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Abstract 

Cancer is a disease of the genome. The study of tumor genomic 

alterations is used to guide several precision medicine strategies, 

some approved and a large number under clinical development. On 

the other hand, the study of tumor immunity is recently becoming the 

key for the success of other personalized strategies, named 

immunotherapies. Along this thesis I have made several 

contributions towards the advance of cancer precision medicine, 

based on the study of tumor “omics” data. First, I evinced the 

landscape of genomic-guided anti-cancer therapies. Second, I 

developed OncoPaD, a tool for the rational design of cost-effective 

cancer gene panels. Third, I contributed to the development of 

Cancer Genome Interpreter, a tool for the biological and therapeutic 

interpretation of variants found in newly sequenced tumors. Forth, I 

identified tumor intrinsic molecular mechanisms involved in tumor 

immune evasion.   

 

 

 
Resum  

El càncer és una malaltia del genoma. L'estudi de les alteracions 

genòmiques dels tumors s’utilitza com a guia en varies estratègies 

de medicina de precisió, algunes d'elles aprovades i d'altres en 

assajos clínics. D'altra banda, l’estudi de la immunitat tumoral està 

esdevenint una peça clau per l’èxit d’altres estratègies 

terapèutiques, anomenades immunoteràpies. Al llarg d'aquesta tesi, 

mitjançant l'estudi de les dades “òmiques” tumorals, he contribuït de 

varies maneres cap a l'avenç de la medicina de precisió pel càncer. 

Primer, he identificat el panorama de les teràpies anticanceroses 

guiades per alteracions genòmiques. Segon, he desenvolupat 

OncoPaD, una eina pel disseny cost-efectiu i racional de panells de 

seqüenciació per càncer. A més, he contribuït al desenvolupament 

del Cancer Genome Interpreter, una eina que ajuda a la interpretació 

biològica i terapèutica de les variants presents a tumors novament 

seqüenciats. Per últim, he identificat diversos mecanismes 

mitjançant els quals els tumors són capaços d'evadir l’atac del 

sistema immunològic. 
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1.Overview of cancer disease 

The first time the term cancer appeared in the literature was in 400 

BC when Hippocrates nominated the tumors of his patients karkinos 

-crab in greek- because they resembled him a crab. However, it was 

not the first time in human history that cancer was described. The 

first documented reference to a disease which could be cancer dates 

from 2625 BC, described by the Egyptian physician Imhotep as a 

“disease without cure that showed protuberances in the chest”. The 

first scientific evidence of cancer appeared many years later, an 

abdominal tumor dating from the 7th century AC discovered by the 

paleopathologist Arthur Aufderheide in 1990 in the Peruvian 

Chiribaya mummies1. Therefore, cancer is not a new nor a modern 

disease. It has been part of human history for many years. Yet, the 

knowledge about its pathophysiology or about the best therapeutic 

strategies for most of the cancer diseases is incomplete.  

 

1.1 Definition and epidemiology 

Cancer is defined as a group of diseases characterized by 

uncontrolled cellular proliferation, that in solid tissues forms a mass 

named tumor, which leads to the exitus of the patient if untreated. A 

cancer can begin in a specific organ but eventually it can propagate 

either by invading nearby structures or by migrating (i.e. 

metastasize), through bloodstream dissemination or through 

lymphatic metastases, to farther parts in the human body. The 

reasons why cancer leads to the exitus of the patient depends on the 

affected organ (e.g. renal carcinoma may lead to renal failure while 

liver carcinoma may lead to severe blood toxicity).  
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There are hundreds of different cancer types and subtypes 

described, going beyond the affected organ. The standard 

nomenclature for referring to the different cancer types is based on 

the International Classification of Diseases for Oncology (ICD-O-3)2. 

It classifies the cancer types according to the tissue of origin (i.e. 

histological type) in five major categories (carcinomas, sarcomas, 

leukemias, lymphomas and mesotheliomes); or according to the 

origin body location (i.e. primary site; e.g. breast, lung, stomach, 

etc)2.  

 

Cancer diseases are a major cause of morbidity, with 14 million new 

cases every year, 182/100,000 incidence rate; and mortality, with 8 

million deaths, 102/100,000 mortality rate (data from 2012, 

according to the most recent study on cancer distribution 

worldwide)3. The incidence of the different cancer types is different, 

even at gender level. Among men the most prevalent cancer types 

are the ones affecting the lung, representing the 16.7% of all 

diagnosed men cancers; and among women the most prevalent 

cancer type is breast cancer, representing the 25.2% of the women 

diagnosed cancers. Moreover, there are differences between 

incidence rate and mortality rate across the different cancer types3, 

mostly depending on each cancer type aggressiveness and the 

available therapeutic options. 

 

1.2 Etiology and pathophysiology 

Genomic alterations can be somatic -acquired in specific tissues 

during the lifetime of the individual- or germline -present in all body 

cells since birth. The main cause of tumor development (i.e 

tumorigenesis) is meant to be the accumulation of somatic 
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alterations. Although some germline alterations are also known to 

play a role in cancer development. This idea of cancer as a 

consequence of somatic DNA alterations (e.g. mutations, copy 

number alterations...)  has gained general acceptance during the last 

25 years. Convincing evidence over many years has been provided 

by: systematic studies of X-rays, work on chemical mutagenesis and 

the large amount of data demonstrating smoke as the causative 

agent of lung cancer4.  

 

Somatic DNA alterations appear in cells due to errors caused by 

endogenous or exogenous processes which generate DNA damage. 

Most of these errors are repaired through several complex cellular 

mechanisms. However, if some of these errors are not properly-

repaired, they give rise to somatic alterations which can, eventually, 

give rise to malignant cells over time. Therefore, the rate at which 

somatic mutations accumulate in the cells depends on the interplay 

between the errors generated by endogenous and exogenous 

processes and the rate at which they are repaired5.  

 

The endogenous processes generating DNA damage can be: 

random errors during DNA replication in the preparation for cell 

division; DNA repair machinery errors, because of the faulty 

recognition of DNA damaged regions; or spontaneous chemical 

changes in DNA bases (e.g. deamination of cytosine to uracil)6. 

Besides, some germline alterations (e.g. BRCA mutation) may have 

an influence on these endogenous processes too. Among the 

exogenous factors generating DNA damage, the better described 

ones for cancer are: exposure to carcinogens such as tobacco 

smoke or UV light radiation; and viral infections, such as hepatitis 

virus or papillomavirus4.  
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Figure 1 | Causative agents of cancer. Diagram of the main causative 

agents of DNA somatic alterations: exogenous (exposure to carcinogens, 

viral infections) and endogenous (DNA replication errors, DNA repair errors, 

germline DNA alterations, viral infections or spontaneous nucleotide 

chemical changes). Purple cells in the central circle represent a tumor.   
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2.Tumor molecular alterations  

Cancer is driven by somatic alterations in the cellular DNA (i.e. 

genomic alterations). During each person’s lifetime DNA genomic 

alterations accumulate in the genome, along with alterations in the 

epigenome -the set of DNA modifications not affecting the sequence 

which may influence gene activity- and the transcriptome of the cell- 

the set of transcribed RNA molecules. These genomic somatic 

alterations affect the function of key genes mostly related to cell 

growth and survival, de-regulating cellular biological process which 

lead to uncontrolled cellular proliferation. There are several types of 

genomic alterations which have varying sizes, ranging from 

mutations that affect a single nucleotide to chromosomal 

rearrangements or whole-genome duplications7,8. Even if I 

acknowledge that epigenomic alterations are relevant for 

tumorigenesis I will focus on genomic and transcriptomic alterations, 

as are the ones extensively analyzed in this thesis.  

 

2.1 Mutations 

Mutations are a type of genomic alterations which affect one or few 

nucleotides in the DNA sequence. When mutations occur in the 

coding part of the genome -the DNA regions called exons that are 

transcribed into messenger RNA- they can affect the protein 

aminoacid sequence. Depending on whether mutations change the 

aminoacid sequence, they can be classified into: synonymous (i.e. 

silent), that are single nucleotide variants (SNVs) (e.g. C to T) which 

do not change the aminoacid sequence because of codon 

degeneracy; and non-synonymous mutations (also known as PAMs, 

protein affecting mutations), that are DNA variants which alter the 

aminoacid sequence of a protein9–11. There are six main types of 
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non-synonymous mutations1: 

 

1) Missense mutations: SNVs which cause an aminoacid 

substitution (e.g. histidine to arginine). This type of mutations are the 

ones classically more frequently associated to tumorigenesis (e.g. 

BRAF V600E, KRAS G12D or EGFR L858R). 

 

2) Nonsense mutations: SNVs where any aminoacid codon is 

replaced by a stop codon, leading to a premature end of translation. 

 

3) Splice site mutations: SNVs at splice site sequences in the 

intron-exon junction. Splice sites are sequence elements essential 

for splicing - the process which removes the non-coding parts of the 

DNA sequence (introns) and selects the exons to be transcribed. 

These SNVs in splice sites may alter the ratio of alternative splicing 

patterns or affect the splicing of constitutive exons12.  

 

4) Translation start mutations: SNVs where at least one base of the 

starting codon is changed, they may affect the start of the 

transcription.  

 

5) Translation stop mutations: SNVs where at least one base of the 

stop codon is changed, they may result in an elongated transcript, 

the transcribed RNA molecule.  

 

6) Indels: insertions and deletions of few nucleotides (<100 base 

pairs). Indels maintain the open reading frames of the proteins when 

                                                 
1 The types of PAMs 2 to 5 and the frameshift indels are usually referred to 

as truncating mutations10 
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they are multiples of three, causing the insertion or deletion of 

specific aminoacids. However, when not divisible by three, they 

induce a change in the reading frame (commonly referred to as 

frameshift mutations), generating a dramatically different 

transcript10,13.  

 

Of note, some types of non-coding alterations have also been 

associated with cancer development, even if they have been less 

explored until the date. The better described ones are SNVs in the 

promoter region of protein coding genes supporting uncontrolled cell 

growth, leading to their overexpression (e.g. mutations in the TERT 

promoter or mutations in LMO2 promoter)14–16.  

 

2.2 Chromosomal rearrangements 

Chromosomal rearrangements or structural variants (SVs), are 

defined as alterations of the DNA sequence of approximately 1 

kilobase (1,000 nucleotide base pairs) or larger size, in which DNA 

has been broken and rejoined elsewhere in the genome17. 

Chromosomal rearrangements can be balanced, preserving the 

amount of genetic information, or unbalanced, not preserving it5,10,18.  

 

The number of rearrangements that can be found in a chromosome 

can vary from a single rearrangement in a specific genomic region 

to thousands of clustered chromosomal rearrangements. This last 

phenomenon is termed chromotripsis and during the last years it has 

been described as a prevalent genomic aberration in several cancer 

types such as colorectal carcinoma19.  
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2.2.1 Balanced rearrangements  

Balanced rearrangements maintain the two copies of each DNA 

region, but re-order them across the genome. They can be caused 

by: (i) insertions, of one chromosomal region into the same or 

another chromosome; (ii) translocations, interchange of regions 

between chromosomes; and (iii) inversions, 180-degree 

chromosomal rotations5,10.  

 

Among the types of balanced rearrangements, those with the most 

thoroughly described outcome in cancer are gene fusions. Gene 

fusions are translocations of two genes that join their coding 

sequences into a new fusion gene which encodes a fusion protein, 

with a function different to the one of each initial gene10. The first 

genic fusion in association with tumorigenesis was discovered in 

1962, BCR-ABL (also known as Philadelphia chromosome) in 

chronic myeloid leukemia20. Over the last decades, several gene 

fusions have been associated to tumorigenesis, more frequently in 

hematologic malignancies (e.g. PML-RARA fusions in acute 

myelocytic leukemia21 or ALK fusions in lung carcinomas22–25).  

 

Additionally, there are other types of outcomes for balanced 

rearrangements that have also been described in cancer such as: 

swapping of 5’ ends, including the promoter, causing a change in the 

transcriptional induction either to an enhance or repression; 

incorporation of trans (i.e. distant) regulatory elements close to the 

transcription start sites, changing the transcriptional induction too; 

and gene truncation, generating aberrant transcripts10,26.  
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2.2.2 Unbalanced rearrangements  

Unbalanced rearrangements can be caused by duplications and 

multiple repeats, which imply an increase of the genomic content; or 

deletions, which cause a loss of genomic content. These 

rearrangements can vary in size, affecting from focal regions to 

whole chromosomal arms. If the duplications/repeats (i.e. 

amplifications) or deletions happen in coding regions of the genome 

they induce changes in the number of copies of the genes, referred 

to as Copy Number Alterations (CNAs). In turn, CNAs affecting 

genes may change their expression levels, either leading to an 

overexpression or to an underexpression10,27.  

 

Deletions can cause the loss of the two copies of the gene, 

homozygous loss, or just the loss of one of the copies, loss of 

heterozygosity. In some cases, the loss of heterozygosity is repaired, 

in terms of genomic content, and the remaining copy is duplicated, 

this phenomenon is called copy number neutral loss of 

heterozygosity. If it is not repaired, in some cases it can lead to an 

impaired phenotype due to haploinsufficiency28. 
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Figure 2 | Main genomic alterations found in the tumor genome. 

Schematic representation of the main tumor genomic alterations. (A) Types 

of mutations according to their effect on the coding sequence: (i) 

synonymous, mutations not causing any aminoacid change, producing a 

normal protein; (ii) non-synonymous, mutations changing the aminoacid 

sequence of the protein. (B) Table presenting the types of non-synonymous 

Single Nucleotide Variants (SNVs). (C) Structural variants (SVs) classified 

into balanced and unbalanced. Balanced SVs can be: inversions, insertions 

or translocations, which can cause different outcomes (such as gene fusion 

or promoter swapping). Unbalanced SVs can generate a gene 

amplification, through duplications or multiple repetitions (not represented) 

or a gene deletion, through genomic deletions.  
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2.3 Gene expression changes 

Changes in the transcriptome have been widely associated to 

cancer. It has been observed that many genes, even thousands, are 

differentially expressed, either overexpressed or underexpressed, 

between normal and tumor samples29,30.  

 

Expression differences at tissue type level have been observed 

across normal tissues, comprehensively explored within the 

framework of the Genotype-Tissue Expression (GTEx) project which 

has sequenced around 8000 normal tissues from autopsies31; as 

well as across different tumor tissues, within the framework of The 

Cancer Genome Atlas32. However, it has been shown that the 

differences across cancer types are not only explained because of 

the tissue of origin, but they are also related to the genomic, 

transcriptomic and epigenomic alterations (such as different DNA 

methylation patterns)29,33 of the tumor samples32. 

 

On one hand, genomic alterations can modify the expression of 

genes through the alteration of regulatory structures, both cis (i.e. 

nearby) or trans, that result in either overexpression or 

underexpression of the genes (e.g. mutations or chromosomal 

rearrangements in the promoter region of the gene or in the 

transcription factors); or through alterations in the number of copies 

of the gene, either amplifications or deletions.  

 

On the other hand, non-coding RNA molecules, such as long-non-

coding RNAs (lncRNA) and microRNAs, can also modulate the 

expression of protein-coding genes. An example of this is the 

lncRNA MALAT1 whose expression has been associated to a 
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transcriptional and post-transcriptional regulation of cytoskeleton 

and extracellular matrix genes in various cancer types, promoting 

invasiveness and metastases34. 
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3. Genomics of the tumorigenesis 

Cancer development (i.e. tumorigenesis) is a Darwinian evolutionary 

process where tumor cell populations mimic a specie and tumor 

microenvironment represents nature environment. Analogous to 

neo-Darwinian evolution, also referred to as Darwinism in the context 

of genetics, cancer evolution is a branched evolutionary process 

based on: (i) the acquisition of heritable genetic variants in single 

cells by random alterations; (ii) natural selection acting on the 

phenotypic cellular diversity, either wiping out cells with acquired 

deleterious alterations (negative selection) or fostering cells with 

alterations that proliferate and survive more effectively than 

neighboring cells (positive selection); and (iii) gradual accumulation 

of the selected variants across each individual life-span5,35.  

 

3.1 Driver and passenger alterations 

As explained before, somatic alterations are the cause underlying 

virtually all cancers. However, not all somatic alterations lead to a 

malignization process. Indeed, because most tumors are 

genomically unstable36 -they possess a tendency to accumulate 

genomic alterations along cell cycles- and may bear thousands of 

genomic alterations, it is likely that not all of them contribute to 

tumorigenesis5,10. 

 

Only those alterations conferring the cells biological capabilities 

which improve their survival in the microenvironmental context would 

be the ones positively selected. These biological capabilities, named 

hallmarks, go beyond from uncontrolled cell growth. There are 

eleven well-known cancer hallmarks that represent the complexity of 

all the processes that may be altered in cancer37: evasion of cell 
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growth regulators (e.g. by loss-of-function alterations in TP53 or 

RB38); sustained proliferative signaling (e.g. by activating alterations 

in EGFR39); deregulation of cellular energetics, mostly through of 

Warburg effect (i.e. aerobic glycolysis which leads to the production 

of lactic acid40); resistance to apoptosis (e.g. by alterations in BCL-2 

family members41); generation of genomic instability (e.g. by loss-of-

function mutations in BRCA1 or BRCA242); induction of angiogenesis 

(e.g. alterations in VEGF43); invasion and metastasis (e.g. by 

alteration extracellular matrix components44); promotion of 

inflammation; replicative immortality (e.g. by altering telomerases45); 

and avoidance of immune destruction (e.g through exposure of 

immune checkpoint proteins46). 

 

Therefore, alterations found in tumor cells can be divided in two 

types, depending on whether they contribute or not to tumorigenesis. 

Two different terms have been coined to differentiate them: 

  

● Passenger alterations2: alterations not implicated in 

tumorigenesis, which do not exhibit signals of positive selection. 

They occur due to the interplay between DNA damage processes 

and DNA repair mechanisms. Once a tumor is established, their 

generation increases due to tumor genomic instability5.  

 

● Driver alterations3: the alterations implicated in tumorigenesis, 

which confer a growth advantage to the cell bearing them. These 

                                                 
2 The term passenger also extends to the genes which only bear 
passenger alterations, the passenger genes10. 
 
3 The term driver is also used for genes. Driver genes are those  bearing at 

least one driver alteration, but can also bear passenger alterations10. 
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alterations exhibit signals of positive selection, and they either 

activate genes, known as oncogenes (OGs) (e.g. KRAS, BRAF), that 

promote processes which lead to cell proliferation and survival; or 

cause the loss-of-function of genes that prevent the previous 

processes to happen, known as tumor suppressor genes (TSGs) 

(e.g. APC, TP53). In detail, the alterations of these two types of driver 

genes, OGs and TSGs, are different. While missense mutations in 

specific regions of the protein (known as mutational hotspots), gene 

amplifications and gene fusions confer gain-of-function properties to 

OGs; truncating mutations and deletions lead to the loss-of-function 

of TSGs10.  

 

 

 

 

Figure 4 | Accumulation of somatic alterations across a tumor cell life-

span. The accumulation of somatic alterations in the body cells starts right 

after birth, at a rate which depends on the DNA errors that emerge and the 

extent to which they are repaired. Initially, somatic alterations are benign, 

passengers, but under environmental selective pressure they could be 

positively selected and became drivers. Even after the malignization of the 

cells, they keep accumulating more mutations along its life-span, both 

passenger and drivers [This figure is an adaptation from Stratton et al. 

(2009)].  
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3.2 Computational identification of driver genes 

During the past four decades, one of the main goals of the genetic 

study of cancer has been the identification of all the mutational driver 

genes47. The first driver genes were revealed by individual low 

throughput genetic and biochemical studies48,49. After two decades 

of experiments identifying cancer driver genes (CDs), Futreal and 

colleagues produced in 2004 the first manually curated consensus 

list of CDs, as reported in publications, named Cancer Gene Census 

(CGC), now containing approximately 600 genes50.  

 

More recently, international cancer genomics initiatives sequencing 

large cohorts of tumors served the purpose of identifying many more 

driver genes using statistical analyses (see below). These large 

cohort analyses were made possible by using next-generation 

sequencing technologies in large tumor cohorts, and provided the 

opportunity of expanding the catalog of CDs. Of note, among the 

sequencing consortia, the biggest ones, in terms of number of 

sequenced samples and number of different cancer types included, 

are:  

  (i) The Cancer Genome Atlas (TCGA), an American collaborative 

effort that began ten years ago and until now has generated multi-

dimensional genomics data -through transcriptome profiling, exome 

sequencing, copy number alteration profiling and DNA methylation 

analysis and other techniques- for 33 cancer types and 11 thousand 

patient tumor samples51.  

  (ii) International Cancer Genome Consortium (ICGC), a world-wide 

collaborative effort which started close in time to TCGA and until now 

has collected data for 16 thousand patient tumor samples from 21 

cancer types. In contrast to TCGA, ICGC is mainly devoted to study 
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of mutations, through exome sequencing. However, it has also data 

of transcriptome profiling along with a recent subset of tumor 

samples (around 2500) analyzed through whole genome 

sequencing52. 

 

It has been shown that most of the CDs are altered at low frequency, 

and that the set of genes driving tumorigenesis varies between 

cancer types. Therefore, data of large cohorts (such as TCGA and/or 

ICGC) is needed to evince a comprehensive catalog of CDs5,10,53. 

Currently, there is not a gold-standard computational approach for 

the detection of CDs (either mutational or with chromosomal 

rearrangements), as most of the developed methods have some 

drawbacks and/or biases47. However, most current approaches are 

based on the same principle, the detection of signals of positive 

selection through the evaluation of somatic alterations across tumor 

cohorts47,54. 

 

3.2.1 Identification of mutational driver genes 

The first methods aimed to detect mutational cancer driver genes 

date from 2006. These methods were based on the detection of 

genes more mutated than a background mutation rate, that was 

corrected for gene size, among other variables, aimed to represent 

the mutational processes ongoing in the cell that may influence the 

mutational rate55,56. Later, similar approaches have been developed, 

mostly focused on improving the mutational background model, 

adding other variables known to affect the mutation rate such as 

gene expression or replication timing (e.g. MuSiC, MutSig)57,58. 

However, these methods are biased towards the detection of 

frequently mutated CDs, making difficult the detection of the lowly 

frequently mutated ones47.  
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Other alternative approaches, not focused on the detection of more 

frequently mutated driver genes, have been developed. These 

mutational driver identification methods are aimed to detect genes 

with a particular composition of mutations, with respect to the total of 

mutations in the gene, named ratiometric methods54. Thus, there are 

several types of ratiometric methods depending on the mutational 

composition evaluated:  

 

● Mutations with specific consequence types. These methods 

consider as CDs the genes with a certain ratio of mutations with a 

specific consequence type(s). Examples of these methods are: 

20/20 rule from Vogelstein et al. (2013), that considers as CDs those 

above the 20% threshold of the oncogene score (proportion of 

recurrent missense o indel mutations out of the total of mutations) 

and tumor suppressor score (proportion of truncating mutations out 

the total of mutations); 20/20+ from Karchin et al. (2016), a 

RandomForest classifier based on the mutational attributes 

evaluated by Vogelstein et al. (2013); and TUSON from Davoli et al. 

(2014)59, another machine learning approach which considers 

similar mutational ratios (e.g. proportion of truncating mutations out 

of synonymous mutations) and also classifies the CDs as OGs or 

TSGs.  

 

● Clustered mutations. These methods identify the genes that 

tend to accumulate mutations in certain regions (i.e. clusters or 

mutational hotspots) with a higher frequency than expected from the 

background mutation model. There are two main types of clustering 

methods, those which perform clustering in the 2D sequence of a 

protein and those which perform it in the 3D protein structure. For 
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example, OncodriveCLUST considers that a gene is a CD if the 

distribution of its PAMs in its 2D protein structure tends to be more 

clustered than the distribution of its synonymous mutations60; while 

CLUMPS identifies as CDs those genes with an overall enrichment 

of mutated residues spatially close to each other in the 3D protein 

structure61. 

 

● Functional impacting mutations. These methods identify as CDs 

the genes which accumulate more high impacting mutations than 

expected given a background mutational model. Examples of these 

methods are OncodriveFM62 and OncodriveFML63. Both aggregate 

the functional impact scores of individual gene mutations to identify 

the gene functional impact bias but the background models used are 

different: OncodriveFM builds the background model by sampling of 

the observed mutations in the analyzed cohort, whereas 

OncodriveFML builds the background model by simulating a set of 

mutations according to the mutational processes occurring in the 

cohort under analysis, or cohorts of the same cancer type. Both 

methods use functional impact scores either based on the effect of 

the mutation on the protein function (i.e. SIFT64, Polyphen-265 and 

Mutation Assessor66); or based on the effect of the mutation in non-

coding regions such as microRNA targets and transcription factor 

binding sites; allowing the discovery of non-coding driver genes (i.e. 

CADD67). 

 

● Mutations in special residues. These methods identify CDs that 

are biased towards the accumulation of mutations in functionally 

important residues. Examples of them are: ActiveDriver, which 

identifies genes that tend to accumulate mutations in 

phosphorylation sites68; and eDriver, which identifies genes 
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accumulating mutations in protein functional regions69. 

 

Recently, some benchmarking studies have appeared, aimed to 

compare the performance of CDs detection methods54,70. However, 

these benchmarking efforts are biased towards the prioritization of 

certain methods (e.g. methods trained with CGC genes), producing 

contradictory results. In contrast to these studies aimed to identify 

the best performing method, integrative approaches using several 

methods have also been proposed. These approaches are based on 

the assumptions that (i) different driver genes bear different signals 

of positive selection that can be identified through different 

approaches; and (ii) each method presents various sources of 

biases that can be reduced when combining their results. Postulating 

that the combination of complementary methods is thought to 

provide a more comprehensive catalog of CDs47.  
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Figure 5 | Computational detection of cancer driver genes. (A) Schema 

of the common principle in which all computational methods detecting for 

cancer driver genes (CDs) are based, the identification of signals of positive 

selection across large tumor cohorts. There are two main types of methods 

for the identification of mutational CDs: those based on detecting genes 

more frequently mutated than a background mutation rate (B) and those 

which detect genes with specific mutational compositions (C); which can 

be: high functional impact mutations, clustered mutations, mutations 

localized in particular residues or mutations from a specific consequence 

type. (B) and (C) show a cartoon example on how mutations in a gene 

would be distributed so that each given method detects them as driver. 

Furthermore, examples of different methods of CD detection are also 

included.  
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3.2.2 Identification of driver genes bearing chromosomal 

rearrangements 

Even if less abundant, there are also methods for the computational 

identification of cancer driver genes bearing chromosomal 

rearrangements.  

On one hand, there are methods which detect cancer driver genes 

with CNAs, either amplifications or deletions. As for mutational 

approaches, the first developed methods detecting CNA drivers 

were based on frequency. These methods aimed to identify DNA 

regions with CNAs occurring at a significant frequency in a specific 

amplitude, when compared to a background rate (e.g. GISTIC)71. 

However, these methods identify DNA regions with CNAs that may 

contain large numbers of genes, not being clear which ones are the 

genes with CNAs providing the selective advantage to the tumor. To 

solve this hurdle, other methods aimed to simultaneously identify 

regions of focal copy number alterations together with gene 

expression changes have been developed (e.g. OncodriveCIS72, 

FocalScan73).  

On the other hand, several computational methods have been 

developed to detect the presence of fusion transcripts through the 

analysis of RNA-seq data74–76. However, even if fusion transcripts 

may be driver events, there are no computational methods based on 

the detection of signals of positive selection of gene fusions.  

3.3 Tumor genomic heterogeneity 

The study of TCGA and ICGC data has not only expanded the 

catalog of cancer driver genes but also deepen our understanding of 
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how tumor genomes function. One of the first striking observations 

when analyzing the genome of thousands of tumors was the 

heterogeneity in the repertoire of altered CDs both between and 

within cancer types53,77. On one hand, it was observed that few 

cancer types were driven by a unique type of alteration. The 

observed general trend was intra-cancer type heterogeneity with 

most of the patients bearing alterations in a set of frequently altered 

CDs and additional alterations in a set of lowly frequently altered 

CDs77 (e.g. TCGA analysis of ovarian serous carcinomas showed 

that, with the exception of TP53 the genes identified are mutated in 

10% or less of the patients)78. On the other, the frequently altered 

driver genes varied across cancer types (e.g. while most cutaneous 

melanoma samples are BRAF mutant, ovarian serous carcinomas 

frequently bear mutations in TP53)78,79. 

In addition to the heterogeneity at the level of driver genes, it was 

also observed the alteration level. The heterogeneity of alterations 

involves diversity in terms of: (i) alteration type, (ii) number and (iii) 

distribution across the genome77. (i) Alteration type heterogeneity 

(e.g. predomination of chromosomal rearrangements vs mutations) 

has been observed at inter-cancer type level; for example, while 

chromosomal rearrangements are frequent in leukemia, the 

tumorigenesis of cutaneous melanomas is mostly driven by 

mutations77. (ii) Alteration number heterogeneity are differences in 

the burden of alterations found inter- and intra-cancer type. For 

example, Lawrence et al. (2013)80 observed, across 27 cancer types, 

a high variation of the mutational frequencies, ranging from a median 

of 0.1 mutations per megabase in the genome (i.e. one change 

across the entire exome) in pediatric cancers to a median of 100 

mutations per megabase in cutaneous melanoma and lung 
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carcinomas, related to exposure to carcinogens. Moreover, intra-

cancer type mutational frequency heterogeneity was also observed 

(e.g. cutaneous melanomas and lung carcinomas showed a 

mutational frequency ranging from 0.1 to 100 mutations per 

megabase). At last, (iii) alteration distribution heterogeneity has been 

observed as changes in the distribution of mutations across the 

tumor genome. Lawrence et al also observed that certain mutation 

types (e.g. C to T) were not homogeneously distributed across the 

tumor genome between cancer types. For example, cutaneous 

melanomas showed a mutational spectrum dominated by C to T 

mutations, caused by unrepaired pyrimidine dimers induced by UV 

light; conversely C to A dominated the spectrum of lung carcinomas, 

caused by the exposure to tobacco smoke. Further study on the 

biological processes underlying different mutations led to the 

definition of cancer mutational signatures -different combinations of 

mutation types generated by different mutational processes81.  
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4. Selective pressure during tumorigenesis 

Tumors are not formed by a single population of cells -all of them 

genomically and phenotypically equal- but from multiple cell 

populations. Tumor clones are subpopulations of tumor cells with the 

same phenotype and genomic driver alterations that emerge 

because of the accumulation of different driver alterations along the 

tumorigenesis82. These tumor clones are shaped by the tumor 

microenvironment, which causes a selective pressure and 

consequent competition where the clones with the best biological 

capabilities survive77. 

 

4.1 Tumor dynamic clonal evolution  

The clonal architecture of tumors -the number of clones, their nature 

and their preponderance- is not constant across tumor evolution. 

The theory of clonal evolution states that a tumor starts with a 

founder clone, that arises as consequence of the accumulation of 

driver mutations. After the first cells became tumorigenic, additional 

alterations accumulate over time. The alterations conferring the 

tumor cells biological capabilities (i.e. cancer hallmarks), that can be 

shaped by the tumor microenvironment at different time points, will 

be selected and new clones of the tumor may then appear and 

expand (becoming major clones)77. On the contrary, those clones 

without biological capabilities that allow them to survive will shrink 

(becoming subclonal) and eventually they may disappear. For 

example, when a tumor starts an invasive process it acquires 

capabilities of invasion and metastasis but after it reaches the new 

microenvironment (i.e. metastasizes), cells with mutations providing 

capabilities that allow a good implantation (such as angiogenesis 

induction) will be selected, the clones bearing them will expand, and 
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those clones with migration capabilities will shrink37,77,82. 

In addition to intrinsic tumor adaptation to the human body, there are 

external factors, such as anti-cancer therapies, which exert a 

selective pressure on the tumor77,83. Hence, once a patient starts a 

round of treatment, all tumor clones may die because of the 

treatment -generating a complete disease remission- but some 

cancer cells with mutations that allow them to survive the treatment 

may remain. In this last scenario, clones with driver alterations that 

confer them resistance capabilities to the treatment will expand, 

causing a disease relapse5,77. Many studies are emerging providing 

solutions to overcome specific drug resistances (described in further 

sections). Well-known examples of anti-cancer therapies resistance 

alterations include: EGFR T790M resistance mutation to first 

generation EGFR inhibitors (e.g. Erlotinib)84, ABL T315I resistance 

mutation to BCR-ABL inhibitors (e.g. Imatinib, Nilotinib, Dasatinib)85 

or KRAS resistance mutations to EGFR antibody inhibitors (e.g. 

Cetuximab, Panitumumab)86.  
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Figure 6 | Tumor dynamic clonal evolution. Tumor clones, each one 

represented as a colored bubble, emerge due to the accumulation of driver 

alterations. The dynamic clonal evolution is mostly shaped by clonal 

competition and environmental selection pressures. Thus, depending on 

the time-point of tumor life-span some clones will be larger (major) and 

some smaller (subclones). Note that changes in the environment (i.e 

treatment initiation) induce the positive selection (from passenger to driver) 

of alterations which confer a growth advantage, next undergoing a clonal 

expansion [This figure is an adaptation from Yates and Campbell (2012)].  

 

4.2 Selective pressure from the immune system 

Many studies have been devoted to get insights into the molecular 

basis underlying cancer hallmarks (some examples have already 

been cited previously). However, during the last few years, due to 

the success of anti-cancer immunotherapies (discussed in further 

sections), cancer research community is shifted towards the study of 

the interaction between the tumor and the immune system, involving 

“tumor promoting inflammation” and “avoiding immune destruction” 

Hanahan and Weinberg hallmarks. 

 

The first observation that the immune system could recognize and 

attack tumor cells dates from the 1950s87. Beyond that, we know that 
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relationship between the immune system and tumor cells is dual. On 

one hand, the immune system suppresses tumor growth by attacking 

tumor cells (e.g. through CD8+ cytotoxic T cells). On the other hand, 

the immune system exerts a selective pressure on the tumors that 

leads to the selection of tumor cells capable of surviving the immune 

system attack (e.g. tumor cells presenting PDL-1). This dual process 

is known as immunoediting88.  

The interaction between the immune system and tumor cells is a 

complex state of dynamic equilibrium87. Being a cyclic process 

where pro-stimulatory immune factors can enhance anti-tumor 

immune responses; but regulatory mechanisms, triggered by the 

tumor and its microenvironment, can in turn limit the immunological 

response89,90. According to Chen and Mellman (2013) this cycle can 

be divided in 7 major steps:  

1) Release of antigens by tumor cells and capturing of those by

dendritic cells (DCs). It is worth to point out that tumors release 

antigens different to the ones naturally exposed in normal tissues to 

which the immune system is self-tolerant. Non-normal tumor 

antigens come from three different sources: mutated peptides with 

aberrant conformations, named neoantigens; cancer-germline 

antigens, which are not expressed in normal tissues but tumor cells 

may express them due to DNA methylation changes; and viral 

proteins, expressed if the tumorigenic processes is influenced by a 

viral infection.  

2) Presentation of the tumor antigens by the DCs and migration to

the lymph node. 
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3) In the lymph node, priming and activation of effector cells, CD8 

T cells and NK cells. Of note, effector CD8 T cells are primed with 

tumor antigens89.  

 

4) Migration of the activated effector cells to the tumor through the 

bloodstream, named trafficking. 

 

5) Infiltration of the effector cells into the tumor bed (i.e. the normal 

tissue in which the tumor is located). 

 

6) Recognition of tumor antigens through HLA molecules and 

binding by effector T cells. 

 

7) Cytotoxic killing of cancer cells by effector cells which produces 

the release of tumor antigens (that again leads to step 1).  

 
As mentioned, in cancer patients this cycle is impaired. Inhibition or 

impairment of the cycle can happen at any step: (1-2) tumor antigens 

may not be detected by dendritic cells; (2) priming of dendritic cells 

may treat the antigens as self, triggering T cell regulatory responses; 

(3) activation of T cells may not effectively traffic to the tumors; (5) 

effector populations might also be inhibited to infiltrate (e.g. due an 

immunosuppressive tumor microenvironment through the release of 

pro-angiogenic factors); (6) tumor cells may not be recognized (e.g. 

by occultation of the tumor antigens); or (7) the killing of the tumor 

cells by the immune effector cells could be impaired (e.g. through 

the inhibition of bind effector T cells by the tumor through checkpoint 

molecules such as PDL-1 or PDL-2)90,91. 
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Figure 7 | Tumor-immune system interaction cycle. Schema of the 

cyclic interaction between the tumor and the immune system which can be 

divided in seven steps: (1) release of tumor antigens (represented as green 

circles) from the apoptosis of tumor cells, (2) presentation of tumor antigens 

to dendritic cells (DCs) which recognize them as non-self, (3) migration of 

the DCs into the lymph node and activation of effector cells, (4) trafficking 

of the active effector cells to the tumor through the bloodstream 

(represented T cells as T and NK cells as NK), (5) infiltration of the effector 

cells into the tumor bed, (6) recognition of tumor cells by effector cells, 

precisely T cells recognize tumor cells through HLA molecules; and (7) 

cytotoxic killing of tumor cells by NK cells and CD8 T cells through perforin 

and granzyme molecules (represented as red circles).  
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The exact mechanism underlying the tumor evasion of several cycle 

steps or the reason why the impairment of the cycle is 

heterogeneous across cancer patients is still a key problem to be 

solved. Tumor genomic heterogeneity has been postulated as a 

possible explanation for the heterogeneous response of cancer 

patients to immunotherapies92. Indeed, molecular tumor 

heterogeneity could have an impact on most of the steps of the 

tumor-immune system cycle. For example, it has been observed that 

tumors with truncating mutations in B2M lose the expression of HLA 

molecules in the cell surface, escaping from the recognition of T cells 

(step 6)93, or that tumors with  activation of WNT/bCatenin pathway 

show an impaired recruitment and activation of dendritic cells from a 

specific lineage (step 1-2)94. Thus, some studies are shedding light 

on the tumor evasion of the immune system but still a lot of effort is 

needed to understand the whole picture.  
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5. Cancer patient tumor profiling

The starting point of the detection of tumor genomic, transcriptomic 

and proteomic alterations is a tumor biopsy. After it is obtained, there 

are bunch of different experimental techniques that can be used to 

identify tumor alterations. Some of these techniques are currently 

being used in the clinical practice and others are mostly devoted to 

cancer research. Tumor profiling techniques have been typically 

classified into cytogenetic and molecular techniques, according to 

the molecular structures where they identify alterations, from 

chromosomes to DNA/RNA sequences, respectively. 

5.1 Detection of chromosomal rearrangements 

Cytogenetic techniques detect alterations at chromosome level, i.e., 

chromosomal rearrangements. Karyotyping is the most simple and 

cheapest cytogenetic technique, it classifies the 23 pairs of human 

chromosomes, allowing a study of the DNA amount in the whole 

genome (e.g. it allows identifying a deletion of an entire 

chromosome). However, its resolution is low, so short alterations 

cannot be visualized95. 

Fluorescence In Situ Hybridization (FISH) is another cytogenetic 

technique that allows to localize DNA specific sequences on 

chromosomes, cells or tissues; through the use of known fluorescent 

probes (i.e. specific DNA sequences). It is more suitable to identify 

chromosome translocations than karyotyping, as its results are 

easier to interpret96. Indeed, it is used in oncology clinical practice to 

identify chromosome translocations (e.g. identification of BCR-ABL 

translocation in chronic myeloid leukemia patients to prescribe 

treatment with imatinib97).  
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Comparative Genomic Hybridization, known as CGH array, 

appeared as novel cytogenetic technique, with better resolution. It 

used in the research and clinical context and allows the identification 

of unbalanced chromosomal rearrangements. CGH array consists of 

a series of wells with probes that map to different genome regions, 

covering the whole genome. When the DNA of study is added into 

the wells, it reacts with the probes and generates an assorted color 

light depending on the amount of DNA of study hybridized, 

distinguishing between amplifications and deletions98. A variant of 

CGH array named Single Nucleotide Polymorphism (SNP) array, 

has gained interest during the last decade. The technique is the 

same but probes contain a series of human polymorphisms. Hence, 

this technique also allows to perform polymorphism genotyping and 

can discriminate heterozygous alterations from homozygous ones99. 

5.2 Detection of DNA sequence alterations 

The classical technique to detect DNA mutations is Sanger 

sequencing. This technique appeared in 1977 and is based on the 

selective incorporation of modified nucleotides by a DNA polymerase 

during an in vitro DNA replication. Next, these modified nucleotides 

are detected through gel electrophoresis and fluorescence, being the 

DNA sequence revealed100. Sanger sequencing is still the gold-

standard of sequencing, currently being used in the clinical setting 

for the detection of point mutations (e.g. identification of BRAF 

V600E mutation in cutaneous melanoma patients to prescribe 

vemurafenib101).  
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In 2001 the first human genome was published using Sanger 

sequencing, as a 13-years multinational and metacentric project102. 

After that, a necessity of sequencing more genomes emerged and 

innovative technologies less costly and more efficient were required. 

This is how by 2005 next-generation sequencing (NGS) 

technologies, also known as high-throughput sequencing 

techniques, appeared. Since then, several platforms of NGS have 

been developed (e.g. Roche pyrosequencing, Illumina sequencing, 

Life Technologies SOLiD, etc), being all of them capable of 

sequencing simultaneously millions of DNA fragments in a massive 

parallel way. The principle underlying all NGS techniques is the 

same: first, the whole genome or exome of study (e.g. a tumor) is 

fragmented into millions of pieces; next, each of them is sequenced 

independently in parallel; generating a large volume of short-read 

sequencing data103. This read-based approach allows detecting not 

only mutations but also copy number alterations, by analyzing the 

amount of reads in a gene or DNA region, and gene fusions, through 

the identification of fusion genes. 

A complex computational framework is needed to store, manage and 

analyze all the short-read data generated after sequencing. Using as 

an example the sequencing of the whole exome of a patient’s tumor 

in a clinical context: (1) the resulting reads of the sequencing have 

to be aligned to the reference human genome; (2) tumor somatic 

variants have to be distinguished from the germline variants of the 

patient; (3) the quality of the somatic calls quality has to be assessed 

and bad quality variants filtered out; (4) functional impact of the 

somatic variants has to be annotated; and (5) among all somatic 

variants functionally relevant, a prioritization of the driver tumorigenic 

variants or the ones which can benefit from a therapy is needed to 
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transfer the knowledge obtained back into the patient care104. 

However, from all this computational framework, there is no a gold-

standard methodology or resource, particularly for step (6), 

becoming a bottleneck when trying to apply NGS strategies into the 

clinical context. 

 

Because of that, whole genome and exome NGS is mostly used for 

research purposes. However, targeted sequencing through gene 

panels, another NGS strategy, is already becoming a standard tool 

for clinical oncology in some reference hospitals (e.g. MD Anderson, 

Vall d’Hebron). Gene panels possess a higher sensitivity and they 

are cheaper than performing a whole genome or exome105. 

Moreover, with respect to Sanger sequencing they allow to identify 

not a single mutation but a set of mutations, still limited, facilitating 

its interpretation. However, its design -the decision of which genes 

and gene regions should be included- is not trivial, it requires a 

laborious search in the literature, and even though there are some 

commercial solutions there is a not a gold standard to design them 

in each specific context. 
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Figure 8 | From NGS of a patient’s tumor to precision medicine. 

Common computational workflow from DNA NGS to its application on the 

clinics. Steps one to four are relatively automatic, while step 5 is currently 

a hardly manual step where a genome analysis should search in multiple 

scattered resources and integrate all the information in the context of the 

tumor being analyzed. Thus, step 5, as represented in the figure, is the 

bottleneck between NGS and the application of its results into the clinics [ 

Adopted from Good et al 2014 ] .  
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5.3 Measure of gene expression 

The gold standard technique to measure gene expression has been 

during several years microarrays, they are still being used but in 

recent years RNA sequencing has become also a widely used 

technique to measure gene expression.  

 

On the one hand, DNA microarray techniques (also known as DNA 

chips) are based on the collection of series of probes into a surface 

that when mixed with cellular RNA they hybridize. The quantification 

of the hybridization events, through the incorporation of fluorescence 

or biotin labeled nucleotides, allows to measure gene expression as 

well as genotype a number of DNA regions106.  

 

On the other hand, RNA sequencing (RNA-seq) is based on the 

fragmentation of the cellular RNA, which is next converted into cDNA 

(complementary DNA) that after is prepared as a library (including 

adaptor proteins) and lastly sequenced in a high-throughput 

manner107. These techniques allow the quantification of all cell 

transcripts, including the product of fusion genes -chimeric 

transcripts. As mentioned before for DNA NGS, a complex 

computational framework is required after RNA-seq results are 

obtained. This framework, which starts also with read counts, 

involves: (1) a quality control for detecting sequencing errors or 

contamination artifacts; (2) an alignment of the reads to the 

reference genome; (3) a quantification of the read counts aligned to 

each transcript; and (4) a normalization by transcript length, which 

may have some variations. The most common normalizations are: 

(i) RPKMs (reads per kilobase per million mapped read), which in 

addition to transcript length also normalize by the cDNA library 
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used108; (ii) its derived measurement FPKM (fragments per kilobase 

per million mapped read), used for paired-end sequencing, consider 

that 2 reads correspond to a single fragment109; and (iii) TPMs 

(transcripts per million mapped read), which normalize by a constant 

variable instead than cDNA library, 1 million transcripts110.  

 

5.4 Profiling of the tumor microenvironment  

A tumor biopsy, the starting point for its genomic analysis, is not only 

formed by tumor cells. It is an admixture which also contains the 

tumor microenvironment (fibroblasts, immune cells, endothelial cells 

and normal epithelial cells)111. The fraction of cells from the 

admixture that are tumor determines the purity of the sample.  

 

The sample purity is usually inferred by a pathologist, through a slide 

image analysis of the biopsy. When analyzing tumor sequencing 

data, a minimum of purity is usually required (e.g. the international 

sequencing consortium The Cancer Genome Atlas set the threshold 

at 60% of purity) to consider that the signal from the tumor can be 

distinguished from the one of the microenvironment112. However, it 

has been proved that differences in the level of purity across tumor 

samples have an impact on the interpretation of the genomic 

analysis, especially in RNA-seq data analysis. Thus, the correction 

of RNA-seq data by purity has been shown to reveal masked 

pathways or decrease the expression of pathways mostly 

overactivated in the microenvironment, not tumorigenic112,113. 

 

On the other hand, because tumor samples are admixtures, once 

sequenced we can analyze not only tumor cells but also the cells of 

the tumor microenvironment. Because of this, computational 
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methods capable of quantifying the immune infiltrate (e.g. 

ESTIMATE114), and the individual cell populations infiltrating tumor 

samples have emerged during the last years115–119. Among the latter 

two main types of approaches have been developed: deconvolution 

and gene set enrichment methods. Deconvolution methods compute 

the proportion of each immune population within the overall set of 

immune cells infiltrating the tumor118,119, while enrichment methods 

provide the relative estimate of the overall enrichment of the immune 

populations of interest115–117. There is no a gold standard 

methodology among both approaches. However, several caveats 

have recently been reported for deconvolution methods. For 

example, they have not been validated for RNA-seq or have been 

shown to be not robust when the expression from few genes of their 

training matrix cannot be assessed120. 
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6. Personalized cancer medicine

Classical pharmacological cancer therapies, chemotherapies, do not 

consider the intrinsic features of the patient’s tumor because their 

mechanism of action is not specific. These treatments kill all the cells 

(i.e. they are cytotoxic compounds) in the human body with a high 

replicative rate, causing an important toxicity. Personalized cancer 

medicine has emerged as a new therapeutic strategy that looks for 

the most suitable pharmacological treatment that, considering the 

biology of the tumors, is capable of blocking cell proliferation (i.e. 

they are cytostatic compounds). Therefore, when compared to 

classical therapies, the effectivity of personalized strategies is meant 

to be higher and the toxicity lower, improving patient care.  

6.1 Genomics-driven personalized treatments 

Cancer personalized treatments are not new, the earliest strategies 

date from the 1977, when the first hormone therapy for breast 

cancer, tamoxifen, was approved121. Hormone therapies are 

effective, and still are being used, for the treatment of cancer types 

whose growth is dependent on hormones (i.e. breast and prostate 

cancer). But even if effective, this kind of treatments could not be 

applied to most the cancer types. That is why other strategies, based 

on the inhibition of specific oncogenes promoting tumor growth was 

undertaken. These new strategies, referred to as targeted therapies, 

were based on what was described some years after as “oncogene 

addiction” principle122.  

“Oncogene addiction” is defined as the genomic dependency of the 

tumor on specific and few alterations to maintain the tumorigenesis 

active (i.e. tumor genomic Achilles Heel), it is based on the 
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observations, across many years and experiments, that reversing 

one or few driver alterations in OGs inhibited the tumor growth123,124. 

 

Trastuzumab -a monoclonal antibody that selectively inhibits HER2- 

was the first successful targeted therapy introduced into the clinical 

setting in 1998 for breast cancer patients HER2 positive125. However, 

the mechanism of action of trastumzumab is not exactly as expected. 

The drug works through a dual mechanism that in one hand relies 

on the principle of “oncogene addiction” because inhibition of HER2 

arrests tumor growth, but on the other, it flags the cells for immune 

destruction when the drug binds to the tumor cell. It was not until the 

approval of imatinib in 2001, that the first prove of “oncogene 

addiction” principle to a particular genomic aberration -BCR-ABL 

gene fusion in chronic myeloid leukemia- was clinically used126,97. 

The success of imatinib provided compelling evidence that OGs 

could be potentially good drug targets and targeted treatments for 

other cancer types started emerging. Erlotinib was the next one to 

be approved, initially introduced in 2004 for the treatment of non-

small cell lung which exhibited EGFR mutations127–129.  

 

Currently, there are more than 80 anti-cancer targeted therapies 

approved for specific cancer types and at least a third of them are 

used depending on the presence (or absence) of a genomic 

biomarker (e.g. gene fusion, mutation, deletion...) or proteomic 

aberration (e.g. HER2+)130.  

 

In most of the cases, targeted therapies are prescribed to patients in 

combination with chemotherapies. Besides, there are also 

combinations of targeted therapies which are prescribed to cancer 

patients. These combinatorial therapies are mostly designed to 
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overcome drug resistance (see below) and have synergistic effects. 

An example is BRAF and MEK targeting in BRAF V600E mutant 

melanoma patients131. Of note, the main bottleneck of drug 

combinations is the emergence of additive toxicities132.  

6.1.1 Bottlenecks of anti-cancer therapies development 

Even if 80 seems a large number of approved therapies, it is much 

smaller than the number of all therapies under investigation. Drug 

development is a slow process, having its biggest bottleneck when 

facing the clinical trials phase133. Specifically, most of the drugs fail 

due to unpredicted clinical toxicity, during clinical phase I 

testing134,135.   

Drug repurposing is a strategy aimed to solve the phase I bottleneck 

and has been widely used for cancer targeted therapies. Drug 

repurposing refers the re-use of approved drugs for prescriptions 

other than the approved one, either different molecular targets or 

different diseases. The approval of these strategies is usually faster, 

because they do not need to go over phase I again133. The first drug 

with a successful repurposing among cancer targeted therapies was 

imatinib, which in 2008 underwent fast approval for a new molecular 

target in another disease, KIT mutant gastrointestinal tumors97.  

The classical clinical trial design relies on the fact that molecular 

targets are associated to a specific disease, which has been 

demonstrated inaccurate now that the molecular profiling of large 

tumor cohorts is available. The molecular heterogeneity across 

tumors decreases the number of patients in which a genomic-

directed therapy could be beneficial for a specific cancer type. This 

impairs the power to assess the outcome of these approaches. An 
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innovative design of clinical trials emerged as a solution to this 

problem, named “basket trials”. Clinical basket trials design assumes 

that drug response is shaped by the tumor genomic alterations, not 

the cancer type, and thus a larger number of samples across 

different cancers can be pooled together. Moreover, there is variant 

of basket trials where several genomic alterations are analyzed 

together, allowing to explore several biomarker hypotheses and 

recruit more patients136. An example is CUSTOM (Molecular Profiling 

and Targeted Therapies in Advanced Thoracic Malignancies) where 

after testing 5 drugs across 11 types of molecular alterations the 

authors showed that certain genomic alterations shaped the 

response to erlotinib and selumetinib137.  

 

 

 

Figure 8 | Drug development process. (A) Diagram of the drug 

development process which starts with preclinical assays, where a lot of 

potential targets and compounds are investigated; followed by clinical trials 

(phases I to III) with a smaller number of investigational compounds that 

drops even more after phase I. In phase I drugs are tested for safety and 

toxicity, in phase II for its efficacy shaped by the molecular target and in 

phase III the efficacy is compared to the one of the standard-of-care. Drug 

repurposing are strategies meant to speed-up this process. They consist of 

re-using already approved drugs are for different molecular targets or 

diseases than the one approved, they do not need to go over safety tests 

again. (B) Schematic representation of the basis of basket clinical trials. 
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These trials select patients according their molecular alterations, rather 

than their disease type, and test different drugs according to the molecular 

alterations beard. 

 

6.1.2 Resistance mechanisms to anti-cancer 

pharmacological treatment 

Resistance mechanisms have been extensively described for cancer 

treatment, either for chemotherapies and targeted therapies. 

Resistance mechanisms can be intrinsic, when they are present 

already before the treatment (such as mutations in the target if it has 

to be wild type for an appropriate drug binding); or acquired, 

developed after treatment due to tumor adaptation138.  

 

While intrinsic resistances are easier to foresee, acquired 

resistances are more difficult to anticipate. That is why most of the 

research efforts have been put in these last type of resistance 

mechanisms. The main types of acquired resistance mechanism are 

the following: 

 

1) Drug efflux and activation resistances. The first consist of an 

overexpression of cell membrane ABC proteins, which regulate the 

flux across the plasma membrane, preventing the cells from the 

internalization of the compounds. The second has been mostly 

observed in chemotherapy resistance (e.g. capecitabine) by 

epigenetic inactivation of enzymes which catalyze the conversion 

pro-drug (inactive form) to drug (active form) in the tumor cells. Both 

resistances can be solved through drug combination therapies, ABC 

family inhibitors and DNA methyltransferase inhibitors, 

respectively138,139.  
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2) Drug target resistance mechanisms. This type of resistance is

caused by alterations in the target of the drug either by a change in 

its conformation or an overexpression, leading to impaired drug 

effectivity138. On the one hand, changes in drug target protein 

conformation, caused by mutations, may prevent drug binding or 

allow the activation of the protein after drug binding. This latter type 

is produced by mutations in the so-called gatekeeper residues, 

which can stabilize the protein after drug binding, so that it keeps 

being functional84,140. The mechanisms of the gatekeeper mutations 

are different depending on the target and have been mostly 

described for BCR-ABL, KIT, PDGFRA and EGFR141. For example, 

EGFR T/M mutations in the gatekeeper residue 790 are reported to 

be responsible of the 50% of resistances to EGFR small molecule 

inhibitors; by increasing the binding affinity for ATP by EGFR. As 

another example of a different mechanism, resistance to BCR-ABL 

inhibitors by ABL1 T315I mutation is suggested to cause resistance 

through the stabilization of the ATP-binding active conformation of 

the protein142. On the other hand, target overexpression reduces 

drug effectivity rather than generating a resistance. One example is 

the overexpression of the androgen receptor (AR) after the use of 

AR antagonists in prostate carcinoma143. 

3) Alternative pathway activation. This resistance arises as an

adaptation to the oncogenic addiction of a tumor after inhibition of a 

pathway, leading to maintenance of the function. It is known as 

“oncogenic bypass” and it is becoming the major mechanism of 

resistance to targeted therapies138. MET amplifications acquired as 

a resistance mechanism to EGFR inhibitors serve as an example of 

these mechanisms. EGFR inhibitors hinder the activation of the 

PI3K-AKT pathway, by acquiring the cells amplifications in MET they 
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can make this pathway become active again144. A variant of this 

mechanism is the activation of pathways that evade the pro-

apoptotic signal triggered by the drug, impairing the apoptosis 

process138. For example, changes in the expression levels of BIM 

pro-apoptotic molecule have been associated to varying degrees of 

response to EGFR, HER2 and PI3K inhibitors145.  

6.1.3 Therapeutic strategies for tumor suppressor genes  

All previously mentioned therapeutic strategies work under the 

principle that the tumor cell is addicted to the alteration of a gene that 

drives tumorigenesis through its activation, an OG. In 2000 a new 

dimension of “oncogene addiction” principle was described by 

Weinstein146. He called it “tumor suppressor hypersensitivity”, and 

based its definition on the observation that reintroducing the wild-

type version (i.e. non-genomically altered) of a TSG led to inhibition 

of cell growth and/or induction of apoptosis. Nevertheless, strategies 

for restoring tumor suppressor function are not as straightforward as 

the inhibition of oncogenes147. Several approaches can be tackled to 

therapeutically exploit genomic vulnerabilities presented by the loss-

of-function of a TSG.  

The first mechanism consists in indirectly targeting the TSG by 

inhibiting its negative regulators or oncogenes downstream its effect. 

On one hand, targeting negative regulators leads to an increase of 

the expression levels of the TSG. An example of these inhibitors are 

MDM2 inhibitors which increase TP53 protein levels and the activity 

of its targets (e.g. CDKN1A)148 these inhibitors are currently in phase 

I/II trials for several solid tumors. Of note, this therapeutic strategy 

does not work if the TSG to be restored is mutated, as it will lead to 

expression of the non-functional form of the TSG148. On the other 
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hand, inhibiting the targets negatively regulated by the TSG, would 

mimic the regulatory function of it. For example, the inhibitor of the 

PI3K-AKT-MTOR pathway everolimus has been shown to be 

effective upon PTEN deletions in prostate adenocarcinoma (a 

negative regulator of the pathway), being tested in phase I/II clinical 

trials149. Indeed, indirect targeting strategy is not only used for TSGs 

but also for OGS, as an example MEK inhibitors have been shown 

to elicit response in BRAF V600E mutant thyroid carcinomas150.  

The second mechanism, the reintroduction of the TSG, even if it 

seems the most straightforward strategy, it is difficult in terms of the 

therapeutic approaches to be used. In this direction, gene therapies 

for TP53 have been investigated during many years. However, non-

stable levels of efficacy have been reached, reason why TP53 did 

not passed phase III trials in USA147.  

The third and last mechanism, is based on principle called “synthetic 

lethality”. Synthetic lethality relies on “oncogenic bypass” 

phenomena mainly focused on the context of DNA damage repair 

pathways. If a tumor cell has an impairment of a DNA damage repair 

pathway (e.g. through a homozygous loss of the TSG BRCA1), it 

becomes addicted to another DNA damage repair pathway. If it 

becomes impaired too, this will lead to a cell death. Therefore, these 

lethal combinations can be therapeutically exploited either by 

inhibiting directly the pathway or enhancing DNA damage147. A 

successful example of synthetic lethality mechanism was the 

approval, in 2014, of the first PARP inhibitor, olaparib. Olaparib is an 

inhibitor of PARP enzymes, which are involved in cellular 

homeostasis, that when inhibited in BRCA deficient cells - that have 

impaired DNA damage repair- cause their death (in contrast with the 
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other targeted therapies, it is a cytotoxic compound)151. 

 

 

 

 

 

 

 

Figure 9 | Molecular mechanisms of targeted therapies. (A) Oncogene 

addiction principle, which explains the effectivity of targeted therapies that 

directly bind to OGs. (B) Mechanisms of resistance to targeted therapies. 

Only the two mechanisms widely associated to targeted therapies are 

represented: left, drug resistance by target alterations; right, drug 

resistance by activation of a pathway with the same effect than the one 

inhibited. (C) Targeting mechanisms of TSGs, based on the principle of 

tumor hypersensitivity: left, indirect targeting by inhibition of up-stream 

negative regulators; middle, synthetic lethality; and right, gene therapy to 

restore TSG expression. Each purple circle represents a cell and the picture 

inside and the blue circle represents a protein. 
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6.2 Personalized immunotherapies 

Anti-cancer immunotherapies are a family of treatments aimed at 

stimulating the immune system of the patients to fight their tumors. 

The rationale behind immunotherapies is not new, it appeared in the 

19th century, after the observation that the infectious processes, 

using bacterial vaccines, could provide anti-cancer therapeutic 

benefit152. Research on immunotherapies followed this direction 

through several decades, and in 1990 the first bacterial vaccine, with 

bacillus calmette guerin, was approved for in situ bladder 

carcinoma153. Some years before, in 1964, another strategy of 

immunotherapy was explored by infusing immune lymphocytes into 

a rat sarcoma, the positive results obtained were the beginning of 

the adoptive cell transfer (ACT) therapies154.  

 

ACT consists in administering tumor-specific T cells which have 

been expanded ex vivo and after are infused back to attack the 

tumor. The rationale for its effectiveness is based on T cell response 

robust specificity for tumor cells, as T cells can move to the tumor 

(even likely reaching distant metastases) and have a memory, 

guaranteeing the maintenance of the therapeutic effect after initial 

treatment155. The selection of the T cells that may attack the tumor 

for the ex vivo expansion can be done by selecting the T cells 

infiltrating the tumor (TILs), and then transferring a synthetic T cell 

receptor or a chimeric antigen receptor (CAR) into the T cells. CAR 

strategies are recently emerging as powerful therapeutics that have 

achieved remission rates up to 70-80% in hematologic 

malignancies156,157. Briefly, CAR-T cell strategies can recognize 

specifically programmed antigens independent of the HLA-complex, 

such as CD19, expressed in the cell surface of B cells, making T 



53 

cells attack aberrant B cells from hematologic B cell malignancies158. 

Another type of strategy that emerged several years after ACT is the 

inhibition, through monoclonal antibodies (mAbs) of immune 

checkpoint molecules. As has been briefly described, checkpoint 

molecules are receptors or ligands which mediate the activation of T 

cells in the different steps of the cancer immunity cycle. The first step 

of the cycle involves the activation of T cells are through their 

interaction with DCs in the lymph node. This activation is a three-

step process that requires CTLA4 exposure on the T cell surface in 

the last step. If this happens at an earlier stage, it competes with co-

stimulant molecules, leading to T cell inactivation. Moreover, T 

regulatory cells also use CTLA4 to suppress the T cell function. 

CTLA4 is therefore a checkpoint molecule whose inhibition 

contributes to T cell activation[ref]. Another well-known checkpoint is 

PD1 that if interacting with PDL1 or PDL2 in the tumor cell leads to 

T cell inactivation. Again, the inhibition of either PD1, PDL1 or PDL2 

may lead to T cell activation. During the last six years, five 

(nivolumab, avelumab, pembrolizumab, atezolizumab, and 

ipilimumab) checkpoint inhibitors have been approved, alone or in 

combination, for at least 6 different malignancies (merkel cell 

carcinoma, head and neck carcinoma, urothelial, non-small cell lung 

carcinoma, renal clear cell carcinoma and melanoma), mostly for its 

advanced or metastatic stages130. Moreover, additional checkpoints 

are being investigated as potential therapeutic targets (e.g. LAG3 or 

TIM3).  
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Figure 10 | Main types of immunotherapies used in the clinical setting. 

(A) Diagram of the workflow of an adoptive T cell-transfer treatment (B) 

Molecular rationale underlying immune checkpoint blocker therapies. Top 

diagram, attack of T cells to tumor cells causing tumor cell apoptosis 

through the release of cytotoxic molecules. Bottom diagram, inhibition of T 

cell attack by tumor cells through PD-1/PDL-1 interaction.  

 

Concurrently with the development of more checkpoint inhibitors 

new combinatorial strategies of targeted therapies with checkpoint 

inhibitors are being tackled. On the one hand, checkpoint inhibitors 

have been evidence to be mostly effective only in high immunogenic 

tumors (such as melanoma and lung carcinomas) with high 

mutational burden that results into more tumor neoantigens and, in 

turn, into more TILs158.  On the other hand, some targeted therapies 

have been shown to boost cancer immunity by influencing T cell 

trafficking or T cell tissue infiltration, such as MEK inhibitors or VEGF 

inhibitors159. Therefore, combinatorial therapies of checkpoint 

inhibitors and these targeted therapies may elicit a synergistic 

response, expanding the spectrum of patients who could benefit 

from checkpoint inhibitors. Some clinical trials in early phases are 

already exploring this possibility (NCT01940809, NCT01673854, 

https://clinicaltrials.gov/ct2/show/NCT01940809
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NCT02224781, NCT02130466) 

Finally, it is important to mention that resistances have been 

described for immunotherapies, just as the ones long known for 

targeted therapies. These mechanisms are less known than those 

for targeted therapies but some, such as up-regulation of checkpoint 

molecules different to the one inhibited160 or acquisition of mutations 

which impair immunological response93 have been described. 
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The focus of my thesis is generating knowledge that contributes to 

the progress of cancer precision medicine through the analysis of 

cancer genomics data.  

Genomics have been proven to be useful for guiding the treatment 

of cancer targeted therapies and there are large collections of tumor 

sequencing data currently available that provide a comprehensive 

view of tumor genomics across several malignancies. The first 

objective of my thesis is to understand the current scope of 

genomic-guided personalized therapies. This objective involves the 

following tasks: 

- Identify the genes driving tumorigenesis in each cancer type

via mutations, CNAs and chromosomal rearrangements. 

- Build a comprehensive database of anti-cancer targeted

therapies and the biomarkers of their effect on tumors. 

- Develop a method to associate drug response and drug

resistance biomarkers to tumor samples. 

- Develop strategies of in silico drug repurposing.

Nowadays there is an urgent need of sequencing tumors in the 

clinical and research community. Cancer gene panels have emerged 

as a cost-effective solution to this necessity. However, with no guide 

to design these panels adapted to the specific needs of researchers, 

it is a manual and highly laborious task. The knowledge generated 

in the first objective on cancer type cancer driver genes, the 

therapeutic options and the mutational data compiled could be 

exploited to aid the design of cancer sequencing panels. Therefore, 

my second objective is the development of an easy-to-use tool to 

support a rational design of cancer gene panels according to the 

user’s needs, which includes:  
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- Develop a method that prioritizes the genes and/or mutational

hotspots with the highest mutational coverage in a cancer type 

or a group of them. 

- Build a user-friendly web-tool to carry out the panel design.

- Design interactive reports integrating ancillary information that

aids panel design. 

Nevertheless, the bottleneck when sequencing tumor cells is to 

interpret the resulting data. We realized that the methodology 

developed in the first objective could be a starting point to solve it. 

Consequently, my third objective consists in developing a tool 

capable of interpreting the relevance of somatic variants observed in 

a tumor, with a focus on the identification of those with therapeutic 

significance. It includes these tasks: 

- Improve the database of anti-cancer targeted therapies

including the level of curation of the database and its extension 

with more biomarkers of drug response, resistance and toxicity.  

- Build systematic nomenclatures for the classification of the

genomic biomarkers, drugs and cancer types in the therapies 

database.  

- Develop a method for matching drug biomarkers to tumor

driver alterations considering interactions between genomic 

biomarkers and drugs. 

Finally, with the emergence of immunotherapies, its success and the 

lack of detailed knowledge in most steps of the interaction between 

the tumor and the immune system I directed my fourth thesis 

objective to understanding molecular mechanisms related to 

tumorigenesis that modulate the anti-tumor action of the immune 

system. The tasks to fulfill this last objective are: 
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- Develop and apply a method to identify immune

subpopulations from the expression data of the tumor bulk 

sample. 

- Define immunophenotypes given the profile of immune

subpopulations in the tumor infiltrate. 

- Identify correlates between the tumor architectures with the

immunophenotypes. 
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PART III 

RESULTS
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Chapter 1 

GENOMIC-GUIDED THERAPEUTIC 

LANDSCAPE OF CANCER 

In the first chapter I present a comprehensive landscape of the 

therapeutic opportunities of a large cohort of cancer patients based 

on their genomic alterations. I have carried out this work together 

with Tamborero D, the other first co-author of the publication. 

The work done in this chapter has been divided into three main 

steps: (i) identification of genes driving tumorigenesis across the 28 

cancer types via mutations, copy number alterations and gene 

fusions; (ii) identification of drugs targeting the driver protein 

products; and (iii) in silico prescription of drugs to patients based on 

the driver events observed in each patient’s tumor. The 

implementation of these three steps, in a cohort of 6792 samples 

from 28 different cancer types, has identified the most 

comprehensive therapeutic landscape of anti-cancer targeted 

therapies to date. In turn, this landscape has revealed interesting 

messages, such as that 40.2% of all cancer patients could benefit 

from drug repurposing opportunities.  

From these three steps, I have developed step (ii) and step (iii); and 

Tamborero D has also contributed on the integration of some 

sources in step (ii). Specifically, I have built a comprehensive 

database of anti-cancer therapies targeting driver protein products. 

This database also includes genomic biomarkers of response to 

approved therapies, as stated in their clinical guidelines, and 
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genomic biomarkers of drug resistance, either approved or in clinical 

trials. After building the database, I have developed a set of rules for: 

prescribing approved drugs according to their clinical guidelines 

pertaining genomic and cancer type annotations, repurposing 

approved drugs to different cancer types or genomic alterations, and 

considering the resistance biomarkers. 

Next, I have developed a decision-algorithm, referred to as in silico 

drug prescription, that matches the drugs in the database to the 

alterations affecting driver genes, as identified by Tamborero D. The 

in silico drug prescription is able to take into account the genomic 

biomarkers of drug response and resistance, the cancer types to 

which the drugs are prescribed, the oncogenic role of the driver 

genes, and the mechanism of action of the drug.   

Additionally, I participated in drafting the manuscript and preparing 

most of the figures and supplementary information.  
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Chapter 2 

RATIONAL DESIGN OF CANCER SEQUENCING PANELS 

In the second chapter, I present a web-application aimed to rationally 

design next generation sequencing (NGS) mutational cancer panels. 

The web-application, named OncoPaD, designs NGS cancer panels 

for specific cancer types, or groups thereof, considering the role in 

cancer and therapeutic actionability of the genes included. By means 

of its prioritization algorithm, OncoPaD is able to identify which 

genes or mutational hotspots would increase more the coverage of 

the panel, converging to the most cost-effective solution. Moreover, 

the performance of OncoPaD panels, in terms of cost-effectiveness, 

is higher than that of commercially available panels, especially when 

focused on panels for specific cancer types or groups of them. 

OncoPaD is open-source and is available at 

http:/www.intogen.org/oncopad.  

The work presented here was divided into two parts: the 

development of the web platform and the algorithm of selection and 

prioritization of genes and mutational hotspots. I have conceived and 

implemented both parts, with technical assistance by the second 

author of the publication, Deu-Pons J, in the web platform 

development. Additionally, I drafted the manuscript and prepared all 

the figures and supplementary information.  

First, I implemented the algorithm, which I divided into five different 

parts: (1) sub-setting the pan-cancer cohort (7298 samples) by the 

cancer type(s) of interest, or panel cohort; (2) selection of the genes 

http://bg.upf.edu/oncopad
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driving tumorigenesis in the panel cohort; (3) identification of the 

mutational hotspots in each gene in (2), by identifying the minimum 

number of base pairs regions across the sequence of the gene that 

contain most of its mutations; (4) computing the cumulative 

mutational frequency (CMF) distribution of the panel cohort 

(coverage), as the number of tumors bearing protein affecting 

mutations in the genes and mutational hotspots identified in (2) and 

(3), and prioritization of the genes or mutational hotspots which 

contribute more to tumorigenesis in Tiers 1 and 2; and (5) collection 

of the data to be displayed into the web platform.  

Next, I designed and developed the web tool, mainly formed by an 

input and results sections. The input section allows the introduction 

of all the parameters needed to run the algorithm, or fine-tune its 

configuration. The results section is based on five reports: (i) CMF 

distribution in the panel cohort with additional information for each 

gene and mutational hotspot about the actionability; (ii) CMF 

considering more than one gene or mutational hotspots per tumor in 

the panel cohort; (iii) mutational distribution per each gene in Tiers 1 

and 2; (iv) drug actionability details of the genes and mutational 

hotspots; and (v) general features of the genes, such as the mode of 

action in cancer or its clonality.  

As a snapshot in time of its use, from 13th October 2016 until 15th 

of May 2017 OncoPaD has been accessed 794 times by 521 users; 

with a median of 12 sessions per week.  

 
  

Rubio-Perez C, Deu-Pons J, Tamborero D, Lopez-Bigas N, & Gonzalez-
Perez A. (2016). Rational design of cancer gene panels with OncoPaD. 
Genome Medicine, 8(1), 98. 



Rubio-Perez C, Deu-Pons J, Tamborero D, Lopez-Bigas N, 
Gonzalez-Perez A. Rational design of cancer gene panels with 
OncoPaD. Genome Med. 2016 Dec 3;8(1):98. DOI: 10.1186/
s13073-016-0349-1

https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0349-1
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Chapter 3 

BIOLOGICAL AND THERAPEUTIC 

INTERPRETATION OF CANCER VARIANTS 

In the third chapter of my thesis I present another web tool, named 

Cancer Genome Interpreter (CGI). CGI interprets the oncogenic 

relevance of tumor variants and identifies suitable therapies to target 

them according to several levels of evidence. On the one hand, it 

interprets the role in cancer of the input variants, mutations, copy 

number alterations and chromosomal rearrangements. On the other 

hand, it identifies and in silico prescribes the most suitable therapies 

according to the driver alterations present in the tumor. CGI uses 

include a broad range of applications that range from basic research 

to translational oncology. It has been implemented as a freely 

available online resource at http://cancergenomeinterpreter.org.  

The output of the CGI is divided into two different analysis: the 

alteration analysis, that predicts the significance of the analyzed 

variants; and the prescription analysis, that identifies the best 

therapeutic options of the previously identified driver variants. My 

contribution to this project is limited to the prescription analysis. The 

prescription analysis is based on two steps: (i) building a 

comprehensive database of drugs including genomic biomarkers of 

response, resistance or toxicity and distinct levels of evidence and 

(ii) developing a method to prescribe the anti-cancer therapies in (i)

to the identified driver alterations. 

http://cancergenomeinterpreter.org/
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To generate a reliable database of anti-cancer therapies with drug 

biomarkers we took advantage of a pre-existing manually curated 

effort (Drug Knowledge Database) and extended it by including 

external cancer research curators. My work has consisted in 

integrating all data sources; generating a systematic nomenclature 

for the genomic biomarkers, the drugs and the cancer types; and 

keeping it up-to-date. Besides, I have generated another resource 

with ligands targeting altered driver genes according to different 

levels of potency of the interaction, which has been also integrated 

within CGI web tool. Additionally, I have conceived the algorithm for 

the prescription of driver alterations to drug biomarkers and ligands. 

The complex part of this algorithm is the proper handling of drugs 

with different genomic types of alterations (e.g. copy number 

alteration and mutation biomarkers); drugs with wild type genomic 

biomarkers; drugs with more than one genomic biomarker of 

response; and drugs with response and resistance biomarkers that 

can be simultaneously present in a tumor. The conception of the 

algorithm also includes the decision of which drug repurposing 

opportunities should be considered and consequently shown to the 

user.  

 As a snapshot in time, from 13th October 2016 until 15th of May 

2017 CGI has been accessed 7200 times by 2600 users. 

 
  

Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder MP, Vivancos A, 
Rovira A, Tusquets I, Albanell J, Rodon, J, Tabernero J, de Torres C, 
Dienstmann R,  Gonzalez-Perez A, Lopez-Bigas N. (Submitted) .Cancer 
Genome Interpreter Annotates The Biological And Clinical Relevance Of 
Tumor Alterations 

BioRxiv pre-print:  https://doi.org/10.1101/140475 



Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder 
MP, Vivancos A, Rovira A, et al. Cancer Genome 
Interpreter annotates the biological and clinical relevance 
of tumor alterations. Genome Med. 2018 Dec 
28;10(1):25. DOI: 10.1186/s13073-018-0531-8

https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-018-0531-8
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Chapter 4 

TUMOR MOLECULAR MECHANISMS 

 OF IMMUNE EVASION 

In this last chapter, together with Tamborero D, we present a 

comprehensive identification of tumor molecular mechanisms which 

may allow evade the immune system.  

The basement of this work is the identification of the infiltration 

patterns of sixteen immune populations across 28 solid tumors (9403 

samples) through a sample-level enrichment method. Upon it, we 

first analyzed the infiltration patterns of the immune populations, 

revealing that the immune infiltration patterns did not correlate with 

the tissue of origin. This suggested that tumor intrinsic features may 

be responsible of the different infiltration patterns. To further explore 

this, we refined the immune infiltrates at cancer type level and 

grouped the tumors in immune-clusters, which represented the 

effectivity of the immune system attack. We observed that similar 

levels of cytotoxicity across immune-clusters showed different 

immune infiltrating patterns across cancer types. Next, we evinced if 

clinical features could explain the immune clusters and observed a 

tendency of low cytotoxicity in advanced stage tumors, suggesting 

this phenotype as a possible pre-requisite for tumors to progress. At 

last, we looked for pathways active in the tumor across the different 

immune-clusters, adjusting expression data for its immune 

component. High cytotoxic clusters were mostly enriched by 

pathways related with high immune infiltration and energy cell 

metabolism, intermediate cytotoxic clusters were enriched in 
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angiogenesis and extracellular matrix pathways and low cytotoxic 

immune-clusters were mostly enriched by cell division pathways and 

others (such as TGFb) described to lead to low cytotoxicity. We 

finally integrated all the results into a reasoned biological model.  

I explored different methodologies aimed to assess the infiltration of 

immune populations. I made a comparison with a deconvolution 

method (CIBERSORT) and a comparison between two sample-level 

enrichment methods (ssGSEA vs GSVA), to rationally decide which 

approach would meet our needs the better (everything described in 

the supplementary methods). After deciding for GSVA, I explored 

which gene sets to use for the identification of the immune 

populations. Next, I identified the immune infiltration pan-cancer and 

per-cancer type. Then, I explored the infiltration patterns across 

cancer types, comparing them with the infiltration of its normal 

tissues, and exploring them within the immune-clusters. I have 

carried out and explored the results of the pathway analysis and 

integrated them into a reasoned biological model. At last, I have 

written most of the sections in this chapter, including the 

supplementary, and done most of the figures and supplementary 

tables.  

Here I present a first draft of a manuscript in preparation that will 

include all the results presented and additional ones where we are 

working on: analysis of the mutational load, copy number alterations 

and driver genomic correlates across immune-clusters.  

 
  

Rubio-Perez C*, Tamborero D*, Muiños F, Lopez-Bigas N, Gonzalez-
Perez A†. Identification of tumor immune avoidance processes across 28 
solid tumors (In preparation) 

* co-first authors       † co-corresponding authors 
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Cancer precision medicine is aimed to choose the most 

suitable anti-cancer therapy for each patient based on the 

study of the biology of its tumor. In this direction, the evolution 

of the cancer molecular knowledge has provided the 

community remarkable advances, such as the development of 

the first targeted therapy, trastuzumab, which has significantly 

improved the prognosis of HER2+ breast cancer patients125,161. 

Besides, cancer genomics studies have proven useful for 

guiding targeted therapeutic strategies. Examples of this are 

the clinical use of vemurafenib in BRAF V600E mutant 

melanoma patients101, cetuximab in EGFR L858R mutant non-

small cell lung carcinoma patients162 or imatinib in BCR-ABL 

chronic myeloid leukemia patients97. 

 

Therefore, the availability of the sequences of the exomes or 

genomes of tumors from thousands of patients has opened the 

possibility of not only comprehensively identifying the genes 

driving tumorigenesis, but also of estimating the scope of 

current and future cancer targeted therapies. The first work 

presented here (Chapter 1) aimed to contribute to both 

objectives: uncovering the landscape of cancer driver genes 

and the landscape of genomic-guided therapeutic 

opportunities available for cancer patients, based on the 

analysis of a large pan-cancer cohort of tumor samples 

(n=6792). Of note, by the start of the project, similar efforts on 

the direction of the pan-cancer comprehensive identification of 

cancer driver genes had been carried out, mostly within the 
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framework of The Cancer Genome Atlas (TCGA) consortia and 

predominantly based on the study of mutational cancer driver 

genes47,57,163. Even if cancer type level comprehensive 

integrations of driver genes bearing several types of genomic 

alterations had been published within TCGA framework51, to 

our knowledge we evinced one of the first pan-cancer driver 

integrative landscapes, by analyzing driver genes bearing 

mutations, copy number alterations (CNA) and chromosomal 

translocations (referred to as fusion drivers in Chapter 1) in 28 

different cancer types. Besides, as far as we knew, only one 

previous study (Van Allen et al 2014) had attempted to identify 

the landscape of genomic-guided therapeutic opportunities in 

cancer, even though several strategies for compiling anti-

cancer drug targets and response biomarkers were 

emerging164–166. Of note, that previous study did not consider 

the genes driving tumorigenesis in each cohort analyzed but 

pan-cancer cancer driver genes, nor considered most of the 

rules of our database of targeted therapies and the cohort 

analyzed was less comprehensive, with a smaller number of 

samples and cancer types analyzed.  

 

In Rubio-Perez and Tamborero et al (2015) (Chapter 1) we 

developed an in silico drug prescription approach which linked 

targeted drugs to the driver genes altered in each patient-tumor 

sample considered. First, we identified the driver genes 

through their signals of positive selection in each cancer type. 

On detail, we used several methods following complementary 
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criteria with the rationale that the combination of their results 

minimizes the number of false positives derived from each 

model47. Additionally, we classified the cancer driver genes 

according to their role in tumorigenesis in activating (i.e. 

oncogene) or loss of function (i.e. tumor suppressor)167 (see 

Appendix 1). This identification of the mode of action of the 

driver genes was essential for exploring their therapeutic 

opportunities, since different targeting molecular mechanisms 

are associated to either type of driver genes130,137,147. Second, 

we compiled drugs able to interact with the driver gene 

products in distinct phases of their development, including 

therapies approved for their clinical use, therapies tested in 

clinical trials and ligands). We also included rules for: 

prescribing approved drugs according to their guidelines of 

use; considering resistance biomarkers co-occurring or not 

with other drug prescriptions in the same tumor; repurposing 

approved drugs for other prescriptions than the one approved; 

and for prescribing ligands, taking into account the ligand 

mechanism of action and the driver gene role. Third, we used 

the generated information on cancer drivers (named Drivers 

Database) and anti-cancer targeted therapies (named Drivers 

Actionability Database) to in silico prescribe treatments based 

on the genomic alterations of each sample, revealing a 

snapshot in time of the therapeutic landscape of cancer 

patients. 
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The landscape of driver genes revealed in our work, although 

thorough according to state-of-the-art methods, was still likely 

incomplete. On one hand, because of the low recurrence of 

some driver genes53. On the other hand, at the level of 

alteration type, neither epigenomic alterations nor non-coding 

elements were considered. Of note, recent advances 

pertaining the identification of driver non-coding elements, 

have recently expanded our results (see Appendix 5). 

Regarding the driver gene alterations with drug prescriptions, 

we are aware that not all alterations found in a driver gene are 

drivers5,10; thus, a prioritization of these alterations would refine 

the results and produce more accurate landscapes. We also 

consider that a better exploration of tumor clonality would 

refine the prescription of drugs to alterations found in tumor 

major clones which would exert a higher therapeutic benefit. 

Furthermore, in this analysis we have considered that more 

than one drug can be prescribed to a single patient (i.e. drug 

combinations). Combinatorial approaches have to be 

cautiously considered as drug combination toxicities, not 

addressed in the former work, have been described for 

targeted therapies combinations132.  At last, we acknowledge 

that the incompleteness of the Drivers Actionability Database 

would have revealed an incomplete landscape, and that a 

more exhaustive manual curation of it would provide more 

accurate results.  
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Despite the presented limitations, that must be taken into 

consideration, our work produced a proof of principle strategy 

of comprehensively exploiting cancer genomic data to identify 

personalized medicine strategies; becoming one of the first 

comprehensive and integrative analyses of cancer driver 

genes and targeted therapies that has shed light into the 

molecular understanding of tumorigenesis and the scope and 

future perspectives of cancer genome-guided personalized 

medicine. As a snapshot in time we observed that very few 

cancer patients (5.9%) could benefit from approved therapies 

based on their tumor genomic alterations, but that this small 

fraction could be expanded up to a 40% when considering 

repurposing options and up to 73% when considering 

treatments undergoing clinical trials, not before estimated. 

Besides, we provided the cancer research community all the 

results generated, including the database of cancer driver 

genes and of anti-cancer therapies, as well as a prioritization 

list of 80 therapeutically unexploited driver genes with 

druggability features.  

The evolution of the work described until now became the seed 

for other two of my projects (Chapter 2 and Chapter 3). On the 

one hand, observing that virtually all cancer patients (90%) 

bore at least an alteration of a driver gene, led us to explore 

the use of the Drivers Database on the design of informative 

sequencing cancer gene panels (Chapter 2). On the other, 

upon mounting evidence that not all mutations in driver genes 
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are necessarily tumorigenic, we worked on overcoming the 

limitation of driver gene level analyses and moved to a better 

strategy to identify individual driver alterations in each single 

tumor. Besides, we thought that if we were able to overcome 

this limitation, an implementation into a tool of the driver 

alteration identification and the in silico drug prescription, 

refined at alteration level, would have potential broad 

applications from its use in pre-clinical to translational research 

(Chapter 3). Indeed, the in silico drug prescription strategy was 

useful not only for the work produced in our research group, 

but provided an extra value to other projects (see Appendix 2-

4).  

 

As already mentioned, alterations in the tumor genome may 

have an influence not only in drug response, but they can also 

inform about patient prognosis (e.g. different structural variants 

in chronic myeloid leukemia)168,169 contribute to disease early 

diagnosis through liquid biopsies and be used as a way to 

monitor relapse also through liquid biopsies170–172. That is why 

profiling the tumor genome is becoming a standard tool in 

current clinical oncology. However, deciding the sequencing 

technique is not trivial. To identify a single predictive alteration, 

such as BRAF V600E mutation in a melanoma patient to 

prescribe vemurafenib101, using Sanger sequencing could be 

enough. However, to enter a refractory patient into a clinical 

trial, which may have accumulated several relevant genomic 

alterations, or to investigate the tumor genome of a tumor 
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cohort; sequencing few specific mutations with Sanger will not 

be enough. At that point, Next Generation Sequencing (NGS) 

techniques should be considered, but even among them a 

decision on whether sequencing the whole tumor genome, 

exome or only a set of genes and gene regions, by using a 

gene panel; must be taken. Of note, sequencing through gene 

panels possess a higher sensitivity and specificity in the variant 

detection step, when compared to whole exome 

sequencing105; which makes it effectively the most cost-

effective option for both the translational research and clinical 

setting.  

Several cancer gene panels are commercially available; 

relying most of these panels on manually gathered lists of 

genes or genomic regions decided at pan-cancer level. To 

design a panel for a specific question (e.g. identify the genomic 

markers of tumor relapse in a specific cancer type), a laborious 

search in the literature, extended to bioinformatic resources to 

estimate its cost-effectiveness (i.e. estimate the proportion of 

patients bearing the alteration in the gene or gene region in the 

disease of study, the panel coverage); needs to be carried out. 

Exploiting the resources generated in my previous work, 

discussed above, in Rubio-Perez et al (2016) we developed 

OncoPaD, the first tool aimed to the rational design of NGS 

sequencing mutational cancer gene panels 

(www.intogen.org/oncopad). 

http://www.intogen.org/oncopad


230 

Through a user-friendly interface, OncoPaD suggests 

researchers sets of genes and/or gene regions to be included 

in a gene panel tailored for one or several cancer types, based 

on its cost-effectiveness. The genes suggested by OncoPaD 

either are: well-known cancer driver genes, bear mutations that 

are biomarkers of drug response, or have been identified as 

drivers via the detection of signals of positive selection across 

large tumor cohorts. Additionally, the user may decide to use 

its own list of genes. Next, OncoPaD estimates the cost-

effectiveness of including each of the genes in the panel, on 

the basis of the selected cancer type(s), either considering all 

the exons in the gene, or only mutational hotspots (referred to 

as gene regions). From the cost-effectiveness estimation, the 

user obtains a prioritization of the genes and gene regions in 

three tiers. From 1 to 3 these include the genes and/or gene 

regions which increase the most the coverage (tier 1) up to 

those which do not increase the coverage at all (tier 3). Finally, 

OncoPaD results on the gene prioritization are shown to the 

researcher together with reports on the relevance of individual 

mutations for tumorigenesis or for anti-cancer treatment, 

supporting the interpretation of the generated results.  

We acknowledge that before OncoPaD three approaches with 

similar aim than ours were already available173–175 (see 

Chapter 3 Table 1 for the exhaustive comparison). However, 

they either make no previous selection of the gens based on 

driver gene identification175, or consider only genes with high 
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impacting mutations or frequently mutated173,174, respectively.  

However, it is known that not all genes bearing high impacting 

mutations or frequently mutated are relevant for cancer 

development10, leading to the inclusion of likely false positive 

candidates. OncoPaD, as well as the two latter approaches, 

have a common limitation: no considering other alteration type 

drivers than mutational (e.g. drivers bearing structural variants) 

and among mutational no considering non-coding alterations. 

The limitation to mutational coding drivers is inherited by 

OncoPaD from the Cancer Drivers database. However, as 

more comprehensive lists of driver genes bearing structural 

variants or non-coding mutations emerge, we will incorporate 

them to OncoPaD.  

 

Nevertheless, even if OncoPaD is limited to the design of 

coding mutational cancer gene panels, we expect that it can 

become a useful and used tool in the cancer research and 

clinical community, because of the necessity of tumor genome 

sequencing, all the features included that minimize the 

inclusion of false positive candidates (either non driver genes 

and/or gene regions with very low coverage), the results 

reports generated and the outperformance, in terms of cost-

effectivity, when compared to commercially available panels. 

Indeed, since we started the user tracking (from October 2016 

until May 2017) we have registered around 800 accessions 

from 521 different users, showing that OncoPaD is used by the 

community, although more diffusion effort is needed.  
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Considering the opposite scenario, where the whole exome of 

the tumor is profiled instead of a gene panel, the interpretation 

of the obtained results may be more challenging, as a plethora 

of variants of unknown significance may be identified. The 

prioritization and interpretation of tumor somatic variants (i.e. 

the interpretation of the tumor genome), mostly in the context 

of exome sequencing, is still a non-resolved problem, being a 

bottleneck in the clinical and translational setting104. Once a 

tumor is sequenced most of the reported variants, even if 

located in cancer driver genes, are of uncertain significance 

and querying several scattered bioinformatic resources is 

needed to identify the variants driving the tumorigenesis. 

Moreover, once we identify the relevant tumor variants if we 

want to obtain information about its actionability we also need 

to go through different and scattered resources. Therefore, 

there is a necessity of developing new computational tools 

aimed to solve both hurdles, including the identification of 

driver variants among all variants found in a tumor and the 

identification of actionable variants104,166,176.  

 

To meet these necessities, we developed the Cancer Genome 

Interpreter (CGI) a web platform aimed to aid the interpretation 

of tumor genomes by contributing to solve the two hurdles 

(www.cancergenomeinterpreter.org) (Chapter 3). The specific 

aim of the CGI is, first, the identification of tumor variants more 

likely to drive the tumorigenesis, including those already 

validated as oncogenic and computational estimations of the 

http://www.cancergenomeinterpreter.org/
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effect of the remaining variants of unknown significance. And 

second, it also aims to identify the variants which shape the 

response to anti-cancer therapies (either response, resistance 

or toxicity), according to several levels of clinical evidence 

(either approved prescriptions, advanced clinical trials, early 

clinical trials, case reports or pre-clinical assays).  

On detail, the CGI workflow starts with the set of alterations of 

a patient's tumor -either mutations, CNAs and/or chromosomal 

rearrangements- and the cancer type. The first step is the 

identification of the genes that putatively drive the 

tumorigenesis in the analyzed tumor. We based their 

identification on manually curated lists of cancer genes (e.g. 

Cancer Gene Census50) and catalogs of driver genes obtained 

from bioinformatic analyses of large tumors cohorts177. In the 

case of mutations, the CGI performs an additional step to 

evaluate each individual variant, since not all the mutations in 

cancer genes are equally relevant10. As in the first step, we 

used as basis a priori knowledge, by compiling mutations with 

a clinically or experimentally validated oncogenic effect, 

including cancer-predisposing germline variants. However, 

most of the variants observed in tumors are of unknown 

significance, and the estimation of their effect still relies on 

computational approaches. We did this using a novel tool, 

OncodriveMUT, which distinguishes from other methods with 

similar purpose, because it combines the mutation-centric 

measurements of the gene (or gene region) with the 
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knowledge generated from the analyses of thousands of 

tumors. This provides statistically robust information that 

refines the evaluation of individual mutations.  

 

Next, the CGI is aimed to identify which of these tumor 

alterations may shape the response to anti-cancer therapies. 

Scattered and unstructured information on the identification of 

genomic biomarkers which shape the response to anti-cancer 

therapies is continuously generated in clinical trials and/or pre-

clinical assays, being the compilation and maintenance of this 

information a laborious task. We developed an expert curated 

resource, named Cancer Biomarkers database, as an 

extension of the Driver Actionability Database from Rubio-

Perez and Tamborero et al (2015). Here, we increased the 

number and level of curation (through collaboration with 

oncology experts) of the genomic biomarkers. We added new 

types of biomarkers (i.e. toxicity, no response) and increased 

its degree of complexity (e.g. we added more alteration types 

such as biallelic inactivation, considered mutation 

consequence types or wild type variants). Moreover, we also 

added more multi-biomarker drug associations, even including 

biomarkers from different genomic types and stratified all the 

biomarkers according to the level of evidence of the biomarker-

drug association, not only the drug status of approval (as done 

before). However, we acknowledge that such a manually 

curated database is costly to maintain. The mid-term 

maintenance of the Cancer Biomarkers database is supported 
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by the collaborative H2020 MedBioinformatics project and we 

expect that its long-term maintenance will be supported by the 

Global Alliance for Health and Genomics (GA4H), which has 

the aim of unifying efforts such as the Cancer Biomarkers 

database and similar resources: CIViC178, JAX-CKB179, 

MyCancerGenome130, OncoKB180, PMKB181 and PCT 

(https://pct.mdanderson.org). Of note, besides the Cancer 

Drivers Database we also developed a database containing 

the interactions of cancer driver genes with ligands (named 

Cancer Bioactivities database), with distinct levels of binding 

affinity. We suggest this resource as an interesting annotation 

for driver genes without biomarkers of drug response.  

 

Beyond Cancer Biomarkers database maintenance, CGI 

inherits the limitations of Chapter 1, as it is based on the 

knowledge generated there.  Additionally, we acknowledge 

that the assessment of the mutational signatures would be also 

of interest either for interpreting the biology of the tumor as well 

as for its therapeutic interpretation. Hence, we are planning to 

add this feature in next CGI updates.  

 

Even if the pipeline for the integration of all the steps in CGI is 

complex. One of the main advantages of the CGI is the 

intuitiveness of its interface, including the visualization of all the 

variants identified in the tumor, the assessment of whether they 

are tumorigenic, and all annotations employed to classify them; 

which is not a trivial issue176. The actionable variants in tumors 
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are stratified following levels of confidence and/or evidence, 

and presented to the user through interactive reports which 

help analyzing the results obtained. Several flexible input 

formats for the alterations are accepted, and an Application 

Programming Interface (API) has been developed to allow 

programmatic access. Additionally, we provide all resources 

supporting the CGI, including the Cancer Biomarkers 

Database and the catalog of driver genes and validated driver 

alterations, which may be of interest beyond its use in CGI. 

Taking all that into account, we think of the CGI as a versatile 

platform which automatizes highly laborious steps in the 

interpretation of cancer genomes. Due to CGI characteristics 

and our commitment of keeping it up to date with the evolving 

knowledge we expect that CGI will become a widely used tool 

either in the clinical, translational and basic research settings. 

Indeed, since October 2016 until May 2017, CGI website has 

had 2600 users and 7200 accessions, giving support to our 

expectations.  

 

The CGI, however is not currently focused on assessing the 

extent of response to immunotherapies, since comparably 

much less is known about them, than about targeted therapies 

biomarkers. Due to the remarkable success of cancer 

immunotherapies, both T cell adoptive cell transfer in 

haematologic malignancies and immune checkpoint blockers 

in solid tumors158, the translational cancer research community 

is recently shifting its focus towards the study of the tumor 
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immune system interaction, to identify new immunotherapy 

strategies. The discovery of immune checkpoint molecules, 

among others, has shown that tumors have active mechanisms 

to resist the immune attack. However, even if some examples 

have been identified, there is an incomplete knowledge on the 

tumor mechanisms that modulate the action of the immune 

system.  

Trying to contribute to fill up this gap, we evinced the last 

section of my thesis (Chapter 4), where we identified tumor 

pathways that become activated in correspondence with 

different patterns of cell populations in the immune infiltrate in 

the tumor. These pathways are candidates to tumor 

mechanisms through which the tumor may evade or counteract 

the activity of the immune infiltrate. First, we measured the 

degree of infiltration of sixteen different immune populations 

using sample-level gene set enrichment analysis of gene 

signatures representing each of immune population. To that 

end, we analyzed the bulk tumor RNA-seq data, following the 

rationale of previous works115–117. Gene set enrichment 

analysis is not the only approach used to identify immune 

populations, deconvolution methods have also been 

developed with the same aim118,119  and both methods have 

been equally used in several works116,120,182–184. However, 

deconvolution methods are mostly machine learning 

approaches that have been trained on DNA microarray data, 

being unclear to which extent they can be applied to RNA-seq 
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data120. That is the reason why we decided to use a gene set 

enrichment approach. Besides, an analysis carried out by us 

using one of these deconvolution methods, CIBERSORT, on 

the same cohort of tumors under study, demonstrated that the 

infiltration patterns of all immune cell populations could not 

properly reproduced. Giving strength to our decision of using a 

sample-level enrichment method.  

 

After deciding for a sample-level enrichment method, we 

estimated the fraction of each cell population in the infiltrate of 

each tumor across the entire pan-cancer cohort through the 

enrichment of their representative gene signatures. We 

observed inter- and intra- tumor heterogeneity of 

immunological infiltrates. This finding, together with a 

comparison with data from normal donors, suggested that the 

differences in the immune infiltration patterns observed across 

cancer types cannot be explained solely by their tissue of 

origin. In turn, this observation further advocate that tumor 

intrinsic features may be responsible of the different infiltration 

patterns. To explore this hypothesis, we refined the 

identification of immune infiltration patterns at cancer type level 

and grouped the tumors of each cancer type in immune-

clusters weighted by the effectivity of the immune system 

attack, as we hypothesized that the tumor mechanisms would 

be different depending on immune system effectivity, based on 

previous evidences185,186. After applying this approach to the 

28 solid tumors, three different scenarios of cytotoxicity 
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emerged across all cancer types, with different immune 

infiltration patterns. Suggesting that different immune cell 

compositions may lead to an equivalent level of cytotoxicity.  

 

Next, we proceed to identify the tumor intrinsic features across 

these three scenarios. We first observed that, as already 

described185, viral infections correlated with a higher 

cytotoxicity of the infiltrate in several cases, probably due to the 

increase of cell stress signaling and the expression of viral 

antigens187. On the other hand, we found that the group of 

tumors with lowest cytotoxic infiltrate was enriched for tumors 

of later stages, which may account for part of their increment 

in aggressiveness and worse prognosis. Next, we investigated 

the tumor pathways active in the different scenarios of 

cytotoxicity. Here we introduced a relevant methodological 

change with respect to other studies that made similar 

analyses120,188. We adjusted the expression levels of the tumor 

bulk samples for its immune component, following the rationale 

of Aran et al (2016)113. This adjustment revealed pathways that 

otherwise would be masked due to the contribution of the 

microenvironment to the bulk RNA. We checked that the failure 

to do this adjustment affects the results of enrichment 

analyses, as has already been proposed 112. 

 

We found a heterogeneous enrichment of pathways across the 

three different scenarios that we integrated into a reasoned 

biological model. In the low cytotoxicity scenario, we identified 
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an overexpression of high proliferative pathways identified in 

14 of the cancer types (by the enrichment of cell cycle, DNA 

damage and protein synthesis pathways) which could be 

responsible of lowering the immunogenicity due to the 

generation of a large number of new non-recognized tumor 

antigens, as product of the newly emerging cells189. Besides, 

the phenotype of immune exclusion could be explained in 

some tumors by the activation of pathways which impair 

leukocyte recruitment (SHH, TGFb and Wnt-bCatenin 

signaling)94,190,191. The intermediate cytotoxic scenario 

appeared consistently enriched for only two pathways: 

angiogenesis, which may impair leukocyte trafficking and 

contribute to a decrease in the cytotoxicity by the recruitment 

of macrophages192,193; and ECM changes, that could either 

promote or suppress cytotoxicity and leukocyte 

recruitment194,195. In the high cytotoxic scenario, we found 

activation of processes leading to the cytotoxic phenotype (e.g. 

viral processes, high expression of HLA molecules and CGAs) 

and processes that presumably allowed tumor cells to survive 

on it (e.g. negative checkpoints, anti-inflammatory cytokines). 

Of note, we identified an enrichment of energy metabolism 

pathways in high cytotoxic tumors that may establish a 

competition by nutrients between tumors and immune effector 

cells that would impair its differentiation196–198.  

 

A limitation of this work is that we have not considered genetic 

and epigenetic tumor alterations. These may be positively 
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selected due to the selective pressure of the immunologic 

microenvironment, providing the tumor capabilities of immune 

resistance by activation of the identified pathways or other 

mechanisms, such as the described mutation of HLA and B2M 

molecules, preventing from the recognition of T cells or the 

mutations in CASP8 which avoid apoptosis induced by immune 

cells185. However, albeit incomplete, we have identified several 

biological processes which constitute potential good 

mechanisms for further research, and could be explored in the 

context of the combination of a targeted therapy and 

immunotherapies, as has already been suggested for Wnt-

bCatenin pathway199. Besides, to our knowledge, this analysis 

is one of the most comprehensive landscapes on the tumor 

mechanisms related to immune evasion. Previous efforts are 

limited either because they focus in a single disease115,120,182, 

or simplify the tumor molecular mechanisms to be 

analyzed116,200 or the measure of immune infiltration185.  

To sum up, I have acknowledged several limitations present 

across the thesis chapters. A common point is the lack of 

integration of epigenomic data. The consideration of 

epigenomic data could have increased the scope and 

comprehensiveness of the analyses carried out in Chapters 1 

and 3, and it could explain some of the transcriptomic changes 

identified in Chapter 4. Non-coding mutations have not been 

considered either, mostly because to date there is no a 

comprehensive identification of non-coding driver alterations, 
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even though efforts on this direction are ongoing (see 

Appendix 5). The incompleteness of the anti-cancer drug 

databases is also a limitation affecting more than one chapter 

(1, 2 and 3), and could decrease the comprehensiveness of 

the results obtained.  

However, even if I acknowledge all these limitations, the work 

done in this thesis has been carried out methodically, 

comprehensively and integrative; generating knowledge and 

resources that contribute to the advance of cancer precision 

medicine. Chapter 1 has provided the cancer research 

community one of the first, if not the first most comprehensive, 

therapeutic landscape, shedding light into the scope of anti-

cancer therapies in the most prevalent cancer types together 

with a list of good candidates targets for the design of new anti-

cancer therapies. Chapter 2 has given the community a tool for 

the rational and cost-effective design of cancer gene panels, 

which may contribute to move a step forward the sequencing 

of new tumor cohorts either in the research and clinical field. 

Chapter 3 has given the community another tool that aids the 

interpretation of newly sequenced tumors, allowing interpret 

variants of unknown significance which could improve the 

patient handling, for example prioritizing patients for entering 

clinical trials, along with giving insights in the molecular 

mechanisms underlying newly sequenced tumor cohorts. At 

last, the tumor mechanisms identified in Chapter 4 shed light 

into a hot topic of current cancer research, the mechanisms of 
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immune evasion by tumors, which can be potential targets to 

be explored for combinatorial therapies with immunotherapies. 
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The work produced in this thesis, with limitations acknowledged in 

the discussion, and to the extent of the state-of-the art of cancer 

genomics research, has made several contributions towards the 

advance of cancer precision medicine.  

Together with Tamborero D. we have identified the therapeutic 

landscape of anti-cancer therapies, based on cancer patient 

genomic alterations in driver genes (mutational and with 

chromosomal rearrangements), as a snapshot in time. It has 

provided information on the extent of targeted therapies and their 

potential future progress (through the analysis of treatments in 

clinical trials) across 28 prevalent cancer types. Besides, we have 

identified a list of potential good targets for anti-cancer drug design 

as well as several drug repurposing opportunities.  

I have developed a tool for the rational design of cancer NGS 

mutational panels, that works at cancer type level or in groups 

thereof. OncoPaD maximizes the coverage of tumors in a cohort that 

a panel can achieve and minimizes the amount of DNA to be 

sequenced to obtain that result. Additionally, it provides the user 

ancillary annotations (such as which genes have biomarkers of drug 

response) that helps to decide which candidates include in the panel. 

OncoPaD is open source and freely available at 

www.intogen.org/oncopad.  

Complementary to OncoPaD, I contributed to the development of the 

Cancer Genome Interpreter, a tool for guiding the interpretation of 

newly sequenced tumors, to identify which of the alterations 

observed in a tumor are oncogenic and which may inform a 

therapeutic benefit. The Cancer Genome Interpreter has been 

http://www.intogen.org/oncopad
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developed along with a database of drug response biomarkers and 

cancer target ligands, where I contributed the most. The Cancer 

Genome interpreter is freely available at 

www.cancergenomeinterpreter.org  

Finally, I focused on the study of tumor mechanisms of immune 

evasion. In this part, through the analysis of tumor RNA-seq bulk 

data, together with Tamborero D., we identified the patterns of 

infiltration of sixteen immune cell populations. Next, we grouped the 

infiltrating immune populations in clusters reflecting their cytotoxicity. 

We then performed ad in-depth study of the clusters and identified 

clinical correlates and tumor active pathways involved in the evasion 

of the immune system.  

http://www.cancergenomeinterpreter.org/
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In this section, I cite and attach other publications where I 

contributed, thanks to the knowledge acquired and produced during 

my thesis.  

Appendix 1 

In Schroeder et al. (2014) we developed OncodriveROLE, a machine 

learning approach that classifies genes according to their role in 

tumorigenesis, either Activating or Loss of function. The classifier 

uses the distribution of genomic alterations in the genes (mutations 

and/or copy number alterations) to classify them. We achieved a 

0.93 accuracy when applying the classifier to Cancer Gene Census 

gene list and a Matthew Correlation Coefficient of 0.84. The classifier 

is available at http://bg.upf.edu/oncodrive-role . 

Here, I contributed in the exploration of the machine learning 

approaches which could be used for building the classifier and in the 

selection and generation of the genomic attributes to classify the 

driver genes.  

 

 
 
 

Schroeder MP, Rubio-Perez C, Tamborero D, Gonzalez-Perez A, Lopez-

Bigas N. OncodriveROLE classifies cancer driver genes in loss of function 

and activating mode of action. Bioinformatics. 2014 Sep 1;30(17):i549-

55.

http://bg.upf.edu/oncodrive-role
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Appendix 2 

Briefly, in Biton et al. (2014) they analyse the transcriptome of 

bladder cancer and identify bladder-specific biological components. 

They also characterized bladder subtypes (luminal, basal-like and 

muscle-invasive). The study of the urothelial differentiation in luminal 

bladder carcinomas revealed a pro-tumorigenic role of PPARG in 

these tumors.  

In this publication, I contributed, together with my supervisor N. 

Lopez-Bigas in the discussion of PPARG therapeutic implications.  

 

 
 

 
 

 

Biton A, Bernard-Pierrot I, Lou Y, Krucker C, Chapeaublanc E, Rubio-

Pérez C, López-Bigas N, Kamoun A, Neuzillet Y, Gestraud P, Grieco L, 

Rebouissou S, de Reyniès A, Benhamou S, Lebret T, Southgate J, Barillot 

E, Allory Y, Zinovyev A, Radvanyi F. Independent Component Analysis 

Uncovers the Landscape of the Bladder Tumor Transcriptome and 

Reveals Insights into Luminal and Basal Subtypes. Cell Rep. 2014 Nov 

20;9(4):1235-45.  
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Appendix 3 

In brief, Puente et al. (2016) did a comprehensive identification of 

the genomic driver alterations, coding and non-coding, in a cohort of 

452 chronic lymphocytic leukemia (CLL) cases and 54 with 

monoclonal B-lymphocytosis, a stage previous to CLL. They 

identified novel recurrent genomic alterations in the disease of study, 

such as NOTCH1 3’ alterations.  

In this project, I explored the therapeutic implications of the identified 

driver alterations in CLL patients (Figure S6, Table S9). Tamborero 

D. helped me in the curation of the drug response biomarkers.

 
 

 

 

 

 

 

Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-

Subero JI, Munar M, Rubio-Pérez C, Jares P, Aymerich M, Baumann T, 

Beekman R, Belver L, Carrio A, Castellano G, Clot G, Colado E, Colomer 

D, Costa D, Delgado J, Enjuanes A, Estivill X, Ferrando AA, Gelpí JL, 

González B, González S, González M, Gut M, Hernández-Rivas JM, 

López-Guerra M, Martín-García D, Navarro A, Nicolás P, Orozco M, Payer 

ÁR, Pinyol M, Pisano DG, Puente DA, Queirós AC, Quesada V, Romeo-

Casabona CM, Royo C, Royo R, Rozman M, Russiñol N, Salaverría I, 

Stamatopoulos K, Stunnenberg HG, Tamborero D, Terol MJ, Valencia A, 

López-Bigas N, Torrents D, Gut I, López-Guillermo A, López-Otín C, 

Campo E. Non-coding recurrent mutations in chronic lymphocytic 

leukaemia. Nature. 2015 Oct 22;526(7574):519-24 
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Appendix 4 

Shortly, Karube et al., (Submitted) genomically characterized a large 

cohort of diffuse large B-cell lymphoma (DLBCL). They found that 

germinal center B-cell and activated B-cell DLBCL had a differential 

profile of mutations, altered pathogenic pathways and CNA; 

recognizing potential targets for new intervention strategies 

In this project I have applied the in silico prescription strategy, 

exploring the therapeutic options, including drug repurposing 

opportunities, of the DLBCL cohort analyzed (Figure 5).  

 

 
 

 

 

 

 

Karube K, Enjuanes A, Dlouhy I, Jares P, MartinGarcia D, Nadeu F, 

Ordóñez GR, Rovira J, Clot G, Royo C, Navarro A, Gonzalez-Farre B, 

Vaghefi A, Castellano G, Rubio-Perez C, Tamborero D, Briones J, Salar 

A, Sancho JM, Mercadal S, Gonzalez-Barca E, Escoda L, Miyoshi H, 

Ohshima K, Miyawaki K, Kato K, Akashi K, Mozos A, Colomo L, Alcoceba 

M, Valera A, Carrió A, Costa D, Lopez-Bigas N, Schmitz R, Staudt LM, 

Salaverria I, LópezGuillermo A, Campo E. Integrating genomic alterations 

in diffuse large B-cell lymphoma identifies new relevant pathways and 

potential therapeutic targets. (Submitted) 
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Appendix 5 

Briefly, Sabarinathan and Pich et al. (submitted) did a 

comprehensive analysis of the driver alterations (mutations and 

chromosomal rearrangements) that contributed to tumorigenesis in 

a cohort of 2583 whole-genome sequenced tumors from 37 different 

cancer types. They find a genomic driver alteration in more than 90% 

of the patients, proving that cancer is driven by genetic events. 

Besides, they observed that the average of driver events per patient 

(around 4.6) was stable across tumors even if they showed huge 

differences of mutational burden. 

In this publication, I explored the therapeutic landscape of the tumor 

cohort, including either driver coding and non-coding alterations 

(Figure 6).  

  Radhakrishnan Sabarinathan*, Oriol Pich*, Iñigo Martincorena, Carlota 

Rubio-Perez, Malene Juul Rasmussen, Jeremiah Wala, Steven 

Schumacher, Ofer Shapira, Nikos Sidiropoulos, Sebastian Waszak, David 

Tamborero, Loris Mularoni, Esther Rheinbay, Henrik Hornshøj, Jordi Deu-

Pons, Ferran Muiños, Johanna Bertl, Qianyun Guo, PCAWG-2,5,9,14, 

Joachim Weischenfeldt, Jan Korbel, Gad Getz, Peter Campbell, Jakob 

Skou Pedersen, Rameen Beroukhim, Abel Gonzalez-Perez, Núria López-

Bigas. The whole-genome panorama of cancer drivers. (Submitted) 

* Co-first author
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Schroeder MP, Rubio-Perez C, Tamborero D, Gonzalez-Perez 
A, Lopez-Bigas N. OncodriveROLE classifies cancer driver 
genes in loss of function and activating mode of action. 
Bioinformatics. 2014 Sep 1;30(17):i549-55. DOI: 10.1093/
bioinformatics/btu467

https://academic.oup.com/bioinformatics/article/30/17/i549/201062


Biton A, Bernard-Pierrot I, Lou Y, Krucker C, Chapeaublanc 
E, Rubio-Pérez C, et al. Independent component analysis 
uncovers the landscape of the bladder tumor transcriptome 
and reveals insights into luminal and basal subtypes. Cell Rep. 
2014 Nov 20;9(4):1235–45. DOI: 10.1016/j.celrep.2014.10.035

https://www.sciencedirect.com/science/article/pii/S2211124714009048


Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-
Abril J, Martín-Subero JI, et al. Non-coding recurrent 
mutations in chronic lymphocytic leukaemia. Nature. 2015 
Oct 22;526(7574):519–24. DOI: 10.1038/nature14666

https://www.nature.com/articles/nature14666


Karube K, Enjuanes A, Dlouhy I, Jares P, Martin-Garcia D, 
Nadeu F, et al. Integrating genomic alterations in diffuse 
large B-cell lymphoma identifies new relevant pathways 
and potential therapeutic targets. Leukemia. 2018 Mar 
14;32(3):675–84. DOI: 10.1038/leu.2017.251

https://www.nature.com/articles/leu2017251


Sabarinathan R, Pich O, Martincorena I, Rubio-Perez C, Juul 
M, Wala J, et al. The whole-genome panorama of cancer 
drivers. bioRxiv. 2017 Sep 20;190330. DOI: 10.1101/190330

https://www.biorxiv.org/content/10.1101/190330v1
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CAR Chimeric Antigen Receptor 

CD Cancer Driver 

cDNA Complementary DNA 

CGC Cancer Gene Census 

CGH Comparative Genomic Hybridization 

CNA  Copy Numer Alteration 

DC Dendritic cell 

DNA Desoxiribonucleic acid 

DNA-seq DNA sequencing 

FISH Fluorescence In Situ Hybridization  

FPKM Fragments per kilobase per million mapped read 

GTEx Genotype-Tissue Expression 

ICD-O Interantional Classification of Diseases for Oncology 

ICGC International Cancer Genome Consortium 

lncRNA Long-non coding RNA 

mAB Monoclonal Antibody 

NGS Next Generation Sequencing 

OG Oncogene 

PAM Protein Affecting Mutation 

RNA Ribonucleic acid 

RNA-seq RNA sequencing 

RPKM Reads per kilobase per million mapped read 

SNP Single Nucleotide Polymorphism 

SNV Single Nucleotide Variant 

SV Structural Variant 

TCGA The Cancer Genome Atlas 

TIL Tumor infiltrating lymphocyte 

TPM Transcripts per million mapped read 

TSG Tumor suppressor gene 

UV Ultraviolet 
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