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Abstract

G protein-coupled receptors (GPCRs) are cell membrane proteins with a key role
in regulating the function of cells. This is the result of their ability to transmit
extracellular signals, which makes them relevant for pharmacology and has led,
over the last decade, to active research in the field of proteomics. The current thesis
specifically targets class C of GPCRs, which are relevant in therapies for various
central nervous system disorders, such as Alzheimer’s disease, anxiety, Parkinson’s
disease and schizophrenia. The investigation of protein functionality often relies
on the knowledge of crystal three dimensional (3-D) structures, which determine
the receptor’s ability for ligand binding responsible for the activation of certain
functionalities in the protein. The structural information is therefore paramount,
but it is not always known or easily unravelled, which is the case of eukaryotic cell
membrane proteins such as GPCRs. In the face of the lack of information about
the 3-D structure, research is often bound to the analysis of the primary amino acid
sequences of the proteins, which are commonly known and available from curated
databases. Much research on sequence analysis has focused on the quantitative
analysis of their aligned versions, although, recently, alternative approaches using
machine learning techniques for the analysis of alignment-free sequences have been
proposed. In this thesis, we focus on the differentiation of class C GPCRs into
functional and structural related subgroups based on the alignment-free analysis
of their sequences using supervised classification models. In the first part of the
thesis, the main topic is the construction of supervised classification models for
unaligned protein sequences based on physicochemical transformations and n-gram
representations of their amino acid sequences. These models are useful to assess
the internal data quality of the externally labeled dataset and to manage the label
noise problem from a data curation perspective. In its second part, the thesis
focuses on the analysis of the sequences to discover subtype- and region-specific
sequence motifs. For that, we carry out a systematic analysis of the topological
sequence segments with supervised classification models and evaluate the subtype
discrimination capability of each region. In addition, we apply different types
of feature selection techniques to the n-gram representation of the amino acid
sequence segments to find subtype and region specific motifs. Finally, we compare
the findings of this motif search with the partially known 3D crystallographic
structures of class C GPCRs.
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1. Introduction

1.1. Motivation

G protein-coupled receptors (GPCRs) are a large and heterogeneous superfamily of
receptors that are key cell players for their role as extracellular signal transmitters.
Class C GPCRs, in particular, are of great interest in pharmacology.

The functionality of a protein depends on its three dimensional ( 3-D) structure
to a large extent, which determines its ability for certain ligand binding. The
information about the 3-D structure is therefore paramount as the ligand bind-
ing process activates certain functionality in the protein. Nevertheless, the 3-D
structure of a protein is commonly unknown, as this information is obtained by
crystallography, which has a high cost and is extremely difficult in some cases.
The latter is the case for GPCR proteins, as they are transmembrane proteins,
which are not solvable. For this reason, only the 12% of the 3-D structure of the
human GPCR superfamily [1] were known at the beginning of this investigation.
In the face of the lack of information about the 3-D structure, research in pro-
teomics must analyze the primary amino acid sequences of the proteins, which are
commonly known and available from publicly accesible curated databases. This
approach allows to infer information about the functionality of proteins with un-
known 3-D structure by searching for similarities between sequences with known
functionality, a procedure known as homology detection.

In the past, much research on protein sequence analysis has focused on the quanti-
tative analysis of their aligned versions, although, recently, alternative approaches
for the analysis of alignment-free sequences have been proposed from the field of
machine learning (ML). In this thesis, we focus on the alignment-free analysis of
proteins for homology detection. In particular, we work with the class C GPCRs,
which have become an important research target for new therapies for pain, anx-
iety and neurodegenerative disorders. We focus on the differentiation of these
proteins into functional and structural related subgroups based on their analysis
using supervised classification models.

1



1.2. Objectives

The objectives of the research reported in this thesis are two-fold. On one hand,
we aim to make some contributions in terms of Artificial Intelligence methods, par-
ticularly as applied to Data Mining (DM) and ML techniques. These techniques
assist the analysis of alignment-free protein sequences and can be useful as well in
other application domains. Among the contributions, we may cite new methodolo-
gies for detecting mislabeled data or expertise on the use of specific ML methods
for the investigation of proteomic data as, for example, in protein classification.
In particular, we refer to the construction of multi-class classification models that
are able to handle the high dimensional feature sets generated from the amino acid
sequences of the proteins. We focus on the objective of evaluating classification
models and their optimization through parameter tuning and dimensionality re-
duction. Another objective is the investigation of feature selection methods for the
identification of the most relevant features from the protein classification models,
as this information may give insight about the underlying data to the domain ex-
pert, i.e. biochemical experts may investigate whether the selected features have
a relevant functional or biological significance.
On the other hand, the objective at the biochemical level is to contribute to the
research on class C GPCRs, which are of special interest in pharmacology. A first
aim is the development of effective and efficient classifiers for discriminating C
GPCR subtypes at different levels from their amino acid sequences and/or some
data transformations based on physico-chemical features. A second aim is to
discover characteristic motifs for each subtype as no specific motifs were known for
this class of GPCRs at the beginning of this investigation[2]. The finding of short
amino acid pattens, which may be key to distinguishing the several subclasses
of class C GPCRs may bring more insight about the specific functionalities of
these classes. In order to reach these achievements, it is important to take into
account the internal structure of the amino acid sequences, which consists of several
transmembrane, intracellular and extracellular regions.

1.3. Methodology

A detailed review of the state of the art regarding the use of ML techniques in the
field of proteomics is required as a first step towards these goals, being the main
subject the study of methods for classification and feature selection of alignment-
free protein sequences. The construction of protein classification models should
be approached using different types of supervised classification techniques, but we
will focus mainly on the use of Support Vector Machines (SVMs) from labeled data
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(e.g. GPCRdb database). This also includes the following subproblems: finding
adequate data preprocessing and transformations; selecting relevant features to
identify given patterns of substructures appearing in GPCRs. As a result of this,
another issue of interest is the extraction of biologically relevant information from
the developed classification models, in particular the analysis of subtype specific
motifs.
The overall organization of the investigation can be separated in three parts:
◦ In the first part of the research, the main topic is the construction of super-

vised classification models for unaligned protein sequences based on physico-
chemical transformations and n-gram representations of the sequences. These
models are useful to assess the internal data quality of the externally labeled
dataset and to handle with the label noise problem.
◦ In the second part, we work on the analysis of the sequences to discover

subtype and region specific motifs. Therefore, we carry out a systematic
analysis of the topological sequence segments with supervised classification
models in order to evaluate the subtype discrimination capability of each
region. In addition, we apply different types of feature selection techniques
of the n-gram representation of the amino acid sequence segments to find
subtype and region specific motifs.
◦ Finally, we compare the findings of the motif search, i.e. the region specific

motifs with the known 3D crystallographic structures of the class C GPCRs.

1.4. Main thesis contributions

The goal of the thesis was to analyze the class C GPCR dataset systematically
with supervised ML approaches. Several different aspects of the proteomic data
were analyzed leading to contributions both in the field of Artificial Intelligence
and Pharmacoproteomics, listed as follows:
The first contribution (Chapter chapter 4) comprises the construction of robust
supervised multi-class classification models for the class C GPCR using several
different types of data transformations, which discriminate accurately the subtypes
at different levels from their amino acid sequences.
As a second contribution, and based on the detection of a small set of recurrent
and persistent misclassifications in the supervised classification models, a novel
systematic approach for misclassification analysis is proposed in chapter 5 and
exemplified with the class C GPCR dataset. Both the construction of classification
models and the analysis of misclassifications hinted about the internal data quality
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of the analyzed dataset in reference to subclass separability and correctness of data
labels.

The next contribution (chapter 6) takes into account the quantitative and quali-
tative evolution of the analized database over time. The original class C GPCR
database from 2011 is compared with two more recent versions of 2016 with special
focus on the internal data quality of the respective datasets. The aforementioned
novel systematic misclassification analysis approach and supervised classification
models are employed to evaluate the internal data quality.

As further contribution (chapter 7), we carried out a complete and detailed anal-
ysis of the topological segments of class C GPCRs with regard to their subtype
classification capability. The study presents a systematic analysis of the classi-
fication performance of the individual sequence segments in which the sequence
can be divided in each of its structural domains, as well as the performance of
several of their combinations. The result from this study was the identification of
the most discriminative segments, which should be the starting point for future
work focusing specifically on separate regions. Such future research should involve
feature selection starting from these segments as a way to discover specific motifs
with subtype discriminative capabilities and potential functional roles.

The results and contributions regarding the discovery of motifs are described in
chapter 8, where class C GPCR subtype characteristic amino acid patterns are
identified through feature selection. Several feature selection approaches are in-
vestigated either on the complete sequence and on the N-terminus segment, which
was found to be highly discriminative between subtypes according to the findings
of the topological segmentation analysis (See chapter 7). The main contributions
of this research in the field of pharmacoproteomics are the identification of sub-
type discriminating amino acid patterns as well as the identification of subtype
characteristic amino acid patterns. In order to filter these different types of pat-
terns, we investigated the use of different multi-class classification methodologies:
A subtype-vs-subtype classification approach was used to yield subtype discrimi-
native amino acid patterns, while a subtype-vs-all the rest of subtypes procedure
was used to shift towards the selection of those patterns that distinguish each
class C subtype from the rest. With respect to the investigation of feature selec-
tion methods, we found a two-step approach combining an univariate t-test filter
with a subsequent sequential forward selection especially effective for the discov-
ery of subtype characteristic pattern. The results of this two-step approach were
compared with the metrics from a χ2 filter evaluation, which revealed coincidence
in the pattern selection between both approaches.

The last contribution ( chapter 9) involves an analysis of the crystal structures of
the receptor N-terminus with regard to the subtype specific amino acid patterns
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Topic Chapter Publication
Construction of supervised classification chapter 4 [3]models using alignment-free transformations
A systematic approach to GPCR chapter 5 [4]
misclassification analysis [5, 6]
Tracking the evolution of class C GPCR chapter 6 [7]
database
Topological sequence segments discriminate chapter 7 [8, 9]betw. class C GPCR subtypes
Feature selection for the identification chapter 8 [10, 11]
of subtype-discriminating n-grams. [12]
Feature selection for the identification chapter 8 [13]of subtype characteristic n-grams.

Table 1.1.: Overview of publications

found during the motif search. Several frequent amino acid patterns identified
as potential subtype specific motifs were indeed detected in the analyzed crystal
structures. The frequent appearance of these amino acid patterns in the known
crystal structures gives foundation to further investigate the significance of these
amino acid patterns in the field of computational chemistry as a future line of
research.

1.4.1. List of publications

Table 1.1 displays the list of the scientific publications resulting from the investi-
gation of the different topics of the thesis.

1.5. Organization of the thesis

This Section provides the reader with an overview of the structure of this thesis.
In the first part, chapter 2 and chapter 3 explain the biological and technical back-
ground of the research. The following chapters make up the main research part and
comprise the contributions and original research of this thesis, that is, the analyses
of the class C GPCR datasets following different supervised ML approaches. In
brief:
◦ Construction of supervised classification models using alignment-free trans-

formations (chapter 4).
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◦ A systematic approach to GPCR misclassification analysis (chapter 5).
◦ Tracking the evolution of a Class C GPCR database using ML tools for

biocuration assistance (chapter 6).
◦ Topological sequence segments discriminate between class C GPCR subtypes

(chapter 7).
◦ Discovering class C GPCR motifs (chapter 8):

– Feature selection used for the identification of subtype-discriminating
n-grams ( 8.2).

– Feature selection used for the identification of subtype characteristic
n-grams ( 8.3).

◦ Analysis of 3-D crystal structures (chapter 9).
The thesis wraps up with a chapter dedicated to general conclusions and an outline
of potential future lines of work.
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2. Biological Background

2.1. Introduction

GPCRs are cell membrane proteins with a key role in regulating the function of
cells. This is the result of their ability to transmit extracellular signals, which
makes them relevant for pharmacology. This has led, over the last decade, to
active research in the field of proteomics.
The functionality of a protein mostly depends on its 3-D structure, which deter-
mines its ability for certain ligand binding. In 2011, the 3-D structure was only
fully determined for approximately a 12% of the human GPCR superfamily [1].
As an alternative, when the information about the 3-D structure is not available,
the investigation of the functionality of a protein can resort to the bioinformatics
analysis of its primary amino acid (AA) sequence. This information is known and
available in several public curated databases.
In this chapter we describe some basic concepts of protein analysis from the field
of bioinformatics, such as the different protein structures, the concept of sequence
motif and a review of some related public databases. Finally we will see an expo-
sition about the data analized in this research, GPCRs in general and specifically
its class C, as well as a review of GPCRdb, the here used source of data.

2.2. Proteomics

2.2.1. Protein structures

Proteins are large and complex molecules, which are involved in the regulation
of essential cell processes such as the catalysis of biochemical reactions, DNA
replication and messaging of internal and external signals.

These are macromolecules built up by at least one large chain of AAs. The con-
stituent AAs of the chain are linked with peptide bonds and their linear sequence
is referred to as primary structure. The information about the primary structure

7



Figure 2.2.1.: Protein structure levels

can straigthforwardly be obtained through protein sequencing techniques such as
mass spectrometry [14]. The primary sequence therefore constitutes the most com-
mon information in the many available protein databases, from which information
about its 3-D structure and related interactions with certain ligands can be de-
rived. Many protein sequence databases, such as UniProt, Swiss-Prot, PROSITE
or Pfam between others, publish the information about protein sequences and
annotate known functionalities.
From the primary structure, the secondary structure can be derived, as hydrogen
bounds between amide groups (groups of AA residues) give rise to simple three
dimensional patterns which appear repeatedly in the protein backbone, such as
alpha helices, beta sheet, loops or coils.
The tertiary and quaternary structures are the 3-D shape of a protein (See Figure
2.2.1) derived respectively from the spatial arrangement of the secondary sub-
structures or complete AA chains, which interact by non-covalent electromagnetic
forces between its subunits. The knowledge about the 3-D structure is essential
in pharmacoproteomics research as the shape determines the ability of the protein
for protein-protein interaction, such as the ability to bind to certain ligands.
Nevertheless, the information about the tertiary or quaternary structure is not al-
ways available, as relatively expensive technologies such as X-ray crystallography
or nuclear magnetic resonance (NMR) spectroscopy must be applied. Especially
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for membrane proteins, such as GPCRs, which are not easily solvable, the infor-
mation about their full 3-D structure is scarce and alternative methods such as
protein structure prediction from its primary structure must be used. In spite of
great advances in the field of computational chemistry, protein structure predic-
tion is extraordinarily complicated and still not completely solved, as it requires
the calculation of the state of the minimum energy conformation of a protein. At
the present, methods such as homology modelling and fold recognition are com-
monly used to infer information about unknown structures assuming that homolog
proteins have similar 3-D structures. The Protein Data Bank (PDB) is a central re-
source in structural biology that collects experimentally obtained protein structure
data throughout the world. The protein structures are acquired from crystallogra-
phy or similar methods and available in the pdb format, which can be visualized
and examined with free available software such as Chimera 1.

2.2.2. Sequence motifs

Sequence motifs are short linear pattern of AAs that are conserved between a
group of proteins and should have a biological significance, i.e. a key function in
protein-protein interaction such as a receptor-ligand interaction site, or an enzyme
activation site depending on the type of protein. Note that an ideal or signature
motif, and thus a candidate for potential structural and functional roles, has been
described to be one “that matches all the sequences of the target family and no
other sequence outside this family” [15]. Motifs are usually expressed as regular
expressions using the 20 AA alphabet (See Table 3.3.2). They can be either
contiguous, if there are no gaps between the AAs that constitute de sequence, or
gap motifs, if such gaps (filled with any AA of the analyzed alphabet, known as a
wild-card) are allowed [15].
Known functionalities of these AA patterns are annotated together with the pro-
tein structures in the aforementioned publicly available protein databases. It has
been suggested that motif over-representation maybe due to evolutionary preser-
vation of sequence segments, indicating their structural and functional roles [15].
For this reason, the search by homology in annotated databases is important to
retrieve information about the potential functionality of unknown proteins. Mini
Motif Miner (MnM)[16] and Eukaryotic Linear Motif resource (ELM) [17] are motif
databases that collect information about known motifs from the literature.
On the other hand, the identification of similar or conserved AA patterns between
groups of proteins is important in order to discover family specific motifs. A
wide range of bioinformatics tools that use statistical analysis to detect short

1http://www.cgl.ucsf.edu/chimera
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overrepresented patterns are available. Multiple EM for Motif Elicitation (MEME)
[18], for instance, provides a wide collection of motif discovery tools. PRINTS-
S discovers family motifs by sequence alignment of related proteins. Another
approach is alignment-based phylogenetic methods, which analyze the evolutionary
relation between protein sequences and are able to discover longer conserved AA
patterns [19].

2.3. G Protein-Coupled Receptors

GPCRs are proteins located in the eukaryotic cell membrane. This location deter-
mines their role as signaling pathway by transmitting extracellular signals to the
interior of the cell and thus makes them a prevalent drug target in pharmacological
research [20, 21]. Because of their transmembrane location, receptors are able to
interact with extracelullar signals through activation in the extracelullar domain
and transmit the signal to the inside of the cell through its effector domain in
the intracellular domain experimenting conformational changes [22, 23](See Fig-
ure 2.3.1).

Figure 2.3.1.: GPCR Signalling Pathways taken from [22]
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Figure 2.3.2.: Schematic representation of class C GPCRs

The current thesis does not cover the whole of the GPCR super-family. Instead, it
specifically targets its class C [24] (defined according to the IUPHAR2 convention).
Class C GPCR has become an increasingly important target for new therapies,
particularly in various central nervous system disorders such as Alzheimer disease,
anxiety, drug addiction, epilepsy, pain, Parkinson’s disease and schizophrenia [25].
Whereas all GPCRs are characterized by sharing a common seven transmembrane
helices (7TM) domain, responsible for G protein activation, most class C GPCRs
include, in addition, an extracellular large domain, the Venus Flytrap (VFT) and
a cystein rich domain (CRD) connecting both [26, 27]. Figure 2.3.2 shows a
schematic representation of the different domains of the GPCR.

GPCR can be activated either at an orthosteric binding site in the extracellu-
lar domain or allosterically at the 7TM domain (See Figure 2.3.3). The orthos-
teric binding site is located in the extracellular domain, specifically at the VFT,
which comprises two opposing lobes with a cleft where endogenous ligands bind.
Significant efforts are currently devoted by academia and pharmaceutical compa-
nies to the design of compounds that, by binding to the 7TM domain, modulate
the function of endogenous ligands allosterically, as illustrated by Figure 2.3.3.
This multi-domain structural and functional complexity makes class C GPCRs an
atractive target for both basic and applied (drug discovery) research. It is worth
noting that, although no GPCR allosteric modulators have yet been approved for
psychiatric or neurological disorders, a number of GPCR allosteric modulators

2http://www.iuphar.org
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Figure 2.3.3.: Orthosteric and allosteric binding sites.

including, particularly, some from class C, are under clinical development [28].
Allosteric modulators are of especial interest in comparison to orthosteric ligands
due to their reduced desensitization, tolerance and side effects, as well as higher
selectivity among receptor subtypes and activity depending on the spatial and
temporal presence of endogenous agonist [28].

Class C has been further subdivided into up to seven subtypes [29]: Metabotropic
glutamate (mG), Calcium sensing (CS), GABAB (GB), Vomeronasal (VN), Pheromone
(Ph), Odorant (Od) and Taste (Ta) receptors. mG receptors are activated by
the glutamate amino acid, which is the major excitatory neurotransmitter in the
brain; they comprise eight subtypes (mGlu1 to mGlu8) in turn separated into three
groups: Group I (mGlu1 and mGlu5), Group II (mGlu2 and mGlu3) and Group
III (mGlu4, mGlu6, mGlu7 and mGlu8). Group I mGs signal through Gq whereas
Groups II and III signal through Gi/Go signaling pathways. The mG receptors
are involved in major neurological disorders such as Alzheimer and Parkinson
diseases, Fragile X syndrome, depression, schizophrenia, anxiety, and pain [30].
It is noteworthy that, although development programs related to the mG drugs
Pomaglumetad (Lilly), Mavoglurant (Novartis) and Basimglurant (Roche) for the
treatment of schizophrenia, Parkinson disease and Fragile X syndrome have re-
cently been discontinued, some of these drugs are still expected to be beneficial for
targeted patient sub-populations with neurological and psychiatric disorders [31].
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The CS receptor is activated by the calcium ion and plays a key role in the regu-
lation of extracellular calcium homeostasis. Abnormalities of the extracellular cal-
cium sensing system lead to a disease exhibiting abnormal secretion of parathyroid
hormone and hypo- or hypercalcemia. Cinacalcet is a marketed positive allosteric
modulator of the CS receptor that has proved useful for primary or secondary
hyperparathyroidism [25].

The metabotropic GB receptor is activated by GABA, a neurotransmitter which
mediates most inhibitory actions in the nervous system. From a structural point
of view, the GB receptor distinguishes itself from other class C GPCRs for its
lack of CRD. The GB receptor is involved in chronic pain, anxiety, depression and
addiction. Baclofen is an orthosteric agonist of the GB receptor that is commonly
used as a muscle relaxant in multiple sclerosis and as analgesic. Because of their
recognized pharmacological advantages, a number of positive allosteric modulators
of the GB receptor are currently the goal of programs under development [25].

The investigation of protein functionality and signalling mechanisms is often based
on the knowledge of crystal 3-D structures. As previously mentioned, in eukaryotic
cell membrane proteins such as GPCRs, this knowledge is partial and fairly recent:
The first GPCR crystal 3-D structure was fully-determined in 2000 [32] and over
the last decade, the structures of some other GPCRs, most belonging to class A,
have been solved [33]. In the case of class C GPCRs the information about tertiary
and quaternary structure is very limited, although recent impressive advances in
the discovery of GPCR crystal structures [34, 35] have been made. In consequence,
the information of the primary AA sequences of class C GPCRs (in this case well
known and available from publicly accessible databases) is still required for the
investigation of receptor functionality.

2.4. GPCRdb

Pharmacological databases are fundamental for the analysis of the structure and
function of biological signal transduction entities, that is, receptors and ion chan-
nels [36]. GPCRdb [37, 38] is a web-accessible and publicly-available repository
and information system containing data and web tools for GPCR research. Es-
tablished back in 1993 and currently on its 5th release, it is part of the GPCR
Consortium3, an industry-academia partnership and also part of the GLISTEN
EU COST Action for the creation of a pan-European multidisciplinary research
network.

3URL: http://gpcrconsortium.org
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GPCRdb characterizes the GPCR superfamily as the union of five major families
(namely, A to E) based on functions, ligand types and sequence similarities [39].
Overall, the GPCRdb dataset contains 14,951 proteins from 3,184 species. This
resource has been available from 1993 and its management was transferred in
2013 to Prof. David Gloriam’s research group at the University of Copenhagen in
Denmark.
The categorization of the receptors available from this database follows the interna-
tional IUPHAR system recommendations. The whole database originally consisted
of seven families: A (Rhodopsin), B1 (Secretin), B2 (Adhesion), C (Glutamate),
F (Frizzled), Taste 2 and “other” GPCRs. This classification followed the system
suggested in [40].
As previously introduced, the current research focuses only on one of the GPCR
families, namely class C, which has become extremely relevant to current pharma-
coproteomics research for the selection of some of its members as drug development
targets for human central nervous system therapies in areas such as pain, anxiety,
or neurodegenerative disorders [24, 41].
Class C in turn comprises several subtypes. At the highest level of grouping, class
C discriminates receptors as ion, amino acid, or sensory according to the type
of ligand. At the second level of classification seven subtypes are distinguished:
metabotropic glutamate receptors (mG, amino acid), GABAB (GB, amino acid),
calcium sensing (CS, ion) and taste 1 receptors (Ta, sensory), covering sweet and
umami tastes, as well as also three more sensory-related subtypes of the second
level, namely vomeronasal (VN), pheromones (Ph) and odorant (Od) receptors.
At the beginning of this research we used exclusively the dataset from version
11.3.4, as of March 2011 as source about class C GPCR sequences. During the
thesis work, GPCRdb underwent major changes in the class C GPCR dataset
during 2016, which required an extension of the work to a more recent version of
the dataset that does not include some of the aforementioned subtypes.

2.4.1. Class C GPCR datasets

This research focuses mainly on the class C GPCR dataset as of March 2011
(dataset version 11.3.4) published on GPCRdb, but also analyzes two more recent
versions published in May and September 2016.
Over the five years elapsed between the earlier and later versions of the database
analyzed in this study, GPCRdb has undergone major changes in the total numbers
of proteins belonging to class C, but also in the ratio of the different subtypes to
the total number of receptors and even in the sequences contained in each of
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Subtype March 2011 May 2016 Sept 2016
mG 351 467 516
CS 48 125 103
GB 208 60 89
VN 344 0 0
Ph 392 0 0
Od 102 0 0
Ta 65 193 228
Total 1510 845 936

Table 2.1.: Number of receptors in each subtype for the class C datasets of the
different database versions.

those subtypes. Table 2.1 details the number of sequences for each subtype for
the March 2011, May 2016 and September 2016 datasets, respectively (see Figure
2.4.1 for illustration). A mere comparison of the datasets shows a remarkable
reduction of the number of sequences, from the 1,510 sequences of the March 2011
dataset, down to the 845 of the May 2016 version and the 936 of the September
2016 one. Moreover, the variety of subtypes included in class C was reduced from
the seven of the 2011 dataset to only four in both 2016 datasets. Three receptor
subtypes (VN, Od and Ph) were removed in full from class C, but also the number
of proteins in the other remaining subtypes changed significantly.

Illustration of evolutionary relationships Figure 2.4.2 displays the evolution-
ary relationships between the seven sequence subtypes of the 2011 dataset using
a phylogenetic tree (PT). A PT is a dendrogram-like graphical representation of
the evolutionary relationship between the taxonomic groups that share a set of
homologous sequence segments. Specifically, Figure 2.4.2 shows a Treevolution4

radial PT plot [42] for the 1,510 GPCR sequences under investigation and their
separation into subclasses. This representation provides evidence of the hetero-
geneity of some of the subfamilies (such as mG, Ph and Od), as they are shown to
occupy several different evolutionary branches of the tree. Although less obvious
in this particular representation, there is some degree of overlapping between the
different subtypes in their tree representation.

4http://vis.usal.es/treevolution/
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Figure 2.4.1.: Subtype distribution for the different dataset versions (without
orphans): upper left - March 2011, upper right - May 2016, middle - September
2016
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Figure 2.4.2.: Treevolution radial phylogenetic tree for the 1,510 sequences of
the 2011 version dataset taken from [6]. Each outer leaf of each branch corre-
sponds to a single sequence, tree colors represent families of descendant nodes.
Subfamilies mG, Ph and Od are shown to cover several unrelated evolutionary
branches.
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3. Technical background

3.1. Introduction

In the field of bioinformatics much research has focused on the analysis of aligned
AA sequences. Recently alternative approaches using ML techniques for the anal-
ysis of alignment-free sequences have been proposed. In this thesis, we focus on the
alignment-free analysis of class C GPCRs sequences using supervised ML methods.
This chapter is thus devoted to the description of the technical background of
supervised learning techniques as applied in proteomics research.
We start with the description of supervised learning techniques themselves, in-
cluding an overview of these methods in proteomics research. This is followed by
the description of alignment free data transformations, feature selection and the
problem of data label noise.

3.2. Supervised Learning Techniques

In proteomics research, different supervised models for the classification of the
alignment-free AA sequences are used for the construction of robust classification
models for protein homology detection. SVMs have become commonplace in differ-
ent problems related to the classification of proteins from their primary sequences.
A non-exhaustive list of examples includes SVM-HUSTLE [43], SVM-I-sites [44],
SVM-n-peptide [45], and SVM-BALSA [46]. In [47, 48], SVMs were reported to be
top-performing techniques for the classification of sequences from similar physic-
ochemical transformations to those used in the current study. In further detail,
[49] used the Mean Transformation to classifiy the five major GPCR classes using
Partial Least Square Regression, and [48] used the AA Physicochemical Distance
Transformation to classify a benchmark protein database with SVMs. Neverthe-
less, some studies [50] report better results using more simple models such as
Decision Trees (DTs), Naive Bayes (NB), or Random Forests (RF), to name a
few. For this reason, a set of different supervised classifiers are compared to the
reference SVMs in the current thesis.
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3.2.1. Classification Models

SVMs [51] are complex classifiers with an ability to find a linear separation of
instances in a higher dimensional space. DTs [52] predict class membership by
examining the discriminative power of the attributes. NB is a simple probabilistic
classifier that applies Bayes’ theorem under the assumption of attribute indepen-
dence, creating a probabilistic model for class prediction. RF [53] is an ensemble
based learning method [54] in which each of the elements of the ensemble is a
decision tree [52] and the classification decision is the result of an internal voting
system. All these models are described in more detail next.

Naive Bayes

NB [55] is a relatively simple model that provides a baseline for comparison. It
is a probabilistic classifier that applies Bayes’ theorem with an assumption of
independence of variables. Under this assumption the probability of a class given
the input data is expressed as P (Ci|X) = P (Ci)

∏N
n=1 P (Xn|Ci). This probability

could be used for class prediction using Maximum a Posteriori (MAP) estimation
in the form y = argmaxi P (Ci)

∏N
n=1 P (Xn|Ci). The classifiers differ depending on

the assumption about the probability distribution for P (Xn|Ci). For continuous
variables, the typical assumption is a Gaussian of the form:

P (Xn|Ci) = 1√
2πσ2

n

exp−
(Xn−µn)2

2σ2
n (3.2.1)

The parameters µn and σn are estimated using a Maximum Likelihood approach.

Random Forest

RF [53] is an ensemble learning method [54] using DT-based classifiers [52]. The
DT classifiers are trained to split an input space into homogeneous regions with
associated class labels. The splits are typically axis-aligned and are selected to
maximize the information gain.

The main improvements of RF over a single DT are the usage of the bagging tech-
nique and the random subsampling method, which both allow avoiding overfitting.
Bagging (or bootstrapped aggregating) is a technique of model averaging that uses
models trained on subsamples of the original training set. The subsampling is per-
formed independently with replacement.
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Support Vector Machines

These methods have their foundations on statistical learning theory and were first
introduced in [51].
They map the D-dimensional vectors xi, i = 1...N , where xiεRD and N is the
number of instances, into possibly higher-dimensional feature spaces by means of
a function φ.
The goal is finding a linearly-separating hyperplane that discriminates the feature
vectors according to class label with a maximal margin, while minimizing the
classification error ξ.
The most simple version is the linear SVM, where a linear hyperplane that sepa-
rates the examples from two classes is assumed to exist. Such hyperplane is defined
by a set of points x that satisfy w · x − b = 0, where w is a normal vector to the
hyperplane and b

||w|| is the perpendicular distance from the hyperplane to the ori-
gin. In consequence, the SVM algorithm, when searching for the hyperplane with
largest margin, assumes that yi(xi ·w+ b)−1 ≥ 0,∀i, where yi are the class labels.
The objective of the SVM algorithm is finding the separating hyperplane that sat-
isfies this expression while minimizing ||w||2. This problem can be translated to
a Lagrange formulation in which the following objective function Lp (primal La-
grangian) must be minimized with respect to w, b and subject to the restriction
that all αi ≥ 0:

LP ≡
1
2 ||w||

2 −
l∑

i=1
αiyi(xi ·w + b) +

l∑
i=1

αi (3.2.2)

This is equivalent to the maximization of the dual Lagrangian form LD:

LD =
∑
i

αi −
1
2

∑
i,j

αiαjyiyjxi · xj (3.2.3)

subject to the restriction that all αi ≥ 0 and ∑
i αiyi = 0 .

A modification of the algorithm was introduced in [56], allowing a so-called “soft-
margin” to account for mislabeled data when a linear separating hyperplane could
not be found. A classification error ξ is admitted and a parameter C controlling
the trade-off between those errors and margin maximization is defined (Note that,
for C −→∞, the model becomes equivalent to a hard-margin SVM).
The SVM can be extended to nonlinear classification [57] by applying the so-
called kernel trick [58]. The use of nonlinear kernel functions allows SVMs to
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separate input data in higher-dimensional feature spaces in a way they would not
be separable with linear classifiers in the original input space. The use of kernel
functions allows to solve the problem without explicitly calculating the mapping
φ (that is, without calculating data coordinates in the implicit feature space).
This is possible due to the following property:k(xi,xj) = φ(xi) · φ(xj), which
means that any dot product in the optimization procedure can be replaced by a
nonlinear kernel function k. In this thesis, we use the radial basis function (RBF)
kernel, specified as k(xi,xj) = e(−γ||xi−xj ||2), which is a popular nonlinear choice for
SVMs and has been used in the experiments reported in the thesis. With it, the
model requires adjusting two parameters through grid search: the error penalty
parameter C and the γ parameter of the RBF function, which regulates the “space
of influence” of the model support vectors and, therefore, controls overfitting.

SVM Model Selection The construction of SVM classification models using
the RBF kernel requires adjusting two parameters through grid search: the error
penalty C and the γ parameter of the kernel.
The SVM classification models involve the following processing steps in our exper-
iments:

1. Preprocessing of the dataset: Standardization of the data so that the mean
is 0 and standard deviation is 1.

2. Splitting of the dataset into 5 stratified folds and applying 5-fold cross vali-
dation (5-CV) for the following steps:

a) Use the current training set for a parameter grid-search varying the
parameters C and γ in a given range.

i. For each combination of C and γ, determine the average classifica-
tion accuracy using an inner 5-CV and update the parameters C
and γ providing the best result.

ii. Train an SVM model using the selected parameters C and γ and
the current training set.

b) Classify the current test set with the SVM model obtained in the pre-
vious step recording the classification metrics.

3. Calculate the mean value of the classification metrics recorded during step
2.b over the five outer iterations.

In our experiments, we measure the accuracy and the Matthews Correlation Coef-
ficient (MCC) at the global level and the precision, recall and MCC at class level.
The reported measures are the mean values of the respective metric over the five
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iterations of the (outer) 5-CV. Further details of the measures are provided below.
At each iteration, the aforementioned metrics are recorded for the SVM trained
with the best parameters C and γ found in the corresponding grid search. The
grid search is conducted in a range of 2−15 - 25 (step ×2) for the γ parameter and
in the range of 1 to 16 (step +1) for the C parameter.

SVM multiclass approach The discrimination into several classes, requires ex-
tending the original binary (two-class) classification approach of SVMs to a multi-
class one. In our experiments, we mainly used the “one-against-one” approach to
build the global classification model, which is implemented as part of the LIBSVM1

library [59]. This approach performs class prediction according to the results of
a voting scheme applied to the binary classifiers, i.e., according to the number
of times a class is predicted in each binary classifier. Therefore, this multi-class
classifier internally uses K(K−1)/2 binary classifiers for distinguishing K classes.
A total of 21 binary classifiers are thus built for the experiments with 7 class C
GPCR subtypes. Depending on the type of experiment, we will also make use
of the “one-against-all” approach, which performs a binary classification for each
subclass.

3.2.2. Metrics

Two different figures of merit were used to evaluate the test performance of the
multi-class trained classifiers, namely the accuracy (Accu), which is the proportion
of correctly classified instances, and the MCC, which involves all the elements of the
confusion matrix and it is therefore considered a more complete figure of merit and
is most robust for unbalanced datasets [60, 61]. Being the correlation coefficient
between the observed and the predicted classification, its value ranges from -1 to
1, where 1 corresponds to a perfect classification, 0 to a random classification and
-1 to complete misclassification.

In our experiments, we measure the precision, recall and MCC at class or subtype
level (i.e. at the level of the binary classifier) and measure the accuracy and MCC
at the global level (i.e., at the level of the multi-class classifier). All these figures of
merit, described in Tables 3.1 and 3.2, are based on the concept of true and false
predictions in binary classification with “positive” and “negative” classes. True
positives (tp) and true negatives (tn) are correctly classified cases of, in turn, the
positive and negative classes. Accordingly, false positives (fp) an false negatives
(fn) are misclassified cases of, in turn, the negative and positive classes.

1https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 3.1.: Performance measures for binary classifiers.

Measure Formula Meaning

Accuracy tp+tn
tp+fn+fp+tn Measure of correctness

Precision tp
tp+fp Measure of quality

Recall tp
tp+fn Measure of completeness

MCC tp∗tn−fp∗fn√
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

Correlation coefficient

Table 3.2.: Performance measures for multi-class classifiers. tpi, tni, fpi and fni
are, in turn, tp, tn, fp and fn for class i [62]. The multi-class MCC is calculated
taking into account all the entries of the confusion matrix CK×K involving all
K classes[63]. The ij-th entry (cij) is the number of examples of the true class
i that have been assigned to the class j by the classifier.

Measure Formula

Accuracy
∑K

i=1
tpi+tni

tpi+fni+fpi+tni
K

MCC
∑K

k,l,m=1 CkkCml−ClkCkm√∑K

k=1[(
∑K

l=1 Clk)(
∑K

f,g=1f 6=k Cgf )]
√∑K

k=1[(
∑K

l=1 Ckl)(
∑K

f,g=1f 6=k Cfg)]
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By using a 5-fold cross-validation (CV) procedure to evaluate the multi-class
trained classifier, the reported measures are the mean values of the respective
metrics over the five iterations of the 5-CV.

3.2.3. Cross Validation

Although the supervised learning techniques differ in the employed learning strat-
egy, the training and validation approach is common. In our experiments, we apply
CV [64], which uses two separated set of examples, one to train the classifier and
another to validate its quality of prediction.
More generally, in CV the entire dataset is split into a given number n of stratified
folds, where the percentage of class membership of each class are preserved in the
folds. The class prediction function is inferred from the training set (formed by
the instances from n-1 of the n folds) and its quality of prediction is validated
classifying the instances from the test set, which is built by different examples as
from the training set. A common setting is the 5-fold cross validation (5-CV),
where 4 folds are used for training and the 5th fold for the validation.
CV uses an iterative approach to infer and validate the classification function,
where the described cross validation approach is repeated n times and the classi-
fication metrics are reported as the mean value of all iterations.

3.3. Alignment-free data representation

As the AA sequences of the proteins have a variable length, one might apply se-
quence kernels [65, 66, 67] or transform the sequence data to fixed-size vectors
in order to use them with any supervised classifier, including non-kernel methods
such as DTs and NB. Here, we follow the latter approach and transform the AA
sequences to fixed-size vectors. In the following, we describe the different transfor-
mation methods applied to the analyzed class C GPCR datasets. We distinguish
between methods based on the physicochemical properties of the AAs and those
based on the n-gram representation built from the AA alphabet.

3.3.1. Transformations based on the physicochemical
properties

In this thesis, we decided to use several distinct transformations based on the
physicochemical properties of the AAs and the sequencing information such as
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Auto-Cross Covariance (ACC) [68], the Mean Composition [49] and Physicochem-
ical Distance-Based Transformation (PDBT [48]). Beyond computational conve-
nience, the use of transformations based on the physico-chemical properties of the
AAs is justified by the fact that, as stated in [48], “because protein structure and
function are more conserved during evolutionary process, the similarity between
two distantly related proteins may lie in the physicochemical properties of the
AAs rather than the sequence identities”. In the following, we describe each of the
transformations in some detail:

◦ Auto Cross Covariance Transformation: The ACC [69, 68] is a sophis-
ticated transformation, capturing the correlation of the physico-chemical
descriptors along the sequence. First, the physico-chemical properties are
represented by means of the five z-scores of each AA, as described in [70].
Then, the Auto Covariance (AC) and Cross Covariance (CC) variables are
computed on this first transformation. These variables measure, in turn, the
correlation of the same descriptor (AC) and the correlation of two different
descriptors (CC) between two residues separated by a lag along the sequence.
From these, the ACC fixed length vectors can be obtained by concatenating
the AC and CC terms for each lag value up to a maximum lag, l. This
transformation generates a N× (z2 · l) matrix, where z = 5 is the number of
descriptors. In this work we use the ACC transformation for a maximal lag
value of l = 13, which was found in [71] to provide the best accuracy for the
analyzed data set.

◦ Physico-chemical Distance-Based Transformation: The PDBT trans-
formation [48] is a complex transformation that uses a large set of physico-
chemical properties: 531 values representing physicochemical and biochem-
ical properties of AAs are taken into account. Furthermore, sequence-order
information is incorporated in the representation in the form of the corre-
lation of each property between two AAs separated by a maximal lag l. In
the current study, we use the PDBT transformation for a maximal lag of 8,
which yields a N × 4248 matrix that was previously analyzed in [72].

◦ Mean Composition Transformation: This transformation applied in [49]
first translates the AA sequence into physico-chemical descriptions, i.e. each
AA is described by five z-scores [70]. In order to obtain a fixed-length rep-
resentation of the sequence the average value of each z-score is calculated.
This transformation generates a N × 5 matrix.
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AA name Symbol AA name Symbol
Alanine A Leucine L
Arginine R Lysine K

Asparagine N Methionine M
Aspartate D Phenylalanine F
Cysteine C Proline P
Glutamate E Serine S
Glutamine Q Threonine T
Glycine G Tryptohan W
Histidine H Tyrosine Y
Isoleucine I Valine V

Table 3.3.: List of elements of the 20 Amino acid alphabet.

3.3.2. N-gram representations

The use of the n-gram representation is common in protein characterization and
has been investigated in, for instance, [73, 74, 75]. This type of transformation
has its foundations in the field of symbolic language analysis. They treat protein
sequences as text from the 20 AA alphabet [74, 76] (See Table 3.3.2). Here, the
appearance of short sequence fragments known as n-grams, are understood as
“words”. In [50], a successful application of class A GPCR classification using text
classification methods was reported using a discretization of n-gram features. In
this research, we followed a similar strategy and calculated the relative frequency
of occurrence of n-grams of sizes one and two that we call, in turn, AA and Digram
transformations.

◦ N-gram representations: These transformations partially disregard se-
quential information to reflect only the relative frequency of appearance of
AA subsequences. In the case of AA, the frequencies of appearance of the
20 AAs (1-gram) are calculated for each sequence (i.e., a N × 20 matrix is
obtained, where N is the number of items in the dataset). In the case of
the Digram (2-gram) method, we calculate the frequency of each of the 400
possible AA pair combinations from the AA alphabet (i.e., a N×400 matrix
is obtained). N -grams can be understood as receptor sequence deterministic
motifs. They can be either contiguous, if there are no gaps between the AAs
that constitute de n-gram, or gap motifs, if such gaps (filled with any AA of
the analyzed alphabet, known as a wild-card) are allowed [15].

We also use more complex natural language processing (NLP)-inspired transfor-
mations such as the Prot2Vec distributed transformation:
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GROUPING 1 2 3 4 5 6 7 8 9 0 X
SEZ IVLM RKH DE QN ST A GT W C YF P
DAV SG DVIA RQN KP WHY C LE MF T

Table 3.4.: Amino acid grouping schemes.

◦ Prot2Vec distributed transformations: This transformation has its foun-
dations in NLP. To apply this method to protein sequence classification,
the AAs are considered as letters and the whole sequences as sentences,
with n-grams acting as words. In NLP, this representation is understood as
“distributed” because one “concept” in the domain is represented in several
dimensions and one dimension gathers information about several “concepts”.
In NLP, these distributed word representations are learnt using an Artifi-
cial Neural Network model and have been refined in the form of Continuous
Bag-of-Words (CBOW) and Continuous Skip-Gram (CSG) models [77]. This
idea was extended to protein sequences in [78], where it was shown to capture
meaningful physical and chemical properties of the proteins. In this study
based on the research of [79], 3-gram representations were first created from
two different databases: Swiss-Prot and GPCRdb. The GPCRdb represen-
tation was created using the complete database (not only class C). To train
the model, each sequence was split into 3 sequences of 3-grams with offsets
from 0 to 2. Each of these 3 sequences were used in training set. A skip-
gram version of window size 25 was used to train both models. For the final
working represention of a sequence, the vectors corresponding to its 3-grams
were summed up. We refer as Prot2Vec1 or Prot2Vec2 transformation to
that created from the Swiss-Prot or GPCRdb database respectively .

Amino acid alphabets

Commonly, n-gram representations use the 20 AA alphabet (See Table 3.4), but
also different groupings of AAs may be used. According to [80], many AAs have
similar physicochemical properties, which makes them equivalent at a functional
level. An appropriate grouping of AAs reduces the size of the alphabet and may
decrease noise. In this work, besides the basic 20 AA alphabet, we used two
alternative AA groupings (See Table 3.4): the Sezerman (SEZ) alphabet, which
includes 11 groups, and the Davies Random (DAV), including 9 groups. They have
both been evaluated [81] in the classification of GPCRs into their 5 major classes.
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N-gram length AA SEZ DAV
1 20 11 9
2 400 121 81
3 8,000 1,331 729
4 160,000 14,641 6,561

Table 3.5.: Size of n-gram feature spaces.

3.4. Feature Selection

In many bioinformatic applications, feature selection (FS) approaches are com-
monly used to discard irrelevant and redundant features [82]. This also happens
for the n-gram frequency representation of protein data [50], where longer n-gram
patterns may be derived from the sequence leading to feature spaces, which grow
exponentially with the lengths of the n-gram pattern and number of elements in
the alphabet. Table 3.5shows the size of the n-gram feature space for the AA,
SEZ and DAV alphabets used in this study (See Table 3.4).
In the context of supervised classification, the n-gram frequence representation of
higher lengths becomes intractable, both because the algorithm was not designed to
manage vast feature spaces or because of overfitting of the classifier model and the
consequent loss of generalization. FS increases the quality and interpretability of
the classification models as they select a reduced subset of relevant features, which
may give insight about the underlying data to the domain expert. A difference to
other dimensionality reduction methods based on feature extraction, such as, for
instance, principal component analysis, FS techniques select a subset of unaltered
observed features.
FS comprises filtering techniques, wrapper methods and embedded methods:

1. Filtering techniques: The feature’s relevance is evaluated by a univariate
metric (χ − square, t-test , Euclidean distance, Gain ratio, etc.), or a mul-
tivariate metric (Markov Blanket filter [83], Correlation-based feature selec-
tion, etc.). The highest scoring features are selected as candidate set for any
classifier. This approach is fast, scalable and independent from the classi-
fier, but with the drawback that the univariate metrics may ignore feature
dependencies. [84] presents a comparative analysis of several filter methods
combined with a diverse range of supervised classifiers.

2. Wrapper methods: The feature subset search is combined with the clasifi-
cation model search. Deterministic approaches comprise sequential forward
selection or sequential backward elimination [85]. Greedy algorithms such as
Simulated Annealing, Randomized Hill Climbing [86] or Genetic algorithms
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[87] are more randomized and less prone to select local optima, but com-
putationally more expensive than the deterministic approaches. Wrapper
methods perform feature selection dependent on the type of classifier.

3. Embedded methods: The classifier algorithm performs feature subset selec-
tion as part of the model construction, measuring which features contribute
best to the classification performance. Internally, these methods use penal-
izations to discard irrelevant features. DTs [88] and weighted vectors from
SVMs or LASSO regression [89] are some examples. [90] describes a recent
application of FS with embedded methods for a mass spectrometry data set.

In n-gram representations in proteomics, we deal with a vast feature space. In
those cases, a two-step FS approach or a combination of several methods may be
applied to reduce the feature space appropriately [91]. In this thesis, we propose
a two-step FS approach consisting of a t-test or χ2 filter as first step, followed by
a sequential FS algorithm to search for n-grams which discriminate best between
the class C GPCR subtypes. Later on, these three approaches will be explained
in more detail.

3.4.1. t-test Filtering

Two-sample t-tests are a coarse evaluation of the discriminating power of individual
features (n-gram frequencies). This univariate statistical test analyzes whether
there are foundations to consider two independent samples as coming from different
populations (normal distributions) with unequal means by analyzing the values of
the given feature. An appropriate significance level must be established in order to
decide whether the hypothesis is accepted or not. For instance, with a significance
level of 0.01, the hypothesis is accepted when the p-value is below 0.01. If the t-test
suggested that this hypothesis was true (i.e. the null hypothesis was rejected), the
feature would be considered to significantly distinguish between the two different
subtypes of class C GPCRs. The p-value of a test measures the false positive rate
that is assumed to happen considering the test as significant. A false positive is
the case when the null hypothesis is rejected when it is really true.

In the case of vast feature spaces when many single t-tests are applied, a comple-
mentary metric, the q-value, was proposed for evaluating the significance of the
many simultaneous performed t-tests [92].The q-value of a test measures the false
discovery rate that happens when considering the test as significant. The false
discovery rate is the expected proportion of false positives among the tests found
to be significant. This method was applied for the evaluation of the significance
of features in genomics data tackling a large number of features[93].
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3.4.2. χ2 Filtering

The χ2 filtering approach is usually employed in text document classification with
n-gram representation. This metric was already successful in a GPCR family
classification [50] for n-gram FS. It evaluates the power of the n-gram to classify an
instance into two binary classes c by measuring the lack of independence between
the n-gram x and the category c. The measure takes into account the number of
expected instances having the feature in class c e(c,x) and the number of instances
of class c actually having the feature o(c,x). The expected number of instances
e(c,x) is calculated assuming independence of the term x from the class c according
to the formula e(c, x) = nc · Ntx , where N is the total number of instances, nc is the
number of instances in class c and tx is the number of instances having the feature
x. The χ2 value for feature x is calculated as follows:

χ2(x) =
∑
ci∈C

[e(c, x)− o(c, x)]2
e(c, x) (3.4.1)

3.4.3. Sequential Forward Selection

The second dimensionality reduction step starts from the selection performed
through a filtering method (t-test or χ2 approach) and involves a sequential for-
ward selection algorithm [85]. This algorithm is used to find the reduced set of
features that best discriminated the data subtypes. This kind of algorithm is a so-
called wrapper method, where the classification model search is performed within
the subset feature search [82].
The algorithm starts from an empty candidate feature set and adds, in each iter-
ation, the feature which most improves the accuracy (i.e., that which minimizes
the misclassification rate) in a 5-fold cross-validation (5-CV).

3.5. Analysis of Label Noise

ML is a data-driven process and, as such, the quality of the available data is
paramount. Label noise (LN) may become a data quality problem in supervised
ML and Computational Intelligence and is commonplace in real-world applications
[94].
There are few domains of knowledge in which the effects of label noise are so per-
vasive and eloquent as in biomedicine and bioinformatics [95]. It can take many
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forms, including expert subjectivity in the labelling process, bounds on the avail-
able information and communication noise [96]. In bioinformatics, protein subtype
characterization is riddled with this problem. In the specific area of GPCRs, this
problem is magnified by the fact that subtyping can be performed at up to seven
levels of detail [97]. GPCR subtype discrimination may use aligned (through Multi-
ple Sequence Alignment, or MSA [98]) or unaligned [99] versions of the sequences,
but as a computer-based automated classification procedure it is susceptible to
data labeling issues.

3.5.1. Label noise detection

In ML, where regular data distributions are searched which best explain the data,
instances which are abnormal to such distributions are known as outliers, i.e. spe-
cial cases distant from any regular data distribution. Sometimes, what appears
as an outlier may just correspond to errors in the data labelling. Often, expert
knowledge is required to decide on this issue. In supervised learning, label noise is
an important problem. Several filltering methods have been proposed to filter out
noisy data instances. A classical label noise detection method is the Classification
Filter [100], where several different classifiers are used to filter out noisy instances,
i.e. an instance is considered as noise when it is classified incorrectly by the major-
ity of the used classifiers. Ensemble Filters [101] use a similar approach, although a
different importance is given to the different classifiers. Their classification errors
are combined to detect mislabeled instances using either a consensus vote filter
(all classifiers detect a classification error), or a majority vote filter (the majority
of classifiers detect an error). A recent contribution in this field is the Noise Rank
framework [102], which uses an ensemble filter to filter out noisy instances and
classifies them either as outliers or possible errors. Another way to detect label
noise are the Saturation Filter methods [103]. These methods search for saturated
training sets, which correspond to data sets which best explain the underlying
concepts of the data by eliminating those data instances from the training set
which increase the complexity of the explanation of the data (also referred to as
the Complexity of the Least complex correct Hypothesis measure of the dataset).
All these filters are commonly used in label noise detection in different applica-
tion domains, such as the medical domain [104], gene expression data [105] or for
software development quality data [106].
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4. Construction of supervised
classification models using
alignment-free transformations

Class C GPCR subtype discrimination is addressed here as a supervised classifica-
tion problem in which class labels are the assignments of each of the sequences to
one of the seven existing subtypes according to the database available information.
In this chapter, we report the experiments carried out using alignment free data
transformations on the complete sequences. We analyze both the dataset version
from 2011 and the final version from 2016. The earlier dataset version from May
2016 is not analized because of its similarity to the final version of 2016.

4.1. Experiments with the 2011 dataset

4.1.1. Experimental settings

Methods In this section, we analyze the use of different alignment-free trans-
formations of the complete sequence on the class C GPCR dataset published on
March 2011 on GPCRdb, comprising 1,510 sequences. We analyze both trans-
formations based on the physicochemical properties of the sequences and n-gram
transformations. The first experiments concern the transformations based on the
physicochemical properties: we compare the Mean, ACC and PDBT transforma-
tions as explained in section 3.3.1. The second set of experiments deals with
n-gram transformations from different AA alphabets (AA, SEZ and DAV) as ex-
plained in section 3.3.2. We consider n-grams of lengths one and two (1-gram
and 2-gram respectively), the combination of both (1-2-grams) and the Prot2Vec
distributed transformation.
Both experiments follow a common approach:

1. The first phase of the experiments involves the use of several multiclass
classifier models for the classification (SVM, RF and NB). The classifica-
tion models are built using 5-CV with stratified folds. Regarding the use of
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SVMs, the discrimination of the seven subtypes of class C GPCRs requires
extending the original binary (two-class) classification approach of SVMs to
a multi-class one. To that end, we chose the “one-against-one” approach to
build the global classification model, implemented as part of the LIBSVM
library. Therefore, this multi-class classifier internally uses K(K − 1)/2 bi-
nary classifiers for distinguishing K classes. A total of 21 binary classifiers
are thus built for the seven class C GPCR subtypes in our study. The clas-
sification results of the different classifiers are used to choose which classifier
is most adequate for the rest of analyses.

2. In the second phase, the classification model which most accurately classi-
fied the dataset is analyzed in detail, namely the SVM model. The global
classification results and the per-subtype classification results are reported.

3. In the third phase, we analyze the subtype classification results in more detail
focusing on the type of classification errors for each subtype.

The classification performance of the results is measured by means of the accuracy
(Accu) and Matthews correlation coefficient (MCC) for multiclass classification.
The subtype results are evaluated by means of the MCC, precision and recall for
binary classification. All experiments are conducted using 5-CV with stratified
folds. SVM classification uses the LIBSVM library and an RBF kernel, whose
parameters C and γ are tuned through a grid search.

4.1.2. Experiments with transformations based on the
physicochemical properties

In this section, we report the experiments carried out on the class C GPCR dataset
using supervised classification methods and transformations based on the physic-
ochemical properties of the sequences.

Results and Discussion

Table 4.1 shows the classification performance measured by Accuracy and MCC
for the three transformed datasets (MEAN, ACC and PDBT) obtained by a SVM,
RF and NB classifier. Regarding classifier selection, SVM clearly outperforms DTs
and NB for all three datasets and therefore should be used in the rest of analyses.
Table 4.2 shows in detail, for the three transformed datasets, the SVM model
parameters, which were found in the grid search conducted to find the optimal
parameters C and γ of the RBF-SVM following the approach explained in Section
3.2.1. For each dataset, the combination of parameters found to have the best
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Table 4.3.: Subtype classification result obtained by SVM from the ACC trans-
formation of the 2011 version dataset.

Subtype MCC Precision Recall Type I error Type II error

mG 0.956 0.945 0.988 low -
CS 0.933 1.000 0.877 - high
GB 0.986 0.990 0.985 - -
VN 0.893 0.912 0.924 medium medium
Ph 0.864 0.896 0.903 high medium
Od 0.799 0.889 0.744 high high
Ta 0.991 1.000 0.984 - -

performance, and the corresponding mean accuracy and MCC values on the test
sets, are reported.

Table 4.1.: Accuracy (Accu) and MCC according to dataset and classifier. N
stands for the size of the feature set.

SVM RF NB

DATA N Accu MCC Accu MCC Accu MCC
MEAN 5 0.68 0.59 0.67 0.58 0.58 0.46
ACC 325 0.93 0.91 0.79 0.74 0.84 0.80
PDBT 4248 0.92 0.90 0.82 0.77 0.71 0.64

Table 4.2.: Model selection results (MEAN, ACC and PDBT).

DATA PARAMETERS Accu MCC
MEAN C=2 , γ=1 0.68 0.59
ACC C=[2,8] , γ=2−9 0.93 0.91
PDBT C=4 , γ=2−12 0.92 0.90

The best classification results are found for the ACC transformed dataset using
SVM classifiers (see Table 4.1 for a summary), achieving an accuracy of 0.93 and
an MCC value of 0.91. This result obtained for the ACC transformed datasets is
consistent with that obtained with semi-supervised techniques in [72], where the
ACC dataset outperformed the other transformed datasets.
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Table 4.3 shows the classification results for the ACC-transformed dataset and the
SVM classifier with greater detail at the per-class level (these results correspond to
a model with parameters C=2, γ=2−9). The MCC value shows that classes mG,
CS, GB and Ta are very accurately discriminated from the other classes, having
an MCC between 0.93 and 0.99. The prediction power of the classifier for classes
VN, Ph and Od is clearly lower, with MCC values that range from 0.79 to 0.89.

As for the quality of the classifier, measured by the precision, it can be seen that it
provides the most exact results for classes CS, GB and Ta, as its precision gets very
close to its maximum possible value. This metric shows that for classes mG, VN,
Ph and Od some type I classification errors (false positives) happen. Regarding
the completeness of the classifier, measured by the recall, we see that it is most
complete for classes mG, GB and Ta, which means that nearly all real positives
are correctly predicted. Classes CS, VN and Ph have a lower recall, meaning that
some type II errors (false negatives) happen for these classes. Class Od has a
significantly lower recall than the other classes, what means that this class is most
difficult to recognize.

Table 4.3 also shows an estimation of the quantity of type I and type II errors for
each class. An analysis of these errors, by means of the confusion matrix, shows
that the type II errors occur recurrently with a specific pattern for each class. For
example, Ph are most frequently misclassified as Vn and less frequently as mG or
Od. The existence of those patterns in the type II errors encourage an analysis of
the class C dataset at the biochemical level in future work.

4.1.3. Experiments with n-gram transformations

In this section, we report the experiments carried out on the class C GPCR dataset
using supervised classification methods and n-gram representations, including dif-
ferent alphabets (AA, SEZ and DAV) and more sophisticated transformations such
as the Prot2Vec distributed transformations. For a detailed explaination we refer
the reader to Section 3.3.2.

Results and Discussion

First, we built classification models with n-grams for each of the three alphabets
(AA, SEZ, DAV) (See Table 4.4) and two variants of the Prot2Vec distributed
transformations (See Table 4.5).
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Table 4.4.: N -gram classification results for the different alphabets, where N is
the size of a feature set.

SVM RF NB

ALPH DATA N Accu MCC Accu MCC Accu MCC

AA
1-gram 20 0.880 0.840 0.807 0.751 0.720 0.650
2-gram 400 0.932 0.914 0.815 0.766 0.834 0.792
1-2-gram 420 0.934 0.917 0.805 0.753 0.828 0.785

SEZ
1-gram 11 0.815 0.763 0.754 0.686 0.603 0.500
2-gram 121 0.923 0.903 0.833 0.788 0.805 0.754
1-2-gram 132 0.925 0.906 0.832 0.787 0.803 0.750

DAV
1-gram 9 0.791 0.736 0.750 0.682 0.678 0.592
2-gram 81 0.911 0.888 0.797 0.742 0.783 0.727
1-2-gram 90 0.919 0.898 0.792 0.737 0.777 0.719

Regarding classifier selection, SVM clearly outperforms RFs and NB for all datasets
(see Tables 4.4 and 4.5 for a comparison).

Table 4.5.: Classification results for the Prot2Vec transformations, where N is
the size of a feature set.

SVM RF NB

DATA N Accu MCC Accu MCC Accu MCC
Prot2Vec1 100 0.899 0.872 0.860 0.825 0.600 0.515
Prot2Vec2 100 0.870 0.835 0.809 0.763 0.585 0.493

Table 4.6 shows details, for the dataset of each alphabet with the best results,
of the grid searches conducted to find the optimal parameters C and γ of the
RBF-SVM: the combination of parameters C and γ found to have the best per-
formance, and the corresponding mean accuracy and MCC values on the test sets
are reported.
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Table 4.7.: Subtype classification result obtained by SVM from the N -gram
transformation of lengths 1-2 for the amino acid alphabet.

Subtype MCC Precision Recall Type I error Type II error

mG 0.947 0.945 0.974 low -
CS 0.934 0.958 0.918 low low
GB 0.986 0.990 0.985 - -
VN 0.911 0.936 0.927 low low
Ph 0.880 0.894 0.931 medium low
Od 0.774 0.880 0.706 medium high
Ta 0.983 1.000 0.969 - -

Table 4.6.: Model selection results for the dataset with the best results of each
alphabet.

DATA PARAMETERS Accu MCC
AA 1-2-gram C=[2,4] , γ=[2−9 ,2−10] 0.934 0.917
SEZ 1-2-gram C=[3,4] , γ=[2−7 ,2−8] 0.925 0.906
DAV 1-2-gram C=[3,4] , γ=2−6 0.919 0.898
Prot2Vec1 C=[4,5] γ=[2−6 ,2−7] 0.899 0.872
Prot2Vec2 C=[3,5] γ=[2−5 ,2−6] 0.870 0.835

The best classification results are found for the 1-2-gram transformed dataset from
the AA alphabet using the SVM classifier achieving an accuracy of 0.934 and an
MCC value of 0.917.

Table 4.7 shows the classification results for the 1-2-gram transformed dataset from
the AA alphabet and the SVM classifier with greater detail at the per class level
(these results correspond to a model with parameters C=[2,4], γ=[2−9 ,2−10]).
The MCC value shows that classes mG, CS, GB and Ta are quite accurately
discriminated from the other classes, having an MCC between 0.947 and 0.986.
The prediction power of the classifier for classes VN, Ph and Od is clearly lower,
with MCC values that range from 0.774 to 0.911.

As for the quality of the classifier, measured by the precision, it can be seen that
it provides the most exact results for classes GB and Ta, as its precision gets
very close to its maximum possible value. This metric shows that for classes mG,
CS, VN, Ph and Od some type I classification errors (false positives) happen.
Regarding the completeness of the classifier, measured by the recall, we see that
it is most complete for classes mG, GB and Ta, which means that nearly all real
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positives are correctly predicted. Classes CS, VN and Ph have a lower recall,
meaning that some type II errors (false negatives) happen for these classes. Class
Od has a significantly lower recall than the other classes, what means that this
class is most difficult to recognize. Table 4.3 also shows an estimation of the
quantity of type I and type II errors for each class.

4.1.4. Conclusion

The supervised, alignment-free classification with SVMs of the 2011 database
version of class C GPCRs has been investigated in this experiments both using
transformations based on the physicochemical properties of the AAs and n-gram
representations from different alphabets. The experimental results using trans-
formations based on the physicochemical properties have shown that the ACC
transformed dataset has a clear advantage over the alternative transformations
and that SVMs are best suited to the analysis of these data. Using n-gram rep-
resentations the best results were found for the 1-2-gram transformed dataset and
the AA alphabet, which clearly outperformed the other classifiers. Both the ACC
and AA alphabet 1-2-gram achieved similar results with respectively an accuracy
of 0.93 and 0.934 and an MCC value of 0.91 and 0.917.
The SVM classifiers built with this dataset and trained with the optimal parame-
ters resulted highly accurate and discriminative. The per-class results have shown
some differences regarding the prediction power for some subclasses, which encour-
age the analysis of the less distinctive classes and the related classification errors
in a future work at the biochemistry level.

4.2. Experiments with the September 2016 dataset

4.2.1. Experimental settings

Methods In this Section, we turn to analyze the use of different alignment-free
transformations of the complete sequence on the class C GPCR dataset published
on September 2016 in GPCRdb, comprising 936 sequences. We analyze both
transformations based on the physicochemical properties of the sequences, such as
the ACC transformation, and a range of n-gram transformations, such as the n-
grams of lengths one and two (AA and Digram respectively) from the AA alphabet
and two variants of the Prot2Vec transformation. For a detailed description we
refer the reader to the technical description in Section 3.3.2. The experiments are
structured in three phases as for the 2011 dataset and use the same classification
performance metrics for evaluation (See section 4.1.1) .
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4.2.2. Results and Discussion

Table 4.8 shows the classification results obtained from different classifiers for
the the Amino Acid Composition (AA), Digram Composition (Digram), Auto-
cross covariance (ACC) and two variants of Prot2Vec: that based on a Swiss-Prot
database representation and that based on a GPCRdb representation. The best
results are obtained for the ACC transformation and SVM classifier, although the
performance of the RF classifier is close to that of the SVM.
Table 4.9 shows details, for the datasets with the best results, of the grid searches
conducted to find the optimal parameters C and γ of the RBF-SVM: the com-
bination of parameters C and γ found to have the best performance, and the
corresponding mean accuracy and MCC values on the test sets are reported.

Table 4.8.: Accuracy (Accu) and MCC according to dataset and classifier. N
stands for the size of the feature set.

SVM RF NB

DATA N Accu MCC Accu MCC Accu MCC
AA 20 0.989 0.982 0.985 0.976 0.959 0.937

DIGRAM 400 0.995 0.993 0.991 0.986 0.989 0.983
ACC 325 0.997 0.995 0.993 0.988 0.990 0.985

Prot2Vec1 100 0.989 0.984 0.986 0.978 0.990 0.985
Prot2Vec2 100 0.994 0.991 0.990 0.985 0.981 0.969

Table 4.9.: Model selection results.

DATA PARAMETERS Accu MCC
AA C=3 , γ=2−5 0.989 0.982

DIGRAM C=[4,6] , γ=[2−13, 2−12] 0.995 0.993
ACC C=6 , γ=[2−11, 2−10] 0.997 0.995

Prot2Vec1 C=6 , γ=[2−9, 2−7] 0.989 0.984
Prot2Vec2 C=[4,6] ,γ=[2−9, 2−7] 0.994 0.991

The best classification results are found for the ACC transformed dataset using the
SVM classifier achieving an accuracy of 0.997 and an MCC value of 0.995. Table
4.10 shows the classification results for the ACC transformed dataset and the
SVM classifier with greater detail at the per-class level (these results correspond
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Table 4.10.: Subtype classification result obtained by SVM from the ACC trans-
formation of the 2016 version dataset.

Subtype MCC Precision Recall Type I error Type II error

mG 0.998 0.996 1.0 - -
CS 0.990 1.0 0.98 - -
GB 0.994 1.0 0.990 - -
Ta 0.998 0.996 1.0 - -

to a model with parameters C=6, γ=[2−11 ,2−10]). For all four subtypes, the
classification is very accurate: the MCC ranges from 0.99 to 0.998. Considering
also the measures of correctness (precision) and completeness (recall), the classifier
achieves highly accurate results with values surpassing 0.996 and 0.98, respectively.
For the 2016 version dataset, no recurrent classification errors are observed and
no type I nor type II classification errors are found to exist.

4.2.3. Conclusion

The supervised, alignment-free classification with SVMs of the September 2016
version of class C GPCRs has been investigated through several experiments using
a diverse range of tranformations already used to analyze the older 2011 version
dataset. The differences in performance between transformations for all classifiers
are relatively small for the 2016 datasets and no transformation with no classifier
falls below the 0.98 accuracy mark with the September 2016 dataset.
The experimental results have shown that the ACC transformed dataset achieves
the best classification results. Regarding the comparison of classifiers, SVMs show
an advantage over the other classifiers for all datasets, but also RFs and NBs
obtain quite accurate results for the 2016 dataset. The SVM classifiers built with
these dataset and trained with the optimal parameters resulted highly accurate
and discriminative reaching an accuracy of 0.997 and MCC of 0.995. The subtype
results have shown very accurate predictions for all subtypes and no recurrent
misclassification errors have been observed.
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5. A systematic approach to GPCR
misclassification analysis

5.1. Introduction

Proteins have a rich taxonomy of families and subfamilies, for which the definition
and use of class labels is necessary. The adscription of a protein to a family may
be uncertain, or even wrong, thus becoming an instance of what has come to be
known as a label noise (LN) problem. LN, which is commonplace in many scientific
domains [94], has a potentially negative effect on any quantitative analysis of
proteins that requires the use of label information. In fact, there are few domains
in which the effects of LN are so pervasive as in biomedicine and bioinformatics [95].
The problem of LN may take many forms: from the human expert subjectivity
in the labelling process, which is difficult to avoid, to bounds on the available
information and communication noise [96].
In medicine, for instance, the reliability of diagnostic labels is often bounded by
the natural limitations of the specialists’ expertise [107], or even by the formal
requirements of majority-based decision-making procedures, or consensus guide-
lines (for the latter see, for instance, [108]). In bioinformatics, protein subtype
characterization is a task that is riddled with this problem, despite good practices
in curation of genomic and proteomic databases [109].
In the specific field of GPCRs, which are the target of the current thesis, this
problem is magnified by the fact that subtyping can be performed at up to seven
levels of detail [97]. The occurrence of LN is unavoidable in this context because
the assignment of individual sequences to one of these subtypes is itself, in most
cases, a model-based process, which follows a complex many-step procedure that
can only guarantee limited success [110].
In the research reported in previous chapters[3], we investigated the supervised
classification of the class C GPCR dataset using different classifiers, namely RF,
NB and SVM, for different alignment-free transformations of the sequences, in-
cluding AA composition (AA) and the Mean Transformation and Auto-Cross Co-
variance (ACC). In this previous research, focus was placed on the accuracy of
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the classifiers’ performance and the experimental results showed that SVM clearly
outperformed the rest of classifiers independently of the transformation applied to
the data set. This led to the conclusion that a nonlinear classifier with the ability
to find a linear separation of instances in a higher-dimensional feature space, such
as SVM, was the adequate choice for the data set under analysis in the task of
subtype discrimination. The second conclusion from this previous research was
that, at subtype level, classification accuracies showed only small variations de-
pending on data transformations. Even a superficial analysis of the confusion
matrices showed recurrent patterns of subtype misclassification, which hinted at
LN as their cause. Such observations provided support for a more detailed analysis
of sequence misclassification.

In this chapter, we present a novel approach to assist the discovery of recurrent
classification errors for supervised classification. The reported experiments using
data from the curated GPCRdb database are meant to be the proof of concept for
a novel systematic approach to assist the discovery of GPCR database labelling
quality problems, which would in turn become the core of a label filtering decision
support system [96], a useful tool for database curators in proteomics. Here, we
analyze both the class C GPCR dataset from GPCRdb published in March 2011
and that published in September 2016.

The remainder of this chapter is structured as follows: The next section describes
the novel approach to assist the discovery of recurrent classification errors followed
by a report of the experimental results on the 2011 and 2016 version datasets and
their discussion as well as the description of the experimental settings including
the data transformations, methods of analysis and validation. The chapter wraps
up with some conclusions.

5.2. Proof of concept for a novel systematic
approach to assist the discovery of GPCR
database labelling quality problems

In this section, we present a novel approach to assist the discovery of recurrent
classification errors for supervised classification. First, we expose the systematic
approach for misclassification analysis, which takes into account the metrics of the
internal voting system and decision value of a SVM multi-class classifier.

The approach is exemplified using data from the curated GPCRdb database.
We focus this investigation on the classification of data resulting from several
alignment-free transformations of class C GPCR sequences into its several sub-
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types. The sequences with the most consistent misclassification patterns are fur-
ther analyzed to discover non-random LN effects, as a way to explore their possible
biological explanation.
The candidate class C GPCRmislabelings detected using such approach are further
validated through sequence visualization with phylogenetic trees (PT), dendrogram-
like graphical representations of the evolutionary relationship between taxonomic
groups which share a set of homologous sequence segments [111]. The visualization
of the evolutionary relationship through PTs should serve as external validation
tool and help in this study to confirm the correctness of the detected persistent
mislabelings.

5.2.1. A systematic approach to misclassification analysis

The proposed method for the analysis of misclassifications comprises a method to
evaluate SVM misclassification errors and an external validation approach with
PTs.

Methods - A systematic approach to SVM misclassification analysis

Given a transformed dataset, our proposed systematic approach to the analysis of
the classification errors consists of three steps or phases:

1. Estimation of the frequency of misclassification of each pattern (sequence)
using different SVM models to select a subset of frequently misclassified
patterns.

2. For each pattern in the subset selected in step 1, evaluation of the relation
of votes of all the SVM classifiers between its true (label) class and its most-
predicted class.

3. For each pattern in the subset selected in step 1, assessment of the decision
values of the SVM binary classifiers between its true (label) class and its
most-predicted class.

The aim of the first step is the detection of those patterns that, most of the times,
are not classified as belonging to the class defined by their formal database label,
but without considering the distribution of predicted classes in the misclassifica-
tions. Instead, the aim of the second and third steps is to confirm the consistency
of the misclassifications to the most-predicted class. The difference between the
two last steps resides on whether only the votes (i.e. the binary decisions of the
SVM classifiers) are taken into account, or also the confidence (i.e. the decision
values) of the binary SVM classifiers, when confronting just the class label against
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the most-predicted class, are taken into account. The union of patterns obtained
as a result in steps 2 and 3 forms the final subset of frequently and consistently
misclassified sequences that are shortlisted as LN candidates. In the following
subsections, further details of each one of the three steps are provided.

Repeated classification with different SVM models The first phase entails
repeating the following procedure 100 times. Although this constant value could
be changed, 100 is adequate both to obtain a statistically reliable result and to
express the frequencies of misclassification directly as percentages (or error rates,
ERs, for each sequence s). This type of repeated CV approach has been proposed
as well in [112] and applied in [113].
◦ First, the dataset is randomly reordered and a 5-fold CV (5-CV) is used, so

that, for each of the five training-test partitions, the current training set is
employed to construct an RBF-SVM model with an optimal value for the
γ parameter of the kernel function and with the error penalty parameter C
varying within a small range near its previously established optimum value.
◦ Second, a test set classification is carried out using the trained model, reg-

istering which GPCR sequences are misclassified and generating the corre-
sponding confusion matrix.

The use of CV in each of the 100 repetitions of this procedure ensures that each
instance is classified exactly one time as a test pattern in each iteration of the outer
loop. Note that C is slightly modified in each iteration of the inner loop. With this,
we obtain detailed results of how many times a sequence was misclassified when
included in the test set and how many of these times it was assigned to specific
classes. Note that all the classification results when the sequence belongs to the
training set are not taken into account. In order to focus only on the most recurrent
classification errors, a conservative misclassification boundary of e = 75% on the
individual error rate ERs was set (i.e., only sequences s misclassified in at least a
75% of the test occasions were deemed to be strong misclassifications and selected
for further analysis). This threshold e is merely illustrative; in a real application
of the method, it should be set according to the expert analyst’s decision. A high
threshold would ensure that only the most extreme misclassifications are singled
out for further detailed analysis, whereas low thresholds would be more adequate
in case a more global exploration is required.

Analysis of misclassifications according to the voting scheme Since we are
facing a multi-class (K classes) classification problem in which the underlying
classification scheme of the SVM implementation [59] was “one-vs-one”, it is in-
teresting to analyze the results of the voting scheme as applied to the K(K− 1)/2
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resulting classifiers, including the votes of each one, for each pattern in each test
iteration. According to LIBSVM, the subtype with the highest number of votes in
each case becomes the predicted class of the test pattern.
For each frequently misclassified sequence s, selected in the first phase, we focus
the analysis on the relation between the total number of votes V Ts obtained by the
true (label) class in the 100 iterations and those obtained by the most frequently
predicted class for that sequence, V Ps. This is, we define the voting ratio

Rs = V Ts
V Ps

(5.2.1)

and, given some threshold θR, we consider that Rs ≤ θR indicates a consistent
(also deemed as large) classification error, while Rs > θR denotes a more doubtful
(or small) misclassification. We fixed a threshold θR = 0.5 to obtain our results
discussed later.

Analysis of misclassifications according to the decision values In the third
and last phase of our proposed approach, we go deeper into the analysis of mis-
classifications by taking into account the confidence (decision values) of the 100
binary SVM classifiers involving only the label class and the most frequently pre-
dicted class, when classifying a sequence s as test pattern. For each frequently
misclassified sequence s selected in the first phase, we define a cumulative decision
value, CDVs, as follows:

CDVs =
100∑
k=1

DVs(i, j, k) (5.2.2)

where DVs(i, j, k) is the decision value given by the binary SVM classifier con-
fronting the class with label i to which s formally belongs and the most-frequently
predicted class for sequence s, with label j, in the kth test iteration. GPCR subtype
labels were numbered 1 to 7 in the order they are presented in the data description
section. For subtypes i, j, a large positive CDVs value if i > j and a large negative
one if i < j both indicate clear misclassifications. Hence, the magnitude of the
error is deemed large or small depending on whether the CDVs exceeds a certain
threshold θCDV in absolute value or not. A threshold θCDV = 60 was chosen for
the experiments.
Note that the information conveyed by CDVs complements that of Rs. For in-
stance, a misclassified sequence with high Rs would suggest that the voting process

47



discards all subtypes but the true and the predicted ones, that is, a very narrow
transfer of subtype assignment. If this is accompanied by a large CDVs in absolute
value, the predicted subtype, even if wrong assuming that the identifying label of
the sequence is trusted, is strongly preferred by the SVM classifiers.

Methods - External validation of SVM-based classification

Mislabeling validation with phylogenetic trees Here, PTs are used to visualize
the analyzed class C GPCR sequences and thus provide an alternative way to
externally validate the misclassification results found with the proposed approach.
There are two sound reasons why we use PTs for this task: first, because they
have de facto become standard tools in bioinformatics [111] and, particularly, in
protein homology detection, so that protein database curators are more likely to
trust them. Second, because the protein sequence alignment that underlies the tree
construction has no direct link with the sequence transformations from which the
SVM classifiers are built, therefore guaranteeing the independence of the results.

Our software tool of choice, Treevolution1 [42], was developed in Java and inte-
grates the Processing 2 package. This tool supports visual and exploratory analysis
of PTs in either Newick or PhyloXML formats as radial dendrograms, with high-
level user-controlled data interaction at the user request and offers several methods
very useful for large PT: sector distortion, tree rotation, pruning, labeling, tracking
of ancestors and descendants and text search, among others.

The color-guided highlighting of protein families helps the user to focus on sequence
groupings of interest and give an overall idea of groups with the same ancestor
within the tree. The PT is created from a MSA obtained with Clustal Omega
[114]. This application, in which sequences data are introduced in FASTA format,
performs distance-based MSA [115].

5.3. Experiments on the class C GPCR dataset

In this section, we report the experimental results of the novel systematic approach
for misclassification analysis using the 2011 and 2016 versions of class C GPCR
dataset.

1http://vis.usal.es/treevolution
2http://processing.org
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5.3.1. Experimental Settings

Data preparation

In this study, six different transformations are used, where we distinguish between
those based on the n-gram representation built on the AA alphabet and those
based on the physicochemical properties of the AAs. Here, we use the AA and Di-
gram methods, which transform the data according to the frequency of appearance
of n-grams of, in turn, length one and length two in the sequence and the more so-
phisticated Prot2Vec distributed transformations. On the other hand, we decided
to use more complex transformations based on the physicochemical properties of
the AAs and the sequencing information such as ACC and PDBT.

Methods

We use the novel systematic approach to the analysis of the classification errors
(as explained in section 5.2.1) in order to filter out the frequently and consistently
misclassified sequences. First, the frequency of misclassification is estimated by
using a repeated classification with different classification models. For the very
frequently misclassified instances the related misclassification error is analyzed
measuring the consistency of the classifiers decision by means of the voting ra-
tio Rs and the cumulative decision value CDVs. Finally the detected recurrent
classification errors are validated externally with PTs as explained in section 5.2.1.
The classification results reported in this study are assessed by means of the ac-
curacy and MCC for multiclass classification, whereas the subtype results use the
MCC, precision and recall for binary classification. All experiments are conducted
using 5-CV with stratified folds. SVM classification uses the LIBSVM library and
an RBF kernel, whose parameters C and γ are again adapted by means of a grid
search.

5.3.2. Mislabeling analysis of the 2011 dataset

This section describes the results of the analysis of LN on the class C GPCR
dataset published in March 2011. In this experiment we use the AA, Digram,
ACC and PDBT transformation.

Results

Repeated classification with different SVM models using differen transforma-
tions of the dataset The previous results from [3, 4] led us to decide on the
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Data Accu MCC
AA 0.88 0.84

Digram 0.93 0.91
ACC 0.93 0.91
PDBT 0.92 0.90

Subtype MCC Prec Rec
mG 0.95 0.95 0.99
CS 0.93 1.00 0.88
GB 0.98 0.99 0.99
Vn 0.89 0.91 0.92
Ph 0.86 0.89 0.90
Od 0.79 0.89 0.74
Ta 0.99 1.00 0.98

Table 5.1.: SVM classifier results: Left: Global results for the four data trans-
formations; accuracy (Accu), Matthews Correlation Coefficient (MCC); best
results highlighted in bold. Right: Class C GPCR results per subtype for the
ACC data set only, including MCC, Precision (Prec) and Recall (Rec).

convenience of using a more diverse set of data transformation techniques. Table
5.3.2 summarizes the best subtype classification results obtained with SVM for
the four different transformed data sets. These results are complemented by the
box-plot representation of the distributions of the accuracy and MCC values, for
each of the transformed data sets, over the 100 outer iterations of the classifica-
tion procedure, shown in Figures A.1.1 and A.1.2. For all transformations, a low
variability of the results is observed, suggesting consistent estimates that make the
average figures of Table 5.3.2 quite reliable. Out of these, the best classification
results were found for the Digram and ACC transformed data sets, although the
relative differences of accuracy and MCC make PDBT also a reasonable choice.

A detailed analysis of the results per-subtype revealed relatively minor differences
between those obtained with each of the four transformed data sets. This ob-
servation suggests that the main causes of misclassification might lie beyond the
differences between data transformations and that a more systematic analysis of
the classification errors is required.

Table 5.2 shows a few illustrative misclassification statistics for the ACC trans-
formed data set. For instance, sequence ]6, which belongs to subtype V N accord-
ing to its database label, was misclassified 100 out of 100 times: 96 of them was
assigned to Ph and 4 to Od (See Table 5.3 for the mapping between the number
] and the protein database Id).

This misclassification analysis was repeated for each of the transformed data sets.
The number of considered misclassifications (those with ERs > 75%) was smaller
for the ACC and Digram transformations - The AA, Digram, ACC and PDBT sets
yielded, in turn, 143, 88, 85 and 100 strong misclassifications. A detailed analysis
of these frequently misclassified sequences revealed that they are nearly identical
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Table 5.2.: Illustrative example of misclassification statistics for the ACC data
set. For some sequences s identified by number ]s, the error rate (ERs), the true
class (TCs), and how many times this sequence was misclassified as belonging
to each of the other subtypes (from mG to Ta), are displayed. The three last
columns list the sum of the votes for the true class (V Ts), for the most frequently
predicted class (V Ps), and the ratio (Rs) of one to the other.

]s ERs TCs mG CS GB VN Ph Od Ta V Ts V Ps Rs

2 100 CS 100 0 0 0 0 0 0 91 600 0.15
6 100 VN 0 0 0 0 96 4 0 404 596 0.67
7 100 VN 100 0 0 0 0 0 0 300 600 0.5

for ACC and Digram. There are some differences with the PBDT misclassifications
that might be the result of the very different type of transformation. Importantly,
52 frequently misclassified sequences were common to all four data sets and there
was strong agreement on the most-often predicted subtypes. These sequences are
listed in Tables A.1 and A.2.

Analysis of misclassifications according to the voting scheme Interestingly,
these results suggest the existence of subtypes with recurrently wrong class assign-
ments. So, we applied the second step of our systematic approach based on the
voting scheme, as described earlier, to confirm consistent misclassifications. To
illustrate the results obtained in this step, we show the voting scheme results for
the selected instances of Table 5.2. Sequence ]6, for instance, is a V N consistently
misclassified as Ph. The magnitude of the error is small, though, as the voting
ratio (Rs) of true class to predicted class is relatively high (0.67 > 0.5). Sequence
]2 is a CS, consistently misclassified as mG. The magnitude of the error is large,
as the Rs is quite low (0.15 ≤ 0.5).
Only 7 of the 85 frequently misclassified ACC-transformed sequences yielded large
errors (See Table 5.3). Similarly, for AA, Digram and PDBT sets, the majority of
sequences have small errors.

Analysis of misclassifications according to the decision value Clear differences
in the magnitude of the recurrent classification errors were found. Pursuing further
insight, we applied the third step of our approach based on the cumulative decision
value (CDVs) specifically for the binary classifier that involves the true class and
the predicted class.
As previously mentioned, the magnitude of the error was deemed large or small
depending on whether the CDV exceeded the threshold of 60 in absolute value or
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Table 5.3.: Sequences with large classification errors: For each sequence s num-
bered ]s, the GPCRDB Identifier (Ids), the true class (TCs), the predicted
class (PCs), the voting ratio (Rs) and the cumulative decision value (CDVs) are
displayed. Extreme Rs and CDVs values highlighted in bold.

]s Ids TCs PCs Rs CDVs
1 q5i5c3_9tele mG Od 0.75 -95
2 XP_002123664 CS mG 0.15 50
3 q8c0m6_mouse CS Ph 0.15 -46
4 XP_002740613 CS mG 0 -66
5 XP_002936197 VN Ph 0.83 -96
6 XP_002940476 VN Ph 0.67 -95
7 XP_002941777 VN mG 0.5 45
8 B0UYJ3_DANRE Ph mG 0.79 109
9 XP_001518611 Od mG 0.31 46
10 XP_002940324 Od VN 0.49 70
11 GPC6A_DANRE Od Ph 0.5 74

not. A total of 21 out of the 85 frequently misclassified instances of the ACC-
transformed data set have a large error according to this criterion, whereof 4 yield
a very large one (|CDVs| ≥ 95: see Table 5.3).

Summary of the analysis of misclassification The proposed subtype classifica-
tion approach revealed the existence of a number of instances that, independently
of the sequence transformation method, induce classification errors that could be
deemed either large or small. The information provided by Rs and CDVs should be
understood as complementary, given that not fully coincident instances are singled
out in each approach.

Importantly, this analysis showed that the misclassifications of a sizeable propor-
tion of sequences have a small magnitude, so that they could be ignored unless a
thorough revision of the database labels is required. A small number of instances,
though, showed consistent and large classification errors and they should be the fo-
cus of interest from the database curation viewpoint. In Table 5.3, we list GPCRs
with either very large absolute value of CDVs (4 items) or small Rs (7 items) using
the ACC transformed dataset.

Mislabeling validation
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Validation through PT-based visualization of class C GPCRs Figure A.1.3
displays the Treevolution radial PT plot of the complete set of 1,510 GPCRs of class
C, additionally showing the approximate distribution of its main seven subtypes.
In this representation, each outer branch corresponds to one GPCR sequence. Tree
colors are used to represent families of descendant nodes. Note though that these
colors do not correspond to subtype labels. We observe that some families corre-
spond to not one but several evolutionary branches. For example, the two different
colors assigned to Pheromone provide quantitative evidence of the existence of at
least two subtypes within the family. The representation of the evolutionary re-
lationship in the PT plot shows that there exist some clearly separated families
(GB, CS and Od), while others are more closely related to each other, such as mG
and VN.

In the following, we report the PT plots for the four class C subtypes that were
predicted for the mislabeling candidates listed in Table 5.3. In them, these poten-
tial mislabelings (those with largest errors according to the proposed approach)
are highlighted (See the individual sequences listed in Table 5.3).

Figure A.1.4 shows the selection of sequences with largest errors that were pre-
dicted to be mG. The mG subtype has two main evolutionarily-related subgroups,
which are shown schematically in the PT plot. In our analysis, we found 5 se-
quences with large classification error. In this PT, they are highlighted in their
locations. We see that sequences ]7 (labeled as V N in GPCRDB) and ]2 (labeled
as CS) both fall into the first area of mG. The instances ]4 (labeled as CS), ]8
(labeled as Ph) and ]9 (labeled as Od) fall into the second area of mG.

Figure A.1.5 shows the single sequence with large error predicted as Od by the
proposed mislabelling filtering approach. The Odorant subtype corresponds to a
single area in the PT plot, and sequence ]1 (labeled as mG) falls clearly into this
area.

Figure A.1.6 shows the sequences found to be Ph by the proposed approach.
The Ph subtype has two main evolutionarily-related subgroups, which are shown
schematically in the PT plot. Sequences ]11(labeled as Od) and ]3 (labeled as
CS) fall into the first subgroup, whereas sequences ]5 and ]6 (labeled as V N) fall
into a separate evolutionary branch.

Figure A.1.7 shows the sequence found to be V N by the proposed approach. The
V N subtype corresponds to three evolutionary areas in the PT plot. Sequence ]10
(labeled as Od) falls into one of these areas.

Comparison with an ensemble-based noise detection approach As men-
tioned in earlier sections, in previous studies we carried out classification experi-
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ments on the AA and ACC datasets [3] using different supervised classifiers, includ-
ing NB, RF and SVM. From these, we concluded that SVM classifiers significantly
outperformed NB and RF for both the AA and ACC datasets. In this section,
we return to these less accurate classifiers, which are more robust to LN as they
apparently carry out a more generic classification of the investigated dataset, and
should be less prone to data overfitting, a possible risk associated to the more
accurate SVM classification models [116].
We describe here the results of the application of an ensemble-based noise detection
approach including less accurate classifiers for the analysis of the class C GPCR
data set. This method just detects label noise candidates by counting the misclas-
sifications of an instance for the different classifiers in the ensemble. In some way,
this is similar to the first step of our proposed approach, with the difference that
in our case the ensemble is composed only by SVM classifiers. The second and
third steps of the proposed approach, though, allow a more fine-grained analysis of
the misclassifications by taking into account the results of the classifiers involving
just the sequence class label and the most-frequently predicted class for that se-
quence. In fact, we do not aim to a straightforward comparison between methods,
but to use the ensemble method as a way to test the coincidence on the subset of
mislabeled sequences detected by both.
Ensemble-based noise detection methods have their origin in ensemble learning
[54], where a set of prediction models are constructed using different algorithms
and their output is combined to generate a single prediction. A noise detection
ensemble classifier filter [100] consists of a set of diverse base classifiers. Their
classification errors are combined to detect mislabeled instances using either a
consensus vote filter (all classifiers detect a classification error), or a majority vote
filter (the majority of classifiers detect an error).
In this experiment, we use an ensemble classifier built using NB, Random Forest
(RF), SVM and Multi-Layer Perceptron (MLP) classifiers to analize the ACC-
transformed data set. The results of the base classifiers are evaluated using a
noise rank filter [102], which provides information about the ranking of detected
candidates to misclassification. The rank filter estimates the following weights (in
brackets) for each classifier in the calculation of the rank: MLP (3), SVM (2), NB
(1) and RF (1), and assigns a ranking to the sequences according to the number
of classifiers that failed to evaluate them correctly. It then reports in how many
classifiers the prediction failed. In our analyses, we focused on those sequences
that were evaluated incorrectly by either all classifiers (a total of 117), or by at
least three of them (a further 34). We then checked which of these 151 sequences
were also detected as frequently misclassified by our proposed SVM approach. A
total of 141 instances were found. Both methods coincided in the detection of
109 sequences as possible mislabelings (a 77% coincidence). All sequences with
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large classification error listed in table 5.3 were also detected by the noise rank
algorithm. This result provides further support to the claim of effectiveness of the
proposed SVM-based approach in its task as LN detector.

Discussion

The systematic approach proposed for the analysis of the SVM misclassifications
has revealed the existence of a number of sequences that, independently of the
transformation method, are prone to classification errors that could be deemed
large or small (according to criteria that, ultimately, should be set by proteomics
experts). The information provided by the voting ratio R and the absolute value of
the CDV should be understood as complementary, given that not fully coincident
sequences are singled out by each approach; that is, some sequences might show
very low values of R but not very high values of CDV, or very high values of CDV
but not too low values of R.

Importantly, this analysis has shown that the misclassifications of a sizeable pro-
portion of sequences have a small magnitude. All these sequences might well be
considered as mild cases of LN and should eventually be redirected to a human ex-
pert for further analysis. Small errors also suggest underlying similarities between
the GPCR subtypes whose characteristics may be unknown and worth investigat-
ing. A small number of instances, though, show consistent and large classification
errors. They merit detailed study because they might be affected by a more radi-
cal type of LN, or even by straight mislabelling. These are the sequences listed in
Table 5.3, which are now individually discussed.

SequencesXP_002123664,XP_002740613,XP_002936197,XP_002940476 and
XP_002940324 are all recurrently misclassified. XP_002740613, in particular,
yields a 100% error, R = 0 and large CDV. Their labels should require fur-
ther expert assessment, given that they were derived by an automated compu-
tational analysis from an annotated genomic sequence by means of a gene pre-
diction mode from the RefSeq3 databank. Another couple of interesting cases
are q8c0m6_mouse and B0UY J3_DANRE. According to the information ref-
erenced at UniProt4, these GPCRs are unreviewed and should be considered only
as preliminary data. The former, according to GPCRDB, is a CS that our system
confidently (R = 0.15) classifies as Ph. The European Nucleotide Archive5 lists it
as similar to the putative Ph receptor V2R2. The latter, according to GPCRDB,
is a Ph, while our system predicts it to be an mG with a very large CDV (109).

3http://www.ncbi.nlm.nih.gov/refseq/
4http://www.uniprot.org/uniprot/{B0UYJ3,Q8C0M6}
5http://www.ebi.ac.uk/ena/data/view/BAC26854
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Agreeing with our prediction, the Ensembl Genome Browser 6 considers it to be
an mG of subtype 6a.

Sequence GPC6A_DANRE is labeled as Od, but the low number of votes of this
class and the large CDV suggest its classification to Ph. Although this sequence
is considered as olfactory receptor7, we suggest to investigate the possibility of its
labelling as Ph.

As stated in the previous section, it is important to provide further validation for
the clearest of the misclassifications found with the proposed method (as summa-
rized in Table 5.3) using PTs. The importance of this validation resides in the
fact that the PT dendrograms are not built from the same data transformations
we used. Therefore, agreement between the subtype assignment of the PT and the
label predicted by our method should be an almost definitive confirmation of the
existence of label noise, whereas, contrarily, lack of agreement might be an indi-
cation that the misclassification is caused by the type of sequence transformation
itself, or by the fact that the subtypes defined by the existing and predicted labels
overlap.

The comparison of the most extreme misclassifications discovered with the pro-
posed method with the visual results provided by the PTs (See Figures A.1.4 -
A.1.7) is striking, as it provides consistent evidence of the reliability of the former.
Figures A.1.4 - A.1.7 show that the detected extreme mislabellings fall exactly
into the evolutionary branch belonging to the class predicted by the proposed
approach. This reliability is a guarantee that the method is viable as a tool for
database curators in proteomics.

Conclusions

LN is a potentially important problem in the process of automated class C GPCR
subtype classification from the alignment-free transformed versions of protein pri-
mary sequences. This is because the labels of these sequences are obtained indi-
rectly through complex, many-step similarity modelling processes.

In this study, we have proposed a systematic procedure, based on SVM classifica-
tion, to single out and characterize GPCR sequences with consistent misclassifi-
cation behaviour. This approach, where the detection of possible mislabeled data
is based on the analysis of the frequency of misclassification of an instance and
a quantitative assessment of the magnitude of the classification error, has been

6http://www.ensembl.org
7http://www.uniprot.org/uniprot/Q5U9XR
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applied to different sequence data transformations and shown to be a viable alter-
native for the definition of a prediction-based system addressing the problem of
LN.

For a database like the one analyzed in the current study, the type of LN is well-
defined within the general taxonomy of the problem [94]: it should not be mistaken
by a problem of outlier or anomaly detection and can be considered as the natural
result of human expert involvement and model-based (semi)automated labeling
[117]. As such, it falls within the noisy not at random type of models, because
sequences are more likely to be mislabeled when they are similar to sequences of
other subtype and because labels are likely to be less certain in regions of low
data density. Mislabeling thus depends both on the data features and on the true
labels. Three general (and partially overlapping) approaches are available to tackle
this problem: the use of classification algorithms that are robust to LN; the use
of filter methods that detect noisy cases; and the use of algorithms for explicit
LN modeling. A large palette of methods has been proposed for each of these and
their review is beyond the scope of this study. The reader is referred to [94] for an
up-to-date survey.

Here, our choice was a variant of a filtering approach, because, as acknowledged in
[94], “some of the label noise-tolerant variants of SVMs could also be observed as
filtering”. The proposed method can therefore be considered as model predictions-
based filtering [118], extending the basic concept of voting filtering [100, 119] and
attempting to improve model robustness by decomposing a multi-class problem
into multiple binary classification problems [120]. The reported experimental re-
sults are a proof of concept for the viability of such procedure as part of a decision
support system that, combined with expert knowledge in the field, should be able
to assist the discovery of GPCR database labelling quality problems. These results
have been further validated using PTs, a standard tool in bioinformatics.

5.3.3. Mislabeling analysis of the 2016 dataset

Results

Repeated classification with different SVM models using different transfor-
mations of the dataset In this section we detail the experimental results of the
analyses of the class C GPCR dataset published in September 2016 comprising 936
sequences. We report the classification results obtained using SVM classifiers for
the transformed primary sequences of the proteins applying 5-CV: AA, Digram,
ACC, and two variants of Prot2Vec: the first based on a Swiss-Prot database
representation and the second based on a GPCRdb representation.
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Data Accu MCC
AA 0.989 0.982

Digram 0.995 0.976
ACC 0.997 0.995

Prot2Vec1 0.989 0.984
Prot2vec2 0.994 0.991

Subtype MCC Prec Rec
mG 0.998 0.996 1.0
CS 0.990 1.0 0.980
GB 0.994 1.0 0.990
Ta 0.998 0.996 1.0

Table 5.4.: SVM classifier results: Left: Global results for the four data trans-
formations; accuracy (Accu), Matthews Correlation Coefficient (MCC); best
results highlighted in bold. Right: Class C GPCR results per subtype for the
ACC data set only, including MCC, Precision (Prec) and Recall (Rec).

Model TC PC ERs Rs CDVs TC PC ERs Rs CDVs
AA GB Ta 100 0.49 38.18 mG Ta 100 0.34 -59.58
Digram GB Ta 96 0.51 -9 mG Ta 100 0.38 28.75
ACC GB mG 100 0.46 19.16 mG mG 0 - -
Prot2Vec1 GB Ta 100 0.58 -42.54 mG CS 100 0.33 55.5
Prot2Vec2 GB Ta 100 0.41 -28.52 mG CS 100 0.39 -10.36

Table 5.5.: Analysis of misclassification of sequences h2u5u4_takru and
t2mdm0_hydvu: For each sequence s the true class (TC), the predicted class
(PC), the error rate (ERs), the voting ratio (Rs) and the cumulative decision
value (CDVs) are reported.

Summary of the analysis of misclassification A study of the misclassifica-
tions of the 2016 database reveals that only the sequence h2u5u4_takru, labeled
as GB, is misclassified for all the data transformations of the present study. Nev-
ertheless, the prediction of class membership of this sequence is not completely
uniform, as it is predicted to belong to Ta in four cases and to mG in one case.
This is, according to Uniprot, an uncharacterized protein, i.e. inferred from ho-
mology. Sequence t2mdm0_hydvu was also detected as frequently misclassified
(for 4 out of 5 transformations). This sequence is labeled as mG, but the classi-
fiers predict it to belong to CS or Ta. Table 5.5 details the measures employed to
analyze the consistency of misclassification of these two sequences.

Discussion

For the September 2016 version dataset comprising 936 sequences the classification
model achieved an accuracy of 0.997 what implies only three misclassifications. As
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reported in the previous section, just two sequences were very consistently mis-
classified and might be considered as possible cases of LN: h2u5u4_takru, labeled
as GB and predicted to probably belong to Ta and t2mdm0_hydvu, labeled as mG
and predicted to belong to CS or Ta. In contrast, the results from the study of the
2011 database [5], revealed the existence of at least 11 consistent misclassification
of sequences using the same conservative thresholds to asses the consistency of
data labeling.

Conclusions

The experiments on the 2016 version database indicate that this more recent ver-
sion of the class C GPCR dataset is very accurately labeled and almost free of the
LN problem as the consistently misclassified sequences detected by the proposed
ML-based approach are now very scarce. This means, that although misclassifi-
cations may happen, the method considers that these cases should not be seen as
labeling errors.
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6. Tracking the evolution of class C
GPCR database using machine
learning tools for biocuration
assistance

6.1. Introduction

Biocuration in biology in general and specifically in the omics sciences has become
paramount, as research in these fields swiftly evolves towards an increasingly data
dependent model. As a result, the maintenance and management of web-accessible
publicly-available databases becomes a central task in biological knowledge dissem-
ination. One relevant challenge for biocurators is the unambiguous identification
of biological entities. In this thesis we analyze class C GPCRs. These receptors
are characterized according to subtype labels at different levels of organization.
The research reported in the previous chapter has provided evidence that some
of these receptors could be affected by a case of LN, as they appeared to be too
consistently misclassified by ML methods. Here, we review the evolution of class C
GPCR database from the former 2011 version to two recent and quite substantially
modified new versions of this database from 2016 assessing the internal data qual-
ity using supervised classification methods and focusing on possible mislabellings
through a LN analysis. The analysis reveals the now extremely accurate labeling
for the new versions of 2016 using several ML models and different transformations
of the unaligned sequences. These findings support the adequacy of our proposed
method to identify problematic labeling cases as a tool for database biocuration.

61



6.2. Comparison of class C GPCR datasets

6.2.1. Experimental settings

Methods GPCRdb [38] is a web-accessible and publicly-available repository
and information system containing data and web tools especially designed for
GPCR research. Class C, investigated in the current study, in turn comprises
several subtypes. Receptor databases are regularly updated. A class C dataset
from March 2011 was object of extensive analysis using ML methods in previous
research [3, 5, 12, 121, 72].

In the current study, we go one step further and track the evolution of the class
C GPCR dataset from GPCRdb comparing the 2011 dataset with two recent and
successive versions from 2016 (May and September). We analize the following
aspects of the datasets:

1. We compare the datasets regarding the number of sequences and the number
of subtypes of the class C GPCRs.

2. As an assessment of the internal data quality of the datasets we use dif-
ferent ML techniques. More specifically, we first compare the classification
performance of several supervised classifiers, namely RF, NB and SVM for
the different transformed datasets in order to decide which classifier is most
adequate for the rest of the analysis. In this study we use several data
transformations: the Amino Acid Composition (AA), Digram Composition
(Digram), Auto-cross covariance (ACC) and two variants of Prot2Vec: the
first based on a Swiss-Prot database representation and the second based on
a GPCRdb representation. The classification performance is measured by
means of the accuracy (Accu) and Mathew’s correlation (MCC) coefficient
for multiclass classification. The subtype results are evaluated by means of
the MCC, precision and recall for binary classification. All experiments are
conducted using 5-CV with stratified folds. SVM classification uses the LIB-
SVM library and a RBF kernel, whose parameters C and γ are adapted by
means of a grid search.

3. As an assesment of data labeling issues we compare the results of the analy-
sis of frequently misclassified items using the ’systematic approach for mis-
labelling analysis’, which was described in detail in section 5.2.1 with the
respective results for the class C GPCR datasets.
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6.2.2. Experimental results

Context Biological information, mainly in the omics sciences, is usually cu-
rated by specially assigned professional scientists in a process often known as
biocuration. It has been described as “the activity of organizing, representing and
making biological information accessible” [122] to biologists. It is becoming a key
task, given that expert-curated web-accessible databases are one of the main driv-
ing forces in current biology in general and bioinformatics in particular [123]. The
responsibilities of curators may include data collection, consistency and accuracy
control, annotation using widely accepted nomenclatures, evaluation of computa-
tional analysis, etc. Biocuration requires broad expertise in the domain because
of the vast amount of heterogeneous information available from literature, often
lacking a unified and standardized approach for the representation and analysis
of data. This often involves a previously unforeseen forefront role for text mining
methods [124]. One of the challenges of biocuration is the unambiguous iden-
tification of biological entities (the class C GPCRs in this study) from existing
studies and literature. Data trustworthiness can only be ensured through costly
data management [125]. This task, when understood as “manual” expert curation,
is uncertain and error-prone, so that the development of computational procedures
to assist experts in it is worth pursuing.

Prior analyses of the 2011 database version revealed a possible sequence LN prob-
lem (described in more detail in the next section) in the form of sequences clearly
and consistently predicted by classifiers as belonging to a different subtype than
that reflected by their database label. These analyses were understood as lay-
ing the foundations for the development of a tool to assist database experts (not
restricted to GPCRdb) in their curator tasks by shortlisting proteins with ques-
tionable subtype labels.

In short, the main motivation of the current study is to track the evolution of
the GPCRdb database from 2011 to 2016 using the class C primary sequence
data in order to find out whether the LN problem might have been successfully
tackled, ameliorating classification. If so, this would reinforce the validity of our
LN analysis methodology as a tool for biocuration assistance.

Data

The GPCRdb [37, 38] is a curated and publicly accessible repository of GPCR
databases and web tools for the analysis of membrane proteins including about
400 human specimens. Overall, the GPCRdb dataset contains 14,951 proteins
from 3,184 species.
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The categorization of the receptors available form this database follows the interna-
tional IUPHAR system recommendations. The whole database originally consisted
of seven families: A (Rhodopsin), B1 (Secretin), B2 (Adhesion), C (Glutamate),
F (Frizzled), Taste 2 and “other” GPCRs. This classification followed the system
suggested in [40]. As mentioned in the introduction, the computational experi-
ments reported in this study concern GPCRs of class C. At the highest level of
grouping, class C discriminates receptors as ion, amino acid, or sensory according
to the type of ligand.

Evolution of the database This study covers the evolution of GPCRdb over
three versions: the first one released in 2011 and two recent and drastically changed
versions: those of May 2016 and September 2016. At the second level of classifica-
tion of the current database version, four subtypes are distinguished: metabotropic
glutamate receptors (mG, amino acid), GABAB (GB, amino acid), calcium sensing
(CS, ion) and taste 1 receptors (Ta, sensory), covering sweet and umami tastes.
The earlier 2011 version of the database also included three more sensory-related
subtypes of the second level, namely vomeronasal (VN), pheromones (Ph) and
odorant (Od) receptors.
Over the five years elapsed between the earlier and later versions of the database
analyzed in this study, GPCRdb has undergone major changes in the total numbers
of proteins belonging to class C, but also in the ratio of the different subtypes to
the total number of receptors and even in the sequences contained in each of those
subtypes.
Mere comparison of the datasets shows a remarkable reduction of the number of
sequences, from the 1,657 sequences of the March 2011 dataset, down to the 954
of the September 2016 one, including orphans. Moreover, the variety of subtypes
included in class C has been reduced from the seven of the 2011 dataset to only
four in both 2016 datasets. (see Table 6.1 and Figure 6.2.1 for some summary
figures).
The main changes occurred in the transition from the 2011 to the May 2016 ver-
sions, with only 155 protein sequences remaining unchanged. Not only the recep-
tors of three subtypes (VN, Od and Ph) were removed in full from class C, but
the number of proteins in the other remaining subtypes also changed significantly.
The mG receptors subtype grew by 33% and only 26% of sequences were kept
unchanged (2011 ∩ May 2016 column in table 2.1). The CS receptors subtype
more than doubled, keeping only 10 sequences unchanged. Finally, the Taste
1 subtype grew threefold (note that in the the 2011 version it was characterized
simply as Taste), while the GB receptors subtype, on the contrary, decreased more
than threefold.
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Subtype March May Sept 2011∩ May 2016 May 2016∩ Sept 2016
2011 2016 2016

mG 351 467 516 93 (26%) 357 (76%)
CS 48 125 103 10 (21%) 91 (73%)
GB 208 60 89 10 (5%) 50 (83%)
Ta 65 193 228 42 (65%) 129 (67%)
Vn 344 0 0
Ph 392 0 0
Od 102 0 0
Orphans 147 193 18 0 18 (9%)
Total 1657 1038 954 155 645

Table 6.1.: Number of receptors in each subtype for the class C datasets of the
different database version, including percentages of sequences preserved from
one version to the next.

The changes between the two 2016 versions are not so substantial, but still signif-
icant for a mere four-month period. In this case, the number of sequences kept
completely unchanged varied from 65% to 85% for the four subtypes. The mG
subclass kept growing in the September 2016 version by 10%; the GB and Taste 1
also increased by 50% and 18%, respectively. Instead, CS decreased by 18%. The
largest of differences, though, was to be found in the number of orphan receptors
(those not assigned to a subclass). Less than 10% of the original orphans were
kept in the last version.

Previous research on GPCR class C from a data curation perspective

Subtype classification of GPCRs has been attempted at different levels of detail
[97]. Our interest in the analysis of the evolution of this database from a data
curation perspective stems from early experiments [3] in which we tested the extent
to which class C GPCR first-level subtypes could be automatically discriminated
from different transformations of their unaligned primary sequences.

Work on the 2011 version of the database provided evidence of clearly defined limits
to the separability of the different class C subtypes. This evidence was produced
using both supervised [12, 121] and semi-supervised [72] ML approaches and from
different data transformation strategies. Interestingly, the subtypes shown to be
most responsible for such lack of complete subtype separability were precisely those
which were removed in the 2016 versions of the database (namely vomeronasal,
odorant and pheromone receptors).
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Figure 6.2.1.: Subtype distribution for the different databases (with orphans):
upper left - March 2011, upper right - May 2016, middle - September 2016

These results were further confirmed from the viewpoint of visualization-oriented
fully unsupervised machine learning methods (that is, methods that attempted
sequence discrimination without knowledge of sequence-to-subfamily adscription).
Results clearly indicated that the subtypes shown to be worse discriminated by
supervised classifiers were also those shown to heavily overlap in unsupervised
visualization models from different unaligned sequence data transformations [6].
These results might be just considered as a typical case of heterogeneous levels
of class separability, often observed in real biological datasets. Closer inspection
of the sequence misclassification behavior, though, revealed an intriguing and po-
tentially more interesting pattern: different training runs of the same, or even of
different, classification algorithms, might be expected to yield different class pre-
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dictions for the same sequences. That is, we might expect a given sequence to
be misclassified only in part of the experiments and/or be misclassified to differ-
ent classes (subtypes in this case). For instance, a receptor sequence might be
misclassified in only a percentage of experiments, being perhaps sometimes pre-
dicted to be a CS receptor, while others predicted to be a GB receptor. Some of
the observed misclassifications conformed to this typical pattern, but many others
were found to be far too consistent, in the sense that the sequence was almost
always misclassified (by different classifiers and different implementations of the
same classifier) as belonging to the same wrong subtype.

This behaviour suggested that we might be witnessing a case of the LN problem
[94]. This is, the possibility that the sequence subtypes labels as appearing in the
database, taken to be the ground truth, were actually wrong as the result of the
uncertainty of the own database sequence labeling procedure, very often model-
based itself. This would explain both the presence of consistently misclassified
proteins and (at least partially) the limits of subtype discrimination accuracy which
our experiments stubbornly showed to exist, independently of the choice of data
transformation and classification technique.

This problem was analyzed in detail in [5], where individual sequences were iden-
tified and shortlisted as potential cases of LN to be further analyzed by database
curators. Unsurprisingly perhaps, most of them belonged to the same three sub-
types previously identified as the most difficult to discriminate, namely Vn, Ph
and Od. All data transformations used in these experiments were alignment-free
and included n-gram frequencies for n = 1, 2, auto-cross-covariance (ACC) and
the physicochemical distance transformation (PDBT). The classifier of choice was
a SVM, a model that has been widely favoured for this type of problems (see, for
instance, [126, 48, 47]).

Subsequent work reported in [121], which again employed alignment-free data
transformations, used a RF classifier to further investigate the consistency of mis-
classification in this problem. Note that RF is an ensemble learning technique
with an internal classification voting system that is naturally suited to classifica-
tion consistency analyses. The classification performance achieved with RF was
similar to that of SVM across transformations. Most consistent misclassifications
were again detected mainly in Vn, Ph and Od, confirming our previous results.

All these studies were based on the earlier 2011 version of the database, which
automaticaly raised the following research question: if the 2011 database, which
included Vn, Ph and Od as Class C GPCR subtypes, suffered from these LN
classification problems, would the new 2016 versions of the database, which do not
include those subtypes, suffer from similar problems? This is the question we aim
to answer through the experiments reported next.
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Results

In this section we detail the experimental results of the analyses of the three
different datasets. We report the classification results obtained using different su-
pervised classifiers for the transformed primary sequences of the proteins applying
5-CV. Tables 6.2 and 6.3 show, in turn, the classification results for the datasets
published in March 2011, May 2016 and September 2016. In each table, several
evaluation measures (Accu, MCC and F-measure) are reported for SVM, NB and
RF classifiers, as well as for five different transformations of the primary sequences:
the Amino Acid Composition (AA), Digram Composition (Digram), Auto-cross
covariance (ACC) and two variants of Prot2Vec: the first based on a Swiss-Prot
database representation and the second based on a GPCRdb representation.

Model Classifier Accu MCC F-meas
SVM 0.8855 0.8549 0.8842

AA RF 0.8570 0.8207 0.8542
NB 0.7033 0.6307 0.7046
SVM 0.9311 0.9128 0.9303

Digram RF 0.9139 0.8929 0.9124
NB 0.8358 0.7949 0.8375
SVM 0.9252 0.9054 0.9234

ACC RF 0.8894 0.8624 0.8838
NB 0.8430 0.8064 0.8455
SVM 0.8987 0.8715 0.8981

Prot2Vec1 RF 0.8596 0.8245 0.8587
NB 0.6000 0.5153 0.6070
SVM 0.8695 0.8353 0.8692

Prot2Vec2 RF 0.8093 0.7625 0.8110
NB 0.5854 0.4931 0.5889

Table 6.2.: Classification results for the 2011 version dataset. Prot2Vec1 corre-
sponds to the Swiss-Prot-based representation and Prot2Vec2 corresponds to
the GPCRdb-based representation.

The best classification results were obtained with the SVM classifier for all three
datasets. Tables 6.4 and 6.5 detail the classification results at the subtype level.
A detailed analysis of the consistently misclassified sequences reveals no coinci-
dence with the results from the study of the 2011 database [5], for the obvious
reason that none of the 11 sequences reported as consistently misclassified in this
study (See Table 5.3) is part of the 2016 databases (for a formal description of
the misclassification consistency concept, we refer the readers to the description
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May 2016 September 2016
Model Classifier Accu MCC F-meas Accu MCC F-meas

SVM 0.9822 0.9714 0.982 0.9893 0.9824 0.9892
AA RF 0.9716 0.9538 0.9706 0.9850 0.9757 0.9850

NB 0.9550 0.9271 0.9551 0.9594 0.9368 0.9598
SVM 0.9917 0.9884 0.9916 0.9946 0.9925 0.9946

Digram RF 0.9905 0.9847 0.9905 0.9914 0.9860 0.9914
NB 0.9811 0.9688 0.9808 0.9893 0.9826 0.9893
SVM 0.9941 0.9917 0.994 0.9968 0.9951 0.9968

ACC RF 0.9893 0.9830 0.9891 0.9925 0.9878 0.9925
NB 0.9799 0.9673 0.9798 0.9904 0.9845 0.9903
SVM 0.9822 0.9716 0.9822 0.9893 0.9839 0.9893

Prot2Vec1 RF 0.9763 0.9612 0.9759 0.9861 0.9776 0.9861
NB 0.8118 0.7229 0.8207 0.9904 0.9845 0.9903
SVM 0.9822 0.9759 0.9823 0.9936 0.9912 0.9936

Prot2Vec2 RF 0.9822 0.9714 0.9821 0.9904 0.9847 0.9903
NB 0.8615 0.7972 0.8688 0.9808 0.9692 0.9809

Table 6.3.: Classification results for the May and September 2016 version
datasets respectively.

Subtype Precision Recall MCC F-measure
mG 0.9462 0.9829 0.9639 0.9532
CS 1.0 0.9356 0.9645 0.9652
GB 0.9905 0.9856 0.9880 0.9861
Vn 0.9185 0.9128 0.9153 0.8907
Ph 0.8980 0.9131 0.9050 0.8719
Od 0.8610 0.7362 0.7896 0.7806
Ta 1.0 0.9846 0.9920 0.9918

Table 6.4.: Subtype classification results obtained by SVM from the Digram
transformation of the 2011 version dataset.

about LN in section 5.2.1). A study of the misclassifications of the 2016 database
reveals that only the two sequences appear as frequently misclassified in this more
recent version of the database (see section 5.3.3 for the detailed results).

69



Subtype Precision Recall MCC F-meas Precision Recall MCC F-meas
mG 0.9958 1.0 0.9979 0.9953 0.9962 1.0 0.9981 0.9957
CS 0.9923 0.9760 0.9833 0.9811 1.0 0.9804 0.9899 0.9889
GB 1.0 0.9833 0.9913 0.9909 1.0 0.9889 0.9943 0.9938
Ta 0.9903 0.9949 0.9924 0.9902 0.9957 1.0 0.9979 0.9972
Table 6.5.: Subtype classification results obtained by SVM from the ACC trans-
formation of the May and Sept. 2016 version dataset respectively.

Discussion and Conclusions

Note that the main goal of this study is the comparative analysis of class C GPCR
data over time using three versions of a publicly available database spanning from
2011 to 2016. This analysis concerns the ability of different ML methods to discrim-
inate between class C subtypes from different transformations of their unaligned
sequences. Such discriminability analysis is geared towards the assessment of the
LN problem observed in our previous investigation of the 2011 version datasets
and is meant as a way to assist database experts in their biocuration tasks.

The mere comparison of the datasets shows a remarkable reduction of the number
of sequences, from the 1,510 sequences in the March 2011 dataset, down to the
936 collected in the September 2016 one, not counting orphans. Moreover and as
previously mentioned, the variety of subtypes included in class C has been reduced
from the seven of the 2011 dataset to only four in both 2016 datasets.

The results of the analyses of the datasets using supervised classification methods,
reported in the previous section, lead to some unequivocal conclusions.

According to the results in Tables 6.2 and 6.3, all classifiers perform better with
the 2016 datasets than with the 2011 dataset according to all the evaluation mea-
sures considered. Furthermore, the September 2016 version of the dataset yields
consistently better results that the May 2016 version although, in this case, differ-
ences are comparatively minor.

It might be argued that the differences between the 2011 and 2016 datasets could
be put down to the fact that the Vn, Ph and Od subtypes have been removed
from the 2016 versions. This is true only to some extent because, importantly, the
subtype-specific results in Tables 6.4 and 6.5 indicate that the 2016 versions yield
better performance than the 2011 version for each and every of the four remaining
subtypes independently. And again, the September 2016 results are slightly better
than the May 2016 results for each of the four subtypes.
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An accuracy of 0.9941 using the SVM with ACC transformation for the 845 se-
quences of the May 2016 version dataset implies just 6 misclassifications. Corre-
spondingly, a 0.9968 accuracy, also for the SVM with ACC for the 936 sequences
of the September 2016 version dataset, implies 3 misclassifications. These are al-
most negligible numbers when compared to those of the 2011 version. Moreover,
note that out of these few cases and as reported in section 5.3.3, only a couple
of sequences show the type of very consistent misclassification that might be evi-
dence of LN. In comparison, the results from the study of the 2011 database [5, 4],
using the same criteria as the current study, indicated the existence of a shortlist
of at least 11 very consistently misclassified sequences even when an extremely
conservative threshold was used to assess such consistency. In our opinion, this is
evidence of sound curation at work, as well as evidence of how important it is to
use LN detailed assessment as a tool to assist biocuration.
We can also conclude that SVM classifiers show a very consistent overall advantage
when compared to RF and NB for all three datasets and for all five data transfor-
mations. The difference is very clear with the 2011 version and more nuanced with
the 2016 datasets. This is a relevant result for two reasons: first, because it reveals
SVM performance to be more robust in datasets with limited class separability;
second, because it reveals that with neatly separable classes such as those of the
2016 datasets, almost any classifier will do reasonably well, even the baseline NB
classifier. This is further evidence that sound biocuration, when dealing with the
LN problem adequately, helps to reduce the uncertainty associated to model-based
decision making, in this case by limiting the impact of the choice of data analysis
methods (here, the choice of classifiers) on the results.
Finally, we should consider the impact of the data transformations on the classifi-
cation results. The interpretation of the corresponding comparative results bears
similarities with that of the comparative of classification methods. Digram per-
forms best for the 2011 version of the database, while the more complex ACC
performs best for both 2016 versions. Again, the differences in performance be-
tween transformations for all classifiers are relatively small for the 2016 datasets
and no transformation with no classifier falls below the 0.98 accuracy mark with
the September 2016 dataset. Therefore, this again reinforces the idea that biocu-
ration, by dealing with LN, reduces the uncertainty associated to model-based
decision making, in this case by limiting the impact of the choice of data transfor-
mation method on the results. A last comment on this issue is that the recently
proposed (and most complex of our choices in this study) Prot2Vec transformation
[78] does not seem to show any relative advantage for the analyzed data.
Our experiments quite conclusively indicate that the last 2016 version of the class
C data in GPCRdb, a reference for GPCR research, is almost free of the LN
problem. That is, almost none of the class C GPCR sequences in this version
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is predicted by our ML-based method to be consistently misclassified. In other
words, the method considers that, even if misclassifications still exist, almost none
of them should be suspected to be a labelling error. Having tracked this database
from 2011 according to this criterion, we are now in a position to confidently say
that the analysis of label noise in this type of databases, understood as a problem
of misclassification consistency, is a useful tool for biological database curation.
Importantly, and despite the fact that the research reported in this paper has fo-
cused on class C GPCRs due to their particular pharmacological relevance, the
proposed method could be exported to any database in which biological entities
are associated to a characterization label. This research also highlights the impor-
tance of documenting the reasons for changes between versions of publicly available
biological databases.
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7. Topological sequence segments
discriminate between class C
GPCR subtypes

7.1. Introduction

In this chapter, we systematically analyze whether segments of the receptor se-
quences are able to discriminate between the different class C GPCR subtypes
according to their topological location on the extracellular, transmembrane or in-
tracellular domain.
In the research described in previous chapters, we investigated the feasibility of dis-
crimination between the defined subtypes of class C GPCRs using supervised ML
classification approaches. As basis of the construction of the classification models,
different alignment-free sequence transformations were used, including both trans-
formations based on the physicochemical properties of the AAs [3] and on short
n-gram features [10]. These experiments showed clear differentiation between the
subtypes, but also an evident upper threshold to classification accuracy as well as
some consistent misclassification patterns [5, 4]. Note that these former experi-
ments were based on the entire and unaligned primary sequences of the receptors.
The GPCRs have different structural domains, including, amongst others, a seven-
helix transmembrane (7TM) domain and an extracellular domain. In the case of
class C, they include a large domain in the extracellular part of the receptor (N-
terminus), which is built by the Venus Flytrap (VFT) and a cystein rich domain
(CRD) connecting both in many of their subtypes [26].
Here, we now provide a systematic analysis of the subtype discrimination capabil-
ities of the complete set of different topological locations in the class C sequences
(in extracellular, transmembrane and intracellular domains), including their com-
binations. We compare this with the performance of the models based on the
complete sequence.
We analyze to what degree the different topological parts of a GPCR retain the
ability to discriminate between subtypes of the complete sequence, as analyzed in

73



previous research.

7.2. Experiments on the class C GPCR dataset

Class C GPCR subtype discrimination is addressed here as a supervised classifi-
cation problem in which class labels are the assignments of each of the sequences
to one of the existing subtypes according to the database available information.
We measure in which degree the class C GPCR segments discriminate properly
between the subtypes. We analyze both the class C GPCR dataset from 2011 and
the September 2016 dataset.

7.2.1. Experimental Settings

Methods

The first phase of the experiments reported in this chapter involve the use of sev-
eral models for the classification of the alignment-free complete sequences. These
results were used to choose which classifier was most adequate for the rest of anal-
yses. The comparison was performed with a similar selection of classifiers to those
used in a previous study [3], which include NB, RF and SVM classifiers.
The classification results for all classifiers were achieved employing a 5-fold cross
validation (5-CV) procedure with stratification for fold generation. Several metrics
were used to evaluate the classification models in the reported experiments. First,
at the subtype level, precision (Prec), recall (Rec) and MCC were again used to
evaluate the binary classifier for each subtype. At the global level, the quality of
the multi-class models was evaluated using classification accuracy, and MCC was
used for multi-class classifiers. SVM classification again used the LIBSVM library
and an RBF kernel, whose parameters C and γ are adapted by means of a grid
search.

Data preparation

Segmentation of Structural Sequence Domains Class C GPCRs have a
common complex structure due to their transmembrane location: An extracellular
domain comprising the N-terminus and 3 extracellular loops (EL), the 7TM, and an
intracellular domain consisting of three intracellular loops (IL) and the C-terminus.
Complete sequences, in accordance to this catalogue of structural domains, were
partitioned into 15 segments. For this, the Phobius transmembrane detection tool
[127] was used.
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Figure 7.2.1.: Graphical representation of the common structure of GPCRs.

Alignment-free sequence transformations The use of the supervised classifi-
cation models aforementioned requires transforming the unaligned AA primary se-
quences of varying length into fixed-size matricial representations. In the research
reported in previous chapters, we used transformations based on the physicochemi-
cal properties of the AAs that have widely been used in proteomics research[49, 48].
In the current study, we use transformations that have their foundations in the
field of symbolic language analysis instead. They treat protein sequences as text
from a 20 AA alphabet [74, 76]. Here, short sequence fragments known as n-grams,
are understood as “words”. In [50], a succesful application of class A GPCR clas-
sification using text classification methods was reported. This study used a dis-
cretization of n-gram features. In our research, we followed a similar strategy and
calculated the relative frequency of occurrence of n-grams of sizes one and two that
we call, in turn, AA and Digram transformations. These n-gram-based transfor-
mations achieved relatively high classification performances in previous research
for the analysis of the complete sequences of the original dataset [10]. Now, we
go one step further and do not only calculate the frequencies of AA and Digram
for all sequence segments (called appended frequencies), but also the accumulated
frequencies, which are calculated as the occurrence of AA or Digram in all the
segments under study divided by the sum of the lengths of these segments.
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7.2.2. Analysis of the discrimination capabilty of segments
from the 2011 dataset

Results

Segmentation of Structural Sequence Domains As previously mentioned
Class C of GPCRs in the 2011 dataset is subdivided into seven subtypes: Metabotropic
Glutamate (mG) receptors, Calcium sensing (CS), GABA-B (GB), Vomeronasal
(VN), Pheromone (Ph), Odorant (Od) and Taste (Ta). The analyzed data set
from version 11.3.4, released on March 2011, contains a total of 1,510 sequences
from those seven subtypes. In this study we limited our analyses to the subset
of 1,252 sequences (approximately 83% of the total) that include information of
the complete 7-TM domain. The distribution of sequences per subtype both for
the original data set and for the subset comprising only sequences with complete
7-TM structure are shown in Table 7.1.

Table 7.1.: Number of sequences per subtype available in the original data set
and in the subset of sequences with complete 7-TM structure.

Class C subtype ] sequ. of dataset ] sequ. compl. 7-TM structure
mG 351 282
CS 48 45
GB 208 156
VN 344 293
Ph 392 323
Od 102 90
Ta 65 62

1510 1252

Table 7.2 summarizes some general information about the lengths (in number of
AAs) of the 15 segments of the sequences for the 2011 class C dataset.

Classifier performance comparison with complete sequences As stated in sec-
tion 7.2.1, we first used several supervised models for the classification of the com-
plete sequences in order to select the most adequate classifier. Table 7.3 shows the
classification performance for the different classifiers (best results are highlighted
in bold). The results reveal that the best classification performance was achieved
by SVM, both for the AA and Digram transformations, in comparison to RF and
NB. For this reason, SVM was used in the subsequent experiments.
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Table 7.2.: Statistical information in reference to the length of the segments.

Segment Mean Min Max StDev
Complete Sequence 861.7 250 1,768 181

N-terminus 532.2 6 1,502 148.3
EL1 11.6 5 329 10.4
EL2 27 5 70 10.4
EL3 9 5 31 3.9
TM1 24.7 16 34 1.9
TM2 21.8 17 31 1.7
TM3 23.5 17 34 2.3
TM4 22.3 18 33 2.9
TM5 23.5 17 34 2.3
TM6 21.3 17 27 1.3
TM7 23.6 16 31 1.6
IL1 17 6 567 39.9
IL2 18.9 11 69 4.2
IL3 11.9 6 85 3.3

C-terminus 73 0 1,044 113

Table 7.4 details the underlying subtype classification results by reporting the
per-subtype Precision, Recall and MCC obtained with the SVM classifier from the
Digram data representation. The best results were obtained for subtypes MG, CS,
GB and Ta, while the results for subtypes VN, Ph and Od were less accurate. The
Od subtype, in particular, yielded very poor results. Overall, these results are, in
any case, in line with those obtained in previous research ([3], [10]) and presented
in Chapter 4 of this document.

Experiments with topological sequence segments The experiments reported in
this section concern the SVM classification models built for the different topological
segments and their combinations. Table 7.5 shows the classification results for
the segments in the extracellular domain. Table 7.6 corresponds to the 7TM,
and table 7.7, in turn, to the four intracellular regions IL1, IL2, IL3 and the
C-terminus. Table 7.8, on the other hand, summarizes the classification results
for the N-terminus combined with the 7TM region. Finally, Table 7.9 shows the
classification results for all 15 segments of the complete sequence. Each table
displays the name of the segments considered in the experiment, the size of the
feature set and the classification performance as measured by MCC and accuracy.
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Table 7.3.: Classification results for the complete sequences according to
classifier.

AA Digram
Classifier N MCC Accu Size MCC Accu

NB 20 0.625 0.703 400 0.792 0.834
RF 20 0.657 0.726 400 0.656 0.724
SVM 20 0.838 0.873 400 0.917 0.934

Table 7.4.: Subtype classification results achieved with SVM from the Digram
data transformation.

Subtype MCC Prec Recall
mG 0.946 0.975 0.949
CS 0.951 0.911 0.927
GB 1.0 0.981 0.989
VN 0.936 0.932 0.913
Ph 0.897 0.922 0.875
Od 0.810 0.675 0.722
Ta 1.0 1.0 1.0

Subtype specific classification results of topological sequence segments
In this section, we extend the previous information by reporting the per-subtype
classification results for the sequence segments (and its combinations) found to
perform best as detailed in the previous sub-section. Table 7.10 shows these sub-
type classification results for the concatenation of all 15 segments (MCC=0.914,
Accu=0.932), the N-terminus (MCC=0.901, Accu=0.92), the extracelullar seg-
ments, i.e. N-terminus +EL (MCC=0.901, Accu=0.921), the N-terminus + 7TM
(MCC=0.909, Accu =0.928), the 7TM segments (MCC=0.873, Accu=0.902) and
the intracelullar segments, i.e. IL+C-terminus (MCC=0.88, Accu=0.906). For
each dataset, the types of transformation and frequency are reported in the table.

Discussion

The results of our experiments for the sequence segments and their combinations
neatly reveal a pattern of progressive deterioration of classification performance as
we remove more parts of the sequence. It is nevertheless remarkable that the classi-
fication performance never decreases below 0.75 (neither in MCC nor in accuracy),
even for very short segments, and seldom below 0.8. These results thus reveal a
notable conservation of the subtype discriminability capabilities throughout the
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Table 7.5.: Classification results for the extracellular segments.

AA Digram
Segments N MCC Accu Size MCC Accu
N-terminus 20 0.792 0.835 400 0.901 0.920

EL1 20 0.802 0.842 390 0.786 0.831
EL2 20 0.798 0.839 386 0.825 0.861
EL3 20 0.779 0.825 327 0.769 0.816

All EL appended freq. 60 0.839 0.873 1103 0.873 0.880
All EL accum. freq. 20 0.804 0.845 398 0.844 0.875

(Nterm + EL) app. freq. 80 0.878 0.904 1502 0.889 0.912
(Nterm + EL) accum. freq. 20 0.8089 0.849 400 0.901 0.921

sequence.
For the entire sequence, the best classification was found for the Digram rep-
resentation, which yielded an MCC of 0.917 and an accuracy of 0.934, similar
performance to that of its partition into 15 segments, with an MCC of 0.914 and
accuracy of 0.932 for the Digram representation and accumulated frequencies (see
table 7.9). Note that by using the segmentation of the entire sequence, the clas-
sification results of the AA transformation were improved clearly as the entire
sequence achieved an MCC of 0.838 and accuracy of 0.873 using 20 attributes,
while the appended frequency of the 15 segments yielded an MCC of 0.905 and
accuracy of 0.925 using 300 attributes. This result validates the approach consist-
ing on the combination of complete sequence segmentation and use of appended
frequencies.
The analysis of the extracellular segments revealed that the classification perfor-
mance using the N-terminus alone or combined with the extracellular loops (see
table 7.5) decreases just over one percentage point, both in MCC and accuracy
when compared to the performance of the complete sequence and the Digram
transformation. The combination of the N-terminus with the 7TM provided simi-
lar classification performances as well (see table 7.8).
The experiments corresponding to the extracellular loops, transmembrane and
intracellular segments show less accurate classification compared to those of the
entire sequence or the N-terminus. At large, the combination of topologically-alike
segments improves the classification results obtained using single segments (with
the aforementioned exception of the N-terminus). As well note that some very
short sequence segments such as IL2, EL2, TM3 and TM4 (several of them com-
prising no more than 2.2% of the sequence) barely decrease more than 6% in clas-
sification performance when compared with the best results. This is a somewhat
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Table 7.6.: Classification results for the transmembrane segments.

AA Digram

Segments Size MCC Accu Size MCC Accu
TM1 20 0.741 0.794 321 0.778 0.823
TM2 20 0.809 0.850 298 0.806 0.847
TM3 20 0.829 0.866 290 0.846 0.878
TM4 20 0.776 0.822 320 0.822 0.860
TM5 20 0.8181 0.859 293 0.817 0.856
TM6 20 0.794 0.836 262 0.81 0.848
TM7 20 0.755 0.808 281 0.801 0.843

TM append. frequency 140 0.873 0.902 2066 0.871 0.900
TM accum. frequency 20 0.847 0.879 384 0.864 0.894

Table 7.7.: Classification results for the intracellular segments.

AA Digram

Segments N MCC Accu Size MCC Accu
IL1 20 0.777 0.825 398 0.739 0.795
IL2 20 0.815 0.853 388 0.837 0.872
IL3 20 0.817 0.857 304 0.789 0.834

C-terminus 20 0.74 0.793 400 0.753 0.805
(IL+ C-term.) append. freq. 80 0.880 0.906 1490 0.874 0.895
(IL + C-term.) accum. freq. 20 0.795 0.837 400 0.854 0.885

Table 7.8.: Classification results for the N-terminus concatenated with the 7TM
regions.

AA Digram

Segments N MCC Accu N MCC Accu
appended frequency 160 0.897 0.919 2467 0.889 0.915

accumulated frequency 20 0.830 0.866 400 0.909 0.928
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Table 7.9.: Classification results for the concatenation of all 15 segments.

AA Digram

Segments N MCC Accu N MCC Accu
appended frequency 300 0.905 0.925 5058 0.888 0.911

accumulated frequency 20 0.840 0.875 400 0.914 0.932

surprising outcome that indicates that subtype differences are deeply embedded
even in such small segments.
Regarding the type of transformation, Digram yielded, in general, the best results
with two interesting exceptions, namely for the 7TM regions and the IL + C-
terminus for the appended frequencies, for which the AA transformation yielded
better results. The comparison between the use of appended frequencies and ac-
cumulated frequencies reveals that the former achieve better results with the AA
transformation, whereas the latter perform better with Digram.
The per-subtype classification results reported in Table 7.10 are consistent with
the results obtained for the entire sequence (See table 7.4), as all datasets achieve
better results for subtypes MG, CS, GB and Ta, while subtypes Vn, Ph and Od
perform the worst.
A detailed comparison of the subtype classification results shows that the entire
sequence and the concatenation of its 15 segments provide the best performance
for subtypes GB (MCC=0.989), Vn (MCC=0.913) , Ph (MCC=0.875) and Ta
(MCC=1.0). In turn, the best results for mG were found for the entire sequence
(MCC=0.953) and N-terminus + EL (MCC=0.954). For subtype CS the best
result was found for the N-terminus (MCC=0.952), while Od performed best for
the combination of N-terminus + 7TM (MCC=0.764).
The overall good behavior of those sequences including the N-terminus is con-
sistent with the fact that this domain contains the binding sites for the endoge-
nous ligands responsible for the activation of class C GPCRs. Thus, the AAs
present in the N-terminus determine the recognition of glutamate in mG recep-
tors, GABA in GABA-B receptor, Ca2+ in CS receptor, etcetera. As a consequence,
the N-terminus conveys most of the discriminatory elements for the classification
of GPCR class C sequences. However, GPCRs and particularly their class C are
complex entities both at the structural and functional levels. GPCRs are allosteric
machines and the binding sites for the transducer G proteins are located at the
intracellular part of the receptors far away from the ligand binding sites. This
may explain the contribution of the ILs in our analysis. Moreover, the 7TM do-
main needs to be activated for G protein binding and then contributions of this
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Table 7.10.: Subtype classification results for different sequence segments and
transformation as described in the header. MCC best results over segment
choices for each subtype shown in bold.

Concaten. 15 segments N-terminus
(Digram accum. frequ.) (Digram)

Subtype Prec Recall MCC Prec Recall MCC
mG 0.947 0.982 0.953 0.962 0.951 0.943
CS 0.951 0.933 0.939 1.0 0.911 0.952
GB 1.0 0.981 0.989 1.0 0.968 0.982
VN 0.939 0.929 0.913 0.919 0.918 0.893
Ph 0.894 0.922 0.875 0.88 0.916 0.859
Od 0.853 0.688 0.722 0.751 0.725 0.712
Ta 1.0 1.0 1.0 1.0 0.967 0.982

N-terminus + EL N-terminus + 7TM
(Digram accum. frequ.) (Digram app. frequ.)

Subtype Prec Recall MCC Prec Recall MCC
mG 0.968 0.961 0.954 0.922 0.986 0.939
CS 0.980 0.889 0.928 0.933 0.889 0.906
GB 0.993 0.974 0.982 1.0 0.962 0.978
VN 0.912 0.908 0.882 0.917 0.894 0.877
Ph 0.865 0.919 0.851 0.878 0.904 0.851
Od 0.752 0.688 0.70 0.873 0.70 0.764
Ta 1.0 0.9372 0.966 1.0 0.983 0.991

Transmembrane IL + C-terminus
(AA app. frequ.) (AA app. frequ.)

Subtype Prec Recall MCC Prec Recall MCC
mG 0.926 0.986 0.94 0.953 0.975 0.953
CS 0.899 0.933 0.912 0.939 0.889 0.908
GB 1.0 0.968 0.982 0.982 0.9811 0.978
VN 0.89 0.894 0.859 0.879 0.918 0.867
Ph 0.873 0.883 0.833 0.884 0.898 0.85
Od 0.667 0.5 0.549 0.75 0.513 0.592
Ta 1.0 0.954 0.974 0.986 0.985 0.984
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structural domain for sequence classification are expected. Inasmuch as allosteric
cooperativity interactions between the 7TM and VFT domains have been also
reported [128], it is expected that segments including these domains appear in
our study. Finally, ELs are involved in 7TM domain flexibility and cooperativity
interactions, which justify their putative discriminative power.

As a whole, these results provide a complete and detailed landscape of the relative
capabilities of different sequence segments (from different GPCR domains and in
different combinations) in the task of discriminating between the seven subtypes
of class C GPCRs. This detailed landscape should help database biocurators in
their tasks.

Conclusions

The research reported in this section is based on the web-accessible and pub-
lic protein databases of the GPCRdb consortium. Biocurators of this type of
databases face the non-trivial challenge of unambiguously identifying and charac-
terizing GPCRs. In this database, receptors are characterized according to subtype
labels at different levels of organization. In previous research [12], the analysis of
the N-terminus of the extracellular domain provided some preliminary evidence of
the potential use of individual domains of complete class C GPCR sequences as
the foundation for subtype classification.

In this research, we have performed a systematic analysis of the classification per-
formance of each of the individual sequence segments in which the sequence can be
divided in each of its structural domains, as well as the performance of several of
their combinations. The experimental results revealed that none of them reached
the classification performance of the complete sequence or the concatenation of
its 15 constituent segments. However the segments of the extracellular domain,
the N-terminus in combination with the 7TM and, to some degree, the intracel-
lular domain have all performed almost as well as the complete sequence. The
identification of these most discriminative segments should be the starting point
for future work focusing on these separate regions. Such future research should
involve feature selection starting from these segments as a way to discover specific
motifs with subtype discriminative capabilities and potential functional roles.
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7.2.3. Analysis of the discrimination capabilty of segments
from the September 2016 dataset

Results

Segmentation of Structural Sequence Domains The September 2016 ver-
sion is subdivided in only four subtypes: Metabotropic Glutamate (mG) receptors,
Calcium sensing (CS), GABA-B (GB) and Taste (Ta). The analyzed data set con-
tains a total of 936 sequences from those four subtypes. We limited our analyses
to the subset of 922 sequences (approximately 98% of the total) that include infor-
mation of the complete 7-TM domain. The distribution of sequences per subtype,
both for the original dataset and for the subset comprising only sequences with
complete 7-TM structure, are shown in Table 7.11.

Table 7.11.: Number of sequences per subtype available in the original data set
and in the subset of sequences with complete 7-TM structure.

Class C subtype ] sequ. of dataset ] sequ. compl. 7-TM structure

mG 516 505
CS 103 103
GB 89 88
Ta 228 226

936 922

Complete sequences, in accordance to this catalogue of structural domains, were
again partitioned into 15 segments using the Phobius transmembrane detection
tool. Table 7.12 summarizes some general information about the lengths (in num-
ber of AAs) of these segments for the September 2016 class C dataset.

Classifier performance comparison with complete sequences As stated in Sec-
tion 7.2.1, we first used several supervised models for the classification of the com-
plete sequences in order to select the most adequate classifier. Table 7.13 shows
the classification performance for the different classifiers (best results are high-
lighted in bold). The results reveal that all three classifiers perform quite good,
but nevertheless the best classification performance was achieved by SVM, both
for the AA and Digram transformations, in comparison to RF and NB. For this
reason, SVM was used in the subsequent experiments.
Table 7.14 details the underlying subtype classification results by reporting the
per-subtype Precision, Recall and MCC obtained with the SVM classifier from
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Table 7.12.: Statistical information in reference to the length of the segments.

Segment Mean Min Max StDev

Complete Sequence 927.88 453 1992 179.19
N-terminus 545.56 133 1070 114.44

EL1 11.69 5 593 19.55
EL2 26.85 5 70 4.95
EL3 7.86 5 25 5.53
TM1 24.67 18 28 1.75
TM2 21.72 18 31 1.6
TM3 21.86 17 27 2.38
TM4 23.78 19 29 2.76
TM5 22.16 18 31 2.06
TM6 22.35 17 28 1.76
TM7 22.92 18 28 2.1
IL1 13.7 6 284 21,37
IL2 19.8 11 56 3,44
IL3 11.94 11 69 3.59

C-terminus 130.48 0 610 140.21

the Digram data representation. For all four subtypes very accurate classification
results are achieved.

Experiments with topological sequence segments The experiments reported in
this section concern the SVM classification models built for the different topological
segments and their combinations. Table 7.15 shows the classification results for
the segments in the extracellular domain. Table 7.16 correspond to the 7TM,
and table 7.17, in turn, to the four intracellular regions IL1, IL2, IL3 and the
C-terminus. Table 7.18, on the other hand, summarizes the classification results
for the N-terminus combined with the 7TM region. Finally, table 7.19 shows the
classification results for all 15 segments of the complete sequence. Each table
displays the name of the segments considered in the experiment, the size of the
feature set and the classification performance as measured by MCC and accuracy.
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Table 7.13.: Classification results for the complete sequences according to
classifier.

AA Digram

Classifier N MCC Accu Size MCC Accu
NB 20 0.933 0.959 400 0.983 0.989
RF 20 0.945 0.967 400 0.923 0.948
SVM 20 0.980 0.988 400 0.994 0.996

Table 7.14.: Subtype classification results achieved with SVM from the Digram
data transformation.

Subtype MCC Prec Recall

mG 0.996 0.998 0.998
CS 0.984 0.981 0.991
GB 0.994 1.0 0.989
Ta 0.994 0.996 0.996

Discussion

The experimental results show very accurate classification results for all segments.
Only a minor deterioration of classification happens on account of the elimination
of sequence segments. Nevertheless it is remarkable that the performance never
drops below 0.941 (measured as MCC), even for very small segments, such as the
intracellular loops or transmembrane regions, what implies a noticeable conserva-
tion of the discrimination capability for all sequence segments.
The best classification in our experiments using the entire sequences was found
for the Digram representation with an accuracy of 0.996 and MCC of 0.994 (see
table 7.13). The combination of the intracellular loops and the C-terminus even
improves this result slightly with an accuracy of 0.997 and MCC of 0.995. Also
the combination of the 7TM regions or the combination of 7TM segments and the
N-terminus achieve nearly the same result with an accuracy of 0.996 and MCC of
0.993 (see table 7.16 and 7.18). As well the concatenation of all 15 segments yield
very close classification results with an accuracy of 0.996 and MCC of 0.994 (see
table 7.19).
The N-terminus by itself, or in combination with the extracellular loops (see Table
7.15), are less accurate than those of the entire sequence for both the AA and
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Table 7.15.: Classification results for the extracellular segments.

AA Digram

Segments N MCC Accu Size MCC Accu
N-terminus 20 0.98 0.988 400 0.986 0.991

EL1 20 0.941 0.963 363 0.956 0.971
EL2 20 0.961 0.975 373 0.964 0.975
EL3 19 0.966 0.978 223 0.962 0.976

All EL appended freq. 59 0.976 0.985 959 0.973 0.983
All EL accum. freq. 20 0.974 0.983 395 0.972 0.982

(Nterm + EL) app. freq. 79 0.986 0.991 1359 0.984 0.989
(Nterm + EL) accum. freq. 20 0.968 0.980 400 0.976 0.984

Digram transformation as they yield an accuracy of 0.991 and MCC of 0.986.
Typically, the combination of topologically-alike segments improves the classifica-
tion results of single segments. It is noteworthy that even very small segments such
as EL1, TM1 and TM4 (some of them including on average no more than 2.2% of
the AAs of the sequence) just decrease at most 5% in classification performance
as compared with the best results.

Conclusions

Preliminary research hinted the potential use of separated domains of complete
class C GPCR sequences as the basis for subtype classification. In this section,
we have reported the results of a systematic analysis of the performance of each
of the individual sequence segments and some of their combinations for the 2016
version dataset. The results are consistent with those reported for the former 2011
version dataset (see section 7.2.2) as the best classification results were found for
the complete sequence. Nevertheless the extracellular domain, the combination of
the N-terminus and 7TM and, to some extent, the intracellular domain have all
performed almost as well as the entire sequence. This, by itself, allows us to focus
our work on the most discriminative segments.
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Table 7.16.: Classification results for the transmembrane segments.

AA Digram

Segments Size MCC Accu Size MCC Accu
TM1 20 0.947 0.965 236 0.962 0.975
TM2 20 0.969 0.979 216 0.986 0.99
TM3 20 0.993 0.995 237 0.987 0.991
TM4 20 0.972 0.982 254 0.954 0.972
TM5 20 0.985 0.991 221 0.985 0.99
TM6 20 0.978 0.985 185 0.985 0.99
TM7 20 0.988 0.992 222 0.987 0.992

TM append. frequency 140 0.993 0.996 1571 0.991 0.993
TM accum. frequency 20 0.979 0.987 344 0.991 0.993

Table 7.17.: Classification results for the intracellular segments.

AA Digram

Segments N MCC Accu Size MCC Accu
IL1 20 0.964 0.977 392 0.962 0.975
IL2 20 0.981 0.987 334 0.982 0.988
IL3 20 0.987 0.991 218 0.983 0.988

C-terminus 20 0.949 0.969 398 0.981 0.988
(IL+ C-term.) append. freq. 80 0.995 0.997 1342 0.985 0.989
(IL + C-term.) accum. freq. 20 0.984 0.99 400 0.988 0.992

Table 7.18.: Classification results for the N-terminus concatenated with the 7TM
regions.

AA Digram

Segments N MCC Accu N MCC Accu
appended frequency 160 0.993 0.996 1971 0.992 0.995

accumulated frequency 20 0.986 0.991 400 0.992 0.995
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Table 7.19.: Classification results for the concatenation of all 15 segments.

AA Digram

Segments N MCC Accu N MCC Accu
appended frequency 299 0.994 0.996 4272 0.991 0.993

accumulated frequency 20 0.986 0.991 400 0.992 0.995
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8. Discovering class C GPCR motifs

8.1. Introduction

In this chapter, we build on the research reported in previous ones and describe
the use of FS techniques to build SVM-based classification models from selected
receptor subsequences described as n-grams. We show that this approach to clas-
sification is useful for identifying class C GPCR subtype specific motifs. The
n-gram transformation of the GPCR sequences is likely to yield many features
that are not relevant in terms of class C subtype discrimination. These irrelevant
n-gram frequencies may have a negative impact (or at best a negligible one) in
this classification process and, therefore, we aim to investigate whether a subset
of relevant frequencies retains the subtype classification capabilities. Indirectly,
we also want to investigate the selected n-grams for hitherto unknown signature
motifs. One criterion of significance is their statistical or informative performance,
which is related to biological significance [129]. It has been suggested that motif
over-representation maybe due to evolutionary preservation of sequence segments,
signalling their structural and functional roles [15]. This should make n-gram
frequencies informative measures in terms of functionality exploration.

We present several experiments in which different dimensionality reduction meth-
ods are applied to the class C GPCR dataset. Several FS approaches are used:
sequential forward feature selection (SFFS) with an SVM-classifier and filter meth-
ods using univariant metrics such as t-test or χ2 measures. Moreover, we conduct
experiments using different classification models: the one-vs-one approach to fil-
ter out subtype discriminating pattern, i.e. those patterns which best distinguish
between subtypes, and the one-vs-all approach to detect subtype specific pattern,
i.e. those patterns which are most characteristic for a subtype. Our experiments
also consider the complete receptor sequence or specific receptor segments, such
as the N-terminus domain, for example.
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8.2. Feature selection used for the identification of
subtype-discriminating n-grams

8.2.1. Experiments on the complete sequences

Experimental settings

In this experiment we analyze the complete receptor sequences from the 2011
version class C GPCR dataset. We use different FS techniques to build SVM-
based classification models from n-gram frequence presentations in order to find
subtype discriminating n-grams. First, we built classification models with n-grams
for each of the three alphabets (AA, SEZ, DAV) for n-grams with lengths up to
three.

To improve the quality and interpretability of the classification models, different
dimensionality reduction methods that discard irrelevant and redundant features
and retain a subset of highly discriminative features are used. In this experiments
two FS approaches are applieded, namely a filter method computing two-sample
t-tests among the seven class C GPCR subtypes using a one-vs-one approach and
a SFFS approach with a SVM-classifier:

◦ A two-sample t-test was used to evaluate the discriminating power of each
feature as a filtering approach. This univariate statistical test analyzes
whether there are foundations to consider two independent samples as com-
ing from populations (normal distributions) with unequal means by analyz-
ing the values of the given feature. In our case, we used t-tests with 0.01
confidence. If the t-test suggested that this hypothesis was true (i.e. the
null hypothesis was rejected), the feature was considered to significantly dis-
tinguish between the two different subtypes of class C GPCRs. As we face
a multi-class classification problem, the t-test results were examined for the
21 feasible two-class combinations of the 7 class C subtypes. We decided to
calculate the two-sample t-test values at this detail because the multi-class
LIBSVM implementation internally performs a comparison of the data be-
tween each class (one-vs-one implementation). Therefore, the t-test exactly
evaluates the data considered in each binary classifier, making the ranking
of the features possible according to their overall significance (i.e., in how
many binary classifiers a feature is significant). A more robust estimate of
the proportion of significant features by means of the q-value approach [92]
is not applied, as the t-test selection constitutes a coarse feature filter as first
step of the FS approach.
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◦ A SFFS algorithm was used to find the reduced set of features that best dis-
criminated the data subtypes. This kind of algorithm is a so called wrapper
method, where the classification model search is performed within the subset
feature search. This algorithm starts from an empty candidate feature set
and adds, in each iteration, the feature which most improves the accuracy
(i.e., that which minimizes the misclassification rate). The algorithm uses a
SVM classifier in which the accuracy is evaluated using a 5-CV to test the
candidate feature set. The algorithm stops when the addition of a further
feature does not increase the accuracy over a threshold set at 1e−6.

◦ A combination of a t-test filter in a first step followed subsequently by an
SFFS approach.

The classification performance of the results is measured by means of the accuracy
and MCC for multiclass classification. The subtype results are evaluated by means
of the MCC, precision and recall for binary classification. All experiments are
conducted using 5-CV with stratified folds.

Results

From the comparison of different supervised classifiers for the analysis of the n-
gram transformed datasets (See Table 4.4 reported in section 4.1.3 ), it has been
shown that SVM outperforms the rest of classifiers and, therefore, is the most
adequate choice to use with the n-gram frequency representations in subsequent
experiments.

Table 8.1 again summarizes the classification results obtained only with SVM
classifiers as well as the feature size of the different n-gram representations. Note
that each element in each alphabet is itself considered as a 1-gram, regardless the
number of constituent AAs. Obviously, the size of the n-gram feature set increases
significantly with the size of the alphabet. Results are shown for 1-grams, 2-grams,
and the combination of both (1,2-gram).
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Table 8.1.: N -gram classification results for the different alphabets without FS,
where N is the size of a feature set and Accu stands for classification accuracy
(ratio of correctly classified sequences to all sequences).

AA SEZ DAV
N-gram N Accu MCC N Accu MCC N Accu MCC
1-gram 20 0.88 0.84 11 0.815 0.763 9 0.791 0.736
2-gram 400 0.932 0.914 121 0.923 0.903 81 0.911 0.888
1,2-gram 420 0.934 0.917 132 0.925 0.906 90 0.919 0.898

The combination of 1 and 2-grams of the AA alphabet reached the best classifi-
cation results with an accuracy of 0.934 and MCC of 0.917. The construction of
an SVM model from 3-grams for all three alphabets was unsuccessful, probably
due to the existence of a large set of irrelevant features. This was the primary
reason behind the decision of applying FS as part of the classification process.
The dimensionality reduction was implemented in this experiment using two dif-
ferent FS approaches: SFFS with an SVM-classifier and a filter method computing
two-sample t-tests among the class C GPCR subtypes.

Sequential Forward Feature Selection Table 8.2 shows the classification re-
sults when SFFS was performed on each n-gram dataset. For each alphabet (AA,
SEZ and DAV), this table shows a comparison between the original size of the
n-grams (N) and the number of selected features found by the algorithm, as well
as the corresponding classification accuracy.

The experiments show that the FS algorithm was successful, with only one ex-
ception: in the case of the 1,2,3-gram feature set (combination of all n-grams) of
the AA-alphabet: due to the large number of features, the computational cost of
the SFFS algorithm is too high. In fact, this was the result that prompted us to
investigate a classifier-independent filter FS method that could provide us with a
first rough selection of features to be used as a preliminary step to a subsequent
process of forward FS.
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Table 8.2.: N -gram classification results using SFFS, for the three different
alphabets

AA SEZ DAV
N-gram N FS Accu N FS Accu N FS Accu
1-gram 20 17 0.88 11 - - 9 - -
2-gram 400 48 0.93 121 25 0.906 81 31 0.9
1,2-gram 420 54 0.926 132 37 0.916 90 42 0.92
1,2,3-gram 8420 - - 1131 34 0.925 818 34 0.923

t-Test Filtering In order to handle the 1,2,3-gram feature sets, which, due to
their size, were either impossible or very difficult to use in the previous methods,
we decided to use the t-test filtering method to establish a ranking of the features.
Table 8.3 shows this ranking according to the overall significance of the attributes.
This means that, for each alphabet, we counted how many features were significant
(column N) in at least 20,19,18, etc. two-class tests. The Accu values shown for
each subset are the classification accuracies of a SVM-classifier built on each feature
set.

These results provide evidence of the usefulness of this simple ranking, as we
were able to find subsets that outperform the classification accuracies obtained
with the previous methods. For example, the 1,2,3-gram representation of the
AA alphabet achieves an accuracy of 0.943 with 585 attributes, whereas the 2-
gram representation achieves a 0.93. In the case of the SEZ alphabet, an accuracy
of 0.943 was obtained with this filtered 1,2,3-gram representation, as compared
to 0.926 with the 2-gram representation. Using the DAV alphabet, we found a
subset with 238 features that yielded a 0.933 accuracy, whereas the 1,2,3-gram
representation with SFFS yielded a 0.92.
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Table 8.3.: Classification results with t-test-based subset selection, with subsets
of features that are significant in a given number of t-tests, from 20 down to 12

AA SEZ DAV
SIGNIF N Accu N Accu N Accu

20 1 0.37 2 0.5 0 -
19 15 0.88 8 0.77 10 0.83
18 49 0.931 39 0.9 23 0.88
17 105 0.933 79 0.922 58 0.91
16 212 0.937 149 0.93 99 0.92
15 357 0.936 253 0.936 164 0.926
14 585 0.943 386 0.935 238 0.933
13 909 0.937 505 0.943 325 0.93
12 1284 0.942 633 0.94 429 0.927

t-Test Filtering and Sequential Forward Feature Selection The filtering
method described in the previous section found feature subsets with high clas-
sification accuracy. Nevertheless, given their high dimensionality, we decided to
apply the SFFS algorithm to these subsets as a subsequent dimensionality reduc-
tion step. Table 8.4 shows the results of applying SFFS starting from the n-gram
subset reported in the last row of Table 8.3 (features relevant in at least 12 clas-
sifiers), for each alphabet. The initial number of features (FEAT), the number
of selected features (N) and the corresponding classification accuracies are shown.
Forward selection was quite successful at reducing the number of attributes while
retaining an accuracy of approximately 0.94 in all three cases.

Table 8.4.: Classification results with FS on top of t-test-based selection for a
subset solution in which features are significant in at least 12 of the 21 t-tests.

AA SEZ DAV
FEAT N Accu FEAT N Accu FEAT N Accu
1284 49 0.939 633 59 0.939 429 60 0.94
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Discussion

Classification from n-grams with and without feature selection The results
reported in Table 8.3 provide clear evidence of the usefulness of the t-test-based
simple feature ranking method, as parsimonious feature subsets that outperform
the classification accuracies obtained without FS or with forward selection on its
own were found. For example, the 1,2,3-gram representation of the AA alphabet
achieves an accuracy of 0.943 with 585 attributes, improving on the 0.930 accuracy
obtained directly with the 2-gram representation using only forward selection (as
reported in Table 8.2). In the case of the SEZ alphabet, the same 0.943 accuracy
was obtained with this filtered 1,2,3-gram representation with 505 features; this
has again to be compared to the 0.926 obtained with the 2-gram representation
(Table 8.1) and the 0.925 obtained with the 1,2,3-gram representation (Table 8.2).
Using the DAV alphabet, we found a subset with 238 features that yielded a 0.933
accuracy, whereas the 1,2,3-gram representation with forward selection yielded a
0.920 (Table 8.2).

Nevertheless, the filter selection method on its own still renders rather high-
dimensional optimal solutions and the slight classification improvement it gen-
erates might not be enough to counter-balance the complexity of the solution. In
fact, the most interesting results, as reported in Table 8.4, come from the applica-
tion of the classifier-dependent forward selection to the results of the filter method.
Results show that this approach was quite successful at reducing the number of
attributes by as much as 96% while retaining an accuracy in the area of 0.94 for
all three alphabets.

Overall, the experimental results reported in the previous section support the
interest of using FS on the analyzed n-gram data: data dimensionality has been
notably reduced without compromising classification quality. Forward selection
has been shown to be an effective method, although it is computationally too
costly when the size of the feature set is too high from the onset. In this situation,
a fast univariate t-test-based filtering method becomes an appropriate solution
to reduce the feature candidate set as a preprocessing step prior to the forward
selection algorithm.

To the best of the authors’ knowledge, the reported classification results are the
best to date using the class C GPCRDB database, comparing favourably to those in
[3, 4, 71]. These results correspond to the reduced SEZ dataset with 505 attributes
(See Table 8.3) and a SVM model with parameter C=2, γ= 2−10 achieving a mean
accuracy of 0.943 and a mean MCC of 0.93. Table 8.5 shows the corresponding
subtype classification results, i.e. the precision, recall and MCC of each binary
classification.
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Table 8.5.: Subtype classification result obtained with reduced SEZ dataset with
505 attributes

Subtype MCC Precision Recall

mG 0.962 0.956 0.986
CS 0.924 0.978 0.88
GB 0.997 1.0 0.995
VN 0.910 0.923 0.939
Ph 0.902 0.931 0.924
Od 0.808 0.865 0.782
Ta 0.983 1.000 1.0

Qualifying feature selection from t-test values An analysis of the t-test val-
ues (hypothesis value and p-value) allows measuring to what degree an individual
feature discriminates between two classes. Test values are first analyzed to detect
the 3-grams with the best discrimination capabilities. We subsequently analyze if
these 3-grams may be part of larger n-grams which may also be discriminative.
The close scrutiny of the test values of the reduced feature set of the AA alpha-
bet (See table 8.4: 49 features, including 33 3-grams, 13 2-grams and 3 1-grams)
revealed that the 3-grams CSL, ITF and FSM are the most significantly discrimi-
native.
CSL, in particular, is the most significant one according to the t-test values of 20
two-sample tests. This feature was only found not to be significant for the mG vs.
Ph discrimination.
The ITF n-gram is deemed to be significant in 18 tests and an analysis of longer
n-grams (results not reported) showed that the the ITFS 4-gram is specially dis-
criminating, with a significant impact on the discrimination of 19 binary classifiers
(i.e., all but mG vs. Ta and CS vs. Ta). Furthermore, the ITFSM 5-gram is still
highly discriminative, showing significant values for 17 tests.
Another relevant 3-gram is FSM, which is significant for 18 two-class tests. An
analysis of longer n-grams showed that the FSML 4-gram is highly discriminative
(in 18 tests: all but mG vs. GB, mG vs. Ta and GB vs. Ta). The FSMLI 5-gram
was also found to be significant for 15 tests.
Figure 8.2.1 shows the mean values of n-gram features CSL, ITFS, and FSML for
the 7 class C GPCR subtypes.
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Figure 8.2.1.: Mean values of CSL (top), FSML (center) and ITFS (bottom)
N -gram features for the 7 class C GPCR subfamilies.
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Beyond mean values, a statistical analysis of the most discriminative 3-grams,
CLS, ITF and FSM, revealed the existence of extreme values in some subfamily
distributions, which would require a deeper analysis: Figures 8.2.2, 8.2.3 and
8.2.4 display box plots of the corresponding n-grams. The box describes the range
of values between the first and the third quartiles (Q1 and Q3) with the median
(Q2) as the horizontal line inside the box. The crosses are data considered to be
outliers, which, in this case, are points which fall below Q1-1.5(IQR) or above
Q3+1.5(IQR), where IQR is the interquartile range described by the box. The
interval in which the data are considered not to be outliers is represented in the
plot by the dashed lines stemming from the box.
The n-gram CSL (Figure 8.2.2), which was found to be discriminant in 20 two-
class tests, has its maximum values for classes Od, VN, Ph and mG, whereas this
n-gram is mostly non-existent in classes CS and GB. The statistical analysis of
the distribution of this n-gram confirms that CSL is suitable for the description of
nearly all subfamilies (except GB) as only a relative small number of outlier values
exist for all of them. In subfamily GB, this n-gram is mostly non-existent, but 17%
of the sequences of this subclass appear as outliers (corresponding to sequences
containing this n-gram). In consequence, subfamily GB is not well represented by
n-gram CSL as its distribution is not uniform. A superficial analysis of the location
of the n-grams in the sequence shows that in class Od, this n-gram appears near the
middle of the sequences as well as near to their end. In the case of Ta, it appears
often near the beginning, while in VN it appears in all positions (beginning, middle
and end).
The n-gram ITF (Figure 8.2.3) was found to be discriminant in 18 tests and
has maximum values for the subfamilies Od, Ph, VN and CS. The data of the
corresponding box plot confirms that this n-gram is suitable for the discrimination
of these subfamilies as the existence of extreme values is quite low in these cases.
For GB and Ta, this n-gram is mostly non-existent as both the median and the
IQR are zero and a low number of sequences have a positive frequency of this n-
gram. Despite the fact that mG also has a median and IQR with value zero, mG
has to be considered a special case as its distribution has approx. 10% of outliers,
which correspond to sequences containing this n-gram. Regarding the subsequence
specific location of the ITF n-gram, it appears in any position (beginning, middle
and end) in class Od, while in Ph and VN, it is predominantly located at the end,
and in CS it is found near the middle section.
Finally, n-gram FSM (Figure 8.2.4), which was deemed significant in 18 tests,
shows maximum values for subfamilies Od, VN, Ph and CS and is mostly non-
existent in subfamilies mG, GB and Ta. Nevertheless, the box plot representation
suggests that this n-gram describes properly Od and CS as subclasses with pres-
ence of this n-gram and GB and Ta as subfamilies not containing this n-gram.
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Figure 8.2.2.: Box plot of the CSL n-gram

Subfamilies mG, VN and Ph show a higher number of outliers, namely 5% (mG),
14% (VN) and 13% (Ph), which indicates that the appearance of FSM in these
subfamilies is not uniform. Regarding the location of the n-gram, FSM appears
in the class Od at the middle and at the end of the sequence. In the case of CS,
it appears at the middle; in Vn, it appears at the end, and in Ph, both at the end
and beginning.
Overall, these n-grams might be the basis for an ulterior investigation of specific
motifs in class C GPCR sequences that might provide clues about ligand binding
processes.

Conclusions

This experiments have addressed the problem of class C GPCR subtype discrimi-
nation according to a novel methodology that transforms the sequences according
to the frequency of occurrence of the low level n-grams of different AA alphabets.
These sequence transformations generate high-dimensional data sets that are likely
to include plenty of irrelevant information. For this reason, dimensionality reduc-
tion through combination of a two-sample t-test and forward FS was implemented
as part of classification with SVMs.
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Figure 8.2.3.: Box plot of the ITF n-gram

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

mG CS GB VN Ph Od Ta

Figure 8.2.4.: Box plot of the FSM n-gram

102



Reduced sets of n-grams that yielded similar classification accuracies were found
for each of the three transformation alphabets. These results are the best reported
to date using the class C data from the 2011 version of the GPCRDB database.
The analysis of the features of the AA alphabet using the values obtained in the
t-tests has provided insight about the n-grams that are best at discriminating
between the GPCR subfamilies. This might be considered as preliminary evidence
of the existence of subfamily-specific motifs that might reveal information about
ligand binding processes. For this reason, the proposed method will be extended
in future work to the analysis of larger n-grams. From this analysis, we expect to
find larger n-grams that might actually be considered as potentially true subtype-
specific motifs.
The analysis of the statistical distributions of the attribute values provided further
insight about the nature of the analyzed data. Although the highly discriminative
n-grams contributed to achieve high classification accuracy, the detected n-grams
were not equally suitable to explain the data of all subfamilies. The n-grams
were only appropriate to describe the distribution of the values of given subsets
of subfamilies. This may be the result of the heterogeneity of some of these sub-
families. As explained in section 2.4.1, some subfamilies group nodes which are
descendants from evolutionary unrelated proteins leading to separate groups. On
the other hand, the data also contains overlapping data as some subclasses con-
tain sequences which are descendants from a common ancestor. This might come
to explain why, in this multi-class classification problem, the feature selection al-
gorithm required to reach a certain number of attributes (10-30) to achieve high
classification accuracies. In future work, we will address this issue by taking into
account the possible subdivisions of the analyzed subfamilies.
The study of the location of n-grams in the sequence revealed that they do not
appear at the same locations in different subfamilies. This discovery encourages
us to apply the proposed feature selection method to separated sequence segments
in order to compare n-grams specific to their subsequence specific location.

8.2.2. Experiments on the N-terminus

Experimental settings

In this experiment we analyze the N-terminus segment of the sequences of the
2011 version dataset. We base the settings of the experiment on the findings of
the previous experiments: First, we focus on the N-terminus segment, which re-
sulted nearly as discriminative as the complete sequence according to the sytematic
analysis of the discrimination power of the different segments of class C GPCRs
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[8] (See chapter 7). Then, we use a two step FS approach, where a t-test filter
and a SFFS approach are combined, which was tested in [11] and yielded the best
results for the analysis on the complete sequences.

Regarding the data transformations of the primary sequences, we use very simi-
lar n-gram representations as in the previous experiment: The n-gram frequency
representations are built from different alphabets, the AA alphabet and SEZ al-
phabet. The latter, in previous research [11], yielded a reduced dataset with very
accurate classification results.

A difference in this experiment with respect to previous research is that the con-
cept of n-gram is extended: The n-grams are, in general, contiguous specific AA
subsequences of length n. For the experiments reported in the following sections,
we consider a combination of contiguous and rigid gap motifs or n-grams of lengths
three up to five AAs. The latter are rigid in the sense that there is a fixed number
of gaps in between the n-gram AAs [15].

The experiments on the N-terminus comprise the following steps:

1. Data preprocessing: The primary AA sequences of the N-terminus are trans-
formed both for the AA and SEZ alphabet to the AA and Digram frequencies,
but also contiguous and rigid gap n-gram frequencies of lengths three to five
are derived.

2. Comparative classification of the N-terminal domain: The classification per-
formance by SVMs are compared between the N-terminus and the complete
sequence using the AA and Digram composition for the AA and SEZ alpha-
bet.

3. t-Test Filtering and SFFS: Given a feature space built by contiguous and
rigid gap n-grams (of length three to five) the two-step dimensionality re-
duction approach is applied with the same experimental settings as those of
the previous experiment on the complete sequence (See section 8.2.1).

Experimental results

Comparative classification of the N-terminal domain We built our SVM-based
classification models using the n-grams from the N-terminus for each of the two
alphabets under consideration: the complete AA and SEZ alphabet. In previous
research [11], we analyzed the AA frequencies (1-grams) and digrams from the
complete sequence. For comparative purposes, Table 8.6 shows the classification
results, as measured by accuracy, for each alphabet using n-grams of length 1 and
2, for both approaches.
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Table 8.6.: N-gram comparative classification results for the N-terminus and the
complete sequence, where N is the size of a feature set and ACC stands for
classification accuracy (ratio of correctly classified sequences).

N-terminus Complete sequence
AA SEZ AA SEZ

N-GRAM N Accu N Accu N Accu N Accu
1-gram 20 0.84 11 0.78 20 0.87 11 0.82
2-gram 400 0.92 121 0.91 400 0.93 121 0.93

t-Test Filtering and Sequential Forward Feature Selection Supported by the
previous results, we then proceeded to apply the proposed two-step feature FS with
SVM-based classification to the combination of contiguous and rigid gap motifs (n-
grams) of lengths three to five. Their very high dimensionality makes them difficult
to use with SVMs and, therefore, t-test filtering was used to generate a first crude
ranking of features.
Table 8.7 shows this ranking according to the overall significance of the attributes.
This means that, for each alphabet, we counted how many features were significant
(column N) in at least 20,19,18,17, etc., subtype-vs-subtype tests (bear in mind
that there are 21 possible combinations of the 7 class C subtypes). The Accu values
shown for each subset are the classification accuracies of the SVM built from each
feature set. For comparison, we also show, besides the results obtained with rigid
gap motifs for the N-terminus, the corresponding results from previous research
[11, 10] in which continuous (n-grams) of lengths one to three were calculated from
the complete sequence.
The filtering method used in this experiment found feature subsets with high
classification accuracy. Nevertheless, their dimensionality is still quite high, which
is the reason we applied the more nuanced second step of dimensionality reduction
consisting on SVM-based SFFS. Table 8.8 shows, for each alphabet, the results
of applying this method starting from the n-gram subset that is significant in 16
subtype-vs-subtype problems, as reported in Table 8.7. The initial number of
features (FEAT), the final number of selected features (N) and the corresponding
classification accuracies are displayed.

Discussion

From Table 8.6, it seems clear that the classification analysis using only the N-
Terminus almost completely retains the accuracies obtained using the complete
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Table 8.7.: N-gram comparative classification results after t-test, where N is the
size of a feature set and ACC stands for classification accuracy (ratio of correctly
classified sequences).

N-terminus Complete Sequence
AA SEZ AA SEZ

SIGNIF N Accu N Accu N Accu N Accu
20 - - - - 1 0.37 2 0.5
19 4 0.55 11 0.76 15 0.88 8 0.77
18 25 0.87 42 0.88 49 0.93 39 0.9
17 97 0.92 133 0.915 105 0.93 79 0.92
16 268 0.92 331 0.92 212 0.94 149 0.93
15 600 0.93 649 0.92 357 0.94 253 0.94
14 1187 0.93 1185 0.92 585 0.94 386 0.93

Table 8.8.: Classification results for the AA and SEZ alphabets, using SFFS
starting from the first stage, t-test-based selection that is significant in 16
subtype-vs-subtype t-tests.

AA SEZ
FEAT N ACC FEAT N ACC
268 45 0.91 331 43 0.90

sequences, specially for the digram representation. This is consistent with the
fact that the VFT, included in the N-terminus, contains the orthosteric binding
site that, because it differentiates between different endogenous ligands, should
also help to differentiate between the different class C subtypes. From a practi-
cal viewpoint, this result potentially simplifies the search for signature motifs by
restricting it to the extracellular domain, while making the analysis more compu-
tationally tractable.

We are, in any case, interested in the analysis of longer n-grams. The classification
results for n-grams of lengths between three and five, reported in Table 8.7, provide
evidence of the usefulness of this simple ranking approach based on filtering: the
n-gram representation of the AA alphabet retains an accuracy of 0.92 with 268
attributes, while the n-gram representation of the SEZ alphabet achieves the same
accuracy with 331.
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The subsequent second-step, SVM-based FS process, starting from the optimal
t-test selection was quite successful at reducing the number of attributes, while
maintaining an accuracy of approximately 0.91 in the case of the AA alphabet for
45 features (a 83% reduction of the dimensionality) and a very reasonable 0.90 in
the case of SEZ for 43 features (a 87% reduction), as seen in Table 8.8. In the case
of the AA alphabet, the algorithm selects 6 contiguous and 39 rigid gap n-grams.
For the SEZ alphabet, the 43 n-grams include 12 contiguous and 31 rigid gap ones.
Tables 8.9 and 8.10 lists all these n-grams in the order they were selected by the
SFFS procedure.
This list should be the starting point for proteomics experts to investigate the
involvement of specific n-grams in structural and functional roles of the receptor.
For class C GPCRS, this entails investigating motifs potentially related to the
orthosteric site at the VFT, that is, the binding site of a ligand. The standing
hypothesis for our study is that the n-grams shown to have the ability to discrim-
inate between class C subtypes might be related to these binding sites, because
the latter are meant to be subtype-specific in as much as each subtype binds to
different ligands.
Note that we have not only provided a selected list of n-grams with the ability
to discriminate the most between class C GPCR subtypes, but also an explicit
ranking of relevance for these n-grams that experts can resort to. For obvious space
limitations, we only show in some detail the three n-grams from each alphabet at
the top of this ranking.
In the case of the AA alphabet, we consider the rigid gap n-grams WXW (which is
significant in 18 t-tests) and PXXFR (significant in 16 t-tests) and the contiguous
YGR (significant in 17 t-tests). Figure 8.2.5 shows the corresponding relative
frequencies per subtype as boxplot diagrams.
Figure 8.2.6 shows the corresponding boxplots for the three most discriminant n-
grams from the SEZ alphabet. They are WXXW, G[DE]X[RKH] and [ST]XX[QN]ST,
all of which are significant in 16 tests.
The AA n-grams discrimination capabilities seem to be mainly based on their
existence, or lack of it, in sequences of different subtypes. This is consistent with
the restrictive idea that a signature motif should be characterized as one that
matches all the sequences of a given family and no sequence outside this family
[15]. WXW seems to be mostly absent in two of the main subtypes, namely mG
and GB, whereas PXXFR appearance seems mostly restricted to GB and Ph, and
YGR restricted to Ta. Note also that the grouping of some frequency values for
some subtypes beyond the main quartiles of the boxplots is a hint to the existence
of grouping structure within subtypes. For instance, YGR seems to be present
with very specific frequencies not only in Ta, but also in small subgroups of mG
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Table 8.9.: Lists of n-grams, from the AA alphabet, (ranked by relevance accord-
ing to the sequential forward feature selection procedure for SVM classifiers. For
each n-gram, the ranking order (]), the symbolic subsequence(see Table 3.3.2),
where X is the wildcard residue in rigid gap n-grams, and the number of bi-
nary classifiers in which the n-gram was found to be significantly discriminant
(SIGN), are displayed.

] n-gram SIGN ] n-gram SIGN
1 WXW 18 24 YXXXY 16
2 PXXFR 16 25 CXEXC 16
3 YGR 17 26 VXXLL 16
4 WXWXG 17 27 SNXXD 16
5 CIA 16 28 SXKXQ 16
6 YXI 16 29 CXDG 17
7 AXXL 16 30 IXR 17
8 TGXE 19 31 WXXXL 16
9 GXXG 16 32 AWXXS 16
10 GEXXN 17 33 AXXSS 16
11 DCXXG 16 34 PGXXK 16
12 FPXH 16 35 GXRK 16
13 PNXXL 18 36 PNXT 16
14 WXL 17 37 VXCXD 16
15 QXMXF 16 38 GXXY 19
16 CXG 17 39 DCLP 16
17 IPG 16 40 GXCXA 16
18 HXXF 17 41 IXWH 16
19 CXXGT 17 42 CXXGT 17
20 YXKXG 17 43 CXAXS 16
21 DYG 16 44 YXD 16
22 PXIXY 16 45 VVFS 16
23 WXXV 16
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Table 8.10.: Lists of n-grams, from the SEZ alphabet, ranked by relevance ac-
cording to the sequential forward feature selection procedure for SVM classifiers.
For each n-gram, the ranking order (]), the symbolic subsequence (see Table
3.4), where X is the wildcard residue in rigid gap n-grams, and the number of
binary classifiers in which the n-gram was found to be significantly discriminant
(SIGN), are displayed.

] n-gram SIGN ] n-gram SIGN
1 WXXW 16 23 [IVLM]XW 16
2 G[DE]X[RKH] 16 24 AXXX[ST] 16
3 [ST]XX[QN][ST] 16 25 C[RKH]XG 17
4 GXCC 16 26 [IVLM][IVLM]XW 16
5 CX[IVLM] 16 27 CXAX[RKH] 16
6 [QN]XWG 16 28 [QN]XGX[QN] 16
7 [ST][QN]A[RKH][IVLM] 17 29 [IVLM]XC[QN] 16
8 W[QN]X[QN] 18 30 W[ST]XX[IVLM] 16
9 [ST][QN][RKH][ST] 16 31 WX[RKH]W 16
10 PPX[ST] 17 32 W[QN]P 16
11 W[IVLM][QN][RKH][DE] 16 33 [DE]CXXC 17
12 [IVLM][IVLM][IVLM][ST]W 17 34 [QN]CC 16
13 [QN]X[QN]XW 16 35 [ST]XWW 16
14 [QN]GW[QN] 16 36 [ST]X[ST]X[QN] 16
15 [QN]X[IVLM]XC 16 37 [QN][QN]XX[ST] 16
16 [IVLM]GXXC 16 38 GXC[RKH] 16
17 [ST][QN]W[QN] 16 39 W[RKH]X[IVLM] 16
18 [IVLM]X[ST]XC 16 40 [QN][RKH][ST][RKH][IVLM] 16
19 [RKH]WX[IVLM] 19 41 [ST]X[RKH][ST] 16
20 [QN][ST]W 16 42 [RKH]XGXA 16
21 [ST][DE][ST] 16 43 [QN]XWX[ST] 16
22 PX[DE][ST] 16
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Figure 8.2.5.: Frequencies boxplots of the three n-grams of the AA alphabet
ranked as the most discriminative in the classification of the 7 class C GPCR
subtypes.
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Figure 8.2.6.: Frequencies boxplots of the three n-grams of the SEZ alphabet
ranked as the most discriminative in the classification of the 7 class C GPCR
subtypes.
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and GB.
The SEZ alphabet discrimination capabilities, instead, seem to be rather more
subtle, as they are less based on the lack of a given n-gram than on a more
gradual differentiation of the range of their frequencies. This a somehow natural
consequence of their flexibility of sequence instantiation, resulting from the less
granular use of the AA alphabet. WXXW seems very frequent in mG but infre-
quent in VN, Ph, Od and Ta. Instead, G[DE]X[RKH] is most frequent in VN and
least in GB and Od, while [ST]XX[QN][ST] is mostly absent from mG (again with
the exception of an eccentric but tight subgroup), but most frequent in GB and
VN.

Conclusion

In this experiment, we have analyzed class C AA primary sequences from their
contiguous and rigid gap n-gram frequencies, using a combination of FS and clas-
sification. This analysis involved class C subtype discrimination and aimed at
identifying those n-grams most relevant to such task as candidate signature mo-
tifs. Motif over-representation in the sequence maybe the result of evolutionary
preservation, which might be a lead to potential structural and functional roles.
The selected discriminant n-grams may be related to the orthosteric sites at the
VFT of the N-Terminal domain, given that these sites bind to different ligands for
different subtypes and are thus subtype-specific.
Our previous research, using the frequencies of n-grams of length up to three
obtained from the complete sequences, reported class C subtype classification ac-
curacies that have been matched in the current study using the frequencies of a
parsimonious selection of n-grams of length up to five obtained from just the N-
terminal domain. Such results reinforce the interest of this extracellular domain in
class C GPCR functional investigation. Of note also that the list of relatively long
selected n-grams should be more effective than shorter ones as the starting point
for proteomics experts to investigate motifs potentially related to the orthosteric
site of the VFT, an investigation with clear potential in pharmacological research.

8.3. Feature selection used for the identification of
subtype characteristic n-grams

In the current experiment, the results of the previous experiments are extended by
investigating a different classification methodology: we switch from the subtype-vs-
subtype classification employed in [12, 11] to a subtype-vs-all the rest of subtypes
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procedure. That is, we shift towards the selection of those sequence motifs that
distinguish each class C subtype from the rest.

8.3.1. Experiments on the N-terminus with a two-stage
Feature Selection

Experimental settings

In this experiment we analyze the N-terminus segment of the sequences of the 2011
version dataset using a one-vs-rest classification methodology and a two stage di-
mensionality reduction approach combining a t-test filter and a SFFS as previously
used in [11, 5]. Note that the the dataset comprises the 1,252 sequences with a
full 7TM structure as explained in Section 7.2.2 (See Table 7.1).
The experiments on the N-terminus comprise the following steps:

1. Data preprocessing: The primary AA sequences of the N-terminus are trans-
formed for the AA alphabet to contiguous and rigid gap n-gram frequencies
of lengths three to five. As in [12], the relative frequencies of occurrence
of the n-grams (real-valued quantities), are employed for the classification
experiments.

2. t-Test Filtering and SFFS: Given a feature space built by contiguous and
rigid gap n-grams (of length three to five) the two step dimensionality re-
duction approach is applied:

a) As a first stage a t-test filter is applied, which due to the very large
number of features performs a crude sorting out. It consists in two-
sample t-tests between receptor subtypes for feature filtering, with 0.01
significance level. In previous research [5], a subtype-vs-subtype clas-
sification setting was employed, where the t-tests were run for the 21
subtype-vs-subtype possible combinations. Instead, a subtype-vs-rest
of data scheme was used in the current experiment, so that a single
t-test is run for each class C subtype. As a result, the t-test is meant
to discern whether a feature is significantly discriminating a given sub-
type from the rest of the sequences. Only n-grams with a non-zero
mean value for the specific subtype are considered, as we are interested
in subtype-specific n-grams, i.e. n-grams that are actually present in
the subtype.

b) The second dimensionality reduction stage involves a SFFS algorithm
with identic settings as those of the previous FS experiments (See sec-
tion 8.2.1).
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c) Assesment of the selection of features of the SFFS algorithm: The re-
sult of our FS approach is the subset of n-gram frequencies that are
the outcome of this second-stage SFFS process. Therefore, we repeat
the forward selection algorithm 10 times for each class C subtype and
evaluate it by counting how many times each feature was selected. Fur-
thermore, we take into account in which position an attribute was se-
lected during the sequential selection (whether it was earlier or later in
the process) and establish a positional ranking. More precisely, features
are weighted according to the position in which they were selected, i.e.,
we count how many times a given feature was selected and weight the
selection according to whether it was selected first (5 points), second (4
p.), third (3 p.), fourth (2 p.) or subsequently (1 p.).

3. We also explore in which position of the N-terminus the selected n-gram is lo-
cated, either in the main part of the sequence or in the CRD. This distinction
is important, given that the N-terminus attributes different functionalities
to the VFT (built by the AAs from the beginning and middle part of the
sequence) and the CRD (located at the end).

The classification performance of the models constructed from the different feature
sets is again measured using the same CV approach and metrics as those of the
previous FS experiments (See section 8.2.1 for a detailed explanation).

Results

t-Test Filtering In our experiments, we built SVM-based classification models
using the n-grams from the N-terminal domain of the available sequences using
a subtype-vs-rest of data setting instead of a subtype-vs-subtype approach as in
previous research [12]. In more detail, we used rigid gap motifs (n-grams) of
lengths three to five.
t-Test filtering was employed to generate a first crude ranking of features. In the
current subtype-vs-rest of data approach, we show the SVM classification results
per subtype using the reduced attribute set yielded by the t-tests in Table 8.11.
Several standard classification metrics are reported, including Accuracy, MCC, F-
measure, precision and recall. These results show that the t-test reduction step
yields a selected subset that allows the SVM algorithm to achieve fairly good results
for subtypes mG, CS, GB and Ta. Results for subtypes Vn, Ph, and specially Od
are less accurate, which is consistent with results of previous studies [3, 10].

Sequential Forward Feature Selection The t-Test filtering method found fea-
ture subsets with high classification accuracy. Their dimensionality is still quite
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Table 8.11.: Subtype classification results after t-test selection. T −D is the size
of a feature set yielded by the t-test reduction step and Accu stands for classi-
fication accuracy (ratio of correctly classified sequences), MCC for the Mathew
correlation coefficient, F-Meas for F-measure, Prec for precision and Rec for
recall.

SUBTYPE T-D Accu MCC F-Meas Prec Rec
mG 588 0.98 0.94 0.95 0.97 0.94
CS 918 0.99 0.94 0.94 1.0 0.89
GB 483 0.99 0.96 0.97 1.0 0.94
Vn 352 0.95 0.86 0.89 0.93 0.86
Ph 299 0.95 0.87 0.90 0.95 0.86
Od 329 0.95 0.52 0.52 0.76 0.4
Ta 464 0.99 0.99 0.99 1.0 0.98

high, though, which is why we applied the more nuanced second step of SVM-based
SFFS. Table 8.12 summarizes the subtype classification results after applying the
SFFS algorithm on the t-test reduced feature set. These results show that the
algorithm has successfully reduced the number of features achieving the same or
even better classification.

Table 8.12.: Subtype classification results after Forward Selection, where T −D
and FW −D denote the size of a feature set after t-test and Forward Selection,
respectively.

SUBCLASS T-D FW-D Accu MCC F-Meas Prec Rec
mG 588 4 0.98 0.97 0.97 0.97 0.97
CS 918 6 0.99 0.96 0.96 1.0 0.93
GB 483 6 0.99 0.96 0.97 0.99 0.95
VN 352 25 0.93 0.8 0.84 0.9 0.79
Ph 299 24 0.93 0.83 0.87 0.88 0.86
Od 329 12 0.96 0.61 0.58 0.94 0.42
Ta 464 5 0.99 0.97 0.97 0.98 0.97
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Comparison with subtype-vs-subtype classification results We now compare
the classification results obtained with the subtype-vs-rest approach with those
obtained in [12] using the subtype-vs-subtype approach (Table 8.13).

Table 8.13.: Subclass classification results using the subtype-vs-subtype ap-
proach after Forward Selection. T − D and FW − D denote the size of a
feature set after t-test and Forward Selection respectively.

SUBCLASS T-D FW-D MCC F-Meas Prec Rec
mG 268 82 0.94 0.95 0.95 0.96
CS 268 82 0.94 0.94 1.0 0.89
GB 268 82 0.95 0.96 0.96 0.96
VN 268 82 0.88 0.91 0.91 0.91
Ph 268 82 0.87 0.90 0.90 0.90
Od 268 82 0.76 0.76 0.80 0.78
Ta 268 82 1.0 1.0 1.0 1.0

The per-subtype classification results reported in this research using the subtype-
vs-rest approach are better than those obtained by the multi-class classifier using
subtype-vs-subtype for subtypes mG, CS and GB; roughly similar for Ta and
worse for Vn, Ph and Od. Note though that the n-gram selection is far more
parsimonious than the one reported in [12](Table 8.13). For instance, an MCC
value of 0.97 for mG is reported in Table 8.12 with only 4 n-grams, as compared
with an MCC of 0.94 with 82 n-grams in [12](Table 8.13). Therefore, we focus
only on the good performing subclasses mG, CS, GB and Ta on the two-step FS
process of the algorithm.

Assessment of attribute selection In the experiment reported here, we focus
further on the evaluation of the attribute selection. Therefore the SFFS process
was repeated 10 times on the reduced t-test feature set evaluating the selection con-
sidering the number of times (selection count) and in which position the attribute
was selected by the algorithm (position weighted selection). In the following, we
show the results of the assessment of attribute selection for mG, CS, GB and Ta.
For each subtype, we show the position-weighted selection graphically. Figure
8.3.1, for instance, shows the position-weighted evaluation of n-gram selection for
mG and CS.
In the 10-time run of the algorithm a set of 2 to 6 attributes were selected for
mG achieving similar test results as reported in section 8.3.1. The assessment of
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Figure 8.3.1.: Position-weighted selection of n-grams for mG (left) and CS
(right).

Figure 8.3.2.: Position-weighted selection of n-grams for GB (left) and Ta (right).

the attribute selection graphically shown in Figure 8.3.1 (left) depicts that two n-
grams were most often selected. n-Grams CXWXC and PXXN should be analyzed
in further detail as they have a high selection score. Both were selected in each of
the 10 runs as the first and second attributes, respectively. n-Grams EGXY and
WXYV also achieve a high score as they were selected frequently (5 and 4 times)
as third attributes.
For CS, the test run yields a reduced feature set between 3 and 7 attributes. The
selection assessment shows that n-grams RGXXW, NTXS, GFXW, NXRG, FXGF
and GXRW were frequently selected. All these n-grams obtained a high score in
the position-weighted selection as they were always between the first three selected
attributes.
The corresponding test run for GB yielded data sets with 5 to 10 attributes. The
attribute selection evaluation shows that n-grams YDXXW, WXXA, DXRI were
frequently selected. The first one is selected in every run as first attribute. The
latter two were selected in 6 and 5 runs, respectively, and always as second or
third attributes. Also, n-grams GXVXF, AXXVF and AXXLA could be seen as
characteristic, as they were selected in some runs as second attribute.
For Ta, the test yielded feature sets with between 4 and 6 attributes. The assess-
ment shows some frequently selected n-grams of interest: GXHXC was selected in
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each run as first attribute, while GTXXG, WXXXE, HXCXF and FXR were se-
lected frequently as second or third attributes. Table 8.14 summarizes all n-grams
selected in the 10 runs.

Table 8.14.: Selected n-grams for each subtype.

mG CS GB Ta

CXWXC - RGXXW PXTR YDXXW KXXP GXHXC WXWI
PXXN - NTXS YXA WXXA PXDXT GTXXG -
EGXY - GFXW FWXXE DXRI DAXW WXXXE -
WXYV - NXRG YAXS GXVXF EGXXG HXCXF -
CXW - FXGF WXAS AXXVF YXAXW FXR -

FVXXA - GXRW PXXCF AXXLA LAXN VXGP -
RXEXM - LXDXH WXTS GXV GXSXP QXMR -
DAXXA - KVXP LXAXP QXL FXRT AXXGP -
YEXE - AXEXW - IXE DXN NNXS -

- - PXYF - MXG - DXCS -

Detailed analysis of selected n-grams Table 8.15 shows an analysis of the n-
grams detected as most important in the FS assessment. For each n-gram, the
subtype specific location on the N-terminus is reported.
The pattern CXWXC is characteristic of mG sequences as it appears at 269
(tc=269) out of a total of 282 mG sequences (nc=282), while it appears only
at 6 sequences of the remaining subtypes (to=6). This n-gram is located at the
end of the sequence and is part of the CRD. PXXN (tc=243) is also found to ap-
pear frequently at mG. It nevertheless corresponds to different n-grams at different
locations. Two examples of the existence of different n-grams matching the given
pattern are PYNN, which appears 37 times at the middle of the sequence (tc=37)
and PN[PIVSNHGAMKE]N, which appears 67 times in the CRD (tc=67). The
n-gram EGXY (tc=175) was also found to be characteristic of subtype mG and
corresponds mainly to n-gram EG[SDN]Y (tc=168). Its occurrences are in the
main part of the N-terminus.
The n-gram RGXXW (tc=30) was detected as characteristic for CS (nc=45). This
n-gram corresponds entirely to the n-gram RGFRW (tc=30), located at the main
part of the sequence. The pattern NTXS (tc=37) represents two frequent n-grams
in CS: The frequent n-gram NTVS, which appears as part of the longer n-gram
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Table 8.15.: Location of n-grams. nc denotes the number of instances of the
subtype. tc and to denote, in turn, the number of instances of this subtype, or
the remaining subtypes, that match the n-gram.

N N-gram Subtype nc tc to Location
1 CXWXC mG 282 269 6 CRD
2 PXXN mG 282 243 708 -
3 EGXY mG 282 175 3 main
4 WXYV mG 282 216 9 main
5 RGXXW CS 45 30 18 main
6 NTXS CS 45 37 104 main
7 GFXW CS 45 31 11 main
8 YDXXW GB 156 140 5 main
9 WXXA GB 156 148 485 main
10 DXRI GB 156 131 75 main
11 GXVXF GB 156 135 227 main
12 GXHXC Ta 62 56 18 CRD
13 GTXXG Ta 63 58 104 main
14 WXXXE Ta 63 58 582 main
15 HXCXF Ta 63 46 13 CRD
16 FXR Ta 63 63 988 main

DTCNTVS in CS subtype (tc=20). The other frequent n-gram is NTES (tc=16),
which forms part of n-gram [TS][CIL]FWNTES (tc=16). Both patterns are located
at the main part of the sequence. The pattern GFXW (tc=31) corresponds entirely
to the n-gram GFRW, which is part of the longer n-gram F[RL]GFRW (tc=31)
and is located in the main part of the sequence.

The GB characteristic n-gram YDXXXW (tc=140, nc=156) corresponds mainly
to the n-gram YD[GA][IV]W (tc=131), which forms part of the longer n-grams
[PT][LFY]AYD[GA][IV]W (tc=54) and G[YF][TAS]YD[GA][IV]W (tc=50). An
analysis of the location is unnecessary as GB sequences lack the CRD. WXXA
(tc=148) corresponds mainly to WA[AEILMFTSV]A (tc=84) and WV[TILV]A
(tc=27) and WS[TILVSA]A (tc=34). Pattern DXRI (tc=131) corresponds to pat-
tern D[TIVAS]RI (tc=131). Furthermore, the more specific n-grams DARI and
DVRI are very characteristic as each appears 60 and 49 times, respectively. Pat-
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tern GXVXF (tc=131) is characteristic for GB as it appears in 131 sequences.
The most frequent n-grams described by this pattern are GPV[AEGSR]F (tc=48),
G[QH]VVF (tc=47) and G[ARFVY]VAF (tc=22).
The Ta characteristic pattern GXHXC (tc=56, nc=62) corresponds mainly to
the n-gram G[QMSILDFV]H[ETHIQVLSK]C (tc=47), which is located at the
beginning of the CRD. The pattern GTXXG (tc=58) corresponds to the n-gram
GT[VF][IVL]G (tc=57) located at the main part of the sequence. WXXXE (tc=58)
corresponds to the n-grams W[IVLT][IAG][TGS]E (tc=52) located at the main
part of the sequence, while HXCXF (tc=46) corresponds to the n-gram
H[ESTKPVIHQ]CCF (tc=46), located at the beginning of the CRD. Pattern FXR
(tc=63) corresponds mainly to the longer n-gram [FY]PSF[YFLVM]R (tc=41)
with occurrences in the main part of the sequence.

Comparison with known motifs This section presents a comparison of the n-
grams listed in Table 8.14 with the known GPCR motifs to be found in the
PRINTS-S1 database, which constitutes a compendium for protein fingerprints
linked with Swiss-Prot and TrEMBL, in turn important protein knowledgebases.
The comparison is with the mG GPCR signatures (Identifier:GPCRMGR), the
Extracellular CS receptor signatures (Identifier: CASENSINGR) and GB recep-
tor signatures (Identifier: GABABRECEPTR). These signatures are derived from
smaller sets of not necessarily coinciding sequences to those of GPCRdb.
Comparison to the GPCRMGR signatures shows that the mG specific n-gram
EG[SDN] is part of the Motif 7 located in the N-terminus. Another coincidence
is found for the n-gram WXYV, which corresponds mainly to n-gram W[NT]YF.
This n-gram forms part of Motif 6. Another known motif is the specific n-gram
RLEAM (detected as RXEXM), part of Motif 2.
Comparison with CASENSINGR signatures shows that the n-grams found as
subtype-specific do not form part of any known motif from CASENSINGR.
In turn, comparison of the n-grams found as characteristic for GB shows some coin-
cidences with the known GABABRECEPTR signatures. The 13 elements compris-
ing Motif 6 match a long list of n-grams found by the sequential forward selection
algorithm: The n-gram YD[GA][IV]W was found as characteristic and forms at
the same time part of the longer n-gram [PF][LFY]AYD[GA][IV]W. A comparison
shows that pattern AYD[GA][IV]W is part of Motif 6. Also, patterns YXAXW
and DAXW describe this same subsequence. The n-gram WA[AEILMFTSV]A
and its more specific n-grams WALA and WVIA constitute part of this motif as
well. The n-gram AXXLA matches the more specific n-gram ALALA, also part of

1http://www.bioinf.manchester.ac.uk/dbbrowser/sprint/
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the known motif. The n-gram LAXN matches the end of the motif by represent-
ing the LALN pattern. The pattern FXRT matches n-gram FFRT, which is part
of the 20-element long Motif 3. The n-gram D[TIVAS]RI represents the n-grams
DARI and DVRI, part of the 24 elements comprising Motif 4.

Discussion

The two-step FS process using the subtype-vs-rest approach has successfully yielded
very parsimonious subsets of attributes that provide similar or better classification
results for subtypes mG, CS, GB and Ta to those obtained using the subtype-vs-
subtype approach (See sections 8.3.1 and 8.3.1). Table 8.12 reports the SVM
classification results for the reduced feature sets, where a MCC between 0.96-0.97
is achieved with feature sets of 4-6 attributes. The finding of such reduced feature
sets provides support to the hypothesis of the existence of subtype-specific motifs.
The more detailed analysis of the FS process, aiming to find out whether the
selected n-grams are characteristic for the particular subtype, was accomplished
by repeating the SFFS process several times and evaluating the selected features
according to their frequency of selection and position. The resulting position-
weighted selection score has revealed a small subset of n-grams that are consistently
selected for a given subtype by the algorithm (See section 8.3.1).
A comparison with known motifs from the PRINTS-S database has confirmed that
several of the detected n-grams from subtypes mG and GB are part of known mo-
tifs in this database. This finding partially confirms the potential of the proposed
approach for the selection of subtype-characterizing n-grams and encourages fur-
ther research investigating the newly detected motifs from a proteomics viewpoint.

Conclusion

The results reported in this section reinforce the idea that ML methods are useful
tools for knowledge extraction from GPCR data, especially if embedded in well-
principled data dimensionality reduction procedures. We have shown that, using
such methods, several parsimonious subsets of sequence n-grams, understood as re-
ceptor motifs, can successfully discriminate class C subtypes. Furthermore, several
such n-grams match known motifs reported in standard curated protein databases.
The identification of these subtype-specific motifs should be the starting point for
the investigation of their role in receptor functionality, as they could be related to
the orthosteric sites at the VFT in the investigated extra-cellular N-Terminus. This
may provide at least partial foundations to pharmacological research, as most mod-
ern drug development efforts tend to design compounds that act directly against
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specific biochemical targets, a task that involves molecular diagnostics, a basis of
personalized medicine [130].

8.3.2. Experiments on the N-terminus using χ2 Filter selection

In this experiment we apply a χ2 filter for FS on the n-gram frequency repre-
sentations of the data. This univariate metrics measures how good a feature dis-
tinguishes the instances of a subtype from the instances of the rest of subtypes.
The purpose of the present experiment is to systematically assess the FS of the
greedy approach using a two step FS technique of the previous experiment on
the N-terminus in order to verify in which degree the uppermost subtype specific
n-grams have been selected. Moreover we want to compare the two stage FS ap-
proach with a FS technique that is able to operate on vast feature spaces, because
the use of a forward selection algorithms is limited by the size of the feature space.

Experimental settings

This experiment focuses on the analysis of the N-terminus domain of the 2011
and September 2016 dataset version. Remember that these datasets comprise
respectively 1,252 and 922 sequences with a full 7TM structure as explained in
section 7.2 (See Table 7.1 and 7.11).

The purpose of the present experiment is to systematically assess the FS done by
the two step FS technique of the previous experiment (See 8.3.1) in order to verify
in which degree the most subtype specific n-grams have been selected. For this
end we carry out the following steps:

1. χ2 Filter approach: We calculate the χ2 measure for the n-grams of each
subtype and select the n features with highest χ2 value. For those n-grams
we report also the number of instances of this subtype (tc) and the number
of instances of the remaining subtypes (to ), that match the n-gram.

2. We compare the n-gram selection between the greedy aproach of the previous
experiment and the χ2 selection as well as between different versions of the
dataset.

3. We assess the internal data quality of the χ2 selected n-gram subsets with
supervised ML methods using the same CV approach and metrics as ex-
plained for the previous FS experiments (See section 8.2.1 for a detailed
explanation).
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Results

Overview of the n-gram feature space Table 8.16 shows the number of n-gram
features for the 2011 and 2016 dataset using contiguous and rigid gap motifs of
length 3 to 5. For each n-gram of a given length the contiguous and rigid gap
n-grams are counted, for example the number of n-grams reported for 4-grams
include all n-grams of length 4 with zero, one or two wildcards positions. Note
that only n-grams which effectively appear in the data are considered. From the
numbers reported in Table 8.16, we see how fast the feature space grows as the
use of rigid gaps motifs enlarges even more the vast feature space of contiguous
n-grams. The χ2 filter approach calculates the χ2 value for each of the n-grams of
the feature space.

Table 8.16.: Number of n-grams of the 2011 and Sept. 2016 dataset (N-terminus
only). Both contiguous and rigid gap motifs are counted for a n-gram of a given
length.

N-grams
Dataset 3-grams 4-grams 5-grams Total
2011 8,370 117,813 574,481 700,664

Sept. 2016 8,129 65,783 251,493 325,405

χ2 Filter In this section we report for the subtypes mG, CS, GB and Ta the
most discriminative n-grams according to the χ2 filter selection. We report the
15 n-grams with the highest χ2 value for each subtype both for the 2011 dataset
and September 2016 one. In each table nc denotes the number of instances of the
subtype, tc and to denote, in turn, the number of instances of this subtype, or the
remaining subtypes, that match the n-gram.
Tables 8.17 and 8.18 show the n-grams selected according to their χ2 value for
subtype mG for each dataset. Tables 8.19 and 8.20 show the selection for subtype
CS, Tables 8.21 and 8.22 for GB and Tables 8.23 and 8.24 for Ta.

Comparison of n-gram selection For subtype mG Tables 8.17 and 8.18 report
the subset of n-grams selected by the χ2 value. A comparison of these n-grams for
the 2011 and September 2016 databases shows the following matches: CCWXC,
CWXC, CXWXC, WXC, RNXWF, RNXW, NXWF, RNXXF and RNXWF ap-
pear in both versions of the dataset. Regarding the comparison between the FS of
the greedy approach (See 8.14) and chi-square selection (Table 8.17) we observe
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Table 8.17.: List of 15 n-grams selected by χ2 selection for the Mg subtype (2011
dataset).

N-gram nc tc to χ2 N-gram nc tc to χ2

CXWXC 282 269 6 893.4 RNXW 282 210 6 690,65
CCWXC 282 268 6 889.95 WXYVS 282 203 2 687.49
CCW 282 268 16 839.97 WXYXS 282 215 11 682.772
CWXC 282 268 21 816.35 RXXWF 282 207 12 650.51
NXWF 282 219 6 721.57 SDXW 282 219 24 636.32
WXC 282 269 45 717.45 WFXE 282 190 4 632.26

RNXWF 282 206 1 703.169 WXXVS 282 209 25 598.21
WXYV 282 216 9 696.08

Table 8.18.: List of 15 n-grams selected by χ2 selection for the mg subtype (2016
dataset).

N-gram nc tc to χ2 N-gram nc tc to χ2

CXWXC 505 479 1 578.5 RYD 505 449 1 542,1
CWXC 505 479 2 574.9 NXWF 505 448 1 540.9
CXWXC 505 479 5 563.9 NXRN 505 441 3 525
CXXM 505 479 8 546.9 RNXXF 505 451 7 522.6
WXC 505 479 10 546 KXXFV 505 418 1 504.4

RXXWF 505 446 0 542.2 YXAXY 505 418 1 504.3
RNXWF 505 446 0 542.2 GRY 505 431 7 498.4
RNXW 505 449 1 542.1

that n-grams CXWXC and WXYVS have been selected by both approaches. The
n-gram CXWXC has the highest χ2 value and was selected according to the FS
assessment always as first feature, while n-gram WXYVS ( with fourth position
in the FS assesment) has the 10th-highest χ2 value.
For subtype CS Tables 8.19 and 8.20 report the n-grams with highest χ2 value. A
comparison of these n-grams for the 2011 and September 2016 reveal no matches
between the subsets. Comparing the FS of the greedy approach (See 8.14) and χ2

selection (See Table 8.19) we observe that n-grams GFXW, NXRG, FXGF and
GXRW of the greedy approach match respectively the n-grams GFRW, NFRGF,
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Table 8.19.: List of 15 n-grams selected by χ2 selection for the CS subtype (2011
dataset).

N-gram nc tc to χ2 N-gram nc tc to χ2

GTRKG 45 38 3 893.1 AADDD 45 32 1 830.4
GTXKG 45 38 5 891.9 GGXIG 45 38 8 828.8
TRKGI 45 35 2 884.3 TXKGI 45 35 5 812.7
GXRKG 45 38 6 869.9 RGFR 45 30 0 804.6
TRKXI 45 38 5 865.5 NFRGF 45 30 0 804.6
GTRXG 45 39 8 854.8 FRGFR 45 30 0 804.6
GFRW 45 31 0 831.5 RGFRW 45 30 0 804.6
GGTIG 45 33 2 830.8

Table 8.20.: List of 15 n-grams selected by χ2 selection for the CS subtype (2016
dataset).

N-gram nc tc to χ2 N-gram nc tc to χ2

IXXIE 103 91 3 952.2 MAXXI 103 82 5 830
WNWXG 103 84 1 901.6 WNXXG 103 84 7 828.3
KXIE 103 88 5 895.1 TAXXI 103 88 11 827.6
VIXVF 103 86 6 861.5 DDDXG 103 82 6 818.2
NWXG 103 84 5 851.6 WXGXI 103 85 9 816.8
VIVVF 103 85 6 850.7 VIVXF 103 86 11 806.2
VIVV 103 85 6 850.7 MIXXI 103 93 20 793
RXLN 103 86 8 838.7

FRGF and GFRW, which are all features with high χ2 value.

In reference to subtype GB, Tables 8.21 and 8.22 show the subset of n-grams
selected by the χ2 value. A comparison between the selected n-grams for the
2011 and 2016 dataset show the subsequent matches: YDXXW, DXRII, RIIXG,
FCXXY are selected for both datasets. YDAXW selected for the 2011 dataset is
very close to the YDGXW pattern of the 2016 dataset. Note that this similariy
could not be random as the AAs Alanine (A) and Glycine (G) have common
physicochemical properties ( both are aliphatic, non polar and neutral in charge).
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Table 8.21.: List of 15 n-grams selected by χ2 selection for the GB subtype (2011
dataset).

N-gram nc tc to χ2 N-gram nc tc to χ2

YDXXW 156 140 5 940.2 GWY 156 82 4 541.7
DXRII 156 125 3 851.8 YDXIW 156 76 0 533.9
RIIXG 156 119 1 827.1 FCXXY 156 79 4 520.7
DXRI 156 130 29 700.1 WAXAL 156 77 3 514.9

YDAXW 156 84 0 590.15 RII 156 141 90 499.8
YXAXW 156 89 6 574.6 AXXVF 156 107 39 495.3
WXXAL 156 114 33 570.9 DXRXI 156 131 75 493.8
DAXW 156 87 5 568.6

Table 8.22.: List of 15 n-grams selected by χ2 selection for the GB subtype (2016
dataset).

N-gram nc tc to χ2 N-gram nc tc to χ2

YDXXW 88 85 0 1101.9 DGXW 88 73 2 916.2
DXRII 88 85 0 1101.9 WIXXG 88 74 3 914.7
RIIXG 88 84 0 1089 WIXPG 88 70 0 907.5
FCXXY 88 77 1 982.9 YXWII 88 70 0 907.5
YXWI 88 74 0 959.3 WIIP 88 70 0 907.5

YDGXW 88 73 0 946.3 WIXP 88 72 2 903.3
SKXHG 88 72 0 933.4 KXHG 88 72 2 903.3
YXGXW 88 73 1 931.1

For subtype Ta, Tables 8.23 and 8.24 report the n-grams with highest χ2 value.
Comparing the selection between the two datasets we see that n-grams GXHXC
and GDYXL are selected for both. Regarding the matches between the greedy
approach and the χ2 selection for the 2011 dataset we observe that the n-grams
GXHXC and HXCXF have been selected for both approaches. Moreover the n-
gram GTXXG, VXGP and AXXGP of the greedy approach describes the n-gram
GTXLG, AVIGP and AXIGP or AVIGP, which are all features with high χ2 value.
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Table 8.23.: List of 15 n-grams selected by χ2 selection for the Ta subtype (2011
dataset).

N-gram nc tc to χ2 N-gram nc tc to χ2

HXCCF 62 46 0 882.9 GTXLG 62 43 0 747.8
AVIGP 62 49 5 844.3 GDYXL 62 42 3 746.8
AVIXP 62 49 5 844.3 HXXCF 62 46 11 694.8
AXIGP 62 54 11 842.8 GTVXG 62 37 1 689.5
AVXGP 62 49 8 794.8 HXCXF 62 64 13 668.2
HXCXF 62 56 18 786.3 VWXAS 62 42 8 663.7
FLXPQ 62 43 2 784.8 LLXGL 62 41 9 630.6
HXCC 62 59 23 782.0

Table 8.24.: List of 15 n-grams selected by χ2 selection for the Ta subtype (2016
dataset).

N-gram nc tc to χ2 N-gram nc tc to χ2

VYXVA 226 200 2 841.8 CFXR 226 182 2 764.8
VYXV 226 200 2 841.8 PXQL 226 183 4 755.9
AVYXV 226 194 2 816.1 PXQLL 226 179 2 752
GXHXC 226 205 10 812 PWQLL 226 177 2 743.5
LHXXL 226 215 20 795.8 PWQL 226 178 3 741.1
VXEIN 226 184 1 780.1 GDYXL 226 173 1 733
WQL 226 187 4 773.1 VEEXN 226 172 1 728.8
WQLL 226 185 3 771

Comparison of classification performance Previous research [8] revealed the
existence of very reduced subsets with very high classification accuracy for subtypes
mG, CS, GB and Ta. In this section we compare the classification performance of
the χ2 filter selected subsets with those of the previous experiments (for the 2011
dataset). Table 8.25 shows a comparison per-subtype of the classification results
obtained with the two stage FS method and the χ2 filter method by SVM. We
report either the size of the feature set after Forward Selection (FW-D) or the size
of the feature set selected according to the upmost χ2 values.
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Table 8.25.: Subtype classification results after feature selection, where FW −D
and χ2 denote the size of a feature set after Forward Selection or χ2 Filter
selection, respectively.

SUBCLASS FW-D χ2 Accu MCC F-Meas Prec Rec

mG
4 - 0.98 0.97 0.97 0.97 0.97
- 5 0.982 0.949 0.96 0.971 0.95
- 15 0.987 0.963 0.971 0.979 0.965

CS
6 0.99 0.96 0.96 1.0 0.93

5 0.9912 0.869 0.869 0.935 0.82
15 0.992 0.902 0.905 0.975 0.84

GB
6 0.99 0.96 0.97 0.99 0.95

5 0.987 0.94 0.946 0.968 0.93
15 0.993 0.961 0.971 0.969 0.974

Ta
5 0.99 0.97 0.97 0.98 0.97

5 0.996 0.968 0.969 0.94 1.0
15 1.0 1.0 1.0 1.0 1.0

Discussion

In this section we compared the FS of the two-step SFFS approach and χ2 filter
approach. Regarding the selection of subtype discriminating n-grams we have seen
that the χ2 filter approach provides a full overview of the most discriminating n-
grams, which may include repetitions of similar n-gram patterns. The greedy SFFS
approach instead only selects some of the most discriminative patterns avoiding
similar patterns, what is consequence of the operating mode of the SFFS algorithm
seeking for compact feature sets without redundancies.

Regarding the construction of classification models the greedy SFFS approach pro-
vided very reduced feature sets with highly accurate classification results. The χ2

filter approach achieved similar results, but requiring a higher number of attributes
in order to obtain equivalent classification results according to the MCC metric.
An increase to a number of 15 features was necessary to equalize (in the case of
GB) or even surpass (in the case of Ta) the results of the two-step FS subset. For
subtypes mG and CS the classification performance was still slightly lower.
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Conclusion

We carried out an analysis of FS with a χ2 filter, which provided a broad overview
about the set of the most discriminative n-grams for each subtype. The χ2 fil-
tering approach can be applied even with larger feature spaces than those of the
current experiment, as its computational cost is linear on the size of the feature
set. A comparison of the FS with a χ2 filter and the two-stage SFFS approach
of previous research revealed coincidences in some of the selected attributes, i.e.
we confirmed the effectivenes for the greedy two-stage SFFS approach to select
highly discriminative patterns. We also conclude that regarding the construction
of robust classification models the two-stage SFFS approach provided the most
reduced feature sets with high internal data quality, which was verified by very
accurate classification results.
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9. Analysis of 3-D crystal structures

9.1. Introduction

The investigation of protein functionality and signalling mechanisms is often based
on the knowledge of crystal 3-D structures. In eukaryotic cell membrane proteins
such as GPCRs, this knowledge is partial and fairly recent: The first GPCR crystal
3-D structure was fully-determined in 2000 [32] and over the last decade, the
structures of some other GPCRs, most belonging to class A, have been solved [33].
In the case of class C GPCRs the information about full tertiary and quaternary
structure is very limited, although recent impressive advances in the discovery of
GPCR crystal structures [34, 35] were made.
In previous research we have systematically analyzed the primary sequences of
class C GPCRs in search for subtype specific n-gram motifs. Applying different
FS methods we have located sets of subtype specific n-grams for mG, CS, GB and
Ta (See section 8.3).
In order to find out whether these short n-gram motifs may have a biological
significance, for example related to the orthosteric binding site, we resort to the
available 3-D crystal structures of class C GPCRs. The 3-dimensional structures
may provide information about the ability of the constituent n-gram subsequences
to have a given structural or biological function when analyzed by biochemical
experts. We are also interested in analyzing whether the subtype specific n-grams
detected by our approach are already known to have a structural or biological
functionality and therefore we recollect known functional information about the
crystalized sequences and analyze them with regard to each of the subtype specific
n-grams.

9.2. Experiments with crystal structures of the
N-terminus

In this section we present the experiments related to the crystal structures of
the N-terminus of class C GPCR. In previous research [13] we have detected for
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subtypes mG, Cs, GB and Ta a set of subtype specific n-grams discovered from the
2011 and September 2016 dataset (See Section 8.3). In this experiment we analyze
the available crystal structures of the N-terminus of class C GPCRs with regard to
these subtype specific n-grams. Despite the scarceness of full 3-D crystal structures
of class C GPCRS, which comes from the difficulty to solve the transmembrane
regions, the crystalization of the extracellular domain is quite feasible, therefore
being several partial crystal structures available for the N-terminus. Note that the
available crystal structures of the extracellular domain do not belong necessarily
to the analyzed sequences of the GPCR dataset from GPCRdb, but given the very
limited number of crystal structures of the sequences of this dataset, our analysis
is extended to all available crystal structures of class C GPCRs.

9.2.1. Experimental settings

Methods Our experiment focuses on the analysis of the information related to
known 3-D structures of class C GPCRs in regard to the subtype specific n-grams
detected by our approach. The employed methodology comprises the following
tasks:

1. Recollection of crystal structures: The 3-D structures from the Protein Data
Bank (PDB) and its crystalized sequences are recollected. We search the
crystal structures of the extracellular domain of class C GPCRs and the
underlying crystalized protein sequence identified with a given Uniprot Ac-
cesion ID. As GPCRs may be complexed with different substances or they
may experience conformational changes in different activation states, it is
frequent to find several crystal structures for a GPCR sequence which corre-
spond to different states of the receptor. First we check whether the n-gram
motifs are part of the crystalized sequence, what is a requisite to proceed
with the deeper analysis explained in the next step.

2. Detailed analysis of the crystalized protein sequence in reference to a n-gram:

a) We determine the frequency of appearance of the n-gram in the se-
quence.

b) For each appearance of the n-gram pattern we document the position in
the sequence and information whether the segment is part of a known
secondary substructure (strand or helix).

c) By means of the graphical representation of the crystal structure with
the tool UCSF Chimera1, we determine whether the n-gram segment

1http://www.cgl.ucsf.edu/chimera
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pertains to a secondary structure (helix or strand) and whether it is
located on the surface or in the inside of the receptor.

d) Retrievement of known functionalities from Uniprot: We analyze whether
the segment has an already known funcionality, such as binding site, etc.
or other structurally relevant information, for example whether it is part
of a disulfide bond (DSB).

Tools In this section we describe the use of the external protein databases and
protein structure visualization tool (UCSF Chimera) used in the aforementioned
method. We illustrate the use of the PDB and UniprotKB database with an
example:
Regarding the recollection of the 3-D structures, Figure 9.2.1 shows the PDB web
interface with information for a 3-D structure in order to illustrate the retrievement
of a crystal struture from the PDB repository. The screen shows the information
related to the crystal structure ’2E4Z’, which corresponds to the ligand-binding
region of the group III matabotropic glutamate receptor. This structural database
provides moreover information about the 3-D structure, which can be visualized
online or downloaded, information regarding the deposition and its authors and
a link to the scientific publication related to the 3-D structure. A link to the
UniprotKB with its Uniprot Accesion Id is provided for acces to the information
about the protein with full detail.
Regarding the recollection of annoted functions and structural information from
UniProtKB we show in Figure 9.2.2 the web interface with information for the
sequence with Uniprot Accesion Code P23385. This protein is characterized as
Metabotropic glutamate receptor 1 obtained from a rat. In reference to the
information available on UniprotKB we focus on the sections ’Functions’ and
’PTM/Processing’ to retrieve information about known functionalities. In this ex-
ample the mG sequence has five known binding sites for Glutamate (as described in
’Functions’) and several disulfide bonds (as described in ’PTM/Processing’). The
section ’Structure’ provides an overview of the related 3-D structures from PDB. In
this example there are five crystal structures available, which are identified by its
PDB entry code, and which interestingly comprise the same sequence segment, i.e.
chains A/B from position 33 to 522 of the primary AA sequence. These five crystal
structures belong to the receptor complexed with different substances, what may
result in different states of the receptor. For example structure 1EWK corresponds
to the receptor complexed with glutamate while structure 1EWS corresponds to a
ligand free form and 1ISS captures the state of the receptor when complexed with
an antagonist.
Regarding the visualization of the crystal structure we use the software UCSF
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Figure 9.2.1.: Protein Data Bank Screen for structure 2E4Z.

134



Figure 9.2.2.: UniprotKB entry for protein P23385.
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Chimera. Figure 9.2.3 shows the visualization of the two AA chains of the protein
with their backbone structure. The structure at the left corresponds to the chain
A (sequence with Uniprot ID Q9UBS5) and the right to chain B (sequence with
Uniprot ID O75899). In chain A the n-gram ARKVF is highlighted in cyan,
the n-gram YDAIW appears in green color, while the similar pattern YDGIW
is highlighted in magenta in chain B. All three n-grams pertain to the secondary
structure of a helix. Using a sphere presentation of the atoms a surface rendering of
the receptor is done as shown in Figure 9.2.4. We appreciate in the upper structure
(4MQE) that all three highlighted n-grams (ARKVF, YDAIW and YDGIW) are
almost not visible, because they are located in the inside of the receptor. It is
useful to evaluate the surface location as hint for the ability for ligand binding.
An example for surface location is shown in the structure at the bottom of Figure
9.2.4. The pattern RNPWF of structure 1EWK has all five AAs located at the
surface (see the green pattern highlighted in the structure at the bottom).

9.2.2. Results

Recollection of crystal structures

Table 9.1 summarizes the information about the crystal structures grouped by
sequence segment for the mG subtype. There are often several structures for a
sequence segment corresponding to different states of the receptor. For example
sequences P23385 and P31422 have both five 3-D structures for the respective
sequence segment. The sequences are described with their Uniprot Accesion Id
and the 3D structures use the PDB entry code for identification.

Table 9.2 shows the analysis of the crystalized sequences of mG (detailed in Table
9.1) with regard to the n-grams detected as frequent and subtype specific according
to the results reported in the previous chapter (Tables 8.17 and 8.18). For each of
the 14 crystallized sequence segments identified with M1-M14 we analyze whether
one of the n-grams listed in the header of the table appears in the sequence. We
report for each sequence segment the specific n-gram which was detected by the
pattern. For example the group RNXWF, RNXW, NXWF, RXXWF and RNXXF
match mostly the n-gram RNPWF, but for sequences M13 and M14, it matches
the n-gram RNVWF or RNVNF. In the case of the short pattern GRY and RYD
in some cases the pattern appears twice. In these cases the frequency is indicated
between braces, i.e. RYD(2) denotes RYD appears two times in the sequence
segment.

From the results reported in Table 9.2 we can see that the crystalized sequences
M2, M3, M10 and M11 are not of further interest for us as they do not contain
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.

Figure 9.2.3.: Visualization of chains A (left) and B (right) of structure 4MQE
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Figure 9.2.4.: Surface rendering of structures 4MQE (upper) amd 1EWK
(bottom).
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any of the subtype specific n-grams of mG. We focus the detailed analysis of the
other crystalized sequences in the following.

Table 9.3 summarizes the information about the crystal structures grouped by
sequence segment for the CS subtype. The available 3-D structures relate both
to the Uniprot sequence P41180, although they reference segments with slightly
different lengths. The sequences are described with their Uniprot Accesion Id and
the 3D structures use the PDB entry code for identification.

Table 9.4 shows the analysis of the the crystalized sequences of CS detailed in
Table 9.3 with regard to the n-grams detected as frequent and subtype specific for
CS (Tables 8.19 and 8.20). For each of the two sequence segments identified with
C1 or C2 we analyze whether one of the n-grams listed in the header of the table
appears in the sequence. We also report for each sequence segment the specific
n-gram which was detected by the pattern.

Table 9.5 summarizes the information about the crystal structures grouped by
sequence segment for the GB subtype. Crystal structures 4MR7, 4MR8, 4MR9,
4MRM, 4MS1, 4MS3 and 4MS4 are both related to sequence Q9UBS5 (G2) and
O75899 (G4), which are chain A and B of the protein respectively.

The sequences are described with their Uniprot Accesion Id and the 3D structures
use the PDB entry code for identification.

Table 9.6 shows the analysis of the crystalized sequences of GB detailed in Table
9.5 with regard to the n-grams detected as frequent and subtype specific for GB
(according to the results reported in Tables 8.21 and 8.22). For each of the
sequence segments identified with G1 - G4 we analyze whether one of the n-
grams listed in the header of the table appears in the sequence. We report for
each sequence segment the specific n-gram which was detected by the pattern.
From the results we can see that only the crystalized sequences G2 and G4 are
of interest for further analysis as they match with several n-grams. Sequence G5
corresponds to a short sequence not part of the N-terminus and is therefore not
further analyzed.

A search at PDB revealed that for subtype Ta no crystal structures are available.
In consequence no results can be reported for Ta in this experiment.

Detailed analysis of the n-grams

In this section we present the results of the detailed analysis of the crystal struc-
tures with reference to the subtype specific n-grams.
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Crystal structures of Metabotropic Glutamate Receptor subtype 1 (related to
sequence P23385) In this section we review the crystal structures characterized
as mG receptor of subtype 1, which comprises the sequence with UniprotKB Id
P23385 as chain A and B. Table 9.7 shows an overview of the four different crystal
structures, which are available for the sequences. A detailed analysis of the n-grams
shows that the n-gram SDGW and KMGFV are already known as binding site for
Glutamate. The other n-grams of Table 9.8 are not attributed currently a known
functionality.

Crystal structures of Metabotropic Glutamate Receptor subtype 2 (related to
sequence Q14416) In this section we review the crystal structures characterized
as mG receptor of subtype 2, which comprises the sequence with UniprotKB Id
Q14416 as chain A and B. Table 9.9 shows an overview of the six different crystal
structures, which are available for the sequences. A detailed analysis of the n-
grams shows that the n-gram SDGW and KIMFV are already known as binding
site for Glutamate. N-gram CDAM is involved in a DSB. The other n-grams of
Table 9.10 are not attributed currently a known functionality.

Structure Description

4XAQ mGluR2 ECD and mGluR3 ECD with ligands
4XAS MgluR2 EDC ligand complexed
5CNI Mglu2 with Glutamate
5CNJ Mglu2 with Glutamate analog
5KZN Mglu2/3 Receptor Antagonist with Antidepressant Like Activity
5KZQ Mglu receptor with Antagonist

Table 9.9.: Crystal structures for mG receptor subtype 2.
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N-gram Pos. Binding Site DSB Structure

RYD 177-179 - - -
WTYVS 204-208 - - conn. helix to strand
SDGW 294-297 295, Glutamate - -
NSRN 339-342 - - -

RNPWF 341-345 - - partly helix
WFRE 344-347 - - helix
KIMFV 377-381 377, Glutamate - helix
CDAM 407-410 - 400-407 helix
GRY 451-453 - - partly strand
GRY 464-466 - - partly strand

Table 9.10.: Detailed analysis of functions and structures related to Q14416.

Crystal structures of Metabotropic Glutamate Receptor subtype 3 (related to
sequence P31422) In this section we review the crystal structures characterized
as mG receptor of subtype 3, which comprises the sequence with UniprotKB Id
P31422 as chain A and B. Table 9.11 shows an overview of the five different crystal
structures, which are available for the sequence. A detailed analysis of the n-grams
shows that the n-gram SDGW and KIMFV are already known as binding site for
Glutamate. N-gram CDAM is involved in a DSB. The other n-grams of table 9.12
are not attributed currently a known functionality.
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Structure Description

2E4U
Extracellular region of group II mG receptor

complexed with L-glutamate

2E4V
Extracellular region of group II mG receptor

complexed with DCG-IV

2E4W
Extracellular region of group II mG receptor

complexed with 1S,3S-ACPD

2E4X
Extracellular region of group II mG receptor

complexed with 1S,3R-ACPD

2E4Y
Extracellular region of group II mG receptor

complexed with 2R,4R-APDC
Table 9.11.: Crystal structures for mG receptor subtype 3.

N-gram Pos. Binding Site DSB Structure

RYD 183-185 - - -
WTYVS 210-214 - - conn. to strand
SDGW 300-303 301, Glutamate - -
NHRN 345-348 - - -
RNPWF 347-351 - - conn. to helix
KIMFV 389-393 389, Glutamate - helix
CDAM 419-422 - 412-419 helix
GRY 464-466 - - conn. to strand

Table 9.12.: Detailed analysis of functions and structures related to P31422.

Crystal structures of Metabotropic Glutamate Receptor subtype 3 (related to
sequence Q14832) In this section we review the crystal structures characterized
as mG receptor of subtype 3, which comprises the sequence with UniprotKB Id
Q14832 as chain A and B. Table 9.13 shows an overview of the four different
crystal structures, which are available for the sequence. A detailed analysis of the
n-grams shows that the n-gram SDGW and KIMFV are already known as binding
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site for Glutamate. N-gram CDAM is involved in a DSB. The other n-grams of
Table 9.14 are not attributed currently a known functionality.

Structure Description

3SM9
Metabotropic glutamate receptor 3 precursor

in presence of LY341495 antagonist

5CNK
Metabotropic glutamate receptor 3

with Glutamate

5CNM
Metabotropic glutamate receptor 3 complexed

with Glutamate analog

4XAR
mGluR2 ECD and mGluR3 ECD

complexed with ligands
Table 9.13.: Crystal structures for mG receptor subtype 3 (Q14832).

N-gram Pos. Binding Site DSB Structure

RYD 183-185 - - -
WTYVS 210-214 - - conn. to strand
SDGW 300-303 301, Glutamate - -
NHRN 345-348 - - -
RNPWF 347-351 - - conn. to helix
KIMFV 389-393 389, Glutamate - helix
CDAM 419-422 - 412-419 helix
GRY 464-466 - conn. to strand

Table 9.14.: Detailed analysis of functions and structures related to Q14832.

Crystal structures of Metabotropic Glutamate Receptor subtype 5 (related to
sequence P41594) In this section we review the crystal structures characterized
as mG receptor of subtype 5, which comprises the sequence with UniprotKB Id
P41594 as chain A and B. Table 9.15 shows the description of the crystal structure
available for the sequence. A detailed analysis of the n-grams shows that the
n-gram SDGW and KMGFV are already known as binding site for Glutamate.
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N-gram CDAM is involved in a DSB. The other n-grams of Table 9.16 are not
attributed currently a known functionality.

Structure Description

3LMK
Ligand Binding Domain of Metabotropic glutamate

receptor mGluR5 complexed with glutamate
Table 9.15.: Crystal structures for mG receptor subtype 5 (P41594).

N-gram Pos. Binding Site DSB Structure

WTYVS 211-215 - - conn. to strand
CEGM 278-281 conn. to helix
SDGW 304-307 305, Glutamate - -
RYD 310-312 - - helix
NHRN 349-352
RNPWF 351-355 - - conn. to helix
KMGFV 396-400 396, Glutamate - helix
CDAM 426-429 - 419-426 helix
GRY 464-466 - conn. to strand

Table 9.16.: Detailed analysis of functions and structures related to P41594.

Crystal structures of Metabotropic Glutamate Receptor subtype 7 (related to
sequence P35400) In this section we review the crystal structures characterized
as mG receptor of subtype 7, which comprises the sequence with UniprotKB Id
P35400 as chain A and B. Table 9.17 shows the description of the crystal structure
available for the sequence. A detailed analysis of the n-grams shows that the
n-gram SDSW and KVQFV are already known as binding site for Glutamate.
N-gram CPEM is involved in a DSB. The other n-grams of Table 9.18 are not
attributed currently a known functionality.
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Structure Description

2E4Z
Ligand-binding region of the group III

metabotropic glutamate receptor
Table 9.17.: Crystal structures for mG receptor subtype 7 (P35400).

N-gram Pos. Binding Site DSB Structure

RYD 191-193 - - -
WNYVS 218-222 - - conn. to strand
SDSW 313-316 314, Glutamate - -
NRRN 358-361 - - -
RNVWF 360-364 - - conn. to helix
WFAE 363-366 - - helix
KVQFV 407-411 407, Glutamate - helix
CPEM 437-440 - 430-437 -
GRY 475-477 - conn. to strand
RYD 476-478 - - conn. to strand

Table 9.18.: Detailed analysis of functions and structures related to P35400.

Crystal structures of Metabotropic Glutamate Receptor subtype 7 (related to
sequence Q14831) In this section we review the crystal structures characterized
as mG receptor of subtype 7, which comprises the sequence with UniprotKB Id
Q14831 as chain A and B. Table 9.19 shows the description of the two crystal
structures available for the sequence. A detailed analysis of the n-grams shows that
the n-gram SDSW and KVQFV are already known as binding site for Glutamate.
N-gram CPEM is involved in a DSB. The other n-grams of Table 9.20 are not
attributed currently a known functionality.
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Structure Description

3MQ4
Metabotropic glutamate receptor 7

complexed with LY341495 antagonist
5C5C Metabotropic glutamate receptor 7

Table 9.19.: Crystal structures for mG receptor subtype 7 (Q14831).

Crystal structures of the extracellular domain of human calcium sensing re-
ceptor (related to sequence P41180) In this section we review the crystal struc-
tures characterized as a extracellular CS receptor, which comprises the sequence
with UniprotKB Id P41180 as chain A and B. Table 9.21 shows an overview of the
four different crystal structures, which are available for the sequences. A detailed
analysis of the n-grams shows that the n-gram NFRGFRW is already known as
an anion binding site. As well n-gram RHLN is related to a Glycosylation site
in position 468. The other n-grams of Table 9.22 are not attributed currently a
known functionality.

Crystal structures of the extracellular domain of human Gaba B receptor (re-
lated to sequence Q9UBS5 and O75899) In this section we review the crystal
structures characterized as a extracellular Gaba B receptor, which comprises the
sequence with UniprotKB Id Q9UBS5 as chain A and the sequences O75899 as
chain B. Table 9.23 shows an overview of the eleven different crystal structures,
which are available for the sequences. A detailed analysis of the n-grams shows
that for sequence Q9UBBS5 only n-gram DARIIVG is already known as a binding
site for agonists and involved in a DSB. For sequence O75899 the n-gram FC-
CAY is involved in a DSB. The resting n-grams of Table 9.24 are not attributed
currently a known functionality.

9.2.3. Discussion

In the current experiment we have recollected a set of crystal structures related
to the extracellular domain of receptors for class C GPCR subtypes mG, CS and
GB. For subtype Ta there are no crystal structures available for the extracellular
domain.
As a first step we analyzed whether the subtype specific n-grams identified by the
χ2 filtering approach are part of the crystalized sequences. This was thought as a
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screening method to identify those crystal structures relevant for a more detailed
analysis in reference to the subtype specific n-grams. In the case of mG the analysis
was quite successfull as 10 out of the 14 crystal structures contained a larger set
of subtype specific n-grams. For subtype CS only two crystalized sequences were
available, which both contained CS subtype specific n-grams. For GB two out of
the five crystalized sequences contained subtype specific n-grams.
A detailed analyis with respect to functional and structural information, either
obtained from a protein knowledgebase (UniProtKB) or by visualization of the 3-D
structure with UCSF Chimera, revealed interesting information about the subtype
specific n-grams: For mG most crystalized sequences contained a n-gram matching
the SDXW and KXXFV pattern: For sequences P23385, Q14416, P31422, Q14832,
P41594 the first pattern is expressed as n-gram SDGW and for sequences P35400
and Q14831 (mG subtype 7) it is expressed as n-gram SDSW. The second pattern
KXXVF for sequences P23385, Q14416, P31422, Q14832 and P41594 appears
either as n-gram KMGFV or KIMFV while for sequences P35400 and Q14831
(mG subtype 7) it appears as n-gram KVQFV. This coincidence is important as
both pattern describe two known Glutamate binding sites of the mG receptor.
As well in most crystalized sequences the n-grams CDAM or CPEM (described
with the pattern CXXM) are present, which have a structural importance as part
of a DSB. For mG the other subtype specific n-grams have no annotated known
functionality. For most mG specific n-grams it was possible to retrieve information
about its secondary structure.
For CS two already known binding sites were found: The n-gram NFRGFRW
contains a 3-lengths binding site for anions and the n-gram RHLN is a binding
site for Glycosylation. The other eight CS specific n-grams do not have a known
functionality.
For GB a known agonist binding site was detected with pattern DARIIVG. The
other n-grams present in the crystalized structures may also have a functional or
structural significance what possibly could be analyzed with the information from
the 3-D structure.

9.2.4. Conclusion

In this research we connected the discovery of short subtype specific AA sequences
through ML methods with the functional and structural information derived from
crystal structure or annotations of a protein knowledge database. In previous re-
search we applied ML methods on the unaligned AA sequences of class C GPCRs
and identified for some subtypes, namely mG, CS, GB and Ta, a set of charac-
teristic n-grams. In this investigation we have verified that many of the subtype
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specific n-grams actually form part of the crystalized sequences,what makes an
analysis regarding their structural and functional significance at the biochemical
level feasible. As well we have confirmed the effectiveness of the ML approach used
to identify subtype specific n-grams, as some of the detected n-grams describe im-
portant segments of the receptors such as binding sites for receptor activation.
A future line of work could be the investigation of those subtype specific n-grams
without yet known functionality to determine whether they have a functional or
structural significance. This analysis should be done by biochemical experts taking
into account the available information about their 3-D configuration from the
crystal structures.
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Id Subtype Sequence Size Index 3D structures
M1 mG1 P23385 490 33-522 1EWK, 1EWT, 1EWV

1ISR, 1ISS
M2 mG1 Q13255 496 28-518 3KSG
M3 mG1 Q13255 389 581-860 4OR2
M4 mG2 Q14416 503 2-493 4XAQ, 4XAS, 5CNI

5CNJ
M5 mG2 Q14416 570 1-562 5KZN, 5KZQ
M6 mG3 P31422 555 25-575 2E4U, 2E4V, 2E4W

2E4X, 2E4Y
M7 mG3 Q14832 479 26-504 3SM9
M8 mG3 Q14832 506 2-507 5CNK, 5CNM
M9 mG3 Q14832 507 2-508 4XAR
M10 mG5 P31424 6 1155-1160 1DDV
M11 mG5 P41594 444 569-836 4OO9, 5CGC, 5CGD
M12 mG5 P41594 492 18-505 3LMK
M13 mG7 P35400 501 33-521 2E4Z
M14 mG7 Q14831 481 37-513 3MQ4, 5C5C

Table 9.1.: Relation of crystal structures for mG: Sequence denotes the protein
sequence by its Uniprot Accesion Id, size denotes the lengths in AA of the
segment, Index describes which part of the sequence is crystalized and 3-D
structures reports the PDB entry code of the structures.
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Id Subtype Sequence Size Index 3D structures
C1 CS P41180 568 20- 541 5FBH, 5FBK
C2 CS P41180 615 20-607 5K5S, 5K5T

Table 9.3.: Relation of crystal structures for CS: Sequence denotes the protein
sequence by its Uniprot Accesion Id, size denotes the lengths in AA of the
segment, Index describes which part of the sequence is crystalized and 3-D
structures reports the PDB entry code of the structures.

N-grams
GTRKG RGFRW TAXXI WNWXG IXXIE
GTXKG GFRW VIVVF WNXXG MIXXI
GTRXG RGFR VIVV NWXG
TRKGI NFRGF VIXVF WXGXI
TRKXI FRGFR VIVXF
TXKGI

C1 NFRGFRW TAKVIVVF WNWVGTI MIFAIE
C2 GTRKGI NFRGFRW TAKVIVVF WNWVGTI MIFAIE

N-grams
KXIE GGTIG AADDD MAXXI RXLN

GGXIG DDDXG
C1 GGTIG AADDDYG MADII RHLN
C2 KAIE GGTIG AADDDYG MADII RHLN

Table 9.4.: Analysis of matching betw. CS specific n-grams and crystalized se-
quences identified with C1 and C2.
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Id Subtype Sequence Size Index 3D structures
G1 GB1 Q9ZOU4 68 96-159 1SRZ, 1SS2
G2 GB1 Q9UBS5 420 165-576 4MQE, 4MQF, 4MR7, 4MR8

4MR9, 4MRM, 4MS1, 4MS3
4MS4

G3 GB1 Q9UBS5 41 879-919 4PAS
G4 GB2 O75899 423 42-466 4F11, 4F12, 4MQE, 4MQF,

4MR7, 4MR8, 4MR9, 4MRM
4MS1, 4MS3, 4MS4

G5 GB2 O75899 41 779-819 4PAS
Table 9.5.: Relation of crystal structures for GB: Sequence denotes the protein
sequence by its Uniprot Accesion Id, size denotes the lengths in AA of the
segment, Index describes which part of the sequence is crystalized and 3-D
structures reports the PDB entry code of the structures.
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N-grams
YDXXW SKXHG DXRII GWY WAXAL
YDAXW KXHG DXRXI WXXAL
YXAXW RII
DAXW DXRI

RIIXG
G1
G2 YDAIW DARIIVG GWY WALAL
G3
G4 SKFHG DVRIILG GWY

N-grams
DGXW FCXXY WIXXG AXXVF
YXGXW WIXPG
YDGXW WIIP
YDXIW WIXP
YDXXW YXWII

YXWI
G1
G2 FCEVY ARKVF
G3
G4 YDGIW FCCAY YQWIIIP AAKVF

Table 9.6.: Analysis of matching betw. GB specific n-grams and crystalized se-
quences identified with G1 - G4.
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Structure Description

1EWK mG receptor subtype 1 complexed with Glutamate
1EWT mG receptor subtype 1 ligand free form I
1EWV mG receptor subtype 1 ligand free form II
1ISR1 mG receptor complexed with Glutamate and Gadlinium Ion
1ISS mG receptor subtype 1 complexed with antagonist

Table 9.7.: Crystal structures for mG receptor subtype 1.

N-gram Pos. Binding Site DSB Structure

WTYVS 224-228 - - from 226 strand
SDGW 317-320 318, Glutamate - strand
NTRN 362-365 - - -
RNPWF 364-368 - - from 367 helix
WFPE 367-370 - - helix
KMGFV 409-413 409, Glutamate - helix
CDAM 439-442 - - strand
KSSFV 456-460 - - conn. helix to strand
WFDE 468-471 - - strand
GRYD 477-480 - - strand

Table 9.8.: Detailed analysis of functions and structures related to P23385.
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N-gram Pos. Binding Site DSB Structure

RYD 191-193 - - -
WNYVS 218-222 - - conn. to strand
SDSW 313-316 314, Glutamate - -
NRRN 358-361 - - -
RNVWF 360-364 - - conn. to helix
WFAE 363-366 - - helix
KVQFV 407-411 407, Glutamate - helix
CPEM 437-440 - 430-437 helix
GRY 475-477 - conn. to strand
RYD 476-478 - - conn. to strand

Table 9.20.: Detailed analysis of functions and structures related to Q14831.

Structure Description

5FBH Extracellular domain of human caSe receptor with bound Gd3+
5FBK Extracellular domain of human caSe receptor
5K5S Active form of human CaSe receptor extracellular domain
5K5T Inactive form of human CaSe receptor extracellular domain

Table 9.21.: Crystal structures for CS extracellular domain.
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N-gram Pos. Binding Site DSB Structure

NFRGFRW 64-70 66-70, anion binding - helix
MIFAIE 75-79 - - helix
MADII 197-201 - - helix

WNWVGTI 206-212 - - partly strand
AADDDYG 213-219 - - conn. strand to helix
TAKVIVVF 263-270 - - end is strand
GGTIG 315-319 - - conn. helix to strand

RHLN 465-468
468, Glycosylation

- conn. helix to strand
N-linked asparagine

GTRKGI 549-554 - - strand

KEIE 600-603 - -
from 602/603 without

crystal structure
Table 9.22.: Detailed analysis of functions and structures related to P41180

Structure Description Q9UB5S O75899

4F11 GABA(B) receptor GBR2. x
4F12 GABA(B) receptor GBR2. x
4MQE GABA(B) receptor in the appo form x x
4MQF GABA(B) bound to antagonist 2-hydroxysaclofen x x
4MR7 GABA(B) bound to antagonist CGP54626 x x
4MR8 GABA(B) bound to antagonist CGP35348 x x
4MR9 GABA(B) bound to antagonist SCH50911 x x
4MRM GABA(B) bound to antagonist phaclofen x x
4MS1 GABA(B) bound to antagonist CGP46381 x x
4MS3 GABA(B) bound to endogenous agonist GABA x x
4MS4 GABA(B) bound to agonist baclofen x x

Table 9.23.: Crystal structures for GB extracellular domain.
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Sequence N-gram Pos Binding Site DSB Structure

Q9UBS5

DARIIVG 241-247 247, agonist 220-246 helix
ARKVF 254-258 - - helix
FCEVY 258-262 - - helix
GWY 277-279 - - -

YDAIW 354-358 - - helix
WALAL 358-362 - - helix

O75899

DVRIILG 247-253 - helix to strand
AAKVF 260-264 - helix
FCCAY 264-268 - 265-302 helix

YQWIIPG 277-283 - strand
GWY 283-285 - -
SKFHG 352-356 - partly helix
YDGIW 359-363 - helix

Table 9.24.: Detailed analysis of functions and structures related to Q9UBS5
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10. Conclusions and future work
We end this dissertation by proposing some lines for future research that arise
from the main contributions of the thesis.
In this research we analyzed different types of FS methods in order to examine ex-
tense feature sets of AA patterns. The experiments found a two-step FS approach
using forward selection and an univariate test suitable for reducing the feature
sets to a small set of very discriminative AA patterns. We applied the proposed
approach on both the entire sequence and the N-terminus, which was found to be
nearly as discriminative between subtypes as the whole sequence. Focusing on the
N-terminus the objective was to find motifs, which form part of the ortohosteric
binding site in the extracellular domain. The ortohosteric binding site is located in
the extracellular domain, specifically at the VFT, which comprises two opposing
lobes with a cleft where endogenous ligands bind.
As first line of future research we plan to apply the here proposed FS approach
also to the segments relevant for the allosteric modulation, i.e. to the 7TM do-
main. Allosteric modulators are of especial interest in comparison to orthosteric
ligands due to their reduced desensitization, tolerance and side effects as well as
higher selectivity among receptor subtypes and activity depending on the spatial
and temporal presence of endogenous agonist [28]. Furthermore it is worth noting
that, although no GPCR allosteric modulators have yet been approved for psychi-
atric or neurological disorders, a number of GPCR allosteric modulators including,
particularly, some from class C, are under clinical development [28].
Regarding the analysis of the signifcance at the biochemical level of the motifs of
the N-terminus we started to analyze whether the short AA patterns identified
as subtype specific form part of the set of crystallographic structures known for
class C GPCRs. This analysis found some motifs to appear very frequently in the
known crystal structures and a short review of the functional annotation of the
sequences revealed that many of them do not have a known functionality. The
frequent appearance of these AA patterns in the known crystal structures gives
foundation to further investigate the significance of these AA patterns in the field
of compuational chemistry as a second future line of research.
As third line of research we also plan to extend the research on the proposed
systematic mislabel analysis approach. In this study, we have proposed a system-
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atic procedure, based on SVM classification, to single out and characterize GPCR
sequences with consistent misclassification behaviour.The reported experimental
results represented a proof of concept for the viability of such procedure as part
of a decision support system that, combined with expert knowledge in the field,
should be able to assist the discovery of GPCR database labelling quality prob-
lems. We plan to extend this research by implementing the proposed mislabel
analysis approach as a software tool, what allows an interactive exploration of the
mislabeled items for a user defined thresholds for both the voting ratio (Rs) and
the cumulative decision value (CDVs) .
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A. Appendix

A.1. Figures of the misclasification analysis

This section contains the figures related to the misclasification analysis of the 2011
class C GPCR dataset described in section 5.3.2:

Figure A.1.1.: Boxplot representation of the Accu of the AA, Digram, ACC and
PDBT dataset.
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Figure A.1.2.: Boxplot representation of the MCC of the AAC, Digram, ACC
and PDBT dataset.
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Figure A.1.3.: Treevolution radial PT in which the main sections occupied by
each of the seven class C GPCR subtypes are explicitly represented by archs
or groups of archs in the periphery of the tree. Note that branch colors are
automatically generated during PT construction and do not correspond to class
C subtypes.
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Figure A.1.4.: Mislabelings predicted to be mG. Five sequences with large clas-
sification errors were mislabeled as mG. Sequence ]7 was labeled as V N in
GPCRDB; ]2 and ]4 were labeled as CS; ]8 was labeled as Ph; and ]9 was
labeled as Od.
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Figure A.1.5.: Mislabelings predicted to be Od. One sequence (]1, labeled as
mG in GPCRDB) with large classification error was mislabeled as Od.
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Figure A.1.6.: Mislabelings predicted to be Ph. Four sequences with large clas-
sification errors were mislabeled as Ph. Sequence ]3 was labeled as CS in
GPCRDB; ]11 was labeled as Od; and ]5 and ]6 were labeled as V N .
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Figure A.1.7.: Mislabelings predicted to be Vn. One sequence (]10, labeled as
Od in GPCRDB) with large classification error was mislabeled as V n.

A.2. List of frequent misclassified sequences

Tables A.1 and A.2 contain the list of 52 frequently misclassified sequences that
were common to all four data transformations, namely the AAC, Digram, ACC
and PDBT transformations. A strong agreement on the most-often predicted class
C GPCR subtypes can be observed.
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True class Predicted class label
GPCRdb Id GPCRdb ACC Digram ACC PDBT
a8dz71_danre mG Od Od Od Od
a8dz72_danre mG Od Od Ph Od
q5i5d4_9tele mG Od Od Od Od
q5i5c3_9tele mG Od Od Od Od

XP_002123664 CS mG mG mG mG
q8c0m6_mouse CS GB GB Ph GB
XP_002740613 CS Ph Od Od Ph
XP_002738008 GB mG mG mG mG
q8bid7_mouse VN Od Od Od Od
XP_002936197 VN Ph Ph Ph Ph
XP_002940476 VN Ph Ph Ph Ph
XP_0029341318 VN mG mG mG or Ph mG
XP_002941777 VN mG Ph mG or Ph Ph
NP_001093066 VN mG Ph Ph mG
NP_001093039 VN Ph Ph Ph Ph
XP_001517645 VN Ph or Od Ph Ph Od
NP_001098007 VN Ph Ph Ph Ph
o70411_rat VN Od Od Od Od

q8tdu1_human VN Od Od Od Od
XP_917917 VN Od Od Od Od

a7sdg9_nemve Ph mG mG mG mG
a7s0d2_nemve Ph mG mG mG mG
b3s157_triad Ph GB mG mG mG
b3s609_triad Ph mG mG mG mG
XP_002732067 Ph mG mG mG mG

Table A.1.: Frequently misclassified sequences common to all four data trans-
formations for subtypes mG, Cs, GB, VN and Ph. It includes the following
columns: GPCRDB identier, GPCRDB true class, and predicted class for, in
turn, the AAC, Digram, ACC and PDBT transformations.
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True class Predicted class label
GPCRdb Id GPCRdb ACC Digram ACC PDBT
q4spr3_tetng Ph GB mG mG mG
XP_002937659 Ph mG mG mG mG
XP_001368172 Ph VN VN VN VN
NP_001093018 Ph VN VN VN VN
NP_001093020 Ph VN VN VN VN
NP_001093016 Ph VN VN VN VN
XP_002723938 Ph VN VN VN VN
XP_002936172 Ph VN VN VN VN
q9pwe1_ictpu Ph mG mG mG mG
b0uyj3_danre Ph mG mG mG mG
NP_001093040 Ph VN VN VN VN
XP_001075542 Ph Od Od Od Od
XP_001521075 Ph mG mG mG mG
q6unx3_ictpu Od Ph Ph Ph mG or Ph
gpc6a_human Od VN Ph Ph mG or VN
b3rud8_triad Od mG mG mG mG
d1lwx7_sacko Od VN CS CS mG or CS
XP_002936177 Od VN VN VN VN or Ph
XP_002936183 Od mG or VN VN Ph Ph
XP_002937663 Od Ph Ph Ph Ph
XP_002940477 Od Ph Ph Ph Ph
XP_002940566 Od VN Ph Ph Ph
XP_002940324 Od VN VN VN VN
XP_002940329 Od VN VN VN VN
XP_002942058 Od VN Ph Ph Ph
XP_002941773 Od mG Ph Ph Ph
XP_002943912 Od VN or Ph Ph Ph Ph

Table A.2.: Frequently misclassified sequences common to all four data transfor-
mations for subtypes Ph and Od. It includes the following columns: GPCRDB
identier, GPCRDB true class, and predicted class for, in turn, the AAC, Digram,
ACC and PDBT transformations
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