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Preface

This thesis presents my PhD research in Physics, performed under the supervision
of Ignacio Pagonabarraga at the University of Barcelona between November 2013
and June 2018. It covers the majority of the research performed during the afore-
mentioned time interval. However, the funding grant which I enjoyed during the
PhD imposed the teaching in several undergraduate courses in Physics.

What is in this thesis
The first topic of this thesis concerns the emergent interactions in an active particle’s
suspension. This research originated from a joint discussion with Jure Dobikar and
Ignacio Pagonabarraga, corresponds to Chapter 2 in this thesis, and is currently
being prepared for puclication. The interest in the properties of an active bath of
active brownian particles, reported in Chapter 1, comes from a detailed study of the
active bath of Chapter 2, and the parallel interest in the topic of Demian Levis, and
published in [Levis et al., 2017].

The second concerns the emergent interaction of spheres in a horizontally vi-
brated granular media. Given my previous experience in the extraction of effective
emergent forces in out-of-equilibrium systems, from a discussion with Iker Zuriguel,
we defined and studied a model of shaken grains in Chapter 3, and is currently
being prepared for publication.

Finally, the third topic of my thesis concerns the emergent structures in bath of
photocatalytic apolar particles in a suspension of passive colloids. This stems from
previous experiments of Fernando Martínez-Pedrero in Pietro Tierno’s laboratory at
Universitat de Barcelona, and later continued by Helena Massana-Cid. This work
is now submitted for publication.
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1
General Introduction

In this introductory chapter we present the reader the content needed in order to
understand and assess the research presented in this thesis. We define soft active
matter and present several model systems widely used in the research community,
with special emphasis in the ones used in the following chapters – colloidal and
granular. We then present different models for active matter and outline the simula-
tion methods we use along this thesis. After presenting the theoretical models of
active matter, we review the sate of the art and place the contributions of the present
thesis in this rapidly growing field.

In this work we study, mainly by means of computer simulations, the interaction
between passive particles mediated by active and activated agents. On one hand,
we study active agents such as individual self-propelled particles, and autophoretic
colloids. On the other hand, we study activated particles, which is the case of milli-
metric grains. While active and activated particles move regardless of noise and
thermal fluctuations we distinguish between active and activated agents according
to the origin of the activity.

Activated particles move due to external forcing. Examples of activated parti-
cles are sand grains, that move when shaking or tilting the container; and magnetic
colloids that solidly rotate and drift following external magnetic fields. In general,
a system of activated particles moves as a response of an external forcing. Active
particles, on the contrary, have an inherent capacity to convert energy from internal
sources or the surrounding medium into directed motion or stress generation in the
medium. Examples of active particles include self-catalytic colloids, which convert
chemical products to generate chemical imbalances that stir the neighbouring fluid;
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and bumper-cars that convert electric energy into self-propulsion. Active and ac-
tivated agents exhibit a persistent motion which is ultimately responsible for the
out-of-equilibrium nature of the systems.

Despite the apparent differences between all sorts of active and activated sys-
tems we can model their key features and behaviours with simple models that are
subject to further modifications to differentiate into the specifics of each system
under consideration.

1.1 Soft Matter

In this thesis we present active systems in the context of soft matter. Soft matter is
the field of condensed matter physics that studies systems whose interactions are in
the range of the thermal energyE = kBT , the structures involved span from several
nanometres to micrometres, and slow temporal dynamics, from seconds to hours.
The contrast between solid state physics and soft matter is clear when comparing the
typical energies and length involved. In solid state, the length between interacting
objects are in the Ångstrom scale L ≈ 10−10 m, and ionic and covalent bond
energies are E ≈ 100 kBT , this combination leads to a typical stiffness of the order
of k ≈ Nm−1. In soft matter, instead, typical stiffness values are in the order of
k ≈ kBT/L2 ≈ 10−9 Nm−1. In soft matter systems, thermal fluctuations play a
vital role and lead to self assembly, and the formation of malleable and deformable
materials. The length scale involved in soft matter does not permit a detailed
molecular description, for instance a volume of 1 µm3 contains approximately
∼ 108 water molecules. Models need to coarse grain the molecular details and
incorporate the essentials: the diffusion introduced by the molecular collisions, and
the interactions between constituents. Among the most studied soft matter systems
we find polymer solutions an polymer melts, dispersions of colloids of different
sizes, shapes and interactions with the solvent, liquid crystals, and the structures
formed by amphiphilic molecules: vesicles, membranes, micelles, etc.

1.1.1 Colloids

Colloids are small solid particles, or fluid droplets, dispersed in other fluids. The
diameters of colloids typically range from several nanometres to micrometres,
much larger than the atomic since, and hence constituted by millions or billions of
molecules. Large ensembles of colloids follow the assumptions posed by statistical
mechanics. Therefore, equal interaction potentials in molecular systems, and col-
loidal systems give rise to equal behaviours. This equivalence is largely exploited
in colloidal science to tune the colloidal interactions to construct analog models for
molecular interactions, and unlike molecular ensembles visible through microscopy.

Colloids immersed in a fluid are subject to hydrodynamics. At the colloidal level
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Stokes hydrodynamic equations are a suitable approximation since the Reynolds
number is Re = LU/ν << 1. In the low Reynolds number viscosity prevails over
inertial effects, and for a sphere of radiusR moving at velocity U the fluid generates
a drag force opposing to the movement of magnitude F = 6πηRγU = γU , with η
the viscosity of the fluid. A spherical particle in a viscous fluid will only travel at
constant velocity U if, and only if, it is pushed by a constant force F = γU . The
reverse is true, the application of a force of magnitude F on a colloidal particle
results in a velocity U = γ−1F , or introducing the mobility factor, U = µF . In
the low Reynolds fluids particles follow Aristotelian physics.

In the colloidal scale the fluid is treated as a continuum with the corresponding
hydrodynamic equations. The details of the molecules of the fluid, though, are not
lost. Diffusion is the signature of the molecular jiggling and random collisions
with the colloids. For an equilibrium fluid, the Stokes-Einstein equation applies
and relates the magnitude of thermal fluctuations of the particle to the dissipation
D = kBTγ

−1 = µkBT , where kBT is the thermal energy. The colloidal models
that appear in this thesis incorporate thermal fluctuations in the form of translational
diffusions on the colloids, and additionally the equivalent diffusion in its fluctuations
in the rotations.

Colloid interactions

As previously introduced, colloids are constituted by chunks of matter, millions
of atoms. The electric nature of the atoms introduce long range induced dipolar
interactions between pairs. The addition of interactions pairs of atoms of different
colloids gives rise to an overall interaction between the colloids, the dispersion
forces. Dispersion forces are attractive long range forces [Hunter, 2001] that solely
depend on material properties, the shapes of the bodies, and thermal fluctuations.
The details of the material properties are condensed into the Hamaker constant,
A ≈ 10KBT . For a pair of spheres, dispersion forces decay as ∼ d−6 while the
decay is ∼ d−1 for close spheres.

In colloidal dispersions, electrically charged particles are not rare. Charges
introduce structure to the fluid ions and, thus interactions between pairs. Altogether,
electric interactions and dispersion forces, constitute the DLVO potential of inter-
action between colloids. But the colloidal world is much richer and colloids may
be fabricated out of ferromagnetic, paramagnetic and superparamagnetc materials.
Magnetic colloids interact like micrometric magnets and, additionally, respond to
external magnetic fields.

Furthermore, colloids may be highly modified. Nanotechnology permits the
covering and coating of colloid surfaces with molecules, docking sites to attach to
other molecules, or even other colloids. In Janus colloids, for instance, the surface
of the particle has spatial dependent properties: half-silica, half-platinum colloids
make excellent candidates for microswimmers and will be presented in 1.2.5.
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1.1.2 Polymers and Liquid Crystals

Polymers are elongated and/or branched molecules. Dispersed in a solvent, and as a
function of their interaction, polymers structure and entangle themselves. Polymers
in “good” solvents swell at high temperatures and form compact structures. At
low temperatures polymers in “good” solvents extend. The opposite behaviour is
observed for “poor” solvents.

Depending on the constituents of the polymer the, presence of large region
with apolar sites, or just the contrary regions rich in charges, introduce additional
interactions with the dispersing fluid. A polymer immersed in water will favour in-
teractions between water and polar sites (hydrophilic sites) wile the apolar sites will
be hydrophobia, they will be energetically penalized. For large enough polymers,
such as proteins, hydrophilic regions are on average located at the external part
of the protein while the hydrophobic parts are hidden far from the water. Shorter
molecules with a combination of hydrophobic, and hydrophilic sites, give rise to
mesoscopic arrangements of the polymers, the self-assembly of polymers, into
micelles, membranes, and double membranes, see Figure 1.1. This structures play
a vital role in biology, cells are enclosed by a bilayer membrane.
Shape asymmetries may lead to large structures with long range position corre-

Hydrophilic

Hydrophobic

A B

Figure 1.1 Self assembly of amphiphilic polymers. A Amphiphilic polymers with hy-
drophilic white beads, and hydrophobic tails. B Different self assembly structures where
hydrophobic tails hide from the water in the exterior. A liposome is a spherical shell consti-
tuted by two polymer units, it encloses a water region which can be further used for nano
technological applications. A micelle is a sphere of polymers that exposes all hydrophylic
beads to the exterior and hides the hydophobic tails. Finally a bilayer, a membrane. Image
from Mariana Ruiz Villarrea.

lations in a direction but short range correlations in other ones, and even give rise
to several structural phase transitions. Liquid crystals present such anisotropic
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behaviour with the coexistence of crystal, and fluid properties in the different axes
of symmetry, see Figure ??

1.1.3 Depletion forces

Excluded volume interactions are relevant in colloidal mixtures, and specially
between colloids and coiled polymers. We consider a binary mixture of large
spheres suspended in dilute suspensions of non absorbing polymers, micelles, or
smaller hard spheres in equilibrium. Coiled non-absorbing polymers, of typical size
defined by the radius of gyration 2Rg, are free to interpenetrate but its centre of
mass cannot approach to a distance closer to Rg of the surface of each colloid due
to repulsive interactions, this leaves an excluded volume corona of thickness Rg
surrounding each colloid. In Figure 1.2 we present the excluded volume coronas
for polymers for different colloidal configurations. First, when the colloid-colloid
distance d > σ + 2Rg the total excluded volume of the system corresponds to
addition of each corona. Then, when the colloid-colloid distance σ < d < σ+ 2Rg
excluded volume coronas overlap and the overall excluded volume for the polymers
is reduced, and the total entropy of the colloids increase. Configurations with
touching colloids are entropically favoured, and thus more probable. Second,
colloidal particles at close distances from walls obtain a reduction of the overall
excluded volume for the polymers following the same principles, see Figure 1.2.
In thermal equilibrium this gives rise to the so called depletion forces. A detailed
analysis of this interactions is found in [Mao et al., 1995].

A mechanical interpretation of the problem is also feasible in terms of the
van’Hoff’s polymer osmotic pressure Π = ρkBT , where ρ is the density of the
polymer. For an isolated colloid the density of surrounding polymers is isotropic,
and so is the pressure on the surface of the colloid. However, when the excluded
volume coronas overlap, polymer concentration in the inner region drops, and thus
there is an osmotic pressure imbalance that keeps colloids in contact.

In dense binary mixtures of colloids with size ratio σa/σb ≈ 10 experiments
in [Dinsmore et al., 1997] showed the emergence of depletion force in thermal
equilibrium. Microscopy images shown in Figure 1.3 correspond to the the focal
plane in the dispersion just close to the confining wall of the system. At zero
concentration of small particles we large colloids diffuse to the wall and diffuse
back to the bulk of the fluid. Then a small fraction of small particles was added to
the large colloidal dispersion and large particles that approach to the wall diffuse
there, due to depletion interactions with the wall for longer times, until they diffuse
back to the fluid, there is an observational increase of particles close to the walls.
Finally, at higher concentrations of smaller particles large particles that approach
the wall reside there for even longer times and diffuse in the plane close to the wall
and colloid-colloid depletion interactions contribute to the formation of a dense
aggregate of large particles.
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A B

C

D

Figure 1.2 Schematic representation of a mixture of large and small disks, and a wall.
In A, and B the excluded volume coronas of the colloids do not overlap arrows represent
an isotropic osmotic pressure. In C excluded volume coronas of the colloids overlap, the
osmotic pressure of the polymers is no longer isotropic, and depletion appears. In D The
excluded volume corona of the colloid overlaps with the excluded region of the wall. Osmotic
pressure on the colloid is not isotropic and generates depletion pushes the colloid towards
the wall.

To summarise, depletion forces are short ranged, act at separation distances
comparable to the small particles, and are the order of the thermal energy.

1.1.4 Critical Casimir forces
Casimir forces were first predicted in 1948 [Casimir, 1948] in the context of quan-
tum electrodynamics theory. For a pair of parallel conducting plates, at close
distances, the selection of fluctuating modes of the electromagnetic fields generates
an imbalance of energy density in the internal region relative to the external and
a force emerges. More recently, a model for thermal charge particles on parallel
plates has reported the emergence of Casimir-like thermal interactions [Lu et al.,
2015].

In 1978, Fisher and de Gennes predicted [Fisher and Gennes, 1978], and later
refined [de Gennes, 1981], the thermal analogous of the QED Casimir forces in soft
matter close to a critical point, critical Casimir forces. Like their QED counterpart,
critical Casimir forces, rely on the confinement of fluctuations, and the difference
in mode selection in confinement compared to unbounded scenarios. Second order
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Figure 1.3 Optical micrographs of colloidal beads of size σa = 0.8 µm and concentration
φ = 0.02 at a glass wall. A with no small spheres, colloids diffuse stay in the focal plane
for few seconds, and away from the focal plane. B small particles σb = 0.07 µm, at
concentration φb = 0.08, are introduced and the concentration of large colloids close to the
wall increases, colloids diffuse close to the wall for several minutes prior escaping to the
bulk. C increasing the density of small particles to φb = 0.16 interactions between type a
particles increase and crystalline structures form. Figure from [Dinsmore et al., 1997]

A B

Figure 1.4 Water and Lutidine (W+L) phase diagram extracted from [Gambassi et al.,
2009]. In the colored region in A W+L fluid phase separates, and two critical points can
be observed. B close to the low temperature critical point LCP, Tc = 34.1◦ C, lutidine is
miscible in water. For T > Tc an initial concentration C1 separates into a rich water phase
in, and a rich lutidine phase.
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phase transitions in liquids near the critical temperature, Tc, were predicted to be
good candidates in which experiments could observe, and measure critical Casimir
forces. For liquid crystals, [Ziherl et al., 1999] predicted critical Casimir forces
between parallel plates arising from the isotropic wetting transition, and [Uchida,
2001] for the isotropic-lamelar transition. However, fluctuation forces in liquid
crystals are difficult to measure and differentiate from the background dispersion
forces [Ziherl and Mus̆evic̆, 2001].

Recently, [Hertlein et al., 2008] measured critical Casimir forces for colloids
close to walls, and between pairs of colloids [Paladugu et al., 2016] in water-lutidine
binary mixtures. A binary fluid system is constituted by two different species at
a temperature T . Such a system may undergo a second order phase separation
between mixed, and demixed states. Temperature determines the miscibility of one
fluid into the other. In Figure 1.4 we present the phase diagram for a binary fluid,
water and lutidine from experiments in [Vnuk, 1983, Beysens and Estève, 1985], as
a function of fraction of lutidine cL, and temperature T . The critical point (Cc, Tc)
determines whether lutidine is miscible in water or the system phase separates.
Below the critical temperature lutidine is miscible in water and the system remains
mixed, above it the system demixes. And, near the critical point, the characteristic
length of order parameter fluctuations [Kadanoff et al., 1967].

Water-lutidine phase diagram presents two critical points, one at T ≈ 300K,
and a second at T ≈ 500K. The first critical point is just a few degrees above room,
and thus an ideal candidate for experiments in the laboratory.

1.2 Active Soft Matter

We move from the introduction to soft matter and emergent interactions in thermal
equilibrium to active matter to a sustained out-of-equilibrium. In this regime energy
needs to flow from the outside of the system to the agents of the system or be
converted from an internal source, and finally be dissipated at the active particles’s
level. Now we consider actuated systems which do not have the intrinsic mechanism
to convert energy from a source but are collectively forced from the exterior of the
system. We briefly review colloidal magnetic systems, and granular vibrated matter.
Then, we introduce active systems that intrinsically, and locally, convert energy
to disturb the environment. We briefly review bacteria, active colloids, and active
liquid crystals.

1.2.1 Magnetic Colloids

Ferromagnetic, and super paramagneteic particles, in the microscale, constitute
magnetic colloids. In suspension magnetic colloids diffuse due to thermal fluctu-
ations and, additionally, magnetically interact through dipole-dipole interactions.
Magnetic interactions are intrinsically anisotropic, and decay algebraically with the
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distance d−3. Anisotropy in the interaction favours parallel alignments between
magnetic dipoles, and for spherical particles it favours the formation of chains.
Even though, the equilibrium, and metastable structures of small aggregates is still
a matter of interest in the statistical mechanics community [Hernández-Rojas et al.,
2016].

Magnetic colloids respond under external magnetic fields and, by introducing a
periodic variation of the fields, a large variety of scenarios appear. At low Reynolds
regime, the collection of movements that result in swimming must take into account
the celebrated scallope theorem [Purcell, 2014,Lauga, 2011]. Experiment presented

A

B

Figure 1.5 Magnetic Swimmer. A DNA joined magnetic particles constitute the filament
which is attached to a large object, in this case red blood cell. B a time dependent magnetic
field generates a beat pattern on the filament which ultimately propels the swimmer. Extracted
from [Dreyfus et al., 2005].

in [Dreyfus et al., 2005] assembled, by means of DNA connections, magnetic
colloids in a long chain, see Figure 1.5, and finally the chain was then attached to
an inert colloid. By a prescribed variation of an external magnetic field the response
of each particle in the chain depends on the distance from the passive bead. After
a whole cycle the particle propels a certain distance, and thus is able to swim by
periodically forcing the system.

The wall effect has also been exploited to construct magnetic swimmers. The
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confinement breaks a spatial symmetry of the system and more simple objects may
propel such as paramagnetic joined doublets of different size under a precessing
magnetic field [Tierno et al., 2008], or even simpler systems such as magnetic
worms where precessing magnetic fields induce an angular rotation to each particle
[Martinez-Pedrero et al., 2015].

1.2.2 Vibrated grains

An astonishing feature appears when shaking granular materials [Aranson and
Tsimring, 2006, Jaeger et al., 1996]. Under external vibration the resulting granular
material lies in a hybrid state between a solid and a liquid, the fluidization regime.
When the local density exceeds a critical value [Reynolds, 1885] the, the system
is resistant to shear deformations like a solid, while below this density the system
flows. In a vertically agitated container vertical movements accelerate the particles
against gravity, which accelerates them down. The energy output at the bottom and
the cooling in the walls introduce typical hydrodynamic instabilities, the formation
of rolls [Gallas et al., 1992], shown in Figure 1.6.

Figure 1.6 Fluidization of a granular me-
dia. (a) trajectories of particles depicting the
characteristic convection rolls in vertically
fluidized granular systems. In (b) the state
of the system, images from [Gallas et al.,
1992]

Granular vibrated systems have also explored quasi two dimensional systems
when considering granular monolayers. A vertically shaken granular monolayer
will not set convective rolls, since there is no bulk of granular, but achieve self-
propulsion for grains designed with certain asymmetries [Deseigne et al., 2010].
Granular monolayers have also been horizontal, and circularly shaken and con-
duced to equally astonishing results [Daniels et al., 2009, Mullin, 2000]. Granular,
regardless of the material details, experience mechanical friction with either the
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container surfaces, and other grains. Thus granular models need to introduce en-
ergy dissipation in collisions. As a final remark, note that typical accelerations in
granular media compete with gravity. In experiments, gravity is difficult to switch
off and some tests need to be performed in situations of microgravity to completely
exclude gravitational effects present in the Earth surface.

1.2.3 Activity in living systems

In the biological world we find active matter at all its scales. In the interior of cells
there are complex molecules, organelles, and cytoplasm, a crowded media. The
diffusion though the cytoplasm is a slow and non-directed mechanism to transport
vital chemicals or organelles from the place where they are produced or stored to
the where they are needed. Interestingly, evolution has achieved the equivalent
of motorways. Immersed in the cellular interior one finds microtubules, a hard
tubular structure made out of tubuline, a protein. Kinesins, molecular motors, run
on these structures. Kinesins are anchored to the surface of the microtubule by a
pair of feet. At each foot the reaction of ATP molecules, the energy coin in the
cell, attaches or detaches the foot from the tubuline molecules. When the foot
detaches it diffuses in a preferential direction, for the microtubule has an electric
polarization. The attachment and detachment dynamics of the feet allows kinesins
to walk on microtubules, and more importantly apply a force on their cargo. Groups
of kinesins, whose size is approximately 10m, are able to attach to cargo lipid
vesicles, carrying all sorts of molecules, and transport them along large distances
such as the axon of neurons, millimetric lengths.

1.2.4 Bacteria and cells

From the nanometric world of the molecules we jump into the micrometric world.
Escherichia coli, and many more bacteria and algae, are propelled by flagella [Berg,
2008]. Molecular motors at the bacterial wall of E. coli at the roots of the flagella
induce a circular motion to it. A counter-clockwise rotation to the bunch of helical
flagella results into the formation of a large rotating helix that propels E. coli.
However, the clockwise rotation of the flagella results into a chaotic arrangement of
the flagella and induces a random rotation to the body of E. coli, see Figure 1.7. By
switching long runs and random reorientations [Son et al., 2013], E. coli, effectively
diffuses with a diffusion constant one hundredfold its thermal diffusion constant.
Finally, by fine tunning the run time, E. coli, manages to direct its motion towards
chemical gradients to either follow increasing concentration of food or to scape to
decreasing concentrations of toxic chemicals.

Here we introduce a scenario in which the origin of the activity is in the nano-
metric scale, the conversion of chemical energy into rotatory motion of the motor
attached to the flagella. The theoretical or computational study of propulsion in
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A
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C D

Figure 1.7 E. coli and Run-and-Tumble. A An electron microscope image of an E. coli
with a differentiated main body, and a bunch of flagella. B The different configuration for the
flagella for CCW rotations (left) that translate into directed motion, and CW rotations (right)
that translate into a random reorientation. C The run-and-tumble mechanism. Combining a
series of runs and tumbles E. coli performs a large scale diffusive motion. D Adapting the
runtimes E. coli changes the effective diffusion and is able to follow chemical gradients.

microorganisms and its collective effects generally disregards the details of the
origin of the propulsion. The difference in size, and the large amount of constituents
involved leads to the coupling of millions of constituents with the final point of
achieving propulsion. Thus, to study the behavior of self-propelled microorganisms
activity is entered though surface fluid velocities, propulsion velocities of the agents,
and stress generation in hydrodynamic models.

Propulsion is not constrained to the microscopic world. Large multicellular
organisms, animals, are able to either swim, fly or run. Once again the propulsion
comes from an inverse cascade of active processes from the cellular level, to tissues
and finally to the whole of the organism.
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The idea of a unit propelling at a given velocity, and subject to random reorien-
tations, or orientation with the neighbours is a constant over all length scales. But
activity is not an exclusive feature of living organisms. Artificial active systems
have been trendy in the laboratories for the last decades and here we present: col-
loidal particles, micro robots, and polymers that have been engineered to achieve
self-propulsion.

1.2.5 Active Colloids
We have previously presented colloidal particles in Section 1.1.1. Nowadays, col-
loids can be engineered in detail to the surface level. For instance, Janus particles,
spherical or rod-like micro particles are half coated with different materials. It is
interesting to consider Janus particles in a chemical solution with chemical reactions
occurring only, or with different intensity, in one of the halves. This happens in
platinum coated particles in a rich H2O2 (hydrogen peroxide) environment. Plat-
inum catalyzes the dissociation of H2O2 and thus a chemical imbalance appears.
The gradient of chemical products is sustained by the constant chemical activity
on the catalysing site. Gradients near surfaces are known to couple to the fluid and
generate flows proportional to the gradient of chemicals. By this mechanisms, and
integrating the overall velocity on the Janus particle we obtain neat propulsion of the
particle, for a detailed list of artificial self-propulsion mechanisms see [Bechinger
et al., 2016].

Janus particles that consume H2O2 constantly produce oxygen gas which even-
tually forms macroscopic bubbles that destroy the colloidal arrangements or the
colloidal structures achieved in the experiment. An alternative to hydrogen peroxide
is the aforementioned water-lutidine mixture. For temperatures below Tc a Janus
with half a gold coating diffuses thermally. Once the sample is illuminated, the
golden face of the colloid absorbs light and locally heats the water-lutidine fluid
to T > Tc and leads to water lutidine demixing only on the gold coated side.
Due to the appearance of chemical gradients the particle propels and the water
lutidine separated that remains behind mixes once again when it cools to the bath
temperature T < Tc. This system does not present gas generation, and what is even
more, the used fuel regenerates. Furthermore, the velocity of the Janus colloids
depends on the light intensity, see Figure 1.8.

Self-propelled colloids are subject to thermal fluctuations. In the low Reynolds
regime, stokes equations, and fluctuation dissipation theorem imposes a diffusion
constant Dt for spatial random movements, and a rotational diffusion constant Dr,
for random solid rotations. The diffusion constants for a spherical colloid are:

Dt =
kBT

6πηR
, Dr =

kBT

6πηR3
(1.1)

where kBT is the thermal energy, η the viscosity of the medium, and R the radius
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Figure 1.8 Janus particles. A The particle in the bath, and B the diagram of an active
Janus, from [Gomez-Solano et al., 2017]. A microscopy image of a gold coated Janus
colloid from [Volpe et al., 2011]. D-F Velocity of Janus self-propelled colloids in a critical
water-lutidine binary mixture tunned by light intensity.

of the colloid. The Langevin equations for the equations of Brownian motion are
ṙ = (2Dt)

1/2ξ. The solution to the equations predicts an averaged mean squared
displacement, in two dimensions, ∆r2(∆t) = 4Dt∆t for a time interval ∆t.

Active particles, however, propel in a defined axis of symmetry of the colloid
indicated by the unit vector n̂. Equation 1.1 already introduces fluctuations of
the orientation of the sphere. For passive colloids, though, this has no effect in
the displacement of the particle, but now propulsion couples fluctuations on the
orientation of the colloid n̂ to the swimming direction, and hence to the trajectory
of the colloid.

For a colloid swimming at velocity va the simplest equation of motion for
the center of mass includes the velocity in the direction of the orientation, and
the diffusion ṙ = v0n̂ + (2Dt)

1/2ξ. And in two dimensions the orientation is
equally described by the angle θ. The evolution of the angle is then described by
the diffusion equation θ̇ = (2Dr)

1/2νi. The details to incorporate self propulsion
in a Brownian model are given in Section 1.3.2.

The solution for the mean squared displacement when propulsion is considered
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is richer than the correspondent to brownian motion

∆r2 = 4Dt∆t+
v2
a

2D2
r

[
2∆tDr + exp

(
− 2∆tDr

)
− 1
]

(1.2)

The temporal dependence of ∆r2 on the elapsed time has two limiting regimes.
First, at times shorter than the typical diffusion time ∆t << ∆−1

r the behavior
of the active particle is ballistic1 ∆r2 = v2

0∆t2. For larger times, the diffusion
in the orientation reorients the particle, and with a characteristic time D−1

r it
displaces a distance of the order v0D

−1
r . The long time limit of (1.2) gives ∆r2 =

4Dt∆t+v
2
0D
−1
r ∆t. The linear behavior on ∆t defines an effective diffusive motion

with Deff = Dt + v2
0/(4Dr). In experiments [Howse et al., 2007], analysed the

trajectories of catalytic Janus particles for different H2O2 concentrations and
obtained both the ballistic-diffusive crossover and the increase of the particle
velocity increasing the concentration of chemicals, see Figure 1.9.

A

B C

Figure 1.9 Diffusion of self-propellent active colloids. A Trajectories of the active particles
for different H2O2 concentrations. B Mean Squared Displacement for active particles. In
green a linear regime for diffusion, in red a parabolic dependence on ∆t to reflect the ballistic
behavior below D−1

r . C Velocity of self-propulsion for increasing concentrations of the
reactant chemicals. Images from [Howse et al., 2007]

Activity, though, is not only the ability of the Janus particle to translate the
1We deliberately do not include in this limit the discussion of the relation between the diffusion

time R2/Dt, and the rotational dime D−1
r which leads to a crossover between the ballistic behavior

presented and the simple thermal diffusion, which in turn is expected at times ∆t > R2/Dt [Huang
et al., 2011]
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chemical reaction into its own propulsion but capacity to sustain the chemical
imbalance away from its surface. A spherically symmetric catalytic sphere will not
be able to achieve a velocity in a persistent direction, unless the spacial symmetry
is broken – still the system is far from equilibrium. Several scenarios have been
proposed to induce propulsion to symmetric active particles. First, [Michelin and
Lauga, 2014] predicted that a finite Pe distorts the chemical profile and thus gain
production. Second, the coupling of two apolar active particles gives rise to an
approaching pair velocity. What is even more, for apolar active particles [Colberg
and Kapral, 2017] observe the formation of pairs that self-propel and act as a polar
particle.

1.3 Models for dry Active Matter

In the last section we have presented several scenarios where, by different means,
microscopic particles gain propulsion. We have seen the essential role of hydro-
dynamics in the development of the motion at the local scale. At the larger scale,
we are interested in the effects that propulsion introduces to soft matter, and to
capture the basic physics that emerges from the persistence of motion, we consider
physical models that do not include hydrodynamic interactions between particles2,
and generally omit the surrounding fluid. In this section we present the two most
fundamental and simple models commonly used to study active particles that in-
corporate fluctuations, and propulsion. The first, the Vicsek model, incorporates
propulsion alignment. The second, the Active Brownian Particle (ABP) model,
additionally incorporates excluded volume interactions. In this thesis we have
worked with a variation of ABP particles that incorporate a Vicsek-like alignment
interaction.

1.3.1 The Vicsek Model

A first fundamental aspect of self-propulsion is the behaviour of the propelling
direction. In 1995 Vicsek, et al. [Vicsek et al., 1995] proposed a model where
point particles had an associated propulsion direction, constant velocity, and orien-
tations where subject to random noise and alignment. Years later this model, the
Vicsek model, has lead to the broad field of collective motion [Vicsek and Zafeiris,
2012]. And variations of the original model have been proposed to study from cell
colonies [Szabó et al., 2006] to bird flocks [Cavagna et al., 2010].

In the Vicsek model positions r and orientations θ of particles are updated from
a their values at time t to their values at times t + 1 following simple kinematic

2However, a complete model of the system needs hydrodynamics and research in wet active systems
has also captured large attention [Marchetti et al., 2013].
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B

Figure 1.10 Dry Active Particles. A The Vicsek model. B The Active Brownian Particle
model

rules.

θi(t+ 1) = arg

(∑

n

exp(iθn(t))

)
+ η

r(t+ 1) =r(t) + v(cos θi, sin θi)

(1.3)

where the orientation updates to the average orientation of the neighbours within a
distance rc, η is a random uniform number in the range [−η/2, η/2] that stands for
the strength of orientation fluctuations, and va is the propulsion magnitude.

The competition between alignment with neighbours and noise drives the whole
system either to a state with zero global polarization or a polarized state. The
Vicsek model is simple and incorporates three key ingredients in systems of active
particles: propulsion, alignment, and random fluctuations.

1.3.2 Active Brownian Particles
A second fundamental aspect of self-propelled particles is excluded volume inter-
actions. Active Brownian Particles (ABPs) were born from a system equilibrium
brownian repulsive spheres with translational and rotational diffusions at a finite
temperature, T . The system is then modified by the propulsion at constant velocity
va in the direction defined by the director n̂.

ri(t)

dt
=van̂i + µF ci +

√
2µkBTξi

dn̂i
dt

=
√

2µrkBT n̂i × νi
(1.4)

Interactions are introduced by the conservative force F c that guarantees ex-
cluded volume. Fluctuation dissipation theorem connects thermal mobilities µt, and
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Figure 1.11 Snapshots of the system with an arrow denoting the propulsion direction
preceded by a line indicating the trajectory for the last time steps. At different noise
amplitudes and particle density from [Vicsek et al., 1995].

µr to the diffusion constants µkBT . Diffusion of the orientation vector is introduced
by the second equation in (1.4), where ν, is vectors with random components drawn
from a Gaussian distribution with zero mean and unit variance. The cumbersome
equation involving the vectorial product may be translated to the angles that define
n̂ in the unit sphere. For two dimensions it is common to use n̂ = (cos θ, sin θ),
and thus rewrite the equation for the angle dθi(t)/dt = (2µrkBT )1/2νi.

Systems combining self-propulsion, and excluded volume are known to experi-
ence a Motility Induced Phase Separation (MIPS) [Tailleur and Cates, 2008, Cates
and Tailleur, 2015]. At large values of propulsion velocity, and moderate densities,
the system phase separates into a high density aggregate in coexistence with a low
density gas, see Figure 1.12. Colliding APBs reduce their velocities, in a cluster
of ABPs incoming gas particles collide and stay in the surface until their diffusion
orients them to fly away, unless they get trapped by more incoming particles [Hagan
and Baskaran, 2016]. The balance between APBs going in the aggregate and APBs
going out determines whether the aggregate grows in time or evaporates.
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Figure 1.12 MIPS, and pressure for ABP. Active particles collide and get trapped. A
System of ABPs that has undergone MIPS. In colors we denote the average centre of mass
displacement of each particle, red for particles moving at va, and blue for particles moving
at ≈ 0. B Active pressure measured across MIPS. The pressure drop appears in the density
in which MIPS is triggered in the gas phase. In different colors the propulsion velocity for
increasing values from purple to red. Green, blue, and red measures show a pressure drop,
data from [Winkler et al., 2015b].

Recently, a lot of effort in the community has been devoted to understand the
details of the phase separation. In this process, the concept of active pressure
[Takatori et al., 2014, Takatori and Brady, 2016] as an equation of state for ABPs
has appeared [Solon et al., 2015c,Solon et al., 2015a]. The results, though, included
a pressure drop that could not be properly understood and was assumed to by a
trace of the intrinsic activity of the problem. In Chapter 1 we have devoted to this
problem and have helped in the interpretation of this pressure drop by identifying
the existence of a metastable state in the previously though ABP gas phase. With
this results, the MIPS phase transition for ABPs is a non-equilibrium transition with
all the features of first order phase transitions in equilibrium.

1.4 Interactions in active and Passive systems

From the seminal work of Wu and Libchaber [Wu and Libchaber, 2000] the interest
in the introduction of active agents in passive suspensions has increased. Wu
and Libchaber prepared a suspension of E. coli in a horizontal interface between
two fluids. Once confined in the interface the suspension behaves in a quasi-two
dimensional space, and thus justifies the interest in two dimensional models of active
particles. At large concentration of bacteria hydrodynamics destroyed orientation
correlations and the system of active particles behaved like an active gas. A detailed
analysis of bacterial bath has later revealed the development of chaotic flows and
given rise to the exploration of the so called active turbulence [Dunkel et al., 2013].
In Figure 1.13 we observe the colloids, inclusions of 10 µm of diameter, in the
dense bacterial suspension.
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The mean squared displacement of the inclusions reveals a late time diffusive
behaviour. At early stages in the measurements colloids are advected by the bacteria.
At longer times angular diffusion, in the bacteria, reorients the pushing direction
and, effectively, the inclusion’s trajectories diffuse in the interface.

Figure 1.13 Enhanced diffusion of passive colloids in a bacterial bath. A An image of the
system with passive colloids, note the trimer of inclusions. B the MSD of inclusions with
diameters 4.5 (circles), and 10 µm reveals a ballistic to diffusive crossover with an effective
diffusion constant given induced by bacteria in the bath. Dashed lines correspond to the
thermal diffusion for beads of 4.5, and 10 µm diameters, image from [?, wu2000]

1.4.1 Dilute suspensions
The introduction of an effective temperature explains the movements of single
inclusions in active suspensions. The situation, however, gains interest as the
concentration of passive particles increase. The sole introduction of an effective
temperature does not respond to the fundamental question on whether passive-
passive interactions are modified in a medium with active particles.

An important step to resolve this question was the work in Rome by [Angelani
et al., 2011]. In a suspension of active particles the pair correlation function of large
passive colloids. For an equilibrium dilute suspension of large passive particles in a
suspension of dead active particles (this translates into a mixture of large and small
passive colloids) depletion forces are expected to emerge between large colloids,
and thus giving a strong signal in the pair correlation function at a distance of an
inclusion diameter, and then then a decay to zero with a typical decaying distance
comparable to the size of the small colloids.

For living bacteria, or active particles, authors reported a decrease of the peak
of the g(r) at contact, and additional peaks extending to larger distances, see Figure
1.14. The decrease of the first could be associated to a repulsive active deple-
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Figure 1.14 Active particles in a complex environment. A Active particles in a suspension
of passive colloids. The curves are the extracted pair correlation functions between colloids,
image from [Angelani et al., 2011]. B Active particles interacting with a pair of colloids
[Harder et al., 2014a]. C physical mechanism for active depletion interactions. ABPs are
captured in the wedge and push colloids apart.

tion competing interaction. Then, the formation of multiple peaks correspond to
favoured configurations with whole active particles in the inner region between
inclusions. This open problem on emergent interactions between passive particles
arouse our interest, and motivated this thesis.

In parallel to the development of this thesis results reported in [Harder et al.,
2014a], and illustrated in Figure 1.14, explained the repulsion between spheres
immersed in a suspension of ABPs. For disks at contact the geometry of the system
facilitated the confinement of active particles and thus promoted the accumulation
of particles in the newly formed wedge. The resulting forces were repulsive, as
opposed to well known equilibrium depletion forces. The analysis of the interaction
force of pairs of inclusions in a suspension of ABP particles is found in Chapter 2
of this thesis as well as an extension of it to ABP with aligning interactions.

1.4.2 Geometrical constrains
In the bulk active particles travel free and only interact in particle-particle collisions.
The limiting scenario presented for the interaction between low concentration of
passive colloids and active particles is easily explained in terms of an enhancement
of the diffusion of the passive colloids, but the situation gains interest when the
situation is reversed. In a crowded colloidal suspension the addition of a few active
particles has a remarkable effect. As presented in Figure 1.15A, active particles
push and compress the surrounding passive colloids, and thus generating fomenting
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crystalline order among them [Kümmel et al., 2015]. This contrasts with the idea
of an increase of the effective temperature, but resembles the effects already seen in
binary mixtures of particles at different temperatures [Weber et al., 2016].

A

B

C

Figure 1.15 Active particles in a complex environment. A A dilute suspension of active
particles in a dense colloidal dispersion, from [Kümmel et al., 2015]. B Active particles in a
geometrical confining object, from [Kaiser et al., 2012]. C Active particles interacting with
a two rods system, images from [Ray et al., 2014], and [Ni et al., 2015]

The introduction of solid objects in the system may introduce large conse-
quences in the movement of particles. A solid wall prevents movements in its
perpendicular direction, active particles colliding with a wall will move along it
until a fluctuation in the orientation reorients the particle. For elongated particles
the situation is more dramatic since particle wall interaction will align the particle
parallel to the wall [Elgeti and Gompper, 2009]. The interaction between active
particles and walls results in a wall accumulation of particles [Elgeti and Gompper,
2013]. However, when hydrodynamic interactions are introduced in the problem,
the scattering of individual particles depends on the details of the propulsion [Lushi
et al., 2017].

Active particles in suspension with solid wedge shaped passive objects get
trapped in a more dramatic manner. As presented in Figure 1.15B the asymmetry in
the allows the deflection of active particles travelling from left to right, they collide
with the surface of the wedge and escape. For particles travelling from right to left
the collision with the walls of the wedge deflects them to the central region of the
wedge where particles from the other arm also converge [Kaiser et al., 2012].
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Active particles in a suspension with large fixed rods, as presented in Figure
1.15C, generate a dense region of active particles pushing the walls inside and a
dense region outside. As a function of the distance between plates an oscillating
attractive-repulsive force emerges in the suspension that extends to long ranges,
further than equilibrium depletion forces. This situation has also been reported for
interactions between ABPs and pairs of close spheres [Harder et al., 2014a]. The
wedge between spheres confines a large population of ABPs that constantly push
the spheres apart. For fixed spheres this leads to a repulsion force between spheres
that ranges several ABP diameters. It is not clear, though the effect of alignment
between active particles how this interaction between spheres may change. The
introduction of alignment between particles has been considered in Chapter 2 in
order to consider induced interactions between passive particles in an active fluid
with aligning interactions.

1.4.3 Diffusophoretic interactions

When we introduced active colloids in section 1.2 we stated the existence of non-
Janus, apolar, active particles, where the symmetry in the chemical reactions is not
broken on the surface of the spheres. This leads to activity but not propulsion. In
a series of experiments [Palacci et al., 2014] uncovered an attractive interaction
between apolar active particles, see Figure 1.16. The interaction can bee understood
by the production of long range decaying concentration profiles of chemical prod-
ucts, [Soto and Golestanian, 2014a]. The interaction of particles with the profiles
distort the chemical fields and finally induce diffusophoretic velocity fields on the
surfaces of apolar particles, see Figure 1.16.

The appearance of long range attractive interactions in an active system is a
matter of great interest since there is no evident counterpart of these interactions in
equilibrium, except for gravitation – for which no proper thermodynamic limit can
be defined. Out of equilibrium, though such long range interactions are feasible.
As it has already been mentioned lots of efforts have been invested in the study of
interactions between active and passive objects but activity entered almost always
in the form of a propulsion. In this thesis we propose a new scenario where activity
is introduce by apolar particles which induce long range interactions to distant
colloids, we have extended the previous models to interactions between particles
of different sizes and activities. This discussion can be found in Chapter 5 of this
thesis.

1.4.4 Interactions in a granular bath

The introduction of grains of different physical properties in a fluidized granular
media introduces some interactions that we want to emphasize before the conclu-
sion of the introduction. First, the introduction of large grains in the fluidized
granular medium introduces the Brazil nut effect [Möbius et al., 2001]. In vertical
shaking the large body experience a buoyant vertical force that pushes it to the upper
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Figure 1.16 Diffusophoretic interactions induced by apolar active particles. A An apolar
particle (black) induces velocity flows on the surface (orange arrows) of passive particles
(white) which acquire a velocity (purple arrow) towards the apolar particle. B Relative
velocities of passive particles as they approach the apolar particle [Palacci et al., 2014]. C
typical clusters in the computational model proposed by [Soto and Golestanian, 2014a] for
dilute mixtures of apolar particles with different surface activities.

surface of the container [Huerta et al., 2005]. This effect has also been reported in
swirling [Aumaître et al., 2001a], and horizontal [Schnautz et al., 2005] agitations
of the granulars.

In horizontally vibrated granular monolayers a mixture of grains and spheres
phase separate and form patterns of stripes perpendicular to the shaking direction
[Aranson and Tsimring, 2006, Reis et al., 2006]. This separation of grains and
spheres was experimentally analysed in its most simple variant [Lozano et al., 2015].
Experiments with two spheres in a shaken granular bed reported an increase of the
probability to measure the pair of particles at contact with large residence times.
This had lead to the interpretation of increase of the probability as an emergent
interaction between the two spheres induced by the granular bath. The interest in
this problem has lead us to replicate this problem computationally, and has become
Chapter 3 of this thesis.
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Figure 1.17 Sphere segregation in a horizontally vibrated granular monolayer, images
from [Reis et al., 2006]. A-F the stripe formation in a mixture of grains and spheres. G-H
Trajectory of a pair of spheres in a granular monolayer, images and data from [Lozano et al.,
2015].
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2
Active Brownian Particles

Active Brownian Particles, ABP, constitute the minimal model for dry active matter.
The key ingredients for the active agents being: excluded volume, propulsion, and
thermal fluctuations. The competition between propulsion and repulsion leads to a
non-equilibrium phase transitions. In this Chapter we introduce the ABP model, the
active pressure as a contribution to the total pressure of the system as the Equation
of State to assess various open problems regarding pressure measurements across
MIPS, and to stablish parallels with equilibrium first order phase transitions.

2.1 Self propelled particles
An agent that extracts energy from the medium and converts it into directed motion
is considered to be a self propelled particle. Traditionally, nonequilibrium statistical
mechanics has focused on the kinetics of relaxation to thermal equilibrium, and
temporal correlations in equilibrium. A self-propelled particle, on the contrary,
keeps a sustained out-of-equilibrium nature.

The concept of active system involves a reservoir of free-energy, either internal
or external. For living organisms ATP molecules inside cells sustain motor activities
and propel the organism. Living self-propelling particles include swimming bacte-
ria, crawling cells, swimming fishes, and flying birds. In the general introduction
to this thesis we have introduced artificial, human made, system that self-propel.
In the microscopic scale we encounter colloids that asymmetrically trigger chem-
ical reactions on their surface. The coupling of the chemical field gradients on
the immediacies of the particles induces a fluid flow that translates into a global
translational velocity of the particle. This phoretic mechanism, diffusophoresis,
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introduced in more detail in Chapter 5.

At microscopic scales, we encounter vibrated granular systems. An asymmetric
design of the contact surface of the grains permits the rectification of vibratory
movements of the base, and translate into a translational velocity of the particle. To
summarise, self-propelled particles convert a local free-energy source into directed
motion, along this thesis we introduce self-propulsion on the particles as a constant
velocity va on a preferential direction n̂. The sustained energy flux converted
into motion and ultimately dissipated in the viscous drag, locally breaks energy
conservation law.

2.1.1 Langevin Equations for SPP – The ABP model
In this Chapter we focus on SPP in the micrometric scale. SPPs are immersed in
a fluid in the Stokes regime, particles experience a drag froce proportional to the
radius, and its velocity Fd = 6πηRv. In addition, a spherical particle of radius
R in a viscous fluid at temperature T experiences a brownian motion of with a
diffusion constant D = kBT/(6πηR), where η is the fluid viscosity. Introducing
typical numbers to the diffusion relation we obtain diffusions of the order of
D ≈ 0.2 µm2s−1. This result translates into a mean squared displacement of the
particle size in times of the order of the second. Diffusion needs to be incorporated
to the equations, and thus the use of models based on Landevin equations has spread
in the community. This models that do not include explicitly hydrodynamics are
labelled as dry models.

However, a Langevin description of SPPs coexists with models that solve SPPs
while considering a full hydrodynamic description of the system, the wet models.
This models need to solve the motion of both particles, and the embedding fluid.
Nowadays, a large collection of models are generally used in the literature, such
as boundary elements methods [Ishikawa et al., 2006], multiparticle collision dy-
namics [Zöttl and Stark, 2014, Yang et al., 2014], Lattice-Boltzmann [Llopis and
Pagonabarraga, 2010], and force coupling methods [Delmotte et al., 2015].

In this Thesis we have specially focused on the effects of bare propulsion and
activity in the emergent forces between passive particles. For this reason, we have
opted for a Langevin description of active particles.

The centre of mass position vector r for a diffusive Brownian particle of
diameter σ moving in a viscous fluid with viscosity η, and diffusion constant
DT = kBTγ can be modelled with the following Langevin stochastic equation,

m
dr2

dt2
= −γ dr

dt
+ F c +

√
2γkBTξi (2.1)

where we introduce a conservative interaction force F c acting on particles coming
from either an external potential or interactions with other particles in the system.
Dividing the equations by γσ we identify the characteristic timescales of the
different processes. For a microscopic particle the typical size is of the order of
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the micrometer σ ≈ 10−6 m, and mass m ≈ 10−18 kg. With a drag coefficient
γ = 6πησ/2 the inertial timescale is τi ≈ m/(γL) ≈ 10−5 s. The diffusion
time τd = (KBT/γ)−1/2L−1 ≈ 0.5s. For interactions of the order 10KBT/L,
the interaction timescale is τint = (10KBT/(γL

2)) ≈ 0.1 s. At this scales we
observe that inertial effects occur faster than any other phenomena. The system is
overdamped, thus we neglect inertial effects in the system. For microscopic systems
we further omit accelerations in the scope of this thesis. And present the equation
in the form

dr

dt
+ γ−1F c +

√
2γ−1kBTξi (2.2)

where we an now define the mobility µ = γ−1, and by the Stokes-Einstein relation
D = γ−1kBT . Finally, to model the propulsion of a SPP we introduce a velocity
va at each particle along a characteristic direction, the orientation, defined by n̂.
Now the orientation plays a role in the temporal evolution of the centre of mass
since va couples orientation and propulsion. For this reason we need to incorporate
the diffusion effects on the orientation. Overall, evolution of both position, and
orientation follow of each i-th particle we write an overdamped Langevin equation.





d

dt
ri(t) =van̂i(t) + µtF

c
i (t) +

√
2Dtξi

d

dt
n̂i(t) =

√
2Drn̂i × ν̂i

(2.3)

With va the propulsion velocity, µt the thermal mobility, Dt = µtKBT , and
Dr = µrKBT the translational and rotational diffusion constants, and ξi, and
nui two vectors whose components are drawn from Gaussian distributions, with
zero mean and unit variance. We keep the interaction force F c on each particle
to introduce either external interactions, or interactions between particles. For a
system evolving in two dimensions, which is typically the experimental scenario
with SPPs precipitated on the surface of the experimental set-up or particles in the
interface between two fluids, orientation vector is equivalently defined by the angle
θ, n̂ = (cos θ, sin θ). The vectorial equation for the orientation in (2.3) translates
into a simpler scalar equation for θ.

d

dt
θi(t) =

√
2Drνi(t) (2.4)

With νi(t) a random real with a Gaussian distribution, zero mean value and unit
variance. This, the equations for the centre of mass, and the orientation of the
particle constitute the model of an Active Brownian Particle (ABP).

The interest for ABPs is not only purely theoretical. This out-of-equilibrium
model has aroused attention and we there are broad applications in experimental
systems. Janus colloids [Ginot et al., 2015], shaken grains [Briand and Dauchot,
2016]. Even the dynamics of +1/2 topological defects on active nematics [Keber
et al., 2014, Ellis et al., 2017] may be modelled by ABP. An active nematic behaves
as a mixture of active particles, +1/2 topological defects, and passive particles,
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−1/2 topological defects, with and long range elastic force, due to the elastic
properties of the polymers, and the complete annihilation at contact.

In recent years the study of Active Brownian Particles (ABP) has extended
in the out of equilibrium community as a prototypical model for dry SPPs. An
initial, and general, model for ABP considered a collection of Brownian diffusive
particles with the ability to store energy from the environment [Schweitzer et al.,
1998]. More recently, the community has focused on ABP that convert the internally
stored energy into movement, a propulsion va relative to the medium. Thus, ABP
incorporate an additional degree of freedom: the orientation n̂.

The ABP model does not introduce chemical reactions, mechanical movements
nor hydrodynamic interactions, which are responsible for the propulsion; we in-
troduce it only by means of a constant velocity, or force, on the particle. To get
further details on derivations of the velocities of active particles see Chapter 5, and
specially [Golestanian et al., 2007].

2.1.2 Time Reversal Symmetry

A system of ABPs is intrinsically out-of-equilibrium. We examine this feature by
an inspection of the violation of the time reversal symmetry in ABP interactions.
According to Noether’s Theorem, energy is conserved if the system is invariant
under temporal symmetries. The non-conservation of energy must be accompanied
by the violation of time reversal symmetry, and detailed balance [de Groot and
Mazur, 1984] is not fulfilled. To exemplify the time reversal violation, in Figure
2.1, we sketch the evolution of a pair of colliding particles with a finite volume.

In a pair collision between two diffusing bodies with repulsive interactions
particles that interact are repelled after the collision. In a pair collision between
SPPs, as seen in Figure 2.1, the persistence of motion opens a new scenario. Parti-
cles collide and repel each other. The propulsion of both particles keeps pushing
and then particles stay bonded together. The system stays trapped at contact until
thermal fluctuations on the orientation of particles gradually reorient the propulsion
direction and particle escape is possible. If we were to describe the time reversed
scenario we would encounter a different scenario. Two particles collide and a rapid
sliding occurs into a fixed position then stay bounded for a random time. With
no previous notice the attractive bond between particles breaks and particles fly
away. The time reversed scenario cannot be described by the same physics, so time
reversal symmetry is broken in pair collisions between self propelled particles.

The violation of time reversal symmetry is also seen in collisions between active
particles and obstacles or wall, see Figure 2.1. The increase of residence time on
the walls leads to the accumulation of active particles [Elgeti and Gompper, 2013],
and the capture of ABP in wedges [?].
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Figure 2.1 Time Reversal Breaking in SPPs. A Collision between two self propelled
particles. Pictures of the pair are taken at equal time intervals. Particles collide and stay
pushing until diffusion changes the direction of the orientations. B Collision of an ABP with
a wall. The solid line marks the trajectory of the trapped particle.

The intrinsic out-of-equilibrium nature of self-propelled particles can be ex-
tended a step further. We can devise funnelled walls that induce a density imbalance
in the system [Galajda et al., 2007, Lambert et al., 2010] or by a combination of
funnelled walls drive the system into a state with macroscopic fluxes of momentum,
as reported in [Cates, 2012]. The asymmetry of confinement as been recently
exploited to power micromotors from a bacterial bath [Angelani et al., 2009, Vizs-
nyiczai et al., 2017]. Dented asymmetric rotors were used by [Di Leonardo et al.,
2010] to convert active motion from a bacterial bath into continuous rotation of a
passive body. Finally, [Vizsnyiczai et al., 2017] have 3D printed a huge bacterial
powered structure.

Interactions between SPP and walls are illustrated in Figure 2.1B. The asymme-
try of the funnels in Figure 2.2 exploits the SPP-wall interactions. Active particles
follow the walls and encounter the route from the left to the right side of the box
with higher probabilities than particles travelling from the right to the left side of
the box. The combination of funnel walls in 2.2C separates two regions in the box:
the left wall generates a spontaneous flow from left to right while the bottom funnel
wall a flow from top to bottom. The combination of the two walls generates a steady
clockwise circulation of active particles in the system.

The experimental realization of moving wedges in an active turbulent flow
from [Kaiser et al., 2014, Kaiser et al., 2015], altogether with the self-starting
asymmetrically dented wedges [Angelani et al., 2009] present a practical exploit
of the tendency of SPP to follow walls and their force transmission, which for
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A

B

C

Figure 2.2 Funneling ABPs. A A Self Propelled particle with swimming velocity va. B A
wall of funnels induces a flux of particles from the left box to the right box until a density
imbalance is reached, based on [Galajda et al., 2007, Galajda et al., 2008]. C A combination
of funnel walls generates a sustained flux of SPPs, based on [Lambert et al., 2010, Cates,
2012].

non-fixed objects translates into motion. Di Leonardo’s group [Vizsnyiczai et al.,
2017] have engineered 3D arrays of micromotors that trap E. coli to power the
rotors and finally extract directed motion.

2.1.3 Motility Induced Phase Separation in ABPs

In ABP pair collisions velocities of colliding particles in the radial direction mu-
tually compensate and the total velocity of the pair decreases. In this situation
more incoming particles will difficult the escape of already entrapped particles,
and thus start the formation of a large macroscopic cluster driven by the Motility
Induced Phase Separation (MIPS) [Tailleur and Cates, 2008, Cates and Tailleur,
2015]. In ABP systems with repulsive interactions the locally averaged velocity of
the system is a decreasing function of the local density v(ρ). This feature emerges
from the intrinsic out-of-equilibrium nature of the particles, and thus leads to a
non-equilibrium phase separation.

To illustrate this density phase separation we have prepared a system of N =
4000 ABPS at a moderate packing density, see Figure 2.3. At early stages from
the start of the computation the system forms clusters that capture and slow down
particles. This clusters grow in time and finally lead to a steady state where the
system is separated into a dense, and a dilute regions.

In a coloured scale we measure the average velocity of ABPs, the displacement
over a diffusion time unit, with v(ρ) a decaying function of ρ, the local density.
The simple functional form v(ρ) = v0 − ζρ is easily tested and responsible of this
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Figure 2.3 Motility Induced Phase Separation for ABPs. A system of 4000 particles
undergoing a MIPS transition. In the dilute regime active particles move at great velocities
v ≈ v0, and orientations are randomized. An increase of the density reduces the local value
of the velocity v(ρ) = v0 − ζρ. Close to the surface the velocity drops and orientations are
mainly pointing inwards for trapped particles. Inside the dense phase v ≈ 0 and orientations
are randomized.

striking out-of-equilibrium phenomenon. The denser a system is, the lower the
local velocity is. The persistence of motion in the direction of the orientation n
leads to a slow down of the local density, as clearly depicted in Figure 2.3. Active
Brownian particles in a dense phase push between them in such a way that their
velocities cancel each other and the local velocity averages to zero.

To treat this out-of-equilibrium phase transition the concept of pressure has been
recently extended to capture the self-propulsion [Takatori et al., 2014]. For systems
with no aligning interactions the total pressure, active and passive contributions, has
been identified to define the equation of state of the system. In this context, pressure
is the appropriate measure to characterize the phase transition. In this Chapter we
settle different open questions regarding the interpretation of this phase transition
and show that MIPS is fully consistent with the first-order phase transition scenario.
We bring out the existence of a metastability region with an hysteresis-loop around
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the coexistence pressure. We show that the pressure drop [Winkler et al., 2015a]
associated to a non-equilibrium signature of the transition is in fact a result of
pressure measurements in a metastable state of ABPs.

2.2 Active Brownian Particles

Equation (2.3) unambiguously defines ABPs but the model still has some fine details
that need to be settled. Fist we discuss the relationship between translational, and
rotational diffusion constants. Then we define a repulsive interaction between pairs
of particles. Finally, we introduce dimension-less numbers to fully characterize the
ABPs.

2.2.1 Dimensionless relevant parameters

The equations of motion present several terms, and timescales. In this section we
define a set of characteristic numbers which relate the relative strength of each
term in the equations. Thermal fluctuations on a sphere define a relation between
translational and rotational mobilities. For a system of ABPs we introduce the
same ratio, so that the system maintains the equilibrium limit va → 0. Equilibrium
fluctuations on a sphere of diameter σ couples the mobilities so that µt = µrσ

2/3.
This relation corresponds to the relation between diffusion constantsDt = Drσ

2/3.
We define as unit length the size of each ABP, σ. To define a time unit we use the
inverse of rotational decorrelation time T = D−1

r = (µrkBT )−1.

1

σDr

d

dt
ri =

v0

σDr
n̂i +

µt
σDr

F ci +
√

2Dt/(σ2Dr)
1

D
1/2
r

ξi(t) (2.5)

Note that ξi(t) has units of t−1/2. Using the relation between mobilities of spheres
of diameter σ in a Stokes regime µt = σ2µr/3, and combined withD = µkBT , we
relate the translational mobility to the rotational diffusion coefficient µt/(σDr) =
σ/(3kBT ) and also Dt/(σ

2Dr) = 1/3,

dr(t)

dt
=Pen̂i(t) +

ε

3
F ci (t) +

√
2/3ξi(t)

dθi
dt

=
√

2νi(t)

(2.6)

Where we introduce the Péclet number Pe that compares the reorientation time to
the swimming time. The highest the value of Pe the longer is the persistence swim-
ming length of an ABP. In the literature, though the are two coexisting definitions
for the Péclet number, either Pe = v0σ/Dr as found in [Winkler et al., 2015a], or
Pe = 3v0/(σDr) like in [Solon et al., 2015d]. In addition, we introduce ε as the
characteristic energy of the interaction. In our modelling of ABPs we introduce
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either a conservative repulsion WCA potential (2.7), or a model of hard disks1

F cij(σ, r) = − d

dr
Uwca =

24εkBT

σ

[
2
(σ
r

)13

−
(σ
r

)7
]
r̂, for r < 21/6σ (2.7)

with r = |ri − rj | and the unit vector rij = (ri − rj) /r, and r < 21/6σ the cutoff
for repulsive interactions.

The scope of this chapter is to study the system at different values of Pe, and
packing density φ = Nπσ/(4L2), for systems with periodic boundary conditions
(PBD), and systems with geometric confinement. For the pairs (φ, Pe) we deter-
mine whether the system phase separates, and the correspondent value of the total
pressure p(Pe; φ)

2.2.2 Phase diagram of ABP
To determine the phase diagram for ABP we introduce the calculation of the bin-
odal lines. The binodal line corresponds corresponds to a structural measure of
the system. In a system at steady state we define local measures of the density,
ρ, and with this construct the probability distribution of the local densities P (ρ).
The identification of maxima in the P (ρ) curves allow us to define the coexistence
densities in the system. To measure P (ρ) we define a virtual grid on the system
to extract, at the measuring time, the occupation fraction of each cell. The total
occupation of each cell is then processed into the P (ρ).

A B

Figure 2.4 Density dependent velocity, and local structure of ABPs. In A we plot the
velocity as a function of the local density, and the local density distribution P (ρ) of a system
of Active Brownian Particles. In B we plot the averaged pair distribution function of ABP at
short distances. The first peaks correspond to the hexagonal lattice.

To determine the maxima in P (ρ) we prepare an equilibrium configuration
ABPs at packing fraction φ = 0.45, and PBC, we quench it into various activities

1For hard-disks the energy scale ε cannot be defined.
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Pe. In Figure 2.4 we have prepared a system of N = 4000 ABPs at φ = 0.45, and
quench it to Pe = 60. Once the system has undergone MIPS and is in a steady
phase separated state we begin the computation of the local density to construct
P (ρ). Additionally, we measure the averaged velocity of ABPs in the lattice sites
as the total displacement over a diffusion time to illustrate the v(ρ) dependence,
also in Figure 2.4. Additionally, we compute the pair distribution function of ABPs
in the system to extract the g(r) in Figure 2.4 whose peaks correspond to the first
neighbours distances of an hexagonal crystalline structure. At long distanes, though
the signal is gradually lost due to the contribution of the gas phase, and the presence
of topological defects in the dense phase, see Figure 2.3 for a representative high
density ABP crystalline structure.

Now, we proceed to systematically characterize the coexistence densities of
ABPs for different values of the Pe number. We have systematically run simula-
tions with N = 2000 ABP at various Pe, ε, and for Hard Disks. Hard Disk ABPs
have been introduced via a Monte Carlo even driven algorithm, as done in [Scala
et al., 2007, Ni et al., 2013, Levis and Berthier, 2014]. In Figure 2.5 the vertical
arrow represents the quench from the equilibrium system at Pe = 0 to a finite Pe
where statistics are carried out. Above a critical Pe, the local density probability,
P (ρ), develops two peaks: at low density φlow = φg which corresponds to a gas
phase of ABP; and at high density φhigh = φf , which corresponds to the high
density fluid of ABP. After the activity quench, ABP with different stiffness exhibit
the same qualitative phase behaviour: above a critical Pe they undergo MIPS if its
bulk density is large enough.

In a φ-Pe map, see Figure 2.5 the collection of φg(Pe), and φf (Pe), see
Figure 2.4, constitute a pair of lines, the low, and the high density binodal lines.
Additionally we locate the pair of coordinates that define the onset of MIPS in
red points in Figure 2.5, this collection of points correspond to the spinodal line
of the phase transition. To identify the onset of MIPS at a given Pe we prepare
equilibrium systems at surface density φ and quench them into Pe. Once in the
steady state we measure the probability that a particle belongs to the largest cluster
Ψ, as defined by a cut off distance rc = 1.05σ. At low densities of ABPs we expect
a value Ψ ≈ 0. At constant activity Ψ monotonically increases as we increase the
packing fraction of active particles. The onset of the transition is visible from an
abrupt increase of Ψ. To clearly identify the onset of MIPS we define the second
moment of the Ψ distribution in the form of a susceptibility χ =

〈
Ψ2
〉
− 〈Ψ〉2, see

Figure 2.6.
Susceptibility χ shows a peak at the onset of MIPS, φn, thus providing a cri-

terion to locate the transition in the φ-Pe phase diagram, the spinodal line. The
collection of onset densities is identified by red symbols in the Phase Diagram in
Figure 2.5. By means of mechanical measures, the active pressure, [Winkler et al.,
2015a, Patch et al., 2017], the onset of MIPS is easily identified by pressure drop
located precisely at φn, both in d = 2, and in d = 3, we plotted the density of the
pressure drop in blue points in the Phase Diagram in Figure 2.5. The match of
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A B

Figure 2.5 Phase Diagram of MIPS. φ-Pe phase diagram of ABP after a Pe 6= 0 quench
with PBCs. A Diagram for ABP Hard Disks. The binodal line is dedined by black cosses.
In blue dashed lines the onset of MIPS as defined by χ. B Binodals for ABP with WCA
repulsive interactions.

the density of the pressure drop and the onset of MIPS is clear and confirms the
previously reported origin in the onset of the MIPS transition for activity quenches.

A B

Figure 2.6 Onset of MIPS. Determination of the transition onset at constant Pe in N =
4000 ABP Hard Disks. A fraction of particles in the largest cluster. B Second moment of Ψ,
the position of the peak determines the spinodal density φn.

Finally, we comment on the density shift, and the opening of the branches
observed in Figure 2.5 for ABPs interacting via WCA potentials at different ε.

2.2.3 Stiffness of ABPs
In the equations of motion for the ABP we introduced the WCA repulsive interac-
tion characterized by the repulsion energy ε. The relation between the characteristic
repulsion and the propulsion determines the typical distance between two colliding
active disks. While the divergence of WCA guarantees the excluded volume below



38 2. Active Brownian Particles

a certain threshold. Nevertheless, the smaller the quotient ε/Pe the closer active
disks can approach. From this competition we extract two major consequences.

First, for low values of ε/Pe the peaks of the pair distribution function widen.
The characteristic distances between colliding particles presents a larger dispersion.
The maximum of the pair distribution function typically goes to lower r, and de-
creases.

Second, the decrease in the rigidity of particles facilitates the scape of collid-

A B

Figure 2.7 Pair correlation functions for ABPs of different stiffness. Pair correlation
functions g(r) for systems of Active Brownian Particles at Pe = 30, and φ = 0.35 for
different values of the repulsive energy ε. In plot A We observe the displacement of the
contact distance r0 to decreasing values of r. In B we plot the g(r/r0) to compare the
periodicity and the hexagonal structure for ε > 2. At ε < 10 we do not observe neither
MIPS nor hexagonal order.

ing particles. As seen in Figure 2.7 the decrease of the rigidity also destroys the
crystalline-like structure of the dense phase of ABPs.

For this reason once the phase separation occurs there is a shift to higher
densities at lower values of ε. This effect is then magnified in the dense region
where it shows the dependence on the Pe. In a dense region we locate more
particles per unit area and thus φf increases.

2.3 Active Pressure
We have introduced the Mobility Induced Phase Separation and its general features.
There are strong evidences to associate its major characteristics to an equilibrium
First Order Phase Transitions. In this section we introduce the concept of Active
Pressure as a state function for ABP.

We consider N self-propelled particles of diameter σ in a 2d surface S = L×L,
with number density ρ = N/S and packing fraction φ = πσ2ρ/4. The model is
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Figure 2.8 Crystaline structure in MIPS. Local structure of the dense phase for different
values of the repulsion energy ε at φ = 0.35, and Pe = 30. Low values of ε prevent the
density separation. For ε = 10 the separation still occurs but hexagonal ordering is rapidly
lost. For ε = 250 we draw some coordination rings to appreciate the hexagonal structure
surrounding a particle.

defined by the ABP overdamped Langevin equations for each particle at position
ri = (xi, yi)

We project the equations of motion of ABPs onto the positions ri and average
over independent realisations of the noise to obtain:

1

2

d

dt

〈
r2
i (t)

〉
= v0 〈n̂i · ri〉+ µt 〈F ci (t) · ri(t)〉+

√
2Dt 〈ri(t)ξi(t)〉 (2.8)

In this stage of the computation we need to incorporate the periodic boundary
conditions. The computation of interactions take into account the minimum distance
between particles. Initially, all particles are in the so-called primary box at positions
|xi| , |yi| < L, and their positions in the periodically replicated boxes at positions
ri +Ru where Ru = (uxêx + uyêy) with ux, uy ∈ Z. After a finite time, the
particles may have escaped the primary box and |xi| , |yi| may be arbitrary large.
We introduce periodic boundary conditions in the interactions so that the distance
between particles corresponds to the minimum distance between virtual pairs.

d(ri, rj) = ‖ri − rj − uL‖ = ‖∆rij‖ , with uα = int
(
rαi − rαj
L/2

)
(2.9)

The total force acting on a particles is

F ci =
∑

j 6=i
Fij (ri − rj −Ru) (2.10)

The summation of the force over all particles and applying Action-Reaction for the
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interparticle interaction
∑

i

riF
c
i =

1

2

∑

i

∑

j 6=i
ri·Fij+

∑

j

∑

i 6=j
rj ·Fji =

1

2

∑

i

∑

j 6=i
ri·Fij−

∑

j

∑

i6=j
rj ·Fij

(2.11)
Now summing equation (2.8) and adding and subtracting the projection of the pair
force on the vectorRu to keep ri − rj in the primary box

1

2

∑

i

d

dt

〈
r2
i (t)

〉
=v0

∑

i

〈ni · ri〉+
µt
2

∑

i,j,α

〈Fij (ri − rj −Ru)〉+

+
µt
2

∑

i,j,α

〈Fij ·Ru〉+
∑

i

〈ξi · ri〉
(2.12)

At long times, and assuming a diffusive behaviour of active particles we introduce
an effective diffusion constant

〈
r2
i (t)

〉
= 2 · 2Dt, where we explicitly state d = 2.

2ND = v0

∑

i

〈ri · n̂i〉+
µt
2

∑

i,j,α

〈
F cij∆rij

〉
+ 2ND0 +

µt
2

∑

i,j,α

〈
F cij ·Ru

〉

(2.13)
Equation (2.13) introduces a collection of either internal and external virial func-
tions:

Gi(t) =
v0

2µt

∑

i

ni(t) · ri(t)+
1

4

∑

i,j,α

F cij∆rij (2.14)

Ge(t) = −1

4

∑

i,j,α

F cij ·Ru (2.15)

Then, the instantaneous internal, and external pressure is

Πi(t) = ρkBT +Gi(t)/S =, P i = lim
t→∞

〈
Πi(t)

〉
(2.16)

Πe(t) = ρD −Ge/S, P e = lim
t→∞

〈Πe(t)〉 (2.17)

The internal pressure in the system has a thermal source P i0 = P0 = ρkBT which
can be translated to the surface packing fraction P0 = 4/πφkBT , an interaction
source P iint = Pint which accounts for the pair interactions and it is the same as in
equilibrium, and finally an active contribution P ia = Pa.

Pint =
1

4L2

∑

i,j

〈Fij ·∆rij〉

Pa =
v0

2µtL2

∑

i

〈n̂i · ri〉 = ρ
v0v(ρ)

2µtDr

(2.18)

For a system without pair interactions the active pressure Pa can be easily
computed. The integration of the movement gives

ri(t) = ri(0) + v0

∫ t

0

n̂i(t
′) +

∫ t

0

√
2Dtξ (2.19)
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Substituting the trajectory

Pa =
v0

2µtL2

∑

i

〈n̂i · ri(t)〉 = ρ̄
v2

0

2µt

1

Dr
= ρ

v2
0

2DtDr
kBT (2.20)

And from (??) we observe a enhanced diffusivity for a system of active particles
D = Dt+ρv

2
0/(2Dr). Active Brownian Particles do not introduce torque in neither

pair interactions nor wall collisions. This simple, and exclusive, characteristic of
ABPs, and following the work of [Solon et al., 2015d, Solon et al., 2015b], we state
that pressure is a state function, and thus, ideal to study MIPS for ABP.

2.3.1 Measures of the Pressure

We measure the total pressure of a system undergoing the MIPS transition. We
quench a system in thermal equilibrium to a state at Pe 6= 0. In Figure 2.9 we show
the quench and values for the instantaneous Π(t).
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Figure 2.9 Evolution of
the total pressure dur-
ing MIPS. Snapshots
of the system at differ-
ent time from the activ-
ity quench. We plot times
τ/τD = 1, 3, 10, and 30
in A, B, C, and D respec-
tively. In the first plot we
observe a rapid increase
of the activity pressure.
Later the interaction pres-
sure increases and stops
the rise of Pa to the ideal
gas value.

We observe an initial fast increase of the active pressure, active particles travel
at unperturbed velocities close to v0. As collisions occur the interaction pressure
rises, local density increases and the v(ρ) dependence triggers MIPS. We observe
the decrease of active pressure, and its decay to the steady value.
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A B

Figure 2.10 Pressure across MIPS. Equation of state of ABP. Active, interaction and total
pressure of the steady state after an activity quench to Pe = 100 for a system of N = 1250
ABP particles with ε = 250, the onset of MIPS determines the pressure drom at φn ≈ 0.3.
A divergence of the pressure at high φ indicate the crystal formation. B comparison with
P0 = Pe2ϕ/6, and P = P0(1− ϕ) at the gas phase. Note the constant pressure across the
MIPS coexistence.

2.3.2 Pressure across MIPS
The study the phase behaviour of MIPS by evolving the system from a homoge-
neous initial state at total packing density φ towards a steady state at a finite value
of Pe, we quench the equilibrium system into the active system. We compare the
results in systems confined between two parallel walls in y, and PBC in x, and
systems with PBC in x, and y.

As previously mentioned, in an activity quench with PBC we observe a pressure
drop around φ = φn, the transition is triggered and the active pressure drops.
Beyond φn the active component of the pressure Pa diminishes as the interaction
pressure increases Pint. The more particles in the dense region the lower the active
pressure. Propulsion in the dense region is converted into interaction pressure and
thus the exchange of pressure between Pa, and Pint while the total pressure is kept
constant P = Pa + Pint.

Pressure, P (φ;Pe), as a function of density for different Péclet numbers can
be found in Figure 2.12. For systems with Pe < Pec ≈ 16.7 we observe a
monotonous growth of P as a function of density, and computations in a confined
system coincide with the results from a confined system. At higher activities, for
PBC the pressure drops in the vicinity of MIPS. Pressure calculations in a confined
system at low densities are blow their PBC counterpart; it diverts the PBC and
follows a monotonous growth until φn where it saturates and coincides with the
PBC situations. The presence of walls facilitates, and triggers MIPS below φn.

The equations of state in confined and PBC systems converge at large densities
to a value close to the expected coexistence pressure. In equilibrium, finite-size
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PBC

Walls

Figure 2.11 Equations of
State for . arg2

Figure 2.12 Total pres-
sure divided by the ideal
ABP pressure. In hollow
points the pressure calcula-
tions for PBC systems. In
filled points the calculations
for a system confined be-
tween two walls.

systems displat a pressure loop due to the formation of an interface between the
two phases, while the loop arising in van der Waals theory is thermodynamically
unstable [Mayer and Wood, 1965, Schrader et al., 2009]. Accordingly, P (φ) shows
a peak when the dense phase develops, an effect that should disappear in the large
N limit. The sharp pressure drop for ABP Hard Disks, and stiff ABPs indicates that
interfacial fluctuations are considerably suppressed, ans suggests a large interface
tension. Considering ABPs with lower values of ε the pressure drop is smoothed
so is the structure of the dense phase, as it is clear from Figure 2.8. Hence, we
interpret the pressure drop for PBC systems as a finite size effect. The idea behind
this pressure jump is that MIPS involves a large, and persistent critical nucleus
of size mc to develop. Thus, systems are too small to phase separate close to the
binodal low density and remain metastable.

The pressure drop has its origin in an excess of active pressure. The measure
protocol, a high-activity quench, drives the system into a metastable gas phase which
cannot be relaxed in a reasonable amount of time. For densities φlow < φ < φn
the system remains in the gas phase at φ instead of phase separating into φlow,
and φhigh. Then, P (φ;Pe) curves with the pressure drop do not correspond to
Equations of State (EoS).

2.3.3 Metastability

To access the phase separated region for intermediate densities φlow < φ < φn in
a PBC geometry we propose a gradual succession of low-density quenches from
an already phase separated system deep into MIPS. As we expand the system,
nucleation is avoided since an interface between a dense and a low density phase is
already present in the system. To enlarge the system in a PBC geometry we need to
avoid splitting the dense phase. We prepare the initial configuration in a rectangular
PBC box with a size ratio Lx/Ly = 25/16. The expansion is performed in the
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high-activity quench

low-density quench

Con�ned system

A B

Figure 2.13 A Active pressure at Pe = 30 for systems of N = 2000, 4000, and 8000
particles; pressure drop present in all systems. B Total pressure at Pe = 30 for a system of
N = 4000 particles. In red squares the pressure at steady state for a high-activity quench.
In blue circles the pressure at steady state for a low-activity quench. In black points the
pressure with confining walls. The region between the low density φlow, and the density of
MIPS onset φn is green shadowed.

longest side so that the dense phase is not broken.

Following expansion protocol we present the pressure across MIPS in Figure
2.13B. For high-activity quenches, red points, we identify the pressure drop at φn.
For low-density successive quenches, blue points, we obtain a constant value of
the pressure which coincides with the calculations in the confined geometry for
densities above the nucleation density φ > φn. Once below φn the pressure remains
constant and the system phase separated. At low densities φ ≈low the large density
phase is evaporated and finally a gas remains. The P (φ;Pe) curves obtained by
low-density quenches explore the phase separated region for φlow < φ < φn, and
are the EoS of ABP.

According to classical nucleation theory (CNT), in the absence of a prefer-
ential site (homogeneous nucleation), phase separation can only be triggered by
a rare event: the spontaneous formation of a critical nucleus of size larger than
mc ∝ γ/∆Ghomo, where γ is the interface tension and ∆Ghomo the free en-
ergy difference. Since our system is not in equilibrium we cannot apply CNT
directly. However, we borrow ideas from equilibrium systems. Redner et al. have
developed an analogous theory to describe the kinetics of phase separation in
ABP [Redner et al., 2016]. Within this framework, the critical nucleus size scales
mc ∝ φcp ln2(Peφlow). Therefore, mc is expected to be very large at high Pe. As
shown in Figures 2.8, and 2.7 soft ABP suppresses the order of the dense phase
and reduces the energy difference between phases. In turn, there is an observable
increases of φlow, as seen in Figure 2.5, thus mc is smaller and so is the pressure
drop in the onset of MIPS.
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Figure 2.14 Sequence of low-density quenches. From φ = 0.45 we increase the size of the
simulation rectangle to gradually reduce the density until φ = 0.18 where the dense phase
remains stable, and in coexistence with the gas phase.
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After a series of low-density quenches, from an initial configuration at φ = 0.45
we gradually descend to densities φ = 0.18. In Figure 2.14 we have prepared an
initial sample of N = 6000 particles at Pe = 64 density φ = 0.45. The size of the
dense phase is large and we shall not split it when we quench the system to lower
densities, for this reason we start in a rectangular box of size ratio Lx/Ly = (5/4)2,
and low-density quench the system by increasing Lx to achieve the desired density
φ.

At Pe = 64 the onset of MIPS for high-activity quenches is situated at φ ≈ 0.25.
After three successive low-density quenches, at φ = 0.3, φ = 0.225, and φ = 0.18
we observe the persistence, and stability of the already phase separated particles.
We observe the typical exchange of particles within the dense and fluid phases and
the breaking and reformation of huge chunks of the dense phase. Once formed
and with a size higher than the critical size, the dense phase remains stable for
φlow < φ < φn.

2.4 Conclusions and perspectives

In the development of this chapter we have exploited the recently develop formalism
of the active pressure for ABP and the possibility to construct an equation of state to
study and analyse the Motility Induced Phase Separation (MIPS). We have related
the pressure drop previously identified as the onset of the phase separation. We have
identified the metastability region and measured the pressure following different
preparation protocols. By quenching an already phase separated system to lower
densities we have accessed to phase separated systems for densities below the onset,
φn, of MIPS obtained by high-activity quenches. Pressure calculations below φn
reveal the continuity of the equation of state and the origin of the pressure drop.

In the absence of a preferential site for nucleation the triggering of the phase sep-
aration relies on a rare event, the formation of a cluster of a critical size mc, and its
stability for a finite time. By low-density quenches the dense phase separated ABP
provide the nucleation site and MIPS is effectively sustained at φlow < φ < φn.
The lower pressure of the phase separated system confirms it as the stable state of
the system, and its pressure to the equation of state of ABPs. Total pressure of ABP
stays approximately constant along MIPS, and confirms its role as the true EoS. The
introduction of a solid wall triggers the phase separation and banishes the pressure
jump associated to the dramatic onsef of MIPS since the particle accumulation on
the walls is gradual as φ is increased.

We have considered the influence of the hardness of the repulsive interaction
between Active Particles and its role in both the phase separation and the structure
of the dense phase of ABPs. Soft WCA potentials allow large overlaps for of the
ABP so that the crystalline order measured for Hard Spheres is completely lost. We
then emphasize the role of repulsion in MIPS, the need for a rapidly decaying v(ρ).
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In this chapter we have presented the density phase separation introduced by
the confinement with a wall. In the past it has been reported the wall accumulation
for small Pe, and bulk densities in order to emphasize the abilities of the wall to
generate a remarkable density profile, and particle accumulation. The structure and
dynamic properties of the dense layer remain to be studied. Height fluctuations,
and correlations 〈h(x)h(x+ ∆x)〉, and its interaction with the insertion of passive
bodies, which is briefly introduced in Chapter 3.

The existence of a critical nucleation size has brought us to consider further
simulations with metastable ABP gas preparations and crystalline Lennard-Jones
seeds of different sizes. With a precursor for the density phase separation we can
study the dynamics of the phase separation below the spinodal line defined by
φ < φn.
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Appendices

2.A Cluster distribution of ABPs
A long simulation of ABPs in the gas region would phase separate in the presence of
an ABP cluster of a critical size. To study the timescales involved in the formation
of such a macroscopic cluster we have analysed the cluster size distributions in an
ABP metastable gas.

The predicted cluster size distribution P (m) decays exponentially with an
additional m−2 contribution [Redner et al., 2016].

P (m) = exp(−m/m∗)/m2 (2.A.1)

In Figure 2.A.1 we present the results for N = 2000 ABPs at different Pe, and ε.
We define a cutoff distace r < rc = 1.1σ to determine whether two neighbouring
particles belong to the same cluster. Statistics is carried out in 2000 rotational
diffusion times the sampling times larger than the translational time τt ≈ Pe−1.

Figure 2.A.1 Cluster size distribution for ABPs at the metastable gas region in a PBC box,
φ = 0.2. With N = 2000 particles we present A Pe = 60, and B Pe = 100. Black dotted
line the theoretical fit P (m) with fitting parameter m∗ = 14.5
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3
A Bath of Active Particles

In the previous chapter we have studied the emergent phenomenology in systems
of Active Brownian Particles. For a system of purely repulsive ABP we described a
density phase separation and the tools that have been recently developed. We now
focus on the mechanical properties of a bath of active particles and their interaction
between passive objects.

As briefly introduced in the Introduction to this thesis, the first approach to
the interaction between active and passive systems was the seminal work of [Wu
and Libchaber, 2000]. In their experiments, bacteria acted as active particles, and
colloids where their passive counterpart. The persistence of swimming in the colli-
sions with the passive objects were responsible of the enhanced diffusivity of the
passive colloids. Then, [Angelani et al., 2011] presented numerical results for the
structure of passive particles immersed in a bath of bacteria. The striking results of
the simulations were an effective attraction between passive particles manifested in
the pair correlation functions. More recently, [Speck and Jack, 2016, Harder et al.,
2014b] have considered the problem for an inclusion in ABP suspensions.

Elongated particles, such as bacteria, introduce angular interactions between
pairs. Relative orientation is not present in the majority of ABP models, except for
some exceptions [Grossmann et al., 2012], in the literature. Alignment has recently
been introduced in the form of a Kuramoto-like interaction between ABP [Martin-
Gomez et al., 2018]. In this Chapter we introduce aligning active brownian particles
(AAP) as a hybrid system that combines excluded volume interactions from ABPs,
described in Chapter 2, and aligning interactions from Vicsek-like models.
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In the first part of the Chapter, we study the bath in the absence of passive
particles. We begin presenting a model of active particles with aligning interactions
in 3.1. We motivate the need for an aligning interaction presenting a set of systems
which naturally align: dumbbells, and swimmers. Once the model is defined and
justified, we characterise the emergent structures in the active bath 3.2.3. Explore
the differences between AAP and ABP.

In the second part of the chapter, we introduce passive particles and focus on
the interaction between pairs of inclusions. We analyse the emergent forces and
discuss their possible many-body consequences, and we measure them. Finally, and
due to the importance of the confining walls in active systems [Levis et al., 2017]
we repeat the measures in the vicinity of confining walls in 3.3.4, and 3.4.

3.1 Alignment in Active Particles
In the general introduction to this thesis we have commented on the emergent
interactions that ABP particles induce on passive colloids [Harder et al., 2014b],
and the apparent attraction between inclusions in a bacterial bath [Angelani et al.,
2011]. In this sections we introduce a model for elongated particles, the dumb-
bells, and a model for swimming bacteria. Both models introduce the concept of
angular interactions in the propulsion direction and justify the introduction in our
model of aligning interaction between Active Brownian Particles in order to con-
nect the aforementioned results on activity-induced of active particles in colloidal
dispersions.

3.1.1 Active Dumbbells
We consider a dry active model, a model without hydrodynamics. Active dumbbells
are a minimal model for elongated dry active particles, and can be easily extended
to active self-propelling chains [Wensink and Löwen, 2008].

The specifics of the model are given in 3.B. A dumbbell is defined as a pair of
brownian repulsive disks or spheres connected by an elastic constrain. Typically,
the separation between centres, the rest length of the elastic force, corresponds to
the diameter of the disks, disks are at contact.

3.1.2 Squirmers
The squirmer model firstly introduced by [Lighthill, 1952] and completed by [Blake,
1971] has widely been used for numerical studies involving suspensions of mi-
croswimmers. The squirmer model captures the hydrodynamics of a spherical
particle whose propulsion mechanism consists in implementing a slip velocity
along its surface. By moving cilia, and the generation of metachronal waves,
paramecia swim at low Reynolds numbers.
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Figure 3.1 Collision between a pair of dumbbells with director vectors δ̂1, and δ̂2. Vector
u = δ̂2 − δ̂1 defines the angle θ. (A) Interaction relative to the center of mass of each
dumbbell, center-to-center vectorR with norm d and angle β relative to θ1. (B) Interaction
relative to the center of each bead of the dumbbell with the angle α.

The squirmer model is a multipolar expansion which retains its first two terms
B1, and B2. The velocity field generated by a squirmer at a position r away from
its center of mass is given by

u =
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The firt term B1 is associated to the propulsion velocity of the particle in the
direction e with velocity of the centre of mass U = 2/3B1e. The second term,
B2, is associated to the stress generation. A squirmer of radius R in a fluid with
viscosity η, generates a stresslet of strength Σ = 4/3πηR2 (3ee− 1). The algae,
bacteria, and self-propelled Janus particle can be modeled by squirmers [Bickel
et al., 2013].

The squirmer model can also be introduced in a much more fundamental and
compact way. The fundamental solutions of Stokes equations constitute a good
basis to model a general swimmer. For each multipolar term can be interpreted as a
body force, dipolar force, body torque, etc. A clear description of the multipolar
expansion can be found in [Lauga and Powers, 2009]. For completeness we write
down the equations for the velocity field generated by a squirmer in terms of
different multipoles.

u =
R3

3
B1D − a2B2GD (3.2)

In this way we can introduce microswimmers as a combination of multipoles, like
the Chlamydomonas reinhardtii in Figure 3.2.
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(c)

Figure 3.2 The alga Chlamydomonas reinhardtii can be easily modelled as a combination
of forces at different points. In (a) the image of a chlamy: the body and the two oars [Silflow
and Lefebvre, 2001]. In (b) the three point force model with the extracted experimental data
from (c) [Drescher et al., 2010]

Hydodynamic interaction between squirmers

The hydrodynamical description of the microswimmer naturally introduces in-
teractions at a distance. The flow field developed by a particle interacts with
the neighbouring objects in the fluid. A classical calculation given by Faxen’s
laws [Durlofsky et al., 1987] can be applied to compute the interaction between
a squirmer pair. The relults from [Ishikawa et al., 2006] indicate the appearance
of an interaction torque at short distances. However, the timescales associated
to the reorientation when compared to the purely hydrodynamic repulsion were
found to be negligible [Llopis and Pagonabarraga, 2010]. On the other hand, when
swimming close to walls emergent torques are relevant and the swimmer-wall
interaction introduces a torque to the swimmer.

The artificial jannus swimmers such as [Palacci et al., 2013b] develop a hydro-
dynamic field which can be expanded in terms of the squirmer model [Michelin
and Lauga, 2014]. In those systems emergent hydrodynamic torques could be of a
certain relevance, specially for heavy jannus colloids that swim close to the bottom
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A B

Pushers Pullers

Figure 3.3 Schematic representation of a pusher and puller squirmers. Red arrows represent
the force dipoles exerted to the fluid and blue dotted arrows the qualitative direction of the
fluid around the swimmer. A, and B depict a pusher and a puller, respectively. In C two
pushers with converging trajectories reorient each other tending to a final configuration of
the two agents swimming parallel. In D two pullers diverging from collision reorient towards
an antiparallel configuration, image from [Lauga and Powers, 2009]

wall of the system.

3.2 Aligning Active Particles
In this section we present a model system for dry self-propelled disks interacting
with pairwise repulsive and aligning potential interactions. Then, we reduce the
parameters to a set of dimensionless magnitudes. Finally, we present the different
emergent structures that develop in a system of Aligning Active Particles.

3.2.1 A Minimal model

We consider a two dimensional system, L × L, with periodic boundaries (PBC)
of colloidal self-propelled particles of diameter σa. The starting model for AAP
departs from ABP, already presented in equations (2.3). Positions of AAP, r are
evolved according to a Langevin equation of motion at a temperature T (3.3), and
diffusion Dt = kBTµt. AAP interact with a repulsive conservative force F ci , to
account for excluded volume.

Activity is introduced by means of a constant velocity va acting on a direction
n = (cos θ, sin θ). The new feature presented in (3.3) is the aligning interactions.
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For AAP the equation for the orientation vector n̂i has two terms. The first one is a
diffusive behaviour, with a rotational diffusion constant Dr. Rotational diffusion is
ubiquitous in all models of the literature, from the original Vicsek Model in [Vicsek
et al., 1995], to their variations [Czirók et al., 1997], and the subsequent ABP mod-
els [ten Hagen et al., 2011, Bialké et al., 2012]. While the second one is an aligning
torque, ubiquitous in the “swimming together” models (3.3) but rarely explored in
Active Bownian systems, until recently [Martin-Gomez et al., 2018]. The source of
alignment is discussed later in Section 3.1. Its origin can be due to hydrodynamic
interaction [Ishikawa et al., 2006], excluded volume interactions [Baskaran and
Marchetti, 2008], or can emerge from a sensing [?], or taxis [Durham et al., 2009],
of the micro-organisms or microcolloids.


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
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dt
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i (t) +

√
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2Drν
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i

(3.3)

The interaction between particles is introduced in terms of a conservative pair-
wise repulsive potential U(r), preferably a WCA potential with a forces described
in (2.7) and a cut-off distance rc = 21/6σa. Torque on each particle (3.4) aligns
its orientation vector parallel to a generic unit vector ej characteristic of the j-th
particle. In a Kuramoto-like interaction we use êj = n̂j , i-th particle aligns with
the orientation of the j-th particle. More biological motivated interactions for cells
in tissues use êj = −r̂ij [Smeets et al., 2016], where the orientation of the particle
aligns in the opposite direction of the centre to centre unit vector.

Γi = − Γ0

πR2
θ

∑

j 6=i
(ej × n̂i) · ẑ =

Γ0

πr2
c

∑

j 6=i
sin (θij) (3.4)

Where Γ0 is the strength of the torque and Rθ is the extend of the interaction.
We introduce the torque in a vectorial form for polar interactions. In section 3.B.1
we introduce a nematic interaction which could be simplified to its 2d form sin 2θij
instead of the general vectorial form. For the aligning active disks we set the
interaction towards the neighbouring orientation vectors and extend the interaction
in the range of the repulsive interaction given by |rij | < rc = 21/6σa.

Forces Fi and torques Γi are related to the velocities ṙ, and torques θ̇ by the
translational and rotational mobilities, µt and µr. The thermal bath is modelled
by means of two stochastic terms ξti and νi. Noise is assumed to be gaussian with
zero mean and variance proportional to the mobilities µt and µr. The addition of
va breaks time reversal symmetry and thus detailed valance. To mantain the model
as simple as possible, we hold the equilibrium relation between mobilities µr and
µt through the size of the particle σ so that µt = σ2µr/3.
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3.2.2 Dimensionless relevant parameters

In Section 2.2.1 we presented the dimensionless relevant parameters for a system
of ABPs. To extend this to AAP we need to identify the temporal scale associated
to the alignment interactions in (3.4).

τp =
σa
va
, τg =

πR2
θ

µrΓ0
, τt =

σ2
a

Dt
, τr =

1

Dr
(3.5)

Where we identify the timescales for: propulsion τp, alignment τg , diffusion τt, and
angular diffusion τr. With this temporal scales the equations for AAP read,
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Where we keep the definition for the Péclet Number Pe = va/ (σDr) that relates
the propulsion time scale to the angular diffusion reorientation time. And the new
Aligning Number g = Γ0/KBT that compares the diffusion reorientation of the
sphere to the aligning torque. In this Chapter we will essentially study the system
under changes in Pe, and g at a fixed density of active particles.

3.2.3 Emergent structures in AAP

In the last chapter we introduced the motility induced phase separation (MIPS)
which ABP at moderate densities undergo as activity increases. In a system of
Aligning Active Particles the emergence of global ordering prevents the aggregation
though a MIPS mechanism. Colliding particles will reorient and navigate in the
same direction, eventually, at full speed va. In Figure 3.4 we compare a collision
between ABPs and AAPs.

On one hand, collisions between ABP generate clusters whose centre of mass
velocity vcm < va. The lifespan of a cluster of a few particles depends on the
diffusion of the orientations n̂i, and scales with the number of particles in the
border of the cluster. On the other hand, collisions between AAP generate clusters
whose centre of mass velocity vcm increases as the respective orientations align
in the same direction until saturation vcm ≈ va for a polarized cluster. The lifes-
pan of a cluster of aligned particles depends on the competition between aligning
torque g and the diffusion ofn, and scales with the number of particles in the cluster.

To investigate the collective behaviour of aligning particles we need to stablish
both a clustering and polarization criterion. We study the structure factor S(q) to
determine the density separation into a dense and diluted phases and global polar
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A B

Figure 3.4 A. Interaction between ABP. A collision between a pair maintains the orientation
of each particle until rotational diffusion allows them to escape. The velocity of the centre
of mass of a large cluster of ABP vcm ≈ 0, since v(ρ) goes to zero.B Interaction between
AAP: in the interaction velocities reorient due to the aligning torque and the pair reaches the
active velocity. Large clusters are characterized by a polarization that diffuses in time and
move at vcm ≈ va

order parameter Ψ(t), as defined in (3.7), to study the alignment of the system.

Ψ(t) =
1

N

∥∥∥∥∥
N∑

i

n̂i(t)

∥∥∥∥∥ (3.7)

The limiting values for the polar order parameter are Ψ ≈ 1/
√
N for a randomly

oriented system, and Ψ ≈ 1 for a system whose particles travel in the same direction.
With the information of the structure factor we can distinguish between a phase in
a cluster regime, and a density separated scenario which is then classified into a
disordered static cluster for Ψ ≈ 0, or a large travelling aligned cluster for Ψ ≈ 1.

At a density of aligning particles φ = 0.1 a system quenched from equilibrium
to a finite Pe does not undego a Motility Induced Phase Separation. In the ABP
phase diagram φg < φ < φn, where φ(Pe) is the density in which the spinodal
decomposition is triggered at a given Pe, and φb the density defined by the low-
density binodal line. In [Martin-Gomez et al., 2018] authors distinguish between a
Disordered state (D) situated at the left of the red squares in Figure 3.5. At the right
side of the disordered phase, approximately above g = 0.2 the system develops
a global order. It segregates into polar Flocks of particles. At the right side of
the green circles in Figure 3.5 the system forms a macroscopic polar cluster. At
high Pe the formation of the macroscopic cluster is suppressed and the system is
constituted by microscopic polar clusters.
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Figure 3.5 Phase diagram for the aligning
active particles at packing fraction φ = 0.1
for various Pe, and g with rc ≈ 2σa. At
φa = 0.1 authors identify a Disordered state
(D), and a Flocking regime (F). Between red
and green dots the system develops global
order but not a macroscopic cluster. Image
courtesy of [Martin-Gomez et al., 2018]

In Figure 3.6 we present typical snapshots of the system at different regions of
the pahse diagram (Pe, g). As compared to [Martin-Gomez et al., 2018] we use a
shorter aligning range, rc = 21/6σa < 2σa; the match of the aligning range with
the repulsive range prevents the formation of an aligned macroscopic cluster at low
values of Pe. We increased the density to φ = 0.18, which is still below the MIPS
spinodal decomposition. In (a) we observe an aligned suspension of AAP with sev-
eral travelling clusters. In (b-c) we observe larger clusters but AAP are less compact
and thus alignment does not completely align the whole structures. Finally, in (d)
we observe a system at small g where collisions are stronger and does not align AAP,
for a density φ > φs the system would undergo a density separation controlled
by MIPS. In the studied range we do not appreciate the formation of a large, and
sole macroscopic cluster, travelling cluster due to the decrease of the aligning range.

We previously introduced the tools to quantify the state of the system. We anal-
yse the structure factor and the global order parameter in Figure 3.7. We observe a
q−2 divergence for systems (a-c) which is compatible with the cluster formation.
The peak of S(q) close to q = 2π/σ is shifted to lower values of the wave vector
for system (c), which is compatible with the increase of pair distances observed
in the insets. Figure 3.7 shows the temporal evolution of global order. At large
Pe the system rapidly reaches a stationary value. Particles travel fast and wipe
and order the whole system. At low values of the Pe the competition between
alignment and propulsion is dominated by alignment and particles orient before
reaching interparticle distances close to σa. The repulsive potential easily separates
the pair beyond aligning range and then thermal fluctuations disalign them. This
process of formation and destruction introduce large fluctuations of Ψ(t) in the
steady state.
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Figure 3.6 Representative snapshots of the system for several parameters. Given the
coordinates (Pe, g, φ); system (a) is (50, 30, 0.18), system (b) is (10, 30, 0.18), system (c)
is (3, 30, 0.18), and system (d) is (30, 0.1, 0.18). Insets depict a magnified image of the
high density region.

3.2.4 Comparison between ABP and AAP dense phases

In the last section we have included the analysis of the structure of a gas phase
of ABP and AAP. The formation mechanism of the high density phase of AAP is
completely different from the ABP separation, as we have already discussed. The
local structure of ABP and AAP at high density regions has two major differences.

First, in ABP the local structure is hexagonal; though depends on the choice of ε.
On the other hand, for AAP the local structure does not have a strong dependence on
the repulsive strength ε; since the aggregation mechanism does not exclusively rely
on the excluded volume but in the alignment with neighbours. The pair correlation
functions for phase separated systems of ABP and AAP clearly show this feature in
Figure 3.8.

In addition to the standard pair distribution function g(r) which evaluates the
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A B

Figure 3.7 System ofN = 2500 AAP at φ = 0.18 for the various combinations of Pe, and
g introduced in Figure 3.6. A Long time average of the structure factor S(q). B Temporal
evolution of the global order parameter Ψ(t)

A B

Figure 3.8 System of N = 20000 AAP at φ = 0.18 for various combinations of Pe, at
g = 10. A Orientation correlator C1(r) at constant g. B Pair correlation function g(r) at
constant Pe = 50

probability to locate a pair of particles separated a distance r, we introduce two
modified 2-dimensional g(r), as defined in (3.8).

g(r, ϕ) =
2L2

N(N − 1)

∑

i,j

δ(r − rij)δ(θ − n̂i, rij)

g(r, θ) =
2L2

N(N − 1)

∑

i,j

δ(r − rij)δ(θ − n̂i,nj)
(3.8)

The function g(r, θ) gives a two dimensional pair correlation function where
the distance r denotes the distance between pairs of particles, and the angle θ the
angle between the orientation and relative position vector. At contact θ is the angle
that spans from the orientation vector to the collision site. The function g(r, ϕ)
gives the two dimensional pair correlation function where the distance r denotes
the distance between pairs of particles, and angle ϕ the angle between orientations
of the pairs. ϕ corresponds to the angular difference ϕ = θi − θj , where θi, and θj
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are the orientations of the particles.

C1(r) =

∑
i,j n̂i · n̂jδ(r − rij)∑

i,j δ(r − rij)
(3.9)

Second, due to the formation mechanism, correlations of the orientations of
pairs of ABP decay rapidly as a function of distance. Pair correlations are relevant
in the interface of the dense drop since incoming particles have an orientation with
a major component in the direction −dn̂ where r̂ is the unitary vector normal to
the interface pointing towards the dilute phase, see Figure 2.3 in Chapter 1. On
the other hand, pair correlations in the orientation of AAP extend to the whole
length of the dense phase. Thus, the AAP dense cluster has a neat velocity. We
define orientation pair correlations in (3.9), as the correlation of the first Legendre
Polynomial.

Figure 3.9 Two dimenensional
pair correlation functions for sys-
tems at φ < φc. A, and B intro-
duce g(r, ϕ) for g = 0, and g 6= 0
respectively. C, and D introduce
g(r, θ) for g = 0, and g 6= 0 re-
spectively. We observe accumu-
lation particles in the direction of
n̂ for g = 0 (C), alignment of
neighbours in the direction of n̂ for
g 6= 0 (B), and a randomization of
neighbour orientations for g = 0
(A), and randomization of the in-
teraction site relative n̂ for g 6= 0
(D)

3.3 Inclusions in an Active Bath
Now that we understand the emergent structures and the bath of active aligning
particles we proceed to the main purpose of this Chapter, the introduction of passive
colloids in an active bath. First, we study the influence of an inclusion in the bath
of active particles. Second, we fix a pair of inclusions in the simulation box to
study the relative forces between them. We study the distance dependence of the
interaction emergent force from a mechanical measure of the interactions. And
Finally, we consider the effects that arise in a mixture of active and passive particles
when inclusions are not fixed in their initial positions.
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Equations in (3.3) and (3.4) describe an active solvent in which passive particles
will be immersed. Large passive colloidal particles, i.e. inclusions, of diameter σc,
and centre of mass at positions Xi interact with the active particles repulsively and
evolve by means of an over-damped Langevin equation.

∂tXi = −σa
σc
µtF

inc
i +

√
2σa/σcDtη

t
i (3.10)

Where we have already rescaled the equations using the Stokes relation between
mobility coefficients. The drag on a sphere immersed in a viscous fluid is propor-
tional to its size, thus µt is proportional to the inverse of the characteristic length
of the particle σ. The mobility of a colloid of size σc is σa/σcµt, where µt is the
mobility coefficient for a colloid of size σa. The noise term ηt is Gaussian, and has
zero mean and unit variance; the same statistical properties as ξt. The force F inc

accounts for inclusion-inclusion and active particle-inclusion interactions.

Figure 3.10 Forces on an inclusion particle
of diameter σc. Active particles swim in the
direction defined by n̂. Repulsive interactions
between AAP and inclusions follow equation
(3.11) modelled by virtual image particles of
size σa on the inside of the inclusion.

F inci =
∑

i 6=j
f cij (x− (σc − σa)) X̂ij+

∑

j∈{rj}
f cij (R− (σc − σa)/2) R̂ij (3.11)

We introduce the interactions between particles with the same WCA repulsive
potential (2.7). Note that interactions between passive particles occur at a shifted
relative distance. In Figure 3.10 we plot virtual pale-yellow particles as the image
particles of the colliding AAP. By means of virtual particles we guarantee the size
of the inclusion and the degree of overlap given by the relation between propulsion
Pe, and repulsion ε. Finally, we introduce the dimensionless number ` = σc/σa to
characterize the size ratio between passive and active particles.

dXi(τ)

dτ
= `−1 ε

3
F inci (τ) +

√
2`−1/3ηi(τ) (3.12)

In a system of active and passive particles, we introduce the packing fractions
of active and passive particles φa, and φc.

φa =
Naπσ

2
a

4L2
, φc =

Ncπσ
2
c

4L2
(3.13)
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A B

Figure 3.11 Mixture of active and Passive particles at φa = 0.15, and φp = 0.30. The
positions and orientations of active particles evolve with (3.6). The force exerted on each
inclusion is the total contribution of the small particle interactions on its surface and their
positions are evolved with (3.6).

Overall, we have introduced two parameters that characterize the propulsion and
alignment of the active particles: Pe, and g; a parameter to define the interaction
between particles ε; and three parameters to describe the composition of the system
`, φa, and φc.

3.3.1 One Inclusion

The first step into active-passive mixtures is to study the dynamics of an inclusion in
an active bath as was first experimentally introduced by [Wu and Libchaber, 2000].
We have prepared a suspension of N = 2000 active particles at φ = 0.15 and
immersed several inclusions, with ` = σc/σa = 8, within. To improve statistics we
have immersed a total of Nc = 9 inclusions with a packing fraction φinc = 0.05.
We measure the mean squared displacement for the active suspension at Pe = 30,
for both ABP (g = 0), and AAP (g = 2, 5, and 30).

The accumulation of active particles on the inclusion surface is strongly af-
fected by the aligning properties of the active bath. At short times few active
particles interact with inclusions and push them at maximum velocity va, and
giving MSD(τ) ≈ v2

aτ
2. Beyond τ ≈ 2− 5 the behaviour observes for ABP and

AAP differentiate.

In the steady state, ABP tend to form a volatile dense layer around the inclusion,
see the system sketch in Figure 3.12, and Figure 3.13 for an explicit form of the
density profile of ABP surrounding an inclusion. ABP that collide with the surface
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A
B

C

Figure 3.12 Averaged MSD of inclusions at an active bath with Pe = 30, and φa = 0.15.
We average over 100 realizations of the process. A At g = 0 activity enhances diffusion by
several orders of magnitude, Dinc ∝ Pe2 while D0

inc = σa
σc
≈ 1/8. For g = 5 we observe

the ballistic regime for MSD(τ) ≈ Pe2τ2.B For AAP with alignment set to g = 5, the
macroscopic cluster drags the colloid at velocity va. C diffusive behaviour of the colloid
immersed in an ABP suspension.

stay there until reorientation permits the escape from the inclusion. The presence
of ABP interacting and pushing the inclusion introduces a random velocity to the
centre of mass of the inclusion. This random velocities induce an enhancement
of the spatial diffusion constant of the inclusion Dinc = Dinc

(0) +Dac
inc. Where

Dinc
(0) is the thermal diffusuion, and Dinc

ac the diffusion induced by the active
bath. For inclusions in a suspension of ABPs the long time limit of the mean
squared displacement is then diffusive with a diffusion Dinc

〈
X2(τ)

〉
= 4Dincτ (3.14)

In the steady state, AAP form macroscopic travelling clusters at collective
velocities approximately equal to the propulsion velocity of a single active particle.
In this scenario, a passive particles in the way of the cluster gets transported at
velocity va. Once they escape the travelling cluster, they diffuse at diffusion
constant Dinc

(0), this movement is negligible and can be considered to be almost
zero when it is compared to the movements introduced by the macroscopic cluster.
Ones the travelling cluster meets again the inclusion it continues pushing again at
v0. For slow dynamics of the macroscopic cluster we observe a ballistic behaviour
for the MSD

〈
X2(τ)

〉
≈ v2

aτ
2 (3.15)

At even longer timescales the global polarization of the cluster could diffuse. In a
situation with a diffusion of the global polarization, Dp, of the travelling cluster the
passive particle could recover a diffusive behaviour with a constant proportional to
v2

0D
−1
p .
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Figure 3.13 Averaged density profile of
active particles with Pe = 30, at a density
φ = 0.15 as a function to the distance to
the surface of the inclusion. In solid points
we plot the results for a fixed inclusion mov-
ing inclusions correspond to hollow points.
ABP with a fixed inclusion show well defi-
nite shells while the local structure is rapidly
lost for a moving inclusion. AAP at g = 10,
in blue, show less structure surrounding the
inclusion but show little variation for fixed
and moving inclusions.

Additionally, we have extracted the density profiles of active particles surround-
ing inclusion in the case where inclusions move in the simulation box and when we
set them in a fixed position. Figure 3.13 shows the formation of several structured
layers of active particles surrounding an inclusion. The fixation of the inclusion
has no appreciable effects in the formation of structures of AAP at g = 10. This
independence is connected to the emergent travelling cluster constantly collides
with the inclusion and defines a series of surrounding shells of active particles.
With ABPs, however, the fixation of the inclusion permits the formation of more
structured layers, the formation of structured shells is disfavoured when inclusions
move. By fixing the inclusion we allow an inward flux of ABPs that entrap other
ABPs close to the surface of the inclusion.

3.3.2 Two inclusions
To study the emergent interaction between passive particles we use a pair of inclu-
sions. The reduction of the problem to a two body system simplifies the interpre-
tation of results and gives a clear understanding of the interaction in terms of pair
forces. Passive particles are immersed in a bath of active particles at surface density
fraction φa = Naπσ

2
a/4L

2 always below the spinodal-decomposition line of the
MIPS φa < φc. Inclusions are kept fixed at a centre to centre distance σc + d, we
define d as the closest distance between inclusions, in the simulation box which
has periodic boundary conditions. Figure 3.14 shows a sketch of the system. The
strength for the particle collisions is chosen to be ε = 10. Each simulation is run
over 500 diffusion times and with at least 4 different initial conditions.

We measure the total force registered by inclusions. We compute the total force
F inc1 (X1) and F inc2 (X2) acting on each inclusion. We project the relative force,
F inc2 (X2)− F inc1 (X1) on the center to center direction given by the unit vector
û = (X2 −X1) /‖X2 −X1‖ as labelled in Figure 3.14. The outcome of this
calculation is the interaction force f−r , as in equation (3.16). We can reproduce the
computation to extract the forces acting on the centre of mass, and the forces acting
on the direction normal to û. For symmetry, f−r is the only non-zero force.
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Figure 3.14 Schematic representation of two inclusions immersed in a bath of active
particles. The positions and orientations of particles evolve with (3.6). The force exerted
on each inclusion is the total contribution of the active particle interactions on their borders.
The total interacting force between the pair is computed according to (3.16)

Fr(d) =

〈
F inc2 (X2)− F inc1 (X1)

2
· û
〉

t

=
〈
f−r
〉
t

(3.16)

The average of f−r over time, and different realizations of the process intro-
duces the average relative force Fr, or effective interaction force. The sign of Fr
determines an effective attractive-repulsive behaviour. For Fr < 0 the interaction is
attractive ,and for Fr > 0 the interaction is repulsive.

We have set the density of active particles to φa = 0.18 and simulated three
qualitative different scenarios. Firstly, we simulated the system in thermal equi-
librium, Pe = 0. Then we simulated two systems intrinsically out-of-equilibrium,
Pe = 30: one with no aligning interactions corresponding to ABP with g = 0,
and one with aligning interaction corresponding to AAP with g > 0. To better
understand the interaction we have extracted the probability to measure a force
f−r /Fa between inclusions. For the case Pe = 0 the active force Fa = 0, we then
scale the interaction forces with the thermal force kBT/σa. Histograms show a
peaked value close to the mean value of the effective interaction force. In the active
case the probability departs from Gaussianity.

In the equilibrium system the mean force at (d = 0.875σa) is attractive with
Fr = −0.33kBT/σa and the variance is finite with value σF = 0.33(kBT/σ)2,
this last feature is characteristic of the stochastic origin of the force.

Driving the system out-of-equilibrium gives a result that was not possible
in equilibrium. For non-aligning particles the mean force is largely repulsive,
Fr = 9 Fa, the distribution of forces is not symmetric and disfavours attractive in-
teractions. For aligning particles the interaction becomes attractive once again, with
Fr = −4 Fa. For the Pe = 30 the variance of the relative forces is dramatically
increased, σF = 8Fa and σF = 4Fa respectively.

Dashed lines in Figure 3.15 correspond to the Gaussian curve for the mean and
variance extracted from the raw data. For a suspension of ABP we observe a strong
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Figure 3.15 Probability distribution of the value of the interacting force between the
interactions at d = 0.875σa. In red triangles we plot the equilibrium case, Pe = 0, with a
depletion attractive force. In blue circles and green squares we plot the PDF in the active
case, Pe = 30. In a non aligning bath, g = 0 (green squares), the mean force is repulsive.
In an aligning bath, g = 30 (blue circles), the emergent force is attractive. In dashed lines
we plot gaussian functions with Fr/Fa, and σF /Fa.

deviation from gaussianity. The probability to measure a force separated |∆F | from
the average value is different for interactions above and beyond Fr. The statistical
analysis of f−r conclude that the probability measure a force f−r = Fr + |∆F | is
larger than the probability to measure a force f−r = Fr − |∆F |. When the align-
ment is increased the probability to measure negative interactions increases, and for
g = 30 we observe the attractive tail of P (f−r ) above the gaussian probability.

To understand the origin of the emergent force we have extracted the density
field near the inclusions, as shown in Figure 3.16. In the equilibrium case we expect
an homogeneous distribution of particles near the inclusions, only a small increase
of the density near the walls in agreement with depletion forces [Mao et al., 1995].

In Figure 3.16 we present the density fields of active particles in the region
close to the inclusion pair. Light yellow colours correspond to densities above the
bulk values. The top plots correspond different realizations of a system of AAP
at Pe = 50, and g = 50. Active particles form a travelling cluster that collides
with the inclusion pair. The combination of the bright region, and the dark shadow
indicates the collision angle between the travelling cluster and the inclusion pair. As
a function of this angle the interaction is either attractive when the cluster intercepts
the inclusion pair in a direction parallel to the centre to centre vector, or repulsive
when the cluster intercepts the inclusion pair in the perpendicular direction.

Results for a bath of ABP particles, second row in Figure 3.16, indicate a
different scenario. At low values of the separation distance d we appreciate the
formation of brightly defined rings in the internal region of the inclusion pair. For a
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Figure 3.16 Plot of the local density fields for three distinctive situations. Top figures are a
system with Pe = 50, g = 50, and a separation distance of d = 8σa. Plots in the bottom are
both at Pe = 50, and g = 0 for d = 2σa, and d = 8σa. Red arrows represent the averaged
relative force in arbitrary units to appreciate the attractive/repulsive nature of the interaction.
In blue arrows the force exherted on the inclusions at different surface angles.

suspension of ABPs this internal region behaves like a wedge that captures particles
the ABP, a mechanism similar to [Kaiser et al., 2012]. The system is, on average,
highly structured near the inclusion. In the wedge of the inclusions, the symmetry
is broken and a neat repulsive force emerges.

3.3.3 Characterization of the Force

In this section we extended the analysis of forces over the separation distance
d/σa for a systematic exploration of the Péclet and the alignment number g. We
prepare systems with L = 160σa with pairs of inclusions of diameter σc/σa = 15
separated a distance from surface to surface d. We have measured the relative
interaction for ABPs with Pe = 1 to Pe = 30, and for AAP at g = 10 for Pe = 10
to Pe = 30. We reproduce the extracted effective force curves in Figure 3.17 and
identify the common trends.

First, ee observe the repulsive behaviour of the interaction at low values of the
alignment, g ≈ 0, that matches quantitatively the results of [Harder et al., 2014b].
At low values of the alignment, an increase of the activity Péclet number increases
the repulsive interaction.at g = 0 and Pe = 1 we obtain a result which is close
to the depletion attraction. For increasing values of the activity we observe the
gradual appearance of a repulsion force with maximum at d = σa. The effective
force then decays to zero. We appreciate, though, that the interaction length of the
decay increases with the value of the activity.
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Second, at g = 10 the increase of the Pe induces a different behaviour of the
relative effective interaction. The first effect is evident in the contact force, as Pe
increases effective force at contact decreases and becomes more attractive. Then
increasing the distance the force monotonously increases until d = σa, where it
peaks. The second appreciable effect is beyond d = 3σa where the observe the
emergence of a slow decaying attractive interaction.

The measure of the force at d = 0, and σa reveals to be an indicator of the
maximum attraction of the interaction, at contact, and the maximum in the repulsion
for either APBs, and AAPs. Here we present a series of plots to show de dependence
of force at contact Fr(0), and the peak force Fr(σa) on the activity parameters Pe,
and g.

A B

Figure 3.17 Relative Force of interaction between inclusions at ` = 15, and φ = 0.18. In
A we plot the strength of interaction for an ABP bath. In B we plot the strength of interaction
for an AAP bath with g = 10. We observe the repulsion in the ABP case and the attraction
and the emergence of a long range tail in the AAP suspension.
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Figure 3.18 Relative force at d/σa as
a function of alignment for different Pé-
clet and alignment strength g for a sys-
tem at φa = 0.18, and σc/σa = 15 at
a distance maximum repulsion d = σa.
Below a certain g? we observe a strong
repulsion that increases with Pe, beyond
g? the interaction becomes attractive and
the dependence on Pe less relevant.

For increasing values of the alignment we typically observe the decrease of the
peak force, see Figure 3.18. At low alignment the interaction strongly depends
on the Pe, and the crossing from repulsion to attraction approximately occurs at
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gcross ≈ Pe/5. For g > gcross the interaction force at the peak is more robust
and less dependent on the value of the activity. We summarize this results, and
the values of the force at contact in Figure 3.19 with a coloured plot to appreciate
the magnitude of the interaction at contact, and at the peak force. We additionally
interpolate the line of zero interaction force.

Figure 3.19 Mean interaction force between inclusions of diameter σc = 15σa in a
suspension of active particles at packing density φ = 0.18. We present the character and
strength of the interaction for different distances d = 0σa, d = σa respectively. We denote
in squares the repulsive interaction and in circles otherwise. The black line follows the curve
Fr = 0.

Formation energy We extend the concept of effective interaction force Fr(d) to
the concept of effective interaction and formation energies, U(d), and UF .

U(d) =

∫ d

0

Fr(r)dr, UF = lim
d→0

U(d) (3.17)

The formation energy gives an interpretation of the overall interaction. For a system
where the repulsive force is only positive or negative, as corresponds to ABP or
AAP with hight g, the interpretation of the forces as attractive or repulsive is not
clear since the interaction changes its behaviour as a function of the separation
distances. The formation energy, UF , gives a value proportional to the averaged
value of the effective force on the whole range of interaction. In equilibrium, and
in electrostatics, it measures the energy released by the formation of the dimer at
contact from a pair of particles infinitely separated. For positive UF an external
agent needs to push the particles together so that they form a dimer at contact. In
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A B

Figure 3.20 Effective energy as defined in (3.17) for a system at φa = 0.18, and ` = 15
for various parameters of the active suspension. A Effective energy for ABP in solid dots as
a function of the Pe, and effective energy of interaction for AAP at g = 10 for the hollow
points at different Pe. B formation energy of a dimer at contact for the various pairs of Pe,
and g considered. We plot in dashed lines the UF = 0 line.

Figure 3.20 we plot the formation energy for a pair of dimers in ABP and AAP sus-
pensions. Inclusions immersed in an ABP suspension present a negative formation
energy at low Pe. The formation energy becomes positive at 1 < Pe < 3 where
the active repulsion overcomes equilibrium depletion forces, for Pe > 3 UF > 0.
For ABP suspensions where active depletion overcomes equilibrium depletion the
effective interaction energy, U(d), develops an attractive local minimum at large
d and increases to a positive maximum as d → 0, where inclusions collide. In a
mixture of active and passive particles this will introduce a structure of passive
particles separated by active particles but with few long range structure and density
correlations.

Inclusions immersed in a suspension of AAP show repulsive interactions, even
for Fr(σa) for g & Pe/5, as observed in Figure 3.18 where the curves intercept the
line Fr(σa) = 0. In the previous situation the formation energy is clearly UF < 0
and the effective energy U(d) has a minimum at contact. In a mixture, passive
particles will be pushed together with a larger correlation to develop a long range
structure.

3.3.4 Two inclusions close to a wall

We repeat the previous calculations of the pair interaction for suspension of ABP
in a system enclosed between two parallel walls. We have also explored the effect
for finite values of the alignment and observed a complete capture of the active
particles on the walls and the formation of structures typical for wetting. Before the
study of the interactions between AAP and pairs of inclusions in confined systems
we need to understand the dynamics and interactions of AAP in confined systems.
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We define a wall at position y = 0, and y = L. The interaction between
the walls and active particles is mediated by the pairwise conservative repulsive
potential

UW =

N∑

i

UWCA (yi) + UWCA (Ly − yi) (3.18)

For a system of ABP confined between two parallel walls at a density φ > φb,
where φb stands for the density of the low-density binodal line at a given Pe, the
system phase separates into a dense phase 0.φf ≈ 0.9, and a gas phase φg ≈ 0.1.
The dense phase in the wall region, and the dilute phase in the central region of the
box. A system at bulk density φ separates into two dense layers with approximate
thickness given by 〈

h

σa

〉
≈ φ− φg
φf − φg

(3.19)

The introduction of a density phase separated system allows us to explore the
interaction between passive particles in both the diluted and dense regimes. On
one hand, walls guarantee phase separation for φ > φg and the central region
of the box has an averaged density φg well balanced by the dense phase on the
walls that act as an active particle reservoir. On the other hand, walls maintain a
dense layer of active particles which in PBC systems need to be nucleated, and
sustained by the inclusions. The dense layer, though, is not homogeneous. The
position of the interface is not fixed and the averaged orientation of ABP at the
interface is perpendicular and inwards to it. Finally, close the wall inclusions experi-
ence an interaction mediated by the collisions between active particles and the walls.

A B

Figure 3.21 A passive dimer close to a wall in a suspension of ABP. A density profile. Red
curve the extracted profile and the black line equation (3.20) with φg = 0.13, φf = 0.72,
〈h〉 = 8.2σa. B Snapshot of the system with Z = 3σa, and d = 6σa, we appreciate a
positive perpendicular force Fy .
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We use a typical hyperbolic density profile (3.20) to model the dense layer of
ABP close to a wall. By a computation of the density profile along the direction
perpendicular to the wall, y, we show a fit for Pe = 30, and φ = 0.3 where ∆ is
the thickness of the wall, and y0 the position of the interface.

φ(y) = φg +
φf
2

[
1 + tanh

(
y − y0

∆

)]
(3.20)

Preparing a system at φ = 0.3 introduces a pair of dense layers of active parti-
cles of average thickness 〈h/σa〉 = 8; a detailed measure of the thickness reveals
fluctuations of the position of the interface ∆h/σa = 3. The forces acting on the
inclusions define a relative interaction force Fr as defined in (3.16). In addition we
introduce the total force on the dimer in the direction normal to the wall Fy (3.23),
permitted by the symmetry breaking induced by the wall. A positive Fy describes
an inclusion dimer that experience force that repels it from the wall, an expelling
force, while Fy < 0 defines an attractive force towards the wall.

We now present the results from simulations with inclusions of diameter
σc = 4σa, immersed in the dense layer 〈h/σa〉 = 8 close to the wall. To character-
ize the inclusion dimer we introduce the minimum distance between the surface of
each inclusion relative to the wall. For the sake of simplicity we introduce a dimer
parallel to the wall with Z1 = Z2 = Z. For a more general scenario the dimer
introduces an angle α relative to the wall and, at close distances, a torque on the pair.

Given the self-propelled nature of the active particles, the layer has some struc-
ture. The average of the projection of the ABP orientation, n̂, and the unit vector
perpendicular to the interface ŷ, 〈ẑ · n̂〉 is negligible negative for particles in the
bulk of the dense region but for the interface 〈ẑ · n̂〉 < 0.

We first test the effect the dense particles have in the interaction between passive
colloids. We compare the results of the interaction force Fr in the dilute region, and
the corresponding system with PBC at φ = φg . As expected the interaction in both
the central region of the box and in the gas density with PBC match, as reported
in red and black dots in Figure 3.22. Results are in correspondence with the ones
obtained for larger inclusions in 3.3.2. The measured relative force is repulsive and
has a maximum at d = σa, then it decays to zero without the appearance of long
range interactions for g = 0.

We immerse the dimer into the dense phase by fixing the value of Z. In Figure
3.22 we distinguish two different scenarios. For d < 2σa the relative interaction
loses intensity and becomes attractive. But for non-integer values of the distance
between inclusions the effective interaction is repulsive. Further than d = 2σa
the interaction develops an additional interaction, a long range effective force not
present at the gas phase and associated to density fluctuations. For dimers close
to the walls Z < 4σa, and deep into the dense layer the long range interaction is
attractive. For Z ≥ 4σa the long range interaction develops a repulsive behaviour.
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Figure 3.22 Radial force between inclusions as a function of the separation distance d. In
red and black squares we represent the reference interaction for a pair of inclusions in the
middle of the box and a system at φg with PBC, respectively.

Interactions in the dense phase introduce long range effects due to the increase in
the correlation lengths and density fluctuations as compared to a dilute system.

To study the normal force exerted to the inclusion we first present a simple
theoretical estimation F esty of the orthogonal force F (1)

y acting on a single inclusion.
An inclusion in an intermediate value of Z, on average, separates the gas from the
dense phase. We qualitatively estimate the repulsion force as follows.

We assume the inclusion to be buoyant in the interface of the dense and the
dilute regions. Being θ the polar angle which describes a point on the surface of the
inclusion with θ = 0 a point in the furthest right of the inclusion and θ = π a point
in the furthest left, so the diameter that goes through θ = 0, and θ = π is parallel to
the wall. With this parametrization of the surface we distinguish between the region
of the inclusion immersed in the gas phase with 0 < θπ, and the region in contact
with the dense phase with −π < θ < 0. The vertical force exerted by a particle
with orientation ϕ relative to the normal at θ is Fy = −Fa sin θ cosϕ, for only the
radial component of the propulsion force Fa cosϕ contributes to the vertical force
with its vertical component − sin θ.

The orientation of particles in the dense phase thermalizes and the distribution
Pϕ = 1/(2π) is uniform. However, particles in the gas phase collide with ϕ = 0
and diffuse until escapement at ϕ ≈ ±π/2). The probability distribution for par-
ticles in the gas phase colliding with the inclusion is Pϕ = (2π)

1/2
exp

(
−ϕ2/2

)
.

The total force on the inclusion is then the sum of the upwards force given by the
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Figure 3.23 Interaction force of the Active Brownian Particles on an inclusions dimer
perpendicular to the wall at bulk density φa = 0.3, and Pe = 30. In red circles we plot
the interaction between a sole particle and the wall as a function of Z. The nonadditivity
is manifested in the departure of Fy from 2F

(1)
y for Z < 8σa. Red dashed line define an

estimate (3.21) of the repulsion force 2F esty . On the right, density plots of ABPs with the
contour line ρ = 0.4 for an inclusion separation d = 3σa at Z = 6σa, and Z = 12σa. In
green arrows the averaged orientation of active particles in the regions where ψ(x, y) > 0.3.

average φfπσc/2 particles in the dense phase minus the sum of the downwards
force given by the average φgπσc/2 particles in the gas phase.

F esty = Faσc (φf − 0.65 · πφg) ≈ 2.3Fa (3.21)

Where we have previously extracted the the densities from the density histogram
and obtained φf ≈ 0.8, and φg ≈ 0.12. The integral of the orientation in the gas
phase contains the non trivial integral

1√
2π

∫ π

0

sin θdθ

∫ π/2

−π/2
cosϕ exp

(
−ϕ2/2

)
≈ 2× 0.65 (3.22)

For a single inclusion we measure the orthogonal force F (1)
y . Results give a

strong Z dependence at the the vicinity of the wall associated to the structure of
the first layer of active particles. For distances 4σa < Z < 11σa the interaction
converges to the estimate value F esty and then goes to zero as inclusions detach
from the active dense fluid.

We proceed to compute the total force acting on a pair of inclusions, Fy, and
the possible two body, nonadditive, effects on the equality Fy = 2F

(1)
y associated

to the interaction between inclusions.
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Fy = ŷ
(
F inc2 + F inc1

)
(3.23)

For a pair of particles at separation distance d = 1.5σa we observe a weakening
of the interaction for Z > 2σa, the short distance of the two inclusions introduces
an effect when inclusions are completely or partially immersed in the dense phase.
The interaction is nonadditive given its departure from 2F

(1)
y . At distances Z > 〈h〉

the interaction finally follows 2F (1). Finally, for a pair of particles at separation
distance d = 3σa we observe a good match with F (1). The interaction between
inclusions is not manifested in the vertical force, and the wall interaction recovers
additivity. In all cases we observe an interaction with the dense layer beyond 〈h〉.
This is clearly seen in the density plots in Figure 3.23. The fluid-gas interface is
deformed by inclusions as they get closer to the surface.

Finally, we quantify the the density and alignment of the active particles. We
define a local density ρ(x, y), and local alignment ψ(x, y) as follows:

ψ(r) =

∑
i δ(r − ri)n̂i∑
i δ(r − ri)

= ψ(x, y)p̂(x, y) (3.24)

In Figure 3.23 we included the density field of active particles close to a wall with
two inclusions separated a distance d = 3σa. We plot the orientation vector field
for ψ(x, y) > 0.3 and observe that the averaged orientation ψ̂ is perpendicular to
the interface. Deep inside the dense phase or the gas phase ψ(x, y) < 0.3.

3.4 Mixtures
The extraction of the interaction pair force is extremely dependent on the set-up.
Both origin and behaviour of these out-of-equilibrium forces between passive parti-
cles depend on the structures that are formed around the particles. Structures are
supported by the set-up. By fixing the passive particles we let the system to develop
a structure which generates the final interaction. In the case of zero alignment this
effect is extremely evident since the inclusions are fixed and the forces are repulsive.

In this section we present the results for suspensions of active and moving
passive particles. We separate the results in two subsections. We first study the
structure of the passive particles in a system with periodic boundary conditions.
Finally we extend the analysis to a system with the usual periodic boundary condi-
tions.

For a system confined between two walls we observe a strong influence of the
wall. At low g we observe the formation of a dense layer of active particles that
expel passive particles close to the walls, we already reported this effect for one
and two inclusions. For g > 2 the effect of the wall is much more dramatic and
completely dominates the dynamics of the system, active particles are completely
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A B

Figure 3.24 Density profile of particles in in a confined system at φa = 0.15, and φp = 0.3.
In black dashed lines the equilibrium profiles. A Active particles for different activities and
alignment, in dashed lines we observe the depletion accumulation of active particles close to
the walls. B Passieve particles for different activities and alignment of the active bath, in
dashed lines the equilibrium profile for a binary mixture (particles of diametre σc > σa)

captured by the walls, as seen in the density profiles 3.24. To optimize profile
statistics, and specially for passive particles, we prepare systems in a rectangular
box with Lx/Ly = 2, keeping Ly ≈ 75σa.

For finite alignment, active aligning particles form a large structure and coexist
with a very dilute gas of AAP. Inclusions are rapidly expelled from the dense part
of the AAP and, thus, the interaction between AAP and inclusions takes place at
the extremely diluted gas which does not show the typical collective phenomena
discussed in bulk AAP, as seen both in Figures 3.24 and 3.25. For this reason, to
compare the collective effects of the active bath on a finite density of inclusions, we
must avoid walls, the most suited system to perform simulations is with Periodic
Boundary Conditions.

3.4.1 Periodic Boundary conditions

We have prepared mixtures of Na = 2000 aligning active particles at φa = 0.18
and finite density φc = 0.3 of passive particles and run a series of simulations
with periodic boundary conditions at the pairs of Pe, and g values for which we
extracted the effective forces in Figure 3.17.

To analyse the effect of the active bath we compute the pair distribution function
of passive particles, g(r). To simulate a system with Na = 2000 active particles,
and a statistically significant amount of passive particles we have decreased the size
ratio to σc/σa = 8.
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Figure 3.25 Mixture of Na = 2000 particles at packing fractions φa = 0.15, φc = 0.3,
and Pe = 30. A For a system of ABP we observe wall accumulation of particles, a density
phase separation. B For a system of AAP with g = 2 we observe a huge AAP depletion
from the bulk and the formation of a density profile h(x) on the walls.

After detailed analysis of Figure 3.26, systems with both g = 0, and g = 10
show a first peak at contact, d = σc. We observe, though, a second maximum
at d = σc + σa whose height is comparable to the first peak for g = 0 at large
activities. The origin of the second peak lies in the short distance repulsion mea-
sured in section 3.3.2. For g = 10 we observe a strong increase of the first peak
vale and the appearance of a second peak at d = 2σc, as compared to g = 0.
The appearance of a second maximum at d = 2σc which; both features are charac-
teristic for an attractive interaction and compatible with the findings in section 3.3.2.

Snapshots of the system in Figure 3.27 show the density heterogeneities of
active particles close to inclusions. On the left hand, ABP accumulate close to inclu-
sions and promote repulsion between pairs but may introduce attractive triangular
arrangements of passive particles surrounded by ABP. The overall arrangement
of passive particles is rather homogeneous though density fluctuations are present
in the system. On the right hand, AAP form a macroscopic travelling cluster that
captures the passive particles and arranges them in a more heterogeneous and lo-
cally dense configuration. The travelling cluster collects and induces large density
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Figure 3.26 Pair distribution function of passive particles for a mixture of active and
passive particles at densities φa = 0.18, and φ = 0.30 and size ratio σp/σa = 8. A for
Active Brownian Particles with Pe = 30, and B for Aligning Active Particles at g = 10,
and Pe = 30. In the inset we show the position corresponding to d = 2σc, we distinguish
ABP using hollow points and AAP using solid ones.

fluctuations on passive particles.

3.5 Conclusions and Perspectives
We have presented a model of active particles that account for aligning interactions
respect to the swimming direction. We propose different aligning interactions that
could be easily modelled, i.e. particles that align towards other particles, polar and
nematic interactions or even alignment relative to external fields.

In the first place, we have identified dimensionless parameters to capture the
intensity of both activity and alignment as compared to diffusive strengths, which we
named Péclet, and aligning numbers. Such parameters and interactions determine
the collective behaviour of the active particles. Once we understand the emergent
phenomena in the active bath we introduced passive particles.

First, we analysed the movement of a single passive colloid to reproduce previ-
ous results on MSD enhancement, and then fixed a pair of passive particles in the
active bath and explored the interaction strength between the colloids for different
combination of the dimensionless relevant parameters.

Simulations show an emergent repulsive force between colloids as activity is
increased and alignment is set to zero. The interaction strength can be then con-
tinuously converted from repulsion into attraction at short distances, d ≈ 0, by
increasing the alignment. As a consequence of the increase of alignment, we report
the emergence of a long ranged interaction at distances up to d/σc = 2.
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Figure 3.27 Snapshots of a system at Pe = 30 and φa = 0.18, and φp = 0.30. Left
column Active Brownian Particles (g = 0). Right column Aligning Active Particles (g = 30)

Considering the structure of the active particles around the passive particles we
conclude that active torque-free particles get arrested in the wedges that form the
inclusions and push the inclusions apart. Once we add torque, interacting particles
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tend to travel together forming large polar aggregates. Travelling clusters intercept
the inclusion dimer at different angles and show a force distribution Fr(α) which
determines the angular averaged attractive behaviour.

We have presented active dumbbells and nematic interactions for circular active
particles. We can extend the analysis of the induced interactions in such systems.
In addition we may even consider the interaction of non-circular objects such as
passive squares which have a well defined packing symmetry.

Second, we analysed the effect of confinement in the system. We describe the
role of wall and the effect of alignment, further work is required to characterize the
structures of AAP on the walls. For ABP the interaction between pairs of particles
in the dense active fluid shows the extend of the interaction to distances larger than
two active particles diameters. Fluctuations induced in the dense region activate
long range interactions between passive particles. Moreover, we characterize the
emergence of a body force on the inclusions that expels them from the dense phase
close to walls. We estimate the force and test its additivity to pairs of particles. We
show that additivity is lost for dimers separated by less than two particle diameters.

Third, we have studied the collective behaviour of a suspension of passive
particles in an active bath. The effective repulsive behaviour extracted from pair
interactions in a suspension of ABP translates into structures of passive particles
separated by ABPs. New three-body effects emerge which need to be further
studied. Finally, with AAP the long range attractive interactions, associated to a
macroscopic travelling cluster, translate into large aggregates of passive particles
pushed and segregated by travelling aligning active particles.
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Appendices

3.A Hydrodynamic fields
We present a hydrodynamic model for a system of active particles and incorporate
alignment. We coarse-grain the equations of motion in the formalism presented
by [Dhont, 1996, Bialké et al., 2013, Speck et al., 2015] into dynamic equations
for the coarse-grained density, polarization, and nematic field [Cates and Tailleur,
2013].

We define the equations that govern the motion of the particles. In this case the
Langevin equations:

∂tri = v0n̂− µ
∑

i 6=j
F ccij

ri − rj
|ri − rj |

+
√

2D0ξi (3.A.1)

And the vectorial equation for the orientation vector. We introduce a torque that
depends on the relative distance and orientation.

∂tn̂i =


∑

j 6=i
Γij (ri, n̂i; ri, n̂j) + ωrξêz


× n̂i (3.A.2)

The evolution of the whole system is described by ΨN . This function measures the
probability to find the system in a certain configuration of the microscopic variables
(positions and orientations) at a certain time. The Smoluchowski equation relates
the time evolution of ΨN to the momenta of the degrees of freedom.

∂tΨN =
∑

k

∇rk (µ∇rkU − v0n̂k +D∇rk) ΨN +
∑

k

(∇n̂kV + ωr∇nk) ΨN

(3.A.3)
Where U (r1, ..., rN ) is the repulsive potential and V (n̂1, ..., n̂N ) the aligning
potential of interaction. Function ΨN ({r}, {n̂}; t) has 2N degrees of freedom
for the spatial coordinates, N degrees of freedom for the orientations and an the
temporal dependence on t. We can construct a one body function Ψ1(r, n̂; t) with
no approximations

Ψ1 = N

∫
dr2d...rN

∫
dn̂1...dn̂NΨN (r1, ..., rN , n̂1, ..., dn̂N ; t) (3.A.4)
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The pair body interactions that come from the potential need to be integrated
weighted with the two-body distribution Ψ2(r, r′, n̂, n̂′). The one body froce
F1(r)

F1 = −
∫
dr′∂r′U (r, r′)

r − r′
|r − r′|Ψ2(r, r′, n̂, n̂′; t) (3.A.5)

There is a one body torque

Γ1 · êz = −
∫
dr′∂θV (r, r′)

r − r′
|r − r′|Ψ2(r, r′, n̂, n̂′; t) (3.A.6)

We now approximate the value of Ψ2. We assume a stationary function that depends
on the relative distance between positions x = r − r′. We introduce angles φ as
the angle between vectors x and n, and θ as the angle between vectors n, and n′.
The mean density of the system ϕ.

Ψ2 ≈ ϕΨ1(x)g(x, φ, θ) (3.A.7)

With g(x, φ, θ) the pair correlation function that includes the relative angle θ be-
tween active particles.

The computation of Ψ1 introduce integrals over v0∇rnΨN . To proceed we
introcuce the magnitudes ζp, and ζa

d · F1 = −ϕ
∫ ∞

0

xdx

∫ 2π

0

dφ

∫ 2π

0

dθdφ cos(φ)g(r, φ, θ) = −ϕΨ1(r)ζp

(3.A.8)

M1 = −ϕ
∫ ∞

0

xdx

∫ 2π

0

dφ

∫ 2π

0

dθV ′(θ)g(r, φ, θ) = −ϕΨ1(r)ζa (3.A.9)

Vectors n, and ∇Ψ1 define a non-orthornormal basis, 〈n,∇Ψ1〉, of the cartesian
plane. We now apply the Gram-Schmidt orthornormalization method to later extract
independent projections on the relulting base {d,v⊥}

v⊥ = ∇Ψ1 −
n · ∇Ψ1

|∇Ψ1|
n (3.A.10)

Now
F1 = (n̂ · F1) n̂+ (F1 · v⊥)v⊥/ |v⊥|2 (3.A.11)

With vector v⊥ = ∇Ψ1 − n̂ · ∇Ψ. The modulus of the vector is easy to compute
|v⊥|2 = |∇Ψ|

(
1− |n̂ · ∇Ψ1|2 / |∇Ψ1|2

)
. The inverse is, to the first order in

gradients |v⊥|−2
= |∇Ψ1|−2 (

1 + ε+O(ε2)
)
. Where ε < 1 since it corresponds

to the cosine of the angle defined by vectors n̂, and ∇Ψ. We do not consider
ε = 1 since this case corresponds to a case in which n̂ is parallel to ∇Ψ1 and the
descomposition is nonsense.

(F1 · v⊥)v⊥ = F1 · (∇Ψ1 − n · ∇Ψ1n) (∇Ψ1 − n · ∇Ψ1n) / |∇Ψ1|2
(3.A.12)
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(F1 · v⊥)v⊥ = F1 (∇Ψ1 − n̂ ·∇Ψ1n̂) / |∇Ψ1|2 +O(|∇Ψ1|2) (3.A.13)

Using D0 + ∇Ψ1−n̂·∇Ψ1n̂
|∇Ψ1|2 · F1 = D we write down the final equation for the

one body probability field.

∂tΨ1 = −∇ · [(v0 − ζpρ) n̂−D∇] Ψ1 + ∂θ (Γ0ρζa +Dr∂θ) Ψ1 (3.A.14)

By a simple analogy between the terms v0 − ζρ = v(ρ), and Γaρζa we define
Ω(ρ) = Γaρζa. We are interesetd in fields that depend only in the position of
measure. Thus, we need to integrate over the angles. To do so we project Ψ1 onto
Legendre Polynomials in n̂.

Ψ1 = ρ+ nαpα +

(
nαnβ −

δαβ
2

)
Qαβ + Θ[Ψ1] (3.A.15)

We may also define the equation in terms of the angle defined by n̂ = (cos θ, sin θ).
We introduce Θ as the higher order multipoles of Ψ1.

Ψ1 = ρ+

(
cos θ
sin θ

)
· p+

(
1
2 cos 2θ sin 2θ
sin 2θ − 1

2 cos 2θ

)
: Q+ Θ[Ψ1] (3.A.16)

Projecting the equations on the Legendre Polynomials and using their definition we
proceed to compute the dynamic equations for the coarse-grained fields:

∂tρ = −1

2
∂α [v(ρ)pα] + ∂αD∂αρ (3.A.17)

The angular contributions to the hydrodynamic equations come as follows. For the
scalar field

f(Ω) =
1

2π

∫ 2π

0

dθ∂θ (Ωρ) = 0 (3.A.18)

For the vectorial field g(Ω) we work with the components

gx(Ω) =
1

2π
Ω

∫ 2π

0

dθ cos θ∂θ (px cos θ + py sin θ) =
1

2
Ωpy (3.A.19)

gy(Ω) =
1

2π
Ω

∫ 2π

0

dθ sin θ∂θ (px cos θ + py sin θ) = −1

2
Ωpx (3.A.20)

Introducing the skew-symmetrical tensor S = êx ⊗ êy − êy ⊗ êx the equation for
the change in polarization reads

∂tpα = −∂α [v(ρ)ρ]− ωrpα + ∂βD∂βpα −Bαβγδ∂β (Qγδv(ρ)) +
Ω

2
Sαβpβ

(3.A.21)
Finally we compute the integrals for the magnetic order parameter projecting on
cos 2θ, and sin 2θ

hxx(θ) =
Ω

2π

∫ 2π

0

dθ cos 2θ∂θ (sin 2θQxy + sin 2θQyx) = Ω
Qxy +Qyx

2
(3.A.22)
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To obtain

∂tQαβ = −1

2
Bαβγδ∂γ [v(ρ)pδ]−4ωrQαβ+∂γD∂γQαβ+

1

2
(SαγSγα −QαγSγβ)

(3.A.23)
Plus higher order fluxes −∂γJαβγ .

3.B Aligning interactions in active dumbbells
In this section we motivate through a practical and common active matter system
the presence of interaction torques between their constituting agents. Here we
derive the appearance of a nematic interaction between colliding active particles
without hydrodynamics.

Two bead systems are common in the active particle literature [Suma et al.,
2014, Gonnella et al., 2014], even more general configurations such as active rods
of multiple beads have been considered [Kaiser et al., 2013]. We define a dumbbell
by the position of its centre of mass ri and the vector that connects the centres of
masses, the orientation vector δi. The beads of a dumbbell are defined by a pair of
vectors qαi with α where a stands for the head, and b for the tail.

{
qa =ri + δi/2

qb =ri − δi/2
(3.B.1)

To keep δi within a range we introduce an elastic interactionF e,αi at each constituent
of the rod so that 〈δ〉 = δ0.

{
F e,a =−K (δi − δ0) δ̂i

F e,b =K (δi − δ0) δ̂i
(3.B.2)

The simplest function to define the dumbbell is a linear spring which introduces
a force proportional to the deviation relative to the rest value δ0. In thermal
equilibrium fluctuations of

〈
δ2
〉

are proportional to kBT/K. It is common to
choose a divergent potential, the FENE potential, with a characteristic length l0.

F (r, l0) =
Kr

1− (r/l0)
2 → F (r < l0, l0) = Kr (3.B.3)

We introduce an excluded volume interaction for pairs of dumbbells Fαβij in the
direction of rαβij = qβj − qαi

Fα,βij = 24
ε

σ

[
2
(σ
r

)13

−
(σ
r

)7
]

(3.B.4)

For simplicity we choose shifted Lennard-Jones potential truncated at r = 21/6σ.
We tune the strength of the potential with ε. The total repulsive force acting on
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monomer qαi
F αi =

∑

j 6=i

∑

β

Fαβij r̂
αβ
ij (3.B.5)

From the dumbbell coordinates r, and δ the repulsion force introduces an interaction
torque on δ.

2Γi = δi × F ai − δi × F bi (3.B.6)

Finally we introduce thermal fluctuations on qαi with a characteristic strength
√

2D0.

With a random vector ξαi with fluctuations
〈
ξαj (t)ξβj (t′)a

〉
= δijIδαβδ(t − t′).

The Brownian equations for qαi are

dqαi
dt

= µF e,αi + µF αi +
√

2D0ξ
α
i (3.B.7)

The equations for the center of mass ri will introduce the total force on the center
of mass Φi = F ai + F bi and an effective diffusion constant DT . We introduce
δ̂i = (cos θi, sin θi).

dri
dt

= µTΦi +
√

2DT ξi(t) (3.B.8)

dθi
dt

= µrΓi +
√

2Dθνi(t) (3.B.9)

The dynmic equation for the dimer separation introduces a noise ζi(t) which we do
not specify.

dδi
dt

= −2µdK (|δi| − δ0) + µdδ̂i ·
(
F a − F b

)
+ ζi(t) (3.B.10)

Now we have obtained the equations of motion for an equilibrium suspension
of dumbbells. To drive the system out-of-equilibrium we need to introduce an
additional force to each dumbbell. Now we introduce three different mechanisms
“H”, for a head propelled dumbbell adding vaδ̂i to q̇ai ; “T” for a tail propelled
dumbbell adding vaδ̂i to q̇bi , and “B” for a body propelled dumbbell adding vaδ̂i
to both q̇α . With the propulsion, the final equation for the dumbbell now introduces

dri
dt

= vaδ̂i + µTΦi +
√

2DT ξi(t) (3.B.11)

dθi
dt

= µrΓi +
√

2Dθνi(t) (3.B.12)

In addition we can introduce wall to confine the system. If we introduce a wall
at y = 0, and y = L. The repulsive force that the walls introduce are

Fw,αi = FW (yαi )ŷ − FW (L− yαi )ŷ (3.B.13)

For simplicity we can define FW to be a WCA repulsive force –the same that
guarantees excluded volume.

Once again the interaction introduces a torque to each dumbbell.

2Γwi = δi × Fw,ai − δi × Fw,bi (3.B.14)
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3.B.1 Relative torque between dumbbells
We compute the torque between a pair of dumbbells. A particle with propulsion ve-
locity va in the direction defined by the director δ1 collides with a second dumbbell
defined by the director δ2. The interaction for two incoming dumbbells is between
Head and Head or between Head and Tail.

For an acute Head to Head interaction the propulsion velocity that is not com-
pensated by repulsion of both dumbbells gives a neat velocity to the centres of mass
and so they travel together with an aligning torque, see plot B in Figure 3.B.1. In
the absence of thermal fluctuations or interactions with other dumbbells the pair
will align and travel together, forever. In the presence of thermal fluctuations – as a
competition between angular diffusion, elongation, and propulsion – the couple can
break. For Head to Tail interactions the aligning torque aligns the pair during the
collision while the propulsion forces that are not compensated by the interactions
– the projections on the direction perpendicular to r̂ – are antiparallel and thus,
dumbbells will separate. In this situation torque bends the trajectories of incoming
dumbbells, see plot A in Figure 3.B.1.

Now we compute the relative torque of interaction for a collision of two incom-
ming dumbbells. The general Head-Head collision between dumbbells is depicted
in Figure 3.B.1.

Figure 3.B.1 Collision between a pair of dumbbells with director vectors δ̂1, and δ̂2. Vector
u = δ̂2 − δ̂1 defines the angle θ. (A) Interaction relative to the center of mass of each
dumbbell, center-to-center vectorR with norm d and angle β relative to θ1. (B) Interaction
relative to the center of each bead of the dumbbell with the angle α.

We introduce dumbbells with directors δ̂1, and δ̂2 with orientations θ1, and
θ2 relative to the horizontal. Interaction is defined by vector r̂ with orientation α
relative to the horizontal. A bead of the dumbbell contributes to the interaction
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if the projections F1 · r̂ > 0, and F2 · r̂ < 0. The overall interaction is 2Fr =

(F
(2)
r θ(δ̂2 · r̂)− F (1)

r )θ(−δ̂1 · r̂) with Fr the repulsive interaction acting on each
bead. We now compute the case for two heads pushing.

F (1)
r = Faδ̂1 · r̂; F (2)

r = Faδ̂2 · r̂; 2Fr =
(
F (1)
r − F (2)

r

)
(3.B.15)

The repulsive force on the heads is F (1) = −Frr̂, and F (2) = Frr̂. We compute
the torque at the center of mass of each dumbbell Γ

(i)
z – the position vector is−δi/2.

Since the system lives in a two dimensional plane, the toque is in the direction of ẑ.

Γ(1) =− 1/2δ1 × F (1) = −r0Fa
4

(
δ̂1 − δ̂2

)
· r̂
(
δ̂1 × r̂

)

Γ(2) =1/2δ2 × F (2) =
r0Fa

4

(
δ̂1 − δ̂2

)
· r̂
(
δ̂2 × r̂

) (3.B.16)

The relative torque of interaction is given by Γ. We define vector u = δ̂2 − δ̂1 as
the difference between orientation vectors.

Γ =
r0Fa

4
(u · r̂) (r̂ × u) (3.B.17)

Vector u is defined by the angle θ = θ2−θ1. The angle between u, and r̂ is ω =
θ − α. The relative torque of interaction is Γ(α, θ) = −1/4r0Fa |u|2 sinω cosω

ẑ · Γ(α, θ) = −r0Fa
2

sin2 (θ/2) sin 2 (θ − α) (3.B.18)

This expression if valid for the range of parameters cosα > 0, and cos Ω < 0.
On the other hand, the interaction has a specific range of angles in wich there is
no overlap. We define αc = arccos (−r0/(2σ)), and θc = arccos (r0/(2σ)). The
interacion is allowed for α ∈ [−αc, αc], and θ ∈ [α+ θc, α+ (2π − αc)].

To conclude, we introduce the interaction as a function of the center of mass of
the dumbbell r̂ = (R+ ûr0/2) /σ. We define Ω = θ − β with R = d(cosβx̂+
sinβŷ).

Γ =
Far0

4

[
u ·
(
R+ u

r0

2

)] [(
R+

r0

2
u
)
× u

]
σ−2 =

=
Far0

4

(
u ·R+ u2 r0

2

)
(R× u)σ−2

(3.B.19)

Introducing u2 = 2 (1− cos θ) = 4 sin2(θ/2) the equation reads

ẑ · Γ = −r0Fa
4

((
d

σ

)2

sin2(θ/2) sin 2Ω + 16
dr0

σ2
sin4(θ/2) sin Ω

)
(3.B.20)
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4
Granulars

4.1 Introduction

Granular matter has attracted some attention because of its different nature com-
pared to the solid, liquid and gas state [Jaeger et al., 1996]. When shaken, it is
brought out-of-equilibrium – there is a flux of energy from the container to the
agents and dissipated in their contact interactions. A striking phenomena occurs
in mixtures of particles where shaking may lead to species separation ranging
from clusters to stripes [Ottino and Khakhar, 2000, Kudrolli, 2004, Aranson and
Tsimring, 2006]. The best known manifestation of this granular separation is the so
called Brazil nut effect [Godoy et al., 2008, Ciamarra et al., 2006b, Sanders et al.,
2004]. For horizontally driven matter, gravity is no longer a relevant player, and a
mixture can phase separate into stripes orthogonal to the shaking direction [Mullin,
2000, Pica Ciamarra et al., 2007], or even form clusters for swirling shaking [Au-
maître et al., 2001b]. The ability to demix can be directly applied to industrial
purposes or be used to explain stratification in terrestrial environments or may play
a relevant role in asteroid or planetoid formation.

In the non-equilibrium state of shaking, granular matter has been reported to
fluidize – for vertical and horizontal [Salueña et al., 1999, Pöschel et al., 2000, Ris-
tow et al., 1997] forcing. In the fluidized regime density fluctuations have been
reported and then Casimir-like scenarios [Kardar and Golestanian, 1999] open for
internal interactions among grains [Cattuto et al., 2006].

In a granular system there is an interplay between its internal constituents and
the boundaries of the system. The flow though a bottleneck, like the flow of sand in
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a hourglass, can be spontaneously interrupted [Masuda et al., 2014, Lozano et al.,
2012]. The nature of the interruption can change under shaking –the system can
spontaneously unclog and flow until the next clog is formed. The formation of
stable arch structures before the bottleneck has been correlated to the clogging of
the system and it is a generic mechanism in many systems [Zuriguel et al., 2014].

The band segregation for a binary mixture of horizontally agitated granular
matter has been explained [Ciamarra et al., 2006a] for attractive and anisotropic
pairwise interactions between the intruders. In a dense system of poppy seeds and
two metallic spheres it has been reported an effective attractive interaction [Lozano
et al., 2015]. Spheres tended to stay together. This result has lead us to the simula-
tion of the free movement of two intruders in a bed of granular particles. We have
extracted the interaction forces that arise between intruders for different configura-
tions and obtained not only anisotropic radial forces but long range interactions and
aligning torques.

In this Chapter we introduce a dissipative granular media under horizontal
shaking, see Section 4.2. In section ??, we use the bed of driven granular particles
to study the free movement of a pair of intruder particles and identify a long range,
lnP (r) ∼ 1/r, decay of the probability to locate particles separated a distance r
with a strong anisotropic character. To fully characterize the interaction force, in
Section 4.6, we fix dimers in several configurations of distance and angle relative to
the shaking. As a result, we are able to express the radial, long range, force as a
function of the shaking amplitude and angle. Finally, we study the local fields of
density and kinetic energy to find the appearance of a gradient in the kinetic energy
along the axis of the dimer but not a deviation in the density. We then relate the
energy and density profiles of a system of two particles to the density profile of a
single intruder system.

4.2 Model

The experimental set-up considers a binary mixture of kidney shaped poppy seeds
and bronze spheres on top of an oscillation tray, see Figure 4.1 A, and B. Grains,
poppy seeds, are irregular in shape, see inset D, with typical diameters between
0.5 mm, and 1 mm, low density ρ = 0.2 g cm−3, and hence have a high friction
with the flat bottom surface. We propose to two dimensional model for the poppy
seeds and spheres lying on the tray. We introduce rains as disks of diameter σg , and
a friction coefficient with the tray. Bronze spheres, as seen in C, are smooth and
with a typical diameter 1.5 mm, high density ρ ≈ 8.8 g cm−3, and easily rotate on
a flat surface [Reis et al., 2004]. To model the excluded volume surrounding the
spheres we propose to model them as disks of diameter σ.

The peculiarity of the system is the external driving, the horizontal shaking.
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Figure 4.1 Experimental set up. Experiments on granular segregation of spheres in a bed
of poppy seeds from [Reis et al., 2006]. In A the experimental apparatus with the acquisition
camera, the tray for the granular mixture, and the shaker. In B a capture of the granular bed
with poppy seeds in gray, and spheres in white. Photograph of a sphere C, and a poppy seed
D.
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The bottom surface of the experiment is constantly horizontally vibrated, and we
propose different responses for grains, and spheres. Irregularities in the poppy seed
surface, large contact surface with the tray, introduce a friction coefficient with the
tray, do not facilitate rotation, and thus follow the motor oscillations in contact with
the tray. Spheres, however, present a contact point with the bottom surface and for
a finite friction with the tray, and thus rotate to maintain the centre of mass at a
constant position.

Then, we introduce excluded volume with repulsive forces. Collisions between
cause an elastic deformation of the grains, problem initially posed by Hertz [Hertz,
1882], and treated again by [Love, 2013]. The collision in a viscoelastic material
introduces a plastic deformation with a restitution coefficient proportional to the
relative velocity [Kuwabara and Kono, 1987]. Interactions between particles incor-
porate an elastic repulsive force, and a velocity dependent dissipative force.

To account for shape irregularities and the roughness of grains we introduce
random forces to both grains and inclusions. Random forces also account for three
dimensional effects in the collisions, manifested in vertical velocities which a 2d
model cannot cope with.

Altogether, we model the effects of horizontal periodic forcing of the tray on
the grains and spheres. This model permits to measure the kinetic energy, and local
density of the grains; it captures the dynamics of spheres in a bed of shaken grains;
and, finally it also determines the forces acting spheres and grains.

4.2.1 Equations of motion

The temporal evolution of grains and spheres is determined by Newton’s equations
of motion in the laboratory frame of reference. Unlike the rest of the systems
presented in this thesis, the system is not over-damped by a viscous fluid and we
cannot neglect the inertial effect.

We introduce gains as N disks at position x in a 2d periodic square box of side
L. Each grain with diameter σi, where σi are drawn from a uniform distribution
with 〈σ〉 = σg and a dispersion of 10%. Grains have mass mi = m0 (σ/σg)

3.
Spheres, also referred to as inclusions, are introduced as disks of diameter σ at with
centre of mass at positionsX and mass M 1.

mi
d2xi
dt2

= −γs,i
(
dxi(t)

dt
− vs(t)

)
+ F ci + F di + F ri (4.1)

M
d2Xi

dt2
= −γs

dXi(t)

dt
+ F ci + F di + F ri (4.2)

1The mass ratio M/m is given by the density and size ratio of the particles
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Where vs is the tray velocity which follows the periodic form in the direction of
x̂, vs(t) = A0ω sin(ωt)x̂, where A0 is the oscillation amplitude, and ω/2π the
shaking frequency of oscillation. The dissipation with the bottom surface of the
container is introduced by γs. Grains follow the external forcing and dissipate
energy for particle velocities relative to vs, as stated in the first term in the rhs of
(4.1). Spheres, however, dissipate energy for displacements relative the laboratory
frame of reference.

Interaction between pairs of grains incorporate an elastic repulsive force F c,
and a dissipative force F d. Interactions activate when grains overlap [Hidalgo et al.,
2009, Pöschel et al., 2000]. We introduce the compression [Pöschel and Schwager,
2005] of two particles, ξij = |xij | − (σi + σj) /2, to determine the interactions
between pairs we introduce a linear spring-dashpot model for the interaction with
F c

F ci =
∑

i

keffξijθ (ξij) n̂ij (4.3)

the elastic force, with keff a material dependent parameter, and F d

F di =
∑

i

γ (vij · nij) θ (ξij) nij (4.4)

the dissipative force dependent on the relative velocity during the overlap vij =
vi − vj .

When particles collide and the relative velocity increases the overlap, the dissi-
pative force acts in the same direction than the elastic force opposing to the relative
velocity between particles, and dissipates kinetic energy. After the maximum of
compression elastic energy pushes particles apart and changes the sign of the rel-
ative velocity. In the separation, the sign F d is opposed to the elastic force and
may lead to numerical artefacts, the two particles glued together by F c, and F d.
To avoid this situation, and as proposed by [Pöschel and Schwager, 2005], we use
the total force of interaction max(0, (F c + F d) · n̂).

Random force, F r, originated by irregularities in the grains and vertical move-
ments is introduced by a Gaussian noise source for each component of the particle〈
F ri (t)F rj (t′)

〉
=
√

2Λαδijδαβδ (t− t′). We generalize the noise so that fluc-
tuations in the shaking direction Λx may be different than fluctuations in the
perpendicular one.

4.2.2 Integration of the granular equations of motion
To integrate the of the equation of motion (4.1,4.2) for grains and inclusions, we
have devised a numerical scheme to cope with the stochastic force, dissipation, and
acceleration. Numerical integration of the equations of motion gives us access to
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the evolution of positions, velocities, and forces of each particle to later extract
relevant measures.

The integrator for the over-damped systems presented in the previous Chapters
implemented a two-step Euler scheme. By an Euler step from t to t + ∆t we
computed virtual positions for the particles. The average of forces at t, and t+ ∆t
gave the total force for the final Euler step. To solve the equations of motion with
acceleration we write down the second order differential Langevin equation as a pair
of first order differential equations for the momenta p = mv. The first equation
corresponds to the definition of linear momentum of each particle

d

dt
ri =

1

mi
pi (4.5)

And the second equation introduces the relevant forces acting on the particles. With
Fi we denote the deterministic forces acting on a particle (conservative repulsion
and contact dissipation); with fi the stochastic forces of multiple origins. Finally,
we account for the forcing of the system with the term p/m− vs where vs is the
velocity of the tray: typically a sinusoidal velocity.

d

dt
pi = Fi − γ

(
pi
mi
− vs

)
+ fi (4.6)

We integrate the equation for the positions a time step ∆t to compute virtual
positions at t+ ∆t/2.

ri(t+ ∆t/2) = ri(t) +
∆t

2

pi
mi

(4.7)

To solve the equation for the momenta pi we separate the terms that depend on pi
and the forces into deterministic Φi = Fi + γivs and stochastic fi.

(
d

dt
+
γi
mi

)
pi = Fi + γivs + fi = Φi + fi (4.8)

The liniear equation for p is direct and consists of a homogeneous and a particlular
solution. The homogeneous solution for pi(t+ t0)

pi(t+ ∆t) = p(t) exp

[
γi
mi

∆t

]
(4.9)

We propose an ansatz for the particular solution of the momenta introducing a
function π(t), ppi = π(t) exp−γi/mit. Inserting the particular solution into the
equation for pi gives the functional form of the auxiliary function πi.

d

dt
πi(t) = exp

(
γi
mi

t

)
(Φi + fi) (4.10)
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The term with the deterministic force Φi gives

πi(t) = πi(t0)+
mi

γi

[
exp

(
γi∆t

mi

)
− 1

]
Φi(t0)+

∫ t

t0

dτ exp

[−γi (∆t− τ)

mi

]
fi(τ)

(4.11)
To simplify further computations we define the following magnitudes. The dissipa-
tion of the momenta is introduced by Γi = exp (−γi∆t/mi). A rescaled mobility
coefficient for the deterministic force µ̃i = (1− Γi) /γi. Finally, and effective
diffusion coefficient D̃i = (Γimi/γi)

1/2 (
1− Γ2

i

)1/2
.

pi(t+ ∆t) = Γipi(t) + µ̃imiΦi + D̃iζi (4.12)

To integrate the stochastic force we have computed the second moment σ2
αβij =

〈piα(t)pjβ(t+ ∆t)〉 − 〈piα(t)〉 〈pjβ(t+ ∆t)〉.

σ2 =

∫ ∆t

0

dt

∫ ∆t

0

dt′ exp

[
− γi
mi

(∆t− t)
]

exp

[
− γi
mi

(∆t− t′)
]
〈fiαfjβ〉

(4.13)

σ2
ijαβ =

Γimi

γi
δijδαβ

[
1− exp

(
−2γi
mi

∆t

)]
(4.14)

Then we introduced ζ as a random Gaussian variable with zero mean and
〈ζi,α(t)ζj,β(t′)〉 = 2Λi,αδijδαβδ(t − t′). We keep the possibility to introduce
asymmetric fluctuations in the form of Λ.

Once we have a prediction for the evolution of the momenta of the particles we
integrate the equations of motion with the information p(t), and p(t+ ∆t).

ri(t+ ∆t/2) = ri(t) +
∆t

2

pi(t)

mi
(4.15)

p(t+ ∆t) = Γipi(t) + µ̃imiΦi(t) + D̃iζi(t) (4.16)

r(t+ ∆t) = ri(t+ ∆t/2) +
∆t

2m

pi(t) + pi(t+ ∆t)

2
(4.17)

4.2.3 System measurements
Numeric integration of the equations of motion gives access to the positions of
grains and inclusions. Positions of particles provides the calculation the packing
of particles, distributions of displacements after each cycle, and the Mean Squared
Displacements for the bed of grains and inclusions. Measures of the velocity of
particles provide information of the kinetic energy of the system, the characteristic
energy of the granular bed. In experiments, positions and velocities are is accessible
via image tracking.

In addition to positions and velocities, numeric integration of Newton’s equa-
tions give the overall force on each particle. Total forces acting on the spheres, the
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inclusions, reveal the interaction induced by the granular bed. Force measurements
in experiments, though possible for static or slow moving configurations [Radjai
et al., 1996,Løvoll et al., 1999,Majmudar and Behringer, 2005,Corwin et al., 2005],
ar not available in shaken granular mixtures.

4.3 Zero inclusions
Shaking the system following vs(t) introduces two possible definitions for the
kinetic energy. An absolute kinetic energy ek(t), the kinetic energy of the particles
relative to the laboratory frame of reference. Absolute kinetic energy introduces the
total kinetic energy per grain of the system as measured from laboratory frame of
reference. This energy is relevant for interactions with external bodies disconnected
from the shaking. Relative kinetic energy tk(t), the kinetic energy of the particles
relative to the tray frame of reference. Relative kinetic energy quantifies the sole
strength of the random fluctuations, and the “thermalization” via collisions of the
external energy influx of the velocity. The later is a relevant measure for granular
interactions.

ek(t) =
1

Ng

∫ t+1

t

dτ
∑

i

1

2
mv2

i (4.18)

tk(t) =
1

Ng

∫ t+1

t

dτ
∑

i

1

2
mi (vi − vs(τ))

2 (4.19)

Computations of the kinetic energy at each shaking cycle are the average over the
cycle. We use the period of oscillation as a computational time unit (2πω)−1, the
mean size of a grain as length unit σg and the mass of a grain of unit size σg as the
mass unit m0. In terms of these magnitudes we express the elastic constant keff ,
the dissipation constants γ and γs, and Λx to properly define the grains.

φ =
Ngπσ

2
g

4L2
(4.20)

We characterize a granular bath at different shaking amplitudes for typical granular
parameters found in the literature [Hidalgo et al., 2009, Salueña et al., 1999]. We
have performed simulations of the granular bed at different shaking amplitudes
A0, packing density φ (4.20), and random noise Λx at either Λx/Λy = 1, and
Λx/Λy = 2. We introduce the computations of kinetic energies to quantify the
granular system at different packing densities, 〈ek〉, and tk = 〈tk〉 are the time
averaged energies over cycles.

In Figure 4.2 we plot the kinetic energies of the system for different shaking
and noise amplitudes. As expected, by the addition of a dissipation constant the
measured kinetic energy is below the expected value imposed by Λ. The average
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kinetic energy keeps a constant value 〈tk〉 ≈ 0.9(λxλy)1/2 for φg < 0.6. For
higher packing fractions tk decays, for particle collisions increase and so does the
energy loss in interactions.

A B

C

Figure 4.2 Kinetic Energies of the granular bath. Kinetic energies as a function of the
packing density for Λx/Λy = 2. A Relative kinetic energy scaled with the noise strength,
Colours an line style indicate Λx, and shaking amplitude A0. B Difference between the
absolute and relative kinetic energies scaled with to the input forcing energy. C Kinetic
energies as compared to the system units. Solid points indicate relative kinetic energy, and
the absolute in hollow points.

As seen in Figure 4.2 the value of tk does not depend on the shaking amplitude.
The relation between the absolute kinetic energy 〈ek〉 and the relative kinetic energy
〈tk〉 is compatible with the a priori expectation

〈ek〉 = 〈tk〉+

∫ 1

0

dτ
1

2
mi (2πA0)

2
sin2(2πτ) ≈ 〈tk〉+

1

4
πA2

0mg (4.21)

Absolute kinetic energy ek increases as the shaking amplitude increases, as seen in
C from Figure 4.2 but the difference 〈ek − tk〉 remains constant B.

The displacement of a particle after a complete shaking cycle, ∆, permits the
measure of displacement distribution of granular particles. We track the displace-
ment of granular particles after a shaking cycle. Gathering statistics over long
times and all granular particles we obtain the distribution of displacements after a
cycle P (∆x), and P (∆y). The distribution of displacements in Figure 4.3 shows a
Gaussian behaviour for the displacements in th parallel and perpendicular directions
for densities up to φg = 0.75. This distribution originates a diffusive behaviour of
particles at long times.

At φg = 0.80, however, we observe a narrow distribution of displacements.
This is associated to the formation of long lived structures trapping particles to
undergo a subdiffusive process in the cages of the ordered structure. At large
displacements, 1 < ∆/σg < 2, the probability widens. This situation corresponds
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to jumps and exchange of particles in the structure.

We quantify the mobility of the grains, in the fluidized regime, with the diffusion
coefficients extracted from the averaged mean squared displacements (MSD) in
each dimension. For diffusive particles we expect a linear relation between the
MSD, and time, MSDα(τ) = 2Dατ . At long times, we extract the Dx, and Dy as
a function of the granular density, see Figure 4.4.

As a general rule, we observe a correlation between the diffusion coefficient
scaled with the agitation noise D/Λ and the packing density. As density increases
D/Λ diminishes. The correlation is high for Dx/Λx, and it is reduced in the
case Dy/Λx. In Figure 4.4 we add a final plot with both Dx/Λx, and Dy/Λx for
all densities, and shaking amplitudes to obtain an algebraic relation Dx/Λx ∼
(Dy/Λx)ν . A logarithmic fit of the data gives an estimate of ν = 0.6.

Figure 4.3 Diplacement distribution after one cycle. P (∆) for different concentration
of grains. In solid points perpendicular displacements. We include snapshots of systems at
φg = 0.75, and φg = 0.80 and trajectories of three particles.

4.4 One inclusion
In the last section have introduced the granular system, the bed of grains, and the
measures of kinetic energy of the grains. The aim of this Chapter is to study the
interaction between a pair of inclusions induced by external driving of the grains.
Once the system has been characterized, the second step prior to introduce the pair
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A B

Figure 4.4 Diffusion of grains. Parallel and perpendicular diffusion coefficients Dx, and
Dy scaled to the noise strength ∆x for differentA0, and Λx. In A the parallel diffusion shows
a decay as density increases. In B the perpendicular diffusion Dy . In the inset the values of
Dx, and Dy for the densities, and shaking amplitudes. The relation Dy/Λx ∼ (Dx/Λx)ν

with ν = 0.6

Figure 4.5 Experimental inclusions. Experiments performed with bronze spheres in a
dense bed of poppy seeds [Lozano et al., 2015].

of inclusions is to understand the dynamics of a single inclusion.

Experiments in mixtures of spheres and grains are usually performed in a regime
of high density of grains [Reis et al., 2006, Lozano et al., 2015], see Figure 4.5. For
further analysis on the effect of the granular bed on inclusions we have selected the
packing densities φ = 0.60, and φ = 0.75 in the following sections. Finally, we fix
the noise amplitude to Λx = 50 in system units. Active agents display a diffusive
behaviour and so we expect passive bodies to follow it.

4.4.1 A free moving inclusion
In experiments [Lozano et al., 2015] placed metallic spheres in a bath of gran-
ular particles. We have considered the metallic sphere as a passive particle in
an activated suspension. Under shaking and, in the presence of grains, we have
simulated different solutions for the metallic sphere without moving into a full,
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A B

Figure 4.6 Mean Squared Displacement of an inclusion. A the MSD in the shaking
direction, and in B in the direction perpendicular to the shaking. We observe, in dashed lines,
the expected diffusive behaviour for limiting values of D.

realistic, time consuming and too detailed simulation in three dimensions. First of
all we introduced the sphere as a disk with different mass M = 50mg , and a lower
surface dissipation constant γ. Secondly, we tested with a disk of mass m = 50mg

disconnected from the shaking of the tray. The disconnection from the shaking
achieves a better modelling of the original problem of a sphere rolling on the tray.
The sphere with a “single” point of contact with the tray rotates under shaking
and, tries to stay at the same position in the laboratory frame of reference. This
assumption lies on two main hypothesis: first the rotations are without slip, and
second we assume that the stored rotational energy does have a strong influence in
the interactions.

We introduce inclusions with vectorsXi, and velocities Vi which follow granu-
lar equations (4.12). We have introduced repulsive dissipative potentials between
inclusions, and between inclusions and grains such as (4.3,??). As we have previ-
ously discussed we disconnect the acceleration of the inclusions from the tray.

For granular packing densities φ = 0.6, and φ = 0.75, shaking amplitudes
A0 = 0.75σg, and A0 = 1.5σg we measure the diffusion of inclusions in the bath.
We have averaged over hundreds of independent systems to obtain and guarantee
a statistically good long time behaviour. Inclusions diffuse in the granular system
even at large packing densities, φ = 0.75, with a characteristic diffusive time
τd = σ2/D. At high densities we observe a stronger influence of the shaking. The
system has a larger diffusion constant the larger the shaking amplitude is. Mean
squared displacement of inclusions in the parallel and perpendicular directions are
presented in Figure 4.6. We observe a diffusive behaviour for several time decades.
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Profiles

For a free moving inclusion we observe its diffusion and ability to explore the
system. To study its effect in the granular bed we have fixed an inclusion in the
simulation to measure the spacial dependence of granular magnitudes as a function
of its distance to the inclusion surface. To fix the inclusion in the simulation box we
freeze the updating of its position vectorXi but keep the dynamics on its velocity
Vi. We maintain the dynamics of the velocity of the inclusions because it plays an
important role in the interactions with the grains.

Figure 4.7 Grid for the profile measures.
At each cell we compute the local values of
the density, and kinetic energies of the grains.
Finally we average at constant h. h = x in
the direction of shaking and h = y in the
perpendicular direction.

To measure the profile we define a rectangular box that encloses the inclusion
of size L× σg in the direction of the shaking and its perpendicular direction. We
slice the box in boxes of width ∆x = 0.2σ and height ∆y = 0.2σ.

We compute the local density, φ(x′, y′), and kinetic energies ek(x′, y′), and
tk(x′, y′) at each cell with centre at position (x′, y′). We average over 103 oscil-
lation cycles for different initial conditions of the sea of grains. The result is then
integrated in the vertical transverse direction to obtain the dependence on h = x
for the profile in the parallel direction, and on h = y for the profile in the direction
perpendicular to the shaking. To increase statistics we fold the data, we collect
measures from both sides of the inclusion. Then we compute the relative measure
as the local measure relative to the bulk values denoted by the average 〈·〉

δek(h) =
ek(h)− 〈ek〉
〈ek〉

, δtk(h) =
tk(h)− 〈tk〉
〈tk〉

(4.22)

Profiles, in Figure 4.8 show the disturbance that a fixed inclusion induces on
bed of particles. The density profile φ(h) is not affected by the shaking. Kinetic
energies, though, display a relative change close to the inclusion. The relative
kinetic energy, δtk(h), at contact is positive, and asymptotically relaxes to zero,
in both parallel and perpendicular directions. However, absolute kinetic energy,
δek(h), behaves differently for α = π/2, when it is positive at short distances
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h ≈ 1 and relaxes to zero asymptotically; for α = 0 it presents a minimum at
contact and relaxes to zero.

A B

C D

Figure 4.8 Kinetic energy proifiles for one inclusion. Kinetic energy and density relative
excess profiles the granular bed as a function of the distance to the surface of the inclusion.
In the direction parallel to the shaking α = 0 in solid points, and perpendicular α = π/2
in hollow points. In A A0 = 1.5σg , and φ = 0.75, B A0 = 0.75σg , and φ = 0.60, C
A0 = 1.5σg , and φ = 0.60, and D A0 = 0.75σg , and φ = 0.75

4.5 Two inlcusions
We are interested in the dynamics of a pair of intruder particles in a bed of shaken
granular particles. We introduce a pair of intruder particles, in subsection 4.5.1,
and define the relative coordinates that characterize the pair. In subsection 4.5.2
we extract the probabilities to measure the different configurations as a function of
granular shaking and packing. Finally, 4.5.3 we visualise the probability to measure
the pair separated a distance d and the relative orientation for both touching and
distant pairs.

4.5.1 Dimer inclusions
In this subsection, we introduce a dimer of intruder particles of fixed diameter
σ = 1.5σg , and mass per particle m = 50 m0. The centre of mass of each intruder
is defined by the the 2d vector Ra, and Rb. To model the experimental set-up
we introduce inclusions as disks disconnected from the oscillation of the tray; not
moving solidarily to the tray resembles the 3d rotation of an inertial sphere on a
moving platform. In section 4.2 we detail the Langevin equations for the grains an
in 4.4.1 the dynamics of the inclusions and study the case of a sole inclusion of
σ = 1.5σg and mass m = 50m0.
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A doublet of intruders defines a dimer whose centre to centre vector is r =
Ra−Rb. The dimer vector, r = (rx, ry), is equally described by its modulus r and
the angle α relative to the shaking direction r = r (cosα, sinα). We define the con-
cept of “parallel” or “perpendicular” configurations of the dimer for the particular
configurations α ≈ 0 and α ≈ π/2, respectively. For simplicity we use the min-
imal distance between the surface of inclusions d = r−σ to define the dimer length.

To understand the dynamics of an intruder dimer we have prepared a large
collection of granular beds with initial configurations of the dimer d ∈ [4, 7] and
α ∈ [0, 2π]. We sample between 106 (φ = 0.60) and 6 106 (φ = 0.75) shaking
cycles for systems of box size L = 32σg, and compare the results for shaking
amplitudes A0 = 0.75σg and A0 = 1.5σg .

Energy is introduced by the external forcing with both parameters A0, and ω.
In the following sections we focus on the shaking amplitude A0 to drive the system
out of equilibrium. By changing A0 we introduce a length scale that may lead to
structural deformations of the system at distances ∼ 2A0. While changing ω we
modify the dissipation rate of the granular system.

The absolute kinetic energy, see section 4.2.3, defines an energy scale 〈ek〉 ≈
〈tk〉 + A2

0ω
2mg that depends on the shaking amplitude A0, and the shaking fre-

quency ω, and on the random forces characterized by the energy scale 〈tk〉. Due to
the robustness of the relative kinetic energy 〈tk〉 to the changes in packing density
of the grains φ, and the invariance for changes in the shaking amplitude A0, shown
in Figure 4.2, we choose E = 〈tk〉 as the energy scale of the system.

4.5.2 Probability Landscapes

We define P(rx, ry) as the probability to measure the dimer in the configuration
rx ∈ [rx, rx + ∆x] and ry ∈ [ry, ry + ∆y] – we use ∆x = ∆y = 0.05σg in the
following computations. We compute the probability landscape − lnP (rx, ry).
The probability landscape indicates the most probable relative distance between
particles, it measures which are the most stable configurations of the dimer. If the
system were in equilibrium, the probability landscape− lnP would be proportional
to the interaction energy U(rx, ry) of inclusions, the formation energy of the dimer.

To assist the interpretation of the probability landscapes in 4.9, and 4.10 we
define the same colour scale for the different systems. We measure the probability
density at large distances r > 10σ in order to set lnP(r → ∞) → 0 to compare
the different systems to the same reference configuration. In addition to the colour
map, we introduce isocurves to guide the eye in the interpretation of the probability
landscapes.

In this driven system we associate a minimum of the magnitude− lnP to a high
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Figure 4.9 Probability landscapes for a mobile inclusion dimer. Density plot of the
measured joint probability landscape − lnP(rx, ry) for the dimer configuration vector
r = Ra −Rb. From left to right we plot first the landscapes for low density granular beds
at φ = 0.60 (a) A0 = 0.75σ, and (b) A0 = 1.5σ. Second we plot the landscapes for high
density granular beds at φ = 0.75 (c) A0 = 0.75σg , and (d) A0 = 1.5σg .

probable configuration of the dimer, an attractive configuration of the inclusions.
We extract the probability landscape for different packing densities and shaking
amplitudes. We present − lnP(rx, ry) in Fig. 4.9. We identify r ≈ σ, and α ≈ 0
as the most probable configuration of the dimer. All four granular beds introduce an
anisotropy for configurations at contact r ≈ σ, see in Fig. 4.9 that, at contact, the
probability is higher for α ≈ 0 rather than α ≈ π/2. The structure of the granular
bath is clearly manifested in the probability landscape as a sequence of concentric
rings surrounding r = σg .

However, in the case of high shaking amplitude A0 = 1.5σg , and high packing
fraction φ = 0.75 the structure of the granular bed is rapidly lost in the direction
α = 0 and decays faster than at α = π/2. Moreover, at large distances perpen-
dicular configurations are favoured and an island of repulsion emerges centred
at r = 8σg, and α = 0, see Fig. 4.10 where we plot an extended region in the
configuration space of the dimer configurations.

4.5.3 Averaged probability
The probability density P(rx, ry) in Cartesian coordinates can be translated into
P(r, α) in polar coordinates r, and α. In polar coordinates we define the averaged
angular distribution P (r) as the integral of P(r, α) over the angle α. We have
previously seen the emergent anisotropy in the configurations. The radial P (r)
averages on angles and gives an effective radial dependence of the probability.

We plot the probability as a function of the minimum distance between inclu-
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Figure 4.10 Probability landscape at large A0, and φ. Density plot of the probability
landscape to measure the dimer configuration r for a system at φ = 0.75, and A0 = 1.5σg .
We observe an exclusion zone, in magenta, where the probability to find the dimer is below
the value of P at infinity.

sions in the dimer d = r − σ, so that d = 0 corresponds to the contact position
r = σ. We identify three different features in the P (r), shown in Fig. 4.11. First,
at contact, d = 0, − lnP (d) has the lowest value, it is the preferred configuration.
Second, the oscillations of − lnP (d) at short distances, d < 3σg, clearly show
the structure of the bath, for the periodicity corresponds to the granular size. A
separation of a whole grain between inclusions is more probable than being sep-
arated half a grain or a grain and a half. Images of the system reveal the grain in
between inclusions. The surrounding of minima is locally stable and corresponds
to an integer number of grains in between. Third, the oscillations are superimposed
on a monotonous decay towards zero. The decay is stronger the more compact the
system is – the signal is stronger at φ = 0.75. In Figure 4.11 he show the algebraic
decay of the probability by fitting a − lnP (d) ∼ d−1 curve.

To measure the degree of anisotropy we introduce the projections P<(d;α),
and P>(d;α) as are the integrals of P(r, α) over r in the ranges r ∈ (σ, d), and
r ∈ (d,∞) for P< and P> respectively (4.23).

P<(d;α) =

∫ d

σ

rdrP (r, α) , P>(d;α) =

∫ ∞

d

rdrP (r, α) (4.23)

We quantify the anisotropy qualitatively seen in Fig. 4.9 with the angular
distributions P>(d;α), and P<(d;α) see Fig. 4.12. An isotropic distribution in
space corresponds to P<,>(d, α) = 2/π ≈ 0.64. Values of P<,>(d, α) above the
isotropic value indicate preference for angular orientations α in that distance range,
those angles are favoured. On P<(d = 2σg;α) we observe a preference in parallel
configurations, as P< is above the isotropic value for parallel configurations, and
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A B

C

Figure 4.11 Effective radial probability of a moving dimer. A Distance dependence
of effective probability, − lnP(d), of the relative distance between inclusions for different
granular beds. In cyan and magenta dashed lines we plot an algebraic fit at large distances
− lnP (d) = a/d. B, and C Images of the system.

below for perpendicular configurations. The anisotropy in the configuration has a
major dependence on the shaking amplitudeA0 rather than on the density, we do not
observe great deviations for φ = 0.6, and φ = 0.75. Anisotropy at large distances,
P>(d = 2σg;α), favours perpendicular interactions, specially for φ = 0.75, and
A0 = 1.5σg , as graphically seen in Figure 4.10.

If the system were in equilibrium, the interpretation of the probabilities would be
straight forward. The minimum, and slow decay of the radial probability− lnP (D)
would translate into an energy minimum at r = σ, and an emergent attractive long
range interaction U ∼ d−1. The results in the anisotropy shown in Fig. 4.12 would
imply the emergence of an aligning torque at short distances; a torque that would
align the dimer in the shaking direction. However, the system is not in thermal
equilibrium and thus, we cannot relate the probability to the interaction energy.
But we identify effective attractive interactions and proceed to quantify in the next
section.

4.6 Two Fixed inclusions

In this section we quantify the emergent interaction between inclusions. We fix the
inclusions at relative coordinates (d, α) and measure the relative mean interactions,
forces and torques. Then we propose a model that captures the radial force as a
simple function of the shaking amplitude A0, the relative angle α, and the distance
between inclusions d. Finally, we introduce the computation of local measures of
the granular bed along the axis of the dimer to comprehend the mechanism of the
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Figure 4.12 Anisotropic orien-
tation of the dimer. Anisotropy
measures. (a) for distances be-
low 2σg . (b) for distances d >
2σg . In black dashed lines we plot
the distribution function for an
isotropic distribution in P (α) =
2/π, above the dashed line the
configuration α is favourable, be-
low otherwise. In squares and cir-
cles the results for A0 = 1.5σg ,
and A0 = 0.75σg respectively. In
red and blue results for packing
densities of the bed φ = 0.75, and
φ = 0.6.

interaction.

4.6.1 Forces and Torques

In equilibrium statistical mechanics, the connection between free energy and prob-
ability is well established. The connection is given by − lnP(d) = −βUeff (d),
where Ueff (d) is the effective energy of interaction, and β the inverse of the ther-
mal energy kBT . In a dissipative driven system the connection is no longer valid
since the system is not in equilibrium. For this reason we introduce a mechanical
definition of relative force, torque and energy of interaction.

We fix the pair of inclusions [Zaeifi Yamchi and Naji, 2017, Harder et al.,
2014b, Ni et al., 2015] at positionsRa andRb but we maintain the evolution of the
inclusions’ velocity since the dissipation in the collisions depends on the relative
velocity between interacting particles. The forces on the inclusions given by the
granular bed are Fa and Fb on both particles. We define the effective interaction
between inclusions by computing the relative force Fb(Rb)− Fa(Ra). To extract
the relevant information from the relative force acting on the dimer we project along
the radial and tangential directions, r̂, and t̂
+

Fr(α, d) =

〈
Fb(Rb)− Fa(Ra)

2
· r̂
〉

(4.24)

Ft(α, d) =
〈
(Fb(Rb)− Fa(Ra)) · t̂

〉
(4.25)
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Figure 4.13 Diagram for the
force measurements. Sketch of
the system with inclusions of diam-
eter σ in grey, and grains of diame-
ter σi in brown. Shaking direction
is denoted by double headed ar-
rows, and α the angle of the dimer
relative to the shaking. In orange
the force acting on each inclusion.
We denote the relative interaction
forces between passive particles,
in red radial forces, and transverse
forces in green, curved gren arrows
give an intuition of the counter
clock-wise torque.

Vectors r̂ and t̂ constitute an orthonormal basis of the plain, R2, the radial direc-
tion r̂ = (Rb −Ra) / |Rb −Ra| and, after rotating π/2 the transverse direction
t̂ = Rπ/2r̂. The brackets 〈X〉 denote the average of the magnitude X over cycles,
and between 3 and 10 independent realizations of the system.
The projection Fr(α, d) define and characterize the interactions between inclu-

sions. The forces in the radial direction define the strength and the attractive or
repulsive nature of the interaction at particle d, and angle α of the centre-to-centre
director relative to the shaking direction. The behaviour at short distances d reveal
the interaction between inclusions induced by the local structure of the bath, while
the behaviour at long distances d are associated to fluctuation induced interactions.

The sign of Fr(α, d) determines the nature of the interaction at a given distance
and orientation angle. Attractive interactions are captured by negative values of
Fr. Repulsive interactions, then correspond to Fr > 0. The transverse force,
Ft, indicates the an emergent neat torque acting on the inclusion pair. Torques
that induce a clock-wise rotation of the pair are identified by Ft < 0. Counter
clock-wise rotations, then, are induced by Ft > 0. For a summary of the signs see
Figure 4.14

The analysis of the granular bed as a function of the shaking amplitude, and
density is performed in section 4.2.3. In there, a pair of kinetic energies are pre-
sented. On the one hand, the relative kinetic energy 〈tk〉 does not depend either
on the shaking amplitude A0 nor the density of the system φ, it is best suited to
compare forces in systems at different densities and shaking amplitudes. On the
other hand, the absolute kinetic energy 〈ek〉 does include the flux of energy that the
shaking introduces to the grains. Even though both energies are suitable to define
an energy scale we choose 〈tk〉 for the sake of commensurability.



4.6. Two Fixed inclusions 111

Figure 4.14 Schematic repre-
sentation of the relative forces
and torques. Relative interactions
between particles. Fr determines
whether interactions are attractive,
Fr < 0, or repulsive, Fr > 0.
Ft determines the direction of rota-
tion, either clockwise, Ft < 0, or
counter-clockwise, Ft > 0.

In a squared box of side L = 32σg, and periodic boundary conditions, we
fix inclusions at surface to surface distances in the range d ∈ [0, 8]. Given the
anisotropy identified in Section 4.5.1, and the existence of a preferential direction,
the shaking, we prepare the inclusions at different angles relative to the shaking,
α ∈ [0, π/2]. The angular exploration is performed in the first quadrant, for the
symmetry of the problem condenses there all the meaningful information. We
average on various sets with fixed parameters (α, d,A0, φ) over 103 oscillation
cycles, and independent realizations, to extract the averaged values Fr, and Ft.

The relative radial force Fr, and torque Ft, as defined in (4.24,4.25), and
schematically represented in Figure 4.14 is presented in Figure 4.15 for granular
baths with packing densities φ = 0.6, and φ = 0.75, and shaking amplitudes
A0 = 0.75σg, and 1.5σg. Effective radial force shows the attractiveness of the
interaction for a pair of inclusions at contact, at d = 0, for Fr(0) is negative for
all considered angles. The magnitude of effective attraction at contact depends
on the orientation of the dimer relative to the shaking direction, the interaction
is maximum at contact and decreases in the perpendicular direction. As distance
increases, from d = 0 to d = σg the force reaches a maximum peak before d = σg ,
and then presents a second minimum close to d = σg. Then Fr oscillates with
decaying amplitude that reflects the local structure of the grains.

As a function of the dimer angle, α, the behaviour of the radial force changes.
At perpendicular configurations the decaying oscillations reflect the structure of
the bath for longer distances, shaking does not introduce relevant deformations
in its orthogonal direction. As the angle is reduced, α < π/2 the structure in
the radial force is gradually destroyed –at large distances– while a neat attractive
force appears for several inclusion diameters. Overall, shaking induces an effective
attractiveness that increases as the dimer aligns relative to the shaking. In addition,
a long range force Fr ∼ d−2 dominates the interaction at large distances. This
aspect is analysed in further detail in the next section.

In addition to the central interaction Fr, a relative tangential force, Ft, appears
for configurations with neither α 6= 0, nor α 6= π/2. Torque on the dimer reaches
its maximum strength at α = π/4. This non-central force is present in the system
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Figure 4.15 Relative forces and torques between two inclusions. Mean relative force,
Fr , and torque Ft as a function of distance. Plots (a,b) for densities φ = 0.60 and Ft, and
Fr , respectively. Plots (c,d) for densities φ = 0.75 and Ft, and Fr , respectively. Different
amplitudes are labelled by squares, A0 = 1.5σg , and circles A0 = 0.75σg . Different shades
of colours identity the angle of the dimer relative to the shaking direction.
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for short separation distances, d . 2σg. The negative sign of Ft indicates the
emergence of torque that aligns the dimer towards the shaking direction. The torque
decrease for low increments of the angle ∆Ft/∆α < 0 around α = 0, indicates a
stable configuration for α = 0. The torque decrease for decreasing angles around
α = π/2, ∆Ft/∆α < 0, implies that configurations of the dimer α = π/2 are
dynamically unstable.

At φ = 0.75, and A0 = 1.5, however, a finite disaligning torque emerges at
large distances d & 2σg . The nature of torques shown in Figure 4.15 and is compat-
ible with the anisotropy found in the probability P(rx, ry) for moving inclusions
reported in Figures 4.9 and 4.12 in section 4.5.1. Moving inclusions, once in contact,
had a strong tendency to be aligned in the direction of the shaking. For the dense
configuration and large shaking amplitude, we reported an island of instability at
large distances and α = 0, consistent with the long range counter-clockwise torque
in the force measurements for fixed dimers.

4.6.2 Long range interactions

At large distances the radial force decays towards zero in length scales larger than
10σg. Even though we are not able to test the dependence over several decades in
distance, we model the decay with an algebraic dependence. In granular media, long
range algebraic forces have already been suggested [Cattuto et al., 2006]. However,
for the given interaction range we cannot distinguish between an algebraic decay,
with d−2, and an exponential exp(−d/λ). For this reason, and given the oscillation
of the interaction force at perpendicular configurations we propose an algebraic fit
for its higher reliance fitting in the regime α ≈ π/2.

Fr(φ,A0, α, d) = F2(φ,A0, α)
(σg
d

)2

+ F0 (4.26)

where F2 gives the strength of the pair interaction, and F0 the value of the relative
effective force at infinity, which remains F0 ≈ 0.

To capture the full dependence on α, and A0 on the strength of the long range
emergent interaction Fr(φ,A0, α) we have systematically swept the space of param-
eters α, and A0. The radial force presents an oscillating behaviour at large angles,
α ≈ π/2, and a smooth one at lower values of α, see Figure 4.16. The strong oscil-
latory signal corresponds to an ordered structure of the granular bed surrounding
each inclusion. The prevalence of the ordered structures around an inclusion is
affected by the external forcing, the external displacement on the granular bed. At
perpendicular configurations of the dimer the effect of external forcing is almost
nonexistent. As the angle of the dimer increases the effect of the external forcing
increases and the local structure is lost. What is even more, an effective interac-
tion between particles emerge, and increases as the dimer gets aligned to the forcing.
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A

B

Figure 4.16 Long range radial force between inclusions. Relative force, Fr between
inclusions as a function of interparticle distance d/σg . A at shaking amplitude A0 = 1.5σg
the external forcing is strong enough to destroy the internal structure of the grains at α < 60o.
B at shaking amplitude A0 = 0.5σg the internal structure persists for angles α & 30o.

The simplest interaction that satisfies the symmetry of the problem, the absence
of polarity and a preferential direction, and the knowledge of extremal values of the
interaction at α = 0 (maximum), and α = π/2 is cos2 α. For this we introduce

F2(φ,A0, α) = B2(A0, φ) cos2 α (4.27)

where B2 is a function of the shaking amplitude and the density. In Figure 4.17
we present the values of the interaction strength F2 for different shaking ampli-
tudes as a function of the angle for φ = 0.75, the case in which the signal is
stronger. The linear behaviour on cos2 α validates the proposed model (4.27). The
intensity of F2 increases for greater shaking amplitudes A0. In Figure 4.17 we
present the fitted value of B2 for increasing values of the shaking. B2 presents two
qualitative regimes. First, at low shaking amplitudes, the interaction is attractive
at a constant value σgB2/ 〈tk〉 ≈ −20. Then, above A0 ≈ 0.6 B2 remains no
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longer constant and increases in magnitude, the interaction becomes more attrac-
tive. For the considered range the increase is linear on the shaking amplitude A0

σgB2/ 〈tk〉 = 67(A0 − 0.6σg)/σg , for A0 > 0.6σg .

A B

Figure 4.17 Determination of the dependences of the strength of interaction
F2(φ,A0, α). A F2 as a function of cos2 α for different shaking amplitudes, and the
dependence (4.27). B Value of the prefactor of B2(A0, φ) as a function of A0/σg . The
dashed line the relation σgB2/ 〈tk〉 = 67 (A0/σg − 0.6)− 20

In short, the results in Figures 4.16, and 4.17 indicate an emergent interaction
between passive particles

Fr(φ,A0, α, d) = F (φ)

(
A0 −Ac0(φ)

σg
+B0(φ)

)
cos2 α

(σg
d

)2

, for A0 > Ac0

(4.28)
where we have reduced the interaction force Fr at long distances to three density
dependent functions. F (φ) quantifies the strength of interaction, and Ac0, and B0

the force, and shaking amplitudes at the onset of the amplitude dependence of the
force.

4.6.3 Formation Energy
The measure of the force for a succession of distances between inclusions, presented
in Figure 4.16, can be further exploited to define a mechanical formation energy of
the dimer. We define the formation energy of a dimer as the integral of the radial
force along a line at constant angle α relative to the shaking.

Uα(d) =

∫

d→∞
Fint · dl = −

∫ d

∞
Fr(r, α)dr (4.29)

For a system in equilibrium the relation between probability and energy is clear
and direct, U = −β−1 lnP . In this system, the shaking introduces a flux of energy
in such a way that the standard equilibrium relation U = −β−1 lnP is no longer
guaranteed. Moreover, the pinning of particles to extract measures of the interaction
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force alters the structure of the sea of grains. The fact that grains are not able to
separate the dimer, since d is fixed, may enhance interaction forces.

In section 4.4, for moving inclusions, we extracted the probability to find
the dimer in the configuration (rx, ry), or in polar coordinates (r, θ), see Figure
4.11. With this data we proceed to check to which extend the relation between the
formation energy, a mechanical measure, compares with an effective interaction
energy whether the equilibrium relation U = −β−1 lnP held. We differentiate
the mechanical formation energy in the direction α, Uα, to the effective averaged
interaction energy extracted from the probability to locate particles at a given con-
figuration, U(d, α).

With the data from the probability distribution P (d), and the formation energy
of the dimer Uα(d) we define the a chi squared function which introduces an
effective β−1(α) a fitting parameter

χ2 =
∑

i

[
Uα (di)−

(
β−1(α) lnP (di) + U0(α)

)]2
(4.30)

First, we project the probability into a specific value of α, Pα(d, α), to fit Uα(d).
The extreme behaviour of the pair probability at α = 0, where a repulsion appears
for A0 = 1.5σg, and φ = 0.75 is evident in Figure 4.18 and completely breaks an
eventual energy connection to the probability since the formation energy presents a
clear d−2 long tail. The perpendicular presents another striking characteristic. The
formation energy presents a considerable humpback at short distances and rapidly
decays to zero, in the special case of φ = 0.6 following positive energies. This
major difference with the probability, leads to small fitting values of β−1, and even
β−1 < 0. The effects of the pinning, the measure protocol, are evident at short
distances.

Second, for angular dependences of the sort cos2 α the average value of the
distribution corresponds to cos2 π/4 = 1/2 = 2/π

∫ π/2
0

dϕ cos2 ϕ. Following this
idea we compute the average formation energy as the angular average 〈Uα(d)〉α,
and the radial pair distribution function P (r), previously presented in Figure 4.11.
Given the nature of the decays in both − lnP (d), and 〈Uα〉α we are able to fit an
effective β−1 at large distances. The fitting, however, does not cover the close
distance configurations, and thus the idea of an effective β−1 breaks down into
pieces.

4.6.4 Granular Measures Profiles
It is important to understand the disturbance that inclusions introduce to the sea of
grains. Fixing the inclusions allows us not only to measure the relative forces and
torques but to capture the local variations of different magnitudes along the axis of
the dimer.
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Figure 4.18 Formation energy of an inclusion dimer. In solid lines the formation energy
of the dimer in different directions. In points, we fit an effective β for the averaged probability
− lnPα(r, α) at different angles. Shaking amplitude A0 = 1.5σg and the density of the
granular bed is set to φ = 0.75 in A, and φ = 0.75 in B
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Figure 4.19 Averaged formation energy of the inclusion dimer. Effective energy fit. An-
gular averaged pair probability, −β−1 ln P (d), and averaged mechanical energy 〈Uα(d)〉α.

To measure the profile we define a rectangular box that encloses the inclusions
of size L×σg in the axis of the dimer, we follow the procedure introduced in Figure
4.7 in section 4.4.

We compute the local density, φ(x′, y′), and kinetic energies ek(x′, y′), and
tk(x′, y′) at each cell with centre at (x′, y′). We average over 103 oscillation cy-
cles for different independent realizations of the sea of grains. The result is then
integrated in the orthogonal dimension to the profile obtain the dependence on
the distance from the inclusion h. To increase statistics we fold the data so that
positive values correspond to profiles in the outer regions of the inclusions (i.e.
h′ + L/2 + d/2 + σg → h, and L/2− d/2− σg − h′ → h). The inner region of
the profile, between the inclusions, corresponds to negative values of the profile.
We have not used the folded range but define h ∈ [−d, 0) for a better visualization
of the profiles.

In Figure 4.22 we plot the relative excess of density, and kinetic energies for
φ = 0.75, A0 = 1.5σg relative to the bulk values (4.22). We compute the profiles
for different configurations of the dimer (parallel and perpendicular to the shaking)
and different separation distances (d = 2σ and d = 6σg).

For positive values of h/σg , the behaviour of each profile does change from the
previously reported behaviour for a single inclusion, see 4.4.1. For negative values
of h the deviations from bulk values follow the qualitative behaviour observed for
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exterior profiles. The strength, though, increases. An appropriate description of the
inner profiles considers the effects of each inclusion, and the join effect of the pair,
a full description of a generic inner profile, g, at position −h is

δg(h) = δg1(−h) + δg2(h2 = d− h) + δg12(h, d) (4.31)

where δg1, and δg2 are the disturbances introduced by inclusions at positionsX1,
andX2, and h2 = d−h the position relative to inclusionX2. We introduce the two
body contribution δg12 which depends on the distance h, and the dimer separation
d. We sketch the two inclusion system in Figure 4.20.

Figure 4.20 Inclusion dimer geometry. The inner profile is at distances−h from inclusion
atX1, and distance h2 from inclusionX2. We include the positive distances h, and h2 from
inclusionX1 in the exterior region.

We do not observe a significant deviation of the averaged density along the
axis. The averaged density in the region between inclusions equals to the averaged
density outside –except for the density at contact that decays due to grain size and
the curvature of the disks. However, both kinetic energies –absolute, and relative–
are not kept constant along h. On the one hand, the excess relative kinetic energy
δtk has a positive value at contact and relaxes towards zero. On the other hand, the
absolute kinetic energy departs from a negative value at contact. For perpendicular
configurations, α = π/2, is suddenly increases to δek > 0 and relaxes to 0. For
parallel configurations, ek does not jump and the relaxation process occurs at nega-
tive values of ek, as it corresponds to a single inclusion and reported in 4.4.1.

We test profile additivity, equation (4.31), by jointly plotting the inner measured
profiles δek, and δtk, and (4.31) considering δg12 = 0. In Figures 4.21, and 4.22
we present the inner and outer profiles for dimer distances d = 6σg, and d = 2σg,
respectively. Results for the inner region show a good agreement with the additivity
assumption for the energy profiles.
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A

B

Figure 4.21 Kinetic energy profiles for an inclusion dimer at d = 6σg . Excess kinetic
energy and density of grains in a system at density φ = 0.75, and shaking amplitude
A0 = 1.5σg for different configurations of the dimer, and d = 6σg , and α = π/2 in A, and
α = 0 in B. In orange squares and red circles we plot the result of combining two surfaces
with origins at h = 0, and h = −d
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A

B

Figure 4.22 Kinetic energy profiles for an inclusion dimer at d = 2σg . Excess kinetic
energies and density of grains in a system at density φ = 0.75, and shaking amplitude
A0 = 1.5σg for different configurations of the dimer, and d = 2σg , and α = π/2 in A, and
α = 0 in B. In orange squares and red circles we plot the result of combining two surfaces
with origins at h = 0, and h = −d

4.7 Conclusions to this Chapter
In this chapter, we have proposed a model for horizontally vibrated granular mat-
ter. We presented kinetic energy measurements to characterize the granular bath
and discussed the insertion of intruder particles. We analysed the dynamics of
an inclusion and proceeded to introduce them in pairs. Previous experimental
results from [Lozano et al., 2015] reported an effective interaction between pairs of
inclusions via pair distribution functions.

Then, we introduced a pair of free moving moving inclusions to mimic the
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experimental realization of the problem. We reported the tendency to stay at contact,
and associated it to an effective emergent interaction. In addition, we reported the
increase of the probability to obtain pairs of inclusions aligned with the shaking
while at contact. At larger distances, and for high density packing fractions, pairs
tend to align in the direction perpendicular to the shaking. We fixed the inclusions
at different distances and relative angles to the shaking in order to measure their
relative forces of interaction. Results evidence the emergence of a long range force,
superimposed to the structure induced interactions, and its dependence with the
aligning of the pair relative to the shaking. In parallel, we report the emergence
of a relative aligning interaction torque between particles at short distances, and a
disaligning torque at long distances for high densities, and shaking amplitudes. Re-
sults for fixed inclusions are consistent with the results for freely moving inclusions.

Further, a systematic exploration of the long range interaction in terms of sys-
tem parameters has permitted us to compress the dependences of the pair distance,
orientation relative to the shaking, and shaking amplitude into a simple expression
with a sole dependence on the granular packing density. Combining the results of
the mechanical forces and probabilities to measure free moving particles at given
relative configurations has permitted us to check the impossibility to associate an
effective temperature to connect energy and probabilities.

Altogether, we have prepared and characterized a computational framework
to study the interaction of shaken granular bed with intruder particles via both
mechanical and dynamical measures. The emergence of a disaligning torque
at large distances, leads us to consider its implications in the stripe separation,
perpendicular to the shaking direction, in mixtures of driven grains and inclusions.
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Appendices

4.A Long Range Interaction
As briefly introduced the the body of this Chapter we fit the interaction data of the
radial force between inclusions to an algebraic function for the distance between
particles d−2. We have extended the computation to boxes of size L = 64σg to
study a broader range of the inter particle distance in order to avoid the interactions
with the image systems caused by the periodic boundary conditions, present at
d ≈ L/2.

The form of the interaction is either an algebraic function or an exponential

Fr = F2d
−2, Fr = G2 exp (−d/λ) (4.A.1)

with F2, and G2 the strength of interaction, and λ the characteristic length of
interaction.
Here
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5
Apolar Active Matter

5.1 Motivation

In the last two chapters we have focused on the interactions that a bath of self
propelled particles induce on probe particles that behave like passive objects. The
union link between systems presented in Chapters 3 and 4 are the force transmission
mechanisms, contact forces, and the polar nature of the activity. Active Brownian
Particles, Aligning Active Particles, and grains show a persistence of motion, and
hence are polar active particles.

In this chapter we focus on novel system of active particles that differs from
the aforementioned systems in different aspects. First, activity does not directly
translate into a directed movement, there is no propulsion so we refer to the particles
as Apolar Active Particles. Second, the activity mediated interaction between active
and passive particles do not emerge from contact forces but from the intrinsic ability
of apolar particles to generate steady chemical imbalances that extend to their sur-
roundings. This works is founded in the theoretical framework proposed by [Soto
and Golestanian, 2014b] to understand, and model, diffusophoretic interactions
between colloidal particles in the microscale. In this Chapter we first introduce an
experimental binary mixture of passive and apolar particles that give rise to diffu-
sophoretic interactions. We develop a model to account for the relative interactions
between particles of different sizes and activities. Then, we compare the theoretical
predictions to experimental data to calibrate the strength of interaction. Finally
we explore, computationally, the system for different concentrations of active and
passive particles to later compare them to experimental aggregation processes.
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Experiments performed in the Laboratory of Pietro Tierno in Barcelona showed
an interesting aggregation mechanism in a mixture of hematite and silica particles.
Previous experiments [Palacci et al., 2013a, ?, ?] reported attractive interactions
for apolar photoactivated colloids and passive particles when it was immersed in a
solution of hydrogen peroxide. With no illumination the system is in thermal equi-
librium, but when it is shone by light, hematite particles catalyse the decomposition
reaction 2H2O2(aq) −→ 2H2O(l) +O2(g) on their surface. The local consumption
and production of chemical products in the vicinity of hematite particles intrinsi-
cally drive the system out-of-equilibrium. The generation of gradients of chemical
products leads to the development of fluid flows in the direction of gradient, as
derived by [Anderson and Prieve, 1984].

At first experimentalists observed [Martinez-Pedrero et al., 2017] the appear-
ance of a long range interaction in the form of a relative velocity between apolar
and passive particles, and results shown in Figure 5.1. The aggregation occurred
in helmatite dilute systems, with the formation of clusters similar to [Soto and
Golestanian, 2014b], in such a way that a visual observation, and particle tracking,
showed the emergence of a long range interaction which could extend to three or
four Silica particle diameters. The interaction velocity between active and passive
particles decays as the inverse of the square of the distance.

A B

Figure 5.1 Experimental diffusophoretic interactions. Experiments in a dilute binary
mixture of active and passive particles immersed in a solution of hydrogen peroxyde and
shone with blue light. In A the relative velocity of an apolar-passive pair with illumination.
In the inset we observe the rapid reorientation of the particle with its long axis perpendicular
to the centre to centre vector. B The formation of active-passive molecules with different
numbers of active and passive particles. Images from [Martinez-Pedrero et al., 2017]

In dense systems experimentalists reported the emergence of structured Silica
aggregates at even for very low fractions of hematite particles. The use of pho-
toactivated particles to induce crystallization in colloidal aggregates has attracted
our attention and consequently we have developed a model to computationally
describe and work together with experimentalists in Pietro Tierno’s Laboratory to
characterize this active-passive mixtures.
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The scope of this Chapter is to introduce a simple mechanism in section 5.2
to understand the emergent interaction between particles though the production
and consumption of chemical products. This interaction is then used to construct a
basic numerical model in section 5.3. In 5.4 we discuss the collective behaviour of
the binary fluid and the emergence of different mesoscopic structures.

5.2 Diffusophoresis and hydrodynamics
The basic ingredients of this this problem are the chemical products and their
coupling to the fluid. Since the works of J. Anderson [Anderson and Prieve,
1984, Anderson, 1989] the relation between gradients of chemicals and fluxes of
fluids is well established by the relation (5.1).

v(r, θ, z) = µd~∇c(r, θ, z) (5.1)

where a gradient of chemical product ∇c induces a velocity to the fluid v with a
proportionality constant µd, the diffusophoretic mobility.

In this section we model the concentration fields of chemicals around active and
passive particles in the framework developed by [Soto and Golestanian, 2014b,Soto
and Golestanian, 2015]. The interaction of chemical fields results in gradients of
chemicals on the surface of the particles. We exploit equation (5.1) to compute
the flow field generated by each particle and the final effect on the neighbouring
particles.

This diffusophoretic approach has been widely used [Golestanian et al., 2007],
[?, ?, ?], and finally its use as polar dimers [Colberg and Kapral, 2017], [Huang
et al., 2017].

5.2.1 Diffusion of chemicals
We model the concentration of chemicals with Laplace’s equation for the chemical
field c, with diffusion constantDc, and production rate α on the active particles. We
proceed to compute the effects on single field c(r, θ, φ) using a spherical coordinate
system.

∇c(r, θ, φ) = 0 (5.2)

We consider a sphere of diameter σ = 2R. The production and consumption of
chemicals occurs along the surface of the particle at a production/consumption
rate αc. Mathematically, it enters into the system though boundary conditions on
r = R.

Dc
∂c(r, θ, φ)

∂r

∣∣∣∣
r=R

= αc (5.3)

We further simplify the problem by considering only the solutions with no depen-
dence on φ. And we ask to the acceptable solutions must be bounded at infinity
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limr→∞ c(r, θ)→ 0.

c(r, θ) = c0 +

∞∑

l=0

Bl
Pl(cos θ)

rl+1
(5.4)

Imposing the boundary condition (5.3) on (5.4) we obtain the concentration field
generated by an apolar particle of a chemical product.

c(r, θ) = c0 +
αcR

2

Dc

1

r
(5.5)

The disturbance on the concentration field is a source/sink term – a monopole.

5.2.2 Velocity of a particle in a velocity field.
A spherical particle of radius R = σ/2 with a tangential hydrodynamic velocity
field on its surface, v‖(r, θ, φ). The total fluid velocity on the surface of the particle
is directly related to the velocity of the centre of mass of the particle, V, by the
mass conservation of the fluid (5.6).

V = − 1

4πR2

∮

∂Ω

v‖dS (5.6)

The functional form of the surface velocity v‖ defines the velocity of the particle.
Here we switch to the specific case of diffusophoretic flows on spherical particles.
The connection between the induced velocity v and the gradient is given in equation
(5.1). As a consequence, a particle with a non-uniform density field on its surface
generates a velocity field on its surface which potentially could propel the particle.

V = − µd
4πR2

∮

∂Ω

∇‖c(r, θ)dS (5.7)

Equation (5.4) gives a complete description of the density field of chemical c(r, θ)
with azimutal symmetry in the outer region of a spherical particle – the chemical
field within the fluid region. We denote by βp the multipolar components of the
density field on a particle of radius R.

In spherical coordinates the parallel projection of the gradient relative to the
surface r = R is ∇‖ = R−1θ̂∂θ + (R sin θ)−1φ̂∂φ, and simply ∇‖ = R−1θ̂∂θ
when we omit for concentration fields with no φ dependence. It is convenient
to introduce the derivative respect to the angle as ∂θ = − sin θ∂cos θ. Due to the
revolution symmetry in the problem we compute the velocity projected on the ẑ
axis1 Vz = V · ẑ.

Vz = − µd
4πR3

∮

∂Ω

sin2 θ
∂

∂cos θ

∑

p

βp
Rp+1

Pp(cos θ)dS (5.8)

1The projection along the z axis introduces the projection ẑ · θ̂ = − sin θ which simplifies the
computation which is no longer vectorial.
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We integrate over the surface element dS = R2dφd(cos θ), and the integral over φ
is immediate

Vz = − µd
2R2

∫ 1

−1

d(cos θ)
∑

p

βpR
−p(1− cos2 θ)

∂

∂ cos θ
Pp(cos θ) (5.9)

We introduce the relation (1−x2)P ′n(x) = nPn−1(x)−xnPn(x), and introduce x
and 1 as a function of the Legendre Polynomials to the later use of the orthogonality
relationships 〈Pm(x)|Pn(x)〉 = 2/(2m+ 1)δmn.

Vz = − µd
2R2

∑

p

βpR
−p
∫ 1

−1

dx [−pP1(x)Pp(x) + pPp−1(x)P0(x)] (5.10)

As a consequence of the orthogonality of the Legendre Polynomials, the only term
in the concentration field that is able to induce a neat velocity on the particle is the
the polar defined by the magnitude of β1.

Vz = − µd
2R2

∑

p

βpR
−p
(
−2

3
+ 2

)
δp1 =

2

3

µdβ1

R3
(5.11)

An active particle with homogeneous catalytic properties on its surface, α(θ) = α,
generates a monopolar concentration field with the only non zero term β0. An
apolar particle is not able to swimm. A half coated particle, however, α = 0 for
θ < π/2, and α 6= 0 for θ > π/2 generates a chemical field with non-zero polar
component, β1 6= 0, and thus swims.

In the next section we explain how the presence of an apolar colloid generates a
polar chemical field on the surface of a neighbouring particle.

5.2.3 Response field induced by an Apolar Particle
The study of an isolated particle results in a simple monopolar field with nothing
else. In a situation with a second particle, a reflector (R), separated a distance r
from the source particle (S) experiences a concentration difference on opposite
sides in the direction towards the source. A simple calculation from the source
predicts a concentration difference δc = c(r − R) − c(r + R) ≈ 2Rβ

(S)
0 /r2.

A finite polar contribution to the field in the reflector particle β(R)
1 generates a

concentration difference δc = 2β
(R)
1 /R2. Equating both δc we obtain a first es-

timation of the polar field on the reflector particle of magnitude β(R)
1 ≈ β(S)

0 R3/r2.

From this qualitative computation the source particle induces a neat velocity
on the reflector particle of magnitude v proportional to µdδ0r−2. From this simple
result we conclude that a source particle induces a long range decaying velocity
v ∼ r−2 on other particles –regardless on their ability to catalize chemicals. The
velocity does not depend on the diameter of the receptor particle; if the interaction
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where to come from an energy potential the force, F , would be proportional to the
size of the receptor particle. F ∝ R.

To proceed with the exact calculation we define the system, and the coordinates
involved in the computation, in Figure 5.2. The source particle (S) is located at
position rS which corresponds to the origin of the basis BS whose coordinates are
denoted by (r′, θ′, z′). The reflector particle (R) is located at position rR and de-
fines the origin of the basis BR whose coordinates are denoted by the triad (r, θ, z).
The distance between particles is given by the vector z = |rS − rR| ẑ = zẑ, where
ẑ is an element of the basis BR. The position vector in which the field is computed,
r′ = rp − rS , from the origin of the basis BS can be also computed from the basis
BR as r′ = r− z.

A common computation is 1/ |r′|. From the basis BS the calculation is trivial
hence 1/ |rp| = 1/r′. However, from BR

1

|r′| =
1

z

∞∑

p=0

(
RR
z

)p
(−1)pPp(cos θ) (5.12)

Where we have already restricted |r| = RR on the surface of particle R. In addition
we include the (−1)p to account for the fact that we have introduced π − θ′ instead
of θ′ in the calculations.

Figure 5.2 Physical portrait on the system. A cut of the plain φ = 0 shows the pair of
spheres as a pair of disks. The source particle generates a field cS(r′, θ′) which needs to
satisfy boundary conditions on the sphere centred at rR.

We introduce a the source (S) and reflector (R) particles as spheres of radii RS ,
and RR respectively. The source generates a chemical field (5.13) characterized
by the l-th multipolar term of the Laplace expansion. Given the linearity of the dif-
ferential equations governing diffusion, a linear combination of the l-th multipoles
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gives the general solution to the problem.

cS(r′, θ′) = Bl
Pl
(

cos (θ′)
)

(r′)l+1
(5.13)

The field cS as a function of the coordinates (r, θ) must satisfy both Laplace
equation and the boundary condition on r′ = RS , and on r = RR. To impose the
boundary conditions on the reflector particle centered at rR we need to determine
the coefficients βm from the general expression:

cR(r, θ) =
∑

m

βm
Pm(cos θ)

rm+1
(5.14)

In cylindrical coordinates the differentiation respect to z generates multipoles of
higher order. In our system the z coordinate corresponds to the centre-to-centre
line.

∂

∂z

Pl(µ)

rl+1
= − (l + 1)

Pl+2(µ)

rl+2
(5.15)

We use this property to relate (5.13) to a source monopole.

Pl(µ)

rl+1
=
−1

l

∂

∂z

Pl−1(µ)

rl
= ... =

(−1)l

l!

∂l

∂zl
1

r
(5.16)

To expand cS(r′, θ′) in the coordinates of BR. We need (5.12)

cS(r′(r, θ), θ′) =
(−1)l

l!
Bl

∂l

∂(z′)l
1

r′
=

(−1)l+mBl
l!

∂l

∂zl
1

z

∞∑

m=0

(r
z

)m
Pm(cos θ)

(5.17)
The total field on the surface of (R) c = cR(r, θ) + cS(r, θ) needs to satisfy the
boundary conditions ∂rc(r, θ)|R = αR/Dc

c(r, θ) =

∞∑

m=0

[
(−1)l+mBl

l!

∂l

∂zl
rm

zm+1
+ βm

1

rm+1

]
Pm(cos θ) (5.18)

The term m = 0 needs special consideration since it is the only nonbanishing
element in RHS of the boundary condition P0 = 1.

β0 =
αRR

2
R

Dc
(5.19)

It is not surprising that this term coincides with the monopole generated by its
surface properties. However, expressions with m 6= 0 are now possible since
Bl 6= 0.

β(l)
m = (−1)m+1m (m+ l)!

l!(m+ 1)!
BlR

2m+1
R

1

zm+l+1
(5.20)

The only relevant contribution of β that leads to propulsion is β1. The fist source
contribution is B0 = αSR

2
S/Dc. We set l = 0, and m = 1.

β
(0)
1 = −1

2
R3
R

αcR
2
S

Dc

1

z2
(5.21)
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We obtain a dipolar velocity field around the reflector that decays quadratically with
the distance to the source. We may compute, once again, the effect of the induced
dipolar field on the source. Now l = 1, and m = 1 with B1 the previous result.

β
(1)
1 =

1

2
R3
SR

3
R

αSR
2
S

Dc

1

z5
(5.22)

The next step is to consider higher order terms. It is not relevant for the scope of
this thesis but, since the quadrupolar term of the velocity field is widely used in the
squirmer model B2 6= 0 we compute the lower order contributions to β2.

β
(0)
2 =

2R5
R

3

α0R
2
S

Dc

1

z3
(5.23)

β
(1)
2 = −R5

SR
3
R

αcR
2
S

Dc

1

z6
(5.24)

5.2.4 Interaction velocities

As previously seen in subsection 5.2.2, for a spherical particle, the only contribution
of the multipolar expansion of the chemical field that is able to generate a propulsion
(5.11) by diffusophoresis is l = 1, the dipolar.

For a system composed by two species: one active, and one passive. The
interaction velocities that particle x induces on particle y in the radial direction,
vx→y are:

va→a = −2αSµ
a
d

3Dc

R2
a

z2
+

2αSµ
a
d

3Dc

R5
a

z5
(5.25)

va→p = −2σSµ
p
d

3Dc

R2
a

z2
(5.26)

vp→a =
2αSµ

a
d

3Dc

(
Rp
Ra

)3
R5
a

z5
(5.27)

By means of a chemical velocity V0 = αaµ
a
dσ

2
a/(12Dc) we rewrite the equations

for the relative velocity for pairs of particles:

va,a = −2V0

(σa
z

)2

+
1

4
V0

(σa
z

)5

(5.28)

Using µpd/µ
a
d to define a µ∗

va,p = −V0µ
∗
(σa
z

)2

+
1

8
V0

(
σp
σa

)3 (σa
z

)5

(5.29)
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5.2.5 Newton’s Third Law
The interaction between an active and a passive particle has been computed in terms
of velocities. Since the interaction is not understood as fundamental interactions;
we are omitting the presence of the fluid and the ulterior movements of the chemical
products; we obtain the effective force of interaction between particles through the
stokes formula for a sphere. A sphere moving at velocity U experiences a drag
force F , F = 6πηRU . If the interaction where to come from a force the relative
velocity between particles would be:

vrel = 2µFint (5.30)

Assuming Newton’s Third Law of motion |F12| = |F21| = Fint. The imposition
of such an interaction gives.

vrel = va + vp = µ(Ra)Fint + µ(Rp)Fint = µ(Ra)Fint

(
1 +

µ(Ra)

µ(Rp)

)
(5.31)

For thermal mobilities µ ∼ R−1. The relative velocity is shared among interacting
particles according to the ratio between radii.

va = vrel

(
1 +

Ra
Rp

)−1

=
Rpvrel
Ra +Rp

; vp =
Ravrel
Ra +Rp

(5.32)

For simplicity we define λ = Rp/(Ra +Rp), then (1− λ) = Ra/(Ra +Rp).

As previously seen the computed diffusophoretic interactions do not share
the same dependencies over distance. va→p ∼ z−2 while the reaction velocity
vp→a ∼ z−5. We define a parameter ζ which connects from a scenario in which
Third Law is satisfied (ζ = 0) to a scenario in which it is fully broken (ζ = 1).
Assuming a relative velocity vrel = va→p + vp→a

vp = va→pζ + (1− ζ)(1− λ)vrel; va = vp→aζ + λ(1− ζ)vrel (5.33)

5.3 Computational model
Active particles in the experimental realizations are ferromagnetic hematite ellip-
soids [Martinez-Pedrero et al., 2017]. In all experiments ellipsoids are characterized
by a long axis a = 1.8± 0.1 µm and a short axis b = 1.3± 0.1 µm. We model the
ellipsoids by means of a dumbbell, a dimer. We define a dimer as a pair of disks
of diameter σa = 1.3µm connected by a spring of size r0 = 0.5µm and spring
constant k. When we introduce a diffusion D0 to each monomer the centre of mass
of the dimer diffuses with a total translational diffusion constant of DT = 2D0,
and a rotational diffusion constant DR = 2D0/r

2
0

2.

2The rotational diffusion constant is a relevant parameter for polar active matter since the Péclet
number relates the characteristic running time to the rotation diffusion time.
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5.3.1 Equilibrium Interactions

We build the model for the mixture of active and passive particles on an equilibrium
model for the system. Active particles are described by dimers of two disks. The
dimer breaks the polar symmetry of the apolar particle and its short axis is used
as director of the magnetic permanent moment. Passive particles are described by
disks. In order to avoid overlaps between disks we introduce a repulsive WCA (2.7)
potential between particles.

Dimers

To determine the spring constant we ask the elongation fluctuations ∆x/r0 to be
below 5% – the approximate dispersion in sizes of experimental particles. The
characteristic energy of the spring is k∆x2 and needs to be equated to the thermal
fluctuations bBT . Then we choose a spring constant k = 400kBT/r

2
0 .

Dimers are located by the position vector ri. The two disks that constitute the
dimer are given by the position vectors qai , and qbi . Hence ri =

(
qai + qbi

)
/2 and

we define the dimer vector δi = qbi − qai . To fully characterize the dimers we need
to introduce a normal vector to δ. We introduce a ti = Rπ/2δi.

Magnetic dimers

Hematite particles have a magnetic permanent momentm0 = 2×10−16Am2 in the
direction of its short axis; each dimer hasmi = m0t̂i. Once immersed in a mixture
of water and hydrogen peroxide ellipsoids sediment close to the glass substrate
of the experimental chamber – where they remain in a two dimensional confinement.

Figure 5.3 Sketch of a pair of dimers with the magnetizationsm1, andm2 parallel to the
short axis and the dipolar vector δ connecting the centres of each disk, in red in the left dimer
– joining them a spring of rest length r0, and constant K.
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A magnetic dipole of magnitude m0 generates a magnetic fieldB

B(r) =
µ0m0

4πr3
(3 (m̂ · r̂) r̂ −m) (5.34)

In such a field a second magnetic dipole experiences a torque T = m×B. Given
particles at positions r1, and r2 with position vector r = r2−r1 = −r′ the torques
experienced by de dipoles are

T (1) =
µ0m

2
0

4πr3
[3 (m̂1 · r̂) (m̂2 × r̂)− m̂2 × m̂1] (5.35)

T (2) =
µ0m

2
0

4πr3
[3 (m̂2 · r̂) (m̂1 × r̂) + m̂2 × m̂1] (5.36)

The total torque T = T (1) + T (2) = 0, since there is no external magnetic field.
The relative torque is Γ = T (1) − T (2) which depends on the angle difference
between the dipoles sin θ = m̂2 × m̂1

Γ =
µ0m

2
0

4πr3
(m̂1 × m̂2) (5.37)

To compare3 the angular diffusion to the magnetic torque we divide |Γ|, which
has units of energy to over the thermal fluctuations with an energy scale kBT .
For β |Γ| > 1 thermal fluctuations are negligible while for β |Γ| < 1 thermal
fluctuations dominate and a pair of dimers remain alligned.

β |Γ| < 4× 10−7 × 10−32

4.14× 10−21 (10−6)
3 (r/1µm)−3 ≈

(
1µm

r

)3

(5.38)

As seen in equation (5.38) magnetic alignment dominates below 1µm. Thermal
hematite particles will spontaneously form chains in the direction of the short axis
since σa ≈ 1µm.

The magnetic interaction between dimers introduces an attractive/repulsive
force on the centre of mass of each dimer; the vectorial form of the force is:

Fmij =
3µ0m

2
0

4πr4
[(r̂ · m̂i) m̂j + (r̂ · m̂j) m̂i + r̂ (m̂i · m̂j)− 5r̂ (r̂ · m̂i) (r̂ · m̂j)]

(5.39)
To avoid overlapping of particles we introduce a repulsive WCA potential (2.7)
between disks from different dimers. The strength of the interaction depends on ε
which we fix at a moderate value ε = 24kBT .

The interaction of a monomer of a dimer needs to be computed for each
monomer α of the other dimers. The distance between monomers α, and β of

3A more accurate argument the Langevin dynamical equation of the angle ∂tθ = βDr |Γ|+
√

2Drξ
leads to the same result.



136 5. Apolar Active Matter

dimers i, and j respectively is qαβij = qαi − qβj

F ai =
1

2
K (r0 − |δi|) δ̂i+

∑

j 6=i

∑

α

F c
(
qa,αij , σa

)
q̂a,αij +

1

2
Fmi −

|Γi|
2 |δi|

m̂i (5.40)

F bi = −1

2
K (r0 − |δi|) δ̂i +

∑

j 6=i

∑

α

F c
(
qb,αij , σa

)
q̂b,αij +

1

2
Fmi +

|Γi|
2 |δi|

m̂i

(5.41)
Where K is the elastic constant of the dimer spring, α sweeps the monomer labels
(a, and b), and Fmi is the contribution of the forces acting on the centre of mass –
magnetic forces. Finally we introduce the magnetic torque Γ = δ × F /2− δ ×
F /2 = |δ| |F | as forces in the direction perpendicular to the dimer vector, hence
in the direction of the magnetic moment.

Figure 5.4 (A) SEM image of a suspension of hematite particles. (B) Images of a mixture
of hematite and silica particles. Active particles are located in the interstitial region of the
silica aggregate “overlapping” the silica particles. (C) 3D sketch with hematite and silica
particles in different planes and the projection on the same plane showing overlap.

Passive colloids

We introduce passive particles, inclusions of diameter σp as disks with centres at
position Ri. Disks introduce an additional repulsive force on each monomer qαi .
Repulsion is introduced by a non-additive WCA pair potential. For a pair of passive
particles we define σ = (σp + σp) /2, for active disks we use σ = (σp + σp) /2,
and for a pair of active and passive disks we use σ = σWCA = (σp + ∆σa) /2,
where ∆ ∈ [0, 1]. With such a force, the interaction between active and passive
particles allows a certain overlap – up-to half an active particle for ∆ = 1. The
overlap of disks in the simulation plane could effectively model the dynamics of
the passive and active particles located at different planes.

The total force acting on an apolar particle is

fαi = F αi −
∑

j∈{Rj}
FWCA(zαij , σWCA)

Rj − qαi
|Rj − qαi |

(5.42)
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Where we use zαij = Rj −qαi . The repulsion forces acting on a passive particle
F inti are

F inti =
∑

j 6=i

∑

α

FWCA(Rij , σp)R̂ij +
∑

j∈{Rj}
FWCA(zαij , σWCA)ẑαij (5.43)

5.3.2 Chemical Interaction Velocities

The model presented in 5.3.1 introduces elongated particles and magnetic forces in
thermal equilibrium. We have previously developed a model for out-of-equilibrium
interactions between particles when light is turned on. Contrary to the equilibrium
models we introduce the non-equilibrium interactions as interaction velocities, vαi .

In an overdamped Langevin equation velocities are proportional to forces though
mobility coefficients. In this subsection we introduce the non-equilibrium velocities
modulated by a parameter ζ that connects a scenario with no Action-Reaction
(ζ = 1) to an Action-Reaction scenario (ζ = 0).

q̇αi = D0βf
α
i +

√
2D0ξ

α
i + vαi (5.44)

Ṙi = D0β
σa
σp
F inti +

√
2D0

(
σa
σp

)1/2

ξi + Vi (5.45)

vαi =
∑

j 6=i

∑

β

va→aq̂αβij +
∑

j∈{Rj}

[
λ (1− ζ) (vp→a + va→p) + ζvp→a

]
ẑαij

(5.46)

Vi =
∑

α

∑

j∈{qαj }

[
(1− λ) (1− ζ) (va→p + vp→a) + ζva→p

] Ri − qαj∣∣Ri − qαj
∣∣ (5.47)

Characteristic times

The dynamics introduce several time scales. We define the following time scales
for the active particles. The equivalent characteristic time for a passive particle the
passive particle time is (σp/σa)

3 times the active time.

τd =
σ2
a

D0
τr =

σ2
a

βD0ε
τd =

σ2
a

βD0K
τp =

σa
V0

(5.48)

By means of the apolar diffusion time σ2
a/D0, and the apolar characteristic length

σa we introduce the characteristic velocity VT = D0/σa ≈ 0.3µm s−1.
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Experimental Calibration

In equations (5.28), and (5.29) we derived the dependence of the relative velocity
between pairs on the relative distance between particles. By means of tracking
experiments we can measure the relative distance between particles. Averaging
over trajectories we obtained the curves Vrel = 〈vrel(r)〉 for pairs of active-passive
and active-active particles, see Figure 5.5.
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Figure 5.5 Calibration fits for the pair of parameters V0, and µ. We obtain a characteristic
velocity V0 = 1.75± 0.05µm s−1 and a mobility coefficient µ = 20± 1.

In experiments we track the positions of the centres of mass of pairs of active
and passive particles. For an active-passive with relative velocities va, and vb for
the monomers, and V for the passive particle we can extract the relative velocity

Vrel = (va + vb)/2 + V ≈ 1

8
V0

(
σp
σa

)3 (σa
r

)5

− 2V0µ
∗
(σa
r

)2

(5.49)

For an active-active pair the relative velocity is computed in the same way

Vrel = −2V0

(σa
r

)2

+
1

4
V0

(σa
r

)5

(5.50)

5.4 Zeta = 0 – Action Reaction
We introduce a series of simulation for the mixture of active and passive particles.
For a rationalization of the mixture we have defined the packing densities of passive
particles Φp, and packing density of active particles as follows Φa. Using Np as the
number of passive particles,Na the number of apolar dimers, and L the longitudinal
dimensions of a squared simulation box with periodic boundary conditions.

Φp =
Npπσ

2
p

4L2
, Φa =

2Naσ
2
a (π − c)
4L2

(5.51)



5.4. Zeta = 0 – Action Reaction 139

Figure 5.6 Artistic representation of a binary mixture of active and passive particles. A the
system evolving in equilibrium before the activity quench. B the system after the activity
quench. Passive particles are nucleated around apolar particles which form a chain due to
the join action of the diffusphoretic, and magnetic interactions.

where the measure of the overlap between monomers of the dimer is given by the
factor c = arccos(r0/σa)− r0

σa

√
1− r0

2/σa2.

The model above for the dynamics of active and passive particles has a special
feature. It naturally breaks action reaction for the interactions between species.
This is not a common scenario for molecular dynamics. As previously seen, the
interaction between particles can be understood as a relative interaction fulfilling
action-reaction (5.44-5.47) setting the parameter ζ = 0. In this conditions the
interaction velocities are split into each pair as a function of the ratio between
diameters.

In this work we do not investigate the interactions mediated by pure hydrody-
namics. As computed before, at each particle appears a tangential velocity field in
the fluid. The surface velocity field propagates into the bulk and induces hydrody-
namic interactions on other particles. A good exercise for the future is to map each
particle into the effective squirmer, introduced first by [Lighthill, 1952] and later
corrected by [Blake, 1971]. The squirmer model introduces B1 = β1, and B2 = β2

as the tangential components of the surface velocity. More recently, [Llopis and
Pagonabarraga, 2010] studied the detailed hydrodynamics of the interaction be-
tween pairs of squirmer.

5.4.1 Emergent structures
In this section we study the macroscopic arrangement of active and passive particles
for system at different densities. We have prepared an array of systems with passive
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particle’s density in the range Φp = 0.1 to Φp = 0.6, and active particles in the
range Φa = 0.02 to Ψa = 0.3.

The initial configuration is obtained by evolving the system in thermal equilib-
rium to a steady state. For the configurations with large quantities of both active
and passive particles we have followed the following procedure. First, we introduce
2/3 of the passive particles in de box. Second, we introduce a large fraction of the
apolar particles. Third, we turn on attraction between apolar and passive particles in
order to generate empty spaces. Forth, we introduce the remaining 1/3 of passive
and active particles. Fifth, we equilibrate the system.

For a system in equilibrium we quench it to the state with a finite V0, and µ
interaction, and finite magnetic interactions. In experiments, the apolar particles
showed a certain structure reminiscent of their alignment relative to the terrestrial
magnetic field. In simulations we activate the magnetic interactions between apolar
particles a few time units prior to the activity quench, so there is a certain structure
although we do not introduce an external magnetic field – such as the terrestrial.

Figure 5.7 Lattice of snapshots of computational system. The mixture at different densities
and after τ = 1000 after the activity quench.

In Figure 5.7 we present in a grid the typical structures that emerge in the
mixture after the activity quench. From the image, taken at τ/τd = 1000 after the
activity quench, we appreciate different morphologies. At large densities of passive
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particles we observe percolating structures of passive colloids. At low densities of
active particles we observe the formation of clusters, and separating both regimes
we observe the formation of gel like structures. In the following section we stablish
a quantitative to sort the different morphologies.

5.4.2 Structure Diagram

To identify different structures in the system we introduce the cluster analysis
presented in [Baumgartl et al., 2007] and define the averaged gyration radii of
active and passive particles. We detail the computation of the averaged gyration
radii, 〈rg〉, in Appendix 5.A. The magnitude

〈
rag
〉

defined for active particles,
〈
rpg
〉

for passive particles give a quantitative description of the structures of the system.
The comparison of 〈rg〉 with the system size gives a criterion to define percolation
in the system. A structure is said to percolate when its average gyration radius is
comparable to half a system size. Then, we define the percolation threshold for the
passive particles rpc/L = 0.5, and rac /L = 0.4 per the active particles to take into
account the emergence of magnetic bridges connecting different structures, and
thus the reduction in the threshold.

The relation between radii of gyration determine the different structures appre-
ciated in Figure 5.7. For gyration radii below the percolation threshold we define
the cluster phases. The Cluster I structure is numerically classified by

〈
rpg
〉
>
〈
rpg
〉
.

The Cluster I structures correspond to clusters of passive particles with central seeds
of active particles. At low concentration of active particles the Cluster I phase is
in coexistence with a gas phase of passive particles that are not attached to active
particles, see section 5.4.4. The Cluster II structure is numerically classified by〈
rpg
〉
<
〈
rpg
〉
. The system is constituted by clusters of of passive particles held

together by a network of active particles, active particles envelop and percolate in
the cluster of passive particles.
For gyration radii above the percolation threshold we encounter three different sce-

narios. The Gel I structure characterized by
〈
rpg
〉
/L > rac , and

〈
rag
〉
< rac . Where

we observe a percolating structure of passive particles held together by localized
chains of active particles. The Gel II structure is formed when both radii of gyration
exceed the percolation threshold. In Gel II passive particles percolate, and the active
chains cover the whole structure acting as a structural scaffold. Finally, the Gel III
structure is characterized by the percolation of the active particles

〈
rag
〉
/L > rac

but
〈
rpg
〉
/L < rpc , and the formation of clusters of passive particles. Unstructured

passive particles are arrested in a aggregates of active particles which, at high
density of apolar particles, connected by active particle’s bridges. The results of
this classification are shown in Figure 5.8. We identify the different structures in
different colours, and introduce a pair of constant Φp lines in order to illustrate the
evolution of the gyration radii for increasing concentration of apolar particles. At
Figure 5.9 we observe the change in the macroscopic arrangement of the system
for increasing density of active particles.
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B

A C
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E

Figure 5.8 Computational structural diagram of the system as a function of densities for
Pe = 2, µ = 20, and M = 36. Denoted by A, and C Cluster I and II structures in blue,
and green, respectively. Denoted by B, D, E Gels I, II, and III in red, orange, and yellow,
respectively. Horizontal dashed lines are the constant Φp lines used to exemplify the radii of
gyration calculations in Figure 5.9

The increase of active particles in a diluted suspension of passive particles,
Φp = 0.1, follows this succession of stages. First, at low concentrations of apolar
particles the system forms clusters of passive particles held together by chains of
apolar particles. Then, the increase of apolar particles in the system maintains the
clusters of passive particles but apolar particles are gradually entangled in the core
of clusters, until they cover them, entering in the Cluster II region. Finally, for
increasing densities of apolar particles the apolar particles form large bundles of
chains which may connect the passive clusters in the system.

The increase of active particle in suspension of passive particles at an interme-
diate density of passive particles, Φp = 0.3, follows different structures. First, the
system resides in a cluster phase with chains holding the passive clusters. With the
increase of apolar particles, the activity quench my lead to a percolating cluster
of passive particles held together by several chains of apolar magnetic particles.
Finally, for larger densities of apolar particles the chains that give structure to the
passive aggregate connect in a percolating network. In the percolating structures
there is a competition between the asymmetry of magnetic interactions and the
attractive diffusophoretic induced interactions which results in the formation of an
apolar scaffold that supports the attractive collapse of the diffusophoretic interac-
tions.
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Clu I Gel I
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Clu II Gel IIIClu I
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Figure 5.9 Gyration radius of the active and passive clusters, for increasing density of
active particles, Φa, at fixed Φp. Cluster I, and Cluster II in blue, and green. Gel I, Gel II,
and Gel III in red, orange, and yellow. A at Φp = 0.3. B at Φp = 0.1

5.4.3 Experimental Structures
The theoretical description of a mixture of active apolar particles with magnetic
interactions, and passive colloids presented in this Chapter has been motivated by
experiments in mixtures of silica particles, and hematite ellipsoids. In the laboratory,
experimentalists have analysed the activity quench of a silica-hematite mixture for
different densities of active, and passive particles. Here, we present experimental
results showing the appearance of different aggregation structures.

The catalysis of hydrogen peroxide from the hematite particles once the illu-
mination is turned on generates oxygen in a gas form. The formation of gas in the
experimental sample leads to the formation of growing bobbles. This growing of
bobbles usually interferes with the observation field, and thus destroys the experi-
ment. In experiments, the temporal observation window is limited by the amount of
hematite colloids, and the intensity of the interaction. Typical experiments span for
tens of minutes, which correspond to τ ≈ 200τd.

In Figure 5.10 we list the emergent structures and visually classify them in the
structures that we presented in Figure 5.8. For low density of silica, and hematite
particles, A, we observe the formation of passive clusters with high hexagonal order
with active particles in the centres, this structures have the same characteristics as
the Cluster I phase identified in simulations. Increasing the density of ellipsoids,
B, we first observe the formation of silica clusters covered by long silica chains,
the clusters completely covered by hematite particles loose the hexagonal order,
this is similar to the Cluster II scenario. Finally, for even larger concentrations of
magnetic ellipsoids, C, we observe the joining of the silica clusters by magnetic
bridges, like in the Gel III structures.

At larger concentrations of silica particles, we observe the formation of a large
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Figure 5.10 Experimental Structures. Experiments in in the laboratory for different silica
(light particles), and hematite ellipsoids (dark particles) concentrations. A Distribution of
clusters with apolar cores, Cluster I structures. B Distribution of clusters with covered by
ellipsoids, Cluster II. C Distribution of clusters of silica particles connected by a percolating
network of magnetic particles, Gel III. D Percolating network of silica particles with clusters
of silica particles, Gel I. E Double percolation of silica, and hematite particles, Gel II.

percolating cluster of silica beads. At low densities of apolar particles, D, the large
silica structure is held together by clusters of hematite ellipsoids, like in the Gel I
structures. Finally, once the density of magnetic ellipsoids is larger, and comparable
to the number of silica particles, we observe the formation of a chain of magnetic
particles that goes across the silica cluster, like in the Gel II structures.

5.4.4 Analysis of the Structures

For a passive system of WCA repulsive particles Φp < 0.6 we expect a fluid phase
behaviour for the particles. In this section we prepare a binary mixture of active and
passive particles with 0 < Φp ≤ 0.6, and 0 < Φa ≤ 0.3 in equilibrium. After the
activity quench the system evolves into different macroscopic structures. In Figure
5.7 we have plotted intermediate configurations of the system and summarized
grouped them following the radius of gyration criterion into five distinctive phases,
shown in Figure 5.8. In this section we present the general features of the cluster,
and percolating structures.
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A. Cluster Phases

At low densities of active, and passive particles, Φa < 0.1 and Φp < 0.4, we find
the Cluster I, and Cluster II morphologies. Active particles attract passive particles
to form dynamic clusters with hexagonal order, see Figure 5.11. In this region we
encounter situations where the clusters of passive particles are in coexistence with a
gas of passive particles, for the number of active particles is not sufficient to capture
all passive particles. In Cluster II morphologies the cluster is completely wrapped
by active particles.

A B C

Figure 5.11 Detail cluster structures. In A-B the central core of active particles forms a
chain and holds together passive particles which exhibits an ordered hexagonal structure. In
A, Φa = 0.005, clusters are in coexistence with a gas phase. In B, Φa = 0.02, the gas phase
disappears and the excess of active particles start to entangle in the passive clusters. In C,
Φp = 0.12, the central core of apolar particles forms a bundle of chains that percolate in the
passive cluster.

The hexagonal structure of the passive particles in the cluster is evident from
the structure factors shown in Figure 5.13. The gas of passive particles in the
simulations at Φa = 0.005 decrease the contrast of the hexagonal structure but
the peaks corresponding to the hexagonal lattice are still visible. The structure of
the active particles presents a different behaviour in both situations. For systems
with a gas of passive particles, active particles accumulate in the centres of the
passive clusters disposed in chains, this translates to the structure factor with a
q−1 divergence at low wave vectors. For the apolar saturated sample, Φa = 0.02
the excess of apolar particles induces the formation of rings surrounding the pas-
sive structure and the 1/q divergence in the structure of apolar particles factor is lost.

In Figure 5.12 we present the large scale temporal evolution of a Cluster I
structure with a gas phase of passive colloids. We observe the formation of clusters
with cores of apolar particles. Additionally, we present the evolution of the structure
factors for times from τ = 100 to 3000 from the activity quench. For the passive
particles we observe a first maximum at q?(t) ≈ 0.1 that moves to lower values of
the wave vector at increasing times. This wave vector corresponds to characteristic
distances 2π/q? ≈ 10σp, the typical distance between clusters.
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Figure 5.12 Cluster I structure, system with Φp = 0.1, and Φa = 0.005. The system
evolves from the activity quench at τ = 0. In A the evolution at times 100, 300, 1000, and
3000. In B, and C the structure factor for passive, and active particles respectively. In a
dotted line Sa(q) ∼ q−1 as a guide to the eye.

Figure 5.13 Structure factors of active particles for Φp = 0.1 at different Φa. Green
squares correspond to a Cluster I structure in equilibrium with a gas. In purple circles a
Cluster I structure without passive gas. In red and blue triangles percolating structures of
active particles. We schematically illustrate the typical structures that correspond to the
different peaks.
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B

Figure 5.14 Gel I, system at Φa = 0.02, and Φp = 0.595. A short active chains holding
the percolating structure. B Particle jumps for a time difference ∆τ = 500τd, we appreciate
the percolating structure from the coexisting gas. C Clusters with n > 2 particles labelled
by the pertinence to each cluster.

B. Percolating Structures

Percolating structures of passive particles typically appear for densities of passive
particles Φp > 0.3. At low density of active particles we observe the formation of
a macroscopic cluster in coexistence with free passive particles. Chains of active
particles generate a cohesive region in the passive particles and form a percolating
structure. In Figure 5.14 we have different plots that show the main characteristics
of this structures, the Gel I structures. First, we observe the elongated distribution
of chains along the passive structure in A. The passive particles in the low density
region correspond to a dense diffusing phase. In B we plot the displacement of
passive particles in a time interval of τ = 500τd. The particles in the percolating
structure define small coordinated movements corresponding to the reorganization
of the aggregate. The free passive particles define a series of random displacements
which exhibit their diffusive motion. Finally, in C we observe the clusters in the
system with more than two particles labelled by different colours. The cluster
clearly exhibits its percolating nature.

At higher densities of passive particles we observe the formation of ramified
structures with holes in the interior, this constitutes the Gel II structures with a
double percolation of passive and active particles. Magnetic chains cover the system
and hold the collapse. In Figure 5.7 we observe the formation of holes in the Gel
II structures. We have simulated a system in the Gel II phase with Np = 1000
particles at densities Φa = 0.22, and Φp = 0.30. We have computed the density
of passive particles at different times from the activity quench and present the
evolution of the local density field of passive particles, computed as presented in
Appendix 5.A, in Figure 5.15.

Density plots of a Gel II structure in Figure 5.15 reveal the merging of the empty
holes in the structure and the slow dynamics of the system. The coarse local grained
densities have been computed for the passive particles, and thus, so that the internal
regions of de dense phase at low values of the local density correspond to the
entangled network of magnetic particles. The competition between the attraction
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Figure 5.15 Coarse grained local density for the Gel II structures. Density plots for a
system at φp = 0.22, and Φa = 0.30 at times form τ = 10τd to τ = 2200τd from the
activity quench.
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Figure 5.16 Plot of the
cord length distributions of
dense regions for a system
at Φp = 0.3, and Ψa =
0.22 at different times τ af-
ter the activity quench. In
the inset we plot the value
of the characteristic domain
length `0 as extracted from
an exponential fit P (`) ∼
exp(−`/`0) as a function
of time. We plot ` ∼ τ1/2,
and τ0.18d as a guide to the
eye.

and the bending resistance of the magnetic chains governs the dynamics of the
holes in the structure.

To study the growth of the dense domains in the system we present the chord
length distribution [Testard et al., 2014], presented in Appendix 5.A. To summarise,
we draw cords in the system and measure the length, `, of the cord which is between
two consecutive interfaces. The chord length distribution has gives information of
the detailed structure of the dense region of the system, and decays exponentially
at large values `. The characteristic decay length `0 gives a good estimate of the
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average size of the dense domains.

The determination of the average domain size `0 at different times from the
quench, Figure 5.16, reveals an initial domain growth of the system `0 ∼ τ1/2, after
this fast dynamics the growth is slowed down to ` ∼ τ0.18, and finally the structure
is arrested.

5.4.5 Temporal Correlations

To characterize the global dynamics of the systems we introduce the dynamic struc-
ture factor Fq(∆t), and the relaxation of the local hexagonal order of the system
CΨ(∆t). The definition of the temporal measurements is presented in Appendix
5.A. The dynamic structure factor measures the temporal evolution of the density
field for a given wave vector. The use of Fq is largely extended in the study of
gels [Zaccarelli, 2007]. For two dimensional systems [Flenner and Szamel, 2015]
reported that the typical plateau in three dimensional gels was less evident in two
dimensional systems, and proposed the measure of the bond-orientational correla-
tion function CΨ.

A B

Figure 5.17 Structural relaxation for passive particles. Measures performed in the different
structures. A Local hexagonal order correlation. B Dynamic Structure Factor, Fq , measured
at the wave vector q ≈ 2π/σp corresponding to the peak of the static structure factor S(q).

The analysis of the dynamic structure factor at the peak of the S(q) presents a
fast decaying behaviour for systems in the Clusters phases. The behaviour of the
Fq for the percolating structures requires further attention. For the Gel I structure
the decay is slow but constant in time. The origin of this continuous decay is the
coexistence of the arrested structure with a diffusing gas of particles. A detailed
separated analysis of both phases could reveal major differences in the decay of
the density correlations in the Gel I structure. The Gel II structure consists in a
percolating structure of passive particles with entangled network of active magnetic
particles. The competition between the attraction induced by activity and the rigid-
ity of the magnetic chains prevents the system from collapse and gives rise to an
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arrested gel structure. The arrested nature of the structure is revealed in the slow
decay of Fq to a plateau at long times. Finally, the Gel III structure shows a high
correlation for long times and suddenly drops to zero. This Gel III structures are
characterized by the formation of a network of magnetic particles that connect clus-
ters of passive particles. The slow movements and reconfigurations of the magnetic
network together with the low structure at q ≈ 2π/σp revealed by the structure fac-
tors measured in the Gel III phase may be the origin of the rapid decay at long times.

The second correlation measure that we introduced, the local hexagonal order
correlation, presents different characteristic decay times for the Cluster phases. The
structure factors measure in the Cluster phases reveal a local hexagonal for passive
particles the Cluster I phase and an amorphous distribution of passive particles
in the Cluster II structures. This difference facilitates the reorientation of passive
particles in Cluster II hases as compared to the Cluster I phase. The Gel structures II,
and III do not present an appreciable decay for CΦ, which corresponds to the stable
structure formation observed in simulations. However, Gel I structures coexist
with a dense fluid of free diffusing passive particles. The diffusion of passive
particles introduce a first fast decay of CΨ and then orientations in the high-density
hexagonal prevail to longer times and thus the slow decay of CΨ.

5.5 Conclusions

In this Chapter we have proposed a model to reproduce and extend an experimental
system that jointly combines active magnetic particles and passive particles. In this
system active particles are not of a polar nature but generate an isotropic distur-
bance, in the form of production of chemical gradients, to the medium. We have
theoretically modelled the diffusophoretic pair interaction that emerge between
pairs of particles in the neighbourhood of an active particle. This interactions are
introduced in terms of relative velocities of interactions.

Then, we have compared the analytical dependences of the interaction velocities
with experimental results and confirmed the d−2 algebraic decay for the compared
distance range. With the experimental data we obtain a calibration of the interaction
to prepare mixtures of active and passive particles at different densities. This leads
to the determination of various segregation morphologies and structures: from clus-
ters to gels. Gel phases are identified by the percolation of either passive particles,
magnetic active particles, and both species together. In the double percolation of
active, and passive particles, the anisotropy in the magnetic interaction is revealed to
be essential in the formation of magnetic chains that percolate the internal structure
of the gel and act as a structural scaffold that prevents the system from a complete
collapse.

Meanwhile, in the laboratory the experimentalists have proceeded to perform
a series of experiments to determine the emergence of the defined structures. At



5.5. Conclusions 151

low concentration of active apolar particles they identify a cluster phase for low
densities of passive particles and the percolating crystal at higher concentrations of
passive particles. The doping of active particles induces the formation of crystalline
structure in a passive colloidal dispersion.
At higher concentration of active particles, experiments confirm the total surround-
ing of clusters of passive particles by entangled networks of hematite colloids.
At higher concentrations of active particles, such entangled networks, span from
cluster to cluster and introduce a Gel III like structure. At higher concentrations of
passive particles we observe the double percolation of a network of active magnetic
particles covering a crystal of passive particles.

Finally, we have studied the temporal relaxation of the structures and measured
the slow decay of density correlations for wave vectors associated to passive-passive
particle’s distances. The gel structures are associated to a slow decay of the cor-
relations. The bond orientation correlations reveal the arrested dynamics of the
different gel structures, and succeeds to distinguish the cluster structures.

To conclude, we have presented a novel model to study the collective behaviour
and segregation in mixture of apolar diffusophoretic particles and passive particles.
We are able to reproduce the different morphologies obtained in the laboratory,
and extend the simulations to temporal windows beyond reach in experiments and
avoiding the external drifts caused by the generation of gas bubbles.
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Appendices

5.A Analysis of the mixture
In this Appendix we present the set of measure tools that we have used to charac-
terize the different structures observed in this Chapter and summarized together to
help the reader to locate them at the same section of the Thesis.

5.A.1 Spatiotemporal correlations
To study structural properties of the mixture we introduce several measures of the
system. We introduce the dynamic structure factor Fq(t, t′) as the pair correlations
of particles {ri(t)} at initial time t, and particles {ri(t′)} at time t′ in the position
Fourier space. The definition of Fq (t, t′) 0 for the wave vector q.

Fq(t, t′) =

〈∑
j

∑
k 6=j exp [−i (rj(t)− rk(t′)) · q]

〉

〈∑
j 6=k exp [−i (rj(t)− rk(t)) · q]

〉 (5.A.1)

This computation over pairs of particles can be simplified with the definition of the
particle density ρ in Fourier space k

ρq(t) =

N∑

j=1

exp (−iq · ri(t)) (5.A.2)

Now the calculation is reduced to the product of the density and its complex
conjugate. The denominator is, up to a factorN , the static structure factor measured
at time t. Or alternatively the product of the density at wave vector q and at −q

Fq(t, t′) =

〈
ρq(t)ρ†q(t′)

〉
〈
ρq(t)ρ†q(t)

〉 =
〈ρq(t)ρ−q(t′)〉
〈ρq(t)ρ−q(t)〉 (5.A.3)

Periodic boundaries in the system introduce a lower bound for q, dq = 2π/L.
The set of wave vectors is now discrete with q(l, h) = (l, h) dq with l, and h integer
values. The structural correlations in two dimensional glassy systems needs to be
computed with a high accuracy since its behaviour generally differs from standard
results in three dimension, as reported by [Flenner and Szamel, 2015]. To improve
the statistics of the measure we take measures for q = |q|. In the q space we set
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∆q = 0.1 to define the pairs (l, h) for which |q(l, h)− q| < ∆q. In Figure 5.A.1
we observe a typical picture of the wave vectors that constitute Fourier space and
the coronas of pairs (l, h) that identify each wave vector modulus q.

In the quest for statistics we assume the intermediate scattering to be a function
of the time difference ∆t = t′ − t. Being a function of ∆t we can take the average
over different initial times t.
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Figure 5.A.1 A Plot in the q-space for the determination of the (l, h) values that define
different q ±∆q for the computation of Fq(∆t). (B) Illustration of the system with a circle
of radius rc centred at particle rn. The angle between the horizontal and the director of the
centre-to-centre vector between particles n, and a its neighbours j define the angle θnj used
in the computation of Ψn

6 .

A second structural and time dependent correlation function is the time corre-
lation of the local hexagonal order. For each particle in the system we define the
local order parameter Ψn

6 . We locate the nb neighbouring particles of nnb of each
particle n, particles j whose distance with particle n, rnj < rc, is smaller than a
certain cut-off rc, we typically use rc = 1.5σ, being σ the diameter of the particles.

Ψn
6 =

1

n
(n)
b

n
(n)
b∑

j∈{nb}
exp (−6iθnj) (5.A.4)

The angle θnj is easily defined as θij = Atan2 [rij · ŷ, rij · x̂]. Where Atan2(y, x)
gives the value of arctan(y/x) in either the (−π, π]. The we define the temporal
correlation of the local hexagonal order of the system CΨ(t, t′) as

CΨ(t, t′) =

〈∑
n Ψn

6 (t)Ψn
6
†(t′)

〉

〈∑
n Ψn

6 (t)Ψn
6
†(t′)

〉 (5.A.5)

The temporal evolution of the system typically shifts the peaks of the structure
factor in case the system domains are growing or typical neighbouring distance
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Figure 5.A.2 For a system at densities Φa = 0.22, and Φp = 0.3 evolving. (A) Plot of the
structure factor for different times. The inset shows the maximum of S(q) shifting to large
q’s as a function of time. (B) Coarse grained density ρ̄ for the system at different times.

change in time. In Figure 5.A.4 we present the temporal evolution of the structure
factor S(q) of passive particles for the evolutuion of an apolar mixture of particles
the Gel II phase, see Section 5.4.4. The intensity of the structure factor at the wave
vector of magnitude q = 2π/σ slowly shifts to higher q. The density field defined
by (5.A.7) in the S(q) measure times indicates the formation of large structures at
long times and the compaction of the passive particles, as indicated by the increase
of denser regions.

To study the temporal growth of the structure in the system we define the chord
length, and cluster distributions. The first measure is of great use in systems that
percolate and lead to the hole formation in the structure, while the second measure
is of great utility in systems that evolve into cluster phases.

5.A.2 Chord Length distributions

In the case the system undergoes a separation it is important to characterize the
temporal evolution of characteristic lengths of the separated domains of the system.
As introduced by [Testard et al., 2014] the chord length distribution is a robust and
simple measurement of characteristic sizes for particulate domains and even for
holes in the system. The fundamental idea of the method is to draw cords across
the system and extract the distribution of length of cords that cover a domain, the
length of chords with either particles or holed define the chord length distributions
of particles and holes P (`), and Ph(`) respectively.

In order to extract the chord length distribution of the system we introduce a
density field on a lattice of site width ξ. We define an additional distance ξb. In the
computation of the density field boxes with centres at r = (x, y)ξ within a distance
below ξb to the centre of any particle ri contribute to ρ(r) an amount 1/4πξ2

b .
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ρ(r) =
1

4πξ2
s

∑

i

θ (|r − ri| − ξs) (5.A.6)

where θ(x) is the Heaviside step function. Now we coarse-grain the density ρ(r)
into ρ̄(r) over the surrounding boxes.

ρ̄(r) =
1

6
[2ρ(r) + ρ(r + x̂ξ) + ρ(r − x̂ξ) + ρ(r + ŷξ) + ρ(r − ŷξ)] (5.A.7)

Following [Testard et al., 2014] we define ξ = σ/2, and ξb = σ. The grid
spacing is the radius of the particle and the coarse-grained field introduces the
effects of the neighbouring cells. With the density field on a lattice the computation
of the probability distribution of the local densities of the fluid, P (ρ̄), is direct. By
a visual analysis of P (ρ̄) we can identify a density ρc below which the system
is in the gas phase and above which the system is dense. With this criterion the
lattice sites with ρ̄ > ρc as those belonging to the fluid phase and ρ̄ < ρc as those
belonging to the empty or gas phase. The definition of the gas-fluid interface is now
the collection of dense grid cells neighbouring a gas grid cell.
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Figure 5.A.3 Coarse grained density ρ̄(r) for a dilute system. We coarse grain the disk
off-lattice into a lattice ρ̄(r). The interface (in blue) separates the dense and dilute regions.

Once the coarse-grained density is computed on the lattice we define a cord
parallel to either x̂ or ŷ and measure the length of chords in the fluid or in the
empty region between interfaces. We repeat this procedure for the entire lattice
to obtain the overall P (`) for either chords in the gas/empty phase and the fluid
phase. A representative P (`) curve is presented in Figure 5.16. The distribution
shows a first maximum corresponding to the most probable chord length and then a
decay with an exponential tail exp(−`/`0) which defines the characteristic length
`0. The temporal evolution of `0 determines the growth kinetics of the structures in
the system.

5.A.3 Cluster Distribution
A pair of particles belong to the same cluster if their relative distance, rij , is below
a cut-off rij < rc. Given rc we sort particles in clusters of size n. For a system in
which particles aggregate in nc clusters we are able to define the cluster distribution
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function P (n). This distribution is defined by the probability to find a cluster with
n particles in the system. Typically the cut-off radius rc is defined close to the first
maximum of the pair distribution function, g(r) of the system. The g(r) gives the
probability to measure a relative distance r between a pair of particles, it gives the
average local structure surrounding a particle. For a system of volume Ω we have
N(N − 1)/2 pairs of particles. Using dΩ as the volume element of the system we
define the pair distribution function4.

g(r)dΩ =
2Ω

N(N − 1)

∑

i 6=j
δ(|rij | − r) (5.A.8)

Each cluster can be further studied. A typical measure is the gyration radius of
the cluster rg, a measure widely used to characterize polymers [Doi and Edwards,
1988] and particulate aggregates [Meakin, 1983].

The system of active and passive particles can be understood as a binary fluid. In
this situation we are able to define clusters of active and passive particles separately.
We define an averaged radius of gyration of the system 〈rg〉 as previously presented
[Baumgartl et al., 2007]. For a system of N particles and nc clusters. Each cluster
k is constituted by nk particles.

〈rg〉 =
1

N

nc∑

k=1

nk


 1

nk

nk∑

j

(
rkj − rkcm

)



1/2

(5.A.9)

were rcm is the position of the centre of mass of each cluster. The mean radius
of gyration is then defined for both active

〈
rag
〉
, and passive particles

〈
rpg
〉
. The

comparison between 〈rg〉 and the simulation box size, L, gives a criterion for the
percolation threshold of the clusters, rac = 0.4, and rpc = 0.5. A structure is said to
percolate when 〈rg〉 /L > rc, and to be in a cluster phase otherwise.

Cluster properties

The definition of averaged measure on a cluster usually require the prior determi-
nation of the centre of mass of the cluster, rcm. In this subsection we present an
algorithm to compute the position of the centre of mass of the cluster in a system
with periodic boundary contitions.

The centre of mass of a cluster is located at coordinates rcm = (xcm, ycm). The
proceeding to compute xcm and ycm is independent and identical for either xcm,
and ycm. So with no loss of information we compute xcm. For each particle of the
cluster with x coordinate xj we define θj = 2πxj/Lx. The angle5 θj defines the

4Computationally we approximate dr for a finite ∆r and the Delta function for a step function that
activates for abs(|rij |)− r < ∆r/2.

5The system defined by the PBC lies on the surface of a torus. The pair of angles θ determined by
the x, and y coordinates univocally translate the coordinates on the box to the coordinates on the torus.
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complex number zj = exp (iθj). The position of the centre of mass corresponds
to the average on the complex numbers z̄ = 〈z〉. In exponential form z̄ = exp(iθ̄)
defines the position of the centre of mass in the real x space xcm = θ̄Lx/(2π), in
the determination 0 ≤ Arg(z) < 2π in the case we define x ∈ [0 , 2π ) .6
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B

Figure 5.A.4 Stucture Factors for the different structures. A Cluster I corresponds to
Φa = 0.02, and Φp = 0.1. B Cluster II corresponds to Φa = 0.15, and Φp = 0.15. C Gel
I corresponds to Φa = 0.02, and Φp = 0.595. C Gel III corresponds to Φa = 0.3, and
Φp = 0.1. D Gel II corresponds to Φa = 0.2, and Φp = 0.595. E Gel II corresponds to
Φa = 0.22, and Φp = 0.3.

6For coordinates x ∈ [−L/2, L/2) the determination for complex numbers needs to be −π ≤
Arg(z) < π.
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6
Conclusions and perspectives

This thesis has addressed the emergence of effective interactions between passive
particles immersed in an active bath. Here, we summarize the main conclusion (•)
and future perspectives (?) for each chapter.

In Chapter 1 we focused in the general properties of an active suspension
modelled by ABP, from which we extract the following conclusions:

• The stiffness of the repulsive interaction controls the local structure of the
dense phase, and the MIPS appearance.

• The pressure drop previously found in the EoS of ABP in the MIPS onset is
the result of measures in a metastable state of ABPs.

• The preparation protocol, low-density quenches instead of high-activity
quenches give access to the coexistence state of MIPS at densities below the
spinodal.

? Study the MIPS phase separation dynamics for densities below the spinodal
line by means of precursor seeds in the system.

? ABP phase separation has been already discussed at low values of Pe, and φ.
Extend the calculations beyond MIPS onset.

? Model the density phase separation on walls for AAP, or dumbbells, and the
structure of the dense region.

In Chapter 2 we included angular interactions in an ABPs to model Aligning
Active Particle (AAP). First, we characterized the emergent structures in a bath of
AAP. Second, we introduced passive particles and characterized the interactions
induced by the active bath. From this study, we conclude:
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• The MIPS transition is supressed as the alignment between particles appears.

• As a consequence, instead of a large, and static, crystalline aggregate, align-
ment favours the formation of travelling polarized clusters with a neat veloc-
ity.

• The interaction between a pair of inclusions and ABP is repulsive at large
propulsion velocities. However, as alignment between particles increases, the
formation of large structures of travelling AAP changes the behaviour of the
force to an attractive, and long ranged effective force.

• The interaction of wall confined ABP and inclusions introduces an attractive
effective component in the pair interaction.

• The wall confinement introduces a perpendicular force on the pair which we
captured by a simple approximation. This interaction is found to be additive
except for pair distances d < 2σa

• The predictions for the collective behaviour are identified in the structure of
the inclusions captured in the pair correlation functions.

? For ABPs we identify the formation of stable trimers of inclusions, and thus
pair interactions are not additive. We need to extend the force calculations to
trimers of inclusions.

? Interactions ABP close to walls show additional effects in the relative inter-
action. It is expected to encounter additional interaction features for AAP
aggregated on a wall

Chapter 3 studies the emergent interactions in shaken granular media. In
mixtures of grains and spheres. Spheres are introduced as grains disconnected from
the external forcing. Combining measures on fixed, and on moving inclusions we
arrive at the following conclusions:

• Moving pairs of inclusions have a tendency to stay in contact and in the
direction of the external forcing. This corresponds to an effective attractive
interaction and aligning torques in the the direction of the external forcing.

• The force measurements fixing the inclusions confirm the emergence of the
effective interactions between pairs.

• The effect of fixed inclusions in the granular bed has an effect on the internal
ordered structure of the bed and translates into a long range attractive interac-
tion between pairs. Long range interactions have a clear dependence on the
shaking amplitude, relative orientation, and distance of the pair.

• For dense systems and moderate shaking amplitudes at long distances be-
tween inclusions the orientation parallel to the shaking becomes unstable.
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• The measures of both formation energies computed for fixed inclusions, and
the pair distribution probabilities do not satisfy the equilibrium Boltzmann
relation, not even with an effective temperature.

? Study of the escape rates for inclusions and their relation with the Kramers
Escape problems.

? The instability of parallel configurations at long distances may lead to the
perpendicular stripe separation for a mixture.

In Chapter 4, we present a system of passive particles in a mixture with apolar
active particles. The interactions are mathematically modelled and derived to focus
on the resulting structures in mixtures. From the results presented, we conclude:

• The activation of a chemical reaction generates attractive interactions between
active-passive pairs and active-active pairs.

• The introduction of magnetic interactions between active particles promotes
chain formation and their structuring in a network.

• Percolation structures arrest the system. Percolation of passive particles, and
active particles, and join percolation of active and passive is found.

• Experiments have reported the emergence of percolating, and arrested net-
works.

? Refine the model to account for a density dependent interaction strength of
the active particles.

? Introduce the non-symmetric interactions on each pair to explore the structure
formation when active-passive interactions do not fulfil action-reaction.

Globally, this thesis illustrates the emergence of interactions of a new nature in
passive systems mediated by the intrinsic out of equilibrium properties of the active
baths. Thus, it encourages to extend the results to many body scenarios, and in
the vicinity of confining walls, as it is the case in experimental realizations of the
aforementioned out-of-equilibrium systems.
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Resum de la Tesi en Català

Aquesta tesi presenta l’estudi d’interaccions emergents entre partícules passives en
el si d’un bany actiu, fora de l’equilibri, per a diferent sistemes model de la física de
la matèria tova, sistemes col·loïdals i medis granulars. Aquest tesi s’estructura en
una introducció general a la matèria tova i en quatre capítols en què es desenvolupa
el contingut de la tesi. Cada un d’ells se centra en els diferents aspectes considerats.

Al Capítol 1 presentem una introducció al camp de la materia tova i els
sistemes paradigmàtics que on es desenvolupa el contingut de la tesi. Despés
s’introdueixen les interaccions típiques en l’equilibri termodinàmic presents en
aquests sistemes. Després introduïm les dues grans famílies de sistemes model per
a partícules microscòpiques fora de l’equilibri, els models de Vícsek i eñs models
de partícules Brosnianes actives (ABP). Finalment, es presenten resultats novedosos
d’intereaccions que emergeixen entre les partícules quan els sistemes es porten
lluny de l’equilibri per la introducció de suspensions de partícules intrínsecament
fora de l’equilibri.

Al Capítol 2 presentem un sistema model de matèria tova fora de l’equilibri basat
en partícules amb volum excòs i autopropulsió. La introducció de l’autopropulsió
fa que el sistema perdi la invariància sota simetries temporals, i per tant, deixi
d’estar en l’equilibri termodinàmic. Com a resultat d’una competició entre l’auto-
propulsió i els efectes repulsius de les partícules, a densitats suficientment grans, un
sistema d’ABPs se separa en dues fases, una de densa i una de diluïa. Recentment
s’ha proposat una extensió del càlcul de la pressió per tal d’incorporar-hi l’activitat.
S’ha demostrat, també, que en absència d’interaccions angulars aquesta pressió
defineix una equació d’estat per al sistema, i per tant permet de descriure la transició
de fase.

En aquest context, la tesi exposa l’origen d’una discontinuïtat àmpliament
coneguda en el valor de la pressió a la densitat a partir de la qual el sistema se
separa en les dues fases. Proposem que aquest salt abrupte de la pressió és degut a
la preparació del sistema i que fins ara s’ha estat calculant la pressió corresponent
a l’estat metastable i que aquest introdueix un excés de pressió al sistema. La
persistència del sistema a l’estat metastable està lligada a la necessitat que el
sistema formi una llavor suficientment gran per tal d’iniciar el procés de separació,
un esdeveniment que no se succeeix en temps de simulació raonable.

Hem comprovat que el sistema es manté separat quan es construeix la condi-
ció inicial per a la simulació a partir de sistemes prèviament separats mitjançant
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un canvi d’una densitat alta a la densitat més baixa en la qual volem prendre les
mesures de pressió. La pressió calculada mitjançant aquest mètode es manté a
un valor inferior als calculats fins ara la pressió deixa de tenir una singularitat en
el punt en què el sistema comença a separar-se. L’existència d’aquest cicle en
un diagrama pressió volum recorda als cicles d’histèresi observat prèviament en
transicions de fase de primer ordre en sistemes d’equilibri. En aquest capítol, doncs,
resolem la problemàtica del salt de pressió en l’equació d’estat de les partícules
actives brownianes.

Al Capítol 3 proposem un conjunt de partícules brownianes actives, introduït
al capítol 2, com a bany model fora de l’equilibri. A més a més, introduïm
un segon aspecte fonamental en els sistemes de partícules actives, l’alineació
d’orientacions de propulsió, àmpliament estesa en els sistemes de fora d’equilibri,
com ara nedadors i animals. L’alineació és típica de sistemes amb hidrodinàmica,
la qual nosaltres no considerem, i sistemes de forma allargada, tals com bastons.
La intensitat relativa de la propulsió i l’alineació donen lloc a diferents escenaris
col·lectius: en primer lloc una fase de desordre i de tipus gas, una escenari de MIPS
a alineacions baixes i finalment un escenari d’agregats que viatgen a velocitats no
nul·les al llarg del sistema.

Amb aquests banys caracteritzats procedim al gruix del capítol que consisteix en
introduir partícules passives i estudiar-ne les forces, mecànicament, que emergeixen
entre elles com a conseqüència de la presencia de les partícules actives, les partícules
intruses de diàmetre unes 10 vegades més gran que les partícules que constitueixen
el bany actiu. Per un parell de partícules intruses, o partícules de prova, observem
l’aparició de forces atractives de depleció a distàncies curtes i baixa intensitat de
la propulsió, aquest és el cas típic d’equilibri. En el moment en què mantenim
l’alineació entre les partícules actives baixa i n’augmentem la propulsió mesurem
un canvi qualitatiu de la força que passa a ser repulsiva entre les partícules de
prova. Finalment, quan augmentem la intensitat de l’alineació la força torna a
recuperar un caràcter atractiu juntament amb un augment de l’abast de la interacció
a llargues distàncies, de fins a més d’un diàmetre de les partícules intruses. Al final
del capítol discutim l’origen de les forces basant-nos amb les estructures emergents
que hem estudiat en la feina prèvia de caracterització del bany actiu. La captura de
les partícules en banys amb baixa alineació és responsable la la repulsió entre les
partícules intruses: les partícules actives queden atrapades a l’embut definit per les
parets en contacte de les partícules passives. Amb l’augment de les interaccions
d’alineament es fomenta l’aparició d’agregats que viatgen al llarg del sistema,
n’emergeixen forces de llarg abast: típicament de les dimensions de l’agregat actiu.

Per acabar estenem els resultats a mescles de partícules actives i passives i
mitjançant les correlacions de distància entre les partícules passives podem extreure
que, qualitativament, l’efecte col·lectiu per a partícules passives respon prou bé als
resultats obtinguts per la mesura directa de les forces.

Al Capítol 4 introduïm un sistema diferent pertanyent també al camp de la
matèria condensada tova i basat en els experiments previs realitzats a la Universitat
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de Navarra en sistemes granulars vibrats, sistemes constituïts per llavors de rosella.
Proposem un sistema dissipatiu de grans de diferents diàmetres disposars formant
una monocapa en un pla amb un forçament extern en una direcció horitzontal al pla.
En aquest sistema discutim el comportament d’una esfera metàl·lica i com aquesta
es comporta com l’equivalent d’una partícula granular desconnectada del forçament
extern. Les similituds del problema amb el que hem plantejat al Capítol 3 ens
duen a un tractament amb les eines de mesures desenvolupades per les intrusions
en banys actius. En aquest sistema, però, hi ha una direcció preferencial al pla
i, per tant, hem considerat i mesurat l’aparició de parells de força sobre parelles
de partícules de prova que indueixen rotacions. Hem caracteritzat els moviments
relatius de les inclusions lliures i hem constatat que una parella tendeix a alinear-se
en la direcció del forçament extern i a estar en contacte. Els càlculs de les forces
relatives i parells de forçes sobre les partícules fixades són compatibles amb una
atracció a curt abast i l’alineació de la parella en la direcció d’oscil·lació.

A més a més, identifiquem l’aparició de forces de llarg abast degudes al tren-
cament de l’estructura granular a la regió entre les partícules però amb un efecte
menys notable a la regió externa, les fluctuacions de velocitat presenten magnituds
diferents dins i fora i, de manera anàloga a les forces de Casimir, resulten en una
atracció de llarg abast. Finalment, hem expressat les dependències de la intensitat
de l’atracció en funció dels paràmetres que descriuen l’estat del sistema: l’amplitud
del forçament extern, l’angle for forma la parella respecte la direcció d’oscil·lació i
la distància relativa de la parella.

Al Capítol 5 presentem un sistema experimental que connecta l’activació de
reaccions químiques amb l’establiment de fluxos químics i del fluid de les superfí-
cies col·loïdals basats en els experiments del grup de Pietro Tierno a la Universitat
de Barcelona. La presència de les partícules en el medi on hi ha consum i generació
de productes químics genera interaccions entre les partícules del sistema. Tant si
participen en les reaccions químiques com si només experimenten els perfils de
concentració generats per les partícules veïnes s’estableixen unes velocitats rela-
tives d’interacció. A la primera part del capítol plantegem el model que ens permet
d’extreure les dependències funcionals de les interaccions per a poder construir un
model computacional i explorar l’ensamblatge de les mescles per a diferents valors
de les concentracions de partícules actives i passives.

A partir de dades experimentals obtenim els coeficients que caracteritzen les in-
tensitats de les reaccions i explorem les configuracions i estructures que emergeixen
en mescles de partícules actives i passives a diferents concentracions. Essencialment
distingim ente un règim en què preval la formació d’agregats controlats per nuclis
centrals de partícules actives, i un règim en què es formen agregats que s’extenen
de manera contínua en tot el conjunt del sistema, estructures percolants i amb els
aspectes morfològics típics dels gels.

L’addició d’interaccions magnètiques, asimètriques, entre les partícules ac-
tives permeten l’establiment d’estructures linials percolants que s’estenen en tota
l’extensió del sistema. Les cadenes magnètiques basteixen i sustenten les estructures
donant lloc a estructures de tipus gel. Finalment, hem caracteritzat les estrucures
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resultants no només morfològicament sinó que també hem estudiat la relaxació,
que esdevé a unes escales de temps més lentes que les associades a la difusió lliure
de les partícules.

Aquests resultats, per a partícules actives que no s’autopropulsen, contrasten
amb els resultats existents fins al moment en què si bé s’havia considerat el dopatge
amb agents actius aquests eren de naturalesa polar i autopropulsada.

En resum, en aquesta tesi hem considerat diferents sístemes tipus del camp de
la matèria activa, medis granulars i dispersiona col·loidals, i els hem disposat en el
si de medis intrinsecament fora de l’equilibri termodinàmic. La naturalesa de no
equilibri dels banys, indueixen un sèrie d’interaccions efectives entre les partícules
passives que hem caracteritzat en el tranascurs dels capítols de la tesi.
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