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Y evidentemente, gracias a Laia, por acompañarme todo este tiempo,
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Resum

Els models neuronals de camp mig són descripcions fenomenològiques de
l’activitat de xarxes de neurones espacialment organitzades. Gràcies a la
seva simplicitat, aquests models són unes eines extremadament útils per a
l’anàlisi dels patrons espai-temporals que apareixen a les xarxes neuronals, i
s’utilitzen àmpliament en neurociència computacional. És ben sabut que els
models de camp mig tradicionals no descriuen adequadament la dinàmica
de les xarxes de neurones si aquestes actuen de manera sı́ncrona. No obstant
això, les simulacions computacionals de xarxes neuronals demostren que,
fins i tot en estats d’alta asincronia, fluctuacions ràpides dels inputs comuns
que arriben a les neurones poden provocar perı́odes transitoris en els quals
les neurones de la xarxa es comporten de manera sı́ncrona. A més a més, la
sincronització també pot ser generada per la mateixa xarxa, donant lloc a
oscil·lacions auto-sostingudes.

En aquesta tesi investiguem la presència de patrons espai-temporals
deguts a la sincronització en xarxes de neurones heterogènies i espacialment
distribuı̈des. Aquests patrons no s’observen en els models tradicionals de
camp mig, i per aquest motiu han estat àmpliament ignorats en la literatura.
Per poder investigar la dinàmica induı̈da per l’activitat sincronitzada de les
neurones, fem servir un nou model de camp mig que es deriva exactament
d’una població de neurones de tipus quadratic integrate-and-fire. La simpli-
citat del model ens permet analitzar l’estabilitat de la xarxa en termes del
perfil espacial de la connectivitat sinàptica, i obtenir fórmules exactes per
les fronteres d’estabilitat que caracteritzen la dinàmica de la xarxa neuronal
original. Aquest mateix anàlisi també revela l’existència d’un conjunt de
modes d’oscil·lació que es deuen exclusivament a l’activitat sincronitzada
de les neurones. Creiem que els resultats presentats en aquesta tesi inspi-
raran nous avenços teòrics relacionats amb la dinàmica col·lectiva de les
xarxes neuronals, contribuı̈nt aixı́ en el desenvolupament de la neurociència
computacional.
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Laburpena

Eremu-neuronalen ereduak (EME), sare neuronal trinkoen aktibitatearen
deskripzio fenomenologikoak dira. Eredu hauek neurozientzia konputa-
zionalean sarritan erabiltzen dira, azterketa matematikoa errazteko aukera
ematen baitute eta aldi berean ordenagailuz egindako simulazioen denbora
eta zailtasuna asko murrizten dutelako. Alegia, sare neuronal asinkronoetan
ageritako patroi anitzak aztertzeko baliabide teoriko eskuragarriak direla
frogatu dute behin eta berriro. Ezaguna da baina, eredu tradizional hauek
dauzkaten mugen artean, neuronek askotan erakusten duten aktibitate sin-
kronizatua deskribatzeko ezintasuna dela garrantzitsuenetariko bat. Ordea,
simulazio numerikoek erakusten duten bezala, nahiz eta neuronak egoera
guztiz asinkronoan egon, kanpotik ezarritako korronteen fluktuazio handiek
aktibitate altuko tarteak eragin ditzakete, non sarea osaturiko neuronek mo-
du sinkronoan jarduten dute. Orobat, fluktuazio horiek oso arruntak dira
nerbio-ehunetan neurtutako dinamiketan.

Tesi honetan, aipatutako muga hori arakatzen dugu, EME tradiziona-
lek erakusten dituzten dinamikak, sare neuronalen simulazioak eskaintzen
dituzten emaitzekin konparatuz, eta honela neuronen sinkronizazio kolekti-
boak dinamika makroskopikoan daukan eragina aztertzen dugularik. Hain
zuzen ere, sinkronizazioak sare horietan patroi espazio-tenporal, bai ira-
gankorrak edota iraunkorrak, eragiteko gaitasuna daukala erakusten dugu.
Patroi horiek sortarazten dituzten oinarrizko arrazoiak ikertzeko, EME berri
bat garatu dugu, sare neuronalen dinamikatik zehazki deribatuta dagoena.
Erdietsiko eredu berri honek neurona kitzikatzaileen eta inhibitzaileen arte-
ko interakzioek induzitutako patroi espazio-tenporal multzo bat ikertzeko
aukera ematen digu. Bereziki, oreka-egoeran, uhin-zenbaki ezberdineko
perturbazio espazialek maiztasun ezberdineko uhin-geldikor iragankorrak
sortzen dituztela aurkitu dugu, hots, tentsioan dagoen soka batean ageri diren
modu normalen moduan. Horrez gain, uhin horien maiztasunak konektibita-
te sinaptikoaren profilarekin harreman estua dutela, eta gainbeheratze-tasa,
sarearen heterogeneitatearen mendean besterik ez dagoela ikusi dugu.
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Resumen

Los modelos neuronales de campo medio son descripciones fenomenológi-
cas de la actividad de redes de neuronas organizadas espacialmente. Debido
a su simplicidad, dichos modelos son herramientas extremadamente útiles
para el análisis de los patrones espacio-temporales que surgen en redes
neuronales, i son ampliamente utilizadas en neurociencia computacional. Es
bien sabido que los modelos de campo medio tradicionales no describen
adecuadamente la dinámica de las redes de neuronas si éstas actúan de
manera sı́ncrona. Sin embargo, las simulaciones computacionales de redes
de neuronas demuestran que, incluso en los estados con actividad altamente
ası́ncrona, fluctuaciones rápidas en los inputs comunes que llegan a las
neuronas pueden provocar perı́odos transitorios de actividad sincronizada.
Además, la sincronización también puede ser generada por la propia red,
dando lugar a oscilaciones robustas y auto-mantenidas.

En esta tesis investigamos la aparición de patrones espacio-temporales
en redes heterogéneas de neuronas espacialmente distribuidas, relacionados
con la actividad sincronizada de las neuronas. Estos patrones no se observan
en los modelos tradicionales de campo medio y han sido en gran parte
ignorados en la literatura. Para poder investigar los fenómenos inducidos
por la actividad sincronizada de las neuronas empleamos un nuevo modelo
de campo medio que proviene de la derivación exacta de la dinámica de una
población de neuronas de tipo quadratic integrate-and-fire. La simplicidad
del modelo nos permite analizar la estabilidad de la red en términos del perfil
espacial de conectividad sináptico, i nos permite obtener fórmulas exactas
para las fronteras de estabilidad que caracterizan la dinámica de las red neu-
ronal original. Notablemente, el análisis también revela la existencia de un
conjunto de modos de oscilación que se deben exclusivamente a la actividad
sincronizada de las neuronas. Creemos que los resultados presentados en
esta tesis inspirarán nuevos avances teóricos relacionados con la dinámica
colectiva de las redes neuronales, contribuyendo ası́ en el desarrollo de la
neurociencia computacional.
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Abstract

Neural field models are phenomenological descriptions of the activity of
spatially organized, recurrently coupled neuronal networks. Due to their
mathematical simplicity, such models are extremely useful for the analysis of
spatiotemporal phenomena in networks of spiking neurons, and are largely
used in computational neuroscience. Nevertheless, it is well known that
traditional neural field descriptions fail to describe the collective dynamics
of networks of synchronously spiking neurons. Yet, numerical simulations
of networks of spiking neurons show that, even in the case of highly asyn-
chronous activity, fast fluctuations in the common external inputs drive
transient episodes of spike synchrony. Moreover, synchronization may also
be generated by the network itself, resulting in the appearance of robust
large-scale, self-sustained oscillations.

In this thesis, we investigate the emergence of synchrony-induced spa-
tiotemporal patterns in spatially distributed networks of heterogeneous spik-
ing neurons. These patterns are not observed in traditional neural field
theories and have been largely overlooked in the literature. To investigate
synchrony-induced phenomena in neuronal networks, we use a novel neural
field model which is exactly derived from a large population of quadratic
integrate-and-fire model neurons. The simplicity of the neural field model
allows us to analyze the stability of the network in terms of the spatial profile
of the synaptic connectivity, and to obtain exact formulas for the stability
boundaries characterizing the dynamics of the original spiking neuronal
network. Remarkably, the analysis also reveals the existence of a collection
of oscillation modes, which are exclusively due to spike-synchronization.
We believe that the results presented in this thesis will foster theoretical
advances on the collective dynamics of neuronal networks, upgrading the
mathematical basis of computational neuroscience.

Keywords: mathematical neuroscience, spatiotemporal patterns, oscil-
lations, bump states, synchronization, neural population, firing rate, pop-
ulation model, spiking neurons, quadratic-integrate-and-fire, neural-field,
mean-field.
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Preface

This work is intended to explore, and hopefully rise some new questions,
on the role of spike synchrony in shaping the dynamics of large networks
of spiking neurons, and the ability of Neural Field models to capture such
macroscopic phenomena.

Due to the astonishing number of neurons in the brain, almost any
theoretical approach to study large-scale brain processes requires the use
of some sort of population model. As such, neural field models have been
extensively used as modeling tools to describe the activity of the brain,
in which the interaction of millions of neurons is treated as a continuum.
Indeed, they have proved to be a valuable tool to describe the average firing
rate activity of neuronal ensembles in a wide range of situations. However,
they only constitute an heuristic representation of the underlying microscopic
state, and unfortunately, they do not guarantee a complete description of the
macroscopic dynamics arising in networks of spiking neurons. Specifically,
neural field models are typically derived by assuming uncorrelated neural
activity and therefore fail to describe any collective dynamics which may
appear as a consequence of the synchronized spiking of neurons.

Despite these constraints that limit the applicability of neural field mod-
els, they are broadly used to model a great variety of dynamics involving
interacting populations of neurons. Typical descriptions include both excita-
tory and inhibitory interactions which give rise to an extensive cacophony of
spatiotemporal patterns. Experimental observations of qualitatively similar
patterns often report the existence of correlations among neurons during
such dynamical regimes. Our question is then, whether synchronous activity
is just an inessential detail that can be ignored, or instead, plays a decisive
role in shaping the macroscopic neuronal dynamics. We think that an answer
to this question may help in developing more suitable macroscopic models,
and hopefully shed some light into the basic principles governing collective
neuronal dynamics. The main result of this work is the derivation of a novel
neural field model which explicitly takes into account the sub-threshold
dynamics of its constituent neurons, and thus is able to exactly describe
synchrony-related dynamics. Additionally, it enable us to investigate a
particular form of oscillatory behavior which is observed in spiking neu-
ral networks, and for which traditional neural field models have no valid
description. That is, the synchrony-induced decaying standing waves.

In chapter 1 we review fundamental aspects relevant to our work, first
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by introducing the main features of traditional neural field models, and
then showing some of the spatiotemporal patterns that they are capable
of reproducing when considering excitatory and inhibitory interactions.
Next, we conduct a series of numerical experiments displaying a variety
of patterns which are directly related to synchronization processes, and
for which traditional neural field models have no appropriate description.
Finally, we finish the chapter presenting the derivation of the population
model which exactly describes the activity of a network of spiking neurons
and show some of the results associated to that model.

In chapter 2 we extend the firing rate model presented in chapter 1
to a spatially extended network of spiking neurons, and obtain an exact
neural field model for a network of quadratic integrate-and-fire neurons.
The model will then allow us to analytically investigate the oscillatory
phenomena observed in the numerical experiments. This analysis indicates
that synchronous activity is indeed relevant in shaping the dynamics of neural
networks and therefore it may play an important role in neural processing
during cognitive tasks.

We finish by discussing the most relevant results of this thesis and
comment on their potential implications as relevant modeling tools in neu-
roscience. Additionally, we comment on future work that could be done to
further improve the presented model, and about potential extensions that
could account for additional neuronal features.
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Introduction

“Philosophy is written in this great book—by which I mean the
universe—which stands always open to our view, but it cannot be
understood unless one first learns how to comprehend the language and
interpret the symbols in which it is written, and its symbols are triangles,
circles, and other geometric figures, without which it is not humanly
possible to comprehend even one word of it; without these one wanders
in a dark labyrinth.”

— Galileo Galilei, Il Saggiatore (The Assayer) (1623)

Since the pioneering discoveries of Santiago Ramon y Cajal and Camilo
Golgi in the late 19th century which established the foundations of what we
nowadays know as Neuroscience, extensive work has been done in order
to understand the laws that shape neuronal dynamics. As in almost any
natural science, the aim of scientists toward universal laws explaining our
observations have pushed, from the very beginning, towards mathematical
descriptions of the observed phenomena. With the birth of neural theory
researchers sought to understand the secrets behind animal behavior looking
into the microscopic constituents of its source: the neurons. Early in the
20th century, Louis Lapicque introduced what is considered as the precursor
of the famous integrate-and-fire model neuron (Brunel and Van Rossum,
2007b) (see also Brunel and Van Rossum, 2007a; Abbott, 1999), providing
a first quantitative approach to the depolarization process of neurons and
modeling the generation of the first spike after the stimulus onset —what
we know as the action potential. Theoretical neuroscience was born and
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following his work many phenomenological models describing the onset of
the action potential were developed (Hill, 1936; McCulloch and Pitts, 1943;
Stein, 1965; Geisler and Goldberg, 1966; Weiss, 1966; Stein, 1967).

In the 1950’s Hodgkin and Huxley published the first detailed biophysical
model of the action potential (Hodgkin and Huxley, 1952), a system of
four differential equations which modeled the electrical currents across the
cell membrane leading to action potentials in the squid’s giant axon, and
for which they received the Nobel price in 1963. Their almost 30 year
investigation not only proved that detailed biophysical —yet simple and
elegant— models of neuronal dynamics were possible, but also drove them
to the hypothesis of the existence of ionic channels, which were confirmed
only few decades later.

Modeling from the microscopic perspective:
Spiking neuron models

Further development in the biophysical principles of neuronal dynamics
was made with the study of additional cellular mechanisms involved in the
reception and generation of the action potentials, such as different classes of
ionic channels and pumps, synaptic transmission processes, etc. Currently,
detailed biophysical modeling of single neurons remains a very active field
of research where sophisticated models are continuously expanding our
knowledge about neural mechanisms. On the other hand, the necessity
of decreasing the complexity of neuronal systems lead many theoreticians
towards simplified models of the neuron, where only the most fundamental
mechanisms that generate the action potential were sought. We refer to these
phenomenological models as point neurons or spiking neuron models. The
first of its kind was probably that developed by Lapicque which later evolved
into the leaky integrate-and-fire (LIF) neuron model (Stein, 1965; Knight,
1972; Tuckwell, 1988).

The LIF model and the more general nonlinear integrate-and-fire models
can be mathematically derived as limit cases of the Hodgkin-Huxley model
(see for example Gerstner et al., 2014); they are typically presented in
the form of an ordinary differential equation (ODE) describing the time
evolution of the membrane potential of the neuron, plus a resetting rule
mimicking the generation of the action potential, which basically drives
the potential back to a reset potential after the neuron crosses a given peak
potential.
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As an tradeoff to reduce complexity, the accuracy with which the model
reproduces electrophysiological measurements is sacrificed. However, due
to the rather stereotyped shape of the action potential, it is unlikely that in-
formation transmission depends on its specific shape, but rather on its timing
or frequency. Therefore, these models serve as an excellent tool to model
spiking events and are much easier to analyze than complex biophysical
models. In fact, since the outbreak of computer driven simulations, their
elegance and simplicity has make them a widely used tool in the study of
principles of neuronal information processing: the simplest LIF model is still
the most popular of the integrate-and-fire family, but nonlinear models, such
as the exponential-integrate-and-fire (EIF) (Fourcaud-Trocmé et al., 2003)
and the quadratic-integrate-and-fire (QIF) (Ermentrout and Kopell, 1986;
Ermentrout, 1996) models are often considered as they better reproduce the
spiking onset. The choice of the model rests upon the specific system we
are willing to study, and what questions are we seeking to answer. For a
thorough analysis on the dynamical properties of a great variety of spiking
neuron models see Izhikevich (2007).

Yet, the outstanding number of neurons present in any small piece of
cortex makes the brain one of the most complex systems ever studied. Even
if we considered the simplest phenomenological model neuron, and without
taking into account any complex network structure, a simple model of the
brain would consist on a system of approximately 86 × 109 differential
equations –each describing the dynamics of a single neuron. Any mathemat-
ical study involving so many differential equations is generally unfeasible,
unless a proper reduction in dimensionality is done.

Practical matters aside, fundamental reasons concerning the statistical
nature of neuronal populations (Cragg and Temperley, 1954), alongside
other information theory-based hypothesis, suggested that collective, rather
than single neuron dynamics, were more relevant in the information pro-
cessing happening in the brain. With this paradigm in mind, models of
population average activity started to appear, first in the 1950’s by the hands
of Beurle (1956), and later in the 1960’s by Griffith (1963). They devel-
oped the first continuum approximations of neuronal activity by making
some statistical assumptions, following a methodology closely related to
that used in statistical physics and thermodynamics. The aim was to create
low dimensional models capable of capturing the collective properties of
neural populations, yet simple enough to provide a mathematically tractable
framework for their study.

In parallel, the rapid progress made in experimental neuroscience with
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studies such as those carried out by Mountcastle, and Hubel and Wiesel
in the somatosensory and visual cortex of cats and monkeys (Mountcastle,
1957; Hubel and Wiesel, 1962, 1968), gave support to the original hypothesis
of Beurle. Moreover, in the early 1960’s the first attempts to account for
physiologically measurable phenomena in terms of the modeled properties
of population of neurons were held by Freeman (1964). During the 1970’s
all these accumulation of experimental evidence inspired the work of many
researchers, including Wilson and Cowan (1972, 1973), Knight (1972)
and Amari (1972, 1974, 1977) among others, towards the development of
population models, also known as neural mass models or firing rate models.

Looking at the whole picture from a low-dimensional
perspective: Population models

Population models were quickly accepted as valid descriptions of neuronal
activity due to the increasing popularity of the rate and population code*

hypothesis—which assumes information is transmitted as the average ac-
tivity of neurons and not by their individual spiking times (known as the
time code hypothesis)—, plus the empirical evidence that pointed towards
the existence of large redundancy among neural populations. Moreover,
many brain measurement techniques, such as electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI), provide measures of
neural activity averaged over relatively large areas of the cortex. All that
made firing-rate-based population models very useful tools not only as a
theoretical construct but also as an experimental modeling tool (Destexhe
and Sejnowski, 2009).

Among the various firing rate (FR) models developed in the 1970’s, the
Wilson and Cowan (WC) model (Wilson and Cowan, 1972) is probably the
most popular one due to its simplicity and versatility. It typically consists
on an a set of two ODEs describing the time evolution of the activity of
spatially lumped excitatory and inhibitory neural populations, measured as
the fraction of active neurons in each population. Such activity is defined as
the number of spikes per unit time, i.e. the firing rate.

*Although both, rate and population code hypothesis, lie on the average activity of
neurons, the former refers to the temporal average of spikes, while the latter refers to the
population average. In an ergodic system, both hypothesis should be equivalent, however
many neural systems show fast dynamics where the ergodic assumption is not likely to
stand.
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During the last 46 years, the WC model has been adapted or extended
to account for different network configurations and to include a variety
of physiologically relevant elements (see Destexhe and Sejnowski, 2009).
Moreover, it is used not only to model population of neurons but also
averaged activities of single neurons (measured as trial-to-trial averages)
(e.g. Grossberg, 1973). However, these rate models are generally treated as
’ad hoc’ models as they are not derived from the dynamics of the microscopic
elements that constitute the studied systems: the neurons. In other words,
the derivation of rate equations does not consist on a proper reduction of
the microscopic neural system. Moreover, traditional firing rate models
assume microstates where neurons’ activity is fully or highly uncorrelated
in order to simplify their mathematical expressions. Therefore they usually
fail to describe any dynamical phenomena occurring as a consequence of
synchronous firing.

Neural field models

Space dependent firing rate models, also known as neural fields models
(NFMs), are extensions of the localized firing rate models to continuously
distributed populations of interacting excitatory and inhibitory neurons
arranged according to some network topology. In such cases, the model
usually appears as a set of partial differential equations, where the activity of
the neuronal population and the interactions are space dependent functions.
Due to the spatial arrangement of the neurons in the brain, they constitute the
natural extension of the simpler localized population models. The commonly
used formulation for NFMs is still that of the first models of the 1970s. It is
common to indistinctly refer to firing rate and to neural field models just as
Wilson-Cowan models. Indeed, the difference between both representations
resides on the spatial dependence of the macroscopic magnitudes appearing
in the equations. Therefore, their derivation is essentially identical and is
based on the same statistical assumptions and simplifications (Bressloff,
2012; Ermentrout, 1998). In section 1.1 we formally present the WC model
and briefly review the main assumptions done in its derivation.

Traditional NFMs generally appear in the form of continuous, first-order
integro-differential equations (Wilson and Cowan, 1973; Amari, 1977),
greatly facilitating the computational and mathematical analysis of the dy-
namics of large networks of spiking neurons. They have proven to be
remarkably accurate in capturing a wide variety of the qualitative spatiotem-
poral dynamics observed in networks of asynchronously spiking neurons
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(Latham et al., 2000; Shriki et al., 2003; Roxin et al., 2005). For exam-
ple, the WC model is known to capture oscillatory dynamics arising in
networks of excitatory and inhibitory neurons having different temporal
dynamics. Moreover, when the pattern of synaptic connectivity depends
on the distance between neurons, these differences can also lead to more
complex spatiotemporal dynamics, including spatially and temporally pe-
riodic patterns, localized regions of high activity (bump and multi-bump
states) and travelling waves such as fronts, pulses, target waves and spirals,
(see (Coombes et al., 2003; Coombes, 2010; Ermentrout, 1998) for extensive
reviews on the matter).

It is precisely their capability of displaying such rich repertoire of dy-
namics together with their mathematical simplicity that has make them
so popular among neuroscientists. As such, they have been broadly used
to model a variety of phenomena, including electroencephalogram (EEG)
and magnetoencephalogram (MEG) rhythms (Jirsa et al., 2001, 2002; Liley
et al., 2002; Nunez and Srinivasan, 2009), geometric visual hallucinations
(Bressloff et al., 2001; Ermentrout and Cowan, 1979; Tass, 1995), short term
memory (Laing and Troy, 2003; Laing et al., 2002; Nykamp et al., 2017),
feature selectivity (Ben-Yishai et al., 1995; Hansel and Sompolinsky, 1998),
motion perception (Giese, 1999), binocular rivalry (Kilpatrick and Bressloff,
2010; Bressloff and Webber, 2012), or the head direction system (Zhang,
1996).

However, neural field models are subject to the same assumptions and
simplifications as their localized firing rate versions. Thus, they do not
represent proper mathematical reductions of the original network of spiking
neurons, but rather are heuristic. Similarly, their derivation assumes com-
pletely uncorrelated activity among neurons. Therefore, it is well known
that traditional NFMs fail in capturing dynamics that arise as a consequence
of the synchronous spiking of neurons (see e.g. Schaffer et al., 2013).

On the other hand, a great deal of experimental observations indicate
that synchronous activity is common in brain tissue, and that the interplay
between excitatory and inhibitory interactions alongside with synchronous
activity may be responsible of generating complex spatiotemporal dynamics
in networks of neurons (Whittington et al., 1995, 2000; Bennett and Zukin,
2004; Bartos et al., 2007; Whittington et al., 2011). Particularly, it has been
shown that the population activity responds to big and rapid changes in
the input currents in a relatively fast manner. This observations have been
reported in studies dealing with spiking neural networks and supported by
experimental data obtained in vitro preparations (see e.g Gerstner, 2000;
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Brunel et al., 2001; Silberberg et al., 2004; Naud and Gerstner, 2012). It is
therefore natural to ask, whether considering correlated activity of neurons,
and therefore the possibility of generating synchronous activity, will modify
and/or expand the dynamical repertoire shown by traditional NFMs.

Objectives
Our aim is to explore this apparent discrepancy between traditional NFMs
and their equivalent networks of spiking neurons, and assess the impact
that synchronous activity may have in shaping the spatiotemporal patterns
displayed by such networks.

In Chapter I we first explore the basic spatiotemporal dynamics described
by traditional (or heuristic) neural field models, in terms of the fundamental
mechanisms that give place to the different patterns observed. Next, we
compare them with those observed in equivalent networks of spiking neurons.
We observe that spiking neural networks display a variety of synchrony-
related macroscopic patterns that are not captured by their counterpart
population models, unless additional elements are heuristically added to their
mathematical description. Specifically, perturbations to the asynchronous
state display transient oscillatory behaviors, which in the case of a spatially
distributed networks strongly depend on the synaptic connectivity between
individual neurons. In fact, we show that ring networks of spiking neurons
display a number of discrete modes of oscillation, resembling those of a
tense string. In addition, we observe that the stability of the asynchronous
regimes in networks of excitatory and inhibitory neurons also depends on
the synchronization of neurons, which under some circumstances may lead
to persistent oscillatory states, that are not predicted by the stability analysis
of neural field models.

In order to investigate and characterize these synchrony-based spatiotem-
poral patterns, in section 1.3 we present and review a recently published fir-
ing rate model for a globally coupled heterogeneous population of quadratic
integrate-and-fire (QIF) neurons (Montbrió et al., 2015).

In Chapter II we apply the same method as in (Montbrió et al., 2015) to a
spatially extended network of QIF neurons to include nonlocal, instantaneous
interactions. The resulting neural field model (QIF-NFM) explicitly takes
into account sub-threshold integration and is therefore capable of capturing
dynamics arising due to synchronous spiking of neurons. We then are able
to investigate the reported spatiotemporal patterns with the newly obtained
neural field model by means of both linear and nonlinear stability analysis
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of the spatially homogeneous state. We find that such oscillatory behavior
is characterized by the presence of an infinite number of oscillation modes,
linked to the Fourier components of the spatial pattern of the synaptic
connections.
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CHAPTER 1

Neural field models and their failure to
describe spike-synchrony

“There cannot be a language more universal and more simple, more free
from errors and from obscurities, that is to say more worthy to express
the invariable relations of natural things”

— Joseph Fourier, The Analytical Theory of Heat (1878)

1.1 Traditional neural field models
Since the appearance of the first computational models describing the dy-
namics of single neurons in the cortex, networks of large number of spiking
neurons have been the natural benchmark model for studying the collective
dynamics of cortical neurons. Their derivation includes the most important
physiological elements, such as sub-threshold voltage dynamics, spiking,
or discontinuous synaptic interactions. Thus, they are generally considered
to be biologically realistic models, and have proved to be extremely useful
in the qualitative study of many neuronal mechanisms. However, given
the astonishing number of neurons found in any small region of the cortex,
network models are generally unpractical and time consuming. Furthermore,
their complexity makes any analytical treatment unfeasible without a proper
reduction in the dimensionality of their descriptions (Amit and Brunel, 1997;
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Brunel and Hakim, 1999; Brunel, 2000; Brunel and Wang, 2003; Shriki
et al., 2003).

This paradigm motivated many researchers to develop continuum theo-
ries of brain organization in an attempt to reduce the enormous complexity
of neuronal interactions to simpler, macroscopic models that could become
analytically tractable. The resulting mathematical models of cortical tissue
are often referred to as neural field (NF) models, and they are generally
presented as simple, phenomenological models of neuronal activity in the
form of continuous, first-order differential equations (see e.g. Wilson and
Cowan, 1973; Amari, 1977; Nunez, 1974; Ermentrout, 1998; Coombes,
2005; Bressloff, 2012; Coombes et al., 2014; Deco et al., 2008), which
can be analyzed by means of standard techniques for differential equations.
These models have shown qualitative agreement with their equivalent net-
works of spiking neurons, for a wide range of dynamical states (Latham
et al., 2000; Shriki et al., 2003; Roxin et al., 2005). Specifically, they have
proven to be remarkably accurate in capturing spatiotemporal patterns aris-
ing in networks of interacting excitatory and inhibitory neurons (Amari,
1977; Ermentrout and McLeod, 1993; Pinto and Ermentrout, 2001a,b).

However, their derivation follows an heuristic approach based on statisti-
cal assumptions, rather than on the specific dynamics of single neurons, and
therefore it is generally difficult to quantitatively relate their dynamics with
the specific details of their representative microscopic state. Particularly,
neural field models are derived assuming that the macroscopic state only
depends on the all-or-none spiking mediated interactions between neurons.
Therefore, among all the dynamics displayed by a single neuron, the only
element that is taken into account is the spike, thus ignoring all sub-threshold
dynamics occurring in between the spikes. Indeed, this assumption implic-
itly ignores any existing correlations between neural spikes which should be
duly tracked by the precise way in which the membrane potential evolves
between spikes. In other words, tracking the sub-threshold dynamics is
necessary to preserve the correlations that may arise through the network.

In order to better understand the concepts above, we now present the
Wilson and Cowan (1972) model and its spatially extended version (Wilson
and Cowan, 1973), often considered as the canonical neural field model.
We will be referring to these traditional models as the heuristic neural field
models (H-NFMs), or simply the WC model, to distinguish them from the
firing rate equations we will present in Section 1.3. The simplest form of
the WC equations describes the activity of the interacting excitatory (e) and
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inhibitory (i) sub-populations in terms of their respective firing rates, Rα

(α = e, i):

τe
dRe

dt
= −Re + Φ (τeJeeRe − τeJieRi + η̄e + Pe(t)) , (1.1a)

τi
dRi

dt
= −Ri + Φ (τiJeiRe − τiJiiRi + η̄i + Pi(t)) , (1.1b)

where Φ(I) is the steady-state current-to-rate transfer function (also known
as f-I function), which models the response of the population to input
currents I . It typically consists of a sigmoid function that provides a phe-
nomenological description of the level of activity of a population of neurons
with thresholds distributed according to a unimodal distribution. As such,
the f-I curve can be seen as a cumulative distribution function of the inputs
received by neurons. Both neuronal sub-populations, α = e, i, receive synap-
tic inputs from neurons in the β = e, i sub-population with synaptic weights
Jαβ. Similarly, each sub-population receives external inputs, η̄α + Pα(t),
where we distinguish between constant and time-varying inputs. Finally, τα
is a time constant determining the temporal scale of the dynamics of each
sub-population. Due to the heuristic nature of the WC equation, the choice
of the time constant is somehow arbitrary, as we will see next. A schematic
representation of this set up can be seen in Fig. 1.1(a) on page 14, where
two coupled “cortical units” (gray background) are depicted. The dynamics
of each uncoupled cortical unit (1, 2) would obey Eqs. (1.1).

A quick revision to the seminal work of Wilson and Cowan (1972)
reveals the assumptions made for obtaining this type of firing rate equations:

i) The heterogeneity of neuronal population, modeled as the distribution
of a given microscopic neuronal parameter, is generally averaged out to
a single macroscopic variable. In their paper, the mean field approach
reduces the initial distribution of membrane potentials to the neuronal
response function Φ. This assumption only takes into account the
first passage time of neurons through the threshold potential, that once
averaged over the whole membrane potential distribution, provides a
measure of the population firing rate. However, this assumption is
ignoring any dynamical effects that higher moments of the distribution
may have over the macroscopic dynamics (Cowan, 2014).

ii) Similarly, correlations between the level of excitation of a cell and the
probability that the cell is sensitive are assumed to be negligible.

11



iii) Probably, the most famous simplification is that of the time coarse
graining: by considering that synaptic activation behaves as a low-
pass filter, the authors reduce the temporal integrals to time-averaged
quantities, thus simplifying the original system composed of a couple
of integrodifferential equations to Eqs. (1.1). This smooths out fast
transients occurring due to synaptic dynamics and makes difficult to
interpret the temporal scale of the equations. Often this last step is not
applied, and instead, the temporal integral is written in the form of a
differential equation* which accounts for the dynamics of the synapses.
However, the system becomes at least 4-dimensional and consequently
harder to mathematically analyze.

In this chapter we will explore the consequences that the first two assump-
tions may have in the macroscopic dynamics of neuronal populations. The
resulting firing rate model corresponds to a system in which the activity of
neurons is uncorrelated, and is sometimes taken as a macroscopic descrip-
tion in the limit of asynchronous activity. Furthermore, these assumptions
are probably the reason why Eqs. (1.1) are only expressed in terms of the
average firing rate, and not in terms of any other macroscopic magnitude
related to the membrane potentials of neurons.

Notice that, after the third simplification is considered, the resulting time
constant τα could be interpreted either as the membrane time constant or the
synaptic time constant. By assuming instantaneous synapses, one can fairly
interpret τα to be the membrane time constant.

The above equations (1.1) describe the dynamics of local populations
of neurons, the purpose of which is to model neural ensembles containing
similar type of neurons located at specific places of the brain, for instance at
the different layers of cortical columns. However, a great deal of electrophys-
iological and anatomical data indicate that the cerebral cortex is spatially
and functionally organized (see, for example Mountcastle, 1997; Martin,
1988; Lund et al., 2003; Lodato and Arlotta, 2015). Therefore neural field
models represent the natural extension of Eqs. (1.1) where neuronal interac-
tions, and consequently the activity of the neurons, are spatially dependent.
They typically consist on a couple of partial integrodifferential equations
describing the temporal and spatially dependent activity of populations of
excitatory and inhibitory neurons. However, analytically dealing with partial

*A general model of synaptic kinetics is the alpha function, which accounts for both
rise and decay of synaptic activation described by a second order ODE, with different time
constants for each process.
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differential equations is generally difficult and a common simplification
comes from assuming spatially dependent global connectivity. That is, by
considering nonlocal coupling, one can write the spatial interactions as a
global mean field, removing the spatial derivatives from the equations. The
connectivity then is a function of the distance between neurons, rather than
the position of neurons. Notwithstanding, such systems retain the majority
of the dynamics shown by their counterpart localized versions (Roxin et al.,
2005; Roxin and Montbrió, 2011; Martı́ and Rinzel, 2013).

The resulting ordinary integrodifferential system is* (Ermentrout and
Cowan, 1980):

τe
∂Re

∂t
= −Re + Φe

[
τe

∫
Ω

[
Jee (|x− y|)Re (y, t)

− Jie (|x− y|)Ri (y, t)
]
dy + η̄e + Pe(x, t)

]
,

(1.2a)

τi
∂Ri

∂t
= −Ri + Φi

[
τi

∫
Ω

[
Jei (|x− y|)Re (y, t)

− Jii (|x− y|)Ri (y, t)
]
dy + η̄i + Pi(x, t)

]
.

(1.2b)

These equations differ from the localized E-I model (1.1) in that variables are
now space dependent, and that the synaptic activation is now represented in
terms of an integral (or a spatial convolution) where the functions Jαβ |x− y|
describe the weight of all synapses from cells of the αth population to the
βth population a distance |x− y| away. Here the populations are arranged
in one dimension on a domain Ω. All the other elements follow the same
interpretation as in (1.1). The simplest one-dimensional topology is given by
a ring network, which eliminates boundary conditions. The expansion from
the localized E-I network (1.1) to a ring neural field network is schematically
represented in Fig. 1.1(a,b) on the next page, top panels. Panel (a) shows a
pair of cortical columns, each modeled according to Eqs. (1.1) and coupled
via inhibitory synaptic connections. The ring network in panel (b) can be
thought as the succession of several of those cortical columns where the
synaptic projections connect all columns following a specific connectivity
kernel.

*To facilitate the notation we have avoided explicitly writing the dependence of the
variables on x and t; Rα = Rα (x, t).
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Figure 1.1: Network diagrams representing cortical columns (gray area), each
composed of an excitatory and an inhibitory pull of neurons. In panel (a), an
example network containing two cortical columns is shown, while in panel (b), the
extension to a continuum ring of the previous network is schematically depicted.
Top diagrams correspond to the full network [Eqs.(1.1) and (1.2)], containing
separated ensembles of excitatory and inhibitory neurons, whereas in the bottom
panels the equivalent effective model (Eq. (1.3) for the ring model) is shown. The
connectivity kernels located under each network diagram represent the homologous
profiles for each system, i.e. both represent local excitation and global inhibition.

The interpretation given so far considers the neural field as a continuous
sequence of spatially connected “cortical columns” (Wilson and Cowan,
1973; Amari, 1977; Coombes, 2005; Coombes et al., 2014). Nevertheless,
an alternative interpretation in which individual neurons are distributed
according to the variable x is also possible, for example to model feature
selectivity (Ben-Yishai et al., 1995; Hansel and Sompolinsky, 1998; Roxin
et al., 2005; Roxin and Montbrió, 2011) or networks with arbitrary degree
distributions (Nykamp et al., 2017).
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Effective model

A general analysis of Eqs. (1.2) is technically difficult even though it is
the natural extension to the previously presented firing rate equations (1.1).
With that goal in mind—but out of the scope of this thesis—-, we first
study the dynamics of the simplified effective model. By assuming that the
excitatory and the inhibitory neurons/populations follow the same dynamics,
i.e. τe = τi = τm, Jee = Jei = Je, Jii = Jie = Ji, Φe = Φi = Φ,
η̄e = η̄i = η̄, then Re = Ri = R and Eqs. (1.2) become:

τm
∂R

∂t
= −R + Φ

[
τm
2π

∫ π

−π
J (|x− y|)R (y, t) dy + η̄ + P (x, t)

]
,

(1.3)

H-NFM

where the synaptic connectivity kernel, J , is the combination of the ex-
citatory and the inhibitory contributions, J(x) = Je (|x|) − Ji (|x|), and
therefore represents an effective mixed coupling which may have both posi-
tive and negative regions (see the effective connectivity kernels in Fig. 1.1).
Note that the effective model assumes that any perturbations, Pα, applied
on the full model (1.2) obey Pe = Pi = P , such that the activity of both
sub-populations remains equal at any time. Finally, we have consider the
simplest one-dimensional topology: the ring network of length 2π, i.e.
x ∈ [−π, π). Fig. 1.1 shows schematic representations of the network for
the different conceptual stages between the two-column paradigm and the
effective ring network described by Eq. (1.3). The effective networks in the
lower diagrams (in purple) represent simplified versions of their counterpart
full models in the top diagrams (blue circles and red triangles).

The transition from the discrete two-column model in Fig. 1.1(a) to the
continuous ring model in Fig. 1.1(b) is further emphasized by the shape of
the connectivity kernels in each case. The connectivity profile in Fig. 1.1(d)
follows a simple cosine function, J(x) = J0 + J1 cos(x) with J0 = 0, but a
more general connectivity may be applied by considering a general cosine
series (symmetric Fourier series)

J (x) = J0 + 2
∑
K

JK cos(Kx), K ∈ Z. (1.4)

The choice of the connectivity coefficients JK generally follows physiologi-
cal assumptions and is therefore sensitive to the particular network in mind.
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In the next section we review some of the spatiotemporal patterns arising in
such networks for different connectivity profiles. But first, we explore the
possible dynamics offered by Eq. (1.3) by analyzing the linear stability of
the fixed points.

If we consider the general connectivity kernel (1.4), Eq. (1.3) admits
two families of spatial solutions. On one hand, at the spatially homogeneous
state (SHS) the activity of the network is flat R (x, t) = R(t), and the spatial
convolution corresponding to the synaptic activation is just τmJ0R(t). The
resulting state is thus equivalent to that obtained for each sub-population
equation, (1.1a) or (1.1b), when the cross couplings vanish, Jαβ = 0 (α 6=
β). That is, it corresponds to the WC equation of a single recurrently coupled
population that we write here for future reference:

τm
dR

dt
= −R + Φ (I) , (1.5)

Therefore, the SHS is given by

R∗ = Φ (τmJ0R∗ + η̄) , (1.6)

where R (x, t) = R∗. Although the resulting fixed point is equivalent to
that of a single excitatory (J0 > 0) or inhibitory (J0 < 0) population, the
stability, and by extension, the response of the system may depend on higher
order Fourier coefficients. Indeed, with the ansatz

R (x, t) = R∗ +
∞∑
K=0

εKe
iKx+λKt, (1.7)

with εK � 1, we obtain the following real-valued eigenvalues

λK = − 1

τm
+ JKΦ′∗, (1.8)

where the slope Φ′∗ is evaluated at the fixed point (1.6), and is a positive
function provided the transfer function is an increasing function. The SHS
will destabilize (λK > 0) via a pattern-forming (Turing) bifurcation at a
critical value of the connectivity mode J cK . Yet, the response of the stable
SHS, i.e. with λK < 0, to perturbations of wavenumber K will always
follow an exponential relaxation with a characteristic time constant propor-
tional to the corresponding value of the connectivity mode JK , as shown
in Fig. 1.2(a); the larger the value of the connectivity the longer it takes
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Figure 1.2: Time series of the H-NFM (1.3) corresponding to the SHS (J1 = 10),
and to the bump state (J1 = 14). Panel (a) shows time series corresponding to
the position x = 0 of the response of the system to a brief spatially modulated
perturbation of wavenumber K = 0, 1, 2, 3 applied at t = 0.4 s. In panel (b) the
same simulations are plotted in a space-time representation. Panels (c) and (d) show
the transition from the unstable HS to the BS. Parameters: η̄ = 4, τm = 20 ms,
JK = 0 for all K 6= 1, 2, 3; J2 = 7.5, J3 = −2.5. Eq. (A.1.4) was used for the
transfer function Φ. See Appendix 2.D for specifics related to the perturbation.

for the activity to decay to the equilibrium state. There, we used different
values of the connectivity modes K = 1, 2, 3, such that perturbations of
each mode exhibit different relaxation times. At the critical value J cK the
relaxation time approaches infinity indicating the bifurcation boundary. This
dynamical property was in part used by Martı́ and Rinzel (2013) to model
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feature categorization processes in the sensory areas of the brain.
The second family of spatial solutions arises at the Turing bifurcation.

Above the critical value JK , a spatially inhomogeneous pattern of activity
arises consisting of K equidistant bumps of activity. This is the so-called
bump state (BS), depicted in Figs. 1.2(c) and (d) for K = 1. We skip further
analysis of the inhomogeneous states. However, numerical simulations show
that the bump state is stable and exhibits the same exponential relaxation
process as the homogeneous state. We can conclude then, that even though
the ring neural field model (1.6) actually combines the effects of excitatory
and inhibitory neurons, such interactions are only manifested in the ability
of generating bump states and in the different decaying times showed when
perturbing the SHS.

In the following section we review some of the spatiotemporal patterns
that can arise in similar neural field models when additional physiologi-
cally inspired elements are heuristically added to the dynamical equations.
Specifically, we will show how these patterns are closely related to some
fundamental mechanisms which are well known to generate oscillatory
dynamics in neuronal networks.

1.1.1 Excitation-inhibition based spatiotemporal
phenomena in NFM

A great deal of experimental evidence shows that any nervous process is
dependent upon the interaction of both excitatory and inhibitory neurons.
Such negative-positive interplay is known to produce a variety of spatiotem-
poral patterns which can be categorized into oscillatory behaviors, spatial
patterns, and into dynamics which are a combination of the two.

In order to better understand the dynamical features shown by neural field
models, we first focus on exploring the most simple mechanisms capable of
generating oscillatory dynamics. Such mechanisms have been extensively
studied after experimental observations done in vivo. Measures of local field
potentials (LFP) in the hippocampus show prominent oscillations in the theta
band (4-10 Hz) and the gamma band (30-80 Hz) (Buzsáki and Draguhn,
2004). Recent findings link them with tasks related to spatial navigation
memory (Buzsáki and Moser, 2013), which have elicited major interest on
understanding the origin and functional role of such oscillations.

Following a great deal of experimental research in vitro (Whittington
et al., 1995; Fisahn et al., 1998; Whittington et al., 2011; Gloveli et al., 2010)
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(see Bartos et al., 2007, for a review), gamma rhythms have been divided
in two major categories: on one hand, oscillations generated in networks of
only inhibitory neurons (interneuron), and on the other hand, those generated
in networks composed of both inhibitory (i) and excitatory (e) (pyramidal)
neurons. The first category is generally known as ING oscillations while the
second can be divided between PING and PG (Persistent Gamma) oscilla-
tions. Notice that this categorization does not cover all oscillatory behavior
in the brain, not even all Gamma oscillations, but we focus on ING and
PING mechanisms because they involve networks motifs that are common
throughout the cortex and the hippocampus.

1.1.1.1 Interneuron Network Gamma (ING) oscillations

Although seemingly paradoxical, the simplest form of gamma generation is
found in networks were the dynamics are driven exclusively by interneurons
(inhibitory neurons). A positive drive is facilitated by external excitatory
inputs, which alongside a delayed feedback inhibition (provided by recurrent
synaptic connections), establish the typical excitatory-inhibitory loop neces-
sary to produce robust oscillations. The mechanism, which is schematically
depicted in Fig. 1.3(a), consists on an ensemble of recurrently coupled in-
hibitory (i) neurons subject to sufficiently strong excitatory external inputs η̄.
However, the precise way in which interneurons are recruited and generate
the subsequent oscillations is not trivial.

First, we may ask what is the basic neuronal substrate necessary to
hold such mechanism. This question has been theoretically addressed with
different approaches, including extensive computational studies carried on
in networks of spiking neurons (Wang and Buzsáki, 1996). Following those
studies there is large consensus on the basic requirements needed to generate
ING oscillations (Buzsáki and Wang, 2012):

1. Recurrent connection between inhibitory neurons, represented by the
closed loop in Fig. 1.3(a).

2. A time constant, representing the synaptic transmission, which intro-
duces an effective delay in the spread of inhibition.

3. High enough excitation (red input in Fig. 1.3(a)), sufficiently depo-
larizing interneurons such that they are able to fire at high enough
rates.
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Figure 1.3: Schematic representation of interneuron network gamma (ING) and
pyramidal interneuron network gamma (PING) mechanisms and their resulting
oscillatory dynamics. In panels (a) and (c) blue circles and red triangles correspond
to the inhibitory (i) and the excitatory (e) sub-populations, respectively. Accordingly,
blue and red lines correspond to inhibitory and excitatory connections. The dashed
(transparent) elements are not needed to generate the oscillations. Top panels:
ING mechanism. (a) Minimal network for ING oscillations requires an inhibitory
recurrently coupled population receiving external excitatory inputs, η. (b) Example
of ING oscillations. Black arrows indicate the self-inhibition effect produced when
the activity of the population is high, which is the origin of the oscillations. Bottom
panels: PING mechanism. (c) Minimal network for PING oscillations requires a
pair of cross-coupled excitatory and inhibitory populations. (d) As in (b), black
arrows indicate the order in which each cycle is generated. Both time series were
generated using WC model [Eq. (1.9)] with a time constant τm = 10 ms, see
Appendix A for details of the numerical simulations.

Synaptic kinetics are therefore key in generating these type of oscillations,
and their time scale greatly determines the frequency of the macroscopic
oscillations. Longer time constants will delay the inhibitory volley slowing
the overall cycle, and therefore decreasing the frequency.
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The ING mechanism has been thoroughly studied by means of simula-
tions of networks of spiking neurons, and surprisingly, two very different
microscopic scenarios were found compatible with the macroscopic oscilla-
tions:

1. On one hand, oscillations due to neural synchronization may arise
when neurons have similar spiking frequencies. An initial group of
neurons may start firing almost synchronously, increasing the activity
of the population, which at the same time, inhibits the rest of the
neurons and brings them closer to the group. After some time, a
larger fraction of neurons will be firing synchronously, producing
the macroscopic oscillations (Van Vreeswijk et al., 1994; Wang and
Buzsáki, 1996). Therefore, in this situation large fractions of neurons
become frequency-entrained, firing with frequencies equal or close
to the macroscopic oscillation. This intuitive scenario is nonetheless
fragile when heterogeneity in the population is sufficiently increased.

2. On the other hand, in a less intuitive scheme (Brunel and Hakim,
1999; Brunel and Wang, 2003) neurons receive stochastic inputs at
large rates, resulting in a highly asynchronous state. When recurrent
inhibition is powerful enough, single neurons fire at low rates despite
the strong external excitatory inputs. Moreover, the E-I balanced cur-
rent remains sub-threshold, not only maintaining neurons at low firing
rates, but also facilitating a fluctuation-driven regime, therefore caus-
ing irregular firing. Yet, random fluctuations will eventually increase
the activity, recruiting enough neurons to produce a a large inhibitory
volley that will arrive after a brief period of time due to synaptic
filtering, strongly hyperpolarizing neurons and dramatically lowering
the activity of the population. Once the inhibition is shuttered, the
population activity increases again and the cycle is repeated. In this
situation, neurons fire at much lower frequencies than the population
frequency and in a highly irregular fashion, as compared to the pre-
vious scenario where neurons fired regularly close to the population
frequency.

These two variants are sometimes known as the synchronous regular
and synchronous irregular ING mechanisms. Anyhow, the macroscopic
behavior is caused by the synchronous firing of a fraction of the population,
and macroscopic measures will, in most cases, look alike.
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Note that, even though the ING mechanism only takes into account
inhibitory neurons, in the brain interneurons are densely connected to pyra-
midal cells—-dashed elements in Fig. 1.3(a). Nevertheless, the ING mech-
anism is still relevant in networks where connections between pyramidal
and interneuron cells are not affecting the overall macroscopic dynamics.
Experimental results showed that in such networks, breaking the pyramidal-
interneuron connections did not affect oscillatory activity, hence, proving
pyramidal cells to be irrelevant in shaping macroscopic oscillations. Ac-
cordingly, the activity of the pyramidal sub-population in such situations
is entirely dependent on the intrinsic activity of the inhibitory network,
showing the same population frequency and nearly phase locked to it—-see
Fig. 1.3(b).

ING oscillations can be described by means of the effective neural field
model [Eq. (1.3)] if we take a flat inhibitory profile J (|x|) = J0 < 0. Also,
following the above requirements one must include an additional equation
to model the synaptic kinetics, which is needed to effectively generate the
temporal loop between excitation and inhibition. The resulting neural field
description is equivalent to the single population description (1.5) with
J0 < 0 plus a synaptic equation, and takes the form (Wilson and Cowan,
1972; Cowan, 2014):

τm
dR

dt
= −R + Φ (τmJ0S + η̄ + P (t)) , (1.9a)

τd
dS

dt
= −S +R, (1.9b)

where again, −τmJ0S accounts for the recurrent inhibitory connections
and S and J0 < 0 being the synaptic activation and the synaptic strength,
respectively. Finally, τd is the synaptic time constant (Ledoux and Brunel,
2011; Keeley et al., 2017).

Eqs. (1.9) meet all the requirements of a typical network exhibiting ING
oscillations. Nevertheless, as we can prove by a linear stability analysis,
Eqs. (1.9) cannot generate sustained oscillations. The fixed point is given by
the expression

R∗ = Φ (τmJ0S∗) , S∗ = R∗, (1.10)

that has a single solution provided J0 ≤ 0. The eigenvalues associated to
the fixed point (1.10) are

λ± = −A
[
1±
√

1−B
]
, (1.11)
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with
A =

τm + τd
2τmτd

, B =
4τmτd

(τm + τd)
2 (1− τmJ0Φ′∗) .

Φ′∗ is the derivative of the transfer function at the fixed point, and as we may
recall, is always a positive function provided Φ is an increasing function,
and thus B > 0. Therefore, the real part of the eigenvalues is always
negative, and accordingly, the fixed point is either a stable node (B < 1)
or a stable focus (B > 1). For sufficiently large inhibition, the stable node
becomes a focus and therefore the system exhibits damped oscillations when
a perturbation is applied, as shown in Fig. 1.4(a).

Adding time delays: the equation (1.9b), describing synaptic kinetics,
introduces the necessary feedback mechanism into the WC equation (1.9a),
but something else is needed to account for the effective time delay necessary
to generate the oscillations. In order to obtain persistent oscillatory dynamics,
an explicit fixed time delay is introduced in Eq. (1.9) as a heuristic proxy
for the combined effects of synaptic and sub-threshold integration (Roxin
et al., 2005; Roxin and Montbrió, 2011; Brunel and Hakim, 2008; Keeley
et al., 2017). The resulting equations are:

τm
dR

dt
= −R + Φ (τmJ0S + η̄ + P (t)) , (1.12a)

τd
dS

dt
= −S(t) +R(t−D), (1.12b)

with D > 0 representing the effective delay. Actually, the synaptic equation
(1.12b) is no longer necessary and one can get rid of it by taking the limit of
fast synapses, τd → 0, thus reducing the above equations (1.12) to a single
equation heuristically describing ING oscillations (H-ING),

τm
dR

dt
= −R + Φ (τmJ0R(t−D) + η̄ + P (t)) . (1.13)

H-ING

The above equation is infinite dimensional and is not easy to study. Moreover,
it can be prove that the system is formally equivalent to the H-NFM (1.5)
with nth order synapses, at the limit n→∞.

Also, it can be prove that the period of the oscillations is between four
times and two times the delay, depending on whether the delays are small
or large (Roxin et al., 2005; Roxin and Montbrió, 2011; Brunel and Hakim,
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Figure 1.4: Time series of the H-NFMs for different synaptic configurations
showing the response of the system to the transient step current in panel (d). The
dashed line corresponds to the excitatory sub-population’s activity that is driven by
the inhibitory one. (a) H-NFM with synaptic kinetics [Eqs. (1.9)]. (b) with both
synaptic kinetics and delay [Eqs. (1.12)]. (c) with delay [Eq. (1.13)]. In panels (b)
and (c) the system starts at an unstable fixed point. Parameters: η̄i = 8, η̄e = 5,
Jii = 45, Jie = 15, τm = 10 ms. For panels (a) and (b): τd,i = 5 ms, τd,e = 2 ms.
For panels (b) and (c): D = 5 ms. In all cases we used the transfer function, Φ, of
a LIF population (A.1.4).

2008). It is worth mentioning that we could also perform the limit of
slow synapses of equation (1.12) (see section 1.3.5.1) obtaining a similar
expression for the synaptic activation:

τd
dS

dt
= −S + Φ (τmJ0S(t−D) + η̄ + P (t)) . (1.14)

Finally, an example of the oscillatory dynamics generated by Eqs. (1.12)
and Eq. (1.13) is shown in Fig. 1.3(b), where we used the f-I curve, Φ, of
a LIF population [Eq. (A.1.4)] with the diffusion coefficient σ = 1. The
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inclusion of synaptic kinetics modifies the frequency of the oscillations
since its directly affecting the recurrent inhibitory feedback, thus effectively
slowing the overall dynamics and decreasing the frequency. In Fig. 1.4 a
comparison between the three versions of the H-NFM is shown, i.e. only
with synaptic kinetics (1.9), with synaptic kinetics and delays (1.12), and
only with delays (1.13). In all three cases, a perturbation P (t) of duration
0.05 s was applied at 0.1 s. Note that, in the second and third case the system
is set in an unstable state, which explains the small fluctuations in the third
plot that arise just before the perturbation is applied.

So far we have seen that the H-NFM needs the introduction of a delay
parameter in order to successfully describe ING oscillations. Next, we
discuss the other oscillatory mechanism, i.e. the PING mechanism, and its
representation in the neural field model.

1.1.1.2 Pyramidal Interneuron Network Gamma (PING) oscillations

In contrast to ING oscillations, there are situations in which the removal
of pyramidal to interneuron connections do actually affect the oscillatory
dynamics of the network (Roberts et al., 2013). The study of oscillations
in reciprocally connected E-I networks goes back to the 1970s (Wilson
and Cowan, 1972; Nunez, 1974). In a way, they represent a much more
intuitive oscillatory mechanism, since the excitation (positive) and inhibition
(negative) drives appear explicitly in the model. The PING cycle [Fig. 1.3(c)
and (d)] starts with a strong input driving excitatory cells to fire. A large
enough recruitment of pyramidal cells sends an excitatory volley to the
interneurons, producing a sudden increase of their activity. The interneuron-
pyramidal connections facilitate the rapid inhibition of the excitatory sub-
population which strongly depolarizes the neurons, and thus, interrupts the
excitation of the inhibitory sub-population. Consequently, the activity of
inhibitory neurons falls dramatically, allowing the excitatory sub-population
to recover and to repeat the cycle one more time.

Once again, the precise way in which the recruitment and recovering
processes are done is not unique. Similar to ING oscillations, the E-I mech-
anisms can also exhibit two distinct regimes, depending on the regularity of
the spikes of single neurons (Wang and Buzsáki, 1996; Brunel and Wang,
2003). In any case, the recruiting process of excitatory neurons is thought
to occur synchronously, eliciting many simultaneous spikes that contribute
to increase the activity of the excitatory sub-population. Additionally, in
vitro experiments (Kopell et al., 2010; Whittington et al., 2011) show that
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oscillations are short lived and that both, pyramidal neurons and interneu-
rons, present high spike rates. Moreover, experiments conducted in in vivo
(Tiesinga and Sejnowski, 2009; Buzsáki and Wang, 2012) revealed that cells
fired at approximately the same frequency as the population oscillations, and
that pyramidal cells were firing just before the interneurons, as it is expected
to happen in this mechanism.

The robustness of PING oscillations critically depends on the mean E-I
ratio (Buia and Tiesinga, 2006; Tiesinga and Sejnowski, 2009, 2010; Brunel
and Wang, 2003), which modulates the synchronicity in the network. Gen-
erally speaking, the principle of fast excitation versus slow inhibition must
hold, which means that increasing the inhibitory feedback—-for example,
by strengthening the interneuron to pyramidal couplings—-may destroy
synchrony. Note that an increase in the inhibitory feedback results in a
decrease in the activity of the excitatory sub-population, which reduces the
frequency of the excitatory neurons, and thus effectively slows down the
excitatory sub-population. In contrast, when the E-I ratio is sufficiently
increased, synchronization emerges spontaneously out of the asynchronous
regime and neurons lock to the macroscopic oscillations.

The minimal network configuration of the PING mechanism is schemati-
cally depicted in Fig. 1.3(c). Its description requires explicitly differentiating
between the excitatory and the inhibitory sub-populations, as they both re-
ceive different mean synaptic inputs. In other words, in order to have the E-I
feedback loop it is necessary to have a system were one sub-population is
sending excitatory inputs to a second sub-population while the latter sends
inhibitory inputs back to the former. As such the effective model shown at
the bottom panel of Fig. 1.1(b) cannot account for PING oscillations because
both populations are identical and receive the same excitatory or inhibitory
synaptic input. Similarly, the effective neural field model (1.3) does not
meet the aforementioned requirements. Therefore, we do not expect those
effective models to produce PING oscillations, but rather a different type
of patterns. Namely, the particular network architecture shown in Fig. 1.1
produces the so-called winner-take-all (WTA) pattern that we will discuss in
the next section.

Nonetheless, imposing different temporal dynamics to the excitatory
and to the inhibitory neurons in the full model (1.2), by either considering
different time scales, τe < τi, or different input currents, η̄e > η̄i, we can
also obtain PING oscillations. Next, we briefly study the conditions in which
such oscillations arise so that we may compare them with the results obtained
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from networks of spiking neurons that we will present later in this chapter.
For the sake of simplicity we only analyze the stability of the spatially
homogeneous state (SHS) and therefore we consider the equivalent two
sub-population system (1.1) which contemplates four synaptic interactions:
e − e, e − i, i − e and i − i. We can reduce the number of parameters
by rescaling the membrane time constants τ = τe/τi, and additionally,
without loss of generality, by considering the external currents to be equal
and fixed, η̄e = η̄i = 1. In fact, as we will see in the following section,
both parameters, τα and η̄α, are associated to the mean frequency of single
neurons, and therefore, have similar effects over the population activity.
Moreover, the temporal dynamics of the E-I system are characterized by
the difference of these sets of parameters, i.e. by the difference in the mean
frequency of the populations. After rescaling, Eqs. (1.1) become

τ
dre

dt̃
= −re + Φτ (τJeere − τJieri + 1 + Pe(t)) , (1.15a)

dri

dt̃
= −ri + τΦτ (Jeire − Jiiri + 1 + Pi(t)) , (1.15b)

where the rescaled firing rate is rα = Rατi, time is t̃ = t/τi, and the transfer
function Φτ is the rescaled version of Φ (see Eqs. (1.50) and (A.1.4) for
details). For Pα(t) = 0, the fixed points of Eqs. (1.15) are given by the self
consistent relations:

re,∗ = Φτ (Ie) , and ri,∗ = τΦτ (Ii) , (1.16)

with Ie = 1 + τJeere − τJieri,∗ and Ii = 1 + Jeire,∗ − Jiiri,∗. For better
readability, from now on we denote Φα = Φτ (Iα).

As in the previous section, we study the linear stability of the fixed
points (1.16) to determine whether an oscillatory instability can happen or
not. Notice that, as already mentioned above, the results obtained from the
current E-I system can be extrapolated to the full ring network (1.2) when
the activities of the excitatory [Eq. (1.2a)] and the inhibitory [Eq. (1.2b)]
populations remain homogeneous. The Jacobian of the linearized system is

J =

(
− 1
τ

+ τJeeΦ
′
e −τJieΦ′e

τJeiΦ
′
i −1− τJiiΦ′i

)
, (1.17a)
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and its trace and determinant are given by

tr(J) = −
(

1 + τ

τ

)
− τJiiΦ′i + τJeeΦ

′
e, (1.17b)

det(J) =
1

τ
+ JiiΦ

′
i − τJeeΦ′e + τ 2Φ′eΦ

′
i (JeiJie − JeeJii) . (1.17c)

The oscillatory instability arises if

−
(

1 + τ

τ

)
− τJiiΦ′i + τJeeΦ

′
e ≥ 0, (1.18)

which, given that Φ′α > 0, and Jαβ ≥ 0, requires Jee > 0. Therefore,
recurrent excitation, Jee must be strong enough for traditional rate models
[(1.1) or (1.2)] to show PING oscillations. On the face of things, we may
define the minimal firing rate equations for PING oscillations as

τ
dre

dt̃
= −re + Φτ (τJeere − τJieri + 1 + Pe(t)) , (1.19a)

dri

dt̃
= −ri + τΦτ (Jeire + 1 + Pi(t)) . (1.19b)

H-PING

where Jee, Jei and Jie are all positive numbers. It is worth mentioning that,
perturbations applied asymmetrically to the sub-populations, i.e. Pe 6= Pi,
did not generate any new qualitative dynamics (not shown) neither in the
above equations nor in the full ring network (1.2), except for a difference in
the amplitude of the response of each sub-population, which modified their
respective relaxation decay times.

These simple mechanisms, ING and PING, constitute the fundamental
way in which temporal patterns arise in neural field models. Summariz-
ing, all oscillatory dynamics arise as the interplay between fast excitation
followed by an inhibitory reaction. The precise way in which such loop
is obtained in neural field models rests upon the different choices of the
connectivity profile, and may require the use of temporal delays to effec-
tively force the temporal mismatch between the excitation and the inhibition
(Roxin et al., 2005; Roxin and Montbrió, 2011).

1.1.1.3 Spatially inhomogeneous patterns: bump states (BS)

Spatially dependent synaptic connectivity is known to produce persistent
localized regions of higher activity in the network as the one shown in
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Fig. 1.2(c,d) on page 17. These states are also known as bump states (BS)
(Wilson and Cowan, 1973; Amari, 1977). Particularly, it has been shown
that such bumps emerge in networks with translationally invariant local
excitation combined with global inhibition, a connectivity profile similar
to that depicted in Fig. 1.1(b) on page 14. Several works have exploited
the emergence of these spatial patterns in ring networks (1.3), to model for
example orientation selectivity (Ben-Yishai et al., 1995; Somers et al., 1995)
in V1, or other types of feature selectivity (Hansel and Sompolinsky, 1998);
or to model spatial short-term memory (Compte, 2000; Gutkin et al., 2001;
Wimmer et al., 2014).

A simple way to understand the mechanism underlying a bump state is
to investigate an equivalent situation in a two population effective model,
like the one depicted in the bottom panel of Fig. 1.1(a). There we have two
identical recurrently and cross-coupled populations with synaptic strengths
Js and Jc, respectively. The equations are similar to the E-I model (1.1) and
read

τm
dR1

dt
= −R1 + Φ (τmJsR1 − τmJcR2 + η̄ + P1(t)) , (1.20a)

τm
dR2

dt
= −R2 + Φ (τmJsR2 − τmJcR1 + η̄ + P2(t)) . (1.20b)

The stability analysis does not differ much from the two population
model. Again there are no limit cycles and we just have fixed points. The
phase portrait can be studied by looking at the intersection of the nullclines.
Fig. 1.5(b) shows the activity time series of the two population system (1.20)
with recurrent excitation Js = 7, as the cross coupling, Jc, is gradually
increased, therefore increasing the inhibitory coupling between both popula-
tions. The upper panels, Fig. 1.5(a), show the phase portraits for different
values of the cross coupling. As inhibition increases the nullclines twist
towards a cubic shape and eventually they cross giving birth to a pair of
symmetric stable nodes. Simultaneously the previous stable node looses
its stability. This transition corresponds to a Pitchfork bifurcation typical
of systems that undergo a symmetry breaking. Models that display this
type of behavior, i.e. in which two variables compete for a “privileged”
state, are often known as winner-takes-all (WTA) systems and have been
used to model two-choice decision making in networks of spiking neurons
(Roxin and Ledberg, 2008; Martı́ et al., 2008). A detailed study of the two
population WC model can be found in (Beer, 1995) and also in (Ermentrout
and Terman, 2010).
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(a)

(b)

(c) (d)

Figure 1.5: Symmetry breaking and bump state in the effective two population
model and its homologous ring neural field model. Panels (a) and (b) correspond to
the two population effective model (1.20), while panels (c) and (d) show results for
the effective ring neural field (1.3). In panel (a), three phase portraits corresponding
to different values of the cross inhibition Jc are shown. Each of them correspond to
different instants of the simulation shown in panel (b), where the cross inhibition,
Jc(t), is gradually increased from Jc = −1.4 (excitatory) to Jc = 7 (inhibitory)
as indicated by the color bar. Panel (c) shows an equivalent simulation of the
ring neural field in which the first two Fourier coefficients of the connectivity
profile (1.4) where gradually modified. In the bottom plot, the time series of to two
particular spatial coordinates are represented. Panel (d) shows two representative
spatial profiles of the time series of the neural field in panel (c). For both models
we used the transfer function corresponding to a population of quadratic integrate-
and-fire (QIF) neurons (1.50), and parameters η̄ = 1, ∆ = 1, τm = 20 ms, Js = 7,
Jc ∈ (−1.4, 7).
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The mechanism behind the arousal of the bump state in the effective ring
model (1.3) follows this same principle. In Fig. 1.5(c) we have recreated the
same situation as in the two population system by appropriately modifying
the Fourier coefficients of the connectivity kernel (1.4) to obtain the same
values of the self and cross couplings appearing in (1.20). Similarly, once
the cross inhibition is sufficiently high—which is equivalent to increasing
the first Fourier coefficient, J1—the stability of the spatially homogeneous
state is lost as predicted by the eigenvalues of the linearized system (1.8),
and the bump state emerges. The spatial profile of the bump state and the
SHS are plotted in Fig. 1.5(d).

These results show that the interplay between excitation and inhibition
is also capable of forming spatially inhomogeneous patterns. However,
the resulting states are steady attractors as opposed to the limit cycles
characterizing ING and PING oscillations. Therefore, as it was the case
with spatially homogeneous states (SHS), BSs are also asynchronous states.
Thus, the existence of such steady inhomogeneous states does not depend
on synchronous spiking taking place in the network, but things may change
when the state is perturbed or the stability of the BS is compromised. This
may occur for example when temporal structure is introduced in the system,
for example when assuming different time scales for each sub-population, or
when temporal delays are considered. For a broad classification and study of
the possible spatiotemporal patterns that emerge when delays are included in
the neural field model see Roxin et al. (2005); Roxin and Montbrió (2011).
Additionally, fast fluctuations in the external inputs may produce periods of
transient synchronous activity as we will see in the following section.

1.2 Spike-synchrony in neural field models

The analytical results presented so far prove that neural fields are, indeed,
powerful mathematical models due to their analytical amenability and their
computational simplicity. However, as we introduced earlier in this chapter,
their validity rests upon the constrain of considering asynchronous activity
in the underlying network. The question is then, what type of dynamics
would be produced when neurons are partially synchronized? Are traditional
neural field models correctly describing the dynamics of networks of spiking
neurons? In this section we perform numerical simulations of large networks
of spiking neurons for the same network architectures presented in the
previous section. We will only take into account the necessary elements
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required to meet the experimental conditions described in the previous
section for each specific spatiotemporal phenomenon, i.e. for describing
ING and PING oscillations, and bump states.

The heuristic nature of the traditional firing rate models does not provide
a clear relationship between the parameters in the rate model and those
in the full network of spiking neurons. It is therefore difficult to design a
suitable comparison between both approaches. Nonetheless, in this section
we perform numerical simulations of a variety of spiking neuron models with
current-based synapses as a way of justifying the universality of the observed
phenomena. Yet, our main model of choice is the quadratic integrate-and-
fire (QIF) neuron (Ermentrout and Kopell, 1986; Ermentrout, 1996) (see
subsection 1.3.1 below), which we further discuss in the next section and
serves as the foundation of the Neural Field Model derived in chapter 2. The
general mathematical form of an integrate-and-fire model neuron follows
(Abbott and Van Vreeswijk, 1993):

τm
dv

dt
= f(v) +RI(t) + resetting rule involving vr and vp, (1.21)

where f(v) is the function that shapes the dynamics of the specific model
(LIF, QIF, EIF, etc.), and RI(t) corresponds to changes on the membrane
potential due to input currents I (R denotes a constant input resistance).
The time scale of the dynamics of the neuron is determined by the value
of the membrane time constant τm. This model needs a resetting rule such
that whenever the membrane potential reaches a given peak potential vp, the
neuron is reset to the reset potential vr. The particular way in which the
resetting is done, and its interpretation depends on the specific function f(v)
we use.

A detailed description on the particular models we use: leaky, quadratic
and exponential integrate-and-fire models; as well as their numerical im-
plementation is given in Appendix A and in section 2.D. We have also
perform numerical simulations considering conductance-based synapses,
which showed similar synchronization-related phenomena (see Appendix
B.2). In summary, the most relevant features of the simulated networks are:

• All-to-all connectivity among neurons.

• Quenched heterogeneous populations, or identical populations under
uncorrelated random inputs, i.e. gaussian white noise (GWN).

• No explicit delays.
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Figure 1.6: Fast transient response of a population of noisy (left panels) and het-
erogeneous (right panel) LIF model neurons [Eq. (1.21)] to an abruptly injected step
current (red stripe). Panels (a,b) and (e,f) show the raster plots and instantaneous
firing rate activities R(t) of a population of N = 5000 LIF neurons. On the left,
the population is composed of identical neurons subject to uncorrelated random
inputs modeled as GWN of mean η̄ = −2 mV and width σ = 2.0 mV. On the
right, neurons receive constant external that are distributed according to a normal
distribution, N (−2, 1.4) mV. The orange lines in panels (e,f) correspond to the
WC equation Eq. (1.5) with the transfer function of a LIF population [Eq. (A.1.4)].
Panels (c,d) show the membrane potential v(t) of two randomly chosen neurons.
See Appendix A.1 and Table A.1 for details of the numerical simulations and
parameters of the individual LIF neurons. Time constant: τm = 20 ms.

Additionally, the choice of microscopic parameters [Table A.1] is done such
that most neurons are in the sub-threshold regime but close enough to the
firing threshold.

We start by exploring a minimal working example of a network of
uncoupled leaky integrate-and-fire (LIF) neurons, which implicitly voids
any possible effect that synaptic kinetics or temporal delays could cause in
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the dynamics of individual neurons, and as a consequence, in the collective
response of the population. In this situation, in the steady state neurons
are firing at their intrinsic frequency. If there is some degree of disorder in
the network, such as random initial conditions, quenched heterogeneity or
just noise, the steady state of the network will be characterized by random
spiking of the neurons, or in other words, asynchronous activity.

In Fig. 1.6 a network obeying these conditions is shown, in which a step
current is applied resulting in a rapid increase of the population activity fol-
lowed by a damped oscillatory decay towards the equilibrium. Such transient
dynamics are intrinsic to any neuronal population having some degree of het-
erogeneity, and in which a fraction of the population gets enough excitation
to maintain them in the spiking regime. Particularly, the population on the
left panels in Fig. 1.6 includes only identical neurons receiving uncorrelated
random inputs modeled as gaussian white noise (GSW), whereas panels on
the right show similar results for a heterogeneous network where neurons
receive constant external currents distributed according to a gaussian distri-
bution. This behavior is not exclusive of the LIF spiking neuron model, and
can be observed in networks of both, phenomenological and biophysical,
neuron models (see comment 1.2.1 for a similar example with QIF neurons).
Moreover, their presence in brain tissue has been confirmed by experimental
studies done in vitro preparations (see e.g Gerstner, 2000; Brunel et al.,
2001; Silberberg et al., 2004; Naud and Gerstner, 2012). Yet, the WC model
(1.5) shows a slow exponential transient towards the displaced equilibrium
point [Fig. 1.6(e,f), orange line], as predicted by the linear stability analysis.
This type of transient dynamics are a consequence of the synchronization
and subsequent desynchronization processes happening at the population
level, that cannot be captured by H-NFMs. However, in the high-noise limit,
spiking neuron models respond relatively slowly to the input currents, as the
synchrony at subthreshold levels is lost before neurons are able to cross the
threshold. This diffusion limit, in which the future state of a neuron only
depends on its present state, is often used to justify the validity of H-NFMs.

Comment 1.2.1: Exact firing rate model for uncoupled QIF neu-
rons

In a recently published article, Montbrió et al. (2015) derived a set of low
dimensional equations exactly describing the macroscopic dynamics of
a network of quadratic integrate-and-fire neurons (QIF). These equations
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are derived in section 1.3 but here we briefly discuss them for a network
of uncoupled neurons in order to better understand why traditional firing
rate models fail to capture the phenomenon depicted in Fig. 1.6; i.e.,
due to the fact that, as previously mentioned, they only track the mean
macroscopic activity (in terms of the firing rate), ignoring the effect that
neurons’ sub-threshold dynamics may have in such processes.

Figure 1.7: Transient activity of an uncoupled network of QIF neurons (1.22)
under the influence of a step current (red stripe). Panels (a) and (b) show the
raster and the firing rate of the population respectively. In panel (b) the orange
thin line corresponds to simulations of the QIF firing rate equations (1.23). The
color plot in panel (c) shows the time series of the distribution of membrane
potentials of neurons.

In Fig 1.7 we recreate the same situation shown in the previous
figure [Fig. 1.6]. A step current P (t) is injected in a population of N
uncoupled QIF neurons, each characterized by the membrane potential
vi, i = 1, . . . , N , and obeying the following dynamical equation

τm
dvi
dt

= v2
i + ηi + P (t) + resetting rule, (1.22)
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where ηi corresponds to external currents following a Lorentzian dis-
tribution g(η) of mean η̄ and half-width ∆ (see Eq. (1.46)). The corre-
sponding macroscopic firing rate equations are:

τm
dR

dt
=

∆

πτm
+ 2RV, (1.23a)

τm
dV

dt
= V 2 + η̄ − (πτmR)2 + P (t). (1.23b)

whereR(t) and V (t) are the firing rate and the mean membrane potential
of the neuronal population, respectively.

We can see that in this case, the results provided by the QIF firing
rate equations (1.23) perfectly match the behavior of the QIF spiking
network [Fig 1.7(b)]. What determines the success or the failure of
these population models in capturing the synchronous activity of the
population? This question is difficult to answer and has been tackled
in numerous works (e.g. Cowan, 2014), however we can gain some
intuition by looking to the specific shape of the equations (1.23).

As we can see, in contrast to the WC equations, the activity here is
described by two coupled differential equations in terms of the macro-
scopic variables: R and V . Specifically, the second equation (1.23b)
resembles that of the individual QIF neuron (1.22) but with the addi-
tional negative feedback provided by the population firing rate itself,
which prevents the explosive growth of the mean membrane potential.
From the point of view of dynamical systems, the particular shape of
Eqs. (1.23)—two differential equations plus the negative feedback from
one variable to the other—establish the necessary conditions to be able
to generate oscillations. In fact, as we will see in subsection 1.3.5,
adding an additional synaptic equation to Eqs. (1.23) is enough to create
the previously discussed E-I loop, that generates the ING oscillations
(Devalle et al., 2017a).

The bottom panel in Fig.1.7 shows the time evolution of the distri-
bution of membrane potentials of the network. The low activity state
is characterized by a sharp distribution (very intense white) with the
mean membrane potential below threshold (the threshold is at 0). The
sharpness of the distribution is a measure of the level of activity, i.e. the
firing rate R. The sharper the distribution the lower is the activity. To
get a clearer picture of the shape of the distribution see Fig. 1.13. During
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the application of the step current, the distribution suddenly widens,
reflecting a growth in the firing rate, and is followed by a transient
period of sharpening and widening, along with the periodic translation
of the center value. This corresponds to the oscillatory behavior seen
in panel (b) in the same figure [Fig. 1.7(b)]. Just before the perturba-
tion ends, an equilibrium is reached in which the distribution is wide,
indicating higher activity. Finally, once the external input is removed, it
returns back to the initial low activity state characterized by the sharp
distribution.

Here, we arrive at three general observations regarding the transient
synchronization process shown in Figs. 1.6 and 1.7. First, it is observed in a
completely uncoupled population of neurons, and thus it is independent of
the choice of the connectivity scheme. Second, and related to the previous
observation, it appears in the absence of synaptic kinetics or time delays.
And third, it has a relevant impact on the macroscopic dynamics as seen in
the population activity. We therefore conclude that such dynamics are an
intrinsic property of networks of spiking neurons. In the following sections
we numerically simulate the network motifs corresponding to the already
mentioned ING, PING and the WTA mechanisms. And on the light of
things, we expect to find dynamics not predicted by the traditional neural
field models. Therefore, we continue numerically exploring the effects
of synchronous activity in shaping the dynamics of networks of spiking
neurons.

ING oscillations in spiking neural networks

The simplest form of persistent oscillatory dynamics is given by the ING
mechanism. Yet, we have seen that the neural field model (1.3) (or its
simplified one-population version (1.13)) needs to include time delays in
order to give rise to the I-I oscillatory loop. Let’s see what happens in a
network of spiking neurons.

Fig. 1.8 on the following page shows simulations for quadratic integrate-
and-fire (QIF) and exponential integrate-and-fire (EIF) model neurons for
the network structure in Fig. 1.3(a), where inhibitory neurons are recurrently
coupled via chemical synapses. Since neurons are all-to-all connected, they
receive a common mean field described by the same synaptic kinetics as
that used for the WC model Eq. (1.9b). In those simulations, the oscillatory
regime arises when the excitation is sufficiently increased (marked by the
red thick line under the firing rate plot). Oscillations are characterized
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Figure 1.8: Networks of heterogeneous inhibitory neurons with synaptic kinetics
[Eq. (1.9b)] (τd = 5 ms) display macroscopic oscillations in the gamma range
(ING oscillations) due to collective synchronization. Panels (a) and (b) show the
time series of the firing rate and the rasters for the QIF and the EIF network,
respectively. The red thick line indicates the period in which the excitation was
increased producing the transition to the oscillatory regime. Panels (c) and (d) show
the distributions of frequencies of single neurons for their respective network. In
each case, the blue (left) distribution corresponds to the asynchronous regular (AR)
regime, while the red (right) distribution corresponds to the synchronous regular
(oscillatory) regime. Parameters: τm = 10 ms, Jii = 21, η̄ = 5 (during the AI
regime). QIF: ∆ = 1; EIF: ∆ = 0.5.

by large population spikes in which large fractions of neurons participate,
indicating the appearance of a synchronized state. This is further confirmed
when looking to the distributions of frequencies of the single neurons in
Figs. 1.8(c) and (d). During the asynchronous regime the distribution of
frequencies (blue) is broad with a large fraction of the population firing in
the 0-50 Hz range, as expected for an heterogeneous network. However,
the abrupt transition to the oscillatory regime is characterized by an overall
shift of the distribution towards a central and sharp peak corresponding to
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the frequency of the macroscopic oscillations (red). Note the cut in the
y-axis of both distributions which separate two different scales; the sharp
peak is indeed around 25 times larger than the second highest value of the
distribution.

Figure 1.9: ING oscillations in networks of identical inhibitory neurons under
GWN. Panels (a) and (b) show the time series of the firing rate and the rasters for
the QIF and the EIF network, respectively. The red thick line indicates the period
in which the excitation was increased producing the transition to the oscillatory
regime. Parameters: τm = 10 ms, σ = 3. QIF: Jii = 21; EIF: Jii = 40.

The heterogeneity in the neural network of Fig. 1.8 was introduced by
distributing the external currents η̄i according to a Lorentzian distribution
[Eq. (1.46)]. The use of such particular distribution is justified later. How-
ever, we also tried using a Gaussian distribution of external currents, as well
as identical neurons receiving random inputs modeled as gaussian white
noise. Fig. 1.9 shows similar results as those in Fig. 1.8 but for identical
neurons under GWN.

Notice that, contrary to the population model (1.13), spiking neuron
networks do not require the addition of an explicit delay. It is clear then, that
the oscillatory behavior in Fig. 1.8 is a direct manifestation of a synchronized
state which is not captured by the H-NFM. ING oscillations constitute a
first example of the failure of traditional neural field models to describe
synchrony-related patterns arising in networks of spiking neurons. Equation
(1.9) correctly describes the fixed points of the asynchronous states, however,
stability under the dynamics of Eq. (1.9) does not guarantee stability of the
original network of spiking neurons as these numerical simulations prove.

39



Similarly, the effective ring model (1.3) will not be able to capture ING
oscillations arising on the SHS when synaptic kinetics are included. In
contrast, the population model that we will present in section 1.3 is able to
capture the sub-threshold dynamics of neurons, providing a good description
of the macroscopic dynamics arising from this type of networks, as has
already been proved by Devalle et al. (2017a).

PING oscillations in spiking neural networks

Similarly, we now show that traditional firing rate models [Eqs. (1.1)] do
not correctly predict the arousal of PING oscillations. The population model
discussed in subsubsection 1.1.1.2 required the inclusion of strong recurrent
excitation in order to generate them, but here we show that a network of
spiking neurons obeying the network scheme of Fig. 1.3(c), which considers
only cross couplings, i.e. Jii = Jee = 0, displays robust macroscopic
oscillations attributable to the interplay between excitatory and inhibitory
neurons, where excitatory cells synchronize inhibitory cells and vice versa.
A similar situation involving networks of theta neurons (1.29) has been
studied by Börgers and Kopell (2003).

Once again, oscillations with frequency in the gamma range appear when
the excitatory sub-population is sufficiently active, and thus faster than the
inhibitory sub-population. This can be achieved by injecting a large enough
current (marked by the red stripe in Fig. 1.10). Here, in contrast to the ING
oscillations, the microscopic mechanism facilitating the synchronization
of neurons is more subtle. In the asynchronous regime, the distributions
of frequencies of the single neurons [Fig. 1.10(b) and (c)] are similar to
those seen for the ING case. On the other hand, in the synchronous regime,
the marginal distributions corresponding to the excitatory and inhibitory
sub-populations have a remarkably different shape. This can be better seen
in the case of QIF neurons, Fig. 1.10(c). The distribution of frequencies of
the excitatory population is more dense on the left of the peak—around 40
Hz—, while the inhibitory one is mostly populated on the right of the peak.
But, as soon as we consider the joint distribution of both sub-populations,
we obtain a distribution displaying the stereotypical synchronization peak
with deep valleys on its sides. This peculiar shape occurs when a fraction
of the oscillators, that have similar intrinsic frequencies, are locked to
a common average frequency. For the particular case of QIF and EIF
neurons, this synchronization process can be thought as happening in a two-
stage manner. Meaning that, the cooperative action of both excitatory and
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Figure 1.10: Networks of heterogeneous cross-coupled excitatory and inhibitory
neurons display macroscopic oscillations in the gamma range (PING oscillations)
due to collective synchronization. Panels (a) and (b) show the time series of the
firing rate and the rasters of excitatory (red) and inhibitory (blue) populations, for the
QIF and the EIF network, respectively. The red thick line indicates the time interval
in which the excitatory population is injected with an external excitatory current
increasing its level of activity, and thus producing the transition to the oscillatory
regime. Panels (c) and (d) show the distributions of frequencies of single neurons
for their respective network. In the top, red and blue distributions correspond to
the excitatory and the inhibitory populations, respectively. In the bottom, their
joint distribution is shown. For each model, QIF or EIF, the distribution on the
left correspond to the asynchronous regular (AR) regime, while the distribution on
the right correspond to the synchronous regular (oscillatory) regime. Parameters:
τi = 10 ms, τe = 20 ms, Jii = Jee = 0, ∆ = 1 , η̄i = 0, η̄e = 0 (during the AI
regime). QIF: Jie = 9, Jie = 8; EIF: Jie = 21, Jie = 3.
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inhibitory population is needed. An equivalent situation has been studied in
networks of Kuramoto oscillators by Montbrió and Pazó (2018).

These observations contrast with the results obtained from the stability
analysis of Eqs. (1.1), where we have seen that recurrent excitation is crucial
to obtain PING oscillations. Again, this fundamental discrepancy is a
consequence of the inability of traditional firing rate models of capturing
sub-threshold dynamics of neurons and its effects on the collective behavior
of neuronal populations.

Transient “standing-waves” in a ring model of spiking neurons

The mechanisms discussed so far (ING and PING) explain the generation of
oscillatory dynamics in networks of local E-I sub-populations, but the same
principles apply to oscillations emerging from the spatially homogeneous
states (SHS) of spatially distributed networks. Note however, that PING
oscillations always require separately treating the excitatory and inhibitory
sub-populations, and therefore cannot be obtained by means of the effective
network [lower panels in Fig. 1.1]. In any case, we have seen that traditional
firing rate models fail to capture any of the presented phenomena, including
the transient oscillations shown in Figs. 1.6 and 1.7.

We finish this section by exploring the response of a ring network of
spiking neurons when spatially modulated perturbations are applied to the
neuronal population. The network architecture is the same as the one
depicted in Fig. 1.1(b): excitatory and inhibitory neurons are spatially
distributed according to the variable x, and both sub-populations receive
the same amount of synaptic activation at every moment, which allows
us to describe the model in terms of an effective coupling [Eq. (1.4)] that
combines both excitatory and inhibitory contributions. The simulations
presented in Fig. 1.11 were performed following the same procedure as those
shown in Fig. 1.2. There we saw that, perturbations of the homogeneous
state (the flat state) of the neural field model (1.3) were followed by an
exponential relaxation towards the equilibrium state. Here, perturbations of
wavenumber K produce transient standing waves [Fig. 1.11(a,b)], whose
frequency and decay time depend on the corresponding mode JK of the
connectivity kernel (1.4). The precise relation between the connectivity
structure and the frequency of the decaying oscillations is the main subject
of the next chapter. Such oscillations are again the macroscopic reflection of
transient episodes of synchronization, equivalent to those seen in Figs. 1.6
and 1.7. Nevertheless, in this particular case the interplay between excitation
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Figure 1.11: Transient episodes of spike synchrony in ring networks of spiking
neurons as a result of brief spatially inhomogeneous perturbations (marked with a
red square). (a) From top to bottom, LIF, QIF and EIF heterogeneous networks show
decaying standing waves for perturbations of different wavenumbers, K = 1, 2, 3.
(b) Equivalent simulations carried on in a network of identical LIF neurons under
GWN show very similar responses. (c) Examples of the destabilization of the SHS
into the bump state in heterogeneous networks of QIF (left) and EIF (right) neurons.
In the right panel the bump is abruptly formed exhibiting an oscillatory behavior.
See Appendix A.1 for details on the simulations.
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and inhibition in the spatial dimension has a direct effect on the frequency of
oscillations—and for some spiking neuron models, in the decay time. Notice
that the observed phenomena is common to a variety of spiking neuron
models (in Fig. 1.11(a) LIF, QIF and EIF), and for both heterogeneous and
identical networks, Figs. 1.11(a) and (b), respectively.

In addition, we were interested in exploring the response of the bump to
the already mentioned inhomogeneous perturbations. Panel (c) in Fig. 1.11
shows the emergence of the bump state for a network of QIF (left) and
EIF (right) neurons when the SHS looses its stability. In the first case, the
arousal of the bump is smooth, indicating that the bump state behaves as a
stable “node”, while in the second case (simulated in different conditions)
the formation of the bump state is accompanied by a transient period of
oscillatory dynamics. This latter effect is also seen in networks of QIF
neurons and we discuss it in detail in subsection 2.3.4, but on the light
of previous observations we may already suggest that their origin is the
same as that of the decaying standing waves, i.e. transient episodes of
synchronization.

Transient standing waves, observed in both the SH and bump states, are
therefore one of the simplest phenomenon we can encounter in a spatially ex-
tended network of spiking neurons, which due to its underlying microscopic
mechanism cannot be described by traditional neural field models. The ex-
tensive use of such models for studying a wide variety of cognitive processes,
where oscillatory dynamics could play an important role, is what motivates
us to further study the phenomenology related to the observed dynamics in
Chapter 2. However, due to the lack of an appropriate low-dimensional de-
scription of such networks, an exhaustive study of the observed phenomena
has been up to now unfeasible. Luckily, the newly derived firing rate model,
briefly introduced in comment 1.2.1 and that we discuss next, allowed us to
derive an equivalent exact neural field model for a network of QIF neurons,
which facilitated the study of what we call modes of oscillations of a neural
field model.

1.3 Firing rate model for QIF neurons
(QIF-FRE)

As it was shown in the preceding section, traditional firing rate models fail
to describe population dynamics when a significant fraction of the neurons
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happens to fire synchronously. In this section we present a recently published
set of exact macroscopic equations for quadratic integrate-and-fire neurons
(QIF-FRE) which explicitly takes into account sub-threshold integration
(Montbrió et al., 2015). In the next chapter we will expand this set of
equations to an exact neural field model, and we will compare its dynamics
with their equivalent microscopic representation, i.e. simulations of QIF
neurons. Here, we also show that in the limit of slow synaptic kinetics the
QIF-FREs reduce to an equation formally identical to the WC equation (1.5).
Finally, we finish this chapter by reviewing the most relevant results obtained
after the discovery of the QIF-FREs, and enumerate some of the questions
that still remain open for research or that are currently being investigated.

1.3.1 Quadratic Integrate-and-Fire (QIF) model neuron
So far, we have performed numerical simulations using various models of
integrate-and-fire neurons and we have seen similar qualitative behaviors for
a wide range of conditions. All these models represent simplified versions
of the Hodgkin-Huxley (HH) model with only standard spiking currents. In
particular, they are examples of Class I excitability neurons, characterized
by the presence of a saddle-node bifurcation on an invariant circle at the
transition from quiescence to spiking. Near threshold the spiking dynamics
are dominated by the time spent in the vicinity of the saddle-node itself,
allowing for a formal reduction in dimensionality from the HH model to a
reduced normal-form equation for a saddle-node bifurcation (Ermentrout
and Terman, 2010; Ermentrout, 1996; Izhikevich, 2007).

This normal-form is also known as the Quadratic integrate-and-fire
model which is a specific instance of the nonlinear integrate-and-fire model
[Eq. (1.21)] where the voltage dependent function takes the form f(v) = v2.
Therefore the QIF neuron represents the canonical model for Class I neurons.
The time evolution equation for the membrane potential may be written as
(Hansel and Mato, 2001, 2003; Latham et al., 2000)

C
du

dt
= gL

(u− uth) (u− ur)
uth − ur

+ Iu, (+ resetting rule), (1.24)

where C is the cell capacitance, gL is the leak conductance and Iu are input
currents. Additional cell parameters are uth and ur which represent the
threshold and resting potentials of the neurons, respectively. As it also
happens with the other integrate-and-fire models, the generation of the spike
requires a resetting rule. In numerical simulations, once the voltage reaches
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a given peak value is manually reset to ur. Mathematical analysis of the QIF
neuron is greatly facilitated after simplifying this equation by performing a
shift in the membrane potential and rescaling,

u′ = u− uth + ur
2

−→ v =
u′

uth − ur
, (1.25)

reducing the QIF model Eq. (1.24) to

τm
dv

dt
= v2 + I, (+ resetting rule), (1.26)

where τm = C/gL is the membrane time constant, and I are the rescaled
(dimensionless) currents:

I =
Iu

gL (uth − ur)
− 1

4
. (1.27)

In the following we will use Eq. (1.26) when referring to the QIF model,
and we will denote the (dimensionless) membrane potential of neuron i with
vi.

Notice that the ODE describing the QIF neuron may grow without bound
depending on the value of the input currents I . This behavior accounts for
the generation of the spike, and therefore requires the use of the already men-
tioned resetting rule to return the neuron to the sub-threshold regime. The
QIF model exhibits two possible dynamical regimes which depend on the
sign of I . If I < 0 the neuron is said to be in the excitable regime, whereas
for I > 0 the neuron is in the oscillatory regime. In the excitable regime,
an initial condition v(0) <

√
−I asymptotically approaches the resting

potential −
√
I . On the other hand, initial conditions above the excitability

threshold, v(0) >
√
−I , lead to an unbounded growth of the membrane

potential. Specifically, if v(0)�
√
I , then the membrane potential reaches

infinity approximately after a time τm/v(0). In numerical simulations, this
divergence is usually avoided by implementing a resetting rule by hand.
When the membrane potential v reaches a certain peak value vp � 1, the
neuron is reset to the value vr � −1 after a relative refractory period
τm/vp + τm/vp. Moreover, in the oscillatory regime, I > 0, the neuron
needs to be reset periodically with an approximate frequency ν =

√
I/(τπ),

provided vp � 1. These dynamical features are summarized in Fig. 1.12 on
the next page: top (bottom) panels correspond to the excitable (oscillatory)
regime; left panels represent the phase portrait for each dynamical regime
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Figure 1.12: Schematic representation of the two possible regimes of the QIF
neuron (1.26) with an input current I = η+P (t). Top and bottom panels correspond
to the excitable and oscillatory regimes, respectively. For each regime, left and
right panels show the corresponding phase portrait and a representative time series,
respectively. In the top right panel, a time varying external input P (t) is plotted
in red, which after some time drives the neuron’s voltage across the threshold
(#: unstable fixed point in the left panel) producing a spike. Then the voltage is
reset (gray dashed path in the left panel) to vr which drives the neuron back to the
rest potential ( : stable fixed point in the left panel). The effect of any perturbation
P (t) in the phase portrait leads to a vertical shift of the parabola, i.e. excitatory
(inhibitory) currents shift the parabola upwards (downwards), with the subsequent
displacement of the fix points. In the oscillatory regime there are no fixed points
and therefore the neuron is firing with a constant frequency proportional to η.

while right panels show representative simulations of the dynamics of the
QIF neurons in each case. Note that the current I is a combination of the
constant external current η and the time varying input P (t). Therefore even
if the constant current in the top panels is negative, each pulse of the input
current—in red—drives the voltage closer to the threshold value, which
eventually leads to the emission of a spike.
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Theta neuron

For a simplified mathematical analysis of the QIF model, one takes* vp →
+∞ and vr → −∞, which then using the following change of variables

v(t) = tan

(
θ(t)

2

)
, (1.28)

transforms the QIF model into a phase model, called the Theta-Neuron
model (Ermentrout and Kopell, 1986; Gutkin and Ermentrout, 1998; Hop-
pensteadt and Izhikevich, 1997),

τm
dθ

dt
= (1− cos θ) + I (1 + cos θ) , θ ∈ (−π, π) . (1.29)

This phase model has a strictly positive Phase Resetting Curve (PRC).
Neurons exhibiting such PRCs are known as Type 1 neurons, indicating that
(positive) perturbations always produce an advance (and not a delay) of their
phase.

Because the theta model is a phase oscillator, it does not properly produce
spikes. Therefore, the spike time is normally assumed to take place whenever
the phase, θ(t), crosses θ = π. Both models are mathematically equivalent
in this limit, and numerical simulations of both models should give similar
results.

In the next sections we derive the macroscopic equations for a population
of QIF neurons following the work of Montbrió et al. (2015).

1.3.2 Continuity equation for a population
of QIF neurons

Let us now consider a population of N all-to-all coupled QIF neurons.
The state of the system will be characterized by the neurons’ membrane
potentials {vi}i=1,...,N , each obeying Eq. (1.26)

τm
dvi
dt

= v2
i + Ii, (1.30)

QIF neuron

*In order to mimic this limit in numerical simulations, it is convenient to take vr = −vp
with vp � 1.
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where the input currents Ii will account for a constant external current, ηi,
and for time varying inputs coming from within and outside the population,

Ii = ηi + τmJ0S(t) + P (t). (1.31)

The external time varying inputs are denoted as P (t) whereas the recurrent
current J0S(t) is equal to the synaptic weight J0 times the mean synaptic
activation S(t) due to the firing activity of the population*,

S(t) =
1

N

N∑
j=1

∑
k

∫ t

−∞
ατs (t− t′) δ

(
t′ − tkj

)
dt′. (1.32)

Synaptic activation is the common mean field driving all neurons, which
sums the changes in the current due to all the spiking activity occurring
prior to time t. Each kth spike emitted by neuron jth is modeled as an
instantaneous pulse happening at time t = tkj which is represented by a
Dirac delta δ

(
t− tkj

)
. The pulse is then convoluted with a synaptic kernel

ατs characterized by the time constant τs.
In the limit of infinitely fast synapses (instantaneous rise and decay),

τs → 0, the synaptic activation (1.32) is equivalent to the instantaneous
population mean firing rate

R(t) = lim
τs→0

1

τs

1

N

N∑
j=1

∑
k

∫ t

t−τs
δ
(
t′ − tkj

)
dt′. (1.33)

1.3.2.1 Continuous formulation

The application of a continuous formulation is justified by the columnar
organization hypothesis. We assume that cortical cells can be grouped
into “columns” of neurons with similar properties containing up to several
thousand neurons (Hubel and Wiesel, 1968; Lund et al., 2003; Lodato and
Arlotta, 2015). As a result, we may apply the thermodynamic limit in
Eqs. (1.30), (1.31) and (1.33), and define the membrane potential density
function ρ (v|η, t). This approach has been also followed by e.g. Abbott and
Van Vreeswijk (1993); Brunel and Hakim (1999); Fusi and Mattia (1999);
Brunel (2000); Nykamp and Tranchina (2000); Omurtag et al. (2000). Thus,

*For clearer reading, abuse of notation often ignores the time convolution in the right
hand side of Eq. (1.32).
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at time t, the fraction of neurons with membrane potentials between v0 and
v0 + ∆v, and parameter η is given by∫ v0+∆v

v0

ρ (v|η, t) dv. (1.34)

Additionally, we assume the population to be heterogeneous by considering
a distribution g(η) for the external currents [η ∈ (−∞, ∞)]. Hence, the
total voltage density is ∫ ∞

−∞
ρ (v|η, t) g (η) dη, (1.35)

and bringing back the limit vp →∞ and vr →∞, the conservation of the
number of neurons implies∫ ∞

−∞

(∫ ∞
−∞

ρ (v|η, t) g (η) dη

)
dv = 1, ∀t. (1.36)

We may now translate all this [Eqs. (1.30), (1.31), (1.33) and (1.36)] into
the continuity equation

∂ρ

∂t
+

∂

∂v
J (v|η, t) = 0, (1.37)

where the probability flux J (v|η, t) is the net fraction of neurons with
parameter η that crosses the value v per unit time, and is equal to the density
of neurons multiplied by the velocity of v (right hand side of Eq. (1.30)),
that is

J (v|η, t) =
1

τm
ρ (v|η, t)

(
v2 + η + τmJ0R + P

)
. (1.38)

The continuity equation describes the temporal evolution of the distribution
of membrane potentials of the neuronal population, and therefore gives a
complete dynamical description of the state of the system. However, it still
represents an infinite dimensional system, in which the knowledge of the
exact form of the distribution is crucial to obtain a precise description of the
macroscopic dynamics.

1.3.3 Dimensionality reduction: Lorentzian Ansatz
What Montbrió et al. discovered, inspired by the work of Ott and Antonsen
(2008) and later by Luke et al. (2013); So et al. (2014), was precisely that the
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distribution of the membrane potentials followed a Lorentzian function (also
known as Cauchy distribution). Therefore, by considering the Lorentzian
ansatz (LA)

ρ (v|η, t) =
1

π

x (η, t)

[v − y (η, t)]2 + x (η, t)2 (1.39)

the state of the system is completely characterized by two macroscopic
magnitudes, x and y which have a direct relationship with physically mean-
ingful macroscopic quantities related to the population activity. A similar,
but approximate methodology is followed in many other population density
models to infer the macroscopic behavior of populations of neurons*.

Notice that the firing rate of the population with a given η is just the drift
flux Jd(vp|η, t) through the peak potential vp (when the spike is emitted).
Therefore we have

R (η, t) =
1

τm
lim
vp→∞

ρ (vp|η, t) ·
∂v

∂t

∣∣∣∣
vp

=
x (η, t)

πτm
. (1.40)

To obtain the total firing rate we need to integrate the latter quantity over
all possible values of the external current, which gives

R (t) =
1

πτm

∫ ∞
−∞

x (η, t) g (η) dη. (1.41)

On the other hand, the remaining macroscopic quantity y (η, t) is easily
identified with the mean membrane potential, because, by definition, is the
center† of the distribution of membrane potentials:

y (η, t) = p.v.
∫ ∞
−∞

vρ (v|η, t) dv, (1.42)

and equivalently the total mean membrane potential is

V (t) =

∫ ∞
−∞

y (η, t) g (η) dη. (1.43)

*Of particular interest is the paper of Amari (1972), where he also obtained two macro-
scopic quantities related to the width and the center values of the distribution of membrane
potentials

†Statistical moments of the Lorentzian distribution are not well-defined, nevertheless the
central value exists and is well defined by its median value or its mode. It can be computed
through the principal value: p.v.

∫∞
−∞ f(x)dx = lima→∞

∫ a
−a f(x)dx.
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Comment 1.3.1: The interplay between the firing rate and the mean
membrane potential: the distribution of membrane potentials

For a particular distribution of external currents g(η) (see Eq. (1.46) in
the main text) the total distribution of membrane potentials becomes

ρ (v, t) =
τmR(t)

(v − V (t))2 + (πτmR(t))2 . (1.44)

It is worth commenting on the implications of these preliminary results
as compare to traditional firing rate equations (1.5). Here we can see
that the mean field approach collapses the infinite ODE system into two
macroscopic quantities, and hence provides us with a description of the
macroscopic dynamics in terms of two variables—x and y, which are
related to the firing rate, R, and the mean membrane potential, V , of
the neuronal ensemble. In contrast, traditional firing rate models are
described only by a single variable, i.e. the firing rate of the population.

In Fig. 1.13 an example of the evolution of the network activity
under the influence of a time-varying external current, P (t), is shown.
The network consists on a heterogeneous ensemble of N = 104 un-
coupled, J0 = 0, QIF neurons [Eq. (1.30)]. At an approximate time
t = 0.15 s, a slowly growing input current is injected into the population
[Fig. 1.13(e)] producing a gradual increase in the firing rate. This change
in the activity is very well reflected in the distributions of membrane
potentials shown in Figs. 1.13(a,b,c), where we can see that for very low
firing rates [Fig. 1.13(a)] the distribution is sharply centered at a low
value of the membrane potential—black arrows delimit the full width at
half maximum. The growing input gradually increases the sub-threshold
voltages, displacing the center of the distribution. Simultaneously, the
density of neurons crossing the threshold increases, and therefore so
does the firing rate. This in turn, widens the distribution, as seen in
Figs. 1.13(b) and 1.13(c). Finally, the conservation of neurons adds a
constrain to the normalization of the distribution ρ(v) [Eq. (1.44)], bind-
ing x(t) to y(t), or equivalently, establishing a functional relationship
between R(t) and V (t).

This derivation suggests that a correct macroscopic description
of the dynamics of spiking networks requires keeping track of
the mean sub-threshold voltage along with the mean firing rate.
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Figure 1.13: Macroscopic observables of the activity, such as the firing rate
R in panel (d), are directly related to the membrane potential distribution ρ(v)
[Eq. (1.44)]. Panels (a), (b) and (c) show the instantaneous distributions of
membrane potentials for three selected instants of the network’s evolution
depicted in panel (d). The histograms are obtained by numerically simulating a
network ofN = 104 QIF neurons subject to a slowly time-varying perturbation
P (t), as shown in panel (e). The orange line in panels (a), (b) and (c) is the
Lorentzian distribution (1.44) analytically obtained using the firing rate R and
mean membrane potential V from Eqs. (1.47). It can be clearly seen that the
half width at half maximum, γ (not shown in panel (a)), is related to the firing
rate of the neural activity by the simple relation γ = πτmR. In panel (d) the
black line corresponds to the firing rate measured from the network of QIF
neurons, whereas the orange line has been simulated using Eqs. (1.47).

1.3.4 Solution to the continuity equation:
QIF-FR equations

In order to solve the continuity equation (1.37), we plug in the LA (1.39)
obtaining the following relation between x and y

d

dt
w(η, t) = i

[
η + τmJ0R(t)− w (η, t)2 + P (t)

]
, (1.45)

where w (η, t) ≡ x (η, t) + iy (η, t). Therefore the macroscopic state is
exactly described by Eqs. (1.41), (1.43) and (1.45), establishing a system
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of integro-differential equations*. However, for certain choices of the dis-
tribution of external currents, g (η), the dimensionality of the system is
further reduced. In particular, if we take g(η) to be distributed according to
a Lorentzian distribution of half width at half maximum ∆ and centered at η̄

g (η) =
1

π

∆

(η − η̄)2 + ∆2
, (1.46)

we can apply the residue theorem (see Appendix B.1.1 for a detailed deriva-
tion) to solve the integrals in Eqs. (1.41) and (1.43) which leads to the
QIF-FREs in terms of R = R(t) and V = V (t):

τm
dR

dt
=

∆

πτm
+ 2RV, (1.47a)

τm
dV

dt
= V 2 + η̄ + τmJ0R− (πτmR)2 + P (t). (1.47b)

QIF-FREs

One of the main advantages of this model is its mathematical amenability,
which allows us to perform the linear stability analysis in a few steps. The
fixed points are:

V∗ = − ∆

2πτmR∗
, (1.48a)

R∗ =
1

πτm
√

2

√
(η̄ + τmJ0R∗) +

√
(η̄ + τmJ0R∗)

2 + ∆2, (1.48b)

where the self-consistent equation (1.48b) is actually a quartic equation

(πτm)2R4
∗ − τmJ0R

3
∗ − η̄R2

∗ −
(

∆

2πτm

)2

= 0, (1.49)

that can be solved parametrically if needed. It also provides us with the
transfer function or f-I curve of the QIF population which we used in
previous sections:

Φ (I) =
1

πτm
√

2

√
I +
√
I2 + ∆2, (1.50)

*A detailed step-by-step derivation is provided in Appendix B.1.
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where I accounts for all inputs arriving to the population, including recur-
rent synaptic inputs J0R. The linear stability analysis of the fixed points
[Eqs. (1.48)] gives the following eigenvalues

λ± =
−∆

πτ 2
mR∗

± 2πR∗

√
J0

2π2τmR∗
− 1. (1.51)

The trace of the linearized system, tr = 4V∗, is always negative, hence, all
fixed points are stable. In addition, for parameters obeying J0 > 2π2τmR∗
the eigenvalues are always real, and therefore the fixed point (R∗, V∗) is
always a stable node. This condition gives us the boundary

η̄ = −
(
J0

2π

)2

−
(
π∆

J0

)2

(1.52)

depicted in Fig. 1.14(a) with a dashed line. On the other hand, a saddle-node
bifurcation occurs when λ = 0, or equivalently, at the critical coupling

J c0 = 2π2τmR∗ +
∆2

2π2τ 3
mR

3
∗
, (1.53)

which combining it with Eq. (1.49) gives the parametric boundary

(η̄, J0) =

(
− (πτmR∗)

2 − 3

(
∆

2πτmR∗

)2

, 2π2τmR∗ +
∆2

2π2τ 3
mR

3
∗

)
,

(1.54)
represented with a black line in Fig. 1.14(a). This boundary encloses a
region of bistability where a stable low activity node coexists with a stable
high activity focus, giving rise to dynamics similar to that represented in
Fig. 1.14(c).

For a more detailed analysis of the equations see Montbrió et al. (2015).
The already discussed features of the model are summarized in Fig. 1.14.

Damped oscillations due to transient synchronization

As we had already advanced in Comment 1.2.1, one of the remarkable
properties of these firing rate equations is the fact that one of the stable
fixed points is a focus. This is a direct consequence of the single-cell
spike generation and reset mechanism not captured in traditional firing rate
equations.
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Figure 1.14: Phase diagram, phase portraits and time series of the quadratic
integrate-and-fire firing rate model (1.47). (a) Phase diagram: the bistability region,
in blue, is enclosed in a boundary defined by the locus of a saddle-node bifurcation,
where the stable node and the focus coexist. (b) Phase portraits of the system;
the bistable region (left) is denoted with a red circle located at (η̄, J0) = (−5, 15)
in panel (a), and the focus (right) is denoted with a red triangle at (η̄, J0) =
(1, 0) in panel (a). The gray shaded region marks the basin of attraction of the
focus. Blue lines in the right phase portrait correspond to the nullclines. (c)
and (d) Instantaneous firing rate of the QIF network [Eqs. (1.30) and (1.31)]
exactly described by the QIF-FREs (1.47). Transient dynamics are generated
by the step current P (t) shown in panel (e). Other parameters are: ∆ = 1,
τm = 20 ms. Voltages are shifted post simulation, such that the mean threshold is
at vth = −50 mV.

At this point we can make a simple analogy with the damped harmonic
oscillator. In the absence of forcing, and in the underdamped regime, the
harmonic oscillator responds with damped oscillations with a frequency
corresponding to its natural frequency. Similarly, in the QIF-FREs, even
without coupling, J0 = 0, brief perturbations will generate damped oscil-
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latory activity [Figs. 1.6, 1.7 and Fig. 1.14(c, d) above], with a “natural”
frequency equal to the value of the firing rate R∗,

ω0 = R∗ =
1

πτm
√

2

√
η̄ +

√
η̄2 + ∆2 (1.55)

which is proportional to: the membrane time constant, τ , the heterogeneity of
the network, ∆, and the mean excitatory (or inhibitory) current η̄. Moreover,
the decay time after the perturbations is given by the real part of the complex-
valued eigenvalue (1.51):

τdecay =
πτ 2

mR∗
∆

, (1.56)

which is inversely proportional to the heterogeneity of the network.
In the harmonic oscillator, the damped oscillations are consequence of

the interplay between the restoring force, which drives the system back
to the fixed point, and the dissipative effect produced by friction. In the
QIF-FREs, the restoring force is given by the spike generation and reset
mechanism whereas the “dissipative” effect is related to the diffusion of
neurons’ individual phases due to heterogeneity; a feature that is explicitly
reflected in the decay time (1.56).

The existence of a natural frequency establishes the necessary substrate
for the generation not only of oscillatory dynamics, but also for a variety of
other non-linear dynamics, such as resonance.

1.3.5 QIF-FREs with synaptic kinetics
So far, the presented QIF-FR model has been derived from a fully-connected
network of spiking neurons were synaptic transmission is assumed to be
instantaneous. We have seen that even in this limit, heterogeneous networks
of spiking neurons exhibit transient episodes of synchronization leading to
macroscopic damped oscillations. A similar oscillatory behavior is often
reported in traditional firing rate models (Wilson and Cowan, 1972; Knight,
1972) and neural mass models (Jansen and Rit, 1995). However, the mech-
anism responsible of generating the dumped oscillations in the latter case
is fundamentally different to that seen in the network of QIF neurons. On
one hand, fast transients in spiking neuronal networks are attributable to the
synchronized response of neurons, a feature which is successfully captured
by the QIF-FREs. On the other hand, traditional firing rate models reproduce
similar dynamics by heuristically introducing an effective temporal delay in
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the equations. In the original work of Wilson and Cowan (1972), damped
oscillations appear in the full model prior to the time coarse graining approx-
imation, i.e. when synaptic kinetics are taken into account. And a similar
approach is followed in more general integral-equation approaches and
neural-mass models. As a consequence, the temporal scales determining the
frequency of the oscillatory behavior in each approach are different. In the
first case, the temporal scale is determined by the membrane time constant
of neurons τm, while in the second case an additional time constant, τd, is
introduced tied to the dynamics of the synapses. In contrast, once the con-
nectivity is suppressed the synaptic dynamics are irrelevant, and traditional
firing rate models loose any possibility of showing oscillatory dynamics
[Fig. 1.6(b)] as predicted by the linear stability analysis of Eq. (1.5).

Analytically, this can be proved by appropriately comparing the WC
model with the QIF-FREs. First, we we must add synaptic kinetics to the
latter set of equations, and then we apply the same approximation done at
the moment of deriving the WC model (1.5), i.e. the time coarse-graining
or the limit of slow synapses. The derivation of the firing rate equations
of a network of QIF neurons with synaptic kinetics is fundamentally equal.
The starting point is again the QIF neuron model [Eqs. (1.30), (1.31) and
(1.33)], where we now introduce an additional ODE describing the temporal
evolution of the synaptic activation as in (1.9),

τd
dS

dt
= −S +R, (1.57)

where τd is the synaptic time constant. Note that, the total synaptic activation
S is a mean-field quantity, and consequently a macroscopic magnitude.
Therefore the derivation of the macroscopic equations is identical, which
yields the following QIF-FREs,

τm
dR

dt
=

∆

πτm
+ 2RV, (1.58a)

τm
dV

dt
= V 2 + η̄ + τmJ0S − (πτmR)2 + P (t), (1.58b)

τd
dS

dt
= −S +R. (1.58c)
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1.3.5.1 The limit of slow synapses:
a low-pass filtered version of Eqs. (1.58)

The limit of slow synapses can be studied by assuming that synaptic pro-
cesses are much slower than neuron’s intrinsic dynamics, i.e. τd � τm,
where τd represents the synaptic decay time. To formally describe this situa-
tion we first consider the following rescaling: τ̃d = ετd and t̃ = εt leading
to the following system

ετm
dR

dt̃
=

∆

πτm
+ 2RV,

ετm
dV

dt̃
= V 2 + η̄ + τmJ0S − (πτmR)2 + P

(
t̃
)
,

ε
τ̃d
ε

dS

dt̃
= −S +R.

Now, by taking ε → 0, the left hand sides of Eqs. (1.58a) and (1.58b)
vanish, recovering the expressions obtained for the fixed points, R(t) =
Φ (η̄ + τmJ0S), with Φ(I) being the transfer function (1.50), and V obeying
the fixed point equation (1.48a). Thus, the system is reduced to a single
differential equation describing the evolution of the synaptic activation,
rather than the firing rate,

τd
dS

dt
= −S + Φ (η̄ + τmJ0S) . (1.59)

This proves that the QIF-FREs (1.47) and the WC equation (1.9) have
the same dynamics in the limit of slow synapses. However, as we could
observe in Fig. 1.6, perturbations applied to uncoupled populations also
generated fast oscillatory transients which were not capture by WC equations.
Hence, even in this limit, fast fluctuations in external inputs can drive spike
synchrony in the network, and consequently the slow synaptic approximation
of the QIF-FREs breaks down. This contributes to previously shown results
in suggesting that a correct description of spiking networks requires keeping
track of the mean sub-threshold voltage along with the mean firing rate.
Moreover, the temporal scale of the dynamics is now characterized by
the synaptic time constant τd, rather than the membrane time constant τm,
showing that this limit is indeed a low-pass filtered version of the firing rate
equations and only holds for slowly varying dynamics.

Hence, Eq. (1.59) cannot generate damped oscillations, as we require
at least a second order differential equation. We therefore could consider
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second order synaptic kinetics, also known as double exponential synapses:

τrτd
d2S

dt
+ (τd + τr)

dS

dt
+ S = R (1.60)

where the new time constant τr corresponds to the synaptic rise time. If we
take τd = τr we recover the so-called alpha synapse. Following the same
approach above, we obtain

τdτr
d2S

d2t
+ (τd + τr)

dS

dt
= −S + Φ (η̄ + τmJ0S) . (1.61)

This model is formally equal to the Canonical neural-mass models (Freeman,
1975; Jansen and Rit, 1995; Coombes et al., 2014).

Summarizing, Eqs. (1.59) and (1.61) describe the dynamics of a network
of QIF neurons in the limit of slow, first-order and second-order synapses,
respectively. As such, this limit assumes that both the firing rate and the
mean membrane potential decay rapidly to their fixed point values. However,
this reduction holds provided that external inputs P (t) are also slow enough.
For rapid time varying inputs, the slow synapses limit breaks down, as
synchronous activity is hardly filtered by the synaptic processes. Finally,
note that the WC equation with second order synapses (1.61) is also capable
of generating oscillations.

1.3.6 Recent development on the QIF-FR model
We finish this chapter by briefly enumerating some of the most relevant
results linked to the QIF-FREs (1.47). The derivation of this model is
closely related to the development done in systems of coupled oscillators,
and particularly to the effort made in obtaining low dimensional descriptions
of such networks. The derivation of the QIF-FREs is indeed substantially
equivalent to the work of Luke et al. (2013) where they obtained a low
dimensional representation of a heterogeneous network of Theta neurons
(1.29) in terms of the Kuramoto order parameter. As such, in the literature it
is common to find works where instead of the QIF model, they build upon
the Theta model. Nevertheless, the conformal map presented in (Montbrió
et al., 2015) allows one to easily go from one macroscopic representation to
the other.

Among the most relevant applications involving a low dimensional rep-
resentation of a network of QIF neurons, Laing (2015) derived a neural field
model for QIF neurons incorporating gap-junctions which are thought to be
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relevant in facilitating the synchronized activity of networks of inhibitory
neurons (Bennett and Zukin, 2004; Gibson et al., 1999). Additionally, Ratas
and Pyragas (2016) studied the emergence of self-sustained macroscopic
oscillations in networks of conductance-based* QIF neurons and explored
the effects that aging transition has over them. The same authors studied
symmetry breaking processes (see subsubsection 1.1.1.3) in a model of two
interacting populations of QIF neurons (Ratas and Pyragas, 2017). Also
focused on studying the effect of E-I interactions, Dumont et al. (2017)
applied the macroscopic firing rate model to study the macroscopic phase
response curve (mPRC) of an excitatory-inhibitory neural network.

Focusing on a single population of inhibitory QIF neurons Pazó and
Montbrió (2016) studied the effect of delays in shaping synchronization and
the arousal of collective chaos. Similarly, Devalle et al. (2017a) studied the
emergence of ING oscillations (see section 1.1.1.1 and 1.2) in a network of
recurrently coupled inhibitory neurons incorporating synaptic kinetics, and
proved that a spike synchrony mechanism is required in order to generate
them.

On the other hand, Roulet and Mindlin (2016) followed a similar ap-
proach as in (Luke et al., 2013) to derive a macroscopic description of a
population of excitatory-inhibitory neural oscillators described in terms of
Adler’s equations, and they compared the resulting dynamics with WC equa-
tions (1.1). In a more applied work, Byrne et al. (2017) expanded the mean
field reduction of the population of theta neurons to account for synaptic
kinetics, and to model the modulation in beta rhythms observed during motor
tasks, attributed to the change in the synchrony of the underlying neural
population firing patterns. Although the modeling is done in terms of the
Theta model and the Kuramoto order parameter, they apply the conformal
map of (Montbrió et al., 2015) to obtain meaningful macroscopic quanti-
ties that allows them to compare their results with experimentally obtained
measures of brain activity. In a similar fashion, Laing (2018) studied the
dynamics of networks of identical sinusoidally-coupled theta neurons (and
similar models) for both instantaneous and delayed synapses. In contrast to
the previous works, he extensively used the Watanabe/Strogatz ansatz for
reducing the dimension of the studied networks.

Finally, it is worth mentioning the work of Laing (2014) in developing a

*Following a similar approach as in Ratas and Pyragas (2016), in Appendix B.2 we
derive the firing rate model for a network of QIF neurons with conductance-based synapses,
and simulate a network of excitatory and inhibitory neurons displaying the aforementioned
PING oscillations.
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neural field model for a network of theta neurons following the derivation of
(Luke et al., 2013). There, Laing considered the coupling to be mediated
by “pulselike” functions. By means of the Ott-Antonsen ansatz (Ott and
Antonsen, 2008) he obtained a complex-valued nonlocal partial differential
equation describing the dynamics of the Kuramoto order parameter of the
population of theta neurons.

In the following chapter we follow a similar approach to derive a neural
field model of a network of QIF neurons allowing us to thoroughly study
the synchronization-related phenomena observed in the spatially distributed
network presented in 1.2, i.e. the decaying standing waves [Fig. 1.11].
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CHAPTER 2

Synchrony-induced modes of oscillation of
a neural field model

Esnaola-Acebes, J. M., Roxin, A., Avitabile, D., and Montbrió, E. (2017).
Synchrony-induced modes of oscillation of a neural field model. Physical
Review E, 96(5):052407

© 2018 American Physical Society

“There is geometry in the humming of the strings. There is music in the
spacing of the spheres.”

— Pythagoras.

Abstract: We investigate the modes of oscillation of heterogeneous ring-
networks of quadratic integrate-and-fire (QIF) neurons with non-local, space-
dependent coupling. Perturbations of the equilibrium state with a particular
wave number produce transient standing waves with a specific temporal
frequency, analogously to those in a tense string. In the neuronal network,
the equilibrium corresponds to a spatially homogeneous, asynchronous
state. Perturbations of this state excite the network’s oscillatory modes,
which reflect the interplay of episodes of synchronous spiking with the
excitatory-inhibitory spatial interactions. In the thermodynamic limit, an

63



exact low-dimensional neural field model (QIF-NFM) describing the macro-
scopic dynamics of the network is derived. This allows us to obtain formulas
for the Turing eigenvalues of the spatially homogeneous state, and hence to
obtain its stability boundary. We find that the frequency of each Turing mode
depends on the corresponding Fourier coefficient of the synaptic pattern of
connectivity. The decay rate instead is identical for all oscillation modes as a
consequence of the heterogeneity-induced desynchronization of the neurons.
Finally, we numerically compute the spectrum of spatially inhomogeneous
solutions branching from the Turing bifurcation, showing that similar oscil-
latory modes operate in neural bump states and are maintained away from
onset.

2.1 Introduction

Since the pioneering work of Wilson and Cowan (1973), Amari (1974, 1977),
and Nunez (1974), continuum descriptions of neuronal activity have become
a powerful modeling tool in neuroscience (Ermentrout, 1998; Coombes,
2005; Ermentrout and Terman, 2010; Bressloff, 2012; Coombes et al., 2014;
Deco et al., 2008). Given that the number of neurons in a small region of
cortex is very large, these descriptions consider neurons to be distributed
along a continuous spatial variable and the macroscopic state of the network
to be described by a single, space-dependent, firing rate variable. The
resulting neural field model (NFM) generally has the form of a continuous
first order integro-differential equation, greatly facilitating the computational
and mathematical analysis of the dynamics of large neuronal networks.

NFMs do not generally represent proper mathematical reductions of the
mean activity of a network of spiking neurons. Nevertheless, NFMs have
proven to be remarkably accurate in qualitatively capturing the main types
of dynamical states seen in networks of large numbers of asynchronous
spiking neurons. For example, it is well known that, in local networks of
spiking neurons, differences between excitatory and inhibitory neurons can
lead to oscillations (Wilson and Cowan, 1972; Ermentrout, 1994; Brunel
and Wang, 2003). The generation of these oscillations does not depend
on the spatial character of the network and hence can be observed in non-
spatially dependent firing rate models (Ermentrout, 1994). When the pattern
of synaptic connectivity depends on the distance between neurons, NFMs
show that these differences between excitation and inhibition can lead to the
emergence of oscillations and waves (Amari, 1977; Pinto and Ermentrout,
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2001a). Similar patterns can also be found in NFMs with spatially dependent
delays —modeling the effect of the finite velocity propagation of action
potentials (Wilson and Cowan, 1973; Jirsa and Haken, 1997)— as a great
deal of theoretical work indicates (see e.g. Coombes et al., 2003; Atay and
Hutt, 2004; Coombes and Laing, 2009; Zhang, 2007; Hutt, 2008; Touboul,
2012; Veltz, 2013; Dijkstra et al., 2015).

In some cases the spatiotemporal dynamics of NFMs has been directly
compared to that observed in analogous networks of spiking neurons (Roxin
et al., 2005; Battaglia et al., 2007; Roxin and Montbrió, 2011). In this work
it was found that non-space-dependent delays predict the existence of many
of the spatiotemporal patterns observed in asynchronous networks of spiking
neurons with nonlocal, space-dependent interactions. The success of NFMs
in describing these patterns depends crucially on the spiking activity being
highly asynchronous. In fact, it is well known that neural field descriptions
fail to describe states characterized by a high degree of spike synchronization
(see e.g Schaffer et al., 2013).

Here we report a spatiotemporal dynamical feature of heterogeneous
networks of spiking neurons with nonlocal interactions that, to the best of
our knowledge, have been so far unexplored. We show that ring networks of
spiking neurons display a number of discrete modes of oscillation, resem-
bling those of a tense string. These modes are exclusively due to transient
episodes of synchronous spiking and not due to the different time scales
between excitation and inhibition or to the presence of any propagation or
synaptic delay.

Traditional NFMs do not describe these synchrony-induced oscillations.
Therefore, to investigate and characterize them, we apply a recent method to
derive the firing rate equations of a globally coupled heterogeneous popula-
tion of quadratic integrate-and-fire (QIF) neurons (Montbrió et al., 2015).
This method, based on the so-called Ott-Antonsen theory (Ott and Antonsen,
2008, 2009; Ott et al., 2011), leads to an exact macroscopic description of
the network in terms of two macroscopic variables: the mean firing rate
and the mean membrane potential. The resulting mean-field model exactly
describes any state of the system, including synchronous states. Here we
extend the local firing rate model in (Montbrió et al., 2015), to include
nonlocal, instantaneous interactions. The resulting neural field model for
heterogeneous QIF neurons (QIF-NFM) clearly displays the synchrony-
induced oscillatory modes observed in simulations of spiking neurons. We
then thoroughly investigate the QIF-NFM by means of both a linear and
nonlinear stability analysis of the spatially homogeneous state. The analysis
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reveals the presence of an infinite number of oscillation modes, linked to
the Fourier components of the spatial pattern of synaptic connections. The
analysis also shows that all modes decay to the unpatterned state with the
same rate, which depends on the degree of heterogeneity in the network. Fi-
nally, we investigate the spectrum of the spatially inhomogeneous solutions
of the QIF-NFM and find similar oscillatory modes also linked to transient
episodes of spike synchronization.

2.2 Synchrony-induced modes of oscillation in
Networks of QIF Neurons

Figure 2.1(a) shows a schematic representation of the spiking neuron net-
work under investigation. The model consists of N excitatory (red tri-
angles) and N inhibitory (blue circles) neurons evenly distributed in a
ring and characterized by the spatial discrete variables φj ∈ [−π, π) with
φj = 2πj

N
− π, j = 1, . . . , N , as shown in Fig. 2.1(a). Any neuron in the

network interacts with all the other neurons via the distance-dependent cou-
pling function Je,ijk = Je,i(|φj − φk|), where indices e, i denote excitatory
and inhibitory connections, respectively. The synaptic projections of the
jth excitatory and inhibitory neurons (located at φj) to other two nearby
neurons are also schematically represented in Fig. 2.1(a).

The ring architecture of the network allows one to express the excitatory
and inhibitory connectivity patterns in Fourier series as

Je,i(φ) = Je,i0 + 2
∞∑
K=1

Je,iK cos(Kφ). (2.1)

Figure 2.1(b) shows a particular synaptic connectivity pattern in which
excitatory neurons form strong, short-range connections, whereas inhibitory
projections are weaker and wider. The state of the excitatory (e) and in-
hibitory (i) neurons is determined by the (dimensionless) membrane poten-
tials {ve,ij }j=1,...,N , which are modeled using the Quadratic Integrate and
Fire (QIF) model Ermentrout and Kopell (1986); Izhikevich (2007)

τ
dve,ij
dt

= (ve,ij )2 + Ie,ij , (+ resetting rule). (2.2)

where τ is the cell’s membrane time constant and vr and vp correspond to
the reset and peak potentials of the QIF neurons, respectively —in numerical
simulations we consider τ = 20 ms.
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(b)

(c)

(a)

Figure 2.1: Schematic representation of the ring network and coupling architecture
under study. Panel (a) shows N excitatory (red triangles) and N inhibitory (blue
circles) neurons arranged on a ring. The location of neurons is parameterized by the
angular variable φj = 2πj

N − π, j = 1, . . . , N . Red (solid) and blue (dashed) lines
indicate synaptic connections between neuron pairs (φj , φk). An example of the
excitatory and inhibitory space-dependent connectivity kernels Eqs. (2.1) are shown
in panel (b) where the abscissa represents the distance |φk − φj | between neurons j
and k. Panel (c) represents an effective model in which pairs of excitatory/inhibitory
neurons located at a certain location φk are modeled as single neurons. The effective
pattern of synaptic connectivity is obtained subtracting the inhibitory pattern from
the excitatory one, as show in panel (d).

The QIF neuron has two possible dynamical regimes depending on the
(dimensionless) input current Ie,ij . If Ie,ij < 0, the neuron is in the ex-
citable regime, while for Ie,ij > 0 the neuron is in the oscillatory regime.

In the excitable regime, an initial condition ve,ij (0) <
√
−Ie,ij , asymptoti-

cally approaches the resting potential −
√
−Ie,ij . On the other hand, initial

conditions above the excitability threshold, ve,ij (0) >
√
−Ie,ij , lead to an un-
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bounded growth of the membrane potential. Specifically, if ve,ij (0)�
√
Ie,ij ,

then the membrane potential reaches infinity approximately after a time
τ/ve,ij (0). In practice, to avoid this divergence, we consider the following
resetting rule: When the neuron’s membrane potential ve,ij reaches a certain
peak value vp � 1, the neuron is reset to a the new value vr = −vp after
a refractory period 2τ/vp. On the other hand, if Ie,ij > 0, then the neuron
is in the oscillatory regime and needs to be reset periodically. If vp � 1,
the frequency of the oscillatory neurons is approximately fj =

√
Ij/(τπ).

Finally, the current Ie,ij is defined as

Ie,ij = ηe,ij + τSej (t) + τSij(t) + P e,i
j (t). (2.3)

Here, ηe,ij is a constant external current, which varies from neuron to neuron.
The terms P e,i(t) are time-varying common inputs, and Se,ij (t) are the mean
excitatory (positive) and inhibitory (negative) synaptic activities representing
all the weighted inputs received by neuron j due to spiking activity in the
network:

Se,ij (t) = ±
N∑
k=1

Je,ijk
2πN

∑
l\tlk<t

1

τs

∫ t

t−τs
dt′δe,i(t′ − tlk), (2.4)

where τs represents the synaptic processing time and tlk is the time of the
lth spike of the excitatory/inhibitory kth neuron. Positive and negative signs
correspond to Sej and to Sij , respectively.

We performed numerical simulations of the QIF model Eqs. (2.2) and
(2.3) for a network of heterogeneous neurons, see Fig. 2.2, and Appendix
2.D for details of the numerical simulations. In all cases, the system is
initially at a spatially homogeneous state (SHS). At time t = 50 ms, a brief
(10 ms) and small current pulse P e

j is applied either to all excitatory neurons
[Figs. 2.2(a) and 2.2(b)] or to both excitatory and inhibitory neurons. The left
and right panels show perturbations of the first spatial modes, respectively
—see Appendix D for the specific form of the perturbations. Note that,
after the perturbation, the system decays to the homogeneous state showing
oscillations, which resemble standing waves. Note that the frequency of
these oscillations is different for each mode, while the decay rate is similar in
the two cases. We also performed simulations of networks of QIF neurons (i)
with quenched Gaussian heterogeneity (ii) subject to independent Gaussian
noise processes, and found similar results (not shown). To the best of our
knowledge, these oscillations have not yet been investigated in the literature.
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(a) (b)

(c) (d)

Figure 2.2: Transient episodes of spike synchrony in heterogeneous ring networks
of N = 2.5 · 105 excitatory and N = 2.5 · 105 inhibitory QIF neurons, Eqs. (2.2)
and (2.3), as a result of spatially inhomogeneous perturbations applied at time
t = 0.05 s. In Panels (a) and (b) only excitatory neurons are perturbed. In panels
(c) and (d) all neurons are perturbed. In panels (a) and (c) the perturbation has wave
number K = 1; in panels (b) and (d) the perturbation has wave number K = 3.
Other parameters are ∆ = 1, τ = 20 ms, and η̄ = 5. All Fourier components of
the connectivity Eq. (2.1) were Je,iK = 0, except Je0 = 23, Je1 = 10, Je2 = 7.5,
Je3 = −2.5, J i0 = 23.

2.3 Neural Field model for quadratic integrate
and fire neurons

In the following, we aim to investigate the nature and origin of the spa-
tiotemporal patterns shown in Fig. 2.2. To analyze them, we derive the NFM
corresponding to the thermodynamic (N → ∞) and continuum limits of
the network of QIF neurons [Eqs. (2.2) and (2.3)]. In additon we also take
the limit vp →∞, so that the QIF model (2.2) is equivalent to the so-called
theta-neuron model (Ermentrout and Kopell, 1986; Izhikevich, 2007). This
leads to an exact neural field model for a network of QIF neurons (QIF-
NFM). The detailed derivation is performed in Appendix 2.A, and closely
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follows that of Montbrió et al. (2015). The reduction in dimensionality is
achieved considering that the currents ηe,i —which, after performing the
thermodynamic limit, become continuous random variables— are distributed
according to a Lorentzian distribution of half-width ∆ and centered at η̄,

g(ηe,i) =
∆

π

1

(ηe,i − η̄)2 + ∆2
. (2.5)

The QIF-NFM is

τ
∂Re,i

∂t
=

∆

πτ
+ 2Re,iV e,i, (2.6a)

τ
∂V e,i

∂t
= (V e,i)2 + η̄ − (πτRe,i)2 + τS(φ)

+P e,i(φ, t). (2.6b)

and exactly describes the time evolution of the mean firing rate Re,i(φ)
and the population’s mean membrane potential V e,i(φ) of the excitatory and
inhibitory populations at any location φ of the ring —to facilitate the notation
we have avoided explicitly writing the dependence of these variables on φ.
In the limit of instantaneous synapses, τs → 0 in Eqs. (2.4), the excitatory
and inhibitory contributions of the mean field S(φ) = Se(φ) +Si(φ) reduce
to Se,i(φ) = ± 1

2π

∫ π
−π J

e,i(φ− φ′)Re,i(φ′)dφ′.

2.3.1 Effective QIF-NFM
The analysis of the QIF-NFM Eq. (2.6) is greatly simplified considering
that excitatory and inhibitory neurons have identical single-cell properties.
This scenario is schematically represented in Figs. 2.1(c) and 2.1(d). If we
set P e(φ, t) = P i(φ, t) = P (φ, t), and restrict our attention to solutions
of Eqs. (2.6) satisfying Re(φ, t) = Ri(φ, t) ≡ R(φ, t) and V e(φ, t) =
V i(φ, t) ≡ V (φ, t), then we obtain an effective QIF-NFM in variables R
and V ,

τ
∂R

∂t
=

∆

πτ
+ 2RV, (2.7a)

τ
∂V

∂t
= V 2 + η̄ − (πτR)2 + τS(φ) + P (φ, t). (2.7b)

In this case, the mean field reduces to

S(φ) =
1

2π

π∫
−π

[
J0 + 2

∞∑
K=1

JK cos(K(φ′ − φ))

]
R(φ′)dφ′, (2.8)
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with the new Fourier coefficients JK , which are related to those in Eq. (2.1)
as JK = JeK − J iK , with K = 0, 1, . . . , see Fig. 2.1(d). Solutions to
Eqs. (2.6) need not satisfy the condition Re = Ri and V e = V i, but the
reduced system Eqs. (2.7) captures the mechanism behind the oscillatory
behavior observed in the model. Note that, in Figs. 2.2(a) and 2.2(b), we
perturbed the (SHS) of the system [Eqs. (2.2) and (2.3)] using a current
pulse to all excitatory neurons. The resulting dynamics is only captured by
the full system [Eqs. (2.6)] and not by the effective neural field [Eqs. (2.7)].
However, we next show that the existence of the spatial oscillatory modes
observed in Fig. 2.2 is exclusively linked to the dynamics in the reduced
manifold defined by Eqs. (2.7) and (2.8).

2.3.2 SHS and their stability: Synchrony-induced modes
of oscillation

In the following we investigate the stability of the stationary SHS of the
QIF-NFM against spatial perturbations. The detailed linear stability analysis
of both the complete model [Eqs. (2.6)], and the reduced one [Eqs. (2.7)]
are provided in Appendix 2.B.

In absence of external inputs, P (φ, t) = 0, the steady states of Eqs. (2.7)
—and also of Eqs. (2.6)—satisfy V∗(φ) = −∆/[2πτR∗(φ)], and

R∗(φ) = Φ (η̄ + τS∗(φ)) (2.9)

with Φ(x) =
√
x+
√
x2 + ∆2/(

√
2πτ). In Eq. (2.9), the term S∗(φ) is the

mean field [Eq. (2.8)] evaluated atR∗(φ). For SHS, the mean field [Eq. (2.8)]
becomes spatially independent, S∗(φ) = S∗ = J0R∗, and Eq. (2.9) becomes
a quartic equation for the variable R∗. To further simplify the analysis,
hereafter we consider parameter ranges where Eq. (2.9) has a single positive
root. Accordingly, we consider a balanced kernel, J0 = 0 so that Eq. (2.9)
has S∗ = 0 and explicitly determines the value of the fixed point R∗.

The steady states of the SHS of Eq.(2.7) coincide with those of a single
population of neurons (Montbrió et al., 2015). However, the stability of
the SHS of the QIF-NFM to inhomogeneous perturbations depends on the
spatial character of the connectivity kernel Eq. (2.1). The linear stability
analysis of the SHS gives a countably infinite set of eigenvalues associated
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to the stability of perturbations with wave number* K.

λK± = − ∆

πτ 2R∗
± 2πR∗

√
JK

2π2τR∗
− 1, (K = 0, 1, 2 . . . ) (2.10)

This equation is the main result of this work, and explains the synchro-
nization patterns shown in Fig. 2.2. Note that the eigenvalues Eq. (2.10)
may be real or complex, indicating nonoscillatory or oscillatory dynam-
ics of the evolution of perturbations of wave number K, respectively. In
particular, perturbations of any given spatial mode K are oscillatory if the
condition JK < 2π2τR∗ is fulfilled. Notably, all complex eigenvalues have
the same decay rate to the SHS, since Re(λK±) = −∆/(πτ 2R∗) for all of
them. Specifically, the decay rate is proportional to the degree of quenched
heterogeneity ∆. This reflects the fact that the decay in the oscillations is in
fact a desynchronization mechanism due to the distribution of inputs that
the cells receive.

Substituting Eq. (2.9) with J0 = 0 into Eq. (2.10), it is straightforward
to find the boundary

JoK =
√

2π

√
η̄ +

√
η̄2 + ∆2, (2.11)

separating the parameter space into regions where standing waves of wave
number K are, or are not, observed. This boundary is depicted with a dotted
line in the phase diagram Fig. 2.3, together with a schematic representation
of the location of the eigenvalues λK± in the complex plane (red crosses, see
also Fig. 2.5(a)). A given oscillatory mode K has an associated frequency

νK =
1

2π
|Im(λK±)|,

which differs from one another depending on the corresponding Fourier
coefficients JK of the patterns of synaptic connectivity Eq. (2.1). Therefore,
spatial perturbations of wave number K produce standing waves of neural
activity of frequency νK . Locally excitatory coupling JK > 0 slows down

* The stability analysis of the original Eqs. (2.6) gives two additional complex eigenval-
ues for each oscillatory mode K. These eigenvalues are degenerated and are associated to
the oscillatory modes of the uncoupled neuronal system, that is they coincide with (2.10)
with Je,iK = 0. Additionally, due to the translational invariance of the SHS solutions, each
of the eigenvalues Eq. (2.10) is two-times degenerated, corresponding to even and odd
perturbations. See Appendix 2.B for the detailed linear stability analysis of the QIF-NFM
Eqs. (2.6).
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(a) (b)

(c)

Figure 2.3: (a) Phase diagram of Eqs. (2.7) (with J0 = 0) showing the regions of
stability of the SHS, determined by the eigenvalues Eq. (2.10). Spatial perturbations
of wave number K > 0 show oscillatory and nonoscillatory decay to the spatially
homogeneous state in the light-shaded and dark-shaded regions of the diagram,
respectively. The eigenvalues λK± associated with the Kth mode are schematically
represented in the complex plane (red crosses) for the three qualitatively different
regions of the phase diagram. Right panels show the response of the Eqs. (2.7) with
J1 = 10, J2 = 7.5, J3 = −2.5 and JK = 0 (K 6= 1, 2, 3), η̄ = 4.5, ∆ = 1, and
τ = 20 ms, to a perturbation of the (b) K = 1 and (c) K = 3 spatial modes. Both
perturbations produce standing waves with frequency and decay rate described by
Eqs (2.10). In the white region, limited by the curve Eq. (2.11), these perturbations
grow and lead to a bump state (BS) with K bumps (see Fig. 2.4).

these oscillations and eventually suppresses them, whereas locally inhibitory
coefficients JK < 0 are able to generate arbitrarily fast oscillations (in
particular, note that all modes with JK = 0 are oscillatory with frequency
ν = R∗, which coincides with the mean firing rate of the uncoupled neurons).

Indeed, in Fig. 2.2(d), a perturbation of wave number K = 3 produced
standing waves, since J3 was negative. The frequency of these oscillations
was fast compared to that of Fig. 2.2(c), where the exited mode was the
first one K = 1 and given that the J1 was positive. However, note that in
both cases the decay to the SHS is similar, as predicted by the eigenvalues
Eq. (2.10). This indicates that the desynchronization process occurs faster
when the diversity ∆ of neurons is increased, and this process does not
depend on the oscillation mode being excited. Finally, in Figs. 2.3(b) and
2.3(c) we show numerical simulations of the QIF-NFM [Eq. (2.7)] using
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the same parameters as those of Fig. 2.2(c) and 2.2(d), and the agreement is
good.

2.3.3 Turing bifurcation and nonlinear stability of the SHS
As JK is increased, the frequency νK of a given oscillatory mode decreases
and eventually it ceases to oscillate. Further increases in JK may desta-
bilize the homogeneous state, via a pattern-forming (Turing) bifurcation.
This instability leads to states with spatially modulated firing rate, some-
times referred to as Bump States (BS). Substituting the fixed point (2.9) in
Eq. (2.10), and imposing the condition of marginal stability λK+ = 0, we
find the stability boundaries corresponding to a K-spatial mode

JTK = 2π

√
2η̄2 + 2∆2

η̄ +
√
η̄2 + ∆2

. (2.12)

The Turing bifurcation boundary, Eq. (2.12), corresponds to the solid line
in Figs. 2.3(a) and 2.4(a). Additionally, in Appendix 2.C, we conducted
a weakly nonlinear analysis and derived the small-amplitude equation
[Eq. (2.C.20)] corresponding to the bump solution bifurcating from the
SHS. The amplitude equations determine if the Turing bifurcation is super-
critical, or if it is subcritical and bistability between SHS and bump states is
expected to occur. The results of this analysis are summarized in Fig. 2.4(b).

In addition, we performed numerical simulations of the QIF-NFM (2.7)
and indeed found coexistence of SHS and bump states in the blue-shaded
regions limited by solid and dashed curves in Fig. 2.4(a). These lines meet at
two codimension-2 points (where the Turing bifurcation line changes color)
that agree with the results of the weakly nonlinear analysis. Moreover, we
computed numerically a bifurcation diagram of the NFM, using the spectral
method developed in (Rankin et al., 2014) and available with (Avitabile,
2016). The results, presented in Fig. 2.4(c) confirm that the unstable BS
bifurcates subcritically for the SHS. The unstable BS then meets a stable BS
—solid blue (light gray) line— at a fold bifurcation.

2.3.4 Synchrony-induced transient oscillations in bump
states

To investigate whether the synchrony-induced oscillatory modes are also
present in the stationary BS, we computed their spectrum. The gray points
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Figure 2.4: (a) Phase diagram of the QIF-NFM [Eqs. (2.7)] with J2 = 7.5,
J3 = −2.5, JK = 0 for K > 3, and ∆ = 1. Solid line: Supercritical [red
(gray)] and Subcritical (black) Turing bifurcation boundary Eq. (2.12). Dashed
lines: saddle-node bifurcation of bumps (numerical). (b) Diagram —obtained
using a weakly nonlinear analysis— showing the regions where the Turing bi-
furcation is supercritical or subcritical for J1 = 10, J3 = −2.5, and JK = 0.
(c) Bifurcation diagram (rescaled) ‖R∗‖2 = (2π)−1

∫ π
−π |R∗(φ)|2dφ vs. η̄, for

J1 = 10. Solid/dashed black lines: stable/unstable SHS. Solid/dashed blue lines:
stable/unstable bump states (BS).

in Fig. 2.5(a) show the spectrum of the unstable Bump near the subcritical
Turing bifurcation of wave number K = 1. Additionally, the red crosses in
Fig. 2.5(a) are the eigenvalues of the SHS state Eq. (2.10). The profile of the
unstable bump is only very weakly modulated, see Fig. 2.5(c), and hence the
spectrum of the BS is very close to that of the SHS, given by the eigenvalues
λK . All these eigenvalues are complex, except two real eigenvalues, which
correspond to the K = 1 mode. One of these eigenvalues is negative and the
other is very close to zero and positive, indicating that the SHS is unstable.

Additionally, it is important to note that in Fig. 2.5 we have taken JK = 0
for all K except for K = 1, 2, 3, and hence there is an infinite number of
eigenvalues (λ0 and λ4,5,...) that are all complex and identical. In Fig. 2.5(a)
the eigenvalues of the unstable BS seem to form a continuous band pre-
cisely around these infinitely degenerated eigenvalues and their complex
conjugates. These continuous bands grow in size as one moves away from
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Figure 2.5: Spectrum [(a) and (b)] and firing rate profiles [(d) and (c)] of an unstable
[(a) and (c)] and stable [(b) and (d)] bump states of the QIF-NFM [Eqs. (2.7)]. In
panels (a) and (b) the eigenvalues Eq. (2.10) are superimposed with red crosses.
Panel (e) shows a numerical simulation of the BS of panel (d). At t = 0.05 s, a
perturbation of wave number K = 6 is applied. Parameters are J0 = 0, J1 = 10,
J2 = 7.5, J3 = −2.5, JK = 0 for K > 3, ∆ = 1, τ = 20 ms. Panels (a) and (c):
η̄ = 2.2120; panels (b), (d) and (e): η̄ = 2.1828.

the Turing bifurcation, as it can be seen in the spectrum of the stable bump
depicted in Fig. 2.5(b) —here red crosses also correspond to the eigenvalues
of the SHS state Eq. (2.10). These results show that all the complex eigenval-
ues linked to the oscillatory modes of the SHS remain complex, suggesting
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that, in general, similar synchronization-induced oscillations may be present
in stationary, spatially inhomogeneous neural patterns.

Finally, to illustrate this, in Fig. 2.5(e) we performed a numerical simula-
tion of the QIF-NFM Eqs. (2.7), and perturbed the BS shown in Fig. 2.5(d)
with a spatially inhomogeneous perturbation corresponding to the mode
(K = 6). The perturbation decays to the BS showing a pattern that resembles
that of Fig. 2.2. However here, the regions of the ring with the maximum
values of R∗ —around φ = 0, in Figs. 2.2(d) and 2.2(e)— oscillate at high
frequencies and these oscillations slow down as φ→ ±π. The spectrum of
the stable BS Fig. 2.5(b) also indicates that the decay of the fast oscillations
(located at the central part of the bump, φ = 0) is slow compared to that of
the slow oscillations.

2.4 Conclusions

We have reported the existence of a class of oscillatory modes in spatially
distributed networks of heterogeneous spiking neurons. These modes of
oscillation reflect the transient episodes of spike synchronization among the
neurons and are not captured by traditional NFMs.

To investigate these oscillation modes we derived a novel NFM for QIF
neurons [Eqs. (2.6)]. Alternately, and invoking the Ott-Antonsen theory
for populations of pulse-coupled theta neurons (Luke et al., 2013; So et al.,
2014), Laing (2014) recently derived a NFM that is equivalent to the effective
QIF-NFM. In Laing’s work—like in other recent related papers on pulse-
coupled oscillators (Pazó and Montbrió, 2014; O’Keeffe and Strogatz, 2016;
Chandra et al., 2017; Coombes and Byrne, 2019; Byrne et al., 2017; Gallego
et al., 2017)— the resulting low-dimensional description is in terms of the
complex Kuramoto order parameter. In contrast, the mean field description
adopted here (in terms of mean firing rates and membrane potentials) greatly
simplifies the analysis, allowing us to analytically investigate the linear and
nonlinear stability of the spatially homogeneous states of the QIF-NFM.

This analysis reveals two important features: (i) The frequency of each
oscillation mode only depends on the corresponding Fourier coefficient of
the synaptic pattern of connectivity, and (ii) the decay rate is exactly the
same for all modes and is due to a desynchronization mechanism which
depends on the degree of quenched heterogeneity. We also numerically
investigated networks of identical QIF neurons subject to noise and found
similar results (not shown). In this case, the desynchronization reflects an
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underlying phase diffusion proportional to the noise strength. Finally, we
investigated the existence and stability of bump states, which bifurcate from
the spatially homogeneous states via Turing bifurcations. The spectrum
of such bump states has a continuous part off the real axis, indicating that
similar synchronization-induced oscillatory modes also operate in neural
bump states.

Interesting directions of further study are the analysis of the QIF-NFM
[Eq. (2.6)] considering different membrane time constants τ , (or differ-
ent main currents η̄) for excitatory and inhibitory neurons. As proved
recently (Avitabile et al., 2017), NFMs with time-scale separation display a
rich variety of robust spatiotemporal patterns, which may also be supported
by our model. Also, recent work has been done to extend the local firing
rate equations derived in (Montbrió et al., 2015) to include fixed synaptic
delays (Pazó and Montbrió, 2016) and synaptic kinetics (Ratas and Pyragas,
2016; Devalle et al., 2017a)—see also (Coombes and Byrne, 2019; Byrne
et al., 2017). This work shows that time delays due to synaptic process-
ing generally lead to the emergence of self-sustained oscillations due to
collective synchronization. Extending the QIF-NFM [Eq. (2.6)] to account
for the synaptic time delays caused by synaptic processing may lead to
spatiotemporal phenomena not previously observed in traditional NFMs.
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Chapter Appendices

2.A Derivation of the QIF neural field model
(QIF-NFM)

Our derivation closely follows that of (Montbrió et al., 2015), but it needs
to be extended to include the spatial dimension. Similar extensions from a
single population of phase oscillators to a one-dimensional, spatially dis-
tributed network with nonlocal coupling have been done in (Laing, 2014,
2015, 2016b,a, 2009; Omel’chenko, 2013; Omel’chenko et al., 2014; Kawa-
mura, 2014).

Considering the thermodynamic limit N →∞, we can drop the indexes
in Eqs. (2.2) and (2.3) and define the density function ρe,i(ve,i|ηe,i, t, φ) such
that ρe,i(ve,i|ηe,i, t, φ)dve,idηe,idφ describes the fraction of neurons located
between φ and φ+dφ, with membrane potentials between ve,i and ve,i+dve,i

and parameters between ηe,i and ηe,i + dηe,i at time t. Accordingly, parame-
ter ηe,i becomes now a continuous random variable with probability density
function g(ηe,i). For the sake of simplicity, we assume identical distributions
for both excitatory and inhibitory populations g (ηe,i) = g (η). The total volt-
age density at location φ and time t is given by

∫∞
−∞ ρ

e,i(ve,i|η, t, φ) g(η) dη.
Conservation of the number of neurons at each φ value is described by

the continuity equation

∂tρ
e,i = −∂v

[((
ve,i
)2

+ η + τS(φ, t) + P e,i(φ, t)
)
ρe,i
]
,

where we have explicitly included the velocity given by Eqs. (2.2) and (2.3)
and S (φ, t) = Se (φ, t)+Si (φ, t) represents the total synaptic activity. Next
we invoke the Ott-Antonsen theory (Ott and Antonsen, 2008), by means of
the Lorentzian Ansatz (LA) (Montbrió et al., 2015)

ρe,i(ve,i|η, t, φ) =
1

π

xe,i(φ, η, t)

[ve,i − ye,i(φ, η, t)]2 + xe,i(φ, η, t)2
, (2.A.1)

which solves the continuity equation. The width xe,i(φ, η, t) of the LA is
related to the firing rate Re,i of the neural populations. Indeed, for each
η value at time t, Re,i(φ, η, t) can be evaluated noting that neurons fire at
a rate given by the probability flux at infinity: Re,i(φ, η, t) = ρe,i(ve,i →
∞|η, t, φ)v̇e,i(ve,i →∞|η, t, φ). The limit ve,i →∞ on the right-hand side
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of this equation can be evaluated within the LA and gives: xe,i(φ, η, t) =
πτRe,i(φ, η, t). The total firing rate at a particular location φ of the ring is
then

Re,i(φ, t) =
1

τπ

∫ ∞
−∞

xe,i(φ, η, t)g(η)dη. (2.A.2)

Additionally, the quantity ye,i(η, t) is, for each value of η, the mean of
the membrane potential ye,i(φ, η, t) = P.V.

∫∞
−∞ ρ

e,i(ve,i|η, t, φ)ve,i dve,i.
Therefore, this variable is related to the mean membrane potential of the
neuronal population at φ by

V e,i(φ, t) =

∫ ∞
−∞

ye,i(φ, η, t)g(η)dη. (2.A.3)

Substituting the LA (2.A.1) into the continuity equation, we find that, for
each value of η, the variables xe,i(φ) and ye,i(φ) must obey two coupled
equations which can be written in complex form as

τ∂tw
e,i(φ, η, t) = i

[
η + τS(φ, t)−

(
we,i
)2

(φ, η, t)

+ P e,i(φ, t)
]
,

(2.A.4)

where we,i(φ, η, t) ≡ xe,i(φ, η, t) + iye,i(φ, η, t). If η are distributed accord-
ing to a Lorentzian distribution Eq. (2.5), the integrals in (2.A.2) and (2.A.3)
can then be evaluated closing the integral contour in the complex η-plane,
and using the Cauchy residue theorem. Then the firing rate and mean mem-
brane potential depend only on the value of we,i at the pole of g(η) in the
lower half η-plane: πτRe,i(φ, t) + iV e,i(φ, t) = we,i(φ, η̄ − i∆, t), and, as
a result, (2.A.4) must be evaluated only at η = η̄ − i∆ to obtain the neural
field equations [Eq. (2.6)]*

These equations can be nondimensionalized by rescaling variables and
time as (note the difference between ve,ij , the membrane potential of a single
neuron j, and the mean membrane potential ve,i):

Re,i =

√
∆

τ
re,i , V e,i =

√
∆ ve,i , t =

τ√
∆
t̃, (2.A.5)

* The derivation of the QIF-NFM Eq. (2.6) can be readily extended to account for
population of excitatory and inhibitory neurons of different sizes, i.e. Ne 6= N i. This can
be always achieved by rescaling the relative contributions of the excitatory and inhibitory
mean fields as S (φ) = peSe (φ) + piSi (φ), where pe = 2Ne/

(
Ne +N i

)
and pi =

2N i/
(
Ne +N i

)
. In the case of the effective model Eq. (2.7), this implies that Fourier

coefficients in Eq. (2.8) need to be changed as JK = peJeK − piJ iK .
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and parameters as:

Je,iK =
√

∆ je,iK , η̄ = ∆η̃, P e,i(φ, t) = ∆P̃ e,i(φ, t̃). (2.A.6)

The resulting dimensionless NFM is then

ṙe,i =
1

π
+ 2ve,ire,i, (2.A.7a)

v̇e,i =
(
ve,i
)2

+ η̃ − π2
(
re,i
)2

+ s(φ, t̃) (2.A.7b)

+P̃ e,i(φ, t̃),

where the overdot represents derivation with respect the nondimensional
time t̃ and the mean field is

s(φ, t̃) =
1

π

∫ π

−π

[
je0
2

+
∞∑
K=1

jeK cos(K(φ′ − φ))

]
re(φ′, t̃)dφ′

− 1

π

∫ π

−π

[
ji0
2

+
∞∑
K=1

jiK cos(K(φ′ − φ))

]
ri(φ′, t̃)dφ′.

(2.A.8)

2.A.1 Effective NFM

Considering P̃ e,i(φ, t̃) = P̃ (φ, t̃) in Eqs. (2.A.7), the system

ṙ =
1

π
+ 2vr, (2.A.9a)

v̇ = v2 + η̃ − π2r2 + s(φ, t̃) + P̃ (φ, t̃), (2.A.9b)

with the mean field

s(φ, t) =
1

π

∫ π

−π

[
j0

2
+
∞∑
K=1

jK cos(K(φ′ − φ))

]
r(φ′, t)dφ′. (2.A.10)

and
jK = jeK − jiK ,

has identical symmetric solutions as the original Eqs.(2.A.7), i.e.

re(t) = ri(t) = r(t), ve(t) = vi(t) = v(t).
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2.B Linear stability analysis of the SHS

2.B.1 Linear stability of the
effective QIF-NFM Eq. (2.7)

The homogeneous steady state is given by the solution of Eq. (2.9) when
R∗ (φ) = R∗. This is equivalent to S∗ (φ) = S∗ = J0R∗ that in dimension-
less form is

π2r4
∗ − j0r

3
∗ − η̃r2

∗ −
1

4π2
= 0. (2.B.1)

This equation is greatly simplified assuming j0 = 0 and gives

r∗ =
1

π
√

2

√
η̃ +

√
η̃2 + 1. (2.B.2)

The stability of homogeneous steady-state solutions can be analyzed study-
ing the evolution of the small (even) perturbations (ε � 1) of the SHS

r(φ, t) = r∗ + ε
∞∑
K=0

aK(t) cos(Kφ), (2.B.3a)

v(φ, t) = v∗ + ε
∞∑
K=0

bK(t) cos(Kφ). (2.B.3b)

Substituting (2.B.3) into the mean field (2.A.10), we obtain a perturbed
mean field around s∗(φ)

s(φ, t) = s∗(φ) + ε
∞∑
K=0

jKaK(t) cos(Kφ). (2.B.4)

Linearizing Eqs. (2.A.9) around the fixed point (r∗, v∗), gives

∞∑
K=0

µKaK cos(Kφ) = 2

∞∑
K=0

[r∗(φ)bK + v∗(φ)aK ] cos(Kφ), (2.B.5)

∞∑
K=0

µKbK cos(Kφ) =

∞∑
K=0

[
2v∗(φ)bK + (jK − 2π2r∗(φ))aK

]
cos(Kφ),

where we have used the ansatz aK(t) = aKe
µKt and bK(t) = bKe

µKt,
where µK represents the dimensionless eigenvalue of the Kth mode. For
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SHS states, (r∗(φ), v∗(φ)) = (r∗, v∗), the modes in Eqs. (2.B.6) decouple
and, for a given mode K, we find the linear system

µK

(
aK
bK

)
= L∗

(
aK
bK

)
, (2.B.6)

with:

L∗ =

(
2v∗ 2r∗

jK − 2π2r∗ 2v∗

)
. (2.B.7)

Equation (2.B.6) has a general solution:(
aK(t̃)
bK(t̃)

)
= A+u+e

µK+ t̃ + A−u−e
µK− t̃, (2.B.8)

where A± are arbitrary constants. The eigenvalues µK± are given by

µK± = − 1

πr∗
± 2πr∗

√
jK

2π2r∗
− 1, (2.B.9)

with eigenvectors

u± =

(
±1√
jK
2r∗
− π2

)
. (2.B.10)

In terms of the dimensional variables and parameters (2.A.5) and (2.A.6),
the eigenvalues (2.B.9) are λkt = µk t̃, and thus λk =

√
∆µk/τ , which gives

the eigenvalues Eq. (2.10) in the main text.

2.B.2 Linear stability of the full QIF-NFM
For the full QIF-NFM Eq. (2.6), the perturbation around the SHS state has
the form

re,i(φ, t) = r∗ + ε
∞∑
K=0

ae,iK (t) cos(Kφ),

ve,i(φ, t) = v∗ + ε

∞∑
K=0

be,iK (t) cos(Kφ).

In this case, the linear stability of the SHS state with respect to perturbations
of the K-spatial mode is determined by the characteristic equation

λK


aeK
beK
aiK
biK

 =


2v∗ 2r∗ 0 0

jeK − 2π2r∗ 2v∗ −jiK 0
0 0 2v∗ 2r∗
jeK 0 −jiK − 2π2r∗ 2v∗



aeK
beK
aiK
biK

 (2.B.11)
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For each K mode, the linearized system has a general solution
aeK(t̃)
beK(t̃)
aiK(t̃)
biK(t̃)

 = A+ uK+e
µK+ t̃ + A−uK−e

µK− t̃ +

B+ uK⊥e
µ⊥ t̃ +B−ūK⊥e

µ̄⊥ t̃, (2.B.12)

where A± and B± are arbitrary constants. The eigenvectors

uK± =


±1√

jeK−j
i
K

2r∗
− π2

±1√
jeK−j

i
K

2r∗
− π2

 . (2.B.13)

have eigenvalues

µK± = − 1

πr∗
± 2πr∗

√
jeK − jiK

2π2r∗
− 1. (2.B.14)

These eigenvalues coincide with those of the reduced system (2.B.9), and
are associated with the standing waves shown in Fig. 2.2. Additionally, the
eigenvector

uK⊥ =


ijiK
πjiK
ijeK
πjeK

 , (2.B.15)

and its complex conjugate ūK⊥, with the associated eigenvalue

µ⊥ = − 1

πr∗
+ i2πr∗, (2.B.16)

and its complex conjugate µ̄⊥, correspond to modes of oscillation of the un-
coupled system. Indeed, note that the eigenvalues (2.B.16) are independent
of the connectivity, and correspond to oscillatory modes which are already
present in a single population of uncoupled neurons —note that eigenvalues
(2.B.14) reduce to (2.B.16) for all the modes with jK = jeK − jeK = 0.
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2.C Small-amplitude equation near the Spatially
Homogeneous State

2.C.1 Critical eigenvectors
Right at the bifurcation, the only undamped mode is the critical one given
by u+ in (2.B.10), that reduces to the critical eigenmode:

uc =

(
r∗
−v∗

)
. (2.C.1)

At criticality, the critical eigenmode of L∗ satisfies

L∗cuc = 0,

where L∗c corresponds to the operator (2.B.7) evaluated at jK = jKc. The
left critical eigenvector of the operator L∗c is then defined as

u†cL∗c = 0,

which gives

u†c = π

(
−v∗
r∗

)T
, (2.C.2)

where the constant has been taken to normalize the eigenvectors, so that they
satisfy u†cuc = 1.

2.C.2 Amplitude equation
Except for initial transients, the amplitude of the bifurcating solution at
criticality is expected to contain only the component u+c. In the follow-
ing we derive a small-amplitude equation for the bump solutions using
multiple-scale analysis, (Kuramoto, 1984, see e.g.). First, let the solution of
Eqs. (2.A.9) be written as the perturbation expansion(

r(φ, t̃)

v(φ, t̃)

)
=

(
r∗
v∗

)
+ ε

(
rε(φ, t̃, T̃ )

vε(φ, t̃, T̃ )

)
+ ε2

(
rεε(φ, t̃, T̃ )

vεε(φ, t̃, T̃ )

)
+ . . . (2.C.3)

where (r∗, v∗) is the state SHS given by the solutions of (2.B.1), and ε� 0 is
a small parameter, which measures the distance from the Turing bifurcation.
In addition, we define a long time scale, T̃ = ε2t̃, that is considered to be
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independent of t̃. Accordingly, the differential operator in Eqs. (2.A.9) may
be replaced by:

∂t̃ → ∂t̃ + ε2∂T̃ .

Since the asymptotic expansion is going to be performed in the vicinity of
a stationary bifurcation, we set ∂t̃ = 0 so that the only temporal variations
occur with the slow time scale T̃ .

Additionally, in our analysis we use the parameter j1 as the bifurcation
parameter, and we write it as

j1 = jT1 + ε2δj1, (2.C.4)

where jT1 is the critical value of j1 at which the Turing bifurcation occurs,
given by Eq. (2.11), with K = 1. Accordingly, the (nondimensionalized)
connectivity footprint (2.1) is

j(φ) = jc(φ) + 2ε2δj1 cosφ, (2.C.5)

with

jc(φ) = j0 + 2jT1 cosφ+ 2
∞∑
K=2

jK cos(Kφ), (2.C.6)

where jK < jKc for K 6= 1. To simplify the notation, we hereafter omit to
explicitly write the dependence of rε,εε,... and vε,εε,... on the variables t̃, T and
φ. Substituting (2.C.3) and (2.C.5) into the mean field (2.A.10):

s(φ) =
1

2π

∫ π

−π
(r∗ + εrε + ε2rεε + . . . )jc(φ− φ′)dφ′

+ε2
1

π

∫ π

−π
(r∗ + εrε + ε2rεε + . . . ) δj1 cos(φ− φ′)dφ′

≡ 〈r∗ + εrε + ε2rεε + . . . 〉c
+2ε2〈r∗ + εrε + ε2rεε + . . . 〉 (2.C.7)

= r∗j0 + ε〈rε〉c + ε2〈rεε〉c + ε3(〈rεεε〉c + 2〈rε〉) + . . . (2.C.8)

Plugging expansions (2.C.3) and (2.C.5) into the NFM Eqs. (2.A.9), we
obtain

ε2∂T̃ (εrε + ε2rεε + . . . ) = ε(2v∗rε + 2r∗vε)

+ε2(2v∗rεε + 2rεvε + 2r∗vεε)

+ε3(2vεrεε + 2rεvεε) + . . .

ε2∂T̃ (εvε + ε2vεε + . . . ) = ε(2v∗vε − 2π2r∗rε + 〈rε〉c)
+ε2(v2

ε − π2r2
ε + 2v∗vεε − 2π2r∗rεε + 〈rεε〉c)

+ε3(2vεvεε − 2π2rεrεε + 〈rεεε〉c + 2〈rε〉) + . . .
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These equations can be written in a more compact form as

− (Lc+ ε2Lεε)

[
ε

(
rε
vε

)
+ ε2

(
rεε
vεε

)
+ ...

]
= ε2Nεε+ ε3Nεεε+ . . . , (2.C.9)

defining the linear and nonlinear operators

Lc =

(
2v∗ 2r∗

〈·〉c − 2π2r∗ 2v∗

)
,

Lεε =

(
−∂T̃ 0
2〈·〉 −∂T̃

)
,

Nεε =

(
2rεvε

v2
ε − π2r2

ε

)
,

Nεεε =

(
2rεvεε + 2rεεvε

2vεvεε − 2π2rεrεε

)
,

Next we collect terms by order in ε. At first order we recover the linear
problem (2.B.6) at the Turing bifurcation:(

2v∗ 2r∗
jT1 − 2π2r∗ 2v∗

)(
rε
vε

)
=

(
0

0

)
.

Recalling that jT1 is given by Eq. (2.C.4), we find the neutral solution:(
rε
vε

)
= A uc cosφ, (2.C.10)

where A is the small amplitude with slow time dependence that we aim to
determine and uc is the critical eigenmode given by Eq. (2.C.1). Substituting
the solution (2.C.10) into the nonlinear forcing terms Nεε we find

Nεε =
A2

2

(
π−1

v2
∗ − π2r2

∗

)
[1 + cos(2φ)],

what implies that, at second order, the solution must necessarily contain
homogeneous and second spatial components(

rεε
vεε

)
=

(
rεε0
vεε0

)
+

(
rεε2
vεε2

)
cos(2φ).

Equating the homogeneous, second order terms of equation (2.C.9) we find

−
(

2v∗ 2r∗
j0 − 2π2r∗ 2v∗

)(
rεε0
vεε0

)
=
A2

2

(
π−1

v2
∗ − π2r2

∗

)
,
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and left-multiplying this equation by L−1
c , and using Eq. (2.12) we find(

rεε0
vεε0

)
=

A2

4r∗(jT1 − j0)

(
2v∗ −2r∗

2π2r∗ − j0 2v∗

)(
π−1

v2
∗ − π2r2

∗

)
,

which gives the coefficients

rεε0 =
3v2
∗ − π2r2

∗
2(jT1 − j0)

A2, (2.C.11)

vεε0 =
2πv4

∗ − v∗j0 − 3π/2

2(jT1 − j0)
A2. (2.C.12)

Proceeding similarly, we find the coefficients corresponding to the second
spatial Fourier modes:

rεε2 =
3v2
∗ − π2r2

∗
2(jT1 − j2)

A2, (2.C.13)

vεε2 =
2πv4

∗ − v∗j2 − 3π/2

2(jT1 − j2)
A2. (2.C.14)

Collecting the third-order terms of equation (2.C.9), we obtain the identity

− Lc
(
rεεε
vεεε

)
− Lεε

(
rε
vε

)
= Nεεε. (2.C.15)

To obtain the desired amplitude equation, we shall left-multiply Eq. (2.C.15)
by the left null-eigenvector (2.C.2) and project it into the first spatial Fourier
mode. The first term on the right-hand side of Eq. (2.C.15) vanishes since
u†cLc = 0. The second term is

Lεε

(
rε
vε

)
=

(
−r∗ ∂T̃A

v∗ ∂T̃A+ δj1 r∗ A

)
cosφ.

Finally, the nonlinear forcing term at the left-hand side of Eq. (2.C.15) is

Nεεε = −A cosφ

(
v∗α− r∗β
π2r∗α + v∗β

)
−A cos(3φ)

(
v∗rεε2 − r∗vεε2
π2r∗rεε2 + v∗vεε2

)
,

where α = (2rεε0 + rεε2) and β = (2vεε0 + vεε2). Thus, the solvability
condition gives

u†c

(
r∗ ∂T̃A

−v∗ ∂T̃A− δj1 r∗ A

)
= −Au†c

(
v∗α− r∗β
π2r∗α + v∗β

)
. (2.C.16)
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Substituting the coefficients (2.C.11), (2.C.12), (2.C.13), and (2.C.14) into
Eq. (2.C.16) gives the desired amplitude equation

∂T̃A = πr2
∗ δj1A+ ãA3, (2.C.17)

where the parameter ã is

ã =π

(
5v4
∗ + π4r4

∗ −
5

2

)(
1

jT1 − j0

+
1/2

jT1 − j2

)
− v∗

(
j0

jT1 − j0

+
j2/2

jT1 − j2

)
.

(2.C.18)

Equating Eq. (2.C.18) to zero, gives the critical boundary jc2 separating
subcritical and supercritical Turing bifurcations:

jc2 =
3jT1 − j0

2
+

6(jT1 − j0)2π2r3
∗

5 + 4π2r3
∗(3j0 − jT1 − 10π2r∗ + 4π6r5

∗)
. (2.C.19)

In dimensional form, Eqs. (2.C.17), (2.C.18), and (2.C.19) are respec-
tively:

τ∂TA = π
τ 2R2

∗
∆

δJ1A+ aA3, (2.C.20)

a =

[
π

(
5∆3

16π4τ4R4
∗

+
π4τ4R4

∗
∆

− 5∆

2

)(
1

JT1 − J0
+

1/2

JT1 − J2

)
+

∆

2πτR∗

(
J0

JT1 − J0
+

J2/2

JT1 − J2

)]
,

(2.C.21)

and

Jc2 =
3JT1 − J0

2
+

6(JT1 − J0)2π2τ3R3
∗

5∆2 + 4π2τ3R3
∗

(
3J0 − JT1 − 10π2τR∗ + 4π6τ5R5

∗
∆2

) .
(2.C.22)

2.D Numerical simulations

2.D.1 Numerical simulation of the QIF model

In numerical simulations we used the Euler scheme with time step dt = 10−3.
Additionally, we considered the peak and reset values vp = −vr = 100. The
algorithm used to simulate the QIF neuron (2.2) is shown in Fig. 2.D.1.
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Require: Variables: vj , Ij , trj (exit time from refractory period), t (time).
Constants: τ, dt, vp.

Ensure: v̇j = v2
j + Ij and tlj and trj .

1: bool spikej ← False
2: if t ≥ trj then . Check whether the neuron is

in the refractory period.
3: vj ← vj + dt

τ

(
v2
j + Ij

)
. Euler integration.

4: if vj ≥ vp then . Check if the voltage has
crossed the threshold.

5: spikej ← True . The neuron has spiked at
time tlj .

6: trj ← t+ 2 · τ
vj

. Set the end of the refractory
period.

7: tlj ← t+ τ
vj

. Spike time is set after τ
vj

.
8: vj ← −vj . Reset the voltage.
9: end if

10: end if

Figure 2.D.1: Algorithm used for the Euler integration of the QIF neuron Eq. (2.2).

2.D.2 Numerical simulation of the ring network
To numerically implement the ring network of QIF neurons we divided the
ring into m = 100 intervals located at φl = 2πl/m − π, l = 1, . . . ,m. At
each interval φl, we considered n = 2.5 · 103 excitatory and n = 2.5 · 103

inhibitory neurons (i.e. the ring consisted of a total of 2N = 2mn = 5×105

QIF neurons).
The neurons in each location φl receive Lorentzian-distributed currents,

which have been generated using the formula

ηi = η̄ + ∆ tan

[
π

2

2i− n− 1

n+ 1

]
, i = 1, . . . , n. (2.D.1)

On the other hand, perturbations (applied at time t0) are modeled using
the function

P e,i (φ, t) = A
(
e(t−t0)/τr − 1

)
· cos (K · φ) , (2.D.2)

where A is the amplitude, K is the wave number, and τr is the rising time
constant of the perturbation. In Figs. 2.2, 2.3 and 2.5 we used t0 = 0.05 s,
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A = 0.3, and τr = 4×10−3 s. The perturbations had a duration of ∆t = 0.01
s.

Finally, the instantaneous firing rates in Fig. 2.2 are obtained binning
time and counting the spikes of neurons in each interval φl within a sliding
time window of size δt = 0.01s.
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Discussion

In this thesis we have addressed issues concerning the effect of synchronous
activity in the formation of spatiotemporal patterns in networks of spiking
neurons.

First, we have shown that traditional neural field models are indeed
capable of qualitatively reproducing many of the spatiotemporal patterns
shown by their equivalent spiking neural networks. But we also have shown
that in order to achieve this, they often need to consider additional heuristic
elements, such as explicit fixed time delays, not present in the original net-
works of spiking neurons. Such limitations reveal the failure of traditional
NFMs to predict the onset of synchrony-induced dynamics. Particularly,
we have seen that synchronization appears to be decisive in shaping the
dynamics of networks of recurrently coupled inhibitory neurons (I-I) and of
cross-coupled excitatory-inhibitory (E-I) neuronal networks, and by exten-
sion, of distributed networks with spatially dependent excitatory-inhibitory
interactions.

These observations have led us to the discovery of what we have called
the modes of oscillations of a neuronal network, present in spatially dis-
tributed networks of heterogeneous spiking neurons. These modes reflect the
transient episodes of spike synchronization among the neurons and therefore
cannot be captured by traditional NFMs.

In order to investigate these oscillations we have derived a novel NFM
for QIF neurons following the methodology of Montbrió et al. (2015). The
low-dimensional description presented in this work (2.7) is closely related
to that of Laing (2014) where he derived a neural field description of a
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network of pulse-coupled theta neurons by invoking the Ott-Antonsen theory
(Luke et al., 2013; So et al., 2014). However, some important differences
exist between both approaches. In Laing’s work, synaptic interactions were
modeled as pulses of finite width, in contrast to the instantaneous interactions
used in (Montbrió et al., 2015) and in the present work. The use of finite
pulses greatly complicates the mathematical analysis and the numerical
simulations. Additionally, in Laing’s work and in other recently published
works on pulse-coupled oscillators (Pazó and Montbrió, 2014; Gallego
et al., 2017), the resulting low-dimensional description appears in terms
of the complex Kuramoto order parameter, which gives a measure of the
synchronicity of the population but is difficult to relate with physiologically
relevant magnitudes such as the firing rate or the mean membrane potential.
In contrast, the mean-field description adopted in section 1.3 and in chapter 2
greatly simplifies the analysis, allowing us to analytically investigate the
linear and nonlinear stability of the spatially homogeneous states of the
QIF-NFM.

This analysis revealed two important features regarding the modes of
oscillation:

i) The frequency of each oscillation mode only depends of the correspond-
ing Fourier coefficient of thepattern of synaptic connectivity.

ii) The decay rate is the same for all modes and reflects the diffusion of
the phases of neurons due to a desynchronization mechanism which
depends on the degree of quenched heterogeneity.

In section 1.2 we have also numerically shown that similar oscillatory
behaviors occur in networks of identical QIF neurons subject to noise, as
well as for different kinds of spiking neuron models (LIF and EIF).

Finally, we have investigated the existence and the stability of bump
states, which bifurcate from the spatially homogeneous states via Turing
bifurcations. The spectrum of such bump states has a continuous part off the
real axis, indicating that similar synchronization-induced oscillatory modes
also operate in neural bump states.

In summary, our results indicate that in general, a correct macroscopic
description of spiking networks requires keeping track of the mean sub-
threshold voltage along with the mean firing rate, and that synchronous
activity is capable of generating macroscopically relevant patterns which
could have a potential impact in cognitive processing.
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Additional considerations and comments
It is worth commenting on some of the counterpart results of this thesis
which may shed some light in future works that consider the use of the
QIF-NFM or the QIF-FREs.

Network topology. First, the formalism presented in our work allows for
different interpretations regarding the spatial distribution of neurons. In
chapter 2 we considered a continuum topology in which neurons are spa-
tially distributed according to an angular variable; an architecture typically
used to model neurons that present tuning curves in response to sensory
stimulus. However, an alternative interpretation of the ring topology is
that in which neurons are arranged in discrete localized populations, for
example representing cortical macrocolumns. The approach followed in
section 1.1 is closer to this latter interpretation. In fact, we saw that the
symmetry breaking mechanism of section 1.1.1.3 was identical for both the
two-population network and the ring model.

Hence, despite in this thesis we have only considered a simple network
architecture, i.e. the ring topology, the model can be easily extended to
account for any network architecture whose graph is described by means
of a Laplacian matrix. The theoretical framework established by the works
of Pecora and Carroll (1998); Pecora (1998) allows one to perform a linear
stability analysis of the stable homogeneous states for such network topolo-
gies, obtaining a similar result for the spectrum of eigenvalues. A similar
approach aimed to model whole brain activity was followed by Atasoy et al.
(2016) where they considered each node of the network as populations of
neurons located somewhere in the cortex. In that work they studied the
relationship between the structural connectivity and the resulting oscillatory
dynamics. Therefore, a similar research may be conducted using the QIF-
NFM, facilitating the mathematical analysis and allowing for a deeper study
of the structural/functional relationship of the brain activity. Additionally,
it would establish a direct link, not present in H-NFM, between the single
neuron parameters and the macroscopic activity of the population.

Symmetry breaking in the effective two-population model (1.20). It
is well known that in a system of two identical cross-coupled neuronal
populations, enough inhibitory coupling leads to a Pitchfork bifurcation.
This model has been extensively studied as a functional description for
two-choice decision making tasks (see. e.g. Martı́ et al., 2008; Roxin and

95



Ledberg, 2008). When using traditional firing rate models such as Eq.(1.20),
linear stability analysis reveals that the stable state characterizing the initial
(undecided) state is a stable node. Choice formation can be induced either
by an increase in the external input that destabilizes the spontaneous state
(Wang, 2002; Durstewitz and Wang, 2003; Lo and Wang, 2006), or via an
escape mechanisms induced by finite-size noise.

However, in a network of spiking neurons the same spontaneous state
is a stable focus—for a given choice of the parameters—, which can be
captured by means of the QIF firing rate equations (1.47). Such a system
may display interesting responses when is exposed to random inputs due to
resonance effects.

Open questions and future direction
Besides the already proposed research paths, interesting directions of further
study are the analysis of the full QIF-NFM (2.6) considering different time
scales for excitatory and inhibitory neurons (τe 6= τi or/and η̄e 6= η̄i). As
it was recently proved (Avitabile et al., 2017), such time scale separation
produces a rich variety of robust spatio temporal patterns. It would be
enlightening to see whether such dynamics are also present in our model
and whether new dynamics linked to synchronization related mechanisms
arise, such as the PING oscillations observed in section 1.2. Additional
directions include the study of the model considering synaptic delays (Pazó
and Montbrió, 2016) and synaptic kinetics (Devalle et al., 2017b; Ratas and
Pyragas, 2016) which would automatically give rise to ING oscillations for
the spatially homogeneous state, as seen in section 1.2, and could addition-
ally lead to spatiotemporal phenomena not previously observed in traditional
NFMs.

The results concerning the bump state may also open new doors towards
interesting models of cognitive processing. Dynamical regimes combining
both, oscillations of different frequencies and persistent states, have attracted
the attention of many researchers due to their potential use as plausible com-
putational mechanisms underlying a variety of cognitive tasks, for example
feature categorization (Martı́ and Rinzel, 2013), decision making (Wilimzig
et al., 2006; Rabinovich et al., 2008; Bicho et al., 2011), or working mem-
ory (Compte, 2000; Gutkin et al., 2001; Laing et al., 2002; Dipoppa and
Gutkin, 2013b; Wimmer et al., 2014; Roxin and Compte, 2016). Specif-
ically, computational studies in localized populations of spiking neurons
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have explored the role of oscillations in shaping network dynamics—and
hence in driving behavior—during working memory tasks or flexible switch-
ing between oscillatory signals (Gutkin et al., 2001; Dipoppa and Gutkin,
2013b,a; Schmidt et al., 2018). As such, the combined manifestation of
oscillations and persistent bump states in spatially extended systems could
establish a potential computational framework for obtaining mechanistic ex-
planations of the already mentioned cognitive tasks. Moreover, our analysis
have exposed a direct, and rather simple connection between the structure
of the network and the range of frequencies that the network is capable
of generating, establishing a potential encoding mechanism based on the
relation between the network structure and its activity spectrum.

The model presented in this work is however built upon some constraints
which are worth commenting and which may open questions for future
investigation. First, the exact derivation of the H-NFM is only possible for
QIF neurons, which as we have already mentioned represent the canonical
model for Class I excitability. Therefore, the model may not be appropriate
when dealing with networks of Class II excitability neurons. Additionally,
when compared with other integrate-and-fire neuron models, experimental
results suggest that the EIF model might be a better choice since it has
been shown that the spike onset of actual neurons is better described by
an exponential nonlinearity (Badel et al., 2008). Nonetheless, in this work
we have seen that both models present similar qualitative dynamics at the
population level. It would be necessary to check whether this holds for
dynamical regimes in which a relevant quantity of neurons is far from
threshold, i.e. when the EIF and the QIF models display significantly
different dynamics.

Second, the validity of the full connectivity assumption should be as-
sessed, for example, by qualitatively comparing the model with an equivalent
network of spiking neurons with sparse connectivity. Such network con-
figurations are often used as a way of introducing random fluctuations in
the activity of the neurons, and to some extent, to introduce some degree of
heterogeneity into the network. But most importantly, they usually respond
to anatomical considerations of the actual shape of neuronal networks. As
such, it would be enlightening to compare the full connectivity network
considering a noisy environment, with the sparse connectivity paradigm,
and for example, see to what extent synchronous activity is lost.

Finally, the model shows potential for studying more realistic networks
without a substantial increase on its complexity by considering for example,
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conductance based * spiking neurons (Ratas and Pyragas, 2016), synaptic
adaptation, electrical coupling modeled as gap junctions (Laing, 2015), etc.

In summary, we believe that the model presented in this thesis will
indeed serve to further understand the dynamics of large networks of spiking
neurons, and will open the door to new theoretical advances on neural field
models.

*A first approach to study the macroscopic dynamics of networks of QIF neurons with
conductance-based synapses is presented in Appendix B.2.
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APPENDIX A

Numerical simulations

This appendix offers a detailed description of the methodology used to
numerically implement the various models used throughout the thesis. All
simulations were implemented in Python with an extensive use of numpy
and scipy libraries. The source code is available at https://github.
com/JMED106/QIF-FR. By default, to numerically integrate ODEs—-
QIF, LIF, EIF model neurons; and macroscopic firing rate equations: H-
FREs and QIF-FREs—-we used Euler scheme with a time step dt = 10−3.
Results obtained from simulations, such as the firing rate, r, were afterwards
appropriately rescaled to account for biologically meaningful quantities
using a similar approach as in Eqs. (2.A.5) and (2.A.6). For example, we
systematically used τm = 20 ms or τm = 10 ms, that once applied to the
simulated firing rate quantities, r, gave us values of the population firing
rate, R = r/τm, in the range of 5-100 Hz (higher values for ING and PING
oscillations).

A.1 Simulations of spiking neural networks

When choosing a particular model of spiking neurons we were seeking math-
ematical simplicity and the decision was highly motivated by the work done
during the development of the QIF-FREs (1.47). Therefore we started work-
ing with current-based quadratic integrate-and-fire (QIF) model neurons
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rather than with their homologous—and more realistic—conductance-based
representations. Nevertheless, in appendix B.2 we derive a set of QIF-FREs
for a network of all-to-all QIF neurons with conductances. This is still a
work in progress which could give rise to interesting results, and solves
some of the problems presented by the current-based approach, such as the
non-saturation of the firing rate.

Despite focusing our study on networks of QIF neurons, we also per-
formed simulations of other types of spiking neuron models to show the
generality of the observed phenomena. Specifically, in Figs. A.2, 1.6
and 1.11; and Figs. A.1 and 1.8 to 1.11; we used leaky integrate-and-fire
(LIF) and exponential integrate-and-fire (EIF) model neurons, respectively.
All three models, LIF, QIF and EIF can be written with the general equation
[Eq. (1.21)] that we copy here for convenience

τm
dv

dt
= f(v) +RI(t) + resetting rule involving vr, and vp, (A.1.1)

where the function f(v) for each model, is:

• LIF: f(u) = −v + E,

• QIF: f(u) = v2, (after proper rescaling, see section 1.3.1)

• EIF: f(u) = −v + E + ∆T exp
(
v − vrh

∆T

)
.

Here, E is the reversal potential or rest potential, and ∆T is the spike slope
factor that measures the sharpness of the spike onset in the EIF model once
the threshold* vth is reached (Fourcaud-Trocmé et al., 2003). All three
models can be interpreted as limits of the Hodgkin and Huxley (1952) model
(Gerstner et al., 2014). In particular, taking ∆T → 0 transforms the EIF
into the LIF (Fourcaud-Trocmé et al., 2003). In addition, the dynamics of
the EIF near the threshold potential are equivalent to the QIF model, which
corresponds to the canonical type-I neuron model (see section 1.3.1). The
reset condition discussed in section 1.3.1 is done in a similar way in all three
models, i.e. whenever the membrane potential, vi, reaches a given peak

*Notice the difference between the actual threshold and the numerical threshold. In
the first case, the value corresponds to the unstable fixed point which provides the spike
mechanism in QIF and EIF models, whereas the second case is present in all three models
and defines the numerical point at which the reset is done. Thus, for the LIF model, the
threshold is purely numerical and is equivalent to the peak potential, vp.
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Table A.1: Microscopic parameters used in simulations of integrate-and-fire model
neurons and some of the corresponding theoretically derived quantities, such as
fixed points and refractory periods.

LIF QIF EIF

Parameter Symbol (mV) (a.u.) (mV)

Peak potential vp −45 100 40

Reset potential vr −68 −100 −68

Reversal potential E −48 — −50

Spike slope factor ∆T — — 3

Rheobase potential vrh — — −45

Absolute refr. period ∆abs 0 ms 0 5 ms

Indirect quantity

Threshold potential vth — 0 ∼ (−42)

Resting potential vrest −48 0 ∼ (−49)

Relative refr. period ∆rel 0 ms 0.02 0 ms

potential vp, the neuron is reset to vr. Notice however, that in the case of
the LIF neuron the reset is done immediately after reaching a numerical
threshold, vp = vth, whereas in the QIF and EIF models, the membrane
potential must reach the peak potential above the actual threshold, vp > vth,
in order to be reset.

As a consequence, the LIF model does not have a refractory period except
from the time step of the simulation, which limits the maximum firing rate
attainable by neurons. In simulations, adding an absolute refractory time on
the order of 1 ms did not produced any significant differences on the observed
dynamics. In contrast, the QIF model has a relative refractory period once
the peak potential is crossed, as explained in Section 1.3.1. Finally, the
EIF model neuron presents both relative and absolute refractory periods,
∆abs. The former, as in the QIF model, is due to the spiking generation
mechanism, while the latter is introduced by hand in the simulations by
holding the neuron at the reset potential for an additional refractory time
∆abs after the neuron fires a spike.
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Parameters of single neurons

The parameters used to simulate spiking neurons are summarized in Ta-
ble A.1. They were chosen such that the dynamics were similar in all
systems, but their values are not far from those typically used in computa-
tional works dealing with spiking neural networks (see, e.g., Fourcaud-
Trocmé et al., 2003; Richardson, 2007; Roxin et al., 2011). The case
of the QIF model is different as explained in section 1.3.1. In order
to do a proper comparison between the QIF-FREs (1.47) and its equiv-
alent spiking neural network, is necessary to define the threshold at 0.

Figure A.1: The f(v) curve of the EIF model
for parameters in Table A.1.

However, to compare the mem-
brane potential with other spik-
ing neurons, a simple shift can
be done after the simulations are
done. Specifically, in Fig. 1.13,
the results of voltages were
shifted to vth = −50 ms. Ad-
ditionally, the LIF model does
not have an actual spiking gen-
eration mechanism (Izhikevich,
2007), therefore the spikes in
Fig. 1.6(d) are manually added
whenever the neuron reaches the
peak value vp. In contrast, both
QIF and EIF diverge whenever
the threshold is crossed, and
hence, the reset is done when the neuron arrives at a certain peak potential
vp. The resting, vrest, and threshold, vth, potentials of the EIF neuron in
Table A.1 are numerically obtained. These values and the rheobase potential
are shown in Fig. A.1.

Properties of the heterogeneous network

In all cases we considered all-to-all networks of heterogeneous populations
of neurons. On one hand, in Figs. 1.7, 1.8, 1.10 and 1.11 we modeled
quenched heterogeneity by setting a constant external current for each neu-
ron, taken from a deterministically generated (2.D.1) Lorentzian distribution
(1.46), or when indicated, from a gaussian distribution. On the other hand,
in Figs. 1.6, 1.9 and 1.11 we simulated identical neurons receiving time
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varying inputs randomly taken from a gaussian distribution—-also known
as Gaussian White Noise (GWN).

In order to describe the highly irregular activity observed in real cells,
is common to consider random uncorrelated external inputs arriving at
the single cells i. This can be mathematically written by means of a 1-
dimensional stochastic differential equation (SDE) of the form

τm
dvi
dt

= (f(vi) + Ii) + σηi(t) (A.1.2)

where σ is the amplitude of temporal fluctuations about the mean, and ηi(t) is
the Gaussian white-noise term. In addition, Ii represent deterministic inputs
arriving from both external and recurrent connections, as in Eqs. (1.31) or
(2.3). The term between brackets in the left side of equation (A.1.2) is the
drift coefficient, that is the deterministic part of the SDE characterizing the
local trend, while the second term corresponds to the diffusion coefficient,
i.e. the stochastic part affecting the average size of the fluctuations of vi.

The above SDE is described in terms of the Itô scheme and can be
numerically integrated using the Euler-Maruyama method:

vn+1
i = vni +

dt

τ̃
(f (vni ) + Ii) + σ∆Wn, (A.1.3)

∆Wn ∼
√
dt

τ̃
N (0, 1),

where N (0, 1) denotes the normal distribution and dt/τ̃ is the simulation
step time. Note that the Euler-Heun method is appropriate for SDEs de-
scribed in therms of the Stratonovich interpretation, and hence would proba-
bly give incorrect results in our case.

Finally, we refer the reader to the algorithm 2.D.1 for an explicit pseu-
docode describing the numerical integration of the QIF model neuron. The
corresponding pseudocode for LIF and EIF numerical integration is similar
except for the implementation of the refractory period.

Transfer function of a population of noisy LIF neurons

A proper comparison between simulations of LIF neurons and the WC
equation [Eqs. (1.5) and (1.9)] is done by taking the stationary mean firing
rate of the population of LIF neurons (f-I curve) as the transfer function,
Φ(I), in Eq. (1.5). Using the continuous approach and applying the Fokker-
Planck equation (Siegert, 1951; Amit and Tsodyks, 1991; Roxin et al., 2011)
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one can obtain the gain function of an ensemble of noisy LIF neurons:

Φ(I) =

{
τm
√
π

∫ v+

v−

dv ev
2

erfc(−v)

}−1

, (A.1.4)

with v− = (vth − E − I) /σ and v− = (vr − E − I) /σ. Note that I is the
mean input averaged over all neurons which in the particular case of an
all-to-all network is just I = η̄ + J0S, with η̄ being a constant external
common input as in Eq. (1.47). In addition, erfc(x) corresponds to the
complementary error function, which in some cases appears just as the error
function:

Φ(I) =

{
τm
√
π

∫ v+

v−

dv ev
2

(1 + erf(v))

}−1

.
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Figure A.2: Transfer function
for a population of identical non-
interacting LIF neurons under exter-
nal GWN. Blue dots correspond to
the firing rate of a network of LIF neu-
rons obtained by numerically integrat-
ing Eq. (A.1.2) with f(v) = −v+E,
using the integration method (A.1.3).
Black lines are computed for differ-
ent levels of diffusive noise, using
Eq. (A.1.6). From top to bottom:
σ = 5, 2, 1, 0.5, 0.1 mV. Other
parameters are vr = −68 mV, vth =
−48 mV,E = −50 mV, τm = 20 ms.

However, the numerical implementation of both the error function,
erf(x), and the complementary error function, erfc(x) can represent a chal-
lenge due to arithmetic underflow. In our particular case, we had to use
the complementary error function. Finally, using the scaled complementary
error function, erfcx(x) defined as

erfc(x) = 1− erf(x) = e−x
2

erfcx(x), (A.1.5)

one can usually avoid errors due to arithmetic underflow, as the resulting
expression for the transfer function is:

Φ(I) =

{
τm
√
π

∫ v+

v−

dv erfcx(−v)

}−1

. (A.1.6)
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Fig. A.2 shows the agreement between simulations of LIF neurons using the
above integration method, and numerical results of Eq. (A.1.6).
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APPENDIX B

Mathematical appendix

B.1 Derivation of the firing rate equations
The mathematical derivation of the firing rate equations from the continuity
equation is tedious, but not difficult. The continuity equation [Eq. (1.37)]
and the Lorentzian ansatz [Eq. (1.39)] have already been introduced earlier,
but is repeated here for convenience:

∂ρ

∂t
+

1

τm

∂

∂v

[(
v2 + η + τmJ0R + I

)
ρ
]

= 0, (B.1.1)

ρ =
1

π

x

(v − y)2 + x2
, (B.1.2)

where we have avoided to explicitly show the functional dependence of the
variables; x = x (η, t), y = y (η, t), R = R(t), I = I(t), and ρ = ρ (v|η, t).
Substituting (B.1.2) into (B.1.1) and computing the derivatives, one obtains

τm
2

ẋ

πA
− τmx

π

xẋ− y(v − y)

A2
+
xv

πA

−
(
v2 + η + τmJ0R + I

) x(v − y)

πA2
= 0

(B.1.3)

where A = (v − y)2 + x2 = v2 + y2 + x2 − 2vy and the over-dot denotes
the partial derivative over time. Then, by multiplying the equation by πA
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we have

τmẋ

2

(
v2 + y2 + x2 − 2vy

)
− τmx2ẋ+ τmxẏ (v − y) +

xv
(
v2 + y2 + x2 − 2vy

)
− x(v − y)

(
v2 + η + τmJ0R + I

)
= 0.

(B.1.4)

We collect the terms by their order in v:

v2

(
τmẋ

2
− 2xy + xy

)
= 0 (B.1.5a)

v
(
τmyẋ+ τmxẏ + x

(
x2 + y2

)
− x (η + τmJ0R + I)

)
= 0 (B.1.5b)

τmẋ

2

(
x2 + y2

)
− τx2ẋ− τxyẏ + xy (η + τmJ0R + I) = 0. (B.1.5c)

Eq. (B.1.5a) is just
τmẋ = 2xy, (B.1.6)

and substituting into (B.1.5b), we obtain a second equation

τmẏ = y2 + (η + I + J0R)− x2. (B.1.7)

The third equation, Eq. (B.1.5c), is a linear combination of the other two.
This system of differential equations can be represented by a single complex
differential equation using w (η, t) ≡ x (η, t) + iy (η, t), which leads to
Eq. (1.45):

τm
∂w

∂t
= i
[
η + τmJ0R− w2 + I

]
. (B.1.8)

B.1.1 Reduction to a system of two ODEs: QIF-FREs
Following the derivation in the main text [Section 1.3.4] we can choose
a Lorentzian distribution for the external currents [Eq. (1.46)], reducing
the dimensionality of the system to a system of two coupled ODEs. The
integrals (1.41) and (1.43) can be computed applying the residue theorem
as described in the following steps.

First, the integrals to be solved are of the type:

I =
∆

π

∫ ∞
−∞

h (η, t)

(η − η̄)2 + ∆2
dη, (B.1.9)

with h being x or y. The only constrains we must take into account is that
x, y ∈ R and x (η, t) ≥ 0, ∀t ≥ 0 in order the distribution to make sense.
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Having this in mind, the integral can be solved using the residue theorem,
and has the general form∫

C

f(z)dz = 2πi
n∑
k=1

I (C, ak) Res (f, ak) (B.1.10)

where C is the contour that encloses the pole(s) ak, I denotes the winding
number of C around ak, and Res(f, ak) are the residues of f at ak. The
poles of f(z) for well-defined functions of x and y are calculated by finding
the corresponding Laurent series expansion, and taking coefficients a−1:

f(z) =
h(z, t)

2i∆

(
1

z − η̄ − i∆
− 1

z − η̄ + i∆

)
. (B.1.11)

The poles, therefore, are a+ = η̄ + i∆ and a− = η̄ − i∆.
Now, the choice of C enclosing the pole(s) needs to take into account

the constrain mentioned above, i.e. that x must remain positive for all values
of η. Thus, we make an analytic continuation of w(η, t) from real η into the
complex-valued η = ηR + iηI = z. Substituting into Eq. (B.1.8) we have

τm
dx

dt
= −ηI + 2xy, (B.1.12a)

τm
dv

dt
= y2 + ηR − x2 + τmJ0R + I. (B.1.12b)

Figure B.1: The contour C encloses
the pole η̄ − i∆, ∆ > 0.

At x = 0, Eq. (B.1.12a) is τmẋ =
−ηI which requires ηI < 0 to main-
tain a positive value of x. Therefore we
need to consider the pole in the lower
half plane of z, and consequently C
is the contour that goes along the real
line from −a to a and then clockwise
along a semicircle centered at 0 from
a to −a as shown in Fig. B.1. The
residue of f at such pole zp = η̄ − i∆
is Reszpf(z) = −h(η̄ − i∆, t)/(2i∆),
and the integral (B.1.9) becomes∫

C

f(z)dz = 2πi (−1)
−h(η̄ − i∆, t)

2i∆
=
πh(η̄ − i∆, t)

∆
. (B.1.13)
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Finally the integral (B.1.9) is

I = h(η̄ − i∆, t)−
∫

arc
f(z)dz = h(η̄ − i∆), (B.1.14)

where we used
∫
C

=
∫

straight +
∫

arc, being the integral over the straight line
the original integral. By estimation, is easy to see that the integral over the
arc vanishes as a→∞.

Therefore the integrals (1.41) and (1.43) are just:

R(t) =
x(η̄ − i∆)

πτm
and V (t) = y(η̄ − i∆), (B.1.15)

which finally leads to the QIF-FREs (1.47).

B.2 QIF-FREs for conductance-based
spiking neurons

Going back to the QIF neuron model, Eqs.(1.30) and (1.32), we can now
define the conductance-based QIF neuron in the following way

τ
dvj
dt

= v2
j + (ηj − vj)− aeτSe (t) (vj − Ee)

− aiτSi (t) (vj − Ei) + P (t),
(B.2.1)

where aα and Eα correspond to the excitatory or inhibitory (α = e, i)
synaptic conductance and reversal potential, respectively. And Sα is the
synaptic activation due to excitatory or inhibitory synaptic efferents. Notice
that, the method used to reduce the dimensionality of the network admits
any representation of the QIF neuron of the form (Montbrió et al., 2015):

τm
dvj
dt

= v2
jA (xj, t) + vjB (xj, t) + C (xj, t) , (B.2.2)

with A, B, and C being functions which may depend on a parameter, or
a set of parameters, distributed in a similar way as the external currents
in Eq. (1.31) or (B.2.1). A detailed proof of this generalization is given
in (Montbrió et al., 2015). For the particular case A = 1, the complex
valued solution of the continuity equation (1.37) corresponding to the system
(B.2.2) reads

τm
dw

dt
= i
[
C − w2

]
+Bw. (B.2.3)
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Figure B.1: PING oscillations (see section 1.1.1.2) in a network of N = 2 · 104

(1:1) conductance-based QIF neurons (B.2.1). At time 0.2 s the external current
of the excitatory population is increased from η̄e = 1 to η̄e = 8 and the system
starts to oscillate. (a) Raster plot of the excitatory (in red) and the inhibitory (in
blue) populations. (b) Firing rate of both populations. The black lines in the back
correspond to simulations of the spiking neural network, while the red and the blue
lines in the front are computed using the QIF-FREs (B.2.6) and they represent the
excitatory and the inhibitory firing rate, respectively. Parameters are: τe = 20 ms,
τi = 10 ms, ∆ = 1, η̄i = −1, η̄e = 1 → 8, Jei = 3, Jie = 1, ae = ai = 1,
Ei = −10, Ee = 10, Jee = Jii = 0.

For the specific neuron model (B.2.1), functions B and C are:

B (t) = 1 + aeτmSe(t) + aiτmSi(t), (B.2.4)
C (η, t) = η + P (t) + aeEeτmSe(t) + aiEiτmSi(t) (B.2.5)

Following the same derivation as in the previous section we arrive at the
QIF-FREs for “conductance-based” QIF neurons:
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τm
dR

dt
=

∆

τmπ
+ 2RV − τmR

(
1

τm
+ aeSe(t) + aiSi(t)

)
(B.2.6a)

τm
dV

dt
= V 2 + η̄ − (πτmR)2 − V

− τm [aeSe(t) (V − Ee) + aiSi(t) (V − Ei)] + P (t).
(B.2.6b)

Conductance-based QIF-FREs

A similar result was obtained by Ratas and Pyragas (2016) where they used
voltage-dependent synapses.

In contrast to the current-based QIF-FREs (1.47), here, the firing rate
saturates for large values of the synaptic coupling, therefore it is indeed a
more realistic model and represents a step forward towards more realistic
conductance-based population models. Finally, in Fig. B.1 we show an
example of PING oscillations in a two-population network of conductance-
based QIF neurons (B.2.1) showing good—except for finite size-effects—
agreement between the spiking network model (black line) and the QIF-
FREs (colored lines).
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Montbrió, E., Pazó, D., and Roxin, A. (2015). Macroscopic description for
networks of spiking neurons. Physical Review X, 5(2):1–15.

Mountcastle, V. (1997). The columnar organization of the neocortex. Brain,
120(4):701–722.

Mountcastle, V. B. (1957). Modality and Topographic Properties of Single
Neurons of Cat’s Somatic Sensory Cortex. Journal of Neurophysiology,
20(4):408–434.

Naud, R. and Gerstner, W. (2012). Coding and Decoding with Adapting
Neurons: A Population Approach to the Peri-Stimulus Time Histogram.
PLoS Computational Biology, 8(10).

Nunez, P. L. (1974). The brain wave equation: a model for the EEG.
Mathematical Biosciences, 21(3-4):279–297.

Nunez, P. L. and Srinivasan, R. (2009). Electric Fields of the Brain: The
neurophysics of EEG.

Nykamp, D. and Tranchina, D. (2000). A population density approach
that facilitates large-scale modeling of neural networks: analysis and an
application to orientation tuning. Journal of computational neuroscience,
8(1):19–50.

Nykamp, D. Q., Friedman, D., Shaker, S., Shinn, M., Vella, M., Compte, A.,
and Roxin, A. (2017). Mean-field equations for neuronal networks with
arbitrary degree distributions. Physical Review E, 95(4):042323.

O’Keeffe, K. P. and Strogatz, S. H. (2016). Dynamics of a population of
oscillatory and excitable elements. Physical Review E, 93(6):1–8.

Omel’chenko, O. E. (2013). Coherence–incoherence patterns in a ring of
non-locally coupled phase oscillators. Nonlinearity, 26(9):2469.

Omel’chenko, O. E., Wolfrum, M., and Laing, C. R. (2014). Partially
coherent twisted states in arrays of coupled phase oscillators. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 24(2):023102.

124



Omurtag, A., Knight, B. W., and Sirovich, L. (2000). On the simulation of
large populations of neurons. J Comput Neurosci, 8:51–63.

Ott, E. and Antonsen, T. M. (2008). Low dimensional behavior of
large systems of globally coupled oscillators. Chaos (Woodbury, N.Y.),
18(3):037113.

Ott, E. and Antonsen, T. M. (2009). Long time evolution of phase oscillator
systems. Chaos, 19(2).

Ott, E., Hunt, B. R., and Antonsen, T. M. (2011). Comment on “Long time
evolution of phase oscillators systems”. Chaos, 21:25112.
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