CHAPTER 3. ClusDM (Clustering for
Decision Making)

This chapter explains the new multi-criteria decision aid methodology we
propose, caled ClusDM, which stands for Clustering for Decision Making. Its
name comes from the use of clustering algorithms to solve the decision-making
problem, as it will be explained in this chapter.

This methodology has been designed for dealing with heterogeneous data sets
because there is alack of MCDA tools for this type of problems. One of the key
points of this method is that it can deal with different types of variables during all
the stages of the decision-making analysis. As it has been explained in the
previous chapter, the existing approaches perform a transformation of the original
data into a common domain. In our method, we are aways dealing directly with
the data provided by the experts, in order to avoid the modification of the
information available in those data.

Although we will explain our method as a ranking decision tool, it can also be
used to solve selection decision problems. In fact, a selection problem can be seen
as a subtype of ranking problemsin which we are only interested in distinguishing
the group of best aternatives.

In this chapter we will explain part of the ClusDM methodology. Before starting
this explanation, section 3.1 is devoted to describe the scales we use. Then, in
section 3.2 we give an outline of the ClusDM methodology, giving some details
of the four stages of the process. Aggregation, Ranking, Explanation and Quality
measurement. Section 3.3 is devoted to the explanation in detail of the
aggregation stage. The rest of the stages will be explained in the following
chapters.
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Chapter 3

3.1 Considerations on the scales in ClusDM

It has been reviewed in Chapter 2 that the evaluation of alternatives in relation to
a given criterion can be done in many different scales. The most common MCDA
methods deal with a single common scale. ClusDM is a general methodology that
is able to handle heterogeneous criteria. In our design and implementation of the
methodology, we have considered the following ones:

quantitative or numerical scale

ordered qualitative or ordinal scale (i.e preference values)
non-ordered qualitative scale (i.e. nominal or categorical values)
Boolean scale (i.e. binary values)

Although we have restricted ourselves to these types of values, we would like to
note that any other type of value that has a distance function defined in its domain
could also be used.

To operate on the values of these scales, in particular to compute similarities
between pairs of values, some assumptions are needed on the semantics of the
values. In the case of quantitative, categorical and Boolean scales, the definition
of distances or similarities has been widely studied (we will review some
possibilities in section 3.3.2). For the case of ordered qualitative values, we can
find in the literature several approaches to the definition of the underlying
semantics of the scale, which is the basis for the similarity and aggregation
operations [Torra,2001].

Explicit semantics: A mapping exists that translates each linguistic term in a
numerical or fuzzy value. Operations on the linguistic values are defined on
terms of the corresponding operations in the numerical or fuzzy scale.

Implicit semantics: Operations are defined assuming an implicit mapping
function from the original scale into a numerical one. The typical caseisto
replace each term by its position in its domain.

Operationsrestricted on the ordinal scale: New operations in a given scale are
only defined in terms of operations axiomatically defined in that scale.
Allowed operations are maximum, minimum, t-norm, t-conorm and
operations defined from them.

Working on any of these settings present advantages and disadvantages:

In the case of explicit semantics, operations are well defined and sound.
However, the experts are required to supply additional information, in
particular, they must provide a mapping for each scale.

Implicit semantics provide easy to use operations but, instead, semantics is
coded - and fixed- in the operators. Counterintuitive results can be obtained if
the application does not follow the assumptions considered.
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Operators restricted on the ordina scde dso lead to sound results.
Nevertheless some of the basic operations are difficult to be defined by non
experienced users, as their meaning is smetimes difficult to grasp. Thisisthe
case of defining adinal t-norms and t-conams.

ClusDM uses a negation-based semantics. This can be seen as an dternative to the
explicit semantics approach as it bulds an explicit mapping from the set of
lingustic terms into the unit interval. This mapping is inferred from a negation on
the set of terms. This approach avoids the use of operators with coded semantics.
Now the user is only required to supdy a negation function instead of a cmplete
explicit mapping from terms to numbers. This approach is easier for the experts
because the negation d a term can be interpreted as its antonym, following [de
Soto& Trill as,1999.

In the rest of this sedion we describe the negation functions we @mnsider and hav
the semanticsisinferred.

Negation based semanticsfor linguistic terms

Negation is a well-known operation in multi-valued logics that is defined over a
set of ordered linguistic labels (i.e. terms) T={to, ..., tn} (with to<..<tp). It is
axiomaticdly defined as a function from T to T, that satisfies the following
condtions:

N1) if t; <t, thenN(; ) > N(t,) foral t,t, inT
N2)  N(N{))=t, foraltinT

In fad, when these @ndtions had, the set of ordered linguistic terms T
completely determines the negation function. This is © becaise for ead set of
ordered linguistic terms T={ty, ..., t;} there &ists only one negation function that
satisfiesN1 and N2 [Agusti et a.,199]. This negation functionis defined by:

N(t )=t

w foraltinT
According to this last result, when condtions N1 and N2 are required, the
negation function assumes vocébularies where eab term in the pair <t;,t._, > is

equaly informative. Although in dedsion making, equal informativeness is
sometimes not adequate, it is not always possble for the expert to define an
interval or a fuzzy set for ead term becaise that would require a degree of
acaracy that the epert canna adways sipdy. To alow nonequa
informativeness withou requiring experts to suppgy detailed information onthe
semantics of the terms, [Torra, 1994 introduced a new classof negation functions
over lingustic terms. With this approach an expert can provide aditional
information abou the meaning d the terms in a more natural way. These new
negation functions are defined from T to O (T) (i.e., parts of T) weakening
condtions N1 and N2.
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Definition 1. [Torra, 1999 A function Neg from T to O (T) is a negation function
if it satisfies:

CO0) Neg is not empty and convex
Cl) if t; <t, thenNeg(t; )= Neglt, ) for all t,,t, OT

C2) if t; O Neglt, )thent, O Neg(t;)

In this definition C1 and C2 are generalisations, respedively, of N1 and N2. In
fad C2 isageneraisation d N3 (given below) that is equivalent to N2.

N3) if t, = Neg(t, )thent, = Neg(t,)

CO is a technicd condtion. It means that for all t in T, Neg(t) is not empty
(Neg(t)#2) and convex (asubset X of T isconvex if and orly if forall t,t,t,inT

such that t,<t <t, andt,, t,00X then t [1X). In ather words, CO establi shes that Neg(t)
isanonempty interval of termsin T.

Now, let us turn into the semantics. For avocabulary T, the semantics of aterm is
understood as a subset of the unit interval. Let I(t) be the subset attached to term
t;inthiscasetheset P ={I(t,)....! (t,)} corresponds to the semantics of all terms

in T. It is assumed that the sets remver the unit interval and that the intersedion
of any two sets is empty or purctual (if they are ntiguows). That is,
O | =[04 and 1(t)n 1(t;)=0.

However, na al partitions in the unit interval are adequate & ®mantics for a set
of lingustic labels. In fad, the relations among labels that a negation function
establishes doud aso be true in the intervals in P when the negation in the unit
interval is considered. In particular, the mnsistency of P in relation to the most
usual negation function N(x)=1-x was mathematicaly defined. Informally, when
consistency is required, the following two condtions had: (i) the negation o all
the dements of the interval attadhed to t belongs to the intervals attached to the
negation o t; (ii) if Neg(ti):{tio,...,tik}, then reither the term t nor the term t,
are "superfluous” in relation to the negation function. This latter condtion means
that there eists at least one dement of the interval attadhed to t such that its
negation kelongs to I(t)) (respedively to I(t,)). Given a negation function, there
are several consistent semantics. In particular, the following ore (which is the one
we aegoingto use) is consistent with N(x)=1-x:

Definition 2. [Torra, 1999 Let Neg be a negation function from T to O (T),
acording to Definition 1; we define P, asthe set B, ={lm;.M_].....[m. .M, ]

where
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1t)=[m.Mm ]= §;|Negt] ; X Eq.3.1

where [X| stands for the cadinality of the set X.

It is important to nde that that the dasdcd semantics is obtained when the
negation function is restricted to satisfy |Neg(t;) =1. In that case, I(t) = [i/(n+1),
(i+1)/(n+1)], which corresponds to having all the intervals with the same measure
(i.e., the same predsion). According to that, this approadch extends the dasscd
negation functions for multi-valued logics and relates them with the usual impli cit
semantics (note that the ceatral point of the interva I(t), (i+1/2)/(n+1), is
propartional to the position d theterm t nomalized in [0,1]: i/n.

3.2 The ClusDM methodology

In this dion we will i ntroduce amethoddogy for multi-criteria dedsion aid,
which follows the utilit y-based model. As it has been explained in sedion 2.2,
these multi-criteria dedsion methods distingush two dfferent stages: (1) the
aggregation d aternatives and (2) their ranking. Our methoddogy foll ows the
same strategy bu we have included two additional stages:. (3) an explanation stage
to gve semantics to the ranking obtained, and (4) an evaluation stage to measure
the quality of the result. With these new stages we want ClusDM to be auseful
dedsion aid more than a simple dedsion making pocedure. That is, our goal isto
give recommendations to the user rather than make an automatic deasion.

Therefore, the ClusDM methoddogy dstingu shes the foll owing steps:

STAGE 1. Aggregation or Rating Phase: The values of ead aternative
are analysed in oder to find another evaluation for the dternative that
allows usto compare it with the others and dedde which oreisthe best.

STAGE 2. Ranking Phase: The dternatives are compared and ranked on
the basis of the value given in the aygregation plrese.

STAGE 3. Explanation Phase: In addtion to the list of ordered
aternatives, a qualitative term is attached to ead aternative, in arder to
give some semantics to their relative positionin the ranking in comparison
to the positions of the ided and redir aternatives. So, the dternatives nea
the ided will be dencted as “optimum’” or “very good” ones, the ones nea
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the nadir will be the “very _bad” options. The others will receve aterm
acordingto their values.

STAGE 4. Quality Measurement Phase: some quality measures are given,
which can be useful for the dedsion maker in order to dedde the reli ability
of theranking.

In Figure 2 we can see aschema of the flow of data. We begin with a data matrix
with m dternatives and p criteria. At the end, we have a qualified set of
dternatives (ead dternative has a lingustic term t that describes the
appropriatenessto be seleded as a solution for the dedasion problem) and a report
with additional information.

During the analysis of the dedsion matrix, the method extrads useful information
for the dedsion-maker. All the details abou this data and the way it is obtained
will be included to thisfina report. The ClusDM methoddogy hes been designed
having in mind that the user will be reluctant to make amadine-based deasion.
He needs ome guarantee of the quality of the ranking gven by the system.
ClusDM pretends to be auseful aid for dedsion makers supdying them al the
useful knowledge that can be extraded form the data during the aggregation,
ranking and explanation stages.

As it has been said in the introduction d this chapter, sedion 3.3reviews the

aggregation stage. The ranking phese is described in chapter 4 and the last two
ones are explained in chapter 5.
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Figure 2. Stages of the ClusDM process
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3.3 Aggregation

The first stage of the multicriteria decision process consists of aggregating the
different values given to each alternative, and obtain a new one that synthesises
the information provided by the individual criteria. When working with
homogeneous values, the result of the aggregation stage is a new value of the
same nature than the original ones. For example, the Weighted Average operator
is usualy applied to a set of numerical values, producing a new numerical value.
However, when the criteria are heterogeneous, it is not obvious which should be
the type of values of the result. This is so because not all the scales can give the
same accuracy when describing the alternatives.

We have implemented a system, called Radames, which allows the aggregation of
many different data representation structures (e.g. data matrices, trees, vectors).
The case studied in this thesis concerns the aggregation of vectors describing an
aternative. In particular, we work with a data matrix whose rows are vectors with
qualitative or heterogeneous values. For the rest of cases (e.g. numerical or
Boolean data), the most well-known aggregation operators have been studied and
implemented [Valls, 1997].

For qualitative or heterogeneous value we propose the use of the ClusDM
methodology to obtain a new qualitative criterion. That is, ClusDM can be seen as
aMCDA methodology or as an aggregation or fusion operator.

In ClusDM, the result of the first stage is a qualitative non-ordered vocabulary,
although after the ranking and explanation stages it will become an ordered
preference qualitative criterion. The selection of a qualitative preference scale is
based on the comparison of the different scales we are considering: numerical,
qualitative (preferences or categories) and Booleans. The most informative typeis
the numerical one, and the least informative is the Boolean one. Qualitative values
arein the middle, the greater the cardinality of their domains; the more differences
can be stressed. In fact, sometimes Boolean can be considered as a qualitative
variable with two values in the domain.

Numbers Qualitative values Boolean
- _
+ precision - precision

Figure 3. Precision of the different types of values
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The transformation of one scale into another has two different effects (see Figure
3). On one hand, the trandlation of numbers into terms (or Booleans) implies a
reduction of information because different numbers will be transformed into the
same term. On the other hand, transforming qualitative values into numerical ones
implies substituting a term by a number. The subsequent operations with this
number will treat it as a precise value, which is introducing error because the
number is only an interpretation of a term that is actually covering an interval of
values.

Considering that changes from one type of representation to another produces a
loss of some kind of information, we decided to take a position in the middle.
Thus, the result of ClusDM will be a qualitative term describing each alternative.

After studying qualitative domains, we have seen that the linguistic terms of a
vocabulary define a partition on the set of aternatives, because the alternatives
that take the same value are indistinguishable, according to the expert. Therefore,
we can formulate our aggregation goal as: to obtain a new partition of the set of
alternatives having into account all the information provided by the criteria (i.e.
experts). Each cluster in this partition will correspond to a new linguistic value in
the domain of the new social (i.e. agreed) criterion [Valls, 2000a).

To obtain a partition (i.e. a non-overlapping set of clusters) we can use clustering
methods. During the clustering process the objects form groups according to their
similarity, which is measured comparing the values of the alternatives for the
different criteria. To find these groups or clusters, each object is compared to the
others.

We have studied the application of clustering to qualitative and heterogeneous
data sets. In the next section, there is a brief overview of clustering techniques,
making special emphasis on the ones that are more appropriate to be used as an
aggregation operator. Section 3.3.2 explains how to obtain the aggregation of the
aternatives in the decision matrix by means of a clustering tool called Sedas.

Although we will concentrate on our clustering system Sedas, any other clustering
technique could be applied. In any case, it is important to note that this
aggregation method does not hold the condition of irrelevant aternatives’
[Arrow,1963], because (using clustering) it is not possible to obtain the consensus
value of an alternative without taking into account the rest.

3.3.1 Review of Clustering methods

Clustering methods are traditional techniques to obtain a partition of a set of
objects [Everitt,1977], [Jain& Dubes,1988]. A clustering process has two phases
(Figure 4):

* This condition is usually satisfied by the aggregation methodsin MAUT.
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(a) The construction d a similarity matrix that contains the pairwise measures of
proximity between the dternatives. Several similarity or dissmilarity functions
can be used. Each ore has different properties, and it is not possble to determine
which is the best for a particular set of data In [Anderberg,1973 and
[Baulieu,1989 there is a review of some of these measures and ther
interrel ationships.

(b) The construction d a set of clusters, in which similar objeds belong to the
same duster. Many dfferent methods have been developed [Jain& Dubes,1989.
Up to naw, it isimpossble to define away to choose neither the best method, no
the best for a particular problem. These methods can are divided into two famili es:

» Hierarchical Agglomerative clustering methods: clusters are enbedded
forming a tree The roat is the most general cluster, which contains all
the objeds (i.e. dternatives), and the leares are the most spedfic
groups, that contain aunique dternative.

» Partitioning clustering methods: clusters are mutually exclusive. They
are generated optimising a‘ clustering criterion’.

a, a,

- - - . - al az o aﬂ
Data matrix Simil arity matrix

4’(3_) 4>(b) N-tree

Figure 4. Clustering process

We will follow the hierarchicd aggomerative gopoadch. That is, orce the
similarity relation is defined for ead pair of aternatives in the data matrix, the
clustering will proceal to buld a tree A treeis a nested sequence of partitions
over the set of adternatives. Formally,

Definition 3. [Gordon, 1987 A treeover a set of alternatives A is defined as a set
T of subsets of A that satisfies the foll owing condtions:

1. At

2.001

3. {a}Urt for dl alA

A MnANO{O,M,N} foral M,NO1
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With this conditions we can have binary or n-ary trees, although usually clustering
trees are forced to be binary (each node has only two children). The use of binary
trees is justified in terms of the facility with which these structures are obtained
and treated. However, binary trees are not as much close to the knowledge they
represent as n-trees.

The clustering process, besides of returning the set of nodes of the clustering tree,
assigns to each node a cohesion value, h,, of the duster it represents. This value
corresponds to a measure of similarity of the last union (i.e. when al the
subclusters have been gathered to form the duster that the node represents).
Therefore, for any pair of dternatives (a, a) that belongs to the duster a, the
following condtion is fulfilled: d(a,a )<h,, where d is the dissmilarity

i )=
function (i.e. the oppasite of the similarity) used to compare the dternatives
during the dustering process

Asit will be seen in the next sedion, we have focused onthe study d a particular
subset of clustering methods known as SAHN [Sneah& Sokal,1973: Sequential,
Agglomerative, Hierarchicd and Non-overlapping methods. The dustering
algorithm for these methods can be summarised as foll ows:

STEP 0. Construction of the initial simlarity matrix

STEP 1. Selection of the alternatives (i.e. objects) that are
nore simlar. Those alternatives wll form the new
cluster

STEP 2. Modification of the simlarity matrix as foll ows:

2.1. Elimnpation of the alternatives that belong to the new
cluster
Insertion of the new cluster in the simlarity matrix
Calculation of the simlarity between the new cluster
and the rest of objects (using the «clustering
criterion)

NN
wn

STEP 3. Repeat steps 1-2 until we have a single cluster

At step 1, the method can gather only two oljeds (in this way we build a binary
tre@ or gather all those dternatives with maximum similarity (so we obtain a n-
treg. With resped to the dustering criterion that appeas in step 2.3,it isused to
recdculate the similarity matrix when a new cluster has been creaed. There ae
different approadches, such as the Single Linkage, the Wad's method, the Centroid
Clustering analysis, etc. (see[Everitt,1977 for more detail s). Some of them will
be reviewed in the next sedion.

As it has been said, the result of the dustering processis a tree Trees are
generally pictured using dendrograms (seeFigure 5). A monaonic dendrogram is
the graphica representation d an utrametric (i.e. cophenetic) matrix. More
formally, a dendrogram is defined as a rooted terminall y-labeled weighted treein
which al termina nodes are equally distant from the root [Lapointe& Legendre,
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1991]. The weights of this tree are given by the heights h,, which correspond to
the cohesion values of the clusters a. So, for a tree T with M,NCt (two internal
nodes), the following property is fulfilled: if MnNzL, h, <h, - MON.

) M—

A
height

meonT

abcdef g abc defg abcdef ¢

Figure 5. Three different formats for representing dendrograms

Alternative characterisations of a dendrogram can be found in the literature.
Gordon [Gordon, 1987] states that a necessary and sufficient condition for a
monotonic dendrogram is that the set h, satisfies the ultrametric condition:

h, < max(h, . h, ) forala a,a, 0A

] =

where h, is the height of the internal smallest cluster to which both aternatives
and a belong.

Nevertheless, some of the trees generated by the clustering criteria do not fulfil
this ultrametric condition. So, they are not monotonous. They are said to present
inversions or reversals. For example, in

Figure 6 we can see that clusters a=(g,h) and =(i,j) merge at a level lower that
thelevel at which a was created.

A

inversion

A/

||

abc def g hi|j

Figure 6. Dendrogram of a non-monotonous tree

Non-monotonous trees may cause problems when the tree is cut in order to obtain
apartition of the set of alternatives.
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Partitions are obtained making a horizontal cut of the tree at a particular height.
The height at which the tree is cut determines the abstraction level achieved.
Increasing the cut level we obtain a smaller number of bigger (more general)
clusters.

3.3.2 Our generic clustering system: Sedas

We have implemented a generic SAHN clustering system, called Sedas [Valls et.
al., 1997]. All the scales mentioned in section 3.1 are allowed in Sedas. numerical,
ordered qualitative preferences, categorical and Boolean. However, any other
scale with a subtraction function defined in its domain can be included in the
system. Sedas has been incorporated to the Radames system, in order to be used
as an aggregation operator.

The interface allows the user to choose from alist of similarity functions and alist
of clustering techniques the most adequate to each particular data set. The system
includes, among others, the following classic weighted dissimilarity functions.
Being v, the value of thei-th criterion of dternative a, and v, the value of the i-th
criterion of alternative a,, we can calculate the dissimilarity d(a,a,) using:

Distance based on Differences

p
Zl vy -vi) Eq. 3.2

P

M anhattan Distance
p
|vij - vik| Eq. 3.3
1=1

Mean Character Difference (M.C.D.)

p

& £ 34

p
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Taxonamic or Euclidean Distance

Eq.35
Minkowski Distance
Eq. 3.6
p _ S
Z(Vij — Vi NVi Vk)
= Eq.3.7

This dissmilarity functions have been generalised to be gplied to numericd,
ordered quelitative, caegoricd and Boodean data [Vals et. a., 1997. For a
numericd criterion with range [a,b], we put the values into the unit interval [0,]]
before gplying the dissmilarity function. Ordered qudlitative values are
trandlated into numbers in [0,1]] using their negation-based semantics. The
difference v, - v, for categoricd vaues takes only two passhle vaues: O if they
are different or 1 if they are equal. Findly, the Bodean vaues are treded as
caegoricd ones. This functions can also be alapted to consider different weights

for the different variables (i.e. criteria, attributes) [Gibert& Cortés, 1997.

If the dedsion matrix has missng values (that is there ae some unknown values),
the system is able to cdculate the simil arity amongthe pairs of objeds. If v, or v,
are unknovn, Sedas can operate in two modes: @) the rest of values of this
criterion are used to cdculate the arerage value, which is used instead of the
unknovn value; b) this criterion is ignaed in the mmparison d the two
dternatives, a and a,, so p isdeaeased in 1 unt becaise we ae deding with less
criteria.

Using the data in the simil arity matrix, Sedas exeautes the dgorithm explained in
the previous dion. In step 2.3,a dustering criterion is needed to compare the
new-creged cluster with the rest of elements of the similarity matrix. To
determine the similarity of this new element with resped to the others, many
methods have been defined. Some of the most known approaches are available in
our system, such as:
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Single Linkage or Nearest Neighbour

This criterion considers that the dissimilarity value between a new cluster a
and an object’ o, is equal to the minimum distance between the objects in the
cluster and the object outside o,.

d(a,ok):mipd(oi,ok)

o0

Graphically,

0 d(a,0,)=dlo,,0,)

cluster a .................

Figure 7. Single Linkage

Complete Linkage or Furthest Neighbour

This criterion assumes a similar behaviour than the Single Linkage, however,
it considers that the dissimilarity value between a new cluster a and an object

0, isequal to the maximum distance between the objects in the new cluster and
the object outside it, 0,.

d(a,ok):mgxd(oi,ok)

Graphically,

Figure 8. Complete Linkage

° An object can be asingle alternative or a cluster generated in a previous step.
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Arithmetic Average

A measure in between of the two previous ones is the one known as
Arithmetic Average criterion. It takes as a dissimilarity value between a new

cluster a and an object o,, the average distance between the objects in the
cluster and the object outside o,.

5 40,0,

(jl(a,ok):oiu"'T

Centroid Clustering

This approach is based on the calculation of the prototype of each cluster. Let
us denote as 0, the prototype of the cluster a. This prototype or centroid is

defined as follows: o, = (c_l,cz,....,cp), where c_, is the average vaue of the
criterion ¢ considering the alternatives that belong to a. Using this prototype

or centroid, the distance between the new cluster and an outside object, o, is
defined.

d(a,0,)=d(o,.0,)

This averaging function needed to caculate the prototype of the cluster
depends on the type of scale. In Table 4 we can see some examples of
averaging functions for the scales we are dealing with:

Scale Functions

Numerical Arithmetic average, Weighted Arithmetic average, OWA

Categorical Max-min, Voting Techniques, Averages (tranglating terms
into numbers)

Boolean Voting

Table 4. Some averaging functions to build prototypes

In the case of qualitative domains with a negation function, we propose the
trandation of the values into numbers and the application of a numerical
averaging operator. We recommend the use of the Weighted Arithmetic
average or the OWA operator, depending on the kind of weights we are
interested to apply.
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Median Cluster Analysis

This criterion established that the dissimilarity between a cluster a (formed by
the union of objects o, and o) and the object o, (which does not belong to a) is
the length of the bisectrix of the angle corresponding to o,, considering a
triangle formed by these three objects. Thisisillustrated in Figure 9.

Figure 9. Median Cluster Analysis

do,.0,]0.)= \/ d?(o,, ok)+%d2(oj,ok)—%d (0.0,)

For n-trees, this definition can be generalized as follows:

d(a,ok):\/lmaxdz(oi,o )+ Lmind*(0,0,)- 2 a*(a.b)

2 ola 2 ola

where a=maxd?(0,,0,) and b =mind?(o,,0, )

o0 ol

That is, we build a triangle using two of the objects that belong to the cluster:
the one that is nearest to o, and the one that is furthest with respect to o,.

Using these clustering criteria, Sedas is able to generate n-ary trees. We decided
to discard the binary approach in order to avoid the arbitrary choice of two
elements to be joined when there are severa with the same similarity. Moreover,
with this method we eliminate the chaining of clusters that have the same distance
between them.

Not al these clustering criteria produce monotonous trees. In particular, the
Centroid and the Median Cluster Analysis methods may generate trees with
inversions. So, when Sedas generates a partition P from the tree, it checks that the

clusters in the partition are mutually exclusive, that is, MnN=[ for al M,NCP.
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For instance, the partition induwced in Figure 10,
P={(a,b.c),(d,ef),(0),(n),(9,hj,j),(i,))}, is not corred becaise does not had this
condtion.

a-cut

« inversion

il

abc def g hi|j

Figure 10. Making a aut in atreewith inversions

3.3.3 Using Sedas as an aggr egation oper ator

We have studied and compared the trees obtained using dfferent similarity
functions and clustering criteria[Vals et. d., 1997. The main conclusion reated
Is that clustering criterion hes lessinfluence on the structure of the tree generated
than the similarity function. In Table 5 we can seethe cmparison d different
trees obtained from the same data matrix with severa clustering criteria and
similarity functions. The table give the distance between pairs of trees. We have
used the distance defined in [Newmann,1986 and [Barthéémy& McMorris, 1984:

d (z,7)= kOt ~|tn |

Looking at the distances between trees, we can seethat the distance is highly
related to the similarity function wed rather than to the dasgficaion method.
This is refleded by means of small distances between trees obtained with the
same similarity function (Differences or Mean Charader Difference), and geder
distances when dfferent similarity functions are considered. We can see for
example, that when we dhocse the similarity function Diff erences (Dif), the trees
obtained by means of the Arithmetic Average (Dif_a) and the Median procedure
(Dif_m) have adistance of 8. On the other hand, when Arithmetic Average is
considered with several similarity functions we have d(Dif_a, MCD_a)=13.
Noticethat the distances in the upper right frame ae greaer than the othersin the
same olumn/row.
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Dif a | Dif m | Dif s [ MCD a|MCD m|MDC s| Symbolsglossary
Dif a 8 9 13 17 13 Dif: Differences
Distance
Dif_m 0 13 17 19 17 MCD: Mean
Character Difference
Dif s 0 12 16 12 a Arithmetic average
MCD a 0 6 0 m: Median procedure
MCD m 0 6 s: Single Linkage
MCD s 0

Table 5. Distances between trees

Assuming that the selection of the clustering criterion does not causes great
differences in the structure of atree if the similarity between the elements is well
established, we recommend the use of the Centroid Clustering criterion for
aggregating the values of the alternatives. The rationale for this decision is that
this method is based on the concept of prototype. The prototype is the pattern of
the cluster, and it is used to determine the relation from one cluster to the other
clusters and objects analysed. Asit will be seen in the next chapters, the following
stages of the ClusDM methodology are also based on the prototype of the clusters
in the partition obtained after the cutting of the tree. For this reason, we consider
that it is appropriate that the aggregation stage al so works with prototypes.

After fixing the clustering criterion to the use of the Centroid Clustering, we
studied the most usual similarity functions:

. the Differences distance may compensate a negative difference in one
criterion with a positive difference in another one. This is an important
drawback since two different objects can be considered as equal if the
differences compensate each other;
the Manhattan distance is based on a city made of blocks, so the distance
between two opposite corners of a building is the length of the two streets
you have to walk to arrive to the other side;
the Taxonomic distance considers that if you have to cross a square from
one corner to the opposite one, you can walk through the sguare. So, the
distance between these two opposite corners is the length of the line that
crosses them;
the Minkowski distance is a generalization of the Taxonomic distance that
considers more than 2 criteria, but the properties are the same;
the Pearson Correlation Coefficient is based on the lineal relations
between aternatives. It measures the correlation between two alternatives
comparing their values to the average for each criterion. Some
dimensional properties on the data set are required for applying this
distance [ Sneath& Sokal, 1973].

Having into account that the goal of our methodology is to be able to deal with

heterogeneous data sets. As it has been said in chapter 1, it is particularly
interesting the case of having qualitative preference criteria with different
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vocabularies. For this reason, we recommend the use of the Manhattan distance.
The basis of this similarity function is more appropriate to the characteristics of a
qualitative domain because when we compare two linguistic terms, we will use a
numerical trandation of this terms, however, the number represents an interval
(like one face of a building block) instead of a single point (like the corner of a
square).

Although in this point of the explanation we are suggesting the use of the
Manhattan distance together with the Clustering criterion, we must remember that
the ClusDM methodology is more general, and these are only some parameters
that can be changed.

In our system, Sedas, these parameters are required to build the n-tree. As it has
been said, to obtain a partition thistreeis cut at an appropriate level. In our case,
this level is determined by the number of clusters we want to obtain. Remember,
that each of these clusters must receive a different term in the vocabulary of the
new preference criterion. So, the number of clusters is proportiona to the length
of the vocabulary. In general, 7 it is said to be the ideal number of terms that a
person is able to handle [Miller,1956], however, this number might not be
adeguate in some cases.

We propose to use the lengths of the vocabularies of the criteria provided by the
experts to have an idea of the number of clusters we are looking for. Using this
criterion, Sedas takes a number of clusters as close as possible to the number of
linguistic terms used in the criteria. If there is no qualitative criterion, then a good
approximation is to take max(1,log,d), where d is the number of different values
considering all alternatives. This value is based on the proposal of [Dougherty et.
al.,1995]: they define the best number as the maximum of 1 and 2*log,0.
However, this approximation gives a number of labels too small, which implies
losing too much information. After making different tests, we recommend the use
of the logarithm base 2.

Despite of being interested in a partition, it is also useful to know the complete
tree of clusters, which is giving us the relation among the alternatives at different
levels. Looking into the subclusters of a particular cluster we can obtain a more
precise clustering of the alternatives, which alows us to distinguish different
categories inside a cluster. On the other hand, if we look at higher clustersin the
tree, we can see the similarities among the clusters of our partition.

Finaly, once the adternatives have been aggregated in clusters, Sedas

automatically assigns a symbolic name to each cluster. This partition and the
prototype of each of its clusters are the inputs of the following stage: Ranking.
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CHAPTER 4. Ranking stage

The ranking of the aternatives is applied after the aggregation of the values in the
decison matrix. In general, the ranking procedure depends on the type of result
provided by the previous stage. In our case, the aggregation produces a set of clusters
and each cluster can be represented by a prototype alternative, which is built
according to the values of the alternatives that belong to the cluster, as it has been
explained in chapter 3.

Therefore, the goal of this stage is to determine automatically the preference among
the clusters, that is, their ranking. In this way, at the end of the process, the class at
the first position of the ranking will contain the most preferred alternatives (according
to the new overal criterion). To obtain these preferences on the clusters, their
prototypes will be used.

The study of different ranking techniques have brought us to distinguish two different
situations:

CASE A: All the criteria in the decision matrix are expressing preferences over the
aternatives. That is, each criterion is giving an order of the alternatives
according to some preference opinion or property.

CASE B: The criteria are expressing different views of the data, which can be
preferences or just descriptive properties (e.g. educational degree, job, and
age).

The first case is the one that is usualy studied in MCDA research [Vincke 1992].
Nevertheless, sometimes there are descriptive properties that should also be taken
into account in the decision making process.

In the following sections we will explain the ranking methodology used in the two
different cases. A forma definition of the method is done at the beginning of the
section, to continue with the explanation of how to apply each method to the ranking
of clusters.
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4.1 Ranking using Principal Components Analysis

The ranking in CASE A is done using the multivariate statistical method caled
Principal Components Analysis (PCA). To dbtain a good ranking with PCA, criteria
are required to be correlated with each ather. This stuation happens when the aiteria
are the opinions of different experts about the dternatives. Although the experts may
have different points of view, if it is posgble to define “the best ranking” for the set
of alternatives, and experts redly know the dedsion problem, there is supposed to be
a high degreeof correlation.

The method of Principal Components [Pearson, 1901] obtains linea transformations
of aset of correlated variables guch that the new variables are not correlated. Thisisa
useful technique for statisticd anaysis of multivariate data, in particular, to describe
the multivariate structure of the data.

Although the Principa Components Analysis is usually a descriptive tool, it can be
also used for other purposes. For example, PCA can be applied to dbtain aranking of
observations [Zhu, 1998].

In this sedion, we will explain in detail the mathematicd basis of a Principa
Components Analysis. We will see some properties that are interesting for itsuse & a
ranking tool. Furthermore, we will define some measures and procedures to interpret
the results. Finaly, we will detail how PCA must be gplied to the ranking phasein a
multicriteriadecision problem.

4.1.1 How to perform aPrincipal Components Analysis

Considering that we have adata matrix, X, where the aternatives are defined in a
cetain basis, the PCA will make a diange in the basis, so that, the new space is
defined by orthogonal axes. However, PCA is nat applied diredly to the matrix X
[Jackson,1991]. Weuse a px p symmetric, non-singular matrix, M.

Principal Components are generated one by one. To find the first principal component
we look for alinear combination of the variables that has maximum sample variance.
Then, the second vedor will be obtained with the same goal subjed to the fad of
being athogonal to the first vector, and so on. The solution to this maximisation
problem is based on the fact that the matrix M can be reduced to a diagonal matrix L
by premultiplying and postmultiplying it by a particular orthonormal matrix U. This
diagonali sation is possible because M isa px p symmetric, non-singular matrix.
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U'MU =L

With this diagonalisation we obtain p values, |4, I2, .., lp, which are cdled the
charaderistic roots or eigenvalues of M. The mlumns of U, uy, Uy, ..., Uy, are called
the dharaderistic vedors or eigenvectors of M. Geometricdly, the values of the
charaderistic vectors are the direction cosines of the new axes related to the old.

Having the set of data, X, described by p variables, x1, Xy, ..., X,, we can obtain the
eigenvedaors corresponding to this data and produce new p uncorrelated variables, z,
2, ..., Zp. Thetransformed variables are cdled the principal components of x.

The new values of the alternatives are alled z-scores, and are obtained with this
transformation:

z=U'X Eq. 4.1

where X is px1 vector that has the values of an alternative dter some scding.

4.1.2 Typesof Principal Components Analysis

The matrix M, from which the principa components are obtained, is defined as
described in Eq.4.2.

M=—- Eq. 4.2

Different types of principal components analysis exist acording to the definition of
variable Y in terms of X. Here we underline the three different possibilities
[Jackson,1991].

Product matrix

Thefirst approach consistsin taking Y = X, that is, perform the analysis from the
raw data. However, there ae not many inferential procedures that can be goplied
inthis case.

Covariance matrix

The semond approach consists in centring the data, so that Y = X — X . In this
case, we scde the data to be distances from the mean (which is actualy a
trandlation of the points). Thus we transform the variables such that al of them
have mean equal to 0, which makes them more comparable. It is important to
notice that, in this case, the matrix M obtained is the wvariance matrix of X.
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In the clculation of the mvariances the mean is subtracted from the data, so it is
not necessary to do it in advance Then, we obtain the principal components using
Eqg.4.1, where x will be the result of subtracting the mean from the data val ues.

z:U'[x—;(J Eq. 4.3

where x is a px1 vedor that has the values of an aternative on the origina
variables, and x isasoa px1 vector that has the mean of each variable.

The covariancematrix is denoted Sand it is calculated as foll ows:

K S . S0
Bo$ .S E

s==% P Eq. 4.4
.. . .. L
0 C
B Spz S, E

where ¢ is the variance of X, and the cvariance of (x; X)) is calculated as
follows:

_ n Xikaj - Xix Xjk
S; =
n(n—l)

PCA based on the mvariance matrix is widely applied because the inferential
procedures are better developed for thiskind of matrix than for any other situation
[Jackson,1991]. However, there ae some situations in which the covariance
matrix should not be used: (i) when the origina variables are expressd in
different units or (ii) when the variances are different (even though the variables
are in the same units). The use of a @wvariance matrix in these two situations will
give undue weight to certain variables (i.e. those that have alarge range of values
or alarge variance).

Correlation matrix

To avoid the weighting of certain variables, we can work with variables with a
common deviation equa to 1. This is obtained by centring and standardising the
variables. So, the matrix M is, in this case, the crrelation matrix of X.

The oorrelation matrix, denoted by R, is computed as foll ows:
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R=D'9D* Eq. 4.5
where D is the diagonal matrix of standard deviations of the original variables:
.. 0
D= %) s, .. O
%) 0 ... s,
The use of correlation matrices is also very common and it is usually the default

option in some @mmputer packages (e.g. Minitab). Inferential procedures for this
type of matrices are dso well defined.

Eq. 4.6

Tarrririr

In thi*s case, the z-scores are obtained using EQ.4.3 but using standardised values
for x. That is, we have to subtract the mean to the data and divide it by the
standard deviation. Then, we must multiply it by the egenvectors.

z=U'D[x~x] Eq. 4.7

As it has been previoudy said, the results obtained with each type of scaling are
different. For example, the @genvectors, U, and the z-scores, z, are different. In fact,
there is no one-to-one correspondence between the principal components obtained
from a correlation matrix and those obtained from a @variance matrix.

Other types of vectors can be derived from the charaderistic vedors (U-vectors)
obtained either with the cvariance or the rrelation matrix. We ae interested in the
V-vectors, which properties will be described in the next section. The transformation
of the charaderistic vectors is done in order to obtain principal components in other
scales, in which ather properties are fulfill ed.

V-vectors are the ones obtained with the following transformation:

vV =ULY? Eq. 4.8
eV, =Ui\/r Eq. 4.9
e v =ug4/l; Eq. 4.10
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Giving weightsto the variables:

To give different importance to each variable, we must adjust the matrix used in the
PCA (either the correlation or the covariance matrix) using a diagona matrix with the
weights of each variable. Then, the matrix used for the multivariate analysis will be:

[(weight, 0 0 C
U : L
0 weight,, ... 0
X [E Iz E Eq. 4.11
g O 0 .. weight, F

4.1.3 Properties

Let us describe the properties of the results obtained in the two most popular PCA
approaches: the covariance matrix and the correlation matrix.

PCA based on covariances:

The U-vectors are orthonormal; that is, they are orthogona and have unit length.
Therefore, they are scaled to unity (i.e. the coefficients of these vectors will be in the
range [-1,1]). Using these vectors we produce principa components that are
uncorrelated and have variances equa to the corresponding eigenvalues. The
contribution of each variable to the formation of thei-th principal component is given
by the magnitude of the coefficients of u;, with the algebraic sign indicating the
direction of the effect [Dillon& Goldstein, 1984].

V-vectors are aso orthogona but they are scaled to their roots. In this case, the
principal components will be in the same units as the origina variables. The
variances will be equal to the squares of the eigenvalues.

Interpretation of principa components is often facilitated by computing the
component loadings, which give the correlation of each variable and the respective
component. So, the loading for the j-th variable on thei-th principal component is:

u; l,
S.

Il

Eq. 4.12

Note that the numerator is actually v;j.
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PCA based on correlations:

The properties of U-vectors are the same as the ones explained for the case of the
covariance matrix. Therefore, the interpretation o their coefficientsis the same.

With regard to the V-vectors, in this case, they hold important property: their
coefficients $ow the rrelations between the principal components and the original
variables, because the variances of the standardised variables are dl equal to 1. Thus,
if the aefficient v;; is equal to 1 it means that the i-th principal component and the j-
th variable are positively correlated, and if v;j is equal to -1 they are negatively
correlated. However, we lose the property of obtaining z-scores in the domain of the
origina variables.

4.1.4 Stoppingrule

The Principal Component Analysis all ows us to reduce the multidimensionality of the
data, and represent the information of the initial data set in a k-spacesmaller than the
origina (with p variables), that is, k<<p. In the k-space the data is easly
interpretable. However, the determination o which should be the value k is nat
straightforward. The larger k is, the better the fit of the PCA model; the smaller k is,
the ssimpler the model will be.

There ae different stopping criteria (see[Jackson, 1991]). They are based in the fact
that the characteristic roots, 14, |2, ..., I, are decreasingly ordered, that is, [1 > 1, > ... >
l,. That means that the first charaderistic vedor is the one that accounts for a higher
proportion of variability. These stopping criteria range from methods that evoke
forma significance tests to less formal approadhes involving heuristic graphical
arguments.

For the covariance input, the stopping criteria are usually related to the statisticd
significance of the eigenvalues. However, for the @rrelation matrix, these statistical
testing procedures no longer apply.

An alternative goproach consists of more a hoc aiteria. For example, the aumulative

percentage of the variance extraded by successve mponents, or the Jolliffe's
criterion (called Broken Stick), which consists of selecting the k vectors, u;, such that

li>g;, where gj is:
1HE
9, :pEZ(J/u)E Eq. 4.13
=]
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An adaptation of this formula to the ase of having variables with uniform
distributionsis:

(0-1+10p++1
> (n-i+1)p-i+1) Eq. 4.14

g; =

For the cae of the correlation matrix, this variance gproac lacks clea meaning,
because the standardisation o the data produces a dimensionless $andard score
space where the sum of the eigenvalues is equal to the number of variables, p. The
most frequently used extraction approach in this case is the sdection o the
components whose agenvalues are greater than one. The rationale for this criterion is
that any component should acount for more “varianc€’ than any single variable
(remember that variances are equal to 1 lecause data have been centred and
standardised).

415 Interpretation of theresults

A Principa Components Analysis is usually performed for descriptive purposes. In
this framework, it is useful to know the globa variance of the data we ae studying.
There is adirect relation between the sum of the original variances and the sum of the
charaderistic roots obtained with the PCA.

Tr(L) =hh+bh+Ilz+ .. |p Eqg. 4.15

In the ase of doing the PCA with the correlation matrix, it holds that Tr(L) = p
because the variables have been previoudy standardised.

The value Tr(L) is used to cdculate the proportion o the total “variance’ attributable
to the i-th component, which is|; /Tr(L).

Another measure that is interesting is the contribution of each observation, |, to the
formation of a particular component, i, denoted CTR(j). With this information, we
can detect observations that if they were removed from the analysis, the result would
be the same. These observations have low contribution values.

CTR (J) =?(J) Eq. 4.16
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We can adso measure the cosine of the angle between an alternative j and the
component i, which gives us an idea of the quality of the representation of the
aternativeif it is projected into the i-th component.

Eq. 4.17
)

being d the Euclidean distance between the observation j and the centre of gravity
(whichisQif the datais standardised).

Graphically,

7 ()
Figure 11. Measuring the quality of representation of alternativej

The measurecos’ (J) is, actually, the square of the cosine of the angle a in Figure 11.

If we denote as A the distance between j and G, and B is the distance between z2(j)
and G, we can see that when Eq.4.17 is equal to O, A and B are perpendicular, and if
Eq.4.17 isequal to 1 then A=B, s0 | is the same as z%(j) , which means that there is no
loss of information in the change between one space and the other.

We can define a measure of the quality of the representation of a particular
observation j in a k-space (formed with the k first components). The maximum value
of QLT (quality) is 1, which means that the observation is completely representable
with the k components.

k

QLT (j)= Z cos?(j) Eq. 4.18

On the other hand, it is very interesting to know the meaning of the new space
defined by the eigenvectors obtained in the PCA in terms of the initia variables. It is
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possble to make adual analysis with X', that is, transposing the data matrix, with
which we consider the variables as rows (as observations) and the individuals as
columns. Then, using the PCA, we obtain an m-space where we can represent the
variables in terms of a set of uncorrelated axis (that represent uncorrelated
observations). An important property is that this m-spaceis related to the p-space
obtained with matrix X. With this relation, we can use the p-spaceto represent the
variables without having to perform the second analysis.

Once we have the variables represented together with the observations, we can use
the measures Eq.4.16, Eq.4.17, and EQ.4.18 to infer the meaning d the principal
components. In [Volle,1985] there ae some guidelines about the process to follow
for the interpretation of the new axes, in the cae of using the wrrelation matrix. Note
that if we cdculate the projection of the variable x; into the i-th component, z(x;), we
can write the cntribution and cosine in terms of the V-vectors, because z(x) = vi(;).

CTR (x,) = Vizl(xj): u?(x,) Eq. 4.19

We can seethat the contribution of a variable to the i-th component is given by the
sguare of the U-vector obtained when performing the PCA of X. The sign of u; saysiif
it has contributed positively of negatively.

On the other hand, with resped to Eq. 4.17, the distance of each variable to the entre
of gravity is 1 (because the data has been standardised). So, the @sineis equal v; and
also it isequal to the arrelation between the variable and that component. If coszi(x,-)
is nea to 1, x can explain the meaning of the ais, because it is redly well
represented by this axis. In addition, if v; is near to 1, X is positively correlated with
the cmponent (andif v; is-1, it is negatively correlated).

CORR (x,)=v2(x,) Eq. 4.20

Finally, there ae some measures for the global correlation of the initial variables.
One of them is the calculation of the determinant of the cvariance or the rrelation
matrix. In the @se of the wrrelation matrix, R, the determinant is sometimes referred
to as the “scater coefficient” [Jackson, 1991]. This coefficient is bounded between 0
@@l of the variables are perfedly correlated) and p (al of the variables are
uncorrel ated).

IR =10, 0.0, Eq. 4.21
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Another measure is the addition of the individual correlation of each variable to the
first component, but having into account the sign of their direction (positive if it has
the same direction than the component, and negative otherwise). If all the variables
are positively correlated, the sum is equal to the first eigenvalue |;, so the percentage
of correlationis|i/p.

4.1.6 Application of the PCA to rank order

The principa components found with a PCA can be used to rank the observations
[Slottje et. a., 1991]. In the simplest case, we have a set of highly correlated variables
and the stopping criterion selects only one component to represent the data. Then, the
projections of the observations in this component, z;, completely define an order
among them.

In the case of needing more than one component to represent the information of our
set of data, we can combine the components considering the proportion of variance
explained by each one. In[Zhu, 1998] the position of each alternative g; is given by:

POS, = 2'—;0|zij| Eq. 4.22

In this expression, al the values of the observations in the original variables must be
positive. If this is not the case, some adjustments must be introduced to Eq.4.22 (see
[Zhu,1998]).

We propose to use the Principal Components Analysis to rank the aternatives only if
one component is enough to represent our data. If more than one component are
needed, the interpretation of the result is far more complicated to automatize. In
addition, the measure that qualify the goodness of a ranking obtained with the PCA
can only be applied for the case of having the projection of the alternatives in one
component (this will be explained in more detail in chapter 5). Therefore, when the
first component is not enough to represent the data and perform the ranking, we will
use an aternative procedure based on the similarity to an ideal aternative, which is
explained in section 4.2.

Now, we are going to see in detail the process that must be followed to obtain the
rank order of the partition of alternatives that we have got in the clustering phase. We
want to mention here, that usually the PCA is used as a descriptive tool for an
statistical expert that knows how to interpret the results in each of the different steps
of the process. However, we want to include PCA in a decision-making method that
can be implemented and executed automaticaly to obtain the ranking of the
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aternatives without the help of any expert in PCA. For this reason, we have studied
in depth this statistical procedure and have selected some measures that can provide a
useful knowledge to the decision maker without having to know the insights of this
statistical method [Valls& Torra,2002].

First of all, we have to decide which type of PCA to use. As we have seen, there are
different ways of performing a PCA depending on the kind of matrix from which we
obtain the eigenvectors and eigenvalues. We propose to use the correlation matrix
because it will allow us to have variables with different variances. Remember that, in
our decision-making framework the variables are the criteria®, which can have
different types of values and different domains.

In the moment of having to perform the ranking, we have the following information
available: a data matrix with the aternatives described according to a set of criteria,
the grouping of this alternatives into similarity classes and, finally, the prototype of
each class (in terms of the same criteria). With the prototypes we can build another
matrix, B, of the form:

Criterion1| ... Criterion p

Prototype Class A

Prototype Class G
Table 6. Prototypes matrix, denoted by B

Then, we have two data matrices that can be used to obtain the first principal
component: the origina data matrix, X, and the prototypes matrix, B. In principle,
PCA could be performed in each of the two matrices. However, the second one has a
very short number of objects (between 4 and 9, which are the usua cardinalities of
linguistic vocabularies). This is not good for PCA, which is a technique to be used
when the number of variables (i.e. criteria) is smaller than the number of alternatives
(i.e. classes or objects). Moreover, the values in the matrix of prototypes have not
been provided by the experts, they are the result of some computation over the
origina values, which can introduce error in the interpretation of the result. So,
although the objects that we want to rank are the ones in matrix B, we should not
perform the PCA directly with these data. The PCA will be done in the origina data
matrix, and then, the prototypes of the classes will be introduced in the new space in
order to be ranked.

® In the data matrix we can have criteria given by asingle expert or by different experts.
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We can dstingush 5 steps in the process of applying the Principal Components
Anaysis to aur data. These steps must be followed sequentially. At the end, we will
have aranking of the dasses and some values that will be used to measure the
goodness of the result, and to infer the relations among the variables (i.e. preference
criteria).

STEP 1 — Apply the Principal Components Analysis to the data matrix. Obtain the
eigenvalues, |;, eigenvedors, u; and V-vectors, V.

STEP 2 — Check if the first component is enough to perform the ranking. To decide
whether it is enough or not, we must apply a stopping criteria (section 4.1.4)
and see if the number of selected components is one or greder. As we ae
working with correlation matrices, we propose to use the aiteria that selects
those vectors that acount for more than a 1% of variance that is, I;>1.

If we need more than ane principal component to represent our data, we will execute
step 4 (to dotain some alditional information) and end.

STEP 3 — Use the first V-vector to know the meaning of the first component. A value
near zero means that the variable has no influencein the interpretation of the
component, while the higher the asolute value of the variable, the more the
component is sying the same than the variable. We @an apply Eqg.4.20 to
cdculate the relation between each variable and the first axis and find the
variables with higher correlation.

Once, we have got the variables that can explain the meaning of the axis,
we nedl to know if they are positively or negatively correlated, this can be
found looking directly into the V-values of the first axis, vi. The sign
indicates the diredion d the variable in relation to the component. This is
particularly interesting because we must determine which is the direction of
the first component in order to know which are the best aternatives. In our
case, dl the variables are expressing preferences, where the higher the value,
the more preferred the dternative is. Thus, the sign o coefficients of v;
should be the same if dl the aiteria agree in gving the same kind o
preference (good or bad) to the same dternatives. When a criteriais sying
the mntrary than the others, its sgn will be the oppaosite of the others. In
case of having a set of positively correlated variables of similar dimension to
the set of negatively correlated variables, we will stop the MCDA process
because the diredion of the first component cannot be establi shed.

STEP 4 — Calculate the contribution of each variable to the formation of the first
principal component (Eg.4.19). If a variable did not contributed to the
formation of the first axis, it means that this variable does not give awy
useful information for the determination of the axisto be used in the ranking.
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When a variable highly contributes to the second principal component
and not to the first one, we can say that this variable is in contradiction (it is
perpendicular) to our social axis, which isthefirst one.

If a variable does not contribute to any axis, it means that it can be
eliminated from the analysis and the result would not be significantly
different.

STEP 5 — Find the z-scores of the prototypes in the first principal component, z,
using (Eq.4.3), where X are the mlumns of the prototypes matrix. Before,
these values have been centred and standardised.

The zscores tell us the position of each class into a line, which defines a
total order among them. The direction of the diredor vector of this line
determines which is the best and worse position. This direction has been
found in step 3 Thus, the ranking of the classes we were looking for is
aready set.

If the process finishes succesdully, in step 5we have obtained the z-scores in the first
principal component, z;. However, the values of z do not belong to a predefined real
interval. To be used in the following stages of the MCDM process we need to know
the position of the clusters in the [0,1] interval. To perform this saling for a given
prototype, j, we use Eq.4.23.

2.(j)= z(j) Eq. 4.23
Z, (e ) — Z1(Arir )

The aj4eq IS afictitious aternative that takes the best possble value for each criterion.
If this alternative existed, it will be the most preferred by the decision maker. On the
other hand, the anagir is a fictitious aternative with the worst possble value for eah
criterion.
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4.2 Ranking based on the similarity to the Ideal alternative

The second procedure, denoted as CASE B in the description of the ranking phases,
corresponds to the situation in which criteria are not correlated enough. For this case,
we propose the application of another ranking technique based on similarity
functions. Due to the distinct opinions of the experts (or criteria suppliers) or the
incomparable meaning of the criteria, we will need a separable measure, which
compares the objects criterion by criterion.

We assume that for each criterion there is a single value of its domain, vij, which is
the best. That is, if alternatives were only described with this criterion, the ones with
value v;; will be selected by the decision maker. With the values v; we build an ideal
aternative, denoted ajqear, Which is the one that has the best value for each criterion.
This ideal aternative is the same one considered in the previous section to locate
aternativesin the[0,1] interval.

The ranking is based on the comparison of prototypes with respect to the idea
alternative. The aternatives that belong to the class whose prototype is nearer t0 ajgea
are the best ones. To compare them we must use a similarity measure, like the ones
used during the clustering process.

With this approach, the position in O of acluster is given by:
z(j) = similarity(prototypej s ey ) Eq. 4.24
where the lower the z, the better the cluster is.

A similar approach is the one known as TOPSIS (Technique for Order Preference by
Similarity to ldeal Solution), developed by Yoon and Hwang [Hwang& Y oon,1981].
TOPSIS is based on the concept that the selected aternative should have the shortest
distance from the idea solutions and the farthest distance from the negative-ideal
(nadir) solution. Therefore, they define a measure of the relative closeness to the ideal
as:

Z (Vij _Vj—)z

1

p
IE
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That is, they calculate the Euclidean distance between the alternative a; and the ideal,
defined as @jgea = (V1+, V2, ..., Vpr), and the Euclidean distance between the dternative
a and the nadir one, apadir = (V1-, Vo., ..., Vp.). Then the ranking of the alternatives in
found according to the preference rank order of Ci-.

Using the TOPSIS approach, if we have two alternatives with same similarity to the
ideal, the one that is furthest from the nadir is the one considered as best than the
other one. If we represent it in a two-dimensional space (Figure 12), we can see, that
the aternative more distant to the nadir is the one that has a greater difference in the
values given by the two criteria (a is considered as 0.5 for one criterion and 0.8 for
the other). Their corresponding closeness preference values according to TOPSIS will
be: Cu = 0.64 and Cy- = 0.62. So, the best oneis a.

0
0 1

Figure 12. Ranking of alternatives with TOPSIS

However, this approach does not have into account the agreement between the
criteria. Under our point of view, alternative a is as good as b with respect to the goal
of achieving the values of the ideal solution. The difference between them is related
to the knowledge we have about their goodness. For this reason, we propose to
consider them as equal and give extra knowledge to the decision maker about the
trustworthiness of their position in the preference ranking. As it will be explained in
more detail in the next chapter, our confidence on b is greater than on a, because the
two criteria give the same value to b, whereas our knowledge about a is that it can be
as good as 0.8 indicates, or it can be not so good as 0.5 says. For this reason, the
ranking method we propose only compares the prototypes with the ideal aternative.

Moreover, after studying the properties and behaviour of different similarity measures

to rank the clusters, we propose the use of the Manhattan distance if we have
gualitative criteria in our decision matrix. The Manhattan distance (Eq.3.3) is
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appropriate when working with numbers that represent linguistic terms, as it has been
argued in section 3.3.3, where it has been recommended to be used in the aggregation
Process.

If no qualitative criterion is considered, we recommend to apply the same measure
used in the first stage, so that the same conditions apply during all the process (thisis,
to avoid different similarity functions in the same process because each similarity
function has different properties).

4.2.1 Application of the similarity-based ranking

As said, this ranking procedure will be used in case of having non-correlated
preference criteria or descriptive criteria with a non-ordered domain. The information
provided by the aggregation stage is the same than in the PCA ranking: a data matrix
with the alternatives described according to a set of criteria, the grouping of this
alternatives into similarity classes and, finally, the prototype of each classin terms of
the same criteria.

To find the ranking, we start with the prototypes of the clusters. For each prototype
we measure the similarity (or distance) to the ideal aternative. The result will
indicate a degree of preference of aparticular cluster.

Repeating this distance measurement for all the prototypes we obtain a numerical
degree of preference of all clusters (we denote by z(j) the numerical value of the j-th
cluster Eq. 4.24). Using these values we can determine an order among the clusters.

Now, we have got a rough approximation of the position of the clusters in a
numerical interval [ab]. As we have explained in section 4.1.6, the values that the
following stages require must be in the [0,1] interval. For this reason we must apply
the same transformation function that was indicated for the PCA method, Eq. 4.23,
which is reproduced here:

()= 2

- Z(aideal) - Z(anadir)

In this case, z(ajgear) Will be O because the distance between the ideal solution and
itself is 0. Moreover, the values we obtain will be ordered from best to worse, that is,

the aternative with alower z,, will be the best one, whereas in the PCA ranking the
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ordering was the opposite. For this reason the following transformation is applied to
the z,, values.

*

zy,=1-2, Eq. 4.25

After these calculations, the result of the ranking stage for case B is the same than
case A: we have obtained a totally ordered set of clusters. This leads to an ordered
partition of the alternatives. This ordered partition defines a new qualitative ordered
criterion.
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The outcome of the ranking stage is an ordered set of clusters, where each cluster is
defined in terms of severa alternatives. This cluster has also asociated avauein the
[0,1] interval corresponding to a rough approximation of its position on the “socid
axis’. In this sction we describe how to asciate alingustic term to each cluster
(and, therefore, to each alternative). The linguistic terms will replace the numerical
rough approximations computed in the previous gage. To complete the process and
obtain a new qualitative preference citerion, we must establish not only the
vocabulary but also the negation-based semantics of this criterion.

In the first part of this chapter, the complete methodology to build the new qualitative
criterion is explained. Severa agorithms have been developed in order to deal with
all the specia situations and obtain a good vocabulary with an appropriate semantics.
This is very important because these ae the tools that we give to the user to
understand the result of the dedsion making process

The second part of the chapter is devoted to the evaluation of the goodness of this
new criterion, which we have alled: the quality measurement stage. This goodnessis
cdculated from the information provided at the different stages of the process the
aggregation through clustering, the ranking (with the Principal Components Anaysis
or with the Similarity calculation) and the vocabulary building. Many different
fadors are anaysed and included in afina qualitative measure of the trustworthiness
of the resulting criterion. However, we dso recommend having into ac@unt not only
the fina qualification but aso the partial quality measures of ead stage.
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5.1 Giving semantics to the ordered set of clusters

The main goa of this phase of the process is to give meaning to the ordered
gualitative domain of the new-created criterion. At this stage, the values of this
domain are terms artificially generated in the first stage. We want to change these
terms by others that have a meaning easily understandable for the decision maker.

We propose a new method to select the most appropriate linguistic terms to describe
each cluster of alternatives. With these terms we build the vocabulary and semantics
of the new overal criterion.

The vocabulary can be obtained from the ones used by the different preference
criteria in the data matrix, or it can be given by the user. Once we have the set of
possible terms to be used, we apply a new assignation procedure to select the best
term for each cluster. During this process, we can split up some termsto obtain others
with a finer semantics, that is, to generate more precise terms. The new linguistic
labels are obtained using linguistic hedges.

When the selection of the terms to be used has been done, the new vocabulary has
been established. The next step consists of giving the semantics to these terms that is,
building the negation function over this vocabulary.

5.1.1 Thevocabulary of theresult

To determine which is the most appropriate set of terms to be used in the new
criterion, we distinguish two different situations:

CASE C: The decision maker provides a vocabulary to be used in this stage. This
vocabulary must consist of a finite ordered set of terms and a negation
function over these terms.

CASE D: No vocabulary is given by the decison maker. Then, the system has to
choose one of the vocabularies of the criteria provided by the experts when
they have filled the decision matrix.

We believe that the less parameters the user has to define when running a decision
support system, the more encouraged to use it he will be. The large amount of
information required to the decision maker may be a counterpart for its use in daily
situations. For this reason, we will only consider CASE C when there is no possibility
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to describe the result with the vocabularies of the origina criteria. For example, in
Table 7 we have that the three criteria are not appropriate for expressing a preference
ranking over the aternatives. Thus, the user should provide a vocabulary like the one
in the last row.

lowest value . largest value
Weight lean, thin, normal, corpulent, fat, overweighted
Distance same place, close, near, far, remote, outlying

Waitingtime | very short, short, acceptable, long, very long

Preference | terrible, bad, not-recommendabl e, acceptable, recommendable, good, very good, ideal

Table 7. Qualitative vocabularies of the criteriavs. preference vocabulary for the raking

We can see that the vocabularies in Table 7 are ordered sets of terms, but the higher
value does not necessary mean that it is the desired value. For example, concerning
the weight, we may prefer a corpulent person than afat or anormal one.

In CASE D or when some of the vocabularies of the criteria are aready expressing
preferences over the aternatives, we can use their values to qualify the clusters of
alternatives without having to ask to the decision maker. In this case, we have the
problem of choosing a vocabulary among the possible ones. We have defined a
distance measure between ordered qualitative vocabularies, d,, based on the fact that
each vocabulary is a set of bounded closed non-overlapping intervalsin [0,1].

First, we define a centre function as a function that assigns to each value x; in [0,1]
another value in [0,1] that is the value of the central point of the interval (m,M] to
which x belongs to. This centre function is aleft continuous step function.

Having two vocabularies, V4 and Vg, we denote A and B their corresponding centre
functions, such that, for any x[J [0,1],

A:X - a,
B:x - b,

where ay is the central point of the interval of A to which x belongs, and by is the
central point of theinterval of B to which x belongs.

Then, we define a measure of similarity between vocabularies as follows:

67




Chapter 5

0, %)=0, (A B)= [ 0*(a. = 51
where d?(a,,b, )= (a, b, ).

It can be easily seen that d(a,,b,)=+/(a, —b,)’ is the Euclidean distance between
two points.

Theorem: d,(V,,V,) isadistance.

Proof.
(1) Positivity.
According to the definition of d,(V,,V,), the result cannot be negative,

d,(v,,V;)=0.

Let’s proof that if d V V B’ld g/=0 then Va= Vg

We will show that when d,(v,,V,)=0, for any x0(01], d(a,,b,)=0, which
means that a, and by are dways equal (Va= V).

Let us suppose that there exists x'0(0,], such that d?(a,.,b,)=(a, -b,)* 20, asA
and B are left-continuous gep functions, for any x'0(0,1), there exists an x"01(03) ,
x'< x suchthat (a, —b, )’ =(a, —b, ) forany xO[x",x]. So,

ﬁdz(ax,bx)dx zﬁdz(ax,bx)dx :I:(ax ~b, Vdx :‘[Xf'(ax. ~b, Fdx = (a, —b, F(x"-x

as (a, —b,)* #0 and (x'-x)>0, we have that the previous expresson is positive,

I:dz(ax,bx)dxz(ax.—b)z( x'-x')>0, which contradicts the original

asumption d, V V B’ld a,,b, dxmj/ =
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So, it is not possble to find any x'0 (0,1] such that d?(a,,b,)=(a, —b, )’ #0.
Therefore, a, =b, 0x0[0,],i.e. Va= Vs

(2) Symmetry.
For any Va, Vg,
d,(v,.Vs)=d,(AB)= gde(ax,bx)dxg% = gjd%bwax)dxg% =d,(B,A)=d,(%.V,)

since d%(a,,b,)=(a, b, )*is ymmetric.

(3) Triangle inequality.

We want to show that d,(V,,V,)<d,(V,,V.)+d, (V. ,V;).

Weknow that d(a,,b, )< d(a,,c,)+d(c,.b,) Ox0[0]], becauseit isadistance
From this inequality we can also have, d?(a,,b,)<(d(a,.c,)+d(c.b )} or

d?(a,,b, )< d?(a,,c,)+d?(c,.b )+2d(a,,c,)m(c,,b,).
So, if we introduce the bounded integrd in each  gperand,

d2(a,,b, Xix< [d2(a,,c, ix+ [ d?(c,.b,)+2[ d(a,.c,)m(c,.b, Y, the
f f 5 J;

inequality is also true.

Since Jid(ax,cx)Ed(cx,bx)dxs ﬁ:dZ(ax,cx)dxt‘[:dz(cx,bx)dxﬁyz, we have that
Jidz(ax,bx)dxsﬁdz(a C, )dx+fd2 c..b, +2§)d2 a,,c, )dx[ﬁdz(cx,bx)dxﬁy2
or I:dz(ax,bx)dxs%r )dxﬁv %’d ﬁvgwhlch is exactly the

triangle inequality property:

g (a,, bxg/_gd D]/Z+Hid2(c b, )0
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This distance measure take values in [0,0.25], being O the value indicating that two
vocabularies are identical, and being 0.25 the maximum distance vaue for two
different criteria. This maximum is obtained when the intervals of the two negation-
based vocabularies are completely different.

Pr oof.

The difference between the centers of two overlapping intervals reaches its limit
when these intervals are large and are positioned far from one to each other. The
maximum length of the intervals is achieved having the minimum number of terms.
That is, having a vocabulary with only 1 term, and the other one with 2 terms (Figure
13).

I I I
I A I A I

Figure 13. Maximum distance between overlapping negation-based intervals

In this situation, the maximum difference of the centersis 0.25 for all the pointsin the
domain [0,1]. Therefore, for al x in [0,1], we have

d2(a,,b,)=0.25% = 0.0625

which can be substituted to d, to obtain the maximum distance val ue:

d, (v, Vs ) = H)IO.OGZSdXS/Z =0.25
O

We apply the distance d, to measure the similarity between each vocabulary given by
the experts and the result of the ranking phase, which is a set of ordered names of
clusters.

For each vocabulary of the criteria we have a negation function that alow usto obtain
the interval (m,M] corresponding to each term (using Eq.3.1). Obtaining the centre of
this interval (i.e. ay) is straightforward. Moreover, for each cluster we know the
position of the prototype in the interval [0,1]. Being by the centres of the intervals, it
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is possible to know the boundaries of the intervals. Therefore, we have all the
information needed to calculate the integral in expression Eq. 5.1.

The criterion whose vocabulary is the most similar to the set of clustersis selected to
be used to explain the meaning of those clusters.

5.1.2 Assigning the most appropriateterm to each cluster

Once we have the final vocabulary selected (or provided by the user), we have to
assign aterm of this vocabulary to each class. This term will describe the suitability
of the cluster for the decision problem. Moreover, we can only use each term once,
because if more than one cluster recelves the same term, they will be
indistinguishable.

We have a method to solve this selection problem. Some intuitive assumptions have
been considered:
— no cluster with a position, zy;, lower than 0.5 will receive a positive term
— no cluster with a position, Z, higher than 0.5 will receive a negative term
— if acluster is near the centre, 0.5, it will receive the neutral term
— theneutrd term, if exists, will have a negation equal to itself

With this requirements, we have developed the following procedure that divides the
vocabulary into three parts. positive terms (those with a preference higher to 0.5),
negative terms (those with a preference lower than 0.5) and the neutral term (the one
whose negation is itself, and its value is 0.5). For knowing the position see the
semantics induced by the negation function (Eq.3.1).

According to the negation function it is possible that the selected vocabulary does not
have any neutral term. In this case we will have the vocabulary divided into two sets,
instead of three.

The procedure has 6 steps:

1. Find the cluster with corresponding z-value equal to 0.5 + &, which will be
dmotw Cneu[ra|

2. If it exists then assign to it the neutral term, Treurra (if the vocabulary does not
have a neutral term, it will be provided by the user). For further calculations,
consider that Creytra 1S positioned in Zy;=0.5.

3. Dividethe clustersinto two groups:
Positive Clusters (positioned between 0.5 and 1) and
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Negative Clusters (positioned between 0 and 0.5)

4. Dividethe vocabulary into two groups:
Positive Terms (following Treura) and
Negative Terms (preceding Treutral)

5. If the granularity of any group is smaller than the number of clusters of the
corresponding group, apply the algorithms Maki ng_new | abel s and
Make_nanes until we have the same number of terms than clusters.

6. Apply the algorithm Expl ai n_r esul t to the 2 groups independently.

Two additional algorithms have been defined in order to sort out two particular steps
of this assignation process [Valls& Torra, 2000b]. Firstly, we will see the algorithm to
assign terms than are able to explain the result (i.e. the aternatives according to the
clusters). The inputs to the algorithm are the set of ordered clusters and the set of
ordered terms to be used to qualify the clusters.

Algorithm Explain_result is
k := nunber of clusters to be explained
i f k=nunber of terms then
Assign these k ternms to the k clusters
el se
Take the best cluster of the set (Cyest)
Whil e k>0 do
Take all those terns in the vocabulary that have at |east k-1 worse
terms [ty .t,]. Mreover, t, should not be better than any
previously assigned | abel.
If simlarity(Ges, l|deal) belongs to one of the intervals of the
terms in [t,.ty] then
Coest takes the termcorresponding to this interval
el se
if simlarity(GCyes, |deal)>I(t,) then
Coest takes t, (the best possible |abel)
elsif simlarity(Gyes, |deal)<l(ty) then
Coest takes t, (the worst possible |abel)
end if

end if
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If k = nunmber of ternms that follow the assigned termthen

Assign these k labels to the k remaining clusters

k :=0;
el se
Take the cluster that follows Gy in the ranking, and call it Gy
end if
end while

end if

end al gorithm

This method pretends to give the most appropriate term to each cluster maintaining
always the ranking among them. However, we suppose that the decision maker is
particularly interested in knowing which are the best alternatives, because heis trying
to make a good decision. Thus, we start the process with the selection of the most
suitable term for the first cluster in the ranking, provided that we leave enough terms
for therest of clusters.

This algorithm needs a set of terms equal or larger than the set of clusters. If the
vocabulary selected does not have enough terms, we have designed an method to
create new terms using the ones that we have in the vocabulary. The key ideais to
split some terms up and use a qualifier to distinguish the two new parts. So, the
problem is reduced to the selection of the labels most adequate to be split.

As we have some information (given by the negation function) about the meaning of
the labels in a vocabulary, we can use it to guide the process. A label that has more
than one label in its negation indicates that there are slight differences between some
of the alternatives assigned to it, in some sense, there is a gradation in the meaning of
the label, and each degree corresponds with a label in the negation. Under this
interpretation, this label is a candidate to be split up.

al gorit hm Maki ng_new_| abel s is

r epeat

{tieft, trigne}:= split the nost suitable |abel, ty
T :=renove t, fromT
T:=add tieg and t g to T
until we have the desired nunber of terns

end al gorithm

We assume that the labels in avocabulary cover all the possible valuesin [0,1]. Each
label t; correspondsto afixed interval [m, Mj], asin Figure 14.
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The splitting method begins by looking for the possible cut points. This is done with
the help of the negation function, which is used to calculate the numeric intervals of
each label. Then, these values are projected into the opposite part of the domain [0,1]
to find out which |abels have more specific meanings.

Figure 14. The negation procedure for generating new terms

Once we have got the cut points, we apply each one of these cuts to the vocabulary
separately. Thus, we obtain a new possible vocabulary for each cut point. Then, each
new vocabulary is compared to the ordered names of the clusters (the result of the
second stage) using the distance we have defined, d,. The vocabulary that is closer to
the partition is chosen, and two new labels are obtained from the one we have split. If
we aready do not have enough labels, we repeat the process of applying the cut
points but now they are applied to this new vocabulary.

However, it is possible to have some situations where the negation cannot produce
the number of new terms required [Vals&Torra, 19994]. For example, when the
negation function is the classical one, we cannot obtain any new term because all
have the same dimension. Then, if the clusters obtained are concentrated on one side
of the vocabulary (if they are mainly good or bad), we will have a lack of terms.

In this particular case, where the negation-based semantics cannot help, the solution
proposed consists of identifying the term that has a larger number of clusters to
explain, and split it up. This process can be repeated until we have produced the
desired number of terms.

When a term is selected to be split, tj, we have to divide its corresponding interval

[m;, Mi] and obtain [m, ¢] and [¢;, M;]. In order to obtain the most accurate cut point,
Ci, we propose to use the information of the position of the clusters.
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Let us suppose that we have 3 clusters (a, 3 and y) with the following zy; positions
after the ranking (see Figure 15):

a B | y
Iv v 5 4 I
m | M,

cut point

Figure 15. Selected cut point for theinterval [m,M]

The most suitable cut point is the one between the two clusters that are more distant
from each other. That is, if in Figure 15 the distance between a and B is 0.05 and
between 3 and y is 0.15, we decide to break up the interval just in the middie
between (3 and y, since the meaning of the two clusters is more different than the
meaning of 3 with respect to a.

Each time we split a term up, two new terms are needed. The method to create new
terms for the new intervals in a vocabulary is not trivial, because they should be in
accordance with the rest. For this reason, we do not invent them, we introduce
linguistic hedges (e.g. very, not-so, ...) in order to distinguish the different grades in
the meaning of the term.

To keep the structure of the qualitative vocabularies, we have decided that the neutral
label (if exists) it is never split up, since its meaning is that its negation is itself, and
an split will end with this property. The rest of the vocabulary can be divided in two
sets: Tinr and Tgyp. Tine has the labels that are smaller than the neutral value, and Ty
the ones that are greater than the neutral value. Then, the processiis the following:

al gorithm nake_nanes is
if tdT, s then
if t has not been previously split then
return {very-t, t } being very-t <t
else /* this neans that very-t exists */
return {t, not-so-t } beingt < not-so-t
end if
else /* tOTg, */
if t has not been previously split then
return { t, very-t } being t < very-t
else /* this neans that very-t exists */
return {not-so-t, t } being not-so-t <t
end if
end if
end al gorithm
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We expressthe grades in the meaning, introducing a new more precise term that uses
the modifiers very or not-so.

This agorithm assumes that we will only cut a term once or twice. That is, we will
not generate more than 3 terms from a single one. We wnsider that if more than 3
terms must be obtained, we should ask the decision maker (i.e. the user) in order to
obtain more gpropriate terms.

Regarding the global process presented in this sdion, it may produce bad results if
there are some dusters whose positions are very close (we should consider that a
difference of only the 20% of the length of the term is problematic). This stuation
indicates that we have two clusters that are very similar in relation to the ranking
position (given by the Principa Components Analysis or by the Similarity-based
Ranking) but whose elements were not considered similar enough to be assgned to
the same class during the clustering process (the agregation stage). This is a
problematic situation, since the ranking methods have not distinguished the goodness
of the two dfferent clusters in relation to the ided aternative. However, the quality
measures that we have defined (which will be detailed in sedion 5.2.2) will give us
some idea of the trustworthiness of the ranking dbtained. If the degree of qudlity is
under some threshold, the dedsion maker can dedde to stop the process or to ignore
the values finally given to these @nflicting clusters.

5.1.3 Building the negation function of the new criterion

Once we have got a set of terms, possibly adapted to fit the consensus partition, we
have to study their semantics. If the consensus partition were identical to the expert’s
one, the meaning of the terms would not change, but this will usually not be the case.
The meaning d the terms has to be built knowing the alternatives that each term is
now describing.

Following the approach based on regation functions, the meaning of each term is
going to be expressed using the negation. Moreover, this is aso the form in which
experts have supplied their knowledge. So, they are supposed to be familiar with the
negation concepts and ndation. Therefore, it will be an easy and comprehensible
form to express the meaning of the new terms.

To cdculate the new negation function, first we have to attach a numerical interval in
[0,1] to ead labd, I(t;)). The digoint intervals are built with the positions zy; of the
clusters into the first principa component. Using the fuzzy approad for linguistic
labels, we @n say that the labels have a trianguar membership function
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[Yuan& Shaw,1995] (except in the extremes), so the z-value is taken as the point of
the label where the membership value reaches 1.

Figure 16. Fuzzy partition used to establish the semantics

If some of the terms of the vocabulary have not been used to explain the clusters
obtained in the previous stages, we include a new imaginary cluster with a prototype
positioned in the centre of the interval corresponding to this term. Then, the negation
function is built with the real and imaginary prototypes. The additional prototypes are
located in the centre in order to try to avoid the changes in the limits of the labels that
are not used in the result, since we do not have any information about what should be
their meaning in the new criterion.

In order to keep the neutra term centred in 0.5, we begin the process of building the
fuzzy sets from the middle. If the two neighbour prototypes are not located at the
same distance from 0.5, we take the nearest prototype location as the boundary of the
support of the fuzzy set of the term. For example, in Figure 17 we can see 3
prototypes (marked with a bold line), the one in the l&ft is the closest to the neutral
class, so this establishes the point where the membership to the neutral cluster endsin
the left. Since the similarity function of the neutral term must be symmetrical, we
have that the end of the membership function in the right is established at the same
distance to the centre than the prototype in the | eft.

Once the fuzzy set of the neutral term has been fixed, we continue with the rest of the
membership functions as explained before.
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Figure 17. Negation for the neutral term

It can be observed that, in general, the middle point between two consecutive
projections is the one that has membership equa to 0.5. These are the points usually
corresponding to the limits of intervals, as in the example of Figure 18.

Figure 18. Fuzzy sets corresponding to an example with 4 clusters (the blue marks correspond to
imaginary prototypes for unused terms, the black ones are the real positions of the clusters after the
ranking, the red line corresponds to the distribution of the terms according to the original negations)

Once each term has its corresponding interval in the new criterion, I(t;), the negation
of each one can be computed as:

Neg(t) ={ t; | I(t;) n 1-1(t;) 2 O} Eq.5.2
where 1-I(t;) istheinterval between 1-max(I(t;)) and 1-min(l(t;)).
Using Figure 18 we will follow an example of the negation function generation. We

will see that some problems appear, and we will present some methods to sort them
out.

Let us take that the original vocabulary is {ly, I, 13, 14, 15, |6, 17}, and its semantics is
given by the negation function we have in the first column of Table 8. The second
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column shows the interval corresponding to each label according to this semantics
(using EQ.3.1).

Original Negation Original Intervals
Neg (11) = {1} | (I) =[0.0, 0.11]
Neg (I2) ={le} | (I) =[0.11, 0.22]
Neg (I3) = {Is, le} | (I3) =[0.22, 0.44]
Neg (l4) = {14} | (1) =[0.44, 0.56]
Neg (Is) = {ls} | (Is) = [0.56, 0.67]
Neg (Ie) = {l2, I3} | (Ig) = [0.67, 0.89]
Neg (I7) = {1} | (I;) =[0.89, 1.0]

Table 8. Semantics for the example with 7 terms

Now we look at the positions of the clusters. Let us suppose that we have obtained 4
clusters. In Table 9 we have the positions of the real (black) and additiona (blue)
prototypes.

Class | Positionsin[0,1] | Term
7" 0.09 Iy
e 0.16 I,
5 0.33 I3
4" 048 . 05 | 4
3¢ 0.71 ls
2 0.80 ls
1% 0.94 7

Table 9. Positions of the 4 clustersin the example

After applying the methodology to build the new intervals for the terms, we obtain
the result shown in Table 10. The first column is the result of the interval generation
based on the fuzzy membership functions. The second column is the opposite interval
corresponding to each term, which is calculated doing 1-x. Finaly, the third column
gives the negation induced by these intervals, considering that a difference of 0.02 in
the value of the borders is not significant. In general, if we have 7 terms in the
vocabulary each one covers a 14% of the domain, so a 0.02 is only 1/7 of the length
of aterm. However, this value could be changed according to the characteristics of
the application domain or the decision maker opinion.
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Intervals from fuzzy sets Opposite interval Negation induced
| (I) =[0.0, 0.125] [1.0, 0.875] Ol(l) Neg (1) ={l7}
| (I2) = [0.125, 0.245] [0.875, 0.755] Ol(le) Neg (I2) = {le}
| (Is) = [0.245, 0.33] [0.755,0.67] DI(ls) Neg (I3) = {Is}
I (1) =[0.33, 0.67] [0.67, 0.33] =I(ly) Neg (I4) = {14}
I (Is) = [0.67, 0.735] [0.33, 0.265] OI(l3) Neg (Is) = {ls}
| (I;) =[0.87, 1.0] (013, 10] 0I(1) Neg (I7) = {I1}

Table 10. Result of the semantics generation

Notice that, in this example, we have obtained a new criterion with the classical
negation function. In Figure 19 we can see the distribution of the intervals according
to the new semantics against the origina distribution. As we can see, the new
intervals are more suitable to explain the clusters, because each cluster belongs to a
different interval.

0 1

Figure 19. Comparison between the old (up) and new (down) intervals

It is worth to note that once we have established the negation function of the new
criterion, the intervals induced by this negation may be dlightly different to the ones
we have used to build the function. In Table 11 we can see the intervals obtained
(with EQ.3.1) from the classical negation function. These values can be compared to
the ones calculated from the positions of the clusters according to the ranking, which
arethe onesin the first column of Table 10.

New Negation New Intervals
Neg (l2) ={I7} | (I;) =[0.0, 0.143]
Neg (I2) = {le} | (I2) =[0.143, 0.286]
Neg (Is) ={ls} | (13) =[0.286, 0.428]
Neg (I2) ={l4} | (14) =[0.428, 0.571]
Neg (Is) = {ls} | (Is) =[0.571, 0.714]
Neg () = {12} | (lg) =[0.714, 0.857]
Neg (I7) ={l.} | (1) =[0.857, 1.0]

Table 11. Negation function for the new criterion
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5.2  Quality Measurement

In this section we define some quality measures that can be useful for the user in
order to decide the reliability of the result. In many applications where fusion
techniques are required, it is interesting to know to what extent the result of the
process is acceptable. In addition, if the person that is executing the process is a non-
speciaised end user, the ignorance about the way the result is obtained often causes a
mistrust feeling, and the consequent abandon of the system to continue doing the
processes by hand.

For this reason, we have studied in detail the techniques applied at each stage of this
new method. In the rest of the section we will define some quality measures that use
the information available at the different stages.

5.2.1 Thequality of the aggregation

Remember that our aggregation method is based on a hierarchical agglomerative
clustering method. At each step of the process, we find out new clusters with alower
cohesion value. This cohesion value, h,, is an upper threshold of the similarity values
between any two alternatives in the class. So that, for any cluster a,

h, 2d(a,a,) Eg. 5.3

being (a,a;) any pair of alternatives that belong to this cluster a.

At the end of the clustering, we can measure the globa level of cohesion in the r
clusters of the selected partition with Eq. 5.4. This is the first part of the goodness

vaue of the aggregation stage (i.e. G,,). According to this definition, 0< G, , <1,

where 1 is the best value, which is obtained when the differences between the objects
in the clusters are small.

Zhi Eq. 5.4
GAggl =1_ I:r - I

Another interesting value to consider is the dimension of the clusters. The aternatives
that belong to the same cluster cannot be distinguished by the user, because all of
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them will receive the same linguistic term (i.e. category). Therefore, it is appropriate
to have all clusters with similar number of objects. Entropy has been used in
aggregation to evaluate dispersion of weights [Marichal,1999b]. Here, defining R
with Eq. 5.6, we can consider the use of entropy [Shannon& Weaver,1949] to measure
how much of the information is explained by each cluster. The maximum is achieved
if al the clusters explain the same amount of information, that is, we have the same
number of alternativesin each one.

1 r
Gpggz = “inr Z RInR Eq.5.5

where r is the number of clusters in the ranking. R, corresponds to the proportional
cardinality of the i-th cluster with respect to the total number of alternatives, m, which
can be seen has the probability that arandom aternative ax belongs to the cluster C;.

_ cardinality(C,)
- m

R Eq. 5.6

If R is0, the measure G, , is undefined. However, thisis not possible since we do not
have empty clusters. We have that this quality measure (to be maximised) is limited
asfollows: 0<G,,, <1.

If we are dealing with a multi-criteria selection problem, we can also inform the
decision maker about the goodness of the first cluster in the ranking. In this case, it is
interesting to have got a small cluster in the best position, in order to not have many
alternatives indistinguishable, which may not be very helpful for the decision maker.

Having into account this last remark, we have defined the goodness of the
aggregation stage subject to the dimension of the best cluster, Cpeg. That is, if the
number of alternativesin this cluster is greater than the expected number of terms, we
decrease the quality of thisstage asit is shownin Eq. 5.7.

Cm*Om: g <
R... Eq.5.7
2 .
if >r
2 R...
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5.2.2 Thequality of theranking

The evauation of this stage depends on the characteristics of the decision problem,
which will determine the use of the Principal Components Analysis or the use of a
Similarity Function.

Ranking based on PCA

In the application of the PCA, some of the values obtained during the process are also
useful to interpret the fina result. Different measures are well defined in PCA
literature [Jackson,1991]. We have studied the use of these measures to qualify the
ranking of aternatives in a decision-making framework. Then, we have defined a
goodness measure (Eg. 5.8) that takes into account the quality of the representation of
the clusters by the first principa component, as well as, the agreement of the criteria
(or experts) in relation to the first component.

z:sB[:ORRf(xj) Y QL))

J

+ Eq. 5.8
p number of clusters

2

GPCA =

where s depends on the direction of the first component. If the X is positively
correlated to the first component, s= 1. Otherwise, s=-1.

The best value of Gpca is 1. The worst value is 0, which would correspond to a
situation where the clusters were not well represented and the criteria did not agree
with the first component.

In the numerator, the first addend is measuring the correlation of the variables, using
equation Eq.4.20. The second addend is related to the quality of representation of the
clusters, which is measured using EqQ. 4.18, which can be rewritten as Eq. 5.9 for the
case of a single component. If a cluster obtains a value near to 0, it means that it is
bad represented by the first component, if the value is 1, the cluster is perfectly
explained by the axis.

QLT (j)=—2 (i) Eq. 5.9

being d the Euclidean distance between the aternative j and the centre of gravity (0 in
our case, because we work with the correl ations matrix).
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In addition to the goodness measure, there are other interesting information values
that should be given to the decision maker. The first one regards to the agreement
between the experts or criteria analysed. As it has been explained in Chapter 4, the
elements of the agenvector are giving the @ntribution o each variable to the
formation of its corresponding axis. Therefore, we can deted when a aiterion differs
from the socia opinion, just looking into the values of the first eigenvedor. If one of
them is dgnificantly smaller than the others, we @n conclude that this criterion is
significantly different from the mnsensus.

Another indicaor is based on the quality of the projedion of the clusters into the
principal component using Eq.4.17. This allows the user to discover objects that can
not be synthesised because the experts do not agree in their descriptions. In this
situation, as the aggregation is not possble, this group of aternatives’ is removed
from the study taking an “unknown” label. This “unknown” label, in case it exists, is
taken from the set of terms that experts provided; otherwise, a predefined linguistic
label isused.

In Figure 20 we @n see a graphica representation of the PCA result for the case of
two variables. In this case, this quality value will detect those dusters that may have
been positioned in a point that does not represent their red relation to the other ones
(like duster D). This will happen if the criteria give different opinions about
aternatives in the dass So, with this method we can tell the user which alternatives
are the conflicting ones.

V, A
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Figure 20. First principal component for a two-variable matrix

" Usually these groups are small.
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If the two variables give the same val ue to the alternatives, the clusters formed will be
positioned in an axis that will be in the middle of the two variables, like clusters A, B
and C. Alternatives that are described with different values will not be in this line.
For example, alternativesin D are bad (low value) according to criterion V, and good
(high value) according to criterion V,. On the other hand, aternatives in E are good
for V, but only acceptable for V,.

Similarity-based Ranking

When the ranking is based on the similarity to an Ideal alternative, other quality
measures have to be designed. In this case, we can have two clusters with equal
similarity values but that they are quite different from one to the other. That is, the
distance to the Ideal is the same but due to different criteria Then, we propose to give
some additional information to the decision maker about in which criteria the
alternatives do not have the desired value.

In addition to this information, we have defined a goodness measure based on the
agreement between the criteria for each cluster.

S
Z ' Eq. 5.10

where the value that we are adding is based on the measurement of the dispersion (i.e.
standard deviation, Eq. 5.11) of the values of the prototype of each cluster. The
maximum value of this goodness measure is 1, which is given if all the clusters have
dispersion equal to 0.

Eq. 5.11

5.2.3 Thequality of the explanation stage

After the complete definition of the new criterion (i.e. Cnen), We can evaluate the
goodness of the new vocabulary and semantics. We should see if this new vocabulary
could be misinterpreted. That is, if we are using some words that the decision maker
will understand with a different meaning, we can induce him to an error. So, we
propose to compare the new criterion with the ones in the initial decision matrix that
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have some terms in common with it, Ceommon={Ci, G, ..., G¢}. Obviously, the
vocabulary from which we have generated the new one will bein this set.

We propose to use the distance d, to measure the differences in the meaning of the
terms in each vocabulary. The larger the differences (remember that the distance d,
gives vaues in [0,0.25]), the more confusing the result may be. Therefore, when the
result is 1, we have a perfect correspondence between thetermsin al the experts.

d, (C.eC;) /0.25
_1- qmgm Eq. 5.12

Tems T cardinality(C

G

common )

Once we have given a linguistic term to each cluster, we evauate ther
appropriateness. The position of each cluster before and after the explanation stage
can be compared. The ranking stage provides a numerica position in [0,1] for each
set of aternatives, zy;, which is used to select the most appropriate label from the
vocabulary. After the explanation process, the position of some clusters may have
changed due to the different meaning of the terms. That is, the intervals induced by
the negation function may not have the cluster at the centre of theinterval.

Eq.5.13

S (202 (i) - (m(i)+ M (j))
eg=1—’Zl| i)=mj)+Mm(j))2

Gy .
This measure compares the position of the alternatives before and after the
introduction of the negation-based semantics. Being j the prototype of one cluster,
[m(j), M(j)] istheinterval corresponding to the term assigned to this cluster using the
new negation function.

Finally, we can define a global goodness measure for the whole ClusDM process.

Gouom = WGpgg +@,Cpay + W;Grq s + WG Eq. 5.14

Agg Terms

where @ are the degrees of importance given to each step of the decision making
process. For example, increasing w, the user may indicate that obtaining very good
and compact clusters is the best option, athough it implies a change in the

vocabularies and semantics. These weights must hold that Z w =1.
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The ClusDM methodology pretends to be a useful recommender tool for decision
makers. Our main aim has been to present the results using a linguistic vocabulary
easily understandable by the user. The different goodness values can be used by the
decision maker to have an idea of the quality of the different stages of the process. In
addition, the overall goodness value can be aso understood as the weight attached to
the new preference criterion obtained.

Apart from that, our method is able to provide some additional information during the
execution of the multiple criteria analysis. The importance of providing additional
explanations of the results obtained with the decision modd is a problem frequently
considered in the Artificial Intelligence community [Papamichail,1998]. In our case,
the information provided by ClusDM to the decision maker is the following:

Which alternatives receive conflicting values from the different criteria. Those
alternatives are identified during the ranking stage and do not appear in the find
ranking given to the user. However, they should be presented to the decision
maker in order to allow him to be aware of these specia cases and perform an
appropriate action if required.

Which is the general degree of agreement (i.e. correlation) between the criteria or
experts.

Which criteria (i.e. experts) do not sufficiently agree with the result given by the
system. However, this value is only available when the PCA ranking is possible.

In chapter 7, we will see some application examples where this additional information
plays an important role.
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