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1 Esto, me temo, cuenta como anglicismo
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2 Ale, ya est4, ya lo he dicho. jEstaras contenta!
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ens enganyem, la majoria de lectors no passareu —i amb ra6: non plus turra-
dels agraiments, aixi que aprofito.
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Deixem-ho aqui.

Agradecida y emocionada, solamente puedo decir gracias por ve-
nir.

xvii






Abstract

The mechanical dependence of transformation and metastasis
is an emerging field, but the role of mechanosensitive chan-
nels has been largely omitted. This thesis focuses on the roles
played by the mechanosensitive ion channels Piezol and Pi-
ezo2 in the transduction of mechanical stimuli (confinement,
adhesion, substrate rigidity, adhesive ligand concentration) by
cancer cells.

In a first chapter, we show that confinement triggers Piezo1-
mediated calcium entry. This activates phosphodiesterase 1,
reducing cAMP levels and, consequently, PKA->Rac1 activity,
relieving Myosin II from its inhibition. We also find a parallel,
direct activation of Myosin II by confinement. As a combined
result, cells stiffen and optimize their adhesion-free migration
mode, usually responsible for in vivo migration during meta-
static invasion. Piezol knockdown supresses confinement-in-
duced calcium entry and impairs the underlying circuitry in
ovarian epithelial (CHO) or melanoma (A375) cells. As a re-
sult, siPiezol cells show reduced migratory capacity under
confinement.

In the second chapter, we discover an essential role for Piezo2
as a transducer of environmental mechanical cues into RhoA
activation to modulate the mechanobiological responses of
MDA-MB-231-BrM2 brain metastatic breast cancer cells. Pi-
ezo2 KD disturbs stress fibre formation, adhesion orientation,
force transmission and nuclear accumulation of the malignant
co-transcriptional activator YAP, and this is phenocopied by
extracellular calcium suppression. Promoting Actin polymeri-
zation with jasplakinolide or by over-expressing constitu-
tively active forms of Rho or mDial restores stress fibres and
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nuclear YAP accumulation in Piezo2-KD cells. In addition, Pi-
ezo2 knockdown disrupts several pro-metastatic functions:
cell proliferation, migration, invadopodia formation, extracel-
lular matrix degradation, and secretion of SERPINB2, a pro-
tein needed for protecting invasive cells from brain parenchy-
mal defence mechanisms.

The works presented in this thesis unveil important roles for
Piezo channels as a first line of mechanical input detectors in
distinct cells. These discoveries are relevant for several fields,
e.g. cancer research, and highlight the importance of ion chan-
nels as transducers of environmental stimuli.
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Resum

La dependencia mecanica de la transformacio i 1a metastasi és
un camp d’estudi / de recerca emergent, pero el paper que hi
juguen els canals ionics mecanosensibles s’ha omes fins ara.
Aquesta tesi se centra en els rols dels canals Piezo1 i Piezo2 en
la transduccid d’estimuls mecanics per cel-lules canceroses,
com ara confinament, adhesio, rigidesa del substrat, concen-
traci6 de lligands adhesius.

En un primer capitol, mostrem que el confinament dispara
I'entrada de calci per mitja de Piezol. Aixo activa la fosfodies-
terasa 1, que redueix els nivells d’AMPc i, en conseqiiencia,
I'activitat PKA->Rac1, que deixen d’inhibir Miosina II. També
trobem una activacié paral-lela de Miosina II directament per
confinament. Com a resultat final, les cel-lules guanyen rigi-
desa i optimitzen el seu mode migratori independent d’adhe-
sions, que ¢és el preponderant in vivo durant la invasio metas-
tatica. Reduir els nivells de Piezo1 suprimeix ’entrada de calci
induida per confinament i desactiva el circuit subjacent en
cél-lules ovariques epitelials (CHO) i de melanoma (A375).
Aix0 minva la capacitat migratoria de les cel-lules siPiezol.

En un segon capitol, descobrim un rol essencial per a Piezo2
com a activador de RhoA en resposta a estimuls mecanics.
Aix0 modula les respostes mecanobiologiques de les cél-lules
MDA-MB-231-BrM2, de cancer de mama metastatic a cervell.
La reduccio dels nivells de Piezo2 destorba la formacié de fi-
bres d’estres, 'orientacid de les adhesions, la transmissio de
forces i I'acumulacié nuclear del regulador transcripcional
prometastatic YAP. Suprimir el calci extracel-lular fenocopia
aquests resultats. Promoure la polimeritzacié d’Actina amb
jasplaquinolida o mer mitja de la sobreexpressio de formes
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constitutivament actives de RhoA o mDial restableix les fi-
bres d’estres i 'acumulacio nuclear de YAP. A més, la reduccio
de Piezo2 suspen diverses funcions prometastatiques: prolife-
racio cel-lular, migracio, formaci6é d’invadopodis, degradacio
de la matriu extracel-lular i secreci6 de SERPINB2, una prote-
ina necessaria per protegir les cel-lules invasores dels meca-
nismes de defensa del parenquima cerebral.

Els treballs presentats en aquesta tesi desvelen rols importants
pels canals Piezo com a una primera linia de detectors d’esti-
muls mecanics en diferents tipus cel-lulars. Aquests descobri-
ments son rellevants per a diversos ambits, com ara la recerca
en cancer, i remarquen la importancia dels canals ionics com
a transductors d’estimuls ambientals.
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Resumen

La dependencia mecanica de la transformacion y la metastasis
es un campo emergente, pero el papel que juegan en ellas los
canales i6nicos mecanosensibles ha sido omitido. Esta tesis se
centra en los roles de los canales Piezol y Piezo2 en la trans-
duccion de estimulos mecanicos por parte de células cancero-
sas, como ahora confinamiento, adhesion, rigidez del sustrato,
concentracion de ligandos adhesivos.

En un primer capitulo, mostramos que el confinamiento dis-
para la entrada de calcio mediante Piezol. Esto activa la fos-
fodiesterasa 1, que reduce los niveles de AMPc y, en conse-
cuencia, la actividad PKA->Rac1, que dejan de inhibir Miosina
II. También Encontramos una activacion paralela de Miosina
IT directamente por confinamiento. Como resultado final, las
células aumentan su rigidez y optimizan su modo migratorio
independiente de adhesiones, que es el preponderante in vivo
durante la invasiébn metastatica. Reducir a los niveles de
Piezol suprime la entrada de calcio inducida por confina-
miento y desactiva el circuito subyacente en células ovaricas
epiteliales (CHO) y de melanoma (A375). Esto merma la ca-
pacidad migratoria de las células siPiezo1l.

En un segundo capitulo, descubrimos un papel esencial para
Piezo2 como activador de RhoA en respuesta a estimulos me-
canicos. Esto modula las respuestas mecanobiologicas de las
células MDA-MB-231-BrM2, de cancer de mama que metasta-
tiza a cerebro. La reduccion de los niveles de Piezo2 perturba
la formacion de fibras de estrés, la orientacion de las adhesio-
nes, la transmision de fuerzas y la acumulacion nuclear del re-
gulador transcripcional prometastatico YAP. La supresion del
calcio extracelular fenocopia estos resultados. Promover la



polimerizacion de Actina con jasplaquinolida o mediante la so-
breexpresion de formas constitutivamente activas de RhoA o
mDial reestablece las fibras de estrés y laacumulacion nuclear
de YAP. Ademas, la reduccion de Piezo2 suprime varias fun-
ciones prometastaticas: proliferacion celular, migracion, for-
macion de invadopodios, degradacion de la matriz extracelu-
lar y secrecion de SERPINB2, una proteina necesaria para pro-
teger a las células invasoras de los mecanismos de defensa del
parénquima cerebral.

Los trabajos presentados en esta tesis desvelan roles impor-
tantes de los canales Piezo como una primera linea de detec-
tores de estimulos mecanicos en diversos tipos celulares. Estos
descubrimientos son relevantes para varios ambitos, por ejem-
plo, la investigacion en cancer, y remarcan la importancia de
los canales ionicos como transductores de estimulos ambien-
tales.
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1.Introduction






INTRODUCTION

Let’s get physical...
Physical, Olivia Newton-John, 1981

For many years, cell biology has focused its attention on bio-
chemical pathways triggered by specific interactions between
ligands and their receptors. This is also the perspective still
adopted in many cell biology courses. Yet, advances in what
we could call mechanobiology* make necessary to widen this
approach at cell, systemic and organic scales.

Let us take humans as an example. Even with our eyes closed
we know whether we are in close contact with anything or
anyone. We also know whether what we are touching is rough
or smooth, pointy or blunt. This is possible because our skin
contains, among many structures, mechanoreceptors, i.e. sen-
sory neurons and accessory cell types that transmit action po-
tentials in response to different types of mechanical stimula-
tion (gentle touch, pressure, slow or fast vibrations). This is
what we normally call the sense of touch, but it is not only the
mechanical perception we can experience. Closing our eyes
again, we still can discern whether we are laying, sitting or
standing. Even more, we can distinguish between standing
still or moving, provided that there is a change in velocity, i.e.
acceleration. This is also due to mechanosensitive structures

that detect joint and muscle tension concertedly working

4 Mechanobiology is defined as the study of mechanical forces in a biologi-
cal context: how cells sense mechanical forces and how do they respond
to them, which are the (patho)physiological consequences of these pro-
cesses, etc. According to Pubmed, this discipline emerged in the mid 80s
(1500 to 3500 annual records, 2.3 increase from 1986 to 1988), stalled in
the 90s (5000-6000) and has experienced a recent surge (doubling from
5000 to 10000 annual entries in the 2011-2016 period).
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with the vestibular system, a component of the inner ear lab-
yrinth sensitive to rotational movements and linear accelera-
tion. These mechanosensitive systems are coupled to effector
pathways —eye movement, muscle contraction/relaxation- to
ensure a proper function. Importantly, these mechanisms are
mainly unconscious, i.e. we are not continually integrating
this perceptive information into thoughts, but our body is
constantly probing its surroundings and using this infor-
mation to locomotive and postural control through feedback
circuits. The importance of all these systems is evidenced in
diseased states, e.g. vertigo, the sensation of loss of balance
and spinning, can be triggered by malfunction of vestibule-
ocular connections.

At a cellular scale, the mechanical properties of the environ-
ment (rigidity, topology, pore size, sessile ligand density) are
key determinants of cell behaviour. Also, cells themselves
have state-dependent physical properties necessary for their
function and survival (DuFort et al., 2011; Moore et al., 2010).
As in the case of the whole organism, aberrant single cell
mechanotransduction® underlies several diseased states by
disturbing normal cell function, e.g idiopathic pulmonary fi-
brosis (Liu et al., 2015a; Rahaman et al., 2014) or cancer
(Elosegui-Artola et al., 2014; Miroshnikova et al., 2016;
Paszek et al., 2005).

During mechanotransduction, proteins with force-sensing
ability change their function, triggering a signalling cascade
that modifies cell activities. The aforementioned mechanore-

5 In this thesis, mechanotransduction is used latu senso as the conversion
of mechanical stimuli into classic biochemical cellular responses.
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ceptors are in essence cells with specialized mechanosensi-
tive machinery (in this case, ion channels) whose function
leads to membrane depolarization, triggering action poten-
tials and synaptic transmission. Therefore, local changes in
cell activity are ultimately responsible of responses at both
cell and organism levels.

The best described way for force to trigger protein responses
is by conformational changes, but changes in interprotein dis-
tances and phase separation are common as well (Hyman et
al., 2014). Among proteins exhibiting force-induced confor-
mational changes impacting protein function, mechanobiol-
ogy has largely focused on ion channels and integrins.

Since they are the main subjects of this thesis, I will pay more
attention to mechanically-activated (MA) ion channels. Nev-
ertheless, I will introduce integrins and other mechanosensi-
tive proteins in more detail when I tackle cell adhesion and
migration mechanisms.

1.1 Mechanically activated channels

A generic ion channel is a transmembrane protein forming a
pore whose open probability depends on specific stimuli, e.g.
agonist binding, membrane depolarization or, as in the case of
MA channels, increases in membrane tension. Ion channels
exhibit short latencies® and this makes them essential for early
responses to sudden changes that could be deleterious upon
short exposition. Once open, the pore allows the transit of spe-
cific ions, that flow down an electro-chemical gradient and
trigger responses ranging from inter-bacterial communication
in biofilms (Prindle et al., 2015) to plant gravity sensing and

6 Time interval between stimulus application and response start.
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root growth (Yamanaka et al., 2010) or animal sensorial per-
ception (Corey and Hudspeth, 1979; Ikeda et al., 2014; Ranade
etal., 2014).

Virtually every living species genome contains at least one
gene encoding a MA channel. This is in part the result of bil-
lions of years of evolutionary pressure on living organisms to
deal with mechanical stimuli (Brunet and Arendt, 2016). Bac-
terial Msc proteins are the best studied MA channels and act
as osmolyte escape valves activated in response to turgor pres-
sure. Purified Msc proteins inserted in artificial lipid bilayers
respond to bilayer deformations. Since those experimental
preparations only contain lipids and the purified protein, the
authors concluded that Msc are inherently mechanosensitive
(Sukharev et al., 1993). In addition, Msc activity is modulated
by amphipaths such as chlorpromazine or trinitrophenol.
These molecules contain hydrophobic and hydrophilic parts.
Their biased insertion into membranes changes local curva-
tures, altering membrane tension and in consequence Msc
channel activity (Martinac et al., 1990). These observations
led to the force-from-lipid paradigm, which suggests that the
force opening MA channels comes from the lipid bilayer con-
stituting the cell membrane.

Identifying and studying eukaryotic MA channels has proven
more difficult. The majority of cell lines exhibit MA currents,
and this reduces signal-to-noise ratios in experiments based
on transcript overexpression, as the ones used in the late
1990s by the group of David Julius at UCSF, that lead to the
identification of several ion channels involved in thermosen-
sation and pain and boosted the TRP ion channel field
(Caterina et al., 1997; McKemy et al., 2002). The development
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of reliable and affordable siRNA screening technologies, com-
bined with contemporary bioinformatics tools, solved the
problem. Bertrand Coste and collaborators of Ardem Pata-
poutian’s group at The Scripps Research Institute individually
knocked down candidate genes in a cell line that exhibited the
MA cationic currents of interest. After 72 candidates,
FAMB38A” knockdown supressed MA currents. The existing
references only showed increased transcript expression in se-
nile plaque-associated astrocytes (Satoh et al., 2006) and in-
tegrin activation by its protein product (McHugh et al., 2010).
Due to its response to pressure, tieon (piesi) in Greek, the au-
thors re-named it Piezo1 (Coste et al., 2010).

1.1.1 Piezo genomics and expression

Piezo genes are conserved in eukaryotic genomes (yeast is the
exception, where no orthologue is found, Fig.1A). Sequence
similarity to other genes, including ion channels, is minimal.
This impedes domain function identification based on se-
quence comparison. Human Piezo genes (PIEZO1 and PI-
EZ02) encode large proteins (>2500 amino acids) that are ex-
pressed in a wide variety of tissues (Coste et al., 2010).

For the interest of this thesis, we must keep in mind that both
human Piezo channels are highly expressed in epithelia, the
tissue type originating the majority of cancers.

According to the Human Protein Atlas (Uhlén et al., 2015),
these channels are prominently expressed in breast glandular

7 Family with sequence similarity 38, also known as KIAA0233 or MIB.
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Figure 1. Piezo expression.
(A) Unrooted phylogenetic tree of Piezo genes of selected species. (B)
Immunohistochemical Piezo2 stainings of sections of breast ductal (left)
and lung adenocarcinomas (right). Arrows mark cancer cells with intense
staining levels. Adapted from (Coste et al., 2010; Uhlén et al., 2015).
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and myoepithelial cells, small cell lung cancer samples, mela-
nocytes (all of them common sources of brain metastasis), fi-
broblasts and cells of lymphoid origin (Fig.1B). All these cells
are subject of intense mechanobiological study because me-
chanical forces control several of their functions, with im-
portant consequences in diseases like cancer (Elosegui-Artola
etal., 2014, 2016; Lammermann et al., 2008; Skau et al., 2016;
Thiam et al., 2016).

1.1.2 Piezo currents

Whole cell MA currents elicited by mammalian Piezol and
Piezo2 activation are essentially similar. Large, non-selective
cationic inward® currents appear in response to both positive
(pressing) and negative (suction) pressure (Coste et al.,
2010) and shear stress (Li et al., 2014 ). These currents show
fast desensitization (reduced response to sustained stimula-
tion) and linear voltage-current relationships. Nonetheless,
there is a very important difference: Piezo2 inactivates twice
as fast as Piezo1 at physiologically appropriate membrane po-
tentials (Coste et al., 2010).

Inactivation is a current decay shortly after channel activa-
tion due to pore obstruction by a specific structure that is dif-
ferent from the main (open/closed) gate.

8 By agreement, inward or negative currents are generated by cations en-
tering or anions exiting the cell, or a combination. We can discern be-
tween these two by replacing extracellular inorganic salts in the experi-
mental solution by organic N-methyl-D-glucamine (NMDG) salts. NMDG
does not fit into the pore of ion channels and thus cannot permeate across
them. Consequently, inward current suppression by NMDG while there
are still intracellular anions is an indicator of cationic permeability. In
turn, cationic preferences are evaluated by individually modifying extra-
cellular inorganic cations and quantifying current reversal potentials.
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Figure 2. Piezo inactivation and adaption.
(A) Schematics of force fluctuation during exploration of mechanical
environmental features. (B) Superposed Piezol and 2 currents elic-
ited by a mechanical pulse (top, black). Dotted lines, current com-
monalities (resting and inactivation). Solid lines, inactivation phase.
(C) Time constants of a mono-exponential equation fitting the inac-
tivating phase of the currents. (D) Human (Hs), Fruit fly (Ds) and
Zebrafish (Z) Piezol responses to repetitive stimuli. Hs currents in-
activate and desensitize rapidly. Dm neither inactivate nor desensi-
tize and Z are slowly inactivating but do not desensitize. Adapted
from (Coste et al., 2010; Lewis et al., 2017; Moroni et al., 2017).
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It is essential for proper nerve impulse conduction or muscle
contraction, by acting as a frequency filter for periodic stim-
ulation (Fig.2A-D) (Lewis et al., 2017). Positive membrane
potentials and repetitive stimulation slow down and ulti-
mately abolish the inactivation of mammalian Piezol and Pi-
ezo1/Piezo2 chimeras (Coste et al., 2010; Gottlieb et al., 2012;
Moroni et al., 2017). Fruit fly (Drosophila melanogaster) and
zebrafish (Dario rerio) Piezo channels do not show desensiti-
zation and are much more sensitive to membrane voltage
(Fig.2C). Considering that these functional states correlate to
specific conformations, and the outward direction of currents
at positive potentials, it is plausible that voltage and cation
exit hold the channel in a prolonged open channel configura-
tion (Moroni et al., 2017). This is also pertinent for diseases
caused by mutations slowing Piezo channel inactivation Kki-
netics, activation threshold, and trafficking (Andolfo et al.,
2013; Bae et al., 2013; Coste et al., 2013; Glogowska et al.,
2017; Zarychanski et al., 2012).

1.1.3 Piezo structure-function studies

Going back to the generic ion channel proposed at the begin-
ning of this section, these proteins can be separated into two
functionally-coupled elements: a sensor and a pore. In the
case of Piezo, recent functional and structural studies have
shown that pore properties (ion selectivity, single channel
conductance, blocker sensitivity, inactivation kinetics) are
determined by the last C-terminal ~500 aminoacids, while the
force sensor resides in the N terminus previous ~2000 resi-
dues (Coste et al., 2015; Moroni et al., 2017; Zhao et al., 2016).
Importantly, cancer genomic data retrieved from the cBi-
oPortal cancer genomics database shows accumulated muta-
tions in this same region in many cancer types (Fig.3). Yet,
11
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the impact of these mutations on channel function and their
relevance for cancerous traits remains unknown.

Piezol forms homotrimers with a three-blade propeller shape
(Fig.4A). The 14-18 transmembrane helices connected by al-
3
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Figure 3. Piezo mutations in lung and breast cancer samples.
cBioportal data shows a striking accumulation of Piezo2 mutations at 600
C terminal 600 residues. Extracted from cBioportal on 9/1/2017.

pha-helices that run parallel to the membrane in a single sub-
unit have been classified in three sets: peripheral, outer and
inner. Outer helices and their following extracellular seg-
ments are swapped between monomers, conferring structural
stability to the full, trimeric channel. The C-terminal inner
helices line the pore, and harbour the aforementioned dis-
ease-causing mutations (Fig.4B,C)(Coste et al., 2013; Ge et al.,
2015).

Direct force application of ~10pN to this region mimics the
inactivation defect and slows activation kinetics. Yet, it does
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not affect deactivation. This suggests that activation/deactiva-

tion (open/close) and inactivation mechanisms work sepa-
rately (Zhao et al., 2016).
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Figure 4. Piezol structure.
(A) Top, bottom, and side views of a Piezo1 structural map. (B) Side view
with numbered slices shown to the right. (C) Cartoon depicting the dif-
ferent parts of the Piezol structure and arrows suggesting its activating
mechanism. Adapted from (Ge et al., 2015).

The N-terminal portion corresponding to the propeller blades
is extracellular and, due to its flexibility and distance from the
pore, it is a clear candidate to be the force-sensing module
triggering channel activation. The mechanosensitivity of a
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chimera containing the Piezol non-pore coding region and
the pore of a trimeric mechano-insensitive channel supports
this idea (Zhao et al., 2016) but this is not exempt of polemics
(Dubin et al., 2017; Zhao et al., 2017). It is possible that the
channel works as a lever with allosterically coupled edges at
the force sensor and the pore (Ge et al., 2015; Sukharev and
Corey, 2004; Wu et al., 2016). This propeller motif is also
found in the structure of TRPA1, a channel proposed to me-
diate slowly-adapting MA currents in somatosensory neurons
(Paulsen et al., 2015). Since, as I already mentioned, Piezo
protein sequences do not resemble any other protein se-
quence, it is tempting to think about Piezol and TRPA1 pro-
peller-like portions as analogous structures conferring mech-
anosensitivity. How they achieve this remains to be explored.

1.1.4 Piezo pharmacology

Mammalian MA current blockage by ruthenium red (RR), gad-
olinium and streptomycin was already known before Piezo
identification as the main mammalian MA ion channels
(Bowman et al., 2007). These compounds are not specific and
work on a state-dependent manner: RR and gadolinium also
block the widely expressed TRP channels and RR only blocks
Piezo inward currents (Coste et al., 2012).

The inhibitory effect of GsMTx4, a peptide isolated from the
tarantula (Grammostola spatulata) venom, was also already
known (Suchyna et al., 2000), but this toxin specifically tar-
gets Piezo channels in eukaryotes and Msc in bacteria (Alcaino
etal., 2017; Bae et al., 2011; Hurst et al., 2009). GsMTx4 binds
the outer membrane leaflet near the lipid-water interface.
When membrane tension increases and reduces lateral pres-
sure on lipids, the toxin penetrates the membrane and acts as

14



INTRODUCTION

a retractor opposing lateral lipid collapse (Gnanasambandam
et al., 2017). Oddly, the Patapoutian lab observes no GsMTx4
effects on Piezo1 (Syeda et al., 2015).
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Figure 5. Piezo pharmacology.

(A) Effects of ruthenium red on mouse (Mm) and fruit fly (Dm) Piezo
currents in response to mechanical pulses (left) and current inactivation
percentage (right). (B) Inhibition of mechanically-induced currents by
GsMTx4 in A375-SM melanoma cells. (C) Mouse Piezol sensitization
(higher peak current, inactivation deceleration) by Yodal. Adapted from
(Coste et al., 2012; Hung et al., 2016; Syeda et al., 2015)
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The perspective on Piezo agonists is no better. To date, we
only know one compound specifically activating Piezol:
Yodal®. This molecule activates Piezol in preparations only
containing lipids and purified channels, and has no effect on
Piezo2. Yodal also slows channel inactivation and reduces its
threshold for mechanical activation (Syeda et al., 2015).

1.1.5 Piezo activation

Like Msc channels, Piezo1 is inherently mechanosensitive: pu-
rified protein insertion into lipid droplets rendered functional
channels responding to osmotic shocks, direct injection-in-
duced droplet swelling or when membrane symmetry was
broken by addition of lysophosphatidic acid (LPA) (Syeda et
al., 2016). Piezo2 lacks these experimental evidences. Also,
some reports claim that this channel cannot be activated in
excised patches, an experimental configuration where a small
patch of the cell membrane is ripped-off for isolated electrical
analysis (Moroni et al., 2017). Those same reports show activ-
ity when cell integrity is preserved or when chimeras encod-
ing the proposed Piezol sensor and Piezo2 pore are expressed
and tested in excised patches. Others show that for a stimulus
of 500nN with an atomic force microscopy (AFM) tip, Piezo1-
only expressing cells respond mildly, Piezo2-only expressing
cells do not respond at all but Piezo1-Piezo2-expressing cells
respond robustly (Lee et al., 2014). Therefore, seems that Pi-
ezol-Piezo2 can have synergistic effects. This work and our
own data show that both channels are abundant in articular

Yes, Yoda, the dyslexic green Jedi Master. May the force be with you and
so on. The compound was initially termed Obil, which was even more
appropriate, existing only 1 effective compound among the 3.25 million
tested (you’re my only hope). See editor-author correspondence in (Syeda
et al., 2015).

16



INTRODUCTION

chondrocytes, cells constantly bearing dynamic mechanical
loads. These authors also showed that cytochalasin D (a my-
cotoxin that inhibits Actin polymerization) and verapamil (a
voltage-gated calcium channel inhibitor) abolished AFM-in-
duced calcium entry in chondrocytes. These results evidence
that although Piezo channels respond to mechanical stimula-
tion by their own, several pathways modulate their function.

How Piezo function is modified by signalling pathways and
how this influences cell behaviour will be discussed in the
context of the other main themes of this thesis: cell migration
and metastasis.

1.2 Cell migration

Many cell types migrate, i.e. change their spatial location
along time. They do this by combining several modes of loco-
motion, always influenced by chemical and mechanical envi-
ronmental cues that drive the intermodal transitions (Bergert
et al., 2012, 2015; Diz-Muhoz et al., 2016; Hung et al., 2013;
Liu et al., 2015b; Ruprecht et al., 2015; Wolf et al., 2003,
2007). Cell migration is absolutely required during physiolog-
ical processes as fertilization, body development and growth,
immune surveillance or tissue repair (Arboleda-Estudillo et
al.,, 2010; Brugués et al., 2014; Denissenko et al., 2012;
Lammermann et al., 2008; Weber et al., 2013) and is a hall-
mark of metastasis (Friedl and Alexander, 2012; Gopal et al.,
2017; Haeger et al., 2014; Labernadie et al., 2017), the main
cause of death by cancer, characterized by cancer cell disper-
sal throughout the body and later invasion of specific second-
ary organs (Gavrilovic and Posner, 2005; Maher et al., 2009) .
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1.2.1 Mesenchymal locomotion

Unconfined cells migrating on 2D structures (e.g. a culture
dish) exhibit a prototypical mode of migration that coordi-
nates Actin polymerization with adhesion deposition and ac-
tomyosin contraction generating traction and promoting ad-
hesion disassembly to move the cell body. This ideal cell is
polarized (Fig.6A). The leading edge comprises everything
from the advancing edge to nucleus and can be divided in two:
the lamellipodium (LP) and the lamella (LA). The rear part of
the cell is called trailing edge and must be released to enable
forward cell movement (Franco et al., 2004; Mrkonjié et al.,
2015).

The LP is a wide, thin, and flat structure generated by Actin
polymerization driven by the RhoA /Rac1 GTPase system and
the Actin regulating (nucleating, polymerizing) machinery
mDial, Arp2/3, and Ena/VASP (Fig.6B. Initial Rho activity
initiates mDial-dependent linear Actin polymerization that
pushes the membrane forward, generating protrusions. LP
Rho is rapidly inhibited by Protein Kinase A (PKA)-mediated
phosphorylation and this halts protrusion, defining a protru-
sion-retraction pacemaker (Lee et al., 2015; Machacek et al.,
2009; Tkachenko et al., 2011). As the protrusion gets to its
maximal speed, Racl GTPase activity increases 2 um behind
the cell edge, where adhesions either disassemble or get rein-
forced and engaged to retrograde Actin flow (Machacek et al.,
2009; Oakes et al., 2012; Ponti et al., 2004; Swaminathan et al.,
2016). Since the Rho-Rac crosstalk regulates the function of
both proteins, proteins modifying one GTPase function will
modify the other and thus alter cell migration.

Of the different signalling pathways participating in cell mi-
gration it is worth a word on the cAMP-PKA pathway. It is
18
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activated in response to cyclic-adenosine monophosphate
(cAMP), that also activates the Exchange Protein Activated
by cAMP (EPAC). As mentioned above, PKA inhibits Rho, but
it also activates Racl. Interestingly, Piezo2 activity is sensi-
tized by PKA and EPAC signalling in response to inflamma-
tory mediators (Dubin et al., 2012; Eijkelkamp et al., 2013).

Therefore, specific sensors acting upstream of these GTPases
signal into the feedback mechanism in response to diverse
stimuli, such as cell adhesion or confinement (Hung et al.,
2013; Lawson and Burridge, 2014). Whether these functional
links are coupled in migrating cells is not clear, but calcium-
PKA interactions impacting cell migration have been known
for decades (Howe, 2004, 2011).

Rho/Rac/actin-dependent protrusions contain integrins,
transmembrane receptors whose engagement with ECM lig-
ands (e.g. fibronectin, collagen) promotes the formation of
cell-matrix adhesions. The intracellular tail of integrins con-
tains docking sites for several signalling and adaptor mole-
cules that enable adhesion-actin engagement and subsequent
cell-substrate traction force transmission, rigidity sensing and
mechanotransduction. As an example, we have already com-
mented that FAM38A had been identified as an activator of
integrin-mediated CHO cell adhesion. Accordingly, its knock-
down in HeLa cells reduced B1-Integrin activation and cell ad-
hesion strength (McHugh et al., 2010). Moreover, Piezo1 sup-
pression reduced the function of the calcium-dependent cal-
pain proteases, that cleave several adhesion proteins and
hence regulate adhesion dynamics, both at the leading and
trailing edges (Franco et al., 2004; Mrkonji¢ et al., 2015). The
authors hypothesized that Piezol-dependent Calpain2 in-
creased cleavage of adhesion proteins that where then able to
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activate integrins and reinforce cell adhesion (McHugh et al.,
2010).

Actin polymerization underlying protrusion increases mem-
brane tension. Meanwhile, traction forces and adhesion depo-
sition increase (Lee et al., 2015). Inhibiting formin-dependent
Actin polymerization or modifying membrane tension both
reduce protrusion growth, traction force generation and adhe-
sion formation. Tension also controls periodic adhesion place-
ment in rows as the cell edge advances (Pontes et al., 2017).
According to all these observations, leading edge dynamics de-
pend on actin-driven membrane tension increases.

In parallel, leading edge protrusion/retraction and adhesion
deposition events correlate with calcium signalling (Tsai and
Meyer, 2012). Whether Piezo ion channels couple actin-de-
pendent leading edge protrusion and membrane tension in-
creases to calcium entry, calpain function and actin-integrin
engagement remains to be demonstrated, but it is a tempting
hypothesis due to several observations (Munevar et al., 2004;
Wei et al., 2009). First, migrating fibroblasts exhibit local cal-
cium increases (flickers) dependent on extracellular calcium
influx coupled to intracellular calcium store depletion. Sec-
ond, flickers increase in response to shear stress or the integ-
rin ligand RGD, and are abolished when mechanosensitive ion
channel function, myosin II activity, or Actin polymerization
are reduced, suggesting that a mechanical component is pre-
sent. Third, flickers are more likely to happen at the frontal
part of the LA, where adhesions form. Plus, they appear near
integrin spots. Fourth, upon exposure to a chemoattractant
gradient, flickers accumulate at the region of the cell proximal
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Figure 6. Cell protrusion during cell migration.
(A) Actin structures in migrating mesenchymal cells. LP (lamellipodium),
LA (lamella), NC (nucleus). (B) Schematic of a retraction-protrusion cy-
cle driven by Actin polymerization under control of GTPases (RhoA, Rac)
and Actin nucleating /branching proteins (mDial, Arp2/3, Ena/VASP) at
the lamellipodial leading edge. Adapted from (Lee et al., 2015).
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to the source and this results in cell turning. Lastly, Piezo1 in-
hibition with GsMTx4 reduces MCF-7 breast cancer cells
speed (Li et al., 2015).

To sum up, we know that mechano-responding calcium sig-
nals, localized near adhesions, guide migration. They could
achieve this by promoting biased adhesion deposition at re-
gions where mechanical and chemical signals are prominent.

A role for mechano/osmo-sensitive channels in trailing edge
retraction was described almost twenty years ago, even when
the molecular identity of these channels was far from being
identified. In adherent cells, protrusion-dependent tension in-
creases lead to calcium entry through a gadolinium-inhibited
pathway and subsequent retraction of the cell margin (Lee et
al., 1999). This is achieved by two complementary pathways.
First, calcium transients are followed by increases in traction
forces that last until trailing edge retraction, suggesting in-
creases in contractility triggered by calcium entry (Doyle et
al., 2004). Second, calcium activates calpain-dependent adhe-
sion disassembly at the trailing edge (Franco et al., 2004). Im-
pairing calcium entry reduces activity of calpains and impedes
trailing edge retraction, resulting in elongated cell shapes and
stalling migration (Mrkonji¢ et al., 2015).

Apart from lamellipodial dendritic Actin structures driving
protrusion, cell cycling, adhesion dynamics and migration also
require the proper assembly of lamellar cytoskeletal struc-
tures termed stress fibres (SFs). These actin-based filaments
show diverse structures and compositions, but as common
treats we must retain first that their core is composed by short
Actin filaments, placed with alternating polarity and bundled
by periodically-distributed a-Actinin and non-muscle Myosin

I1, resembling the structure of the skeletal muscle contractile
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apparatus. Second, that SFs connect adhesions and nuclei or
pairs of adhesions. This enables direct matrix-to-nucleus me-
chanical transmission, but also cell-to-matrix transduction
due to the contractile activity. Third, Rho GTPase is a master
regulator of SF assembly (Ridley, 2015). Rho is activated by
GDP->GTP exchange by Guanine Exchange Factors (GEFs) in
response to force and extracellular signalling molecules and
activates two target proteins: the formin mDial, that polymer-
izes Actin filaments, and Rho-associated protein kinase
(ROCK). ROCK reduces Actin filament depolymerization via
LIM kinase-dependent ADF/Cofilin inhibition. It also phos-
phorylates Myosin light chain (MIL.C) and inhibits ML.C phos-
phatase, leading to increased Myosin II contractile activity. Al-
together, Rho activation results in an increase in stress fibres
and their contractile activity, and this is required for proper
cytoskeletal dynamics and adhesion turnover, as SF disassem-
bly or Myosin inhibition impair these mechanisms (Elosegui-
Artola et al., 2016; Hung et al., 2013, 2016; Oakes et al., 2012).

Actin fibre-disrupting agents cytochalasin D and latrunculin A
also impair whole cell Piezo activity, but do not affect channel
activity in excised patches (Eijkelkamp et al., 2013; Gottlieb et
al., 2012). The actin-crosslinking protein Filamin A tonically
inhibits!? Piezo1, as its deletion increases calcium entry in re-
sponse to mechanical stimulation of smooth muscle cells
(Retailleau et al., 2015).

10 Tonical inhibition defines a constant and long-lasting inhibitory effect
in contrast to phasic, interminent ones.
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This suggests that the cortical cytoskeleton acts as a mechano-
protector, limiting the structural load born by the plasma
membrane. This vision is supported by results showing easier
Piezo1l activation in blebs, structures devoid of cortical cyto-
skeletal elements (Cox et al., 2016). Contractility also contrib-
utes to Piezol activation in adherent cells. In a paper that has
definitively influenced the present thesis, Medha M. Pathak
and her collaborators showed that non-muscle Myosin II inhi-
bition with blebbistatin reduces Piezol-dependent calcium
signals in human neural stem cells (Pathak et al., 2014). Con-
sidering all this, we see that the Actin cytoskeleton plays con-
tradictory roles on Piezo gating: cortical Actin structures
shield the channel from external forces, but contracting Actin
filaments (a source of internal force) are necessary for Piezo
activation in adherent cells. The latter is in agreement with
data showing that stretching a stress fibre with optical twee-
zers activates a gadolinium-blocked calcium entry pathway
whose molecular entity remains unclear (Hayakawa et al.,
2008).

Importantly, Rho and MLC phosphorylation activation in
some cell types require calcium entry through MA channels
inhibited by RR and HC067047 (Seminario-Vidal et al., 2011).
As previously mentioned, both blockers inhibit Piezo chan-
nels. Accordingly, Rho activation in response to certain stim-
uli could depend on Piezo activation. This would have drastic
consequences also for our understanding of another mode of
migration widely used during metastasis.
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1.2.2 Amoeboid migration

The term amoeboid refers to the similarity of these cells to
amoebas, whose irregular shape changes constantly, resem-
bling a fluid!!. Cells migrating by this mechanism diverge in
shape and protrusion rate but they all share periodic expan-
sion-contration cycles and faster speeds than mesenchymal
cells. Recent research has shown that reducing cell-substrate
adhesion and increasing actomyosin contractility trigger a
mesenchymal-to-amoeboid (MAT) transition in many cell
lines, both on vitro'? and in vivo (Bergert et al., 2012, 2015; Liu
etal., 2015b; Ruprecht et al., 2015). These conditions promote
the cortical accumulation of Actin and Myosin and a rounded,
non-spread cell shape. A spatial fluctuation in contractility
provokes cell polarization and actomyosin and force gradients.
The region with higher actomyosin accumulation and function
becomes the cell rear (the cell becomes polarized). For exam-
ple, LPA addition at one pole of an almost-spherical cell rap-
idly elongates the it in the direction of the gradient, with acto-
myosin accumulation at the edge next to the source of the
chemoattractant. Rearward actomyosin flows reinforce this
asymmetry and at the same time transmit forces to the sub-
strate, enabling cell advance. Importantly, vertical confine-
ment of the cells is required for appropriate cell-substrate fric-
tion (force transmission) and forward movement, similar to
the chimneying climbing technique, in which a climber em-
bedded between two parallel, grip-less walls is able to move by
applying force to both walls.

1 The ancient Greek word for amoeba, apoifry, means change.

12 Term coined by Dr. Joachim Goedhart, from University of Amsterdam,
referring to experiments performed on glass coverslips.
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1.2.3 Mechanical inputs in cell locomotion

Diverse stimuli of mechanical nature affect mesenchymal lo-
comotion. First, confinement increases contractility (Hung et
al., 2013; Liu et al., 2015b). Ergo, besides enabling force trans-
mission during amoeboid migration, confinement triggers
transition into this mode of migration by mesenchymal cells.
Second, substrate ligand concentration modulates adhesion
strength, and this has biphasic effects on cell migration speed
due to an adhesion-actomyosin feedback (Gupton and
Waterman, 2006). According to the authors, the amount of
ECM ligand determines the amount of nascent adhesions
formed. For scarce ligand situations, few adhesions would
form, and those forming would be short-lived, impairing force
transmission and cell advance. Conversely, abundant ECM lig-
ands would form too many adhesions for the contractile sys-
tem to manage. And so, the force per adhesion would be low,
slowing adhesion turnover. This would impair cell detachment
and would stall cell movement. As a proof, authors recover cell
migration in highly adhesive surfaces by artificially increasing
actomyosin contractility. These effects result in a biased dis-
placement towards ligand-rich regions, termed haptotaxis,
with consequences in cancer invasion (Gopal et al., 2017;
Oudin et al., 2016). Importantly, integrin-ligand binding dur-
ing cell adhesion and forward advance triggers calcium entry
(Matthews et al., 2010; Sjaastad et al., 1996; Thodeti et al.,
2009; Wu et al., 1998), and we have already mentioned cal-
cium regulates actomyosin contractility. An adhesion-contrac-
tility coordinating role for MA channel-mediated calcium en-
try is interesting but remains to be studied.

A third parameter affecting migration is matrix rigidity.
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The first evidence showed fibroblasts moving from softer to
stiffer regions, but cells also showed directional responses to-
wards the source of external stretching of the substrate, that
first caused movement cessation and later protrusion from
that region. This shows that external mechanical cell manipu-
lation promotes re-polarization. In their model, the authors al-
ready proposed a role for mechano-dependent calcium entry
in these processes (Lo et al., 2000). A steep-enough rigidity
gradient should be able to polarize the locomotive machinery
of the cell and thus promote durotaxis, as was later shown for
mesenchymal stem cells (Vincent et al., 2013).

Having said that, the situation is more complicated when ana-
lysing the migratory behaviour of multicellular clusters. In
this ideal monolayer of cells, contractile Actin filaments form
a physical continuum through cell-cell junctions. Cluster
edges are placed at soft and stiff regions, i.e. face mechanically
different environments. Soft matrices deform further than
rigid matrices for a given traction force, and in these monolay-
ers, traction forces at both monolayer edges are similar in
magnitude. Therefore, seems that reduced substrate defor-
mation at stiff edges improves Actin polymerization and en-
gagement with adhesions, enabling cell advance. Neverthe-
less, this model does not explain why adhesions are larger on
stiffer regions. Importantly, Piezol activity increases with
substrate rigidity (Pathak et al., 2014) and this is essential for
axonal pathfinding and growth (Koser et al., 2016). Also, con-
finement promotes collective migration of neural crest cell
(Szabd et al., 2016). Increased MOS activity at the rigid edge
of monolayers or under confinement could contribute to the
observed phenomena.
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Actin-adhesion engagement is a deeply studied force-depend-
ent phenomenon. The clutch analogy was initially proposed to
explain why, while the Myosin-dependent F-actin retrograde
flow was constant, forward movement of the cell was inter-
mittent. The authors proposed that the forces derived from
Actin polymerization could be transmitted to the substrate
when Actin was coupled to matrix-bound adhesions, and that
this coupling slipped (Mitchison and Kirschner, 1988). Later
refinement has incorporated several parameters to this model
(Chan and Odde, 2008; Elosegui-Artola et al., 2014, 2016).
First, each type of integrin interacts with its matrix ligand with
specific binding and unbinding rates. Second, inside the cell,
Myosin contracts stress fibres, i.e. pulls on the filaments. If
these filaments were not bound to adhesions, they would flow
as fast as Myosin pulls on them. This is the case for cells on
soft substrates. When the Actin-adhesion clutch gets engaged,
the movement of the filament is transmitted to the substrate
through adhesions, slowing retrograde Actin flow. Substrate
rigidity determines the rate at which Actin pulling on engaged
clutches deforms the substrate and thus how force loads at in-
tegrin-matrix bonds. At low rigidities, force loading takes
longer than spontaneous integrin-matrix unbinding, and there
is little cell-substrate force transmission. Upon reaching a
given threshold, force loading unfolds an adhesion adaptor
protein named Talin before integrin de-adhesion. Talin un-
folding recruits Vinculin and enables engagement with the
contractile Actin cytoskeleton. It also recruits more integrin
units, increasing integrin-matrix binding probabilities. This
process, known as reinforcement, promotes adhesion growth,
increases force transmission, and activates mechanotrans-
ducting pathways involved in cell proliferation and cancer, e.g.
YAP (Aragona et al., 2013; Dupont et al., 2011; Elosegui-Artola
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et al., 2016). We will mention them when discussing metasta-
Sis.

We have already learnt about the role of Piezo-dependent Cal-
pain activation on integrin activation and adhesion reinforce-
ment. In addition, Calpain-mediated Talin cleavage increases
its ability to bind the cytoplasmic tails of integrins (Yan et al.,
2001). Importantly, also shear stress-dependent cell align-
ment, as seen in endothelial cells orienting parallel to blood
flow, depends on Piezol expression and function, coupled to
Calpain activation (Li et al., 2014). Moreover, integrin-medi-
ated adhesions sensitize Piezo to pulling forces of 30nN!3
(Gaub and Miiller, 2017), suggesting a role for integrin-medi-
ated adhesions in Piezo modulation and strengthening the po-
tential role of this ion channel in adhesion or Actin dynamics
regulation. All these results show that local mechanical activa-
tion or modulation of Piezo function, coupled to Calpain acti-
vation, is able to orchestrate whole-cell adhesion and cytoskel-
etal dynamics.

Summarizing, we know that proper cell migration requires
MA ion channel function, and we know some of the underly-
ing mechanisms, such as RhoA activation, cell contractility or
protease activation controlling adhesion dynamics. We have
also seen that chemical and mechanical inputs influence the
way cells organize their adhesive and contractile machinery,
determining the mode of cell migration. In light of these ob-
servations, MA channels emerge as potential unifying sensors

13 Accordingly, in our hands, cells seeded on plates coated with the non-
specific ligand poly-D-lysine are less sensitive to mechanical stimulation
than cells seeded on fibronectin- or collagen-coated plates.
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where confinement, ligand density, matrix rigidity, shear
stress or even chemical signals (e.g. LPA) converge to trigger
unified responses, i.e. polarization and migration along a gra-
dient (haptotaxis, durotaxis, chemotaxis), by impacting adhe-
sion and cytoskeletal dynamics. This would have very im-
portant repercussions for the understanding and approaching
a disease where cell environmental rigidity and migration are
fundamental: cancer.

1.3 Cancer

Cancer is a group of complex diseases with non-physiological
proliferative and spreading capabilities as common traits of
cancerous cells. The mainstream theory conceives that these
deleterious features are acquired due to DNA or epigenetic
changes. Indeed, many cancers share common mutations in-
activating DNA damage-induced cell cycle arrest pathways
(tumour suppressor genes: Retinoblastoma, p53) or activating
pro-survival genes and pathways (oncogenes: Ras) (IHanahan
and Weinberg, 2000). The development of high throughput
genome sequencing strategies during the first decade of the
21% century revealed that cancer genes are scattered through-
out almost every process in cell biology. Many genes identified
by these means are components of signalling pathways that are
nowadays under study as potential therapeutic targets for spe-
cific cancer types. Nevertheless, the complexity of cancer can-
not be explained only by means of mutations affecting the pro-
tein-coding genome of specific cells, which accounts, in turn,
for less than the two percent of the total genome. Adding this
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to intratumoural genetic heterogeneity, pleiotropy'* and poly-
genes'® hinders establishing causal relationships between
gene alterations and tumour phenotypes and helps to explain
the failure of many targeted therapies.

The Genome Theory of Cancer Evolution uses evolutionary
concepts to envision a more accurate framework to under-
stand and tackle cancer (Greaves and Maley, 2012; Kareva,
2011; Maley et al., 2017). It is important to remind that natural
selection is driven by local environmental conditions acting
on phenotypes, which in turn can be the convergent outcome
of several genotypes. During cancer development, hypoxia,
reactive oxygen species (ROS) or tissue mechanics select for
specific phenotypes but, at the same time, promote genomic
instability (all three can provoke DNA lesions), potentially in-
creasing phenotypical variability and eventually favouring
malignant traits (Irianto et al., 2016, 2017a, 2017b; Plodinec
etal, 2012).

Since the main cause of death by solid cancers is metastasis,
i.e. the spreading of cancer cells (CC) throughout the body
(Gavrilovic and Posner, 2005; Nguyen and Massagué, 2007), I
will focus here on the influences of the environment on pro-
metastatic features such as phenotypic heterogeneity, migra-
tion, matrix remodelling capability or defence-evading mech-
anisms.

4 Situation in which a single gene affects several phenotypic traits.

5 Group of genes that interact to influence a phenotype
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1.3.1 Metastasis

Any living tissue, healthy or diseased, can be thought as a con-
tainer (the extracellular matrix, ECM) and a continent (sev-
eral cell types) with interwoven cell-cell and cell-matrix inter-
actions.

Healthy, epithelial cells sit on top of a collagen-rich fibrous
sheet called Basement Membrane (BM). Cell-cell and cell-ma-
trix adhesions ensure timely cell renewal and matrix deposi-
tion and that makes them essential for proper epithelial func-
tion (selective permeability barrier, secretion). During tumor-
igenesis, adhesions become labile and transformed cells per-
forate the BM, gaining access to the underlying structure,
termed mesenchyma, a connective tissue containing fibro-
blasts, immune cells and blood and lymphatic vessels. This
process is called Epithelial-Mesenchymal Transition (EMT)
and involves drastic changes in gene expression conferring
new morphological and functional features to transformed
cells!S. Once in the mesenchyma, invading cells remodel the
matrix while migrating, and ultimately intravasate. The neces-
sity of cells undergoing EMT to metastasize is not clear, be-
cause key drivers of EMT can be supressed without affecting
the metastatic potential of cells (Ye et al., 2017). In these
cases, metastatic cells remain bounded by epithelial cell-cell
junctions and require mesenchymal cells (Cancer Associated
Fibroblasts, CAFs) to remodel the matrix and collectively in-
vade their environment. CC-CAF cooperation is mediated by
cell-cell mechanically-active links: upon cell to cell contact,

16 EMT is essential during physiological processes as gastrulation or neural
tube formation.
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CAFs repolarize and pull CC masses, enabling collective inva-
sion (Labernadie et al., 2017). Hence, independently of their
origin (cancer cells per se or accessory cell types), locomotive
and matrix-remodelling activities are indispensable for metas-
tasis. As in many other situations in biology, these properties
are functionally linked.

- Matrix degradation in metastasis

In response to ECM-integrin engagement, metastatic breast
cancer cells in culture activate an integrin>Src>Tsk4 /5> N-
WASP axis promoting specific patterns of Actin polymeriza-
tion from the ventral face of the cell as bundles perpendicular
to the substrate. These protrusions, termed invadopodia, con-
centrate enzimes (e.g. metalloproteases) that locally degrade
the underlying matrix. In vivo experiments in mice show that
interfering with invadopodia biology impairs metastatic ex-
travasation and colonization (Leong et al., 2014). Once again,
mechanical stimuli as matrix rigidity linearly correlates with
ECM degradation as a function of RhoA-mediated Actin
polymerization and Myosin contractility (van den Dries et al.,
2013; Jerrell and Parekh, 2014; Lizarraga et al., 2009).

Mesenchymal ECM is rich in cross-linked collagen networks
whose small pore size impedes free cell movement. Work at
S.J. Weiss’ lab identified the membrane-tethered collagenases
MT1-, MT2- and MT3-MMPs as the main players of pericellu-
lar matrix degradation enabling basement membrane transmi-
gration and metastatic cell invasion and proliferation (Hotary
et al., 2006, 2003; Sabeh et al., 2004 ). Pioneering work at Peter
Friedl’s lab inhibiting these enzymes showed that invading
cells transit into an amoeboid mode of migration character-
ized by a loss of adhesive structures and a cortical distribution
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of the contractile actomyosin machinery that ensures cell mi-
gration (Wolf et al., 2003). I have previously introduced the
potential role of MA channels on amoeboid migration. Joint
work by both groups later showed that MMP-independent mi-
gration speed decreased linearly with pore size and that it re-
quired nuclear deformation (Wolf et al., 2013). Each cell type
showed a matrix degradation VS nuclear deformability bal-
ance that resulted in characteristic minimal pore sizes inhibit-
ing migration, e.g. cancer cells lose pore transmigration effi-
ciency for sections under 10um, while polymorphonuclear

immune cells keep migrating until 4 um (Fig.10A). This is
likely due to different nuclear-deforming capability, because
the nucleus diameter acts as the limiting factor during pore
transitions (Petrie et al., 2016; Wolf et al., 2013).

Integrating these results with the observations on the pro-
MAT effect of inhibiting the pericellular matrix degradation
suggests that the mechanical stimulation of cells by confine-
ment (which is increased when proteases are inhibited be-
cause cells can no longer degrade the matrix and widen the
existing pores) is what triggers MAT. On that account, the fail-
ure of MMPs inhibitors as antimetastatic drugs could be ex-
plained, at least in part, by the fact that cells are still able to
invade even in the presence of these compounds because can-
cer cells are experiencing MAT in response to the confine-
ment imposed by the stroma (Sabeh et al., 2009). Also, pores
can be negotiated by transient decreases in cell volume fol-
lowed by volume recovery. Dealing with osmotic stress is ab-
solutely required for cell viability. Cells have evolved under
this selective pressure favouring efficient volume-regulating
mechanisms. Cells passively swell when water enters them,
e.g. when placed in a hypotonic solution. This activates a fast,
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conserved response termed Regulatory Volume Decrease
(RVD), consistent on solute (frequently, ions) exit from the
cell and subsequent, osmotically-driven water efflux, leading
to basal volume recovery (Hoffmann et al., 2009). Solute loss
is achievable by many ways, but they all ensure neutral elec-
trical result, i.e. equal anion and cation exit. In mammals, the
ubiquitous activation of Swelll, the mammalian volume-sen-
sitive chloride channel, ensures anion exit (Qiu et al., 2014;
Voss et al., 2014). One of the mammalian cation exit mecha-
nisms starts with Piezo1l activation in response to membrane
stretch (Cahalan et al., 2015). Calcium entry through these
channels activates calcium-dependent potassium channels,
that allow potassium ions to exit down their electrochemical
gradient. The global loss of KCl is what ultimately drives water
exit and volume recovery. In the case of Red Blood Cells
(RBCs), aforementioned gain-of-function mutations in Piezo1
lead to cell dehydration by excessive water loss and lysis hae-
molytic anaemia seen in xerocytosis (Andolfo et al., 2013; Bae
et al., 2013; Zarychanski et al., 2012), clearly showing the vol-
ume-reducing effects of Piezo activation.

Altogether highlights again the relevance of mechanical inputs
for cell migration and points to Piezo as a potential unified
sensor triggering adapting responses (locomotive changes,
matrix degradation, volume regulation) that enable cell inva-
sion.

After remodelling the mesenchyma, cells gain access to blood
vessels and intravasate. Once in the bloodstream, circulating
tumour cells (CTCs) are transported throughout the circula-
tory system, virtually visiting all organs. These events are fre-
quent in cancer, even before tumour diagnosis, and millions of
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cancer cells can be released into the bloodstream. Neverthe-
less, many cancer patients do not suffer from metastasis, even
when CTCs are detected in a blood analysis (Kim et al., 2009;
Massagué and Obenauf, 2016a). These observations suggest
that metastasis is a very inefficient process, which can be ex-
plained by the obstacles faced by invading cells. As in the case
of an infection, the initially identified obstacles were cellular
and chemical. Recently, the mechanical nature of the invaded
tissue has emerged as an additional barrier. Allow me to de-
scribe a metastatic cascade using a specific target organ.

1.3.2 Brain metastasis

Given that local and systemic approaches against other metas-
tasis are improving their efficacy, brain metastasis is and in-
creasing problem (Gavrilovic and Posner, 2005; Maher et al.,
2009). As an example, it is the main cause of death by lung and
breast cancer, two top frequent cancers in the Western World,
and it is the subject of study of the second chapter of this the-
sis.

CTCs get lodged in brain microvessels (Fig.10B, left), where
traumatic deformation kills most of them (Furlow et al., 2015;
Kienast et al., 2010; Zeidman, 1961). Some of the survivor
cells start to transmigrate the vessel wall and encounter a sec-
ond barrier. The brain vasculature presents a specialized
structure called Blood Brain Barrier (BBB), characterized by
tight junctions between endothelial cells sitting on top of a
specific basement membrane that is in turn surrounded by
brain defensive cells (pericytes and astrocytes). The BBB re-
stricts trans and paracellular transport between the blood-
stream and the brain milieu, ensuring that only convenient
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compounds access the brain!'”. Experiments in living mice to
which metastatic cells had been injected into the systemic cir-
culation showed that, during transmigration, cells protrude
into the brain parenchyma while retaining the opposite edge
inside the vessel, thus creating a narrowing along the vessel
wall (Fig.10B, right) (Kienast et al., 2010). Successful brain
metastatic (BrM) cells take 1-3 days to cross the BBB, but
transmigration can be observed up to 14 days after cell injec-
tion. Why the latter group of cells is not able to proliferate
once in the brain is unknown, but one option is that so long
transition times impose too much mechanically-induced
DNA damage (Irianto et al., 2017b), compromising cell sur-
vival.

Once inside the brain, BrM cells adhere to, spread along and
wrap around the abluminal surface of microvessels in a pro-
cess called vascular co-option, resulting in metastatic out-
growth along brain vascular structures (Carbonell et al., 2009;
Kienast et al., 2010; Valiente et al., 2014). Importantly, in ex-
periments seeding BrM cells directly on brain slices, cells pref-
erentially adhere and spread along vessels within 2h, whereas
cells not adhering to vessels do not spread (Carbonell et al.,
2009). The basement membrane around these vessels is rich
in collagen and laminin, cell adhesion molecules that trigger
cell-substrate force transmission, cell spreading and activation
of proliferative pathways. Interfering with specific cell-matrix
adhesion molecules expressed by BrM cells ( Blintegrin,
L1CAM) impaired cell spreading and metastatic outgrowth
(Carbonell et al., 2009; Valiente et al., 2014).

17 Tronically, these properties impede the delivery of several chemothera-
peutical agents to the brain.
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Figure 10. Volume changes during metastasis: invasion,

blood-borne dissemination and extravasation.
(A) Migration through a narrow pore (black arrowhead) involves volume
regulation. (B) Left: Intravascular lodging deforms circulating cancer
cells. Right: Cancer cell extravasating from a brain microvessel. (C) Brain
metastatic outgrowth preferentially takes place at places of low cerebral
blood flow (CBF). Adapted from (Follain et al., 2017; Furlow et al., 2015;
Wolf et al., 2003)
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In recent years, YAP/TAZ is under intense study as a mecha-
notransducing pathway correlated to cancer cell malignancy
(Aragona et al., 2013; Cordenonsi et al., 2011; Dupont et al.,
2011; Elosegui-Artola et al., 2016; Wada et al., 2011;
Zanconato et al., 2015). These transcriptional co-activators
accumulate inside the nucleus of cells grown on rigid sub-
strata and promote a transcriptional program that enables on-
cogenic and metastatic growth. Recent data suggest that the
main mechanism of nuclear YAP accumulation is nuclear flat-
tening-induced nuclear pore opening by forces exerted by
contractile Actin fibres connecting the nucleus to adhesions
(Elosegui-Artola et al., 2017). The connection between me-
chanical inputs and actin-adhesion engagement has been in-
troduced previously. The conservation of this mechanism in
BrM cells remains unknown, but nuclear YAP accumulation is
high in human brain metastatic samples and is associated with
reduced prognosis (Kim et al., 2015). Additionally, the main
up-regulated genes when comparing BrM to parental counter-
parts are YAP/TAZ signature target genes CTGF and several
SERPINs (Dupont et al., 2011; Valiente et al., 2014). Lastly,
Piezol activity and Myosin-dependent contractility in re-
sponse to matrix rigidity promote nuclear YAP accumulation
in neural stem cells and consequent differentiation towards
the neuronal lineage (Pathak et al., 2014).

Besides the structural features (mechanical deformation by
microvessels, BBB tightness and the necessity to co-opt ves-
sels to proliferate), BrM cells must overcome brain defence
mechanisms. Reactive astrocytes, that outnumber neurons —
and certainly BrM cells- release plasminogen activator (PA),
which converts the zymogen plasminogen into Plasmin, a pro-
tease with fatal consequences for invading cells. First, Plasmin
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cleaves FasL at the plasma membrane of astrocytes into solu-
ble FasL (sFasL), a death signal that kills BrM cells. Second,
Plasmin sheds L1CAM from BrM cells, impairing cell spread-
ing and, consequently, vascular co-option and metastatic pro-
liferation (Valiente et al., 2014) (Fig.11).

Despite the biological mechanisms protecting the brain from
metastatic invasion, the colonization of the brain parenchyma
by cancer cells is a final complication of up to 40% of meta-
static cancers and it is associated with poor quality life due to
neurological distress and reduced life expectancy (median<1
year). Successful BrM cells bypass all defensive mechanisms
and we are just starting to know how.

- Surviving inside the vessels

Inside blood vessels, cells are immersed in blood and exposed
to contact with immune cells, oxidative stress or shear forces.
Metabolic changes promote survival under oxidative condi-
tions and mechanotransduction of shear forces can ultimately
activate proliferative pathways via auto/paracrine ATP signal-
ling. Interestingly, mechanically-induced, pannexin-mediated
ATP release, which results essential for metastatic cancer cell
survival (Furlow et al., 2015) is dependent on Rho activation
after calcium entry through TRPV4 (Seminario-Vidal et al.,
2011) or Piezol (Cinar et al., 2015; Wang et al., 2016). More-
over, as in the case of pore transmigration, volume regulation
permits cell transit through narrow vessels. Therefore, MOS
are likely essential for cancer cell intravascular survival by
promoting cell survival in response to mechanical defor-
mation and contributing to narrow passage negotiation.

- BBB transmigratory mechanisms
Comparative genome-wide expression analysis between BrM
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Figure 11. Cell-ECM adhesion, vascular co-option in brain metastasis.
(A) BrM cancer cell (green) spreading along a brain microvessel. This in-
teraction is mediated by g1-integrin (B) and L1CAM (C) and is necessary
for tumour outgrowth. (D) SERPINs shield metastatic cells from brain

parenchymal defence mechanisms. Adapted from (Carbonell et al., 2009;
Valiente et al.. 2014).
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lung and breast cancer cells and their parental (non-meta-
static) or metastatic, non-brain targeting counterparts fol-
lowed by filtering by association to brain relapse identified
COX2, ST6GALNACS, and the EGFR ligand HBEGF as key me-
diators of BBB transmigration (Bos et al., 2009). According to
the authors, HBEGF promoted cell motility, while COX2 in-
creased BBB permeability and ST6GALNACS increased cell
surface sialylation which in turn augmented cancer cell adhe-
sion. Additional work identified collagen-targeting metallo-
proteases as key mediators of BBB disruption during meta-
static transmigration, working in invadopodia-like structures
(Leong et al., 2014; Wu et al., 2015).

These evidences suggest that BrM cell ability to penetrate the
BBB depends on adhesive and junction-remodelling machin-
eries, that are in turn modulated by ion channels like Piezo.

- Vascular co-option and SERPINs

BrM cells overcome plasmin lethal action by up-regulating and
secreting PA-inhibiting Serine Protease Inhibitors (SERPINs)
B2, E1, E2, and I1. These proteins prevent sFasL. production
and L1CAM shedding, shielding BrM cells and allowing their
spreading along blood vessels, which enables metastatic pro-
liferation (Valiente et al., 2014). What controls SERPIN up-
regulation and secretion is currently unknown. SERPINI1 is
normally expressed in neurons and is up-regulated, with ben-
eficial effects, during processes of synaptic plasticity or dam-
age (learning, stroke or seizures). SERPINI1 is directed to the
regulated secretory pathway by a N-terminal sequence absent
from SERPINE1 or SERPINB2. This suggests that different se-
cretory mechanisms are active during BrM invasion. In gen-
eral terms, secretion requires loaded vesicles to fuse with the
plasma membrane to expel their content to the extracellular
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space. Intermembrane fusion demands the transient dissolu-
tion of the actomyosin cortex lining the inner face of the
plasma membrane and mechanical forces to fuse both mem-
branes. These processes usually depend on protein conforma-
tional changes induced by calcium entry following membrane
depolarization.

Recent data showing that mechanically-induced serotonin se-
cretion by gastrointestinal enterochromaffin cells depends on
Piezo2 activation (Wang et al., 2017) and MOS-dependent
SERPINE1 secretion by lung cells (Henry et al., 2016)
prompted us to investigate whether Piezo2 regulates SERPIN
secretion enabling brain invasion.

47






2.Methods






METHODS

Cell line generation, culture, transfection, and treatments

CHO-04W'T and CHO-048988A cell lines were generated by
stably transfecting CHO cells with pQN4G and pQN4S988AG
plasmids, respectively, in which wild-type or mutant o4 integ-
rin cDNA was tagged with GFP by inserting into a PGBI25-fN1
GFP vector. MDA-MB-231 BrM2 cells were kindly provided by
Joan Massagué (Memorial Sloan Kettering Cancer Center,
New York City). We transfected HEK293-T cells (ATCC)
with pGIPZ lentiviral shRNA control and Piezo2-targeting
plasmids (clone V3LLHS-305314, Dharmacon) to obtain lenti-
viral particles. After collection, centrifugation, and titration,
culture supernatants were used to infect BrM2 cells.

For transient transfection, we used:

Plasmid Cell Provider Transfecting
agent
PDE1 siRNA CHO Santa Cruz
A375-SM OriGene
Piezol siRNA CHO . Santa Cruz
A375-SM Life Technology
Rpﬁﬁ_’gg’;i Addgene #12964
(Gary Bokoch)
pRK5-Myc- Add Lipofectamine
] gene #12963
RhoA-T19N (Gary Bokoch) 2000 (Thermo)
MDA-MB-231-
RhoA-FRET BrM2 M. Matsua
(Osaka Univer-
sensor !
sity)
Addgene #45583
GFP-CA- (Klaus Hahn &
mDial Ronen Zaidel-
Bar)

Table 1. Cell transfection reagents and plasmids.

Cells were maintained in an incubator at 37°C, 5% CO- using
the following media:
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Cell line

Medium (provider)

Supplements

MDA-MB-231-BrM2

and Calcium-Free

DMEM High Glucose

(Life Technologies)

(Gibco)
CHO-04WT Ham’s F12 (Cellgro)
CHO DMEM High Glu.cose 10% FBS
(Life Technologies) 1 pg/ml Pen/Strep
CHO-B2 MEM (Invitrogen)
DMEM High Glucose | | /ﬁ)f/‘i,gf/s&rep

1x GlutaMAX
2 pg/ml Puromy-

cin
Table 2. Cell culture media and supplements.
When needed, we used the following compounds:
Objective Compound Concentration Provider
PKA .
activation Forskolin 50 uM Santa Cruz
PKA
inhibition | RP-CAMPs 50 uM
. P.l €20 GsMTx4 10 uM Abcam, Alomone
inhibition
IBMX 100 uM Santa Cruz
PDE1
inhibition
S8MM-IBMX 100 uM Axxora
PDE4 . .
inhibition Rolipram 10 uM Cayman Chemical
. P.D ES Milrinone 1uM Enzo Life Sciences
inhibition
Actin depoly- | 1o hculin 1uM Santa Cruz
merization
Actin Jas-
polymeriza- plakinolide 500 nM Tocris
tion
. Rat tail Col- 1, 10, 50, 100 .
Glass coating lagen type I ug /mL Corning
Glass and hy- Human Fi- 1, 10, 20, 50, Sioma
drogel coating bronectin 100 pg/mL &

Table 3. Compounds used during pathway manipulation.
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Electrophysiology

Cells were seeded on collagen type I (10ug/mL for 1h at 37°C)
coated plastic Petri dishes previously coated with rat tail. Be-
fore each experiment, culture medium was replaced with an
isotonic solution containing 140 mM NaCl, 5 mM KCI, 1.2 mM
CaCly, 0.5 mM MgCly, 5 mM glucose, and 10 mM Hepes, pH
7.4, at 300 mosmol/liter. The intracellular (pipette) solution
contained 140 CsCIl, 1 mM EGTA, 10 mM Hepes, 4 mM ATP,
and 0.1 mM GTP (300 mosmoles/liter, pH 7.3). Whole-cell
currents at -80mV were acquired at 10 kHz and low-pass-fil-
tered at 1 kHz using an Axopatch200B amplifier. As a mechan-
ical stimulator, we used a heat-polished glass pipette mounted
on a piezo amplifier & position controller (E-665, Physik in-
strumente) synchronized with the recording program
(pClamp10, Molecular Devices) to move the pipette in 0.5 um
increments. Inactivation percentage of mechanically activated
whole-cell currents was measured at the end of the stimulus.
All experiments were performed at ~23°C between 24-72 af-
ter seeding.

Gene expression profiling of A375 melanoma cells

We employed the GEO2R platform to explore the expression
levels of the channels of our interest in the GSE1845 dataset-
accession number GSM29663, corresponding to control A375
cells.

RT-qPCR
We used the NucleoSpin RNA kit (Macherey-Nagel) for RNA

isolation, Superscript II (Thermo) for retrotranscription and
SYBR Green PCR Master Mix (Thermo) for quantitative PCR.
f-actin was used as an internal control for the quantification

of gene expression. Real-time PCR was performed with SYBR
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green PCR master mix (Applied Biosystems) in 7900 HT Se-
quence Detection System (Applied Biosystems). Relative
mRNA abundance was calculated using AACT method (in trip-
licates). Primers are available on request.

Immunostaining

After medium washing with TBS, we fixed cells with 4% para-
formaldehyde diluted in Cytoskeleton Buffer (CB; 10mM MES
pH 6.1, 138mM KCI, 3mM MgCl,, 2mM EGTA, 320mM su-
crose) followed by permeabilization with 0.5% Triton X-100
in TBS for 10min. Next, we sequentially incubated primary
and secondary antibodies (see Table 5) diluted in blocking so-
lution (2% BSA in 0.1% Triton X-100 in TBS) in a humid cham-
ber for 1h and DAPI for 10 minutes, all at room temperature.
To visualize Actin filaments, we included Dylight 554-labelled
phalloidin during secondary antibody incubation. Samples
were mounted using Fluoromount-G (Thermo). We used
0.1% Triton X-100 in TBS as washing solution between steps.

Staining confocal imaging and analysis

We imaged immunostaining samples using SP5 or SP8 Leica
laser scanning confocal microscopes with 63x 1.40 immersion
oil objectives. Z-stacks containing all the nuclear height were
defined using the DAPI signal. Conditions remained constant
during acquisition of data later to be compared.

Nuclear and cytoplasmic YAP quantification was performed
on maximum intensity projections of DAPI and YAP image Z-
stacks with CellProfiler (Carpenter et al., 2006). We used the
DAPI image for nuclear region of interest (ROI) identification
and the rest of the cell was considered cytoplasm. Mean inten-
sity values of each ROI were used to calculate nuclear/cyto-
plasmic ratios.
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Compound Provider Dilution or Vehicle
volume
1 o,
PFA VWR /4 from 16% CB
stock
Triton X-100 X100, Sigma 0.5%, 0.1% TBS
Mouse anti-paxillin 610051, Milli-
pore
Mouse anti-YAP
clone 63.7 $c101199, SCBT 1/200
Dylight554-phal- 21834, Thermo Blocking
loidin
Donkey anti mouse A31571,
647 IgG Thermo
1/500
Goat anti rabbit 647 A21244,
IgG Thermo
DAPI D1306, Thermo 1/1000 TBS
00-4958-02,
Fluoromount-G Thermo 7uL

Table 5. Tools used for immunostaing

For adhesion and F-actin analysis, we used FIJI (Schindelin et
al., 2012). Images of both stainings were first bandpass filtered
and then manually thresholded for binarization and automatic
particle detection and description with Analyze particles. For
adhesion orientation, first we substracted angleaghesion-anglecen
to obtain the deviation of the adhesion relative to the cell ma-
jor axis. For comparing purposes, we normalized these angles
from 0° to 90° using their cosinus. For F-actin quantification,
we added the areas of all detected particles and divided it by
the cell area.

Calcium, PKA and RhoA activity imaging

Cells transfected with biosensors, AKAR4-Kras, AKAR3-TA-
Kras or Yellow Cameleom were washed 2X with Hanks’ bal-
anced salt solution buffer and maintained in the dark at RT.
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Transfected cells were plated in microchannel devices. Un-
confined cells (located outside the 3um channels) and con-
fined cells (inside 3um channels) were imaged on a Zeiss Ax-
iovert 200M microscope with a cooled charge-coupled device
camera (MicroMAX BFT512, Roper Scientific, Trenton, NJ)
controlled by METAFLUOR 6.2 software (Universal Imaging,
Downingtown, PA). Dual cyan/yellow emission ratio imaging
used a 420DF20 excitation filter, a 450DRLP dichroic mirror,
and two emission filters [475DF40 for CFP and 535DF25 for
YFP]. These filters were alternated by a filter-changer Lambda
10-2 (Sutter Instruments, Novato, CA). Exposure time was
50-500 ms, and images were taken every 10-30 s. Fluores-
cence images were background-corrected by subtracting the
fluorescence intensity of background with no cells from the
emission intensities of cells expressing fluorescent reporters.
The ratios of yellow/cyan emissions were then calculated at
different time points. Values were normalized by dividing
with the average basal value before drug addition.

Cells transfected with a RhoA-FRET sensor were resuspended
in phenol red-free medium and seeded on 10ug/mL collagen
I-coated glass-bottomed 35mm dishes (Mattek) and allowed
to adhere and spread for 1h in the incubator. Then, we used a
SP5 laser scanning confocal microscope with a 40x immersion
oil objective to collect CFP and FRET (YFP) emission images
of the basal plane of cells while illuminating cells with the
458nm (CFP) laser. A recording chamber allowed environ-
mental control at 37°C and 5%CO.. For image analysis, we fol-
lowed a previously described strategy (Reffay et al., 2014):
first, we generated a mask of the cell (cell-containing pixels =
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1; background pixels = 0) and multiplied CFP and FRET im-
ages by it. Then, we divided the resulting acceptor (FRET) and
donor (CFP) images.

Cortical flow analysis

Cells seeded on fibronectin-coated hydrogels were imaged
every 5 seconds for 2-5 minutes. We traced straight lines per-
pendicular to the advancing edge and generated kymographs
using the Kymograph tool of FIJI. From kymographs, we fitted
a line to observed cortical features and calculated speeds from
the angle o relative to the horizontal, according to
tan(o)=slope=dt/dx.

Atomic force microscopy and stiffness measurement

Force spectroscopy experiments were conducted using a Mo-
lecular Force Probe (MFP-1D; Asylum Research, Santa Bar-
bara, CA). Using thermal oscillation method, a triangular can-
tilever (nominal spring constants of 10 pN/nm) was cali-
brated, with its deflection (degree of bending) measured by
laser reflection onto a split photodetector. Cells were seeded
on a glass slide patterned with 8um fibronectin lines or a uni-
form fibronectin 2D surface. Cells were cultured in the appro-
priate serum-free medium solution in the presence of a chem-
ical agent or its corresponding vehicle control. The cantilever
height was adjusted such that each approach cycle generated
a slight force (~1-2 nN) onto the cell surface before reproach.
Reproach velocity was 25 mm/s, and the dwell time was set to
20 ms. For quantifying stiffness, the point of contact between
the AFM tip and the cell surface was identified by a custom
MATLAB program. The approaching curve (deflection as a
function of indented position) was then fitted by Sned-
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don/Hertz model for corresponding tip geometry. The Sned-
don/Hertz model of indentation force was used to calculate
the elastic modulus (i.e. the stiffness) of the cell.

Traction force microscopy

Hydrogel manufacturing, cell seeding and image acquisition
and analysis were performed as previously (Elosegui-Artola et
al., 2014), but we functionalized hydrogels with Sulfo-
SANPAH (Sigma) for later incubation with 100ug/mL Human

Fibronectin (Sigma).

The experiment

The basic set-up implies first, fabricating matrix-coated gels
with embedded fluorescent microscopic beads and seeding
cells on them. Polyacrylamide offers optimal properties for
building these gels: it is unexpensive, transparent (excellent
for imaging purposes), elastic (a requisite for the kind of anal-
ysis performed), safe and easy to manipulate in a standard bi-
ological laboratory, stable at the desired timescales and its
stiffness is easily modulated by adjusting the acrylamide /bis-
acrylamide ratio. Second, cells and beads are imaged for the
desired amount of time (preT images), ideally in a timelapse
microscopy set-up with automated stage and controlled at-
mosphere. Third, cells are de-attached (e.g. using trypsin) and
forces dissipate causing beads return to their resting location.
This offers a reference image (posT) for comparison.

The approach used in this thesis derives from Butler’s Fourier
Transform Traction Cytometry (FTTC) (Butler et al., 2002)
and consists on building a displacement field from preT and
posT images to then calculate a traction field in the Fourier
Space, easing computational analysis. Images are first auto-
matically corrected for translational shifts produced by stage
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drift or sample manipulation. In our case, this is achieved us-
ing cross-correlational analysis of the high bead density preT-
posT image pairs, that are translated one with respect to the
other in order to match pixels with correlation maxima. Then,
each image is divided in partially overlapping n x n square win-
dows called Interrogation Windows (IW). preT and posT IW
pairs are compared also by cross-correlational analysis. The
coordinates yielding the maximum of the cross-correlation
function between images are set as the centre of the IW and
the translation necessary for this determines the displacement
vector. Repeating this procedure for all IW pairs renders a
uniformly discretized displacement field, which enables the
use of simple Fourier Transform algorithms that work well in
uniform lattices like protein crystals. This method also offers
the option to discard those IW with correlations lower than a
threshold. Butler’s approach offers two types of tractions. Un-
constrained tractions are calculated for every pixel in the field
of view. Constrained tractions are calculated after building a
second traction field that sets cells outside a ROI to 0. The sec-
ond mode is the one used in this thesis.

Fabrication of 1D Protein Micropatterns

Standard lithography was used to create a silicon wafer with
an array of features of prescribed dimensions (50 um wide, 5
pm tall, and 20 mm long), separated from each other by S8um.
Replica molding was used to create a PDMS stamp bearing an
array of 8 um-wide lines. Stamps were functionalized with
100ug/mL fibronectin (Sigma-Aldrich) in Dulbecco’s Phos-
phate Buffered Saline (PBS) (Life Technologies). After 1 h at
room temperature (RT), this solution was removed and the
stamps were again dried under an air stream. Stamps were
then inverted onto tissue culture dishes (Falcon) under steady
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pressure. After 30 min, the stamps were removed and the dish
was backfilled with 2.5% Bovine Serum Albumin (BSA; Sigma-
Aldrich) in PBS to prevent cell adhesion outside of the fibron-
ectin-patterned areas. After 1 h the BSA solution was removed
and the stamps were rinsed 3X with PBS. 2D areas were cre-
ated using a flat PDMS stamp.

Cell migration

For confined migration experiments, the cell migration cham-
ber was fabricated by standard multilayer photolithography as
previously described (Balzer et al., 2012; Hung et al., 2013;
Tong et al., 2012)(Hung et al., 2016; Tong et al., 2012). For the
features of the first layer containing 3 um channels of 10 um
height we spun-coated SU-8 3010 while for the secondary fea-
tures containing 50 pm height parallel channels for cell seed-
ing we used SU-8 2025. Poly(dimethyl siloxane) (PDMS, Syl-
gard 184 kit, Dow Corning, Midland, MI, USA) devices were
obtained by casting a mixture of PDMS prepolymer and curing
agents (10:1) over the photoresist wafer mould which were
then degassed and cured at 85°C for 1 h. The PDMS was cut,
oxygen plasma treated, sealed to a coverslip and coated with
20 ug/mlL collagen type I (BD Biosciences, San Jose, CA, USA)
for 1h at 37 °C, as previously described (Stroka et al., 2014).
BrM2 shControl and shPiezo2 cells were harvested from tissue
culture dishes, resuspended to a concentration of 107 cells/mL
and added to the cell inlet well of the device (10° cells/de-
vice). After cells were allowed to adhere, either one of the top
right wells was filled with full medium, while the rest of the
top right and lower right ones with plain DMEM in order to
create a FBS gradient through the microchannels, or all the top
right wells were filled with full medium containing 100nM
bradykinin and the lower right with DMEM in order to create
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a bradykinin gradient through the channels. The devices were
moved to a stage-top live cell incubator with a controlled cell
culture environment (5% CO», 37°C, and relative humidity),
mounted on a motorized stage of an inverted Eclipse Ti micro-
scope (Nikon). Migration experiments were visualized with a
DS-Fil camera head and a 10x objective. NIS-Elements was set
to capture phase contrast images every 10 min for the duration
of each live cell experiment.

We manually tracked every cell using the Mtrack] plug-in in
Image] and calculated the cell speed and persistence based on
a custom-made MATLAB code. Percentage of cell entry and
entering time were manually calculated from the videos ob-
tained. Cell entry time was defined from the time point the
first cell protrusion entered the channel until the entire cell
was migrating fully within the channel.

For planar, unconfined migration, glass-bottomed 12-well
plates (P12G-0-14-F, MatTek) were treated with collagen I for
1h at 37°C. After three washings with PBS, we seeded 15,000
cells in 2mL of medium per well and allowed them to adhere
for 2h in the incubator. Then, we placed the plate on an in-
verted microscope (Zeiss Cell Observer) equipped with an au-
tomated plate holder and controlled environment (humidity,
37°C, 5% CO,). We randomly selected 10 XY positions per
cell line and matrix concentration and imaged them in the
phase contrast and GFP channels every 20 minutes for up to
24h.

Cell trajectories were analyzed in a blind manner using the
Trackmate platform (Tinevez et al., 2017) in Fiji (Schindelin
etal., 2012). From these readouts, we calculated the mean av-
erage speed per cell line and matrix concentration.
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Tracking cells embedded in 3D collagen I matrix

A375-SM cells were embedded in 1mg/ml type-I collagen
gels,. Briefly, 10000 cells suspended in 1:1 (v/v) ratio of cell
culture medium and reconstitution buffer (0.2M 4-(2-hydrox-
yethyl)-1-piperazineethanesulfonic acid (HEPES) (Sigma-Al-
drich, St. Louis, MO), 0.26M sodium bicarbonate (NaHCO3)
(Sigma-Aldrich), and water as solvent) were mixed with ap-
propriate volume of soluble rat-tail collagen I (BD Biosciences,
Franklin Lakes, NJ) to obtain the desired target collagen con-
centration. NaOH (1M) was added quickly and the final solu-
tion was mixed well to bring the pH to ~7. The cell suspension
was added to a 24-well cell-culture dish and immediately
transferred to an incubator maintained at 37°C to allow
polymerization. This cell density was chosen so as to minimize
cell collisions. Fresh medium was added after the collagen gel
had solidified (approximately after 20 min of incubation). Af-
ter 5 h of incubation, a Nikon TE2000 microscope with a phase
contrast 10-X objective (Nikon, Melville, NY) was used to im-
age the motility of living cells through a CCD camera (Hama-
matsu, Hamamatsu, Japan). Images were collected every 5
min for > 8 h. For cells embedded in 3D collagen matrices, the
focus plane was at least 200 um away from the bottom of
plates to diminish edge effects. Custom software made in
MATLAB was used to track displacement of individual cells.

Matrix degradation assay and quantification

Glass coverslips were prepared by sequential coating (1
mg/ml gelatin-Cy3, RT, 10min.), gelatin crosslinking (4% par-
aformaldehyde/0.5% glutaraldehyde, 4°C, 30 min.), washing
(30 mg/ml NaBH;4 in PBS), sterilization (70% ethanol), and
washing (PBS). Cells were grown on those glasses overnight
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and then fixed and imaged with an Axiovert 200 M micro-
scope using a MicroMax 5-MHz and LD plan 10x (NA 0.25)
objective. For quantification, we counted the number of ma-
trix-degradating spots and spot and cell areas using FIJI.

Proliferation

We seeded 5000 per well in 24-well plates. 3, 5 and 7 days
later, cells were counted with a Neubauer chamber after tryp-
sinization and 1/2000 dilution.

SERPINB2 secretion

We seeded 200000 cells per well in a 6-well plate and cultured
them for 24h. 100 uL of supernatant were placed on a nitro-
cellulose membrane with a 0.45 um pore size (Amersham Pro-
tran) and allowed to adsorb for 1h at room temperature. After
aspiration of the remaining liquid, we blocked the membrane
for 1h with 5% dry milk in 0.1% Tween-TBS (TTBS) followed
by overnight incubation with an anti-SERPINB2 antibody
(Ab47742, Abcam, 1/500 in blocking solution) at 4°C. After
washing thrice with TTBS, we incubated the membrane with
an anti-rabbit Horseradish Peroxidase-coupled IgG (GE
Healthcare, 1/2000 in blocking solution) for 1h, and repeated
the washing steps. Finally, a SuperSignal West Pico PLUS
Chemiluminescent Substrate (Thermo Scientific) was used
for signal detection. For Western Blot, we lysed cells in 50mM
Tris, pH 7.4, 150mM NaCl, 0.5 % NP-40 and protease inhibi-
tors. We loaded 50 ug of protein per well in a 8% polyacryla-
mide gel and transferred the results of the electrophoresis to
a nitrocellulose membrane using an iBlot dry blotting system
(Thermo). Blocking and antibody incubation steps were per-
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formed as in the aforementioned case, but including a mono-
clonal anti-Tubulin antibody (T6074, Sigma) as loading con-
trol, and a 1/10000 secondary antibody for its detection.

Statistics

All experiments (i.e. cell seeding, manipulation and data ac-
quisition) were performed at least three times.

In all cases we performed a D’Agostino-Pearson omnibus nor-
mality test prior to any hypothesis contrast test. We used un-
paired Student’s t-test to compare 2 cases. Otherwise, we
chose 1-way analysis of variance (ANOVA) followed by
Tukey or Dunn post-hoc tests, where appropiate. All tests and
graphs were done in Graphpad Prism 5 and later exported to
Adobe Illustrator for figure design. Bars and error bars repre-
sent mean values + SEM and are reported along with p-values
in each figure.
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This work was highlighted as the issue cover with the follow-

ing commentary:

On the cover: Hung et al. describe two cooperating signalling mod-
ules, Piezo1/PKA and Myosin II, by which cells sense and traverse
confined spaces. Signalling output is optimized through complex
feedback loops ultimately leading to efficient cell motility. Artist
Jun Cen (cenjun.com) depicts a small diver exploring confined mi-
gration, which is symbolized by the large size and tangled arms of

the octopus trying to squeeze into the cave.
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4.1 Piezol, Myosin II, and confinement sensing

Many times, biology studies cells cultured on plates, but in vivo,
cells frequently live confined in tissues. Although this fact has
enabled the identification of important differences between
cell behaviour (e.g. migration) in 2D and 3D, the underlying
mechanisms detecting confinement remain elusive.

Combining microfabrication techniques and time-lapse mi-
croscopy on cells expressing a FRET-based calcium sensor, we
have shown that confinement induces an elevation of intracel-
lular calcium. After MA channel expression profiling for can-
didate selection, we provided two evidences indicating that
this response requires Piezol: calcium entry inhibition by the
Piezo-targeting toxin GsMTx4 and by specific downregulation
of this channel using siRNAs. Those same experiments re-
vealed reduced migration velocities in confined Piezol knock-
down cells but not in cells migrating unconfined. These cells
also showed increased entry times to the confining channels.
All this suggested a role for Piezol-mediated calcium elevation
in detecting physical confinement and adapting the cell migra-
tion machinery to this situation. Calcium increases upon con-
finement correlated with PKA activity decreases, recorded
with an additional FRET-based sensor. The calcium chelator
BAPTA and the PDE1 inhibitor IBMX reduced confinement-
induced inhibition of PKA, but none of them abolished it.
Therefore, confinement reduces PKA activity via this newly
described Piezo-calcium-PDE1 pathway, paralleled by an addi-
tional, independent mechanism. Treating siPiezol cells with
blebbistatin abrogated PKA inhibition by confinement,
demonstrating that this alternative pathway depends on Myo-
sin II, which emerges as a direct mechanosensor.
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Confining cells on 1D fibronectin-printed lines reproduced
calcium elevations and PKA activity reductions and enabled di-
rect cell manipulation. AFM on cells in this configuration
showed increased cell stiffness in response to confinement.
This response was reduced but not supressed by individual in-
hibition of Myosin II, Piezo1 or PDE1 or by direct activation of
PKA using forskolin. Conversely, inhibiting this kinase with
Rp-cAMP exacerbated stiffness increases in response to 1D
confinement. Importantly, these pharmacological manipula-
tions altered stiffness even in unconfined cells, suggesting
mechanisms working independently of microenvironmental
dimensionality cues. As in the case of PKA activity, dual block-
ing of Piezol and Myosin II fully supressed stiffness increases
due to confinement. Importantly, latrunculin dropped cell
stiffness in all conditions, demonstrating that this parameter
depends on Actin polymerization.

Narrow channels and 1D adhesive lines both promote calcium
increases and PKA inhibition, but the exact nature of the stim-
ulus triggering these changes is not clearly identified in our
work. We can hypothesize that both manipulations elongate
the cells and this increases membrane tension, leading in par-
allel to Piezol activation and cortical actomyosin re-arrange-
ment causing Myosin II activation, increasing contractility and
cell stiffness. Using inhibitors, we have seen that Myosin II ef-
fects do not require Piezo1 activation. This indicates either di-
rect mechanosensing by Myosin II or that it is activated by an-
other yet-to-be-identified mechanosensor, but does not dis-
card a Piezol contribution in Myosin II activation. I have al-
ready introduced that, although Piezo1 is a mechanosensor per
se, integrin-mediated adhesions promote its activation (Gaub
and Miiller, 2017). Similarly, although it is expendable, calcium
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entry through Piezo1l could contribute to Myosin II activation
by confinement, either by Rho>ROCK->MLCK-dependent
MLC phosphorylation, enhanced myofilament polymerization
or still undescribed mechanisms.

We should also consider the dynamics of the calcium signal
observed in these cells. Piezo channels show fast, transient (in
the range of tenths to hundreds of milliseconds) responses to
mechanical stimulation. Yet, the calcium increases we ob-
served last much longer. Therefore, Piezol seems to be the
confinement sensor triggering calcium increases that need to
be maintained by additional mechanisms. Transient calcium
entry through membrane channels can promote calcium exit
from the intracellular stores in the Endoplasmic Reticulum
(ER) in a process termed Calcium-Induced Calcium Release
(CICR), involving ryanodine and IP3; receptors (RyRs and
IP3Rs, respectively). CICR in response to adhesion dynamics is
involved in cell migration (Tsai et al., 2014; Wei et al., 2009)
and thus it is a possible mechanism to explain the prolonged
calcium increase found in confined cells.

To sum up, here we present a circuit were Piezol and Myosin
IT emerge as mechanosensors enabling cell responses to con-
finement, e.g. cell stiffening and adaption of locomotive strat-
egies. Its nature as a MA ion channel and our data support a
role for Piezo1 as a direct sensor of confinement and position
this channel as an important regulator of several functions dur-
ing relevant processes in biomedicine, such as cancer metasta-
sis.

4.2 Piezo2, Rho, and the Actin cytoskeleton

In the second chapter of the thesis, we use quantitative micros-
copy on living and fixed transgenic cell lines to discover that
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Piezo2 is essential for Rho-dependent Actin cytoskeleton or-
ganization and mechanical signalling of brain metastatic (BrM)
MDA-MB-231 breast cancer cells.

Traction force microscopy revealed reduced shPiezo2 cell-sub-
strate force transmission. These forces are generated by Myo-
sin II contraction of Actin filaments and transmitted to the
substrate through adhesions. Western blots showing equal
pMLC/MLC ratios, that take into account the portion of active
(pMLC) among total (MLC) Myosin light chain protein,
prompted us to discard reduced Myosin II activity as the cause
of reduced traction forces in shPiezo2 cells. This result is in ac-
cordance with our previous data showing that Piezol and My-
osin II signal into common downstream pathways in parallel,
and not in series.

Using phase contrast microscopy, we observed faster cortical
flows in shPiezo2 cells. These cortical flows depend on Actin
polymerization and actomyosin contraction, and faster speeds
in adherent cells correlate with lower traction forces, which
can be explained by reduced engagement between flowing Ac-
tin and sessile adhesions (FElosegui-Artola et al., 2014, 2016;
Maiuri et al., 2015). Therefore, the next step was to evaluate
Actin and adhesive structures. To our surprise, stress fibres
(SF) were almost absent in shPiezo2 cells and in control cells
grown in calcium-free, magnesium-supplemented medium®.
These observations suggest that extracellular calcium entry
through Piezo2 may be required for SF formation and down-

18 Extracellular divalent cation (e.g. calcium) depletion reduces integrin
affinity, reducing cell-substrate adhesion. Magnesium supplementation
avoids this confounding factor.
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stream mechanotransduction in these cells. Since SF polymer-
ization is under control of the RhoA->mDial formin axis, we
focused our efforts on this pathway. FRET probes for RhoA ac-
tivity showed reduced activation of this GTPase in shPiezo2
cells, whose SF were rescued by promoting Actin polymeriza-
tion by treatment with the drug jasplakinolide or by overex-
pressing constitutively active variants of the RhoA GTPase
(RhoA-Q63L) or the mDial formin (CA-mDial). These results
suggest that Piezo2 is a mechanosensitive upstream regulator
of the well-known RhoA->mDial pathway in charge of Actin
polymerization into stress fibres.

RhoA activity increases in response to mechanical stimulation
are broadly studied due to their role in several aspects of de-
velopment, or cancer, mainly by regulating cytoskeletal dy-
namics. Nevertheless, how this small GTPase is activated is not
well understood. The finding that Rho GTPases get activated
in response to MA channel function was already proposed and
is remarkable due to its consequences (Ie et al., 2017;
Seminario-Vidal et al., 2011). First, cell extrusion in confluent
epithelia is essential for maintaining epithelial functions and
prevent tumour formation. Extrusion is a Rho-dependent pro-
cess and is impaired after Piezol suppression (Eisenhoffer et
al., 2012; Marinari et al., 2012). Second, MA-channel-depend-
ent Rho signalling regulates ATP release, which is essential for
lung epithelia signalling regulating mucus hydration and ciliary
beating, both involved in defence mechanisms (Andrade et al.,
2005; Arniges et al., 2004; Lorenzo et al., 2008; Seminario-
Vidal et al., 2011). Third, in cancer cells, this auto and para-
crine signalling mechanism promotes intravascular metastatic
cell survival, and, in mesenchymal cells, it promotes chromatin
condensation in response to stretching (Furlow et al., 2015;
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Heo et al., 2015, 2016). This latter work identified calcium sig-
nalling and Piezo channels as required elements of this cascade
with consequences during cell differentiation, but did not
highlight it as one of their main discoveries. In my opinion, an
ion channel promoting DNA compaction in response to me-
chanical perturbations is, at least, eyebrow lifting. Our results
show that cells need Piezo>RhoA->mDial signalling to phys-
ically connect adhesions and the nucleus through SF. This link
has been previously shown to regulate the physical properties
of the nucleus and DNA compaction (Buxboim et al., 2014;
Heo et al., 2016; Jain et al., 2013; Ramdas and Shivashankar,
2015; Ricci et al., 2015). Since DNA damage by physical inputs
is a source of genomic instability (Irianto et al., 2017b), Pi-
ezo/Rho-dependent DNA compaction emerges as a hypothet-
ical pathway that needs further study in cancer biology.

Considering the results in Chapter I regarding Piezo1 and PKA,
we can anticipate how calcium-dependent PKA->Rac1 attenu-
ation would relieve Racl-dependent RhoA inhibition, consti-
tuting indeed a RhoA-activating pathway. A more direct effect
exerted by calcium could be explained by its activating effect
on PDZ-RhoGEF/ARHGEF11, which results in Rho-GDP ex-
change by GTP and activation of this GTPase. The same
RhoGEF is also involved in RhoA activation in response to LPA,
a stimulus known to promote intracellular calcium increases,
contractility, and amoeboid motility (Ruprecht et al., 2015).
Under those circumstances, L.PA is known to activate its spe-
cific receptors, coupled to G proteins that specify its signalling
outcomes (Ishii et al., 2004 ). Nevertheless, LPA activates also
Piezo channels in artificial bilayers (Syeda et al., 2016), raising
the potential existence of a LPA->Piezo—>Calcium—>PDZ-
RhoGEF/ARHGEF11>RhoA axis. PDZ-RhoGEF/ARHGEF11
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gets phosphorylated and activated by Proline-rich tyrosine Ki-
nase 2 (PYK2/PTK2B) in response to intracellular calcium in-
creases. Knockdown of either protein impairs RhoA activation,
indicating the need of both kinase and GEF to link calcium in-
creases to RhoA activation (Ying et al., 2009). PYK2 is rapidly
activated by intracellular calcium increases in several cell lines,
and it promotes tissue invasion. This kinase is related to FAK,
and their functions are cross-regulated (Du et al., 2001; Kohno
et al., 2008; Owen et al., 2007; Soni et al., 2017).

To summarize, we have identified Piezo2 as an upstream acti-
vator of RhoA->mDial signalling leading to SF formation. Cal-
cium is known to modulate this pathway through specific pro-
teins. Further work to unveil the potential connection between
membrane proteins and the contractile module should include
the study of LPA effects in cells depleted of LPA receptors, as
well as co-localization studies of adhesion proteins -including
FAK and PYK2- and Piezo channels.

Our results, together with many other previous studies, pro-
pose a picture where signalling molecules and adhesions could
be integrating chemical and physical stimuli at the level of a
master regulator of cell biology, RhoA; and from our biased
view, a more interesting observation, that this master regulator
is under the control of an ion channel that detect mechanical
environmental cues. As an example, this GTPase and its target
mDial also regulate mitosis and cytokinesis. Cell division is a
key process during a cell’s lifecycle and it has clear mechanical
components. Adherent cells undergo a drastic change in shape,
known as Mitotic Cell Rounding, to ensure proper room for
DNA condensation and division. RhoA->mDial signalling en-
sures actomyosin-dependent force generation against external
deformations. Curiously, mitotic cells swell, and this turgor
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also contributes to robust rounding (Sorce et al., 2015; Stewart
et al.,, 2011; Théry and Bornens, 2008; Zlotek-Zlotkiewicz et
al.,, 2015). Rounded cells remain attached to the substrate
through Actin-rich retraction fibres, which lead spindle orien-
tation in an external force-dependent manner (Fink et al.,
2011; Théry et al., 2005). The study of how forces regulate mi-
tosis is growing, but so far, no attention has been paid to the
role of ion channels. Piezo mechanosensitivity and its influ-
ence on the RhoA->mDial axis seems an appealing subject for
this field.

4.3 Piezo, mechanotransduction, and cancer

Conditions that impair SF formation (e.g., Piezo2 knockdown
or extracellular calcium removal) also reduced nuclear YAP ac-
cumulation. Conversely, jasplakinolide, RhoA-Q63L or CA-
mDial rescued both SF and YAP accumulation. These results
match previous observations and highlight the importance of
Actin polymerization in mechanotransduction (Dupont et al.,
2011). Also, our results place a MA channel as the trigger of a
cascade regulating several steps of metastatic invasion.

- Cell and tissue mechanics regulating YAP/TAZ

Early discoveries claimed that SF effects on YAP activity relied
on the inhibition of the Hippo/LATS phosphorylation pathway
regulating specific residues in YAP (Sansores-Garcia et al.,
2011; Wada et al., 2011). Regarding YAP/TAZ activation in tu-
morigenesis, Hippo inhibiting inputs seem negligible. This
pathway is rarely altered in tumours, while YAP/TAZ is fre-
quently activated (Harvey et al., 2013; Zanconato et al., 2016).
In addition, inactivating components of the Hippo pathway
does not guarantee transformation (Zanconato et al., 2016 and
references therein). A common feature of YAP/TAZ-induced
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tumour growth and malignancy is matrix stiffening, signalling
through Rho/ROCK and filamentous Actin. This mode of acti-
vation is highly Hippo/Lats-insensitive and is also employed
by external soluble cues such as LPA or sphingosine acting
through GPCRs (Aragona et al., 2013; Dupont et al., 2011;
Elosegui-Artola et al., 2016, 2017; Nowell et al., 2016; Yu et al.,
2012). Matrix remodelling and stiffening is common in cancer
and promotes malignancy, in part through YAP. Conversely,
placing invasive cells on soft 3D matrices reduces their malig-
nant traits and YAP signalling (Aragona et al., 2013; Kumar and
Weaver, 2009; Levental et al., 2009; Miroshnikova et al., 2016;
Paszek et al., 2005; Schedin and Keely, 2011).

Cancer Associated Fibroblasts (CAFs) perform matrix remod-
elling during invasion of some cancer types and their genera-
tion requires YAP signalling in response to matrix stiffening
(Calvo et al., 2013; Labernadie et al., 2017). Importantly, other
conditions exhibiting matrix remodelling and stiffening, e.g.
pulmonary or hepatic fibrosis, show nuclear YAP activation in
response to initial matrix stiffening and remodelling by fibro-
blasts. YAP activation in these cells promotes their differentia-
tion into myofibroblast, increasing fibrosis (Liu et al., 2015a;
Rahaman et al., 2014). Therefore, YAP signalling in non-trans-
formed cells is involved in fibrosis during cancer and non-can-
cer disease, expanding the therapeutic applications of target-
ing YAPD.

Existing evidences propose that matrix stiffening leads to in-
creased Rho-dependent Actin polymerization and contractil-
ity. Since stress fibres form a continuum between the nucleus,
adhesions, and the substrate, contractility-derived forces flat-
ten the nucleus, and this deformation is what permits in-
creased nuclear YAP accumulation (Das et al., 2016; Driscoll et
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al.,, 2015; Dupont et al., 2011; Elosegui-Artola et al., 2016,
2017). Our results argue in their favour and expand the obser-
vation that Piezol inhibition or knockdown reduced nuclear
YAP accumulation in human neural stem cells (Pathak et al.,
2014). In addition, our work functionally links Piezo activity
to Actin polymerization influencing YAP signalling in cancer
cells, although we have not studied the Hippo-dependent
phosphorylation status of YAP and thus we cannot discard a
role for this modifications in the nucleo-cytoplasmic shuttling
of this protein under these circumstances.

- YAP and tumour malignancy

YAP and TAZ are usually overlapping transcriptional co-regu-
lators whose study has exploded in recent years!®, most likely
due to their remarkable role in development and, specially, tu-
morigenesis. For the sake of simplicity, I will only mention
YAP, but its functions overlap with TAZ’s. Frequent sources of
brain metastasis, such as lung and breast adenocarcinomas or
melanomas show YAP activation (nuclear accumulation in mi-
croscopy samples, target transcript up-regulation in tran-
scriptomic analysis), whose extent directly correlates with
poor prognosis. Experimental models of these tumours show
that transgenic YAP activation worsens otherwise benign tu-
mours. Conversely, YAP inactivation abrogates oncogene-in-
duced transformation and reduces malignant traits of aggres-
sive cells (Zanconato et al., 2016 and references therein). In
addition, nuclear YAP accumulation in human brain metastatic
breast cancer is associated with shorter patient survival (Kim
et al., 2015). Altogether suggests that brain metastatic cancer

19 Annual entries (Pubmed): ~60 in 2006, ~300 in 2014, ~600 in 2016.
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cells rely, at least in part, on YAP pathway activation, but which
are the underlying mechanisms? In other words, which are the
advantages conferred to BrM cells by YAP activation? There
are no specific studies on which YAP targets fuel brain metas-
tasis, but the enormous amount of similar evidences in other

cells permits to build some hypotheses.

YAP immunoprecipitation followed by sequencing of bound
DNA (ChIP-seq) in MDA-MB-231 cells revealed that these pro-
teins associate with TEAD and AP-1 to interact with active en-
hancers at DNA and promote the transcription of genes in-
volved in S-phase entry and mitosis, fuelling tumour growth by
promoting proliferation, one of the main hallmarks of cancer
(Zanconato et al., 2015).

AP-1 is a dimer formed by oncoproteins Fos and Jun in re-
sponse to inflammatory cytokines or UV irradiation (Eferl and
Wagner, 2003). Combining matrix stiffening and inflamma-
tion, YAP/TEAD/AP-1 seems a principal oncogenic pathway
and could contribute to the observed connections between or

UV exposition to tumorigenesis.

YAP also targets focal adhesion-related genes and its suppres-
sion reduces aV, B1 and B3 integrin, Vinculin or Zyxin protein
levels and this impairs 2D and 3D migration, processes re-
quired during invasion (Liu et al., 2016; Nardone et al., 2017).
In addition, YAP promotes another feature of cancer cells: eva-
sion from several death signals, including detached cell anoi-
kis?® and several apoptotic pathways, e.g. Tumour Necrosis

20 Apoptosis in response to loss of attachment to the ECM. It is frequent in
healthy cells and almost absent upon transformation.
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Factor and Fas in liver tumours (Dong et al., 2007; Zhao et al.,
2012).

Focusing on BrM cells, it is important to remember that Fas
activation is the ultimate cause of their death in response to
astrocyte activation and Plasmin production during brain inva-
sion. Furthermore, some of the BrM signature genes, including
those that are essential for BrM sheltering from Plasmin (SER-
PINs), are transcriptional targets of YAP (Dupont et al., 2011;
Valiente et al., 2014). Therefore, YAP could be contributing to
BrM biology by increasing proliferation, migration and death
evasion rates. Heterologous BrM expression of YAP variants
constitutively active or unable to bind DNA followed by gene
expression profiling, SERPIN secretion or in vivo invasion stud-
ies would be useful to identify the specific roles of these pro-
teins in brain metastasis. Performing those experiments also in
Piezo1/2 knockdown backgrounds would permit us to discern
which of the effects described here depend on the concomitant
reduction in nuclear YAP accumulation.

We have found that Piezo2 diminishes SERPINB2 secretion,
but it did not reduce SERPINB2 mRNA levels. Therefore, it is
possible that, although we have seen reduced nuclear YAP ac-
cumulation in these cells, the remaining levels of transactiva-
tion are enough to maintain the transcription of this gene. Al-
ternatively, under these conditions, SERPINB2 transcription
could be under control of other regulators.

So far, we have seen which YAP effects can contribute to tu-
morigenesis in general and I have proposed some hypothesis
about specific effects on BrM cells. Now, it is also understand-
able to ask what underlies YAP activation in cancer cells and,
again, which specific aspects of brain metastasis are relevant
for it. Mechanical inputs are ubiquitous during the life of a cell,
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even more in the case of a metastatic cell: these cells experi-
ence crowding and confinement during exit from the tumour,
they get deformed during blood-borne dissemination, and, fi-
nally, they get lodged in microvessels and adhere to their walls.
In the case of BrM cells, B1-Integrins mediate cell-endothe-
lium adhesion and blood flow forces promote BBB remodelling
and BrM cell extravasation into the brain parenchyma, a
densely packed tissue. Successful extravasated cells spread
along the vessels during co-option and the resulting tumours
grow constantly compressed by the surrounding, reactive tis-
sue. Strikingly, adhering to and spreading along the abluminal
face of vessels is absolutely essential to form metastatic lesions
in the brain (Carbonell et al., 2009; Chen et al., 2016; Follain
etal., 2017; Furlow et al., 2015; Kienast et al., 2010; Valiente et
al., 2014; Zeidman, 1961). All these evidences show a determi-
nant role for mechanical forces in the metastatic cascade re-
sulting in brain metastasis. Our results expand this knowledge
by showing that Piezo channels are required for detecting sev-
eral of the aforementioned stimuli (confinement, matrix ligand
density and stiffness), and that supressing these channels im-
pairs almost all these pro-metastatic functions (locomotive
adaption to confinement, haptotaxis, matrix degradation, SER-
PIN secretion and Rho-driven Actin polymerization promot-
ing YAP signalling and proliferation). Future experiments with
ShPIEZO2 cells in vivo could lead us to identify which of these

processes acts as a mechanical bottleneck during metastasis.

Brain metastases tissue mechanics is an unknown field, but
studies of primary brain tumours show matrix stiffening by
Tenascin C deposition and enhanced mechanosignalling posi-
tively correlating with malignancy (Miroshnikova et al., 2016).
Metastatic breast cancer cells also secrete Tenascin C during
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lung infiltration (Oskarsson et al., 2011). Therefore, Tenascin
C seems to promote tumour aggressiveness by increasing tu-
mour stromal stiffness and thus enhancing mechanosignalling.
Answering whether this pathway is conserved in BrM cells,
how Tenascin C is secreted, or how perivascular Tenascin C
contribution regulates mechanotransduction or YAP signalling
could identify novel regulatory mechanisms underlying BrM
survival and outgrowth. The results could be applied to other
cancer processes whose malignancy increased with Tenascin
and also to non-tumoural processes in which this matrix-de-
posited glycoprotein exerts essential roles, e.g. neurogenesis or
tissue repair (Midwood et al., 2016).

4.4 Piezo, Actin, and rigidity sensing

Sensing tissue rigidity is necessary for cell function: cells dif-
ferentiate depending on the stiffness of the underlying sub-
strate, tumour malignancy positively correlates with the stiff-
ness of its matrix, single and clustered cells migrate along ri-
gidity gradients, etc. (Engler et al., 2006; Lo et al., 2000; Paszek
et al., 2005; Sunyer et al., 2016). Integrin-matrix binding and
Talin unfolding rates are key determinants of this mecha-
notransductive pathway (Elosegui-Artola et al., 2014, 2016;
Sunyer et al., 2016), but Piezo channels are also involved: Pi-
ezol-mediated calcium entry increases with matrix rigidity
and this is necessary for stiffness-dependent nuclear YAP ac-
cumulation (Pathak et al., 2014 ). This work found that inhibit-
ing Myosin reduced Piezo1 activity and YAP translocation, but
did not study Actin. We propose that in MDA-MB-231 BrM2
cells, Piezo2 activity increases with substrate rigidity and this
promotes RhoA->mbDial mediated SF formation. The nucleus-
Actin-adhesion-substrate continuum upon SF engagement to
adhesions and the nucleus permits force transmission, leading
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to nuclear flattening and YAP accumulation. At the same time,
SFs properly engaged to adhesions transmit traction forces, en-
abling cell locomotion. When substrate rigidity is too low, nei-
ther Piezo2-mediated calcium entry nor Talin unfolding are fa-
voured. Therefore, SF formation is inhibited, the nucleus is not
flattened and YAP accumulation is reduced. Also, traction
forces would be lower and this slows cell migration, what
would explain durotaxis. Confirmation of this hypothesis will
require quantifying rigidity-driven migrational biases of
shPiezo cells grown on the presence of physiological and patho-
logical stiffness gradients, as in (Sunyer et al., 2016; Vincent et
al., 2013). With that experimental set-up we could also evalu-
ate the interplay between stiffness-dependent calcium signal-
ling, Actin polymerization and adhesion deposition.

4.5 Piezo channels in metastatic invasion

Chemical and physical cues bias cell migration and this drives
several patterns of tissue remodelling and invasion during de-
velopment, healing or disease. Cancer cell migration guided by
chemical signals, chemotaxis, has received much attention for
many years. Recently, mechanical aspects of the cell surround-
ings have emerged as additional regulators of cell locomotion,
likely because they end up altering the same cytoskeletal ma-
chinery (Artemenko et al., 2016).

As we have explained in the previous section, when combined
with existing data, our work suggests a role for Piezo channels
in responses to rigidity and thus durotaxis. More importantly,
it also shows that Piezo channels regulate migration in re-
sponse to ligand density, dimensionality or pore size.
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- Haptotaxis

Piezo2 suppression abrogated haptotaxis, i.e. the biphasic rela-
tionship between cell migration speed and ECM protein con-
centration. Haptotaxis is common in development and cancer.
Recent work has shown that increasing substrate rigidity and
ECM ligand spacing promotes adhesion collapse due to exces-
sive loading of integrin-ECM bonds (Oria et al., 2017). This
scenario would be similar to our experiments with low ECM
protein concentrations coating glass coverslips. Ligand spacing
is reduced as ECM coating concentrations rise, and this opti-
mizes traction force transmission and cell migration. Never-
theless, shPiezo2 are not able to polymerize Actin connected to
adhesions, impairing force transmission and forward move-
ment. After this optimal point, the ECM is so dense that Myo-
sin Il power is not enough to properly disassemble adhesions,
stalling migration. Under these circumstances, Myosin II acti-
vation rescues migration speeds (Gupton and Waterman,
2006). In our opinion, this manipulation would be ineffective
in shPiezo2 cells.

Actin polymerization places active, unbound integrins in the
cell front during leading edge advance, optimizing adhesion
formation during cell migration (Galbraith et al., 2007). This
would also contribute to impaired adhesion turnover and cell
migration in our cells. Also, it could help to explain the dis-
persed distribution of adhesions in shPiezo2 cells: integrins are
no longer placed at the cell front, where they bind matrix lig-
ands and initiate cascades that result in cell polarization and
directed migration.

Also, recalling the observation that integrin-mediated adhe-
sions sensitize Piezo channels (Gaub and Miiller, 2017), it is
tempting to hypothesize that channel activation as a function
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of ECM ligand density could be an additional mechanism driv-
ing haptotaxis.

We evaluated haptotaxis in cells migrating on glass, but this
phenomenon is found also in 3D set-ups and in vivo, under con-
served regulating pathways, and is involved in cancer cell guid-
ance (Gopal et al., 2017; King et al., 2016; Moreno-Arotzena et
al., 2015). Detailed studies showed that B1-Integrin and Rac1-
Actin signalling converging on Arp2/3-dependent dendritic
Actin polymerizationare essential for 2D and 3D haptotaxis.
Importantly, both suppression and constant activation of Racl
impair haptotaxis (King et al., 2016). According to previous
knowledge and our own results, the reduction in RhoA signal-
ling observed in shPiezo2 cells should increase Rac1 signalling.
This could be an additional factor impairing haptotaxis in these
cells.

- 3D migration: propulsion, matrix degradation, a combi-
nation?

We found the Piezo1l/PDE1/PKA confinement-sensing path-
way conserved in invasive melanoma A375-SM cells. In this
case, Piezol, PDE1, PKA and Myosin II inhibition all suppress
confined migration to equal extent. Therefore, seems that in
these cells, Myosin II acts downstream of Piezol, supporting
the notion that MA channels influence contractility. This has
important consequences for the mesenchymal-to-amoeboid
transition, where low adhesion and increases in contractility
trigger a drastic change in cell polarization that enables fast mi-
gration driven by a cortical flow that offers forward propulsion
(Bergert et al., 2015; Liu et al., 2015b; Ruprecht et al., 2015).
According to these models, cell confinement is necessary for
amoeboid migration because otherwise the cortical flow can-
not be coupled to the substrate, no friction appears and there
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is no propulsive force. But, importantly, confinement itself can
act as the trigger in contractility increases (Liu et al., 2015b).
Our work describes Piezo1 as a confinement sensor triggering
adaptive responses that include adhesion dismantling and final
increases in Myosin II activity, i.e. contractility. Therefore, Pi-
ezol activation by confinement triggers changes associated to
MAT. Considering all these evidences, it is plausible that Pi-
ezol acts as a first, unified transducer of chemical and mechan-
ical stimuli leading to increased contractility during MAT. Fu-
ture studies could evaluate whether Piezol or Piezo2 knock-
down impairs LPA-dependent polarization and stable-bleb for-
mation in Zebrafish progenitor cells as in (Ruprecht et al.,
2015). It will be also important to study the effect of knocking
down these channels in HeLa cells, which highly express them
(Human Protein Atlas and our own data) and show clear MAT
in response to confinement (Liu et al., 2015b).

Amoeboid migration is common in 3D environments (Friedl
and Alexander, 2012; Wolf et al., 2003, 2013). Migration speed
of A375-SM cells in a 3D collagen gel was reduced by PKA ac-
tivation or by Piezol knockdown. These results highlight the
importance of this newly-discovered axis for migration in
pathophysiologically relevant confining environments. Having
said that, we have not identified yet the ultimate mechanism
causing reduced migration velocity in these circumstances. We
must take into account that we have also found that Piezo2 in-
terference reduces matrix degradation by MDA-MB-231-BrM2
cells. Additionally, reducing matrix degradation with protease
inhibitors reduces 3D migration speed because smaller pore
sizes oppose nuclear translocation (Wolf et al., 2013). There-
fore, it is legit to ask whether reduced migration in 3D collagen

140



DISCUSSION

gels by siPiezol is due to impaired propulsive mechanisms, re-
duced matrix degradation or a combination. 3D migration
slowing by PKA activation does not respond this question, be-
cause PKA-mediated Rho inhibition could affect both propul-
sion, by impairing amoeboid migration, and degradation, by
precluding invadopodia formation. Other PKA-mediated
mechanisms such as indirect MLLCK inhibition, reducing con-
tractility (Howe, 2004), could also participate. Experiments in
3D set-ups or, even better, in vivo with cells knockdown for Pi-
ezo channels would offer us the opportunity to evaluate more
properly how these channels participate in this process, in-
cluding the relevance of matrix degradation or nuclear defor-
mation.

There is the concern of using different cell lines to tackle
mechanobiological properties of cells, although signalling
mechanisms are frequently conserved. More open questions
rise from our matrix-degradation experiments, which are
based on 2D gelatin substrata. Our results clearly show reduced
gelatinase activity, while during our 3D migration assays,
A375-SM cells rely on 3D collagenase activities. Under those
circumstances, gelatinase activities are dispensable (Sabeh et
al., 2004). Yet, those same experiments offer responses. In par-
allel to reduced gelatin degradation, shPiezo2 cells showed
nearly-abolished invadopodia formation, as quantified by Ac-
tin staining. Since these structures are rich in Actin, inde-
pendently of their targeted matrix protein, we think that the
collagen-degrading capacity of shPiezo2 cells should also be
impaired.

Together, we propose a model in which physical barriers op-
posing cell advance locally activate Piezo channels. This would
localize matrix degradation to increase the pore size in order
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to overcome the barrier, similar to a boring machine or a mole.
Once the pore is large enough, Piezo signalling should decrease
because now there is less resistance to cell advance and thus
invadopodia could be dismantled. Sustained Piezo signalling by
the matrix opposing cell advance could increase contractility
to levels triggering the MAT, as observed when pericellular
proteolysis is inhibited (Wolf et al., 2003). Dynamic volume
regulation would also permit easier transit through pores. Our
results show increased entry times of Piezol and Piezo2
knockdown cells into confining channels. Taking into account
the role described for this channel in volume regulation, a pos-
sible explanation is that siPiezol cells are less efficient in re-
ducing their volume, and this hinders the transit through con-
fining cross-sections.
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CONCLUSIONS

Cell confinement activates Piezol-mediated calcium
entry.

Calcium entering through Piezol activates PDE1-de-
pendent cAMP degradation and subsequent PKA->Rac1
inhibition.

Activation of the aforementioned circuit results in My-
osin II inhibition release, allowing confined migration.
Confinement activates Myosin II in parallel by mecha-
nisms yet-to-be described.

Supressing Piezol function impairs motility of epithe-
lial and cancer cells under several modes of confine-
ment.

Piezo2 is necessary for RhoA function in brain meta-
static breast cancer cells.

Piezo2 knockdown supresses stress fibre formation and,
consequently, force transmission.

Reduced force transmission in Piezo2 knockdown abro-
gates mechanotransduction and reduces migration effi-
ciency.

Constitutively active mutants of RhoA or mDial rescue
stress fibre formation and mechanotransduction.
Piezo2 knockdown supresses pro-metastatic features
such as matrix degradation or SERPINB2 secretion,
likely through its effects on Actin dynamics.
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