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CHAPTER 3. ClusDM (Clustering for 
Decision Making) 

 
 
 
 
This chapter explains the new multi-criteria decision aid methodology we 
propose, called ClusDM, which stands for Clustering for Decision Making. Its 
name comes from the use of clustering algorithms to solve the decision-making 
problem, as it will be explained in this chapter.  
 
This methodology has been designed for dealing with heterogeneous data sets 
because there is a lack of MCDA tools for this type of problems. One of the key 
points of this method is that it can deal with different types of variables during all 
the stages of the decision-making analysis. As it has been explained in the 
previous chapter, the existing approaches perform a transformation of the original 
data into a common domain. In our method, we are always dealing directly with 
the data provided by the experts, in order to avoid the modification of the 
information available in those data. 
 
Although we will explain our method as a ranking decision tool, it can also be 
used to solve selection decision problems. In fact, a selection problem can be seen 
as a subtype of ranking problems in which we are only interested in distinguishing 
the group of best alternatives.   
 
In this chapter we will explain part of the ClusDM methodology. Before starting 
this explanation, section 3.1 is devoted to describe the scales we use. Then, in 
section 3.2 we give an outline of the ClusDM methodology, giving some details 
of the four stages of the process: Aggregation, Ranking, Explanation and Quality 
measurement. Section 3.3 is devoted to the explanation in detail of the 
aggregation stage. The rest of the stages will be explained in the following 
chapters. 
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3.1 Considerations on the scales in ClusDM 
 
 
It has been reviewed in Chapter 2 that the evaluation of alternatives in relation to 
a given criterion can be done in many different scales. The most common MCDA 
methods deal with a single common scale. ClusDM is a general methodology that 
is able to handle heterogeneous criteria. In our design and implementation of the 
methodology, we have considered the following ones: 
 

• quantitative or numerical scale 
• ordered qualitative or ordinal scale (i.e preference values) 
• non-ordered qualitative scale (i.e. nominal or categorical values) 
• Boolean scale (i.e. binary values) 

 
Although we have restricted ourselves to these types of values, we would like to 
note that any other type of value that has a distance function defined in its domain 
could also be used. 
 
To operate on the values of these scales, in particular to compute similarities 
between pairs of values, some assumptions are needed on the semantics of the 
values. In the case of quantitative, categorical and Boolean scales, the definition 
of distances or similarities has been widely studied (we will review some 
possibilities in section 3.3.2). For the case of ordered qualitative values, we can 
find in the literature several approaches to the definition of the underlying 
semantics of the scale, which is the basis for the similarity and aggregation 
operations [Torra,2001]. 
  
Explicit semantics: A mapping exists that translates each linguistic term in a 

numerical or fuzzy value. Operations on the linguistic values are defined on 
terms of the corresponding operations in the numerical or fuzzy scale. 

Implicit semantics: Operations are defined assuming an implicit mapping 
function from the original scale into a numerical one. The typical case is to 
replace each term by its position in its domain. 

Operations restricted on the ordinal scale: New operations in a given scale are 
only defined in terms of operations axiomatically defined in that scale. 
Allowed operations are maximum, minimum, t-norm, t-conorm and 
operations defined from them. 

 
Working on any of these settings present advantages and disadvantages: 
 
• In the case of explicit semantics, operations are well defined and sound. 

However,  the experts are required to supply additional information, in 
particular, they must provide a mapping for each scale. 

• Implicit semantics provide easy to use operations but, instead, semantics is 
coded - and fixed- in the operators. Counterintuitive results can be obtained if 
the application does not follow the assumptions considered. 
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• Operators restricted on the ordinal scale also lead to sound results. 
Nevertheless, some of the basic operations are diff icult to be defined by non-
experienced users, as their meaning is sometimes diff icult to grasp. This is the 
case of defining ordinal t-norms and t-conorms. 

  
ClusDM uses a negation-based semantics. This can be seen as an alternative to the 
explicit semantics approach as it builds an explicit mapping from the set of 
linguistic terms into the unit interval. This mapping is inferred from a negation on 
the set of terms. This approach avoids the use of operators with coded semantics. 
Now the user is only required to supply a negation function instead of a complete 
explicit mapping from terms to numbers. This approach is easier for the experts 
because the negation of a term can be interpreted as its antonym, following [de 
Soto&Trill as,1999]. 
 
In the rest of this section we describe the negation functions we consider and how 
the semantics is inferred.  
 
Negation based semantics for linguistic terms 
 
Negation is a well -known operation in multi -valued logics that is defined over a 
set of ordered linguistic labels (i.e. terms) T={ t0, ..., tn} (with t0<...<tn). It is 
axiomatically defined as a function from T to T, that satisfies the following 
conditions: 
 
 N1)  ( ) ( )jiji tNtNtt ><  then  if  for all ji tt ,  in T 

 N2)  ( )( ) ii ttNN =    for all ti in T 

 
In fact, when these conditions hold, the set of ordered linguistic terms T 
completely determines the negation function. This is so because for each set of 
ordered linguistic terms T={ t0, ..., tn} there exists only one negation function that 
satisfies N1 and N2  [Agustí et al.,1991]. This negation function is defined by: 
 

( ) ini ttN −=      for all ti in T 

 
According to this last result, when conditions N1 and  N2 are required, the 
negation function assumes vocabularies where each term in the pair >< −ini tt ,  is 
equally informative. Although in decision making, equal informativeness is 
sometimes not adequate, it is not always possible for the expert to define an 
interval or a fuzzy set for each term because that would require a degree of 
accuracy that the expert cannot always supply. To allow non-equal 
informativeness without requiring experts to supply detailed information on the 
semantics of the terms, [Torra,1996] introduced a new class of negation functions 
over linguistic terms. With this approach an expert can provide additional 
information about the meaning of the terms in a more natural way. These new 
negation functions are defined from T to ℘(T) (i.e., parts of T) weakening 
conditions N1 and N2. 
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Definition 1. [Torra,1996] A function Neg from T to ℘(T) is a negation function 
if it satisfies: 
 

C0) Neg is not empty and convex  
C1) ( ) ( )jiji tNegtNegtt ≥<  then  if  for all ji tt , ∈T 

C2) if ( ) ( )ijji tNegttNegt ∈∈  then   

 
In this definition C1 and C2 are generalisations, respectively, of N1 and N2. In 
fact C2 is a generalisation of N3 (given below) that is equivalent to N2. 
 

N3) if ( ) ( )ijji tNegttNegt ==  then  

 
C0 is a technical condition. It means that for all ti in T, Neg(ti) is not empty 
(Neg(ti)≠ø) and convex (a subset X of T is convex if and only if for all tx, ty, tz in T 
such that tx<ty<tz and tx, tz∈X then ty∈X). In other words, C0 establishes that Neg(ti) 
is a non-empty interval of terms in T. 
 
Now, let us turn into the semantics. For a vocabulary T, the semantics of a term is 
understood as a subset of the unit interval. Let I(ti) be the subset attached to term 
ti; in this case the set ( ) ( ){ }ntItIP ,...,0=  corresponds to the semantics of all terms 
in T. It is assumed that the sets recover the unit interval and that the intersection 
of any two sets is empty or punctual  (if they are contiguous). That is, 

[ ]1,0=∪ ∈ IPI  and  ( ) ( )=∩ ji tItI ∅.  

 
However, not all partitions in the unit interval are adequate as semantics for a set 
of linguistic labels. In fact, the relations among labels that a negation function 
establishes should also be true in the intervals in P when the negation in the unit 
interval is considered. In particular, the consistency of P in relation to the most 
usual negation function N(x)=1-x was mathematically defined. Informally, when 
consistency is required, the following two conditions hold: (i) the negation of all 
the elements of the interval attached to ti belongs to the intervals attached to the 
negation of ti; (ii ) if ( ) { }ikii tttNeg ,...,0= , then neither the term ti0 nor the term tik 
are "superfluous" in relation to the negation function. This latter condition means 
that there exists at least one element of the interval attached to ti such that its 
negation belongs to I(t0) (respectively to I(tik)).  Given a negation function, there 
are several consistent semantics. In particular, the following one (which is the one 
we are going to use) is consistent with N(x)=1-x: 
 
Definition 2. [Torra,1996] Let Neg be a negation function from T to ℘(T), 
according to Definition 1; we define NegP  as the set [ ] [ ]{ }nnNeg MmMmP ,,....,, 00=  

where  
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where |X| stands for the cardinality of the set X. 
 
It is important to note that that the classical semantics is obtained when the 
negation function is restricted to satisfy ( ) 1=itNeg . In that case, I(ti) = [i/(n+1), 

(i+1)/(n+1)], which corresponds to having all the intervals with the same measure 
(i.e., the same precision). According to that, this approach extends the classical 
negation functions for multi -valued logics and relates them with the usual implicit 
semantics (note that the central point of the interval I(ti), (i+1/2)/(n+1), is 
proportional to the position of the term ti normalized in [0,1]: i/n. 
 
 

3.2 The ClusDM methodology 
 
 
In this section we will i ntroduce a methodology for multi -criteria decision aid, 
which follows the utilit y-based model. As it has been explained in section 2.2, 
these multi -criteria decision methods distinguish two different stages: (1) the 
aggregation of alternatives and (2) their ranking. Our methodology follows the 
same strategy but we have included two additional stages: (3) an explanation stage 
to give semantics to the ranking obtained, and (4) an evaluation stage to measure 
the quality of the result. With these new stages we want ClusDM to be a useful 
decision aid more than a simple decision making procedure. That is, our goal is to 
give recommendations to the user rather than make an automatic decision. 
  
Therefore, the ClusDM methodology distinguishes the following steps: 
 

STAGE 1. Aggregation or Rating Phase: The values of each alternative 
are analysed in order to find another evaluation for the alternative that 
allows us to compare it with the others and decide which one is the best. 

 
STAGE 2. Ranking Phase: The alternatives are compared and ranked on 
the basis of the value given in the aggregation phase. 
 
STAGE 3. Explanation Phase: In addition to the list of ordered 
alternatives, a qualitative term is attached to each alternative, in order to 
give some semantics to their relative position in the ranking in comparison 
to the positions of the ideal and nadir alternatives. So, the alternatives near 
the ideal will be denoted as “optimum” or “very_good” ones, the ones near 
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the nadir will be the “very_bad” options. The others will receive a term 
according to their values.  
 
STAGE 4. Quality Measurement Phase: some quality measures are given, 
which can be useful for the decision maker in order to decide the reliabilit y 
of the ranking. 
 

In Figure 2 we can see a schema of the flow of data. We begin with a data matrix 
with m alternatives and p criteria. At the end, we have a quali fied set of 
alternatives (each alternative has a linguistic term ti that describes the 
appropriateness to be selected as a solution for the decision problem) and a report 
with additional information.  
 
During the analysis of the decision matrix, the method extracts useful information 
for the decision-maker. All the details about this data and the way it is obtained 
will be included to this final report. The ClusDM methodology has been designed 
having in mind that the user will be reluctant to make a machine-based decision. 
He needs some guarantee of the quality of the ranking given by the system. 
ClusDM pretends to be a useful aid for decision makers supplying them all the 
useful knowledge that can be extracted form the data during the aggregation, 
ranking and explanation stages.  
 
As it has been said in the introduction of this chapter, section 3.3 reviews the 
aggregation stage. The ranking phase is described in chapter 4 and the last two 
ones are explained in chapter 5. 
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Figure 2. Stages of the ClusDM process 
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3.3 Aggregation 
 
 
The first stage of the multicriteria decision process consists of aggregating the 
different values given to each alternative, and obtain a new one that synthesises 
the information provided by the individual criteria. When working with 
homogeneous values, the result of the aggregation stage is a new value of the 
same nature than the original ones. For example, the Weighted Average operator 
is usually applied to a set of numerical values, producing a new numerical value. 
However, when the criteria are heterogeneous, it is not obvious which should be 
the type of values of the result. This is so because not all the scales can give the 
same accuracy when describing the alternatives.  
 
We have implemented a system, called Radames, which allows the aggregation of 
many different data representation structures (e.g. data matrices, trees, vectors). 
The case studied in this thesis concerns the aggregation of vectors describing an 
alternative. In particular, we work with a data matrix whose rows are vectors with 
qualitative or heterogeneous values. For the rest of cases (e.g. numerical or 
Boolean data), the most well-known aggregation operators have been studied and 
implemented [Valls, 1997]. 
 
For qualitative or heterogeneous value we propose the use of the ClusDM 
methodology to obtain a new qualitative criterion. That is, ClusDM can be seen as 
a MCDA methodology or as an aggregation or fusion operator.  
 
In ClusDM, the result of the first stage is a qualitative non-ordered vocabulary, 
although after the ranking and explanation stages it will become an ordered 
preference qualitative criterion. The selection of a qualitative preference scale is 
based on the comparison of the different scales we are considering: numerical, 
qualitative (preferences or categories) and Booleans. The most informative type is 
the numerical one, and the least informative is the Boolean one. Qualitative values 
are in the middle, the greater the cardinality of their domains; the more differences 
can be stressed. In fact, sometimes Boolean can be considered as a qualitative 
variable with two values in the domain.  
 
 
Numbers  Qualitative values  Boolean 
     
+ precision    - precision 
     
 

Figure 3. Precision of the different types of values 
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The transformation of one scale into another has two different effects (see Figure 
3). On one hand, the translation of numbers into terms (or Booleans) implies a 
reduction of information because different numbers will be transformed into the 
same term. On the other hand, transforming qualitative values into numerical ones 
implies substituting a term by a number. The subsequent operations with this 
number will treat it as a precise value, which is introducing error because the 
number is only an interpretation of a term that is actually covering an interval of 
values. 
 
Considering that changes from one type of representation to another produces a 
loss of some kind of information, we decided to take a position in the middle. 
Thus, the result of ClusDM will be a qualitative term describing each alternative. 
  
After studying qualitative domains, we have seen that the linguistic terms of a 
vocabulary define a partition on the set of alternatives, because the alternatives 
that take the same value are indistinguishable, according to the expert. Therefore, 
we can formulate our aggregation goal as: to obtain a new partition of the set of 
alternatives having into account all the information provided by the criteria (i.e. 
experts). Each cluster in this partition will correspond to a new linguistic value in 
the domain of the new social (i.e. agreed) criterion [Valls, 2000a].  
 
To obtain a partition (i.e. a non-overlapping set of clusters) we can use clustering 
methods. During the clustering process the objects form groups according to their 
similarity, which is measured comparing the values of the alternatives for the 
different criteria. To find these groups or clusters, each object is compared to the 
others.  
 
We have studied the application of clustering to qualitative and heterogeneous 
data sets. In the next section, there is a brief overview of clustering techniques, 
making special emphasis on the ones that are more appropriate to be used as an 
aggregation operator. Section 3.3.2 explains how to obtain the aggregation of the 
alternatives in the decision matrix by means of a clustering tool called Sedàs. 
 
Although we will concentrate on our clustering system Sedàs, any other clustering 
technique could be applied. In any case, it is important to note that this 
aggregation method does not hold the condition of irrelevant alternatives4 
[Arrow,1963], because (using clustering) it is not possible to obtain the consensus 
value of an alternative without taking into account the rest.  
 
 

3.3.1 Review of Clustering methods 
 
Clustering methods are traditional techniques to obtain a partition of a set of 
objects [Everitt,1977], [Jain&Dubes,1988]. A clustering process has two phases 
(Figure 4):  
                                                 
4 This condition is usually satisfied by the aggregation methods in MAUT. 
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(a) The construction of a similarity matrix that contains the pairwise measures of 
proximity between the alternatives. Several similarity or dissimilarity functions 
can be used. Each one has different properties, and it is not possible to determine 
which is the best for a particular set of data. In [Anderberg,1973] and 
[Baulieu,1989] there is a review of some of these measures and their 
interrelationships. 
 
(b) The construction of a set of clusters, in which similar objects belong to the 
same cluster. Many different methods have been developed [Jain&Dubes,1988]. 
Up to now, it is impossible to define a way to choose neither the best method, nor 
the best for a particular problem. These methods can are divided into two families: 
 

• Hierarchical Agglomerative clustering methods: clusters are embedded 
forming a tree. The root is the most general cluster, which contains all 
the objects (i.e. alternatives), and the leaves are the most specific 
groups, that contain a unique alternative. 

 
• Partitioning clustering methods: clusters are mutually exclusive. They 

are generated optimising a ‘clustering criterion’ . 
 
 

 

 

 

 

 

Figure 4. Clustering process 

 
We will follow the hierarchical agglomerative apoproach. That is, once the 
similarity relation is defined for each pair of alternatives in the data matrix, the 
clustering will proceed to build a tree. A tree is a nested sequence of partitions 
over the set of alternatives. Formally,  
 
Definition 3. [Gordon, 1987] A tree over a set of alternatives A is defined as a set 
τ of subsets of A that satisfies the following conditions: 

1. A∈τ 
2. ∅∉τ 
3. {ai} ∈τ for all ai∈A 
4. M∩N ∈ {∅, M, N} for all M, N ∈ τ 

 c1 ... cn 
a1    
...    
am    
 
        Data matrix 
                

 a1 ... am 
a1    
...    
am    
 
    Similarity matrix 
                

 a1       a2   ...   am 
 
         N-tree 
              (a)  (b) 
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With this conditions we can have binary or n-ary trees, although usually clustering 
trees are forced to be binary (each node has only two children). The use of binary 
trees is justified in terms of the facility with which these structures are obtained 
and treated. However, binary trees are not as much close to the knowledge they 
represent as n-trees.  
 
The clustering process, besides of returning the set of nodes of the clustering tree, 
assigns to each node a cohesion value, hα, of the cluster it represents. This value 
corresponds to a measure of similarity of the last union (i.e. when all the 
subclusters have been gathered to form the cluster that the node represents). 
Therefore, for any pair of alternatives (ai, aj) that belongs to the cluster α, the 
following condition is fulfill ed: ( ) αhaad ji ≤, , where d is the dissimilarity 

function (i.e. the opposite of the similarity) used to compare the alternatives 
during the clustering process. 
 
As it will be seen in the next section, we have focused on the study of a particular 
subset of clustering methods known as SAHN [Sneath&Sokal,1973]: Sequential, 
Agglomerative, Hierarchical and Non-overlapping methods. The clustering 
algorithm for these methods can be summarised as follows: 
 
STEP 0.  Construction of the initial similarity matrix 
 
STEP 1.  Selection of the alternatives (i.e. objects) that are 

more similar. Those alternatives will form the new 
cluster  

 
STEP 2.  Modification of the similarity matrix as follows: 

2.1. Elimination of the alternatives that belong to the new 
cluster 

2.2. Insertion of the new cluster in the similarity matrix 
2.3. Calculation of the similarity between the new cluster 

and the rest of objects (using the clustering 
criterion) 

 
STEP 3. Repeat steps 1-2 until we have a single cluster 

 
At step 1, the method can gather only two objects (in this way we build a binary 
tree) or gather all those alternatives with maximum similarity (so we obtain a n-
tree). With respect to the clustering criterion that appears in step 2.3, it is used to 
recalculate the similarity matrix when a new cluster has been created. There are 
different approaches, such as the Single Linkage, the Ward’s method, the Centroid 
Clustering analysis, etc. (see [Everitt,1977] for more details). Some of them will 
be reviewed in the next section. 
 
As it has been said, the result of the clustering process is a tree. Trees are 
generally pictured using dendrograms (see Figure 5). A monotonic dendrogram is 
the graphical representation of an ultrametric (i.e. cophenetic) matrix. More 
formally, a dendrogram is defined as a rooted terminally-labeled weighted tree in 
which all terminal nodes are equally distant from the root [Lapointe&Legendre, 
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1991]. The weights of this tree are given by the heights hα, which correspond to 
the cohesion values of the clusters α. So, for a tree τ with M,N∈τ (two internal 
nodes), the following property is fulfilled: if M∩N≠∅, hM≤hN↔M⊂N. 
 
 
 
 
 
 
 
 
 

Figure 5. Three different formats for representing dendrograms 

 
Alternative characterisations of a dendrogram can be found in the literature. 
Gordon [Gordon, 1987] states that a necessary and sufficient condition for a 
monotonic dendrogram is that the set hij satisfies the ultrametric condition: 

 
( ) A,a,aahhh kjijkikij ∈≤  allfor   ,max  

  
where hij is the height of the internal smallest cluster to which both alternatives ai 
and aj belong.  
 
Nevertheless, some of the trees generated by the clustering criteria do not fulfil 
this ultrametric condition. So, they are not monotonous. They are said to present 
inversions or reversals. For example, in  
Figure 6 we can see that clusters α=(g,h) and β=(i,j) merge at a level lower that 
the level at which α was created.  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Dendrogram of a non-monotonous tree 

 
Non-monotonous trees may cause problems when the tree is cut in order to obtain 
a partition of the set of alternatives. 
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Partitions are obtained making a horizontal cut of the tree at a particular height. 
The height at which the tree is cut determines the abstraction level achieved. 
Increasing the cut level we obtain a smaller number of bigger (more general) 
clusters. 
 

3.3.2 Our generic clustering system: Sedàs 
 
We have implemented a generic SAHN clustering system, called Sedàs [Valls et. 
al., 1997]. All the scales mentioned in section 3.1 are allowed in Sedàs: numerical, 
ordered qualitative preferences, categorical and Boolean. However, any other 
scale with a subtraction function defined in its domain can be included in the 
system. Sedàs has been incorporated to the Radames system, in order to be used 
as an aggregation operator.  
 
The interface allows the user to choose from a list of similarity functions and a list 
of clustering techniques the most adequate to each particular data set.  The system 
includes, among others, the following classic weighted dissimilarity functions. 
Being vij the value of the i-th criterion of alternative aj, and vik the value of the i-th 
criterion of alternative ak, we can calculate the dissimilarity d(aj,ak) using: 
 
 

• Distance based on Differences 

( )
p

vv
p

i
ikij∑

=

−
1  

Eq. 3.2 

• Manhattan Distance 

∑
=

−
p

i
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 Eq. 3.3 

• Mean Character Difference  (M.C.D.) 
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Eq. 3.4 
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• Taxonomic or Euclidean Distance 
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Eq. 3.5 

 
• Minkowski Distance 
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 Eq. 3.6 

• Pearson Correlation Coeff icient 
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This dissimilarity functions have been generalised to be applied to numerical, 
ordered qualitative, categorical and Boolean data [Valls et. al., 1997]. For a 
numerical criterion with range [a,b], we put the values into the unit interval [0,1] 
before applying the dissimilarity function. Ordered qualitative values are 
translated into numbers in [0,1] using their negation-based semantics. The 
difference vij - vik for categorical values takes only two possible values: 0 if they 
are different or 1 if they are equal. Finally, the Boolean values are treated as 
categorical ones. This functions can also be adapted to consider different weights 
for the different variables (i.e. criteria, attributes) [Gibert&Cortés, 1997]. 
 
If the decision matrix has missing values (that is there are some unknown values), 
the system is able to calculate the similarity among the pairs of objects. If vij or vik 
are unknown, Sedàs can operate in two modes: a) the rest of values of this 
criterion are used to calculate the average value, which is used instead of the 
unknown value; b) this criterion is ignored in the comparison of the two 
alternatives, aj and ak, so p is decreased in 1 unit because we are dealing with less 
criteria. 
 
Using the data in the similarity matrix, Sedàs executes the algorithm explained in 
the previous section. In step 2.3, a clustering criterion is needed to compare the 
new-created cluster with the rest of elements of the similarity matrix. To 
determine the similarity of this new element with respect to the others, many 
methods have been defined. Some of the most known approaches are available in 
our system, such as: 
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• Single Linkage or Nearest Neighbour 
 
This criterion considers that the dissimilarity value between a new cluster α 
and an object5 ok is equal to the minimum distance between the objects in the 
cluster and the object outside ok.  
 

( ) ( )ki
o

k oodod
i

,min,
α

α
∈

=  

Graphically,  
 
 
 
 
 
 
 
 
 

 

Figure 7. Single Linkage 

 
 
• Complete Linkage or Furthest Neighbour 
 
This criterion assumes a similar behaviour than the Single Linkage, however, 
it considers that the dissimilarity value between a new cluster α and an object 
ok is equal to the maximum distance between the objects in the new cluster and 
the object outside it, ok.  
 

( ) ( )ki
o

k oodod
i

,max,
α

α
∈

=  

Graphically,  
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Complete Linkage 

                                                 
5 An object can be a single alternative or a cluster generated in a previous step. 
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• Arithmetic Average 
 
A measure in between of the two previous ones is the one known as 
Arithmetic Average criterion. It takes as a dissimilarity value between a new 
cluster α and an object ok, the average distance between the objects in the 
cluster and the object outside ok.  
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• Centroid Clustering 
 
This approach is based on the calculation of the prototype of each cluster. Let 
us denote as oα the prototype of the cluster α. This prototype or centroid is 

defined as follows: ( )pccco ,....,, 21=α , where ic  is the average value of the 

criterion ci considering the alternatives that belong to α. Using this prototype 
or centroid, the distance between the new cluster and an outside object, ok, is 
defined.  
 

( ) ( )kk oodod ,, αα =  
 
This averaging function needed to calculate the prototype of the cluster 
depends on the type of scale. In Table 4 we can see some examples of 
averaging functions for the scales we are dealing with: 
 
 

Scale Functions 

Numerical Arithmetic average, Weighted Arithmetic average, OWA 

Categorical Max-min, Voting Techniques, Averages (translating terms 
into numbers) 

Boolean Voting 

Table 4. Some averaging functions to build prototypes 

 
  
In the case of qualitative domains with a negation function, we propose the 
translation of the values into numbers and the application of a numerical 
averaging operator. We recommend the use of the Weighted Arithmetic 
average or the OWA operator, depending on the kind of weights we are 
interested to apply. 
 



ClusDM: Clustering for Decision Making 

 43  

• Median Cluster Analysis 
 
This criterion established that the dissimilarity between a cluster α (formed by 
the union of objects oi and oj) and the object ok (which does not belong to α) is 
the length of the bisectrix of the angle corresponding to ok, considering a 
triangle formed by these three objects. This is illustrated in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Median Cluster Analysis 
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For n-trees, this definition can be generalized as follows: 
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That is, we build a triangle using two of the objects that belong to the cluster: 
the one that is nearest to ok and the one that is furthest with respect to ok. 
 

Using these clustering criteria, Sedàs is able to generate n-ary trees. We decided 
to discard the binary approach in order to avoid the arbitrary choice of two 
elements to be joined when there are several with the same similarity. Moreover, 
with this method we eliminate the chaining of clusters that have the same distance 
between them. 
 
Not all these clustering criteria produce monotonous trees. In particular, the 
Centroid and the Median Cluster Analysis methods may generate trees with 
inversions. So, when Sedàs generates a partition P from the tree, it checks that the 
clusters in the partition are mutually exclusive, that is, M∩N=∅ for all M,N∈P. 

cluster α 

ok 

oj 

oi 
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For instance, the partition induced in Figure 10, 
P={ (a,b,c),(d,e,f),(g),(h),(g,h,i,j),(i,j)}, is not correct because does not hold this 
condition. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Making a cut in a tree with inversions 

 
 

3.3.3 Using Sedàs as an aggregation operator 
 
We have studied and compared the trees obtained using different similarity 
functions and clustering criteria [Valls et. al., 1997]. The main conclusion reached 
is that clustering criterion has less influence on the structure of the tree generated 
than the similarity function. In Table 5 we can see the comparison of different 
trees obtained from the same data matrix with several clustering criteria and 
similarity functions. The table give the distance between pairs of trees. We have 
used the distance defined in [Newmann,1986] and [Barthélémy&McMorris,1986]: 
 

( ) '22'22'2,2 ∩−∪=τd  

 
Looking at the distances between trees, we can see that the distance is highly 
related to the similarity function used rather than to the classification method. 
This is reflected by means of small distances between trees obtained with the 
same similarity function (Differences or Mean Character Difference), and greater 
distances when different similarity functions are considered. We can see, for 
example, that when we choose the similarity function Differences (Dif), the trees 
obtained by means of the Arithmetic Average (Dif_a) and the Median procedure 
(Dif_m) have a distance of 8. On the other hand, when Arithmetic Average is 
considered with several similarity functions we have dτ(Dif_a, MCD_a)=13. 
Notice that the distances in the upper right frame are greater than the others in the 
same column/row.  
 
 
 
 
 

inversion 
α-cut 

  a  b  c    d   e   f     g     h   i    j 
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 Dif_a Dif_m Dif_s MCD_a MCD_m MDC_s Symbols glossary 
Dif_a 0 8 9 13 17 13 Dif: Differences 

Distance 
Dif_m  0 13 17 19 17 MCD: Mean 

Character Difference 
Dif_s   0 12 16 12 a: Arithmetic average 

MCD_a    0 6 0 m: Median procedure 
MCD_m     0 6 s: Single Linkage 
MCD_s      0  

Table 5. Distances between trees 

 
Assuming that the selection of the clustering criterion does not causes great 
differences in the structure of a tree if the similarity between the elements is well 
established, we recommend the use of the Centroid Clustering criterion for 
aggregating the values of the alternatives. The rationale for this decision is that 
this method is based on the concept of prototype. The prototype is the pattern of 
the cluster, and it is used to determine the relation from one cluster to the other 
clusters and objects analysed. As it will be seen in the next chapters, the following 
stages of the ClusDM methodology are also based on the prototype of the clusters 
in the partition obtained after the cutting of the tree. For this reason, we consider 
that it is appropriate that the aggregation stage also works with prototypes. 
 
After fixing the clustering criterion to the use of the Centroid Clustering, we 
studied the most usual similarity functions:  

• the Differences distance may compensate a negative difference in one 
criterion with a positive difference in another one. This is an important 
drawback since two different objects can be considered as equal if the 
differences compensate each other; 

• the Manhattan distance is based on a city made of blocks, so the distance 
between two opposite corners of a building is the length of the two streets 
you have to walk to arrive to the other side; 

• the Taxonomic distance considers that if you have to cross a square from 
one corner to the opposite one, you can walk through the square. So, the 
distance between these two opposite corners is the length of the line that 
crosses them; 

• the Minkowski distance is a generalization of the Taxonomic distance that 
considers more than 2 criteria, but the properties are the same; 

• the Pearson Correlation Coefficient is based on the lineal relations 
between alternatives. It measures the correlation between two alternatives 
comparing their values to the average for each criterion. Some 
dimensional properties on the data set are required for applying this 
distance [Sneath&Sokal, 1973]. 

 
Having into account that the goal of our methodology is to be able to deal with 
heterogeneous data sets. As it has been said in chapter 1, it is particularly 
interesting the case of having qualitative preference criteria with different 
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vocabularies. For this reason, we recommend the use of the Manhattan distance. 
The basis of this similarity function is more appropriate to the characteristics of a 
qualitative domain because when we compare two linguistic terms, we will use a 
numerical translation of this terms, however, the number represents an interval 
(like one face of a building block) instead of a single point (like the corner of a 
square).  
  
Although in this point of the explanation we are suggesting the use of the 
Manhattan distance together with the Clustering criterion, we must remember that 
the ClusDM methodology is more general, and these are only some parameters 
that can be changed. 
 
In our system, Sedàs, these parameters are required to build the n-tree. As it has 
been said, to obtain a partition  this tree is cut at an appropriate level. In our case, 
this level is determined by the number of clusters we want to obtain. Remember, 
that each of these clusters must receive a different term in the vocabulary of the 
new preference criterion. So, the number of clusters is proportional to the length 
of the vocabulary. In general, 7 it is said to be the ideal number of terms that a 
person is able to handle [Miller,1956], however, this number might not be 
adequate in some cases.  
 
We propose to use the lengths of the vocabularies of the criteria provided by the 
experts to have an idea of the number of clusters we are looking for. Using this 
criterion, Sedàs takes a number of clusters as close as possible to the number of 
linguistic terms used in the criteria. If there is no qualitative criterion, then a good 
approximation is to take max(1,log2d), where d is the number of different values 
considering all alternatives. This value is based on the proposal of [Dougherty et. 
al.,1995]: they define the best number as the maximum of 1 and 2*log10d. 
However, this approximation gives a number of labels too small, which implies 
losing too much information. After making different tests, we recommend the use 
of the logarithm base 2. 
  
Despite of being interested in a partition, it is also useful to know the complete 
tree of clusters, which is giving us the relation among the alternatives at different 
levels. Looking into the subclusters of a particular cluster we can obtain a more 
precise clustering of the alternatives, which allows us to distinguish different 
categories inside a cluster. On the other hand, if we look at higher clusters in the 
tree, we can see the similarities among the clusters of our partition.  
 
Finally, once the alternatives have been aggregated in clusters, Sedàs 
automatically assigns a symbolic name to each cluster. This partition and the 
prototype of each of its clusters are the inputs of the following stage: Ranking. 
 
 
 
 
 
 



47 

 
 
 

CHAPTER 4. Ranking stage  
 
 
 
 
The ranking of the alternatives is applied after the aggregation of the values in the 
decision matrix. In general, the ranking procedure depends on the type of result 
provided by the previous stage. In our case, the aggregation produces a set of clusters 
and each cluster can be represented by a prototype alternative, which is built 
according to the values of the alternatives that belong to the cluster, as it has been 
explained in chapter 3.   
 
Therefore, the goal of this stage is to determine automatically the preference among 
the clusters, that is, their ranking. In this way, at the end of the process, the class at 
the first position of the ranking will contain the most preferred alternatives (according 
to the new overall criterion). To obtain these preferences on the clusters, their 
prototypes will be used. 
 
The study of different ranking techniques have brought us to distinguish two different 
situations: 
 
CASE A: All the criteria in the decision matrix are expressing preferences over the 

alternatives. That is, each criterion is giving an order of the alternatives 
according to some preference opinion or property. 

CASE B: The criteria are expressing different views of the data, which can be 
preferences or just descriptive properties (e.g. educational degree, job, and 
age). 

 
The first case is the one that is usually studied in MCDA research [Vincke,1992]. 
Nevertheless, sometimes there are descriptive properties that should also be taken 
into account in the decision making process.  
 
In the following sections we will explain the ranking methodology used in the two 
different cases. A formal definition of the method is done at the beginning of the 
section, to continue with the explanation of how to apply each method to the ranking 
of clusters.  
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4.1 Ranking using Principal Components Analysis 
 
 
The ranking in CASE A is done using the multivariate statistical method called 
Principal Components Analysis (PCA). To obtain a good ranking with PCA, criteria 
are required to be correlated with each other. This situation happens when the criteria 
are the opinions of different experts about the alternatives. Although the experts may 
have different points of view, if it is possible to define “ the best ranking” for the set 
of alternatives, and experts really know the decision problem, there is supposed to be 
a high degree of correlation.  
 
The method of Principal Components [Pearson, 1901] obtains linear transformations 
of a set of correlated variables such that the new variables are not correlated. This is a 
useful technique for statistical analysis of multivariate data, in particular, to describe 
the multivariate structure of the data.  
 
Although the Principal Components Analysis is usually a descriptive tool, it can be 
also used for other purposes. For example, PCA can be applied to obtain a ranking of 
observations [Zhu, 1998].  
 
In this section, we will explain in detail the mathematical basis of a Principal 
Components Analysis. We will see some properties that are interesting for its use as a 
ranking tool. Furthermore, we wil l define some measures and procedures to interpret 
the results. Finally, we will detail how PCA must be applied to the ranking phase in a 
multicriteria decision problem.  
 
 

4.1.1 How to perform a Principal Components Analysis 
 
Considering that we have a data matrix, X, where the alternatives are defined in a 
certain basis, the PCA will make a change in the basis, so that, the new space is 
defined by orthogonal axes. However, PCA is not applied directly to the matrix X 
[Jackson,1991]. We use a pp ×  symmetric, non-singular matrix, M.  
 
Principal Components are generated one by one. To find the first principal component 
we look for a linear combination of the variables that has maximum sample variance. 
Then, the second vector will be obtained with the same goal subject to the fact of 
being orthogonal to the first vector, and so on. The solution to this maximisation 
problem is based on the fact that the matrix M can be reduced to a diagonal matrix L 
by premultiplying and postmultiplying it by a particular orthonormal matrix U. This 
diagonalisation is possible because M is a pp ×  symmetric, non-singular matrix. 
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LMUU ='  

With this diagonalisation we obtain p values, l1, l2, ..., lp, which are called the 
characteristic roots or eigenvalues of M. The columns of U, u1, u2, ..., up, are called 
the characteristic vectors or eigenvectors of M. Geometrically, the values of the 
characteristic vectors are the direction cosines of the new axes related to the old.  
 
Having the set of data, X, described by p variables, x1, x2, …, xp, we can obtain the 
eigenvectors corresponding to this data and produce new p uncorrelated variables, z1, 
z2, …, zp. The transformed variables are called the principal components of x.  
 
The new values of the alternatives are called z-scores, and are obtained with this 
transformation: 

*'xUz=  Eq. 4.1 

where x* is 1×p  vector that has the values of an alternative after some scaling. 
 

4.1.2 Types of Principal Components Analysis 
 
The matrix M, from which the principal components are obtained, is defined as 
described in Eq.4.2. 

n

YY
M

'=  Eq. 4.2 

Different types of principal components analysis exist according to the definition of 
variable Y in terms of X. Here we underline the three different possibilities 
[Jackson,1991]. 
 
• Product matrix 

The first approach consists in taking XY = , that is, perform the analysis from the 
raw data. However, there are not many inferential procedures that can be applied 
in this case.  

 
• Covariance matrix 

The second approach consists in centring the data, so that XXY −= . In this 
case, we scale the data to be distances from the mean (which is actually a 
translation of the points). Thus we transform the variables such that all of them 
have mean equal to 0, which makes them more comparable. It is important to 
notice that, in this case, the matrix M obtained is the covariance matrix of X.   
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In the calculation of the covariances the mean is subtracted from the data, so it is 
not necessary to do it in advance. Then, we obtain the principal components using 
Eq.4.1, where x* will be the result of subtracting the mean from the data values.  

[ ]xxUz −= '  Eq. 4.3 

where x is a 1×p  vector that has the values of an alternative on the original 

variables, and x  is also a 1×p  vector that has the mean of each variable. 
 
The covariance matrix is denoted S and it is calculated as follows: 
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where 2
is  is the variance of xi, and the covariance of (xi, xj) is calculated as 

follows: 
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PCA based on the covariance matrix is widely applied because the inferential 
procedures are better developed for this kind of matrix than for any other situation 
[Jackson,1991]. However, there are some situations in which the covariance 
matrix should not be used: (i) when the original variables are expressed in 
different units or (ii ) when the variances are different (even though the variables 
are in the same units). The use of a covariance matrix in these two situations will 
give undue weight to certain variables (i.e. those that have a large range of values 
or a large variance). 

 
• Correlation matrix 

To avoid the weighting of certain variables, we can work with variables with a 
common deviation equal to 1. This is obtained by centring and standardising the 
variables. So, the matrix M is, in this case, the correlation matrix of X. 
The correlation matrix, denoted by R, is computed as follows: 
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11 −−= SDDR  Eq. 4.5 

where D is the diagonal matrix of standard deviations of the original variables: 
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The use of correlation matrices is also very common and it is usually the default 
option in some computer packages (e.g. Minitab). Inferential procedures for this 
type of matrices are also well defined. 
 
In this case, the z-scores are obtained using Eq.4.3 but using standardised values 
for x*. That is, we have to subtract the mean to the data and divide it by the 
standard deviation. Then, we must multiply it by the eigenvectors. 

[ ]xxDUz −= −1'  Eq. 4.7 

 
As it has been previously said, the results obtained with each type of scaling are 
different. For example, the eigenvectors, U, and the z-scores, z, are different. In fact, 
there is no one-to-one correspondence between the principal components obtained 
from a correlation matrix and those obtained from a covariance matrix.  
 
Other types of vectors can be derived from the characteristic vectors (U-vectors) 
obtained either with the covariance or the correlation matrix. We are interested in the 
V-vectors, which properties will be described in the next section. The transformation 
of the characteristic vectors is done in order to obtain principal components in other 
scales, in which other properties are fulfill ed. 
 
V-vectors are the ones obtained with the following transformation: 

21ULV =  

i.e.     iii luv =      

i.e.   iijij luv =     

Eq. 4.8 
 

Eq. 4.9 
 

Eq. 4.10 
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Giving weights to the variables: 
 
To give different importance to each variable, we must adjust the matrix used in the 
PCA (either the correlation or the covariance matrix) using a diagonal matrix with the 
weights of each variable. Then, the matrix used for the multivariate analysis will be: 
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4.1.3 Properties 
 
Let us describe the properties of the results obtained in the two most popular PCA 
approaches: the covariance matrix and the correlation matrix. 
 
PCA based on covariances: 
 
The U-vectors are orthonormal; that is, they are orthogonal and have unit length. 
Therefore, they are scaled to unity (i.e. the coefficients of these vectors will be in the 
range [-1,1]). Using these vectors we produce principal components that are 
uncorrelated and have variances equal to the corresponding eigenvalues. The 
contribution of each variable to the formation of the i-th principal component is given 
by the magnitude of the coefficients of ui, with the algebraic sign indicating the 
direction of the effect [Dillon&Goldstein, 1984]. 
 
V-vectors are also orthogonal but they are scaled to their roots. In this case, the 
principal components will be in the same units as the original variables. The 
variances will be equal to the squares of the eigenvalues. 
 
Interpretation of principal components is often facilitated by computing the 
component loadings, which give the correlation of each variable and the respective 
component. So, the loading for the j-th variable on the i-th principal component is: 

jj

iij

S
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 Eq. 4.12 

Note that the numerator is actually vij. 
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PCA based on correlations: 
 
The properties of U-vectors are the same as the ones explained for the case of the 
covariance matrix. Therefore, the interpretation of their coeff icients is the same. 
  
With regard to the V-vectors, in this case, they hold important property: their 
coeff icients show the correlations between the principal components and the original 
variables, because the variances of the standardised variables are all equal to 1. Thus, 
if the coeff icient vij is equal to 1 it means that the i-th principal component and the j-
th variable are positively correlated, and if vij is equal to -1 they are negatively 
correlated. However, we lose the property of obtaining z-scores in the domain of the 
original variables. 
 

4.1.4 Stopping rule: 
 
The Principal Component Analysis allows us to reduce the multidimensionality of the 
data, and represent the information of the initial data set in a k-space smaller than the 
original (with p variables), that is, k<<p. In the k-space the data is easily 
interpretable. However, the determination of which should be the value k is not 
straightforward. The larger k is, the better the fit of the PCA model; the smaller k is, 
the simpler the model wil l be.  
 
There are different stopping criteria (see [Jackson, 1991]). They are based in the fact 
that the characteristic roots, l1, l2, ..., lp, are decreasingly ordered, that is, l1 > l2 > ... > 
lp. That means that the first characteristic vector is the one that accounts for a higher 
proportion of variabili ty. These stopping criteria range from methods that evoke 
formal significance tests to less formal approaches involving heuristic graphical 
arguments.  
 
For the covariance input, the stopping criteria are usually related to the statistical 
significance of the eigenvalues. However, for the correlation matrix, these statistical 
testing procedures no longer apply.  
 
An alternative approach consists of more ad hoc criteria. For example, the cumulative 
percentage of the variance extracted by successive components, or the Joll iffe's 
criterion (called Broken Stick), which consists of selecting the k vectors, uj, such that 
lj>gj, where gj is: 
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An adaptation of this formula to the case of having variables with uniform 
distributions is: 
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Eq. 4.14 

For the case of the correlation matrix, this variance approach lacks clear meaning, 
because the standardisation of the data produces a dimensionless standard score 
space, where the sum of the eigenvalues is equal to the number of variables, p. The 
most frequently used extraction approach in this case is the selection of the 
components whose eigenvalues are greater than one. The rationale for this criterion is 
that any component should account for more “variance” than any single variable 
(remember that variances are equal to 1 because data have been centred and 
standardised). 
 

4.1.5 Interpretation of the results 
 
A Principal Components Analysis is usually performed for descriptive purposes. In 
this framework, it is useful to know the global variance of the data we are studying. 
There is a direct relation between the sum of the original variances and the sum of the 
characteristic roots obtained with the PCA. 

Tr(L) = l1 + l2 + l3 + ... lp Eq. 4.15 

In the case of doing the PCA with the correlation matrix, it holds that Tr(L) = p 
because the variables have been previously standardised.  
 
The value Tr(L) is used to calculate the proportion of the total “variance” attributable 
to the i-th component, which is li /Tr(L).  
 
Another measure that is interesting is the contribution of each observation, j, to the 
formation of a particular component, i, denoted CTRi(j). With this information, we 
can detect observations that if they were removed from the analysis, the result would 
be the same. These observations have low contribution values. 
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We can also measure the cosine of the angle between an alternative j and the 
component i, which gives us an idea of the quality of the representation of the 
alternative if it is projected into the i-th component.  
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2

2
2 =  Eq. 4.17 

being d the Euclidean distance between the observation j and the centre of gravity 
(which is 0 if the data is standardised). 
 
 
Graphically, 
 
 
 
 
 
 
 
 
 

Figure 11. Measuring the quality of representation of alternative j 

 
The measure ( )ji

2cos  is, actually, the square of the cosine of the angle α in Figure 11. 

If we denote as A the distance between j and G, and B is the distance between zi
2(j) 

and G, we can see that when Eq.4.17 is equal to 0, A and B are perpendicular, and if 
Eq.4.17 is equal to 1 then A=B, so j is the same as zi

2(j) , which means that there is no 
loss of information in the change between one space and the other. 
  
We can define a measure of the quality of the representation of a particular 
observation j in a k-space (formed with the k first components). The maximum value 
of QLT (quality) is 1, which means that the observation is completely representable 
with the k components. 
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On the other hand, it is very interesting to know the meaning of the new space 
defined by the eigenvectors obtained in the PCA in terms of the initial variables. It is 
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possible to make a dual analysis with XT, that is, transposing the data matrix, with 
which we consider the variables as rows (as observations) and the individuals as 
columns. Then, using the PCA, we obtain an m-space where we can represent the 
variables in terms of a set of uncorrelated axis (that represent uncorrelated 
observations). An important property is that this m-space is related to the p-space 
obtained with matrix X. With this relation, we can use the p-space to represent the 
variables without having to perform the second analysis. 
 
Once we have the variables represented together with the observations, we can use 
the measures Eq.4.16, Eq.4.17, and Eq.4.18 to infer the meaning of the principal 
components. In [Volle,1985] there are some guidelines about the process to follow 
for the interpretation of the new axes, in the case of using the correlation matrix. Note 
that if we calculate the projection of the variable xj into the i-th component, zi(xj), we 
can write the contribution and cosine in terms of the V-vectors, because zi(xj) = vi(xj).  
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We can see that the contribution of a variable to the i-th component is given by the 
square of the U-vector obtained when performing the PCA of X. The sign of ui says if 
it has contributed positively of negatively.  
 
On the other hand, with respect to Eq. 4.17, the distance of each variable to the centre 
of gravity is 1 (because the data has been standardised). So, the cosine is equal vi and 
also it is equal to the correlation between the variable and that component. If cos2

i(xj) 
is near to 1, xj can explain the meaning of the axis, because it is really well 
represented by this axis. In addition, if vi is near to 1, xj is positively correlated with 
the component (and if vi is -1, it is negatively correlated). 

( ) ( )jiji xvxCORR 2=  Eq. 4.20 

 
Finally, there are some measures for the global correlation of the initial variables. 
One of them is the calculation of the determinant of the covariance or the correlation 
matrix. In the case of the correlation matrix, R, the determinant is sometimes referred 
to as the “scatter coeff icient” [Jackson, 1991]. This coeff icient is bounded between 0 
(all of the variables are perfectly correlated) and p (all of the variables are 
uncorrelated). 

plllR ⋅⋅⋅= ...21  Eq. 4.21 
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Another measure is the addition of the individual correlation of each variable to the 
first component, but having into account the sign of their direction (positive if it has 
the same direction than the component, and negative otherwise). If all the variables 
are positively correlated, the sum is equal to the first eigenvalue li, so the percentage 
of correlation is li/p.  
 

4.1.6 Application of the PCA to rank order 
 
The principal components found with a PCA can be used to rank the observations 
[Slottje et. al., 1991]. In the simplest case, we have a set of highly correlated variables 
and the stopping criterion selects only one component to represent the data. Then, the 
projections of the observations in this component, z1, completely define an order 
among them.  
 
In the case of needing more than one component to represent the information of our 
set of data, we can combine the components considering the proportion of variance 
explained by each one. In [Zhu, 1998] the position of each alternative aj is given by: 
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 Eq. 4.22 

In this expression, all the values of the observations in the original variables must be 
positive. If this is not the case, some adjustments must be introduced to Eq.4.22 (see 
[Zhu,1998]). 
 
We propose to use the Principal Components Analysis to rank the alternatives only if 
one component is enough to represent our data. If more than one component are 
needed, the interpretation of the result is far more complicated to automatize. In 
addition, the measure that qualify the goodness of a ranking obtained with the PCA 
can only be applied for the case of having the projection of the alternatives in one 
component (this will be explained in more detail in chapter 5). Therefore, when the 
first component is not enough to represent the data and perform the ranking, we will 
use an alternative procedure based on the similarity to an ideal alternative, which is 
explained in section 4.2.  
 
Now, we are going to see in detail the process that must be followed to obtain the 
rank order of the partition of alternatives that we have got in the clustering phase. We 
want to mention here, that usually the PCA is used as a descriptive tool for an 
statistical expert that knows how to interpret the results in each of the different steps 
of the process. However, we want to include PCA in a decision-making method that 
can be implemented and executed automatically to obtain the ranking of the 
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alternatives without the help of any expert in PCA. For this reason, we have studied 
in depth this statistical procedure and have selected some measures that can provide a 
useful knowledge to the decision maker without having to know the insights of this 
statistical method [Valls&Torra,2002]. 
 
First of all, we have to decide which type of PCA to use. As we have seen, there are 
different ways of performing a PCA depending on the kind of matrix from which we 
obtain the eigenvectors and eigenvalues. We propose to use the correlation matrix 
because it will allow us to have variables with different variances. Remember that, in 
our decision-making framework the variables are the criteria6, which can have 
different types of values and different domains. 
 
In the moment of having to perform the ranking, we have the following information 
available: a data matrix with the alternatives described according to a set of criteria, 
the grouping of this alternatives into similarity classes and, finally, the prototype of 
each class (in terms of the same criteria). With the prototypes we can build another 
matrix, B, of the form: 
 
 

 Criterion 1 ... Criterion p 
Prototype Class A     

...    
Prototype Class G    

Table 6. Prototypes matrix, denoted by B 

 
Then, we have two data matrices that can be used to obtain the first principal 
component: the original data matrix, X, and the prototypes matrix, B. In principle, 
PCA could be performed in each of the two matrices. However, the second one has a 
very short number of objects (between 4 and 9, which are the usual cardinalities of 
linguistic vocabularies). This is not good for PCA, which is a technique to be used 
when the number of variables (i.e. criteria) is smaller than the number of alternatives 
(i.e. classes or objects). Moreover, the values in the matrix of prototypes have not 
been provided by the experts, they are the result of some computation over the 
original values, which can introduce error in the interpretation of the result. So, 
although the objects that we want to rank are the ones in matrix B, we should not 
perform the PCA directly with these data. The PCA will be done in the original data 
matrix, and then, the prototypes of the classes will be introduced in the new space in 
order to be ranked. 
 

                                                 
6 In the data matrix we can have criteria given by a single expert or by different experts. 
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We can distinguish 5 steps in the process of applying the Principal Components 
Analysis to our data. These steps must be followed sequentially. At the end, we wil l 
have a ranking of the classes and some values that will be used to measure the 
goodness of the result, and to infer the relations among the variables (i.e. preference 
criteria). 
 
STEP 1 –  Apply the Principal Components Analysis to the data matrix. Obtain the 

eigenvalues, li, eigenvectors, ui and V-vectors, vi. 
 
STEP 2 – Check if the first component is enough to perform the ranking. To decide 

whether it is enough or not, we must apply a stopping criteria (section 4.1.4) 
and see if the number of selected components is one or greater. As we are 
working with correlation matrices, we propose to use the criteria that selects 
those vectors that account for more than a 1% of variance, that is, li>1. 

 
If we need more than one principal component to represent our data, we will execute  
step 4 (to obtain some additional information) and end. 
 
STEP 3 – Use the first V-vector to know the meaning of the first component. A value 

near zero means that the variable has no influence in the interpretation of the 
component, while the higher the absolute value of the variable, the more the 
component is saying the same than the variable. We can apply Eq.4.20 to 
calculate the relation between each variable and the first axis and find the 
variables with higher correlation. 

Once, we have got the variables that can explain the meaning of the axis, 
we need to know if they are positively or negatively correlated, this can be 
found looking directly into the V-values of the first axis, v1. The sign 
indicates the direction of the variable in relation to the component. This is 
particularly interesting because we must determine which is the direction of 
the first component in order to know which are the best alternatives. In our 
case, all the variables are expressing preferences, where the higher the value, 
the more preferred the alternative is. Thus, the sign of coeff icients of v1 
should be the same if all the criteria agree in giving the same kind of 
preference (good or bad) to the same alternatives. When a criteria is saying 
the contrary than the others, its sign wil l be the opposite of the others. In 
case of having a set of positively correlated variables of similar dimension to 
the set of negatively correlated variables, we will stop the MCDA process 
because the direction of the first component cannot be established. 

 
STEP 4 – Calculate the contribution of each variable to the formation of the first 

principal component (Eq.4.19). If a variable did not contributed to the 
formation of the first axis, it means that this variable does not give any 
useful information for the determination of the axis to be used in the ranking. 
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  When a variable highly contributes to the second principal component 
and not to the first one, we can say that this variable is in contradiction (it is 
perpendicular) to our social axis, which is the first one.  

  If a variable does not contribute to any axis, it means that it can be 
eliminated from the analysis and the result would not be significantly 
different. 

 
STEP 5 – Find the z-scores of the prototypes in the first principal component, z1, 

using (Eq.4.3), where x* are the columns of the prototypes matrix. Before, 
these values have been centred and standardised.  

The z-scores tell us the position of each class into a line, which defines a 
total order among them. The direction of the director vector of this line 
determines which is the best and worse position. This direction has been 
found in step 3. Thus, the ranking of the classes we were looking for is 
already set. 

 
If the process finishes successfully, in step 5 we have obtained the z-scores in the first 
principal component, z1. However, the values of z1 do not belong to a predefined real 
interval. To be used in the following stages of the MCDM process, we need to know 
the position of the clusters in the [0,1] interval. To perform this scaling for a given 
prototype, j, we use Eq.4.23. 

( ) ( )
)()( 11

1
01

nadirideal azaz

jz
jz

−
=  Eq. 4.23 

 

The aideal is a fictitious alternative that takes the best possible value for each criterion. 
If this alternative existed, it will be the most preferred by the decision maker. On the 
other hand, the anadir is a fictitious alternative with the worst possible value for each 
criterion. 
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4.2 Ranking based on the similarity to the Ideal alternative 
 
 
The second procedure, denoted as CASE B in the description of the ranking phases, 
corresponds to the situation in which criteria are not correlated enough. For this case, 
we propose the application of another ranking technique based on similarity 
functions. Due to the distinct opinions of the experts (or criteria suppliers) or the 
incomparable meaning of the criteria, we will need a separable measure, which 
compares the objects criterion by criterion.  
 
We assume that for each criterion there is a single value of its domain, vij, which is 
the best. That is, if alternatives were only described with this criterion, the ones with 
value vij will be selected by the decision maker. With the values vij we build an ideal 
alternative, denoted aideal, which is the one that has the best value for each criterion. 
This ideal alternative is the same one considered in the previous section to locate 
alternatives in the [0,1] interval. 
 
The ranking is based on the comparison of prototypes with respect to the ideal 
alternative. The alternatives that belong to the class whose prototype is nearer to aideal 
are the best ones. To compare them we must use a similarity measure, like the ones 
used during the clustering process.  
 
With this approach, the position in ℜ of a cluster is given by: 

( )idealj aprototypesimilarityjz ,)( =  Eq. 4.24 

where the lower the z, the better the cluster is. 
 
A similar approach is the one known as TOPSIS (Technique for Order Preference by 
Similarity to Ideal Solution), developed by Yoon and Hwang [Hwang&Yoon,1981]. 
TOPSIS is based on the concept that the selected alternative should have the shortest 
distance from the ideal solutions and the farthest distance from the negative-ideal 
(nadir) solution. Therefore, they define a measure of the relative closeness to the ideal 
as: 
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That is, they calculate the Euclidean distance between the alternative ai and the ideal, 
defined as aideal = (v1*, v2*, ..., vp*), and the Euclidean distance between the alternative 
ai and the nadir one, anadir = (v1-, v2-, ..., vp-). Then the ranking of the alternatives in 
found according to the preference rank order of Ci*. 
 
Using the TOPSIS approach, if we have two alternatives with same similarity to the 
ideal, the one that is furthest from the nadir is the one considered as best than the 
other one. If we represent it in a two-dimensional space (Figure 12), we can see, that 
the alternative more distant to the nadir is the one that has a greater difference in the 
values given by the two criteria (a is considered as 0.5 for one criterion and 0.8 for 
the other). Their corresponding closeness preference values according to TOPSIS will 
be: Ca* = 0.64 and Cb* = 0.62. So, the best one is a. 
 

 
Figure 12. Ranking of alternatives with TOPSIS 

 
However, this approach does not have into account the agreement between the 
criteria. Under our point of view, alternative a is as good as b with respect to the goal 
of achieving the values of the ideal solution. The difference between them is related 
to the knowledge we have about their goodness. For this reason, we propose to 
consider them as equal and give extra knowledge to the decision maker about the 
trustworthiness of their position in the preference ranking. As it will be explained in 
more detail in the next chapter, our confidence on b is greater than on a, because the 
two criteria give the same value to b, whereas our knowledge about a is that it can be 
as good as 0.8 indicates, or it can be not so good as 0.5 says. For this reason, the 
ranking method we propose only compares the prototypes with the ideal alternative. 
 
Moreover, after studying the properties and behaviour of different similarity measures 
to rank the clusters, we propose the use of the Manhattan distance if we have 
qualitative criteria in our decision matrix. The Manhattan distance (Eq.3.3) is 
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appropriate when working with numbers that represent linguistic terms, as it has been 
argued in section 3.3.3, where it has been recommended to be used in the aggregation 
process. 
 
If no qualitative criterion is considered, we recommend to apply the same measure 
used in the first stage, so that the same conditions apply during all the process (this is, 
to avoid different similarity functions in the same process because each similarity 
function has different properties). 
 

4.2.1 Application of the similarity-based ranking 
 
As said, this ranking procedure will be used in case of having non-correlated 
preference criteria or descriptive criteria with a non-ordered domain. The information 
provided by the aggregation stage is the same than in the PCA ranking: a data matrix 
with the alternatives described according to a set of criteria, the grouping of this 
alternatives into similarity classes and, finally, the prototype of each class in terms of 
the same criteria.  
 
To find the ranking, we start with the prototypes of the clusters. For each prototype 
we measure the similarity (or distance) to the ideal alternative. The result will 
indicate a degree of preference of a particular cluster. 
 
Repeating this distance measurement for all the prototypes we obtain a numerical 
degree of preference of all clusters (we denote by z(j) the numerical value of the j-th 
cluster Eq. 4.24). Using these values we can determine an order among the clusters. 
 
Now, we have got a rough approximation of the position of the clusters in a 
numerical interval [a,b]. As we have explained in section 4.1.6, the values that the 
following stages require must be in the [0,1] interval. For this reason we must apply 
the same transformation function that was indicated for the PCA method, Eq. 4.23, 
which is reproduced here: 
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In this case, z(aideal) will be 0 because the distance between the ideal solution and 
itself is 0. Moreover, the values we obtain will be ordered from best to worse, that is, 
the alternative with a lower *

01z  will be the best one, whereas in the PCA ranking the 
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ordering was the opposite. For this reason the following transformation is applied to 
the *

01z  values. 

*
0101 1 zz −=  Eq. 4.25 

  
After these calculations, the result of the ranking stage for case B is the same than 
case A: we have obtained a totally ordered set of clusters. This leads to an ordered 
partition of the alternatives. This ordered partition defines a new qualitative ordered 
criterion. 
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CHAPTER 5. Explanation and Quality stages 
 
 
 
 
The outcome of the ranking stage is an ordered set of clusters, where each cluster is 
defined in terms of several alternatives. This cluster has also associated a value in the 
[0,1] interval corresponding to a rough approximation of its position on the “social 
axis” . In this section we describe how to associate a linguistic term to each cluster 
(and, therefore, to each alternative). The linguistic terms will replace the numerical 
rough approximations computed in the previous stage. To complete the process and 
obtain a new qualitative preference criterion, we must establish not only the 
vocabulary but also the negation-based semantics of this criterion.  
 
In the first part of this chapter, the complete methodology to build the new qualitative 
criterion is explained. Several algorithms have been developed in order to deal with 
all the special situations and obtain a good vocabulary with an appropriate semantics. 
This is very important because these are the tools that we give to the user to 
understand the result of the decision making process. 
 
The second part of the chapter is devoted to the evaluation of the goodness of this 
new criterion, which we have called: the quali ty measurement stage. This goodness is 
calculated from the information provided at the different stages of the process: the 
aggregation through clustering, the ranking (with the Principal Components Analysis 
or with the Similarity calculation) and the vocabulary building. Many different 
factors are analysed and included in a final qualitative measure of the trustworthiness 
of the resulting criterion. However, we also recommend having into account not only 
the final quali fication but also the partial quality measures of each stage. 
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5.1 Giving semantics to the ordered set of clusters 
 
 
The main goal of this phase of the process is to give meaning to the ordered 
qualitative domain of the new-created criterion. At this stage, the values of this 
domain are terms artificially generated in the first stage. We want to change these 
terms by others that have a meaning easily understandable for the decision maker.  
 
We propose a new method to select the most appropriate linguistic terms to describe 
each cluster of alternatives. With these terms we build the vocabulary and semantics 
of the new overall criterion. 
 
The vocabulary can be obtained from the ones used by the different preference 
criteria in the data matrix, or it can be given by the user. Once we have the set of 
possible terms to be used, we apply a new assignation procedure to select the best 
term for each cluster. During this process, we can split up some terms to obtain others 
with a finer semantics, that is, to generate more precise terms. The new linguistic 
labels are obtained using linguistic hedges. 
 
When the selection of the terms to be used has been done, the new vocabulary has 
been established. The next step consists of giving the semantics to these terms that is, 
building the negation function over this vocabulary.  
 
 

5.1.1 The vocabulary of the result 
 
To determine which is the most appropriate set of terms to be used in the new 
criterion, we distinguish two different situations: 
 
CASE C: The decision maker provides a vocabulary to be used in this stage. This 

vocabulary must consist of a finite ordered set of terms and a negation 
function over these terms. 

 
CASE D: No vocabulary is given by the decision maker. Then, the system has to 

choose one of the vocabularies of the criteria provided by the experts when 
they have filled the decision matrix. 

 
We believe that the less parameters the user has to define when running a decision 
support system, the more encouraged to use it he will be. The large amount of 
information required to the decision maker may be a counterpart for its use in daily 
situations. For this reason, we will only consider CASE C when there is no possibility 
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to describe the result with the vocabularies of the original criteria. For example, in 
Table 7 we have that the three criteria are not appropriate for expressing a preference 
ranking over the alternatives. Thus, the user should provide a vocabulary like the one 
in the last row. 
 

 
   lowest value                                       . . .                                                 largest value 
Weight lean,   thin,   normal,   corpulent,   fat,   overweighted    
Distance same_place,   close,   near,   far,   remote,   outlying  
Waiting time very_short,  short,   acceptable,   long,   very_long 
  Preference terrible, bad, not-recommendable, acceptable, recommendable, good, very_good, ideal 

Table 7. Qualitative vocabularies of the criteria vs. preference vocabulary for the raking 

 
We can see that the vocabularies in Table 7 are ordered sets of terms, but the higher 
value does not necessary mean that it is the desired value. For example, concerning 
the weight, we may prefer a corpulent person than a fat or a normal one. 
 
In CASE D or when some of the vocabularies of the criteria are already expressing 
preferences over the alternatives, we can use their values to qualify the clusters of 
alternatives without having to ask to the decision maker. In this case, we have the 
problem of choosing a vocabulary among the possible ones. We have defined a 
distance measure between ordered qualitative vocabularies, dv, based on the fact that 
each vocabulary is a set of bounded closed non-overlapping intervals in [0,1]. 
 
First, we define a centre function as a function that assigns to each value xi in [0,1] 
another value in [0,1] that is the value of the central point of the interval (m,M] to 
which xi belongs to. This centre function is a left continuous step function. 
 
Having two vocabularies, VA and VB, we denote A and B their corresponding centre 
functions, such that, for any [ ]1,0∈x , 

xaxA →:  

xbxB →:  

 
where ax is the central point of the interval of A to which x belongs, and bx is the 
central point of the interval of B to which x belongs.  
 
Then, we define a measure of similarity between vocabularies as follows: 



Chapter 5 

 68 

( ) ( ) ( ) 2
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


== ∫ dxbadBAdVVd xxvBAv  Eq. 5.1 

where ( ) ( )22 , xxxx babad −= . 

 

It can be easily seen that ( ) ( )2, xxxx babad −=  is the Euclidean distance between 

two points. 
 
 
Theorem:  ( )BAv VVd ,  is a distance. 

 
Proof. 
 
(1) Positivity. 
 
According to the definition of ( )BAv VVd , , the result cannot be negative, 

( ) 0, ≥BAv VVd . 
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We will show that when ( ) 0, =BAv VVd , for any ( ]1,0∈x , ( ) 0,2 =xx bad , which 

means that ax and bx are always equal (VA = VB).  
 

Let us suppose that there exists ( ]1,0'∈x , such that ( ) ( ) 0, 2
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2 ≠−= xxxx babad , as A 

and B are left-continuous step functions, for any ( )1,0'∈x , there exists an ( )1,0'' ∈x  , 
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So, it is not possible to find any ( ]1,0'∈x  such that ( ) ( ) 0, 2
''''

2 ≠−= xxxx babad . 

Therefore, [ ]1,0''' ∈∀= xba xx , i.e. VA = VB 

 
 
(2) Symmetry. 
 
For any VA,VB,  

( ) ( ) ( ) ( ) ( ) ( )ABvvxxxxvBAv VVdABddxabddxbadBAdVVd ,,,,,,
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since ( ) ( )22 , xxxx babad −= is symmetric. 

 
 
(3) Triangle inequality. 
 
We want to show that ( ) ( ) ( )BCvCAvBAv VVdVVdVVd ,,, +≤ . 

 
We know that ( ) ( ) ( )xxxxxx bcdcadbad ,,, +≤  [ ]1,0∈∀x , because it is a distance. 

 

From this inequality we can also have,  ( ) ( ) ( )( )22 ,,, xxxxxx bcdcadbad +≤  or 

( ) ( ) ( ) ( ) ( )xxxxxxxxxx bcdcadbcdcadbad ,,2,,, 222 ⋅++≤ . 

So, if we introduce the bounded integral in each operand, 
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This distance measure take values in [0,0.25], being 0 the value indicating that two 
vocabularies are identical, and being 0.25 the maximum distance value for two 
different criteria. This maximum is obtained when the intervals of the two negation-
based vocabularies are completely different.  
 
Proof. 
 
The difference between the centers of two overlapping intervals reaches its limit 
when these intervals are large and are positioned far from one to each other. The 
maximum length of the intervals is achieved having the minimum number of terms. 
That is, having a vocabulary with only 1 term, and the other one with 2 terms (Figure 
13). 
 
 
 
 
 
 
 
 

Figure 13. Maximum distance between overlapping negation-based intervals 

 
In this situation, the maximum difference of the centers is 0.25 for all the points in the 
domain [0,1]. Therefore, for all x in [0,1], we have  
 

( ) 0625.025.0, 22 ==xx bad  
 
which can be substituted to dv to obtain the maximum distance value: 
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We apply the distance dv to measure the similarity between each vocabulary given by 
the experts and the result of the ranking phase, which is a set of ordered names of 
clusters. 
 
For each vocabulary of the criteria we have a negation function that allow us to obtain 
the interval (m,M] corresponding to each term (using Eq.3.1). Obtaining the centre of 
this interval (i.e. ax) is straightforward. Moreover, for each cluster we know the 
position of the prototype in the interval [0,1]. Being bx the centres of the intervals, it 

 0.25 
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is possible to know the boundaries of the intervals. Therefore, we have all the 
information needed to calculate the integral in expression Eq. 5.1. 
 
The criterion whose vocabulary is the most similar to the set of clusters is selected to 
be used to explain the meaning of those clusters. 
 

5.1.2 Assigning the most appropriate term to each cluster 
 
Once we have the final vocabulary selected (or provided by the user), we have to 
assign a term of this vocabulary to each class. This term will describe the suitability 
of the cluster for the decision problem. Moreover, we can only use each term once, 
because if more than one cluster receives the same term, they will be 
indistinguishable.  
 
We have a method to solve this selection problem. Some intuitive assumptions have 
been considered: 

− no cluster with a position, z01, lower than 0.5 will receive a positive term 
− no cluster with a position, z01, higher than 0.5 will receive a negative term 
− if a cluster is near the centre, 0.5, it will receive the neutral term 
− the neutral term, if exists, will have a negation equal to itself 

 
With this requirements, we have developed the following procedure that divides the 
vocabulary into three parts: positive terms (those with a preference higher to 0.5), 
negative terms (those with a preference lower than 0.5) and the neutral term (the one 
whose negation is itself, and its value is 0.5). For knowing the position see the 
semantics induced by the negation function (Eq.3.1). 
 
According to the negation function it is possible that the selected vocabulary does not 
have any neutral term. In this case we will have the vocabulary divided into two sets, 
instead of three. 
 
The procedure has 6 steps: 
 

1. Find the cluster with corresponding z-value equal to 0.5 ± ξ, which will be 
denoted Cneutral 

 

2. If it exists then assign to it the neutral term, Tneutral (if the vocabulary does not 
have a neutral term, it will be provided by the user). For further calculations, 
consider that Cneutral is positioned in z01=0.5. 

 

3. Divide the clusters into two groups:  
Positive Clusters (positioned between 0.5 and 1) and 
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Negative Clusters (positioned between 0 and 0.5) 
 

4. Divide the vocabulary into two groups: 
 Positive Terms (following Tneutral) and 
 Negative Terms (preceding Tneutral) 
 

5. If the granularity of any group is smaller than the number of clusters of the 
corresponding group, apply the algorithms Making_new_labels and 
Make_names until we have the same number of terms than clusters. 

  
6. Apply the algorithm Explain_result to the 2 groups independently. 

 
 
Two additional algorithms have been defined in order to sort out two particular steps 
of this assignation process [Valls&Torra, 2000b]. Firstly, we will see the algorithm to 
assign terms than are able to explain the result (i.e. the alternatives according to the 
clusters). The inputs to the algorithm are the set of ordered clusters and the set of 
ordered terms to be used to qualify the clusters. 
 
Algorithm Explain_result is 

k := number of clusters to be explained 

if k=number of terms then  

Assign these k terms to the k clusters  

else 

Take the best cluster of the set (Cbest)  

While k>0 do 

Take all those terms in the vocabulary that have at least k-1 worse 

terms [tb..ta]. Moreover, ta should not be better than any 

previously assigned label. 

If similarity(Cbest, Ideal) belongs to one of the intervals of the 

terms in [ta..tb]  then 

Cbest takes the term corresponding to this interval  

else 

if similarity(Cbest, Ideal)>I(ta) then 

   Cbest takes ta (the best possible label) 

elsif similarity(Cbest, Ideal)<I(tb) then 

   Cbest takes tb (the worst possible label) 

end if 

end if 
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k := k-1; 

If  k = number of terms that follow the assigned term then 

Assign these k labels to the k remaining clusters  

k := 0; 

else 

Take the cluster that follows Cbest in the ranking, and call it Cbest 

end if 

end while 

end if 

end algorithm. 

 
This method pretends to give the most appropriate term to each cluster maintaining 
always the ranking among them. However, we suppose that the decision maker is 
particularly interested in knowing which are the best alternatives, because he is trying 
to make a good decision. Thus, we start the process with the selection of the most 
suitable term for the first cluster in the ranking, provided that we leave enough terms 
for the rest of clusters.  
 
This algorithm needs a set of terms equal or larger than the set of clusters. If the 
vocabulary selected does not have enough terms, we have designed an method to 
create new terms using the ones that we have in the vocabulary. The key idea is to 
split some terms up and use a qualifier to distinguish the two new parts. So, the 
problem is reduced to the selection of the labels most adequate to be split. 
  
As we have some information (given by the negation function) about the meaning of 
the labels in a vocabulary, we can use it to guide the process. A label that has more 
than one label in its negation indicates that there are slight differences between some 
of the alternatives assigned to it, in some sense, there is a gradation in the meaning of 
the label, and each degree corresponds with a label in the negation. Under this 
interpretation, this label is a candidate to be split up. 
 

algorithm Making_new_labels is 
 
  repeat  

 {tleft, tright}:= split the most suitable label, tk 
    T := remove tk from T  
    T := add tleft and tright to T 
  until we have the desired number of terms 
 
end algorithm. 

 
We assume that the labels in a vocabulary cover all the possible values in [0,1]. Each 
label ti corresponds to a fixed interval [mi, Mi], as in Figure 14. 
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The splitting method begins by looking for the possible cut points. This is done with 
the help of the negation function, which is used to calculate the numeric intervals of 
each label. Then, these values are projected into the opposite part of the domain [0,1] 
to find out which labels have more specific meanings.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. The negation procedure for generating new terms 

 
Once we have got the cut points, we apply each one of these cuts to the vocabulary 
separately. Thus, we obtain a new possible vocabulary for each cut point. Then, each 
new vocabulary is compared to the ordered names of the clusters (the result of the 
second stage) using the distance we have defined, dv. The vocabulary that is closer to 
the partition is chosen, and two new labels are obtained from the one we have split. If 
we already do not have enough labels, we repeat the process of applying the cut 
points but now they are applied to this new vocabulary. 
 
However, it is possible to have some situations where the negation cannot produce 
the number of new terms required [Valls&Torra, 1999a]. For example, when the 
negation function is the classical one, we cannot obtain any new term because all 
have the same dimension. Then, if the clusters obtained are concentrated on one side 
of the vocabulary (if they are mainly good or bad), we will have a  lack of terms. 
 
In this particular case, where the negation-based semantics cannot help, the solution 
proposed consists of identifying the term that has a larger number of clusters to 
explain, and split it up. This process can be repeated until we have produced the 
desired number of terms.  
 
When a term is selected to be split, ti, we have to divide its corresponding interval 
[mi, Mi] and obtain [mi, ci] and [ci, Mi]. In order to obtain the most accurate cut point, 
ci,  we propose to use the information of the position of the clusters.  
 

Cut Point 

 0                                       0.5                                        1 
        I0                 I1             I2       I3        I4            I5 
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Let us suppose that we have 3 clusters (α, β and γ) with the following z01 positions 
after the ranking (see Figure 15): 
 
 
 
 
 
 

Figure 15. Selected cut point for the interval [mi,Mi] 

 
The most suitable cut point is the one between the two clusters that are more distant 
from each other. That is, if in Figure 15 the distance between α and β is 0.05 and 
between β and γ is 0.15, we decide to break up the interval just in the middle 
between β and γ, since the meaning of the two clusters is more different than the 
meaning of β with respect to α. 

 
Each time we split a term up, two new terms are needed. The method to create new 
terms for the new intervals in a vocabulary is not trivial, because they should be in 
accordance with the rest. For this reason, we do not invent them, we introduce 
linguistic hedges (e.g. very, not-so, ...) in order to distinguish the different grades in 
the meaning of the term.  
 
To keep the structure of the qualitative vocabularies, we have decided that the neutral 
label (if exists) it is never split up, since its meaning is that its negation is itself, and 
an split will end with this property. The rest of the vocabulary can be divided in two 
sets: Tinf and Tsup. Tinf has the labels that are smaller than the neutral value, and Tsup 
the ones that are greater than the neutral value. Then, the process is the following: 
 

algorithm make_names is 
if t∈Tinf then  

   if t has not been previously split then 
return {very-t, t }  being very-t < t 

   else  /* this means that very-t exists */ 
return  { t, not-so-t }  being t < not-so-t 

   end if 
else  /* t∈Tsup */ 

   if t has not been previously split then 
return { t, very-t }   being t  < very-t 

   else  /* this means that very-t exists */ 
return  {not-so-t, t }  being not-so-t < t 

   end if 
end if 

end algorithm. 
 

mi Mi 

  α       β                      γ 

cut point 
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We express the grades in the meaning, introducing a new more precise term that uses 
the modifiers very or not-so. 
 
This algorithm assumes that we will only cut a term once or twice. That is, we will 
not generate more than 3 terms from a single one. We consider that if more than 3 
terms must be obtained, we should ask the decision maker (i.e. the user) in order to 
obtain more appropriate terms. 
 
Regarding the global process presented in this section, it may produce bad results if 
there are some clusters whose positions are very close (we should consider that a 
difference of only the 20% of the length of the term is problematic). This situation 
indicates that we have two clusters that are very similar in relation to the ranking 
position (given by the Principal Components Analysis or by the Similarity-based 
Ranking) but whose elements were not considered similar enough to be assigned to 
the same class, during the clustering process (the aggregation stage). This is a 
problematic situation, since the ranking methods have not distinguished the goodness 
of the two different clusters in relation to the ideal alternative. However, the quali ty 
measures that we have defined (which will be detailed in section 5.2.2) wil l give us 
some idea of the trustworthiness of the ranking obtained. If the degree of quali ty is 
under some threshold, the decision maker can decide to stop the process, or to ignore 
the values finally given to these conflicting clusters. 
 
 

5.1.3 Building the negation function of the new criterion 
 
Once we have got a set of terms, possibly adapted to fit the consensus partition, we 
have to study their semantics. If the consensus partition were identical to the expert’s 
one, the meaning of the terms would not change, but this wil l usually not be the case. 
The meaning of the terms has to be built knowing the alternatives that each term is 
now describing. 
 
Following the approach based on negation functions, the meaning of each term is 
going to be expressed using the negation. Moreover, this is also the form in which 
experts have supplied their knowledge. So, they are supposed to be familiar with the 
negation concepts and notation. Therefore, it will be an easy and comprehensible 
form to express the meaning of the new terms. 
 
To calculate the new negation function, first we have to attach a numerical interval in 
[0,1] to each label, I(ti). The disjoint intervals are built with the positions z01 of the 
clusters into the first principal component. Using the fuzzy approach for linguistic 
labels, we can say that the labels have a triangular membership function 
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[Yuan&Shaw,1995] (except in the extremes), so the z-value is taken as the point of 
the label where the membership value reaches 1.  
 
 
 
 
 
 
 
 

 

Figure 16. Fuzzy partition used to establish the semantics 

 
If some of the terms of the vocabulary have not been used to explain the clusters 
obtained in the previous stages, we include a new imaginary cluster with a prototype 
positioned in the centre of the interval corresponding to this term. Then, the negation 
function is built with the real and imaginary prototypes. The additional prototypes are 
located in the centre in order to try to avoid the changes in the limits of the labels that 
are not used in the result, since we do not have any information about what should be 
their meaning in the new criterion. 
 
In order to keep the neutral term centred in 0.5, we begin the process of building the 
fuzzy sets from the middle. If the two neighbour prototypes are not located at the 
same distance from 0.5, we take the nearest prototype location as the boundary of the 
support of the fuzzy set of the term. For example, in Figure 17 we can see 3 
prototypes (marked with a bold line), the one in the left is the closest to the neutral 
class, so this establishes the point where the membership to the neutral cluster ends in 
the left. Since the similarity function of the neutral term must be symmetrical, we 
have that the end of the membership function in the right is established at the same 
distance to the centre than the prototype in the left. 
 
Once the fuzzy set of the neutral term has been fixed, we continue with the rest of the 
membership functions as explained before.  
 
 
 
 
 
 
 
 
 

z01 

     t1                t2                  t3                      t4 

  µ  
 
   1 
0.5 
   0 
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Figure 17. Negation for the neutral term 

 
It can be observed that, in general, the middle point between two consecutive 
projections is the one that has membership equal to 0.5. These are the points usually 
corresponding to the limits of intervals, as in the example of Figure 18. 
 
 
 
 
 
 
 
 
 

Figure 18. Fuzzy sets corresponding to an example with 4 clusters (the blue marks correspond to 
imaginary prototypes for unused terms, the black ones are the real positions of the clusters after the 
ranking, the red line corresponds to the distribution of the terms according to the original negations) 

 
Once each term has its corresponding interval in the new criterion, I(ti), the negation 
of each one can be computed as: 

Neg(ti) = { tj | I(tj) ∩ 1-I(ti) ≠ ∅} Eq. 5.2 

where 1-I(ti) is the interval between 1-max(I(ti)) and 1-min(I(ti)). 
 
Using Figure 18 we will follow an example of the negation function generation. We 
will see that some problems appear, and we will present some methods to sort them 
out. 
 
 
Let us take that the original vocabulary is {l1, l2, l3, l4, l5, l6, l7}, and its semantics is 
given by the negation function we have in the first column of Table 8. The second 

z01 

  µ  
 
   1 
0.5 
   0 

 
 

 0                                        0.5                                      1      z
01

 

 µ  
  
   1 
0.5 
   0 
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column shows the interval corresponding to each label according to this semantics 
(using Eq.3.1). 
 
 

Original Negation Original Intervals 
Neg (l1) = {l7} 
Neg (l2) = {l6} 
Neg (l3) = {l5, l6} 
Neg (l4) = {l4} 
Neg (l5) = {l3} 
Neg (l6) = {l2, l3} 
Neg (l7) = {l1} 

I (l1) = [0.0,   0.11] 
I (l2) = [0.11, 0.22] 
I (l3) = [0.22, 0.44] 
I (l4) = [0.44, 0.56] 
I (l5) = [0.56, 0.67] 
I (l6) = [0.67, 0.89] 
I (l7) = [0.89, 1.0] 

Table 8. Semantics for the example with 7 terms 

 
Now we look at the positions of the clusters. Let us suppose that we have obtained 4 
clusters. In Table 9 we have the positions of the real (black) and additional (blue) 
prototypes. 
 

Class Positions in [0,1]  Term 
7th 
6th 
5th 
4th 
3rd 
2nd 
1st 

0.09 
0.16 
0.33 
0.48 → 0.5 
0.71 
0.80 
0.94 

l1 
l2 
l3 
l4 
l5 
l6 
l7 

Table 9. Positions of the 4 clusters in the example 

 
After applying the methodology to build the new intervals for the terms, we obtain 
the result shown in Table 10. The first column is the result of the interval generation 
based on the fuzzy membership functions. The second column is the opposite interval 
corresponding to each term, which is calculated doing 1-xi. Finally, the third column 
gives the negation induced by these intervals, considering that a difference of 0.02 in 
the value of the borders is not significant. In general, if we have 7 terms in the 
vocabulary each one covers a 14% of the domain, so a 0.02 is only 1/7 of the length 
of a term. However, this value could be changed according to the characteristics of 
the application domain or the decision maker opinion. 
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Intervals from fuzzy sets Opposite interval Negation induced 
I (l1) = [0.0,     0.125] 
I (l2) = [0.125, 0.245] 
I (l3) = [0.245, 0.33] 
I (l4) = [0.33,   0.67] 
I (l5) = [0.67,   0.735] 
I (l6) = [0.735, 0.87] 
I (l7) = [0.87,   1.0] 

[1.0,     0.875]  ≅ I(l7) 
[0.875, 0.755]  ≅ I(l6) 
[0.755, 0.67]    ≅ I(l5) 
[0.67,   0.33]    = I(l4) 
[0.33,   0.265]  ≅ I(l3) 
[0.265, 0.13]    ≅ I(l2) 
[0.13,   1.0]      ≅ I(l1) 

Neg (l1) = {l7} 
Neg (l2) = {l6} 
Neg (l3) = {l5} 
Neg (l4) = {l4} 
Neg (l5) = {l3} 
Neg (l6) = {l2} 
Neg (l7) = {l1} 

Table 10. Result of the semantics generation 

Notice that, in this example, we have obtained a new criterion with the classical 
negation function. In Figure 19 we can see the distribution of the intervals according 
to the new semantics against the original distribution. As we can see, the new 
intervals are more suitable to explain the clusters, because each cluster belongs to a 
different interval. 
 
 
 
 
 
 
 

Figure 19. Comparison between the old (up) and new (down) intervals 

 
It is worth to note that once we have established the negation function of the new 
criterion, the intervals induced by this negation may be slightly different to the ones 
we have used to build the function. In Table 11 we can see the intervals obtained 
(with Eq.3.1) from the classical negation function. These values can be compared to 
the ones calculated from the positions of the clusters according to the ranking, which 
are the ones in the first column of Table 10. 
 

New Negation New Intervals  
Neg (l1) = {l7} 
Neg (l2) = {l6} 
Neg (l3) = {l5} 
Neg (l4) = {l4} 
Neg (l5) = {l3} 
Neg (l6) = {l2} 
Neg (l7) = {l1} 

I (l1) = [0.0,     0.143] 
I (l2) = [0.143, 0.286] 
I (l3) = [0.286, 0.428] 
I (l4) = [0.428, 0.571] 
I (l5) = [0.571, 0.714] 
I (l6) = [0.714, 0.857] 
I (l7) = [0.857, 1.0] 

Table 11. Negation function for the new criterion 

0                      1
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5.2 Quality Measurement 
 
 
In this section we define some quality measures that can be useful for the user in 
order to decide the reliability of the result. In many applications where fusion 
techniques are required, it is interesting to know to what extent the result of the 
process is acceptable. In addition, if the person that is executing the process is a non-
specialised end user, the ignorance about the way the result is obtained often causes a 
mistrust feeling, and the consequent abandon of the system to continue doing the 
processes by hand.  
 
For this reason, we have studied in detail the techniques applied at each stage of this 
new method. In the rest of the section we will define some quality measures that use 
the information available at the different stages.  
 

5.2.1 The quality of the aggregation 
 
Remember that our aggregation method is based on a hierarchical agglomerative 
clustering method. At each step of the process, we find out new clusters with a lower 
cohesion value. This cohesion value, hα, is an upper threshold of the similarity values 
between any two alternatives in the class. So that, for any cluster α,  

( ) , ji aadh ≥α  Eq. 5.3 

being (ai,aj) any pair of alternatives that belong to this cluster α. 
 
At the end of the clustering, we can measure the global level of cohesion in the r 
clusters of the selected partition with Eq. 5.4. This is the first part of the goodness 
value of the aggregation stage (i.e. GAgg1). According to this definition, 10 1 ≤< AggG , 

where 1 is the best value, which is obtained when the differences between the objects 
in the clusters are small. 

r

h

G

r

i
i

Agg

∑
=−= 1

1 1  
Eq. 5.4 

Another interesting value to consider is the dimension of the clusters. The alternatives 
that belong to the same cluster cannot be distinguished by the user, because all of 
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them will receive the same linguistic term (i.e. category). Therefore, it is appropriate 
to have all clusters with similar number of objects. Entropy has been used in 
aggregation to evaluate dispersion of weights [Marichal,1999b]. Here, defining Ri 
with Eq. 5.6, we can consider the use of entropy [Shannon&Weaver,1949] to measure 
how much of the information is explained by each cluster. The maximum is achieved 
if all the clusters explain the same amount of information, that is, we have the same 
number of alternatives in each one.  

∑
=

−=
r

i
iiAgg RR

r
G

1
2 ln

ln

1
 Eq. 5.5 

where r is the number of clusters in the ranking. Ri corresponds to the proportional 
cardinality of the i-th cluster with respect to the total number of alternatives, m, which 
can be seen has the probability that a random alternative ak belongs to the cluster Ci.  

m

Cycardinalit
R i

i

)(
=  Eq. 5.6 

If Ri is 0, the measure GAgg2 is undefined. However, this is not possible since we do not 
have empty clusters. We have that this quality measure (to be maximised) is limited 
as follows: 10 2 ≤< AggG . 

 
If we are dealing with a multi-criteria selection problem, we can also inform the 
decision maker about the goodness of the first cluster in the ranking. In this case, it is 
interesting to have got a small cluster in the best position, in order to not have many 
alternatives indistinguishable, which may not be very helpful for the decision maker. 
 
Having into account this last remark, we have defined the goodness of the 
aggregation stage subject to the dimension of the best cluster, Cbest. That is, if the 
number of alternatives in this cluster is greater than the expected number of terms, we 
decrease the quality of this stage as it is shown in Eq. 5.7.  
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5.2.2 The quality of the ranking 
 
The evaluation of this stage depends on the characteristics of the decision problem, 
which will determine the use of the Principal Components Analysis or the use of a 
Similarity Function.  
 
Ranking based on PCA 
 
In the application of the PCA, some of the values obtained during the process are also 
useful to interpret the final result. Different measures are well defined in PCA 
literature [Jackson,1991]. We have studied the use of these measures to qualify the 
ranking of alternatives in a decision-making framework. Then, we have defined a 
goodness measure (Eq. 5.8) that takes into account the quality of the representation of 
the clusters by the first principal component, as well as, the agreement of the criteria 
(or experts) in relation to the first component.  

( ) ( )

2

clusters ofnumber 

1
1

2
1 ∑∑

+
⋅

=

= j

p

j
j

PCA

jQLT

p

xCORRs

G  
Eq. 5.8 

where s depends on the direction of the first component. If the xj is positively 
correlated to the first component, s = 1. Otherwise, s = -1.  
 
The best value of GPCA is 1. The worst value is 0, which would correspond to a 
situation where the clusters were not well represented and the criteria did not agree 
with the first component. 
 
In the numerator, the first addend is measuring the correlation of the variables, using 
equation Eq.4.20. The second addend is related to the quality of representation of the 
clusters, which is measured using Eq. 4.18, which can be rewritten as Eq. 5.9 for the 
case of a single component. If a cluster obtains a value near to 0, it means that it is 
bad represented by the first component, if the value is 1, the cluster is perfectly 
explained by the axis. 

( ) ( )
( )Gjd

jz
jQLT i

,2

2

1 =  Eq. 5.9 

being d the Euclidean distance between the alternative j and the centre of gravity (0 in 
our case, because we work with the correlations matrix).  
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In addition to the goodness measure, there are other interesting information values 
that should be given to the decision maker. The first one regards to the agreement 
between the experts or criteria analysed. As it has been explained in Chapter 4, the 
elements of the eigenvector are giving the contribution of each variable to the 
formation of its corresponding axis. Therefore, we can detect when a criterion differs 
from the social opinion, just looking into the values of the first eigenvector. If one of 
them is significantly smaller than the others, we can conclude that this criterion is 
significantly different from the consensus.  
 
Another indicator is based on the quali ty of the projection of the clusters into the 
principal component using Eq.4.17. This allows the user to discover objects that can 
not be synthesised because the experts do not agree in their descriptions. In this 
situation, as the aggregation is not possible, this group of alternatives7 is removed 
from the study taking an “unknown” label. This “unknown” label, in case it exists, is 
taken from the set of terms that experts provided; otherwise, a predefined linguistic 
label is used. 
 
In Figure 20 we can see a graphical representation of the PCA result for the case of 
two variables. In this case, this quality value will detect those clusters that may have 
been positioned in a point that does not represent their real relation to the other ones 
(like cluster D). This wil l happen if the criteria give different opinions about 
alternatives in the class. So, with this method we can tell the user which alternatives 
are the conflicting ones. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20. First principal component for a two-variable matrix 

 

                                                 
7 Usually these groups are small.  

V2 

B 

C 

A 

D 

E 

V1 



Explanation and Quality stages 

85 

If the two variables give the same value to the alternatives, the clusters formed will be 
positioned in an axis that will be in the middle of the two variables, like clusters A, B 
and C. Alternatives that are described with different values will not be in this line. 
For example, alternatives in D are bad (low value) according to criterion V1 and good 
(high value) according to criterion V2. On the other hand, alternatives in E are good 
for V1 but only acceptable for V2. 
 
Similarity-based Ranking 
 
When the ranking is based on the similarity to an Ideal alternative, other quality 
measures have to be designed. In this case, we can have two clusters with equal 
similarity values but that they are quite different from one to the other. That is, the 
distance to the Ideal is the same but due to different criteria. Then, we propose to give 
some additional information to the decision maker about in which criteria the 
alternatives do not have the desired value.  
 
In addition to this information, we have defined a goodness measure based on the 
agreement between the criteria for each cluster. 
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Eq. 5.10 

where the value that we are adding is based on the measurement of the dispersion (i.e. 
standard deviation, Eq. 5.11) of the values of the prototype of each cluster. The 
maximum value of this goodness measure is 1, which is given if all the clusters have 
dispersion equal to 0. 
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5.2.3 The quality of the explanation stage 
 
After the complete definition of the new criterion (i.e. cnew), we can evaluate the 
goodness of the new vocabulary and semantics. We should see if this new vocabulary 
could be misinterpreted. That is, if we are using some words that the decision maker 
will understand with a different meaning, we can induce him to an error. So, we 
propose to compare the new criterion with the ones in the initial decision matrix that 
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have some terms in common with it, Ccommon={ci, cj, ..., ck}. Obviously, the 
vocabulary from which we have generated the new one will be in this set.  
 
We propose to use the distance dv to measure the differences in the meaning of the 
terms in each vocabulary. The larger the differences (remember that the distance dv 
gives values in [0,0.25]), the more confusing the result may be. Therefore, when the 
result is 1, we have a perfect correspondence between the terms in all the experts. 

( )

)(

25.0,

1
common

Cc
inewv

Terms Cycardinalit

ccd

G commoni

∑
∈−=  Eq. 5.12 

 
Once we have given a linguistic term to each cluster, we evaluate their 
appropriateness. The position of each cluster before and after the explanation stage 
can be compared. The ranking stage provides a numerical position in [0,1] for each 
set of alternatives, z01, which is used to select the most appropriate label from the 
vocabulary. After the explanation process, the position of some clusters may have 
changed due to the different meaning of the terms. That is, the intervals induced by 
the negation function may not have the cluster at the centre of the interval.  
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Eq. 5.13 

This measure compares the position of the alternatives before and after the 
introduction of the negation-based semantics. Being j the prototype of one cluster, 
[m(j), M(j)] is the interval corresponding to the term assigned to this cluster using the 
new negation function. 
 
Finally, we can define a global goodness measure for the whole ClusDM process. 

NegTermsRankAggClusDM GGGGG 4321 ωωωω +++=  Eq. 5.14 

where ωi are the degrees of importance given to each step of the decision making 
process. For example, increasing ω1 the user may indicate that obtaining very good 
and compact clusters is the best option, although it implies a change in the 
vocabularies and semantics. These weights must hold that ∑ = 1iω . 
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The ClusDM methodology pretends to be a useful recommender tool for decision 
makers. Our main aim has been to present the results using a linguistic vocabulary 
easily understandable by the user. The different goodness values can be used by the 
decision maker to have an idea of the quality of the different stages of the process. In 
addition, the overall goodness value can be also understood as the weight attached to 
the new preference criterion obtained. 
 
Apart from that, our method is able to provide some additional information during the 
execution of the multiple criteria analysis. The importance of providing additional 
explanations of the results obtained with the decision model is a problem frequently 
considered in the Artificial Intelligence community [Papamichail,1998]. In our case, 
the information provided by ClusDM to the decision maker is the following: 
 
• Which alternatives receive conflicting values from the different criteria. Those 

alternatives are identified during the ranking stage and do not appear in the final 
ranking given to the user. However, they should be presented to the decision 
maker in order to allow him to be aware of these special cases and perform an 
appropriate action if required. 

• Which is the general degree of agreement (i.e. correlation) between the criteria or 
experts. 

• Which criteria (i.e. experts) do not sufficiently agree with the result given by the 
system. However, this value is only available when the PCA ranking is possible. 

 
In chapter 7, we will see some application examples where this additional information 
plays an important role. 
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