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Abstract

This proposal addresses, from two di�erent approaches, the improvement of data centers produc-
tivity through an e�cient resource management.

On the one hand, the combination of GPU remote virtualization technologies with workload
managers in HPC clusters demonstrated an interesting increase in throughput, in terms of completed
jobs per unit of time, during the research conducted in the predoctoral period. The dissertation
begins with an extended study on its impact not only in productivity, but also in resource utilization
and energy consumption. Hence, an e�cient management of the access to these accelerators is crucial
in order to obtain a higher number of completed jobs per unit of time rate. On the same basis,
cloud computing environments (public or private) also deal with GPUs, since virtual machines can
be equipped with these devices. As detailed in this document, the adoption of a GPU remote
virtualization technology together with a resource manager introduces new working modes aimed
to the global throughput improvement.

On the other hand, the second approach involves job recon�gurations in terms of varying its
number of processes during the execution (commonly referred as MPI malleability) in order to
increase the system throughput. Currently, MPI jobs suppose a high percentage of the total load
in an HPC facility. In an e�ort to ease the adoption of malleability in scienti�c applications, this
manuscript presents two solutions, from an OmpSs-like programming model approach and from
a MPI-friendly syntax, which provide the necessary tools for easily converting an application into
malleable. Performance evaluations reveal a non-negligible improvement not only in the throughput,
but also in the job waiting time and in the energy consumption.

Resumen

Esta propuesta aborda, desde dos enfoques distintos, la mejora de la productividad de centros de
procesamientos de datos mediante una gestión e�ciente de los recursos.

Por un lado, la combinación de tecnologías de virtualización remotas de GPUs junto con gestores
de cargas de trabajos en clústeres HPC, demostró en la investigación llevada a cabo durante el peri-
odo predoctoral un interesante incremento de productividad, en terminos de trabajos completados
por unidad de tiempo. La disertación comienza con un estudio extendido de su impacto no sólo en
la productivad, sino también en utilización de recursos y consumo energético. Así pues, una gestión
e�ciente del acceso a estos aceleradores es crucial para obtener un mayor ratio de trabajos comple-
tados por unidad de tiempo. Del mismo modeo, entornos de cloud computing (públicos o privados)
también gestionan GPUs, ya que las máquinas virtuales pueden ir equipadas con estos dispositivos.
Tal y como se detalla en este documento, la adopción de una tecnología de virtualización de GPUs
junto con un gestor de recursos, introduce nuevos modos de trabajo dirigidos al incremento de la
productividad global.

Por el otro lado, el segundo enfoque involucra recon�guración de trabajos en términos de mod-
i�car el número de procesos durante la ejecución (comúnmente referido como malleabilidad MPI)
para incrementar la productividad del sistema. Actualmente, los trabajos MPI suponen un alto
porcentaje del total de la carga en una instalación HPC. En el esfuerzo de facilitar la adopción de la
maleabilidad en aplicaciones cientí�cas, este manuscrito presenta dos soluciones, desde un enfoque
del modelo de programación OmpSs y desde una sintaxis familiar a MPI, las cuales proveen de
las herramientas necesarias para convertir fácilmente una aplicación en maleable. La evaluación
de prestaciones revela un signi�cativo incremento no sólo en la productividad, sino también en el
tiempo de espera de los trabajos y del consumo energético.
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CHAPTER 1

Introduction

This chapter starts with the motivation of this Philosophiae Doctor (doctor of philosophy) (PhD)
dissertation. The objectives of this thesis are introduced next, followed by a statement of how the
di�erent contents are structured along this document.

1.1 Motivation

The unstoppable increase of computing cores in high-performance computing (HPC) facilities
needs of speci�c programming paradigms that harness the underlying infrastructure. Nowadays, the
vast majority of applications are ready to run on multiple computational units working together in
the same problem in order to accelerate the computation. To leverage parallelism further, paradigms
that bene�t from concurrent computation on several nodes, such as the well-known message passing
interface (MPI), are utilized. Besides, more recently, the use of graphic processing units (GPUs)
as general-purpose accelerators has been extended thanks to their high number of computational
units, which heavily exploit parallelism.

On the one hand, providing a cluster with GPUs presents several handicaps, such as its high
acquisition cost, but also its high power consumption even in an idle state. GPU virtualization
techniques allow sharing devices among applications, provided that su�cient enough memory is
available in the GPU, especially if GPU-enabled applications may use a remote GPU from another
node. This means that when having a non-accelerated application allocating all the cores of a node,
the GPU in that node can be still leveraged. All these insights have a remarkable positive impact
in the GPU utilization, what is immediately translated into a higher throughput and a lower energy
consumption. In order to leverage GPU virtualization in a cluster, rCUDA [58][59] has been proven
to be a very reliable tool for HPC. Nevertheless, the current resource manager systems (RMSs) are
not ready for coping with virtual GPUs.

On the other hand, MPI applications usually follow the single program multiple data (SPMD)
programming model, where all the processes execute the same code, but aiming to di�erent data.
This homogeneous work�ow has permitted that ideas such as �malleability� have been adopted in
this �eld. MPI malleability can change on-the-�y the number of processes of a given job allow-
ing it to continue its execution with the new process layout. This recon�guration also assumes
data-redistribution among processes, what involves a higher e�ort from users willing to leverage
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malleability. For this reason, resource management tasks have become crucial when refereeing to
resource utilization and global throughput. In order to be aware of the cluster status, Slurm, one
of the most popular RMS in HPC, is able to handle detailed information of nodes and jobs making
easier to implement recon�guration policies for malleability. However, we still need a communica-
tion layer between both entities, the runtime system and the RMS. After their cooperation, a �xed
workload that cannot be �tted to the system requirements turns into an adaptive workload ready
for being recon�gured for the good of the productivity.

1.2 Objectives

As detailed in the motivation, our aim is to design deploy and analyze a set of tools to increase
the throughput of a production HPC cluster. We are focussed on optimizing the resource utilization
in the HPC facility from two di�erent perspectives: GPU, used as accelerators and processors in
the compute nodes.

Remote GPU management

First, we perform an exhaustive evaluation of the GPU virtualization adoption in a cluster
processing realistic workloads of scienti�c applications. This analysis arises from the pre-doctoral
development of an Slurm version with support for remote GPUs enabled by rCUDA.

GPU applications do not usually make a continuos stressing use of the devices, which present a
low utilization rate. Apart from that, in a production cluster jobs are assigned with the requested
resources. However, when in need for GPUs, jobs are restricted to be only assigned to nodes hosting
GPUs. GPU virtualization technologies may be leveraged to mitigate those side e�ects, by sharing
and o�shoring the GPUs.

Dynamic Management of Resources

The second approach for high throughput computing in our research deals with MPI applications
and involves the development of an application programming interface (API) to help users turning
their applications into malleables.

For this purpose, we have implemented the internal communication between the RMS and the
runtime to perform support and easy recon�guration actions targeting global throughput. The RMS
evaluates the recon�guration requests triggered by the jobs, and the runtime handles processes and
data redistribution.

The recon�guration request includes a series of user-de�ned parameters (minimum, maximum
and preferred) that tune the scheduling. With those parameters and the information of the system,
the recon�guration policy decides if expand or shrink a job.

When an action is taken the RMS conveys the guidelines of the recon�guration to the runtime,
which must perform the following operations: i) to allocate a new set of resources (only when ex-
panding); ii) to spawn the new processes in a new MPI communicator; iii) to perform the data
redistribution among processes in both communicators; iv) to de�ne the exact point of the exe-
cution where the new processes are going to continue; v) to terminate the processes of the initial
communicator; and vi) to deallocate the resources (only when shrinking).

We foster the development of malleable applications through two points of view:

� An API integrated in the Nanos++ runtime which presents an OmpSs-like syntax with auto-
matic data redistribution.
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� An external library linked to Nanos++ and Slurm which o�ers an MPI-like syntax allowing
user-driven data redistribution.

1.3 Structure of the Document

This manuscript is divided into four parts. Part I introduces background information helpful
to understand the rest of the document. This part is composed of three chapters. Chapter 1 is
the current chapter and includes the motivation, the objectives pursued and the structure overview
for this PhD dissertation. Chapter 2 describes the technology related with this thesis. Chapter 3
presents the state of the art of GPU virtualization and MPI malleability.

The two following parts present the conducted research in e�cient resource management for the
two di�erent approaches included in this dissertation:

� Part II describes the e�ect of using remote GPU (rGPU) management in HPC clusters and
cloud infrastructures. Chapter 4 studies the bene�ts of adopting a workload manager remote
GPU (rGPU)-enabled in a supercomputer. Chapter 5 explores the impact of rGPU manage-
ment in public and private clouds, where we present GPU scheduling as a service (GSaaS).

� Part III includes the design and implementation details as well as the correspondent perfor-
mance evaluation of dynamic management of resources (DMR) malleability solutions. Specif-
ically, Chapter 6 describes the initial study of a malleability API with an OmpSs-like syntax.
While Chapter 7, rede�nes the API in order to o�er a more usable malleability solution in the
shape of a library based on an MPI-like syntax.

Part IV concludes this work with a summary, future work and the conclusions of this PhD
dissertation. Appendix A displays the list of publications related to this thesis. Appendix B
contains a reproducibility artifact for DMRlib experiments.

5



CHAPTER 1. INTRODUCTION

6



CHAPTER 2

Related Technology

This chapter presents the most relevant software components that this PhD dissertation builds
upon. Apart from describing each technology, we remark the extensions or plugins leveraged in
order to provide the necessary background for subsequent chapters. The Slurm workload manager
is introduced �rst, since it is leveraged during all the research performed in this thesis. Next, Open-
Stack and rCUDA, employed in Part II, are presented. Finally, we describe the OmpSs programming
model, in which PartIII is based on.

2.1 Slurm

Slurm is an open-source, fault-tolerant, and highly scalable cluster manager and job scheduling
system for Linux clusters.

Figure 2.1 depicts a basic deployment of Slurm that consists of a daemon that runs on each
computing node (slurmd), a central daemon that runs on the management node (slurmctld), and
several command line utilities (srun, scancel, sinfo, squeue, and scontrol). The daemons manage
nodes, the basic compute resource in Slurm; partitions, which group nodes into logical disjoint sets;
jobs or allocations of resources assigned to a user for a speci�ed amount of time; and job steps, which
are sets of (possibly parallel) tasks within a job. Available nodes within a partition are assigned to
jobs in the priority queue.

Slurm can be extended with plugins for:

� Accounting Storage: Primarily Used to store historical data about jobs. When used with
SlurmDBD (Slurm Database Daemon), it can also supply a limits based system along with
historical system status.

� Account Gather Energy: Gather energy consumption data per job or nodes in the system.
This plugin is integrated with the Accounting Storage and Job Account Gather plugins.

� Authentication of communications: Provides authentication mechanism between various com-
ponents of Slurm.

� Checkpoint: Interface to various checkpoint mechanisms.
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Figure 2.1: Slurm basic components interactions diagram.

� Cryptography (Digital Signature Generation): Mechanism used to generate a digital signature,
which is used to validate that job step is authorized to execute on speci�c nodes. This is
distinct from the plugin used for Authentication since the job step request is sent from the
user's srun command rather than directly from the slurmctld daemon, which generates the
job step credential and its digital signature.

� Generic Resources: Provide interface to control generic resources like GPUs and Intel many
integrated core (MIC) processors.

� Job Submit: Custom plugin to allow site speci�c control over job requirements at submission
and update.

� Job Accounting Gather: Gather job step resource utilization data.

� Job Completion Logging: Log a job's termination data. This is typically a subset of data
stored by an Accounting Storage Plugin.

� Launchers: Controls the mechanism used by the srun command to launch the tasks.

� MPI: Provides di�erent hooks for the various MPI implementations. For example, this can
set MPI speci�c environment variables.

� Preempt: Determines which jobs can preempt other jobs and the preemption mechanism to
be used.

� Priority: Assigns priorities to jobs upon submission and on an ongoing basis (e.g. as they
age).
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� Process tracking (for signaling): Provides a mechanism for identifying the processes associated
with each job. Used for job accounting and signaling.

� Scheduler: Plugin determines how and when Slurm schedules jobs.

� Node selection: Plugin used to determine the resources used for a job allocation.

� Switch or interconnect: Plugin to interface with a switch or interconnect. For most systems
(Ethernet or In�niBand) this is not needed.

� Task A�nity: Provides mechanism to bind a job and it's individual tasks to speci�c processors.

� Network Topology: Optimizes resource selection based upon the network topology. Used for
both job allocations and advanced reservation.

2.1.1 Consumable Generic Resources

The Slurm extension for using rGPUs in an HPC cluster was used in the study performed out
in Chapter 4. This extension provides two new plugins:

� gres/rgpu: a generic resource plugin which introduces a new type of resource in the cluster,
the rGPU.

� select/cons_rgpu: a node selection plugin that detaches the rGPUs from the node con�gu-
ration of Slurm and make the rGPUs available from any node and shareable among jobs.

Without these plugins, consumable resources as GPUs were not assignable to jobs allocated in nodes
di�erent from the GPU host. Besides, if two jobs were allocated in the same host, only one could
have the GPU assigned.

2.1.2 Resource Reallocation

Part III at this dissertation discusses how jobs are resized with the collaboration of Nanos++
(BSC's OmpSs runtime system) and Slurm. Slurm is in charge of managing the resource allocation
of the jobs when a resize is performed, supporting changes in the job allocation of nodes. Natively,
Slurm o�ers a job resize mechanism described below:

� Job A has to be expanded

1. Submit a new job B with a dependency on the initial job A. Job B requests the number
of nodes (NB) to be added to job A.

2. Update job B setting its number of nodes to 0. This produces a set of NB allocated
nodes which are not attached to any job.

3. Cancel job B.

4. Update job A and set its number of nodes to NA+NB.

� Job A has to be shrunk

1. Update job A setting its number of nodes to the desired size (NA is updated).

After these steps, Slurm's environment variables for job A are updated. These commands have
no e�ect on the status of the running job, and the user remains responsible for any malleability
process and data redistribution.
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2.2 rCUDA

rCUDA is a framework that provides transparent access to any GPU installed in a cluster, in-
dependently of the location of the application requesting GPGPU services. Thus, rCUDA is useful
in a number of scenarios: i) in a cluster equipped with rCUDA, the designers can reduce the total
number of GPUs in the system, improving the utilization rate of the power-hungry hardware accel-
erators; ii) rCUDA can also be leveraged to signi�cantly accelerate the data-parallel computations
of a conventional cluster, by adding only a reduced pool of accelerators to the system, much smaller
than the total number of nodes; and iii) rCUDA increases the number of GPUs that can be accessed
by an application, from only the local accelerators to all GPUs available in the cluster. In summary,
in many practical cases, in exchange for a slight increase of the execution time of GPU-enabled
applications, considerable savings can be achieved in energy consumption, maintenance, space, and
cooling with rCUDA.

rCUDA is organized as a client-server distributed architecture (Figure 2.2). The client middle-
ware runs in the same cluster node as the application demanding GPU acceleration services, while
the server middleware runs in the cluster node where the physical GPU resides.

� The client middleware consists of a collection of wrappers that replace the NVIDIA CUDA
Runtime (provided by NVIDIA as a shared library) in the client (GPU-less) node, and some
accelerated libraries such as cuBLAS, cuFFT and cuSPARSE. These wrappers are in charge
of forwarding the API calls from the applications requesting acceleration services to the server
middleware, and retrieving the results, providing applications with the illusion of a direct
access to a local GPU.

� The server middleware runs as a service on one or more cluster nodes equipped with one or
more GPUs each. This middleware receives, interprets, and executes the API calls from the
clients on a real GPU, employing a di�erent process to serve each remote execution over an
independent GPU context, thus enabling GPU multiplexing.

rCUDA accommodates several underlying client-server communication technologies, thanks to
its modular, layered architecture, which supports runtime-loadable network-speci�c communication
libraries. This software currently provides communication modules for Ethernet and In�niBand
based networks. Furthermore, regardless of the speci�c communication technology, data transfers
between rCUDA clients and servers are pipelined for performance, using pre-allocated bu�ers of
pinned memory.

2.3 OpenStack

OpenStack is a cloud operating system (OS) that provides infrastructure as a service (IaaS).
OpenStack controls large pools of compute, storage, and networking resources throughout a data
center. All these resources are managed through a dashboard or an API that provides administrators
control while empowering their users to provision resources through a web interface or a command-
line interface. OpenStack supports most recent hypervisors and handles provisioning and life-cycle
management of VMs. The OpenStack architecture o�ers �exibility to create a custom cloud, with no
proprietary hardware or software requirements, and the ability to integrate with legacy systems and
third-party technologies. From the HPC perspective, OpenStack o�ers high performance virtual
machine con�gurations with di�erent hardware architectures. OpenStack is composed of several
projects, each one responsible for a service of the OS, as it is shown in Figure 2.3.

Among the 46 available projects, the most popular are:
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rCUDA library

Application

rCUDA daemon

CUDA library

Client side Server side

Network interface

Network

GPU

Figure 2.2: rCUDA scheme for the client and server components.

Figure 2.3: OpenStack shared services integration scheme.
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� NOVA: compute service.

� NEUTRON: networking.

� SWIFT: object storage

� GLANCE: image service.

� KEYSTONE: identity service.

� CINDER: block storage.

2.4 OmpSs

The OmpSs programming model extends OpenMP with new directives to support asynchronous
parallelism and heterogeneity. OmpSs is a task-based model that can de�ne tasks from functions
and structured blocks. By setting data dependencies among these tasks, OmpSs is capable of
implementing the asynchronous parallelism. OmpSs is implemented by BSC's Mercurium compiler
and Nanos++ runtime system.

Mercurium is a source-to-source compiler aimed at fast prototyping. The compiler refactors the
original code replacing the synchronous calls annotated by the user, with asynchronous calls to the
Nanos++ external API.

The Nanos++ runtime provides services to support task parallelism using synchronization based
on data dependencies. Its main purpose is to be used in research of parallel programming environ-
ments. Thanks to its modularity, it can be extended with plugins for:

� Task scheduling policy.

� Thread barrier.

� Device support.

� Instrumentation formats.

� Dependencies approach.

� Throttling policies.

Part III is based on the Nanos++ device support for cluster plugin, which enables working
with distributed-memory systems. This support for clusters allows the user to integrate the MPI
paradigm into their OmpSs code. Furthermore, this plugin implements an o�oading feature that
performs dynamic o�oads of tasks among MPI processes [67]. Leveraging this support, a task can
be migrated from one node to another. The process operates as follows:

� The job is launched and the initial MPI processes are created.

� When the task o�oading is triggered, a new set of MPI processes is created in a new commu-
nicator, using MPI_COMM_SPAWN_MULTIPLE.

� The initial processes pack and send the arguments and the data to the target processes in the
new communicator. Notice that the packet also contains the user code that has to be executed
by the new processes.
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� The new processes receive all the data and execute the expected code.

� Finally, the processes send a message back to signal the end of the o�oaded tasks and termi-
nate.

As we describe in Chapter 6, OmpSs functionality has been extended to leverage job malleability.
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CHAPTER 3

State of the Art

This chapter presents the state of art relevant to this dissertation, reviewing other research
and/or engineering e�orts and stating the di�erence with our contributions. The chapter is divided
in two sections. The �rst section describes the current solutions for GPU virtualization management
in HPC. The second section undertakes a review of the current state of malleability and the di�erent
available solutions to deal with it.

3.1 Remote GPUs Management

One of the issues for high-throughput computing (HTC) addressed in this dissertation involves
GPGPU virtualization, specially when it is aimed to increase a cluster productivity. For this reason,
in this section we describe the most remarkable technologies and projects related to this topic.

3.1.1 GPGPU Virtualization Technologies

GPUs have remarkably evolved during the last few years, from being just graphics coprocessors
to become powerful general-purpose accelerators, profusely adopted in HPC systems. In addition
to the favorable performance/cost ratio of GPUs, this evolution has been further stimulated by
considerable advances in GPU programmability. On the other hand, the deployment of GPUs
is hampered by their high acquisition and maintenance (including energy) costs, as well as the
limited amount of (GPU-appealing) data-parallelism for many applications. In this sense, GPGPU
virtualization o�ers an alluring means to increase utilization of the GPUs in an HPC facility, which
can potentially yield a faster amortization of the total costs of ownership (TCO) for this type of
equipment. Concretely, GPU virtualization logically decouples the GPUs in the cluster from the
nodes they are located in, thus opening a path to share the accelerators among all the applications
that request GPGPU services, independently of whether the node(s) these applications are mapped
to are equipped with a GPU. In consequence, the GPUs can be accessed from any application
running in the cluster, the amount of these accelerators can be reduced, and their utilization rate
can be signi�cantly improved.

Frameworks such as CUDA [55] assist programmers in using GPUs for general-purpose com-
puting. Several remote GPU virtualization solutions exist for this API, such as GridCuda [43],
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DS-CUDA [56], gVirtuS [17], vCUDA [69], GViM [20], Shadowfax [53], gCloud [8], Vgris [63] and
rCUDA [58][59]. These middleware systems make a GPU accessible from remote nodes, that is,
from nodes where the physical device is not hosted. In this way, these tools provide applications
with virtual instances of the real device, which can therefore be concurrently shared. In general,
CUDA-based virtualization solutions aim to o�er the same API as the NVIDIA CUDA Runtime
API does, enabling seamless remote access.

CUDA-based GPU virtualization solutions may be classi�ed into 2 types:

� those devised as general-purpose virtualization solutions, to be used in native domains, and

� those intended to be used in the context of cloud computing.

3.1.1.1 Remote GPUs management in clusters

Among the virtualization solutions that provide general purpose GPU virtualization, one can
�nd rCUDA, GridCuda and DS-CUDA. rCUDA, described in 2.2, features CUDA 7.5 and provides
speci�c communication support for transmission control protocol/internet protocol (TCP/IP) com-
patible networks [10, 64] as well as for In�niBand (IB) fabrics [58, 59, 9]. GridCuda [42] also o�ers
access to rGPUs in a cluster but supports the old CUDA version 2.3. Regarding DS-CUDA, it
integrates a more recent version of CUDA (v4.1) and includes speci�c communication support for
IB by making use of the IB Verbs API. However, DS-CUDA presents several strong limitations,
such as not allowing data transfers with pinned memory. In the those frameworks, applications in-
voking CUDA kernels are not aware that their requests are intercepted by the corresponding GPU
virtualization middleware and redirected to a real GPU, which is generally located in a remote node
of the cluster.

Although remote GPU virtualization has demonstrated very low overhead with respect to a
con�guration with a local GPU, due to its novelty, this technology was not supported by job sched-
ulers that are commonly encountered in production clusters (e.g., SLURM1, PBSPro2, MOAB3,
TORQUE4, LSF5, OAR6, MAUI7, LoadLever8, Condor9, and Oracle Grid Engine10). In particular,
a common job scheduler in production only dealt with real GPUs so that, when a job requested
a number of nodes equipped with one (or more) GPU(s), the scheduler tried to map that job to
nodes that actually owned the requested number of GPUs, thus impairing the bene�ts of GPU
virtualization.

In the master's thesis in [22] we presented an extension to Slurm that support remote GPU
virtualization. With this extension Slurm becomes aware of the fact that the assignment would
no longer be constrained by the GPU kernels having to be executed in the same node where the
invoking application is mapped to. The goal was thus to create a GPU virtualization-aware job
scheduler which in turn allowed applications to leverage all the cluster GPUs, independently of
their location. However, the master's thesis lacks of a thorough analysis of the Slurm's extension in
day-to-day HPC scenarios.

1https://slurm.schedmd.com
2https://pbsworks.com
3http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-basic-edition/
4http://www.adaptivecomputing.com/products/open-source/torque/
5https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_welcome.html
6https://oar.imag.fr
7http://www.adaptivecomputing.com/products/open-source/maui/
8https://www-03.ibm.com/systems/power/software/loadleveler/
9https://research.cs.wisc.edu/htcondor/

10http://www.oracle.com/technetwork/oem/grid-engine-166852.html
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3.1.1.2 Remote GPUs management in clouds

General-purpose computing on graphics processing units (GPGPU) in the cloud has been a
topic massively addressed in the last years. From the beginning, peripheral component interconnect
(PCI) passthrough [78] is the most common solution for providing GPU-enabled virtual machines
(VMs), where a VM is con�gured with exclusive access to the PCI port of the accelerator. Despite
the rigidness of this solution, it is used by cloud providers like Amazon web service (AWS)11, which
is currently one of the �agships in IaaS. AWS o�ers GPU-capable VMs with support to CUDA
and OpenCL through Amazon Elastic Compute Cloud EC212. Authors in [21] discuss about how
heterogeneous computing with GPUs can bene�t the Cloud and give their perspective on the need
for a paradigm shift.

More �exible approaches have been proposed to provide GPU access to non-GPU-enabled clients,
contributing to the current state-of-art. In a desktop virtualization setting we �nd the NVIDIA
GRID GPU13 and the Intel KVMGT14 technology which implement complete GPU virtualization.
However, our focus is on data centers.

Several solutions have been developed to be speci�cally used within VMs, such as, for example,
vCUDA, GViM, gVirtuS, Shadowfax, gCloud and Vgris. The vCUDA technology, intended for
Xen15 VMs, only supports an old CUDA version (v3.2) and implements an unspeci�ed subset of the
CUDA Runtime API. GViM, targeting Xen environments, is based on the obsolete CUDA version
1.1 and, in principle, does not implement the entire CUDA Runtime API. gVirtuS is based on an
old CUDA version (being more than 6 years without any update)16 and implements only a small
portion of its API. Despite being designed for VMs, it also provides TCP/IP communications for
remote GPU virtualization, thus allowing applications in a non-virtualized environment to access
GPUs located in other nodes. Shadowfax allows Xen VMs to access any GPUs in the cluster;
however it only supports the obsolete CUDA version . gCloud is a similar solution, but it is not
yet integrated in a cloud computing manager, and the application source code has to be adapted to
run in the virtual environment. Finally, Vgris [63] has not been tested on cloud infrastructures and
only allows local access to GPUs.

Furthermore, we can also �nd in the literature e�orts to integrate GPGPU virtualization tech-
nologies in cloud environments. For instance, authors in [37] combined OpenStack, KVM17, and
rCUDA to enable scalable use of GPUs among virtual machines.

Although some of these projects are showing a high rate of matureness, they have neglected
their integration in real cloud platforms, and their management of the GPU resources.

3.2 Malleability

This section addresses the other issue for HTC included in this manuscript: job malleability.

Applications are submitted in the shape of jobs to the workload manager. Jobs can be classi�ed
in four di�erent types depending on who and when their number of processes (job size) have been
de�ned [46]. Hence, the classi�cation (see Table 3.1) takes into account if the size of a job has
been determined by the user or by the system and if it has been decided at submittal or during the

11Amazon web services: http://aws.amazon.com.
12Amazon EC2: http://aws.amazon.com/ec2.
13www.nvidia.com/object/grid-technology.html
14https://01.org/igvt-g/blogs/wangbo85/2017/intel-gvt-g-kvmgt-public-release-q22017
15https://www.xenproject.org
16https://www.openhub.net/p/gvirtus
17https://www.linux-kvm.org/page/Main_Page
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Table 3.1: D. Feitelson and L. Rudolph job classi�cation depending on how their size is determined.

Who
When

Submission Execution

User Rigid Evolving
System Moldable Malleable

execution of the job.

The most common type of jobs in current HPC facilities are the rigid jobs; however, many RMSs
provide commands that allow moldable jobs. On the contrary, jobs that change their size during
the execution time are not so usual, since they not only require a resizing framework, but also the
e�ort from the user who is the responsible for implementing the recon�guration of the application.

3.2.1 Job Recon�guration

In 1996, D. Feitelson and L.Rudolph established a classi�cation for jobs [15] considering who
and when their size is determined (see Table 3.1).

From that classi�cation, many studies in job recon�guration arose. For instance, the �rst steps
toward malleability in shared-memory systems, which exploited the �exibility of applications. In [57]
authors present a series of preemptive policies that interrupt active jobs in order to redistribute
processors among the pending jobs.

More interesting is the adoption of malleability in distributed-memory systems. Here, depending
on how the application data is redistributed during a job recon�guration, we distinguish two groups:
data-on-disk and data-in-memory. Furthermore, some malleability solutions have been designed to
collaborate with an RMS. Thus, the RMS, aware of the system status, decides when and where
the recon�guration has to occur, while the runtime, with this information, performs the necessary
operations for the recon�guration of the job.

3.2.1.1 On-disk Recon�guration

On-disk recon�guration is based on the principle of saving the state of a job in a non-volatile
memory device, in order to load it when required. checkpoint/restart (C/R) is the most popular
example of that type of mechanism. C/R saves the state of an application at a given point of its
execution and reloads it at a future time. Traditionally, it is used for preventing data loss in the
exceptional case of a system fault. However, C/R has also been utilized in job malleability with
the methodology of halting the execution in order to resume it with a di�erent number of processes
(see Figure 3.1).

Authors in [11] present an extension of the process checkpointing and migration (PCM) MPI
library [13] in order to automate the processes recon�guration task. Their work explores how
malleability can be used in C/R applications [12]. The checkpoint�and�recon�gure mechanism is
leveraged to restart applications with a di�erent number of processes from data stored in checkpoint
�les.

Charm++ [38] is a parallel programming system that virtualizes the processors and bases its
paradigm in migratable objects called chares. Their implicit synchronization mechanisms allow jobs
to be recon�gured [1]. The recon�guration process is based on the native Charm++ C/R feature, so
that, after saving the state of the application, the chares are redistributed among the new processes
to resume the execution. Leveraging Charm++ we �nd Adaptive MPI (AMPI) [19], which is an
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#0

MPI initial communicator

#4#1 #2 #3

MPI spawned communicator

Figure 3.1: Scheme of on-disk recon�guration.

implementation of MPI on top of Charm++'s adaptive runtime system.
Authors in [41] extent the scalable checkpoint/restart (SCR) MPI library [54], which only fetches

the checkpoint �le matching the MPI rank which saved the state. The extension enables job re-
con�guration by allowing each rank to request any information on demand. However, the user is
expected to use SCR API functions to orchestrate malleability.

3.2.1.2 In-memory Recon�guration

Traditional on-disk C/R solutions show a low performance because of the costly disk access
when writing and reading. Although there are in-memory C/R solutions [79], they are not yet
standardized in production environments. Dynamic data redistribution mechanisms distribute the
data, point-to-point or collectively, among processes without accessing the disk (see Figure 3.2).
The data is always stored in the volatile memory of the node, what accelerates its manipulation.

The EasyGrid application management system (EasyGrid AMS) library [65] is aimed at adjust-
ing automatically the scale of a running application. For this reason, the library provides a new
set of functions enables developers to: determine recon�guration points; calculate the new grade of
parallelism, depending on the data gathered during the execution, and redistribute the data; and
trigger recon�gurations.

Authors in [48] present an extension of MPI (named Flex-MPI) which integrates three new
features: monitoring, load-balancing and data redistribution. Their performance-aware approach
enforces to follow the next steps for recon�guration:

� Get information about processes and environment.

� Register the data structures managed by the runtime.

� Enable the application performance monitoring engine.

� Recon�gure the job, if needed.

In [41], the MPI user level failure migration (ULFM) library is leveraged for malleability. Al-
though ULFM is not in the MPI standard implementations, authors in this work combine the fault
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#0

MPI initial communicator

#4#1 #2 #3

MPI spawned communicator

Figure 3.2: Scheme of in-memory recon�guration.

tolerance mechanism in ULFM MPI_Comm_shrink with the MPI-2 standard routine MPI_Comm_spawn
to support dynamic recon�guration. When the application is requested to expand, the user is re-
sponsible for creating the new processes with MPI_Comm_spawn and redistribute the data among
them. On the contrary, if it the application is expected to shrink, the user is in charge of re-
distributing the data, killing the required MPI processes, and using MPI_Comm_shrink to get the
correct MPI communicator.

3.2.1.3 System-aware Recon�guration

So far, we have reviewed a set of libraries and runtimes capable of recon�guring applications
using di�erent approaches. However, some authors have implemented a simple ad-hoc scheduler, or
a simulator, in order to evaluate their solutions. Production environments rely on complex RMSs
which o�er a wide range of working options. These RMSs manage the underlying resources in the
cluster, as well as, the queue of jobs. That is why, these are the perfect candidates to orchestrate
the recon�gurations of a set of malleable jobs; in other words, an adaptive workload. An adaptive
workload does not need all its jobs to be malleable; however, the higher malleability rate, the higher
adaptivity to the system status. We next describe, some of the most relevant e�orts in adaptive
workloads management.

ReSHAPE [75] is a coupled solution for adaptive workloads that includes from the recon�guration
libraries to the scheduler, through the runtime. This strong integration forces ReSHAPE users to
speci�cally develop applications for this exclusive system.

The Power Aware Resource Manager (PARM) [68] uses over-provisioning, power capping, and
job malleability to maximize job throughput under a strict power budget in over-provisioned facil-
ities. Regarding the malleability, it relies on the Charm++ runtime support, which dynamically
redistributes compute objects to processors.

Authors in [61] combined adaptive MPI (AMPI) with the workload manager Torque/Maui.
Apart from extending the RMS to deal with malleable jobs, they provided a communication layer
between the Charm++ runtime and the Torque/Maui scheduler.

Elastic MPI [7] is presented as an infrastructure and API extensions for malleable execution of
MPI applications based on Slurm an the MPI implementation MPICH18. In this work, Slurm and

18http://www.mpich.org
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MPICH are extended with new functionalities in order to deal with job recon�guration. The close
integration of both systems allows Slurm to get the control of creating and removing MPI processes
while handling the resource allocations. MPICH has been provided with a set of new functions
than substitute and complement the current standard implementation. With these functions, the
application is initially de�ned as malleable and, periodically, the processes of the application check
if Slurm initiated a recon�guration.

3.2.2 Malleable Applications

Some of the previous malleability solutions have been used to develop malleable versions of full
applications. In this section we review some of the most relevant e�orts in turning applications
into malleable. Although we can also �nd synthetic applications emulating behaviors of production
software, they are out of the scope of our analysis.

In [73] the authors use ReSHAPE to bring malleability to their jobs, and they base their eval-
uation on NAS parallel benchmarks (NPB)19: integer sort (IS), conjugate gradient (CG), Fourier
transform (FT) and lower-upper Gauss-Seidel solver (LU). While the last one is de�ned as a pseudo-
application, the rest are kernels. In later studies [74] the authors move to synthetic workloads.

We can also �nd the CG method20 working on top of other resize tools such as Flex-MPI [48].
Besides, the authors of Flex-MPI also target Jacobi21 and Epigraph22, with the latter being a
more complex HPC application. Again, in subsequent studies [47], the authors move to synthetic
workloads.

A higher level of complexity is found in [61], with the malleable version of LeanMD23. This
is a molecular dynamics (MD) mini-application which implements a simpli�ed version of the force
calculations of NAMD24. The rest of the programs used by these authors synthetically emulate other
applications.

In [76] authors developed a malleable version of LAMMPS25. One of the most complex HPC
application developed so far in the scope of malleability. This is a classical molecular dynamics
code, implemented using its C/R capabilities, with ReSHAPE driving the recon�gurations.

So far, the presented applications follow a regular pattern, where all the processes are expected
to execute the same operations over di�erent data and to constantly swap their data. Authors in [7]
implement an application with data independence and a master-worker scheme, using their MPICH
extension for malleability. These features are inherently suitable for dynamic recon�guration of
processes, because workers do their job independently and can leave and join the working group at
any time.

3.2.3 Usability Study

This section presents examples of how each malleability solution addresses malleability pro-
grammatically. The study is limited to the implementation in: PCM API, AMPI, Flex-MPI and
the Elastic MPI, since the projects EasyGrid AMS, SCR extension, ULFM and ReSHAPE do not
provide any example on how to implement malleability.

19http://www.nas.nasa.gov/Software/NPB
20https://en.wikipedia.org/wiki/Conjugate_gradient_method
21https://en.wikipedia.org/wiki/Jacobi_method
22http://epigraph.mpi-inf.mpg.de/WebGRAPH
23http://charm.cs.illinois.edu/research/leanmd
24http://www.ks.uiuc.edu/Research/namd
25http://lammps.sandia.gov
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1 void main(int argc , char **argv) {

2 MPI_Init (&argc , &argv);

3 MPI_Comm_get_parent (& parentComm);

4 if (parentComm == MPI_COMM_NULL) {

5 step = 0;

6 /* Initialization */

7 } else {

8 MPI_Recv (&dataSize , myRank , parentComm);

9 MPI_Recv(data , myRank , parentComm);

10 MPI_Recv (&step , myRank , parentComm);

11 }

12 compute(data , dataSize , step);

13 }

14 void compute(double *data , int dataSize , int step) {

15 for (t = step; t < TIMESTEPS; t++) {

16 nodeList = get_new_nodelist_somehow ();

17 if (nodelist != NULL) {

18 MPI_Comm_spawn(myapp.bin , nodeList , &newComm);

19 MPI_Send(dataSize , myRank , newComm);

20 MPI_Send(data , myRank , newComm);

21 MPI_Send(t, myRank , newComm);

22 exit (0);

23 }

24 /* Computation */

25 }

26 }

Listing 3.1: Pseudo-code of job recon�guration using bare MPI.

Malleability traditionally targets at iterative applications, in which their main loop represents
an ideal synchronization point for redistributing data among processes. In order to implement
malleability using the di�erent solutions, we have designed an iterative application which performs
calculations over a single data array called data whose size is determined in dataSize. Using this
dummy application, we will perform a migration (it is the most simple case of recon�guration
because the number of processes does not change) using MPI pseudo-code and the tools provided
by each malleability solution. Of course, a recon�guration that expands or shrinks a job is more
complex programmatically, but a migration is su�cient to understand how each solution works.

In Listing 3.1 we �nd the skeleton of that application from a purely MPI approach. All the
examples across this section share the same skeleton. In the main function the data is initialized.
After that, the compute function is invoked. In that function we �nd the main loop, where the
real computation occurs and where malleability is implemented. Speci�cally, in this code we check
whether there is a parent communicator (line 4), which would state that the processes are in the
middle of a recon�guration. If it is not the case, the execution continues with the calculation stage
(line 12). However, if there is a parent communicator, processes have to receive the data from the
processes in the initial communicator (lines 8-10) in order to continue the execution in the line 12.

In the computational stage (line 14), for each step we would use a function that emulates a
resource request to a scheduler (line 16). The function, theoretically, would somehow return the
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1 void main(int argc , char **argv) {

2 PCM_MPI_Init (&argc , &argv);

3 PCM_COMM_WORLD = MPI_COMM_WORLD;

4 PCM_Init(PCM_COMM_WORLD);

5 PCM_Status status = PCM_Process_status;

6 if (status == PCM_STARTED) {

7 step = 0;

8 /* Initialization */

9 } else {

10 PCM_Load(myRank , "step", &step);

11 PCM_Load(myRank , "dataSize", &dataSize);

12 PCM_Load(myRank , "data", data);

13 }

14 compute(data , dataSize , step);

15 }

16 void compute(double *data , int dataSize , int step) {

17 for (t = step; t < TIMESTEPS; t++) {

18 pcm_status = PCM_Status(PCM_COMM_WORLD);

19 if (pcm_status == PCM_MIGRATE) {

20 PCM_Store(myRank , "step", &t, PCM_INT , 1);

21 PCM_Store(myRank , "dataSize", &dataSize , PCM_INT , 1);

22 PCM_Store(myRank , "data", data , PCM_DOUBLE , dataSize);

23 PCM_COMM_WORLD = PCM_Reconfigure(PCM_COMM_WORLD , argv [0]);

24 }

25 /* Computation */

26 }

27 }

Listing 3.2: Pseudo-code of job recon�guration using the PCM API.

node list where the processes should be spawned.

If the list is null, the computation continues normally (line 24). Nevertheless, a non-null return
means that a recon�guration has to take place. On this basis, the new processes are spawned
(line 18) and the data is sent to them (lines 19-21). Once the data is received, the initial processes
terminates their execution (line 22), letting the new ones continue with the execution.

3.2.3.1 PCM API

Following the example presented in [12], we have adopted malleability in our skeleton code using
the PCM API (Listing 3.2). PCM wraps many of the MPI functions/variables, but the work�ow
is practically the same that we saw in Listing 3.1. In line 6, we check the status, so if there is a
migration in progress, the data is loaded (lines 10-12)

The compute function (line 16) has also a lot of similarities with the pure MPI implementation.
We use the API function �PCM_Status� in line 18, in order to know which recon�guration action
has been scheduled. Although in this case we are only considering the migration, the PCM API
provides more recon�guration actions. For this reason, data is �stored� and the recon�guration is
triggered (lines 20-23), which correspond to the spawning of processes and the data sending.
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1 void main(int argc , char **argv) {

2 step = 0;

3 /* Initialization */

4 compute(data , dataSize , step);

5 }

6 void compute(double *data , int dataSize , int step) {

7 MPI_Info_create (&hints);

8 MPI_Info_set(hints , "ampi_load_balance", "sync");

9 for (t = step; t < TIMESTEPS; t++) {

10 /* Computation */

11 AMPI_Migrate(hints);

12 }

13 }

Listing 3.3: Pseudo-code of job recon�guration using AMPI.

3.2.3.2 AMPI

AMPI, through Charm++, provides fully automated support for migrating MPI ranks among
nodes in a system without any application-speci�c code at all26. In the example of Listing 3.3,
we have used �isomalloc�27, which allows every worker thread in the system to allocate slices of
virtual memory for all user-level threads, enabling transparent migration of pointers into memory.
For other ways of allocation, AMPI provides registration data mechanisms, as well as tools for data
pack/unpack in order to perform the data redistribution among ranks.

Since we are assuming the implicit registration of data provided by �isomalloc� in the initial-
ization (line 3), the main function initiates the computation in line 4. There, the recon�guration
is parametrized using an �MPI_Info� object (lines 7-8) and the iterations are initiated. For each
iteration, the data is computed (line 10) and the migration mechanism is invoked (line 11).

3.2.3.3 Flex-MPI

The authors in [47] present an example code that we have ported to our skeleton. Flex-MPI
is not only a malleability solution, but also a performance-aware framework able to monitor the
execution performance in each iteration, in order to schedule the most appropriate recon�guration
action. This is why the resulting code presents a higher level of instrumentation.

In Listing 3.4 we show the malleable implementation of our sample code using Flex-MPI. At the
beginning of the program, data is initialized and registered before the computation stage (lines 4-
9). Then, in each computational step (line 13), the performance monitor is initiated and the
computation performed (lines 14-15). With the gathered information during the step execution, a
recon�guration action is taken (line 16). Notice that after a recon�guration, unlike the previous
malleability solutions, the execution �ow does not return to the main function, but it remains in
compute for the rest of the run. Although, this study is focused on the migration action, Flex-MPI
implements a simple procedure for removing processes in case of a shrink. Lines 17-18 check each
process and terminate processes selected by the runtime.

26http://charm.cs.illinois.edu/manuals/html/ampi/manual.html
27http://charm.cs.illinois.edu/manuals/html/tcharm/manual-1p.html
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1 void main(int argc , char **argv) {

2 MPI_Init (&argc , &argv);

3 step = 0;

4 /* Initialization */

5 XMPI_Get_wsize ();

6 XMPI_Register(dataSize);

7 XMPI_Register(data);

8 XMPI_Register(step);

9 XMPI_Get_Shared_data ();

10 compute(data , dataSize , step);

11 }

12 void compute(double *data , int dataSize , int step) {

13 for (t = step; t < TIMESTEPS; t++) {

14 XMPI_Monitor_init ();

15 /* Computation */

16 XMPI_Eval_reconfiguration ();

17 status = XMPI_Get_process_status ();

18 if (status == EMPI_REMOVED)

19 break;

20 }

21 }

Listing 3.4: Pseudo-code of job recon�guration using Flex-MPI.

3.2.3.4 Elastic MPI

A malleable application following a producer�consumer scheme using MPICH extensions was
illustrated in the original paper presenting this approach [7]. Although the current project does
not support a complete migration of processes (the node where srun is executed cannot be substi-
tuted because of an intrinsic limitation of the model), our pseudo-code in Listing 3.5 assumes this
limitation has been removed.

The program starts with a new version of the original MPI_Init, which features a new parameter
for malleability (line 2). This new parameter indicates if the process has been created by Slurm
(line 3). If this is the case, the process probes if it has to be adapted to a new process layout
(line 4) in order to carry out the recon�guration and the data redistribution (line 6-8). The authors
do not provide su�cient information about how to perform the data redistribution; however we
know where it occurs (line 7 and 21). When the process is created by the launcher (line 11), the
application performs the original initialization of variables .

Once the program is initiated, the execution continues in the computation stage (line 18). For
each iteration, the processes probe if an adaptation is occurring (line 20), and if that is the case,
the recon�guration and the redistribution are leveraged (lines 22-24). Finally, the processes execute
their operations in line 26.

Notwithstanding the variety of methods presented to adopt malleability in parallel scienti�c
applications, none of them combines the features that we consider crucial in order to gain popularity
among developers: i) automatic support for data transfers in job recon�gurations; and ii) a friendly
syntax imported from parallel programming models such as OpenMP or MPI. Furthermore, for
MPI-like syntax, the solutions must be based on the MPI standard without a dependency to any
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1 void main(int argc , char **argv) {

2 MPI_Init_adapt (&argc , &argv , &local_status);

3 if (local_status == JOINING) {

4 MPI_Probe_adapt (&adapt);

5 if (adapt == ADAPT_TRUE) {

6 MPI_Comm_adapt_begin ();

7 /* Data redistribution code */

8 MPI_Comm_adapt_commit ();

9 }

10 } else {

11 if (local_status == NEW) {

12 step = 0;

13 /* Initialization */

14 }

15 }

16 compute(data , dataSize , step , local_status);

17 }

18 void compute(double *data , int dataSize , int step , local_status) {

19 for (t = step; t < TIMESTEPS; t++) {

20 MPI_Probe_adapt (&adapt);

21 if (( local_status == JOINING) || (adapt == ADAPT_TRUE)) {

22 MPI_Comm_adapt_begin ();

23 /* Data redistribution code */

24 MPI_Comm_adapt_commit ();

25 }

26 /* Computation */

27 }

28 }

Listing 3.5: Pseudo-code of job recon�guration using Elastic MPI.
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particular MPI library.

27



CHAPTER 3. STATE OF THE ART

28



Part II

Remote GPUs Management

29





CHAPTER 4

rGPUs in an HPC Cluster

GPUs are currently used in data centers to reduce the execution time of compute-intensive
applications. However, the use of GPUs presents several side e�ects, such as increased acquisition
costs as well as larger space requirements. Furthermore, GPUs require a non-negligible amount of
energy even while idle. Additionally, GPU utilization is usually low for most applications.

In this regard, the remote GPU virtualization mechanism could be leveraged to share the GPUs
present in the computing facility among the nodes of the cluster. This can increase overall GPU
utilization, thus reducing the negative impact of the increased costs mentioned before. Reducing
the amount of GPUs installed in the cluster could also be possible.

In this chapter we analyze the performance attained by a cluster using the rCUDA remote GPU
virtualization middleware together with the Slurm version with remote GPU support, from two
points of view: (i) cluster throughput and GPU utilization are increased at the same time that
energy consumption is reduced; (ii) cluster upgrades are made easier and cheaper just by attaching
GPU-enabled servers to a non-GPU infrastructure. In addition, a series of remote GPU resource
selection policies have been developed and are evaluated at the end of the chapter.

4.1 Increasing the Cluster Throughput

In this section we study the impact that using the remote GPU virtualization mechanism poses
on the performance of a data center. To that end, we have executed several workloads in a cluster
by submitting a series of randomly selected job requests to the Slurm queues. After job submission
we have measured several parameters such as total execution time of the workloads, energy required
to execute them, GPU utilization, etc. We have considered two di�erent scenarios for workload
execution. In the �rst, the cluster uses original CUDA libraries and therefore applications can only
use those GPUs installed in the same node where the application is being executed. In this scenario,
an unmodi�ed version of Slurm has been used. In the second scenario we have made use of rCUDA
and therefore an application being executed in a given node can use any of the GPUs available in
the cluster. The modi�ed version of Slurm [22] has been used so that it is possible to schedule the
use of remote GPUs. These two scenarios will allow to compare the performance of a cluster using
CUDA with that of a cluster using rCUDA.

In order to present the performance analysis, we �rst present the cluster con�guration and the
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Table 4.1: Con�guration details for each application

Application Con�guration Execution time GPU Memory

GPU-Blast 1 6-thread process in 1 node 21 s 1599 MB

LAMMPS 4 single-thread processes in 4 di�erent nodes 15 s 876 MB

mCUDA-MEME 4 single-thread processes in 4 di�erent nodes 165 s 151 MB

GROMACS 2 12-thread processes in 2 di�erent nodes 167 s -

BarraCUDA 1 single-thread process in 1 node 763 s 3319 MB

MUMmerGPU 1 single-thread process in 1 node 353 s 2104 MB

GPU-LIBSVM 1 single-thread process in 1 node 343 s 145 MB

NAMD 4 12-thread processes in 4 di�erent nodes 241 s -

workloads used in the experiments.

4.1.1 Cluster Con�guration

The testbed used in this study is based on the use of a cluster composed of 16 1027GR-TRF
Supermicro servers. Each of the 16 servers includes two Intel Xeon E5-2620 v2 processors (six
cores with Ivy Bridge architecture) operating at 2.1 gigahertzs (GHzs) and 32 gigabytes (GBs) of
double data rate type 3 synchronous dynamic random-access memory (DDR3 SDRAM) at 1.6 GHzs.
They also feature a Mellanox ConnectX-3 VPI single-port fourteen data rate (FDR) In�niBand
adapter connected to a Mellanox Switch SX6025 (In�niBand FDR compatible) to exchange data
at a maximum rate of 56 Gb/s. An NVIDIA Tesla K20 GPU is installed at each node. One
additional node without GPUs has been leveraged to execute the central Slurm daemon responsible
for scheduling jobs.

All the evaluation was performed using the rGPU selection policy ��rst remote�, which prioritizes
the selection of remote GPUs before local. This policy arranges all the rGPUs in an array, having
the rGPUs hosted in the assigned nodes (if any) at the end of the array. The policy iterates the
array checking if the current rGPU meets the requirements of GPU memory. As much as the policy
�nds resources, those are assigned to the job until ful�lling the request.

4.1.2 Workloads

The workloads generated aim to provide a representative range of results, for this reason we
have leveraged these applications: GPU-Blast [77], LAMMPS [3], mCUDA-MEME [45], GRO-
MACS [62], BarraCUDA [39], MUMmerGPU [40], GPU-LIBSVM [5] and NAMD [60]. Table 4.1
provides additional information about the applications used in this work, such as the exact execution
con�guration used for each of the applications, their execution time, and the GPU memory required
by each application. For the multi-thread/multi-process applications, the amount of GPU memory
depicted in Table 4.1 refers to the individual needs of each particular thread or process. Notice that
the amount of GPU memory is not speci�ed for the GROMACS and NAMD applications because
we are using non-accelerated versions of these applications. The reason for this choice is simply to
increase the heterogeneity degree of the workloads by using some CPU-only applications, as it could
be the case in many data centers in production. The previous applications have been combined in
order to create three di�erent workloads as shown in Table 4.2.

As can be seen, the eight applications used present di�erent characteristics, not only in the
number of processes and threads used by each of them and their execution time but also in the
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Table 4.2: Workloads composition (number of jobs per application)

Application
Workload

Set 1 Set 2 Set 1+2

GPU-Blast 112 - 57

LAMMPS 88 - 52

mCUDA-MEME 99 - 55

GROMACS 101 - 47

BarraCUDA - 112 51

MUMmerGPU - 88 52

GPU-LIBSVM - 99 37

NAMD - 101 49

Total 400 400 400

Table 4.3: Slurm launching parameters
Application Launch with CUDA Launch with rCUDA exclusive Launch with rCUDA shared

GPU-Blast -N1 -n1 -c6 �gres=gpu:1 -n1 -c6 �rcuda-mode=excl �gres=rgpu:1 -n1 -c6 �rcuda-mode=shar �gres=rgpu:1:1599M

LAMMPS -N4 -n4 -c1 �gres=gpu:1 -n4 -c1 �rcuda-mode=excl �gres=rgpu:4 -n4 -c1 �rcuda-mode=shar �gres=rgpu:4:876M

mCUDA-MEME -N4 -n4 -c1 �gres=gpu:1 -n4 -c1 �rcuda-mode=excl �gres=rgpu:4 -n4 -c1 �rcuda-mode=shar �gres=rgpu:4:151M

GROMACS -N2 -n2 -c12 -N2 -n2 -c12 -N2 -n2 -c12

BarraCUDA -N1 -n1 -c1 �gres=gpu:1 -n1 -c1 �rcuda-mode=excl �gres=rgpu:1 -n1 -c1 �rcuda-mode=shar �gres=rgpu:1:3319M

MUMmerGPU -N1 -n1 -c1 �gres=gpu:1 -n1 -c1 �rcuda-mode=excl �gres=rgpu:1 -n1 -c1 �rcuda-mode=shar �gres=rgpu:1:2104M

GPU-LIBSVM -N1 -n1 -c1 �gres=gpu:1 -n1 -c1 �rcuda-mode=excl �gres=rgpu:1 -n1 -c1 �rcuda-mode=shar �gres=rgpu:1:145M

NAMD -N4 -n48 -c1 -N4 -n48 -c1 -N4 -n48 -c1

GPU usage patterns, what includes both memory copies to/from GPUs and also kernel executions.
Therefore, although the set of applications considered is �nite, it should provide a representative
sample of a workload typically found in current data centers. We focus on the amount of resources
required by each application and the time that those resources are kept busy.

Table 4.3 displays the Slurm parameters used for launching each of the applications. The use of
real and virtual GPUs has been considered in the table. Notice that once Slurm has been enhanced,
its users are able to submit jobs to the system queues in three di�erent modes: (1) CUDA: no
change is required to the original way of launching jobs; (2) rCUDA exclusive: the job will use the
new remote virtual GPUs but it will not share them with other jobs; and (3) rCUDA shared: the
job will use remote virtual GPUs, which will be shared with other jobs. In the �rst case, CUDA
will be used (column labeled �Launch with CUDA�). In the second and third cases, rCUDA will be
leveraged. In the second approach, the column labeled as �Launch with rCUDA exclusive� shows
that no GPU memory is explicitly requested because the GPU assigned to a given job will not be
shared with other jobs. In the third case, the column labeled as �Launch with rCUDA shared� shows
that the amount of memory required at each GPU must be speci�ed in the submission command.

4.1.3 Analysis of Cluster Performance

Figure 4.1 shows, for each of the workloads depicted in Table 4.2, the performance when CUDA
is used along with the original Slurm job scheduler (results labeled as �CUDA�) as well as the
performance when rCUDA is used in combination with the modi�ed version of Slurm. In this
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Figure 4.1: Performance results from the 16-node 16-GPU cluster.

case, label �rCUDAex� refers to the results when remote GPUs are used in an exclusive way by
applications whereas label �rCUDAsh� refers to the case when remote GPUs can be shared among
several applications. Among both rCUDA uses, the shared variant is the most interesting because
its �exibility. Figure 4.1a shows total execution time for each of the workloads. Figure 4.1b depicts
the averaged GPU utilization for all the 16 GPUs in the cluster. Data for GPU utilization has been
gathered by polling each of the GPUs in the cluster once every second and afterward averaging all
the samples after completing workload execution. The nvidia-smi command was used for polling
the GPUs and extracting the data. In a similar way, Figure 4.1c shows the total energy required
for completing the workload execution. Energy has been measured by polling once every second
the power distribution unitss (PDUs) present the cluster1 After workload completion, the energy
required by all servers was aggregated to provide the measurements in Figure 4.1c.

As can be seen in Figure 4.1a, workload �Set 1� presents the smallest execution time, given that
it is composed of the applications requiring the smallest execution times. Furthermore, sharing the
accelerators (rCUDAsh) is translated in a reduction in execution time for the three workloads, since
more jobs can be concurrently executed. In this regard, execution time is reduced by 48%, 37%, and
27% for workloads �Set 1�, �Set 2�, and �Set 1+2�, respectively. Notice also that the use of remote
GPUs in an exclusive way also reduces execution time. In the case for �Set 2� this reduction is more
noticeable because when CUDA is used the NAMD application (with 101 instances in the workload)
spans over 4 complete nodes thus blocking the GPUs in those nodes, which cannot be used by any
accelerated application during the entire execution time of NAMD (241 seconds). On the contrary,
when �rCUDAex� is leveraged, the GPUs in those four nodes are accessible from other nodes and
therefore they can be used by other applications being executed at other nodes. Regarding GPU
utilization, Figure 4.1b shows that the use of remote GPUs helps to increase overall GPU utilization.
Actually, when �rCUDAsh� is used with �Set 1� and �Set 1+2�, average GPU utilization is doubled
with respect to the use of CUDA. Finally, total energy consumption is reduced accordingly, as shown
in Figure 4.1c, by 40%, 25%, and 15% for workloads �Set 1�, �Set 2�, and �Set 1+2�, respectively.

Several are the reasons for the bene�ts obtained when GPUs are shared across the cluster. First,
as already mentioned, the execution of the non-accelerated applications makes that GPUs in the
nodes executing them remain idle when CUDA is used. On the contrary, when rCUDA is leveraged,

1Used units are APC AP8653 PDUs, which provide individual energy measurements for each of the servers
connected to them.
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Figure 4.2: Normalized execution time when several instances run concurrently.

these GPUs can be used by applications being executed in other nodes of the cluster. Notice that
this remote usage of GPUs belonging to nodes with busy central processing units (CPUs) will
be more frequent as cluster size increases because more GPUs will be blocked by non-accelerated
applications (also depending on the exact workload). Another example is the execution of LAMMPS
and mCUDA-MEME, which require 4 nodes with one GPU. While these applications are being
executed with CUDA, those 4 nodes cannot be used by any other application from Table 4.1: on
the one hand, the other accelerated applications cannot access the GPUs in those nodes because
they are busy; on the other hand, the non-GPU applications (GROMACS and NAMD) cannot use
those nodes because they require all the CPU cores and LAMMPS and mCUDA-MEME already
took one core. However, when GPUs are shared among several applications, GPUs assigned to
LAMMPS and mCUDA-MEME can also be assigned to other applications that will run in any
available CPU in the cluster, thus increasing overall throughput.

The second reason for the improvements shown in Figure 4.1 is related to the usage that appli-
cations make of GPUs. As Table 4.1 showed, some applications do not completely exhaust GPU
memory resources. For instance, applications mCUDA-MEME and GPU-LIBSVM only use about
3% of the memory present in the NVIDIA Tesla K20 GPU. However, the unmodi�ed version of
Slurm (combined with CUDA) will allocate the entire GPU for executing each of these applications,
thus causing that almost 100% of the GPU memory is wasted during application execution. This
concern is also present for other applications in Table 4.1. Moreover, if NVIDIA Tesla K40 GPUs
were used instead of the NVIDIA Tesla K20 devices employed in this study, then this memory
underutilization would be worse because the K40 model features 12 GB of memory instead of the
5 GB of the Tesla K20 devices. On the contrary, when rCUDA is used in a shared way, GPUs
can be shared among several applications provided that there is su�cient memory for all of them.
Obviously, GPU cores will have to be multiplexed among all those applications, what will cause
that all of them execute slower.

In this regard, Figure 4.2 presents the execution times for the GPU-accelerated applications in
Table 4.1 when several instances of the same application are concurrently executed in a GPU. Al-
though, it is also possible to analyze concurrent executions when the applications concurrently using
the GPU are di�erent, using several instances of the same application generates a higher pressure
on the system because all the instances will try to synchronously perform the same operations.

35



CHAPTER 4. RGPUS IN AN HPC CLUSTER

Executions in Figure 4.2 have been manually constrained to a single node using CUDA. For
some of the applications, only 2 concurrent instances were executed because of their larger memory
requirements. In a similar way, BarraCUDA does not allow the concurrent execution of other
instances because of its high memory requirements. As shown, executing several instances of the
same application reports a speed-up for all of them: LAMMPS achieves the smallest one whereas
GPU-LIBSVM obtains signi�cant bene�ts. In summary, sharing a GPU among several applications
reduces the total execution time. This reduction makes that combining rCUDA with the modi�ed
version of Slurm results in important reductions in the time required to complete workload execution.

Another possible point of view related to sharing GPUs among applications is that all the
applications sharing the GPU run slower because they have to share the GPU cores. However,
despite of the slower execution of each individual application, the entire workload is completed
earlier, as shown in Figure 4.1. This means (1) that the time spent by applications waiting in the
Slurm queues is reduced and (2) the execution of each individual application is completed earlier.

4.2 Upgrading a non-GPU Cluster

The use of GPUs in a cluster usually poses several burdens on the physical con�guration of the
nodes. For instance, nodes owning a GPU need to include larger power supplies able to provide
the energy required by the accelerators. Also, GPUs are not small devices, and therefore, they
require a non-negligible amount of space in the nodes where they are installed. These requirements
make that installing GPUs in a cluster that did not initially include them may be expensive (power
supplies need to be upgraded) or simply impossible (nodes do not have su�cient physical space for
the GPUs). However, the workload in some data centers may evolve towards the use of GPUs. At
that point, the concern is how to address the introduction of GPUs in a computing facility that did
not include accelerators at acquisition time.

One possible solution to the above concern is acquiring some servers populated with GPUs and
divert the execution of accelerated applications to those nodes. The Slurm RMS would automatically
dispatch the GPU-accelerated applications to the new servers. However, although this approach is
feasible, it presents the limitation that GPU jobs will probably have to wait for long until one of
the GPU-enabled servers is available even though GPU utilization is usually low. Another concern
is that accelerated MPI applications will only be able to span to as many nodes as GPU-enabled
servers were acquired. Given these concerns, a better approach would be to acquire some servers
populated with GPUs and use rCUDA to execute accelerated applications at any of the nodes in
the cluster while using the GPUs in the new servers. This solution would not only increase overall
GPU utilization with respect to the use of CUDA in the previous scenario but will also allow MPI
applications to span to as many nodes as required because MPI processes would be able to remotely
access GPUs thanks to rCUDA. In summary, the remote GPU virtualization mechanism allows
clusters that did not initially include GPUs to be easily and cost-e�ciently updated for using GPUs
by attaching to them one or more computers containing GPUs. In this way, the original nodes will
make use of the GPUs installed in the new nodes, which will become GPU servers. The modi�ed
version of Slurm would be used to schedule the use of the GPUs in the new servers.

To analyze the performance of these 2 possible solutions, we have substituted 1 of the nodes in the
testbed cluster by a node containing 4 GPUs. This node is based on the Supermicro SYS7047GR-
TRF server, populated with 4 NVIDIA Tesla K20 GPUs and 1 FDR In�niBand network adapter.
To additionally consider the use of parallel applications to be able to increase the heterogeneity
of the workloads, we have modi�ed the workloads used in the previous experiments by modeling
distributed-memory applications with 2 and 4 threads, each one requiring a GPU. To that end,
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Table 4.4: Composition of two additional workloads (number of jobs per application)

Application
Workload

WL1 WL2

GPU-Blast 41 48

LAMMPS short 39 46

LAMMPS long 2p 20 10

LAMMPS long 4p 20 10

mCUDA-MEME short 39 46

mCUDA-MEME long 2p 20 10

mCUDA-MEME long 4p 20 10

GROMACS 40 40

BarraCUDA 40 47

MUMmerGPU 41 47

GPU-LIBSVM 40 46

NAMD 40 40

Total 400 400

2 di�erent �avors of the LAMMPS and mCUDA-MEME applications have been used, as shown
in Table 4.4: 1) �LAMMPS long 2p� and �mCUDA-MEME long 2p� consist of 2 single-threaded
processes that are forced to be executed in the same node. 2) �LAMMPS long4p� and �mCUDA-
MEMElong4p� consist of 4 single-threaded processes that will be forced to execute in the same node.
One additional �avor of these applications will model single-thread shared-memory applications.
This additional �avor is composed by the �LAMMPS short� and �mCUDA-MEME short� cases
shown in Table 4.4, which make use of 1 single-threaded process. Furthermore, small input data sets
are used for the �LAMMPS short� and �mCUDA-MEME short� cases whereas the multi-threaded
�avors use a large input data set to lengthen their execution time.

Figure 4.3 shows the performance results when a server with 4 GPUs has been attached to a
cluster without GPUs. The original cluster is composed of 15 nodes (same node con�guration as
in the previous subsections, but GPUs have been removed). Results show that decoupling GPUs
from nodes with rCUDA allows applications to make a much more �exible usage of the resources
in the cluster (doubling their utilization), execution time is reduced up to 70%, and the energy
consumption is halved.

4.3 Remote GPU Resource Selection Policies

After having proved the remarkable bene�ts of using remote GPUs in an HPC cluster, in this
section are introduced, described and evaluated 6 complementary rGPU resource selection policies
developed for this PhD dissertation. The �rst 4 policies only take into account the GPU memory
for the scheduling. The �fth considers the number of jobs hosted by each GPU, while the last not
only selects rGPUs, but also the target nodes. The rGPU selection policies are:

� First local: in this policy all the rGPUs are listed in an array, having the rGPUs hosted
in the assigned nodes (if any) at the beginning of the array. With this procedure, the policy
prioritizes the selection of local GPUs. The policy iterates the array checking if the current

37



CHAPTER 4. RGPUS IN AN HPC CLUSTER

0

20000

40000

60000

80000

Set 1 Set 2

E
x
ec

u
ti

o
n
 t

im
e 

(s
)

Workload

CUDA rCUDAsh

(a) Total execution time of workload.

0%

10%

20%

30%

40%

50%

Set 1 Set 2

G
P

U
 U

ti
li

za
ti

o
n

Workload

CUDA rCUDAsh

(b) Average GPU utilization.

0

10

20

30

40

50

Set 1 Set 2

E
n
er

g
y
 (

k
W

h
)

Workload

CUDA rCUDAsh

(c) Total energy consumed.

Figure 4.3: Performance results when a 4-GPU server is attached to a 15-node cluster without
GPUs.

rGPU meets the requirements of GPU memory. As much as the policy �nds resources, those
are assigned to the job until ful�lling the request.

� First remote: described in 4.1.1, this a variation of the previous policy, where the rGPUs
hosted in the assigned nodes (if any) are appended to the last positions of the array. With
this procedure, the policy prioritizes the selection of remote GPUs.

� Worst �t: this is the �rst policy that inspects the status of all the registered rGPUs before
assigning the resource to the job. Particularly, �worst �t� searches for the rGPU with the
highest amount of free memory. The goal of this policy is to distribute an equivalent amount
of the load among all the rGPU resources.

� Best �t: with a similar approach to �worst �t�, �best �t� aims at compacting the load in the
smallest number of rGPUs as possible. The algorithm searches for the most loaded GPUs (in
terms of allocated memory) and tries to �t the new job in the available memory.

� Fewer jobs GPU: the algorithm of this policy iterates all the available rGPUs in the cluster,
looking for the devices with the lower number of running jobs. In the case of parity, the �worst
�t� policy is applied.

� Fewer jobs node: this policy not only considers the GPU status, but also the number of
running jobs in the assigned nodes. The goal of this policy is to distribute the network tra�c
concentrated in a given node. This tra�c could be generated by the remote access to the GPU,
as well as MPI communications. Nodes are selected considering their number of assigned jobs.
Hence, nodes handling a lower number of jobs will be selected by the policy. Furthermore,
this policy is compatible with any of the previous rGPU selection policies.

All the described policies are based on the Slurm select/cons_res selection plug-in, so the
non-rGPU resources are managed in the same way, expect for the last policy.

For the evaluation of the implemented policies we only used the GPU-enabled applications of
Table 4.1, having as a result the workloads described in Table 4.5. Regarding the hardware, we
leveraged the 16-node GPU-enabled platform described in Section 4.1.1.
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Table 4.5: Workloads composition (number of jobs per application)

Application
Workload

Set 1 Set 2 Set 1+2

GPU-Blast 132 - 66

LAMMPS 138 - 71

mCUDA-MEME 130 - 68

BarraCUDA - 142 62

MUMmerGPU - 131 59

GPU-LIBSVM - 127 74

Total 400 400 400
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Figure 4.4: Performance results of the three workloads using di�erent rGPU selection policies.

Figure 4.4 depicts the performance results of each selection policy grouped by workload set.
The node-aware policy �fewer jobs node� was con�gured with two di�erent rGPU selection plug-ins:
��rst remote� and �worst �t�.

With a small variation in time, the results show an inconclusive evidence of a �winner� policy. In
general, the node-aware policies �fewer job node� seem to perform better due to the fair distribution
of jobs among the nodes, preventing the network interface saturation of the host that executes many
jobs. Apart from that, ��rst remote� also shows a slightly time improvement in sets 2 and 1+2,
since selecting remote devices lightens the burden of the host.

4.4 Conclusions

The chapter demonstrates the bene�ts of adopting a GPU virtualization technology, as it is the
rCUDA middleware, into a cluster managed by a rGPU-aware RMS. Thus, we have carried out a
thorough performance evaluation of a cluster using a modi�ed version of Slurm which is able to
manage the use of the rGPUs.

The improvements attained in execution time for a batch of jobs have been quanti�ed. The
associated reduction in energy consumption has also been presented. These features may be inter-
esting in the context of exascale computing facilities given that one of the walls in this area is the
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hard power consumption limitation.
Furthermore, it is also expected that as GPUs feature larger memory sizes, the bene�ts presented

in this section will become more remarkable.
Regarding the policies, we conclude that there is no clearly outstanding policy that performs

remarkably better for any kind of workloads. We assume this behavior to the simplicity of them
and the lack of additional scheduling information.
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CHAPTER 5

rGPUs in the Cloud

GPUs increment the computational power of a node thanks to their parallel architecture. This
trend has led cloud service providers such as Amazon or cloud operating systems such as OpenStack
to add VMs including this kind of accelerators to their facilities. To ful�ll these needs, the guest
hosts must be equipped with GPUs which, unfortunately, will be barely utilized if a non GPU-
enabled VM is running in the host. The solution presented in this section is based on remote access
to GPUs and how they can be shared in order to reach an equilibrium between service supply and
the applications' demand of accelerators. Particularly, we propose to decouple real GPUs from the
nodes by using the virtualization technology rCUDA. With this software con�guration, GPUs can
be accessed from any VM avoiding the need of placing a physical GPUs in each guest host.

For this purpose, we analyze from 2 perspectives the impact of adopting rGPUs in cloud envi-
ronments:

� we study and deploy a rGPU-enabled cluster through a public cloud computing provider; and

� we design and develop the support and the logic to provide e�ective and secure access to the
rGPUs in a private cloud infrastructure.

The results demonstrate this is a viable con�guration which adds �exibility to current and well-
known cloud solutions.

5.1 Public Cloud

Many cloud vendors have started o�ering VMs with GPUs in order to provide general-purpose
computing on graphics processing units (GPGPU) computation services. A few relevant examples
include AWS1, Penguin Computing2, Softlayer3 and Microsoft Azure4. In the public scope, one of
the most popular cloud vendors is AWS, which o�ers a wide range of pre-con�gured instances ready
to be launched.

1https://aws.amazon.com
2http://www.penguincomputing.com
3http://www.softlayer.com
4https://azure.microsoft.com
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Table 5.1: AWS HPC instances available in US EAST (N. VIRGINIA), June 2015.

Name virtual CPUs (vCPUs) Memory Network GPUs Price/h

c3.2xlarge 8 15 GiB High 0 $ 0.42

c3.8xlarge 32 60 GiB 10 Gb 0 $ 1.68

g2.2xlarge 8 15 GiB High 1 $ 0.65

g2.8xlarge 32 60 GiB 10 Gb 4 $ 2.6

Table 5.2: Network performance results using IPERF.

Server Client Network Bandwidth

g2.8xlarge c3.2xlarge High 1 Gb/s

g2.8xlarge c3.8xlarge 10 Gb 7.5 Gb/s

g2.8xlarge g2.2xlarge High 1 Gb/s

g2.8xlarge g2.8xlarge 10 Gb 7.5 Gb/s

5.1.1 Amazon Web Services Features

AWS is a public cloud computing provider, o�ering several services, such as cloud-based com-
putation, storage and other functionality. AWS enables organizations and/or individuals to deploy
services and applications on demand. These services replace company-owned local information
technology (IT) infrastructure and provide agility and instant elasticity matching perfectly with
enterprise software requirements. From the point of view of HPC, AWS o�ers high-performance
facilities via instances equipped with GPUs and high-performance network interconnections.

Instances An instance is a pre-con�gured VM focused on a speci�c target. Among the large list
of instances o�ered by AWS, we can �nd specialized versions for general-purpose (T2, M4 and M3);
computer science (C4 and C3); memory (R3); storage (I2 and D2) and GPU capable (G2). Each
type of instance has its own purpose and cost (price). Moreover, each type o�ers a di�erent number
of CPUs as well as network interconnection, which can be: low, medium, high or 10 gigabit (Gb).
For our study, we worked in the AWS availability zone US EAST (N. VIRGINIA). The instances
available in that case present the features reported in Table 5.1. For the following experiments, we
select C3 family instances, which are not equipped with GPUs, as clients, whereas instances of the
G2 family will act as GPU-enabled servers.

Networking Table 5.1 shows that each instance integrates a di�erent network. Since the bandwidth
is critical when GPU cloudi�cation is applied, we �rst perform a simple test to verify the real network
bandwidth. To evaluate the actual bandwidth, we executed the IPERF5 tool among the instances
described in Table 5.1, with the results shown in Table 5.2. From this experiment, we can derive
that network �High� corresponds to a 1 Gb interconnect while �10 Gb� has a real bandwidth of
7.5 gigabits per second (Gb/s). Moreover, it seems that the bandwidth of the instances equipped
with a �High� interconnection network is constrained by software to 1 Gb/s since the theoretical
and real bandwidth match perfectly. The real gap between sustained and theoretical bandwidth
can be observed with the 10 Gb interconnection, which reaches up to 7.5 Gb/s.

5http://iperf.fr
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Table 5.3: Performance results of bandwidthtest transferring 32 MB with pageable memory in a
local GPU.

Name Data movement Bandwidth

g2.2xlarge Host to Device 3,004 MB/s

g2.2xlarge Device to Host 2,809 MB/s

g2.8xlarge Host to Device 2,814 MB/s

g2.8xlarge Device to Host 3,182 MB/s

1 Gb

1 GPU

1 GPU

1 GPU

1 GPU

1 GPU

(a) 5 rGPUs over a 1 Gb network.

4 GPUs

4 GPUs

10 Gb

(b) 8 rGPUs over a 10 Gb network.

1 Gb

4 GPUs

4 GPUs

1 GPU

1 GPU

1 GPU

1 GPU

1 GPU

(c) 13 rGPUs over a 1 Gb network.

Figure 5.1: Schemes of the con�gured testbed scenarios using AWS instances.

GPUs An instance relies on a VM that runs on a real node with its own virtualized components.
Therefore, AWS can leverage a virtualization framework to o�er GPU services to all instances.
Although the nvidia-smi command indicates that the GPUs installed are NVIDIA GRID K520,
we need to verify that these are non-virtualized devices. For this purpose, we execute the NVIDIA
software development kit (SDK) bandwidthtest. As shown in Table 5.3, the bandwidth achieved in
this test is higher than the network bandwidth, which suggests that the accelerator is an actual
GPU.

5.1.2 Testbed Scenarios

All scenarios are based on the maximum number of instances that a user can freely select
without submitting a formal request. In particular, the maximum number for �g2.2xlarge� is 5; for
�g2.8xlarge�, it is 2. The instances operate the RHEL 7.1 64-bit OS and version 6.5 of CUDA. We
design three con�guration scenarios for our tests:

� Scenario A (Figure 5.1a) shows a common con�guration in GPU-accelerated clusters, with
each node populated with a single GPU. Here, a node can access 5 GPUs using the �High�
network.

� Scenario B (Figure 5.1b) is composed of 2 server nodes, equipped with 4 GPUs each, and
a GPU-less client. This scenario includes a 10 Gb network, and the client can execute the
application using up to 8 GPUs.

� Scenario C (Figure 5.1c) combines scenarios A and B. A single client, using a 1 Gb network
interconnection, can leverage 13 GPUs as if they were local.
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Table 5.4: Performance results of bandwidthtest transferring 32 MB with pageable memory in a
remote GPU.

Name Data movement Network Bandwidth

A Host to Device High 127 MB/s

A Device to Host High 126 MB/s

B Host to Device 10 Gb 858 MB/s

B Device to Host 10 Gb 843 MB/s

Once the scenarios are con�gured, the rCUDA middleware needs to be installed in order to add
the required �exibility to the system. The rCUDA server is executed in the GPU-enabled nodes
and the rCUDA libraries are invoked from the node that acts as client. In order to evaluate the
network bandwidth using a rGPU, we executed again the NVIDIA SDK bandwidthtest. Table 5.4
exposes that the bandwidth is limited by the network.

5.1.3 Experimental Results

The �rst application is MonteCarloMultiGPU, from the NVIDIA SDK, a code that is compute
bound (its execution barely involves memory operations). This was launched with the default
con�guration, �scaling=weak�, which adjusts the size of the problem depending on the number
of accelerators. Figure 5.2 depicts the options per second calculated by the application running
on the scenarios in Figure 5.1 as well as using local GPUs. For clarity, we have not represented
the results observed in Scenario B, because they exactly match to those obtained in Scenario C
up to 8 GPUs (Scenario C is an extension of Scenario B). In this particular case, rCUDA (using
rGPUs) outperforms CUDA (local GPUs) because the former loads the libraries when the daemon
is started [58]. With rCUDA we can observe di�erences in the results among both scenarios.
Here, Scenario A can increase the throughput because the GPUs do not share the PCI bus with
other devices because each node is only equipped with one GPU. On the other hand, when the
4-GPU instances (�g2.8xlarge�) are added (Scenario C), the PCI bus constrains the communication
bandwidth, hurting the scalability.

The second application, LAMMPS [3], needs at least one GPU to host its processes, but can
bene�t from the presence of multiple GPUs. Figure 5.3 shows that, for this application, the use
of rGPUs does not o�er any advantage over the original CUDA, because the four lines are almost
overlapped. Furthermore, for the execution on remote GPUs, the di�erence among both networks
is small, although the results observed with the �High� network are worse than those obtained with
the �10 Gb� network. In the execution of LAMMPS on a larger problem (see Figure 5.4), CUDA
still performs slightly better, but the interesting point is the execution time when using rGPUs.
These are almost the same even with di�erent networks, which indicates that the transfers turn the
interconnection network into a bottleneck. For this type of application, enlarging the problem size
compensates the negative e�ect of a slower network.

5.1.4 Conclusions

The previous experiments reveal that the AWS GPU-instances, at the moment of the evaluation
(June 2015), are not appropriate for HPC because neither the network nor the accelerators are
powerful enough to deliver high performance when running compute-intensive parallel applications.
As [58] demonstrates, network and device types are critical factors to performance. In other words,
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Figure 5.2: Throughput results of MonteCarloMultiGPU in terms of options per second.
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Figure 5.3: Performance results of LAMMPS with a run size of 100.
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Figure 5.4: Performance results of LAMMPS with a run size of 2000.

AWS is more oriented toward o�ering a general-purpose service than to provide high performance.
Also, AWS fails in o�ering �exibility, since it enforces the user to choose between a basic instance
with a GPU and a powerful instance with 4 GPUs. Table 5.1 shows that the resources of the
�g2.8xlarge� are quadrupled, but so it is the cost per hour. Therefore, in the case of having other
necessities (instance types), using GPU virtualization technology we could attach an accelerator
to any type of instance. Furthermore, reducing the budget spent in cloud services is possible by
customizing the resources of the available instances. For example, we can work on an instance with
2 GPUs for only $1.3 by launching 2 �g2.2xlarge� and using rGPUs, avoiding to pay the double for
features that we do not need in �g2.8xlarge�. In terms of GPU-shareability, AWS reserves GPU-
capable physical machines which will be waiting for a GPU-instance request. Investing in expensive
accelerators to keep them in a standby state is counter-productive. It makes more sense to dedicate
less devices, accessible from any machine, resulting in a higher utilization rate.

5.2 Private Cloud

The adoption of cloud computing in data centers o�ers new computational possibilities. From
the end-user perspective, the cloud o�ers on-demand resources which can be easily provisioned and
decommissioned on-the-�y. From the point of view of the cloud provider, virtualization, �exible
resource availability, and shareability may lead to important economic competitiveness and a better
exploitation of the infrastructure [51]. Although many types of resources have been adapted to this
paradigm (i.e: CPUs, volatile/permanent memory devices, networks,...), others, such as GPUs, are
not so �exible regarding cloud computing.

The main contribution of the work presented in this section is to provide a reliable service capable
of deploying CUDA-enabled VMs through a secure and �exible access to the physical GPUs. This
kind of access to the GPU is hereafter known as cloudi�ed GPUs (cGPUs), since it has been
specially designed for cloud platforms. The proposed solution combines two independent strategies:
an architectural component to provide cGPUs, and a cGPU resource management.

46



5.2. PRIVATE CLOUD

䜀匀愀愀匀

Figure 5.5: GSaaS: A service to cloudify and schedule GPU access in OpenStack.

5.2.1 GSaaS: A Service to Cloudify and Manage GPUs

GSaaS aims to provide a management layer between the GPUs and the cloud infrastructure.
In this regard, it is completely integrated in the OpenStack architecture as a new shared service
in charge of cloudifying and scheduling the access from VMs to physical GPUs, as depicted in
Figure 5.5.

Besides the cloud platform and the GPGPU virtualization technology, we also need:

� a resource manager responsible for arbitrating the assignation of GPUs to the VMs, and

� a GPU masking mechanism which provides security when accessing remote GPUs.

Figure 5.6 shows the involved technologies in GSaaS. remote CUDA (rCUDA) enables the access
to GPUs that are previously scheduled and assigned by the general purpose GPU management
system (GPGPUMS). Additionally, the resource-oriented distributed virtual routing (RODVR) is
introduced to cloudify GPUs and hide their location details from users, with the aim of providing
a better integration in the cloud and avoiding unauthorized accesses to the devices.

The GSaaS components integration into the control plane of the cloud infrastructure is depicted
in Figure 5.7. Compute nodes are standard OpenStack computation nodes that allocate tenant
virtual machines. It is worth noting that these nodes do not include GPU devices, while compute-
GPU nodes feature physical GPUs and may allocate VMs that use them locally as cGPUs. On
the other hand, compute-rGPU nodes are connected to a GPU network that enables their hosted
VMs to access remote cGPUs provided by the compute-GPU nodes. This dedicated GPU network
avoids interference with the VM or management tra�c in OpenStack. With RODVR, the access to
the GPUs is secured and isolated from the rest of communication. With this purpose, an RODVR
Endpoint is deployed in each node (compute-GPU or compute-rGPU ) willing to host cGPU-enabled
VMs, while rCUDA-server daemons are started only in compute-GPU nodes. The GSaaS service
orchestrates the deployment of cGPU-enabled VMs by using the GPGPUMS module and interacting
with the cloud infrastructure and with the RODVR Endpoints through the OpenStack management
network.

While RODVR is responsible for the abstraction of the actual GPU location inside the VM
con�guration, GPGPUMS selects and assigns the most appropriate cGPUs according to a policy.
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Figure 5.6: Technologies integration scheme.

Figure 5.7: GSaaS components integration diagram, showing proposed node types and interconnec-
tion networks.
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This con�guration may also facilitate the migration of the VM to a di�erent compute node, with
(compute-GPU ) or without (compute-rGPU ) physical GPUs, transparently for the VM.

5.2.1.1 Booting a cGPU-enabled VM

Figure 5.8 depicts the activities performed when a request for a cGPU-enabled VM is submitted
to GSaaS. This request provides information related to the VM instance (image, �avor, network
interfaces, etc.) and related to the GPUs (number, memory, access mode, etc).

Initially, GPU requirements are checked by GPGPUMS and if these are satis�ed, then a call to
the OpenStack Nova service is performed to check if the VM requirements may be ful�lled. If the
request is valid, the VM is created by providing a script to cloud-init, which is a multi-distribution
package that handles early initialization of the cloud instance. This process is executed during the
VM boot stage and sets rCUDA environment variables with the number of available cGPUs and
their masked locations. These variables are needed to run the CUDA application in the VM.

Once the Nova agent starts the speci�ed image (active state), the GSaaS service waits until
the network is up in the machine (deployment stage). This ensures that the Neutron agent in
the compute node has created all the networking infrastructure for the VM. Then, concurrently to
the VM boot process, GSaaS invokes the GPGPUMS module to select the GPUs, and then, each
GPU remote access is con�gured via an RODVR endpoint. The GPU information provided by
GPGPUMS is used by RODVR to insert rules in the compute node with the aim of routing packets
from the VM to the assigned GPUs. Due to these rules, packets that leave a virtual interface
attached to the machine with a masked IP and port are rerouted to the real address of the host
where the rCUDA daemon is running. When both stages (selection and con�guration) have �nished,
the CUDA application in the VM is ready to be used.

Equation 5.1 de�nes the total boot time of a VM when assigning x cGPUs. The parameters of
the equation correspond to the activities in Figure 5.8, where the VM boot time is the sum of both
checking times (GPU and VM), the VM activation & creation times and the higher time between
the concurrent activities (VM deployment and GPUs selection & RODVR con�guration).

cGPU-enabled VM Boot Time(x) = (5.1)

Check GPU & VM Time+

VM Creation Time+ VM Activation Time+

max(VM Deployment Time,

GPUs Selection Time(x)+ RODVR con�guration Time(x))

5.2.1.2 GPU Selection Policies

GPGPUMS includes a GPU selection policy to host cGPUs based on a �rst �t algorithm, which
selects the �rst GPU in the pool of GPUs with su�cient available memory to ful�ll the request. In
cases of low need for GPU memory, this policy yields as a result a performance degradation, since
GPUs are massively oversubscribed by the cGPUs. For this reason, we moved to other policies
aimed to performance instead of energy-saving or resource-conservative, as it is �rst �t. Thanks
to the modularity and the plugin-based architecture of GPGPUMS, we developed a least load �t
policy that checks the available memory in the whole pool of GPUs and selects the device with the
maximum amount of free memory. Algorithm 1 describes how decisions are made by our least load
�t implementation. First of all, the GPUs are listed and sorted by their current available memory
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Figure 5.8: Activity diagram during the launch of a cGPU-enabled VM.
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(line 2). Then, the list is iterated (line 3) in order to �nd a GPU with su�cient memory to host
the cGPU (lines 4-7).

Algorithm 1 GPU selection policy based on a least load �t strategy.

1: function Select_GPU(job)
2: gpu_sorted_list = gpus.sort_desc_by(avail_mem)
3: for each gpu in gpu_sorted_list do
4: new_mem = gpu.avail_mem+ job.req_mem
5: if new_mem <= gpu.total_mem then
6: gpu.update_status(job)
7: return gpu
8: end if
9: end for
10: return null

11: end function

5.2.1.3 Working Modes

GSaaS has been designed to implement the following working modes:

� Remote-Exclusive: A VM uses GPUs located in di�erent nodes and monopolizes the use of
the assigned GPUs.

� Remote-Shared: A VM uses GPUs located in di�erent nodes, but these GPUs may be
shared with other VMs.

� Local-Shared: A VM uses GPUs provided by the compute node in which it is allocated, but
these GPUs may be shared with other VMs.

� Local-Exclusive: A VM uses GPUs provided by the compute node in which it is allocated,
and it monopolizes the use of the assigned GPUs.

5.2.1.4 Capabilities and Usage Examples

Users are expected to use the command gsaas with di�erent arguments in order to deploy
their cGPU-enabled VMs. The following list of examples illustrates the usage of the command
(information related to the VM is omitted for simplicity):

� $ gsaas -l �ncgpus=2: The basic invocation to launch a cGPU-enabled VM. The parameter -l
stands for launch and �ncgpus determines the number of cGPUs associated to the VM. By
default, cGPUs are only accessible by one VM (exclusive mode).

� $ gsaas -l �ncgpus=2 �poolmem=2048 �mode=shared: In this case, a user requests 2 cGPUs in
shared mode (�mode) with a GPU-memory limitation of 2 GB (�poolmem). In other words,
the scheduler (GPGPUMS) is in charge of managing the GPU memory in order to meet the
request, by assigning 2 cGPUs of 2 GB to the VM.

� $ gsaas -l �ncgpus=8 �poolmem=4096 �mode=shared �locality=local: A user may also de�ne the
location of the VM with respect to the cGPUs. By default, VMs are deployed in compute
hosts determined by the Nova service of OpenStack. However, if we have a special interest
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in deploying a VM in the same compute node where the physical GPUs are hosted, we will
use the argument �locality. In this example, a user is launching a VM with access to 8
cGPUs of 4 GB of GPU memory each one, in the same compute node where the accelerators
are physically attached.

� $ gsaas -l �ncgpus=2 �locality=local: In this case, the VM is deployed in the host where the
2 GPUs are placed, having exclusive access to them.

� $ gsaas -t �id=<VMid>: With the argument -t, which stands for terminate, together with the
identi�er of a VM (�id), the user is able to stop and destroy an existent cGPU-enabled VM.

When requirements of launching arguments cannot be ful�lled, the deployment of the VM is
aborted with an error (see Check GPU request activity in Figure 5.8).

5.2.2 Performance Evaluation

This section presents a set of experiments that evaluates and demonstrates the bene�ts provided
by GSaaS. The experiments range from a detailed analysis of the VM deployment time to the
scalability study of di�erent type of applications like multi-GPU or distributed computation.

5.2.2.1 Experimental Setup

The experimental setup used to evaluate the features and the performance of our proposal is
depicted in Figure 5.9. It is based on OpenStack Ocata with Neutron and the ml2 plugin to de�ne
cloud networking6, and adopts a hybrid cloud infrastructure approach [6]. Virtual and physical
machines run an Ubuntu 16.04 operating system.

The master node (master) and the 3 compute-rGPU nodes (compute[0�2]-rGPU ) features 2
Intel XEON E5-2630-v3 sockets (8 cores at 2.40 GHz each) with 32 GB of DDR3-2200 SDRAM and
a 2 TB hard drive. Each processor provides 16 vCPUs due to the hyper-threading technology, and
therefore 32 vCPUs are available per node.

Themaster node hosts the virtualized OpenStack controller and network nodes. Each virtualized
node is con�gured with 8 vCPUs. The controller is equipped with 10 GB of RAM memory and
the network node features 6 GB of RAM. The GSaaS elements have been deployed in a VM with
2 vCPUs and 2 GB of RAM as part of the hybrid infrastructure.

The Compute-GPU node has 2 Intel XEON E5-2603-v4 sockets (6 cores at 1.70 GHz) for a
total of 12 cores with 32 GB of DDR-2133 SDRAM and a 1 TB hard drive. It is equipped with
4 NVIDIA Quadro M4000 GPUs featuring 8 GB of memory each. The compute-GPU node may
allocate tenant VMs which make use of its local GPUs.

The 3 networks (Management, VM, andGPU ) use 10 GbE network cards connected to 3 NetGear
proSAFE Plus (XS708E) switches.

5.2.2.2 Performance Metrics

Metrics provided by the experimental con�guration may be classi�ed into three main groups
according to their origin: metrics from tenant VMs, metrics from their hosts, and metrics from the
GPUs (using the nvidia-smi tool). With the purpose of detecting overhead conditions, memory
and processor utilization is measured for each physical and virtual machine. Moreover, the detailed
deployment time when evaluating the booting process, or the execution time for each performance

6https://docs.openstack.org/ocata/networking-guide/
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Figure 5.9: Experimental setup deployed in a hybrid cloud infrastructure based on OpenStack.
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Table 5.5: Detailed time of GSaaS booting a VM with a di�erent number of assigned cGPUs

.

Stage Time in seconds

cGPUs 0 25 50 75
GSaaS Checking - 0.0047 0.0047 0.0046

VM Creation 0.6817 0.6740 0.7397 0.7515
VM Activation 1.2808 1.2626 1.2588 1.3121

VM Deployment 20.6710 20.6755 20.6769 20.6745
GSaaS Management - 7.9014 15.6715 23.3833

Boot Time 22.6335 22.6368 22.7101 25.4815
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Figure 5.10: Boot time of a VM when increasing the number of assigned cGPU

test, are collected to characterize the user utilization pattern. The performance of each GPU is
metered by the memory, the usage rate and the power consumption of the running processes. All
the experiments were executed 50 times in order to obtain statistically signi�cant measurements.

5.2.2.3 Infrastructure Deployment Evaluation

This section analyzes the scalability of deploying CUDA-enabled VMs from two di�erent points
of view: a VM with multiple cGPUs, and multiple single-cGPU VMs.

First, cGPUs scalability has been evaluated by assessing the detailed temporal cost of booting a
VM depending on the number of cloudi�ed GPUs assigned to it. Speci�cally, we have performed a
series of experiments that measure each time considered in Equation 5.1 when booting a VM with
0 to 75 cGPUs in 25-cGPU steps. The VM is booted using a �avor of 1 vCPU, 768 MB RAM and
each cGPU requiring 100 MB of memory. Results are shown in Table 5.5 and Figure 5.10.

The boot time of a cGPU-enabled VM is the elapsed time between the invocation of a gsaas
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Figure 5.11: Boot time of non-GPU-enabled VMs compared to cGPU-enabled VMs.

command and the moment when the requested cGPUs are ready to be used. GSaaS checking times
are not a�ected by the number of cGPUs, as shown in Table 5.5. VM creation and VM activation
times experience a small increase of time with the number of cGPUs. The boot time is basically
determined by the maximum between the time required by OpenStack to deploy the VM and the
time required by GSaaS to select GPUs and con�gure the access to each cGPU in the compute node
where the VM is allocated (named GSaaS management time). As can be seen in Figure 5.10, the
GSaaS management time increases linearly with the number of cGPUs to con�gure. However, the
VM deployment time is bigger than the GSaaS management time up to around 62 cGPUs. The
overhead when assigning 50 cGPUs is almost negligible, since it represents only an increase of 0.2%
in the boot time with respect to the base case of booting the VM without cGPU. In the case when
75 cGPUs are assigned, the GSaaS management time is bigger than the VM deployment time and
the boot time experiences an overhead of 12%.

VMs scalability, on the other hand, has been evaluated by studying the deployment of multiple
single-cGPU VMs (from 15 to 90) in 15-VM steps. Experiments use the three compute-rGPU nodes
(compute[0�2]-rGPU ) to fairly allocate the VMs, and they wait for 10 seconds among consecutive
invocations to the gsaas command. Each VM is booted using the same �avour as in the previous
experiment. Results are shown in Figure 5.11. The Y-axis represents a zoomed-in region of time,
which indicates a negligible increment in the time, mainly due to the performance deterioration of
the compute nodes that host all the VMs.

5.2.2.4 Experimental Results

Three di�erent applications have been chosen in order to study di�erent aspects of our proposal.

� First, the importance of the VM-GPU tenant locality and the GPU shareability is analyzed.
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Figure 5.12: Average execution time of CUSHAW for exclusive and shared modes using local and
remotes deployment localities.

� Then, a multi-GPU scenario, where all the cGPUs of a VM work together to solve a problem,
is examined.

� Finally, a distributed CUDA-enabled application uses the MPI paradigm to parallelize a prob-
lem in several processes.

GPU Locality and Shareability In this experiment we leverage CUSHAW [44], a well-established
leading next-generation sequencing read alignment CUDA-compatible software package. This prob-
lem allows us to check the behavior of GSaaS when there is a signi�cant amount of data to be
transferred from host to device and vice versa. The VM sends to the GPU the human reference
genome (around 2.4GB) and the sequenced chromosome (in our case 240MB for the sample human
chromosome Chr1) to be analyzed. When the alignment �nishes, it receives the result (around 200
MB).

With this application we analyze the e�ect of the cGPU locality and the impact of sharing
accelerators. For this purpose, 2 instances of CUSHAW are concurrently executed in a VM equipped
with 4 vCPUs, 8 GB of memory and 2 cGPUs. While the exclusive cGPUs match 1-to-1 the GPUs,
in the shared mode each cGPU allocates 4 GB of memory of the same physical GPU. Furthermore,
we distinguish among two deployment locality options: local if the VM is deployed in the same host
where the GPUs are installed (compute-GPU ) or remote if these are in a non-GPU compute node
(compute-rGPU ).

Figure 5.12 depicts the total execution time of both CUSHAW instances running concurrently.
Results of the exclusive scenario show an increment of 5% in execution time when the experiment is
performed using remote access instead of local access, because the VM has to reach other compute
host to transfer the data to and from the accelerator. The shared scenario presents a similar general
behavior.

56



5.2. PRIVATE CLOUD

●●●●

●●

●●

●●

●●

●

●

●●

●●
●

●

●●●
●

●●●
●

●
●●

●

0

100000

200000

300000

1 2 3 4 5 6 7 8

Number of cGPUs

O
pt

io
ns

 p
er

 S
ec

on
d

Experiment
First fit (remote)
First fit (local)
Least load fit (remote)
Least load fit (local)

Figure 5.13: MonteCarloMultiGPU throughput using di�erent cGPUs assignation policies.

It is worth noting that the execution time in the shared scenario does not double the time ob-
tained in the exclusive scenario, because there are periods featuring di�erent GPU usage. Therefore,
it is possible to execute 2 CUSHAW works simultaneously during the low usage periods without
experiencing a high performance penalty when considering remote locality or GPU shareability
(see [59]).

Multi-GPU Computation and Scheduling Policies Multi-GPU applications leverage all the as-
signed cGPUs to the VM to perform their operations. A classical Multi-GPU application based
in the Monte Carlo algorithm, widely used in this type of tests, is found in the NVIDIA SDK.
MonteCarloMultiGPU 7 is a single-process application which evaluates fair call price for a given
set of European options using a Monte-Carlo approach, bene�ting from all CUDA-capable cGPUs
assigned to the VM.

In this regard, we have deployed a VM with 30 vCPUs and 30 GB of RAM. Through GSaaS, we
have progressively attached to the VM more cGPUs (with 4 GB of memory) in order to evaluate
the productivity of MonteCarloMultiGPU when sharing GPUs. The VM can own up to 8 cGPUs
(each GPU has 8 GB of memory) with this con�guration.

Figure 5.13 depicts the number of options calculated per second (throughput) by MonteCar-
loMultiGPU when assigning an increasing number of cGPUs to the VM and considering di�erent
working modes (local and remote) and selection policies (�rst �t and least load �t).

As in the previous section, local-remote modes do not present any signi�cant improvement.
However, when comparing selection policies we appreciate signi�cant di�erences in the results.

From the perspective of an end-user, the least load �t policy provides better results up to 4

7http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/samples.html#

MonteCarloMultiGPU
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cGPUs. In this particular case, this policy selects 4 di�erent GPUs to host the �rst 4 cGPUs, while
�rst �t hosts the �rst 2 cGPUs in the same GPU, the third and forth cGPUs in the second GPU and
so on, oversubscribing the accelerators earlier. Least load �t prioritizes devices with lower allocation
of memory; that is why least load �t selects di�erent accelerators (exclusive usage) for the cGPUs
until they are �nished (up to 4); then, from the 5th cGPU on, GPUs are oversubscribed.

On the other hand, the �rst �t policy depicts a more appealing approach for a cloud provider.
This policy deploys cGPUs in one accelerator while it has enough memory to host them. With the
requirement of 4 GB of memory per cGPUs, each physical device can host up to 2 cGPUs; hence
we are using few GPUs at the expense of lower performance (fewer options calculated per second).
However, depending on the pay-per-use price of the cGPUs, a user may sacri�ce the performance
for cost.

Distributed GPU-enabled Computation For this last experiment we have employed a distributed
application with support for GPUs. The application, CUDA-MEME [45], is a highly e�cient scalable
motif discovery algorithm. Particularly, we have used mCUDA-MEME, a further extension of
CUDA-MEME in terms of sensitivity and speed, which enables users to leverage a GPU per MPI
process in order to accelerate motif �nding. The application was con�gured to work on the input
dataset nrsf_2000.fasta, from its test-cases, with a maximum size of 2,000,000 elements.

mCUDA-MEME is capable of using all the GPUs in a host provided that it is spawned one
MPI process pre GPU. This feature limits the grade of parallelism to the number of installed GPUs
in the target host. Apart from that, GPUs involved in the resolution of mCUDA-MEME are not
fully computationally loaded. This experiment provides an insight into the use of GSaaS, which
demonstrates its versatility when it comes to improve the performance of an application and the
system utilization.

To increase the parallelism with the same hardware infrastructure, we share the GPUs in order
to provide access to more cGPUs in two di�erent ways. On the one hand, we con�gure a VM with
12 cGPUs (intranode distributed computation). On the other hand, we deploy up to 12 single-
cGPU VMs (internode distributed computation). Both scenarios aim to increase the performance
of mCUDA-MEME instances by spawning more MPI processes with access to a GPU. The VM for
the intranode experiment consisted of 30 vCPUs and 30 GB of RAM, while the internode VMs were
equipped with 2 vCPUs and 4 GB of RAM. Each cGPU was con�gured with 1 GB of memory, and
GPGPUMS leveraged the least load �t policy.

Figure 5.14 shows the average time of 50 executions of mCUDA-MEME with an increasing
number of CUDA-enabled processes running on the same VM (intranode) and on independent VMs
(internode). For the sake of clarity, we have omitted the result of 1 cGPU (that is, 3,997.56 seconds)
and beyond 12 processes, which did not experience further performance improvement. Increasing
the number of CUDA-enabled MPI processes, by sharing the 4 underlying physical GPUs, reduces
the execution time in both modes. However, o�oading the processes in di�erent VMs (internode
scenario) provides better results (an improvement up to 1.5x). The intranode scenario processes
run on the same compute host (where the VM is running), while the internode scenario processes
run on di�erent VMs, spread across the 3 compute hosts. Hence, compute hosts experience less
load and the performance increases.

It is worth noting that the low utilization rate of the accelerators gives us an improvement
opportunity. Figure 5.15 illustrates the average utilization rate of each physical GPU (obtained
from the nvidia-smi command with a sampling rate of 1 second) during the execution of mCUDA-
MEME for the con�guration of di�erent processes, when considering intranode (Figure 5.15a) and
internode (Figure 5.15b) modes. Both charts depict a pattern where utilization rate increases a step
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Figure 5.14: mCUDAmeme execution time with di�erent number of CUDA-enabled MPI processes
running on the same VM (intranode) and on di�erent VMs (internode).

every 4 processes. Once the 4-process point is exceeded, where each process is using exclusively one
of the 4 GPUs available, GPUs are oversubscribed by the subsequent processes. As it is shown in
Figure 5.15b, processes running on di�erent VMs can obtain higher GPU utilization, a 20% more
than the intranode counterpart.

5.2.3 Conclusions

This work develops and evaluates GSaaS, a service to cloudify and schedule the access to physical
GPUs from VMs, aimed to public cloud infrastructures.

The main bene�ts achieved by GSaaS are: adaptive scheduling of GPU resources, decoupling
of the interface between the client and the rCUDA server, hiding the real location of the resources,
preventing GPU unauthorized accesses, and detaching VM tra�c from GPU tra�c by using a
dedicated network. Besides, the proposed solution automates the con�guration of its distributed
components.

A GSaaS prototype has been evaluated in an actual cloud deployment based on OpenStack. We
have demonstrated its versatility in di�erent scenarios where GSaaS can be leveraged to scale-up
applications, facilitate the provision of accelerators or increase the utilization rate of the GPU.
Deployment scalability experiments denote that our solution introduces low overhead, since the
deployment time is only increased 0.2% when assigning 50 cGPUs to a VM. Performance experiments
reveal the importance of VM-GPU tenant locality and GPU shareability in di�erent scenarios. Our
results show that the application performance is barely a�ected, and the proposed service can
increase GPU utilization, showing up to a 20% improvement in a distributed scenario.
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Figure 5.15: GPU utilization rate for both distributed modes.
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CHAPTER 6

DMR API: An OmpSs-like Malleability Solution

Traditionally, parallel applications running in high-performance computing (HPC) facilities keep
allocated all the resources assigned at submission during the complete duration of their execution.
This behavior can lead to the monopolization of large fractions of resources by only a few jobs,
preventing others from being initiated. Job malleability can avoid the negative e�ects produced by
a �xed job scheduling.

Malleable jobs are able to re-scale themselves at execution time by expansion or shrinkage.
When malleable jobs are included in a workload, the result is an adaptive execution that can bene�t
from job recon�gurations in order to meet speci�c requirements given by the system administrator.
Readjusting the workload to the cluster status on�the��y requires a system-aware job scheduler, that
for instance, considers information about resource utilization or the number of pending and running
jobs. Taking into account the system status yields bene�ts not only to the HPC facility�which
can experience an increase in the number of completed jobs per second (global throughput) and a
better exploitation of its resources�but also to the end users, who can enjoy shorter completion
(waiting plus execution) times for their jobs.

This part of the PhD dissertation is focused on MPI malleability, which can be understood
as the capability of resizing jobs by recon�guring the number of MPI ranks during the execution
of a job. Speci�cally, in this chapter we present the dynamic management of resources application
programming interface (DMR API): a malleability solution based on the o�oad semantics of OmpSs.
For this purpose, a communication layer between Slurm and Nanos++ has been implemented. The
sections of this chapter thoroughly describe the protocol of the communication layer and the design
decisions for the development of the procedures that allow the malleability.

The main contributions in this chapter are:

� a malleability solution able to perform automatically the data transfers among processes and
a demonstration of its bene�ts when malleable jobs are processed in a workload;

� an extensive evaluation of the API and its features;

� and the case study of the malleability adaptation of a bioinformatics application.
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Figure 6.1: Communication protocol between the RMS and the runtime.

6.1 Methodology

Job malleability combines interactions from di�erent entities. Speci�cally, the DMR API in-
volves: i) user applications, which have to accept being resized at some points of their execution
(malleable jobs); ii) a parallel distributed runtime responsible for re-scaling the jobs; iii) an RMS
that makes adaptive decisions considering the cluster status and capable of reallocating job re-
sources; and iv) a communication layer between them in order to perform the job recon�guration
process.

A malleable application contains a set of malleability points which initiate the communication
between the RMS and the runtime. Commonly, these malleability points matches with the start or
end of an iteration, even though, they can also indicate di�erent computational stages. Hereafter,
each iteration or stage is referred as step, and each step could de�ne a malleability point.

The methodology of our malleability solution establishes the communication between Slurm (the
RMS) and Nanos++ (the parallel distributed runtime) as it is depicted in Figure 6.1.

The RMS is aware of the resource utilization and the queue of pending jobs. When an application
is in execution, it periodically contacts the RMS, through the runtime, communicating its rescaling
willingness (to expand or shrink the current number of allocated nodes). The RMS inspects the
global status of the system to decide whether to initiate any rescaling action, and communicates
this decision to the runtime. If the framework determines that a rescale action is due, the RMS, the
runtime, and the application will collaborate to continue the execution of the application scaled to
a di�erent number of MPI processes.

6.2 Slurm Recon�guration Policy

We designed and developed a resource selection plugin responsible for recon�guration decisions.
This plugin realizes a node selection policy featuring three modes that accommodate three degrees
of scheduling freedom:

Request an Action

Applications are allowed to �strongly suggest� a speci�c action. For instance, to expand the job,
the user could set the �minimum� number of requested nodes to a value that is greater than the
number of allocated nodes. However, Slurm will ultimately be responsible for granting the operation
according to the overall system status.
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Preferred Number of Nodes

One of the parameters that applications can convey to the RMS is their preferred number of
nodes to execute a speci�c computational stage. If the desired size corresponds to the current size,
the RMS will return �no action�. Algorithm 2 depicts the steps taken by the Slurm policy when
preferred is set. If there is no outstanding job in the queue, the expansion can be granted up to a
speci�ed �maximum� (lines 1-3). Otherwise, if the preference is di�erent from the current allocation
(line 4), the RMS will try to expand (lines 5-7) or shrink the job to the preferred number of nodes
(lines 8-11).

Algorithm 2 Slurm recon�guration policy when preferred is set

1: if am I the only job in the queue? then
2: action← expand.
3: processes← jobMaxProcs.
4: else
5: if can I expand to preferred? then
6: action← expand.
7: processes← max_procs_to(preferred).
8: else
9: if can I shrink to preferred? then
10: action← shrink.
11: processes← preferred.
12: end if
13: end if
14: end if

Wide Optimization

The cases not covered by the preceding methods are handled following Algorithm 3.

A job is expanded if there are su�cient available resources to ful�ll the new requirement of nodes
and either (1) there is no job pending for execution in the queue (lines 9-11), or (2) no pending job
can be executed due to insu�cient available resources (lines 6-8). By expanding the job, we can
expect it to �nish its execution earlier and release the associated resources.

A job is shrunk if there is any queued job that could be executed by performing this action
(lines 1-3). If the job is going to be shrunk, the queued job that has triggered the shrinking event
will be assigned the maximum priority in order to foster its execution (lines 4-5).

6.3 Nanos++ Runtime Extension

We implemented the necessary logic in Nanos++ to recon�gure jobs in tight cooperation with
the RMS. In this section we discuss the extended API and the resizing mechanisms.

We designed the DMR API with two main functions: dmr_check_status and its asynchronous
version dmr_icheck_status. These routines instruct the runtime (Nanos++) to communicate with
the RMS (Slurm) in order to determine the resizing action to perform: �expand�, �shrink�, or �no
action�.

Figure 6.2 depicts the processes performed in each computational iteration when using the
synchronous version. At the beginning of the iteration, the recon�guration mechanism is triggered.
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Algorithm 3 Slurm recon�guration policy wide optimization

1: if are there pending jobs in the queue? then
2: if can other job run with my resources? then
3: action← shrink.
4: processes← min_procs_run(targetJobId).
5: set_max_priority(targetJobId).
6: else
7: action← expand.
8: processes← max_procs_to(jobMaxProcs).
9: end if
10: else
11: action← expand.
12: processes← jobMaxProcs.
13: end if

Figure 6.2: Execution �ow of the synchronous recon�guration method.

If it resolves to resize the job, the action will be performed and then the application will continue
with the computation of that iteration.

The asynchronous counterpart schedules the action for the next execution step, at the same time
that the current step is executed. Hence, by skipping the action scheduling stage, the communication
overhead in that step is avoided. Figure 6.3 shows this behavior, checking at the begin of the iteration
if a previous recon�guration has been scheduled. If it is not the case, concurrently the runtime will
check the cluster status while the application continues with its computation stage in the iteration.
The decision of the recon�guration will be applied in the next iteration.

Thus, in case an action is to be performed, these functions spawn the new set of processes and
return an opaque handler. This API is exposed by the runtime and it is intended to be used by
applications.

These functions present the following arguments:

� IN:

� min: Lower limit of a recon�guration.

� max : Upper limit of a recon�guration.

� factor : Geometric distribution factor.
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Figure 6.3: Execution �ow of the asynchronous recon�guration method.

� pref : Preferred number of processes for running the application.

� OUT:

� nProcs: Number of processes after the recon�guration.

� handler : MPI communicator with the new processes.

� RETURN:

� action: Identi�er of the scheduled action (0: None, 1: Expand and 2: Shrink).

An additional mechanism implemented to reach a fair balance between performance and through-
put is the �checking inhibitor�. This introduces a timeout during which the calls to the DMR
API are ignored. This knob is mainly intended to be leveraged in iterative applications with
short iteration intervals. The inhibition period can be tuned by means of an environment vari-
able (NANOX_SCHED_PERIOD).

The runtime recon�gures a job leveraging the Slurm API resizing mechanisms described in
Section 2.1.2. For instance:

Expand A new resizer job (RJ) is �rst submitted requesting the di�erence between the current and
total amount of desired nodes. This enables the original nodes to be reused. There is a dependency
relation between the RJ and the original job (OJ). In order to follow better the RMS decisions, RJ
is set to the maximum priority, facilitating its execution.

The runtime waits until RJ changes from �pending� to �running� status. If the waiting time
reaches a threshold, RJ is canceled and the action is aborted. This situation may occur if the RMS
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assigns the available resources to a di�erent job during the scheduling action. This is more likely
to occur in the asynchronous mode because an action then can experience some delay during which
the status of the queue may change. Once OJ is reallocated, the updated list of nodes is gathered
and used in a call to MPI_Comm_spawn in order to create a new set of processes.

Shrink The shrinking mechanism is slightly more complex than its expansion counterpart because
Slurm will have to kill all processes executing in the released nodes. To prevent premature process
termination, we need a synchronized work�ow to guide the job shrinking. Hence, the RMS sets
a management node in charge of receiving an acknowledgment from all other processes. These
acknowledgements (ACKs) will signal that they �nished their o�oading tasks and the node is ready
to be released.

After a scheduling is complete, the DMR API call returns the expand-shrink action to be per-
formed and the resulting number of nodes. The application is responsible for stating the appropriate
data dependencies and triggering the tasks o�oading to the new set of processes, as we will see in
the next section.

6.4 Programming Model

In this section we review the programming model o�ered by the DMR API to address job
malleability coordinated by the RMS. The programmability of our solution bene�ts from relying on
the OmpSs o�oad semantics versus directly using MPI.

To showcase the bene�ts of the OmpSs o�oad semantics, we make use again of the speci�c case
of migration studied in Section 3.2.3. This analysis allows us to focus on the fundamental di�erences
among programming models.

Listing 6.1 presents how malleability is adopted with the DMR API. There, we can see that
the main function is unaltered; it only initializes the data and invokes the compute function (lines
1-6). Once the iterations start (line 8), a call to the API is done (line 9). This call returns the
recon�guration action scheduled by the RMS, in this case Slurm, and the MPI communicator where
the new processes are spawned. The recon�guration is conducted by the #pragma in line 11, with
which the user de�nes the data dependencies and the communication pattern among processes in
di�erent communicators. With this directive, we are explicitly indicating that data has an input
dependency for the new processes in the handle MPI communicator. Since this is a migration,
the communication is rank-to-rank. Furthermore, in order to resume the processes execution at
this point of the code instead of starting from scratch when they are spawned, after the #pragma
directive the user indicates the resuming function for the execution (line 12).

6.4.1 A Practical Example

The excerpt in Listing 6.2 is derived from that on Listing 6.1 and it is aimed to discuss the
malleability procedure. For the sake of clarity, here we only describe the procedure of geometric
redistributions, as it is illustrated in Figure 6.4.

The function compute presents a malleability point in line 3, where the recon�guration process
is triggered. Depending on the action, the user has to perform a di�erent set of operations:

� If none is returned (line 4), the computation will continue as originally expected.

� When expanding (line 7), each original process has to convey the data to other factor (line 8)
processes in the new communicator. For this reason, the processes calculate the data partition
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1 void main(int argc , char **argv) {

2 MPI_Init (&argc , &argv);

3 step = 0;

4 /* Initialization */

5 compute(data , dataSize , step);

6 }

7 void compute(double *data , int dataSize , int step) {

8 for (t = step; t < TIMESTEPS; t++) {

9 action = dmr_check_status (&newNProcs , &handle);

10 if (action == MIGRATION) {

11 #pragma omp task in(data) onto(handle , myRank)

12 compute(data , dataSize , t);

13 } else

14 /* Computation */

15 }

16 }

Listing 6.1: Pseudo-code of job recon�guration using the DMR API.

#0 #1

Comm 1

(a) Expand.

#0 #1
Comm 2

(b) Shrink.

Figure 6.4: Data transfers among processes in the communicators when expanding and shrinking.

(lines 11-12) that has to be sent to each new process (line 10), as detailed in example of
Figure 6.4a. The data transfers are performed by the runtime according to the information
included in the task o�oading directive (line 13)

� The shrinking (line 16) involves preliminary explicit data movement. The processes in the
original communicator are grouped into �senders� and �receivers�. This initial data movement
is illustrated in the example in Figure 6.4b. There, data is gathered in �receivers� (lines 17-28)
in order to posteriorly send it to the new communicator processes (line 31).

6.5 Experimental Evaluation

This section is divided in three parts. The �rst introduces the experimental environment, not
only the HPC facility, but also the workloads and the applications converted into malleable. The
second evaluates and discusses the utility of all the implemented features of DMR API through
workloads of synthetic jobs. Finally, the last part describes and analyzes a realistic use case for our
framework, demonstrating the bene�ts of deploying adaptive workloads in a production cluster.
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1 void compute(double *data , int dataSize , int step) {

2 for (t = step; t < TIMESTEPS; t++) {

3 action = dmr_check_status (&newNProcs , &handle);

4 if (action == NONE)

5 /* Computation */

6 else {

7 if (action == EXPAND) {

8 factor = newNProcs / nProcs;

9 for (i = 0; i < factor; i++) {

10 dst = myRank * factor + i;

11 iniPart = (dataSize / factor) * i;

12 finPart = (dataSize / factor) * (i + 1);

13 #pragma omp task in(data[iniPart:finPart ]) onto(handle ,dst)

14 compute(data + iniPart , dataSize / factor , t);

15 } // End for

16 } else if (action == SHRINK) {

17 factor = nProcs / newNProcs;

18 sender = (myRank % factor) < (factor - 1);

19 if (sender) {

20 dst = factor * (myRank / factor + 1) - 1;

21 MPI_Isend(data , dataSize , dst , myComm);

22 } else { // Receiver

23 for (i = 1; i <= factor; i++) {

24 src = myRank - factor + i;

25 MPI_Irecv (&allData , dataSize , src , myComm);

26 } // End for

27 } // End if (sender)

28 MPI_Waitall ();

29 if (! sender) {

30 dst = myRank / factor;

31 #pragma omp task in(allData) onto(handle ,dst)

32 compute(allData , allDataSize , t);

33 } // End if (! sender)

34 } // End if (action == ...)

35 } // End if (action)

36 } // End for

37 } // End compute ()

Listing 6.2: Full example of a malleable application using the DMR API.
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6.5.1 Experimental Setup

HPC Infrastructure

Our evaluation was performed on the Marenostrum III Supercomputer at Barcelona Supercom-
puting Center. Each compute node in this facility is equipped with two 8-core Intel Xeon E5-2670
processors running at 2.6 GHz with 128 GB of RAM. The nodes are connected via an In�niBand
Mellanox FDR10 network.

For the software stack we used MPICH 3.2, OmpSs 15.06, and Slurm 15.08. Slurm was con�gured
with the following plug-ins:

� Job scheduling: sched/backfill with a 10-second interval time among scheduling attempts.
Since the back�lling policy allows overtaking, queued jobs are checked every 10 seconds.

� Job priority: priority/multifactor without wall time duration of jobs. Jobs are not submit-
ted with they expected completion time, so the policy ignore the wall time when calculating
priorities.

� Resource selection: select/linear. This policy understands the "node" as the minimum
unit for assigning resources.

Malleable Applications

For our experimentation we used one synthetic and three real applications. Down below, their
adaptation to malleability is described.

Flexible Sleep �exible sleep (FS) is an iterative synthetic application that performs a sleep in each
step (iteration). Synthetic applications like this one or others that model real programs have been
used in evaluations of several malleability solutions (i.e.: [61, 41]).

The time of the step depends on the number of processes deployed in that iteration, so if the
job is resized, the sleep time is modi�ed assuming perfect linear scalability. Apart from the sleep
that simulates the computation time, the application also manages an array of doubles, distributed
among the ranks. This array is presented to OmpSs as a dependency in order to perform the
appropriate data redistribution among ranks in case of a job recon�guration.

Conjugate Gradient The CG method is an iterative algorithm for the numerical solution of sparse
systems of linear equations that produces a solution after a �nite number of iterations. For our
experimentation the method will perform a speci�c number of iterations in order to have control of
the execution time.

The data of the application propagated in each iteration step of CG is constrained to a matrix
�at-stored and four vectors. This version is implemented using OpenMP+MPI, and each MPI
process works on a block of rows of the matrix and the corresponding elements from the vectors.
The local matrix-vector products are parallelized with OpenMP.

We have applied our OmpSs-based extensions in order to ease the creation of new processes
while maintaining the data dependencies after the resizing procedure. The �ve data structures in
CG conform the data dependencies among iterations in the OmpSs programming model, and they
are redistributed when a rescaling is necessary.

During a resize, the data in the matrix and vectors must be redistributed according to the new
number of MPI processes.
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Jacobi The Jacobi method is an iterative and embarrassingly-parallel algorithm for the solution
of a system of linear equations.

Our OpenMP+MPI version of this solver is based on the implementation presented in [36]. The
program layout is similar to the CG implementation. In this application, we also have a �at matrix,
but only two vectors. These three structures conform the data-dependencies for OmpSs and they
are all distributed among the processes.

N-body The N-body problem1 simulates the individual motions of a group of objects interacting
with each other by means of a given force.

We have used an OmpSs+MPI version of this simulator where each process stores a subset of
particles, while the intranode parallelism is exploited by OmpSs.

The amount of work of N-body per iteration is considerably larger than that present in the
remaining two full applications described in this section. Apart from computing the position and
forces of its own particles, each process exchanges its local subset of particles with the other pro-
cesses. At the end of the iteration, all the processes have worked with the whole set of particles.

The data-dependency in this particular case is dictated by an array of particles with information
about position, velocity, mass and weight. This array is split or merged when an scale-up or down
is respectively scheduled.

Workload Con�guration

The workloads were generated using the statistical model proposed by Feitelson [14], which
characterizes rigid jobs based on observations from logs of actual cluster workloads. These include
the distribution of job sizes in terms of number of processors, the correlation of runtime with paral-
lelism, and the number of repeated runs. Among others, we found several customizable parameters
to be especially relevant:

� Jobs: Number of jobs to be launched.

� Arrival: Average job inter-arrival time to the queue using a Poisson distribution with a factor
of 10.

Moreover, for the workloads composed of synthetic jobs, we also leveraged the following model
parameters:

� Job size: Number of nodes determined by a complex discrete distribution.

� Runtime: Fixed following a hyper-exponential distribution based on the job size.

For every job executed in these experiments, the resizing factor was set to 2.

6.5.2 Preliminary Study

Here we present an in-depth analysis of the framework's features using synthetic malleable
jobs. In order to test thoroughly the features of our solution, we performed 4 di�erent experiments
comprising: synchronous and asynchronous scheduling, heterogeneous workload, and micro-steps.
Finally, we evaluate the performance of the DMR API in terms of scheduling and recon�guring
time.

1https://en.wikipedia.org/wiki/N-body_problem
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Table 6.1: Con�guration parameters for the applications

Number of Processes

Application Iterations Minimum Maximum Preferred Scheduling period

FS 25 1 20 - -

CG 10000 2 32 8 15 seconds

Jacobi 10000 2 32 8 15 seconds

N-body 25 1 16 1 -
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Figure 6.5: Comparison of di�erent workload sizes composed of rigid and malleable jobs with
synchronous scheduling.

For this study we only used the FS application; we generated several workloads of di�erent
size (number of jobs), assigning up to 20 nodes to each job (the number of available nodes in
this experiment) with the parameter job size; the maximum runtime was set to 60 seconds for
each step; and the average arrival time was 10 seconds. Table 6.1 details the rest of the FS
parameters for the recon�gurations. Besides, the table also contains the information of the remaining
applications used in the next section. The array was determined to have 1 GB of data transferred
in each iteration. Furthermore, by not providing a preferred recon�guration value (see Section 6.3)
the RMS has absolutely freedom to reallocate resources.

6.5.2.1 Synchronous Recon�guration Scheduling

For the �rst test, we launched workloads of di�erent sizes in terms of number of jobs. Figure 6.5
depicts the execution time for this experiment. Each workload features both a rigid as well as a
malleable version (see Section 3.2). The line �Gain� in that chart indicates the reduction of the
execution time (in %) attained by the malleable workload with respect to the rigid workload.

Except for the 10-job workload, we can appreciate a gain in the interval 10-15% for the execution
time, although the bene�t decreases as the workload grows. Nonetheless, this occurs because we
are evaluating a �nite workload. Under these conditions, the scheduler is able to back�ll jobs
and ful�ll resources, but malleability cannot bring a higher resource utilization. In a more realistic
scenario, involving a much larger workload, the throughput would always be higher for the malleable
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Figure 6.6: Evolution in time for the 10-job workload with synchronous scheduling.

workloads. For instance, bottom plots in �gures 6.6 and 6.7 show that the productivity attained by
the malleable workload is always higher than that o�ered by the rigid workload.

Figure 6.6 reports an almost-full allocation of resources during the malleable execution, exposing
that the remarkable gain is due to the increment in resource usage.

In contrast, Figure 6.7 depicts the behavior of a 25-job workload, for which we observe a lower
gain. The vertical black line points the instant of the workload execution when only 2 jobs remain
in the queue, concretely, the penultimate job (PJ)that allocates 16 nodes and the last job (LJ) using
4 nodes. When PJ �nishes (in the next step of the completed jobs chart), 16 nodes are released,
but until the next check, LJ cannot be expanded, that is why the resource allocation drops to 4. At
that point, the scheduler decides to expand the job to its maximum, in this experiment 16 nodes.
At the end of the timeline, no more jobs can use the spare resources. This is the same situation
that appears in the rigid workload. The consequence is that there is no further improvement, as
the malleable policy had already obtained the gain from the �rst reallocation of resources.

6.5.2.2 Asynchronous Recon�guration Scheduling

In this test we evaluated the asynchronous scheduling version. Again, we compare a �x workload
and its malleable counterpart, but now the decision is made asynchronously. Here, we remind that
the asynchronous scheduling takes a decision in a speci�c step but the action takes place in the
next step. In the meantime, the status of the system may change. Therefore, the conditions found
when the action is applied in the next step might not be the same that were present when the RMS
decided the future action. In this situation, when there still are resources to perform an action,
enforcing an outdated action may result in an ine�cient use of resources. If there are not enough
resource to perform the action, the recon�guration timeout will be activated, but having wasted all
that time.
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Figure 6.7: Evolution in time for the 25-job workload with synchronous scheduling.

Let us analyze the e�ect of adopting outdated decisions for the asynchronous scheduling in the
10-job workload. In this example the malleable workload performs worse than the rigid execution.
We can explain the cause analyzing Figure 6.8. If we focus on the resource allocation evolution (top
of Figure 6.8), two relevant gaps can be identi�ed between seconds 2000-3000 and 3000-4000. At
the beginning of the �rst gap in Figure 6.8, there are 3 jobs in execution that occupy a total of 19
nodes: J1 with 16, J2 with 2, and J3 with 1. At that instant, the RMS has decided to expand J3
to 2 nodes in the next step. When J1 �nishes, the RMS schedules the expansion to 16 nodes of J2
(around second 2500). J3 needs more time to complete its iteration and performs its pending action
of expanding to 2, having a total of 18 allocated nodes in the cluster. If J3 had checked the resources
at that moment, it would have been expanded to 4 nodes, but the asynchronous scheduling was
negotiated earlier, when the conditions were di�erent. In addition to realizing the expansion, the
scheduler decides that J3 will expand to 4 nodes in the next step.

The beginning of the second gap indicates the completion of J2. A few seconds later J3 expands
to 4 nodes (instead of doing it to 16 if the scheduling had been synchronous).

Despite the lack of good results for small workloads, the larger workload completion times reveal
a higher gain. In that type of situation the malleability overcomes the initial problem described
above, since there are more jobs that trigger a recon�guration and leverage the resources.

As we did in the synchronous benchmark (Figure 6.5), if we dismiss the small executions (10-to-
50-job workloads), we can observe around a 6%-gain, with the improvement decreasing as we add
more jobs to the workload.

In Table 6.2 we compare both modes, synchronous and asynchronous in more detail, analyzing
their performance at cluster level and at job level. The most remarkable aspect here is that the
synchronous scheduling occupies almost all the resources during the complete executions (the low
standard deviation reveals that the mean value is barely unchanged for all the sizes). Moreover, the
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Figure 6.8: Asynchronous scheduling of the 10-job workload.
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Figure 6.9: Comparison of di�erent workload sizes composed of rigid and malleable jobs with
asynchronous scheduling.
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Table 6.2: Cluster and job measures of the 400-job workloads with synchronous scheduling.

Cluster Measures Rigid Synchronous Asynchronous

Resources utilization
Avg. (%) 83.607 93.909 86.687

Std. (%) 5.353 1.012 8.735

Per Job Measures Rigid Synchronous Asynchronous

Waiting time gain
Avg. (%) - 27.980 30.575

Std. (%) - 12.124 17.282

Execution time gain
Avg. (%) - -58.482 -97.294

Std. (%) - 26.731 34.378

Completion time gain
Avg. (%) - 12.786 7.799

Std. (%) - 4.083 5.548

asynchronous mode still presents a higher utilization rate than the con�guration without malleable
jobs. However, the high standard deviation means that the utilization is not as regular as in the
synchronous case. In fact, this result hides a low average utilization for small workloads (as we
already reported in this subsection, the small workloads performed worst) compared with a high
average for large workloads, similar to the synchronous scenario.

The last three rows o�er information about timing measures: the wait-time of a job before
entering execution, the execution time of the job, and the di�erence of time from the job submission
to its �nalization (completion). Malleability (�synchronous� and �asynchronous� columns) provides
an important reduction of the wait-time in both modes for all the sizes. This is because the resource
manager can shrink a job in execution in favor of a queued one.

With respect to the execution time, we experience a high degradation in the performance of each
individual job. For the synchronous scheduling, the negative gain of around a 58% is closely related
to the fact that the application scales linearly. Thus, halving the resources produces a proportional
reduction of the performance. In the asynchronous scenario, the degradation is even worse due to
the drawbacks previously discussed in this section. The high standard deviation means that not all
the jobs perform so bad; in fact, the jobs in the small workloads are the most a�ected instances (as
showed in Figure 6.9).

Finally, the global job time (completion time) places malleability in a good position, especially
the synchronous scheduling that completes, on average, the jobs for a 12% earlier than the normal
scenario.

This test reveals that so far, there is no need of using an asynchronous scheduling. Hence, the
rest of the experiments will exclusively use the synchronous mode.

6.5.2.3 Heterogeneous Workloads

In this benchmark we mixed malleable and rigid jobs in the same workload in order to study
their interaction. The workloads were composed of 100 jobs and the percentage of malleable jobs
determined the probability of a job being malleable. We raised the ratio of malleable jobs between
0% and 100% in steps of 25%. Figure 6.10 depicts the execution times for these con�gurations. In
general, we can appreciate that the execution time decreases as the ratio of malleable jobs grows.
The results shown in this chart reveal a 10%-gain with only a 50%-rate of malleable jobs, and up
to a 12%-improvement when all of them are malleable.
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Figure 6.10: Execution times of 100-job workloads with di�erent rates of malleable (showing the
top of the chart; Y axis is not starting in 0) with synchronous scheduling.

6.5.2.4 Checking Period Inhibitor in Micro-step Applications

For this test we reduced the time step in the model to 2 seconds, corresponding to the minimum
value for the experimented period inhibitor in order to investigate the importance of the overhead
incurred by the scheduling process. Again, we generated workloads with a di�erent number of jobs
and executed them as both rigid and malleable workloads. For the malleable workloads, we enabled
the checking inhibitor (see Section 6.3) to prevent that each iteration triggers a check. Figure 6.11
depicts the variation of malleability for a rigid execution. The group at the top (�malleable�),
represents an execution without the checking inhibitor mechanism. The rest of the groups in the
chart show the execution time when con�guring the inhibitor period to: 2, 5, 10 and 20 seconds (from
top to bottom), and its gain respect the rigid workload (percentage in the bar labels). Positive gain
percentages reveal that by enabling periods of checking inhibition burst of communications between
the runtime and the RMS can be avoided, reducing the overhead. In this particular example, setting
a period of 5 seconds among actions scheduling not only o�ers better results than the rigid workload,
but also outperforms a simple malleable workload.

6.5.2.5 Recon�guration Scheduling Performance Evaluation

To conclude this section, we present a thorough analysis of the overhead of using our framework
to enable malleability. For this purpose, we used the FS application con�gured to perform 2 steps
and to transfer 1 GB of data during the recon�guration. The idea is that each job executes an
iteration, then it contacts with RMS and resumes the execution in the second step with the new
con�guration of processes.

Figure 6.12 shows the average time of 10 executions for each recon�guration. On the left (a) we
can see the times taken by the RMS to determine an action (scheduling time). From top to bottom,
the �rst half of the chart depicts the expansions, while the second half shows the shrinks. The chart
reveals a slight increment in the scheduling time when more nodes are involved in the process.

Figure 6.12(b) shows the time needed to perform the transfers between old and new processes.
We can appreciate two interesting behaviors:

� The more processes involved in the recon�guration, the shorter resize time. That is why
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Figure 6.11: Execution time for the di�erent inhibition periods (bars) and the gain respect the rigid
workload (percentage on the right side of the bars) with synchronous scheduling.

the chunks of data are smaller and the time needed to transfer them concurrently is lower
(compare the time between 1 to 2 and 64 to 32 processes).

� Shrinks involve much more synchronization among processes and the greater the di�erence in
the number of processes is, the more time is needed to synchronize all of them.

We have also studied the overhead in a real workload execution. Table 6.3 reports the statistics
collected for a 400-job workload. The table is divided in three parts and shows the amount of
actions performed and their execution time during the workload execution in both synchronous and
asynchronous scheduling.

When no action is performed, the time to decide is virtually null (average time and standard
deviation of �none action�). The time increases when the RMS performs an action because of the
scheduling itself and the operations of recon�guration performed by the runtime.

The �rst two rows of the second and the third part, provide information about the number of
recon�gurations that are scheduled per workload and per job. We can see that the synchronous
version schedules fewer recon�gurations and not all these jobs are expected to be resized. Moreover,
since we are processing workloads with many queued jobs, running jobs are likely to be shrunk in
favor of the pending.

The table also demonstrates the negative e�ect of a timeout during an expansion. The timeout
mechanism is enabled when an action cannot be performed (probably because of a lack of resources)
and this e�ect is shown in the asynchronous scheduling column with the �maximum�, �average� and
�standard deviation� values. In addition to the maximum time taken by the runtime to assert the
expanding operation, these timeouts reveal a non-negligible dispersion in the duration values for
the �expand� action. In fact, having such a high standard deviation turns the average time little
representative.

6.5.3 Performance Analysis

We have conducted this evaluation generating workloads of di�erent sizes, composed of jobs
which instance 3 real applications (CG, Jacobi and N-body). These applications have been con�g-
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Figure 6.12: Time needed to recon�gure from/to processes (y axis in both charts).

Table 6.3: Analysis of the actions taken by the DMR API in a 400-job workload.
Synchronous Asynchronous

No Action

Minimum Time (s) 0.0010 0.0003

Maximum Time (s) 0.2078 0.1140

Average Time (s) 0.0094 0.0137

Standard Deviation (s) 0.0102 0.0112

Action Expand

Quantity 50 107

Actions/Job 0.125 0.267

Minimum Time (s) 0.367 0.366

Maximum Time (s) 0.530 40.418

Average Time (s) 0.423 8.820

Standard Deviation (s) 0.146 12.688

Action Shrink

Quantity 194 303

Actions/Job 0.485 0.757

Minimum Time (s) 0.233 0.334

Maximum Time (s) 0.541 0.555

Average Time (s) 0.425 0.422

Standard Deviation (s) 0.498 0.049
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Table 6.4: Applications Con�guration

Application Input Data

CG A square matrix and 4 arrays of 16,384 elements each one.
Jacobi A square matrix and 2 arrays of 16,384 elements each one.
N-body A simulation space of 3,276,800 particles.

ured as detailed in Table 6.4.

In order to con�gure the malleability parameters of the applications (lower limit, preferred
con�guration and upper limit), we performed a strong scalability test. For this purpose, all the
applications were executed with one process and incrementally we doubled the number of processes
in each step.

With the completion time of these executions we obtain a relative index of completion time
decrease, referred as gain di�erence and calculated in Equation (6.1).

scurrent =
tprevious − tcurrent

tmin_procs
× 100 (6.1)

In the equation, tcurrent is the completion time using the current number of processes, tprevious
is the completion time of the previous number of processes con�guration, and tmin_procs is the
completion time of the minimum number of processes con�guration. For example, in order to
calculate the gain di�erence for CG executed in 8 processes (s(8)), we subtract the completion time
of the previous con�guration (t(4)) minus its own time (t(8)). This is divided by the reference
completion time of the minimum processes con�guration (t(1)). The result is �nally multiplied by
100.

Figure 6.13 depicts the gain di�erence for each con�guration of the four applications. In order
to determine the limits of malleability, we considered a 10% threshold (thick horizontal line in the
chart). The lower limit is de�ned by the �rst con�guration to exceed this threshold; the preferred
value is given by the last con�guration before dropping below 10%; and the upper limit is the
con�guration with the highest performance. Although our cluster was composed of 64 compute
nodes, we restricted the jobs to request a maximum of 32 nodes, assuming that a job should not
monopolize more than a half of the cluster. Values below zero have been omitted since they represent
an increase in the application execution time, automatically dismissed.

These tests identify two parallel behaviors:

� High scalability: CG and Jacobi. In this case both applications have a similar behavior, with
the highest speed-up attained for 32 processes. However, from 8 processes on, the di�erence
gain among tests drops below 10%, so we consider 8 processes as a �sweet con�guration spot�
for these two applications.

� Constant performance: N-body. In contrast, this application reaches its maximum perfor-
mance for 16 processes. However, in this case, the gain does not exceed 10% with respect to
the sequential run, so a single process is considered as the �sweet spot�.

From the perspective of computational cost, CG and Jacobi comprise �short� iterations that
complete in less than 2 seconds, while N-body executes costly iterations, in the scale of minutes.
For this reason, for CG and Jacobi we enabled the scheduling period inhibitor featured by the
runtime, in order to reduce the amount of communications with the RMS.
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Figure 6.13: Gain di�erence of each application in Marenostrum III with synchronous scheduling.
The thick horizontal line determines the limits of malleability with a threshold of 10%.

Table 6.1 displays the con�guration employed in the experimentation. The job submission
of each application is launched with its �maximum� value, re�ecting the user-preferred scenario
of a fast execution. Each workload is composed of a set of randomly-sorted jobs (with a �xed
seed) which instantiate one of the three real applications (33% of jobs of each application class).
Furthermore, the inter-arrival time among submissions is generated using the statistical model
proposed by Feitelson [15], which characterizes rigid jobs based on observations from logs of actual
cluster workloads.

6.5.4 Experimental Results

Figure 6.14 depicts the execution time of each workload size comparing both con�guration
options: rigid and malleable. The labels at the end of the �malleable� bars report the gain compared
with the rigid version. Table 6.5 details the measures extracted from the executions. In the �rst
column, we compare the average resource utilization for rigid and malleable workloads. This rate
corresponds to the average time when a node has been allocated by a job compared to the workload
completion time. These results indicate that the malleable workloads reduce the allocation of nodes
around 30%, o�ering more possibilities for queued jobs and for a reduction of energy consumption.

The second column of Table 6.5 shows the average waiting time of the jobs for each workload.
These times are illustrated in Figure 6.15, together with the gain rate for malleable workloads.
The reduction around 60% makes the job waiting time a crucial measure to keep in mind from
the perspective of throughput. In fact, this time is responsible for the reduction in the workload
execution time.

The last two columns of Table 6.5 present two more aggregated measures of all the jobs in
the workload: The �rst one is the average execution time; the second is this execution time plus
the waiting time of the job, referred as completion time. The experiments show that jobs in the
malleable workload are a�ected by the scale-down of their number of processes. However, this is
compensated by the waiting time which bene�ts the completion time.

In order to understand the events during a workload execution, we have chosen the smallest
workload to generate detailed charts and o�er an in-depth analysis.
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Figure 6.14: Workload execution times (bars) and gain of malleable workloads (bar labels) with
synchronous scheduling.
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Figure 6.15: Average waiting time for all the jobs of each workload (bars) and the gain of malleable
workloads (bar labels) with synchronous scheduling.
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Table 6.5: Summary of the averaged measures from all the workloads with synchronous scheduling.

#Jobs Version

Resource
utilization
rate (%)

Job
waiting
time (s)

Job
execution
time (s)

Job
completion
time (s)

50-job
Rigid 98.71 4115.02 620.26 4735.28

Malleable 68.67 1359.92 900.30 2260.22

100-job
Rigid 97.39 9750.34 586.64 10336.98

Malleable 71.91 2990.60 858.16 3848.76

200-job
Rigid 98.38 17466.20 520.58 17986.78

Malleable 73.54 6856.80 825.88 7676.67

400-job
Rigid 98.38 31788.39 532.14 32320.53

Malleable 73.54 13861.03 843.19 14704.22

The top and the bottom plots in Figure 6.16 represent the evolution in time of the allocated
resources and the number of completed jobs. It also shows the number of running jobs for rigid and
malleable workloads (blue and red lines respectively). The �gures demonstrate that the malleable
workload utilizes fewer resources; furthermore, there are more jobs running concurrently (top chart).
For both con�gurations, jobs are launched with the �sweet spot� number of processes; the rigid jobs
obviously do not vary the amount of assigned resources, while in the malleable con�guration, they
are scaled-down as soon as possible. This explains the reduction on the utilization of resources. For
instance, in the second half of the malleable shape in Figure 6.16 (marked area), we �nd a repetitive
pattern in which there are 5 jobs in execution which allocate 40 nodes. The next eligible job pending
in the queue needs 32 nodes to start. Therefore, unless one of the running jobs �nishes, the pending
job will not start and the allocation rate will not be higher. When a job eventually �nishes and
releases 8 nodes, the scheduler initiates the job requesting 32 nodes. Now, the allocated nodes are
64 (the green peaks in the chart); however, since the job prefers 8 processes, it will be scaled-down.

At the beginning of the trace in the bottom of Figure 6.16, the throughput of the rigid workload
is higher, but this occurs because the �rst jobs are completed earlier (they have been launched with
the best-performance number of processes). Meanwhile, in the malleable workload, many jobs are
initiated (blue line) and, as soon as they start to �nish, the throughput experiences a boost.

Figure 6.17 depicts the execution and waiting time of each job grouped by application. The
execution time (top row of charts) increases in the malleable workload for all the cases. As we
explained before, we are shrinking jobs as soon as they are initiated to their preferred value. This
implies a decrease in performance because of a reduction of resources. However, there is a job that
leverages the bene�ts of an expansion. The last Jacobi job experiences a drop in its execution time
hence it has been expanded thanks to completed jobs have released their resources.

The row of charts at the bottom compares the waiting time of all the jobs for their rigid and
malleable versions. At the beginning there is no remarkable di�erence in the waiting time of both
versions: however, the arrival of new jobs does not stop and resources remain allocated for the
running jobs in the rigid workload. The RMS cannot provide the means for draining faster the
queue. For this reason, queued jobs in the rigid workload, experience a dramatic delay in their
initiation.

That di�erence in the initiation is crucial for the completion time of the job, as it is shown
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Figure 6.16: Evolution in time for the 50-job workload. Blue and red lines represent the running
jobs for rigid and malleable policies with synchronous scheduling.

in Figure 6.18. This �gure represents the di�erence in execution, waiting and completion time for
each job grouped by application. Again, the execution time remains below zero, what means that
the di�erence is negative and the malleable workload performs slower. Nevertheless, this small
drawback is highly compensated by the waiting time. As can be seen, completion time di�erence
shows a heavy dependency on the waiting time, making it the main responsible for reducing the
individual completion time, and in turn, the high throughput obtained in the experiments.

6.6 Case Study of a Scienti�c Application: HPG-aligner

After having proved the bene�ts of job recon�guration in workloads, we are in the need of
fostering the adoption of malleability solutions in scienti�c production applications. As exposed
in Section 3.2.2, several e�orts have been made in order to turn into malleable large applications
such as LAMMPS2 or LeanMD3.. The applications introduced in that section follow an iterative
pattern where all the processes execute the same operations over di�erent data, which is conveyed
among processes. In that set of applications, we also �nd one with a master-worker scheme, where
independent workers load from disk the data to process. All in all, those applications are perfectly
suitable for malleability because they present a structure with clearly identi�able malleability points.
Unfortunately, not all scienti�c applications follow the guidelines of a process-level malleable job.

In this section we study the particular case of HPG (High-performance Genomics) Aligner, a
distributed-memory non-iterative genomic sequencer featuring an irregular communication among
processes. Through HPG-aligner, we exemplify the methodology to convert a non-malleable-oriented

2http://lammps.sandia.gov
3http://charm.cs.illinois.edu/research/leanmd
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Figure 6.17: Execution (top) and waiting (bottom) times of each job grouped by application
(columns) with synchronous scheduling.
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Figure 6.18: Time di�erence between the rigid and malleable version of each job: completion,
execution and waiting time with synchronous scheduling.

application and, with an extensive experimental analysis, we prove its actual feasibility in production
clusters.

6.6.1 Overview of HPG-aligner

HPG-aligner is a bioinformatics application for fast and accurate mapping of RNA sequences on
a cluster of computers [50]. It employs several MPI processes as workers, and an additional MPI
process as a writer (see Figure 6.19). Each worker operates over a particular part of the input �le,
which contains short RNA fragments (reads) produced by a Next Generation Sequencing (NGS)
sequencer. At the beginning of the execution, each worker calculates the indexes of its part of the
input �le. Then, each worker performs its computation over its self assigned reads, and sends the
alignments it obtains to the writer, whereas the writer stores the reported alignments to disk.

6.6.2 HPG-aligner Malleable Version

In this section we describe how the DMR API has been employed to convert HPG-aligner into
a malleable application.

6.6.2.1 Adapting the HPG-aligner Work�ow

The original implementation of HPG-aligner performs a static distribution of data among all
the processes of the whole dataset (i.e., all the RNA reads obtained from an NGS sequencer). This
strategy is not desirable for a malleable application, since it would complicate both the redistribution
of the yet-to-be-done work among the new processes, and the determination of the synchronization
point that all the processes should reach to evaluate whether a recon�guration should be done.
Thus, we have redesigned the HPG-aligner work�ow in order to split the input workload into a
user-de�ned number of chunks, each one will be dynamically assigned to a worker process.
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Figure 6.19: HPG-aligner original version work�ow.

To allow HPG-aligner to dynamically distribute the dataset, a new process is created, amanager,
which is in charge of the distribution of the input dataset chunks among the worker processes. In
this new work�ow, see Figure 6.20, when a worker has �nished its previously assigned work, it asks
the manager for more work. Then, the manager computes the index of the next dataset chunk to
be processed, and assigns it to that worker.

Moreover, the HPG-aligner work�ow has also been modi�ed in order to allow the processes to
periodically reach a malleability point, i.e., a synchronization point where the RMS can be asked
if a recon�guration should take place. This can be achieved by instructing all the HPG-aligner
processes to reach the malleability point after a given number, n, of chunks have been processed.
Figure 6.20 illustrates this �iterative� schema: all the HPG-aligner processes cooperate to compute
n chunks of reads, and then, all of them reach the malleability point, where a recon�guration could
be triggered. These two stages, processing and reaching the malleability point, are repeated until
all the chunks have been processed.

To implement this �iterative� schema and synchronize all the processes at a malleability point,
the following strategy and communication schema have been employed. After dispatching n chunks,
the manager stops distributing work. Instead, whenever a worker asks for more work, the manager
signals him to proceed to the malleability point. The worker, in its side, after receiving this signal,
propagates it to the writer. This communication schema, see Figure 6.21, ensures that all processes
will eventually reach the malleability point after n chunks are processed.

The algorithms used to implement the described strategy and communication schema are de-
picted next using an MPI pseudo-code. In this pseudo-code, the �rst argument of the MPI send
calls is the data to be transferred, and the second, its destination. Likewise, the �rst argument
of the MPI receive calls is a container for the data to be received, and the second argument, the
senders from whom that data is received.

Algorithm 4 shows the pseudo-code corresponding to a manager iteration. While there are
chunks to be processed (line 1), the manager waits for a work petition from any worker (line 2),
and in response to each of these, it provides the index of the next chunk to be processed (line 3).
The malleability point is reached (line 7) when all the chunks of the current iteration have been
assigned and a special signal (−1) is sent to all the workers (lines 4 to 6).

Algorithm 5 describes the pseudo-code of a worker iteration. First, the worker informs the
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Figure 6.20: HPG-aligner malleable version work�ow.
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Figure 6.21: Communication schema of a DMR API recon�guration.

Algorithm 4 Pseudo-code of a manager iteration

1: while chunks do
2: MPI_Recv(&worker_id, MPI_ANY_SOURCE)
3: MPI_Send(index, worker_id)
4: end while
5: for each worker do
6: MPI_Irecv(&worker_id, worker)
7: MPI_Isend(-1, worker)
8: end for
9: /* Malleability point */
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manager that it is ready to process more work (line 1 and 6). Then, it waits until the manager
sends back the index of the next chunk of reads assigned to it (line 2 and 7). If index −1 is received
(line 3), it will propagate this signal to the writer (line 9), and proceed to the malleability point
(line 10). Otherwise, it will process the assigned chunk and send its results to the writer.

Algorithm 5 Pseudo-code of a worker iteration

1: MPI_Send(worker, manager)
2: MPI_Recv(&index, manager)
3: while index 6= −1 do
4: compute(index, &data)
5: MPI_Send(data, writer)
6: MPI_Send(worker, manager)
7: MPI_Recv(&index, manager)
8: end while
9: MPI_Send(-1, writer)
10: /* Malleability point */

Finally, Algorithm 6 describes the pseudo-code of the writer iteration. The writer listens for
data from any worker (line 2). If an actual result is received (line 3), it will write it to disk (line 4).
Otherwise, if the received data contains −1 (line 5), a counter is increased (line 6), and when the
value of this counter reaches the number of workers (line 8), it will proceed to the malleability point
(line 9).

Algorithm 6 Pseudo-code of the writer iteration

1: do
2: MPI_Recv(&data, MPI_ANY_SOURCE)
3: if data 6= −1 then
4: write_to_disk(data)
5: else
6: cnt+ = 1
7: end if
8: while cnt 6= n_workers
9: /* Malleability point */

6.6.2.2 HPG-aligner Data Redistribution Patterns

On the previous section a malleable work�ow has been proposed for HPG-aligner so that it could
periodically reach a malleability point where asking the RMS whether it should be recon�gured or
not before continuing processing the input data. In this section, we will discuss how the data of the
HPG-aligner processes could be redistributed in event of a recon�guration.

As for the data involved in a redistribution, on HPG-aligner we can di�erentiate two types. On
the one hand, all the HPG-aligner processes share some identical information, hereafter referred as
common data. On the other hand, HPG-aligner workers, since they map each read to the reference
genome, populate two data structures, either from scratch or from already-initialized values. These
data structures, hereafter referred as worker data, are used by the HPG-aligner workers to improve
their performance and their mapping quality. It should be noted that, although the workers do not
require their particular worker data to be initially populated, HPG-aligner uses the aggregated data
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Figure 6.22: Data redistribution scheme of an expansion from 4 to 6 processes.

from all the workers in a later stage in order to be able to correctly align those reads that could not
be previously aligned.

If a recon�guration is performed, the common data and the worker data (referred as cData and
wData, respectively) should be distributed from the current processes to the new processes. We
have de�ned two di�erent patterns depending on the recon�guration type. If the recon�guration is
an expansion, i.e., the application will be executed on more processes after the recon�guration, the
following next strategy is performed:

� Each current wi worker sends both its common and worker data to the new w′
i worker.

� The current manager sends its common data to half of the remaining new processes (which
will become new workers).

� The current writer sends its common data to the other remaining new processes (two of which
will become the new manager and the new writer).

Figure 6.22 illustrates this redistribution pattern when expanding from 4 to 6 processes. The
initial workers send their common and worker data to their peer MPI ranks in the new communicator
(wide arrows in the �gure). At the same time, the initial manager and writer send their common
data to the remaining newly spawned processes (narrow arrows in the �gure).

Notice that each initial worker transfers its data to the homonym worker in the new communi-
cator. As stated before, the data generated by each worker must be preserved, since it is required
in later computational stages.

Otherwise, when the action is a shrinking, the application will be executed on less processes
after the recon�guration. In this case, the already populated worker data of those workers that
will be removed should be preserved (since this information is paramount on a later stage of HPG-
aligner). In order to ensure that the metadata will not be lost, we leverage an e�cient parallel
merge [52] implemented in HPG-aligner, which uses a minimum spanning tree pattern to merge
all the workers data into the �rst worker (see Figure 6.23). Therefore, over the di�erent options
that could be employed to preserve and distribute this information, we have chosen to �rst call
HPG-aligner parallel merge, and then follow the next strategy:

� The �rst worker, w0, will send its common and worker data to the new �rst worker, w′
0 (the

aggregated worker data will be preserved on this worker).

� The next workers will send their common data to the remaining new processes (the two last
of them becoming the new manager and the new writer).
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Figure 6.23: Distributed merge of the meta-data structures.
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Figure 6.24: Data redistribution scheme of a shrink from 6 to 4 processes.

Figure 6.24 illustrates the redistribution pattern when shrinking from 6 to 4 processes. The
�rst worker sends its common and worker data to the MPI rank 0 in the new communicator (wide
arrow in the �gure), and the remainder processes send their common data to their peer MPI ranks
(narrow arrows in the �gure).

6.6.2.3 HPG-aligner Malleable Version Outline Using the DMR API

Once the modi�ed HPG-aligner work�ow has been presented and the data redistribution pat-
terns have been de�ned, we can outline the HPG-aligner malleable main loop, which proceeds as
follows (see Listing 6.3). When a process �nish its part on the processing of the �rst n chunks
(line 5), it will reach the malleability point and call the dmr_check_status() function. If no resize
action is planned, the current processes will proceed with the next n chunks. Else, if an expanding
or shrinking action is scheduled, the corresponding data redistribution pattern, described on Sec-
tion 6.6.2.2, is applied. Since the actual data redistribution is performed by the DMR API runtime,
all that is required is to indicate in the source code which data should be distributed and to whom,
using a DMR API OmpSs-like #pragma directive. After the data redistribution, the new processes
will proceed with the next n chunks.

Notice that the dmr_check_status() function allows to de�ne some malleability conditions
that the RMS will take into account. These are: i) the minimum number of processes (MIN), ii) the
maximum number of processes (MAX), and iii) the preferred number of processes (PREF) that should
be assigned to this application. If a resize is due, the function will return: the action, the new
number of processes (in handlerNProcs) and the new MPI communicator (in handler).
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1 void hpga_malleable(void *cData , void *wData , int chunkIndex) {

2 for (ci = chunkIndex; ci < TOTALCHUNKS; ci += N) {

3

4 /* Computation */

5 do_my_part ();

6

7 /* Malleability point */

8 action = dmr_check_status(MIN , MAX , PREF , &handlerNProcs , &

handler);

9 if (action == EXPAND) {

10 if (am_i_a_worker ()) { // Workers processes

11 #pragma omp task in(cData) in(wData) onto(handler , myRank)

12 hpga_malleable(cData , wData , ci);

13 } else { // Manager or Writer process

14 for (dst = firstDst (); dst < getDsts (); dst++) {

15 #pragma omp task in(cData) onto(handler , dst)

16 hpga_malleable(cData , NULL , ci);

17 }

18 }

19 } else if (action == SHRINK) {

20 merge_in_rank0(wData);

21 if (myRank == 0) {

22 #pragma omp task in(cData) in(wData) onto(handler , myRank)

23 hpga_malleable(cData , wData , ci);

24 } else if (myRank < handlerNProcs) {

25 #pragma omp task in(cData) onto(handler , myRank)

26 hpga_malleable(cData , NULL , ci);

27 }

28 }

29

30 }

31 }

Listing 6.3: HPG-aligner malleable version outline using the DMR API.
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As for the #pragma omp task directives, as previously stated, these are used to indicate which
data should be redistributed and to whom. For example, the directive:

#pragma omp task in(cData) in(wData) onto(handler, myRank)

indicates that the cData (common data) and wData (worker data) structures should be redistributed
to the new myRank MPI process in the handler communicator.

6.6.3 Experimental Results

In this section we describe the setup for the experiments, the results obtained with a production-
size dataset, and, the results achieved when a larger dataset is employed.

6.6.3.1 Experimental Setup

The experiments were performed using the Marenostrum IV cluster at the Barcelona Supercom-
puting Center (BSC). Each cluster node integrates 2 Intel Xeon Platinum 8160 (24 cores running
at 2.10GHz each) for a total of 48 cores with 96GiB of RAM. The nodes are interconnected through
a 100Gb/s Intel Omni-Path network. One out of the 50 nodes of a standard queue in Marenos-
trum IV was used to run the Slurm manager daemon while the remaining 49 nodes were used to run
the jobs. The following software versions were used: MPICH 3.2, OmpSs 15.06, and Slurm 15.08.

Workloads Setup We have generated �xed and malleable workloads of 100, 250, 500, 1,000, and
2,000 jobs, where all the jobs in a �xed workload are not malleable; all the jobs in a malleable
workload are malleable.

The workloads were generated using the same methodology used in 6.5.1. Concretely, for our
experiments, we have customized the following parameters of that model: i) the number of jobs to
be launched, and ii) the jobs inter-arrival time which was modeled using a Poisson distribution with
factor 10, in order to prevent receiving bursts of jobs while preserving a realistic job arrival pattern.

Jobs Setup Each job in a workload will execute an instance of HPG-aligner with a simulated
dataset of RNA reads and the GRCh37.p73 human genome4 as the reference genome.

As for the malleable jobs, the number of chunks have been set to be 4 times the maximum
number of workers. Also, the number of chunks to be processed on each iteration has been selected
to be variable and equal to the number of workers available at that moment.

6.6.3.2 Validation of the Proposed HPG-aligner Malleable Version

To compare the original and the malleable versions of HPG-aligner outputs, we have executed
both versions 10 times and collected their execution times and results.

The input to both versions consisted of a dataset with 20 millions of 100 nucleotides RNA reads
(generated with BEERS [18]), and the reference genome GRCh37.p73 human genome.

On the malleable version, we con�gured the number of chunks to be equal to the number of
initial workers in order to mimic a static dataset distribution and to prevent any recon�gurations.

The execution times were virtually the same for both versions, with close-to-negligible time
di�erences, of 0.28%, which were due to the malleability code overhead.

As for the outputs obtained by each version, it should be noted that HPG-aligner output depend
on the order in which the reads are processed [49]. Therefore, it is not possible to obtain the same
results on di�erent parallel executions. However, we can consider that the obtained results are

4http://www.ensembl.org/index.html
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comparable if they present a similar accuracy. As the accuracy deviation of the results obtained by
the malleable version with respect to those in the original version was a negligible ±0.2%, we can
conclude that both outputs are correct.

Therefore, the malleable version of HPG-aligner proposed in this chapter is functionally equiva-
lent to the HPG-aligner in [49]. Furthermore, when no recon�guration is performed, the execution
time of the malleable version is almost the same as the original version.

6.6.3.3 Experiments with a Production-size Dataset

The input production-size dataset used in these experiments consists of 40 millions of 100 nu-
cleotides RNA reads, sizing 8 GiB in total. It was generated using BEERS [18].

Since the malleable version of HPG-aligner has to inform the RMS of its minimum, maximum,
and preferred number of jobs, we have �rst experimentally determined these for the already described
experimental setup. For this purpose, we have launched the HPG-aligner malleable version with
di�erent number of processes and obtained their execution time, which is shown on Table 6.6.

While the lower and upper bounds are the minimum and the maximum number of processes
allowed for this job, respectively, the preferred con�guration is a number of processes with a fair
trade-o� between performance and the amount of resources assigned to that job. Table 6.6 presents
the execution time (second column) for each process con�guration (�rst column) of the malleable
version of HPG-aligner. The table shows that with 12 processes the application reaches its highest
performance: hence this will be used as the upper limit.

The lower limit and the preferred value were obtained, again, from the Equation 6.1. The results
are collected in the third column of Table 6.6. With this metric, we obtained the relative increase
in the gain performance of each con�guration comparing the target con�guration performance (ti)
with its previous (ti-1) con�guration. The reference point for calculating the gain was the baseline
con�guration performance (t0). The 3-process con�guration was considered the baseline, because
we need, at least, a worker, a manager, and a writer process.

On the one hand, the lower limit is determined by the �rst con�guration whose gain di�erence
does not reach a threshold of 75%. In this case, the 6-process con�guration cannot reach that
threshold, and the lower limit is de�ned in 3 processes. On the other hand, in order to determine a
�sweet spot� of execution, where we can reach a fair balance between resources and performance, we
have set a threshold that yields a 25% reduction in time compared with the previous con�guration
of processes. Again, the last column of Table 6.6 shows that di�erence, and points to 6 processes
as the preferred value, since the use of 12 processes does not meet the speci�ed requirements. This
application is I/O-bound and we cannot expect higher speedups when increasing further the number
of processes.

In these experiments, we always submit the jobs requesting between 3 and 12 nodes. In our
case, the possible values will be 3, 6, and 12; the resource manager decides the number of nodes to
be assigned to the job before being initiated.

The malleable version of HPG-aligner can be initiated with fewer processes than its rigid coun-
terpart, so the average execution time can be negatively a�ected. This can be seen on Figure 6.25,
where the slow-down in the average execution time of the malleable jobs reaches 60%. However,
when a job is submitted to a cluster, not only its execution time is taken into account, but the
time elapsed from the submission to the execution (that include the waiting time) has to be also
considered. Jobs are expected to be initiated earlier on a malleable workload because the running
jobs can release part of their resources in favor of the pending jobs. As expected, Figure 6.26 shows
that the average waiting time in a malleable workload can be up to 77% lower than that in the �xed
counterpart.
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Table 6.6: Execution time and gain di�erence of HPG-aligner malleable version when executed with
an input dataset of 40 millions of 100 nucleotides reads for di�erent numbers of processes.

Execution Gain
# time (s) slope

3 238 �
6 68 71.43%
12 40 11.76%
24 44 -1.68%
48 60 -6.72%
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Figure 6.25: Average job execution time on di�erent �xed and malleable workloads with an increas-
ing number of jobs.
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Figure 6.26: Average job waiting time on �xed and malleable workloads with an increasing number
of jobs.

All in all, the balance is positive for malleable workloads, since the average job completion time,
i.e., the average job waiting and execution time, may be up to 20 times faster than that for its
equivalent �xed workload, as can be seen in Figure 6.27.

Figure 6.28 shows the completion time (the elapsed time between the �rst job was submitted
and the last job is completed) of the di�erent �xed and malleable workloads. As it can be seen, the
completion time of the malleable workloads is up to 16% faster than their �xed counterparts. This
result is specially signi�cant from a cluster administrator/manager point of view, since it shows how
the throughput of the system is increased when the malleable workloads are used.

Figure 6.29 details the evolution along the time of: i) the allocated nodes (top chart), ii) the
concurrent jobs being executed (red and blue lines on top chart), and iii) the completed jobs (bottom
chart) on the 1,000 jobs of �xed and malleable workloads.

The �at shape in the top chart of Figure 6.29 depicts how the nodes have been allocated during
the execution of the �xed workload. It reveals that almost all the resources are allocated all the
time. On the other hand, the malleable workload �nishes earlier, mainly because more resources
are generally available and that provides higher �exibility on the scheduling of new jobs.

The red and blue lines on the top chart of Figure 6.29 represent the concurrent running jobs
on the �xed and malleable workloads, respectively. It can be seen, as was expected, that for the
current experimental setup, the �xed workload is almost always running 4 jobs (with 12 nodes) at
the same time. On the other hand, the malleable workload presents a greater variability, where the
8-job (with 3 nodes) con�guration is the most used.

Finally, the bottom chart of Figure 6.29 represents the time evolution of the completed jobs on
the �xed and malleable workloads. The evolution of both is overlapped until second 1,000, where
more jobs per second begin to be completed on the malleable version. This behavior is consistent
with the observed di�erences on the average job completion time of both workload types with
di�erent number of jobs (see Figure 6.27): the di�erences were minimum for the 100 job workloads
and became greater as the number of jobs in the workloads was increased. Furthermore, due to its
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Figure 6.27: Average job completion time (waiting and execution time) on di�erent �xed and
malleable workloads with an increasing number of jobs.
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higher throughput, the malleable workload ends before the �xed counterpart.

The results presented so far can be summarized in a remarkable improvement of the individual
job completion time when a malleable workload is processed. Figure 6.30 illustrates this fact, since
it shows that all the malleable jobs are completed in almost a constant time, while the completion
time of the �xed jobs becomes more variable: the later they are queued, the worse completion time
they have.

6.6.3.4 Experiments with a Larger Dataset

The input dataset used in these experiments is larger than those currently used in production.
We have considered this larger size as a possible future production value. It consists of 80 millions
of 400-nucleotide RNA reads, 61 GiB in total5. This dataset was also generated using BEERS [18].

Again, since the malleable version of HPG-aligner has to inform the RMS of its minimum,
maximum, and preferred number of jobs, we have �rst experimentally determined these for this
particular experimental setup. In order to do this, we have launched the HPG-aligner malleable
version with di�erent number of processes and obtained their execution times, which are shown on
Table 6.7, alongside with their gain slope. Using the gain slope metric, the minimum, preferred,
and maximum number of processes are determined as explained on the previous section:

� minimum: 6

� preferred: 6

� maximum: 24

5the production-size dataset described in the previous section was 8 GiB
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Figure 6.30: Completion time of each job on the �xed and malleable workloads. The greater the
job id, the later the job was queued.

Table 6.7: Execution time and gain di�erence of the HPG-aligner malleable version when executed
with an input dataset of 80 millions of 400-nucleotide reads for di�erent number of processes.

Execution Gain
# Time (s) Slope

3 1,382 �
6 345 75.04%
12 155 13.75%
24 152 0.22%
48 171 -1.37%
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Figure 6.31: Average job completion time (waiting and execution time) on di�erent �xed and
malleable workloads with an increasing number of jobs.

The experiments reveal that the malleable workloads outperform their �xed counterparts. Fig-
ure 6.31 shows the average job completion time as the sum of the average waiting and execution
times on di�erent �xed and malleable workloads. The waiting time (blue part of the bars) is the
predominant addend in all the cases, while the execution time (orange part of the bars) is far smaller
in the malleable cases and almost imperceptible in the �xed workloads. It can also be seen in this
�gure that the average job completion time for the malleable workloads is around half of their �xed
counterparts. In the interest of clarity, we have only shown the workloads of up to 500 jobs, which
let us appreciate the di�erence among both averaged times.

The speedups of the job completion time, the job execution time, and the job waiting time
on malleable workloads with an increasing number of jobs over their �xed counterparts are shown
on Figure 6.32. The speedups of the job execution time are under 1, which indicates that jobs in
the malleable workloads are running slower than �xed jobs. As already discussed, this is due to
the malleable jobs being usually shrunk in order to accommodate for more running jobs. Neverthe-
less, the job waiting time speedup widely compensates the slower execution time, leading to a job
completion time speedup of around 2 in all the workloads.

6.7 Conclusions

We have implemented a resource-aware malleability solution that improves the system behavior
by targeting the global throughput of a high-performance facility. For this purpose, we have based on
�rst-class tools the design of this new approach that introduce, a dynamic recon�guration mechanism
for malleable jobs, composed of two modules: the runtime and the resource manager.

As we prove in this chapter, our approach can signi�cantly enhance resource utilization while,
at the same time, reducing the wait-time for enqueued jobs and decrease the workload completion
time. Although this is achieved at the expense of a certain increase in the job execution time, we
have reported that, depending on the scalability of the application, this drawback can be negligible
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Figure 6.32: Speedups of the job completion time, the job execution time, and the job waiting time
on malleable workloads with an increasing number of jobs over their �xed counterparts.

and utterly bene�cial for the individual job completion time.
Furthermore, building upon the usability study of malleability tools, with the DMR API we

expose other example of how to implement malleability in the sample code listed in Listing 3.1.
Our implementation, based on an OmpSs-like syntax (see Listing 6.1), presents a more usable
solution. The resultant code is less interfering than other solutions if we use as a baseline a non-
malleable version of the program. Besides, the DMR API semantics allow the user to write easier
code for implementing malleability.

Adapting a regular application to accommodate malleability can be a hard task, since usually
applications are developed without ever considering the possibility of being requested to recon�gure
their processes. Nevertheless, in this work we have shown that DMR API can be used to ease this
task, and we expect to have started to pave the road towards dynamic job recon�guration and the
standardization of adaptive workloads through the inclusion of malleable jobs on them.

In particular, we have presented a malleable version of HPG-aligner using the DMR API. This is
the �rst case, to our knowledge, where a non-iterative producer-consumer application with irregular
communication patterns of complex data structures has been turned into malleable. This work,
together with the di�erent malleable applications presented in Section 6.5, prove that the DMR API
can handle a wide variety of applications, including those featuring an irregular design.

As for the experimental results, we have shown that by adding malleability to HPG-aligner, the
throughput of malleable workloads can be doubled. At the same time, since the waiting time is
greatly reduced, the jobs in a malleable workload are completed faster.
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CHAPTER 7

DMRlib: An MPI-like Malleability Solution

Apart from the Charm++ based recon�guration solutions introduced in Section 3.2, the DMR
API presents one of the most user-friendly interfaces for malleability. With these new paradigms,
users are expected to make less e�ort to implement malleability in their applications; however, users
have to learn the speci�cs of each programming model and their particular syntax.

Although the DMR API provides a highly usable interface, irregular applications (e.g., applica-
tions implementing a consumer�producer scheme) require a special e�ort to implement recon�gura-
tion capabilities, because not every process features the same data structures. Another disadvantage
that we �nd is in object-oriented applications (such as those leveraging C++ classes), which need a
code refactoring regarding how the data is passed to the functions as parameters instead of as class
attributes.

DMRlib is created with the intention of providing the user with a familiar-syntax-based interface
to implement malleability. Compared with the reviewed approaches, the solution presented in this
Chapter is basically composed of a trigger mechanism for recon�guration that hides most malleabil-
ity internals, providing users with the freedom to perform data redistributions using standard MPI
routines.

7.1 The Dynamic Management of Resources Library

The dynamic management of resources library has been designed to ease malleability adoption
by application developers. Built on top of the DMR API, DMRlib hides all the interactions among
the application, the runtime, and the RMS. For this purpose, the library is in charge of the whole
job recon�guration procedure, honoring the malleability parameters provided by the user.

DMRlib enables the communication with Nanos++ (the OmpSs runtime) and the RMS. The
RMS is an extension of Slurm with support for malleability, previously used by the DMR API.

7.1.1 Main Procedure

DMRlib's main procedure is a macro that triggers and handles the whole recon�guration process.
The macro, de�ned in Listing 7.1, expects �ve arguments corresponding to �ve function names:
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Listing 7.1: Recon�guration macro de�nition in DMRlib.

1 #define DMR_RECONFIG(compute , send_expand , recv_expand , send_shrink ,

recv_shrink)

� compute: The function that will be executed when the recon�guration procedure ends and the
child processes resume the execution of the application. Typically, in an iterative application,
this function is the same function that invokes the recon�guration.

� send_expand: Function executed by parent processes in Comm 1 when performing an expan-
sion. This function implements the algorithm for sending data from parent processes to child
processes.

� recv_expand: Function executed by child processes in Comm 2 when performing an expan-
sion. This function implements the algorithm for receiving data in child processes from parent
processes.

� send_shrink: Similar to the send_expand but for a shrink.

� recv_shrink: Similar to the recv_expand but for a shrink.

The macro proceeds as Algorithm 7 shows. First of all, in order to de�ne the operations of
the processes, the current stage of the recon�guration is checked (line 1). For this purpose, the
library tries to retrieve the parent communicator. If there is a parent communicator (line 2), it
will be used to handle the data redistribution. Line 3 determines, by comparing the number of
processes in both communicators, if the resize action is an expansion or a shrink. Thus, if the
current global communicator (MPI_COMM_WORLD) contains a larger number of processes than the
parent communicator, the library invokes the user function for receiving data in an expansion
(line 4); otherwise, the receive data function for shrinks will be called (line 6).

In case MPI_Comm_get_parent() returns �null�, meaning that the current communicator does
not have a parent and hence no recon�guration is occurring, the application communicates its
readiness of being resized to the runtime (line 9). At this point, action may obtain three values:
�expand�, �shrink�, or �none�. In the latter case, the program execution continues normally (line 27);
otherwise, the macro performs the job rescaling arrangements. For the sake of clarity, in our
examples we always assume that the resizes are multiple of or divisible by the number of processes
in the invoking communicator.

In line 11, the scalability factor is calculated to determine the number of links to be established
by each initial process. With this factor, each process assesses its peer processes in the new com-
municator (line 13) and establishes the communication to identify the function where the execution
will be resumed after the recon�guration (lines 14 and 15). In line 16, the data is sent utilizing the
function provided by the user send_expand(). Finally, the new processes are disconnected from
Comm 1, being allowed to continue the execution of the application in a new computational step,
whereas the initial processes terminate their execution (line 17).

In case of a shrink (line 19), the procedure is similar to that in an expansion. DMRlib calculates
the communication factor (line 20), establishes the communication among the processes, and sets
the resuming point for the execution (line 23). Finally, in this case the data is sent using the function
send_shrink() and processes are detached from the initial communicator in line 25.
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7.1.2 Parameterization

DMRlib provides routines to fully customize the job malleability. For instance, with the function
DMR_Set_parameters(), the user is able to de�ne the boundaries of malleability in terms of number
of processes. The arguments required by this function are:

� min: the minimum number of processes to run the job�the lower limit for malleability.

� max: the maximum number of processes to run the job�the upper limit for malleability.

� pref: the preferred number of processes to run the job. This is a special value that the
recon�guration policy in Slurm considers to schedule an action.

Although the DMR API has proved to pose very low scheduling times, in those applications
performing short-step executions�that is, computational steps which only need a few milliseconds
to �nish�requesting recon�gurations in every step may generate a non-negligible overhead, since
the time taken by the computational step is in the same scale that the time needed for the recon�g-
uration scheduling. For this reason, DMRlib implements two mechanisms for controlling scheduling
recon�gurations:

� DMR_Set_sched_period: this function expects a number of seconds. During this period all
the recon�guration scheduling requests will be ignored.

� DMR_Set_sched_iteration: this function expects a number of computational steps. For all
the steps inside the given iterations, the scheduling requests will be ignored.

7.1.3 Usage

In order to turn an application into malleable, a user has to call into its code the macro
DMR_RECONFIG, as illustrated in Listing 7.2. This excerpt of code shows the function (line 1) con-
taining the main loop and hence where the malleability will occur. This function features three
parameters: the data structure pointer, its size, and the current iteration (if it is the �rst call, step
will be usually set to zero). The function starts by con�guring the malleability limits in line 2.
These limits may be modi�ed any time to meet the requirements of di�erent computational stages
in the application.

At the beginning of each iteration of the main loop (line 3), the DMR_RECONFIG macro checks
if a recon�guration is being performed or if the resource manager can improve the system status
by resizing the job leveraging the DMRlib (line 4). The macro has to be used indicating the
appropriate functions for the recon�guration: the �rst function is the invoking function itself, while
the remaining four arguments are user-de�ned redistribution function calls. Notice that �receiving�
functions in the macro use the memory address instead of the pointer (or the value itself for the
data_size variable). The reason is that those functions are called just after the new processes have
been spawned, and before receiving the data these have to allocate new memory. The rest of the
function will remain unaltered (line 5).

Listing 7.3 shows an example of the redistribution functions used in the previous macro for the
case of an expansion action (send_expand() and recv_expand()). Here we describe a case similar
to that shown in Figure 6.4a, that is, data transfers for an expansion to a multiple of the initial
number of processes.

The �rst function (line 1) will be executed by the processes in the initial communicator, which
are in charge of sending the data. Dividing the number of spawned processes by the number of
current processes returns the scalability factor of this expansion (line 2). With this value, we
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1 void compute(double *data , int data_size , int step) {

2 DMR_Set_parameters(min , max , pref);

3 for (int i = step; i < TOTAL_STEPS; i++) {

4 DMR_RECONFIG(compute(data , data_size , i), send_expand(data ,

data_size), recv_expand (&data , &data_size), send_shrink(data ,

data_size), recv_shrink (&data , &data_size));

5 /* Computation */

6 }

7 }

Listing 7.2: Enabling malleability using DMRlib in a user code.

calculate the size of the data chunks (line 3). Furthermore, factor is used to determine the number
of sends each original process performs (line 4) and the rank in the new communicator which is
the destination of each chunk of data (line 5). In line 6, we use the standard MPI_Send function,
de�ning the bu�er pointer to the appropriate data chunk (argument 1), its size (argument 2), its
destination rank (argument 4), and the new communicator (argument 6). DMRlib provides the
variable DMR_INTERCOMM to represent the inter-communicator between the original and spawned
processes.

The second function in the listing (line 10) is called by the processes in the spawned commu-
nicator, which are the responsible for receiving the data and continuing the execution. Again, the
scalability factor is calculated using the same operation as in the former case (line 11); however,
since this is performed by the processes of the new communicator, the variable names are swapped.
With this value we obtain the source rank of the data in the initial communicator (line 12). Chunk
size is calculated (line 13) and used to allocate memory for the data structure (line 14). In this
process, the variables data_size and data are overwritten; the data array (data) is a null pointer
in the memory of the new processes and hence we have to allocate the necessary memory. Eventu-
ally, the MPI_Recv operation is performed receiving as arguments the memory pointer to store the
data (argument 1), the number of received elements (argument 2), the source rank in the initial
communicator (argument 4), and the initial communicator itself (argument 6).

7.1.4 Prede�ned Redistribution Patterns

In an e�ort to ease the coding of the data redistribution process, the DMRlib design provides
prede�ned redistribution functions with the most common communication patterns. The current
version of the library provides the following patterns:

� Default Redistribution: This pattern corresponds to a classic uniform distribution to a
number of processes multiple of or divisible by the original (i.e. Figure 6.4a).

� Block Cyclic Redistribution: It implements the data transfers necessary when data is
block-cyclically distributed over the processors (https://computing.llnl.gov/tutorials/
parallel_comp/#distributions).

Table 7.1 shows the headers of all the redistribution functions currently available in DMRlib. All
of them require the same two initial arguments: the pointer to the data (when receiving, a pointer
address) and the MPI data type. For the default redistribution these also need the number of
elements of the data array, while for the block cyclic, the functions require the number of blocks
and their size.
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1 void send_expand(double *data , int data_size) {

2 factor = dmr_intercomm_nprocs / comm_world_nprocs;

3 new_data_size = data_size / factor;

4 for (i = 0; i < factor; i++) {

5 dst_rank = my_rank * factor + i;

6 MPI_Send(data + new_data_size * i, new_data_size , MPI_DOUBLE ,

dst_rank , tag , DMR_INTERCOMM);

7 }

8 }

9

10 void recv_expand(double **data , int *data_size) {

11 factor = comm_world_nprocs / dmr_intercomm_nprocs;

12 src_rank = my_rank / factor;

13 *data_size = (* data_size) / factor;

14 *data = malloc ((* data_size) * sizeof (double));

15 MPI_Recv (*data , *data_size , MPI_DOUBLE , src_rank , tag ,

DMR_INTERCOMM , MPI_STATUS_IGNORE);

16 }

Listing 7.3: User data redistribution functions for an expansion.

Table 7.1: Prede�ned Redistribution Headers in DMRlib

Default Redistribution

void DMR_Send_expand_default(void *data, MPI_Datatype type, int size);
void DMR_Recv_expand_default(void **data, MPI_Datatype type, int *size);
void DMR_Send_shrink_default(void *data, MPI_Datatype type, int size);
void DMR_Recv_shrink_default(void **data, MPI_Datatype type, int *size);

Block Cyclic Redistribution

void DMR_Send_expand_blockcyclic(void *data, MPI_Datatype type, int n, int size);
void DMR_Recv_expand_blockcyclic(void **data, MPI_Datatype type, int *n, int *size);
void DMR_Send_shrink_blockcyclic(void *data, MPI_Datatype type, int n, int size);
void DMR_Recv_shrink_blockcyclic(void **data, MPI_Datatype type, int *n, int *size);
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1 void compute(double *data , int data_size , int step) {

2 DMR_Set_parameters(min , max , pref);

3 for (int i = step; i < TOTAL_STEPS; i++) {

4 DMR_RECONFIG( compute(data , data_size , i),

DMR_Send_expand(data , data_size),

DMR_Recv_expand (&data , &data_size),

DMR_Send_shrink(data , data_size),

DMR_Recv_shrink (&data , &data_size));

5 /* Computation */

6 }

7 }

Listing 7.4: Enabling malleability using the default redistribution pattern of DMRlib.

Table 7.2: Malleability Solutions Usability Comparison

# Lines Data transfer MPI library Standard MPI Paradigm

Bare MPI 26 Manual Any Yes MPI
PCM API 27 Manual MPICH No MPI

AMPI 13 Auto* - Yes Charm++
Flex-MPI 21 Manual MPICH No MPI

Elastic MPI 26* Manual MPICH No MPI
DMR API 17 Auto Any Yes OmpSs
DMRlib 13 Auto* Any Yes MPI

In the example in Listing 7.2, we could implement the same functionality using the default
redistribution pattern as presented in Listing 7.4, hence avoiding the user implementation of data
redistribution presented in Listing 7.3.

7.2 Usability Evaluation

This section evaluates the usability, from the software developer point of view, of the malleability
solutions studied in Section 3.2.3 together with the DMR API, introduced in Chapter 6, and DMRlib,
presented in this chapter.

Table 7.2 compares the most relevant usability features. The number of lines (second column)
associated to each framework corresponds, respectively, to Listings 3.1, 3.2, 3.3, 3.4, 3.5, 6.1 and 7.2
(for the latter we have added the lines of the main function). Notice that Elastic MPI number of
lines lacks the data redistribution lines of code.

The reduction of the number of lines of code is closely related to the type of data transfers
(third column). The solutions with automatic data transfers (AMPI, DMR API, DMRlib) are
able to drastically reduce the coding e�ort since the runtime is responsible for managing the data.
However, we catalogue AMPI and DMRlib as automatic provided given that we use �isomalloc� in
AMPI (see Section 3.2.3.2) and the prede�ned redistribution patterns in DMRlib (see Section 7.1.4).

An additional important issue is the solution dependency on the underlying MPI library. The
fourth column of Table 7.2 shows which frameworks are bound to a speci�c MPI implementation.
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This is relevant because it makes them susceptible to changes. While AMPI1 is an implementation
of MPI on top of Charm++'s runtime, the solutions that admit any MPI library can be expected
to be more reliable, portable and long-lasting. The �fth column indicates which frameworks have
also been adapted to the MPI-2 standard2 in order to provide malleability.

In terms of usability, we consider bene�cial a lower number of lines, an automatic data transfer,
support for any MPI implementation, and the fact that the framework does not modify the MPI
standard. Although AMPI and the DMR API meet all those requirements, we also consider crucial
to provide a solution that follows the MPI programming paradigm instead of Charm++ or OmpSs.
The majority of solutions adhere to the MPI programming paradigm (fourth column) since it is
widely accepted in HPC. Hence, we assume that the MPI paradigm is preferable in terms of usability.
For this reason, we consider DMRlib a highly appealing solution for malleability.

7.3 Experimental Evaluation

In this section we present four malleable applications implemented with DMRlib and how they
have been used in a production cluster to evaluate the bene�ts of adaptive workloads. In this
case the evaluation was performed using 129 nodes from the Marenostrum IV supercomputer at
Barcelona Supercomputing Center (description of the infrastructure detailed in Section 6.6.3.1).
One out of the 129 nodes hosted the Slurm management daemon, while the remaining were used as
compute nodes.

At this point, it is worth noting that we cannot contrast performance results with other already
existent malleability solutions because of, to the best of our knowledge, they are not publicly
available or present such di�erent working modes that make impossible a fair comparison.

7.3.1 Malleable Applications

We have leveraged DMRlib to turn into malleable the implementations of the CG method3,
the Jacobi method4, the N-body simulation5, and the bioinformatics tool HPG-aligner6. Table 7.3
shows the problem size and con�guration of each application.

For CG and Jacobi, since both handle double-precision elements, the coding process for mal-
leability is quite similar, although these do not feature the same number of data structures. While
Jacobi deals with a �at-stored square matrix plus 2 arrays, CG handles 2 more arrays. For CG, the
DMR_RECONFIG call may be invoked like this:

DMR_RECONFIG( CG(m, a1, a2, a3, a4, size, step),

send_expand(m, a1, a2, a3, a4, size),

recv_expand(&m, &a1, &a2, &a3, &a4, &size),

send_shrink(m, a1, a2, a3, a4, size),

recv_shrink(&m, &a1, &a2, &a3, &a4, &size));

For instance, the sending function for an expansion may include the following calls to the already
implemented redistribution functions:

1http://charm.cs.uiuc.edu/research/ampi/
2http://www.mpi-forum.org/docs/mpi-2.2/index.htm
3https://en.wikipedia.org/wiki/Conjugate_gradient_method
4https://en.wikipedia.org/wiki/Jacobi_method
5https://en.wikipedia.org/wiki/N-body_simulation
6https://github.com/opencb/hpg-aligner
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Table 7.3: Applications Con�guration

Application Input Data Iterations

CG A square matrix and 4 arrays of 32,768 elements 10,000
Jacobi A square matrix and 2 arrays of 16,384 elements 10,000
N-body 6,553,600 particles 50

HPG-aligner 40 millions 100-nucleotide reads #workers× 4

void send_expand(double *m, double *a1, ..., int size) {

DMR_Send_expand_default(m, MPI_DOUBLE, size * size);

DMR_Send_expand_default(a1, MPI_DOUBLE, size);

...

}

N-body only manages an array in the redistribution; however, this array is composed of particles,
which is a non-standard data type. For this reason, we de�ned an MPI struct derived datatype
named MPI_PARTICLE, composed of 6 vectors of �oats and 2 more single �oats in order to leverage
the prede�ned redistribution functions as follows:

DMR_RECONFIG( N-body(particles, size, step),

DMR_Send_expand_default(particles, MPI_PARTICLE, size),

DMR_Recv_expand_default(&particles, MPI_PARTICLE, &size),

DMR_Send_shrink_default(particles, MPI_PARTICLE, size),

DMR_Recv_shrink_default(&particles, MPI_PARTICLE, &size));

Finally, for HPG-Aligner, ad-hoc redistribution functions were developed, since it does not
present a regular communication pattern. Notice that HPG-aligner presents a producer�consumer
architecture, where two processes are in charge of reading/writing data while the remaining act as
workers. For this reason, the minimum number of processes required to run this application is three
(at least it needs one worker plus read and write processes).

With this set of applications we consider that a large variety of use cases are represented in
the study. From N-body, which is believed to be highly relevant during the next decade, with
applications in various domains such as scienti�c computing simulations or machine learning [2], to
HPG-aligner, a producer�consumer application.

The malleability parameters of the applications have been calculated again using the gain di�er-
ence equation introduced in 6.1. For example, in order to assess the gain di�erence for HPG-Aligner
executed in 12 processes (s(12)), we calculate the completion time of the previous con�guration
(t(6)) minus its own time (t(12)). This is divided by the reference completion time of the minimum
processes con�guration, in this case t(3) (notice that the reference of the rest of the applications is
t(1)). The result is �nally multiplied by 100.

Figure 7.1 depicts the gain di�erence for each con�guration of the four applications. In order to
determine the limits of malleability, we considered a 10% threshold (black line in the chart). The
lower limit is de�ned by the �rst con�guration to exceed this threshold, the preferred value is given
by the last con�guration before dropping below 10%, and the upper limit is the con�guration with
the highest performance. Although our cluster was composed of 128 compute nodes, we restricted
the jobs to request a maximum of 32 nodes, assuming that a job should not monopolize more than
a quarter of the cluster.
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Figure 7.1: Gain di�erence of each application and a 10% threshold (thick line) to determine the
limits of malleability.

Table 7.4: Malleability Parameters for the Applications

Application Lower Limit Upper Limit Preferred Scheduling Period

CG 2 32 16 10 seconds
Jacobi 2 32 4 10 seconds
N-body 1 32 1 -

HPG-aligner 6 12 6 -

Table 7.4 summarizes the malleability con�gurations. The last column includes the scheduling
inhibitor periods for CG and Jacobi. In this case, a period of 10 seconds minimizes the number of
recon�guration requests reducing the overhead and without a signi�cant impact in the scheduling.
The other two applications do not need this inhibitor because their iterations are coarser grained.

7.3.2 Job Submission and Recon�guration

Applications are submitted as jobs to the workload manager. Depending on the submission
mode and whether jobs are malleable (i.e., if the system can resize automatically a job during
its execution), we classify them in four categories, as shown in Table 7.5. For example, if a non-
malleable job is submitted rigid, the job will be referred as ��xed�. On the other hand, if a malleable
job is submitted moldable, we consider the job as ��exible�.

In this work we rely on Slurm to schedule jobs and manage resources. Apart from the rigid job

Table 7.5: Job Classi�cation Depending How it Can be Resized

Job Malleable? Rigid submission Moldable submission

No Fixed Pure Moldable
Yes Pure Malleable Flexible
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Table 7.6: Job Submission in Slurm using sbatch

Application Rigid Submission Moldable Submission

CG -N32 ./cg -N2-32 ./cg
Jacobi -N32 ./jacobi -N2-32 ./jacobi
N-body -N32 ./nbody -N1-32 ./nbody

HPG-aligner -N12 ./hpgaligner -N6-12 ./hpgaligner

submission, where jobs request a �xed number of resources, Slurm provides a moldable submission
with which a job may request a range of resources.

We have implemented in Slurm a recon�guration policy as described next. When a job triggers
a recon�guration, Slurm �rst checks if the job is running below its preferred con�guration (this can
only happen when leveraging a moldable submission). If this is the case and there are available
resources, the job is expanded, never exceeding the upper limit.

The policy is designed to improve the throughput of the system. Therefore, if there are pending
jobs in the queue, the policy checks if shrinking the evaluated job and deallocating part of its
resources, other job could be initiated. When this action is scheduled, the queued job responsible
for the shrinking is assigned the maximum priority to run. A job may only be shrunk�but never
under preferred�if it is running above preferred and a pending job may bene�t from the released
resources; otherwise, if no pending job can be initiated and there are available resources, the job is
expanded.

For the rigid submissions, jobs are always launched at their highest performance (upper limit)
assuming that a user expects their job to run as fast as possible. The moldable submission de�nes
its range between both limits: lower and upper. Table 7.6 describes how jobs are submitted in both
modes using the performance analysis of Table 7.4.

We have generated workloads of jobs, where each job randomly instances one of the four appli-
cations. The workloads are composed of 100, 250, 500, 1,000 and 2,000 jobs, each size leveraging
four homogeneous versions of �xed, pure moldable, pure malleable, or �exible jobs (see Table 7.5).
With these workload sizes, in our study we cover from small workloads, with hardly any pending
job, to large workloads where the queue of pending jobs grows signi�cantly.

The average inter-arrival time is determined by the Feitelson model [15] with a factor of 1, what
represents a highly loaded scenario where jobs are massively submitted while �tting the arrival
Poisson distribution of the model.

7.3.3 Experimental Results

Figure 7.2 depicts the speedup, of di�erent workload sizes, for the malleable workloads compared
to the non-malleable ones in the metrics: average job waiting, execution and completion times. Lines
are grouped by submission mode: the dotted lines correspond to rigid submissions, while thicker
lines represent moldable submissions.

We start analyzing the rigid case (dotted lines). Although the average job execution time
increases for the malleable jobs (speedup < 1), the completion time bene�ts from the reduction
in the waiting time (speedup ' 3.25x). The chart also shows a strong correlation between the
completion time and the waiting time. This leads to malleable jobs �nalizing over 3x faster than
their non-malleable counterpart in a workload when these are submitted in rigid mode.

In the case of moldable submissions (dashed lines), the speedup behavior in the averaged times
is more regular when the workload reaches a minimum size. We can see again the relevance of the

112



7.3. EXPERIMENTAL EVALUATION

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 250 500 1000 2000

S
p

ee
d

u
p

 (
x
)

Workload Size

Waiting Execution Completion

Waiting Execution Completion

Rigid submission

Moldable submission

Figure 7.2: Comparison of the 4 types of workloads. The lines show the speedup of malleability for
the average job waiting, execution, and completion time, grouped by submission mode.

waiting time for the job completion time, since the lines that represent their speedup are almost
overlapped. When the workload size increases, the queued jobs reach a saturation degree where the
waiting time cannot be improved further and the speedup remains constant around 1.5x. Apart from
the waiting time, �exible jobs (malleable submitted moldable) show a higher average completion
time speedup. In a workload of pure moldable jobs (non-malleable submitted moldable), the job
execution time increases because jobs are likely to be initiated with few resources (it is easy to �nd
a slot of 2 nodes rather than one of 32) and they have to �nish their execution with their initial
allocation.

As an example, we emphasize the 1,000-job workload experiment with moldable submission.
Figure 7.3 illustrates the described behavior through the representation of the workload evolution
over time. At the top chart, the shapes represent the resource allocation in each second, showing
how �exible jobs are able to reallocate their resources to bene�t from virtually all the nodes during
the whole execution. On the other hand, pure moldable jobs keep their initial allocation and that
is why the resource allocation decreases near second 10,000. The lines at the top chart depict the
evolution of the number of running jobs over the time. The pure moldable workload (red line) not
only displays a regular evolution, but also a higher average number of running jobs, since we have
more small jobs running for long time. However, the �exible workload (blue line) redistributes the
resources prioritizing running jobs by assigning them fewer nodes than their preferred values. The
recon�guration policy in Slurm always tries to compensate scenarios with a reduced load, such as
the beginning of the workload, with an early initialization of execution of new jobs.

The bottom chart in Figure 7.3 represents the number of completed jobs in each second of the
execution. The green shape unveils a sharper increase in the throughput in terms of completed
jobs per unit of time. Accordingly to the speedup chart (Figure 7.2), �exible jobs are �nishing an
average of 1.5x faster, what, in this case, produces a 1.5x speedup of the global throughput when
using malleability. In the case of the 100-job workload, the completion time speedup is 2.2x and
the workload is processed 3x faster than the purely moldable counterpart.
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Figure 7.3: Comparison of the evolution in time of a 1,000-job for the pure moldable and �exible
workloads. The top chart represents the allocated resources (shapes) and the number of running
jobs (lines). At the bottom, the shapes show the number of completed jobs in each second of the
execution.
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Figure 7.4: Execution and waiting times per job in the 1,000-job workload with moldable submission,
grouped per application.

Continuing with the same example, Figure 7.4 depicts the waiting and the execution time of
each job comparing the pure moldable and the �exible versions. At the top chart, the applications
with a poor scalability (HPG-aligner and N-body) show virtually the same execution time in both
versions. However, applications like CG or Jacobi show an interesting variability in the execution
time. In the �exible case there is a visible trend to reduce the execution time by expanding the jobs.
The pure moldable jobs cannot be resized during their execution and, as we have noted before, these
are very likely to be launched in a reduced set of resources, stretching their execution. The bottom
chart shows a regular behavior in the waiting time of all the applications, reaching a di�erence of
more than 3,000 seconds for the last queued jobs.

Figure 7.5 gathers waiting, execution, and completion times in the same chart and groups per
application the time di�erence for each job in of both versions. This chart reveals the strong
correlation of the waiting time with the job completion time.

Figure 7.6a compares the workload completion time when using malleability in both submission
modes: rigid and moldable. The vertical bars represent the total completion time for each con�g-
uration. Bars are grouped per workload size. The two �rst bars of each group correspond to the
results when using the rigid submission, while the other two bars refer to the moldable submission.
The �rst bars of these subgroups (the �rst and third) represent the non-malleable workloads, while
the second bars (second and fourth) show the time for the malleable workloads. We have analyzed
in depth the rigid submission (�rst and second bar of each group) and how positively malleability
improves upon it with speedups of around 3x (see blue line). However, this chart also reveals the
performance bene�ts of the moldable submission of non-malleable jobs (third bars). We can see
that using the moldable submission, we can obtain a similar completion time to that obtained by a
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Figure 7.5: Time di�erence between the 1,000-job pure moldable and the �exible workloads, grouped
per application

malleable workload with the traditional rigid submission.

For this reason, a priori the moldable submission may be presented as an easy�to�adopt high-
throughput solution. However, Figure 7.6b shows one of the most relevant drawbacks for its utiliza-
tion in production environments: the increasing job execution time. While the individual average
job execution time for rigid submission (�rst and second bars of each workload size) and �exible
jobs (fourth bars) remain unaltered, jobs in the pure moldable workloads (third bars) experience an
upward trend in this time. We have identi�ed this behavior as the main obstacle for the adoption
of the moldable submission in production environments. Although moldable submission is likely
to improve the global job throughput without posing an additional e�ort to application developers
(they are not expected to modify their code), these experience an undetermined increase in the exe-
cution time that depends on the queue load. The fourth bar of each group in the �gure corresponds
to the average job execution time that remains constant and yields speedups of up to 2x in the
average job execution time.

Another drawback of leveraging moldable submissions without malleability is revealed in Fig-
ure 7.7, where we can see that the resource allocation rate drops for small workload sizes (third
bar of each group). In this case, the pure moldable workload is under-utilizing resources when the
number of jobs in the queue is moderated.

Identi�ed and solved these issues, we can consider the moldable submission of malleable appli-
cations (referred as �exible jobs) as a remarkable technique for high-throughput computing (HTC),
while DMRlib provides an unprecedented easy�to�use approach.

7.3.4 Energy Consumption

The reduction in time and the di�erent usage of the resources derived from the use of DMRlib
pose a strong impact on energy consumption. Figure 7.8 depicts the energy consumption of each
con�guration grouped by workload size (we have skipped the 2,000-job workload because it does
not provide additional information and reduces the clarity of the chart). In this �gure, the top
bar of each size is the reference energy consumption representing the KW/h of executing a non-
malleable workload with rigid submission of jobs. The remaining bars in the group, apart from the
energy consumption, additionally display a label with the relative consumption with respect to the
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Figure 7.6: Workload type comparison and speedup of submission modes.
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Figure 7.7: Workload type resource allocation comparison.

reference value.

From these results we observe that DMRlib, with its minimalist interface for malleability, can
reduce the energy consumption up to around 70% (second bar of each group). Furthermore, just
changing the submission mode and using the moldable method, the energy consumption rounds 40�
50% (third bar) of its original value. Last, the greatest reduction is given by combining malleable jobs
with moldable submissions, when workloads can be processed with a reduction in the consumption
of almost 80%.

The energy was estimated using the consumption information provided by the technical support
of Marenostrum IV: idle nodes consume 100 Wh, while loaded nodes consume 340 Wh. Energy is
then simply calculated by taking into account the time each node is idle/loaded.

7.3.5 Impact of Malleability on the System

In this section we study heterogeneous workloads where not all their jobs can be resized. For
this purpose, we have designed two types of experiments using the previous 1,000-job workload. On
the one hand, we set rates of �exible jobs, speci�cally 25%, 50% and 75%, which determine the
proportion of �exible jobs in the workload. On the other hand, we generated workloads where only
one application is malleable, in other words, workloads where only one type of job may be resized
while the others remain �xed. All the workloads had two versions using both the rigid and the
moldable submission.

Table 7.7 contains the resource allocation rate and the percentage of workload completion time,
with respect to the fully �xed workload. The column colored in gray (�All�) represents the reference
values for the fully �xed workload and the fully �exible workload.

The most interesting cells have been highlighted in order to determine which kind of application
has a greater impact in the results.

For the rigid submissions (third and forth rows), the heterogeneous workloads cannot beat the
reference �xed workload resource allocation rate (96.37%). Nevertheless, workloads where CG or
HPG-aligner is malleable show a quite similar allocation rate.

Regarding the completion time, we have coloured in green the 75%-�exible and the N-body-only
workloads that run in about half of the reference time (53.77% and 56.39%, respectively). While
the workloads with a 25-50-75% malleable jobs de�ne a progression where the execution time is
inversely proportional to the rate of malleable jobs, when only N-body is malleable the completion
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Figure 7.8: Energy needed to complete a workload compared to the �xed mode.

Table 7.7: Resource Allocation Rate and Completion Time of a 1,000-job Workload When Not All
the Jobs are Flexible

Flexible Jobs

Submission Percentage None 25% 50% 75% All CG Only Jacobi Only N-body Only HPG-aligner Only

Rigid
Res. Alloc. 96.37% 87.43% 87.07% 88.50% 87.29% 94.75% 88.34% 84.36% 93.06%

Needed Time 100.00% 92.52% 73.49% 53.77% 36.12% 89.00% 105.67% 56.39% 101.77%

Moldable
Res. Alloc. 91.23% 89.92% 88.97% 86.92% 94.57% 95.51% 92.81% 90.62% 91.80%

Needed Time 38.82% 37.29% 33.55% 30.09% 25.15% 25.51% 43.44% 33.88% 38.40%
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time is almost reduced to half (still far from the target reference (36.12%)).
On the moldable submission case (�fth and sixth rows), resource allocation rates are pretty

similar, since moldable jobs can leverage resources when they are launched. However, the workload
comprising malleable CG jobs only achieves almost the same completion time (25.51%) as that
attained by the �exible (malleable jobs submitted moldable) workload (25.15%).

From these results we conclude that there is no correlation between resource allocation and
execution time. In addition, resources are not wasted because the percentages �uctuate inside the
reference rates. We have also discovered in this study that rigid submissions pro�t more from
poorly-scalable applications like our N-body. For the moldable submissions, the resource manager
can leverage better applications highly scalable like our CG. This behavior is well exploited by our
malleability solution.

7.4 Conclusions

In this chapter we have analyzed the state of the art of malleability concluding that its lack of
popularity its due to its di�culty to be adopted by user codes. For this reason, we have presented a
minimal MPI-based solution, the DMRlib, which intends to turn into malleable any code by setting
recon�guration points.

Using this library, we have developed four malleable applications presenting di�erent scalability
patterns. With these applications we have generated �xed, pure moldable, pure malleable and
�exible workloads, in order to analyze the gains of malleability in terms of throughput, resource
allocation and energy consumption. Furthermore, we have unearthed and improved the already
existent moldable submission of jobs in order to study the bene�ts that, combined with malleability,
it can bring to the workload execution.

Our studies have proven that it is not necessary to convert all the system applications into
malleable; just adapting the right type of applications, the throughput can be dramatically boosted
and the energy consumption reduced more than 75%.
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Algorithm 7 Recon�guration Procedure

1: parentComm← MPI_Comm_get_parent()
2: if parentComm 6= null then
3: if commWorldSize > parentCommSize then
4: recv_expand()
5: else
6: recv_shrink()
7: end if
8: MPI_Comm_disconnect(parentComm)
9: else
10: action← DMR_Recon�guration(&newComm)
11: if action = expand then
12: factor ← newComm_size/comm_size
13: for i← 1, factor do
14: dstRank ← myRank × factor + i
15: #pragma omp task

onto(newComm, dstRank)
16: compute()
17: end for
18: send_expand()
19: DMR_Detach()
20: else
21: if action = shrink then
22: factor ← commSize/newCommSize
23: dstRank ← myRank/factor
24: #pragma omp task

onto(newComm, dstRank)
25: compute()
26: send_shrink()
27: DMR_Detach()
28: else
29: pass . No action has been scheduled.
30: end if
31: end if
32: end if
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Algorithm 8 Slurm Recon�guration Policy

1: if current < preferred then
2: if avail_resources then
3: action← expand. return expand
4: end if
5: else
6: if pending_jobs then
7: if current > preferred then
8: if a job can be initiated then return shrink
9: action← shrink.
10: else
11: if avail_resources then
12: action← expand. return expand
13: end if
14: end if
15: if avail_resources then return expand
16: action← expand.
17: end if
18: else
19: if avail_resources then return expand
20: action← expand.
21: end if
22: end if
23: end if
24: end if

122



Part IV

Discussion

123





CHAPTER 8

Conclusion

This chapter reviews the highlights of this PhD dissertation and discusses the conclusions.

8.1 Summary

This dissertation has addressed HTC from 2 di�erent points of view: GPGPU virtualization
and MPI malleability.

From the GPU perspective, we have analyzed in detail the adoption of a remote GPU virtual-
ization technology in a workload manager. This study arises from the pre-doctoral stage where the
tool was developed. Furthermore, we have exported the management of remote GPUs from cluster
to cloud environments. For this reason, we have designed, deployed and analyzed a new shared
service for cloud facilities (GSaaS) able to provide more �exibility to GPU-enabled infrastructures.

Regarding process malleability, after a thorough review and study of the current state-of-the-
art we concluded with the design, implementation and commissioning of 2 new approaches for
developing malleable applications. These present a di�erent syntax with the aim of reaching the
widest possible audience. On the one hand, following the OmpSs syntax we unveiled the DMR API,
an API integrated in Nanos++ which handles MPI processes and data redistribution in a completely
transparent fashion. On the other hand, we have presented DMRlib, a malleability library with an
MPI friendly syntax. This approach targets developers more familiar to the MPI programming
model, who are the norm in the �eld of HPC. Although the process management is still automatic,
in this approach users are responsible for redistributing the data among processes. Nevertheless,
we have included a set of tools in the library that assist users to implement those redistributions,
being the most common patterns fully implemented in DMRlib.

In summary, in this dissertation we have stepped forward towards HPC productivity by providing
detailed analysis and optimized utilities in order to increase the throughput of production facilities.

8.2 Conclusions

In accordance with current regulations from the Universitat Jaume I, at least both the abstract
and conclusions of a PhD dissertation defended at this university have to be additionally included
in Spanish.

125



CHAPTER 8. CONCLUSION

English Version

From a high-throughput perspective, this PhD dissertation provides a deep insight into 2 dif-
ferent techniques for productivity in HPC facilities. Those techniques have been applied in various
scenarios, demonstrating their usefulness and appropriateness for HTC.

Combining rCUDA and Slurm, we prove that we can boost the throughput of a GPU-enabled
cluster by placing the accelerators in any location, depending on the system restrictions or user
necessities. Speci�cally, we have experienced reductions of 48% in the workload completion time
and of 40% in the energy consumption with respect to traditionally CUDA-based con�gurations.
This more e�cient management of the GPUs has also been translated into GPU utilization, doubling
the baseline provided with native CUDA.

Similarly, we have experimented with rCUDA in cloud environments, concluding that public
cloud solutions such as AWS are not ready for HPC at the moment when the experiments were
performed. However, thanks to our approach, users may reduce their economic budget by customiz-
ing the number of GPUs they need for the VMs, thus skipping the restrictions of AWS when it
comes to CUDA-enabled VMs. For this reason, we deployed GSaaS, a GPU-enabled private cloud
infrastructure featuring a new OpenStack shared service responsible for managing and assigning
cloudi�ed GPUs to VMs. The main bene�ts attained by GSaaS are: dynamic scheduling of GPU
resources, decoupling of the interface between the client and the rCUDA server, securing and isolat-
ing the access to the GPUs from the VMs, preventing GPU unauthorized accesses, and detaching
VM tra�c from GPU tra�c by using a dedicated network. This new approach presents a series of
new working modes for CUDA-enabled VMs that may be leveraged to increase the performance of
GPU parallel applications, as well as to provide more �exibility regarding VM-GPU assignation.

Although malleability has already proven its advantages in HPC workloads, in this dissertation
we have demonstrated that our solution not only can improve the cluster productivity, but also the
coding productivity. For this purpose, we have designed a malleability solution that simpli�es the
development of malleable applications by providing 2 frameworks with syntaxes based on OmpSs or
MPI, in order to reach a wider audience. Our solution has demonstrated to reduce the completion
time of the jobs in a workload by reducing their waiting time in the queue. Concretely, our experi-
ments have proven a reduction of 75% in the needed time to complete a workload when combining
moldability and malleability. Dynamically recon�guring jobs and reallocating resources, with either
the DMR API or the DMRlib, have favored an increased utilization of the underlying resources,
what has been translated in to an increase of the global throughput and remarkable reduction in the
amount of energy needed to process the workload. Our studies have proven that it is not necessary
to port all the system applications into malleable; just adapting the right type of applications, the
throughput may be dramatically increased and the energy consumption reduced more than 75%.

Spanish Version

Desde la perspectiva de la computación de alta productividad (HTC), esta tesis doctoral pro-
porciona una profunda comprensión sobre 2 técnicas para incrementar la productividad en el campo
de la computación de altas prestaciones (HPC). Estas técnicas han sido aplicadas en distintos esce-
narios, donde se ha demostrado su utilidad y adecuación para HTC.

Combinando rCUDA y Slurm, hemos demostrado como incrementar drásticamente la produc-
tividad de un clúster cuyas GPUs se pueden ubicar en cualquier servidor, dependiendo de las
restricciones del sistema o necesidades de los usuarios. Especí�camente, en nuestros experimentos
hemos reducido un 48% el tiempo total de procesamiento de una carga de trabajos y un 40% la
energía consumida, respecto al mismo escenario utilizando CUDA nativo.
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Del mismo modo, hemos utilizado rCUDA en entornos de cloud computing, para analizar su
viabilidad. En lo referente a soluciones de nube pública, se experimentó sobre AWS, concluyendo
que, en el momento de llevar a cabo las pruebas, AWS no estaba preparado para HPC. Sin embargo,
gracias a nuestro enfoque, los usuarios de esta plataforma podrían reducir su gasto económico
mediante la personalización del número de GPUs necesarias para sus máquinas virtuales (VMs),
evitando así las restricciones que AWS presenta a la hora de contratar VM con GPUs. Por este
motivo, se llevó a cabo el desarrollo de GSaaS, una infrastructura privada de computación en la
nube que integra la administración y asignación de GPUs cloudi�cadas en VMs a través de un
servicio de OpenStack. Las principales ventajas de este servicio son: plani�cación dinámica de
GPUs, desacoplamiento de la interfaz entre el cliente y el servidor de rCUDA, ocultación de la
ubicación real de las GPUs, prevención de accesos no autorizados y abstracción del trá�co entre la
VM y la GPU a través de una red de interconexión dedicada. Con GSaaS se consiguen una serie de
nuevos modos de trabajo en VMs habilitadas para la ejecución de aplicaciones CUDA, lo que puede
incrementar su rendimiento y proporciona una mayor �exibilidad en la administración de GPUs en
VMs.

Aunque la maleabilidad de trabajos ya haya demostrado sus ventajas en cargas de trabajos
HPC, en esta disertación demostramos que nuestra solución no sólo puede mejorar la productividad
del clúster, sino también la productividad del programador a la hora de escribir el código. Por este
motivo, hemos diseñado una solución para la maleabilidad que facilita el desarrollo de aplicaciones
maleables. Esta solución implementa 2 versiones con una sintaxis basada en OmpSs o MPI, para
llegar a un mayor público y ha demostrado reducir el tiempo de procesamiento de los trabajos
mediante la reducción de sus tiempos de espera en la cola. Concretamente, nuestros experimentos
revelan una reducción del 75% en el tiempo necesario para completar una carga de trabajos cuando
se combina moldabilidad y maleabilidad. La recon�guración dinámica de trabajos y los cambios de
reservas de recursos en tiempo de ejecución, con la DMR API o la DMRlib, plantean una mayor
utilización de los recursos del clúster, lo que se traduce en un incremento de la productividad global
y una notable reducción de la energía necesaria para el procesamiento de la carga de trabajos.
Nuestros estudios han demostrado que no es necesario convertir todas las aplicaciones del sistema
en maleables, si no que tan sólo tratando el tipo de aplicación correcto, la productividad se dispara
y el consumo energético se puede reducir en más de un 75%.
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CHAPTER 9

Further Work

This chapter describes the ongoing work at the moment of writing this manuscript along with
several proposals for future work.

9.1 Ongoing Work

Thanks to all the work done in this thesis, which has supposed an interesting source of ideas,
we have prepared projects for students and established collaborations with other researchers.

Through the PRACE Summer of HPC 2018 1 program, we mentor 2 students developing the
following projects:

� Dynamic management of resources simulator2: In this project we propose the develop-
ment of a simulator, which will simulate the execution of a workload composed of malleable
and non-malleable jobs, over a parallel system. The malleable workload manager simulator,
based on the principles of DMRlib, can extend the prospective of malleability from other
approaches, such as resource heterogeneity, job priorities or power-awareness. With this simu-
lator, we will set the jobs and tune the recon�guration policies in order to determine the best
con�guration for meeting a given target.

� Get more throughput, resize me! A case of study: LAMMPS malleable3: This
project is based on LAMMPS4. Since LAMMPS is a well-known HPC application, used in a
wide range of scienti�c �elds, we are interested in obtaining a recon�gurable version of it and
analyzing its behavior when it is included in a workload. In this project, we aim to convert
the MPI version of LAMMPS in malleable, using DMRlib.

Currently, we have 3 research collaborations:

� With the Leibniz Supercomputing Centre (LRZ), we are working on the modelling of a real
workload through malleable synthetic applications that mimic the behavior of the original,

1https://summerofhpc.prace-ri.eu
2https://summerofhpc.prace-ri.eu/dynamic-management-of-resources-simulator
3https://summerofhpc.prace-ri.eu/get-more-throughput-resize-me-a-case-of-study-lammps-malleable
4http://lammps.sandia.gov
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with the purpose of studying the e�ect of malleability in a production system. Once studied
the impact, the administrators and the users could be advised for increasing the productivity.

� With the Predepartamental Unit of Medicine at UJI, we are studying how to increase their
productivity and reduce their costs by performing part of their genetic alignment (using the
malleable version of HPG-aligner, developed in this thesis) in our HPC facilities.

� With the Czestochowa University of Technology (PCZ), we are developing the malleable ver-
sion of MPDATA [66]. MPDATA is the main module of a multiscale �uid model, which
supposes an innovative solver in the �eld of numerical modeling of multiscale atmospheric
�ows. Furthermore, MPDATA is CUDA-capable and with this application we aim to exper-
iment the e�ect of a malleable application in a GPGPU virtulized cluster, combining the 2
approaches for productivity studied in this dissertation.

9.2 Future Work

Apart from the ongoing work, we foresee the following future work.

Regarding GPGPU virtualization, with GSaaS we prpose to explore the usage and adaptation
of the other components provided by the networking plane of the cloud infrastructure to provide
access to scheduled cGPUs as future work. Furthermore, since OpenStack includes a dashboard
project named �Horizon� that provides a user web interface to deploy the cloud infrastructure, we
also have in mind to extend Horizon with the GSaaS functionality, letting users manage the GPUs
in their VMs through the command line as well as the user web interface.

We have realized the potential of malleability, so in the future we plan to design smarter recon-
�guration policies to consider wall times, priorities and power caps. With dynamic wall times a job
could automatically adjust its requested time to the current process con�guration. Together with a
recon�guration priority system, malleable jobs could obtain more priority to be expanded when the
wall time is close to expire. We could also include information of the power necessities of the appli-
cations and the energy budget of the data center, in order to make more accurate recon�guration
decisions. These new approaches may be evaluated through the dynamic resources management
simulator.

Other interesting approach to study may be to include the per-iteration information of each job
in the runtime. With this information, jobs may be automatically recon�gured, since, in this case,
the runtime would be the responsible for adjusting the job size depending on its performance.

Furthermore, it is well known that some applications are topology-aware. This topic was out of
the scope of the thesis, but we understand that it may be considered in further studies.

In addition, we understand that the next natural step corresponds to the integration of the DMR
API and the DMRlib in intranode malleability tools, such as the dynamic load balancing (DLB) [16].
DLB is a framework to improve the use of the computational resources of a computational node
by solving imbalance problems. Currently, DLB can balance processes running on the same node,
since DLB is based on shared memory and needs memory among all the processes sharing resources.
That is why our malleability solution may be integrated and deployed together with that system.
Apart from that, as it was stated in the DLB PhD thesis [16], the framework may bene�t from the
integration of the DMR API and the DMRlib in Slurm in several scenarios, for instance:

� A user wants to send a second application in the resources previously allocated to another
application. Instead of requesting more resources the user may launch the analysis application
in the same resources where the simulation was running.
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� Slurm detects that a node is being underutilized and decides to reduce the number of resources
assigned to the processes running on that node.
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APPENDIX B

DMRlib Reproducibility Artifact

DMRlib has been deployed in several HPC infrastructures, that is why since the very beginning of
its deployment we tailored a reproducibility artifact in order to be able to reproduce our experiments
in other facilities.

In this appendix we explain how to install, compile and con�gure the experimental con�gura-
tion deployed in Section 7.3 of Part III, with the purpose of reproducing the results in terms of
throughput.

B.1 Description

B.1.1 Check-list (Artifact Meta Information)

� Program: MPI, OpenMP, OmpSs, C, C++.

� Compilation: gcc, g++, mpicc, mpic++, mpimcc.

� Binary: One binary for each malleable application with the extension .INTEL64.

� Data set: Workload generated using the Feitelson Model.

� Run-time environment: Linux environment with GCC and MPI.

� Hardware: Any multi-node infrastructure.

� Output: Slurm database and log of executed jobs.

� Experiment work�ow: Initialize Slurm in every node and submit all the jobs in the workload. Once

terminated, gather and process the data generated during the workload execution.

� Experiment customization: Apart from the number of jobs that compose the workload, the job

inter-arrival time may be incremented or decreased.

� Publicly available?: Yes

B.1.2 How Software Can Be Obtained

Following we include the URLs of the software repositories utilized in this work.
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� Mercurium O�oad (OmpSs Compiler)

https://siserte@bitbucket.org/ompssmalleability/mcxx-malleable.git

� Nanos++ O�oad Detach (OmpSs Runtime)

https://siserte@bitbucket.org/ompssmalleability/nanox-offload_detach.git

� Slurm with Malleability Support (Resource Manager System)

https://siserte@bitbucket.org/ompssmalleability//slurm-malleable.git

� DMRlib (Malleability Library)

https://siserte@bitbucket.org/ompssmalleability/dmrlib.git

� Conjugate Gradient Malleable (Application)

https://siserte@bitbucket.org/ompssmalleability/cg-malleable.git

� Jacobi Malleable (Application)

https://siserte@bitbucket.org/ompssmalleability/jacobi-malleable.git

� N-body Malleable (Application)

https://siserte@bitbucket.org/ompssmalleability/nbody-malleable.git

� HPG-Aligner Malleable (Application)

https://siserte@bitbucket.org/ompssmalleability/hpg-aligner-malleable.git

� Feitelson Parallel Workload Generator

http://www.cs.huji.ac.il/labs/parallel/workload/m_feitelson96/m_feitelson96.c

B.1.3 Software Dependencies

In general, we used a Linux environment with GCC 5.3.0 and MPICH 3.2.0 to compile and
run the tools and applications. Mercurium needed GPerf 3.0.4 and GPerfTools 0.8; and Conjugate
Gradient was compiled with Intel MKL and OpenBLAS 0.2.19.

B.1.4 Datasets

The average inter-arrival time (determined by the Feitelson model) was con�gured with a factor
of 1. This represents a highly loaded scenario where jobs are massively submitted while �tting the
arrival Poisson distribution of the model. The maximum job size was set to 32, assuming that a job
should not request more than a quarter of the total amount of resources (128-node cluster).

B.2 Installation

Regarding the installation, we have to start with con�guring our Slurm version providing the
installation and con�guration paths:

./autogen; ./configure --prefix=<slurm_dir> --confdir=<slurm_conf>; make;

make install

With the libraries of Slurm installed, we con�gure the OmpSs runtime:
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https://siserte@bitbucket.org/ompssmalleability/nbody-malleable.git
https://siserte@bitbucket.org/ompssmalleability/hpg-aligner-malleable.git
http://www.cs.huji.ac.il/labs/parallel/workload/m_feitelson96/m_feitelson96.c


B.3. EXPERIMENT WORKFLOW

./bootstrap; ./configure --without-opencl --prefix=<ompss_dir>

--with-slurm=<slurm_dir> --with-mpi=<mpi_dir>; make; make install

Finally, we install the OmpSs compiler, Mercurium, in order to have OmpSs fully operative:

./configure --enable-ompss --prefix=<ompss_dir> --with-nanox=<ompss_dir>

--with-mpi=<mpi_dir>; make; make install

For DMRlib, as well as, the malleable applications, we only have to de�ne correctly the paths
for OmpSs, MPI, etc. and then generate the libraries/binaries with make. Notice that malleability
parameters have to be con�gured for each application before compiling.

Once the software is ready, the next step is to con�gure and initiate Slurm. For this purpose,
the user has to de�ne the appropriate paths and nodes in the <slurm_conf>/slurm.conf �le. In
order to enable malleability, we must choose the following plugins:

SchedulerType=sched/backfill

SelectType=select/linear

PriorityType=priority/multifactor

After that, Slurm daemons have to be normally started in each node.

B.3 Experiment Work�ow

The experiment work�ow follows these steps:

1. Prepare a launch script for each application and each mode (non-malleable and malleable).
For example, for our applications we have written the following scripts:

� Conjugate Gradient:

1 export NX_ARGS="--enable -block --force -tie -master"

2 export DMR_SCHED_PERIOD =10

3 NODELIST="$(scontrol show hostname $SLURM_JOB_NODELIST |

paste -d, -s)"

4 mpiexec -n $SLURM_JOB_NUM_NODES -hosts $NODELIST <cg_dir >/

cg.INTEL64

5

� Jacobi:

1 export NX_ARGS="--enable -block --force -tie -master"

2 export DMR_SCHED_PERIOD =10

3 NODELIST="$(scontrol show hostname $SLURM_JOB_NODELIST |

paste -d, -s)"

4 mpiexec -n $SLURM_JOB_NUM_NODES -hosts $NODELIST <

jacobi_dir >/ jacobi.INTEL64

5

� N-body:
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1 NODELIST="$(scontrol show hostname $SLURM_JOB_NODELIST |

paste -d, -s)"

2 mpiexec -n $SLURM_JOB_NUM_NODES -hosts $NODELIST <nbody_dir

>/n-body.INTEL64 6553600 50

3

� HPG-Aligner:

1 export NX_ARGS="--enable -block --force -tie -master"

2 NODELIST="$(scontrol show hostname $SLURM_JOB_NODELIST |

paste -d, -s)"

3 mpiexec -n $SLURM_JOB_NUM_NODES -hosts $NODELIST <hpg_dir >/

hpg -aligner.INTEL64 rna -i <hpg_dir >/ bwt_index -f <hpg_dir

>/ reads40M100nt.fq -o testDir$SLURM_JOB_ID -s $(((

$SLURM_JOB_NUM_NODES -2)*4))

4

2. Generate a workload assigning randomly one of the four applications to each job and the
inter-arrival time de�ned by the model. From this workload we have to elaborate 4 versions:
the �xed, pure moldable, pure malleable and �exible.

3. Execute each workload.

B.4 Evaluation and Expected Result

In order to evaluate the performance of each workload we obtain the Slurm database entries with
sacct and the job's log data. From there, we can get the job waiting, execution and completion
time, and the number of allocated nodes in each moment.

The expected result is a reduction in the workload completion time inasmuch as the workloads
have more freedom to de�ne the number of nodes of their jobs.

B.5 Experiment customization

Malleable applications may be con�gured with di�erent problem sizes. Or even we can also
develop new malleable applications or synthetic codes that mimic the behavior of existent scienti�c
applications.
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