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Abstract
In this thesis we aim at analyzing images and videos at the object
level, with the goal of decomposing the scene into complete objects
that move and interact among themselves. The thesis is divided in
three parts. First, we propose a segmentation method to decompose
the scene into shapes. Then, we propose a probabilistic method,
which works with shapes or objects at two different depths, to infer
which objects are in front of the others, while completing the ones
which are partially occluded. Finally, we propose two video related
inpainting methods. On one hand, we propose a binary video in-
painting method that relies on the optical flow of the video in order
to complete the shapes across time taking into account their motion.
On the other hand, we propose a method for optical flow inpainting
that takes into account the information from the frames.

Resum
Aquesta tesi té per objectiu analitzar imatges i vídeos a nivell d’ob-
jectes, amb l’objectiu de descompondre l’escena en objectes complets
que es mouen i interaccionen entre ells. La tesi està dividida en tres
parts. En primer lloc, proposem un mètode de segmentació per des-
compondre l’escena en les formes que la componen. A continuació,
proposem un mètode probabilístic, que considera les formes o objec-
tes en dues profunditats de l’escena diferents, i infereix quins objectes
estan davant dels altres, completant també els objectes parcialment
ocults. Finalment, proposem dos mètodes relacionats amb el vídeo
inpainting. Per una banda, proposem un mètode per vídeo inpainting
binari que utilitza el flux òptic del vídeo per completar les formes al
llarg del temps, tenint en compte el seu moviment. Per l’altra banda,
proposem un mètode per inpainting de flux òptic que té en compte
la informació provinent dels frames.





Preface

The visual information we extract from our perception of the world
is formed by a continuum of objects interacting among them, instead
of the small particles that form it. Objects play a crucial role in our
understanding of the environment: we perceive them as the single
entities that allow us to interact with our surroundings. When we
take a picture or film a video we want to capture the reality we
are observing. In this way, although we store the information in
pixels, we look for the objects conforming it. That is, we look for the
identifiable portions of the image that can be interpreted as single
units. Obviously, these basic units will change depending on the
application. For example, if we are working on face recognition we
will be interested in the eyes, mouth and nose of the face, but, if we
work in people tracking we would be more interested in considering
the whole person as a single unity.

Changing from the pixel unity to objects level has a lot of advan-
tages in many areas, not only in computer vision but also in robotics
or industrial engineering. For instance, although robots see the world
through sensors that receive pixel-data, we expect them to perceive
the surrounding world in the same way we do. We need the robots
to be able to recognize and interact with the objects conforming the
scenes. Besides, objects have a number of attributes such as volume
and shape, texture or interrelation properties such as adjacency or
T-junctions. These attributes make objects to be richer instances
than individual pixels, which can help in a classification process.

This manuscript is focused on working from the object level per-
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spective. We propose a segmentation model to decompose the image
scene into regions or shapes. Then, we propose to solve two other
problems which have as input an image or video classified in objects
or shapes.

Image Segmentation consists in partitioning the image into re-
gions that share common features, such as color or texture. To this
goal we propose a variational method that considers adaptive patches
to characterize, in an affine invariant way, the local structure of each
region of the image. The patches are computed using an affine covari-
ant structure tensor defined at every pixel of the image domain, so
that they can automatically adapt its shape and size. The proposed
segmentation model uses an L1-norm fidelity term and the total vari-
ation of relaxed fuzzy membership functions as an approximation to
the length of the boundaries of the segmented regions. The output
of the method is a partition of the image in regions together with a
representative patch of the texture of each region.

The Scene Structure problem involves the recovery of the rela-
tive order structure of the objects from a planar image, where some
objects may occlude others. We propose to estimate the interpreta-
tion of the scene by integrating some global and local cues while also
providing both the complete disoccluded objects that form the scene
and their ordering according to depth. Our method first computes
several distal scenes which are compatible with the proximal planar
image. To compute these different hypothesized scenes, we propose
a perceptually inspired object disocclusion method, which works by
minimizing the Euler’s elastica as well as by incorporating the relata-
bility of partially occluded contours and the convexity of the disoc-
cluded objects. Then, to estimate the perceptually preferred scene
we rely on a Bayesian model and define probabilities taking into ac-
count the global complexity of the objects in the hypothesized scenes
as well as the effort of bringing these objects in their relative position
in the planar image.
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Inpainting is the problem of recovering an image or video that
is partially damaged. It is also used to remove undesired objects
from the image or video and recovering the occluded objects. In
video inpainting the missing information in the frames produces an
incomplete optical flow. Therefore, video inpainting involves an ex-
tra challenge: recovering the optical flow. First, we propose a vari-
ational model for the completion of moving shapes through binary
video inpainting that works by smoothly recovering the objects into
the inpainting hole, taking into account the optical flow and motion
occlusions. We solve it by a dynamic shape analysis algorithm based
on threshold dynamics. The resulting inpainting algorithm diffuses
the available information along the space and the visible trajecto-
ries of the pixels in time. Finally, we present an automatic method
for optical flow inpainting. Given a video, each frame domain is en-
dowed with a Riemannian metric based on the video pixel values.
The missing optical flow is recovered by solving the Absolutely Min-
imizing Lipschitz Extension (amle) Partial Differential Equation on
the Riemannian manifold. An efficient numerical algorithm is pro-
posed using eikonal operators on finite graphs for nonlinear elliptic
Partial Differential Equations.

Manuscript Outline

This document is organized in three parts. Each of them is devoted
to analyze one of the problems.

In Part I we approach the segmentation problem. In Chapter 1
related works to the segmentation problem are reviewed, together
with a motivation to use patch-based methods comparison. Chapter
2 is devoted to introduce the affine invariant tensors that are used to
compute the patches and perform the segmentation. In Chapter 3 we
explain our model, which uses the patch distance measure presented
in Chapter 2, to decide to which region each pixel belongs to. The
optimization algorithm is also explained in Chapter 3. Chapters 4
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and 5 are respectively dedicated to the results and conclusions of the
proposed method. Finally, as our algorithm involves the computation
of the vector median, Appendix A is dedicated to the explanation of
a fast algorithm to compute it.

Part II is devoted to the method that computes the most prob-
able scene structure of an image. In Chapter 6 we do a review of
the psychophysical studies that are involved in the image recovery of
the 3D information given a single image. As our model also proposes
to disocclude the occluded objects we also do a review of inpainting
problems. In Chapter 7 we present the disocclusion method used
to obtain the completed objects of the scene, together with a prob-
abilistic method, which decides which is the most probable scene
interpretation. The detailed algorithm is presented in Chapter 8. In
Chapter 9 we show results on synthetic and real images and, finally,
the conclusions are presented in Chapter 10.

The last Part of this Thesis, Part III, is devoted to present the
methods for video inpainting. Chapter 11 introduces the binary video
inpainting and optical flow problems. Chapter 12 is fully dedicated
to the binary video inpainting problem. We present our method,
which completes the shapes in a smooth way using both, the tempo-
ral and the spatial information. As we are considering binary videos
it includes an extra difficulty for the minimization part. For this rea-
son, we propose to use the Allen-Cahn equation to be able to find a
solution of our problem. We explain the proposed minimization strat-
egy, which is based on Threshold Dynamics. And, finally we provide
some details on the code and examples on different applications. In
Chapter13 we present our model of optical flow inpainting. We pro-
pose to use the information from the frames in order to complete the
optical flow on the missing areas using a geodesic distance. Finally,
in Chapter 14 we provide the conclusions of this part together with
some proposals of future work.
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The beauty of a living thing is not
the atoms that go into it, but the
way those atoms are put together.

Carl Sagan

Part I:
Image Segmentation

1





1 Introduction

In this Chapter we explain the segmentation problem and a re-
view of some works related to it. We also provide a motivation
to the use of patches.

Image simplification (or segmentation) is one of the central problems
in image analysis and computer vision. The goal is to partition the
image into regions which share common features – such as color,
intensity, texture, or depth – while at the same time locate the most
regular and accurate contours that define the sharp boundaries of
these regions. Often, a representative feature of every region is also
extracted. This information can be used, for example, for image
cartooning, or image interpretation.

In the image segmentation literature variational approaches are
among the most popular (Vese and Chan (2002); Strekalovskiy and
Cremers (2014); Xu et al. (2016a); Gu et al. (2017); Syu et al. (2017);
Garamendi and Schiavi (2017)). From the literature, it is now well
known that a good segmentation can be obtained by minimizing an
appropriate energy functional. The Mumford-Shah functional is one
of the most popular with this underlying variational criterion (see,
e.g., Morel and Solimini (1994)). Let us briefly recall that Mum-
ford and Shah (1989) defined the segmentation problem as a joint
smoothing and edge detection problem by finding a piecewise smooth
approximation v of the original image u, together with its disconti-
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4 1. Introduction

nuity set B, by minimizing:

E(B, v) =
∫

Ω
(v − u)2 dx+ µ

∫
Ω\B
|∇v|2dx+ λ`(B) (1.1)

where Ω is the image domain, B denotes the set where v is discontinu-
ous and µ and λ are positive weighting parameters. The fidelity term
forces to minimize the color value difference of each pixel from the
original image and the segmented one; while the regularity term con-
straints v to be smooth everywhere except for the discontinuity set B,
whose Hausdorff length should be as short as possible (third term).
Due to the theoretical and numerical complexity of the Mumford-
Shah functional, a simplification of the previous problem has been
used where v is considered piecewise constant in Ω \ B. Then the
piecewise version of the functional reads as

E(B, v) =
∫

Ω
(v − u)2 dx+ λ`(B). (1.2)

The data term in the Mumford-Shah functional measures the simi-
larity of the original image and the simplified one in an excessively
local sense (at a pixel level). However, the gray level or color value
of a single pixel is neither discriminative nor robust enough to be
used as a comparison measure, specially for natural textured images.
Consequently, the use of patches has become a common practice for
establishing image similarities and correspondences in different im-
age processing and computer vision applications, such as inpaint-
ing (Arias et al. (2011)), denoising (Buades et al. (2005); Kherad-
mand and Milanfar (2014); Fedorov and Ballester (2017)) or stereo
matching (Einecke and Eggert (2015)).

Traditionally, these patches have been defined as squared or cir-
cular windows. One of the main problems with these windows is that
if the center of the patch is close to an object boundary the patch
contains mixed information from different objects. Simple improve-
ments are the bilateral weights proposed by Tomasi and Manduchi
(1998) or adaptive patches that try to follow the local geometry of
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the image (Deledalle et al. (2012); Grewenig et al. (2011)). However,
patches of fixed size have two main problems:

• Poor discrimination power when applied to textural structures
not observable within the size of the neighborhood because of
the wrong scale selected.

• Lack of robustness to transformations of the local texture due
to perspective transformations or changes in the point of view.

In contrast, the patches proposed by Fedorov et al. (2015) and Fe-
dorov (2016) are ellipses on the image domain that automatically
adapt their shape and orientation to the local structure of the image.
These kind of patches are defined using affine covariant structure ten-
sors and, in combination with the affine invariant similarity measure
introduced in Fedorov et al. (2015), allow to identify similar local
image patterns that have suffered different affine transformations.
In Figure 1.1 we present a comparison between the usual fixed-size
squared windows and the affine covariant structure tensors: we com-
pare patches associated to the same points x ∈ Ω. We can observe
that the elliptical tensor-based patches adapt better to the shapes.

Rousson et al. (2003); Sagiv et al. (2006) and Houhou et al. (2009)
have used the classical structure tensor for texture segmentation pur-
poses, however these methods are not robust to affine transformations
in the texture.

We propose to use the L1 version of the patch-based affine in-
variant similarity measure, proposed by Fedorov et al. (2015), in a
Mumford-Shah-based segmentation functional to partition the image
into regions that share the same local structure up to an affine dis-
tortion. Thanks to the use of the L1 norm in our fidelity term, the
proposed model also provides the representative sharp texture for
each region, which consists of a patch containing contrast preserv-
ing texture as a result of a weighted median vector process. As a
further consequence of the use of the L1 norm the segmentation is
robust to impulse noise and outliers. The L1 norm was also used for
segmentation purposes in Li et al. (2016) and Jung (2017).
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(a) Fixed-size patches of size 30. (b) Affine covariant patches.

Figure 1.1: Comparison among fixed-size patches and adaptive
patches.

Following the idea of Mory and Ardon (2007) and Li et al. (2016)
we relax the functional by using fuzzy membership functions, which
assume that each point can be in several regions simultaneosly with
a certain probability. As a generalization of the notion of character-
istic functions, fuzzy membership functions satisfy the following two
constrains:
• Nonnegativity constraint: the membership is non-negative for

all pixels.

• Sum-to-one constraint: the sum of all the membership functions
at each pixel equals one.

Moreover, fuzzy membership functions are considered to belong to
BV (Ω; [0, 1]), which is a convex set and guarantees the convergence
and stability of many numerical optimization methods.



2 Affine Covariant Structure
Tensors

In this Chapter we define the Affine Covariant Structure Ten-
sors and the associated elliptical patches. We also show how
to normalize these patches to a disc and provide a measure to
compare them.

Let us consider an image u : Ω ⊂ R2 → R endowed with a Riemannian
metric which, in our case, is given by an approximate structure tensor
field. In other words, we consider an image-dependent tensor field Tu
as a function that associates a structure tensor (a symmetric, positive
semi-definite 2×2 matrix) to each point x ∈ Ω. The structure tensor
field is said to be affine covariant if, for any affinity A,

TuA
(x) = AtTu(Ax)A, (2.1)

where uA(x) := u(Ax) denotes the affinely transformed version of u.
For each x ∈ Ω, the affine structure tensor Tu(x) has associated

with it an elliptical region:

ETu(x, r) = {y : 〈Tu(x)(y − x), (y − x)〉 ≤ r2}, (2.2)

where x is the center of the region and r is a free parameter that
controls, together with the local texture, the size of the affine co-
variant neighborhood. Moreover, as this neighborhood comes from a
structure tensor that is affine covariant, we have that

AETuA
(x, r) = ETu(Ax, r). (2.3)

7



8 2. Affine Covariant Structure Tensors

This means that the structure tensors can be used to define affine
covariant regions which transform properly via an affinity.

The affine covariant structure tensors and their associated neigh-
borhoods, introduced in Fedorov et al. (2015), are computed using
the following iterative scheme:

T (k)
u (x) =

∫
E

T
(k−1)
u

(x,r)∇u(y)⊗∇u(y)dy

Area
(
E

T
(k−1)
u

(x,r)
)

E
T

(k)
u

(x, r) = {y : 〈T (k)
u (x)(y − x), (y − x)〉 ≤ r2}

(2.4)

with the following initialization:

E
T

(0)
u

(x, r) = {y : 〈∇u(x), (y − x)〉 < r}, (2.5)

where ∇u denotes the gradient, ⊗ the tensor product and k ∈ N.
From now on we will denote by Tu(x) the affine invariant tensor T (k)

u

for a fixed number of iterations (k = 30) and a given radius r (r > 0,
which is left as a free parameter). Fedorov et al. (2015) state that
after a few iterations T ku , obtained in (2.4), might cycle over a finite
number of affine covariant tensors. Typically, a single tensor is found,
but for some situations, like in corners, the process can iterate among
two tensors or even three in some occasional situations. In any case,
all the tensors found are guaranteed to be affine covariant. Therefore,
the purpose of the iterative algorithm is not to ensure affine covari-
ance, but to attenuate the dependency on the first iteration, which
only depends on a single gradient and it is very sensitive to noise. We
denote by ETu(x) the affine covariant neighborhood, and each patch
of the image u will be denoted by pu(x), for x ∈ Ω, and defined by
the function pu(x) := pu(x, ·) given by:

pu(x, y) = u(y), y ∈ ETu(x). (2.6)

As the computed patches may have different shapes and orien-
tations we would not be able to compare them by using a simple
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L2-distance. For this reason we propose to take advantage of the
affine similarity measure defined in Section 2.2 and the transforma-
tion provided by the tensors to normalize the adaptive patches to a
disc of fixed area.

2.1 Normalization to a Disc
Fedorov (2016) show that, given two affine covariant structure ten-
sors, if uA = u ◦ A we can extract the affine transformation between
the corresponding elliptical patches up to a rotation. Indeed, for any
affine transformation A there exists an orthogonal matrix R such that

A = Tu(Ax)− 1
2RTuA

(x) 1
2 (2.7)

For its relevance, let us formalize and proof this last result.

Lemma 1. Let u and v be two images, such that u(z) = v(Az)
for all z ∈ RN and for a given invertible matrix A. Then, A =
Tv(y)− 1

2RTu(x) 1
2 for y = Ax and some orthogonal matrix R.

Proof. To prove that A = Tv(y)− 1
2RTu(x) 1

2 is equivalent to proof
that Tv(y) 1

2ATu(x)− 1
2 is orthogonal. As Tv(y) is affine covariant, by

equation (2.1) we have that

Tu = AtTvA (2.8)

T
1
2
u T

1
2
u = AtT

1
2
v T

1
2
v A (2.9)

Id =
(
T
− 1

2
u AtT

1
2
v

)(
T

1
2
v AtT

− 1
2

u

)
(2.10)

Id =
(
T

1
2
v AT

− 1
2

u

)t (
T

1
2
v AtT

− 1
2

u

)
(2.11)

From (2.10) to (2.11) we have used the symmetry of the structure
tensors. Equation (2.11), proves that T

1
2
v AT

− 1
2

u is an orthogonal ma-
trix.
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Equation (2.7) provides an intuition of the geometric relationship
between the structure tensors, the associated ellipses and the affinity.
The application of (2.7) can be decomposed in three steps:

1. TuA
(x) 1

2 transforms ETu(x) into a circle of radius r.

2. R is an appropiate rotation applied to the normalized patch.

3. Tu(Ax)− 1
2 maps the rotated normalized patch to the neighbor-

hood Eu(Ax).

To fully determine the affinity A one needs to find the rotation R that
aligns the image content of both discs. For this aim, the rotation is
decomposed as

R = Ru(Ax)R−1
uA

(x), (2.12)

where Ru(Ax) and R−1
uA

(x) are estimated from the image content of
the discs. In practice, the rotation is calculated by aligning the dom-
inant orientation of the normalized patches to the horizontal axis.
The dominant orientations are computed using the histograms of ori-
ented gradients as in the sift keypoints proposed by Lowe (2004).
Notice that we can normalize each patch to a disc ∆t using

p̃u(x) := p̃u(x, h) = u
(
x+ Tu(x)− 1

2Ru(x)−1h
)
, (2.13)

where h ∈ ∆t, Tu(x) is the structure tensor associated to x and
Ru(x) = R(θ) the rotation matrix of angle θ, being θ the local domi-
nant orientation at x. Figure 2.1 presents the discs of several patches.

2.2 An Affine Invariant Patch Similarity
To compare two discs we give a step back and return to the patches,
where we will derive a multiscale Patch Similarity Measure and see
that, in practice, it is equivalent to a Disc Comparison Measure.
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Figure 2.1: Adaptive patches associated to the affine invariant struc-
ture tensor for some pixels of the image, together with their normal-
ization into a disc already rotated according to the local dominant
orientation.

We are interested in comparing the neighborhoods pu(x) and
pu(y) centered at x and y, respectively. In order to compare them
we need a mapping among them. Equations (2.7) and (2.12) suggest
the following definition:

PR(x, y) = Tu(y)− 1
2Ru(y)R−1

u (x)Tu(x) 1
2 , (2.14)

which can be interpreted as an affinity that maps the elliptical patch
associated to Tu(x) into the one associated to Tu(y). The multiscale
similarity measure we use to compare the patches is

Da,qt (pu(x),pu(y)) = (2.15)∫
∆t

gt(h)
∥∥∥u (x+ Tu(x)− 1

2Ru(x)h
)
− u

(
y + Tu(y)− 1

2R(y)h
)∥∥∥q
Lq

dh,

where q > 0, ‖ · ‖Lq denotes the norm in Lq, t > 0 represents the
scale of the patch and allows to control the support in the patch
comparison, gt is a Gaussian weighting function, and ∆t is a disc of
radius proportional to t where gt has effective support. In practice,
we transform both patches to a disc of radius t and compare the
aligned normalized patches.

The similarity measure (2.15) was derived by Fedorov et al. (2015)
as a computationally tractable approximation of the linear case of the
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multiscale similarity measure introduced in Ballester et al. (2014).
The authors show that all scale spaces of similarity measuresD(t, x, y)
satisfying a certain set of axioms are solutions of a family of degener-
ate parabolic partial differential equations. In their paper images are
considered defined on Riemannian manifolds endowed with a metric
defined by a tensor field. As we use the tensor Tu, which is affine
covariant, like the Riemannian metric on the image plane, the asso-
ciated similarity measure is also affine invariant.



3 The Segmentation Model

In this Chapter we explain the patch-affine segmentation
model together with its optimization algorithm. As the pro-
posed model considers characteristic functions, which belong
to a non-convex set, we propose to relax them using fuzzy
membership functions. Then, we propose a threshold to re-
cover the characteristic functions of the original model. More-
over, as the model is not jointly convex we also propose an
initialization.

Let u : Ω→ RM be a given image defined on Ω ⊂ R2 with values
in RM , where M = 1 for gray level images and M = 3 for standard
color images.

In order to define our segmentation model, we associate to each
pixel an affine invariant patch. Let Pu be the set of all patches, also
called manifold of patches, obtained from image u and defined using
the affine covariant tensor metric Tu(x) associated to u. That is,

Pu = {pu(x), x ∈ Ω} . (3.1)

As noticed in Chapter 2, thanks to the tensors, these elliptical patches
can be considered defined on the normalized disc ∆t.

We propose to simplify the set of all patches Pu by estimating
an optimal finite set of representative patches {pΩ1 , . . . ,pΩN

}, for a
given N ∈ N, where Ω = ∪Ni=1Ω̄i is a partition of the image domain

13
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into N disjoint open regions Ωi, such that each region contains the
pixels with similar patches and pΩi

is the patch associated to the
region Ωi. In other words, we aim that Ωi contains all the pixels
with local homogeneous texture regardless of differences in the point
of view or suffered perspective distortion. We propose to do it by
minimizing the following energy:

E(p, B) = `(B) + λ
∫

Ω
Da,1t (pu(x),pΩi

) dx (3.2)

where p = ∑
i pΩi

χΩi
is a piecewise constant patch function, i. e.,

it associates a homogeneous texture to each point x of a connected
component Ωi of Ω \ B, and B = ∪Ni=1∂Ωi, being ∂Ωi the boundary
and χΩi

the characteristic function of Ωi. By analogy to (2.15) and
by an abuse of notation we have denoted the patch similarity measure
by

Da,1t (pu(x),pΩi
) =∫

∆t

gt(h)
∥∥∥u(x+ Tu(x)− 1

2R(x)h)− pΩi
(h)

∥∥∥
L1

dh
(3.3)

for x ∈ Ωi. Our choice of q = 1 allows to obtain pure representative
patches for each region.

As Ω \ B = ∪Ni=1Ωi, with Ωi ∩ Ωj = ∅ for all i 6= j, we can
rewrite (3.2) as follows

E(p,χχχ) =
N∑
i=1

[∫
Ω
|∇χΩi

(x)| dx +

λ
∫

Ω

∫
∆t

gt(h)
∥∥∥u(x+ Tu(x)− 1

2R(x)h)− pΩi
(h)

∥∥∥
L1
χΩi

(x)dhdx
]
,

(3.4)

where χ = (χΩ1 , . . . , χΩN
), with χΩi

∈ BV (Ω; {0, 1}), and such that∑
i χi(x) = 1,∀x ∈ Ω. Again, p = ∑

i pΩi
χΩi

is piecewise constant,
i.e., the same patch pΩi

is associated to all the pixels that belong
to region Ωi. Let us recall that the space BV (Ω; [0, 1]) is the set of



15

functions f ∈ L1(Ω) whose partial derivatives in the sense of dis-
tributions are measures with finite Total Variation (TV), where the
Total Variation, for f ∈ L1

loc(Ω) is defined as

TV (χ) = sup
{
−
∫

Ω
fdivφdx : φ ∈ C∞c (Ω; RN),

|φ(x)| ≤ 1, ∀x ∈ Ω
}
.

(3.5)

Notice that if f ∈ C1(Ω; [0, 1]), then

TV (f) =
∫

Ω
|∇f(x)|dx. (3.6)

In this case, the first term of the Total Variation is equal to the length
of the boundary ∂Ωi. Energy (3.4) measures both the smoothness of
the segmentation boundaries and the fidelity of the aproximating
piecewise patch function p to the manifold of patches Pu of the input
image u. The output of the method is a partition of the image into re-
gions with homogeneous texture together with a patch representative
of the texture of each region.

The variational model (3.4) is defined using characteristic func-
tions χΩi

∈ BV (Ω; {0, 1}), and the constraint ∑i χi(x) = 1 for each
pixel x ∈ Ω implies that each pixel only belongs to a unique region
Ωi. But the set BV (Ω; {0, 1}) is not convex and, moreover, the Euler-
Lagrange equation for non-continuous functions leads to difficulties
in numerical implementations. Thus, following the idea proposed by
Mory and Ardon (2007) and Li et al. (2016) we relax the characteris-
tic functions to be fuzzy membership functions, which are associated
to the notion of fuzzy sets1, firstly introduced by Zadeh (1965). Fuzzy

1A fuzzy set is a pair (X,m), whereX is a set andm : X → [0, 1] a membership
function. The value m(x), x ∈ X, is called the grade of membership of x in
(X,m).
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membership functions belong to the set

C =
{

(ω1, . . . , ωN) |ωi ∈ BV (Ω; [0, 1]), 0 ≤ ωi(x) ≤ 1,
N∑
i=1

ωi(x) = 1,∀x ∈ Ω
}
. (3.7)

Hence, ωi(x) describes the fuzzy membership of a pixel x that may
well belong simultaneously to more than one region; in other words,
ωi(x) can be understood as the probability that x belongs to the
region Ωi. Let ωωω be ωωω = (ω1, . . . , ωN) which is often denoted as an
N -phase fuzzy membership function. In this framework, our model
(3.4) writes as

min
(p,ωωω)∈L1(Ω;L1(∆t))×C

Ē(p,ωωω) =
N∑
i=1

∫
Ω
|∇ωi(x)|dx︸ ︷︷ ︸
Es(ωωω)

+ λ
N∑
i=1

∫
Ω
Da,1t (pu(x),pΩi

)ωi(x)dx︸ ︷︷ ︸
Ed(p,ωωω)

.

(3.8)

The energy formulation (3.8) is convex with respect to p and ωωω sep-
arately but not jointly.

3.1 Optimization Algorithm
To minimize the functional (3.8), we introduce an auxiliary variable
v = (v1, . . . , vN) ∈ C representing the fuzzy membership function ωωω
and we penalize its deviation from ωωω by a quadratic term as follows

min Ẽ(p,ωωω,v) = Es(ωωω) + λEd(p,v)

+ 1
2θ

N∑
i=1

∫
Ω

(ωi(x)− vi(x))2 dx︸ ︷︷ ︸
Ec(ωωω,v)

, (3.9)
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where θ > 0 is small enough to enforce v to be the closest possible to
ωωω. This energy can be minimized by alternatively fixing two variables
and minimizing with respect to the third one since the functional Ẽ
is convex w.r.t each variable, and iterate until convergence. The
optimization scheme can be summarized as follows:

vk+1 = arg min
v
E(ωωωk,pk,v)

ωωωk+1 = arg min
ωωω
E(ωωω,pk,vk+1)

pk+1 = arg min
p
E(ωωωk+1,p,vk+1)

(3.10)

In the following we describe the optimization algorithm we use to
minimize each of them.

3.1.1 v-subproblem

The subproblem for v = (v1, . . . , vN) is

min
v∈C

(
λEd(p,v) + 1

2θEc(ω
ωω,v)

)
. (3.11)

Observe that this problem is separable with respect to the variables
vi. Actually, we can obtain a closed formula of the solution of (3.11)
together with a projection onto the convex set C:

vi(x) = ωi(x)− λθDa,1t (pu(x),pΩi
(x)) , ∀i. (3.12)

To include the projection onto C, the set of fuzzy membership func-
tions, the expression (3.12) is replaced by

vi(x) = min{max{ωi(x)− λθDa,1t (pu(x),pΩi
(x)) , 0}, 1} (3.13)

with a final normalization step ∑N
i=1 vi(x) = 1,∀x ∈ Ω.
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3.1.2 ω-subproblem: dual formulation algorithm
The subproblem for ωωω is

min
ωωω

(
Es(ωωω) + 1

2θEc(ω
ωω,v)

)
. (3.14)

As the problem (3.14) is separable in the variables ωi, we can solve
each problem independently, that is:

min
ωi

∫
Ω
|∇ωi(x)|dx+ 1

2θ

∫
Ω

(ωi(x)− vi(x))2 dx. (3.15)

This minimization is done using a dual formulation and the algorithm
proposed by Chambolle (2004):
Proposition 1. The solution of Eq. (3.15) is given by

ωi(x) = vi(x) + θdiv(ξ(x)) (3.16)

where the vector function ξ is obtained by the following iterative fixed-
point scheme:

ξn+1(x) = ξn(x) + τ∇ (θdiv(ξ(x)) + vi(x))
1 + τ |∇(θdiv(ξ(x)) + vi(x))| (3.17)

taking ξ0 = 0 and τ ≤ 1/8.

3.1.3 p-subproblem
The subproblem for p is

min
p
Ed(p,v) =

N∑
i=1

∫
Ω
Da,1t (pu(x),pΩi

(x)) vi(x)dx. (3.18)

with p = ∑
i pΩi

χΩi
. For each region Ωi, the unknown patch pΩi

is
given by a vector of size the number of pixels contained in the disc
∆t. Thus, the solution for subproblem (3.18) is given by a weighted
median vector. To compute the weighted median vector we extend
the proposal of Barni et al. (1993) and Barni (1997) that suggest a
fast algorithm to compute the median vector filter. Their approach
consists in
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1. Componentwise apply the scalar median filter: let zm be the
output of such operation.

2. For each vector zi calculate di = f(zi)− f(zm), where
f(z) = ∑N

i=1 ‖z− zi‖L1 .

3. The median vector is the point that minimizes di.

In Appendix A we explain in more detail the derivation of the fast
algorithm for the median vector filter proposed by Barni et al. (1993)
and Barni (1997).

3.2 Initialization

As the functional (3.9) is not jointly convex the final result has a high
dependence on the initialization. Following the idea of Li et al. (2016)
we initialize our algorithm using the fuzzy c-means algorithm pro-
posed by Bezdek et al. (1993) which, applied over the set of patches
of the input image, turns into:

min J(ω,pΩi
; pu(x)) = min

#px∑
k=1

N∑
i=1

ωi,kDa,2(pu(x),pΩi
). (3.19)

Its minimum is computed as:

ωΩi
(xk) =

N∑
j=1

Da,2
t (pΩi

,pu(xk))
Da,2
t

(
pΩj

,pu(xk)
) ∀i, k

pΩi
(x) =

∑
k(ωΩi

)2pu(xk)∑N
k=1(ωΩi

(xk))2 ∀i.
(3.20)

Afterwards, by applying (3.18), the median patch that corre-
sponds to each initial region will be computed. Figure 3.1 displays
the initialization for the left image of Figure 2.1.
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Figure 3.1: Fuzzy c-means initialization.

3.3 Final segmented image and discs
To solve our problem (3.4) we relaxed it by using fuzzy membership
functions (3.8). Then, a segmentation is provided by:

I(x) =
∑
i

p̄Ωi
ωΩi

(x). (3.21)

where ωi(x) ∈ [0, 1] and p̄ is the mean of the patch associated to
the region Ωi. Therefore, for each pixel x we are considering the
probability of belonging to the region Ωi. In order to impose that
each pixel belongs to a unique region we propose to select, for each
pixel, the maximum value of the membership functions at that pixel.

χΩi
(x) =

{
1, if i = arg maxj ωj(x)
0, else , (3.22)

which is a translation of the assumption that each pixel belongs only
to the region with highest membership value. Therefore, the final
segmentation is provided by

I(x) =
∑
i

p̄Ωi
χΩi

(x) (3.23)

where, again, p̄ is the mean of the patch associated to the region Ωi.
We also provide a disc that contains the texture associated to each
region. Figure 3.2 shows an example of the output using fuzzy mem-
bership function (Fig 3.2a), recovering the characteristic functions
and the discs (Fig 3.2b).
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(a) Fuzzy membership functions and corre-
sponding output.

(b) Characteristic functions, corresponding
output and representative discs.

Figure 3.2: Output of the fuzzy membership functions and the ex-
tracted characteristic functions, together with the discs associated to
each region.





4 Experimental Results

In this Chapter we present some results on the Berkeley and
Weizmann datasets. We also present a study of the parameters
related to the patches and discs in order to fix them.

In Chapter 3 we have presented a segmentation model that works by
comparing adaptive patches. The model depends on the following
four free parameters:

• Balance among data and regularity term λ, we fix it to 0.04 for
all images.

• Radius used in the patch computation r, which is related to the
final size of the patch.

• Length, 2t, of each side of the square where the discs are em-
bedded. Let us recall that each computed patch is interpolated
to a disc of fixed size in order to be able to compare the differ-
ent patches. Also, the parameter t let us decide the resolution
of the disc ∆t. With an abuse of notation, in this Chapter we
will denote by t the diameter of the disc instead of its radius.

• Number of regions n: this parameter is left free for every image.
Anyway, the Tables presented in this section have been obtained
with a fixed value for all the images of the dataset.

23
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Let us comment on the radius r and the diameter of the discs t.
The radius of the patch strongly depends on the local content of
the image. We use a larger or smaller value of r depending on the
blur, noise or the kind of texture. Actually, equation (2.2) already
gives an intuition of it, as we are considering a balance among the
distance of the pixels to the center of the patch, and the gradient
of the central pixel. Therefore, for low gradient values the ellipse
automatically grows far until it reaches the size of the radius, while
for large gradients the ellipse can not grow so far. In Figure 4.1
we show the behavior of the patches at textured and homogeneous
regions, for a fixed value of r. We can observe as, for a fixed value of
r, the ellipses automatically and intrinsically adapt their shape and
size to the local content of the image. For instance, in the textured
regions of the image the ellipses are smaller than in the homogeneous
regions. Moreover, we also see that for small values of r the ellipses
are too small in the highly textured regions, while for bigger values of
r the ellipses at the homogeneous regions grow a lot. The parameter
r also affects the content of the discs. For low values of r we obtain
blurred discs, as we are using limited values to do the interpolation,
while the discs obtained with larger values of r the texture is sharper.

(a) r = 100. (b) r = 200. (c) r = 300.

Figure 4.1: Radius (r) comparison of the patches and discs.

In order to fix the size of the disc, we have compared the results
of 100 images, randomly selected, from the Berkeley dataset using
different values of t (t = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 51}) and r
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Figure 4.2: Segmentation difference (larger values mean more dif-
ferent) between results obtained with the discs of size t = 51 (more
resolution) and the discs of the specified t. We also evaluated different
values of r.

(r = {90, 150, 200}). The comparison is performed by labeling in the
same way all the images and computing a simple error difference. If
I and Ĩ denote two of such segmentations results, using the same
segmentation labels, for each pixel we consider:

d
(
I(x), Ĩ(x)

)
=
{

1, if I(x) 6= Ĩ(x)
0, if I(x) = Ĩ(x), (4.1)

then, we sum over all the pixels and normalize:

D(I, Ĩ) = 100 ·
∑N
x=1 d

(
I(x), Ĩ(x)

)
N

, (4.2)

where N is the number of pixels of the image. That is, we compute
the percentatge of pixels that differ on each pair of images.

Figure 4.2 shows the quantitative results of the comparison. Each
cell of the table contains the mean of the difference between the seg-
mentation results obtained with discs of size t = 51 and the size t
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specified at each row. The radius r used is specified in each column.
We can observe that the difference among the results using the dif-
ferent values of t is very small, specially for t bigger than 7, which is
a usual minimum size for a patch. This is closely related to the fact
that the image content in the interpolated discs is similar, no matter
the size of the disc. This fact is illustrated in Figure 4.3, where we
show four discs of the image presented in Figure 4.1. We can see that
for a fixed value of r, and changing the value of t, the results appear
the same but at a different scale. The interpolation only changes
when we use a different value of r. Finally, notice the bad results for
t = 1, where the patch is degenerated to a point.

t = 31

r = 100 r = 200 r = 300

t = 51

t = 71

Figure 4.3: Interpolation of the patches into discs for different radius
r(100, 200, 300) and size of the disc t (31, 51, 71).

We tested our method on the Berkeley dataset proposed by Mar-
tin et al. (2001) and the Weizmann dataset proposed by Alpert et al.
(2007).
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In Tables 4.2, 4.3 and 4.4 we show a comparison of our method
with two methods that are also based on fuzzy membership functions:
the implementation of the piecewise constant Mumford-Shah method
proposed in Li et al. (2010) and the method proposed by Li et al.
(2016).

In order to quantitatively compare our method with respect to
the works mentioned we have used the F-measure, first defined in
Rijsbergen (1979), which is the harmonic mean of the precision (P)
and recall (R):

F = 2 · P ·R
P +R

. (4.3)

To explain the meaning and computation of these two values, let us
consider an image with two regions Ω1 and Ω2 of Ω. In Table 4.1 we
summarize the four possible options of membership of a pixel x with
respect to the classification obtained and the correct one.

Predicted

x ∈ Ω1 x ∈ Ω2

Actual
x ∈ Ω1 3(TP) 7(FN)

x ∈ Ω2 7(FP) 3(TN)

Table 4.1: Summary of the four possible classifications of a pixel.

Then, precision (P) and recall (R) are measured as

P = TP

TP + FP
R = TP

TP + FN
(4.4)

that is, precision (also called predictive value) is the fraction of rele-
vant instances among the retrieved instances, while recall (also known
as sensitivity) is the fraction of relevant instances that have been
retrieved over the total amount of relevant instances. In terms of
segmentation results, precision is the proportion of correctly positive
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labeled pixels, while recall is the fraction of pixels correctly labeled,
with respect to the ground-truth. In the case that the image is seg-
mented in more than two regions we compute the mean, over all the
regions, of the precision and recall. From these values we get the
F-measure error of the image.

In Table 4.2 we present quantitative results on images of the
Weizmann Segmentation dataset (Alpert et al. (2007)) and Berke-
ley dataset (Martin et al. (2001)). These results are computed with
discs of size t = 17 and the radius r is either 100, 150, 200 or 250.
The output discs, which contain the texture of the regions, have size
t = 51. Since Weizmann dataset is mainly made of images of one
or two disconnected objects in front of a background, we have fixed
n = 2 for all the images. As Berkeley dataset also contains images
with a small number of objects in front of a background, we tried
experiments with three and six regions, but as it can be observed in
Figure. 4.4 when we fix the number of regions to six we start to obtain
an oversegmentation or decomposition in the so-called superpixels in-
stead of the expected segmentation, which is not in the scope of this
work. This effect is due to the fact that our segmentation regions can
be made of several connected components. For this reason we show
quantitative and qualitative results on images segmented with three
regions.

Figure 4.4: Some results on Berkeley dataset using 6 regions.

We can observe in Table 4.2 that the behaviour is similar for all
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the datasets, but when we observe some qualitative results (presented
in Tables 4.3 and 4.4 for the Weizmann and Berkeley datasets, re-
spectively) we can observe that, thanks to the use of patches, our
results better capture the texture of the objects, producing results
more robust to the illumination change and the heterogeneity of the
objects. Moreover, the boundaries of the regions are smoother and
it produces less region outliers, compared to the other two methods.
Let us finally recall that we are not using texture descriptors, but an
L1-norm difference of the color within the patches, therefore these
results are promising and could be improved by using a data term
that takes into account texture descriptors instead of the color values
of the disc.

Quantitative
study

Alpert et al. (2007) Martin et al. (2001)
R P F R P F

Li et al. (2016) 0.5158 0.3601 0.3630 0.3624 0.4621 0.4062
Li et al. (2010) 0.5271 0.3627 0.3657 0.3864 0.4935 0.4334
Ours (r=100) 0.5292 0.3655 0.3677 0.3829 0.4869 0.4287
Ours (r=150) 0.5157 0.3744 0.3661 0.3849 0.4878 0.4303
Ours (r=200) 0.5014 0.3766 0.3582 0.3867 0.4900 0.4323
Ours (r=250) 0.4900 0.3868 0.3553 0.3747 0.4619 0.4135

Table 4.2: Results in Weizmann and Berkeley datasets. Recall (R),
Precision (P) and F-measures (F) for our method, with different val-
ues of r, and the methods proposed in Li et al. (2010) and Li et al.
(2016).
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Input Li et al. (2016) Li et al. (2010) Ours Discs

Image 1

0.4131 0.4203 0.4438

Image 2

0.3900 0.3924 0.4340

Image 3

0.7178 0.7462 0.7537

Image 4

0.7584 0.7647 0.7784

Image 5

0.4726 0.4706 0.4944

Image 6

0.3408 0.3470 0.3801

Image 7

0.5037 0.5558 0.5875

Image 8

0.3809 0.3822 0.3922

Image 9

0.2738 0.2813 0.2911

Table 4.3: Some results on the Weizmann dataset (Alpert et al.
(2007)) of our method compared with Li et al. (2016) and Li et al.
(2010) Below each picture we also provide its F-measure.
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Input Li et al. (2016) Li et al. (2010) Ours Discs

Image 1

0.3528 0.3852 0.4457

Image 2

0.3513 0.3656 0.3915

Image 3

0.7350 0.7415 0.7439

Image 4

0.3859 0.3968 0.4848

Image 5

0.7255 0.7284 0.7534

Image 6

0.4945 0.4963 0.5325

Image 7

0.2557 0.5616 0.5853

Image 8

0.4236 0.5579 0.0.5661

Image 9

0.0.9553 0.9823 0.9881

Table 4.4: Some results on the Berkeley dataset (Martin et al. (2001))
of our method compared with Li et al. (2016) and Li et al. (2010)
Below each picture we also provide its F-measure.





5 Conclusions and Future
Work

We propose a new variational formulation for image segmentation
that uses similarity among shape and size adaptive patches in an L1

fidelity term and the total variation of fuzzy membership functions
as relaxed length of the boundaries of the segmentation regions. The
result is a partition of the image in regions of local homogeneous
texture regardless of differences in the point of view or suffered local
perspective or affine distortion, together with a patch, associated to
each region, which contains the representative texture of its corre-
sponding region.

Despite providing a patch with the representative texture our
method does not use pure texture features, thus it does not deal
well with images that only contain texture, without color contrast,
therefore as a future work we propose to compare texture features
extracted from the patches in order to segment the images. As it
has been shown in Chapter 4, the radius has a strong depency on
how textured is the image. Therefore another improvement of the
method would be to automatically compute the appropiate radius
size for each image.

Moreover, the proposed method, built on Riemannian metrics in-
trinsic to the input image and on an L1 data term, could be used
to synthesize a textured output by using the representative tensor
metric of each region to fill-in the region with the texture of the rep-
resentative patch. This is an interesting direction for future research.
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A Fast Weighted Median
Vector Algorithm

In this Appendix we present the derivation of the Fast Algo-
rithm for the Median Vector Filter proposed by Barni et al.
(1993) and Barni (1997). We also show their direct exten-
sion to Weighted Vector Median and propose an example to
illustrate the main steps.

Let us start by the definition of median vector attributed to Astola
et al. (1990):

Definition 1 (Median Vector (Astola et al. (1990))). Given N vec-
tors {x1, . . . ,xN} in Rp, the vector median is xvm such that:

xvm ∈ {x1, . . . ,xN} (A.1)

and for all j = 1, . . . , N :

N∑
i=1
‖xvm − xi‖1 ≤

N∑
i=1
‖xj − xi‖1 , j = 1, . . . , N. (A.2)

Viero et al. (1994) extended this concept to the case where each
given vector has a different weight:

Definition 2 (Weighted Median Vector Filter (Viero et al. (1994))).
Let x1, . . . ,xN be vectors and let α1, . . . , αN be their corresponding
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nonnegative weights, such that ∑N
i=1 αi = 1. The weighted vector

median is the vector xwvm such that

xwvm ∈ {xi, i = 1, . . . , N} (A.3)

and for all j = 1, . . . , N

N∑
i=1

αi‖xwvm − xi‖1 ≤
N∑
i=1

αi‖xj − xi‖1 (A.4)

Barni et al. (1993) presented a fast algorithm to compute the
vector median and we propose to extended it to the weighted case.
Their intuition relies on the fact that both, the scalar vector median1,
and the median vector minimize the same cost function:

f(x) =
N∑
i=1
‖x− xi‖1 (A.5)

where N is the number of vectors of the set. The only difference
between both solutions is that the scalar vector median is the uncon-
strained minimum of (A.5), while the vector median is a constrained
minimum: we impose the solution to belong to the initial set of vec-
tors. Consequently, we can compute the unconstrained minimum of
energy (A.5), which we denote by xm and, afterwards, search the
vector from our set which minimizes the following distance:

di = f(xi)− f(xm), ∀i. (A.6)

Function f(x) is continuous and piecewise linear since the partial
derivative with respect to the components of the vector x are piece-
wise constant, except in a set of measure zero. Thereby, di = f(xi)−
f(xm) can be computed integrating the gradient of f(x) along the
path that joints xi to xm, which is made of segments parallel to

1The scalar vector median consists in applying the scalar median to each
component of the vector.
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the coordinate axes. This can be fastly computed by exploding the
histograms of the vector components.

Barni et al. (1993) and Barni (1997) algorithm relies on the fact
that the scalar vector median is easy and fast to compute. Let us
illustrate the algorithm with one example, which we introduce pro-
gressively in order to illustrate each step of the algorithm.

Example: Computation of xm.
Let us consider the following three vectors in N3 with their associ-
ated weights αi: 

x1 = (2, 5, 3) α1 = 0.3
x2 = (1, 3, 0) α2 = 0.4
x3 = (1, 2, 2) α3 = 0.3

(A.7)

Using the weights, we obtain the following channel-histograms,
from which we get the scalar vector median filter xm:

h1 = (0, 0.7, 0.3, 0, 0, 0)
h2 = (0, 0, 0.3, 0.4, 0, 0.3)
h3 = (0.4, 0, 0.3, 0.3, 0, 0)

→ xm = (1, 3, 2) (A.8)

Once the scalar vector median is computed, we calculate the integral
of the gradient along the path that joints the scalar median vector
xm to every vector xi from our set. This path is always formed by p
segments parallel to the axes, where p is the dimension of the vector
space. Let {u0 = xm,u1, . . . ,up−1,up = xi} be the extreme points of
such segments.

Example: (Cont.) Path from xm to x1.
In our example, if we consider the path going from xm to x1 we
have to consider the following extreme segments:

{u0 = (1, 3, 2),u1 = (2, 3, 2),u2 = (2, 5, 2),u3 = (2, 5, 3)} (A.9)
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Now, we can compute the distance as

di = f(xi)− f(xm) =
∫ u1

u0
∇f(x)dx + · · ·+

∫ up

up−1
∇f(x)dx (A.10)

Example: (Cont.) Splitting of the distance into integrals.
In our particular case:

d1 = f(x1)− f(xm) =
∫ u1

u0
∇f(x)dx +

∫ u2

u1
∇f(x)dx

+
∫ u3

u2
∇f(x)dx.

(A.11)

Let us now consider two different situations: xi,j > xm,j and
xi,j < xm,j. The equality case as gives 0. We start considering the
situation where xi,j > xm,j. In this case we can rewrite each integral
of (A.10) as:

∫ uj

uj−1
∇f(x)dx =

∆i,j∑
k=1

∫ uk
j−1

uk−1
j−1

∇f(x)dx, (A.12)

where ukj = (xi,1, xi,2, . . . , xi,j, xm,j+1 +k, xm,j+2, . . . , xm,p) and ∆i,j =
xi,j − xm,j. Let us comment more on equation (A.12): Observe that
the integral that goes from uj−1 to uj only changes one of the co-
ordinates of the vector, therefore we are splitting the integral into
unit values and summing the gradient on that single pixel. About
ukj observe that it is gradually moving the coordinate j from xi to
xm.
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Example: (Cont.) Computation of each integral.

∫ u1

u0
∇f(x)dx =

1∑
k=1

∫ uk
0

uk−1
0

∇f(x)dx =
∫ u1

0

u0
0

∇f(x)dx (A.13)

∫ u2

u1
∇f(x)dx =

2∑
k=1

∫ uk
1

uk−1
1

∇f(x)dx =
∫ u1

1

u0
1

∇f(x)dx

+
∫ u2

1

u1
1

∇f(x)dx (A.14)
∫ u3

u2
∇f(x)dx =

1∑
k=1

∫ uk
2

uk−1
2

∇f(x)dx =
∫ u1

2

u0
2

∇f(x)dx (A.15)

where u0
0 = (1, 3, 2),u1

0 = (2, 3, 2),u0
1 = (2, 3, 2),u1

1 = (2, 4, 2),u2
1 =

(2, 5, 2),u1
2 = (2, 5, 2),u1

2 = (2, 5, 3).

We will now only focus on one of the integrals from equation (A.12).
Let us firstly observe that, as we are working at pixel level, the gra-
dient is constant, moreover if hj denotes the histogram associated to
channel j, and, particularly, hj,r denotes the number of samples such
that xi,j = r,∀i and the samples are quantized in b bins levels, then:

dj,k :=
∫ uk

j−1

uk−1
j−1

∇f(x)dx =
xm,j+k−1∑

r=0
hj,r −

b−1∑
r=xm,j+k

hj,r (A.16)

In order to compute (A.10) efficiently, Barni (1997) proposes to sub-
stitute (A.16) into (A.12):

∆i,j∑
k=1

xm,j+k−1∑
r=0

hj,r −
b−1∑

r=xm,j+k
hj,r

 =

∆i,j∑
k=1

xm,j+k−1∑
r=0

hj,r −

b−1∑
r=0

hj,r −
xm,j+k−1∑

r=0
hj,r

 =

2
∆i,j∑
k=1

xm,j+k−1∑
r=0

hj,r −∆i,j|hj|,

(A.17)
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where |hj| denotes the area of the histogram associated to channel j.
Let us now analyze in more detail the part which contains the sums:

∆i,j∑
k=1

xm,j+k−1∑
r=0

hj,r =

xm,j∑
r=0

hj,r +
xm,j+1∑
r=0

hj,r + · · ·+
xm,j+∆i,j−1∑

r=0
hj,r =

∆i,j

xm,j∑
r=0

hj,r + (∆i,j − 1)hj,xm,j+1 + · · ·+ hj,xm,j+∆i,j−1 .

(A.18)

Therefore, we can rewrite (A.17) as:

2
(

∆i,j

xm,j∑
r=0

hj,r + (∆i,j − 1)hj,xm,j+1 + · · ·+ hj,xm,j+∆i,j−1

)
−∆i,j|hj| =

∆i,j

(
2
xm,j∑
r=0

hj,r − |hj|
)

+ 2
(
(∆i,j − 1)hj,xm,j+1 + . . . hj,xm,j+∆i,j−1

)
,

(A.19)

which gives us a recursive method to compute the distances.
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Let us now analyze the case where xi,j < xm,j. Again, we start
with an example.

Example: (Cont.) Path from xm to x2, which involves
xi,j < xm,j.
We will use x2 = (1, 3, 0) from the same example, therefore we
obtain the following path:

{u0 = (1, 3, 2),u1 = (1, 3, 2),u2 = (1, 3, 2),u3 = (1, 3, 0)} (A.20)

and the distance is computed as:

d2 = f(u3)− f(u2) =
∫ u3

u2
∇f(x)dx. (A.21)

as all the other integrals have the same integration limits and,
therefore, equal to 0.

In this situation, each integral from (A.10) is written as:
∫ uj

uj−1
∇f(x)dx =

∆i,j∑
k=−1

∫ uk
j−1

uk−1
j−1

∇f(x), (A.22)

where ukj = (xi,1, xi,2, . . . , xi,j, xm,j+1 + k, xm,j+2 . . . , xm,p) and ∆i,j =
xi,j − xm,j. Let us observe that ∆i,j is negative, therefore in the
summation, we are decreasing the indices.

Example: (Cont.) Computation of the integrals
In our example we have that:

∫ u3

u2
∇f(x)dx =

−2∑
k=−1

∫ uk
2

uk+1
2

∇f(x)dx =

∫ u−1
2

u0
2

∇f(x)dx +
∫ u−2

2

u−1
2

∇f(x)dx
(A.23)

where u0
2 = (1, 3, 2),u−1

2 = (1, 3, 1),u−2
2 = (1, 3, 0).
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If we now focus on each integral we obtain that

dj,k :=
∫ uk

j

uk+1
j

∇f(x)dx =

−
∫ uk+1

j

uk
j

∇f(x)dx =

xm,j+k∑
r=0

hj,r −
b−1∑

r=xm,j+k+1
hj,r =

xm,j+k∑
r=0

hj,r −

|hj| − xm,j+k∑
r=0

hj,r

 =

2
xm,j+k−1∑

r=0
hj,r + 2hj,xm,j+k − |hj|.

(A.24)

By substituting this last result into (A.22) we obtain:

∆i,j∑
k=−1

2
xm,j+k−1∑

r=0
hj,r + 2hj,xm,j+k − |hj|

 =

2∆i,jhj,xm,j+k −∆i,j|hj|+ 2
∆i,j∑
k=−1

xm,j+k−1∑
r=0

hj,r

(A.25)

which results into:

dj := 2∆i,jhj,xm,j+k −∆i,j|hj|+ 2∆i,j

xm,j+k−1∑
r=0

hj,r+

2(−1−∆i,j)hj,xm,j−1+
2(−2−∆i,j)hj,xm,j−2 + · · ·+ 2(−1)hj,xm,j−∆i,j

.

(A.26)

Let us observe that in this case we are subtracting the extra terms
of the summation.
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In algorithm 1 we summarize this procedure.
Algorithm 1: Fast weighted vector median filter
Input : Set of vectors x1, . . . ,xN , the number of vectors n,

scalar median vector filter xm (obtained using the
weights), hist[j] vector containing the histogram of
the j-th component of the image and
histSum[j]=∑xm[j]

r=0 hist[j][r]
Output: Weighted Median Vector xwvm
foreach p in x do

for j in p do
dif[j] = x[p[j]] - xm[j];
if dif[j] > 0 then

sum[p] += dif[j]*(2*histSum[j] - n);
k = xm[j];
for m = 1 to dif[j] do

k = k + 1;
sum[p] = sum[p] + 2*w[j]*(dif[j] -
m)*hist[j][m[j]];

end
else

sum[p] += dif[j]*(2*histSum[j] - n - 2*hist[j][xm[j]]);
k = xm[j];
for m = −1 to dif[j] do

k = k - 1;
sum[p] = sum[p] + 2*hist[j][k]*(m - dif[j]);

end
end

end
xwvm = arg minp sum

end





The whole is something else than
the sum of its parts.

Kurt Koffka

Part II:
Scene Structure
Reconstruction
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6 Introduction: Scene
Structure

In this Chapter we describe the process of infering the dis-
tal scene of a given proximal image. We also provide a psy-
chophysical explanation and translate it contributing with a
computational model to recover the most likely intepretation.

Visual completion is a pervasive process in our daily life that
works by hallucinating contours and surfaces in the scene when there
is not a physical magnitude for them. Whenever we look at an im-
age, our brain unconsciously reconstructs the 3D scene by completing
partially occluded objects while inferring their relative depth order
into the scene. In Figure 6.1a, for instance, our brain prefers to in-
terpret the scene as four discs partially occluded by four rectangles
instead of, e.g., the more straightforward description of eight quarters
of a disc and four rectangles fitting together. Also, in Figure 6.1b we
perceive the branch in front of the arm of the bear.

Historically there have been two differentiated visual completion
approaches: local and global completion. Local completion has been
related to T-junctions and to the good continuation principle. When
an object occludes another, the occluding and occluded boundaries
form a configuration, called T-junction, which is the point where
the visible part of the boundary of the occluded object terminates.
T-junction configuration is shown in Figure 6.2a. Then, our visual
system completes the occluded objects following the good continu-
ation principle, that is, in such a way that the restored edges are
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(a) Source: Kanizsa (1991) (b) Source: Martin et al. (2001)

Figure 6.1: Examples where our brain experiences visual completion.

the smoothest possible and the shapes as convex as possible. For in-
stance, in figure 6.2b we observe an ellipse occluding a circle instead
of any other configuration that would include sharper edges.

(a) T-junctions. (b) Good continuation.

Figure 6.2: Local Completion Examples.

Global completion is driven by the simplicity principle which as-
sumes that the visual system favors interpretations characterized by
phenomenal simplicity, such as symmetry, repetition, regularity and
familiarity or context properties. It typically leads towards the sim-
plest completed shape, even though the good continuation princi-
ple may be violated, as shown by Koffka (1935), Kanizsa (1979) or
Sekuler (1994). Figure 6.3a shows an example where two different
completions occur depending on whether a global cue as symmetry
is incorporated or only more local cues, while in Figure 6.3b, both
interpretations coincide.



49

(a) Global-local divergent. (b) Global-local convergent.

Figure 6.3: Examples of global-local completion processes. Images
adapted from van Lier et al. (1995a).

Thanks to the studies of van Lier et al. (1995a,b) and Carrigan
et al. (2015), it is acknowledged that occlusion patterns evoke both
local and global completion processes and that the visual completion
is the result of a competition between them. Moravec and Beck (1986)
noticed that features favoring completion through good continuation
are read out more quickly (in the very first second) than features
favoring completion through symmetry, which are incorporated in
the following nine seconds. The incorporation of different cues was
also studied by Rubin (2001) who experimentally proved that local
and global occlusion cues affect the perception of amodal completion
at different stages of visual processing. Amodal completion occurs
when portions of an object are hidden behind another object, but the
former object is nevertheless perceived as a single continuous entity.
Associated to the concept of amodal completion there is the modal
completion, which occurs when portions of an object are camouflaged
by an underlying surface, usually because this underlying surface
happens to project the same luminance and color as the nearer object
or background (Singh (2004)). For instance, in Fig. 6.4 we present
an example for each type of completion. In Fig. 6.4a we perceive a
circle in the middle of the half-moons which has the same color as
the background, our mind induces illusory contours to be able to see
the circle. On the other hand, in Fig. 6.4b our mind completes the
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circles behind the square in an amodal way.

(a) Modal completion. (b) Amodal completion.

Figure 6.4: Modal and amodal completion of occluded regions. The
modal completion induces illusory contours.

For the perception of amodal completion, Rubin proposed that
the detection of local cues such as T-junctions generate a local pat-
tern of activation which launches a process of propagation of the
contour which is either enhanced or stopped depending on whether
or not other global cues hold. As for global cues, the author fo-
cused in relatability and surface similarity, being cues that seem to
be instantaneously used at first stages of occlusion perception.

Relatability was introduced by Kellman and Shipley (1991) as a
necessary global condition for completion to occur: Two contours are
said to be relatable if they can be connected with a smooth contour
without inflection points. We illustrate this concept in Figure 6.5: in
Figure 6.5a as there is the presence of two relatable contours, which
are made of two pairs of relatable end-points (in the upper and lower
part of the gray shape, respectively), we perceive an ellipse occluded
by a rectangle; while in Figure 6.5b there is no pair of relatable
contours so we perceive three different shapes.

In computer vision, a pioneering contribution to the recovery of
image plane geometry was proposed by Nitzberg et al. (1993). The
authors proposed a variational model for segmenting the image into
objects which should be ordered according to their depth in the scene,
providing the so-called 2.1 sketch. The minimization of their func-
tional is able to find the occluding and the occluded objects, while
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(a) Relatable contours (b) Non-relatable contours

Figure 6.5: How many perceptual objects?

finding the occluded boundaries. Their energy functional is defined
in terms of region simplification and completion of occluded con-
tours, which is achieved by linking signatures of occlusion, such as
T-junctions, with the Euler’s elastica. In this way, the completion
tends to respect the principle of good continuation. Despite its the-
oretical importance, the complexity of minimizing this energy makes
the approach far from practical applications.

We are also interested in computationally modeling this percep-
tual phenomenon, recovering what the brain infers about the struc-
ture and the relative depth of the objects composing the scene from a
planar image. To simplify the analysis of our approach, we focus on
scenes where objects appear at two different depths, ones occluding
the others. The current approach can handle scenes with both par-
tially occluded and fully visible objects. Our contribution is twofold:

1. We propose a computational method relying on perceptual find-
ings related to amodal visual completion to compute the dis-
occluded objects that form the possible 3D interpretations or
configurations that arise from a planar image.

2. We propose a Bayesian probabilistic model which chooses, be-
tween the possible interpretations of a planar image, the most
plausible one, justifying the visual completion human experi-
ence.
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6.1 Disocclusion

In computer vision, the computational translation of the visual com-
pletion phenomenon is commonly referred to as disocclusion or in-
painting. More precisely, inpainting refers to the recovery of the
image in a hole or region where the data is missing or corrupted, so
that the reconstructed image looks natural. The corrupted region is
usually referred as the inpainting mask.

Most available methods for inpainting can be divided into two
groups: texture-oriented methods, which use the self-similarity of
the images to look for potential similarities to fill the hole (Demanet
et al. (2003); Criminisi et al. (2004); Wexler et al. (2007); Kawai et al.
(2009); Aujol et al. (2010); Arias et al. (2011); Mansfield et al. (2011));
and geometry-oriented, which interpolate the inpainting domain by
continuing the geometric structure of the image. In these methods
the images are modeled as functions with some degree of smoothness,
expressed, for instance, in terms of the curvature of the level lines
(Masnou and Morel (1998); Ballester et al. (2001); Chan and Shen
(2001a); Masnou (2002); Citti and Sarti (2006); Cao et al. (2011)) or
the total variation of the image (Chan and Shen (2001b)).

In this work we are interested in a particular type of geometry-
oriented methods: binary inpainting, which is usually used to dis-
occlude shapes. Shape inpainting can be achieved by implementing
Euler’s elastica, which is defined as the curve with minimal length
that joints two points x1 and x2 and is also tangent to the straight
lines, tx1 and tx2 , associated to these points (Bernoulli (1692); Eu-
ler (1744); Levien (2008)). As it is not lower semicontinuous some
relaxed versions have been proposed by Bellettini et al. (1993), Mas-
nou and Morel (1998) and Ballester et al. (2001), which are com-
patible with the amodal completion theory of Kanizsa (1991). In a
work of Kang et al. (2014) that proposes a computational method for
modal completion, the elastica is a key ingredient to obtain illusory
contours. It is also used in a method, proposed by Citti and Sarti
(2006), for both modal and amodal completion which uses geodesics
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in the group of rotations and translations.
Binary inpainting models can be implemented by means of thresh-

old dynamics, firstly proposed by Merriman et al. (1992), which is
based on diffusion processes followed by thresholding. Threshold dy-
namics interpolations usually minimize geometric functionals, based
either on the length (Esedoglu et al. (2005)), area (Grzhibovskis and
Heintz (2008)), or curvature (Merriman et al. (1992)) of the shape
contours.

We propose to disocclude the objects using the principle of good
continuation modelled by minimizing the Euler’s elastica and using
the threshold dynamics algorithm of Esedoglu et al. (2005). As the
elastica is not convex we propose to introduce global cues, such as
relatability and convexity to provide an initial completion close to
the one expected by the perception theory.

6.2 Depth ordering: a Bayesian approach
Our scene interpretation model is inspired by the proposal of van Lier
et al. (1994), who suggest to choose the preferred scene interpretation
based on the minimum complexity or description code, by taking into
account local and global aspects of occlusion. Their work assumes
that the most likely interpretation is the one that minimizes the sum
of the complexity of three components of the visual pattern:

1. The internal structure, related to each of the visible shapes
separately.

2. The external structure, related to the positional relation be-
tween these shapes.

3. The virtual structure, related to the occluded parts of the shapes.

The perceptual complexity of each of these three components is ex-
pressed in terms of structural information theory (sit) (Leeuwenberg
and Van der Helm (2013)), an extension of the Gestalt theory that
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provides a formal and manual calculus to decide the plausibility of
the perceptual interpretations. However, van Lier et al. (1994) do
not automatically complete the occluded objects and the complexi-
ties are manually estimated from line drawings, thus their approach
can not be directly applied to images in a computer vision task.

Knill et al. (1996) and van der Helm (2011) also noticed that the
global minimum principle, i. e. the criterion of selecting the most
preferred interpretation, can be settled in a Bayesian framework by
properly defining prior and conditional probabilities.

We formalize the proposal of van Lier et al. (1994) and van der Helm
(2011) by proposing a fully automatic method that can be applied
to any image decomposed in shapes. Once the objects conforming
the scene are disoccluded we follow a Bayesian approach to decide
the structure of the scene. We give definitions for the prior proba-
bility and the likelihood, measured, respectively, by the object com-
plexities and an elastica-based quantity that measures the length of
the occluded an the disoccluded boundaries. As a consequence, our
probability model takes into account the shape of the objects in the
hypothesized scenes as well as the effort of bringing these objects in
their relative positions in the visual image.



7 An Elastica Based Model
for Scene Structure

In this Chapter we present a computational model to recover
the most likely interpretation of the 3D scene from a planar
image, where some objects may occlude the others. In partic-
ular, our model estimates the depth order of the objects and
gives a plausible completion of the partly occluded objects.

We propose a model to recover the scene structure of a planar image
that is grounded in two elements:

1. A binary inpainting method that disoccludes the hidden regions
of the objects. It gives us the complete objects that conform
the different scene configurations compatible with the planar
image.

2. A probabilistic model that quantitatively justifies which scene
configuration is the preferred one.

As we are considering three-depth images, i.e. objects at two depths
forming a scene in front of a background, there are three possible
interpretations or hypothesis of the real 3D scene:

• H1: Objects at depth A occluding objects at depth B.

• H2: Objects at depth B occluding objects at depth A.

• H3: All objects fitting together forming a mosaic.

55
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(a) After disoccluding we get differ-
ent shapes for each hypothesis.

(b) The shapes coincide in two of the
three hypothesis.

Figure 7.1: Two examples with its corresponding hypothesis, Hi, i =
1, 2, 3, for describing the 3D scene structure that gives rise to the
observed image.

We exemplify these possible hypothesis in Figure 7.1, where two
images of different scenes showing its different hypothesis are pre-
sented. Let us observe that sometimes the objects in interpretation
H3, i.e., A and B fitting together, might coincide with the ones in
H1 or H2, as can be seen in Figure 7.1b; or even, as the image of
Table 9.3 shows, the shapes may be the same in all three hypothesis.
This phenomenon is related to the optical illusion of relative depth
between the objects. For instance, in Figure 7.2 we present two im-
ages where the real objects are not occluded, therefore the objects
coincide in all three hypothesis, H1 = H2 = H3, but we still have
to decide which is the correct configuration. Consequently, in our
model, even when the objects forming the scene coincide we consider
the three different hypothesis with its respective depth ordering.

In the Perception community, the observed image is often called
the proximal stimulus (e.g., the left image in Figure 7.1a and 7.1b),
and each of the hypothesized interpretations Hi is called the distal
stimulus.
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(a) Author: Edoardo Accenti (b) Author: Laurent Laveder

Figure 7.2: Two optical illusions where the actual depth order of
the scene objects is ambiguous or undetermined unless we know the
objects.

To decide which is the correct distal stimulus we compute the
several distal interpretations of the scene which are compatible with
the proximal planar image. In this sense we follow the ideas proposed
by Rubin (2001), who states that T-junctions are used to launch
the completion process when contours are relatable (Kellman and
Shipley (1991)). Then, the Gestalt law of good continuation plays
an important role. This motivates us to use the Euler’s elastica in
order to smoothly continue the contours behind the occluder. Euler’s
elastica is the minimum curve that joints two T-junctions at points
x1 and x2, with tangents τx1 and τx2 to the respective terminating
stems, with a smooth continuation curve. It is defined as the solution
of minimizing the following energy:∫

γ
(κ2(s) + β)ds, (7.1)

where β > 0 and the minimum is taken among all the curves γ join-
ing x1 and x2 with tangents τx1 and τx2 , respectively, κ(s) denotes
the curvature of γ and ds its arc length. The parameter β plays a
geometric role by settling the expected underlying a priory regular-
ity: with a larger β, the energy favours the completion with straight
lines (minimal length); while for a small β favours smooth curves of
low curvature, even if their length is increased1. Figure 7.3 shows

1In the limit case (β = 0) the energy to be minimized is the Willmore energy,
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an example illustrating how the parameter β affects the disoccluded
shape. When β is big, more weight is given to the length of the curve
and then straight lines are favoured. When β decresases the disoc-
cluded objects tend to smooth their shape no matter if it produces a
bigger length.

(a) Input (b) Initialization

(c) β = 0.3
p̃ = 0.34

(d) β = 0.6
p̃ = 0.64

(e) β = 0.9
p̃ = 0.63

(f) β = 1.2
p̃ = 0.61

(g) β = 1.5
p̃ = 0.60

Figure 7.3: Disocclusion results depending on β and its certainty p̃.

On the other hand, depending on the resolution of the proximal
stimulus the parameter β needs to be adapted to obtain the same
underlying shape regularity. This property can be explained by con-
sidering curvy boundaries with smaller or bigger curvature. Indeed,
an example is shown in Figure 7.4: circles with larger radius need a
larger value of β in order to obtain the same regularity of the disoc-
cluded shape. The reason is the following: the curvature of smooth
plane curves is defined as the inverse of the radius of the osculating
circle (the unique circle which most closely approximates the curve
near the point). Therefore, there is a relationship between the numer-
ical curvature of the disoccluded objects and the a priori regularity∫
γ
κ2(s)ds.
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imposed through the parameter β: the larger the β, the larger the
expected radius of the osculating circle.

(a) β = 0.253 (b) β = 0.375 (c) β = 0.53 (d) β = 0.6

Figure 7.4: To obtain the same shape we need to adapt parameter β
according to the resolution.

In this work, the elastica is used in two ways. We propose in Sec-
tion 7.1 an elastica-based object disocclusion method which incorpo-
rates the relatability of partially occluded contours and the convexity
of the disoccluded objects. On the other hand, the elastica is also
used in Section 7.2 to select the most probable disoccluded scene.

7.1 Elastica-based object disocclusion
As we are solely concerned by the shape of the objects, we work
with segmented images and we perform a geometric inpainting of the
binary shapes that represent these objects. More precisely, we dis-
occlude each object in each hypothesis by separately considering the
hypothesized occluding object as the inpainting mask. The object
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is automatically completed in such a way that its boundary mini-
mizes a relaxed version of the elastica (7.1). For that, the object to
be completed is represented in a binary image (given by the object
segmentation) and its completion is performed through a threshold
dynamics algorithm which consists in a diffusion process followed by
a thresholding. In our case, the minimization algorithm, which is pro-
posed in Esedoglu et al. (2005), iteratively alternates the following
steps:

• One step of the scheme presented in Grzhibovskis and Heintz
(2008) that decreases

∫
γ κ

2ds.

• One step of the standard Merriman et al. (1992) scheme that
decreases β

∫
γ ds.

• A thresholding step.

We present the pseudo-code and more details in Chapter 8, Algo-
rithm 3.

7.1.1 Initialization of the inpainting mask
Since the elastica energy (7.1) is not convex, the inpainting result
depends on the initial condition inside the inpainting mask. We ilus-
trate it in Figure 7.5, which shows the inpainting results (shown in
the second row) obtained by minimizing the elastica with different
initializations (shown in the first row): white, black, random (black
and white chosen randomly from a uniform distribution) or with our
proposal, which is explained in the remainder of this section. No-
tice how the proposed initialization gives a better result (according
to the Gestalt laws of perception) and produces a completion that
maintains the tangents at the endpoints of the disoccluded boundary.

In order to automatically compute an initialization of the inpaint-
ing problem sufficiently close to what humans perceive as disoccluded
objects by amodal completion, we incorporate perceptual cues such
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(a) Input (b) White (c) Black (d) Random (e) Ours

Figure 7.5: Inpainting results starting with several initializations.

as relatability of object contours (Kellman and Shipley (1991)) and
convexity of the disoccluded objects.

The notion of relatability (see Figure 6.5) was introduced by Kell-
man and Shipley (1991) in the attempt of defining under which con-
ditions visual completion occurs. Let us recall the definition of re-
latability.

Definition 3 (Relatability (Kellman and Shipley (1991); Singh and
Hoffman (1999))). Let x1 and x2 be two points with tangent vector
τx1 and τx2 , respectively. Consider the semilines:

s1 = {x1 + λτx1 , λ ≥ 0}
s2 = {x2 + λτx2 , λ ≥ 0}

(7.2)

Then, s1 and s2 are relatable if:

a) Semilines s1 and s2 intersect.
b) The directed angle from τx1 to −τx2 is acute or 90◦.

In fact, Singh and Hoffman (1999) also proved that this definition
is equivalent to the existence of a smooth contour without inflection
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points connecting x1 and x2, and that the interpolating curve doesn’t
turn through a total angle of more than π

2 .
As shown by Burge et al. (2010) non-occluded objects in the

world tend to be convex, therefore we favour the convexity of the
disoccluded object by taking advantage of the following well-known
property of convex sets.

Lemma 2. Every closed convex set in Rn is the intersection of the
closed half-spaces that contain it.

The automatic initialization of the binary image inside the in-
painting mask is illustrated in Figure 7.6. In practice, we follow
these steps:

1. Consider all the T-junctions of the object contours arriving to
the inpainting mask together with their tangents (illustrated in
Figure 7.6b). In order to compute these tangents we use the
Line Segment Detector proposed by von Gioi et al. (2012).

2. Calculate all the possible pairs of relatable contours (shown in
Figure 7.6c).

3. Then, for each pair of relatable contours, for the T-junction xi
and tangent τxi

we consider the half-space.

{x ∈ R2 : 〈τ⊥xi
, x〉 − 〈τ⊥xi

, xi〉 ≥ 0} (7.3)

(or ≤ 0, depending on which half-space the object is), and we
assign a vote to the half-space on which the known object is.
Figure 7.6d displays the image gathering of these votes in the
inpainting mask, where brighter colors mean more votes. Let
us remark that, in order to better illustrate our initialization, in
Figure 7.6d and Figure 7.6e we only show the computed values
inside the inpainting mask.

4. Finally, we binarize the image containing the votes with a thresh-
old based on a rank order filter of these votes. We order the
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votes in increasing order and start with a threshold with the
value ranked at percentile 75th. If no new connected compo-
nent appears in the initialization with this threshold we keep it.
Otherwise we decrease the threshold by 5 percentiles and repeat
the process until no new connected components appear. Two
different examples are shown in Figure 7.6e, they are the ini-
tialization of the binary inpainting algorithm. First row shows
an example where the threshold on the votes corresponds to the
75th percentile while in the second row the threshold was au-
tomatically decreased to the 65th percentile in order to obtain
an initialization with a single connected component.

(a) Shape and
mask

(b) T-
junctions and
Semilines

(c) Relatable
contours

(d) Votes (e) Initializa-
tion

Figure 7.6: Two examples of relatability- and convexity-based initial-
ization of the inpainting mask.

7.2 Elastica-based probabilistic model
Following the idea of Knill et al. (1996) we introduce a Bayesian ap-
proach to choose the most plausible scene interpretation, among all



64 7. An Elastica Based Model for Scene Structure

the possible interpretations. We propose definitions for the prior and
the conditional probabilities which take into account the global com-
plexity of the objects in the hypothesized scenes as well as the effort
of bringing the objects in their relative positions in the visual im-
age. As a consequence, the result of this probability model indicates
that the most simple interpretation is the one that more likely re-
sults from the amodal completion process, which was also suggested
by van der Helm (2011).

Inspired by the work of van Lier et al. (1994), to define the prior
probability of the hypothesized scene our probabilistic model takes
into account the global complexity of both objects, already being dis-
occluded. The likelihood, i.e. the conditional probability of the given
image (proximal stimulus) given a certain hypothesis (distal stimulus)
is defined through an Euler’s elastica-based quantity that measures
two attributes: the effort of bringing these objects in their relative
positions given in the image and the smoothness of the disoccluded
boundaries.

We justify the preferred interpretation by maximizing the respon-
sibility or a posterior probability, given by the Bayes’ rule as

arg max
i
p(Hi/I) = arg max

i

p(I/Hi)p(Hi)
p(I) (7.4)

over the hypothesized interpretations Hi, where I is the proximal
stimulus or given image. As the quotient p(I) remains the same
for all hypothesis Hi in the maximization process, Equation (7.4) is
equivalent to

HP = arg max
i
p(Hi/I) = arg max

i
p(I/Hi) p(Hi). (7.5)
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7.2.1 Conditional Probability: Relative Position
Complexity

Given the underlying hypothesis Hi and the proximal image I, we
define the conditional probability p(I/Hi) as

p(I/Hi) ∝ p̃(I/Hi) = e
−ω1

∫
Bc

i

(κ2+β)ds
e
−ω1

∫
Bd

i

(κ2+β)ds
, (7.6)

where Bci and Bdi stand for common and disoccluded boundaries, re-
spectively and ω1 is a normalization constant, defined as the inverse
of the maximum p̃(I/Hi), i = 1, 2, 3.

In Figure 7.7 we show two examples of how these boundaries
are considered: Figure 7.7a considers the case of a square in front
of circle, when the circle is disoccluded the common boundary Bc1
among both objects is formed by the 2 T-junction points (in blue),
while the disoccluded boundary Bd1 is made of all the boundary of
the circle that was behind the square (in black); on the other hand,
Figure 7.7b shows the hypothesis of a square at the same depth than
the circle-part; the common boundary Bc2 is shown in blue while the
disoccluded boundary coincides with it, Bd1 = Bc1, due to the fact that
we consider closed objects.

(a) H1: square in front of circle. (b) H3: objects at same depth.

Figure 7.7: Boundaries Bci and Bdi (i = 1, 2) for hypothesis H1 and
H3 from Figure 7.1b.

Formula (7.6) measures the responsibility that hypothesisHi takes
for explaining the proximal stimulus I as well as the deviation of I
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from Hi. With the first integral of (7.6) we compute the difficulty of
bringing the two objects together in order to get the perceived im-
age taking into account only the known boundary of the objects; for
example, it is easier to obtain configuration 7.7a than 7.7b as in the
first case only two points need to coincide, independently of the two
coinciding points we will perceive the same image, and in the other
case, H2, a larger boundary needs to coincide in order to perceive ex-
actly that configuration. The second integral takes into account the
regularity of the occluded boundary of the shape to define the prob-
ability of obtaining a particular stimulus; for example in Figure 7.8a
we can move the disc at many different positions behind the square
to obtain the same kind of proximal stimulus we are observing, while
in Figure 7.8b the movements we can do are more limited, as the
perceived image will change drastically.

(a) The square can be moved and
we get the same proximal stimu-
lus.

(b) If the square is moved the
proximal stimulus changes.

Figure 7.8: Example of two different disocclusions.

Let us remark that due to the way we disocclude the objects the
resulting disoccluded boundaries are always smooth; if we had differ-
ent models of disocclusion this term would help to distinguish among
them (in addition to the prior term). For instance, with our disoc-
clusion model based on the elastica we are not able to recover the
occluded object in Figure 7.8(b) or objects A in Figure 6.3a. The
probability distribution in (7.6) also appeared in Mumford (1994)
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and Williams and Jacobs (1997), who characterized the probabil-
ity distribution of the shape of boundary completions based on the
paths followed by a particle undergoing a stochastic motion, a direc-
tional random walk. It turns out that the elastica has the interpreta-
tion of being the mode of the probability distribution underlying this
stochastic process restricted to curves with prescribed boundary be-
haviour, i. e. the maximum likelihood curve with which to reconstruct
hidden contours.

Let us comment that in our definition (7.6), when visual comple-
tion occurs while propagating the stem, (e.g., hypothesis H1 in Fig-
ure 7.1b; also, hypothesis H1 in Figure 7.7a), the common boundaries
Bc between the objects are reduced to the T-junctions. In this case:∫
Bc(κ2 + β)ds = 0 and thus e−ω1

∫
Bc (κ2+β)ds = 1. Let us notice that in

the distal stimulus, since we are considering closed objects, Bc belongs
to both objects. Therefore, in the hypothesis where the objects are
interpreted as being fit-together (e.g., hypothesis H2 in Figure 7.1b;
also, hypothesis H2 in Figure 7.7b), a disoccluded boundary Bd ap-
pears which coincides with Bc (i.e., Bd = Bc). Let us also comment on
the effect of the regularity of Bc. Figure 7.9 presents three different
proximal stimuli or images. The numerical computation of the term
e−ω1

∫
Bc (κ2+β)ds associated to each of the three images will decrease

from left to right in the fit-together (or mosaic) interpretation.

7.2.2 Prior probability: Objects Complexity
Prior probabilities are defined as

p(Hi) ∝ p̃(Hi) = e−ω2 C(O1
i )e−ω2 C(O2

i ), (7.7)

where O1
i and O2

i are the (disoccluded) objects in the hypothesized
interpretation Hi and ω2 is a normalizing constant defined as the
inverse of the maximum value of p(Hi), i = 1, 2, 3. The factor C(Oj

i )
denotes the complexity of the object or shape Oj

i at depth j. In
the case that the object at one depth is formed by more than one
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Figure 7.9: Three different proximal stimulus or images. From left to
right, visual completion will become more and more evident than the
interpretation of two pieces fitting together, both perceptually and
quantitatively, with probability (7.6).

connected component the complexity is computed separately for each
connected component and their sum constitutes the complexity of Oj

i .
We use the definition of complexity of a shape defined by Chen

and Sundaram (2005),

C(O) = (1 +R)
(

0.6 ·min (Cdist, Cangle)

+ 0.07 max (Cdist, Cangle) + 0.33P
)
,

(7.8)

which takes into account global properties of the shape such as con-
tour symmetries and repetitions. In particular, it computes:
• The global distance entropy (Cdist), which is defined as the dis-

tance of boundary points to the centroid of the shape.

• The local angle entropy (Cangle) is the angle formed by the two
segments joining three consecutive boundary points.

• The perceptual smoothness (P ) is computed using the local an-
gle: as closer to π the angle, the smoother the shape.

• The measure of shape randomness (R) is the maximum differ-
ence between two random traces obtained from the two more
distant points of the boundary.
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Therefore, the proposed prior probability implicitly considers global
properties such as shape contour symmetries and repetitions.

Let us notice that with these definitions our whole model for
amodal completion is able to choose, not only between the differ-
ent hypothesis for a fixed disocclusion parameter β but also between
several disocclusions associated to different parameters β, and there-
fore to take into account global completion properties such as sym-
metry or repetitions. In Figure 7.3 there is an example illustrating
this computational ability, where we provide the probability of each
disoccluded result.

Let us finally observe that in Figure 7.9 the complexity-related
terms e−ω2C(Oi

1) and e−ω2C(O2
i ) will decrease from left to right, as hap-

pened to the conditional probability, and the visual completion will
become more and more evident and the interpretation of two complex
pieces fitting together will become perceptually less favourable.

Let us finally remark that we are not considering all possibles con-
figurations as proposed by von Gioi (2009) but only the ones favoured
by relatability, convexity, and good continuation. On the other hand,
even if global cues such as symmetry or repetitions are taken into ac-
count in our probability model, we do not incorporate them in the
disocclusion algorithm.





8 Algorithm and
implementation details

In this Chapter we detail the three algorithms that describe
our model: the complete model, the inpainting method and
the one that computes the probabilities.

8.1 Complete Algorithm

Algorithm 2 shows the steps of the whole numerical algorithm. Our
algorithm needs a decomposition of the given image into objects and
object parts which are interpreted as projections of real 3D objects
on the image plane. This decomposition can be given either from the
classical decomposition in level sets, in bi-level sets or segmenting the
image from a criterion. In this thesis, for the synthetic images, we use
the decomposition in bi-level sets, which are defined as X(λn,λn+1)I =
{x ∈ Ω : λn ≤ I(x) < λn+1}, where Ω is the image domain and
{λn} ⊂ R is a finite strictly increasing sequence. In our experiments
{λn} = {λ1, λ2, λ3} with λ1 = 0, λ2 = 128 and λ3 = 255. For the real
images, we use the segmented shapes from the Berkeley segmentation
dataset created by Martin et al. (2001).

Objects appearing at the image are denoted by X1 and X2. From
X1 and X2 the three hypothesis will be considered by the algorithm:
X1 occluding the distal object D2 (corresponding to the inpainted

71
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result of proximal X2), X2 occluding the distal object D1 (corre-
sponding to the inpainted result of proximal X1), and X1 and X2
fitting together. Now, by applying the disocclusion method of Sec-
tion 7.1 where X1 and X2 are the inpainting mask of hypothesis H1
and H2, we compute the complete hypothesis H1 = X1 ∪ D2 and
H2 = X2 ∪D1. Then, to this two hypothesis, we always add the ad-
ditional hypothesis H3 = X1∪X2 of the mosaic interpretation (which
is obtained when we do not apply the disocclusion algorithm). For
each Hi we compute the probabilities p̃(I/Hi) and p̃(Hi) from the
definitions in Section 7.2. Finally, we compute the perceptually pre-
ferred hypothesis HP using (7.5).
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Algorithm 2: Pseudo-code summarizing the proposal.

Input : An image I with objects X1 and X2.
Output: The set of distal hypothesis H1, H2, H3, each one

made of complete objects at two depths, and the
preferred one HP (with P ∈ {1, 2, 3}).

for i ∈ {1, 2, 3} do
if i 6= 3 then
• Consider Xi as inpainting mask and initialize the
inpainting mask using the perceptual method
described in Sect. 7.1.1
• Disocclude object Xj, with j 6= i, using Algorithm 3,
that is implementing the elastica-based method of
Sect. 7.1. From it, we obtain the disoccluded object
Dj and the completed hypothesis Hi = Xi ∪Dj.

else
• Set H3 = X1 ∪X2

end
• Compute the probabilities p̃(I/Hi) with Algorithm 4 and
p̃(Hi) (equation (7.8)) from the definitions given in
Sect. 7.2.

end
Set HP = arg max

i
p̃(I/Hi) p̃(Hi).

8.2 Inpainting Algorithm

In Algorithm 3 we describe the threshold dynamics method that we
use for disocclusion.
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Algorithm 3: Pseudo-code of the discocclusion algorithm.

Input : A binary image I containing a region without
information, the inpainting region M̃ ⊂ Ω, and the
elastica parameter β > 0.

Output: Disoccluded object D (given by an inpainted binary
image Ī)

• Set α = 0.99 and δt = 12.
• Set the initial shape Σ0 = {x : I(x) = 1}.
• Set n = 0 and Σ1 = Ω.
while ||Σn+1 − Σn|| > 10−3 do

1. A step of Grzibovskis-Heintz algorithm. Set:

Γ1 =
{
x : 2αG√δt ∗ 1Σn(x)− 2Gα2

√
δt ∗ 1Σn(x) ≤ α− 1

}
.

2. A step of standard Merriman-Bence-Osher algorithm. Set:

Γ2 =
{
x : Gβδt ∗ 1Γ1(x) ≥ 1

2

}
.

3. Fidelity step. Set

Σn+1 =
(
Γ2 ∩ M̃

)
∪
(
Ω\M̃

)
.

4. Σn = Σn+1.

end
• Ī = 1Σn and D = Σn.
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Observe that the Grzibovskis-Heintz step depends on α ∈ (0, 1)
(Esedoglu et al. (2005, 2008)).

The Gaussian convolution has been computed using the Linde-
berg’s discrete scale-space method and the implementation described
in Otero and Delbracio (2016), that is, we use that the Gaussian con-
volution v(x, δt) = (G√2δt ∗ u)(x) is the solution of the heat equation
∂v
∂t

= ∆v for a diffusion time δt (set to 12 in our experiments, to
guarantee the prescribed upper and lower bounds depending on the
curvature of the visible shape (Merriman et al. (1992))). To solve
the heat equation we need to discretize partial derivatives. The dis-
cretization is done using the discretization of Otero and Delbracio
(2016):

∆γv = (1− γ)∆+v + γ∆×v (8.1)
where,

∆+vk,l = vk+1,l + vk−1,l + vk,l+1 + vk,l−1 − 4vk,l (8.2)

∆×vk,l = 1
2 (vk+1,l+1 + vk+1,l−1 + vk−1,l+1 + vk−1,l−1)− 2vk,l (8.3)

and 0 < γ ≤ 0.5, we use γ = 0.5 in our experiments. We refer
to Otero and Delbracio (2016) for more details on the discretization.

8.3 Likelihood Estimation
In Algorithm 4 we present the algorithm for computing the condi-
tional probability p̃(I/Hi), i = 1, 2, 3. The discrete boundaries of each
shape are computed as external boundaries and using 4-connectivity.
On the other hand, in order to compute the curvature of a discrete
curve (or boundary) γ, we use the method of Sethian (1985) and
compute

κ(x) = div
(
∇φ(x)
|∇φ(x)|

)
, (8.4)

where φ is the signed distance function to the boundary γ. We use
forward derivatives to compute the gradient and backward deriva-
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tives for the divergence. The discrete signed distance function u is
computed using the algorithm explained in Meijster et al. (2002).

Finally, the prior probability is computed using (7.7) with the
complexity measure given by (7.8). We consider as boundary points
for computing (7.8) all the pixels that form the boundary of an object.
In case of an object formed by more than one connected component
we compute the complexity (7.8) of every connected component and
the final complexity measure is the addition of the individual com-
plexities. For details about how to compute R,Cdist, Cangle and P we
refer to Section 7.2 and to Chen and Sundaram (2005).
Algorithm 4: Pseudo-code of the algorithm computing p̃(I/Hi)
for i = 1, 2, 3.

Input : Inpainting masks X1, X2, disoccluded objects D1, D2,
elastica parameter β.

Output: Conditional probability of each hypothesis
H1, H2, H3.

• Compute the boundaries ∂X1, ∂X2, ∂D1, ∂D2 of X1, X2, D1,
D2, respectively.
• Set Bci = ∂X1 ∩ ∂X2, i = 1, 2, 3.
for i = 1, 2 do
Bdi = ∂Di\∂Xi

end
• Set Bd3 = Bc3
for {i = 1, 2, 3} do

EBi
= ∑

x∈Bc
i

(κ2(x) + β) + ∑
x∈Bd

i

(κ2(x) + β)

end
• Set ω1 = max{EB1 , EB2 , EB3}
for i = 1, 2, 3 do

p̃(I/Hi) = exp{−ω1EBi
}

end



9 Experimental results

In this Chapter we present the behavior of our method on
real and synthetic images. We also present some results of
foreground-background on synthetic images. Moreover, for
some real images we have the ground-truth and we compare
our result with it.

The proposed method has been tested with synthetic and real images.
Let us recall that our method assumes the proximal stimulus to be
decomposed into objects and object parts (which can be interpreted
as projections of real 3D objects on the image plane). As in the
synthetic experiments the images are formed by objects with a single
and unique color, this already gives a segmentation and we apply our
algorithm directly. For the real experiments, we use a segmentation
of the image. In particular, we have taken segmented images from
the Berkeley segmentation dataset proposed by Martin et al. (2001)
and from the dataset introduced in Li et al. (2013).

Parameter β, which sets the underlying a priori regularity (see
comments on its role in Section 7.1), has been fixed to 0.6 for all
the experiments in order to have an algorithm as general as possible.
There are two exceptions: Proximal 2 of Table 9.1 and Example 4 of
Table 9.11, where β is fixed to 1.2 and 1.7, respectively, due to the
biggest size of the circular shapes. As explained in Section 7.1, there
is a relationship between the numerical curvature of the disoccluded
objects and the a priori regularity imposed through the parameter

77
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β: the larger the β, the larger the expected radius of the osculating
circle locally approximating the curve.

The experiments are organized in Sections and Tables as follows:

• Section 9.1 presents the synthetic experiments that agree with
our perception. They are shown in Tables 9.1, 9.2 and 9.3.

• Section 9.2 introduces results over real images that agree with
our perception. They are shown in Tables 9.4, 9.5, 9.6 and
9.7. Table 9.5 shows our results on images of the Berkeley
dataset with figure-ground ground-truth provided by Fowlkes
et al. (2007).

• Section 9.3 presents Table 9.9, that shows the ability of our
method to also decide on (perceptually) fully visible objects
over a background.

• Section 9.4 shows and discuss the experiments that failed.

For each row in each table we show a complete experiment: We
first present the proximal piecewise-constant image I on the left (in
the case of real images it includes both the original input and the
segmented version), followed by the three hypothesis Hi (each one
separated by a gray box), together with the values p̃(I/Hi) and p̃(Hi)
proportional to the conditional probability and the prior probability,
respectively, and the normalized probability value p(Hi|I). We have
normalized the probabilities in such a way that p(H1/I) + p(H2/I) +
p(H3/I) = 1. The probability value of the preferred hypothesis HP

is highlighted in boldface.
For the first two hypothesis, H1 and H2, we display the objects

at depth 1 on the left, and the disoccluded objects (at depth 2) on
the right. Finally the last column is the hypothesis H3 where the two
objects are fitting together at the same depth.
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9.1 Synthetic images
Tables 9.1, 9.2 and 9.3 show some experiments on synthetic images.
In Table 9.2, the third hypothesis is not shown because it coincides
with H2 due to the fact that the disocclusion algorithm does not
change the objects being disoccluded. In Table 9.3, a synthetic ex-
periment where the three hypothesis coincide is shown: The disocclu-
sion algorithm applied in the first two hypothesis does not change the
objects and thus H1 = H2 = H3, and the posterior probability is the
same for all three hypothesis. As for depth order, H3 is interpreted
as two objects at the same depth (and having the real relative size
which is observed in the proximal image) while H1 can be interpreted
as a gray square which is closer to the observer, plus a white rectan-
gle which can be of bigger size but farther away from the square and
whose boundary partially coincides with part of the boundary of the
square. At last, H2 can be interpreted as a white rectangle which is
closer to the observer, plus a gray square which can be of bigger size
but farther away from the rectangle and whose boundary partially
coincides with part of the boundary of the rectangle. Notice that this
situation is related to the ambiguity in depth of some proximal stim-
ulus, sometimes causing optical illusion of relative depth perception
as those in the images displayed in Figure 7.2.

Let us comment on the results corresponding to Proximal 6 and 7
of Table 9.1 and Proximal 9 of Table 9.2, which include quite similar
shapes with equal occlusion signatures but different common bound-
aries among the shapes. In all of them the local perception cue at the
T-junctions indicates that there is an occluded disc which continues
behind an incomplete square (the occluder)1. Our method is able
to choose the corresponding preferred hypothesis, according to the
T-junctions, as is shown by the probability values p(H1/I).

Finally, let us comment on Proximal 4 of Table 9.1 and on Proxi-
1The perception literature acknowledges that, in a T-junction, the occluder

is the surface on the T-head side while the surfaces on the T-stem side continue
behind the occluder.
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mal 12 on Table 9.2, which are two controversial examples as there is
no agreement within people to decide which is the preferred one2. In
both cases, our algorithm favors local completion, that is, a comple-
tion that agrees with the T-junction cues and produces good contin-
uation, instead of the global one which produces a more symmetric
object (notice that the local completion in both cases produces a
symmetric object with respect to one axis).

p̃(I/H1) = 0.7505 p̃(I/H2) = 0.5059 p̃(I/H3) = 0.4230
Proximal 1 p̃(H1) = 0.4660 p̃(H2) = 0.3877 p̃(H3) = 0.3679

p(H1/I) = 0.5398 p(H2/I) = 0.2201 p(H3/I) = 0.2402

p̃(I/H1) = 0.7557 p̃(I/H2) = 0.8388 p̃(I/H3) = 0.3679
Proximal 2 p̃(H1) = 0.3679 p̃(H2) = 0.8793 p̃(H3) = 0.4327

p(H1/I) = 0.2366 p(H2/I) = 0.6279 p(H3/I) = 0.1355

p̃(I/H1) = 0.9343 p̃(I/H2) = 0.3679 p̃(I/H3) = 0.4214
Proximal 3 p̃(H1) = 0.5544 p̃(H2) = 0.3738 p̃(H3) = 0.3679

p(H1/I) = 0.6391 p(H2/I) = 0.1696 p(H3/I) = 0.1813

2Proximal 4 was also studied by van Lier et al. (1994) and they reported that
the local hypothesis (H1) is the most preferred by the subjects participating in
their psychophysics experiments, although it is very tied.
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p̃(I/H1) = 0.7466 p̃(I/H2) = 0.7445 p̃(I/H3) = 0.3679
Proximal 4 p̃(H1) = 0.3910 p̃(H2) = 0.3679 p̃(H3) = 0.4743

p(H1/I) = 0.3943 p(H2/I) = 0.3700 p(H3/I) = 0.2357

p̃(I/H1) = 8823 p̃(I/H2) = 0.3679 p̃(I/H3) = 0.9108
Proximal 5 p̃(H1) = 0.6020 p̃(H2) = 0.3879 p̃(H3) = 0.3679

p(H1/I) = 0.5265 p(H2/I) = 0.1414 p(H3/I) = 0.3321

p̃(I/H1) = 0.4409 p̃(I/H2) = 0.5562 p̃(I/H3) = 0.3679
Proximal 6 p̃(H1) = 0.7056 p̃(H2) = 0.3679 p̃(H3) = 0.4295

p(H1/I) = 0.4618 p(H2/I) = 0.3037 p(H3/I) = 0.2345

p̃(I/H1) = 0.7343 p̃(I/H2) = 0.7823 p̃(I/H3) = 0.3679
Proximal 7 p̃(H1) = 0.5995 p̃(H2) = 0.4087 p̃(H3) = 0.3679

p(H1/I) = 0.4917 p(H2/I) = 0.3572 p(H3/I) = 0.1512
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p̃(I/H1) = 1 p̃(I/H2) = 0.3729 p̃(I/H3) = 0.3679
Proximal 8 p̃(H1) = 0.7087 p̃(H2) = 0.3679 p̃(H3) = 0.3679

p(H1/I) = 0.7223 p(H2/I) = 0.1398 p(H3/I) = 0.1379

Table 9.1: Synthetic experiments where the three hypothesis are
formed by different shapes.

p̃(I/H1) = 0.6848 p̃(I/H2) = 0.3679
Proximal 9 p̃(H1) = 0.6487 p̃(H2) = 0.3679

p(H1/I) = 0.6214 p(H2/I) = 0.1893

p̃(I/H1) = 0.3877 p̃(I/H2) = 0.3679
Proximal 10 p̃(H1) = 0.3804 p̃(H2) = 0.3679

p(H1/I) = 0.3527 p(H2/I) = 0.3237

p̃(I/H1) = 0.5436 p̃(I/H2) = 0.3679
Proximal 11 p̃(H1) = 0.4051 p̃(H2) = 0.3679

p(H1/I) = 0.4486 p(H2/I) = 0.2757
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p̃(I/H1) = 0.6172 p̃(I/H2) = 0.3679
Proximal 12 p̃(H1) = 0.3679 p̃(H2) = 0.4324

p(H1/I) = 0.4165 p(H2/I) = 0.2918

Table 9.2: Synthetic experiments where the fitting together hypoth-
esis coincide with one of the others.

p̃(I/H) = 0.3679
Proximal 13 p̃(H) = 0.3679

p(H/I) = 0.3333

Table 9.3: Synthetic experiment where the three hypothesis coincide.

9.2 Real images
In this section we show some results on real images from the Berkeley
dataset created by Martin et al. (2001) and the dataset provided in Li
et al. (2013).

We start illustrating that our method is robust to different seg-
mentations of the same image. Table 9.4 shows a real image with
a bear holding a branch and two different segmentations (represent-
ing the proximal stimuli). Both segmentations are from the ground-
truths available in Martin et al. (2001). Segmentation 1 reflects that
some flowers are partially occluding the bear and increasing the com-
plexity of the bear shape; the flowers do not appear in segmentation
2 and thus the bear shape has a lower complexity (its complexity is
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0.53, while in the previous case, Segmentation 1, was 1.34). Notice
that the values of p̃ are not comparable among the two experiments
(only among different hypothesis within the same experiment) be-
cause they use a different normalizing constant ω2 (see Section 7.2
for further details). Finally, the most preferred interpretation of the
image coincides using the two different segmentations, i.e., it is a
branch partially occluding a bear for both stimulus.

p̃(I/H1) = 0.7818 p̃(I/H2) = 0.7590 p̃(I/H3) = 0.3679
Segmentation 1 p̃(H1) = 0.6996 p̃(H2) = 0.3717 p̃(H3) = 0.3679

p(H1/I) = 0.4184 p(H2/I) = 0.3966 p(H3/I) = 0.1850

p̃(I/H1) = 0.6739 p̃(I/H2) = 0.6676 p̃(I/H3) = 0.3679
Segmentation 2 p̃(H1) = 0.5265 p̃(H2) = 0.3679 p̃(H3) = 0.3751

p(H1/I) = 0.4805 p(H2/I) = 0.3326 p(H3/I) = 0.1869

Table 9.4: Real images experiments (Martin et al. (2001)). Compar-
ison of results with the same image, but different segmentations

In Table 9.5 we present results on images of the Berkeley dataset
with provided figure-ground ground-truth labeled by humans. Then,
Table 9.6 shows experimental results on real images from Li et al.
(2013) and Table 9.7 shows results on images from the Berkeley Seg-
mentation database of Martin et al. (2001). Each row shows a dif-
ferent experiment: the two left-most images are, respectively, the
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original image and a segmentation of it, they are followed by the
three different hypothesis (each one separated by a gray box). For
the images in Table 9.5, superimposed on the original image, we dis-
play the provided figure-ground ground-truth Fowlkes et al. (2007) as
a boundary in two colors, namely, black and white. The black side of
the border indicates the object that is behind, while the white region
indicates the frontal object.

p̃(I/H1) = 0.8665 p̃(I/H2) = 0.6820 p̃(I/H3) = 0.3679
Image 1 p̃(H1) = 0.5212 p̃(H2) = 0.3701 p̃(H3) = 0.3679

p(H1/I) = 0.5380 p(H2/I) = 0.3007 p(H3/I) = 0.1612

p̃(I/H1) = 1 p̃(I/H2) = 0.8952 p̃(I/H3) = 0.3679
Image 2 p̃(H1) = 0.3688 p̃(H2) = 0.3724 p̃(H3) = 0.3692

p(H1/I) = 0.4410 p(H2/I) = 0.3972 p(H3/I) = 0.1618

p̃(I/H1) = 0.9520 p̃(I/H2) = 0.7729 p̃(I/H3) = 0.3679
Image 3 p̃(H1) = 0.3828 p̃(H2) = 0.3864 p̃(H3) = 0.3679

p(H1/I) = 0.4564 p(H2/I) = 0.3741 p(H3/I) = 0.1695

p̃(I/H1) = 0.9899 p̃(I/H2) = 0.7811 p̃(I/H3) = 0.3679
Image 4 p̃(H1) = 0.4554 p̃(H2) = 0.4124 p̃(H3) = 0.3924

p(H1/I) = 0.5064 p(H2/I) = 0.3416 p(H3/I) = 0.1520
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p̃(I/H1) = 0.9665 p̃(I/H2) = 0.7964 p̃(I/H3) = 0.3679
Image 5 p̃(H1) = 0.5375 p̃(H2) = 0.3679 p̃(H3) = 0.3679

p(H1/I) = 0.5479 p(H2/I) = 0.3090 p(H3/I) = 0.1432

p̃(I/H1) = 0.7035 p̃(I/H2) = 0.8029 p̃(I/H3) = 0.3679
Image 6 p̃(H1) = 0.3696 p̃(H2) = 0.3882 p̃(H3) = 0.3679

p(H1/I) = 0.3677 p(H2/I) = 0.4409 p(H3/I) = 0.1914

p̃(I/H1) = 0.9112 p̃(I/H2) = 0.8257 p̃(I/H3) = 0.3679
Image 7 p̃(H1) = 0.3727 p̃(H2) = 0.3679 p̃(H3) = 0.3706

p(H1/I) = 0.4329 p(H2/I) = 0.3914 p(H3/I) = 0.1757

p̃(I/H1) = 0.8831 p̃(I/H2) = 0.7771 p̃(I/H3) = 0.3679
Image 8 p̃(H1) = 0.3821 p̃(H2) = 0.4018 p̃(H3) = 0.4001

p(H1/I) = 0.4433 p(H2/I) = 0.3789 p(H3/I) = 0.1778

p̃(I/H1) = 0.8338 p̃(I/H2) = 0.6028 p̃(I/H3) = 0.3679
Image 9 p̃(H1) = 0.5462 p̃(H2) = 0.3700 p̃(H3) = 0.3679

p(H1/I) = 0.5597 p(H2/I) = 0.2740 p(H3/I) = 0.1663
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p̃(I/H1) = 0.8935 p̃(I/H2) = 0.9504 p̃(I/H3) = 0.3679
Image 10 p̃(H1) = 0.3679 p̃(H2) = 0.5218 p̃(H3) = 0.5219

p(H1/I) = 0.3390 p(H2/I) = 0.5115 p(H3/I) = 0.1495

p̃(I/H1) = 0.8059 p̃(I/H2) = 0.8029 p̃(I/H3) = 0.3679
Image 11 p̃(H1) = 0.5367 p̃(H2) = 0.3696 p̃(H3) = 0.3679

p(H1/I) = 0.5002 p(H2/I) = 0.3432 p(H3/I) = 0.1565

p̃(I/H1) = 0.8940 p̃(I/H2) = 0.9192 p̃(I/H3) = 0.3679
Image 12 p̃(H1) = 0.3764 p̃(H2) = 0.4979 p̃(H3) = 0.3679

p(H1/I) = 0.3620 p(H2/I) = 0.4924 p(H3/I) = 0.1456

p̃(I/H1) = 0.7809 p̃(I/H2) = 0.9201 p̃(I/H3) = 0.3679
Image 13 p̃(H1) = 0.3712 p̃(H2) = 0.4947 p̃(H3) = 0.3679

p(H1/I) = 0.3293 p(H2/I) = 0.5170 p(H3/I) = 0.1537

Table 9.5: Experiments with the depth ground-truth (Fowlkes et al. (2007)).
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p̃(I/H1) = 0.8526 p̃(I/H2) = 0.7416 p̃(I/H3) = 0.3679
Image 14 p̃(H1) = 0.3701 p̃(H2) = 0.3688 p̃(H3) = 0.4472

p(H1/I) = 0.4356 p(H2/I) = 0.3776 p(H3/I) = 0.1868

p̃(I/H1) = 0.8796 p̃(I/H2) = 0.7074 p̃(I/H3) = 0.3679
Image 15 p̃(H1) = 0.3750 p̃(H2) = 0.3680 p̃(H3) = 0.3729

p(H1/I) = 0.4539 p(H2/I) = 0.3582 p(H3/I) = 0.1879

p̃(I/H1) = 0.9112 p̃(I/H2) = 0.6035 p̃(I/H3) = 0.3679
Image 16 p̃(H1) = 0.4034 p̃(H2) = 0.3679 p̃(H3) = 0.3679

p(H1/I) = 0.5058 p(H2/I) = 0.3055 p(H3/I) = 0.1887

p̃(I/H1) = 0.8833 p̃(I/H2) = 0.8279 p̃(I/H3) = 0.3679
Image 17 p̃(H1) = 0.3718 p̃(H2) = 0.6354 p̃(H3) = 0.6334

p(H1/I) = 0.4263 p(H2/I) = 0.3980 p(H3/I) = 0.1757

Table 9.6: Experiments with real images from Li et al. (2013).

p̃(I/H1) = 0.7913 p̃(I/H2) = 0.8845 p̃(I/H3) = 0.3679
Image 18 p̃(H1) = 0.3685 p̃(H2) = 0.6163 p̃(H3) = 0.3679

p(H1/I) = 0.2990 p(H2/I) = 0.5608 p(H3/I) = 0.1392
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p̃(I/H1) = 0.6789 p̃(I/H2) = 0.7031 p̃(I/H3) = 0.3679
Image 19 p̃(H1) = 0.5380 p̃(H2) = 0.4302 p̃(H3) = 0.4313

p(H1/I) = 0.4808 p(H2/I) = 0.3405 p(H3/I) = 0.1787

p̃(I/H1) = 0.8933 p̃(I/H2) = 0.7496 p̃(I/H3) = 0.3679
Image 20 p̃(H1) = 0.5970 p̃(H2) = 0.3715 p̃(H3) = 0.3679

p(H1/I) = 0.5533 p(H2/I) = 0.3063 p(H3/I) = 0.1404

p̃(I/H1) = 0.8579 p̃(I/H2) = 0.7293 p̃(I/H3) = 0.3679
Image 21 p̃(H1) = 0.4983 p̃(H2) = 0.4976 p̃(H3) = 0.4976

p(H1/I) = 0.4820 p(H2/I) = 0.3441 p(H3/I) = 0.1739

p̃(I/H1) = 0.7574 p̃(I/H2) = 0.9523 p̃(I/H3) = 0.3679
Image 22 p̃(H1) = 0.3679 p̃(H2) = 0.5717 p̃(H3) = 00.3709

p(H1/I) = 0.2904 p(H2/I) = 0.5674 p(H3/I) = 0.1422
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p̃(I/H1) = 0.8382 p̃(I/H2) = 0.9034 p̃(I/H3) = 0.3679
Image 23 p̃(H1) = 0.3722 p̃(H2) = 0.3877 p̃(H3) = 0.3679

p(H1/I) = 0.3911 p(H2/I) = 0.4392 p(H3/I) = 0.1697

p̃(I/H1) = 0.8392 p̃(I/H2) = 0.7695 p̃(I/H3) = 0.3679
Image 24 p̃(H1) = 0.4028 p̃(H2) = 0.7417 p̃(H3) = 0.7414

p(H1/I) = 0.4467 p(H2/I) = 0.3742 p(H3/I) = 0.1788

Table 9.7: Experiments with real images from Martin et al. (2001).

We present in Table 9.8 two experiments with real images from
Martin et al. (2001) dataset where there is an ambiguity in the depth
ordering (there are conflicting local depth cues). This situation can
appear when the proximal image is made of objects that are not
fronto-parallel to the camera or when their relative order changes
due to, for example, mutual occlusions as in these examples. In
other words, an object does not appear at a single depth layer. In
this situation our algorithm chooses the object that is more occluded
as being behind but let us remark how the posterior probabilities of
the two first hypothesis are very close; in fact, these two hypothesis
correspond to the two different depth orderings indicated by the local
depth cues and figure/ground ground-truth labels superimposed on
the original image.

p̃(I/H1) = 0.7757 p̃(I/H2) = 0.7942 p̃(I/H3) = 0.3679
Image 25 p̃(H1) = 0.3709 p̃(H2) = 0.3763 p̃(H3) = 0.3679

p(H1/I) = 0.3986 p(H2/I) = 0.5140 p(H3/I) = 0.1875
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p̃(I/H1) = 0.9787 p̃(I/H2) = 0.8768 p̃(I/H3) = 0.3679
Image 26 p̃(H1) = 0.3689 p̃(H2) = 0.3695 p̃(H3) = 0.3679

p(H1/I) = 0.4401 p(H2/I) = 0.3950 p(H3/I) = 0.1650

Table 9.8: Two experiments with real images from Martin et al.
(2001) where there is an ambiguity in the depth ordering.

9.3 Shapes in front of a background

Finally, we present some results showing the ability of our method
to also decide on (perceptually) fully visible objects over a back-
ground. Table 9.9 displays several synthetic images of this type,
where there are no T-junctions present and, according to human per-
ception, the depth ordering is established by convexity cues as ob-
served by Kanizsa (1991). In these experiments, our method fails in
Results 3, 4 and 5; in all of them the convexity cue is a stronger depth
cue than symmetry, and the algorithm we are using for computing
shape complexity favours symmetries. Let us also remark that Re-
sult 9 allows both interpretations: black in front of white and white
in front of black, as they form the same shape but with different
orientation. In this case our algorithm prefers H1 but with a small
difference with respect to H2.
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p̃(I/H1) = 0.3679 p̃(I/H2) = 1 p̃(I/H3) = 0.3679
Input 1 p̃(H1) = 0.3679 p̃(H2) = 0.6053 p̃(H3) = 0.3679

p(H1/I) = 0.1545 p(H2/I) = 0.6910 p(H3/I) = 0.1545

p̃(I/H1) = 1 p̃(I/H2) = 0.8243 p̃(I/H3) = 0.3679
Input 2 p̃(H1) = 0.6059 p̃(H2) = 0.3689 p̃(H3) = 0.3679

p(H1/I) = 0.5740 p(H2/I) = 0.2909 p(H3/I) = 0.1295

p̃(I/H1) = 0.7791 p̃(I/H2) = 0.7457 p̃(I/H3) = 0.3679
Input 3 p̃(H1) = 0.5273 p̃(H2) = 0.3679 p̃(H3) = 0.3843

p(H1/I) = 0.4971 p(H2/I) = 0.3319 p(H3/I) = 0.1710

p̃(I/H1) = 0.7858 p̃(I/H2) = 0.7422 p̃(I/H3) = 0.3679
Input 4 p̃(H1) = 0.3891 p̃(H2) = 0.3862 p̃(H3) = 0.3679

p(H1/I) = 0.4204 p(H2/I) = 0.3937 p(H3/I) = 0.1859

p̃(I/H1) = 0.7656 p̃(I/H2) = 0.7854 p̃(I/H3) = 0.3679
Input 5 p̃(H1) = 0.3924 p̃(H2) = 0.3926 p̃(H3) = 0.3679

p(H1/I) = 0.4037 p(H2/I) = 0.4144 p(H3/I) = 0.1819
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p̃(I/H1) = 1 p̃(I/H2) = 0.9508 p̃(I/H3) = 0.3679
Input 6 p̃(H1) = 0.5870 p̃(H2) = 0.4250 p̃(H3) = 0.3679

p(H1/I) = 0.5211 p(H2/I) = 0.3588 p(H3/I) = 0.1201

p̃(I/H1) = 0.9093 p̃(I/H2) = 0.7799 p̃(I/H3) = 0.3679
Input 7 p̃(H1) = 0.3746 p̃(H2) = 0.4755 p̃(H3) = 0.3679

p(H1/I) = 0.4023 p(H2/I) = 0.4379 p(H3/I) = 0.1598

p̃(I/H1) = 1 p̃(I/H2) = 0.7191 p̃(I/H3) = 0.3679
Input 8 p̃(H1) = 0.6961 p̃(H2) = 0.3679 p̃(H3) = 0.4584

p(H1/I) = 0.6164 p(H2/I) = 0.2343 p(H3/I) = 0.1493

p̃(I/H1) = 0.7790 p̃(I/H2) = 0.7438 p̃(I/H3) = 0.3679
Input 9 p̃(H1) = 0.3812 p̃(H2) = 0.3679 p̃(H3) = 0.4757

p(H1/I) = 0.3812 p(H2/I) = 0.3679 p(H3/I) = 0.2347

p̃(I/H1) = 0.9966 p̃(I/H2) = 1 p̃(I/H3) = 0.3679
Input 10 p̃(H1) = 0.3679 p̃(H2) = 0.3977 p̃(H3) = 0.3803

p(H1/I) = 0.4055 p(H2/I) = 0.4398 p(H3/I) = 0.1547

Table 9.9: Synthetic experiments with a shape in front of a back-
ground.
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9.4 Discussion of failure cases
This section is devoted to present and discuss situations where our
method can fail.

Let us first comment on the experiments on synthetic images.
Example 1 and Example 2 of Table 9.10 do not agree with human
perception: in a T-junction, the occluder is the surface on the T-
head side while the surfaces on the T-stem side continue behind the
occluder. However, in these two results, the local occlusion signatures
given by the T-junctions indicate that there is an occluded square
which continues behind an incomplete disc (the occluder). Taking
this into account, our method fails to give the hypothesis that agrees
with the T-junction cues (which should be H2). In Example 1, the
likelihood of the hypothesis H1 and H2 are similar but the global
complexity of the shapes in H1 is smaller (thus higher prior) than the
global complexity of the shape in H2. In particular, the two shapes
present in H1 are jointly simpler that those in H2 or H3. Regarding
Example 2, the highly irregular contour of the shapes makes difficult
a straightforward analysis and the final chosen hypothesis is due to
a balance among the corresponding complexities and likelihoods.

In the examples of Table 9.11, according to the local cues given by
the T-junctions, the preferred option should always be H1. However,
our method obtains H2. In Example 3, although a higher prior due
to a smaller complexity of the objects in H1, the likelihood of H2
is higher due to smaller elastica values in H2. Example 4 is the
opposite: H1 presents a higher complexity (thus smaller prior) and a
higher likelihood.

p̃(I/H1) = 0.6198 p̃(I/H2) = 0.4949 p̃(I/H3) = 0.3679
Example 1 p̃(H1) = 0.6784 p̃(H2) = 0.3679 p̃(H3) = 0.4077

p(H1/I) = 0.5587 p(H2/I) = 0.2420 p(H3/I) = 0.1993
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p̃(I/H1) = 0.6948 p̃(I/H2) = 0.6535 p̃(I/H3) = 0.3679
Example 2 p̃(H1) = 0.3876 p̃(H2) = 0.4043 p̃(H3) = 0.3679

p(H1/I) = 0.4026 p(H2/I) = 0.3951 p(H3/I) = 0.2023

Table 9.10: Synthetic experiments that fail.

p̃(I/H1) = 0.3679 p̃(I/H2) = 0.4501
Example 3 p̃(H1) = 0.3770 p̃(H2) = 0.3679

p(H1/I) = 0.2951 p(H2/I) = 0.3524

p̃(I/H1) = 0.4062 p̃(I/H2) = 0.3679
Example 4 p̃(H1) = 0.3679 p̃(H2) = 0.5089

p(H1/I) = 0.2853 p(H2/I) = 0.3574

Table 9.11: Synthetic experiments that fail.

p̃(I/H1) = 0.6858 p̃(I/H2) = 0.0.3726 p̃(I/H3) = 0.3679
Example 5 p̃(H1) = 0.3726 p̃(H2) = 0.3704 p̃(H3) = 0.3679

p(H1/I) = 0.3962 p(H2/I) = 0.3939 p(H3/I) = 0.2099
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p̃(I/H1) = 0.7469 p̃(I/H2) = 0.6515 p̃(I/H3) = 0.3679
Example 6 p̃(H1) = 0.3686 p̃(H2) = 0.3695 p̃(H3) = 0.3679

p(H1/I) = 0.4227 p(H2/I) = 0.3696 p(H3/I) = 0.2078

p̃(I/H1) = 0.8575 p̃(I/H2) = 0.7297 p̃(I/H3) = 0.3679
Example 7 p̃(H1) = 0.3709 p̃(H2) = 0.5332 p̃(H3) = 0.3679

p(H1/I) = 0.3709 p(H2/I) = 0.5332 p(H3/I) = 0.3679

p̃(I/H1) = 0.8732 p̃(I/H2) = 0.8325 p̃(I/H3) = 0.3679
Example 8 p̃(H1) = 0.3679 p̃(H2) = 0.3792 p̃(H3) = 0.3679

p(H1/I) = 0.4115 p(H2/I) = 0.4118 p(H3/I) = 0.1767

p̃(I/H1) = 0.8744 p̃(I/H2) = 0.9118 p̃(I/H3) = 0.3679
Example 9 p̃(H1) = 0.3763 p̃(H2) = 0.3747 p̃(H3) = 0.3679

p(H1/I) = 0.4082 p(H2/I) = 0.4239 p(H3/I) = 0.1679

p̃(I/H1) = 1 p̃(I/H2) = 0.8920 p̃(I/H3) = 0.3679
Example 10 p̃(H1) = 0.3679 p̃(H2) = 0.4117 p̃(H3) = 0.3758

p(H1/I) = 0.4213 p(H2/I) = 0.4205 p(H3/I) = 0.1583
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p̃(I/H1) = 0.7878 p̃(I/H2) = 1 p̃(I/H3) = 0.3679
Example 11 p̃(H1) = 0.3679 p̃(H2) = 0.3737 p̃(H3) = 0.3708

p(H1/I) = 0.3623 p(H2/I) = 0.4672 p(H3/I) = 0.1705

Table 9.12: Experiments with real images that fail.

Let us comment on the images of Table 9.12. Examples 5 and 6
reflect the same situation; the inpainting method is unable to recover
the leg of the older horse or sheep. In any case, the difference among
the posterior probabilities of the first two hypothesis is very small.
On the other hand, in Examples 7 and 8, although according to
the likelihood the preferred hypothesis is the correct one (e.g., two
ladybugs in front of two flowers in Example 7), the complexity of
the objects in the second hypothesis (flowers in front of ladybugs) is
smaller (higher prior) because of the simplified completed object and
this second hypothesis wins. In Example 9, the prior probabilities
of H1 and H2 are similar but the likelihood of H2 is slightly higher.
Finally, Examples 10 and 11 show the same situation, where there
appears a window showing the sky, which is behind. Our method fails
in these cases, which are interpreted as small convex shapes over a
biggest shape which is behind. Another example would be the arches
of a bridge, which are further away compared to the bridge itself,
which would be interpreted as closest by our method.





10 Conclusions and Future
Work

We have proposed a computational model of amodal completion that
allows to compute the most preferred scene structure given a still
image of it. As we are considering scenes where objects appear at
two different depths, we take into account the three possible hypoth-
esis. Our main contribution is a Bayesian probabilistic model based
on the Euler’s elastica and the global complexity of the hypothe-
sized objects in order to choose the most preferred explanation of the
image. This explanation includes both the disoccluded objects that
form the scene and their ordering according to depth. Furthermore,
we have proposed a disocclusion method, to compute the hypothe-
sized objects, based on human visual completion, which is modeled
by a binary inpainting method based again on the Euler’s elastica
and that takes into account perceptual findings related to amodal
completion, such as relatability, convexity, and good continuation.
Finally, we have shown the capability of our method with numerical
experiments, both with real and synthetic images.

As future work, we plan to extend the approach to scenes with
more than two depth layers. Furthermore, we plan to incorporate
other disocclusion strategies (such as, e.g., exemplar-based methods
(Aujol et al. (2010); Arias et al. (2011) or Hayashi and Sasaki (2014))
allowing to model global completions taking into account properties
such as symmetries or repetitions. Last but not least, we are also
interested in the extension of the model to video sequences.
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Imagination is more important
than knowledge.

Albert Einstein

Part III:
Video Inpainting
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11 Introduction

This Chapter explains the video and optical flow inpainting
problems. We also present a review of the work done on these
topics and give a summary of our model.

Video inpainting stands for the completion of missing, damaged or
occluded information in a video sequence or a still image in such a way
that this restoration is as unnoticeable (visually plausible) as possi-
ble and the result looks natural. The applications include tools for
cinema post-production to remove, e.g., unwanted or private items,
or tools for the recovering of occluded areas in new-view generation
for 3D television or broadcasting of sport events, to mention a few.

Shih et al. (2009) show that we can not apply image inpainting
techniques to each frame separately due to the fact that the temporal
incoherence from frame to frame is very noticeable for the human vi-
sion system, producing an undesirable flickering effect. Consequently,
video inpainting brings additional challenges to the ones of image in-
painting not only in order to obtain temporally coherent results but
also due to the occlusions and disocclusions among objects that move
along time. Object occlusions and disocclusions generate artifacts
which are specially visible at moving occlusion boundaries. More-
over, the estimation of the vector field that recovers the apparent
movement of pixels between two consecutive frames, i. e. the opti-
cal flow, may fail in occlusion areas due to the impossibility of point
matching. In general, points visible at time t that are occluded at
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time t + 1 do not have a corresponding point at frame t + 1. While
points that appear at time t+ 1 have no corresponding point at time
t. Thus video completion algorithms have to detect such occlusions
in order to correctly decide how to treat them.

Most of the existing video inpainting algorithms are exemplar-
based methods, algorithms that exploit the non-local self-similarities
present in natural images and videos and are based on the assumption
that the information necessary to complete the missing part is avail-
able elsewhere in the image or video. Pioneer works are attributed
to Patwardhan et al. (2007) and Wexler et al. (2007). Patwardhan
et al. (2007) propose an extension to the video case of the exemplar-
based image inpainting method proposed by Criminisi et al. (2004).
The method proposed by Patwardhan et al. (2007) separates the in-
painting of moving foreground and static background, and uses a
priority-based scheme for copying patches. Wexler et al. (2007) ex-
tended the texture synthesis approach of Efros and Leung (1999)
by introducing an objective function, based on the coherence of the
completed video. Their approach is based on the assumption that
all space-time patches intersecting the missing region are presented
somewhere in the unoccluded region. Both proposals are rather lim-
ited to static background and to restricted foreground and camera
motion (e.g., static camera and cyclic motion without changing in
size). The method of Wexler et al. (2007) was generalized to dynamic
background by Newson et al. (2014), who extended the PatchMatch
search scheme (Barnes et al. (2009)) to the spatio-temporal domain
which reduces the time complexity of the algorithm. The method
proposed in Bugeau et al. (2010) applies image inpainting indepen-
dently to each frame and then temporal consistency is imposed by
Kalman filtering along the estimated trajectories. Granados et al.
(2012b) proposed an energy-based method with a graph-cut-based
optimization to deal with dynamic background and non-periodical
moving objects. However, it is limited to the static camera case. The
video completion method proposed by Ebdelli et al. (2015) starts by
aligning a set of neighbouring frames via a region-based homography
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(see also Granados et al. (2012a)); then an energy function defined
on the registered frames and based on both spatial and temporal reg-
ularity is globally minimized. Instead of aligning the video frames, as
in most of the preceding cases, two recent works impose the tempo-
ral coherence thanks to the previously inpainted optical flow (Strobel
et al. (2014); Xu et al. (2016b)). In particular, Xu et al. (2016b) pose
the completion process as an mrf-based optimization problem where
candidates for the occluded pixels are given by the motion field cor-
respondences in neighbouring frames. On the other hand, Strobel
et al. (2014) propose an exemplar-based method where the patch
distance function introduced in Criminisi et al. (2004) is modified in
such a way that takes temporal consistency into account thanks to
the completed motion field.

We propose a variational method for binary video inpainting, with
the goal of recovering the dynamic shape with a smooth surface,
that works directly in the spatio-temporal dimension (3D). Binary
inpainting tools fall into the category of geometry-oriented methods
that aim at recovering shapes, stated as binary objects. They might
be combined, in a two-step algorihtm or jointly, in a model for the
joint estimation of shape geometry and texture inpainting. The com-
pleted shape may help to guide the correspondence map or copy of
the patches: inside the shape of interest only patches from the same
object are allowed to be copied and similarly for the background as
observed in Cao et al. (2011). On the other hand, binary inpainting
represents a tool for the understanding of a moving scene through de-
composition of it in complete and isolated moving objects interacting
among them.

To evolve shapes according to the minimization of a geometric
functional, based either on the length area or the curvature of the
shape contours, it has been used the threshold Dynamics strategy,
which was introduced by Merriman et al. (1992) as a method to
move shapes by mean curvature motion. By changing the geometric
functional it can be used to solve image problems such as shape re-
covery (Jawerth and Lin (2002)), shape disocclusion (Esedoglu et al.
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(2005); Bertozzi et al. (2007)), moving shapes with another motion
(Grzhibovskis and Heintz (2008); Esedoglu et al. (2008)), segmen-
tation (Esedoglu et al. (2006); Calatroni et al. (2017); Bertozzi and
Flenner (2012)) or Point Clouds (Thorpe and Theil (2016)). After-
wards, Rubinstein et al. (1989) proved that it solves the Allen-Cahn
equation, which is the gradient descent equation of the Grinzburg-
Landau functional (a geometric functional that contains a double well
potential).

To recover the video shapes we propose the minimization of an
energy functional that imposes not only spatial regularity but also
temporal continuity along the visible trajectory of the object, which
is defined by the optical flow. As previously done by Bhat et al.
(2007, 2010); Facciolo et al. (2011) or Sadek et al. (2012), we impose
the temporal continuity by using the convective derivative, a motion–
compensated temporal derivative. The motion field can be estimated
outside the inpainting mask (or hole with missing information) with
any of the existing optical flow methods. On the other hand, the opti-
cal flow is unknown inside the hole and it is geodesically interpolated
(with a motion inpainting method) in order to guide the inpainting
process.

Optical flow or motion inpainting is a pervasive problem in many
areas of computer vision which range from semantic video analysis
to video editing. One of the capital difficulties of the optical flow es-
timation are the occlusions where its estimation becomes extremely
difficult due to the lack of correspondence between the two consecu-
tive frames. Therefore, the optical flow is partially missing in areas
more or less large of the video whereas for most of the applications
its completion is essential. For instance, in cinema post-production
a completed optical flow is often needed for the elimination of un-
wanted (moving or static) objects. Other applications are automatic
assistance of sensor-based optical flow estimation where the sensor
acquisition usually produces large regions without optical flow data,
as in the Kitti Vision benchmark proposed by Menze and Geiger
(2015)).
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The motion inpainting problem has been addressed previously in
the literature for different purposes. In order to inpaint the flow
in the occlusion areas, Matsushita et al. (2006) and Strobel et al.
(2014) extent the Telea (2004) inpainting idea to optical flow, i.e.,
they assume that the motion variation is locally small and propagate
the optical flow according to a weighting function which depends on
the Euclidean distance and the color difference among the interpo-
lated pixel and its neighbours. Kondermann et al. (2008) propose a
postprocess of the optical flow in order to improve it: they retain
the optical flow at points where it is reliable and then they densify
it by minimizing the L2 norm of the spatio-temporal gradient of the
flow. Berkels et al. (2009) propose to recover the optical flow in
non-reliable regions by regularization, in particular they use a TV-
type anisotropic functional and Palomares et al. (2014) propose a
rotation-invariant regularizer. On the other hand, Ince and Konrad
(2008) propose a variational method for the joint estimation of optical
flow and occlusions while extrapolating the optical flow in occlusion
areas by means of anisotropic diffusion based on the image gradients.
Leordeanu et al. (2013) and Revaud et al. (2015) propose a sparse-to-
dense optical flow estimation method that takes as input an initial set
of sparse matches. In a first stage, the flow is densified (completed)
by fitting a local affine model, that uses edge-aware distances in the
case of EpicFlow. Then, the densified flow is refined by minimizing
an optical flow energy functional.

We propose to use the Absolutely Minimizing Lipschitz Extension
(amle) model in a Riemannian manifold in order to take advantage of
the geometric information given by the video frames. Given a video
and an incomplete motion field, we endow each 2D frame domain
with a Riemannian metric based on the video values and propose to
recover the missing optical flow by solving the amle partial differen-
tial equation on the 2D Riemannian manifold from the known values
on the boundary of the interpolation domain, which may contain
isolated points. Each of the coordinates of the optical flow is thus
reconstructed with this metric-based anisotropic interpolation. The
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amle equation, ∆∞u = 0, where ∆∞u is called both, amle operator
and infinity Laplacian, was introduced by Aronsson (1967, 1968) and
uniqueness of viscosity solutions was proved in Jensen (1993) (see also
Aronsson et al. (2004) for a review). The amle allows to interpolate
the value on isolated points and curves. It appeared as one of the
interpolating operators satisfying a set of suitable axioms in Caselles
et al. (1998). This axiomatic approach was extended by Sander et al.
(2003) and Caselles et al. (2006) to interpolate data given on a set
of curves on a surface in R3. The amle on a manifold was applied
in Lazcano (2016) for interpolating depth data in images or videos
where large regions of incomplete depth information often appear.
On the other hand, the classical amle has been used in Almansa
et al. for the interpolation of digital elevation models.

Our method is applied in three different scenarios: optical flow
inpainting in large regions, the completion of the motion in occlusion
areas and densification of an optical flow from a sparse set of initial
matches. The experiments show that in general our results outper-
form those of EpicFlow proposed by Revaud et al. (2015), which has
become a reference method for optical flow estimation and a standard
technique for post-processing an estimated and filtered optical flow.



12 Video Shape Inpainting

In this Chapter we present a variational model for video shape
inpainting, which uses a differential operator based on a gen-
eralized 3D gradient with the convective derivative in time
and the usual gradient in space. Its optimization grows on a
threshold dynamics strategy. Finally we provide some results.

We consider a spatio-temporal domain V = {(x, t) : x = (x, y) ∈
Ω, t ∈ [0, T ], T > 0} where in some big regions M = {(x, t) : x =
(x, y) ∈ Ω, t ∈ (0, T ), T > 0}, called holes, the information is missing.
We have defined the image domain (i.e., the spatial domain of any
image frame at time t) as Ω ⊂ R2, which is a rectangle in R2. Let
u0(x, t) be a binary video sequence defined on V\M and v the optical
flow associated to u0 defined on V . Observe that, in this Chapter, the
optical flow is considered in the whole domain, therefore we assume
that we have at our disposal an optical flow estimation method as
well as an optical flow inpainting method.

In order to inpaint the binary video inside the inpainting mask
M⊂ V we propose to solve the following optimization problem

min
u:V→{0,1}

∫
M
‖L (u) ‖2, s.t. u = u0 in V \M (12.1)

where L (u) is defined taking into account both spatial and temporal
regularity as well as the occlusion areas produced by the motion of
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objects in the scene:

L (u) = (ux, uy, γχ∂vu) , (12.2)

where γ > 0 is a parameter and χ : V → [0, 1] is a function modeling
the occlusion areas so that χ(x, t) = 0 identifies the occluded pixels,
i.e. pixels that are visible at time t but not at time t + 1 Thus,
χ(x, t) = 1 identifies the non occluded pixels and the functional only
imposes temporal regularity along the pixel trajectories that are not
occluded. The convective derivative is defined as

∂vu(x, t) = ∇u(x, t) · v(x, t) + ∂u

∂t
(x, t). (12.3)

Let us recall how it naturally appears: From the assumption that
for a Lambertian object1 under uniform constant illumination the
brightness of an object’s particle does not change in time, one deduces
that u(x(t), t) is constant along trajectories of the points in the scene.
This implies that

0 = du

dt
(x(t), t) = ∇u(x, t) · dx(t)

dt
+ ∂u

∂t
(x, t) ≈ ∂vu(x, t) (12.4)

since v ≈ dx(t)/dt. It leads to the brightness constancy assumption,
introduced in Horn and Schunck (1981). By minimizing the con-
vective derivative in (12.1) we are imposing shape regularity along
the trajectories. Moreover, since we do not consider the convective
derivative for occluded pixels we are imposing the regularity only
along the visible trajectories. Finally, by minimizing the L2–norm
of the first two terms of the operator (12.2) we are imposing spatial
smoothness in the recovered shape.

In our proposal (12.1)-(12.2), the parameter γ accounts for the
different units in the spatial and temporal domains and also balances
the effect of the temporal diffusion in the resulting gradient descent

1A Lambertian object is a surface where the apparent brightness to an observer
is the same regardless of the observer’s angle of view (Koppal (2014)).
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equation. Observe that, when γ is big enough, the minimization
of (12.1) can be approximated by using, instead of L, the operator

L̃ (u) = χ∂vu (12.5)

as the spatial derivatives have almost no impact. However, as the
experiments in Section 12.2 show, it is necessary to consider the dy-
namic shape evolution of the 3D shape (space and time) to correctly
complete the moving objects.

Optical Flow estimation
To fully specify this method, one needs to provide an estimation
of the optical flow. We propose to use, in the original sequence,
a variational optical flow estimation method and the optimization
strategy for variational optical flow methods proposed in Palomares
et al. (2017), which can be applied to any energy. In particular, we
apply it with both the well-known tv-l1 energy functional of Zach
et al. (2007) and the nltv-csad. The nltv-csad energy functional
uses Non Local Total Variation as regularization term as suggested
by Werlberger et al. (2010) and a smooth variant of the Census Trans-
form proposed by Vogel et al. (2013) as data term. To show the ro-
bustness of our binary inpainting method with respect to the optical
flow, we present in Fig. 12.1 two sequences of frames showing that
similar results are obtained using as input either the ground-truth
optical flow or the estimated ones. In fact, on the first row we show
the sequences to be inpainted (with the mask in gray), on the second
row we present the result using the ground-truth optical flow, on the
third row we show the inpainted result using the nltv-csad optical
flow and, finally, on the last row we present the results using the
tv-l1 optical flow.

As a consequence of removing objects from the sequence, we need
to modify the optical flow in the area of the removed object (which
constitutes the inpainting mask or hole). So, we need to do motion
inpainting inside the spatio-temporal 3D hole. We propose to use the
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(a) Inpainting frame (mask in gray) and ground-truth.

(b) Ground-truth optical flow and inpainting results.

(c) Non-local tv optical flow and inpainting results.

(d) tv-l1 optical flow and inpainting results.

Figure 12.1: Comparison of the inpainted result obtained with optical
flow ground-truth, nltv-csad or tv-l1.

optical flow inpainting method proposed in Palomares et al. (2014),
although other methods exist in the literature, such as Kondermann
et al. (2008) and Matsushita et al. (2006).

In order to correctly fill-in the optical flow we dilate the hole
to avoid the irregularities of the optical flow close to its boundary.
Indeed, the optical flow estimated by variational methods is not ac-
curate at motion boundaries.

Occlusion estimation
In order to estimate motion occlusions we stem from the assumption
that the occluded region, given in our context by χ(x, y) = 0, can
be correlated with the region where the divergence of the optical
flow is negative. This was pointed out by Sand and Teller (2008),
who noticed that the divergence of the motion field may be used to
distinguish between different types of motion areas. Schematically,
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the divergence of a flow field is negative for occluded areas, positive
for disoccluded, and near zero for the matched areas (an example is
presented in Figure 12.2). In our method, we relax this criteria and
use the estimation of occluded (χ = 0) and visible (χ = 1) regions as

χ(x, t) =
{

1, div(v) ≥ −0.5
0, else. (12.6)

(a) Frame 13. (b) Frame 14.

(c) χ(x, t).

Figure 12.2: Visible areas (in white) among the two frames.

12.1 A Threshold Dynamics Strategy
Our problem has been defined for binary functions. To overcome
the nondifferentiability and the nonconvexity, a common relaxation
strategy is given by not restricting the solution to be binary and using
instead a double-well potential2 in the functional. To this goal, we
propose to rewrite our energy (12.1) in terms of a Ginzburg-Landau

2A double-well potential is an energy with two, degenerate or not, minima
separated by a maximum.
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type functional. Let us recall that it consists of two terms, the first
is a regularization of the derivative and the second is a penalization
that forces the functional to be close to binary:

ε
∫

Ω
|∇u(x)|2dx+ 1

ε

∫
Ω
W (u(x))dx, (12.7)

where ε > 0 and W : R → R is a double-well potential. The penal-
ization term forces u to be in one of the minima, while the regular-
ization term forces u to have some smoothness. It has been proved
to Γ-converge to the total variation functional on binary functions by
Modica and Mortola (1977).

The L2 gradient descent equation of the Grinzburg-Landau func-
tional is the Allen-Cahn equation (Allen and Cahn (1979)):

us = 2ε∆u− 1
ε
W ′(u). (12.8)

Rubinstein et al. (1989) proved that when ε → 0 the rescaled solu-
tions of the Allen-Cahn equation, uε(x, tε), evolve according to mean
curvature flow of the interface. Equation (12.8) can be solved us-
ing the threshold dynamics algorithm (mbo algorithm), proposed
by Merriman et al. (1992) which, as proved by Evans (1993) and Bar-
les and Georgelin (1995), simulates the motion of a 2D binary shape
by mean curvature motion.

mbo algorithm starts with an initial shape S0 ⊂ R
2 and, by

considering its indicator or characteristic function u0 = 1S0 , iterates
the following two steps until convergence:

1. Diffusion step. Compute ū(τ), the solution of the heat equa-
tion, us = ∆u, for a certain small diffusion time τ , with initial
condition u(0) = 1Sn .

2. Thresholding step. Binarize by defining the shape Sn+1 = {x :
ū(τ)(x) ≥ 1

2}

As a consequence, the mbo scheme solves the Allen-Cahn equation
by time splitting: step 1 solves us = 2ε∆u and step 2 solves us =
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−1
ε
W ′(u) for ε → 0+, both for a fixed time τ > 0. Observe that the

wells of the potential will define the thresholding step of the scheme,
for instance, in the case of the mbo algorithm it is used a double-well
potential with x0 = 0 and x1 = 1.

Our functional (12.1) can be thought as a generalization of (12.7),
as it involves the gradient in the spatial dimensions and the convec-
tive derivative (a derivative taken with respect to a moving coor-
dinate system) in the temporal one. Therefore, we can rewrite the
energy (12.1) as:

ε
∫
M
‖ (ux, uy, γχ∂vu) ‖2dx+ 1

ε

∫
Ω
W (u)dx

s.t. u = u0 in V \M
(12.9)

where W (u) = u2(1− u)2. Its gradient descent equation is:

us = 2ε
(
∆xyu− γ2(χ∂v)∗χ∂vu

)
− 1
ε
W ′(u), (12.10)

where ∆xy denotes the Laplacian on the spatial dimension and (χ∂v)∗
the adjoint operator of χ∂v.

We propose to solve the boundary value problem associated to the
pde (12.10) by time splitting in such a way that one of the resulting
equations, us = −1

ε
W ′(u), is an ordinary differential equation that

is solved by a thresholding step, as in the mbo scheme (Merriman
et al. (1992)). Then, starting by an initial spatio-temporal shape T 0

and, considering its (binary) characteristic function u0 = 1T 0 , the
core of the threshold dynamics scheme that we propose consists on
the iteration of the following steps until convergence:

1. Diffusion step. Compute ū(τ), the solution of the following pde
for a certain small diffusion time τ :

us = ∆xyu+ γ2(χ∂v)∗χ∂vu

u(0) = 1T n .
(12.11)
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2. Thresholding step. Binarize by defining the following shape:

T =
{

x : ū(τ)(x) ≥ 1
2

}
. (12.12)

3. Fidelity step. Imposes that the binary video coincides with the
original video outside of the inpainting mask.

T n+1 = (T ∩M) ∪
(
T 0 ∩ (V \M)

)
. (12.13)

12.1.1 Numerical Details on the Diffusion Step
We consider a discrete video obtained by regularly sampling the con-
tinuous one with a spatial step h and a temporal step k. Then, we
use an explicit method with a forward Euler discretization of the
temporal derivative to solve the pde (12.11) involved in the first step
of the Threshold Dynamics algorithm:

un+1 − un

k
= ∆xyu

n − γ2(χ∂v)∗χ∂vu
n

h
. (12.14)

The equation involves a spatial diffusion term, namely ∆xyu, and a
temporal diffusion step, given by (χ∂v)∗χ∂vu. In the temporal step
there are also considered the occlusions among frames.

The spatial term is discretized using a finite differences scheme,
while the temporal term is performed with a sparse matrix, in this
way we only need to compute A = χ∂vu and the conjugate is obtained
by the transposed of it. The scheme turns into:

un+1 − un = k

h

(
∆xyu− γ2AtAu

)
. (12.15)

Discretization of ∆

The spatial Laplacian is implemented using the forward and back-
ward finite differences scheme proposed by Chambolle (2004), where
it is proposed to solve it using the following equality:

∆u = div(∇u). (12.16)
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The gradient is computed using a forward scheme:

(∇u)1
i,j =

{
ui+1,j − ui,j if i < N
0 ifi = N

(12.17)

(∇u)2
i,j =

{
ui,j+1 − ui,j if i < N
0 if i = N

(12.18)

and the divergence is discretized with a backwards scheme:

(div p)i,j =


p1
i,j − p1

i−1,j if 1 < i < N
p1
i,j if i = 1
−p1

i−1,j if i = N

+


p2
i,j − p2

i,j−1 if 1 < j < N
p2
i,j if j = 1
−p2

i,j−1 if j = N

(12.19)

where p = ((∇u)1, (∇u)2).

Discretization of χ∂v

The convective derivative is discretized using a forward difference
scheme, which takes into account the value of the optical flow:

∂vu(x0, y0, t0) = û(x0 + kv, t0 + k)− u(x0, t0) (12.20)

where û is an interpolated value and k is the temporal step. Let us
observe that, because of the values of the optical flow, x0 + kv may
fall outside the sampling grid. As proposed by Zhou et al. (1998)
and Arias (2013), we obtain û(·) using the following interpolation:

û(x0 + kv) =k (ṽ1ui,j + (1− ṽ1)ui+1,j) ṽ2+
k(ṽ1ui,j+1 + (1− ṽ1)ui+1,j+1)(1− ṽ2),

(12.21)

where ṽ1 and ṽ2 denote the fractional part of the x and y compo-
nents of the optical flow, respectively. Given the interpolation values
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we create a matrix A of size (ST )2, where S stands for the area of
each frame and T is the number of frames of our video. We fill this
matrix using the coefficients of (12.20), therefore the main diagonal
will contain coefficients −1 and the other values of the matrix will
depend on v. Matrix A is filled only where there are no occlusions,
otherwise it is left to 0.

12.2 Applications
In this section we provide some results of the proposed method used
on some image sequences from the Sintel database created by Butler
et al. (2012) and from de Monkaa dataset designed by Mayer et al.
(2016). We present two types of experiments:

• Damaged objects recovering. With the aim of recovering
a moving object which is occluded in the video we consider
an inpainting mask that covers part of an object. We apply
our proposed method to fill-in the object of interest. These
experiments also help us to evaluate how sensitive our method
is to the given optical flow, to set the parameters, and also
to compare with the 3D mbo suggested in Merriman et al.
(1992) that evolves a surface by mean curvature motion. In
Section 12.2.1 we present both, qualitative and quantitative
results

• Objects removal. The goal is to remove an object from the
input video which is occluding another one and apply the in-
painting to complete the occluded object. Qualitative results
are presented in Section 12.2.2.

Our model depends on two parameters: γ, the balance between
the spatial and temporal derivatives, and τ , the diffusion time. We
performed a thorough experimental analysis and finally observed that
γ needs to be at least 1 in order to obtain good results. So we set
it to γ = 1.5 for all the experiments. Regarding the diffusion time,
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τ , it is well acknowledged from the threshold dynamics (Merriman
et al. (1992); Barles and Georgelin (1995); Esedoglu et al. (2008))
methods that τ has to be big enough to allow the curve to evolve,
but small enough so that the mbo scheme approximates motion by
mean curvature as the solution of the Allen-Cahn equation. In all
our experiments we set τ = 1.

12.2.1 Damaged objects recovering
In this section we show the performance of our method on experi-
ments where we know the ground-truth and we have a complete op-
tical flow, computed using the nltv-csad optical flow method. We
also use these experiments to illustrate the behaviour of our video in-
painting method with the proposed operator L, the operator L̃, and a
comparison with the 3D mbo method. Also, in all these experiments
we consider that the first and last frames are completely known, i.e,
the object to be completed is fully visible in these two frames.

We show six experiments from the Sintel Dataset (from Fig. 12.3
to Fig. 12.8), where we have added a big mask, that is, where we
do not know the value of the video. In order to provide quantitative
results, we take advantage of the fact that we have the video ground-
truth for all the experiments and we are able to compute the root
mean square error, which is shown in Table 12.1. All the experiments
are organized as follows: In the first row we present the original
color frames from Sintel database (Butler et al. (2012)). On the
second row we show data frames with the inpainting mask in gray
and the object to be inpainted in white. The third row displays the
occlusions from the same frames. Finally, in the last four rows we
present output results: on the fourth row we show the ground-truth
inpainted results. In the fifth row we present the results performed
using the 2D+time mbo algorithm of Merriman et al. (1992). The
last two rows show the performance of our operators, in the sixth row
we present the inpainted results using the operator L̃ and in the last
row, the inpainted results using the proposed L.
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From all experiments we can see how crucial is to use the L oper-
ator instead of L̃ or the 3D-mbo scheme. For example, in Fig. 12.3
the hair of the girl is not completely recovered if we only consider
the convective term, and in Fig. 12.6 the top of the finger is incom-
plete. The reason is that the pixels that need to be inpainted have
an occluded trajectory – as it can be seen in the respective occlusion
maps (third row) – and no temporal diffusion is applied on them.
The spatial diffusion helps to complete these occluded areas. As it
can be also observed, the results provided by the mbo method do not
follow the trajectory of the moving objects but are completed accord-
ing to the smoothness of the shapes. For example, in the last frame
of Fig. 12.3 the face is not well recovered and in Fig. 12.6 the fingers
are cut (completed by a plane in 2D+time), while in both cases our
operator L correctly completes the shapes.

For a quantitative evaluation, we present in Table 12.1 the root
mean square error of three methods: our proposal (12.1) – (12.2),
using L̃ instead of L, and mbo. Our operator L always provides the
smaller error.

mbo L̃ L

Alley 1 0.18 0.55 0.06

Ambush 4 0.46 0.54 0.26

Market 5 0.34 0.23 0.07

Shaman 3 (exp.1) 0.25 0.10 0.05

Shaman 3 (exp.2) 0.63 0.63 0.48

Temple 3 0.23 0.36 0.15

Table 12.1: Root mean square error of some sequences from Sin-
tel Dataset (Butler et al. (2012)), obtained completing the moving
shapes using either 3D-mbo scheme, L̃ or L operators.
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12.2.2 Objects removal
As we are removing an object from the scene (with its own movement)
we also need to interpolate the optical flow in the inpainting domain.
For that, we use the method proposed in Palomares et al. (2014).
The occlusion map is estimated from this completed flow using the
criterion (12.6).

Before applying the proposed method we inpaint, independently,
the first and last frame with a 2D binary inpainting method (in partic-
ular, the perceptual-based 2D-inpainting method described in Chap-
ter 7). Then we apply the proposed video inpainting method that
takes into account the estimated optical flow and occlusion map, and
the completed shape is shown in the last row.

We show the performance of our algorithm in eight situations
where we remove an object from the scene. We show three examples
from the Sintel Dataset (from Fig. 12.9 to Fig. 12.11) and four more
examples from the Monka Dataset (from Fig. 12.12 to Fig. 12.15).
For each experiment we show in the first row the original image from
the sequence; in the second row we show the object to be inpainted
(in white) and the inpainting mask in gray); the third row is devoted
to the optical flow, computed with the nltv-csad method together
with the mask inpainted. In the forth row we show the occlusions
and, finally, in the last row we show the inpainted result.

Let us notice how, in Fig. 12.10, the hole corresponding to the
spear is correctly filled and the dragon claw is partially recovered
in frames 5 and 6 although it was completely occluded in the corre-
sponding frames of the input sequence.



122 12. Video Shape Inpainting

Frame 20 Frame 21 Frame 22 Frame 25

Incomplete object (white) and mask (gray).

Occlusion maps.

Groundtruth inpainting.

Inpainting result using 3D mbo.

Inpainting result using L̃.

Inpainting result using L.

Figure 12.3: Damaged object recovering experiment. Inpainting re-
sults of some frames from Alley 1 sequence of mpi Sintel. The se-
quence is formed by the frames 20 to 27. The inpainting mask is 6
frames long: from frame 21 to frame 27.
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Frame 15 Frame 16 Frame 17 Frame 19

Incomplete object (white) and mask (gray).

Occlusion maps.

Ground-truth inpainting.

Inpainting result using 3D mbo.

Inpainting result using L̃.

Inpainting result using L.

Figure 12.4: Damaged object recovering experiment. Inpainting re-
sults of some frames from Ambush 4 sequence of mpi Sintel. The
sequence is formed by the frames 15 to 22. The inpainting mask is 6
frames long: from frame 16 to frame 21.
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Frame 10 Frame 12 Frame 14 Frame 16

Incomplete object (white) and mask (gray).

Occlusion maps.

Ground-truth inpainting.

Inpainting result using 3D mbo.

Inpainting result using L̃.

Inpainting result using L.

Figure 12.5: Damaged object recovering experiment. Inpainting re-
sults of some frames from Market 5 of mpi Sintel. The sequence is
formed by the frames 1 to 6. The inpainting mask is 4 frames long:
from frame 2 to frame 5.
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Frame 3 Frame 5 Frame 6 Frame 8

Incomplete object (white) and mask (gray).

Occlusion maps.

Ground-truth inpainting.

Inpainting result using 3D mbo.

Inpainting result usingL̃.

Inpainting result using L̃.

Figure 12.6: Damaged object recovering experiment. Inpainting re-
sults of some frames from Shaman 3 sequence of mpi Sintel. The
sequence is formed by the frames 3 to 9. The inpainting mask is 5
frames long: from frame 4 to frame 8.
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Frame 30 Frame 33 Frame 35 Frame 36

Incomplete object (white) and mask (gray).

Occlusion maps.

Ground-truth inpainting.

Inpainting result using 3D mbo.

Inpainting result using L̃.

Inpainting result using L.

Figure 12.7: Damaged object recovering experiment. Inpainting re-
sults of some frames from Shaman 3 of mpi Sintel. The sequence is
formed by the frames 30 to 40. The inpainting mask is 9 frames long:
from frame 31 to frame 39.



12.2. Applications 127

Frame 10 Frame 12 Frame 14 Frame 16

Incomplete object (white) and mask (gray).

Occlusion maps.

Ground-truth inpainting.

Inpainting result using 3D mbo.

Inpainting result using L̃.

Inpainting result using L.

Figure 12.8: Damaged object recovering experiment. Inpainting re-
sults of some frames from Temple 3 of mpi Sintel. The sequence is
formed by the frames 10 to 17. The inpainting mask is 5 frames long:
from frame 11 to frame 16.
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Frame 10 Frame 12 Frame 14 Frame 16

Object to be inpainted (in white) and object to be removed (in gray)

Optical flow interpolated inside the inpainting mask.

Estimated occlusions from the interpolated optical flow.

Inpainted white object.

Figure 12.9: Application of the proposed inpainting method to the
removal of an object in a video sequence. The sequence is formed by
the frames from 4 to 13 of the Ambush 7 sequence of mpi Sintel. The
inpainting mask is 9 frames long: from frame 2 to frame 10. The last
frame is inpainted using the method proposed in Section 7.1.
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Frame 10 Frame 12 Frame 14 Frame 16

Object to be inpainted (in white) and object to be removed (in gray)

Optical flow interpolated inside the inpainting mask.

Estimated occlusions from the interpolated optical flow.

Inpainted white object.

Figure 12.10: Application of the proposed inpainting method to the
removal of an object in a video sequence. The sequence is formed by
the frames from 1 to 8 of the Cave 2 sequence of mpi Sintel. The
inpainting mask is present in all the frames. The first and last frames
are inpainted using the method proposed in Section 7.1.
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Frame 10 Frame 12 Frame 14 Frame 16

Object to be inpainted (in white) and object to be removed (in gray)

Optical flow interpolated inside the inpainting mask.

Estimated occlusions from the interpolated optical flow.

Inpainted white object.

Figure 12.11: Application of the proposed inpainting method to the
removal of an object in a video sequence. The sequence is formed
by the frames from 12 to 16 of the Temple 2 sequence of mpi Sintel.
The inpainting mask is present in all the frames. The first and last
frames are inpainted using the method proposed in Section 7.1.
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Frame 21 Frame 24 Frame 26 Frame 29

Object to be inpainted (in white) and object to be removed (in gray)

Optical flow interpolated inside the inpainting mask.

Estimated occlusions from the interpolated optical flow.

Inpainted white object.

Figure 12.12: Application of the proposed inpainting method to the
removal of an object in a video sequence. The sequence is formed by
the frames from 21 to 30 of the A rain of Stones sequence of Monkaa
dataset. The inpainting mask is present in all the frames. The first
and last frames are inpainted using the method proposed in Section
7.1.
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Frame 37 Frame 38 Frame 39 Frame 40

Object to be inpainted (in white) and object to be removed (in gray)

Optical flow interpolated inside the inpainting mask.

Estimated occlusions from the interpolated optical flow.

Inpainted white object.

Figure 12.13: Application of the proposed inpainting method to the
removal of an object in a video sequence. The sequence is formed by
the frames from 37 to 40 of the Flower Storm sequence of Monkaa
dataset. The inpainting mask is present in all the frames. The first
and last frames are inpainted using the method proposed in Section
7.1.
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Frame 81 Frame 82 Frame 83 Frame 84

Object to be inpainted (in white) and object to be removed (in gray)

Optical flow interpolated inside the inpainting mask.

Estimated occlusions from the interpolated optical flow.

Inpainted white object.

Figure 12.14: Application of the proposed inpainting method to the
removal of an object in a video sequence. The sequence is formed
by the frames from 81 to 86 of the Funny world sequence of Monkaa
dataset. The inpainting mask is present in all the frames. The first
and last frames are inpainted using the method proposed in Section
7.1.
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Frame 9 Frame 10 Frame 11 Frame 12

Object to be inpainted (in white) and object to be removed (in gray)

Optical flow interpolated inside the inpainting mask.

Estimated occlusions from the interpolated optical flow.

Inpainted white object.

Figure 12.15: Application of the proposed inpainting method to the
removal of an object in a video sequence. The sequence is formed by
the frames from 8 to 13 of the Top view sequence of Monkaa dataset.
The inpainting mask is present in all the frames. The first and last
frames are inpainted using the method proposed in Section 7.1.
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In this Chapter we propose to recover the missing optical flow
of a given sequence, by solving the geodesic amle partial dif-
ferential equation. An efficient numerical algorithm which uses
the eikonal operators on finite graphs is also proposed. Finally,
we present some results.

Given a video u(x, t) defined on Ω×{1, . . . T}, where Ω ⊂ R2 denotes
the image frame domain and {1, . . . T} is the set of discrete times,
let ṽ = (ṽ1, ṽ2) be the optical flow of the video u representing the
apparent motion between a pixel x ∈ Ω \ Ω0(t) at time t and the
corresponding at time t+ 1.

We assume that, at time t, ṽ(x, t) is unknown in a region Ω0(t) ⊂
Ω whose boundary, denoted by ∂Ω0, consists of a finite union of
smooth curves and possibly isolated points. In order to complete ṽ in
Ω0(t) by an appropriate interpolation taking into account the objects
in the video, we endow the whole domain Ω, at each time t, with a
metric g(t). LetM(t) = (Ω, g(t)) be the corresponding Riemannian
manifold. We propose to complete ṽ in Ω0(t) with the motion field
v = (v1, v2) such that v1 and v2 are solutions, respectively, of the
geodesic Absolutely Minimizing Lipschitz Extension (amle), given
by the pde

∆∞,gvi = 0 in Ω0(t)
s.t vi|∂Ω0(t) = ṽi,

(13.1)

135
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for i = 1, 2, respectively. We also use Neumann boundary conditions
on ∂Ω. Here we have denoted

∆∞,gvi := D2
Mvi

(
∇Mvi
|∇Mvi|

,
∇Mvi
|∇Mvi|

)
, (13.2)

where ∇Mvi and D2
Mvi denote, respectively, the gradient and the

Hessian on the manifold. To simplify, we have omitted the depen-
dence on t of g and M; we will also drop the subindex i in what
follows. When g is the Euclidean metric, the operator in (13.2) is
known as the infinity Laplacian. In our proposal, we define the met-
ric g in terms of the local geometry and texture content of the frame
u(x, t) corresponding to v(x, t). For instance, g can be given by
affine covariant structure tensors defined in Fedorov et al. (2015) and
detailed in Chapter 2 or taking into account spatial distances and
photometric similarities as detailed in the following section, where
we consider the interpolation problem (13.1) on finite graphs.

13.1 The geodesic AMLE on a finite graph

We solve the amle equation on the manifold with a numerical al-
gorithm that is based on the eikonal operators for nonlinear ellip-
tic pdes on a finite graph, which was proposed by Oberman (2005)
and Manfredi et al. (2015). In particular, we consider the discrete
grid of Ω as the nodes of a finite weighted graph G. Given a point
x on the grid, let N (x) be a neighborhood of x. Following Manfredi
et al. (2015), we consider the positive and negative eikonal operators
given, respectively, by

‖∇v(x)‖+
M = max

y∈N (x)

v(y)− v(x)
dg(x,y) , (13.3)

‖∇v(x)‖−M = min
z∈N (x)

v(z)− v(x)
dg(x, z) ., (13.4)
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where dg is a geodesic distance between the points computed using
the metric g. Then, the discrete infinity Laplacian corresponds to

∆∞,gv(x) = ‖∇v(x)‖+
M + ‖∇v(x)‖−M

2 . (13.5)

We solve (13.1) with the following iterative discrete scheme

vk+1(x) = dg(x, z)vk(y) + dg(x,y)vk(z)
dg(x, z) + dg(x,y) (13.6)

where y and z are the pixels providing the maximum and minimum
in (13.3) and (13.4), respectively. This scheme is applied only for
x ∈ Ω0, initializing u0(x) = 0 in that case and keeping the values of
v1(x) and v2(x) on the known region Ω \ Ω0 for all k.

If x and y are neighbouring pixels, we define their distance by
one of the following simple possibilities

d1(x,y) =
√

(1−λ)‖u(x, t)−u(y, t)‖2+λ‖x− y‖2 (13.7)
d2(x,y) = (1−λ)‖u(x, t)−u(y, t)‖+ λ‖x− y‖ (13.8)

where λ ∈ [0, 1]. We also include

d3(x,y) = (1−λ)‖u(x, t)−u(y, t)‖2+λ‖x− y‖2 (13.9)

which is a semimetric, i.e., it does not satisfy the triangle inequality.
We will use d(x,y) to refer to anyone of them. Given a path γ =
{γ(i)}mi=0 joining two points, x = γ(0) and y = γ(m), its length is
defined as usual by Lg(γ) = ∑m−1

i=0 d(γ(i), γ(i + 1)). Given any two
points x and y on the grid, then the geodesic distance dg(x,y) is

dg(x,y) = inf{Lg(γ) : γ is a curve joining x and y}.

This distance can be computed using Dijkstra’s algorithm. In prac-
tice, for any pair of points x,y we approximate dgi(x,y) by di(x,y),
where di(x,y), for i = 1, 2, 3, is defined by (13.7)–(13.9). Let us
notice again that more sophisticated metrics are possible.
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(a) Video frame. (b) Inpainting mask. (c) Ground-truth.

(d) dg1(x,y) (e) dg2(x,y) (f) dg3(x,y)

Figure 13.1: Comparison of the three proposed possibilities for the
metric illustrated in an experiment of completion of the optical flow
in the occlusion areas (white regions in image b). In the last row we
present a zoom of the result obtained with each distance.

To experimentally analyze the behavior of our interpolation method
depending on the considered metric g we show in Fig. 13.1 some re-
sults using dg1 , dg2 and dg3 . We choose to work with d3(x,y) given
by (13.9), which produces slightly better results. Indeed, when part
of an edge is subjective or weak (i.e., the two regions separated by
the edge are similar) the proposed metrics do not penalize completely
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the propagation of the optical flow from one region to another; (13.9)
does a better job descriminating these cases. Fig. 13.1 shows an ex-
ample, notice how the small leak in the left middle part of the head
is reduced in Fig. 13.1f.

13.1.1 Numerical Multiscale Approach

The scheme is embedded in a multiscale approach: the input optical
flow and corresponding video frame are downscaled to a set of scales
and the solution is computed at each one using (13.6). The inputs
are downsampled by a factor of two using 2 × 2 block averages; bi-
linear interpolation is used for upsampling. At the coarsest level, the
unknowns are initialized to zero; the other scales are initialized by up-
sampling the solution of the previous scale. The multiscale pyramid
provides just an initialization closer to the solution, leading to a faster
convergence. In Fig. 13.3 we show this behaviour for a simple situa-
tion: we want to interpolate an image of a cone and the cone itself
is used to compute the metric. In Figure 13.2 we show the expected
result in Fig. 13.2a and the inpainting mask in Fig. 13.2b . As it can
be seen in Fig. 13.2b the unknown region is the white disc, which is
the support of the unknown cone, except for the single central point
(the top of the cone). In each graphic of Fig. 13.3 we present the evo-
lution of the interpolation error for 105 iterations. At each iteration,

(a) Ground-truth cone image.
Used to compute the metrics.

(b) Inpainting mask in white.

Figure 13.2: Inpainting mask for the cone experiment.
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the error is computed as the difference between the current solution
and the expected one (that is the cone). We compare three different
initializations: zeros inside the mask (first column), starting with the
result of the previous scale of the multiscale approach (second col-
umn) and the ground-truth (third column). For each row we show
the evolution for each considered distance. These graphics allow us
to observe that the two first rows converge fast to the cone, but for
the last row we never get an error smaller than 0.11. This is because
the cone is not the solution of the pde with that metric. We can also
observe as the multi-scale approach gives an initialization closer to
the expected solution.

zeros initialization multiscale initializa-
tion

groundtruth initial-
ization
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Figure 13.3: Error evolution using different initializations and met-
rics.
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13.1.2 Neighbourhood
As Oberman (2005) and Manfredi et al. (2015) mention, the solution
of the numerical scheme (13.6) converges to the solution of (13.1)
when the local spatial resolution dx and the local directional resolu-
tion dθ tend to 0. We have evaluated three discrete neighbourhoods,
Ni(x), i = {1, 2, 3}, to approximate the behaviour of the continuous
scheme. These neighbourhoods are constructed by considering the
discrete square of semiside dx centered at x, which is provided by
the different directional resolutions dθ. The first neighbourhood ap-
proximation N1(x), which was already proposed by Oberman (2005),
consists on reducing the directional resolution dθ by increasing dx,
that is, we keep only the points of the boundary of the square of
semiside dx. In Fig. 13.4 we show, for different values of dθ and dx,
the pixels taken into account when we use this neighbourhood.

(a) dθ = 90
dx = 1.

(b) dθ = 45
dx = 1.

(c) dθ ∈ [18, 27]
dx = 2.

(d) dθ ∈ [11, 19]
dx = 3.

Figure 13.4: N1(x) with different values of dθ and considering the
boundary of the squares of the specified dx semiside.

As it can be observed in Fig. 13.4, using N1(x) with a small dθ
implies going far from the central pixel x and, as consequence, the
approximation of the derivatives involved in (13.1) is less accurate.
That is, withN1(x) we can have either a small dθ or dx, but not both.
For this reason we propose to improve it by considering also all the
points in between, that is, instead of only considering the boundary
of the square of semiside dx, we also take into account all the points
in between. By doing so, we are able to reduce dx and considering
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pixels closer to the central one and, in some situations, we are also
able to improve the angle resolution. In Fig. 13.5 we present some
neighbourhoods obtained using N2(x).

(a) dθ = 90
dx = 1.

(b) dθ = 45
dx = 1.

(c) dθ ∈ [18, 26]
dx = 2.

(d) dθ ∈ [7, 19]
dx = 3.

Figure 13.5: N2(x) with different values of dθ and considering all the
points of the squares of the specified dx semiside.

Despite being better in resolution terms, the second type of neigh-
bourhood uses some redundant points, that is, for each direction we
are considering all the points up to dx. For this reason we consider a
third type of neighbourhood, N3(x), which considers for each direc-
tion n · dθ, n ∈ N, only the pixel that minimizes the distance to the
central pixel. With this last kind of neighbourhood we achieve the
minimum values for both, dx and dθ, and also reduce the number of
computations. Figure 13.6 presents some neighbourhoods of N3(x).

In Figure 13.7 we present an optical flow inpainting result ob-
tained with each neighbourhood and using dx = 2 (Figures d, e, f).
For all the experiments we have fixed λ = 10−3, we have used dg3 and
dx = 2. We can observe as the result obtained with the neighbour-
hood N1 is much worse than the other two because it uses pixels that
are far from the pixel to be interpolated. Results produced with N2
and N3 barely differ.
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(a) dθ = 90
dx = 1.

(b) dθ = 45
dx = 1.

(c) dθ ∈ [18, 26]
dx = 2.

(d) dθ ∈ [7, 19]
dx = 3.

Figure 13.6: N3(x) with different values of dθ and the pixels that
minimize its distance.

(a) Video frame. (b) Inpainting mask. (c) Ground-truth.

(d) N1(x). (e) N2(x). (f) N3(x).

Figure 13.7: Comparison of the results obtained with each neighbour-
hood: N1(x), N2(x), N3(x).

13.1.3 Influence of the Image to Compute the
Metric

In this section we show the influence of the image used to compute
the metric in our method. We will denote it by guide. To this goal



144 13. Optical Flow Inpainting

we present an inpainting result (Fig. 13.8) and a densification result
(Fig. 13.9). Both of them are performed using four different guides: a
shape guide, where the main object is in white and all the background
in black (Figs. 13.8c and 13.9c); a cartoon guide, which has no texture
(Figs. 13.8d and 13.9d); a textured guide (Figs. 13.8e and 13.9e); and
a realistic guide, this last one may contain texture, blur and shadows
among others (Figs. 13.8f and 13.9f).

(a) OF ground-truth. (b) Large mask in black.

(c) Shape. (d) Albedo. (e) Clean. (f) Final.

Figure 13.8: Inpainting results with different guides with a zoom on
the region of interest (Shaman 3).

We can observe as the results obtained from the shape (Figs. 13.8c
and 13.9c) and cartoon (Figs. 13.8d and 13.9d) guides, thanks to the
sharper object edges, better preserve the motion boundaries than the
other two results, i. e. the optical flow is not diffused outside the ob-
ject. When we introduce texture we can observe as the small textures
of the objects affect the color difference and, therefore, produce larger
distances. For instance, we can observe in Fig. 13.8e as the texture
from the guide can also be observed in the recovered optical flow, pro-
ducing undesirable discontinuity in the optical flow. In contrast with
the previous behaviour, it may happen that the colors among objects
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(a) OF ground-truth. (b) Sparse mask in white.

(c) Shape. (d) Albedo. (e) Clean. (f) Final.

Figure 13.9: Densification results with different guides with a zoom
on the region of interest (Alley 1).

are very close, which produces small distances in the geodesic and
the optical flow starts leaking outside the object. This behaviour is
illustrated in the example of Fig. 13.9 where the color of the building
is very close to the color of the hair.

13.2 Applications
In this section we present optical flow inpainting results on the se-
quences from Sintel database (Butler et al. (2012)), Middlebury (Baker
et al. (2011)) and Kitti (Menze and Geiger (2015)) datasets. All the
experiments are performed with λ = 10−3, N3 and dg3 . We show
results for two different applications:

• Region inpainting. It is applied to complete the optical flow
in occlusion areas and in large holes where different types of
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motion have to be recovered. These applications are performed
on frames from the Sintel Dataset.

• Densification. We consider three situations: densification of
groundtruth (gt) flow values at random positions (1%, 5% and
30% of values kept), densification of optical flow values given by
the Deepmatching algorithm (dm) proposed by Revaud et al.
(2016)), and densification of grount-truth values at the sparse
positions given by Deepmatching.

We propose to compare our results to those of EpicFlow proposed
by Revaud et al. (2015), which considers an interpolation step. In
fact, they proposed to estimate the optical flow in two steps:

1) Edge-preserving interpolation of a sparse optical flow generated
with the Deepmatching algorithm (Revaud et al. (2016)).

2) Variational energy minimization using as initialization the dense
flow achieved in the first step.

As we are not estimating the optical flow given two consecutive
frames, we compare our results to those in their first step, since
both of them are completions of an initial flow that uses only the
current frame. In each case, we compute the End-Point-Error (epe)
excluding the data points, so as not to penalize EpicFlow results
which changes these values. End-Point-Error is defined as the L2-
norm of the difference between the estimated motion vector and the
ground-truth one. Average End-Point-Error is the average of all the
end-point errors in an image and is the standard error measure used
in the optical flow benchmarks (usually denoted simply as epe). We
present the epe values in Table 13.1. The comparison is done over all
the training Sintel dataset (Butler et al. (2012)) and on the optical
flow corresponding to frames 10 and 11 from the Middlebury dataset,
where the ground-truth is available (Baker et al. (2011)).

We can observe that our method achieves lower error for all cases
except for the densification of Deepmatching optical flow (sparse dm).
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sintel middlebury
Ours - epe ef - epe Ours - epe ef - epe

sparse 1% 0.7061 1.8532 0.1979 0.3105
sparse 5% 0.4340 1.4199 0.1053 0.2426
sparse 30% 0.2241 1.1212 0.0567 0.1801
sparse DM 4.4404 4.1507 0.9216 0.8112
sparse DM (gt) 2.1360 3.5411 0.2049 0.2789
occlusions 5.4198 6.8797 – –
hole 1.7208 1.9587 – –

Table 13.1: Comparison of the epe for EpicFlow and our method in
different situations.

This is probably due to the fact that the data provided by the dm
are quantized values that contain errors and outliers, which the amle
propagates along all the pixels of the inpainting hole. By contrast,
EpicFlow modifies the provided values which allows to compensate
for the quantization and errors, while our method sticks to the given
values propagating the error to the recovered optical flow. Depending
on the application, one or the other behaviour would be preferred.
We include, in Fig. 13.10, an example of completion in large regions
without data as in Kitti dataset of Menze and Geiger (2015) and, in
Fig. 13.11 we show an example of inpainting of large holes.

(a) Frame 2, Seq. 10 (b) Ground-truth (c) Inpainting

Figure 13.10: A result on Kitti dataset proposed by Menze and Geiger
(2015) that contains large holes.

Finally, in Fig. 13.12 we present two different experiments and
illustrate the behaviour of different interpolation methods: Total
Variation (tv) regularization proposed by Rudin et al. (1992), the
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(a) Frame 16 (b) Ground-truth optical flow with
the inpainting region indicated with
a box

(c) Ours (epe: 1.5582) (d) EpicFlow (epe: 2.8584)

Figure 13.11: Some optical flow inpainting results for a frame of the
Temple 3 sequence of MPI-Sintel benchmark.

rotation invariant regularization defined in Palomares et al. (2014)
(Rot-Inv), the interpolation step of EpicFlow (Revaud et al. (2015)),
and the proposed method. Both type of experiments are done with
the frame 10 of RubberWhale from the Middlebury dataset (Figure
13.12(a)), whose optical flow ground-truth is available (13.12(b)).
The first experiment is motion completion in different large holes
(shown in white in image 13.12(c)) and the corresponding results for
the four evaluated methods are in the 2nd row. The second experi-
ment is flow densification from a sparse set of matches (pixels where
the motion is not known are shown in white in 13.12(d)) and the
results can be seen in the 3rd row. One can observe that when no
guide is used in the interpolation process (tv and Rotation-invariant
methods) the discontinuities of the optical flow are not well recov-
ered, since they are not aligned with the objects boundaries. This
can be seen for instance, in the semi-circles in the second row of
Fig. 13.12 where these methods fail, while the interpolation step of
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EpicFlow and our interpolation give satisfactory results. Our inter-
polation method can not correctly inpaint the optical flow of rotating
objects, as the wheel in the bottom-left. In this region the informa-
tion provided by the guide-based metric is not useful (roughly homo-
geneous area). In such cases, our method reduces to a local isotropic
average which can only solve translations. EpicFlow’s interpolation
adjusts instead a local affine transformation, allowing to correctly
recover rotations. Although, in general, one can observe that visual
results of our interpolation method are better (see Fig. 13.11d).

(a) Video frame. (b) Ground-truth (c) hole’s mask (d) sparse mask

(e) TV (0.7294) (f) R-Inv (0.6387) (g) EF (0.1050) (h) ours (0.1668)

(i) TV (0.0609) (j) R-Inv (0.0562) (k) EF (0.0720) (l) ours (0.0520)

Figure 13.12: Comparison of different motion completion algorithms
in two different cases: inpainting of large holes (holes in white in
image (c) and results shown in the 2nd row) and flow densification
from a sparse set of matches (shown in image (d) and results in 3rd
row).





14 Conclusions and Future
Work

In this part we have analyzed two important ingredients of a model
for video inpainting: the optical flow and the shape inpainting.

We have proposed a variational method for binary video inpaint-
ing. In order to minimize it we follow a threshold dynamics strat-
egy where the dynamic shape analysis imposes spatial and temporal
smoothness along the visible trajectory of the objects by incorporat-
ing the convective derivative in a differential operator based on a gen-
eralized 3D gradient. Our proposal allows to keep track of the motion
occlusions among the moving binary objects. We present some ex-
perimental results containing complex object motion and occlusions.
As future work and follow-up of our shape inpainting method, we
will use it to guide a texture video inpainting model. For instance, in
the context of patch-based models, we can use it to reduce the search
domain of similar textures.

The optical flow inpainting completion is based on the Absolutely
Minimizing Lipschitz Extension equation (or the infinity Laplace
equation) on the 2D Riemannian manifold given by the frame do-
main endowed with an appropriate metric, defined by the image
frame, which acts as a guide for the resulting anisotropic diffusion.
The proposed method has been analyzed in three different types of
experiments: interpolation of sparse matches (i.e. optical flow den-
sification), and motion completion both in occlusion areas and in
large holes. The experimental results show how it outperforms the

151
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EpicFlow interpolation in practically all the situations. We have pro-
posed three different simple metrics and as part of the future work
we plan to study more sophisticated ones in order to further improve
the results.

As future work we plan to study a variational model for the joint
estimation of the shape and optical flow completion built on the two
proposed methods.
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