5The Kappa statistic (�) [Cohen 1960] is a measure of inter-annotator agreement which reduces
the e�ect of chance agreement. A Kappa value of 0 indicates that the agreement is purely due to
chance, whereas a Kappa value of 1 indicates perfect agreement. A Kappa value of 0.8 and above
is considered as indicating good agreement.
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svm-C005 svm-C01 svm-C1

Agreement Kappa Agreement Kappa Agreement Kappa

bpw-1-200 94.74% 0.8964 93.48% 0.8787 91.64% 0.8481
bpw-1-500 96.28% 0.9286 95.98% 0.9279 93.50% 0.8855
bpw-1-1000 96.28% 0.9309 95.98% 0.9256 93.81% 0.8882
bpw-1-2000 94.43% 0.8972 95.36% 0.9136 93.50% 0.8827

bpw-7-200 96.90% 0.9397 95.35% 0.9164 93.18% 0.8810
bpw-7-500 96.28% 0.9305 97.21% 0.9527 95.67% 0.9291
bpw-7-1000 94.74% 0.8994 96.90% 0.9428 96.59% 0.9406
bpw-7-2000 93.19% 0.8717 95.67% 0.9199 96.28% 0.9341

Table 5.2: Agreement and Kappa values between linear BPW and linear SVM models
trained on the WSD problem (test set).

1. All BPW models are fairly similar in their predictions to all SVM models.
Note that the agreement rates are always over 91% and that the Kappa values
are over 0.84, indicating very high agreement. This is specially remarkable,
since the agreement (and Kappa) values among the three SVM linear models
(information not included in table 5.2) range from 94.42% (� = 0.899) and
97.21% (� = 0.947).

2. Roughly speaking, the BPW models with �+ = 7 are more similar to SVMs
than the ones with �+ = 1 (specially for large values of C), suggesting that
large values for �+ are more directly correlated with margin maximization.

3. Restricting to bpw-7 models, another connection can be made between the
number of epochs and the hardness of the margin. On the one hand, comparing
to the svm-C005 models (SVMs with a soft margin) the less number of epochs
performed the higher agreement rates are achieved. On the other hand, this
trend is inverted when comparing to the hard-margin model of SVMs (svm-
C1). Note that there are two cells in the table that seems to contradict this
statement, since the agreement between bpw-7-2000 and svm-C1 should not
be lower than the agreement between bpw-7-1000 and svm-C1, and this is not
the case. However, note that the di�erence in agreement is due to the di�erent
classi�cation of a unique example, and therefore they can be considered almost
equivalent. Put in another way, restricting to the bpw-7-2000 row, the more
harder the SVMs margin is, the more similar the models are, whereas in the
bpw-7-200 row the tendency is completely the opposite.

4. Note that the behavior described in the last point is not so evident in the bpw-
1 model, and that in some cases it is even contradictory. We think that this
fact is giving more evidence to the idea that large values of �+ are required to
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resemble the SVM model, and that the hardness of the resulting solution can
be controlled with the number of iterations.

5.6.2 Text Categorization

Text Categorization (TC), or classi�cation, is the problem of automatically assigning
text documents to a set of pre-speci�ed categories, based on their contents. Since
the seminal works in the early 60's, TC has been used in a number of applications,
including, among others: automatic indexing for information retrieval systems, doc-
ument organization, text �ltering, hierarchical categorization of Web pages, and
topic detection and tracking [Sebastiani 2002]. From the 90's, many statistical and
SML algorithms have been successfully applied to the TC task. There is a general
agreement in that SVMs are among the top-notch performance systems. A brief
description of the TC data set and the evaluation measures used in our experiments
can be found in appendix A.

5.6.2.1 Methodology

The description of the models tested can be seen in table 5.3, together with the
F1 results6 obtained on the test corpus and micro-averaged (i.e., considering all the
examples together) over the 10 categories. As in the WSD data set, the problem was
not binarized for FNNs. Additionally, in this data set we had the opportunity of test-
ing the new model in a multilabel problem. Several MLP architectures were trained
with BPW minimizing (5.5), combining activation functions, number of hidden units
and number of epochs. We set �+ = 7, so that the e�ect of super-classi�ed points
can be ignored. The non-linear activation functions used were hyperbolic tangent
(tnh) and sine (sin). We also trained a linear (lin) architecture with standard BP.
The F1 results for FNNs are the average-output committee of the resulting networks
for 5 di�erent runs. As usual, the problem was binarized for SVMs. We used the
LIBSVM software [Chang and Lin 2002]7 to test several models with linear, Gaus-
sian (gau) and sigmoidal (hyperbolic tangent) kernels, and di�erent values of the
parameter C. We can observe the di�erent scale of the hardness of the margin with
regard to WSD, with values ranging from C = 20 to C = 200. We used LIBSVM
instead of SVMlightdue to some convergence problems of the latter in this data set.
Both for FNNs and SVMs, every non-linear activation function tested obtained a
satisfactory performance. For SVMs with sigmoidal kernels, the best parameters
made the sigmoidal function work very similar to a linear function, leading to mod-
els almost identical to linear SVMs. We have not included these results in the tables.

6The F1 measure is the harmonic mean of precision and recall: F1(P;R) = 2�P �R=(P+R) (see
appendix A).

7Available from http://www.csie.ntu.edu.tw/scjlin/libsvm.
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Identi�er Algorithm Act.F. NEpochs F1
bp-lin-500 BP lin 500 84.09

bpw-lin-50 BPW lin 50 88.84
bpw-lin-200 BPW lin 200 89.12
bpw-lin-500 BPW lin 500 88.81

bpw-tnh-lin-50 BPW tnh-lin (35H) 50 89.93
bpw-tnh-lin-200 BPW tnh-lin (35H) 200 89.77
bpw-tnh-lin-500 BPW tnh-lin (35H) 500 89.41
bpw-sin-lin-50 BPW sin-lin (20H) 50 89.87
bpw-sin-lin-200 BPW sin-lin (20H) 200 88.93
bpw-sin-lin-500 BPW sin-lin (20H) 500 88.30

Identi�er Software Kernel C-value F1
svm-lin-C20 LIBSVM linear 20 88.20
svm-lin-C50 LIBSVM linear 50 88.85
svm-lin-C200 LIBSVM linear 200 89.09
svm-gau-C20 LIBSVM Gaussian 20 89.14
svm-gau-C50 LIBSVM Gaussian 50 89.62
svm-gau-C200 LIBSVM Gaussian 200 89.02

Table 5.3: Description of the di�erent models for the comparison on the TC problem.
For BP and BPW, the \Act.F." column indicates the activation function of every layer
and the number of hidden units.

In contrast, when we trained an FNN with BPW and hyperbolic tangents as acti-
vation functions, the results were very satisfactory (see table 5.3) and the resulting
models were di�erent from linear SVMs (see table 5.4).

5.6.2.2 Results

We can see that the linear FNN trained with standard BP obtained a poor perfor-
mance, whereas the other linear classi�ers (BPW and SVMs) clearly outperformed
this model (see table 5.3). Therefore, it seems that the inductive bias provided by
the maximization of the margin has a positive e�ect in this problem, when linear
classi�ers are used. In contrast, for non-linear functions this e�ect was not observed
(we also trained several architectures with standard BP and non-linear activation
functions, leading to similar results to those of non-linear models of table 5.3). As
in WSD, a slight over�tting was present in the non-linear models tested: BPW with
regard to the number of epochs and SVMs with regard to the hardness of the margin.

Table 5.4 shows the comparison of the predictions in the test set (agreement8

8Due to the vast majority of negatives in all the (document,category) binary decision of the TC
problem, the negative-negative predictions have not been taken into account to compute agreement
ratios between classi�ers.
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and Kappa values) among several SVM models with linear kernels and the solutions
obtained with BPW :

1. Looking only at linear BPW models, a strong correlation between the number
of epochs and the hardness of the margin can be observed. It can be checked
by simply looking at the table by rows: BPWmodels with 50 epochs tend to be
more di�erent as the hardness of the margin increases, whereas BPW models
with 500 epochs tend to be more similar to hard margin SVM models. This
con�rms again the relationship between the hardness of the margin and the
number of iterations, provided �+ has a large value. For BPW with non-linear
activation functions this behavior is not so clear, although there also exist
similar tendencies in some cases (see, for example, the rows of the models with
500 epochs).

2. Looking at the table by columns, the tendency of the SVM model with C = 20
is to be more similar to the BPW models with 50 epochs. However, the SVM
model with the hardest margin (C200) signi�cantly tends to be more similar to
models with many epochs only for linear BPW activation functions. For non-
linear functions, the tendency is the opposite. Looking at the most similar
models between SVMs and BPW, we can see that, as expected, the most
similar models to svm-lin are those of bpw-lin, with very signi�cant di�erences
over the non-linear ones. The di�erences decrease as the margin becomes
harder.

The comparison of BPW models with SVMs with Gaussian kernels can be seen
in table 5.5. A similar behavior can be observed, but with some di�erences:

1. The tendency of linear BPW models changes: the less similar model to those
with 200 and 500 epochs is now svm-gau-C200, the model with hardest margin.
In contrast, non-linear BPWmodels have the same tendency previously shown,
leading to a situation where the agreement rates between svm-gau-C200 and
any other model is low. This may be indicating that the harder the margin
(either with a larger C in SVMs or more epochs in BPW ), the highest the
importance of the kernel is.

2. Surprisingly, there exists a strong similarity between SVMs with Gaussian
kernels and linear BPW, specially for non-hard margin SVM models. For non-
linear activation functions, BPW models with few epochs are also quite similar
to these SVM models. This may be indicating that soft margin models are
quite similar among them, regardless of the kernel function. To con�rm this
hypothesis, we also looked at the agreement among the di�erent SVM models
(table 5.6). As it can be observed, the di�erences grow up as the hardness for
the Gaussian kernel takes more extreme values.
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svm-lin-C20 svm-lin-C50 svm-lin-C200

Agreement Kappa Agreement Kappa Agreement Kappa

bpw-lin-50 96.28% 0.86 95.70% 0.83 92.31% 0.70
bpw-lin-200 93.88% 0.76 95.62% 0.82 95.24% 0.80
bpw-lin-500 91.89% 0.69 94.13% 0.76 95.26% 0.80

bpw-tnh-lin-50 93.81% 0.75 94.56% 0.77 93.60% 0.73
bpw-tnh-lin-200 87.88% 0.53 89.66% 0.58 91.61% 0.64
bpw-tnh-lin-500 86.44% 0.48 87.77% 0.51 89.34% 0.56

bpw-sin-lin-50 92.52% 0.70 93.53% 0.73 93.43% 0.72
bpw-sin-lin-200 86.81% 0.51 87.88% 0.53 89.57% 0.58
bpw-sin-lin-500 84.06% 0.43 85.06% 0.44 86.63% 0.48

Table 5.4: Agreement and Kappa values between BPW and linear SVM models on the
TC problem (test set).

svm-gau-C20 svm-gau-C50 svm-gau-C200

Agreement Kappa Agreement Kappa Agreement Kappa

bpw-lin-50 95.69% 0.83 93.60% 0.74 89.16% 0.58
bpw-lin-200 95.81% 0.82 95.95% 0.82 92.32% 0.68
bpw-lin-500 94.12% 0.76 95.05% 0.79 92.91% 0.71

bpw-tnh-lin-50 95.08% 0.79 94.64% 0.77 91.27% 0.64
bpw-tnh-lin-200 89.96% 0.59 92.05% 0.65 92.84% 0.69
bpw-tnh-lin-500 88.07% 0.52 89.63% 0.56 90.25% 0.59

bpw-sin-lin-50 93.98% 0.75 94.20% 0.75 92.08% 0.67
bpw-sin-lin-200 88.37% 0.55 89.68% 0.58 90.60% 0.62
bpw-sin-lin-500 85.60% 0.46 86.85% 0.48 87.97% 0.53

Table 5.5: Agreement and Kappa values between BPW and Gaussian SVM models on
the TC problem (test set).

svm-gau-C20 svm-gau-C50 svm-gau-C200

Agreement Kappa Agreement Kappa Agreement Kappa

svm-lin-C20 96.44% 0.86 93.16% 0.73 88.85% 0.58
svm-lin-C50 98.52% 0.94 95.87% 0.83 90.94% 0.64
svm-lin-C200 94.63% 0.78 96.45% 0.87 94.07% 0.75

Table 5.6: Agreement and Kappa values between linear SVMs and Gaussian SVM models
on the TC problem (test set).
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Figure 5.6: Comparison of training vectors between svm-gau-C50 (X axis) and bpw-lin-
200 (left) or bpw-sin-lin-500 (right).
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Figure 5.7: Comparison of support vectors between svm-gau-C50 (X axis) and bpw-lin-
200 (left) or bpw-sin-lin-500 (right).

Figures 5.6 and 5.7 show another interesting comparison regarding the training
vectors. This experiment aims at investigating the relationship between the margin
of training vectors in the SVM model and those of the BPW model. The SVM
model chosen for the comparison was svm-gau-C50. We selected two di�erent BPW
models, one very similar in agreement to svm-gau-C50 and another very di�erent,
bpw-lin-200 and bpw-sin-lin-500, respectively (see table 5.5). In the X axis of the
plots in �gure 5.6 we have the 9; 603 training vectors of the svm-gau-C50 model
for the binarized problem of class earn (the most frequent category), ordered by its
margin value (i.e., the �rst points in the left of each plot are those training points
with a lower margin value). In the Y axis it is shown the position that every vector
would occupy if the respective model had been ordered following the same criterion
(left for bpw-lin-200 and right for bpw-sin-lin-500). In �gure 5.7 we have the same
plot only for the 796 support vectors of the svm-gau-C50 model9. A straight line

9Although, theoretically, non-bounded support vectors have margin 1, the computationally
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indicates the (ideal) exact coincidence between the two models. It can be clearly seen
that there exists a very strong correlation for bpw-lin-200, whereas the correlation
with bpw-sin-lin-500 is much weaker. Therefore, these models not only are similar
or di�erent (see table 5.5) in their predictions, but also in the importance that both
give to the points in the training set, in particular to the support vectors. A similar
behavior to that in �gures 5.6 and 5.7 was also observed for the remaining nine
categories of the problem.

obtained margin may not be exactly 1. We have ordered the vectors by its computational margin.
The percentage of support vectors of the svm-gau-C50 model which occupy a position inferior to
796 are 88:69% for the bpw-lin-200 model and 59:93% for bpw-sin-lin-500.
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Chapter 6

Conclusions and Future Research

In this chapter we summarize the contributions of the thesis. We also draw some
concluding remarks about the work and discuss some extensions and directions for
future research.

6.1 Conclusions

Three schemes related to the control of the Bias/Variance decomposition for Feed-
forward Neural Networks (FNNs) with the (sometimesmodi�ed) quadratic loss func-
tion have been presented. These schemes deal with di�erent components of the
learning process with FNNs: the network architecture, the input dimension and the
loss function.

An extensive experimentation has been carried out with arti�cial data sets,
benchmark data sets from several well-known Machine Learning repositories and
two real-world problems from the Natural Language Processing domain. The over-
all results can be considered as very satisfactory.

In addition to widely used activation functions, such as the hyperbolic tangent
or the Gaussian function, other activation functions have been tested. In particular,
the sine and cosine functions showed a very good behavior.

6.1.1 SAOCIF

Chapter 3 has been devoted to describe an algorithm for sequential approximation
with FNNs, referred to as Sequential Approximation with Optimal Coe�cients and
Interacting Frequencies (SAOCIF ). The main ideas of SAOCIF can be summarized
as follows:

1. The frequencies (the non-linear weights) are selected at every step taking into
account the interactions with the previously selected terms.

175
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2. The interactions are discovered by means of their optimal coe�cients (the
linear weights).

A number of candidate frequencies are obtained at every step using di�erent
heuristics. Every candidate frequency is installed in the network, and the whole set
of coe�cients are optimized, in order to test the real contribution of the frequency
to the approximation to the target vector. The candidate frequency that, together
(interacting) with the previously selected frequencies, allows a better approximation
of the target vector is �nally selected.

The importance of the interacting frequencies lies in the hypothesis that they
allow to �nd better partial approximations, with the same number of hidden units,
than frequencies selected just to match the residue as best as possible. Likewise, the
same level of approximation may be achieved with less hidden units. In terms of
the Bias/Variance decomposition, it will be possible to obtain simpler models with
the same bias.

The proposed algorithm can be seen as an extension and generalization of the
Orthogonal Least Squares Learning algorithm [Chen et al. 1991a], the learning algo-
rithm for Multi-Layer Perceptrons described in [Zhang and Morris 1998] and Kernel
Matching Pursuit with pre-�tting [Vincent and Bengio 2002] in several ways. First,
it is not restricted to select the candidate frequencies from the points in the data
set. In this sense, a number of di�erent heuristics can be used. Second, it is possible
to further tune the selected frequency.

The idea behind SAOCIF can be extended to approximations in Hilbert spaces,
maintaining orthogonal-like properties. The theoretical results obtained prove that,
under reasonable conditions, the residue of the approximation is (in the limit) the
best one that can be obtained with any subset of a given set of vectors. In this case,
the importance of the interacting frequencies lies in the expectation of increasing
the rate of approximation.

Experimental results on arti�cial problems show that the selection of frequencies
performed by SAOCIF allows to obtain better solutions than the idea of matching
the residue, both for approximation and generalization purposes. As an example
of approximation capability, the Two Spirals data set could be adequately learned
by SAOCIF with sigmoidal units and a suitable strategy. For benchmark data sets,
the results obtained with SAOCIF are competitive with other results found in the
literature for the same problems.

Regarding the activation functions, it is worth noting that non-linear activation
functions such as sines or cosines, di�erent from the classical sigmoidal and Gaus-
sian ones, may be satisfactorily used. Linear hidden units have, in some cases, a
positive in
uence on the results when combined with non-linear ones. The use of
linear activation functions may help to limit the complexity of the resulting output
function. In addition, it seems that there are activation functions which are better
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suited for some problems. Although theoretical results of universal approximation
apply to many function families, only a few have been used in practice. We think
that the choice of the activation function may help to improve the performance of
FNNs. This issue is clearly related to the choice of the kernel function for Support
Vector Machines.

Regarding the strategy to select the frequencies, both the Breeder Genetic Al-
gorithm (BGA) and the Input strategies appear to be superior to the Random
selection. For the benchmark data sets tested, the Input strategy obtains similar
(and sometimes superior) results than the BGA strategy, with several additional
advantages. First, the Input strategy has a computational cost much smaller than
the BGA one. In addition, the Input strategy is deterministic. Finally, selecting
the frequencies from the points in the data set seems well suited not only for Ra-
dial Basis Function Networks (RBFNs), as commonly used, but also for Multi-Layer
Perceptrons (MLPs). In our opinion, the Input strategy should be preferred to the
BGA strategy for future experiments. The resulting model shares with Support
Vector Machines the property that their frequencies are a subset of the data set.
From this point of view, models obtained with SAOCIF and the Input strategy are
usually quite sparse.

Tuning the selected frequency sometimes helps to improve the overall results,
but it does not do it either signi�cantly or consistently. Most of the times, solutions
obtained with tuning have less hidden units than without it. However, this fact is
not always translated into a better performance.

Parenthetically, it was observed that there exist data sets, such as the Pima
Indians Diabetes where the results are very similar among a variety of (linear and
non-linear) systems. Results found in the literature are also very similar. In our
opinion, it is quite di�cult to obtain conclusions from this kind of data sets.

6.1.2 SBS for MLPs

In chapter 4, a study and comparison of di�erent criteria to perform Feature Se-
lection (FS) with MLPs and the Sequential Backward Selection (SBS) procedure
within the wrapper approach has been carried out. In terms of the Bias/Variance
decomposition, FS procedures may reduce the variance term by eliminating irrele-
vant variables. Several critical points have been studied and compared:

1. The stopping criterion of the network training.

2. The data set where the value of the loss function is measured.

3. The network retraining with respect to the computation of the saliency: �rst
train the network and then remove temporarily the feature in order to compute
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the saliency or �rst remove temporarily the feature and then train the network
previous to computing the saliency.

For arti�cial data sets, it was observed that the addition of irrelevant features
a�ects very negatively to the performance of sinusoidal MLPs, even if we try to
control the over�tting. The information needed to learn the problem is present, but
the system is not able to use it in a proper way. The reason for this fact may be the
relatively small number of examples in the data set. As far as irrelevant variables
are eliminated, performance improves. We also observed this behavior in several
preliminary experiments with the hyperbolic tangent function.

The behavior of non-linear (sinusoidal) models was di�erent from that of linear
ones, with respect to both the selected con�gurations and the generalization results.
For the benchmark problems tested, sinusoidal activation functions allow to obtain
better results, after FS with the SBS procedure, than linear FNNs. As for SAOCIF,
the behavior of sinusoidal MLPs was very satisfactory.

Experimental results suggest that the increase in the computational cost associ-
ated with retraining the network with every feature temporarily removed previous
to computing the saliency can be rewarded with a signi�cant performance improve-
ment, specially if non-linear models are used. Although this idea could be thought
as very intuitive, it has been hardly used in practice.

Regarding the data set where the value of the loss function is measured, it seems
clear that the SBS procedure for MLPs takes pro�t from measuring the loss function
in a validation set. Again, this is a quite intuitive idea, although many models in the
literature do not take this approach. A somewhat non-intuitive conclusion is drawn
looking at the stopping criterion, where it is suggested that forcing overtraining may
be as useful as early stopping.

In some benchmark data sets, we obtained an important improvement in the
overall results with respect to learning with the whole set of variables and compared
with other existing FS wrappers in the literature. Although the model can be
further improved, the good results obtained are mainly due, in our opinion, to a
proper detection of irrelevant variables.

6.1.3 WQL

Chapter 5 describes the Weighted Quadratic Loss (WQL ) function, a modi�cation
of the quadratic loss function for classi�cation problems inspired in Support Vector
Machines (SVMs) [Boser et al. 1992; Cortes and Vapnik 1995] and the AdaBoost
algorithm [Schapire and Singer 1999]. The de�nition of WQL was suggested by
the behavior of the support vectors and it depends on the margin. In terms of the
Bias/Variance decomposition, variance tries to be controlled by not attempting to
over�t the points that are already well classi�ed. A theoretical result justi�es that
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the proposed WQL is well founded: in the linearly separable case, the hyperplane
that maximizes the normalized margin also minimizes asymptotically the weighted
sum-of-squares error function proposed. As in SVMs, the hardness of the resulting
solution can be controlled, so that this model can also be used for the non-linearly
separable case. The �nal solution is neither restricted to have an architecture with
as many hidden units as examples in the data set (or any subset of them) nor to
use kernel functions. In addition, it allows to deal with multiclass and multilabel
problems as FNNs usually do.

Experiments on arti�cial data sets show that models equivalent to hard margin
SVMs can be obtained by training FNNs withWQL in linearly separable cases, both
for two-class and multiclass problems. In addition, models similar to non-linear hard
SVMs can be obtained without an \SVM architecture" (i.e., with so many hidden
units as points in the data set or support vectors) and without kernel functions,
whenever the WQL is minimized.

In the real-world problems tested, several soft margin SVMs were compared with
di�erent FNN models obtained by minimizing WQL. A consistent correlation was
observed between SVM models (with di�erent hardness of the margin) and FNN
ones (minimizing WQL with adequate parameters). Both linear and non-linear
models (with and without kernel functions) showed this behavior, in two-class and
multiclass problems. In particular, the sine function (which is not a kernel function)
showed again a very interesting behavior.

Regarding the performance of the induced classi�ers, models trained with WQL
obtained similar and sometimes superior results than SVM models, which are com-
petitive in the respective domains.

6.2 Future Research

6.2.1 SAOCIF

The described particular algorithm for SAOCIF has several points to study and
improve:

1. The computational cost of SAOCIF with the Input strategy can be improved
simply by selecting the new frequency from a subset of the training set rather
than from the whole data set. The size of this subset can be computed so that
there is a large probability that at least one frequency is useful (see [Smola
and Sch�olkopf 2000]). In addition, the Input strategy can take pro�t from, for
example, several optimizations described in the literature for the Orthogonal
Least Squares Learning algorithm, as in [Chen and Wigger 1995].

2. The candidate frequencies can be selected with heuristics di�erent from current
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ones. In principle, a more intelligent selection could lead to better approxima-
tions. For example, the data could be preprocessed in order to obtain a set
of promising candidate frequencies. Principal Component Analysis [Fukunaga
and Koontz 1970; Guterman 1994], or some clustering and mapping proce-
dures [Kohonen 1995; Bishop et al. 1998; Jain et al. 1999] could be useful to
that end. In the same way, the selection of the activation function for the new
hidden unit admits any number of heuristics.

3. We are not particularly satis�ed with the results obtained with the tuning
procedure. However, we still think that tuning the frequencies may allow to
obtain better approximations with less hidden units. For a gradient-based
technique, the main problem lies in the automatic adjustment of the param-
eters. Therefore, the particular procedure used in this work may be substi-
tuted by another adaptive learning algorithm (see, for example, [Jacobs 1989;
Fahlman 1988; Tollenaere 1990; Riedmiller and Braun 1993]).

4. In some cases (for example, when the number of hidden units is very large),
the linear equations system may degenerate leading to numerical problems.
Several techniques can be used in these cases to avoid these problems, such as
Singular Value Decomposition (see, for example, [Press et al. 1992]). As an
alternative, however, a new hidden layer can be constructed when the number
of hidden units is too large or the rate of decrease of the error after the addition
of several consecutive hidden units is small, for example. The selection of the
frequencies in the new hidden layer can be made following the same ideas
than those in SAOCIF, whenever the frequencies in the previous layers are
kept �xed.

Since the most promising results have been obtained with the Input strategy,
some new experiments can be performed in order to compare the inductive bias of
FNNs and SVMs:

1. A comparison between SAOCIF with the Input strategy and SVMs (specially
in data sets where signi�cant di�erences between SVMs and standard FNNs
have been observed). The sparseness of the model and the overall results
should be compared, in addition to the �nal subsets of frequencies in both
models (the support vectors in the SVMs terminology).

2. Taking pro�t from the design of new kernel functions for speci�c problems, and
using them as activation functions for SAOCIF. If no tuning of the selected
frequency is done, it can be easily carried out.

A di�erent point of view can be introduced in SAOCIF if we reconsider the pre-
viously selected frequencies, similar to the back-�tting scheme in Projection Pursuit
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Regression [Friedman and Stuetzle 1981]. Comparing the addition of hidden units
in SAOCIF with the selection of features in the Sequential Forward Selection pro-
cedure for FS, we can see that they share the same general ideas, although applied
to di�erent objects. Whereas SAOCIF applies the forward selection to the hidden
units, Sequential Forward Selection applies it to the features. Therefore, other FS
search procedures can be applied to the construction of FNNs. In particular, 
oat-
ing methods [Pudil et al. 1994] may help to obtain more compact networks. Note
that the criterion to remove a previously selected hidden unit, needed in these new
approaches, cannot be based in the approximation of a previous residue. In contrast,
the same idea used by SAOCIF to add a new term can be used to remove an old
one: the frequency such that, when removed, allows to obtain the smallest error
(after computing the optimal coe�cients), is the candidate to be eliminated.

SAOCIF can also be applied to other models of FNNs. In [Belanche 2000], for
example, Heterogeneous Neural Networks allow to deal with heterogeneous infor-
mation, such as continuous variables, discrete (ordinal or nominal) ones and fuzzy
quantities, based on similarity functions. Missing data are also explicitly considered.
The only condition needed to be able to construct an Heterogeneous Neural Network
with SAOCIF is that the output of the activation function of the hidden units (the
similarity) must be a real number, and that condition holds for the proposed models
in [Belanche 2000].

Finally, the interpretation of the approximation may be of great interest, espe-
cially if we are dealing with real-world problems. In principle, as any sequential
method, it can give more information than a non-sequential one, since we can study
the resulting approximation after every term has been added. Di�erent sources of
information may be, for example, the frequencies, the projection of the data onto
the frequencies or the activation functions. It is expected that the �rst hidden units
added will give more information (and probably more important) than the last ones.
This may be more interesting if the Input strategy is used.

6.2.2 SBS for MLPs

The experimental results were obtained with the parameters adjusted for the whole
set of variables. A revision of these parameters within the SBS procedure could,
hopefully, improve the results. For example, learning rates were not readjusted after
the elimination of every feature. Although the initial learning rates allowed to �t
the training set during the elimination of several variables and the number of epochs
was increased as far as variables were eliminated, they may not be adequate when
only a few number of variables remain. In this sense, an adaptive learning algorithm
may be used, similar to the alternatives to the tuning procedure for SAOCIF. The
number of hidden units in the architecture may also be revised when the number of
features decreases.
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In addition, a certain non-determinism was observed in the resulting set of vari-
ables. This fact may be inherent to the problem (for example, if there are many
subsets of variables that are approximately equivalent), although it would be desir-
able to be controlled. It is worth noting, however, that the most important variables
(i.e., the variables eliminated at the last steps) are very similar among the di�erent
runs of the same con�guration.

But the main drawback of the SBS procedure for MLPs described in this work
is its computational cost. Previous ideas described in the literature with the aim
to alleviate this problem, such as the elimination of several features at every step
or the approximation of the importance of a feature in a heuristic manner with-
out retraining the network, may work in some cases but have several problems, as
previously explained. Training algorithms faster than Back-Propagation (BP) may
obviously be used, but BP was not the main source of the computational cost in our
experiments. The algorithm is quadratic with respect to the number of variables,
and the �rst steps of the algorithm (i.e., when there are probably many irrelevant
variables) take most of the computational time. Several heuristics could be designed
in order to eliminate the most clearly irrelevant variables with a relatively low com-
putational cost. Then, when a reasonable number of features remains, the whole
procedure would start. In addition, the elimination of a feature can be parallelized,
training the networks with every feature temporarily removed in an independent
way.

The results shown in chapter 4 were obtained with sinusoidal MLPs minimizing
the quadratic loss function. We would like to study whether the resulting selected
variables are dependent on the activation function of the MLPs or not. Preliminary
studies seem to indicate that there is a certain dependence on it. In the same way,
note that the basic scheme described in this work can be tested within any other
framework which can be adjusted to the required speci�cations. For instance, the
SBS procedure can be performed with SVMs using some function of the margin
as the saliency. The stopping criteria may be related to di�erent hardness of the
margin. The fast available SVM implementations make this framework suitable to
that end. Those experiments could, in addition, answer to a question that can be
posed after this work: Which is the most important element of the process? The
SBS procedure? The use of MLPs? The proper combination of both?

Obviously, other search procedures di�erent from the SBS may be tested. Float-
ing methods [Pudil et al. 1994] are good candidates, due to their promising results
[Jain and Zongker 1997]. The critical decision points to test do not vary.

6.2.3 WQL

The weighted functions proposed in this work are only a �rst proposal to weight the
sum-of-squares error function. We think that this issue deserves further research,
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de�ning weighting functions that may be more robust to over�tting. Several works
in this line can be found in [Freund 2001; R�atsch et al. 2001] for the AdaBoost
algorithm.

The theoretical work could be extended by looking for conditions (or modifying
the weighted functions proposed) such that the reciprocal of Theorem 2 holds. That
result would help to shed light on the relationships between the respective inductive
bias of FNNs and SVMs.

Although in this work we have only considered classi�cation problems, the same
idea can be applied to regression problems, just by changing the condition of the
weighting function (5.1) from mrg(xi; yi; foFNN ) > 0 to jfoFNN(xi) � yij 6 ", where
" is a new parameter that controls the resolution at which we want to look at the
data, similar to the "-insensitive cost function proposed in [Vapnik 1995].

6.2.4 Combination of the Proposed Schemes

The three schemes proposed in this work can be combined among them, since they
deal with complementary aspects of the whole learning process:

1. The SBS procedure may be performed with SAOCIF.

2. SAOCIF can be modi�ed so as to deal with the WQL function.

3. The SBS procedure can also be performed trying to minimize the WQL func-
tion.

It is expected that some of these combinations could, hopefully, take pro�t from
the good properties of each individual scheme.
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Appendix A

Data Sets Used in the

Experiments

A.1 Arti�cial Data Sets

A.1.1 HEA Data Sets

In [Hwang et al. 1994] �ve non-linear functions gi : [0; 1]2 ! R are used to generate
di�erent data sets:

1. Simple Interaction Function:

g1(x1; x2) = 10:391 ((x1 � 0:4)(x2 � 0:6) + 0:36) :

2. Radial Function:

g2(x1; x2) = 24:234
�
r2(0:75� r2)

�
;

where r2 = (x1 � 0:5)2 + (x2 � 0:5)2.

3. Harmonic Function:

g3(x1; x2) = 42:659
�
(2 + x1)=20 +Re(z5)

�
;

where z = x1 + ix2 � 0:5(1 + i).

4. Additive Function:

g4(x1; x2) = 1:3356( 1:5(1 � x1) + e2x1�1 sin(3�(x1 � 0:6)2)+

e3(x2�0:5) sin(4�(x2 � 0:9)2) ):

185
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5. Complicated Interaction Function:

g5(x1; x2) = 1:9
�
1:35 + ex1 sin(13(x1 � 0:6)2)e�x2 sin(7x2)

�
:

225 pairs (x1; x2) of values were generated from the uniform distribution in [0; 1]2.
These data were used for all �ve functions in order to generate �ve noise free training
sets:

HEAn-NF = f(xi1; xi2; gn(xi1; xi2))gi=1;��� ;255
where n2f1; 2; 3; 4; 5g. In addition, another �ve training data sets were generated
adding independent and identically distributed Gaussian noise:

HEAn-WN = f(xi1; xi2; gn(xi1; xi2) + 0:25"i)gi=1;��� ;255
where "i � N (0; 1). The test set was built sampling every function on a regularly
spaced grid on [0; 1]2 with 10; 000 points. In summary, 10 training sets (5 noise free
and 5 noisy versions) and 5 test sets were generated in [Hwang et al. 1994] for the
5 aforementioned functions. These data sets were used in [Maechler et al. 1990;
Hwang et al. 1991, 1992a,b, 1994, 1996; Lay et al. 1994; You et al. 1994; Kwok and
Yeung 1995a,b, 1996b,a, 1997b; Treadgold and Gedeon 1997a,b, 1998, 1999a,b; Ma
and Khorasani 2003, 2004].

In our experiments, we constructed 10 training sets for every function, each
containing 225 points, changing the initial seed of the random function for the
uniform distribution (the noise free data sets). Similar to [Hwang et al. 1994], 10
noisy training data sets were generated in the same way. For every function, the
test set in [Hwang et al. 1994] was used as a validation set for the adjustment of
the parameters. For the �nal results, a new test set was constructed, with an o�set
of 0:0025 with respect to the input points of the original test set in [Hwang et al.
1994].

In summary, 100 training sets (50 noise free and 50 noisy versions), 5 validation
sets and 5 test sets were generated for the 5 aforementioned functions.

A.1.2 The Two Spirals Data Set

The well-known Two Spirals problem consists in identifying the points of two inter-
locking spirals that go around the origin three times. The training, validation and
test sets comprise 194 two-dimensional points with balanced classes. The C source
code to generate these data sets can be found in the Carnegie Mellon University
Arti�cial Intelligence Repository [Kantrowitz 1993]. The training set is symmetric
with respect to the target (i.e., if (x; y) belongs to a class, the training set also
contains the point (�x;�y), which belongs to the other class). The validation and
test sets are not symmetric, and they are obtained adding an o�set to the points in
the training set. Figure A.1 shows the training set for this problem.
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Figure A.1: The Two Spirals training set. The points in every spiral are indicated with
di�erent symbols.

As it is well known, this is an extremely hard problem for architectures with
sigmoidal activation functions because of its intrinsic high non-linearity and radial
symmetry [Lang and Witbrock 1988; Fahlman and Lebiere 1990].

A.1.3 The Augmented Two Spirals Data Set for FS

We created the Augmented Two Spirals data set to perform Feature Selection (FS)
experiments by arti�cially adding 13 new features to the two original variables of
the Two Spirals data set. These new features were de�ned to be redundant or
independent on the original variables (and therefore irrelevant). Some of them were
noisy. The whole set of variables is de�ned as follows:

1. x1: The �rst feature in the original data set.

2. x2: The second feature in the original data set.

3. x3: x21.

4. x4: x22.

5. x5: x1 � x2.
6. x6: x1 + x2.

7. x7: x1 � x2.

8. x8: x21 +N (0; 1).

9. x9: x22 +N (0; 1).
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10. x10: x1 � x2 +N (0; 1).

11. x11: x1 + x2 +N (0; 1).

12. x12: x1 � x2 +N (0; 1).

13. x13: Values according to a uniform distribution in [0; 1].

14. x14: Values according to a N (0; 1) distribution.

15. x15: Values according to a N (0; 5) distribution.

The values of the input variables were linearly scaled in [�6:5;+6:5] when they
were not in this range. The target value was that of (x1; x2) in the original data set.

A.1.4 The Augmented XOR Data Set for FS

We created the Augmented XOR data set to perform FS experiments in the following
way:

1. First, a symmetric data set was created as an extension of the XOR data set
to the hypercube [�1;+1]2. 150 points for each class were created. Figure A.2
shows the data set for this problem, generated as

f(zi + �(zi; c); zj + �(zj; c)) j i; j = 0; � � � ; 9 c = 0; 1; 2g (A.1)

where

zk = � 9

10
+

�
2 � k
10

�
and

�(z; c) = �c � sign(z)
30

:

The target only depends on the quadrant where the point is placed (+1 for
points in the �rst and third quadrant, and �1 otherwise). Equivalently, it is
the sign of the product of the components.

2. Second, we arti�cially added 11 new features to the two original variables,
similar to the Augmented Two Spirals data set. These new features were
de�ned to be redundant or independent on the original variables (and therefore
irrelevant). Some of them were noisy.

The whole set of variables is de�ned as follows:

1. x1: The �rst feature de�ned in (A.1).
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Figure A.2: The extension of the XOR data set to the hypercube [�1;+1]2. The points
in every class are indicated with di�erent symbols.

2. x2: The second feature de�ned in (A.1).

3. x3: x21.

4. x4: x22.

5. x6: x1 + x2.

6. x7: x1 � x2.

7. x8: x21 +N (0; 1).

8. x9: x22 +N (0; 1).

9. x11: x1 + x2 +N (0; 1).

10. x12: x1 � x2 +N (0; 1).

11. x13: Values according to a uniform distribution in [0; 1].

12. x14: Values according to a N (0; 1) distribution.

13. x15: Values according to a N (0; 5) distribution.

The values of the input variables were linearly scaled in [�1;+1] when they were
not in this range. The target value was the sign of x1 � x2.

Initially we had also de�ned x5 and x10 as in the Augmented Two Spirals data
set (see above). But in this case the problem can be learned with only one of these
variables (perfectly with x5 and almost perfectly with x10), so that it could not
allow to see the di�erences among the con�gurations, if any. Therefore, we decided
to remove these variables from the data set, but maintaining the rest of variables
with the same name as in the Augmented Two Spirals data set.
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Data Set NVar NCla NExamples Missing

Pima Indians Diabetes 8 2 768 (65.10%/34.90%) yes

Wisconsin Breast Cancer 9 2 699 (65.52%/34.48%) no

Hepatitis 19 2 155 (79.35%/20.65%) yes

Ionosphere 33 2 351 (64.10%/35.90%) no

Sonar 60 2 208 (53.37%/46.63%) no

Table A.1: Description of the benchmark data sets. The column 'NVar' shows the number
of variables, the column 'NCla' the number of classes and the column 'NExamples' the
number of examples. Figures in brackets are the percentage of examples for every class.
The column 'Missing' indicates whether the data have missing values or not.

A.2 Benchmark Data Sets

We selected several data sets for classi�cation problems from several well-known
Machine Learning repositories: University of California, Irvine repository [Blake
and Merz 1998], Statlog [Michie et al. 1994] project and Carnegie Mellon University
repository [Kantrowitz 1993]. A brief description of these benchmarks can be seen in
table A.1. The data were not preprocessed for any data set except for the Hepatitis
one, which was scaled in [0; 1].

The Pima Indians Diabetes contains the data of at least 21 years old females Pima
Indians living near Phoenix, Arizona, USA. This data set was originally donated by
V. Sigillito from the Johns Hopkins University. The task is to decide whether a
patient shows signs of diabetes according to the World Health Organization criteria
(i.e., if the 2 hour post-load plasma glucose was at least 200 mg=dl at any survey
examination or if found during routine medical care). Several constraints were placed
on the selection of these instances from a larger database held by the National
Institute of Diabetes and Digestive and Kidney Diseases.

The Wisconsin Breast Cancer data set was originally obtained at the University
of Wisconsin Hospitals, Madison, from W. H. Wolberg. The purpose of the data
set is to classify a tumor as either benign or malignant based on cell description
gathered by microscopic examination.

The problem posed in the Hepatitis data set is to predict whether the patients
will die or not as a consequence of their hepatitis. The source of this data set is
unknown, and it was donated by G. Gong (Carnegie Mellon University).

The Ionosphere data set contains radar data collected by a system in Goose Bay,
Labrador. This system consists of a phased array of 16 high-frequency antennas
with a total transmitted power on the order of 6:4 kilowatts. The targets were free
electrons in the ionosphere. \Good" radar returns are those showing evidence of
some type of structure in the ionosphere. \Bad" returns are those that do not (their
signals pass through the ionosphere). The task is to decide whether a radar return
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is \good" or \bad" as the previous de�nition. This data set was originally donated
by V. Sigillito from the Johns Hopkins University.

The Sonar data set is the data set used in [Gorman and Sejnowski 1988] in their
study of the classi�cation of sonar signals using neural networks. The task is to
discriminate between sonar signals bounced o� a metal cylinder and those bounced
o� a roughly cylindrical rock. This data set was donated by T. J. Sejnowski, and
was developed in collaboration with R. P. Gorman.

As a brief reference, several results found in the literature for the benchmark data
sets used in this work are shown in table A.2. There exist many references in the
literature that use these data sets in their experiments. Our purpose was to include
in this table those ones with a similar experimental setting to that performed in this
work. In some cases, however, the experimental settings cannot be considered as
very similar1. For the sake of completeness, they are also included. Results for Multi-
Layer Perceptrons (MLPs) were obtained with sigmoidal hidden units trained with
Back-Propagation (BP). Support Vector Machines (SVMs) results were obtained
with Gaussian kernels. DistAl is a constructive neural network learning algorithm
speci�c for classi�cation [Yang and Honavar 1998]. The key idea behind DistAl is to
add hyper-spherical hidden units based on a greedy strategy which ensures that the
new hidden unit correctly classi�es a maximal subset of training patterns belonging
to the same class. Correctly classi�ed examples can then be discarded when a new
unit is to be added.

Additionally, table A.3 shows several results found in the literature after the
application of an FS procedure on these data sets. In this case the comparison is
even more di�cult than with the whole set of features, since the search procedure
and the evaluation criterion may also vary among di�erent methods. Wrappers, in
addition, may use di�erent ML learning schemes. Unfortunately, we did not found
more references (for wrapper approaches and with a similar experimental setting to
that performed in this work) than the results in [Yang and Honavar 1998] showed in
the table. The search procedure was a genetic algorithm where the �tness function
for a given feature subset was computed as the mean percentage of correctly classi�ed
patterns on the test sets of a 10-fold CV trained with DistAl. However, looking at the
good results of DistAl with the whole set of features when compared with MLPs (see
table A.2) and the good behavior of genetic algorithms for FS [Kudo and Sklansky
2000], we consider the results in table A.3 as a useful reference.

1Results for SVMs with the Hepatitis data set were obtained omitting patterns with missing
values in [Anguita et al. 2000] and discretizing continuous attributes in [Huang et al. 2003].
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Data Set ML Alg. Test Sampling Source

Pima Indians MLP+BP 76.4% 12-fold CV [Michie et al. 1994]
Diabetes DistAl 76.3% 10-fold CV [Yang and Honavar 1998]

SVM 75.9% 50 splits TVT [Vincent and Bengio 2002]

Wisconsin MLP+BP 96.7% 10-fold CV [Michie et al. 1994]
Breast Cancer DistAl 97.8% 10-fold CV [Yang and Honavar 1998]

SVM 96.6% 50 splits TVT [Vincent and Bengio 2002]

Hepatitis MLP+BP 82.1% 10-fold CV [Michie et al. 1994]
DistAl 84.7% 10-fold CV [Yang and Honavar 1998]
SVM 85.0% 1,000 Bootstrap [Anguita et al. 2000]
SVM 85.8% 10-fold CV [Huang et al. 2003]

Ionosphere MLP+BP 90.3% 10-fold CV [Opitz and Maclin 1999]
DistAl 94.3% 10-fold CV [Yang and Honavar 1998]
SVM 93.4% 1,000 Bootstrap [Anguita et al. 2000]
SVM 94.2% 50 splits TVT [Vincent and Bengio 2002]

Sonar MLP+BP 83.4% 10-fold CV [Opitz and Maclin 1999]
DistAl 83.0% 10-fold CV [Yang and Honavar 1998]
SVM 87.4% 1,000 Bootstrap [Anguita et al. 2000]
SVM 79.4% 50 splits TVT [Vincent and Bengio 2002]

Table A.2: Several results found in the literature for the benchmark data sets used in
this work with the whole set of features. Cross-Validation is indicated as CV. TVT means
\Training/Validation/Test" (the validation set was used to tune the parameters). Column
'ML Alg.' indicates the ML algorithm used.

Data Set Search ML Alg. Test NVar Sampling

Pima Indians Diabetes Genetic DistAl 76.8% 2 10-fold CV

Wisconsin Breast Cancer Genetic DistAl 98.6% 8 10-fold CV

Hepatitis Genetic DistAl 88.7% 10 10-fold CV

Ionosphere Genetic DistAl 96.0% 13 10-fold CV

Sonar Genetic DistAl 85.5% 28 10-fold CV

Table A.3: Results in [Yang and Honavar 1998] for the benchmark data sets used in this
work after the application of a wrapper FS procedure. Column 'ML Alg.' indicates the
ML algorithm used. The �nal number of variables selected can be seen in column 'NVar'.

A.3 Other Real-World Data Sets

A.3.1 Word Sense Disambiguation

For the Word Sense Disambiguation (WSD) data set we used a part of the English
SensEval-2 corpus2, consisting of a set of annotated examples for 4 words (one

2A complete information about the SensEval initiative, including the corpus, can be found at
http://www.cs.unt.edu/srada/senseval.
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Word PoS NTraining NTest NSenses NFeatures

bar noun 249 65 10 3,222
begin verb 667 170 9 6,144
natural adjective 196 53 9 2,777
train verb 153 35 9 1,710

Table A.4: Description of the WSD data set.

adjective, one noun, and two verbs), divided into a training set and a test set for
each word. Each example is provided with a context of several sentences around the
word to be disambiguated. Each word is treated as an independent problem.

Table A.4 contains information about the concrete words, the number of training
and test examples, and the number of senses (classes) per word. It can be observed
that the number of training examples is quite small, whereas the number of classes
is high. The high polysemy of the words is partly due to the sense repository used
for annotating the corpus. The sense de�nitions were extracted from the WordNet
lexico-semantic database [Fellbaum 1998], which is known to be very �ne grained.
These facts signi�cantly contribute to the di�culty of the data set.

Three kinds of information have been used to describe the examples and to train
the classi�ers. These features refer to local and topical contexts, and domain labels.
Let \: : : w�3 w�2 w�1 w w+1 w+2 w+3 : : :" be the context of consecutive words
around the word w to be disambiguated, and p�i (�3�i�3) be the part-of-speech
tag of word w�i. Feature patterns referring to local context are the following 13: p�3,
p�2, p�1, p+1, p+2, p+3, w�2, w�1, w+1, w+2, (w�2; w�1), (w�1; w+1), and (w+1; w+2),
where the last three correspond to collocations of two consecutive words. The topical
context is formed by fc1; : : : ; cmg, which stand for the unordered set of open class
words appearing in a medium-size 21-word window centered around the target word.
This basic set of features has been enriched by adding semantic information in the
form of domain labels. These domain labels are computed during a preprocessing
step using the 164 domain labels linked to the nominal part of WordNet 1.6 [Magnini
and Cavaglia 2000]. See [Escudero et al. 2001] for details about the preprocessing
of the data set and about the attribute extraction.

Table A.4 also shows the number of binary features per data set. Note that
the number of actual features is much higher (over ten times) than the number of
training examples for each word.

A.3.2 Text Categorization

We used the publicly available Reuters-21578 collection of documents3, which can
be considered the most important benchmark corpus for the Text Categorization

3The Reuters-21578 collection and other variants are freely available from the following Web
site: http://www.daviddlewis.com/resources/testcollections.
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earn acq money grain crude trade interest wheat ship corn None

2,877 1,650 538 433 389 369 347 212 197 181 3,113
1,087 719 179 149 189 117 131 71 89 56 754

Table A.5: Number of examples for the 10 most frequent categories in the TC problem
for the training set (�rst row) and test set (second row).

(TC) task. This corpus contains 12,902 documents of an average length of about
200 words, and it is divided (according to the \ModApte" split) into a training set
of 9,603 examples and a test set of 3,299 examples. The corpus is labeled using
118 di�erent categories and has a ratio of 1.2 categories per document. However,
the frequency distribution of these categories is very extreme (the 10 most frequent
categories covers 75% of the training corpus, and there are 31 categories with only
one or two examples). For that reason, we have considered, as in many other works,
only the 10 most frequent categories of the corpus. In this way our training cor-
pus contains 3,113 documents with no category and a ratio of 1.11 categories per
document in the rest. Table A.5 shows the number of examples for every category.

Regarding the representation of the documents, we have used the simple bag of
wordsmodel, in which each feature corresponds to a single word, and all features are
binary valued indicating the presence or absence of the words in the documents. We
discarded using more complex document representations since the main goal of this
paper is not to achieve the best results on the TC task, but to make comparisons
among several models, and because a quite limited utility has been observed by
considering these extensions. The attributes have been �ltered out by selecting the
50 most relevant for each of the ten classes and merging them all in a unique feature
set, containing 387 features. The relevance measure used for ranking attributes is
the RLM entropy-based distance function [L�opez de M�antaras 1991].

Regarding the evaluation measures, note that TC is a multiclass multilabel clas-
si�cation problem, since each document may be assigned a set of categories (which
may be empty). Thus, one may think that a yes/no decision must be taken for
each pair (document, category), in order to assign categories to the documents.
The most standard way of evaluating TC systems is in terms of precision (P), re-
call (R), and a combination of both (e.g., the F1 measure). Precision is de�ned as
the ratio between the number of correctly assigned categories and the total number
of categories assigned by the system. Recall is de�ned as the ratio between the
number of correctly assigned categories and the total number of real categories as-
signed to examples. The F1 measure is the harmonic mean of precision and recall:
F1(P;R) = 2PR=(P +R).
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Margin Maximization with Feed-forward Neural Networks: A Compara-
tive Study with SVM and AdaBoost. Neurocomputing, 57:313{344.
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