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Abstract 
 

 

 

 

 

 

 

This PhD manuscript mainly covers the theoretical study of the electronic properties of 

Bi2Se3 family topological insulators, in presence of different defects and proximity effects 

with a graphene layer. All calculations are based on density functional theory (DFT) method, 

tight binding (TB) and effective continuum models which allow to obtain simultaneously a 

realistic description of electronic properties of clean materials, but also to explore the impact 

of defects and disorder on such properties. Regarding the study of disorder, we have particu-

larly scrutinized the impact of rotation mismatchs inside the quintuple structure and the effect 

of surface hydrogenation on the properties of ultrathin TI structures. Besides that, the effect 

of both non-magnetic and magnetic chemical impurities have been investigated using the ge-

neric TB Fu-Kane-Mele (FKM) model of three-dimensional TI  in the context of gap opening 

and changes of the spin textures of the surface states. By varying the density of impurities 

and their magnetic orientation, a series of conclusions could be made on gap features and 

evolving spin textures of surface states. Finally, the properties of graphene/TI heterostruc-

tures have been studied using DFT and a TB model, fitted to the first-principles calculations. 

The presence of a spin transport anisotropy was found to be a smoking gun of the proximity 

effect of the TI on the graphene states, a result which has been also discussed in the context 

of experimental measurements. 
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Chapter One: Introduction 
 

 

 

 

 

Theoretically predicted in 2007, topological insulators (TI) have gradually attracted more and 

more attention in the field of condensed matter physics due to their promising application in 

spintronic devices.[1~6] TI have a bulk bandgap, but contrary to normal insulator exhibit 

conducting surface states, which are described by a Dirac cone, similar to the case of gra-

phene. 

 
In conventional metals, electron are free to move in any direction and collide with each other 

or with defects, resulting in the scattering of electron in different directions.[7~9] Further-

more, as electrode collide with phonon degrees of freedom, part of their energy is converted 

into thermal vibration so that their kinetic energy is damped. All these phenomena induce 

non-zero electric resistance.[10, 11] Different from conventional conductors, the TI surface 

states exhibit a spin-momentum locking symmetry which manifests in the fact that spin and 

momentum vectors are always perpendicular to each other. This affects the backscattering 

probability for electrons since a reversal of momentum is only allowed with a spin flip (due 

to the time reversal symmetry), suggesting long mean free path of surface electrons in ab-

sence of magnetic disorder. As a conclusion surface states are robust against any non-

magnetic disorder which suggest low scattering and small resistance.[12] Furthermore, the 

energy dispersion relation on TI surface state is described by 𝐸𝐸 = 𝑣𝑣 × 𝑘𝑘 (v is the velocity of 

electron). This indicates that electron on TI surface can move ‘like light’; except with a dif-

ferent velocity (𝐸𝐸 = 𝑐𝑐 × 𝑘𝑘 and c is the speed of light).[13] 

 
Another potential application of TI is Quantum Anomalous Hall effect (QAHE). It is well 

known that charge current with an external magnetic field applied normal to its substrate 

plane can experience the Lorentz force in transverse direction which results in a Hall re-

sistance. Quantum Hall (QH) effect is a quantum version of the Hall effect, which was first 
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observed in 2 dimensional electronic gas with the precise conductance values that are integers 

or fractional numbers of e2/h, but requiring strong external magnetic fields.[14-16] Different 

from QH, Quantum Anomalous Hall (QAH) does not require external magnetic field and the 

Hall conductivity could acquire quantized values proportional to integer multiples of the con-

ductance quantum, only through the combination of inner magnetic polarization and spin or-

bit coupling (SOC).[17] This could make QAH a more convenient mechanism for some elec-

tronic applications. Since the Bi2Se3-family TI exhibits a band inversion at Γ point and strong 

SOC, it is a potential candidate for the achievement of QAH without external magnetic field. 

The observation of QAH effect has been proposed and revealed in the literature.[18~20] In-

deed, many efforts have been devoted to achieve the QAH through combining TI with mag-

netic insulating layer or through magnetic doping elements so as to generate a non trivial gap 

for surface states.[17~20] More details of QHE, QSHE and QAHE are discussed in chapter 

2.1. 

 
Based on all these peculiar properties, TI was investigated in this PhD project and the effect 

of different defects and proximity effects were examined and are hereafter described in more 

details. 

 
Chapter 1 gives a general introduction to TI, including its electronic properties and applica-

tions in spintronics, and also discusses the content of each chapter of the whole thesis. 

 
Chapter 2 summarizes some essential literature for this PhD research work. A first part is a 

brief introduction to topological insulators which includes the discussion of the band structure 

and spin texture of Bi2Se3 as an example and the background mechanism. Then, a thorough 

introduction to density functional theory follows with the concrete deduction of important 

formulas. Last, the DFT calculation procedure is introduced within the framework of the 

VASP code, including all different parameters with their setting rules and the different tech-

niques; such as FFT grid, density mixing scheme, pseudopotential, PAW method, noncolline-

ar calculation with SOC effect. 

 
Chapter 3 discusses the effect of different defects on the electronic properties of Bi2Se3 with 

ultrathin thickness and scrutinizes the role of disorder on the robustness of topological sur-

face states, which can be analysed through their spin textures. The presence of twin grain 
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boundaries is found to increase the band gap of the film, while preserving the spin texture of 

states in the gapped bands. Differently, partial hydrogenation of one surface not only results 

in some self-doping effect, but also provokes some alteration of the spin texture symmetry of 

the electronic states. The formation of a new Dirac cone at M point in the Brillouin zone of 

the hydrogenated surface, together with a modified spin texture characteristics is consistent 

with a dominant Dresselhaus spin-orbit interaction type as more usually observed in 3D ma-

terials. 

 
Chapter 4 discusses the proximity effect in graphene/Bi2Se3 heterostructure, focusing on the 

spin properties of the graphene layer. Through enhancing the spin−orbit interaction in gra-

phene via proximity with topological insulators, a novel 2D system shows the combination of 

nontrivial spin textures with high electron mobility and an understanding of the hybrid spin-

dependent properties is also provided through a tight binding model, which could determine 

the precise spin texture of electronic states in graphene interfaced with a Bi2Se3 and agree 

well with the DFT simulation results. In the end, a giant spin lifetime anisotropy in the gra-

phene layer is discussed, appearing as a measurable hallmark of spin transport in Gr/TI heter-

ostructures and suggesting novel types of spin devices. 

 
Chapter 5 shows the theoretical work based on Fu-Kane-Mele TB model so as to discuss the 

properties of 3D TI including both band structure and spin textures; particularly, the effect of 

disorder and magnetic doping of TI was studied based on this model. It is found that magnet-

ic dopants on the surface could result in band gap opening and also induce a spin transport 

anisotropy of the surface states, providing a guideline to control the spin properties of con-

ducting carrier on TI surface in real devices. 

 
Chapter 6 provides a summary for the whole PhD research works. 
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Chapter Two: Theory of Topological Insulator and DFT 
Calculation  
 

 

 

 

 

2.1 Introduction to Topological Insulator (TI) 
Chapter one gives some general basic introduction to TI, including their properties. Since, in 

this PhD project, Bi2Se3-family topological insulators (TIs) were investigated under different 

conditions, for instance, rotation or hydrogenation defects and combination with graphene; 

therefore, an introduction to it with more details is provided. 

 

TI represents a new state of condensed matter with unique electronic structure, insulating in 

the bulk but conducting at their boundaries with a Dirac cone shape at low energies.[1–3] The 

corresponding boundary states are protected by time reversal symmetry with a spin-

momentum locking character, namely the direction towards which the carriers are travelling 

determines univocally the direction of the spin, thus resulting in intrinsic spin currents and 

unprecedented opportunities for innovative spintronics[3]. Bernevig and Zhang predicted the 

existence of TIs in strong spin–orbit coupling materials[4, 5] and the formation of edge chan-

nels with quantized conductance was later confirmed experimentally in Cadmium Tellu-

ride/Mercury telluride/Cadmium Telluride (CdTe/HgTe/CdTe) quantum wells through 

transport measurements [6]. Three-dimensional bulk solids of binary compounds involving 

bismuth were then predicted to also belong to the TIs family [7]. The first experimentally re-

alized 3D TI state was reported in bismuth antimonide [8], and shortly after observed in pure 

antimony, bismuth selenide (Bi2Se3), bismuth telluride (Bi2Te3) and antimony telluride 

(Sb2Te3) using ARPES (see [3]). 
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Introduced in chapter one, as QHE concerned, the bulk is insulating while the edge convey 

propagating states which then determine quantized value for the corresponding conductance 

(in units of e2/h). Fig. 2.1a shows a representation for the QH device, where an external mag-

netic (B) field is applied to the 2D electron gas (2DEG). A current (I) is applied to the device 

and a voltage drop in transverse direction (Vxy) can be measured. The reason why Vxy shows 

up is that electrons can precess around the B field with cyclotron frequency (eB/m), resulting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Schematic representation of QH and QSH effects. a – 2D electronic gas (2DEG) 
patterned in Hall geometry; b – Landau level in density of states; c – Conductance mecha-
nism for bulk and edge states; d – Quantum Hall conductance v.s. magnetic field strength; 

e & f – Quantum Hall and Quantum Spin Hall effects respectively. 
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in a series of discrete energy levels, and these levels are called Landau levels (shown in Fig. 

2.1b). These Landau Levels can be filled or depleted as a function of B field strength. When 

the Fermi level is located in a density of states minimum between two Landau levels (shown 

in Fig. 2.1c), the Hall resistance (Rxy) shows staircase-like plateaus as a function of B field 

(see Fig. 2.1d). These plateaus are quantized in steps of h/Ne2, where N is an integer. Based 

on QH effect, a spinless 1D system has both forward and backward moving carriers and these 

two basic degrees of freedom are spatially separated in a QH bar (see Fig 2.1e). The upper 

edge only supports a forward moving carrier; while, the lower edge only supports a backward 

moving carrier. Both states are robust and go around an impurity without scattering. 

 
The QH states belong to a topological class in absence of time reversal symmetry (TRS); 

while, Shoucheng Zhang et al.[9] predicted another new class of topological quantum regime 

as manifested in 2D topological insulators, referred as the quantum spin Hall (QSH) state for 

which the spin orbit coupling (SOC) plays the main role. According to this QSH state, a spin-

ful 1D system has four basic degrees of freedom, which are spatially separated in a QSH bar. 

The upper edge supports a forward moving carrier with spin up and backward moving carrier 

with spin down and conversely for the lower edge. In other words, this QSH state can be con-

sidered as two copies of the QH state, where states with opposite spin propagate along the 

edge in opposite direction as shown in Fig. 2.1f. These topological insulators are classified 

into two different classes dictated by the so-called Z2 topological number. If the nontrivial 

state has a bulk gap and surface states determined by an odd number of Dirac cones with Z2 

of 1/2 modulo an integer, then the system is classified into a strong TI. Differently if the sur-

face states are described by an even number of Dirac cones with Z2 of 0, then, it is classified 

into a weak TI. As 2D topological insulators, HgTe/CdTe quantum well (QW) was first theo-

retically predicted when the thickness of QW becomes shorter than a critical value, the topo-

logical nontrivial state emerges, in which a pair of 1D edge states with opposite spins propa-

gate in opposite directions. The experiment showed that the longitudinal conductance in QSH 

state is then quantized in units of 2e2/h. In 2009, a 3D version of topological insulators was 

predicted in Bi2Te3 and Sb2Te3 with a bulk band gap and Dirac cone describing the gapless 

surface states. The following sections introduce 2D and 3D TI with their Hamiltonian model 

and related properties respectively. 
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2.1.1 2D TI 
Both HgTe and CdTe have the zinc blende lattice structure. They both show bands which are 

located near the Gamma point at the Fermi level, bands which are made from one s-orbital 

(Γ6) band and two p-orbital bands split by SOC effect into a J=3/2 (Γ8) band and J=1/2 (Γ7) 

band (J and Γ denote total angular momentum and Dirac point respectively). CdTe exhibits a 

s-orbital (Γ6) conduction band and p-orbital (Γ7 & Γ8) valence bands with a gap of about 1.6 

eV. Due to Hg element with strong SOC strength, the band ordering of HgTe is inverted in 

the following way that Γ8 becomes a conduction band and is shifted above Γ6 band, thus 

moved below the Fermi level. Because of the degeneracy between Γ7 and Γ8 bands, HgTe is 

zero-gap semiconductor.[10] 

 
In the structure of a quantum well, HgTe is connected with CdTe on both sides and through 

tuning the width of the well, different phases can be achieved. E1 and H1 in Fig. 2.2 denote 

quantum well states derived from Γ6 and Γ8 bands respectively. As the well width becomes 

shorter than a critical value, the confinement energy increases and the energy level is shifted 

and the well behaves like CdTe, which has the normal band ordering (Γ6 and Γ8 are the con-

duction and valence bands respectively), and becomes a normal insulator; while, as the width 

is larger than the critical value, the well behaves like HgTe in which the confinement is weak, 

Γ6 and Γ8 band crosses and becomes inverted. This critical width value is about 6.3 nm and 

the whole mechanism is illustrated in Fig. 2.2. 
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Shoucheng Zhang et al. built up an effective Hamiltonian model to describe this system 

which is written in equation 2.1.[10] 

𝐻𝐻 = �
ℎ𝑘𝑘 0
0 ℎ𝑘𝑘∗

�                                                                                                                (2.1) 

and ℎ𝑘𝑘 = 𝜖𝜖𝑘𝑘𝐼𝐼2×2 + 𝑑𝑑𝑘𝑘𝜎𝜎𝑎𝑎; I2×2 is identity matrix; 

𝜖𝜖𝑘𝑘 = 𝐶𝐶 − 𝐷𝐷�𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2�;  𝑑𝑑𝑘𝑘 =  �𝐴𝐴𝑘𝑘𝑥𝑥 − 𝐴𝐴𝑘𝑘𝑦𝑦,𝑀𝑀𝑘𝑘� and 𝑀𝑀𝑘𝑘 = 𝑀𝑀 − 𝐵𝐵�𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Illustration of quantum well formed by HgTe/CdTe. a, b – bands for HgTe and 
CdTe respectively. c, d – well width smaller and larger than the critical value. Ef indicates 

Fermi level 
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where, A, B, C, D and M are quantum well dependent parameters. Taking Fermi energy level 

of HgTe as zero eV, and the energy spectrum of this model is written as equation 2.2. 

𝐸𝐸± = 𝜖𝜖𝑘𝑘 ± �𝐴𝐴2�𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2� + 𝑀𝑀𝑘𝑘
2                                                                                (2.2) 

Mk is the Dirac mass and it controls the energy gap between Γ6 and Γ8 bands. When the well 

width is larger than the critical value, Mk becomes negative which indicates that Γ8 band is 

above Γ6 band and band inversion happens. 

 
Furthermore, HgTe does not have inversion symmetry, but brings an additional term (shown 

in equation 2.3) that strongly affects the spin texture of the edge state. Such additional Hamil-

tonian writes 

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �

0 0
0 0

0 −∆𝑧𝑧
∆𝑧𝑧 0

0 ∆𝑧𝑧
−∆𝑧𝑧 0

0 0
0 0

�                                                                    (2.3) 

To simplify such Hamiltonian, a lattice regularization is applied and the eigenvalue, well 

width and Dirac mass are described in equations 2.4 ~ 2.6. 

𝜖𝜖𝑘𝑘 = 𝐶𝐶 − 2𝐷𝐷𝑎𝑎−2�2 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑥𝑥𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑦𝑦𝑎𝑎�                                                               (2.4) 

𝑑𝑑𝑘𝑘 = �𝐴𝐴𝑎𝑎−1𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑥𝑥𝑎𝑎,−𝐴𝐴𝑎𝑎−1𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑦𝑦𝑎𝑎,𝑀𝑀𝑘𝑘�                                                                  (2.5) 

𝑀𝑀𝑘𝑘 = 𝑀𝑀− 2𝐵𝐵𝑎𝑎−2�2 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑥𝑥𝑎𝑎 − 𝑐𝑐𝑜𝑜𝑠𝑠𝑘𝑘𝑦𝑦𝑎𝑎�                                                             (2.6) 

Here, replacing kx by -∂x and rewriting the eigenstate of the edge state as the following form 

(equation 2.7) 

𝛹𝛹↑ = �𝛹𝛹00 � ;𝛹𝛹↓ = � 0
𝛹𝛹0
�                                                                                                (2.7) 

Then, the wave function of edge state at Γ point is given in equation 2.8 

𝛹𝛹0 = �
𝑎𝑎�𝑒𝑒𝜆𝜆1𝑥𝑥 − 𝑒𝑒𝜆𝜆2𝑥𝑥�𝜙𝜙−,                      𝐴𝐴/𝐵𝐵 < 0
𝑐𝑐�𝑒𝑒−𝜆𝜆1𝑥𝑥 − 𝑒𝑒−𝜆𝜆2𝑥𝑥�𝜙𝜙+,                  𝐴𝐴/𝐵𝐵 > 0

                                                   (2.8) 
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where, 𝜆𝜆1,2 = 1
2𝐵𝐵
�𝐴𝐴 ± √𝐴𝐴2 − 4𝑀𝑀𝑀𝑀� and ϕ± satisfy 𝛹𝛹0 = 𝜙𝜙𝑒𝑒𝜆𝜆𝜆𝜆 and ± sign indicates solutions 

corresponding to ±λ. It is obvious that the relative strength between A and B determines the 

spin polarization of the edge state, which indicates the helicity of Hamiltonian for the spin 

texture. Projection of bulk Hamiltonian onto the edge state, shown in equation 2.9, generates 

the model for edge state. 

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �𝛹𝛹𝛼𝛼�𝐻𝐻�𝛹𝛹𝛽𝛽�                                                                                                       (2.9) 

and to leading to order of ky, the Hamiltonian is expressed in equation 2.10. 

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴𝑘𝑘𝑦𝑦𝜎𝜎𝑧𝑧                                                                                                            (2.10) 

According to König et al.[11], the A is about 3.6 eVÅ and the Dirac velocity of the edge state 

is 5.5×105 m/s. 

 
As shown in Fig. 2.1, the QSH regime manifests the state with opposite spin which counter-

propagates along a given edge. In such system, TRS prevents all backscattering paths for 

electrons, resulting in the fact that helical edge state is robust against disorder. The mecha-

nism is explained below with Fig. 2.3. If a nonmagnetic impurity is present at edge and the 

electron is backscattered, then, the forward moving electron with one spin direction can make 

either a clockwise or a counterclockwise turn around the impurity. Since in the QSH regime, 

only electron with opposite spin can move backwards, the spin of backscattered electron has 

to be altered to the opposite spin with an angle of ±π. Thus, the forward and backward paths 

differ by 2π of spin. On the other hand, the spin operator changes to the negative sign under 

2π rotation. Therefore, two backscattering paths interfere destructively and result in full 

transmission. However, in the situation of a magnetic impurity located at the edge, the TRS 

will be broken and these two backscattering paths do not interfere destructively, so that the 

QSH regime is no longer insensitive to disorder.[12] 
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2.1.2 3D TI 
Similar to 2D TI, 3D TI materials can be described by Hamiltonians in which SOC effect 

causes the band inversion at Γ point and the structure shows a bulk band gap; while, the sur-

face states described as Dirac fermions remain topologically protected. In 2009, H. Zhang et 

al.[13] proposed a generic model for this Bi2Se3 family TIs, which includes Bi2Se3, Bi2Te3 

and Sb2Te3. These materials crystallize in the rhombohedral structure with space group D5
3d 

(R3�m). Taking Bi2Se3 as an example, it has layered crystal structure, which is composed of 

quintuple-layer (QL) units stacked along the trigonal axis with a threefold rotational sym-

metry, and the bulk crystal structure has five atoms (two Bi and three Se atoms). Covalent 

bonding is formed within QL and weak Van der Waals interaction exists between each 

QL.[14~16] 

 
The crystal structure of Bi2Se3 is shown in Fig. 2.4a and the band structure for 6QLs case 

from DFT calculation is shown in Fig. 2.4b, from which the bulk band gap is seen to be about 

0.3 eV, agreeing with experimental data. Fig. 2.4c shows the illustration for the mechanism 

of such electronic state at Γ point. The main contribution to the state close Fermi energy level 

comes from the p-shell orbital and their configurations are 6s26p3 for Bi and 4s34p4 for Se 

respectively. The chemical bonding between Bi and Se inside QL leads to some level repul-

sion and the inversion of the centre allows defining the eigenstate with definite parities. Crys-

tal field effect results in the splitting between pz orbitals from px and py, leaving Bi and Se 

with opposite parity near the Fermi level. Furthermore, SOC effect introduces an additional 

splitting of energy level and because the strength of Bi is very strong (1.25 eV for Bi 6p or-

bital), the downshifted Bi 6pz orbital is large enough to bring the band inversion between Bi 

6pz and Se 4pz levels, leaving a Dirac point (DP) at Γ point. Due to the quantum tunnelling 

 

 

 

 

 

Fig. 2.3 Two backscattering paths for electron on edge and they interfere destructively, 
leading to the robustness against backscattering in presence of non-magnetic impurity. 

a b 
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effect, TI film needs to be thick enough (no thinner than 6 nm) to avoid the interaction be-

tween two surface states.[17, 18] 

 
Fig. 2.4d shows the spin texture, which is the most important feature of TI. Each green arrow 

indicates the direction of spin vector on each k point and, from the centre to each k point, it is 

the direction of momentum vector; therefore, it is clear to see that the spin and momentum 

vector are always perpendicular to each other. This direction relation is called Rashba-type 

spin texture and as long as the direction of one vector is known, that of the other one could be 

implied through right-hand rule. Based on this spin texture, it is known that current moving in 

opposite, parallel direction could have opposite spin direction on the surface edge, which 

makes such material very promising in the field of spintronics.[19] 
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An effective Hamiltonian, which features the low energy property of this system, is written in 

formula 2.11.[20] 

𝐻𝐻 = 𝜖𝜖𝑘𝑘𝐼𝐼4×4 + �

𝑀𝑀𝑘𝑘 𝐴𝐴1𝑘𝑘𝑧𝑧
𝐴𝐴1𝑘𝑘𝑧𝑧 −𝑀𝑀𝑘𝑘

0 𝐴𝐴2𝑘𝑘_
𝐴𝐴2𝑘𝑘_ 0

0 𝐴𝐴2𝑘𝑘+
𝐴𝐴2𝑘𝑘+ 0

𝑀𝑀𝑘𝑘 −𝐴𝐴1𝑘𝑘𝑧𝑧
−𝐴𝐴1𝑘𝑘𝑧𝑧 −𝑀𝑀𝑘𝑘

�                                             (2.11) 

where, 𝑘𝑘± = 𝑘𝑘𝑥𝑥 ± 𝑖𝑖𝑘𝑘𝑦𝑦, 𝜖𝜖𝑘𝑘 = 𝐶𝐶 + 𝐷𝐷1𝑘𝑘𝑧𝑧2 + 𝐷𝐷2𝑘𝑘⊥2  and 𝑀𝑀𝑘𝑘 = 𝑀𝑀 − 𝐵𝐵1𝑘𝑘𝑧𝑧2 + 𝐵𝐵2𝑘𝑘⊥2 . This Hamilto-

nian has the four low lying state (|𝑝𝑝1𝑧𝑧↑
+ ⟩, |𝑝𝑝1𝑧𝑧↓

+ ⟩, |𝑝𝑝2𝑧𝑧↑− ⟩ and |𝑝𝑝2𝑧𝑧↓− ⟩) at Γ point, with the time 

reversal symmetry (TRS), the inversion symmetry (I) and the threefold rotation symmetry (C3) 

 

                   

Fig. 2.4 Structure and mechanism for Bi2Se3 TI. a. - crystal strcture of Bi2Se3; b. - band 
structure of 6QLs Bi2Se3; c. - illustration for the mechanism; d. - spin texture on the sur-

face state 

Bi 

Se 

𝑃𝑃�⃑𝑥𝑥+𝑖𝑖𝑖𝑖,↑
1+ ,𝑃𝑃�⃑𝑥𝑥−𝑖𝑖𝑖𝑖,↓

1+  

𝑃𝑃�⃑𝑥𝑥,𝑦𝑦
1+ 

𝑃𝑃�⃑𝑥𝑥,𝑦𝑦,𝑧𝑧
1−  

𝑃𝑃�⃑𝑥𝑥+𝑖𝑖𝑖𝑖,↓
1+ ,𝑃𝑃�⃑𝑥𝑥−𝑖𝑖𝑖𝑖,↑

1+  
𝑃𝑃�⃑𝑥𝑥,𝑦𝑦,𝑧𝑧
1+  

𝑃𝑃�⃑𝑧𝑧1+ 

𝑃𝑃�⃑𝑧𝑧↑
1+,𝑃𝑃�⃑𝑧𝑧↓

1+ 

𝑃𝑃�⃑𝑥𝑥,𝑦𝑦,𝑧𝑧
2+  

𝑃𝑃�⃑𝑥𝑥,𝑦𝑦,𝑧𝑧
2−  

𝑃𝑃�⃑𝑥𝑥,𝑦𝑦,𝑧𝑧
0−  

𝑃𝑃�⃑𝑧𝑧2− 

𝑃𝑃�⃑𝑥𝑥,𝑦𝑦
2− 

𝑃𝑃�⃑𝑧𝑧↑
2+,𝑃𝑃�⃑𝑧𝑧↓

2+ 

𝑃𝑃�⃑𝑥𝑥+𝑖𝑖𝑖𝑖,↑
2− ,𝑃𝑃�⃑𝑥𝑥−𝑖𝑖𝑖𝑖,↓

2−  
𝑃𝑃�⃑𝑥𝑥+𝑖𝑖𝑖𝑖,↓
2− ,𝑃𝑃�⃑𝑥𝑥−𝑖𝑖𝑖𝑖,↑

2−  

a b 

c 

B

Se 
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around z axis. In these four orbitals basis, the underlying symmetries can be represented by 

equation 2.12 ~ 2.14 and In×n is a n×n identity matrix, K denotes the complex conjugation op-

erator, σx,y,z and τx,y,z are Pauli matrices for spin and orbital respectively. 

𝑇𝑇 = 𝑖𝑖𝜎𝜎𝑦𝑦𝐾𝐾 ⊗ 𝐼𝐼2×2                                                                                                        (2.12) 

𝐼𝐼 = 𝐼𝐼2×2 ⊗ 𝜏𝜏3                                                                                                               (2.13) 

𝐶𝐶3 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖�𝜋𝜋 3� �𝜎𝜎𝑧𝑧 ⊗ 𝐼𝐼2×2�                                                                                     (2.14) 

All parameters in the Hamiltonian were obtained through fitting the model to ab initio calcu-

lations.[21] The Dirac mass (M), which denotes the bulk insulating gap (~ 0.3 eV), guaran-

tees the formation of TI under the room temperature and according to M, B1 and B2, it is ob-

vious that the order of |𝑝𝑝1𝑧𝑧↑(↓)
+ � and |𝑝𝑝2𝑧𝑧↑(↓)

− � is inverted at Γ point, which characterises the 

nontrivial nature of TI system. 

 
Similar to that in 2D case, projecting bulk Hamiltonian onto the surface state can generate a 

3D surface effective model, which is written in equation 2.15. 

𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶 + 𝐴𝐴2�𝜎𝜎𝑥𝑥𝑘𝑘𝑦𝑦 − 𝜎𝜎𝑦𝑦𝑘𝑘𝑥𝑥�                                                                         (2.15) 

with A2 = 4.1 eVÅ and the velocity on surface state is given by v = A2 /ħ ≈ 5.0 × 105 m/s. 

Through projecting the spin operators onto the subspace with the four basis states, the spin 

operators for this model are written in equation 2.16. 

�𝛹𝛹𝛼𝛼�𝑆𝑆𝑥𝑥�𝛹𝛹𝛽𝛽� = 𝑆𝑆𝑥𝑥𝜎𝜎𝑥𝑥
𝛼𝛼𝛼𝛼

�𝛹𝛹𝛼𝛼�𝑆𝑆𝑦𝑦�𝛹𝛹𝛽𝛽� = 𝑆𝑆𝑦𝑦𝜎𝜎𝑦𝑦
𝛼𝛼𝛼𝛼

�𝛹𝛹𝛼𝛼�𝑆𝑆𝑧𝑧�𝛹𝛹𝛽𝛽� = 𝑆𝑆𝑧𝑧𝜎𝜎𝑧𝑧
𝛼𝛼𝛼𝛼⎭
⎬

⎫
                                                                                              (2.16) 

where, S(x,y,z) are positive constants. As discussed in 2D case, the sign of the A1/B1 parameters, 

is controlled by the atomic SOC effective, and determines the direction of spin operator. In 

the Bi2Se3 family TIs, the upper Dirac cone has left hand helicity; while the lower one has the 

right hand helicity, shown in figure 2.4d, from the top view. 
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2.1.3 Research and Applications of the Bi2Se3 family TIs 
In chapter 1 and the beginning of section 2.1, QH was discussed but a strong external mag-

netic field was mentioned to be essential to achieve such a quantum transport regime; while, 

TI has the potential to exhibit the Quantum Anomalous Hall (QAH) state without the action 

of any external magnetic field, which makes TI a promising candidate for spintronics. Quan-

tum Anomalous Hall effect (QAHE) is the quantum version of Anomalous Hall (AH) and it 

requires the combination of magnetic polarization and spin orbit coupling to generate the Hall 

conductance without external magnetic field. One way to induce a QAH regime is to dope the 

TI system with magnetic elements and since the magnetization can break the TRS; a surface 

gap can be generated. Then, the Hall conductance (σxy) can be computed based on equation 

2.17. 

𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑒𝑒2

2𝜋𝜋ℎ
� 𝛺𝛺𝑥𝑥𝑥𝑥𝑑𝑑𝑘𝑘2
𝐵𝐵𝐵𝐵

                                                                                                 (2.17) 

where, e, h and 𝛺𝛺xy are elementary charge, Planck constant, Berry curvature respectively. The 

integral of Berry curvature is within the whole first Brillouin zone. The Berry curvature is 

calculated based on equation 2.18 

𝛺𝛺𝑛𝑛,𝑥𝑥𝑥𝑥(𝑘𝑘) = −𝐼𝐼𝐼𝐼�
⟨𝑛𝑛|∇𝑥𝑥𝐻𝐻(𝑘𝑘)|𝑣𝑣⟩�𝑣𝑣�∇𝑦𝑦𝐻𝐻(𝑘𝑘)�𝑛𝑛�

�𝐸𝐸𝑛𝑛(𝑘𝑘) − 𝐸𝐸𝑣𝑣(𝑘𝑘)�
2

𝑣𝑣≠𝑛𝑛

                                             (2.18) 

where, ∇𝑥𝑥𝐻𝐻 or ∇𝑦𝑦𝐻𝐻 is the velocity operator along x or y axis; while, |𝑣𝑣⟩ and |𝑛𝑛⟩ are Bloch 

states for each k with energies En(k) and Ev(k) respectively. According to equations 2.17 and 

2.18, it is clear that if the integral of Berry curvature is non-zero, the hall conductance is non-

zero as well. In other words, Berry curvature can also be used to probe whether the surface 

gap is trivial or topological non-trivial. 

 
Many research groups have already carried out a lot of studies in this direction. For instance, 

Toru Hirahara et al.[22] comprehensively examined Mn doped Bi2Se3 system and pointed out 

the stable composition (MnBi2Se4/Bi2Se3) for the structure with ferromagnetism, which could 

exhibit the QAHE feature and could have huge application in the direction of ‘topotronic de-

vices’. M. M. Otrokov et al.[23] proposed a magnetic extension method, which combines the 

pristine TI with magnetic TI, made from Mn doping, and this method could help generate a 
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relatively large gap on TI and maintain the QAH signal even in the higher temperature re-

gime. 

 
Furthermore, Zengji Yue et al.[24] observed ultraviolet and visible frequency plasmons and 

high refractive index in nanoslit of Bi1.5Sb0.5Te1.8Se1.2 and Sb2Te3, and pointed out the excel-

lent electronic and optical properties of TI and their wide applications in optoelectronic de-

vices. Jiwon Chang et al.[25] explored metal-oxide-semiconductor field-effect transistors 

(MOSFETs) based on Bi2Se3 and found that TI could provide reasonable performance that 

make it candidate in the such device; especially, with the spin polarized surface state. 

 
Other recent research works on TI have evidenced the possibility of a truly insulating bulk on 

TI thin films [26, 27] and bulk crystals [28, 29]; however, the contribution of defects and 

bulk transport remain a critical hurdle to fully exploit the potential of those materials [30–32]. 

In addition, growing large area of high quality TI-films by MBE remains a true challenge, so 

minimizing the ‘bulk’ part of the TI is a strategy to preserve larger surface versus bulk 

transport channels. The symmetry breaking of opposite surfaces of TI (for instance through 

chemical functionalization or substrate effects [33, 34]) has been further shown to suppress 

the quantum tunnelling between surface states, hence offering the possibility for exploring 

spin transport at surface of ultrathin TI films. Juba Bouaziz et al.[35] investigated in the im-

purity doped Bi2Te3 and Bi2Se3 and found that Cr, Mn, Fe and Co dopants only altered the TI 

surface states but also hybridized with TI bulk states and generating many in-gap states. Lin 

Miao et al.[36] reported that disorder-rich Bi2Se3 showed kink-like dispersion feature and 

induce some renormalized surface Dirac cone. 

 
According to all these research works on TI, it is obvious that TI has many applications with 

novel features and therefore, it is interesting and meaningful to study this kind of materials 

with focus on the electronic properties, which is the main objective of this PhD project as 

well. 

 

2.2 Introduction to Density Functional Theory (DFT) 
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Most parts of the simulation works in this research project were based on Density Functional 

Theory (DFT), which is the most popular and powerful method for the calculations in many 

scientific fields, such as solid physics, geophysics, materials, theoretical chemistry, biology. 

Electronic structure, including the band structure and spin texture were all investigated by 

DFT method[37]; therefore, it is necessary to introduce the fundamental knowledge of this 

method. 

 

2.2.1 Many body problem 
To deal with the properties of the system with many particles, one needs to consider about the 

way to describe the systems. According to quantum mechanics, wave function is used to rep-

resent the state of the system. Take the system of N electrons under non relativistic condition 

as an example, wave function 𝜑𝜑(𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑁𝑁) is used to describe the state of the system and ri 

denotes the position of ith electron in three dimensional space; then, one needs to solve 

Schrödinger equation, which is written below: 

���−
ħ2𝛻𝛻𝑖𝑖2

2𝑚𝑚
+ 𝑢𝑢𝑖𝑖� + �𝑣𝑣�𝑟𝑟𝑖𝑖,𝑟𝑟𝑗𝑗�

𝑖𝑖<𝑗𝑗

𝑁𝑁

𝑖𝑖

� 𝜑𝜑(𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑁𝑁) = 𝐸𝐸𝜑𝜑(𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑁𝑁)                       (2.19) 

where − ħ2𝛻𝛻𝑖𝑖
2

2𝑚𝑚
 denotes the kinetic energy of ith electron and 𝑢𝑢𝑖𝑖 denotes the external potential 

on ith electron; while 𝑣𝑣�𝑟𝑟𝑖𝑖,𝑟𝑟𝑗𝑗�  denotes the Coulomb interaction between ith and jth elec-

trons[38]. 

 
The usual approach to solve Schrödinger equation is done in the following procedure shown 

in Fig. 2.5. Firstly, one needs to set up the Hamiltonian for the system by choosing 𝑢𝑢𝑖𝑖; then 

put 𝑢𝑢𝑖𝑖 into the equation. By solving the equation, one can get 𝜑𝜑(𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑁𝑁) and then the ob-

servables can be calculated by taking the expectation value of the operator with this wave 

function. 
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To calculate the properties of the interacting many-body system, such as electrons within the 

solid, it is important to consider about wave function and Hatree made an approximation[39], 

in which he wrote the many electrons wave function as a product of single particle wave 

functions, which is shown in equation below. 

𝜑𝜑(𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑁𝑁) = 𝜑𝜑𝑟𝑟1𝜑𝜑𝑟𝑟2 …𝜑𝜑𝑟𝑟𝑁𝑁                                                                                        (2.20) 

 
Every wave function 𝜑𝜑𝑟𝑟𝑖𝑖 satisfies one electron Schrödinger equation. 

(−
ħ2𝛻𝛻2

2𝑚𝑚
+ 𝑢𝑢 + 𝑣𝑣𝑖𝑖)𝜑𝜑𝑟𝑟𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜑𝜑𝑟𝑟𝑖𝑖                                                                                   (2.21) 

where, the Coulomb potential 𝑣𝑣𝑖𝑖 is given by Poisson equation, shown in the following equa-

tion. 

∇2𝑣𝑣𝑖𝑖 = 4𝜋𝜋𝑒𝑒2��𝜑𝜑𝑗𝑗�
2

𝑁𝑁

𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

                                                                                                (2.22) 

Fermi statistics can be combined through substituting the wave function by a single determi-

nantal function. This Hatree Fock (HF) approximation[40] causes nonlocal exchange term in 

Schrödinger equation, while keeping the single particle framework; and the exchange effects 

can improve the accuracy for the calculation of total energy. 

 
Although many powerful computational methods have been developed to solve the Schrö-

dinger’s equation, such as diagrammatic perturbation theory[41], which is based on Feynman 

diagrams and Green’s functions, and configuration interaction (CI) methods[42], which are 

based on systematic expansion in Slater determinants; there exists the problem for the calcu-

Set up 𝑣𝑣�𝑟𝑟𝑖𝑖,𝑟𝑟𝑗𝑗� 

Solve Schrödinger’s equation 

Get 𝜑𝜑(𝑟𝑟1,𝑟𝑟2,…𝑟𝑟𝑛𝑛) 

Calculate the expectation of Obervables 

Fig. 2.5 Procedure of Solution for Schrödinger equation equa-
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lation. Each electron has three freedoms of the coordinates in space and totally the wave 

function has 3N freedoms and if spin freedom is considered as well, the total number of free-

dom is 4N, which means that it is very hard to get the solution for the equation. Therefore, it 

is impossible to solve the problem for large and complex system through computer calcula-

tion and no one did the calculation for chemical properties of a molecule with more than hun-

dred atoms through configuration interaction (CI) methods before. 

 
To address this difficulty in computational work, the way of using particle density (𝜌𝜌𝑟𝑟), in-

stead of wave function, to describe Hamiltonian of the system was proposed[43] and the pro-

cedure for the calculation is summarised in Fig. 2.6. First step is to gain particle density and 

then, the wave function and the potential are implied by the density. Therefore, other observ-

ables can be gained through the wave function.  

 

 

 

 

 

 

 

 

 

 

 
This method provides an efficient way for the calculation of electronic structure and many 

properties of the system can be gained, such as band structure, magnetism, thermodynamics, 

dielectric and optical properties of materials. To apply particle density into practice, many 

physical models were built up for the calculation of the energy for the whole electronic sys-

tems. 

 

Get (𝜌𝜌𝑟𝑟) 

Get 𝜑𝜑(𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑁𝑁) 

Built up Hamiltpnian (𝑢𝑢𝑖𝑖 and 𝑣𝑣�𝑟𝑟𝑖𝑖,𝑟𝑟𝑗𝑗�) 

Solve Schrödinger equation 

Calculate the expectation of observables 

Fig. 2.6 Procedure of calculation of observables by particle density 
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2.2.2 Thomas-Fermi model 
In 1927, Thomas and Fermi[44] used statistics to make an approximate description for the 

distribution of the electrons within atom. They proposed that two electrons moving at differ-

ent velocities within a system with the volume of l3 can be treated as the free electron gas 

moving within the six-dimensional space. The total energy of the whole system with N elec-

trons can be expressed equation below. 

𝐸𝐸[𝜌𝜌] = 𝑇𝑇[𝜌𝜌] + �𝜌𝜌𝑟𝑟𝑢𝑢𝑟𝑟𝑑𝑑𝑟𝑟 + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]                                                                          (2.23) 

where 𝑇𝑇[𝜌𝜌] denotes the kinetic energy and the second part denotes the potential energy be-

tween nuclei and electron while 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌] denotes interaction between electrons, which only in-

dicates the Coulomb interaction within this model. 

 
The space can be divided into several small cubics with the volume of ∆𝑉𝑉 (l3) and different 

cubic has different number of electrons (∆𝑁𝑁). It is assumed that electrons within the cubic are 

treated as isolated Fermion under zero Kelvin and each small cubic is independent. With the 

assistance of Fermi-Dirac distribution function (equation 2.24), energy for each cubic can be 

expressed by the following equation. 

𝑓𝑓(𝜀𝜀) = 1
1 + 𝑒𝑒𝛽𝛽(𝜀𝜀−𝜇𝜇)� = �0                  𝜀𝜀 < 𝜀𝜀𝐹𝐹

1                  𝜀𝜀 ≥ 𝜀𝜀𝐹𝐹
                                                       (2.24) 

where 𝜀𝜀𝐹𝐹 is Fermi energy level and states with energy higher than this value is unoccupied 

and those with energy lower than this value is occupied. 

∆𝐸𝐸 = 2�𝜀𝜀𝜀𝜀(𝜀𝜀)𝑞𝑞(𝜀𝜀)𝑑𝑑𝜀𝜀 =
3
5
∆𝑁𝑁𝜀𝜀𝐹𝐹                                                                          (2.25) 

where 𝑞𝑞(𝜀𝜀) is the number of energy level within 𝜀𝜀 and 𝜀𝜀 + 𝛿𝛿𝛿𝛿; while 2 indicates there exist 

two electrons on each energy level. 

 
With the consideration of electron density (𝜌𝜌), total kinetic energy for the whole system can 

be described in equation below. 

𝑇𝑇[𝜌𝜌] = 𝐶𝐶𝐹𝐹 �𝜌𝜌5 3� (𝑟𝑟)𝑑𝑑𝑟𝑟                                                                                               (2.26) 

where 𝐶𝐶𝐹𝐹 = 3
10

(3𝜋𝜋2)2 3� = 2.871 

 
Therefore, the total energy for the electronic system is written in equation below. 

𝐸𝐸𝑇𝑇𝑇𝑇[𝜌𝜌] = 𝐶𝐶𝐹𝐹 �𝜌𝜌5 3� (𝑟𝑟)𝑑𝑑𝑟𝑟 − 𝑍𝑍�
𝜌𝜌𝑟𝑟
𝑟𝑟
𝑑𝑑𝑟𝑟 +

1
2
�

𝜌𝜌𝑟𝑟1𝜌𝜌𝑟𝑟2
|𝑟𝑟1 − 𝑟𝑟2|𝑑𝑑𝑟𝑟1𝑑𝑑𝑟𝑟2                        (2.27) 
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2.2.3 Thomas-Fermi-Dirac model 
On the basis of Thomas-Fermi model[45], Dirac proposed Thomas-Fermi-Dirac model, in 

which he adopted the same description of Kinetic energy in Thomas-Fermi model but added 

exchange energy into interaction between electrons. The electrons within the system are still 

treated as free electrons in a potential box and, with the consideration of the periodic condi-

tion (𝜑𝜑(𝑥𝑥+𝑙𝑙) = 𝜑𝜑𝑥𝑥), the orbital wave function can be written below. 

𝜑𝜑�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� =
1
𝑙𝑙3/2 𝑒𝑒

𝑖𝑖�𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦+𝑘𝑘𝑧𝑧𝑧𝑧� =
1

𝑉𝑉1/2 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖                                                (2.28) 

The density matrix is expressed in the following equation. 

𝜌𝜌1(𝑟𝑟1, 𝑟𝑟2) =
2
𝑉𝑉
�𝑒𝑒𝑖𝑖𝑖𝑖(𝑟𝑟1−𝑟𝑟2) =

1
4𝜋𝜋3

� 𝑘𝑘2𝑑𝑑𝑘𝑘
𝑘𝑘𝐹𝐹

0
�𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟12 sin𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑ϕ                 (2.29) 

where 𝑘𝑘𝐹𝐹 is the position function and equals [3𝜋𝜋𝜌𝜌𝑟𝑟]1/3. 

 
Following the coordinate transformation 

𝑟𝑟 =
1
2

(𝑟𝑟1 + 𝑟𝑟2), 𝑠𝑠 = 𝑟𝑟1 − 𝑟𝑟2                                                                                       (2.30) 

𝜌𝜌1(𝑟𝑟1, 𝑟𝑟2) =
1

4𝜋𝜋3
� 𝑘𝑘2𝑑𝑑𝑘𝑘
𝑘𝑘𝐹𝐹

0
� sin 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋

0
� 𝑑𝑑ϕ
2𝜋𝜋

0
= 3𝜌𝜌𝑟𝑟

sin 𝑡𝑡 − 𝑡𝑡 cos 𝑡𝑡
𝑡𝑡3

 

                   = 𝜌𝜌1(𝑟𝑟, 𝑠𝑠)                                                                                                    (2.31) 

where 𝑡𝑡 = 𝑘𝑘𝐹𝐹(𝑟𝑟)𝑠𝑠 

 
Equation 2.31 is the description of first order density matrix for free non-polarized electron 

gas. Exchange energy (K[𝜌𝜌]) is expressed below. 

𝐾𝐾[𝜌𝜌] =
1
4
�

1
𝑟𝑟12

|𝜌𝜌1(𝑟𝑟1, 𝑟𝑟2)|2𝑑𝑑𝑟𝑟1𝑑𝑑𝑟𝑟2 

           =
1
4
�

|𝜌𝜌1(𝑟𝑟, 𝑠𝑠)|2

𝑠𝑠
𝑑𝑑𝑟𝑟𝑑𝑑𝑠𝑠 = 𝐶𝐶𝑥𝑥 �𝜌𝜌𝑟𝑟

4
3� 𝑑𝑑𝑟𝑟                                                       (2.32) 

Where 𝐶𝐶𝑥𝑥 = 0.7386 

 
The total energy for the whole electronic system can be described below. 

𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇[𝜌𝜌] = 𝐶𝐶𝐹𝐹 �𝜌𝜌𝑟𝑟
5
3� 𝑑𝑑𝑟𝑟 + �𝜌𝜌𝑟𝑟𝑣𝑣𝑟𝑟𝑑𝑑𝑟𝑟 + 𝐽𝐽𝜌𝜌 − 𝐶𝐶𝑥𝑥 �𝜌𝜌𝑟𝑟

4
3� 𝑑𝑑𝑟𝑟                                  (2.33) 

where 𝐽𝐽𝜌𝜌 is Coulomb energy. 

 
Thomas-Fermi and Thomas-Fermi-Dirac models can ease the calculation of the energy and 

other properties of the systems much more efficiently since density function is applied into 
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the formula. However, the accuracy of the calculation is quite difficult to be enhanced be-

cause the description for kinetic energy and interaction between electrons are approximated 

directly. More accurate method, Kohn-Sham equation, can be induced for the energy calcula-

tion. 

 

2.2.4 Functional and Functional Derivative 
Mathematically, Functional is defined as rule for going from a function to a number, for ex-

ample the equation below describes how the particle number changes with the particle densi-

ty function[46]. 

𝑁𝑁𝜌𝜌 = �𝜌𝜌𝑟𝑟𝑑𝑑𝑟𝑟3                                                                                                                 (2.34) 

where 𝑁𝑁𝜌𝜌 is the particle number and 𝜌𝜌𝑟𝑟 is the particle density function for the coordinate (r) 

variable of particle. 

 
One important point is that functional only changes with the function, not variable, thus there 

is no discrimination between 𝑁𝑁𝜌𝜌(𝑟𝑟) and 𝑁𝑁𝜌𝜌(𝑟𝑟′). Another case is that functional also depends 

on a parameter, such as the formula of Hartree potential [𝑣𝑣𝜌𝜌(𝑟𝑟)] in equation below, which 

describes the rule that for any value of the parameter r associates a value 𝑣𝑣𝜌𝜌(𝑟𝑟) with the func-

tion (𝜌𝜌𝑟𝑟′). 

𝑣𝑣𝜌𝜌(𝑟𝑟) = 𝑞𝑞2 �
𝜌𝜌𝑟𝑟′

|𝑟𝑟 − 𝑟𝑟′|
𝑑𝑑𝑟𝑟′
3                                                                                           (2.35) 

 
The functional derivative measures the first-order change in a functional upon a functional 

variation of its argument, shown in the following equation. 

𝐹𝐹[𝑓𝑓𝑟𝑟 + 𝛿𝛿𝑓𝑓𝑟𝑟] = 𝐹𝐹[𝑓𝑓𝑟𝑟] + �𝑠𝑠𝑟𝑟𝛿𝛿𝑓𝑓𝑟𝑟𝑑𝑑𝑟𝑟 + 𝑂𝑂(𝛿𝛿𝑓𝑓2)                                                        (2.36) 

where, the integral arises due to the fact that the variation of functional (F[fr]) depends on the 

variation of the function (fr) at all points within the whole space. The first order coefficient, 

which could also be referred to as functional slope, is the functional derivative (𝛿𝛿𝛿𝛿[𝑓𝑓𝑟𝑟]/𝛿𝛿𝑓𝑓𝑟𝑟). 

 
Functional derivative can tell how the functional changes with the changes in the form of 

function from which it derives. A much more common formula for the description of the 

functional derivatives with respect to particle density (𝜌𝜌𝑟𝑟) of the functional (𝐹𝐹𝜌𝜌) is shown in 

equation below. 
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𝐹𝐹𝜌𝜌 = �𝑓𝑓�𝜌𝜌′𝜌𝜌′′𝜌𝜌′′′…𝑟𝑟�𝑑𝑑𝑟𝑟                                                                                                (2.37) 

𝛿𝛿𝐹𝐹𝜌𝜌
𝛿𝛿𝜌𝜌𝑟𝑟

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝑑𝑑
𝑑𝑑𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌′

+
𝑑𝑑2

𝑑𝑑𝑟𝑟2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌′′

−
𝑑𝑑3

𝑑𝑑𝑟𝑟3
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌′′′

+ ⋯                                                   (2.38) 

 
where, the prime sign indicates ordinary derivatives of particle density function (𝜌𝜌𝑟𝑟) with re-

spect to variable (r). The above equation has many applications in description of exchange-

correlation function within density functional theory. 

 

2.2.5 Hohenberg-Kohn theorem 
According to Hohenberg-Kohn theorem[47], the total energy of a system of electrons and nu-

clei is a unique functional of the electron density (𝜌𝜌𝑟𝑟). To prove this theorem, consider about 

a system with N electrons under an external potential ur, which leads to density (𝜌𝜌𝑟𝑟), there is 

another potential 𝑢𝑢𝑟𝑟′ , also leading to the same density. There are two different ground state 

wave functions 𝜑𝜑 and 𝜑𝜑′ that are related to two external potentials (ur and 𝑢𝑢𝑟𝑟′ ), and two dif-

ferent Hamiltonians (𝐻𝐻� and 𝐻𝐻’�) of the system with ground state total energy (E0 and 𝐸𝐸0′ ). Un-

der Rayleigh-Ritz variational principle, equation below can be built up. 

𝐸𝐸0 = 〈𝜑𝜑�𝐻𝐻��𝜑𝜑〉 < 〈𝜑𝜑′�𝐻𝐻��𝜑𝜑′〉 = 〈𝜑𝜑′�𝐻𝐻’��𝜑𝜑′〉 + 〈𝜑𝜑′�𝐻𝐻� − 𝐻𝐻’��𝜑𝜑′〉 

      = 𝐸𝐸0′ + �𝜌𝜌𝑟𝑟(𝑢𝑢𝑟𝑟 − 𝑢𝑢𝑟𝑟′ )𝑑𝑑𝑟𝑟                                                                                     (2.39) 

 
Following the same principle for Hamiltonian H’ with the function, equation below can be 

built up as well. 

𝐸𝐸0′ = 〈𝜑𝜑′�𝐻𝐻’��𝜑𝜑′〉 < 〈𝜑𝜑�𝐻𝐻’��𝜑𝜑〉 = 〈𝜑𝜑�𝐻𝐻��𝜑𝜑〉 + 〈𝜑𝜑�𝐻𝐻’�−𝐻𝐻��𝜑𝜑〉 

     = 𝐸𝐸0 + ∫𝜌𝜌𝑟𝑟(𝑢𝑢𝑟𝑟′ − 𝑢𝑢𝑟𝑟)𝑑𝑑𝑟𝑟                                                                                      (2.40) 

 
Obviously, the above two equations contradict to each other, thus resulting in one conclusion 

that external potential, Hamiltonian and all the other related electronic properties of the sys-

tem are the unique functional of electron density (𝜌𝜌𝑟𝑟). The total energy of the system is writ-

ten in the following format. 

𝐸𝐸𝑢𝑢[𝜌𝜌] = �𝜌𝜌𝑟𝑟𝑢𝑢𝑟𝑟𝑑𝑑𝑟𝑟 + 𝐹𝐹𝜌𝜌                                                                                             (2.41) 

 
Another point from Hohenberg-Kohn theorem is that the variational minimum of the energy 

of the system is exactly equivalent to the true ground state energy. M. Levy[48] provided a 

general mathematical derivation to prove it. For the system with N electrons under the exter-
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nal potential (𝑢𝑢𝑟𝑟), the Hamiltonian is 𝑇𝑇[𝜌𝜌] + ∫ 𝜌𝜌𝑟𝑟𝑢𝑢𝑟𝑟𝑑𝑑𝑟𝑟 + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌] and for all N representable 

densities (𝜌𝜌𝑟𝑟), those obtainable form some antisymmetric wave function [𝜑𝜑𝑟𝑟1,𝑟𝑟2,𝑟𝑟3….𝑟𝑟𝑟𝑟], Levy 

defined the functional 

𝐹𝐹𝜌𝜌 = 〈𝜑𝜑|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]|𝜑𝜑〉𝜑𝜑→𝜌𝜌
𝑚𝑚𝑚𝑚𝑚𝑚                                                                                   (2.42) 

where, the minimum is taken over all 𝜑𝜑 which gives the density (𝜌𝜌𝑟𝑟). 

 
EGS, 𝜑𝜑𝐺𝐺𝐺𝐺  and 𝜌𝜌𝐺𝐺𝐺𝐺  are used to represent total energy, wave function and density in ground 

state respectively. 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌 (𝑟𝑟) is the wave function which minimises 𝐹𝐹𝜌𝜌; thus equation below 

becomes 

𝐹𝐹𝜌𝜌 = 〈𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌 (𝑟𝑟)|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]|𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

𝜌𝜌 (𝑟𝑟)〉                                                                 (2.43) 

Consider about 𝐹𝐹𝜌𝜌 with external potential, inequality relation can be built up. 

𝐹𝐹𝜌𝜌 + �𝜌𝜌𝑟𝑟𝑢𝑢𝑟𝑟𝑑𝑑𝑟𝑟 = 〈𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌 (𝑟𝑟)|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌] + 𝑢𝑢|𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

𝜌𝜌 (𝑟𝑟)〉 ≥ 𝐸𝐸𝐺𝐺𝐺𝐺                     (2.44) 

Using the minimum property again, another inequality is shown in below. 

𝐸𝐸𝐺𝐺𝐺𝐺 = 〈𝜑𝜑𝐺𝐺𝐺𝐺|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌] + 𝑢𝑢|𝜑𝜑𝐺𝐺𝐺𝐺〉 

        ≤ 〈𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌] + 𝑢𝑢|𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)〉                                                      (2.45) 

With the subtraction of the external potential, it is clear that 

〈𝜑𝜑𝐺𝐺𝐺𝐺|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]|𝜑𝜑𝐺𝐺𝐺𝐺〉 ≤ 〈𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]|𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)〉                        (2.46) 

According to the definition of 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟), it is correct that the reverse relation between two 

sides in equation below. Therefore, it is only possible under one condition. 

〈𝜑𝜑𝐺𝐺𝐺𝐺|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]|𝜑𝜑𝐺𝐺𝐺𝐺〉 = 〈𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]|𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)〉                       (2.47) 

Then equation below is built up. 

𝐸𝐸𝐺𝐺𝑆𝑆 = �𝜌𝜌𝐺𝐺𝐺𝐺𝑢𝑢𝑟𝑟𝑑𝑑𝑟𝑟 + 〈𝜑𝜑𝐺𝐺𝐺𝐺|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]|𝜑𝜑𝐺𝐺𝐺𝐺〉 

       = �𝜌𝜌𝐺𝐺𝐺𝐺𝑢𝑢𝑟𝑟𝑑𝑑𝑟𝑟 + 〈𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)|𝑇𝑇[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌]|𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚

𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)〉 
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       = �𝜌𝜌𝐺𝐺𝐺𝐺𝑢𝑢𝑟𝑟𝑑𝑑𝑟𝑟 + 𝐹𝐹[𝜌𝜌𝐺𝐺𝐺𝐺]                                                                                       (2.48) 

These two fundamental points are the contribution of Hohenberg-Kohn theorem and make it 

possible for the calculation of the properties of the system under ground state, through using 

the electron density. 

 

2.2.6 Kohn-Sham equation 
Different from Thomas-Fermi and Thomas-Fermi-Dirac models, Kohn and Sham did not 

adopt the direct approximation for kinetic energy of the system; instead, they treated the elec-

tronic system as a non-interacting electronic system, in which electrons move freely under an 

external potential (𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒) and the Hamiltonian for the system is shown in the following equa-

tion[49]. 

𝐻𝐻� = ��−
1
2
∇𝑖𝑖2�

𝑁𝑁

𝑖𝑖=1

+ �𝑣𝑣(𝑟𝑟𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

                                                                                  (2.49) 

Through the substitution of the non-interacting wave function (= 1
√𝑁𝑁!

𝑑𝑑𝑑𝑑𝑑𝑑{ϕ1,ϕ2 …ϕ𝑁𝑁}) into 

the Schrödinger’s equation of non-interacting system, one electron equation below can be 

obtained and the density of the non-interacting system (𝜌𝜌𝑟𝑟 = ∑ |ϕ𝑖𝑖(𝑟𝑟)|2𝑁𝑁
𝑖𝑖=1 ) is still equal to 

that of interacting system. 

ℎ�ϕ𝑖𝑖 = �−
1
2
∇𝑖𝑖2 + 𝑣𝑣(𝑟𝑟𝑖𝑖)�ϕ𝑖𝑖                                                                                        (2.50) 

Since the exact kinetic energy functional (T) is not known, the exact kinetic energy (𝑇𝑇𝑠𝑠[𝜌𝜌]) of 

non-interacting system is used and the difference between them is referred as 𝑇𝑇𝑐𝑐[𝜌𝜌]. 𝐹𝐹𝜌𝜌  is 

written in equation below. 

𝐹𝐹𝜌𝜌 = 𝑇𝑇𝑠𝑠[𝜌𝜌] + 𝑇𝑇𝑐𝑐[𝜌𝜌] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌] = 𝑇𝑇𝑠𝑠[𝜌𝜌] + 𝐽𝐽[𝜌𝜌] + 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌]                                       (2.51) 

where, 𝐽𝐽[𝜌𝜌] is the classical Coulomb energy and 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌] is the exchange correlation energy. 

 
The total energy of the interacting system can be written in equation below and through the 

variation, Euler equation 2.53 can be obtained. 
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𝐸𝐸𝜌𝜌 = 𝑇𝑇𝑠𝑠[𝜌𝜌] + 𝐽𝐽[𝜌𝜌] + 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌] + �𝜌𝜌𝑟𝑟𝑢𝑢𝑟𝑟𝑑𝑑𝑟𝑟                                                                (2.52) 

𝜇𝜇 =
𝛿𝛿𝐸𝐸𝜌𝜌
𝛿𝛿𝛿𝛿

= 𝑢𝑢𝑟𝑟 +
𝛿𝛿𝑇𝑇𝑠𝑠[𝜌𝜌]
𝛿𝛿𝛿𝛿

+
𝛿𝛿𝛿𝛿[𝜌𝜌]
𝛿𝛿𝛿𝛿

+
𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌]
𝛿𝛿𝛿𝛿

=
𝛿𝛿𝑇𝑇𝑠𝑠[𝜌𝜌]
𝛿𝛿𝛿𝛿

+ 𝛽𝛽𝐾𝐾𝐾𝐾(𝑟𝑟)                      (2.53) 

where, 𝛽𝛽𝐾𝐾𝐾𝐾(𝑟𝑟) = 𝑢𝑢𝑟𝑟 + 𝑣𝑣𝐽𝐽(𝑟𝑟) + 𝑣𝑣𝑥𝑥𝑥𝑥(𝑟𝑟) is called Kohn-Sham potential, which is the sum of 

external potential (𝑢𝑢𝑟𝑟), classical Coulomb potential (shown in equation 2.54) and the ex-

change-correlation potential (shown in equation 2.53). 

𝑣𝑣𝐽𝐽(𝑟𝑟) =
𝛿𝛿𝛿𝛿[𝜌𝜌]
𝛿𝛿𝛿𝛿

                                                                                                               (2.54) 

𝑣𝑣𝑥𝑥𝑥𝑥(𝑟𝑟) =
𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌]
𝛿𝛿𝛿𝛿

                                                                                                        (2.55) 

Through applying the variation, the total energy can be described in equation below with the 

respect to one-electron orbitals (ϕ𝑖𝑖). 

𝐸𝐸ϕ𝑖𝑖 = ��〈ϕ𝑖𝑖 �−
1
2
∇2�ϕ𝑖𝑖〉 𝑑𝑑𝑟𝑟

𝑁𝑁

𝑖𝑖=1

+
1
2
���

|ϕ𝑖𝑖(𝑟𝑟)|2�ϕ𝑗𝑗(𝑟𝑟′)�
2

|𝑟𝑟 − 𝑟𝑟′|
𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟′

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

            +��𝑢𝑢𝑟𝑟|ϕ𝑖𝑖(𝑟𝑟)|2 𝑑𝑑𝑟𝑟

𝑁𝑁

𝑖𝑖=1

+ 𝐸𝐸𝑥𝑥𝑥𝑥                                                                         (2.56) 

With the constraint of orthonormality of the orbital (ϕ𝑖𝑖), one electron equation can be ex-

pressed in the following equation. 

ℎ𝐾𝐾𝐾𝐾� ϕ𝑖𝑖 = �−
1
2
∇𝑖𝑖2 + 𝛽𝛽𝐾𝐾𝐾𝐾(𝑟𝑟)�ϕ𝑖𝑖 = �𝜀𝜀𝑖𝑖𝑗𝑗ϕ𝑗𝑗

𝑁𝑁

𝑖𝑖=1

                                                         (2.57) 

Since ℎ𝐾𝐾𝐾𝐾�  is Hermitian, the unitary transformation of the orbitals results in Kohn-Sham equa-

tions. 

�−
1
2
∇2 + 𝛽𝛽𝐾𝐾𝐾𝐾(𝑟𝑟)�ϕ𝑖𝑖 = 𝜀𝜀𝑖𝑖ϕ𝑖𝑖                                                                                    (2.58) 

 
2.2.7 Kohn-Sham equation with respect to spin[50] 
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Kohn-Sham equation can deal with the electronic system under scalar potential and build up 

the relation between the electron density and the scalar potential. In this section, a much more 

general situation is considered about and that is the system under vector potential, such as 

magnetic field. Under the magnetic field (𝐵𝐵𝑟𝑟), the electron spin density, which indicates the 

difference between the density for the electron with spin up index (𝛼𝛼) and that with spin 

down (𝛽𝛽), was induced. Totally, there are two variables, electron density (𝜌𝜌𝑟𝑟) and spin densi-

ty (𝑄𝑄𝑟𝑟), within the three-dimensional space with 

𝑄𝑄𝑟𝑟 = 𝜌𝜌𝑟𝑟𝛼𝛼 − 𝜌𝜌𝑟𝑟
𝛽𝛽                                                                                                              (2.59) 

The Hamiltonian of the system is written in the following equation. 

𝐻𝐻� = −
1
2
�∇𝑖𝑖2
𝑁𝑁

𝑖𝑖

+ �
1
𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖<𝑗𝑗
+ �𝑢𝑢𝑟𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖

+ 2𝛽𝛽𝑒𝑒�𝐵𝐵𝑟𝑟𝑠𝑠𝑖𝑖

𝑁𝑁

𝑖𝑖

                                        (2.60) 

where 𝛽𝛽𝑒𝑒 = 𝑒𝑒ħ
2𝑚𝑚𝑚𝑚

 is the Bohr magneton, while 𝑠𝑠𝑖𝑖 is spin vector of ith electron. 

The external potential operator, including nuclei potential (𝑢𝑢𝑟𝑟𝑖𝑖) and magnetic field (𝐵𝐵𝑟𝑟), can 

be written in equation below. 

𝑉𝑉� = �𝑢𝑢𝑟𝑟𝜌𝜌�𝑟𝑟𝑑𝑑𝑟𝑟 − �𝐵𝐵𝑟𝑟𝑚𝑚�𝑟𝑟𝑑𝑑𝑟𝑟                                                                                      (2.61) 

where 𝜌𝜌�𝑟𝑟 = ∑ 𝛿𝛿(𝑟𝑟−𝑟𝑟𝑖𝑖)
𝑁𝑁
𝑖𝑖  is the electron density operator; while 𝑚𝑚�𝑟𝑟 = −2𝛽𝛽𝑒𝑒 ∑ 𝑠𝑠𝑖𝑖𝛿𝛿(𝑟𝑟−𝑟𝑟𝑖𝑖)

𝑁𝑁
𝑖𝑖  is 

magnetisation density operator. 

 

If the magnetic field is along the z axis, which is the projection of 𝐵𝐵𝑟𝑟 on z direction and the 

integral is over the whole space, the expectation value of 𝑚𝑚�𝑟𝑟 is written in equation below. 

𝑚𝑚𝑟𝑟 = −2𝛽𝛽𝑒𝑒 〈𝜑𝜑 ��𝑠𝑠𝑧𝑧(𝑖𝑖)𝛿𝛿(𝑟𝑟−𝑟𝑟𝑖𝑖)

𝑁𝑁

𝑖𝑖

� 𝜑𝜑〉 = −2𝛽𝛽𝑒𝑒 � 𝑠𝑠𝑧𝑧𝛿𝛿�𝑟𝑟−𝑟𝑟′�𝛾𝛾1�𝑥𝑥′,𝑥𝑥′�𝑑𝑑𝑥𝑥′ 

       = −2𝛽𝛽𝑒𝑒 � 𝑠𝑠𝑧𝑧𝛾𝛾(𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟)
𝑆𝑆=𝛼𝛼,𝛽𝛽

                                                                                       (2.62) 

As 𝑆𝑆 = ± 1
2
, the expectation value of 𝑚𝑚�𝑟𝑟 can be written in the following form. 
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𝑚𝑚𝑟𝑟 = −2𝛽𝛽𝑒𝑒 �
1
2
𝛾𝛾1(𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟) −

1
2
𝛾𝛾1(𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟)� = 𝛽𝛽𝑒𝑒�𝜌𝜌𝑟𝑟

𝛽𝛽 − 𝜌𝜌𝑟𝑟𝛼𝛼�                              (2.63) 

where, 𝜌𝜌𝑟𝑟 is the expectation value for density operator and it equals 〈𝜑𝜑|𝜌𝜌�𝑟𝑟|𝜑𝜑〉. 

 
Then take minimum value of the total energy 

𝐸𝐸0 = 𝑚𝑚𝑚𝑚𝑚𝑚 〈𝜑𝜑 �𝑇𝑇� + 𝑉𝑉�𝑒𝑒𝑒𝑒 + �𝑢𝑢𝑟𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖

+ 2𝛽𝛽𝑒𝑒�𝑏𝑏𝑟𝑟𝑖𝑖𝑠𝑠𝑧𝑧(𝑖𝑖)� 𝜑𝜑〉 

       = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚〈𝜑𝜑�𝑇𝑇� + 𝑉𝑉�𝑒𝑒𝑒𝑒�𝜑𝜑〉 + �[𝑢𝑢𝑟𝑟𝜌𝜌𝑟𝑟 − 𝑏𝑏𝑟𝑟𝑚𝑚𝑟𝑟]𝑑𝑑𝑟𝑟� 

        = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐹𝐹�𝜌𝜌𝛼𝛼,𝜌𝜌𝛽𝛽� + ��(𝑢𝑢𝑟𝑟 + 𝛽𝛽𝑒𝑒𝑏𝑏𝑟𝑟)𝜌𝜌𝑟𝑟𝛼𝛼 + (𝑢𝑢𝑟𝑟 − 𝛽𝛽𝑒𝑒𝑏𝑏𝑟𝑟)𝜌𝜌𝑟𝑟
𝛽𝛽�𝑑𝑑𝑟𝑟�                 (2.64) 

where,  𝐹𝐹�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� = 𝑚𝑚𝑚𝑚𝑚𝑚〈𝜑𝜑�𝑇𝑇� + 𝑉𝑉�𝑒𝑒𝑒𝑒�𝜑𝜑〉 

 
Equation above is the basis of the spin density functional theory[51]. However 𝐹𝐹�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� is 

still unknown and some approximations are applied to describe it. 

First, 𝐹𝐹�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� can be expressed in equation below. 

𝐹𝐹�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� = 𝑇𝑇𝑠𝑠�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� + 𝐽𝐽�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� + 𝐸𝐸𝑥𝑥𝑥𝑥�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽�                                             (2.65) 

where 𝑇𝑇𝑠𝑠 and 𝐸𝐸𝑥𝑥𝑥𝑥 are the exact kinetic and exchange-correlation energy of the non-interacting 

electronic system respectively. They are unknown and should be approximated. The approx-

imation for exact kinetic energy is introduced below; while that for exchange-correlation en-

ergy is introduced in section 2.3. 

 
Perdew et al.[51] defined 𝑇𝑇𝑠𝑠 through a tight binding Hamiltonian 

𝑇𝑇𝑠𝑠�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑛𝑛𝑖𝑖𝑖𝑖 �ϕ𝑖𝑖𝑖𝑖
∗ (𝑟𝑟) �−

1
2
∇2�ϕ𝑖𝑖𝑖𝑖(𝑟𝑟)𝑑𝑑𝑟𝑟

𝑖𝑖𝑖𝑖

�                                  (2.66) 

where, 𝑇𝑇𝑠𝑠 is taken the minimum in the aggregate of 𝑛𝑛𝑖𝑖𝑖𝑖 and ϕ𝑖𝑖𝑖𝑖. The constraint condition is 

written below. 
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�𝑛𝑛𝑖𝑖𝑖𝑖|ϕ𝑖𝑖𝑖𝑖(𝑟𝑟)|2
𝑖𝑖

= 𝜌𝜌𝛼𝛼(𝑟𝑟) and �𝑛𝑛𝑖𝑖𝑖𝑖�ϕ𝑖𝑖𝑖𝑖(𝑟𝑟)�
2

𝑖𝑖

= 𝜌𝜌𝛽𝛽(𝑟𝑟)                                (2.67) 

Wave function is divided into space part and spin part separately (shown in equation 2.68). 

The occupation number (𝑛𝑛𝑖𝑖𝑖𝑖) is zero, when the state is unoccupied, or one, when the state is 

occupied. 

𝜑𝜑𝑖𝑖(𝑟𝑟𝑟𝑟) = ϕ𝑖𝑖𝑖𝑖(𝑟𝑟)𝜎𝜎(𝑠𝑠)                                                                                                 (2.68) 

Consider 𝑇𝑇𝑠𝑠 reaches the minimum value so the total energy can be expressed by orbital wave 

function (ϕ𝑖𝑖𝑖𝑖). 

𝐸𝐸�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� = �𝑛𝑛𝑖𝑖𝑖𝑖 �ϕ𝑖𝑖𝑖𝑖
∗ (𝑟𝑟) �−

1
2
∇2�ϕ𝑖𝑖𝑖𝑖(𝑟𝑟)𝑑𝑑𝑟𝑟

𝑖𝑖𝑖𝑖

+ 𝐽𝐽�𝜌𝜌𝛼𝛼,𝜌𝜌𝛽𝛽� + 𝐸𝐸𝑥𝑥𝑥𝑥�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� 

                        +��(𝑢𝑢𝑟𝑟 + 𝛽𝛽𝑒𝑒𝑏𝑏𝑟𝑟)𝜌𝜌𝑟𝑟𝛼𝛼 + (𝑢𝑢𝑟𝑟 − 𝛽𝛽𝑒𝑒𝑏𝑏𝑟𝑟)𝜌𝜌𝑟𝑟
𝛽𝛽�𝑑𝑑𝑟𝑟                                     (2.69) 

As the normalisation, Kohn-Sham equation can be written in the following equations. 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝛼𝛼 ϕ𝑖𝑖𝑖𝑖(𝑟𝑟) = �−
1
2
∇2 + 𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝛼𝛼 (𝑟𝑟)�ϕ𝑖𝑖𝑖𝑖(𝑟𝑟) =

𝜀𝜀𝑖𝑖𝑖𝑖′

𝑛𝑛𝑖𝑖𝑖𝑖
ϕ𝑖𝑖𝑖𝑖(𝑟𝑟) 

                       = 𝜀𝜀𝑖𝑖𝑖𝑖ϕ𝑖𝑖𝑖𝑖(𝑟𝑟)                           (𝑖𝑖 = 1,2, …𝑁𝑁𝛼𝛼)                                   (2.70) 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒
𝛽𝛽 ϕ𝑗𝑗𝑗𝑗(𝑟𝑟) =

𝜀𝜀𝑗𝑗𝑗𝑗′

𝑛𝑛𝑗𝑗𝑗𝑗
ϕ𝑗𝑗𝑗𝑗(𝑟𝑟) 

                       = 𝜀𝜀𝑗𝑗𝑗𝑗ϕ𝑗𝑗𝑗𝑗(𝑟𝑟)                           �𝑗𝑗 = 1,2, …𝑁𝑁𝛽𝛽�                                  (2.71) 

where, 𝜀𝜀𝑖𝑖𝑖𝑖′  is the normalisation constraint Lagrangian multiplier for orbital wave function 

(ϕ𝑖𝑖𝑖𝑖). 

 
The potential relating to spin can be expressed 2.72. 

𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝛼𝛼 = 𝑢𝑢𝑟𝑟 + 𝛽𝛽𝑒𝑒𝑏𝑏𝑟𝑟 + �
𝜌𝜌𝑟𝑟′

|𝑟𝑟 − 𝑟𝑟′|
𝑑𝑑𝑟𝑟 +

𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽]
𝛿𝛿𝜌𝜌𝑟𝑟𝛼𝛼

                                            (2.72) 

𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒
𝛽𝛽 = 𝑢𝑢𝑟𝑟 − 𝛽𝛽𝑒𝑒𝑏𝑏𝑟𝑟 + �

𝜌𝜌𝑟𝑟′
|𝑟𝑟 − 𝑟𝑟′|

𝑑𝑑𝑟𝑟 +
𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽]

𝛿𝛿𝜌𝜌𝑟𝑟
𝛽𝛽                                             (2.73) 
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𝑁𝑁𝛼𝛼 = �𝜌𝜌𝑟𝑟𝛼𝛼𝑑𝑑𝑟𝑟                𝑁𝑁𝛽𝛽 = �𝜌𝜌𝑟𝑟
𝛽𝛽𝑑𝑑𝑟𝑟             𝑁𝑁 = 𝑁𝑁𝛼𝛼 + 𝑁𝑁𝛽𝛽                              (2.74) 

Exact solution for 𝑇𝑇𝑠𝑠�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� can be gained through solving equations above. 

 
Actually, the kinetic function (𝑇𝑇𝑠𝑠�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽�) consists of two spin quantities’ contributions 

(shown in equation 2.75). 

𝑇𝑇𝑠𝑠�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� = 𝑇𝑇𝑠𝑠[𝜌𝜌𝛼𝛼 , 0] + 𝑇𝑇𝑠𝑠�0,𝜌𝜌𝛽𝛽�                                                                          (2.75) 

𝑇𝑇𝑠𝑠[𝜌𝜌𝛼𝛼 , 0] = �𝑛𝑛𝑖𝑖𝑖𝑖 �ϕ𝑖𝑖𝑖𝑖
∗ (𝑟𝑟) �−

1
2
∇2�ϕ𝑖𝑖𝑖𝑖(𝑟𝑟)𝑑𝑑𝑟𝑟

𝑖𝑖𝑖𝑖

                                                (2.76) 

where, 𝑇𝑇𝑠𝑠�0,𝜌𝜌𝛽𝛽� has the similar format like 𝑇𝑇𝑠𝑠[𝜌𝜌𝛼𝛼 , 0]. 

 

2.2.8 Exchange-Correlation hole 
As mentioned previously, exchange-correlation energy is the energy difference between the 

energy of real interacting system and that of the fictitious non-interacting system, if the ex-

ternal potential energy is not considered about. Scientists find many numerical approxima-

tions to evaluate this energy, which are discussed in section 2.3. Therefore, it is quite im-

portant to illustrate the physical meaning of exchange-correlation energy. This can be inves-

tigated through building up the interaction ( λ
𝑟𝑟−𝑟𝑟′

) within the system and λ varies from zero, 

which is for the non-interacting system, to one, which is for the physically interacting system. 

Then the Hamiltonian for the system under ground state can be expressed in equation below 

and it has the same electron density (𝜌𝜌𝑟𝑟) over all λ numbers. 

𝐻𝐻λ = −
1
2
∇2 + 𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑉𝑉λ + λ𝑉𝑉𝑒𝑒𝑒𝑒                                                                              (2.77) 

where, Vλ denotes the exchange correlation energy. 

 
Then, the exchange-correlation energy of the real interacting system can be described in 

terms of the integral over the coupling constant λ. 

𝐸𝐸𝑥𝑥𝑥𝑥 =
1
2
�

𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟, 𝑟𝑟′ − 𝑟𝑟)
|𝑟𝑟 − 𝑟𝑟′|

𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟                                                                                (2.78) 
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where, 𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟, 𝑟𝑟′ − 𝑟𝑟) ≡ 𝜌𝜌𝑟𝑟′ ∫ [𝑔𝑔(𝑟𝑟, 𝑟𝑟′, λ) − 1]𝑑𝑑λ
1
0  and it is the exchange-correlation hole. 

𝑔𝑔(𝑟𝑟, 𝑟𝑟′, λ) is the pair-correlation function of the real system with electron density (𝜌𝜌𝑟𝑟) and 

Coulomb interaction (λ𝑉𝑉𝑒𝑒𝑒𝑒). 𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟, 𝑟𝑟′ − 𝑟𝑟) describes the effect of the inter-electronic repul-

sion, which indicates that one electron in position 𝑟𝑟 reduces the probability of existence of 

another one in this same position. In other words, the exchange-correlation energy can also be 

regarded as the energy coming from the interaction between an electron and its exchange-

correlation hole[52]. 

 
From the discussion above, it is clear that, since 𝑔𝑔(𝑟𝑟, 𝑟𝑟′) tends to unity as |𝑟𝑟 − 𝑟𝑟′| tends to ∞, 

the separation into the electrostatic and exchange-correlation energy can be treated as the ap-

proximate separate of the consequence of long-rang and short-range effects of the Coulomb 

interaction. This also means that the total exchange-correlation is not very sensitive to the 

density changes because the long-range interaction can be calculated in an exact formula. 

 
Another point is that, with respect to the isotropic nature of the Coulomb interaction (𝑉𝑉𝑒𝑒𝑒𝑒) and 

through the variable substitution (𝑅𝑅 ≡ 𝑟𝑟′ − 𝑟𝑟), equation below indicates that the exchange-

correlation energy only depends on the spherical average part of 𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟,𝑅𝑅), thus the approxi-

mation can give a rather accurate value for this energy, even though the non-spherical part of 

𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟,𝑅𝑅) is not accurate[50]. 

𝐸𝐸𝑥𝑥𝑥𝑥 =
1
2
�𝜌𝜌𝑟𝑟𝑑𝑑𝑟𝑟 �𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟,𝑅𝑅)𝑑𝑑Ω�

𝑅𝑅2

|𝑅𝑅|

∞

0
𝑑𝑑𝑅𝑅                                                             (2.79) 

 
Last, according to the definition of the pair-correlation function, the sum rule requires that the 

exchange-correlation should contain one electron (shown in equation 2.80), which means that 

−𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟, 𝑟𝑟′ − 𝑟𝑟) can be regarded as the normalised weight factor and it indicates the radius of 

the exchange-correlation hole (shown in equation 2.79). 

�𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟, 𝑟𝑟′ − 𝑟𝑟)𝑑𝑑𝑟𝑟′ = −1                                                                                          (2.80) 

〈
1
𝑅𝑅
〉𝑟𝑟 = −�

𝑛𝑛𝑥𝑥𝑥𝑥(𝑟𝑟,𝑅𝑅)
|𝑅𝑅| 𝑑𝑑𝑟𝑟                                                                                            (2.81) 

Equation 2.81 results in the following relation. 
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𝐸𝐸𝑥𝑥𝑥𝑥 = −
1
2
�〈

1
𝑅𝑅
〉𝑟𝑟 𝑛𝑛𝑟𝑟𝑑𝑑𝑟𝑟                                                                                               (2.82) 

This equation indicates that the exchange-correlation energy does not strongly rely on 𝑛𝑛𝑥𝑥𝑥𝑥 too 

much. 

 

2.3 Approximation for Exchange-Correlation Energy (𝑬𝑬𝒙𝒙𝒙𝒙) 
 
As discussed in section 2.2, the description of Kohn-Sham scheme for the total energy of the 

system consists of four parts, which include exact kinetic energy for non-interacting electrons, 

external potential energy, Hartree potential energy and exchange-correlation energy (𝐸𝐸𝑥𝑥𝑥𝑥), 

and only 𝐸𝐸𝑥𝑥𝑥𝑥 is unknown. Approximations were made to express this value and, generally, 

there are three most commonly used approximations. One is local density approximation 

(LDA), another is generalised gradient approximation (GGA) and another one is hybrid func-

tional. LDA and GGA are, hereby, discussed with more details. 

 

2.3.1 Local density approximation (LDA) 
The central idea of this approximation is to treats the electronic system as a number of elec-

trons moving under a background charge distribution such that the whole ensemble is electri-

cally neutral[53]. In 1965, Kohn and Sham used this method to calculate 𝐸𝐸𝑥𝑥𝑥𝑥 value, which is 

shown in equation 2.83. 

𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿[𝜌𝜌] = �𝜌𝜌𝑟𝑟𝜀𝜀𝑥𝑥𝑥𝑥(𝜌𝜌)𝑑𝑑𝑟𝑟                                                                                           (2.83) 

where, 𝜀𝜀𝑥𝑥𝑥𝑥 is the exchange-correlation energy per electron within the uniform electron gas 

with the density 𝜌𝜌𝑟𝑟. The energy per electron is weighted with probability (𝜌𝜌𝑟𝑟) that there is an 

electron at this position in space. The corresponding exchange-correlation potential is ex-

pressed in the following equation. 

𝑣𝑣𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿[𝑟𝑟] =
𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿

𝛿𝛿𝜌𝜌𝑟𝑟
= 𝜀𝜀𝑥𝑥𝑥𝑥[𝜌𝜌𝑟𝑟] + 𝜌𝜌𝑟𝑟

𝜕𝜕𝜀𝜀𝑥𝑥𝑥𝑥[𝜌𝜌𝑟𝑟]
𝜕𝜕𝜕𝜕

                                                          (2.84) 

Therefore, Kohn-Sham equation can be expressed in equation 2.85 that is the famous local-

ised density functional equation. 
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�−
1
2
∇2 + 𝑢𝑢𝑟𝑟 + �

𝜌𝜌𝑟𝑟′
|𝑟𝑟 − 𝑟𝑟′|

𝑑𝑑𝑟𝑟′ + 𝑣𝑣𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟)�ϕ𝑖𝑖 = 𝜀𝜀𝑖𝑖ϕ𝑖𝑖                                         (2.85) 

𝜀𝜀𝑥𝑥𝑥𝑥[𝜌𝜌𝑟𝑟] consists of two quantities. 

𝜀𝜀𝑥𝑥𝑥𝑥[𝜌𝜌𝑟𝑟] = 𝜀𝜀𝑥𝑥[𝜌𝜌𝑟𝑟] + 𝜀𝜀𝑐𝑐[𝜌𝜌𝑟𝑟]                                                                                          (2.86) 

where, 𝜀𝜀𝑥𝑥[𝜌𝜌𝑟𝑟] and 𝜀𝜀𝑐𝑐[𝜌𝜌𝑟𝑟] denotes the exchange and correlation parts. 

 
In late 1920’s, Bloch and Dirac[54] derived the approximation for 𝜀𝜀𝑥𝑥𝑥𝑥[𝜌𝜌𝑟𝑟] and this exchange 

functional is often called Slater exchange. 

𝜀𝜀𝑥𝑥[𝜌𝜌𝑟𝑟] = −𝐶𝐶𝑥𝑥𝜌𝜌𝑟𝑟
1
3�                                                                                                         (2.87) 

where, 𝐶𝐶𝑥𝑥 = 3
4
�3
𝜋𝜋
�
1
3�  

 
The accurate solution for correlation part (𝜀𝜀𝑐𝑐[𝜌𝜌𝑟𝑟]) was found by Ceperley and Alder[55] in 

Quantum Mote Carlo simulation for homogeneous electron gas. 

𝜀𝜀𝑐𝑐[𝜌𝜌𝑟𝑟] = 𝐸𝐸𝜌𝜌 − 𝑇𝑇𝑠𝑠(𝜌𝜌) − 𝐸𝐸𝑥𝑥(𝜌𝜌)                                                                                   (2.88) 

 
Here, 𝜀𝜀𝑥𝑥𝑥𝑥[𝜌𝜌𝑟𝑟] is known as long as the electron density of the system is obtained and Lee-

Yang-Parr model for LDA is introduced. In 1987, Yang et al.[56] built up the relationship 

between electron density and localised Kohn-Sham potential. According to Thomas-Fermi 

model, equation below can be built up. 

𝜌𝜌𝑇𝑇𝑇𝑇(𝑟𝑟) = �
3

5𝐶𝐶𝐹𝐹
[𝜇𝜇 − 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟)]�

3
2�

                                                                            (2.89) 

Consider spin balance system, atomic or molecule closed-shell system, the electron density 

(𝜌𝜌𝑟𝑟) of system under ground state is the sum of orbital density in space and can be expressed 

in the equation 2.90. 

𝜌𝜌�𝑟𝑟,𝑟𝑟′� = 2�ϕ𝑖𝑖(𝑟𝑟)ϕ𝑖𝑖
∗(𝑟𝑟′)

𝑁𝑁
2�

𝑖𝑖

= 2�ϕ𝑖𝑖(𝑟𝑟)ϕ𝑖𝑖∗(𝑟𝑟′)η(𝜀𝜀𝐹𝐹 − 𝜀𝜀𝑖𝑖)
∞

𝑖𝑖

 

             = 2〈𝑟𝑟�η�𝜀𝜀𝐹𝐹 − ℎ�𝑒𝑒𝑒𝑒𝑒𝑒��𝑟𝑟′〉                                                                                (2.90) 
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where, 2 denotes the electron occupancy number in orbits, η(𝑥𝑥) is Heaviside step function, 𝜀𝜀𝑖𝑖 

is the eigenvalue of Hamiltonian (ℎ�𝑒𝑒𝑒𝑒𝑒𝑒) in Kohn-Sham scheme, ϕ𝑖𝑖(𝑟𝑟) is the eigenfunction 

and 𝜀𝜀𝑖𝑖 is Fermi energy level. 

 
Through deduction, electron density can be expressed in equation 2.91. 

𝜌𝜌𝑞𝑞(𝑟𝑟, 𝑟𝑟′) = 2�…��
𝑞𝑞𝑘𝑘𝑞𝑞
ħ2

�
3𝑞𝑞

2�

𝐽𝐽3𝑞𝑞
2�
�𝑘𝑘𝑞𝑞𝑙𝑙𝑞𝑞�η�𝑘𝑘𝑞𝑞2�𝑑𝑑𝑟𝑟1 …𝑑𝑑𝑟𝑟𝑞𝑞−1                          (2.91) 

where, 𝑘𝑘𝑞𝑞2 = 2𝑚𝑚
ħ2
�𝜀𝜀𝐹𝐹 −

1
𝑞𝑞
∑ 𝜇𝜇�𝑟𝑟𝑟𝑟+1, 𝑟𝑟𝑗𝑗�
𝑞𝑞−1
𝑗𝑗=0 � and 𝑙𝑙𝑞𝑞2 = 𝑞𝑞 ∑ �𝑟𝑟𝑗𝑗+1 − 𝑟𝑟𝑗𝑗�

2𝑞𝑞−1
𝑗𝑗=0  

Then, the exchange correlation can be calculated based on this electron density. 

 

2.3.2 Local spin density approximation (LSDA) 
In respect to electron spin, LDA can be extended to unrestricted case, namely spin polarisa-

tion, and as mentioned in section 2.3.1, the exchange-correlation energy can be split into two 

parts, which are exchange and correlation energy respectively, and can be dealt with separate-

ly.[57] 

 
Oliver et al.[58] deducted the formula of exchange energy (𝐸𝐸𝑥𝑥) 

𝐸𝐸𝑥𝑥�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� =
1
2
𝐸𝐸𝑥𝑥�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� +

1
2
𝐸𝐸𝑥𝑥�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽� =

1
2
𝐸𝐸𝑥𝑥0(2𝜌𝜌𝛼𝛼) +

1
2
𝐸𝐸𝑥𝑥0�2𝜌𝜌𝛽𝛽�      (2.92) 

where, 𝜌𝜌𝛼𝛼 and 𝜌𝜌𝛽𝛽 are spin up and spin down electron density respectively. 

 
Combine equation below with Dirac local density approximation, local spin density approxi-

mation for 𝐸𝐸𝑥𝑥 can be written in equation 2.93. 

𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� = 21 3� 𝐶𝐶𝑥𝑥 � �(𝜌𝜌𝛼𝛼)4 3� + �𝜌𝜌𝛽𝛽�
4
3� � 𝑑𝑑𝑟𝑟                                             (2.93) 

In 1972, Von Barth and Hedin[59] defined a spin-polarised parameter (ξ); hence, the spin up 

and spin down density can be expressed by ξ. 

𝜉𝜉 =
𝜌𝜌𝛼𝛼 − 𝜌𝜌𝛽𝛽

𝜌𝜌
=
𝜌𝜌𝛼𝛼 − 𝜌𝜌𝛽𝛽

𝜌𝜌𝛼𝛼 + 𝜌𝜌𝛽𝛽
,        𝜌𝜌𝛼𝛼 =

(1 + 𝜉𝜉)𝜌𝜌
2

,        𝜌𝜌𝛽𝛽 =
(1 − 𝜉𝜉)𝜌𝜌

2
                 (2.94) 
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Substitute these two equations, 𝐸𝐸𝑥𝑥 can be expressed equation 2.95. 

𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� =
1
2
𝐶𝐶𝑥𝑥 �𝜌𝜌4 3� �(1 + 𝜉𝜉)4 3� + (1 − 𝜉𝜉)4 3� � 𝑑𝑑𝑟𝑟 

                            = �𝜌𝜌𝜀𝜀𝑥𝑥(𝜌𝜌, 𝜉𝜉)𝑑𝑑𝑟𝑟                                                                               (2.95) 

where, 𝜀𝜀𝑥𝑥(𝜌𝜌, 𝜉𝜉) = 𝜀𝜀𝑥𝑥0(𝜌𝜌) + [𝜀𝜀𝑥𝑥1(𝜌𝜌) − 𝜀𝜀𝑥𝑥0(𝜌𝜌)]𝑓𝑓𝜉𝜉, 𝑓𝑓𝜉𝜉  is the weight element and its value ranges 

from zero to one. 𝑓𝑓𝜉𝜉 = 1
2
�21 3� − 1�

−1
�(1 + 𝜉𝜉)4 3� + (1 − 𝜉𝜉)4 3� − 2� 

 
As correlation energy (𝐸𝐸𝑐𝑐) concerned, it can be written in equation 2.96. 

𝐸𝐸𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� = �𝜌𝜌𝜀𝜀𝑐𝑐(𝜌𝜌, 𝜉𝜉)𝑑𝑑𝑟𝑟                                                                               (2.96) 

 
Local density approximation (LDA) or local spin density approximation (LSDA) are only 

accurate for simple physical model, such as homogeneous electron gas or the system with the 

density varying very slowly. However, most of the real systems are rather complex and their 

density varies rapidly. 

 

2.3.3 Generalized gradient approximation (GGA) 
Compared with LDA or LSDA, generalized gradient approximation (GGA) is more advanced, 

in term of consider non-uniform electron gas, which is the situation for most of the real sys-

tems[60, 61]. 

 
In 1986, Perdew and Wang[62] proposed that the exchange-correlation energy of the system 

not only depends on the electron density but also depends on the gradient of the density and 

they revised LSDA method (shown in equation 2.95). This method is also called GGA-I or 

PW86. 

𝜀𝜀𝑥𝑥𝑃𝑃𝑃𝑃86 = 𝜀𝜀𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(1 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥4 + 𝑐𝑐𝑥𝑥6)1 5�                                                             (2.97) 

where, 𝑥𝑥 = |∇𝜌𝜌|

𝜌𝜌
4
3�
 and a, b and c are constants. 
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Additionally, Perdew[63] also made revision to correlation energy in LSDA. 

𝜀𝜀𝑐𝑐𝑃𝑃𝑃𝑃86 = 𝜀𝜀𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + ∆𝜀𝜀𝑐𝑐𝑃𝑃𝑃𝑃86,    𝜀𝜀𝑐𝑐𝑃𝑃𝑃𝑃86 =
𝑒𝑒ϕ𝐶𝐶𝜌𝜌|∇𝜌𝜌|2

𝑓𝑓𝜁𝜁𝜌𝜌
7
3�

                                               (2.98) 

where 𝑓𝑓𝜁𝜁 = 21 3� ��1+𝜁𝜁
2
�
5
3� + �1−𝜁𝜁

2
�
5
3�  and ϕ = 𝑎𝑎 ∙ 𝑐𝑐∞|∇𝜌𝜌|

𝐶𝐶𝜌𝜌𝜌𝜌
7
6�
 

 
In 1991, Perdew and Wang[64] proposed GGA-II, which is also called PW91. Exchange-

correlation energy in LSDA can be written equation 2.99. 

𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝜌𝜌𝛼𝛼,𝜌𝜌𝛽𝛽� = �𝜌𝜌𝜀𝜀𝑥𝑥𝑥𝑥(𝑟𝑟𝑠𝑠, 𝜁𝜁)𝑑𝑑𝑟𝑟3                                                                             (2.99) 

where, 𝜌𝜌𝑟𝑟 = 𝜌𝜌𝛼𝛼 + 𝜌𝜌𝛽𝛽  and 𝜌𝜌𝛼𝛼 , 𝜌𝜌𝛽𝛽  are spin-up and spin-down density respectively; 𝑟𝑟𝑠𝑠 =

� 3
4𝜋𝜋𝜋𝜋

�
1
3�  and it is the local radius; 𝜁𝜁 = �𝜌𝜌𝛼𝛼 − 𝜌𝜌𝛽𝛽�𝜌𝜌 is local polarization; 𝜀𝜀𝑥𝑥𝑥𝑥(𝑟𝑟𝑠𝑠, 𝜁𝜁) is the ex-

change-correlation energy per particle in uniform electron gas. 

 
GGA method defines local radius function (𝑟𝑟𝑠𝑠). The exchange-correlation energy is expressed 

in equation 2.100. 

𝐸𝐸𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺�𝜌𝜌𝛼𝛼,𝜌𝜌𝛽𝛽� = �𝑓𝑓�𝜌𝜌𝛼𝛼 ,𝜌𝜌𝛽𝛽 ,∇𝜌𝜌𝛼𝛼,∇𝜌𝜌𝛽𝛽�𝑑𝑑𝑟𝑟3                                                           (2.100) 

Some semi-empirical parameters are induced into the exchange energy so as to enhance the 

accuracy. 

𝐸𝐸𝑥𝑥𝑃𝑃𝑃𝑃91[𝜌𝜌] = �𝜌𝜌𝜀𝜀𝑥𝑥(𝑟𝑟𝑠𝑠, 0)𝐹𝐹𝑠𝑠𝑑𝑑𝑟𝑟3                                                                                 (2.101) 

where, 𝜀𝜀𝑥𝑥(𝑟𝑟𝑠𝑠, 0) = −3𝑘𝑘𝐹𝐹
4𝜋𝜋

; 𝑘𝑘𝐹𝐹  is local Fermi wave vector and equals 1.91916
𝑟𝑟𝑠𝑠

; 𝐹𝐹𝑠𝑠 = 1 +

0.124𝑠𝑠2 + 𝑠𝑠4; 𝑠𝑠 = |∇𝜌𝜌|
2𝑘𝑘𝜌𝜌𝜌𝜌

. 

 
The correlation energy can be expressed in the following equation 2.102. 

𝐸𝐸𝑐𝑐𝑃𝑃𝑃𝑃91�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� = �𝜌𝜌[𝜀𝜀𝑐𝑐(𝑟𝑟𝑠𝑠, 𝜁𝜁) + 𝐻𝐻(𝑡𝑡, 𝑟𝑟𝑠𝑠, 𝜁𝜁)]𝑑𝑑𝑟𝑟3                                                 (2.102) 
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where, 𝑡𝑡 = |∇𝜌𝜌|
2𝑔𝑔𝑘𝑘𝜌𝜌𝜌𝜌

; 𝑔𝑔 = 1
2

[(1 + 𝜁𝜁)2 3� + (1 − 𝜁𝜁)2 3� ]  is another probability gradient; 𝑘𝑘𝑠𝑠 =

�4𝑘𝑘𝐹𝐹
𝜋𝜋
�
1
2�  is local-screened wave vector and 𝐻𝐻 = 𝐻𝐻0 + 𝐻𝐻1. 

𝐻𝐻0 = 𝑔𝑔3
𝛽𝛽3

2𝛼𝛼
∙ l𝑛𝑛 �1 +

2𝛼𝛼
𝛽𝛽
∙

𝑡𝑡2 + 𝐴𝐴𝑡𝑡4

1 + 𝐴𝐴𝑡𝑡2 + 𝐴𝐴2𝑡𝑡4
�                                                        (2.103) 

where, 𝛼𝛼 = 0.09 ; 𝛽𝛽 = 𝑣𝑣𝐶𝐶𝑐𝑐(0) ; 𝑣𝑣 = 16
𝜋𝜋
� 3
𝜋𝜋2
�
1
3� ; 𝐶𝐶𝑐𝑐(0) = 0.004235 ; 𝐶𝐶𝑥𝑥 = −0.001667 ; 

𝐴𝐴 = 2𝛼𝛼
𝛽𝛽
∙ 1

𝑒𝑒𝑒𝑒𝑒𝑒�−2𝛼𝛼𝜀𝜀𝑐𝑐(𝑟𝑟𝑠𝑠,𝜁𝜁)
𝑔𝑔3𝛽𝛽2

�−1
 

𝐻𝐻1 = 𝑣𝑣 �𝐶𝐶𝑐𝑐(𝑟𝑟𝑠𝑠) − 𝐶𝐶𝑐𝑐(0) −
3
7
𝐶𝐶𝑥𝑥� 𝑔𝑔3𝑡𝑡2 × 𝑒𝑒𝑒𝑒𝑒𝑒 �−100𝑔𝑔4

𝑘𝑘𝑠𝑠2

𝑘𝑘𝐹𝐹2
𝑡𝑡2�                        (2.104) 

Correlation energy can be approximated in equation 2.105. 

∆𝐸𝐸𝑐𝑐�𝜌𝜌𝛼𝛼, 𝜌𝜌𝛽𝛽� 

≈ 𝐶𝐶𝑐𝑐(0)�𝜌𝜌�
−0.458𝜁𝜁∇𝜁𝜁

[𝜌𝜌(1 − 𝜁𝜁2)]1 3�
∙
∇ρ
𝜌𝜌

+
(−0.037 + 0.1𝜁𝜁2)|∇𝜁𝜁|2

𝜌𝜌1 3� (1 − 𝜁𝜁2)
� 𝑑𝑑𝑟𝑟3               (2.105) 

 

2.4 Introduction to VASP Code 
 
All the PhD research works were carried out using VASP (Vienna Ab initio Simulation Pack-

age) code in the version of 5.4[65-67], which is a copyright-protected commercial code and 

the copyright belongs to University of Vienna. It is necessary to make a concrete introduction 

to it with more details, including its brief history, its background theory, the tasks it can do, 

parameters for the calculation with setting rule and how to adjust the parameters to guarantee 

the calculation goes well. Different pseudopotentials for the calculation in this module are 

also introduced. 

 
VASP was based on code written by Mike Payne (then at MIT) and it was then brought to the 

University of Vienna, Austria, in July 1989 by Jürgen Hafner. The main program was written 

by Jürgen Furthmüller, who joined the group at the Institut für Materialphysik in January 

1993, and Georg Kresse. VASP is currently being developed by Georg Kresse; recent addi-

tions include the extension of methods frequently used in molecular quantum chemistry (such 

38 
 



as MP2 and CCSD(T)) to periodic system. VASP is currently used by more than 1400 re-

search groups in academia and industry worldwide on the basis of software licence agree-

ments with the University of Vienna.[68] 

 
VASP is a density functional code that uses plane waves and pseudopotentials to deal with 

the quantum calculations. It is applicable for the calculation of system with periodic structure 

and the formal procedure for the calculation is followed by three steps.[69] 

 

2.5 Pseudopotential 
 
Plane waves and pseudopotentials are used in VASP code for the expansion of the wave 

function so as to conduct the DFT calculation. It plays crucial role in the computation, which 

is based on the plane wave basis set, for the system. This section introduces its conception, its 

different types and its applications. 

 

2.5.1 Introduction to Pseudopotentials 
Scientists usually concern about the behaviour of valence electrons, which affects the materi-

al’s chemical property, such as bonding between atoms and redox character of the compound, 

rather than those within the ion core, so the wave function is built up to describe the behav-

iour of valence electrons and used in the computation of property of material. However, the 

wave function of valence electrons oscillates very fast, due to the fact that it is orthogonal to 

that of the electrons in ion core, and, according to Fourier Transform (FT), the number of ba-

sis set used to expand the wave function can become very large so that the computational 

work for the computer can be exceedingly large as well, resulting in the ‘out-of-RAM’ prob-

lem and thus, the failure of the computation. It becomes quite necessary to solve the fast os-

cillation problem of the wave function and one way is to use an effective potential, which 

varies slowly within the ion core, to substitute the real potential to avoid the huge amount of 

basis set problem induced by FT method[70]. To substitute the real potential, pseudo poten-

tial must satisfy two conditions: 

(1) Outside the ion core region, pseudopotential must give identical wave function that is giv-

en by genuine one. 
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(2) Inside the ion core region, pseudopotential must make the wave function that has no 

node[71]. 

 
The expression for pseudopotential is written in equation 2.106. 

𝑉𝑉𝑃𝑃𝑃𝑃 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑉𝑉𝑁𝑁𝑁𝑁                                                                                                  (2.106) 

where, 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑉𝑉𝑁𝑁𝑁𝑁 are local and non-local part of the pseudopotential respectively. 

𝑉𝑉𝑁𝑁𝑁𝑁 = � |𝑙𝑙𝑙𝑙⟩𝑉𝑉1⟨𝑙𝑙𝑙𝑙|                                                                                              (2.107) 

where, |𝑙𝑙𝑙𝑙⟩ are the spherical harmonics and 𝑉𝑉1 is the pseudopotential for angular momentum 

l. 

 
When the pseudopotential uses the same potential in each angular momentum channel, it is 

called local pseudopotential, which has much higher computational efficiency, and the calcu-

lation for some elements can reach rather accuracy. Non-local pseudopotential does not 

depend on the angular momentum too much. 

              

RC 

Ψps 

Ψ 

-Z/r 

Fig. 2.7 Schematic representation of the all-electron (Ψ), pseudized (Ψps) 
wave functions and potential 
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The hardness is an important parameter in the application of pseudopotential and when a 

pseudopotential can be expressed with not too many Fourier components to an accurate de-

scription, it is called soft pseudopotential and hard one otherwise. Here, two typical pseudo-

potentials, which relate to different hardness, are introduced. 

 

2.5.2 Norm-Conserving Pseudopotential 
Norm Conserving pseudofunctions are normalized and are solutions of a model potential cho-

sen to reproduce the valence properties of an all electron calculation. Defining norm-

conserving pseudopotential is the list of requirements for a ‘good’ ab initio pseudopotential 

given by Hamann et al.[72] 

1. All-electron and pseudo valence eigenvalues agree for the chosen atomic reference config-

uration. 

2. All-electron and pseudo valence wavefunctions agree beyond a chosen core radius (Rc). 

3. The logarithmic derivatives of the all-electron and pseudo wavefunctions agree at Rc. 

4. The integrated charge inside Rc for each wavefunction agrees norm conservation. 

5. The first energy derivative of the logarithmic derivatives of the all-electron and pseudo 

wavefunctions agrees at Rc. 

 
These five points show way to generate norm-conserving pseudopotential; especially, the last 

point is the crucial step toward the goal of constructing a ‘good’ pseudopotential. The radial 

equation for a spherical atom or ion can written in equation (2.108) 

−
1
2
ϕ𝑙𝑙
′′(𝑟𝑟) + �

𝑙𝑙(𝑙𝑙 + 1)
2𝑟𝑟2

+ 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) − 𝜀𝜀�ϕ𝑙𝑙(𝑟𝑟) = 0                                             (2.108) 

where, the prime means derivative with respect to r and it can be transformed by defining the 

variable xl(ε,r). 

𝑥𝑥𝑙𝑙(𝜀𝜀, 𝑟𝑟) ≡
𝑑𝑑
𝑑𝑑𝑑𝑑

lnϕ𝑙𝑙(𝑟𝑟) =
1
𝑟𝑟

[𝐷𝐷𝑙𝑙(𝜀𝜀, 𝑟𝑟) + 1]                                                           (2.109) 

Through deduction, one finds at radius R 
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𝜕𝜕
𝜕𝜕𝜕𝜕
𝑥𝑥𝑙𝑙(𝜀𝜀,𝑅𝑅) = −

1
ϕ𝑙𝑙(𝑅𝑅)2 � 𝑑𝑑𝑑𝑑ϕ𝑙𝑙(𝑟𝑟)2

𝑅𝑅

0
= −

Q𝑙𝑙(𝑅𝑅)
ϕ𝑙𝑙(𝑅𝑅)2                                           (2.110) 

This points out that if 𝜙𝜙𝑙𝑙𝑃𝑃𝑃𝑃 has the same magnitude as the all-electron function ϕl at Rc and 

obeys norm-conservation, the first energy derivative of the logarithmic derivative xl(ε,R) and 

Dl(ε,R) is the same as for the all-electron wavefunction. 

 

2.5.3 Ultrasoft Pseudopotential 
One goal of pseudopotential is to create pseudopotentials as smooth as possible; while keep 

the accuracy. As discussed in section 2.5.1, the valence functions are expanded in Fourier 

components in plane wave calculation; thus, the definition of smoothness is to minimize the 

range in Fourier space required to describe the valence properties to a given accuracy. Alt-

hough norm-conserving pseudopotentials achieve the goal of accuracy, it scarifies ‘smooth-

ness’. 

 
In 1990, Vanderbilt[71] proposed another pseudopotential that is much softer than Norm-

Conserving pseudopotential. It reaches the goal of accurate calculation by a transformation 

that re-expresses the problem in terms of a smooth function and an auxiliary function around 

each ion core that represents the rapidly varying part of the density. Thus, the wavefunctions 

are nodeless and extended into the core region. 

 
The non-local part in ultrasoft pseudopotential can be expressed in equation 2.111. 

𝑉𝑉𝑁𝑁𝑁𝑁 = �𝐷𝐷𝑛𝑛𝑛𝑛0 |𝛽𝛽𝑛𝑛𝐼𝐼 ⟩⟨𝛽𝛽𝑚𝑚𝐼𝐼 |
𝑛𝑛𝑛𝑛,𝐼𝐼

                                                                                          (2.111) 

where, projector 𝛽𝛽 and coefficient D0 characterize the pseudopotential and differ for different 

atomic species. Index I denote the position of an atom. For each referenc atomic states (n),  

the smooth functions (𝛹𝛹𝑛𝑛�) are the solutions of the generalized eigenvalue problem. 

�𝐻𝐻� − 𝜀𝜀𝑠𝑠𝑆̂𝑆�𝛹𝛹𝑛𝑛� = 0                                                                                                       (2.112) 

with 𝐻𝐻� = −1
2
∇2 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛿𝛿𝑉𝑉�𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 and 𝑆̂𝑆 an overlap operator 

𝑆̂𝑆 = 1� + �∆𝑄𝑄𝑛𝑛𝑛𝑛
𝑛𝑛,𝑚𝑚

|𝛽𝛽𝑛𝑛𝐼𝐼 ⟩⟨𝛽𝛽𝑚𝑚𝐼𝐼 |                                                                                    (2.113) 
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The eigenvalues (εn) agree with all-electron calculation at as many energies n as desired. The 

full density can be constructed from the functions ∆Qnm(r) which can be replaced by a 

smooth version of the all-electron density. 

 
The advantages of relaxing the norm-conservation condition (∆Qnm =0) is that each smooth 

pseudofunction (𝛹𝛹𝑛𝑛�) can be formed independently with only the constraint of matching the 

value of the functions 𝛹𝛹𝑛𝑛�(𝑅𝑅𝑐𝑐) = 𝛹𝛹𝑛𝑛(𝑅𝑅𝑐𝑐) at the radius Rc. Therefore, ultrasoft technique can 

choose a larger Rc than norm-conserving pseudopotential; while maintain the desired accura-

cy by adding the auxiliary functions ∆Qnm(r) and the overlap operator 𝑆̂𝑆. 

 
In the calculation that uses ultrasoft pseudopotential the solutions for the smooth functions 

are orthonormalized according to equation (2.114) 

�𝛹𝛹𝑛𝑛�|𝑆̂𝑆|𝛹𝛹𝑚𝑚� � = 𝛿𝛿𝑖𝑖𝑖𝑖                                                                                                        (2.114) 

and the valence density is defined to be 

𝑛𝑛(𝑟𝑟) = �𝛹𝛹�𝑛𝑛∗(𝑟𝑟)𝛹𝛹𝑚𝑚� (𝑟𝑟)
𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛𝑚𝑚

+ �𝜌𝜌𝑛𝑛𝑛𝑛∆𝑄𝑄𝑛𝑛𝑛𝑛(𝑟𝑟)
𝑛𝑛𝑛𝑛

                                                     (2.115) 

where, 

𝜌𝜌𝑛𝑛𝑛𝑛 = ��𝛹𝛹𝑛𝑛��𝛽𝛽𝑠𝑠��𝛽𝛽𝑠𝑠�𝛹𝛹𝑛𝑛��
𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛

                                                                                      (2.116) 

The solution is found by minimizing the total energy 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ��𝛹𝛹𝑛𝑛��−
1
2
∇2 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 + �𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

�𝛽𝛽𝑠𝑠� ⟨𝛽𝛽𝑠𝑠′||𝛹𝛹𝑛𝑛��
𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛

 

+𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝐸𝐸𝐼𝐼𝐼𝐼 + 𝐸𝐸𝑥𝑥𝑥𝑥                                                                                            (2.117) 

Finally, it leads to the generalized eigenvalue problem 

�−
1
2
∇2 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛿𝛿𝑉𝑉�𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 − 𝜀𝜀𝑛𝑛𝑆̂𝑆�𝛹𝛹𝑛𝑛� = 0                                                            (2.118) 
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2.6 Projector Augmented Wave Method 
Besides using the pseudopotential to replace real potential within the ion core region, another 

alternative method is to transform these rapidly oscillating wave functions into smooth wave 

functions, which are easy for the computation and it gives another option to compute all-

electron properties from these smooth wave functions. It is called projector augmented wave 

(PAW) method, which can be viewed as the generalization of the pseudopotential and linear 

augmented plane wave method for the much more efficient computation by DFT.[74] In this 

PhD work, PAW method was adopted to account the behaviour of in-core electrons and pro-

vides accurate properties of materials; so it is necessary to introduce it below. 

 
The linear transformation operator (T) transforms the fictitious pseudo wave function (Ψ) to 

the all electron wave function (𝛹𝛹�). 

|Ψ⟩ = 𝑇𝑇|Ψ��                                                                                                                 (2.119) 

Here, all electron wave function is a Kohn-Sham single particle wave function; rather than 

the many body wave function, and to differentiate them near the in-core region, the transfor-

mation operator is written in the following format. 

𝑇𝑇 = 1 + �𝑇𝑇�𝑅𝑅
𝑅𝑅

                                                                                                          (2.120) 

where, 𝑇𝑇�𝑅𝑅 is non zero only within the spherical augmentation region (ΩR), which encloses 

atom (R). 

 
The pseudo wave function is expanded into the pseudo partial waves in the region (ΩR) which 

surrounds each atom. 

|Ψ�� = �𝑐𝑐𝑖𝑖|𝜙𝜙�𝑖𝑖�
𝑖𝑖

                                                                                                        (2.121) 

Because the operator T is linear the coefficient ci could be written as an inner product with a 

set of so-called projector function (pi). 

𝑐𝑐𝑖𝑖 = �𝑝𝑝𝑖𝑖�Ψ��                                                                                                                 (2.122) 

where, �𝑝𝑝𝑖𝑖�𝜙𝜙�𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑖𝑖. 
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The all electron partial wave (|𝜙𝜙𝑖𝑖⟩ = 𝑇𝑇|𝜙𝜙�𝑖𝑖�) is is the solution for the Kohn-Sham Schrödinger 

equation for the isolated atom. The transformation operator (T) can be expressed in the equa-

tion 2.123. 

𝑇𝑇 = 1 + ��|𝜙𝜙𝑖𝑖⟩ − |𝜙𝜙�𝑖𝑖��⟨𝑝𝑝𝑖𝑖|
𝑖𝑖

                                                                                (2.123) 

Within the spherical region, pseudo partial waves and all electron waves need to be smooth 

continuation; while, beyond the augmentation regions, they are identical to each other. 

 
Furthermore, PAW method provides a way to compute the all electron observables using the 

pseudo-wave function from a pseudopotential calculation, which could avoid the representa-

tion of all-electron wave function in memory. Taking an operator (𝐴̂𝐴) as an example, the ex-

pectation value could be written in the following format. 

𝑎𝑎𝑖𝑖 = �Ψ�𝐴̂𝐴�Ψ�                                                                                                             (2.124) 

where, the pseudo wavefunction could be used to replaced 

𝑎𝑎𝑖𝑖 = �Ψ��𝑇𝑇+𝐴̂𝐴𝑇𝑇�Ψ��                                                                                                    (2.125) 

from which, the pseudo operator could be defined 

A� = 𝑇𝑇+𝐴̂𝐴𝑇𝑇                                                                                                                   (2.126) 

If the operator is local and well-behaved, it can be expanded through the PAW operator trans-

formation. 

A� = 𝐴̂𝐴 + � |𝑝𝑝𝑖𝑖⟩��𝜙𝜙𝑖𝑖�𝐴̂𝐴�𝜙𝜙𝑗𝑗� − �𝜙𝜙�𝑖𝑖�𝐴̂𝐴�𝜙𝜙�𝑗𝑗��⟨𝑝𝑝𝑖𝑖|
𝑖𝑖,𝑗𝑗

                                                  (2.127) 

where, the indices i and j run over all projectors on all atoms. 

 

2.7 Spin Orbit coupling Effect 
The band inversion in the band structure for TI mainly results from the strong spin orbit cou-

pling (SOC) effect and it was included in all DFT calculations for the electronic properties 

for Bi2Se3 family TI; it is therefore necessary to make a brief introduction for it. 
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SOC effect has been implemented in many DFT codes and it is naturally incorporated in the 

pseudopotential approximation, since the main the contribution of SOC to valence electrons 

comes from the in-core region. 

 
The following procedure is the generation of angular momentum (j) dependent fully relativ-

istic pseudopotential. 

(1) Self consistent calculation without relativistic pseudopotential was performed and the Di-

rac equation was solved, yielding two relativistic pseudopotentials (Vl+1/2 and Vl-1/2) for l>0 

case and one (Vl+1/2) for l=0 case. 

(2) Pseudopotential for each l was computed again for Vl+1/2 and Vl-1/2 so that the Schrödinger 

equation with such pseudopotential has the same eigen value and wave function tails outside 

the cutoff radii as those of the original Dirac equation 

 
Kleinman, Bachelet and Schlüter[74] showed that from fully relativistic j-dependent semi-

local pseudopotential, the j-averaged, l-dependent semilocal one can be defined. 

𝑉𝑉𝑙𝑙𝑆𝑆𝑆𝑆 =
2

2𝑙𝑙 + 1
�𝑉𝑉𝑙𝑙+1 2�

− 𝑉𝑉𝑙𝑙−1 2�
�                                                                              (2.128) 

Then, an additional term is added into Hamiltonian 

𝐻𝐻�𝑆𝑆𝑆𝑆 = � |𝑙𝑙𝑙𝑙⟩𝑉𝑉𝑙𝑙𝑆𝑆𝑆𝑆(𝑟𝑟)𝐿𝐿 ∙ 𝑆𝑆⟨𝑙𝑙𝑙𝑙|
𝑙𝑙,𝑠𝑠

                                                                              (2.129) 

where, |𝑙𝑙𝑙𝑙⟩⟨𝑙𝑙𝑙𝑙| is the projector on the tensor product 𝐿𝐿 ⊗ 𝑆𝑆 of function for a given angular 

momentum times the spin space and L/S are the orbital/spin angular momentum operator. 

 

Kleinman and Bylander (KB)[75] proposed the scheme to transform the semilocal pseudopo-

tential to a separable form and the total ionic pseudopotential operator including the SOC part 

is expressed in equation 2.130. 

𝑉𝑉�𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟, 𝑟𝑟′) = � |𝑙𝑙𝑙𝑙⟩𝑉𝑉𝑙𝑙𝑆𝑆𝑆𝑆(𝑟𝑟, 𝑟𝑟′)⟨𝑙𝑙𝑙𝑙|
𝑙𝑙

+ � |𝑙𝑙𝑙𝑙⟩𝑉𝑉𝑙𝑙𝑆𝑆𝑆𝑆(𝑟𝑟, 𝑟𝑟′)⟨𝑙𝑙𝑙𝑙|
𝑙𝑙

                         (2.130) 
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where, 𝑉𝑉𝑙𝑙𝑆𝑆𝑆𝑆 and 𝑉𝑉𝑙𝑙𝑆𝑆𝑆𝑆 are scalar relativistic (SR) and spin-orbit interaction (SO) and they are 

assumed to have following KB separable forms. 

𝑉𝑉𝑙𝑙𝑥𝑥(𝑟𝑟, 𝑟𝑟′) = 𝑓𝑓𝑙𝑙𝑥𝑥(𝑟𝑟)𝐸𝐸𝑙𝑙
𝐾𝐾𝐾𝐾,𝑥𝑥𝑓𝑓𝑙𝑙𝑥𝑥(𝑟𝑟′)                                                                              (2.131) 

where, 𝐸𝐸𝑙𝑙
𝐾𝐾𝐾𝐾,𝑥𝑥 is the KB energy and x is SR/SO. 

 
For SR part, the spinor plane-wave matrix element is expressed in equation 2.132. 

𝑉𝑉𝑙𝑙𝑆𝑆𝑆𝑆(𝐾𝐾𝐾𝐾,𝐾𝐾′𝜎𝜎′) =
4𝜋𝜋
Ω

(2𝐿𝐿 + 1)𝛿𝛿𝜎𝜎𝜎𝜎′𝐸𝐸𝑙𝑙
𝐾𝐾𝐾𝐾,𝑆𝑆𝑆𝑆𝑃𝑃𝑙𝑙(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑓𝑓𝑙𝑙𝑆𝑆𝑆𝑆(𝐾𝐾)𝑓𝑓𝑙𝑙𝑆𝑆𝑆𝑆(𝐾𝐾′)           (2.132) 

where, 𝑃𝑃𝑙𝑙(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) is the Legendre polynomial of the angle (γ) between different wave vectors; 

𝑓𝑓𝑙𝑙𝑆𝑆𝑆𝑆(𝐾𝐾) = ʃ0∞ʃ𝑙𝑙𝑆𝑆𝑆𝑆(𝑟𝑟)𝑗𝑗𝑙𝑙(𝐾𝐾𝐾𝐾)𝑟𝑟2𝑑𝑑𝑑𝑑 

 
For the SO part, the matrix element is written in the following format. 

𝑉𝑉𝑙𝑙𝑆𝑆𝑆𝑆(𝐾𝐾𝐾𝐾,𝐾𝐾′𝜎𝜎′) = −𝑖𝑖
4𝜋𝜋
Ω

(2𝐿𝐿 + 1)𝐸𝐸𝑙𝑙
𝐾𝐾𝐾𝐾,𝑆𝑆𝑆𝑆𝑃𝑃𝑙𝑙′(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑓𝑓𝑙𝑙𝑆𝑆𝑆𝑆(𝐾𝐾)𝑓𝑓𝑙𝑙𝑆𝑆𝑆𝑆(𝐾𝐾′) 

                                  × �⟨𝜎𝜎|𝑆𝑆|𝜎𝜎′⟩ ∙
𝐾𝐾 × 𝐾𝐾′

𝐾𝐾𝐾𝐾′ �                                                           (2.133) 

where, 𝑃𝑃𝑙𝑙′ is the first derivative of 𝑃𝑃𝑙𝑙. 

 

2.8 Parameters for the Computation 
 
Using VASP code to conduct the computation requires researcher to set up and adjust the pa-

rameters to guarantee the convergence and accuracy for the computation. These parameters 

also affect the computational time. Usually convergence, accuracy, time are three key objects 

under researcher’s concern and they are closely related to each other; therefore it is quite im-

portant to understand their physical meaning and how they affect the computation. In this 

section, a series of parameters, which include energy cutoff value, k point, FFT grid and SCF 

tolerance, are introduced with more details. 
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2.8.1 Cutoff Energy 

2.8.1.1 Bloch’s theorem 
Density Functional Theory (DFT) method eases the calculation but handling the system with 

infinite number of electrons under the static potential of an infinite number of ions still re-

mains a difficult problem. Two issues must be solved. First, the wave function should be cal-

culated for each of the infinite number of electrons within the system. Second, due to the fact 

that each electronic wave function extends throughout the whole solid material, the number 

of basis set that is used to expand the electronic wave function becomes infinitely large as 

well. These two problems exist in computation for periodic system and result in the conclu-

sion that the computation is impossible to finish. Therefore, it is crucial solve them so as to 

guarantee the computation. 

 
In 1976, Felix Bloch[73] proposed a specific function, which is named as Bloch wave, to rep-

resent the wave function for the particle so as to solve the computational difficulty and ac-

cording to this theorem, the wave function for description of the electrons within the periodic 

solid can be re-written as the product of two parts: one is a cell periodic part and the other 

one is a wave-like part. 

Ψ𝑖𝑖(𝑟𝑟) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖(𝑟𝑟)                                                                                                     (2.134) 

where, k is the wave vector and equation 3.135 is also called Bloch’s function. 

 
The cell periodic part of the Bloch wave can be expanded by a basis set that consists of a dis-

crete set of plane waves whose wave vectors are reciprocal lattice vectors of the crystals. 

𝑢𝑢𝑖𝑖(𝑟𝑟) = �𝐶𝐶𝑖𝑖,𝐺𝐺𝑒𝑒𝑖𝑖𝐺𝐺𝑟𝑟
𝐺𝐺

                                                                                                 (2.135) 

where, G is the reciprocal lattice vector and is defined in the equation 2.136. 

𝐺𝐺 ∙ 𝑙𝑙 = 2𝜋𝜋𝜋𝜋                                                                                                                (2.136) 

where, l is a lattice vector of the crystal and m is an integer. 

 
The wave function for electron can be expressed by the sum of plane waves. 

48 
 



Ψ𝑖𝑖(𝑟𝑟) = �𝐶𝐶𝑖𝑖,𝑘𝑘+𝐺𝐺𝑒𝑒[𝑖𝑖(𝑘𝑘+𝐺𝐺)∙𝑟𝑟]

𝐺𝐺

                                                                                 (2.137) 

2.8.1.2 Cutoff Energy 
The reciprocal lattice represents another lattice which is obtained from Fourier transform of 

the crystal lattice in reality and the first Brillouin zone is a uniquely defined primitive cell in 

this reciprocal space. The locus of points in reciprocal space that are closer to the origin of 

the reciprocal lattice than they are to any other reciprocal lattice points defines the first Bril-

louin zone. In DFT calculation based on VASP code, all quantities; such as total energy or 

electron density, are obtained through computing the integral of expectation value of the ob-

servables within the first Brillouin zone. In reality, the integral calculation is replaced by the 

sum of expectation value on a set of discrete k points and this procedure is called k point 

sampling. The wave function at every k point can be expanded by a series of discrete plane 

wave basis set and theoretically, the number of basis set should be infinitely large, but this is 

not necessary. Only the coefficient (𝐶𝐶𝑖𝑖,𝑘𝑘+𝐺𝐺) for the plane wave with small kinetic energy 

(�ħ
2

2𝑚𝑚� � ∙ |𝑘𝑘 + 𝐺𝐺|2) are much more important than those with large kinetic energy because 

the expectation value of observables only changes little when the plane wave with large ki-

netic energy has more basis set for expansion. Therefore, the series of plane basis set can be 

truncated to only take into account of those that have kinetic energies less than a particular 

value, which is cutoff energy and set up by researcher, and this makes the computation possi-

ble. In other words, the application of Bloch’s theorem and cutoff energy produces the finite 

basis set to expand the wave function for electrons. Fig. 2.8 shows the schematic representa-

tion of cutoff used for the truncation of the basis set and the radius of the sphere is propor-

tional to the square root of the cutoff energy (Ecut = Gmax
2 / 2). 
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The application of cutoff energy to truncate the basis set is actually an approximate method 

and theoretically, more basis set used, more accurate results can be achieved. This means that 

error in the total energy exists and increase the number of basis set by using larger cutoff en-

ergy value can minimise this error. The cutoff energy value should be increased until the 

computation reach convergence but large value also means that the computational time is 

prolonged. 

 
Another point regarding this technology is that the number of basis states does not change 

continuously with cutoff energy. The discontinuities occur at different cutoff energy for dif-

ferent k point. At a fixed cutoff energy, the alternation in size and shape of the computational 

object can result in the discontinuities in the plane wave basis set as well. Although using a 

denser k point sampling can reduce this discontinuity, this problem still exists even with very 

dense k points. To solve this problem, Francis and Payne[76] induced a correction factor to 

account for the difference between the number of a state in a basis set with an infinitely large 

number of K points and the number of basis state that is used for computation. 

 
The finite basis set correction is quite important for the cell optimisation with a basis set that 

is not converged. When applied to the total energy calculation, the correction enables re-

searcher to carry out computation with a fixed number of basis states and to interpolate the 
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results if more physical conditions of a fixed cutoff energy are used. The parameter for this 

correction is (𝑑𝑑𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑 ln𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐� ) and 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 is the total energy of the system, while 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 is the 

cutoff energy. This parameter can give a direct reflection of the convergence of the calcula-

tion regarding the cutoff energy and k point. It this parameter for each atom is smaller than 

0.01, it indicates that the computation is converged quite well. 

 

2.8.2 k point sampling 
As briefly introduced in the energy cutoff section, k point sampling is essential for the com-

putation of the quantities of observables. The real situation is that infinite number of electrons 

exists on infinite number of k points; while finite number of state of electrons is occupied at 

every k point. Through the introduction in section 2.8.1, it can be seen that the original com-

putation for the infinite number of wave functions for electrons is changed to the calculation 

of finite number of wave functions for electrons at an infinite number of k points; and every 

state of electron at the k point make contribution to the potential in the material, therefore, the 

computation for the potential is infinitely large and impossible to finish. 

 
Fortunately, scientists found that the difference between the wave functions of electrons at 

the k points, which are very close to each other, is very small so that the difference can be 

neglected. Thus, the wave functions within a certain range of k space can be approximated by 

the wave function at one single k point and this means that the computation for the potential 

is only carried out at a finite number of k points with finite number of state of electrons, 

which become possible to be achieved in practice. 

 
Many methods have been developed to gain the good results, with high accuracy, for the po-

tential and the contribution of occupied energy band to the total energy through the computa-

tion of the finite number of state of electrons at finite number of chosen k points within the 

first Brillouin zone. In 1976, Monkhorst and Pack[77] developed a scheme to generate a uni-

form grid of k points in three axes within the reciprocal space. This grid is defined by three 

integers (𝑞𝑞𝑖𝑖) and they determine the number of division along each axis. They also generate a 

series of number in equation 2.138. 

𝑞𝑞𝑖𝑖 = (2𝑟𝑟 − 𝑞𝑞𝑖𝑖 − 1)
2𝑞𝑞𝑖𝑖�                                                                                            (2.138) 
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where, r changes between 1 and 𝑞𝑞𝑖𝑖. The Monkhorst-Pack grid is then calculated by equation 

2.139. 

𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑝𝑝𝑏𝑏1 + 𝑢𝑢𝑟𝑟𝑏𝑏2 + 𝑢𝑢𝑠𝑠𝑏𝑏3                                                                                   (2.139) 

The series of distinct points (𝑞𝑞1, 𝑞𝑞2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞3) is further symmetrised and weights are assigned 

with respect to the number of symmetry images of a given point in the symmetrised set. 

 
It is possible to put a constant shift to all of the points in the set before symmetrisation, which 

is shown in equation 2.140. 

𝑢𝑢𝑝𝑝 = (𝑝𝑝 − 1)
𝑞𝑞𝑖𝑖�                                                                                                        (2.140) 

where, p changes between 1 and 𝑞𝑞𝑖𝑖. 

 
Like cutoff energy introduced in the above section, k point sampling method is also an ap-

proximation for the calculation of the potential and it can induce error in the total energy. In-

creasing the number of k points used in the computation can reduce this error, which can ap-

proach zero with the increased denser k points, and make the computation of the total energy 

reach the convergence criterion. Theoretically, the converged potential and total energy with 

required accuracy can always be achieved, since there is enough time to finish the computa-

tion of wave function of electrons with a series of sufficient denser k points. Certainly, the 

application of denser k points can also cause longer computational time. More denser k points 

used, more accuracy the result is and longer time the calculation would take. Therefore, it is 

quite important for research to make the balance between the success and accuracy of compu-

tation and the time the computation would take. 

 

2.8.3 Fourier Transform Grid 
In Bloch’s theorem section, Bloch wave is introduced so as to expand the wave function of 

the electrons as a series of discrete plane wave basis set and make computation possible to be 

done.[78] Actually, it is also important to have real-space representation for the wave func-

tion of electron and this brings the technology to transform data between real and reciprocal 

grids. Fast Fourier Transform (FFT) is applied into the transform and makes this procedure 

proceed in a very efficient way. 
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First, the real space supercell is introduced. The direct lattice vectors along three axes are de-

noted by a1, a2 and a3. The reciprocal grid vectors (b1, b2 and b3) are defined by the relation in 

equation 2.141. 

𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑗𝑗 = 2𝜋𝜋𝛿𝛿𝑖𝑖𝑖𝑖                                                                                                             (2.141) 

Using the above equation, reciprocal vectors can be built up (shown in equation 2.142, 2.143 

and 2.144). 

𝑏𝑏1 =
𝑎𝑎2 × 𝑎𝑎3

𝑎𝑎1 ∙ 𝑎𝑎2 × 𝑎𝑎3
                                                                                                      (2.142) 

𝑏𝑏2 =
𝑎𝑎3 × 𝑎𝑎1

𝑎𝑎1 ∙ 𝑎𝑎2 × 𝑎𝑎3
                                                                                                      (2.143) 

𝑏𝑏3 =
𝑎𝑎1 × 𝑎𝑎2

𝑎𝑎1 ∙ 𝑎𝑎2 × 𝑎𝑎3
                                                                                                      (2.144) 

The reciprocal grid vector (G) is expressed in equation 2.145. 

𝐺𝐺 = 𝑛𝑛1𝑏𝑏1 + 𝑛𝑛2𝑏𝑏2 + 𝑛𝑛3𝑏𝑏3                                                                                        (2.145) 

where, 𝑛𝑛𝑖𝑖 is the integers and the wave vector are orthogonal to each other. 

 
The plane wave 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is commensurate with the supercell and the series of wave vector; while 

the real space grid is generated through dividing the lattice vectors (a1, a2 and a3) into N1, N2 

and N3 points. The point in the supercell can be expressed in equation 2.146. 

𝑟𝑟(𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3) =
𝑙𝑙1
𝑁𝑁1

𝑎𝑎1 +
𝑙𝑙2
𝑁𝑁2

𝑎𝑎2 +
𝑙𝑙3
𝑁𝑁3

𝑎𝑎3                                                                   (2.146) 

where, 𝑙𝑙𝑖𝑖 is the integer ranging from 0 to 𝑁𝑁𝑖𝑖 − 1. 
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It can be seen that the real space grid is the lattice of points for the lattice vector α𝑖𝑖 = 𝑎𝑎𝑖𝑖
𝑁𝑁𝑖𝑖�  ; 

while, according to equation 2.141, the reciprocal lattice vector is expressed by β𝑖𝑖 = 𝑁𝑁𝑖𝑖𝑏𝑏𝑖𝑖. 

The reciprocal space grid is the lattice of points for the vector 𝑏𝑏𝑖𝑖 and any point in this grid is 

determined by equation 2.145. The total number of supercell is given in equation below. Fig. 

2.9 shows the relation between these two spaces. 

𝑁𝑁 = 𝑁𝑁1𝑁𝑁2𝑁𝑁3                                                                                                              (2.147) 

a1 

a2 

α1 

α2 

b2 

b1 

β2 

β1 

Fig. 2.9 Illustration of the real and reciprocal space 
grids. a is real space grid, b is reciprocal space grid, 

labels are the vectors 

54 
 



Bloch’s wave described in equation 2.134 can be deemed as the discrete inverse Fourier 

transform of the wave function from reciprocal space to the real one with grid of N points. 

The forward FFT gives the wave function on the reciprocal space grid and the sum is over all 

N points in real space grid. 

𝑢𝑢𝑛𝑛,𝑘𝑘(𝐺𝐺) =
1
𝑁𝑁
�Ψ𝑛𝑛,𝑘𝑘(𝑟𝑟)𝑒𝑒−𝑖𝑖(𝑘𝑘+𝐺𝐺)∙𝑟𝑟

𝑟𝑟

                                                                      (2.148) 

 

2.8.4 Computation Procedure in VASP Code 
As VASP code is written based on DFT method and in forgoing section 2.2, Hamiltonian of 

the system is expressed by the density of electron (𝜌𝜌𝑟𝑟) but the density is not known, therefore 

VASP code adopts self-consistent field to proceed the computation, which is shown in Fig. 

2.10. The first step is to build up an initial density (𝜌𝜌𝑟𝑟); then use this density to generate 

Hamiltonian for the system and solve the Schrödinger equation so as to get the engine value 

of the system. Examine the computed eigen value and check it is converged. If converged, the 

computation is done and this density would be applied to calculation of the total energy for 

the system; while it not converged, a new density would be constructed though the density 

generation scheme, such as the density mixing method or all band electron method. Then the 

new density is used to replace the initial density and repeat the step discussed above. During 

the whole computational procedure, the sum of electronic eigenvalues is minimized in the 

fixed potential instead of the self-consistent minimization of the total energy. 
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2.8.5 Density Mixing Scheme 
In section 2.8.4, when the engine value is not converged, a new density would be generated 

through a generation scheme, such as density mixing or all band electron method. All band 

electron method is relatively traditional way for the electronic relaxation, which involves the 

minimisation of the total energy through preconditioned conjugate gradient technique. The 

wave function of electrons is expanded by a seies of plane wave basis set and the coefficients 

are altered to minimise the total energy. However this method is very time-expensive for the 

computation, thus most of the calculations were not carried out through it. As density mixing 

method was chosen in this PhD research, it is introduced with more details here. 

 
A number of schemes were developed for this method, including linear mixing, Kerker mix-

ing, Broyden mixing and Pulay mixing. As linear mixing scheme concerned, it requires one 

Guess an intial Density (𝝆𝝆𝒓𝒓) 

Construct Hamiltonian of the system (𝑯𝑯�𝒊𝒊𝒊𝒊) 

Wave function 
converged? 

Finished 

Construct new Density (𝝆𝝆𝒓𝒓) 

𝝆𝝆𝒓𝒓𝒏𝒏+𝟏𝟏 = (𝟏𝟏 − β)𝝆𝝆𝒓𝒓𝒓𝒓
𝒏𝒏 + 𝝆𝝆𝒓𝒓 

Mix Desities 

Yes 

No 

Fig. 2.10 Procedure of the Computation by VASP code 
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parameter and the output density is produced as a linear combination of the print and output 

densities on the last iteration; while Kerker mixing scheme considers about the fact that 

small-G components of the charge density should be mixed with smaller weights so as to stop 

charge sloshing during SCF optimisation.[79] The generation of new density is introduced in 

equation 2.149. 

𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛(𝐺𝐺) = 𝜌𝜌𝑖𝑖𝑖𝑖(𝐺𝐺) + 𝐴𝐴
𝐺𝐺2

𝐺𝐺2 + 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚2 [𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜(𝐺𝐺) − 𝜌𝜌𝑖𝑖𝑖𝑖(𝐺𝐺)]                                  (1.149) 

According to the equation above, it can be seen that Kerker scheme is defined by two param-

eters the mixing amplitude (𝐴𝐴) and the cutoff wave vector (𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚). 

 
Pulay mixing scheme is the most efficient one and this method save the input charge density 

and the residual vector over a number of SCF optimisation steps. The new input density is 

generated in every step through the linear combination of charge densities of all previous 

steps. The new density is determined such that it minimises the normal of the residual vector 

subject to the constraint of conserving the number of electrons. Pulay’s scheme starts with a 

Kerker type step, thus it is effectively controlled by three parameters: the mixing amplitude 

(𝐴𝐴), the cutoff wave vector (𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚) and the depth of the optimisation history. These three pa-

rameters affect the convergence and computational time. When the convergence encounters 

problems, it is usually to reduce the value of mixing amplitude; increase the cutoff wave vec-

tor to three or four times the original value and increase the value of optimisation history pa-

rameter. However, this could increase the computational time as more iteration steps are 

needed to make the engine value converge. Therefore, it is suggested to adjust these parame-

ter while keeping the computation efficiency. Pulay’s mixing scheme was chosen to the com-

putation in this PhD research. 

 
The main advantage of density mixing method is its robustness for the metallic system; espe-

cially for metallic surface and it can converge equally well for insulating and metallic cases, 

providing a factor of three increasing in speed of moderately sized insulator systems. Most of 

the calculations can be converged by density mixing method and if the calculation cannot 

reach the convergence criterion, all band electron method can solve the problem. However, as 

mentioned before, it is very time consuming and should be used with care. 
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Chapter Three: Bi2Se3-Family Topological Insulator with 
Defects 
 

 

 

 

 

3.1 Introduction 
 
As mentioned in 2.1.3, many research works have been devoted to studying the effect of de-

fects on the properties of 3D TI, which has ultrathin thickness. The remaining important 

question is to quantify the impact of individual defects (twin grain boundaries, vacancies, ox-

ygen defects, ad-atoms, substitutional impurities etc.) in such circumstances.[1~3] In this 

chapter, using first-principles calculations, we investigate the detrimental effect of twin grain 

boundaries and surface doping in the limit of thin TI films. We study two different types of 

defects which may strongly affect the electronic structure of low dimensional TIs: (i) twin 

grain boundaries where adjacent QLs become rotated 180˚ with respect to the other (Fig. 

3.1b), and (ii) surface doping induced by hydrogen adatoms (Fig. 3.1c). As a limiting case, 

we also study how the topological surface states are modified when both defects are present 

in the same sample (Fig. 3.1d). 
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3.2 Methodology 
First principles calculations were carried out in the framework of the density-functional theo-

ry as implemented in the Vienna ab initio simulation package [4]. Wave functions were ex-

panded by means of plane-wave basis sets with an energy cut-off of 450 eV. The projector 

augmented wave method was used to describe core electrons [5, 6]. For the choice of the ex-

change-correlation energy, we use the generalized gradient approximation in the PBE form 

 

 

Fig. 3.1 Model of 3-QLs Bi2Se3 slabs used in the calculations. a - Pristine slab; b - slab 
with the bottom QL rotated by 180°; c, d - same slabs as in a, b - where the top surface 
has been fully hydrogenated. Bi, Se and H atoms are represented in purple, orange and 

magenta, respectively 
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[7]. A 11 × 11 × 1 k-point mesh was generated to sample the Brillouin zone. Missing disper-

sion forces were included using the Tkatchenko–Scheffler method [8]. The lattice structure 

was relaxed until the forces on each atom were smaller than 10−3 eV Å–1. The crystal struc-

ture of Bi2Se3 is rhombohedral. Bismuth and selenium atoms combine forming quintuple lay-

ers that stack together along the (111)-direction by means of van der Waals interactions (see 

Fig. 3.1a). In this work we focus on unit cells containing only three quintuple layers (∼3 nm), 

and describe the impact of fully saturated surface atoms and twin boundaries on the electronic 

band structure as well as on the spin texture of low-energy states. The spin texture is analysed 

by plotting the expectation value of the spin operators in a properly chosen set of k-points. 

 

3.3 Twin grain boundaries 
Twin grain boundaries in Bi2Se3 thin films Grain boundaries (GBs) are always present in pol-

ycrystalline and MBE-grown samples of TIs [9]. Here we report on the impact of twin grain 

boundaries on the electronic structure of thin films of Bi2Se3 samples containing different 

number of quintuple layers. We start describing the impact of twin GBs on 2QL Bi2Se3 films, 

where the absence of bulk states inhibit the formation of topological surface states, and then 

we extend our study to samples containing 3, 4 and 5QLs, where quasi-bulk states start to 

form and enable nontrivial topological phases [10, 11]. 

 
To examine the stability of the defect, the total energy difference (∣∆E∣) with and without 

GBs are computed (∣∆E∣ = 5.7 meV Å–2 (2QL); 6.5 meV Å–2 (3QL); 5.1 meV Å–2 (4QL 3 + 

1); 5.0 meV Å–2 (4QL 2 + 2); 7.8 meV Å–2 (5QL 4 + 1) and 5.9 meV Å–2 (5QL3 + 2)). All 

slabs studied show a small ∣∆E∣, lower than 8 meV Å–2, indicating that twin GBs can be stabi-

lized within the slab. 
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2QL slab—Fig. 3.2a shows the band structure of a pristine 2QL Bi2Se3 thin film. The value 

of the gap at the Γ-point is around 110 meV. Fig. 3.2b shows the band structure of a 2QL slab 

with the bottom QL rotated 180˚. The distance between QLs increases from 2.55 Å in the 

pristine case to 3.66 Å, leading to a band gap of about 240 meV, twice as large as the one re-

ported for the pristine case. Previous first-principles calculations by Liu and coworkers [10] 

have shown that 1QL and 2QL Bi2Se3 are trivial two-dimensional insulators due to the ab-

sence of bulk states. The spin textures without and with GB are plotted in Figs. 3.2 (c and d 

respectively). A change of the spin texture from a helical one (pristine case) to an out-of-

plane polarized texture can be clearly observed. This may have a substantial impact on the 

spin transport properties in this material, depending on the initial spin polarization of injected 

electrons. 

 

 

 

Fig. 3.2 Band structure of 2QL Bi2Se3 pristine. a - and with the bottom QL rotated by 
180° b. c and d - spin textures of the 2QL slab in absence and in presence of a twin GB 
calculated around the Γ point. It is important to note the modification of the spin texture 

when the GB is present in the slab 
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3QL slab—Fig. 3.3a shows the band structure of a pristine 3QL Bi2Se3 slab. Despite the 

small thickness of the slab, the presence of a single-QL bulk region allows for the appearance 

of topological surface states. However, a small gap of 36 meV opens at the Fermi level owing 

to the interaction between surface states at opposite boundaries. The analysis of the spin tex-

ture around the Γ-point (Fig. 3.3c) shows a clear helical behavior in the surface state bands. 

After the rotation of the bottomlayer of the slab by 180˚ and subsequent geometry relaxation, 

we do not observe strong variations of the lattice constants within each QL. In contrast, the 

van der Waals spacing between the middle QL and the bottom one increases from 2.576 to 

3.589 Å. Fig. 3.3b shows how the presence of the twin grain boundary yields an enhancement 

of the energy gap up to 194 meV. 
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Figs. 3.4a and 3.4b reports the band structure projection on the first two b and bottom rotated 

a QLs. The projection exhibits a very different gap for each substructure owing to the large 

variation of the distance between QLs induced by the twin GB. In particular, the band struc-

ture projection on the first 2QL is almost identical to the 2QL case shown in Fig. 3.2. Indeed 

the concave shape of the conduction bands are recovered, which might be related to a non-

trivial to trivial phase transition. Such impact on the electronic band structure likely stems 

 

Fig. 3.3 Band structures of 3QL Bi2Se3 pristine (a) and with the bottom QL rotated by 
180° (b). Spin textures of the topological surface states in absence (c) and in presence (d) 

of the twin grain boundary. The spin polarization is calculated from the bottom of the 
conduction band to E=0.15 eV. (e) Evolution of the band gap while increasing the spacing 

between the middle and the rotated bottom QLs. The dashed lines show the equilibrium 
distance 
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from the fact that the Se layers between the rotated and the original QLs become aligned in 

x–y plane after the rotation, increasing the Coulomb repulsion. This results in a larger inter-

layer spacing and the gap enlargement. It is interesting to mention that, despite the large in-

crease of the gap, the spin texture corresponding to the topological surface states is still pre-

served (Fig. 3.3d), which is different from that in 2QLs case. This means that the middle QL 

could act like a buffer zone and help maintain the Rashba spin texture on the top QL. 

 
 
To confirm that the increased gap value is related to the interlayer spacing between the last 

two QLs, we compute the magnitude of the gap while varying the distance between middle 

and bottom QLs starting from the relaxed structure. The results are plotted in Fig. 3.2e and, as 

expected, they show an increase of the band gap for larger interlayer spacing. The presence of 

such grain boundaries in the 3 nm ultrathin film also induces a very small energy level split-

ting due to the breaking of inversion symmetry. 

 
4QL slab—the 4QL slab admits two different structures associated with the presence of a 

twin GB, namely, the 3 + 1 and 2 + 2 cases. Fig. 3.5a shows the band structure of the pristine 

4QL Bi2Se3 film showing a small band gap of the order of 20 meV. By rotating only the top 

or bottom QLs one gets the 3 + 1 case whose band structure is given in Fig. 3.5b. Fig. 3.5c 

shows the band structure when the GB is located in the center of the slab (2 + 2 case). Inter-

estingly, the band gap is barely changed. This is easily understood by analysing the variation 

of the distance between QLs in absence or in the presence of the twin GB. The van der Waals 

 

Fig. 3.4 a and b band structure projection on the bottom rotated QLand the first two QLs 
respectively. The projection on the first 2QLs resembles the band structure of the 2QL 

slab 

a b 
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distances after geometry relaxation are ∆d (3 + 1) » 0.03 Å, and ∆d (2 + 2) » 0.1 Å. These are 

much smaller than the ones obtained in the 2 + 1 case described above. On the other hand, the 

Rashba splitting induced by breaking the inversion symmetry through the incorporation of a 

twin GB shifts from the surface state in the 3 + 1 case to the first bulk conduction band in the 

2+2 case. This may serve as a guidance to obtain valuable information regarding the position 

of the GB within the thin film. Figs. 3.5d – 3.5f show the band structure projection for both 

configurations, namely 3 + 1 and 2 + 2. The three projections are very similar and the sub-

structures (or grains) formed in presence of the GB seem to remain strongly connected. This 

is reasonable given the small modifications of the van der Waals distances induced by the 

twin GB. 
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5QL slab—the 5QL case also admits two different geometries in presence of a twin GB, 

namely, the 4 + 1 and the 3 + 2. The band structures of the pristine and the two polycrystal-

line cases are shown in Figs. 3.6a – 3.6c. The band structure projections are plotted in Figs. 

3.6d – 3.6g. The two different configurations show a very different behavior. While the 4 + 1 

case presents a strongly disconnected rotated QL from the remaining QL (Figs. 3.6d and 

3.6e), the 3 + 2 case shows a similar band structure projection for both substructures (Figs. 

3.6f and 3.6g. This is also related to the different distance variation in the 4 + 1 and the 3 + 2 

 

 

Figure 3.5 Band structure of 4QL Bi2Se3 pristine (a), the bottom QL rotated by 180° (3+1 
structure) (b) and the two bottom QLs rotated (2+2 structure) (c). It is interesting to note 
that the Rashba splitting induced by the presence of the twinGB is more pronounced in 

the surface band in the 3+1 case and in the first bulk band in the 2+2 case. Band structure 
projection on the bottom rotated QL(d) and the first fixed 3QLs (e) corresponding to the 

3+1 case. (f) Band structure projection on the top 2QLs corresponding to the 2+2 structure 
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cases. Indeed, while in the first case the distance changes dramatically from » 2.63 to » 3.61 

Å, in the second case it is slightly modified by the presence of the twinGB, ∆d = 0.082 Å. 

 
In a similar work by Aramberri et al on thicker Bi2Se3 films [12], it was shown that twin 

boundaries induce either n- or p-type self-doping on the surface states (up to 300 meV), de-

pending on the relative orientation of adjacent QLs. Such self-doping stems from spontane-

ous polarization generated by the dipole moments associated with the lattice defects. Howev-

er in such study on thicker TI-films, no gap opening due to the presence of this type of de-

fects was observed. This highlights the importance of reducing the number of defects when 

producing low dimensional TIs. According to the projection, the Dirac point (DP) of the top 

 

 

Fig. 3.6 Band structure of 5QL Bi2Se3 pristine (a), the bottom QL rotated by 180° (4+1 
structure) (b) and the two bottom QLs rotated (3+2 structure) (c). Band structure projec-
tion on the bottom rotated QL (d) and the first fixed 4QLs (e) corresponding to the 4+1 

case. Band structure projection on the bottom rotated 2QLs (f) and the first fixed 3QLs (g) 
corresponding to the 3+2 structure 
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QL surface is shifted upwards (Figs. 3.6e and 3.6g); while that on the rotated QL surface re-

mains below Fermi energy level (Fig. 3.6f). Fig. 3.6g shows that the DP of top QL surface is 

shifted above the Fermi energy level. This indicates that the rotation scheme for the 5QL 

Bi2Se3 can help reducing the bulk contribution to the surface conductivity and preserve the 

spin-momentum locking feature. 

 

3.4 Surface doping on Bi2Se3 thin films 
Another important effect that may appear when ultrathin TI fims are grown or deposited on 

top of a substrate is surface doping. To mimic this effect, we have fully saturated one of the 

surfaces of our Bi2Se3 slab with hydrogen atoms (see Fig. 3.1c). After full relaxation, the dis-

tance between H and Se atoms was found to be 1.52 Å. Fig. 3.7 shows the band structures 

and spin textures of the partially hydrogenated 3QL Bi2Se3 slabs projected onto the hydrogen 

terminated top QL (red circles) and the pristine bottom QL (green circles) while varying the 

H–Se distance. First, we observe the formation of surface dipoles when the hydrogen atoms 

start to approach the surface leading to a downward shift of the surface bands at the Γ- point, 

and also to the formation of Rashba-like states as experimentally observed on potassium 

doped Bi2Se3 samples [13]. Second, and more importantly, the gapless surface states remain 

metallic after hydrogen absorption. This is mainly driven by the breaking of inversion sym-

metry which splits the DPs at both surfaces reducing surface-to-surface interaction. Mean-

while, the spin texture at the Γ - point corresponding to the undoped topological surface states, 

reflects the usual in-plane polarization (see Fig. 3.7d) thus preserving the spin-momentum 

locking. 
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As previously observed [14, 15], surface modification of Γ centered TIs may gives rise to 

new nontrivial surface states centered at the three M points of the Brillouin zone (figure 3.7a). 

The origin of such new surface states seem to be related to the presence of dangling bonds 

 

Fig. 3.7 Top panel shows the band structure of fully relaxed 3QL Bi2Se3 slab with top QL 
hydrogenation (H–Se distance is 1.52 Å). Red and green circles indicate the projection on 
the top (a) and bottom (b) QLs. Second panel shows the spin texture at one of theMpoints 
(c) and at the Γ-point (d). Rest of the panels show the band structure of the same system, 

but for larger H–Se distance: 3.52 Å (e)–(f) and 5.52 Å(g)–(h) 
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appearing during cleaving process [16] due to the formation of non-stoichiometric surface 

terminations like Se–Bi–Se or Se–Bi. Here, the new surface or mid gap states appear by a 

simple chemical saturation of the top Se atoms by hydrogen. This case is even more interest-

ing than non-stoichiometric surface terminations since the latter ones are highly reactive and 

may tend to reconstruct. 

 
 
A detailed analysis of the atomic orbitals involved on the formation of this new state is shown 

in Fig. 3.8, where we plot the band structures of pristine (a), (b) and hydrogenated (c), (d) 

slabs projected onto the atomic orbitals of the surface Se (left panel) and Bi (right panel) at-

oms. After hydrogenation, the bands corresponding to the pz orbitals of the Se atoms (yellow 

circles) disappear from the low-energy region due to the hybridization with the 1s orbitals of 

the H atoms. On the other hand, the pz orbitals of the Bi surface atoms that mainly contribute 

to the formation of the topological surface states in the pristine case, are still present after the 

hydrogenation but at lower energy (Figs. 3.8b and 3.8d). More interestingly, while typical 

topological surface states centered at the Γ - point show a strong pz contribution from the top 

QL atoms, now the contribution of the py orbitals from the Bi atoms of the second layer on 

the new topological surface states at M is even stronger than the pz orbital contribution, which 

 

Fig. 3.8 Atomic orbital projection of the top Se (left panel) and Bi (right panel) atoms on 
the band structures corresponding to the pristine 3QL Bi2Se3 case (a), (b) and the hydro-
genated case (c), (d). The different colors correspond to 1s (red), px (green), py (blue) and 

pz (yellow) 
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manifests the presence of in-plane dangling bonds in the top Bi–Se interface. Also, the spin 

texture associated with this new Dirac cone shows a spin-momentum locking configuration 

which resembles that of a Dresselhaus spin–orbit interaction typical of 3D materials, with a 

strong out-of-plane spin polarization (Fig. 3.7c). 

 

3.5 Combining twin grain boundaries and surface doping in Bi2Se3 thin films 
We finally consider the joint contribution of both twin grain boundary and hydrogenation in-

troduced into the 3QLs Bi2Se3 film. Se atoms on the top surface are fully saturated by hydro-

gen atoms while the bottom QL is rotated by 180° (Fig. 3.1d). Fig. 3.9 shows the resulting 

band structures at opposite surfaces. Interestingly, the formation of the additional Dirac cone 

at M-point is insensitive to the twin grain boundary. It is important to note that the presence 

of the twin boundary along the (111)-direction and the saturation of the top Se atoms give rise 

to an interesting situation in which electrons may flow easily on the top surface due to the 

formation of the new surface state band coming from the dangling bonds (red circles), while 

this flow will not be allowed in the opposite surface due to the appearance of a new gap of 

about 200 meV (green circles). 

 
 

3.6 Conclusions 
In conclusion, we have studied the impact of different defects on the electronic properties of 

ultrathin films of TIs. Twin grain boundaries are found to enhance the electronic band gap of 

 

Figure 3.9 Band structure of 3QL Bi2Se3 with the bottom QLrotated by 180° and the top 
layer fully hydrogenated. Red and green circles show the projection onto the top and bot-

tom QLs respectively 
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the film, without changing the spin texture of surface states, contrary to the case of hydrogen 

adatoms which modify the spin texture symmetry (similar to Dresselhaus spin–orbit interac-

tion type) of the electronic states and generate a new Dirac cone at M-point in the Brillouin 

zone of the hydrogenated surface. Our results evidence that in the ultrathin limit and when the 

thickness is less than 2nm, the nature of twin boundary defect crucially impacts on the varia-

bility of the spin-dependent features of the electronic spectrum, which is simultaneously a 

limitation for fine-tune control of surface states in situation of large surface versus bulk ratio, 

but also suggests interesting directions to explore the spin dynamics of new electronic excita-

tions generated by impurity bands. Similar studies of disorder effects in more complex heter-

ostructures, such as graphene/TI [17] deserve further consideration. 
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Chapter Four: Electronic Properties of Gra-
phene/Topological Insulator Heterostructures 
 

 

 

 

 

4.1 Introduction to Graphene/TI Heterostructures 
Some parts of this chapter was published on Nano letter.[74] Following the discovery of gra-

phene and the large family of Van der Waals heterostructures based on two dimensional ma-

terials,[1~5] the spectrum of practical applications harnessing the uniqueness of such materi-

als has grown continuously.[6] In the area of spintronics,[7, 8] the long room-temperature 

spin lifetime in graphene opens the possibility of large-scale integration of lateral spintronic 

devices and architectures.[9~11] Additionally, many recent reports indicate the benefit of us-

ing proximity effects to tune the spin properties inside the graphene layer and to engineer de-

vices such as spin field-effect transistors.[12, 13] This provides exciting opportunities in the 

search for innovative spin manipulation strategies and the development of non-charge-based 

information-processing technologies. Proximity effects have been studied by combining gra-

phene with magnetic insulators; for instance, J. C. Leutenantsmeyer et al. attached graphene 

layer with yttrium-iron-garnet (YIG) substrate, which is a ferromagnetic insulator, and found 

that an average exchange field of 0.2 T could be induced onto the graphene layer, resulting in 

a magnetic-gate tunable spin[14]; while, H. X. Yang et al. carried out the first principle cal-

culations and reported that EuO could induce 24% of spin polarization in the graphene states, 

while, the exchange band splitting gap would be about 36 meV.[15] In Ali Hallal et al.’s 

work, cobalt ferrite (CFO) was found to shift the Dirac cone of graphene downwards by 0.5 

eV and induce a spin-gating in the graphene layer.[16] Singh, S. et al. could control the direc-

tion of the exchange field in the ferromagnetic insulator (FMI) in graphene/FMI heterostruc-

tures and then, modulate the spin current on graphene layer in the experiment[17] 

 
The other usual way is to magnify the spin−orbit coupling (SOC) in graphene through extrin-

sic chemical functionalization. Avsar, A. et al. observed enhanced SOC strength of graphene 
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with value of 9.1 meV as they deposited 0.06% of fluorine atoms on the graphene layer, ob-

serving the spin hall effect at room temperature[18] Cresti, A. et al. theoretically reported the 

emergence of the spin hall effect induced to graphene by gold ad-atoms,[19] with spin hall 

angle of ~0.1 deduced from nonlocal resistance simulations.[20] 

 
Besdies these two studies, another route recently proposed is to interface graphene with tran-

sition metal dichalcogenides (TMDCs)[21, 22] such as WS2 or WSe2, which leads to phe-

nomena such as weak antilocalization (WAL)[23~25] For instance, Schmidt, H. et al. ob-

served the transition from WL to WAL in graphene/MoS2 system with an experimental spin 

relaxation based on Dyakonov-Perel mechanism.[21] Wang Z. et al. used both experiment 

and first principles calculations to prove that graphene/WS2 heterostructure manifests strong 

spin orbit interaction as revealed by a pronounced WAL in the graphene layer.[23] Avsar, A. 

reported very large nonlocal hall signals on graphene layer in graphene interfaced with a few 

layer WS2.[26] Additionally, the fact that electronic states in Gr/TMDC systems are spin-

polarized primarily along the out-of-plane direction[27] results in large spin lifetime anisot-

ropy between in-plane and out-of-plane spin-polarized electrons, which is, however, weakly 

energy-dependent and, therefore, not tunable.[28~30] However, although all reports men-

tioned above could induce exchange field or strong SOC to graphene layer and results in 

band splitting or WAL effects, but spin and momentum vectors are not locked to each other 

and the spin is always pointing along out-of-plane direction no matter how the direction of 

current is altered. 

 
Recently, a lot of attention has been paid to heterostructures of graphene and topological in-

sulators (TIs), with reports of anomalous magnetotransport, giant Edelstein effect, and gate 

tunable tunneling resistance; for example, Kim, N. et al. measured the magnetotransport in 

graphene with Bi2Se3 heterosystem and revealed the topological surface state, which is spin-

momentum locking, on graphene layer[31] Zhang, L. et al. observed the gate tunable re-

sistance on graphene layer in heterostructure with Bi2Se3, which indicated graphene as the 

quantum hall insulator,[32] and, in another paper, they also reported a giant negative magne-

toresistance with nontrivial spin texture on graphene interfaced with Bi2Se3.[33] In Zalic, A. 

et al.’s work [34], bilayer graphene was found to possess the Landau level due to carriers of 

large fermi surface when it is attached with Bi2Se3; while, Rodriguez-Vega, M. et al. showed 

that monolayer or bilayer graphene interfaced with TIs could have giant Edelstein effect and 

spin-orbit torque.[35] Meanwhile, other works also pointed out the possible existence of a 
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quantum spin Hall phase on graphene adjacent to TI films.[36, 37] On the more applied side, 

the fabrication of broadband photodetectors based on Gr/TI heterostructures has been real-

ized[38] as well as the injection of spin-polarized current from an ultrathin Bi2Te2Se nano-

platelet into graphene.[39] TI materials are distinguished by their strong intrinsic SOC, which 

leads to the formation of a bulk band gap and 2D surface states that host massless Dirac Fer-

mions with spin-momentum locking.[40~45] Proximity to a TI leads to a band gap opening 

and spin-split bands in graphene, as discussed theoretically for the case of Bi2Se3,[46, 47] or 

for graphene interfaced with Sb2Te3.[37] Furthermore, graphene layer had already been re-

ported to show the similar spin-momentum locking feature as that on TI surface state, which 

is quite different from those methods mentioned in previous parts. Dmitrii Khokhriakov et al. 

combined graphene with Bi2Se3 film together and measured spin transport and precession and 

reported that the spin signal and lifetime could be tuned and suppressed, owing to the hybrid-

ization between graphene and TI bands, which could open up a new opportunities for device 

functionalities controlled by topological proximity effects.[74] 

 
However, currently there is substantial variability in the literature concerning the precise spin 

characteristics of Gr/TI systems. Rajput and co-workers measured and calculated a spin split-

ting of ∼80 meV in graphene on Bi2Se3,[47] while Lee et al. calculated a band gap of up to 

20 meV induced in graphene by Bi2Te2Se when all Dirac cones coincided.[48] Kou et al. 

predicted a SOC of ∼2 meV induced in graphene sandwiched between two layers of 

Sb2Te3.[49] They also pointed out, as did Lin et al.,[50] the importance of the Kekulé distor-

tion on the magnitude of the band gap in graphene. Jin and Jhi reported a TI thickness de-

pendence of SOC induced in graphene by Sb2Te3, and they also hinted at unusual spin tex-

tures induced in the graphene bands.[51] Meanwhile, De Beule et al.[52] concluded that the 

spin texture imprinted on the graphene states should resemble the standard Rashba texture, as 

also found in Zhang et al.[53] Overall, these works indicate that TIs clearly induce strong 

proximity effects, resulting in gap opening and spin splitting of the bands, but the precise na-

ture of the spin texture induced in the graphene layer, and the ways to detect it experimentally 

are crucially lacking. Additionally, such information is not only essential for clarifying how 

proximity effects between graphene and TIs generate the measured properties but also could 

enlarge the possibilities for tailoring spintronics applications. 

 
To explain this experimental phenomenon and examine this heterostructure in this chapter, 

fundamental electronic properties, including both band structure and spin transport properties 
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of Gr/TI heterostructures, were computed based on ab initio calculations and then the results 

were fitted to tight-binding (TB) models that could fully reproduce both the band structure 

and the spin texture in the graphene layer. Structures with different twist angles between the 

graphene and the TI are considered, but in all cases, a giant spin lifetime anisotropy in the 

graphene layer, with in-plane spins relaxing much faster than out-of-plane spins, is obtained. 

In the highly commensurate structure, with a twist angle of 30°, the anisotropy is maximal 

near the graphene Dirac point, reaching values of tens to hundreds, and decays to 1/2 at high-

er energies. Meanwhile, in the larger unit cell, with a twist angle of 0°, the anisotropy re-

mains high at all Fermi energies and exhibits a strong electron−hole asymmetry. The differ-

ence in these behaviours is driven by the dominating SOC terms in each structure, which de-

pend on the specific interface symmetry. This contrasts with prior calculations of the spin 

texture in Gr/TI systems, which predicted a purely Rashba-like spin texture with an energy-

independent anisotropy of 1/2.[52, 53] 

 
Theoretical predictions in this work could be experimentally confirmed by performing a gate-

dependent measurement of the anisotropy as recently achieved in Gr/TMDC samples,[29, 30, 

54, 55] heterostructures that, however, do not exhibit any gate dependence. Differently, Gr/TI 

allows for a strong gate dependent anisotropy, enabling the fabrication of tunable spin filter-

ing devices, while the in-plane spin-momentum locking could also make it possible to con-

vert charge current to spin current and to control the spin orientation of the current.[39] 

 

4.2. Parameter settings for DFT calculations 
AB initio calculations of the electronic structure of Gr/TI heterostructures were carried out 

using density functional theory (DFT),[56] implemented in the Vienna Ab initio Simulation 

Package (VASP),[57] with the wave functions expanded in a plane wave basis with an energy 

cutoff of 600 eV using the projector-augmented wave method.[58] The PBE form of the gen-

eralized gradient approximation[59] was used to compute the exchange-correlation energy. 

Due to the different cell size for Gr/TI heterostructure with different twisted angle, a 24 × 24 

× 1 and 9 × 9 × 1 k-point meshes were adopted for the small and large unit cells together with 

a convergence criterion of 10−6 eV. The spin−orbit coupling was included through noncollin-

ear calculations, while the Van der Waals force was accounted for based on the Tkatchen-

ko−Scheffler method,[60] and all structures were fully relaxed until forces were smaller than 

10−2 eV/Å. 
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4.3. Band structure of Gr/1QL Bi2Se3 system with hollow configuration 
In our simulations we found that the relaxed interlayer spacing between graphene and TI sur-

face could vary a lot with the initial geometry, therefore, several initial settings were tested 

for this interlayer spacing; then, graphene layer and atoms on 1st TI layer were fixed along z-

axis; while, coordinates in other two axes (x and y) were fully relaxed with the rest atoms in 

the system relaxed along all three axes. Through comparing energy of relaxed system with 

different initial interlayer spacing, that with lowest energy was adopted for the following 

study of electronic properties. 

 
Taking the simulated Gr/TI heterostructure, which contains a Bi2Se3 film with one quintuple 

(1QL) thickness and one monolayer of graphene in a √3 × √3 supercell as an example, both 

top and side views are shown in Figs. 4.1a. and 4.1b. Se atom on 1st TI layer are labelled by 

green colour and it is placed on the centre of hexagon of graphene layer, which is called hol-

low alignment position. All energy data (energy v.s. interlayer distance), corresponding to 

different spacing cases, are listed in the table attached to the end of Fig. 4.1 and it is clear to 

see the most stable spacing corresponding to the lowest is 3.51 Å. Because the graphene layer 

is attached to the TI substrate, the minimum-energy lattice constant of bulk Bi2Se3, 4.196 Å, 

was adopted.  

 
The relaxed crystal structures exhibit a lattice mismatch of less than 3% and for the small unit 

cell, a different thickness (six quintuples) was also considered and will be simulated and 

compared with 1QL case in the following section. After the structure relaxation, the obtained 

bonding lengths for graphene layer are shown in Fig. 4.2. One determines the carbon bonding, 

 
D (Ǻ) 3.37 3.47 3.48 3.49 3.5 3.51 3.52 3.57 3.67 3.77 

E (eV) -77.4858 -77.4870 -77.4873 -77.4874 -77.4875 -77.4876 -77.4874 -77.4868 -77.4856 -77.4843 

 
Fig. 4.1 Crystal structure Gr/1QL Bi2Se3 heterostructure in the hollow configuration and 
total energy of structure with different interlayer spacing. a and b – top and side view of 

the heterostructure; table – energy data for different spacing cases 

a b 
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which structures the hexagon and surrounds the Se atom on 1st TI layer, while the other bond-

ing length is along the connection between these hexagons. In other words, the interface 

mismatch results in two different carbon bondings on the graphene layer that can be seen as a 

Kekulé distortion. It has already been claimed that this distortion could play an unusual role 

in the band gap opening of graphene bands.[50] 

 
 
In order to analyze the effect of this distortion, the band structure for the heterostructure was 

computed in the collinear case, which means that the SOC effect was switched off in the cal-

culation, and the band structure for pristine graphene with 1 × 1 unit cell was also computed 

for the comparison with that with √3 × √3 supercell. Fig. 4.3a shows that the band structure 

for pristine graphene has a Dirac point (DP) located at Fermi energy level and this DP only 

shows at six K points in the First Brillouin zone. A very tiny gap around 18 μeV is given at 

K/K’ point which comes from the weak intrinsic SOC effect, and it can neither be seen in the 

zoom-in Fig. 4.3b nor be detected in experiments, so graphene basically remains a semimetal 

material, despite the interaction with the TI in heterostructure of Gr/TI. On the other hand, 

Fig. 4.3c shows a very different band structure for graphene, which is labelled by red colour, 

in the heterostructure. First, the graphene DP shifts from the K to the Γ point because the √3 

× √3 supercell can have different lattice vector in real space and this different lattice vector is 

used to compute those in reciprocal space. Then the different reciprocal lattice vector deter-

 

Fig. 4.2 Top view of graphene in Gr/1QL Bi2Se3 with relaxed carbon bonding length 

1.3988 Ǻ 

1.3984 Ǻ 
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mines the first Brillouin zone with different size, due to the band folding. This band folding 

has already been reported in other studies[62] as well and with different real lattice vectors, 

the graphene DP could be folded to different k points. In the pristine case, there is only one 

DP sitting at each K point; while, in the √3 × √3 supercell case, the two DPs sitting at K and 

K’ point pair are folded to the Γ point; thus, there are two valence and two conduction bands 

respectively. In the collinear calculation, the intrinsic SOC is switched off and there is no 

band splitting and each graphene valence or conduction band is doubly degenerate. Mean-

while, Fig. 4.3d shows an obvious band gap (~3.0 meV) opening in the graphene layer indi-

cating that the Kekulé distortion can truly result in a relatively large gap opening, which is in 

line with the conclusion from Lin Z. et al.’s work.[5] The different carbon bonding lengths 

related to the different overlap between p–shell orbital on neighbour carbon atoms.. This will 

be explained with more details in the tight binding model section.  

 

 

 

Fig. 4.3 Band structures of pristine graphene and Gr/1QL Bi2Se3 in the hollow configura-
tion without SOC. a – band structure of pristine graphene with 1 × 1 unit cell; b – zoom-in 
band for a case; c – band structure of graphene with √3 × √3 supercell in Gr/1QL Bi2Se3 
without SOC included; d – zoom-in band for c case. Red colour denotes the projection 

onto graphene bands 

a b 

c
 

d 
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Besides the Kekulé distortion, the intrinsic SOC can also give rise to the gap opening, as al-

ready discussed in the literature; for instance, heavier ad-atoms on graphene layer can en-

hance the intrinsic SOC on graphene, which leads to the larger gap opening compared with 

the pristine case with very weak SOC strength.[20] Because of the strong intrinsic SOC, TI 

has its surface band inverted and this strong SOC could be transferred to graphene as well 

when they are combined together. Figs. 4.4a and 4.4b show the band structure of graphene 

with SOC included and the structure is same as that in Figs. 4.3c and 4.3d. Through the com-

parison, it is clear that the band gap is narrowed down in the case with non-collinear calcula-

tions and one can also see the non-equal band splittings for the graphene electronic bands. 

This effect actually comes from two elements. Attached to TI surface, the graphene layer its 

other surface exposed to vacuum zone, which breaks the inversion symmetry, and as a conse-

quence TI surface exerts an external electric field onto the graphene layer. In the simulation, 

Se on 1st layer and Bi on 2nd layer are relatively close to graphene and they form charge di-

pole, tilted from z axis, which has both in-plane and out-of-plane components. Looking at the 

top view of this hollow configuration, there are three in-plane dipole components induced 

onto graphene and they are crossing three alternative carbon bondings and pointing from out-

er to inner of graphene hexagon. Finally, these three in-plane dipole components cancel each 

other leading to zero in-plane dipole; while, the three out-of-plane dipole components all 

point along z axis with same direction, resulting in out-of-plane electric field onto graphene 

layer. This induced electric field is also called Rashba-type spin orbit coupling (SOC) and it 

generates π bonding for electron on graphene layer experience a superimposed potential, 

which can lift up one set of graphene valence and conduction bands at one K point in Bril-

louin zone and release the double degeneracy; therefore, causing the splitting to the bands, 

which is illustrated in Fig. 4.4c. 

 

However, this splitting should be equal for both valence and conduction bands as shown in 

Fig. 4.4c. In 4.4b, it is clear that graphene layer have relatively larger splitting on conduction 

bands (~ 2.6 meV) but very tiny splitting on valence bands (~ 0.4 meV), which is apparently 

not the case discussed in Fig. 4.4c. As for pristine TI, the intrinsic SOC is very strong and 

could bring the band inversion to the surface state which lifts valence surface band upwards 

and pushes the conduction surface state downwards and; finally, results in the fact that va-

lence band is located above conduction band. When the graphene layer is attached to TI sur-

face, the strong SOC of TI could also pushes the graphene bands upwards with different 

magnitude. Both valence and conduction graphene bands on one set of the K points in Bril-
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louin zone are pushed towards the centre of graphene gap, which narrows down the gap 

opened up by the Kekulé distortion. In other words, the final value of the band gap of the gra-

phene layer comes from the combined effects from the Kekulé distortion, the Rashba and in-

trinsic SOC and the bonding distortion which contribute to enlarging the band gap; while, the 

intrinsic SOC makes a counter contribution and narrows down the gap and finally, the Rash-

ba SOC is responsible for the band splitting. 

 
Another issue worth of pointing out is the interaction between graphene and TI bands. One 

clearly sees that the graphene bands are located in the conduction bands of Bi2Se3 film, dic-

tating the charge transfer from the graphene layer to the TI surface indicating p-type doping 

in graphene. On the other hand, graphene bands also strongly hybridize with Bi2Se3 bands, 

which can be seen in Fig. 4.4a and these TI bands not only come from the surface state but 

also from the bulk because the thickness is just 1QL and the atom layer inside the TI film in-

 

 

Fig. 4.4 Band structure of Gr/1QL Bi2Se3 in the hollow configuration with SOC and 
mechanism of Rashba and intrinsic SOC. a. – band structure for graphene with √3 × √3 

supercell in Gr/1QL Bi2Se3 with SOC included; b. – zoom-in band structure for graphene 
with √3 × √3 supercell in Gr/1QL Bi2Se3 with SOC included; c. – illustration of Rashba 

SOC induced band splitting; d. – illustration of intrinsic SOC induced different band split-
ting 

a b 

d c 
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teracts with graphene as well. It is also clear that the graphene DP shares the same energy 

window with TI bands, implying that injection of current on graphene layer could spread onto 

the TI surface as well and the signal measured include contribution from both graphene layer 

and TI film. 

 

Due to quantum tunneling effect (QTE), charge potentials on the two surfaces in the TI thin 

film with thickness no larger than six nanometers (6 QLs) can affect each other, which causes 

the surface gap opening, and this is also the reason why TI films are usually produced with 

thickness larger than 6QLs in order to view the topological surface DP. In other words, the 

thickness of the TI affects the band structure, determining the formation and location of DP. 

It is therefore interesting to examine the thickness effect on the graphene layer in such Gr/TI 

heterostructures. For comparison with the 1QL TI case, graphene with 6QLs Bi2Se3 system is 

discussed below to explore the differences between these two cases. 

 

4.4. Band structure for Gr/6QL Bi2Se3 system with hollow configuration 
The calculation procedure for this case is similar to that in 1QL TI case and Figs. 4.5a and 

4.5b show the top and side views of the heterostructure with the same hollow configuration. 

Through the comparison of total energy corresponding to different interlayer spacing cases, it 

is clear that the most stable distance remains identical (3.51 Ǻ) and the relaxed carbon bond-

ing length also follows the same rule that is the hexagon, surrounding Se atom on 1st layer, 

has the same length for all carbon bondings; while, the bonds connecting hexagons, has an-

other different length. The relaxed carbon bond has the same length value as those in the 

Gr/1QL Bi2Se3 system, dictating that the Kekulé distortion is the same as that in 1QL TI case, 

and this also means that the gap opening in graphene layer could be same for both cases.  
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On the other hand, the band structure of the Gr/6QLs Bi2Se3 is shown in Fig. 4.6a and, differ-

ently from the one quintuple case, the TI surface states are gapless because 6QLs is thick 

enough to avoid QTE, and the TI surface DPs are labelled by blue and green colours respec-

tively, which correspond to the surface beneath graphene layer and surface far away from 

graphene. Because of the asymmetry in this heterostructure, the graphene layer also exerts 

external electric field to the TI, which acts as a dipole and lifts up the TI DP on the surface 

close to graphene; while it shifts the DP on the other surface below, and this is why two TI 

DPs are separated from each other and the double degeneracy is released. Meanwhile, Fig. 

4.6a also shows the difference that more Bi2Se3 bands appear within the energy window 

where graphene DP sits, and they are from TI bulk state. The hybridization between graphene 

and Bi2Se3 becomes much stronger than that in 1QL case, indicating that the signal measured 

in experiments could have more contribution from the TI bands; especially, the bulk state. 

Since only TI surface states exhibit spin-momentum locking, if one likes to have a dominated 

surface state transport, current injection should be very careful in order to avoid the bulk con-

tributions. 

 
Given the same reason for the gap opening on the graphene bands in both 1QL and 6QLs 

cases, Fig. 4.6b. shows that the gap value does not change a lot and is the same as that in 1QL 

TI case because of the same magnitude of the Kekulé distortion, shown in Fig. 4.5a., while, 

the band splitting also has the same origin in both 1QL and 6QLs cases, as the splitting value 

is about 2.6 meV and 0.04 meV for conduction and valence graphene bands respectively. 

This means that the thickness of TI in this heterostructure does not affect significantly the 

 
D (Ǻ) 3.37 3.47 3.48 3.49 3.5 3.51 3.52 3.57 3.67 3.77 

E (eV) -182.1108 -182.1135 -182.1138 -182.1140 -182.1144 -182.1145 -182.1143 -182.1130 -182.1101 -182.1072 

Fig. 4.5 Crystal structure Gr/6QLs Bi2Se3 heterostructure in the hollow configuration and 
total energy of structure with different interlayer spacing. a and b – top and side view of 

Gr/6QLs Bi2Se3 heterostructure with the relaxed carbon bonding length shown in a.; table 
– energy data for different spacing cases 

1.3988 Ǻ 

1.3984 Ǻ 

a b 
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graphene bands; particularly, the gap and band splitting values. One explanation here is that 

TI film here is not thick enough to induce any change to charge distribution on the graphene 

layer, although it could definitely affect the TI film itself. Graphene with even thicker TI film 

could be very heavy for DFT computation and it is beyond the calculation capability of the 

VASP code. Therefore, based on all the current results, one conclusion is that the thickness of 

the TI film does not alter too much the graphene bands. However, one should note that the 

experimental work on such heterostructure often involves graphene layer attached to TI film 

with a few hundreds of nanometer-thickness and this could affect the charge potential on gra-

phene layer; especially, the band gap value, because it has already been reported that the sur-

face gap of TI film could follow an ‘open-close’ repetition rule as the thickness of TI contin-

uously increases. 

 
Since the thickness of TI film does not affect significantly the graphene band structure; the 

calculation of the electronic properties was restricted to the Gr/1QL TI heterostructure. It 

should be noted that, beyond the hollow configuration already studied in previous sections, 

other different configurations; such as top or bridge position, could alter the electronic prop-

erties of graphene as well due to the different effective Hamiltonian. Therefore, it is neces-

sary to examine such structure with different alignment between the graphene and the TI. 

 

4.5. Band structure for Gr/1QL Bi2Se3 system with bridge configuration 
In the bridge configuration, the Se atom on 1st TI layer stays in the centre of one carbon bond 

of the graphene layer and Fig. 4.7 shows both top and side views of this structure. The struc-

 

Fig. 4.6 Band structure of Gr/6QLs Bi2Se3 in hollow configuration. a – band structure of 
Gr/6QLs Bi2Se3; b – zoom-in band structure of graphene layer in this heterostructure 

a b 
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ture relaxation procedure is similar to the prior cases and the total energy v.s. spacing is given 

in the table attached to Fig. 4.7. Compared with that in Fig. 4.1 table, the bridge configuration 

obviously gives higher energy than hollow one and the most stable interlayer distance be-

tween graphene and TI surface is also larger (~ 3.52 Ǻ) than for the hollow case, dictating 

that the hollow configuration is much more stable, compared with the bridge one. Another 

difference is that the relaxed carbon bonds in the graphene layer in this configuration has an 

uniform value without Kekulé distortion, which means that graphene band gap could remain 

small, since this distortion is the main origin of the gap opening in graphene. Additionally as 

already discussed in the hollow configuration, Se and Bi atoms on 1st and 2nd layers form the 

dipole, which has both in-plane and out-of-plane components, and the in-plane components 

cancel each other in the hollow configuration case and only the out-of-plane component can 

survive. There is no symmetric alignment for the in-plane component in this bridge position 

case as it is clear that one Se on 1st layer is moved beneath the centre of carbon bond and the 

other two Se on 1st layer is moved within the hexagon zone and the resulting dipoles exerted 

by these three Se-Bi interactions cannot cancel the in-plane components. This also indicates 

that both nonzero in-plane and out-of-plane Rashba SOC, induced by these dipoles, should 

also alter the Hamiltonian with different terms. Meanwhile, the intrinsic SOC could also be 

different as the electron will experience different potential from that in the hollow configura-

tion, when jumping between second neighbour carbon orbitals. Based on the discussion for 

bridge configuration, it is reasonable to expect quite different band structure for graphene 

layer. 
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Fig. 4.8 shows the band structure for Gr/1QL Bi2Se3 with bridge configuration with the gra-

phene DP which is still folded to Γ point in the Brillouin zone because the supercell (√3 × √3) 

remains the same. The gap of graphene remains very tiny (~ 0.03 meV), which is consistent 

with the discussion on the uniform carbon bond length on graphene layer. Furthermore, a 

prominent lateral splitting of bands is also observed in the graphene layer. In section 4.3, Fig. 

4.4c shows that out-of-plane Rashba SOC induces a band splitting in the vertical direction 

since the external electric field is along the z axis; while, in this bridge configuration, the in-

plane Rashba SOC is non zero as well, which could thus definitely exert an in-plane electric 

field, and triggers a band splitting in the lateral direction. J. Borge et al.[62] and Ka Shen et 

al.[63] have discussed a situation where electrons, moving within an electric field, could feel 

an effective magnetic field (MF), even without external magnetic field, and this effective MF 

has the direction related to its momentum direction. The electric field is induced on the inter-

face with the heterostructure; for instance, electrons in the graphene layer could feel the ex-

ternal electric field induced from the TI film, and meanwhile, this effective MF would result 

in the band structure with opposite spin vectors on the split bands (shown in Fig. 4.8c), which 

indicates spin polarization with certain direction corresponding to specific momentum direc-

tion. When electron moves on such electronic bands, the non-even distribution of momentum 

would exist in specific direction and, since the spin polarization is highly related to the mo-

mentum direction, this non-equilibrium direction for momentum could involve the non-

equilibrium distribution of spin polarization and; thus, the accumulation of spin along specif-

ic direction (shown in Fig. 4.8d). This process is called Edelstein effect and leads to the con-

version of charge current into spin current and vice versa. 

 
D (Ǻ) 3.37 3.47 3.48 3.49 3.5 3.51 3.52 3.53 3.54 3.55 

E 

(eV) 
-76.2859 -76.2870 -76.2872 -76.2873 -76.2874 -76.2876 -76.2877 -76.2875 -76.2872 -77.2869 

Fig. 4.7 Crystal structure Gr/1QL Bi2Se3 heterostructure in the bridge configuration and 
total energy of structure with different interlayer spacing. a and b – top and side view of 

Gr/1QL Bi2Se3 heterostructure with bridge configuration with the relaxed carbon bonding 
length shown in a; table – energy data for different spacing cases 

a b 

1.3997 Ǻ 
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M. Rodriguez-Vega et al. found that substantial current-induced spin density accumulation 

should be generated on graphene/bilayer graphene interfaced with the magnetic TI film due 

to a giant Edelstein effect[64]. Fig. 4.8b shows that the Gr/1QL Bi2Se3 with bridge configura-

tion, the nonzero in-plane Rashba SOC could induce the lateral band splitting to graphene 

layer even without external MF, involving the this non-even distribution for spin polarization. 

Finally, the charge current, moving on this graphene layer, could bring the accumulation of 

spin along specific direction and be converted into spin current. In other words, bridge con-

figuration could have Edelstein effect on graphene layer; while, hollow configuration does 

not have this feature since, in hollow position case, only the out-of-plane Rashba SOC re-

mains and no lateral band splitting is observed. This could provide an useful guide to the ex-

perimentalist for optimising the spin current conversion in such heterostructure. 

 
Apart from the Edelstein effect on in this bridge configuration, the band structure in Fig. 4.8a 

also shows some similar features as those in the hollow configuration case. First, the gra-

phene DP stays within the conduction band of Bi2Se3, indicating that charge transfer from 

graphene to TI surface. Second, strong hybridization between graphene and TI bands also 

exists in this bridge position case. The third point is that TI bands also appear within the en-

ergy window where the graphene DP is located; implying that the spin signal measured on 

graphene layer could also diffuse onto TI surface and have same contribution from TI. 
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4.6. Band structure for Gr/1QL Bi2Se3 system with top configuration 
Following the same calculation procedure, the Gr/1QL Bi2Se3 with top configuration was al-

so examined and Figs. 4.9a and 4.9b display the top and side views of Gr/1QL Bi2Se3 for the 

top configuration. In this case, one carbon atom sits right above the Se atom on 1st TI layer 

and different interlayer spacing were examined with the corresponding the total energy of the 

whole system. It is obvious that top configuration gives the highest energy among these three 

position cases and the stable interlayer distance is also the largest one (~ 3.57 Ǻ), dictating 

that the most stable alignment is the hollow one and the most unfavourable configuration is 

the top one, in the point view of total energy. Similarly for the bridge position case, a uniform 

carbon bonding also shows up in the top position (shown in Fig. 4.9a), implying that there is 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Band Structure of Gr/1QL Bi2Se3 in bridge configuration and illustration of Edel-
stein effect. a. – band structure of Gr/1QL Bi2Se3 with bridge configuration; b. – zoom-in 
band structure of graphene layer in this heterostructure; c. – energy dispersion relation un-

der strong Rashba SOC; d. – illustration of Edelstein effect 
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no Kekulé distortion of the graphene layer which presents no sizable bandgap. From the top 

view, one clearly sees the asymmetry alignment for dipole, resulting from Se and Bi atoms on 

1st and 2nd TI layers, and this means that nonzero in-plane Rashba SOC could exist in this top 

configuration as well. Furthermore, the displacement of Se on 1st TI layer from the centre of 

carbon hexagon on graphene layer could also make electrons, jumping between second 

neighbour carbon atoms, feeling different intrinsic SOC. For instance, orbitals on top of Se 

atom on 1st TI layer could experience different potential from those not located on Se atom 

and electron could have different additional energy. All these difference in geometry could 

affect the band structure a lot and bring different electronic properties. 

 
Based on the top configuration, the band structure of the heterostructure was computed (see 

Fig. 4.10). Apparently, the top configuration case only manifest a very tiny band gap, owing 

to a negligeable Kekulé distortion of the graphene layer whereas graphene bands split in the 

lateral direction, indicating that the in-plane Rashba SOC is also non zero in the top position 

case. This means that a displacement of the alignment from the hollow configuration could 

always involve a finite in-plane Rashba SOC value, responsible for the lateral band splitting, 

and inducing a possible Edelstein effect for the graphene states. This feature could result in a 

conversion of charge current to spin one in the experimental measurements. Similarly, the top 

configuration also shows strong hybridization between graphene and TI and the TI bands co-

exist with graphene DP within the same energy window, dictating the signal mixing between 

that from graphene layer and that from TI film. This could be an important element in inter-

preting spin transport measurements and affect the detected electronic properties. 

 
D (Ǻ) 3.35 3.45 3.5 3.55 3.56 3.57 3.58 3.59 3.65 3.75 

E (eV) -74.0547 -74.0559 -74.0568 -74.0573 -74.0574 -74.0576 -74.0575 -74.0573 -74.0556 -74.0543 

Fig. 4.9 Crystal structure Gr/1QL Bi2Se3 heterostructure in the top configuration and total 
energy of structure with different interlayer spacing a and b – top and side view of Gr/1QL 

Bi2Se3 heterostructure with top configuration with the relaxed carbon bonding length 
shown in a; table – energy data for different spacing cases 

 

1.3997 Ǻ 

b a 
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In the above sections, the impact of both thickness and configuration elements on the band 

structure of Gr/Bi2Se3 heterostructure have been compared and discussed. The most common 

situation in experiment is that all three configurations should coexist in such device, because 

both alignment and interlayer spacing between graphene and TI surface are very difficult to 

control and one usually measures the signal based on the average effect of all different con-

figurations. Thus, the next point is to include different configurations in the same structure 

and examine the band structure for the average effect. 

 

4.7. Band structure for Gr/1QL Bi2Se3 system with three configurations 
There are three common positions (hollow, bridge and top) included in graphene layer with 5 

× 5 supercell/1QL Bi2Se3 with 3 × 3 supercell as shown in Fig. 4.11. Therein to, one Se atom, 

sitting at the four corners, is located in the hollow position; while, two are in the top position 

and another two are in the bridge positions. Following prior discussion, concluding that dif-

ferent configurations could give different Van der Waals interlayer spacing, this big unit cell 

should produce different spacing between the graphene and the TI surface. For instance, the 

hollow configuration at four corners of the supercell could have smallest distance; while two 

carbon atoms right on top of Se atom could have largest spacing. In the structure relaxation 

step, the initial spacing was taken as the average value from those in three single configura-

tion cases and 9 × 9 k point mesh was adopted in the self-consistent calculation step, due to 

the size of the large unit cell. According to the relaxed structure (shown in Fig. 4.11a.), it is 

clear that the whole graphene layer has the uniform bond and bond length is larger than that 

 

Fig. 4.10 Band structure of Gr/1QL Bi2Se3 in top configuration. a – band structure of 
Gr/1QL Bi2Se3 with top configuration; b – zoom-in band structure of graphene layer in 

this heterostructure 

a b 
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in hollow case but smaller than that in bridge configuration. This whole relaxed structure is 

based on the average effect of these three configurations, indicating that the graphene band 

gap could be zero because there is no Kekulé distortion. 

 
Meanwhile, only the in-plane Rashba SOC contributions in hollow position (four corners) 

cancel each other whereas those in bridge and top positions keep some residual value, based 

on the local asymmetric geometries. Based on the previous discussions, all three configura-

tions contribute to the non-zero in-plane Rashba SOC so this large unit cell should have the 

non-zero total in-plane Rashba SOC and out-of-plane Rashba SOC always exist. Besides that, 

the intrinsic SOC induced on the graphene layer could also be different at different local con-

figurations and this should affect the electronic environment as well.  

 
The band structure of this large unit cell is shown in Fig. 4.12 and our works on this system 

have already been published.[74] Given the different lattice vectors from those in √3 × √3 

supercell in real space, the graphene bands are not folded to the Γ point anymore but are lo-

cated at the K/K’ points of the Brillouin zone. Accordingly, there are only two valence and 

two conduction graphene bands located at each K point, which is different from the case of 

the single configuration with √3 × √3 supercell. Meanwhile, the graphene layer does not ex-

hibit any band gap because of the uniform bonding length. On the other hand, the lateral band 

splitting (Fig. 4.12b) is also observed, which indicates that the Edelstein effect could be de-

tected as the charge current converted to spin for specific momentum direction. Another dif-

ferent point from the previous single configuration case is that there is no strong hybridiza-

 

Fig. 4.11 Structure of Gr/1QL Bi2Se3 with big supercell. a and b – top and side view of 
Gr/1QL Bi2Se3 heterostructure with three configurations and the relaxed carbon bonding 

length shown in a 

1.3991 Ǻ 

a b 
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tion between the graphene and TI bands since no TI bands show up within the energy win-

dow where graphene bands sit. Such large unit cell is more realistic in view of experiments, 

so one could expect to detect specific spin signals, only due to the graphene layer, which is 

suitable for examining modified graphene properties.  

 
Besides the Bi2Se3, there are other 3D TI crystals, sharing the same space group but with dif-

ferent lattice constants. They also show topological surface states as for the strong intrinsic 

SOC case due to the band inversion; however, they also show some difference from each sys-

tem. For instance, the pristine Bi2Se3 thick enough (> 6QLs) shows surface DP weakly shift-

ed in the valence band maximum (VBM), dictating the measured surface signal should also 

include some contribution from the bulk bands; while, Sb2Te3 has its surface DP right within 

the bulk band gap, which will make the spin signal uniquely driven by surface states. Such 

different electronic properties could induce different spin transport behaviours onto the gra-

phene layer and since the lattice constant for different TIs are also different, the bonding dis-

tortion on graphene could also be different in the various possible Gr/TI systems. Therefore, 

it is necessary to examine these different substrates with different interface configurations. 

 

4.8. Band structure for Gr/1QL Bi2Te3 system with three different configurations 
The lattice constant for Bi2Te3 are smaller than that for Bi2Se3 and more much more different 

from that of graphene; therefore, the lattice mismatch (~ 2.8%) between graphene and Bi2Te3 

is larger than that (~ 2.1%) in Gr/Bi2Se3 with √3 × √3 supercell. The structure relaxation pro-

cedure is identical to that used for the Gr/Bi2Se3 case and different initial interlayer spacing 

 

Fig. 4.12 Band structure of Gr/1QL Bi2Se3 with big supercell. a – band structure of 
Gr/1QL Bi2Se3 with three configurations; b – zoom-in band structure of graphene layer in 

this heterostructure 

a b 
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has been tested and plot against the total energy of the whole system to get the most stable 

distance. For the sake of simplicity, only the relaxed structures with the most stable interlayer 

distance are shown in Fig. 4.13 for three different single configurations. 

 
The difference for these three position cases appears clearly since the hollow configuration 

gives a Kekulé distortion, with two different bonding lengths forming in the graphene layer. 

One lies inside the hexagon, surrounding the Te on the 1st Bi2Te3 film, while the other one is 

between this hexagon, which is the same as that in the Gr/Bi2Se3 system for the hollow con-

figuration. The different point is that the value of the bonding length in Bi2Te3 case, is larger 

than that of the Bi2Se3 because of the different lattice constants in these two crystals. In other 

words, the band gap should be different from that in the Gr/Bi2Se3 system because of the var-

ying bonding distortion with different magnitude. Meanwhile, both bridge and top configura-

tions show uniform carbon bonding lengths, similarly to the case of Gr/Bi2Se3 case as well. 

 
Because the geometry in the Bi2Te3 case also remains the same, it is reasonable to deduce 

that the in-plane Rashba SOC is nonzero for both bridge and top ones and this is the reason 

why lateral band splitting happens in bridge and top cases; in contrast to the hollow one. The 

difference is the magnitude of splitting in these two hererostructures because of the different 

dipole strengths induced by Se-Bi and Te-Bi. The out-of-plane Rashba SOC should be uni-

form on graphene but with a different magnitude and could result in a different band splitting 

value. 
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The band Structure for three configurations are shown in Figs. 4.14 and 4.15 from which it is 

clear that some differences from those in Gr/1QL Bi2Se3 system are evident, though the ge-

ometry and supercell are identical in each corresponding configuration. First, Fig. 4.14b 

shows that the band gap is much larger than that of the Gr/Bi2Se3 system in the hollow posi-

tion, which is consistent with the carbon bonding distortion in the Bi2Te3 case is larger than 

that of the Bi2Se3 system. Second, another different feature is that the graphene DP is located 

at the Fermi energy level; rather than in Bi2Te3 conduction bands, indicating that there is no 

charge transfer between them. In the Gr/Bi2Se3 system, the graphene DP is located in the TI 

conduction band, dictating that any spin signal measured on graphene, within the energy 

window of graphene DP, always include contribution from the bulk bands of Bi2Se3. Because 

of this, the Bi2Se3 surface states are pushed downwards inside the bulk valence bands for the 

6QLs TI case. However, in this system, there are no TI bands, bulk bands in particular, 

around the Fermi energy level and this means that any spin signal measured within this win-

dow would only have contribution from graphene layer. This is a better situation to examine 

the properties of any spin current propagating in the graphene layer. Regarding the band split-

ting, the results are same as that in the Gr/Bi2Se3 case and the explanation is same as well. 

 

Fig. 4.13 Structure of Gr/1QL Bi2Te3 heterostructure in three different configurations. a 
and b – top and side view of Gr/1QL Bi2Te3 heterostructure with hollow configurations; c 

and d - top views of Gr/1QL Bi2Te3 heterostructure with bridge and top configurations. 
The relaxed carbon bonding lengths are shown in a, c and d respectively 

a b 

c d 

1.4021 Ǻ 

1.4019 Ǻ 

1.4098 Ǻ 

1.4098 Ǻ 
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The dipole induced by Te-Bi brings the out-of-plane Rashba SOC is along z axis in Bi2Te3, 

resulting in the large splitting in conduction band and small splitting in valence band (as seen 

in Figs. 4.14c and 4.14d). 

 
As far the other two configurations are concerned, in both cases it is obvious that the lateral 

band splitting is observed (shown in Fig. 4.15), owing to that the non-zero in-plane Rashba 

SOC remains but the difference between these two cases is that the lateral splitting in the top 

position is larger than that in the bridge one, dictating that top position case has larger residu-

al in-plane Rashba SOC than bridge configuration. This means that the geometry really plays 

an important role in the morphology of the graphene band structure and originates a non-zero 

electric field, no matter what the TI substrate is. This also indicates that the Edelstein effect 

 

 

Fig. 4.14 Band structure of Gr/1QL Bi2Te3 heterostructure in the hollow configuration and 
mechanism of Rashba and intrinsic SOC. a – band structure of Gr/1QLs Bi2Te3 with hol-

low configuration; b – zoom-in band structure of graphene layer a; c – illustration of 
Rashba SOC induced band splitting; d – illustration of intrinsic SOC induced different 

band splitting 

a b 

c d 
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could exist for the spin current conversion. On the other hand, it can also be seen that the gra-

phene DP is located at the Fermi energy level in the Gr/Bi2Te3 system for all three configura-

tions and only two TI bands hybridize with graphene close to Fermi level, suggesting that the 

spin signal measured on graphene in this system should preferentially come from graphene 

layer.  

 
For the same geometry but with a large unit cell, including all three configurations for the 

Gr/Bi2Te3 system, it is expected to have the same electronic features as that in Gr/Bi2Se3 case. 

The only difference could be that the hybridization between the graphene and the TI band is 

not strong around Fermi energy level; then, other features (such as band splitting) should be 

similar. Besides Bi2Se3 and Bi2Te3, another type of 3D TI that belongs to Bi2Se3 family TI is 

the Sb2Te3 and the surface DP in this system is located inside the bulk band gap for the thick 

 

 

Fig. 4.15 Band structure of Gr/1QL Bi2Te3 with bridge and top configurations. a - band 
structure of Gr/1QL Bi2Te3 with bridge configuration; b – zoom-in band structure of gra-
phene layer b; c – band structure of Gr/1QLs Bi2Te3 with top configuration; d – zoom-in 

band structure of graphene layer c 

a b 

c d 
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film (> 6QLs). It is also interesting to actually study such heterostructure made by combining 

graphene with this TI. 

 

4.9. Band structure for Gr/1QL Sb2Te3 system with three different configurations 
Following the same procedure as in previous sections (4.4 ~ 4.5 and 4.8), the most stable in-

terlayer spacing between the graphene layer and the Sb2Te3 film was found, through the anal-

ysis of the total energy of the heterostructure. Fig. 4.16 shows all three different configura-

tions with relaxed bonding length for this system and it is clear that the Gr/1QL Sb2Te3 has 

the largest Kekulé distortion in the hollow configurations among three TI substrate films, in-

dicating that the band gap in such position should have the largest value. Meanwhile, the ge-

ometry in bridge and top configurations are also similar as those in the Bi2Se3 and Bi2Te3 

cases so that a residual in-plane Rashba SOC is expected to be nonzero as well and a lateral 

splitting for graphene bands. 

 
The band structures for all three configurations in this case are shown in Fig. 4.17 and, as dis-

cussed based on geometry in Fig. 4.16, the hollow position gives rise to the largest band gap 

for the graphene layer due to the largest carbon bonding distortion, compared with the other 

 

Fig. 4.16 Structure of Gr/1QL Bi2Sb3 heterostructure in three different configurations. a 
and b – top and side view of Gr/1QL Sb2Te3 heterostructure with hollow configurations; c 

and d - top views of Gr/1QL Sb2Te3 heterostructure with bridge and top configurations. 
The relaxed carbon bonding lengths are shown in a, c and d respectively 

a b 

c d 

1.4186 Ǻ 

1.4175 Ǻ 

1.419 Ǻ 

1.419 Ǻ 
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two substrate systems. The splitting is indeed large in graphene conduction bands; while it 

appears small in the valence bands for the same reason as discussed in section 4.8. Mean-

while, an obvious lateral splitting on the graphene bands is seen in the bridge and the top po-

sitions as well; noteworthy, the top position has the largest splitting value. This proves that 

the geometry of the interface is very important for the final band structure. For the Sb2Te3 

substrate case, the graphene DP is located at the Fermi energy level, like in the Bi2Te3 case, 

indicating that there is no charge transfer between these two graphene and TI materials. Fur-

thermore, there are even fewer Sb2Te3 bands around the graphene DP zone, meaning that a 

spin signal measured experimentally would mainly be driven by the graphene layer within 

this Fermi energy window, which is the most suitable situation for a maximum control of spin 

transport properties. 
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It can be concluded that all three TI substrates induce interesting electronic and spin features 

to the graphene layer; such as a band gap opening in the hollow position and a lateral band 

splitting in the bridge and the top configurations, because the relative interface geometry be-

tween the graphene layer and the TI surface remains identical. The only difference remains 

the magnitude of the SOC effects imprinted onto the graphene band. For instance, graphene 

in the Gr/1QL Sb2Te3 has the largest gap value; follows by the Gr/1QL Bi2Te3 and the 

 

 

 

Fig. 4.17 Band structure of Gr/1QL Sb2Te3 heterostructure with three different configura-
tions.  – band structure of Gr/1QLs Sb2Te3 with hollow configuration; b – zoom-in band 

structure of graphene layer a; c – band structure of Gr/1QLs Sb2Te3 with bridge configura-
tion; d – zoom-in band structure of graphene layer c; e – band structure of Gr/1QLs Sb2Te3 

with top configuration; f – zoom-in band structure of graphene layer e 

a b 

d 

e f 

c 
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Gr/1QL Bi2Se3 structure which has the smallest gap with the same hollow configuration, due 

to the different magnitude of the Kekulé distortion. This also happens to the lateral splitting of 

graphene bands with different magnitude in different TI cases for both bridge and top posi-

tions. Therefore, it can be concluded that the TI substrate affects the magnitude more than the 

morphology of the graphene bands in function of the relative position between carbon and Se 

or Te on 1st layer. The cell size (√3 × √3) remains same no matter what TI substrate is. 

 
In the very beginning of this chapter, a comparison between the different methods has already 

been mentioned, regarding the proximity effect induced onto graphene layer, and, in contrast 

with the effect of FMI or heavy atom doping, TI have very special properties that is spin-

momentum locking of the surface state, which can be imprinted to graphene states as well. It 

is also, thus, necessary to examine the spin texture properties of graphene in such heterostruc-

tures. 

 

4.10. Spin texture for graphene layer in Gr/Bi2Se3 system with hollow configuration 
Since the 1QL TI film shows QTE between the two surface states, resulting in a surface gap 

opening, Gr/6QLs Bi2Se3 system has been shown and the comparison of the spin texture on 

both graphene and TI surface state. A k point mesh with ten circles round Γ point was built up 

because DPs on both graphene and TI stays at the Γ point and further away from the Γ point, 

more points were chosen on the circle so as to capture enough information for a high resolu-

tion of the spin expectation value and direction. It has already been reported that the Fermi 

surface for the TI surface states exhibit circular shape within a small energy window (~ ±200 

meV)[65] so that the spin texture is only taken on the k point mesh within a small zone 

around Γ point. In the NSCF calculation step, the expectation value for the spin operator 

along three axes were computed for all the bands of graphene and TI surface states. 

 
Fig. 4.18a shows the band structure for such system where red, blue and green colours denote 

the graphene, TI surface beneath graphene and TI surface on the other side respectively. Figs. 

4.18b and 4.18c show the top view of spin texture for blue and green surface states respec-

tively. To have a clear view, only five k points of the circle meshes are plot here and each ar-

row denotes the direction of the spin vector in 3D space. From the texture, it is clear that spin 

and momentum vectors are always perpendicular to each other; while, side views in Figs. 

4.18d and 4.18e show zero out-of-plane component. This indicates that the spin texture on TI 

surface follows the standard Rashba type texture symmetry with the expectation value for the 
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spin v.s. momentum angle following SIN and COS function shapes for the component along 

x and y axes respectively. Meanwhile, the band inversion for the two surface states brings the 

opposite helical texture with opposite direction for spin vectors. All these features are in line 

with the reference works.[66-68] 
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Fig. 4.18 Band structure of Gr/6QLs Bi2Se3 and spin texture for TI surface states. a – band 
structure of Gr/6QLs Bi2Se3 and red, blue and green colour denote graphene, TI surface 
states close to and away from graphene respectively; b and c – top views of spin texture 

for blue and green bands; d and e – side views of b and c cases 

a 

b c 

d e 
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There are eight graphene bands folded to the Γ point in this √3 × √3 supercell with every two 

bands on the degenerate K and K’ pair. It was found that every double degenerate graphene 

bands show the same spin texture (same magnitude but opposite direction for spin) and, to 

save space, only one of them is taken to illustrate the texture in Fig. 4.19 so as to compare the 

differences. From the top views of all bands shown in Fig. 4.19, spin and momentum vectors 

are not perpendicular to each other anymore and, from the side views, spin vector also shows 

non zero out-of-plane component for some bands, which indicates that the texture of the gra-

phene states is not a standard Rashba type texture. On the other hand, spin vectors on differ-

ent k point circles show the same direction along the same radial momentum angle and, once 

the momentum changes direction, spin also changes accordingly. This implies that the gra-

phene bands also have a spin-momentum locking feature but this locking is different from the 

standard Rashba one for the TI surface states. Every double degenerate graphene band shows 

texture with opposite spin directions (not shown in Fig. 4.19), which is similar to those of the 

TI surface states. Furthermore, side views also show that some graphene bands (1st and 5th) 

have finite out-of-plane spin components; while, some have negligible ones. This phenome-

non could be related to the fact that different graphene bands on different k points have dif-

ferent behaviours and one valley show zero out-of-plane spin; while, the other one does not. 

Besides these characteristics, another prominent issue is that, for those bands with non-zero 

out-of-plane spin components, k point circle close to Γ point only has out-of-plane spin com-

ponent and zero in-plane spin; while, those circles away from Γ point have both non zero in-

plane and out-of-plane spin component. This means that the ratio of in-plane and out-of-plane 

spin components is k point-dependent and, in other words, there is spin anisotropy on the 

graphene layer in such heterostructure system. This is an important feature that is worth of 

attention in experimental studies, because the spin current propagating in different momen-

tum direction could have different spin relaxation time which will highly affect the final sig-

nal measured. 
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In order to have an even clearer view of the texture, the expectation value of spin v.s.  mo-

mentum angle is plot in Fig. 4.20, with correspondences to those bands in Fig. 4.19, and 

where 0˚ corresponds to the direction along x axis with different colour denote different k 

point circles and where red to black indicates circles moving away from the Γ point continu-

ously. It is obvious that some graphene bands have non-zero <Sz>; while, other have zero one. 

On the other hand, <Sx> and <Sy> for all bands follow SIN and COS functions-like shapes 

 

 

 

Fig. 4.19 3D spin texture for graphene bands. a, b – top views of texture for 1st and 3rd 
graphene bands; c, d – top views for 5th and 7th graphene bands; e, f – side views corre-

sponding to c and d 

a b 

c d 

e f 

0.02 meV 
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respectively; except that there are peaks, showing up every 60˚, so this is an atypical Rashba 

type spin texture. Regarding different colours, denoting k circles at different energy, it is also 

evident that the in-plane spin component reduces continuously as the circle contour gets clos-

er and closer to the Γ point (from purple to red colour contour); while, the out-of-plane spin 

does not change with the energy, implying that the ratio between them is energy/k point-

dependent. This is consistent with the conclusion deduced from the analysis of Fig. 4.19 indi-

cating that it is necessary to study this spin anisotropy since it matters a lot in the experi-

mental measurement for spin current. 

109 
 



 
 

. 

 

 

 

 

Fig. 4.20 2D expectation value of spin texture v.s. momentum angle for graphene bands. a, 
b – <Sx> for 1st and 5th graphene bands; e, f – <Sy> for 1st and 5th graphene bands; g, h – 

<Sz> for 1st and 5th graphene bands 

a b 

d c 

e f 
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Based on the computed spin textures, the spin lifetime anisotropy of the system was predicted 

and defined as the ratio of out-of-plane to in-plane spin lifetime. 

τ
τζ

sx

sζ≡  

Assuming the Dyakonov−Perel regime[69] of spin relaxation, the lifetime of spins polarized 

along α is given by 









−= ΩΩ∗− 221

, αβα ττ s  

where, Ω is the momentum-dependent effective magnetic field arising from SOC in units of 

spin precession frequency, τβ
* is the time to randomize the β-component of Ω, with β ⊥ α, and 

the overline represents an average over the Fermi surface at a particular Fermi energy. For a 

given energy band, the effective magnetic field can be decomposed as 

S⋅=Ω ω  

where, ω = ΔE/ℏ is the spin precession frequency associated with the spin splitting ΔE of the 

band, and S = ⟨ψ|s|ψ⟩ is the spin polarization of the eigenstates ψ associated with the band. 

The spin lifetime anisotropy arising from the spin-split band structure can then be written as: 
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where, the sum over i includes each of the four conduction or valence bands in the Fermi sur-

face average. In the √3 × √3 supercell, because both Dirac cones are folded to the Γ point, the 

following relation exists. 

τττ 'pzx == ∗∗  

Therefore, all k points on the same energy contour were counted together in order to compute 

the expectation value of spin vector and the resulting anisotropy results are given in Fig. 4.21. 

There are ten points along each valence/conduction side, denoting each energy contour, and 

the corresponding eigenvalue is used so as to see the relative position between each contour 

and the centre of graphene Γ point, which is shifted (E - EDP) to 0 eV in the figure. 
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In Fig. 4.21b for the √3 × √3 supercell as the example, one reports the spin transport anisot-

ropy which is seen to remain negligible away from the graphene DP, in the order of 1/2, 

while it reaches values in the hundreds at the lowest energies. This trend (alteration of anisot-

ropy with energy) also holds within the Bi2Se3 band gap, where the graphene bands are com-

pletely in-plane and the anisotropy is 1/2. Such behavior results from the increase in weight 

of <Sz> near the DP and the corresponding decrease of <Sx> and <Sy>. Based on this result, 

the hollow configuration could give different spin lifetime along different spin current direc-

tions. 

 

4.11 Spin texture and anisotropy for graphene layer in Gr/Bi2Se3 system with bridge, 
top and all three configurations 
Following the same computational method, both bridge and top configurations were exam-

ined for the analysis of spin texture and lifetime anisotropy and due to the similarity in all 

graphene bands, only the 5th graphene conduction band in the bridge configuration is taken as 

an example to show the expectation value of spin v.s. momentum direction along three axes. 

Fig. 4.22 shows that both cases do not exhibit variation of the in-plane spin component with 

energy; while, both in-plane and out-of-plane spin components are in the same magnitude. 

This, directly, results in a very small spin lifetime anisotropy and the value is very close to 

1/2, indicating that geometrical configurations not only affect the band structure but also alter 

the spin lifetime a lot. On the other hand, the most common configuration in reality includes 

 

Fig. 4.21 Spin lifetime anisotropy of Gr/Bi2Se3 heterostructure as a function of energy 
relative to the graphene Dirac point. a – 1QL case; b – 6QLs case 

a b 
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all different positions; therefore, the large unit cell with all hollow, bridge and top positions 

was also examined for this spin lifetime anisotropy. 

 

 

 

 

Fig. 4.22 Spin texture and lifetime anisotropy of Gr/1QL Bi2Se3 heterostructure as a func-
tion of energy relative to the graphene Dirac point. a, b and c – <Sx>, <Sy>, <Sz> v.s. mo-
mentum angle for 5th graphene band in bridge position. d – anisotropy for bridge configu-
ration case; e - anisotropy for top configuration case; f – anisotropy in large unit cell with 

all three configurations 

a b 

c d 

e f 
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In the large supercell case, the anisotropy is characterized by a strong electron−hole asym-

metry, which is driven by the relatively large value of λPIA; as shown in ref[28], the out-of-

plane spin relaxation rate is proportional to (a × kFλPIA ± λR)2, where a is the graphene lattice 

constant, kF is the Fermi wavenumber, and the + (−) is for the conduction (valence) band. At 

sufficiently negative energies, when a × kFλPIA = λR, this model predicts that the spin lifetime 

anisotropy will diverge. In reality, when τs,z becomes sufficiently long, another source of spin 

relaxation, such as contact dephasing or magnetic impurities, would take over, placing an up-

per bound on ζ. In systems without a strong PIA SOC, the anisotropy would be independent 

of the Fermi energy. In this large unit cell, the anisotropy is driven by the SOC and the charge 

scattering through τiv/τp. In general, intervalley scattering is caused by structural defects such 

as dislocations, grain boundaries, vacancies, etc., as well as chemical adsorbates such as hy-

drogen, oxygen, or other hydrocarbons that could be deposited during device fabrication.[70] 

Bi2Se3 is known to suffer from Se vacancies, which might also induce short-range Coulomb 

potentials and intervalley scattering in graphene.[70] Measuring τp is straightforward because 

it can be deduced from the mobility and charge density. For example, a typical carrier density 

of 2 × 1012 cm−2 coupled with a mobility of 6000 cm2/V·s, as measured recently for a gra-

phene/Bi2Se3 system,[33] yields τp ≈ 100 fs. Determining τiv requires a measurement of weak 

localization (WL), but in Gr/TI or Gr/TMDC systems, the strong SOC leads to weak antilo-

calization (WAL), making it difficult to extract τiv. So far, the best that has been done for a 

Gr/TMDC system is to measure WL in a region of the device that is not covered by the 

TMDC and to assume that value as an upper bound of τiv in the Gr/TMDC region.[25] We are 

not aware of any estimates of τiv in Gr/TI systems. Measurements of WL in graphene systems 

yield τiv/τp in the range of 3−20 depending on the sample quality and Fermi energy.[25, 72 

and 73] Very generally, τp is in the range of tens of femtoseconds, and τiv is on the order of 

hundreds of femtoseconds to a few picoseconds. Assuming τiv ≈ 10 τp as a typical experi-

mental situation, we would expect an anisotropy on the order of a few tens over the full range 

of gate voltage. 

 

4.12. Spin texture for graphene layer in Gr/1QL Bi2Te3 and Sb2Te3 systems with hollow, 
bridge, top configurations 
To analyze the differences between different TI substrates, regarding the spin texture and life-

time anisotropy, Bi2Te3 and Sb2Te3 cases were also examined and compared with the Bi2Se3 

system for the corresponding configurations. Fig. 4.23 shows results for Bi2Te3; while, Fig. 

4.24 shows that for Sb2Te3 cases and, due to the similarity between each band, only the 5th 
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graphene band is considered to illustrate the spin texture in hollow and bridge configurations. 

It is clear that, for Gr/Bi2Te3 system, hollow configuration provides a texture with in-plane 

spin component, varying with energy, and the out-of-plane spin vector remains same; while, 

bridge configuration delivers a texture with equal in-plane and out-of-plane spin components, 

dictating a larger spin lifetime anisotropy in the hollow case and 1/2 for the bridge one. The 

top position case also shows similar results like the bridge one. This is consistent with the 

anisotropy figure for all three cases, which points to the same conclusion that the hollow po-

sition has obvious anisotropy; while, the other two do not. A subsequent issue is anisotropy 

magnitude, which is large in Bi2Se3 case and relatively small in Bi2Te3 one and mainly results 

from the potential with different proximity effect exerted by the substrate TI films. 
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Fig. 4.24 show the results for Gr/1QL Sb2Te3 system, which displays similar features as those 

in previous two cases and it can be seen that the anisotropy reaches the largest value in this 

system followed by the Bi2Se3 and finally the Bi2Te3 which exhibits the smallest anisotropy. 

All these results provide guidelines that graphene interfaced with Bi2Se3 family TI films 

should present atypical Rashba spin texture with peak showing up every 60˚, and in-plane 

spin components decreasing as the k point approaches Γ point for hollow configuration; while, 

the out-of-plane spin component remains unchanged no matter how the k point varies in Bril-

louin zone, dictating a specific spin anisotropy in this configuration. Regarding the bridge 

and top positions, the spin anisotropy is very small and remains close to 1/2 for graphene lay-

 

 

Fig. 4.23 Spin texture and lifetime anisotropy of Gr/1QL Bi2Te3 heterostructure as a func-
tion of energy relative to the graphene Dirac point. a, b and c – <Sx>, <Sy>, <Sz> v.s. mo-
mentum angle for 5th graphene band in hollow position; d, e, and f - <Sx>, <Sy>, <Sz> v.s. 
momentum angle for 5th graphene band in bridge position. g, h and i – anisotropy for hol-

low, bridge and top configuration case 

a b c 

d e f 

g h i 
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er combined with all three substrate TI films. On the other hand, different TI substrates could 

induce some anisotropy with different magnitudes for the same hollow configuration, imply-

ing that the TI film does not alter the general rule but could change the magnitude, because of 

the charge potential with different strengths from different TI surface state, which still mat-

ters a lot for the measurement in spintronic experiments. 

 
In all previous sections, DFT results for the Gr/TI with different configurations, substrates 

and thickness were investigated and the band structure and spin texture induced to graphene 

layer. Some peculiar features were also observed and discussed; however, it is still necessary 

to examine the origin of each electronic feature through more concrete method, and for that 

 

 

 

Fig. 4.24 Spin texture and lifetime anisotropy of Gr/1QL Sb2Te3 heterostructure as a func-
tion of energy relative to the graphene Dirac point. a, b and c – <Sx>, <Sy>, <Sz> v.s. mo-
mentum angle for 5th graphene band in hollow position; d, e, and f - <Sx>, <Sy>, <Sz> v.s. 
momentum angle for 5th graphene band in bridge position. g, h and i – anisotropy for hol-

low, bridge and top configuration cases 
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purpose tight binding (TB) models were developed to reproduce and better understand all 

electronic properties in such heterostructures. 

 

4.13. TB method for pristine graphene system 
The TB method is used to compute the band structure and is based on a superposition of 

wave functions for isolated atoms at each atomic site within the crystal structure.  In graphene, 

p-shell orbital electron of carbon form two main types of bondings. One is the in-plane σ 

bond, which is strongly covalent, determining the energetic stability and the elastic properties 

of graphene; while, the other one is perpendicular to graphene plane, forms the π bond in gra-

phene. The calculation for the energy ranges of σ and π bands shows that only electrons in the 

π bond contribute to the electronic properties of graphene because the σ bands are far away 

from the Fermi level. Because of this, it is sufficient to treat graphene as a collection of atoms 

with single pz orbitals per site. In graphene, carbon atoms are located at the vertices of a hex-

agonal lattice. Graphene is a bipartite lattice which consists of two sublattices A and B and 

basis vectors (a1, a2), which is shown in Fig. 4.26: 
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with a =√3acc, where acc = 1.42 Å is the carbon-carbon distance in graphene. These basis vec-

tors build a hexagonal Brillouin zone with two inequivalent points K and K_ (K+ and K− re-

spectively in Fig. 4.25) at the corners 
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As mentioned above and from Bloch’s theorem, wave function can be written in the form of 

pz orbitals wave function at sublattices A [ϕ(r−rA)] and B [ϕ(r−rB)] 
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where, k is the electron wavevector, N is the number of unit cells in the graphene sheet and Rj 

is a Bravais lattice point. Using the Schrödinger equation, HΨ(k, r) = EΨ(k, r), one obtains a 

2 × 2 eigenvalue problem, 
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where, ( ) ( ) ( )kkkS φφ βααβ
|= and the matrix elements of the Hamiltonian are 
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Fig. 4.25 Lattice vector for graphene in both real and reciprocal spaces 
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with HH BBAA = and ∗= HH BAAB  and introducing the notation: ( )Rr iA

RA
ri −−= ϕϕ ,

 

and ( )Rr iB

RB
ri −−= ϕϕ ,

. 

 

If we neglect the overlap ϕϕ BA
s = between neighboring pz orbitals, then, 
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=ks  and the eigenvalue function becomes 
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Here, only the first nearest neighbour interaction is taken into account; then, 

( ) ( )kaHaaHaHk
BAikBAikBA

AB eeH aγϕϕϕϕϕϕ 0

,0,,0,0,0,
2211 −=++=

−−−−  

where, γ0 stands for the transfer integral between first neighbour π orbitals (γ0 =2.7eV in this 

thesis) and α(k) is given by: 

( ) ee aak ikik
211 −− ++=a  

 
Taking 0== HH BBAA  as the energy reference, we can write H(k) as: 
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Diagonalizing this hamiltonian gives the energy dispersion relations for π* (conduction) 

band (+) and π (valence) band (−): 

( ) ( ) ( ) ( ) ( )[ ]122100
cos2cos2cos23 aakkakakkE −+++±=±=± γγ a  

2
cos4

2
cos

2
3

cos41 2

0

akakak yyx+±= γ  

This band structure is plotted in Fig. 4.26 with the symmetry between the conduction band 

and the valence band which touch at three K and K’ points with zero density of state at this 

energy. Because of this, graphene is called gapless semiconductor or semi-metal. In neutral 

graphene, the Fermi level lies exactly at these points. 
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4.14. TB method for graphene band in Gr/1QL Bi2Se3 system with hollow configuration 
In this heterostructure system, the graphene layer does not have different sublattices because 

of the broken symmetry induced by the TI substrate, indicating that there is no stagger poten-

tial in Hamiltonian. To describe the electronic properties of such graphene layer, the TB 

Hamiltonian is given by the following formula: 
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where, cis
+ (cis) is the creation (annihilation) operator of an electron at lattice site i with spin s, 

dij (Dij) is the unit vector pointing from site j to the nearest (next-nearest) site i, s is the spin 

Pauli matrix, νij is +1 (−1) for a clockwise (counter-clockwise) hopping path from site j to i 

and the single (double) brackets are sums over first (second) nearest neighbors. The first term 

in the formula describes the hopping between nearest-neighbor carbon atoms. As depicted in 

Fig. 4.27, this has two different strengths: t0 is the hopping within the carbon ring surround-

ing the top (green) Se atom, and tp is the hopping between carbon rings. This describes a Ke-

kulé distortion of the graphene lattice in the hollow configuration and opens a band gap of 2|t0 

− tp| in the absence of SOC. The second term describes intrinsic SOC in the graphene lat-

tice,[69] λI, and is assumed nonzero only for the carbon ring surrounding the top Se atom, 

which is highlighted by the solid triangle in Fig. 4.27. The third term is a uniform Rashba 

SOC (λR
z) induced by an electric field perpendicular to the graphene plane. The fourth term is 

a second Rashba SOC (λR
ρ) arising from a radial in-plane electric field. In previous section, it 

 

Fig. 4.26 Brillouin zone and band structure of graphene. a – First Brillouin zone of gra-
phene; b - Band structure of pristine graphene 
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has already been discussed that in-plane Rashba SOC is only non-zero along scarlet arrows in 

Fig. 4.27 and this could also give good fitting to DFT results. 

 
Fig. 4.28 shows the band structure of graphene layer based on the TB Hamiltonian model. To 

see the effect of each parameter, they were switched on one by one and the corresponding 

band structure is put together for comparison. It is clear that the uniform hopping on graphene 

without Kekulé distortion is insufficient to open a band gap and the energy and k point show 

linear dispersion relation; while, two different hopping terms could simulate the bonding dis-

tortion and the band gap opening, which is consistent with the DFT results. As the out-of-

plane Rashba SOC term is switched on, a clear band splitting shows up in both valence and 

conduction bands but the splitting is equal in both, which is not the case in DFT results. Only 

after the intrinsic SOC term is added on, then the splitting shows large value in conduction 

bands and small value in valence bands. This is because the intrinsic SOC contributes in 

shifting the valence and one conduction band towards the centre of graphene DP with differ-

ent magnitude. Through analysing this comparison, the main conclusion is that the Kekulé 

distortion is responsible for the band gap opening and the final gap value is total effect of 

both this bonding distortion, Rashba SOC and intrinsic SOC. 

 

Fig. 4.27 Top of graphene with √3 × √3 supercell and hollow configuration and TB pa-
rameters are labelled 
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To further examine this TB model, the spin texture was also computed and compared based 

on the TB Hamiltonian with each parameter added on one by one (see Fig. 4.29). It is clear 

that only considering a uniform hopping does not give a correct spin texture as the in-plane 

spin component is zero; while, the out-of-plane one shows positive or negative 1. This is be-

cause the Hamiltonian matrix is spin polarized. Then, as the bonding distortion is switched on, 

the spin texture is more or less the same as in the uniform hopping case, indicating that the 

Kekulé distortion does not play the key role in forming the correct spin texture on graphene 

layer. Only after the Rashba SOC term is switched on, then the non-zero in-plane spin com-

ponent shows up and, through modifying the relative strength between in-plane and out-of-

plane Rashba SOC, the correct symmetry is grasped and peaks show around every 60˚ angle. 

However, the out-of-plane spin component still shows zero value, which is still different from 

the DFT results. Figs. 4.29j ~ 4.29l show the results and the intrinsic SOC is switched on and 

 

 

Fig. 4.28 Band structure graphene with √3 × √3 supercell and hollow configuration. a – 
uniform hopping; b - Kekulé distortion; c – with out-of-plane Rashba SOC; d – with in-

trinsic SOC 
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it is clear that the out-of-plane spin component then shows non zero value and, through modi-

fying this parameter carefully, the correct symmetry that negative and positive peak shows up 

by turn are drawn. Based on this comparison, the following conclusions can be reproduced. 

The Kekulé distortion does not play a fundamental role in determining the spin texture; while, 

the correct form of the in-plane spin vector mainly depends on the relative strength of the in-

plane and the out-of-plane Rashba SOC terms, which are responsible for the spin precession. 

Meanwhile, the out-of-plane spin vector mainly comes from the intrinsic SOC term, which 

could give non zero <Sz> with the correct symmetry. 
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In order to have a better fitting between TB and DFT results, values for all TB parameters 

were tuned to best reproduce the DFT band structure and spin texture of the Gr/TI hetero-

structures. The TB fitted band structure is given in Fig. 4.30; while the spin texture appears in 

Fig. 4.31 respectively. The orbital gap induced by the Kekulé distortion is ~ 6 meV and the 

 

 

Fig. 4.29 Spin texture from TB model with different parameter added on. a, b and c – 
<Sx>, <Sy> and <Sz> for only uniform hopping; d, e and f – <Sx>, <Sy> and <Sz> for Kekulé 

distortion; g, h and i – <Sx>, <Sy> and <Sz> for both in-plane and out-of-plane Rashba 
SOC case; j, k and l – <Sx>, <Sy> and <Sz> for intrinsic SOC case 
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SOC strengths are on the order of a few meV. A notable result is the relative magnitude of 

the in-plane and out-of-plane Rashba terms. Recent work has found good fits to the DFT 

band structure when assuming λR
ρ ≪ λR

z,[51] but here, to obtain the proper in-plane spin tex-

ture, it is necessary to enforce λR
ρ ≫ λR

z. The presence of the intrinsic SOC (λI) is necessary 

for a proper fit to the DFT band structure but has no impact on the spin texture. Meanwhile, 

the out-of-plane spin component ⟨Sz⟩ depends crucially on the presence of the Kekulé distor-

tion, which hybridizes the K and K′ bands; in its absence the magnitude of ⟨Sz⟩ drops by 3 or-

ders of magnitude. Here, it is noted that this spin texture is quite different from that published 

in prior works, which predicted a purely Rashba-like behavior.[52, 53] This difference is at-

tributed to the choice of model used; the earlier works used a continuum model for the gra-

phene and TI bands that does not account for trigonal warping, the Kekulé distortion, or the 

in-plane Rashba terms. We have found that these terms are crucial for properly capturing the 

DFT spin texture. 
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Based on these discussions, the spin texture with fitted TB parameters are shown in Fig. 4.31 

with the DFT results for comparison. The calculation procedure is same as that in DFT one 

that ten energy contours were taken and expectation value of spin vectors were computed on 

all k points along each contour; then, the expectation value is plot against momentum direc-

tion from 0˚ to 360˚, with the starting direction 0˚ pointing to the x axis. For simplicity, only 

one graphene conduction band was examined for the comparison, it can be seen that, with all 

these fitted value, TB calculation can basically reproduce all features of the spin texture from 

the DFT one. All in-plane spin components show the fold symmetry that a peak shows up 

every 60˚ and their magnitude decrease as the contour moves closer and closer to graphene 

 
Parameter √3 × √3 supercell 

t0 -2.6 eV 

t0 - tp -3 meV 

λi -2.5 meV 

λR
z 0.05 meV 

λR
ρ -1.9 meV 

 

Fig. 4.30 TB fitted band structure and fitted value for TB parameters for Gr/TI with the 

hollow configuration 
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DP. Meanwhile, the out-of-plane spin component does not decrease no matter how the con-

tour moves (close or away from graphene DP). 

 

 

 

 

Fig. 4.31 Spin texture calculated by TB and DFT method. a, c and e - <Sx>, <Sy> and <Sz> 
for graphene conduction band from DFT results; b, d and f - <Sx>, <Sy> and <Sz> for gra-

phene conduction band from TB results 
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According to Fig. 4.31, it is clear that the ratio of in-plane and out-of-plane spin component is 

k point dependent as well; therefore, it is necessary to examine the spin anisotropy based on 

this TB fitted model. Fig. 4.32 shows the results and it is clear that the anisotropy reaches it 

maximum value close to graphene DP; while, decreases gradually as the contour moves away 

from the DP and finally approach 1/2 value. This conclusion is in line with those for gra-

phene/TMD heterostructures.[72] All these trend are same as those in DFT one. 

 

4.15 TB method for graphene band in Gr/1QL Bi2Se3 system with all three configura-
tions 
Since in section 4.7, DFT results show quite different electronic properties for the large unit 

cell with all three configurations, compared with those only with one configuration, it is nec-

essary to examine this large unit cell based on the TB model. Different from the √3 × √3 

supercell, the supercell for graphene layer here is 5 × 5 and, because of the TI substrate, the 

symmetry is broken, which means that some new terms should be added into the original one, 

which is built up for √3 × √3 graphene supercell case and the formula is written below. 
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Fig. 4.32 Spin anisotropy of graphene in √3 × √3 supercell based on DFT and TB results 
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where, Hbig and Hsmall are hamiltonian matrice for big (5 × 5) and small (√3 × √3) unit cell 

respectively. Dij is the unit vector pointing from site j to the next-nearest site i. ξi is +1 (-1) on 

sublattice A (B). Hsmall is a little bit different from that discussed in the hollow configuration 

and since the Kekulé distortion does not exist in this big unit cell, because all carbon bonds 

show the same length. Meanwhile, in the larger unit cell, the in-plane Rashba SOC term does 

not exist, owing to the lack of radial symmetry. The second term in the formula describes the 

valley Zeeman SOC (λVZ), which couples spin and valley and arises when sublattice sym-

metry is broken in the graphene layer.[70] For this reason, it is only present in the larger unit 

cell. Finally, the last term is denoted PIA (pseudospin inversion asymmetry) SOC (λPIA), 

which is akin to a second-order Rashba SOC and leads to a k-linear spin splitting of the bands. 

This particular term only arises in the presence of sublattice symmetry breaking plus a per-

pendicular electric field.[70] 

 
Fig. 4.33 shows the TB fitted band structure and it is clear that TB model fits quite well to 

DFT results. Owing to the different interface symmetry of the larger unit cell, there are sig-

nificant differences in the band structure and relevant SOC parameters compared to the 

smaller unit cell. In the band structure, the graphene Dirac cones remain separated at the K 

and K’ points of the Brillouin zone, while the charge transfer between the graphene and the 

TI remains large. 
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On the other hand, the spin textures are also plot for both K and K’ points in Brillouin zone 

and shown in Fig. 4.34. One graphene conduction band is taken as an example to show the 

texture and owing to the fact that there is no band folding to Γ point, unlike that in hollow 

configuration case, the hybridization between the valleys no longer occurs, and the 60° perio-

dicity of the spin texture disappears. Instead, ⟨Sz⟩ remains independent of the momentum di-

rection, and its sign is valley dependent. This behavior is driven by the presence of valley-

Zeeman SOC (λVZ), which is permitted by the sublattice symmetry breaking in the larger unit 

cell. The in-plane spin components follow the typical Rashba texture, and the PIA SOC de-

termines their energy dependence. As mentioned above, the Kekulé distortion and in-plane 

 
Parameter √3 × √3 supercell 

t0 -2.4 eV 

λVZ -0.6 meV 

λR
z 0.3 meV 

λPIA -1.1 meV 

 

Fig. 4.33 TB fitted band structure and fitted value for TB parameters for Gr/TI with three 

configurations (hollow, bridge and top) 

131 
 



Rashba SOC are not present in this system. Additionally, the intrinsic SOC is found to be 

vanishingly small.[27] 

 

 

 

 

Fig. 4.34 Spin texture calculated by DFT method. a, c and e - <Sx>, <Sy> and <Sz> for 
graphene conduction band at K point; b, d and f - <Sx>, <Sy> and <Sz> for graphene con-

duction band at K’ point 
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Furthermore, the in-plane spin component basically follow standard Rashba type texture and 

the out-of-plane spin part does not change a lot with the energy inn the conduction band so it 

can be concluded that the ratio of in-plane to out-of-plane spin component does not depend 

on the k point much above the graphene DP, like in the hollow configuration case. This can 

be appreciated in Fig. 4.35, which shows both DFT and TB fitting results for spin anisotropy, 

and, above graphene DP, anisotropy does not change significantly. However, the anisotropy 

increases a lot as the energy moves to the negative side of the graphene DP. This means that 

upon tuning the back gate voltage one could tailor the spin anisotropy value for this device 

since the large size supercell chosen should be more realistic for comparison with experi-

mental data. 

 

4.16 Conclusions 
In this chapter, Gr/TI heterostructures were investigated and discussed, showing the proximi-

ty effects of TI onto graphene layers. This study reveals the emergence of strong anisotropic 

spin transport feature in graphene in proximity with TIs, but the origin and energy depend-

ence of this anisotropy varies significantly with the geometry of the interface. This arises 

from the very small lattice mismatch, which permits a highly commensurate unit cell at the 

appropriate twist angle. This is in contrast to the case of Gr/TMDC systems, which have a 

 

Fig. 4.35 Spin anisotropy of graphene in large unit cell based on DFT and TB results 
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much-larger lattice mismatch that precludes the formation of a small and highly commensu-

rate unit cell.[23, 27] Similar to the case of Gr/TMDC, Gr/TI displays a relatively energy-

independent anisotropy for zero twist-angle between the graphene and TI lattices. However, 

in the highly commensurate unit cell (with a twist angle of 30°), the spin anisotropy is con-

nected to both a Kekulé distortion and an in-plane Rashba SOC induced in the graphene by 

the TI. As a result, the spin lifetime becomes highly anisotropic near the graphene Dirac point 

while vanishing at higher energies, suggesting a much stronger variability via electrostatic 

gating in experiments. Such a spin anisotropy could be playing a role in the debated experi-

mental results reported to date in Gr/TI heterostructures[32, 33, 39]; while simultaneously 

suggesting new device engineering such as gate tunable linear spin polarizers, which remove 

the in-plane component of a spin-polarized current but leave the out of plane component in-

tact. 

 
One useful observation is that, as shown in Gr/Bi2Se3 case, the Fermi level initially lies in the 

Bi2Se3 conduction band, which will generate parallel transport in the graphene and TI layers. 

However, given that the spin lifetime in the TI bulk should be exceptionally short (a few 

femtoseconds),[68, 69] any measured spin signal may still carry features of the spin transport 

in the graphene layer. Different from Gr/Bi2Se3 system, Gr/Bi2Te3 and Gr/Sb2Te3 systems 

show that graphene DP lies in the bulk TI band gap. This could improve the purity of the 

measured spin signal on graphene although some hybridization between graphene and TI, 

dictating some contribution mixing also exist. To more optimally realize the conditions in 

which the TI surface states would play a role in the transport properties of Gr/TI heterostruc-

tures, ternary compounds, with the TI Fermi energy well within the TI bulk gap, would be 

even more desirable since there has already research work reported to show that graphene DP 

could remain located within the TI bulk band gap without any hybridization with TI 

bands.[70] 

 
In order to build up the connection with experiments, a collaboration was developed with the 

group of Prof. Saroj Dash from Chalmers University.[71] Dash and co-workers could suc-

cessfully measure various devices integrating graphene with two TI materials having differ-

ent doping levels, Bi2Se3 and Bi1.5Sb0.5Te1.7Se1.3. They found some large modulation of the 

measured spin signal and spin-lifetime with gate voltage, evidencing a strong proximity-

induced SOC, hence confirming substantial coupling of the graphene electronic bands in the 

heterostructure. 
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Fig. 4.36 shows a schematic of the performed non-local transport experiment in which a spin 

polarized current is injected onto graphene from a ferromagnetic (FM) source to a normal 

metal drain (left electrodes), whereas a non-local voltage is detected far away from the cur-

rent flow (right side of the picture). The non-local spin signal is modulated by the presence of 

the deposited TI, as well as tuned by the presence of an external magnetic field (perpendicu-

lar to the graphene plane) which induces spin precession and relaxation detected and analysed 

through the non-local voltage. Fig. 4.36b gives the experimental measurement of the spin 

lifetime in Gr/Bi2Se3 device, whereas Fig. 4.36c is the deduced spin lifetime from our theo-

retical analysis. Our theoretical results give support to the experimental curves (not shown 

here).[71] 
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Finally, it would be interesting to include defects and disorder in the ab initio simulations and 

TB models because this could locally alter the strength and nature of the SOC parameters. 

Such an analysis, beyond the scope of the present work, could be also extended by develop-

ing a full Gr/TI tight-binding model, using (for instance) the Fu−Kane−Mele model.[72, 73] 
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Chapter Five: The Effects of Non-Magnetic and Magnetic 
Dopants on the Electronic Properties of 3D Topological 
Insulators 
 

 

 

 

 

5.1 Introduction to Fu-Kane-Mele Model 
In 2007, Liang Fu, C. L. Kane and E. J. Mele proposed a theoretical model to predict the 

properties of three-dimensional topological insulators, which uses four Z2 topological invari-

ants to distinguish between different quantum phases [1]. A corresponding tight-binding (TB) 

model, which is based on diamond cubic crystal structure and has four s-state bands, was also 

generated to discuss these phases based on the FKM TB model in equation (5.1): 

𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑡𝑡 � 𝑐𝑐𝑖𝑖+𝑐𝑐𝑗𝑗
<𝑖𝑖,𝑗𝑗>

+ 𝑖𝑖
8𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆
𝑎𝑎2

� 𝑐𝑐𝑖𝑖+𝑠𝑠 ∙ �𝑑𝑑𝑖𝑖,𝑗𝑗1 × 𝑑𝑑𝑖𝑖,𝑗𝑗2 �𝑐𝑐𝑗𝑗
≪𝑖𝑖,𝑗𝑗≫

                                (5.1) 

where, t is the hopping parameter between first neighbour atoms; λsoc is the intrinsic spin-

orbit coupling strength between second neighbour atoms; a is the bonding length between the 

two first neighbour atoms, 𝑠𝑠 is spin operator and 𝑑𝑑𝑖𝑖𝑖𝑖1 /𝑑𝑑𝑖𝑖,𝑗𝑗2  is the unit bonding vector between 

the second neighbour atom. 

 
Because the FKM Hamiltonian is defined in a 3D diamond lattice structure, there are two dif-

ferent hopping parameters to differentiate the inequivalent directions. One in-plane hopping 

parameter is denoted by t‖, which describes the energy coupling, within the x-y plane between 

each atom and its three first neighbour atoms. The other coupling parameter, denoted by t⊥, 

connects all 2D layers together. By tuning the relative magnitudes between t‖ and t⊥, different 

topological (and trivial) phases can be achieved as illustrated in Fig. 5.1. Here, the structure 

was taken as a slab with 48 layers in the unit cell. If t‖ is larger than t⊥, the interaction be-

tween each 2D layer structure is weak and the whole system just consists of several inde-
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pendent layers of 2D QSH insulating phases. The surface band has an even number of Dirac 

points (DP) and the system behaves as a normal insulator, so it is called a weak topological 

insulator (WTI). If t‖ is equal to t⊥, there is only one uniform hopping parameter in all direc-

tions and the whole system is similar to a semimetal. This phase is very interesting and re-

semble a Topological (or Dirac).[2] Topological semimetals are 3D analogues of Graphene 

where DP form due to spin-obit effects and are protected against disorder as topological sur-

face states. In presence of external magnetic fields or intrinsic magnetism may transform into 

Weyl semimetals. When t‖ is smaller than t⊥, each 2D QSH phase is strongly connected to 

the others and the surface band has an odd number of DPs, which results in a robust topologi-

cal state that cannot be easily destroyed by disorder, so it is called a strong topological insula-

tor (STI). 

 

Topological insulators are the main topic of this research project, therefore the discussion will 

be restricted to STI. The FKM model is built upon a diamond lattice symmetry which has a 

generic buckled structure where atoms belonging to different sub-lattices lie on different tri-

angular planes in each layer. This constitutes the repeating unit of the crystal structure. There-

fore the model allows for different surface terminations, either stoichiometric (T1) or not (T2). 

The stoichiometric one (or T1) is obtained by simply keeping the two triangular planes at the 

interface or removing an even number of triangular planes (see Fig. 5.2a). The non-

stoichiometric one (or T2) is obtained by removing an odd number of triangular planes (see 

Fig. 5.2b). This makes the surface atoms to change coordination from three neighbour atoms 

in the same layer to just one single atom in the neighbouring layer.  In a slab geometry made 

of a finite number of layers, we can have the same or different surface termination on each 

side (see Fig 5.2a ~ 5.2c). These different surface termination cases give rise to different 

 

Fig. 5.1 Three phases TIs (a. - STI, b. – semimetal; c. - WTI) 

a b c 
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band structures, as shown in Fig. 5.2. Figs. 2a and 2d represent T1-T1 termination cases 

where three DPs appear at the three M points in the first Brillouin zone. In contrast, Figs. 2b 

and 2e represent the T2-T2 case with the presence of a single DP, sitting at Γ point. Figs. 2c 

and 2f illustrate the T1-T2 case and as this model has two terminations, the resulting band 

structures display both features from separate situations and the DPs show up at both Γ and 

three M points. Compared with the Bi2Se3-family TIs, the T2-T2 termination case seems 

more “realistic” given its DP is locate at the Γ point, although the internal crystal symmetries 

are different. 

 

It is instructive to also evaluate the effect of the thickness of the slab on the band structures as 

reported in Fig. 5.3. According to the figure, one can see a gap opening for the model with 

very few layers, since the surface states on both opposite surfaces overlap; while the gapless 

DP can be recovered for a thickness of at least 12 layers, which is thus enough to avoid state 

overlap and quantum tunnelling between opposite boundaries.[3] 

 

Fig. 5.2 Crystal and band structure. a & d –T1T1 case; b & e – T2T2 case; c & f – 
T1-T2 case. In f, there four DPs. One, which is located at Γ point, comes from T2 
termination; while the other three DPs, which are located at three M points, come 
from T1 termination. Yellow and green colours denote atom on T1 and T2 termi-

nations respectively. 

a 

d 

b c 

e f 
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The spin texture of surface states of the FKM Hamiltonian can be computed from the equa-

tion (5.2). 

< 𝑆̂𝑆𝑗𝑗�𝑘𝑘�⃗ � > = � �𝛹𝛹𝑗𝑗�𝑘𝑘�⃗ ��𝜎𝜎�𝑖𝑖�𝛹𝛹𝑗𝑗�𝑘𝑘�⃗ ��
𝑗𝑗∈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

                                                                 (5.2) 

where, < 𝑆𝑆𝑖𝑖�𝑘𝑘�⃗ � > is the total expectation value of the spin operator for all surface atoms 

along different axes, |Ѱ𝑗𝑗�𝑘𝑘�⃗ �� is the surface state from and 𝜎𝜎�𝑖𝑖 is the Pauli matrix vector. Fig. 

5.4 shows the typical spin textures for the two different surface terminations with a slab 

thickness of 48 atomic planes for the T1-T1 case and 46 atomic planes for T2-T2 one. The 

green arrows indicate the directions of spin expectation values centred on different high 

symmetry points in the Brillouin zone. 

 
It is apparent that such spin textures on both surface terminations can manifest the spin-

momentum locking mechanism, which means that the spin expectation values point in a di-

rection perpendicular to the momentum direction (Fig. 4a). However, the textures also exhibit 

differences for the two cases. Fig. 4c shows the texture on the T1 surface and it can be seen 

that the angle between spin and momentum vectors does not keep at 90 degrees and varies 

with the momentum vector directions. This spin texture is usually observed in materials with 

 

Fig. 5.3 Band structures versus the thickness of the FKM model. a & d – T1T1 
case 12L & 4L; b & e – T2T2 case 12L & 4L; c & f –T1T2 case 11L & 3L 

a b c 

d e f 
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strong spin-orbit coupling and lacking of bulk inversion symmetry, and is known as Dressel-

haus effect. It contrasts with the spin texture shown in Fig. 4a in which the spin and momen-

tum are always perpendicular to each other over all the energy spectrum. Because different 

terminations exhibit DP at different k-points (T1 case - M point; T2 case - Γ point), the spin 

texture also shows up at different positions in the first Brillouin zone accordingly. Compared 

to real 3D TI film systems, such as Bi2Se3 films, where the spin texture on the surface is al-

ways perpendicular to the momentum, the T2-T2 slab seems again close to “reality”. In the 

following sections, we will focus on this type of slabs.  

 

To further characterize the band structure properties, an effective four band Hamiltonian, ini-

tially proposed by Rui Yu et al.,[4] was used in our study to calculate the  spectral properties 

of more realistic structures. In this way, the analytical expressions for the band gap and spin 

texture are obtained and more clear view for the electronic properties of TI surface state can 

be provided. To that end, the Schrödinger equation was solved using the Hamiltonian (5.3) 

 

000
000

000
000

_

+

+

−
−

=

a
a

a
a

H pristineTI                                                                                (5.3) 

where, 𝑎𝑎 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑖𝑖𝑖𝑖𝑘𝑘𝑥𝑥 + 𝑣𝑣𝑘𝑘𝑦𝑦 and a+ is the Hermitian conjugate 

of a. v is the fermi velocity; K is the module of k-vector and 𝜗𝜗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑦𝑦
𝑘𝑘𝑥𝑥

 

 

Fig. 5.4 Spin texture for FKM model on different surfaces. a. – T2 termination at 
the Γ point; b. – Frist Brillouin zone; c. – T1 termination at the M point 

a b 
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M 
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↓

↑
+ ×=×=Ψ λ

0
0

__ ; then the eigenvalues are given by 

𝜆𝜆2 = 𝑎𝑎 × 𝑎𝑎+ = 𝑣𝑣2𝐾𝐾2; 

𝜆𝜆± = ±𝑣𝑣𝑣𝑣                                                                                                                        (5.4) 

and the eigenvectors 

𝑇𝑇↑ =
𝑎𝑎
𝜆𝜆
𝑇𝑇↓                                                                                                                          (5.5)

 

After normalization 

(𝑇𝑇↑
+ 𝑇𝑇↓

+) × �𝑇𝑇↑𝑇𝑇↓
� = �𝑎𝑎

+

𝜆𝜆
𝑇𝑇↑
+ 𝑇𝑇↓

+� × �
𝑎𝑎
𝜆𝜆
𝑇𝑇↑
𝑇𝑇↓
� =

𝑎𝑎𝑎𝑎+

𝜆𝜆2
|𝑇𝑇↓|2 + |𝑇𝑇↓|2 = 2|𝑇𝑇↓|2 = 1 

Then, 

𝑇𝑇↓ =
1
√2

                                                                                                                            (5.6)
 

and
 

𝑇𝑇↑ = 1
√2

  𝑎𝑎
𝜆𝜆

= 1
√2

  𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒
−𝑖𝑖𝑖𝑖

±𝑣𝑣𝑣𝑣
= ± 1

√2
𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖                                                                       (5.7)

 
 

For the bottom surface band, the eigenvalues and normalized eigenvector are given by 

𝜆𝜆± = ±𝑣𝑣𝑣𝑣; 𝐵𝐵↑ = 1
√2

  −𝑎𝑎
𝜆𝜆

= 1
√2

  −𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒
−𝑖𝑖𝑖𝑖

±𝑣𝑣𝑣𝑣
= ∓ 1

√2
𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖. 

Therefore, the normalized eigenvector matrix is as follows (equation 5.8): 





















−

−

=
−−

−−

1100
00

0011
00

2
1

ϑϑ

ϑϑ

ψ ii

ii

ieie

ieie

                                                                 (5.8) 

 
Fig. 5.5 shows the band structure calculated using this Hamiltonian from which the linear en-

ergy dispersion relation is evident for the pristine TI system. As the k point gradually moves 

close to Γ point, the energy spectrum shows a lowering of the density of states which disap-

pears at the DP. This situation is the same as the T2-T2 termination case in the FKM model. 
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5.2 Fu-Kane-Mele model with onsite non-magnetic potential 
The study of disorder effects in TIs has been the subject of many theoretical studies. In Yan 

Yang Zhang et al.’s paper[17], the effect of disorder potential was studied in order to see how 

the band structure of a two dimensional topological insulator (HgTe/CdTe) evolves. The au-

thors reported that disorder strength could lead to the touching of VB and CB, which may 

trigger the emergence of a topological Anderson insulating (TAI) phase. This type of disor-

der-driven phase has a cluster of nontrivial subgaps separated by almost flat and localized 

bands. Christoph P. Orth et al. also studied the HgTe/CdTe quantum well in presence of dis-

order using the Kane-Mele model and reported that such a system could be tuned into a 

TAI.[18] 

 
Regarding three dimensional TIs, the effect of non-magnetic impurities on the electronic 

properties of TI cases has been investigated by Marco Bianchi et al.[5] who reported that 

Bi2Se3 film with adsorption of carbon monoxide (CO) molecules could exhibit band bending 

and energy downshift of the Dirac point due to doping when compared with the pristine TI 

system. This suggests that the adsorption of the CO molecules could cause aging of the TI 

surface state and degeneration between surface state and bulk bands. Tobias Forster et al.[6] 

performed theoretical calculations and studied the potassium (K) doping on different surface 

positions of the Bi2Se3 slab model. They pointed out that the hollow position is the most sta-

ble one and that K ad-atoms are likely to induce strong charge transfer and give rise to long-

 

Fig. 5.5 Band structure, corresponding to T2 termination case from effective 
Hamiltonian model 
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range scattering potential. This effect could move the surface DP inside the bulk band, result-

ing in an M-shape valence maximum band and a W-shape conduction minimum band. Fur-

thermore, a Rashba-type band splitting of the surface states was also observed below the 

conduction minimum. Hadj M. Benia et al.[7] performed an experiment in which a Bi2Se3 

surface reacted chemically with water molecules. The result was a strong band bending with 

surface DP pushed into a valence band (VB) and a quantum well state (QWS) was observed 

on top of the VB. They argued that the distorted TI band could significantly alter the 

transport measurements, although the nontrivial characteristic of surface state remained with 

an odd number of crossings between the surface state and Fermi level. S. Jakobs et al.[8] 

modified the surface of Bi2Se3 film with organic molecules (H2PcS) and reported a Rashba-

type band splitting at the bottom of the conduction band with surface DP that could be shifted 

in a controlled way, through a careful tuning of the chemical interaction between H2PcS and 

TI surface. G. L. Hao et al.[9] grew TI film on silicon substrate with both p and n –types and 

they reported that different types of substrates could enable tuning the position of the DP in 

the band structure. Other researchers have investigated the impact of non-magnetic doping on 

TI film systems, and most results conclude that doping effects, in the absence of magnetism, 

could induce large surface potentials, moving the surface DP into bulk bands and resulting in 

band bending.[10-19] 

 
Based on all these reports, we use the FKM model with a random onsite non-magnetic poten-

tial (Vnon-magnetic) in order to simulate the real situation that the non-magnetic disorder is ran-

domly doped on TI surface. Equation (5.9) describes the Hamiltonian of the whole system: 

𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑐𝑐𝑖𝑖+𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

                                                (5.9) 

where, Hpristine is the Hamiltonian for the pristine FKM model, Vnon-magnetic is the magnitude 

onsite potential with the value of 0.5t‖. Fig. 5.6 shows the band structure of the FKM model 

with T2-T2 terminations and 16.05% of nonmagnetic potential at random position on surface. 

It can be seen that the surface state remains, and also the DP, but its position is lifted up and 

become closer to the conduction band minimum than before. The results clearly show that 

this toy model could provide similar features than real TI system with non-magnetic doping. 

For instance, (1) the non-magnetic potential does not open the surface gap which is consistent 

with the experimental results; (2) the position of the surface DP is tuned with the onsite po-

148 
 



tential. This is in line with the fact that tuning the charge potential with different nonmagnetic 

elements could shift the surface DP to different positions in VB or CB. 

 
Meanwhile, the spin texture still shows spin-momentum locking (shown in Fig. 6 inset), 

which is the same as in the pristine case. This means the disorder potential only lifts the sur-

face state but does not alter the nontrivial topological phase. 

 

 

5.3 Fu-Kane-Mele model with random onsite exchange potential 
The previous section 5.2 has already shown that the FKM model on a diamond lattice could 

be used to reproduce the electronic structure of a topological insulator and also that non-

magnetic doping on the surface does not break the time reversal symmetry of the system and 

only lifts the position of the surface DP. On the other hand, more and more studies have ex-

plored the effect of magnetic doping on TI because the Zeeman field exerted by the magnetic 

doping could break time reversal symmetry and cause the gap opening of the surface states. 

As introduced in chapter 2, the surface states of a topological insulator derive from band in-

version, which derives from the strong spin-orbit coupling, so the gap opened by magnetic 

exchange can be non-trivial and induce a quantum anomalous hall effect (QAHE)[20]. For 

instance, Rui Yu et al. reported that Cr/Fe doped Bi2Se3 showed a topological non-trivial 

 

Fig. 5.6 FKM slab with T2-T2 termination doped with onsite non-magnetic poten-
tial and 48 layers. Red colour indicates the surface state doped with non-magnetic 

potential with spin texture shown in inset 
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band structure with quantized hall conductance without an external magnetic field[21], which 

means that the edge state of QAH phase could conduct charge current without any dissipation. 

Ke He et al.[22] also pointed out that Crx(Bi0.2Sb0.8)1-xTe3 alloy exhibits nonzero Hall con-

ductance, indicating that alloying with Cr could induce a QAH phase in TI materials. Cui-Zu 

Chang et al.[23] reported that Cr doped BiSbTe could achieve a quantized transverse con-

ductance without a strong magnetic field.  Mansoor B. A. Jalil et al.[24] studied theoretically 

a magnetically doped TI by using a Hamiltonian with spin-orbit coupling to evaluate the Hall 

conductance and reported an non-zero berry phase of the whole system. Besides that, other 

groups also studied many magnetic doping schemes on TI and reported surface gap opening 

and magnetism on TI systems.[25-33] 

 
Therefore, it is quite important and interesting to study the effect of magnetic doping on the 

FKM model. Usually, the magnetic elements are distributed either onto the surface or inside 

bulk of TI in random positions with impurities distributed onto the surface and inside bulk of 

the FKM. In this section, we use the FKM model with magnetic doping using a spin depend-

ent onsite exchange potential (Vxc) with different type of slab terminations. Fig. 5.7 shows a 

schematic picture for the model with a 9x9x1 supercell and 24 atomic planes for T2-T2 termi-

nation and 22 atomic planes for T1-T1 termination. Red dots indicate the position of the mag-

netic dopant. The Hamiltonian used to study magnetic doping on TI takes the following form 

𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + ��𝑐𝑐𝑖𝑖,𝜎𝜎+ (𝑉𝑉𝑥𝑥𝑥𝑥 ∙ 𝜎𝜎)𝑐𝑐𝑖𝑖,𝜎𝜎 + 𝐻𝐻. 𝑐𝑐. �
𝑖𝑖,𝜎𝜎

                                              (5.10) 

where, the first term (Hpristine) is the Hamiltonian for the pristine FKM model and the second 

term describes the onsite exchange potential. Here it was assumed that the doping elements 

do not have chemical bonding with TI and just induce localized Zeeman fields. 
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According to Qin Liu’s work[34], the reasonable value for the exchange potential ranges 

from 0.1t to 0.7t and t is the in-plane hopping parameter. Fig. 5.8 shows the band structure of 

the FKM model with unit cells doped with 100% magnetic impurities with a strength of the 

exchange potential which varies from 0.2t to 0.7t. Both T1-T1 and T2-T2 terminations are in-

vestigated for this structure and the direction of potential is aligned along z axis. The red col-

our indicates the band projection over surface states. For the T1-T1 case, DP shows up at M 

point and a gap opens (see Fig. 5.8(a-c)). The same occurs in the T2-T2 case (see Fig. 5.8(d-

f)), although the DP stays at Γ point instead. In both cases, the surface gap increases with the 

potential strength. This indicates that the stronger the exchange coupling, the larger the band 

 

 

 

Fig. 5.7 Lattice structure of Fu-Kane-Mele model with both top and side views. a 
       

a b 

Top 
 

Top 
 

Side 
 

Side 
 

d c 
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gap induced onto the surface band of TI. Due to the symmetry of the structure, the T1-T1 ter-

mination shows different gaps opening for the M1, M2 and M3 points respectively; which 

clearly demonstrates that M1 ≠ M2 ≠ M3. In the following theoretical calculations, the value of 

the exchange potential is taken as 0.5t. We study the electronic properties of different struc-

tures and different magnetic doping schemes while keeping the strength of the magnetic ex-

change potential. 

 

In unit cell, doping of impurities is 100% coverage but usually, TI film is adopted with dif-

ferent low doping percentage of impurities. This is why a larger supercell (shown in Fig. 5.7) 

was used in order to study the effect of different doping content on TI. Since the T2-T2 termi-

nation shows the DP at the Γ point, similar to real topological insulators, we have adopted 

this case for the rest of this study. Fig. 5.9 shows the band structure of the FKM model with 

T2-T2 termination and different percentages of the exchange potential on the top surface.  The 

maximum magnetic doping percentage was 20% and the magnetic impurities were randomly 

distributed along the surface. The directions of all potentials were chosen to be along the z-

axis at first. From Figs. 5.9a to 5.9c, it can be seen that the surface band gap increases with 

the doping percentage. The band gap values versus doping percentage are summarized in Fig. 

5.10. 

 

Fig. 5.8 Different strength of exchange potential doped onto an FKM model. a ~ c 
- T1T1 termination; d ~ f - T2-T2 termination. Blue inset is the first Brillouin zone 

with three M points and Γ point 

b c a 

d e f 
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As discussed in chapter 2, because the TI surface bands are topological nontrivial, which 

means that Berry curvature around the gap is nonzero, the gaped TI is quite useful for the 

achievement of the quantum anomalous Hall effect, which shows quantized non-zero Hall 

conductance. In former experiments, the Hall conductance could only be observed on 2D 

electronic gas (2DEG) materials under a very strong magnetic field; for instance, Klaus Von 

Klitzing et al.[35] and D. C. Tsui et al.[36] reported the integer and fractional quantum Hall 

effect respectively. However, the achievement of the quantum Hall conductance requires ex-

ternal magnetic fields and low temperatures, which are usually not so easy to achieve in prac-

tice. On the other hand, in materials showing anomalous Hall conductance, such as ferromag-

netic materials, the Lorentz force acting on the charge carriers necessary to induce the Hall 

current, comes from the intrinsic magnetization rather than from an external source. In this 

way, quantized Hall conductance is relatively easier to achieve. In topological insulators, the 

spin orbit coupling strength is very large and causes surface band inversion, which means that 

charge carriers with an opposite spin can move in opposite directions along the edges. This is 

known as quantum spin Hall effect (QSHE).[37] Since carriers with opposite spin sign move 

in counter-propagating paths, collision is avoided and the quantum transport become dissipa-

tionless. In other words, the study of the effect of magnetic impurities along z axis indicates 

 

Fig. 5.9 Different doping percentage on T2T2 FKM model with 9x9x1 supercell. 
The direction of potential is aligned along z axis. a ~ c are different doping per-

cents; d ~ f are different configuration for the same doping percents corresponding 
to c 

b c a 

d e f 
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that the magnetic doping on TI makes it a useful applicant in the direction of quantized Hall 

effect without the requirement of external magnetic fields. 

 

Since magnetic impurities are distributed at random surface positions, it is necessary to com-

pare the influence between random configurations. Figs. 5.9d ~ 5.9f show the results for dif-

ferent surface doping configurations, corresponding to the same doping percentage from Fig. 

5.9c. It is clear that randomness does not strongly affect the band structure; especially the 

band gap, although some small variations can be observed. Since it is very difficult to control 

the doping position on a TI surface in an experiment, these new results guarantee the general-

ity of the results obtained previously for a fixed disorder percentage. 

 
On the other hand, different magnetic elements may have a different easy axis in reality, 

which does not have to be only the z axis, therefore, it is important to study the effect of the 

easy axis for the exchange potential. For comparison, the supercell structure for FKM and the 

doping percentage were kept the same as that in Fig. 5.9c and the results for the FKM model 

with different magnetic easy axis are summarized in Fig. 5.11. Figs. 5.11a ~ 5.11c show the 

results for the magnetic moment aligned along the x axis; while Figs. 5.11d ~ 5.11e show the 

results for 16.05% doping with three different random doping configurations and the magnet-
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Fig. 5.10 Summary of band gap of FKM model with T2T2 termination configura-
tion v.s. doping percentage 
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ic moment is centred in the magnetic dopants. For the x-axis direction case, it is clear that the 

exchange potential does not induce any gap opening; instead it induces a translational shift of 

the surface DP which scales with doping percentage results in larger translational shift away 

from Γ point. 

 

As can be seen in Fig. 5.12, the first Brillouin zone for the FKM model is hexagonal with 

three pairs of K-K’ points occupying the diagonal corners. Since the magnetic moment points 

along the x-axis, which corresponds to the Γ-K direction in the reciprocal space, the surface 

DP position is shifted along this direction. The absence of a surface gap opening indicates 

that in-plane exchange potential does not break time reversal symmetry and this is the reason 

why the surface DP is preserved. The same conclusion can be extended to other in-plane ex-

change potentials. 

 

Fig. 5.11 Different easy axes for potentials adopted on an FKM model. a. ~ c. are 
x-axis cases and doping percentages are the same as that in fig. 5.3. d ~ e are dif-
ferent configurations of random axes in 3D space and the doping percentage is al-
ways fixed. f. ~ is band structure along different k-paths. Red colour indicates the 

projection onto surface state doped with magnetic potential. 

d e f 

b a c 
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In the experimental references there are many controversies regarding the mechanism induc-

ing gap opening in topological surface states. For instance, M. Ye et al.[38] pointed out that 

Co atoms in Bi2Se3 are not able to order ferromagnetically. Indeed, no surface opening was 

observed by ARPES. On the contrary, Tome M. Schmidt et al.[39] reported on the possibility 

to induce an off-plane ferromagnetic interaction between Co dopants in TI and induce a gap 

opening. J. Honolka et al.[40] reported that Bi2Se3 films with Fe under 70 K could preserve 

TRS; while, Hosub Jin et al.[41]; T. Schlenk et al.[42]; T. Eelbo et al.[43] reported that Fe 

dopants on a TI surface could induce ferromagnetism and a gap opening. 

 
A possible explanation for the different experimental results could come from the existence 

of different easy axis for different magnetic dopants. Once the easy axis is along an out-of-

plane direction, like z-axis, the time reversal symmetry (TRS) is broken and the surface gap is 

formed; while when the axis is along any in-plane direction, like x-axis, the potential does not 

break TRS and the surface DP is just shifted away from Γ point along the in-plane easy axis. 

This implies that the expectation of the experimental results on magnetic doping on topologi-

cal insulators greatly relies on the doping elements and the different alignments of the mag-

netic moments of impurities. It was noted that, for large enough magnetic dopants density, 

the resulting magnetic ordering (ferromagnetic, antiferromagnetic or diamagnetic) could de-

termine the presence and width of the induced surface gap. 

 

Fig. 5.12 First Brillouin zone for FKM model with reciprocal space lattice vector 
(b1 and b2) 
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Meanwhile, the translational shift of the surface DP also brings the band crossing along a dif-

ferent k-path in the Brillouin zone. This means that the current signal measured in spintronic 

experiments could come from different surface states and one should pay attention to the con-

tribution from different surface bands. According to Figs. 5.11d ~ 5.11f, it is clearly observed 

that the band gap does not vary a lot for different doping configurations. 

 
On the other hand, different arbitrary configurations for the magnetic exchange can have dif-

ferent effects on the topological surface states and the band structure may vary a lot, especial-

ly the gap value. For instance, two magnetic impurities having opposite z-axis components 

will give rise to a zero out-of-plane magnetic moment; then, the remaining effect is dominat-

ed by the in-plane components, which does not trigger a gap opening. If two magnetic impu-

rities on neighbouring surface atoms have the same z-axis components but opposite in-plane 

components, then the in-plane potential component is reduced while the out-of-plane compo-

nents is enhanced, which results in a gap opening of the topological surface states. Further-

more, the surface band gap could also show translational shift away from the Γ point, due to 

the fact that the total in-plane component of the potential dominates and the out-of-plane is 

not totally cancelled. In contrast, some configurations could increase the surface gap at the Γ 

point if the out-of-plane potential component plays the key role. Because the angle between 

Vxc and the z axis was set up in a random way, the total Vz could vary a lot, depending on the 

angle θ (shown in the equation 5.11 and Fig. 5.13). 

𝑉𝑉𝑧𝑧 = �𝑉𝑉𝑥𝑥𝑥𝑥_𝑖𝑖 × 𝑐𝑐𝑐𝑐𝑐𝑐𝜗𝜗𝑖𝑖
𝑖𝑖

                                                                                                (5.11) 

 

In order to provide an energy window of the surface gap opening for the FKM model, we 

studied 40 different random configurations. The gap value was found to range between 

 

Fig. 5.13 Illustration for the configuration of the magnetic moment 
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2.5×10-2×t to 1.2×10-1×t. The band gap values v.s. z-axis component (Vz) of exchange poten-

tials are shown in Fig. 5.14. Therefore, it is worth pointing out that this gap window could 

change for the doping percentage is lower than 100%, especially for very low doping per-

centage case where the distance between magnetic impurities becomes relatively large. 

 

In order to provide an analytical expression for the electronic structure of the FKM model 

with magnetic dopants, we use a continuum model which allows to study the gap opening 

mechanism, Rui Yu et. al's work[44]. Here it is assumed that the TI is thick enough to avoid 

the quantum tunnelling effect between both surfaces. According to the equation 5.3 for the 

continuum model Hamiltonian of the TI, the onsite exchange potential (Vxc) is added to this 

Hamiltonian with two situations discussed below. 

 
Situation 1: the exchange is aligned within the x-y plane. 

According to the Pauli matrices 
01
10

=σ x and
0

0
i

i
y

−
=σ , the in-plane exchange poten-

tial is given by equation (5.12). 

𝑉𝑉 = 𝑉𝑉𝑥𝑥𝜎𝜎𝑥𝑥 + 𝑉𝑉𝑦𝑦𝜎𝜎𝑦𝑦 = �
0 𝑉𝑉𝑥𝑥 − 𝑖𝑖𝑉𝑉𝑦𝑦

𝑉𝑉𝑥𝑥 + 𝑖𝑖𝑉𝑉𝑦𝑦 0 �                                                              (5.12) 

 

Fig. 14 Surface gap for different configurations for arbitrary-direction exchange 
potential on the surface in the FKM model 
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Set 𝑏𝑏 = 𝑉𝑉𝑒𝑒−𝑖𝑖𝑖𝑖 = 𝑉𝑉 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑉𝑉 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑥𝑥 − 𝑖𝑖𝑉𝑉𝑦𝑦 and 𝑏𝑏+ = 𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑉𝑉 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑉𝑉 ×

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑥𝑥 + 𝑖𝑖𝑉𝑉𝑦𝑦 

then, the in-plane exchange potential is 

 

𝑉𝑉 = � 0 𝑏𝑏
𝑏𝑏+ 0�                                                                                                                 (5.13) 

The in-plane exchange potential is only applied to the top TI surface, then the total Hamilto-

nian for TI becomes  

000
000

000
000

+

++

−
−

+
+

=

a
a

ba
ba

H TI                                                                          (5.14) 

The off-diagonal terms are all zero, so the total Hamiltonian can be split into top and bottom 

surface parts. 

 
For the bottom surface band, the Schrödinger equation writes in equation (5.15) 

𝐻𝐻𝑇𝑇𝑇𝑇_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝛹𝛹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = � 0 −𝑎𝑎
−𝑎𝑎+ 0 � × �𝐵𝐵↑𝐵𝐵↓

� = 𝜆𝜆 × �𝐵𝐵↑𝐵𝐵↓
�                                         (5.15) 

which gives eigenvalues for the bottom surface band of 

𝜆𝜆2 = 𝑎𝑎 × 𝑎𝑎+ = 𝑣𝑣2𝐾𝐾2 and 𝜆𝜆± = ±𝑣𝑣𝑣𝑣                                                                     (5.16) 

The eigenvalues scales linearly with K, typical of a Dirac spectrum, and they touch at a single 

point (DP) at K=0.  

 
For the top surface band, Schrödinger's equation is 

𝐻𝐻𝑇𝑇𝑇𝑇_𝑡𝑡𝑡𝑡𝑡𝑡𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡 = � 0 𝑎𝑎 + 𝑏𝑏
𝑎𝑎+ + 𝑏𝑏+ 0 � × �𝑇𝑇↑𝑇𝑇↓

� = 𝜆𝜆 × �𝑇𝑇↑𝑇𝑇↓
�                                           (5.17) 

The eigenvalues are then 

𝜆𝜆2 = (𝑎𝑎 + 𝑏𝑏) × (𝑎𝑎+ + 𝑏𝑏+) = 𝑎𝑎 × 𝑎𝑎+ + 𝑎𝑎 × 𝑏𝑏+ + 𝑏𝑏+ × 𝑎𝑎 + 𝑏𝑏 × 𝑏𝑏+ 
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      = 𝑣𝑣2𝐾𝐾2 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑒𝑒𝑖𝑖(𝜑𝜑−𝜗𝜗) − 𝑒𝑒𝑖𝑖(𝜗𝜗−𝜑𝜑)� + 𝑉𝑉2 = 𝑣𝑣2𝐾𝐾2 − 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝜑𝜑 − 𝜗𝜗) + 𝑉𝑉2 

and 

𝜆𝜆± = ±�𝑣𝑣2𝐾𝐾2 − 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝜑𝜑 − 𝜗𝜗) + 𝑉𝑉2                                                             (5.18) 

In particular, when the in-plane exchange potential is perpendicular to the k path, then 

𝜑𝜑 − 𝜗𝜗 = ±90° 

and the eigenvalues become 

𝜆𝜆± = ±�𝑣𝑣2𝐾𝐾2 − 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣90° + 𝑉𝑉2 = ±(𝑣𝑣𝑣𝑣 − 𝑉𝑉)                                           (5.19) 

For pristine TIs, DP is located at Γ-point; however, it is clear that the eigenvalue is no longer 

zero (±Vxc) at the Γ-point and instead reaches zero for 
v
VK =  case. Thus, it can be concluded 

that the in-plane exchange potential does not open any surface gap but just moves the surface 

DP somewhere away from Γ-point and, as the strength of exchange potential increases, the 

zero surface gap point is moved further away from Γ point in the Brillouin zone, because K 

increases with Vxc. This is illustrated in Fig. 5.15a. 

 
On the other hand, when the in-plane exchange potential is perpendicular to the k-path 

(𝜑𝜑 − 𝜗𝜗 = 0°), then the eigenvalues take the form 

𝜆𝜆± = ±�𝑣𝑣2𝐾𝐾2 − 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣0° + 𝑉𝑉2 = ±�𝑣𝑣2𝐾𝐾2 + 𝑉𝑉2                                       (5.20) 

from which it is clear that the eigenvalues never reach zero and that there is always a band 

gap opening along this k path. 

 
This conclusion is in agreement with the results from numerical calculations, which are 

shown in Figs. 5.11a ~ 5.11c which show the DP is shifted away from the Γ point. When ex-

amining the band structure of surface states obtained in calculation, one should pay attention 

to the k-path, because the surface DP could not be located at the Γ point anymore. Choosing 

different k paths, which does not include the Γ point, can result in different band structures 

from that with the Γ point. 
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Situation 2: The magnetization of impurities is aligned within the z axis. 

In this case, the magnetization of the impurities is aligned out-of-plane. According to Pauli's 

matrix 𝜎𝜎𝑧𝑧 = �1 0
0 −1�, the out-of-plane exchange potential is written as 

𝑉𝑉 = 𝑉𝑉𝑧𝑧𝜎𝜎𝑧𝑧 = �𝑉𝑉𝑧𝑧 0
0 −𝑉𝑉𝑧𝑧

�                                                                                                (5.21) 

Following the same strategy as in Situation 1, we only apply the out-of-plane potential to the 

top TI surface, then the total Hamiltonian for TI is  

000
000

00
00

+

+

−
−

−
=

a
a

Va
aV

z

z

TIH                                                                                   (5.22) 

The bottom surface does not have magnetic doping so the surface state shows its DP at the Γ-

point, which is same as in the previous deduction. 

 
Regarding the top surface state, Schrödinger's equation becomes 

𝐻𝐻𝑇𝑇𝑇𝑇_𝑡𝑡𝑡𝑡𝑡𝑡𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑉𝑉𝑧𝑧 𝑎𝑎
𝑎𝑎+ −𝑉𝑉𝑧𝑧

� × �𝑇𝑇↑𝑇𝑇↓
� = 𝜆𝜆 × �𝑇𝑇↑𝑇𝑇↓

�                                                         (5.23) 

and the eigenvalues are 

𝜆𝜆2 = 𝑎𝑎 × 𝑎𝑎+ + 𝑉𝑉𝑧𝑧2 = 𝑣𝑣2𝐾𝐾2 + 𝑉𝑉𝑧𝑧2,  

thus, 

𝜆𝜆± = ±�𝑣𝑣2𝐾𝐾2 + 𝑉𝑉𝑧𝑧2                                                                                                   (5.24) 

This indicates that the eigenvalues have the minimum/maximum value at the Γ-point and is 

𝜆𝜆 = ±𝑉𝑉𝑧𝑧. The band gap of the surface state is 2|𝑉𝑉𝑧𝑧|, which is in line with the numerical simu-

lation shown previously using the FKM model. When the strength of the potential increases, 

the surface gap also increases. Fig. 15b shows the band structure for the out-of-plane magnet-

ization. 
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In addition to the surface doping scheme, one could also distribute the magnetic impurities 

inside the bulk and there have been many works on it; for instance, G. Rosenberg and M. 

Franz, for instance, used mean field theory to simulate random bulk doping with magnetic 

elements, which were aligned along an out-of-plane direction, and reported that a magnetic 

dopant could induce a window where the bulk was paramagnetic.[45] Similarly, Turgut Yil-

maz et al. described the same situation when the surface state is magnetically ordered.[46] Cr 

dopants inside bulk of Bi2Se3 can open an energy gap at DP of the surface states, which is 

observable in the non-magnetic state.[47] Additionally, Kush Saha and Ion Garate performed 

theoretical calculations and studied coupling between the surface and bulk states when the 

Fermi level was pushed into the bulk band and poor conducting impurity band.[48] 

 
In order to illustrate the effect of the magnetic doping away from the TI surface we have per-

formed numerical calculations using the FKM model. The dopants were located at different 

positions with respect to the surface. Fig. 5.16 shows the band structure of the FKM model 

with different percentages of impurities moved beneath the TI surface. Figs. 5.16a ~ 5.16c 

show cases where the dopants are located in the second TI plane, which is right beneath the 

surface, and the direction of their magnetization is along the z-axis; Figs. 5.16d ~ 5.16f show 

the same results for the impurities with magnetization along the x axis. An explanation for 

these results is that the magnetic impurities interact with the surface band through the per-

pendicular hopping (t⊥), which also controls the strong topological phase. As the impurity 

 

Fig. 5.15 Band structure of TI based on analytical calculations: a – in-plane ex-
change potential; b – out-of-plane magnetization 

b a 
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moves away from the surface, the interaction through t⊥ becomes weaker and weaker; there-

fore, the effect on the surface band diminishes gradually. 

 
Fig. 5.16 shows the same basic conclusions as those for doping on the TI surface. Figs. 5.16a 

~ 5.16c all show a surface band gap, but the gap values are all smaller than those in Figs. 5.9a 

~ 5.9c. Meanwhile, the impurity inside TI interacts with layers beneath the surface more than 

that on the TI surface and, taking Fig. 5.16a as an example, the red-colour impurity band hy-

bridizes with other atoms on the 2nd layer and these bands are also pushed even further inside 

the bulk. Regarding Figs. 5.16d ~ 5.16f, the in-plane exchange potential also shifts the sur-

face DP away from the Γ-point but not as far as in Figs. 5.11a ~ 5.11c and these impurities 

bands also hybridize with the bulk bands. It is clear that the effect of magnetic doping within 

the bulk becomes weaker and induces many hybridizations with the bulk states and this study 

can provide some general guidance to experimentalists. 
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Fig. 5.17 shows the results when magnetic doping is restricted to the bulk of the FKM model 

and the doping percentage is 16.05%. Figs. 5.17c ~ 5.17d. correspond to cases where the 

magnetization of impurities points along the z-axis; while 5.17e ~ 5.17f shows the electronic 

structure when the magnetization points along the x-axis. This allows to simulate the effect of 

one ferromagnetic zone sandwiched by two TI films. It shows that when the ferromagnetic 

zone is far away from the TI surfaces, the magnetic elements do not influence the surface 

state, no matter how the potential is aligned (in-plane or out-of-plane direction). In other 

words, this magnetic impurities can act as a partition and divide the whole TI into two sub-

films. Due to the fact that the thickness of each sub-TI film becomes thinner, the quantum 

tunnelling effect (QTE) manifests and a gap opening occurs in both out-of-plane and in-plane 

cases. This indicates that high percentage of bulk doping does not affect the surface state but 

 

 

 

Fig. 5.16 FKM model with exchange potential doped on different layers, a ~ c - 
doping positions onto different layers; d ~ f - potential align along z axis; g ~ i - 

potential align along x-axis 

b c 

d e f 

a 3rd 

layer 
5th 

layer 
7thd 

layer 

g h i 
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instead separates the whole system into sub films with thinner thicknesses which eventually 

may lead to surface gap opening because of QTE. 

 

It is known that the surface states of TI exhibit the spin-momentum locking feature, i.e. that 

the spin and momentum of the surface state remains perpendicular to each other whatever the 

 

 

 

Fig. 5.17 FKM model with magnetic doping inside the bulk. a, b – side and top 
views for doping position, indicated by red colour; c, d - potential along z axis with 

            

d c 

b a 

side 

view 

7th ~ 18th 

layers 

different 

configurations 

e f 
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energy and momentum values and the directions between them follows the right-hand rule. 

This also means that once the direction for one of them is known, that for the other one can 

be obtained through right hand rule. Fig. 5.18 shows the spin texture for the surface states in 

pristine TI, plotted in red, and the energy contours were taken around the Γ-point on this sur-

face band. The green arrow indicates the direction of the spin vector, while the direction of 

the momentum vector is from centre of the contour circle to each point. 

 

To have a better view of the spin textures, analytical calculations are performed. In the previ-

ous section, the eigenvalues and eigenvectors of pristine TI were already evaluated. 

 
For the top surface, the eigenvalues are λ±=±vK and the eigenvectors are 

 |𝛹𝛹⟩ = 1
√2
�
𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖

1
−𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖

1
0
0

0
0

�                                                                                    (5.25) 

Here, we only compute the spin texture corresponding to the top surface conduction band 

(λ=vK) with eigenvector (Remark: give a symbol to this eigenvector) 

 |𝛹𝛹↑⟩ = 1
√2
�
𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖

1
0
0

�                                                                                                     (5.26) 

 

Fig. 5.18 Band structure and spin textures for pristine TI surface states 
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The expectation values of the spin operator along the three axes can be calculated as 

〈𝑆𝑆𝑥𝑥〉 = (𝑇𝑇↑
+ 𝑇𝑇↓

+) �0 1
1 0� �

𝑇𝑇↑
𝑇𝑇↓
� = 𝑇𝑇↓

+𝑇𝑇↑ + 𝑇𝑇↑
+𝑇𝑇↓ 

         =
1
√2

× 1 ×
1
√2

× 𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖 +
1
√2

× −𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 ×
1
√2

× 1 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                       (5.27) 

〈𝑆𝑆𝑦𝑦〉 = (𝑇𝑇↑
+ 𝑇𝑇↓

+) �0 −𝑖𝑖
𝑖𝑖 0 � �

𝑇𝑇↑
𝑇𝑇↓
� = 𝑖𝑖𝑇𝑇↓

+𝑇𝑇↑ − 𝑖𝑖𝑇𝑇↑
+𝑇𝑇↓ 

         = 𝑖𝑖 ×
1
√2

× 1 ×
1
√2

× 𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖 − 𝑖𝑖 ×
1
√2

× −𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 ×
1
√2

× 1 = −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐      (5.28) 

〈𝑆𝑆𝑧𝑧〉 = (𝑇𝑇↑
+ 𝑇𝑇↓

+) �1 0
0 −1� �

𝑇𝑇↑
𝑇𝑇↓
� = 𝑇𝑇↑

+𝑇𝑇↑ − 𝑇𝑇↓
+𝑇𝑇↓ 

         =
1
√2

× −𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 ×
1
√2

× 𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖 −
1
√2

× 1 ×
1
√2

× 1 = 0                              (5.29) 

The expectation values of the spin operators are then plotted against the direction of the mo-

mentum vector, which is indicated by the angle ϑ, in Fig. 5.19. From both the analytical re-

sults and Fig. 5.19, it is clear that <Sx> and <Sy> follow a standard SIN and COS functions; 

while <Sz> is always zero, which is consistent with the numerical results shown in Fig. 5.19. 

This is very useful for the application of conversion from charge current to spin current in the 

field of spintronics, which was discussed in chapter 4 regarding the graphene/TI based heter-

ostructures. 

  

Furthermore, the magnitude of the spin expectation value diminishes gradually as the contour 

moves close to Γ point. The spin lifetime anisotropy for the pristine TI is also calculated be-

low and is defined as the ratio of out-of-plane to in-plane spin lifetimes. It is assumed that the 

 

Fig. 5.19 Expectation value of spin along three axes on surface contour 

a b c 
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relaxation time follows a D’yakonov-Perel mechanism and the lifetime of spin polarized 

along α direction is given by the following equation (5.30)[49]. 

1
𝜏𝜏𝛼𝛼

= 𝜏𝜏𝛼𝛼⊥∗ �|𝛺𝛺|����2 − 𝛺𝛺�𝛼𝛼2�                                                                                                 (5.30) 

where Ω is the momentum dependent effective magnetic field, which comes from SOC, and 

𝛺𝛺�𝛼𝛼⊥2  is the time to randomize the component of Ω which is perpendicular to α(spin polariza-

tion direction). The overline implies an average over the Fermi surface at a particular Fermi 

energy. For a given band, the magnetic field is decomposed in equation (5.31)  

𝛺𝛺 = 𝜔𝜔 ∙ 𝑆𝑆                                                                                                                     (5.31) 

where, 


E∆
=ω  denotes the spin precession frequency associated with the spin splitting ΔE 

of the band. S is the spin polarization of the eigenstates associated with the chosen band. Fi-

nally, the spin lifetime anisotropy, which comes from splitting bands, derives from equation 

(5.32) 

𝐴𝐴ʃ =
𝜏𝜏𝑧𝑧∗ ∑ �|𝑆𝑆|����2 − 𝑆𝑆𝑥̅𝑥2�𝑖𝑖

𝑛𝑛
𝑖𝑖=1

𝜏𝜏𝑥𝑥∗ ∑ �|𝑆𝑆|����2 − 𝑆𝑆𝑧̅𝑧2�𝑖𝑖
𝑛𝑛
𝑖𝑖=1

                                                                                          (5.32) 

where, the sum runs over all i, which are the band considered in the Fermi surface average. In 

the T2-T2 case, DP is located to Γ point, so 𝜏𝜏𝑥𝑥∗ = 𝜏𝜏𝑧𝑧∗ = 𝜏𝜏𝑝𝑝 and is the momentum relaxation 

time.[50] 

 
In the pristine TI case, the lifetime anisotropy is found to be 0.5, which means that the stand-

ard Rashba-type texture always gives 50% anisotropy and the magnitude of <Sx> and <Sy> 

are equal to each other. 

𝐴𝐴ʃ =
|𝑆𝑆|����2 − |𝑆𝑆𝑥𝑥|�����2

|𝑆𝑆|����2 − |𝑆𝑆𝑧𝑧|�����2 =
�𝑆𝑆𝑦𝑦������2 + |𝑆𝑆𝑧𝑧|�����2

|𝑆𝑆𝑥𝑥|�����2 + �𝑆𝑆𝑦𝑦������2
=
�𝑆𝑆𝑦𝑦�

2
+ |𝑆𝑆𝑧𝑧|2

|𝑆𝑆𝑥𝑥|2 + �𝑆𝑆𝑦𝑦�
2 =

�𝑆𝑆𝑦𝑦�
2

|𝑆𝑆𝑥𝑥|2 + �𝑆𝑆𝑦𝑦�
2 =

1
2

      (5.33) 

 

On the other hand, the spin properties of TI with magnetic doping differ from the pristine TI 

case. Fig. 5.20 shows the spin texture for the FKM model with different impurity densities all 

polarized along the out-of-plane direction, and, from the top view, the results also show a 
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Rashba like texture. However, it is obvious that the spin component along the z axis is not 

zero from the side because the spin vector is tilted to the out-of-plane direction and, as the 

contour moves close to the Γ point, the spin vector is tilted more and more closely to the z 

axis. Furthermore, spin tends to align along the z axis as the doping density increases gradual-

ly (a. ~ c.). This means that the out-of-plane magnetization could align the spin on the surface 

state from an in-plane to an out-of-plane direction and closer to Γ point, more out-of-plane 

component spin vector has, dictating that the spin anisotropy is not 50%, like in the pristine 

TI case. 

 

An analytical calculations were also carried out in order to give a clearer explanation of the 

computed spin textures. The eigen value and vector have been calculated in the previous con-

tent. 

 

 

 

Fig. 5.20 Spin texture for FKM model doped with out-of-plane magnetization. a. – 
pristine case; b. – FKM doped with 16.05% exchange potential and c. - FKM 

doped with 100% magnetic doping 

a 

b 

c 
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Top surface; 

R=+λ  (𝑅𝑅 = √𝑣𝑣2𝐾𝐾2 + 𝑉𝑉2) and |𝛹𝛹↑⟩ = �𝑅𝑅−𝑉𝑉
2𝑅𝑅

�

𝑎𝑎
𝑅𝑅−𝑉𝑉

1
0
0

�; 

R−=−λ  and |𝛹𝛹↑⟩ = �𝑅𝑅+𝑉𝑉
2𝑅𝑅

�

𝑎𝑎
𝑅𝑅+𝑉𝑉

1
0
0

� 

Here, only the surface states in the conduction band is considered and the expectation values 

of spin operator are 

〈𝑆𝑆𝑥𝑥〉 = (𝑇𝑇↑
+ 𝑇𝑇↓

+) �0 1
1 0� �

𝑇𝑇↑
𝑇𝑇↓
� = 𝑇𝑇↓

+𝑇𝑇↑ + 𝑇𝑇↑
+𝑇𝑇↓ 

         = �𝑅𝑅 − 𝑉𝑉
2𝑅𝑅

× 1 × �𝑅𝑅 − 𝑉𝑉
2𝑅𝑅

×
𝑎𝑎

𝑅𝑅 − 𝑉𝑉
+ �𝑅𝑅 − 𝑉𝑉

2𝑅𝑅
×

𝑎𝑎+

𝑅𝑅 − 𝑉𝑉
× �𝑅𝑅 − 𝑉𝑉

2𝑅𝑅
× 1 

         =
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑅𝑅
                                                                                                            (5.34) 

〈𝑆𝑆𝑦𝑦〉 = (𝑇𝑇↑
+ 𝑇𝑇↓

+) �0 −𝑖𝑖
𝑖𝑖 0 � �

𝑇𝑇↑
𝑇𝑇↓
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                                                                                                        (5.35) 

〈𝑆𝑆𝑧𝑧〉 = (𝑇𝑇↑
+ 𝑇𝑇↓
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0 −1� �

𝑇𝑇↑
𝑇𝑇↓
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                                                                                                                        (5.36) 
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The expectation value of the spin operator against the direction of momentum vector is plot-

ted in Fig. 5.21, from which it is clear that <Sx> and <Sy> still follow the SIN and COS func-

tion shape. However, <Sz> is no longer zero and within the same energy contour, <Sz> it is 

proportional to the strength of exchange potential. This contrasts with the pristine case. 

 

Meanwhile, as the contours move close to the Γ point in the Brillouin zone, K (𝐾𝐾 =

�𝐾𝐾𝑥𝑥2 + 𝐾𝐾𝑦𝑦2) and, then, R (𝑅𝑅 = √𝑣𝑣2𝐾𝐾2 + 𝑉𝑉2) becomes smaller and the constant exchange po-

tential, <Sz> then becomes larger. This means that the ratio of in-plane to out-of-plane spin 

component is k dependent and therefore, the spin lifetime anisotropy is expressed in equation 

(5.37). 

𝐴𝐴ʃ =
|𝑆𝑆|����2 − |𝑆𝑆𝑥𝑥|�����2

|𝑆𝑆|����2 − |𝑆𝑆𝑧𝑧|�����2 =
�𝑆𝑆𝑦𝑦������2 + |𝑆𝑆𝑧𝑧|�����2

|𝑆𝑆𝑥𝑥|�����2 + �𝑆𝑆𝑦𝑦������2
=
�𝑆𝑆𝑦𝑦�

2
+ |𝑆𝑆𝑧𝑧|2

|𝑆𝑆𝑥𝑥|2 + �𝑆𝑆𝑦𝑦�
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𝑅𝑅2�
𝑁𝑁
𝑖𝑖=1

∑ �𝑣𝑣
2𝐾𝐾𝑥𝑥2
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𝑣𝑣2𝐾𝐾𝑦𝑦2
𝑅𝑅2 �𝑁𝑁

𝑖𝑖=1

 

     =
∫ (𝑣𝑣2𝐾𝐾2𝑐𝑐𝑐𝑐𝑐𝑐2𝜗𝜗 + 𝑉𝑉2)2𝜋𝜋
0

∫ (𝑣𝑣2𝐾𝐾2𝑠𝑠𝑠𝑠𝑠𝑠2𝜗𝜗 + 𝑣𝑣2𝐾𝐾2𝑐𝑐𝑐𝑐𝑐𝑐2𝜗𝜗)2𝜋𝜋
0

=
𝑣𝑣2𝐾𝐾2 + 2𝑉𝑉2

2𝑣𝑣2𝐾𝐾2 =
1
2

+
𝑉𝑉2

𝑣𝑣2𝐾𝐾2               (5.37) 

According to the analytical results, which are shown in Fig. 5.22, the following rules are ap-

parent. First, on a fixed energy level, K is constant and A∫ increase with exchange potential; 

second, with a constant exchange potential, A∫ increases as the energy contour close to Γ point. 

When the contour moves away from Γ point, A∫ decreases gradually and the minimum value 

is 50%. 

 

Fig. 5.21 Expectation value of spin along three axes in FKM doped with onsite 
exchange potential 

a c b 
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These results are consistent with both the numerical results and increases in doping percent-

ages shown in Fig. 5.23. Furthermore these findings can provide guidance for researchers in-

vestigating the effects of magnetic doping on TI surfaces: specifically, that magnetic doping 

on TI surfaces not only opens the surface gap and generates a quantum anomalous hall effect 

but can also induce spin anisotropy, which could affect the relaxation of the spin current sig-

nal on the TI surface. 

 

 

Fig. 5.22 Spin lifetime anisotropy of FKM doped with onsite exchange potential 
           

 

Fig. 5.23 Spin anisotropy v.s. doping percentage based on numerical calculation of 
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5.4 Conclusions 
This chapter discussed Fu-Kane-Mele (FKM) model doped with different impurities, regard-

ing the electronic properties, in order to provide a fundamental understanding on the property 

alternation of 3D topological insulator by impurity. 

 
Section 5.1 explained this FKM model and showed how to simulate 3D TI with different 

phases (strong TI, semimetal and weak TI) through modifying hopping parameters along dif-

ferent axes; then, reported that DP could show up at different k points with different spin tex-

ture for different termination case in this model and it is worth to note that T2T2 termination 

case could show DP at Γ point with Rashba spin texture which is same as the real 3D TI sys-

tem; e.g. Bi2Se3. Thickness effect was also investigated in so as to see the effect of QTE on 

the surface state. Meanwhile, the analytical calculation based on an effective Hamiltonian 

was also carried out for both band structure and spin texture to support the numerical calcula-

tion on this model. 

 
Section 5.2 examined the effect of non-magnetic disorder on the electronic structure of this 

model through adding localised potential onto surface termination and it pointed that such 

kind of disorder could not destroy the surface DP but only cause the translational shift of the 

surface state, which was doped with disorder, and the relation between spin and momentum 

remained same as Rashba type texture. 

 
Section 5.3 investigated in the effect of magnetic impurity on this model with different dop-

ing percentage. The magnetic impurity was first doped on the surface to FKM model and it 

was found that impurity with out-of-plane magnetization could cause the surface gap opening 

and the gap value increased with both magnetization strength and doping percentage; while, 

the in-plane magnetization did not destroy the surface DP but moved the it away from DP. 

Besides the surface doping, impurity was also doped into the bulk of the model and it was 

found that as the doping position moved away from the surface, the effect brought onto sur-

face state diminished gradually. To support the numerical calculation, analytical calculation 

based on an effective Hamiltonian for 3D TI was also carried out and the analytical formula 

for the surface gap was provided. On the other hand, the surface spin texture was also exam-

ined through both numerical and analytical calculations and they both pointed out that out-of-

plane magnetization on the surface could cause the spin tilt to the z axis and as the tile angle 
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increases with magnetization strength. Furthermore, it was found that the ratio of in-plane 

and out-of-plane spin component vary with k point which is that out-of-plane spin dominate 

the spin at k point close to Γ and decreases as the k point moved away from Γ and finally, the 

ratio between in-plane and out-of-plane spin component reached 0.5. 

 
All these theoretical works on the impurity doping scheme could provide a general guidance 

to the experimentalist on the electronic structure changes with the defects. Particularly, the 

out-of-plane magnetization induced by magnetic impurity on TI surface could bring spin ani-

sotropy, which could be used as the potential way to modify the spin current in the laboratory. 
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Chapter Six: Conclusions 

 

 

 

 

 

Conclusions 

Here 3D Bi2Se3-family topological insulator and its related systems were studied based on 

DFT, TB and analytical calculations. Some interesting phenomena were found and could be 

interesting for further experimental work. 

 
First, different defects were introduced into TI system with ultrathin thickness (< 5 nm) and it 

was found that rotation mismatches between different TI quintuple structures could result in 

enlargement of the surface gap while preserving the typical Rashba type spin textures. Then, 

the hydrogenation scheme on TI surface was examined and it was found that QTE on thin TI 

was avoided so that gapless surface states were preserved. The hydrogenated surface DP was 

shifted above the Fermi level; while, the clean surface DP was preserved below the Fermi 

level. Furthermore, the spin texture was also modified by this scheme and a Dresselhaus-type 

of texture was found with a new DP showing up at M point on the hydrogenated surface. 

 
Then, the proximity effect of TI was investigated in the heterostructure of graphene inter-

faced with the Bi2Se3 family TI and it was found that the geometry of such structure is fun-

damental to understand the resulting  electronic properties imprinted onto  graphene. For an 

interface symmetry named as hollow position configuration, graphene bands became gapped 

while electronic states will exhibit some atypical Rashba type spin texture, where the spin 

texture changes with momentum, and a strong spin anisotropy is driven by an emerging out-

of-plane component was found. More specifically, such out-of-plane component dominates 

the spin as the k point moved close to Γ point in Brillouin zone and decreases as the k point 
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moves away from Γ point where  finally, the ratio between in-plane and out-of-plane spin an-

isotropy reaches 0.5 (conventional for purely Rashba SOC systems). A TB model was built 

up to explain such peculiar properties and it was found that carbon bonding distortion, known 

as the Kekulé distortion, plays an important role in the gap opening and that both in-plane and 

out-of-plane Rashba SOC terms are controlling the resulting  atypical spin textures. On the 

other hand, other configurations (bridge and top positions) were also examined and the band 

structures were found to have large band splitting in the lateral direction, which could result 

in the Edelstein effect, while the spin anisotropy is found to disappear as the ratio of in-plane 

and out-of-plane spin components are similar. 

 
Based on the FKM model, the effect of impurities with and without magnetization was theo-

retically studied. Nonmagnetic disorder was found to add a potential to the TI surface state 

and shift the DP above that of the clean TI surface but the spin texture was unaffected. Re-

garding the magnetic impurity, a surface gap was opened up due to the magnetization along 

out-of-plane direction and the spin tilted towards the z axis. Meanwhile, the spin anisotropy, 

which is similar to that in graphene/TI system, was also found when the out-of-plane spin 

component increased as k point moves close to Γ and diminish gradually as k point moves 

away from Γ. 

 
All these works could provide guidance to experimentalists for the measurement of the spin 

signal of on TI system with defects or the heterostructure device based on graphene with TI; 

particularly, in the direction of spin anisotropy. 
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