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Introduction 1

1 Introduction

1.1 Motivation

One of the main research topics in Artificial Intelligence in the last decade
has been the design and construction of rational agents. This kind of entities
may be defined in many different ways; a standard and commonly used def-
inition, which shall be assumed throughout this dissertation, describes them
as those systems that have some kind of perception and try to act upon the
environment so as to achieve their goals, given their beliefs ((RuNo95]). Note
the importance given to the agent’s beliefs in this definition, as they are im-
plicitly guiding its behaviour (e.g. by being used in order to select the most
appropriate action to take between different available alternatives).

There are extensive reviews of different types of architectures for rational
agents available en the literature ([WoJe95], [Miill97a], [Wo0l99]). Some of
the most well-known architectures are shown in table 1, along with related
bibliographical references.

‘ Architecture ‘ References ‘

[Maes89], [Broo91], [RoKa96|
Logic-based architectures [Fish94], [Lésp96], [SRGI9]
Procedural Reasoning System [GeLa87], [GeIn89], [[CARI6]
Belief-Desire-Intention architectures [Brat87], [CoLe90], [RaGe95b]

[

[

[

[

Reactive architectures

Implicit agent architecture Denn78|, [Denn84|
Agent-oriented programming paradigm | [Shoh90], [Shoh93], [Shoh98]
Defeasible reasoner Poll90], [Poll195], [Poll00]
Layered architectures Ferg95], [Miill97h]

Table 1: Some architectures for rational agents

This dissertation focuses on a subclass of agents, namely on the so-called
deliberative agents. These agents must keep an internal explicit representa-
tion of their environment and of their mental state, which may be modified by
some sort, of syntactic inference procedure. Other kinds of architectures, such
as the reactive ones, are not considered in this work. Most of the entries in
the above table (except the first one) may be qualified as deliberative agents.
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Their architecture is usually composed of a knowledge base, that stores rel-
evant facts about the agent and its environment, and modules that may
perform inferences from those facts, interact with the agent’s environment,
create and evaluate different plans, etc. The knowledge base constitutes a
description of the world, and may be taken to explicitly represent the agent’s
beliefs about its environment (or even about itself or about other agents).

Being more specific, in this dissertation the expression “rational agents”
is taken to refer to those agents that, apart from complying with the previous
definition, are constantly trying to make their beliefs as similar as possible
to the facts that hold in the real world (a more detailed analysis of our
conception of rational agents is given in §4). They keep trying to expand
their beliefs (by including facts that are true in their environment) and to
get rid of wrong beliefs (those that do not reflect the actual state of the
world). This process has been traditionally called rational inquiry ([ReBr79]).
The classical philosophical tradition has considered two components in this
process: a rational one, that consists in the application of some inference
procedures to the present beliefs (resulting in the addition of new beliefs or
the discovery of some incompatibility in them), and an empirical one, which
adds or removes beliefs according to the results of the observations performed
in the agent’s environment ([ReBr79]). These components will find their
counterparts in the logical and experimental dimensions of belief analysis
performed by a especial kind of agents called rational inquirers, which will
be defined in §4. Therefore, a rational agent’s set of beliefs is constantly
evolving in time, as the agent keeps updating it to take into account the
results of its own internal inference procedures or the information that it
may have gathered or received from the environment.

One of the main issues in Artificial Intelligence (and the main topic in this
dissertation) is how to build a formal model of the evolution of the beliefs
of a rational agent. Having such a model should be interesting and useful at
least for the following reasons:

e Agent technology is developing at a tremendous rate. Agent (and multi-
agent)-based systems are achieving a great complexity, and tools that
may be used to describe the evolution of an agent’s belief set should be
useful in order to provide a description of the agent’s process of inquiry
at a high level of abstraction, appropriate for an adequate comprehen-
sion of the behaviour of the agent by an external user of the system.
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e Being a formal model, it forces us to explicit every underlying assump-
tion, resulting in a deeper and more complete understanding of the
system by their designers and programmers.

e Some formal models may be even used later as the basis of specific im-
plementations of multi-agent systems. For instance, the Belief-Desire-
Intention (BDI) model has been actually used to guide the implemen-
tation of agents whose behaviour is explained in terms of these three
propositional attitudes ([RaGe92], [RaGe95b], [SRG99]).

However, it is fair to note that there is still a big gap between the for-
mal models that describe the behaviour of multi-agent systems and the
actual implementation of these systems. In this dissertation we provide
a characterisation of the main activities that a rational agent may per-
form on its beliefs, and we suggest a particular way of implementing
them in a class of agents called rational inquirers, which is presented
in §4.

e The rationale underlying a further (and probably the most important)
motivation for our work is developed in detail in the rest of this in-
troductory chapter. Existing formal models of belief (based in the
classical possible worlds model and its associated Kripke semantics, to
be described in §1.2.3) model agents that must necessarily believe all
classical tautologies and whose set of beliefs is necessarily closed un-
der classical logical consequence. Thus, this model is suitable only in
ideal settings, where the modelled agents are assumed to be logically
omniscient and perfect reasoners. An important aim in our work is
to provide a framework in which the evolution of the beliefs of a real,
non-ideal, limited agent may be successfully modelled.

1.2 Formal models of belief

This section offers a brief presentation of the two main kinds of formalisms
that have been traditionally used to model the reasoning processes that a ra-
tional agent may perform on its beliefs: syntactic (§1.2.1) and modal (§1.2.2).
The attention is focused in the latter class of models; more specifically, in
doxastic modal logics (i.e. modal logics of belief). The possible worlds model
and the Kripke semantics are presented in §1.2.3; they are regarded as the
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classical way of giving a natural and intuitive semantics to doxastic formulae.
However, this model has a serious drawback, explained in §1.2.4: the agents
that it models must have ideal reasoning capabilities, as they must believe
every classical tautology (no matter how intricate it may be) and they must
also believe every logical consequence of their beliefs (regardless of the re-
sources that may be available to the agent, e.g. space or time). Thus, that
result motivates the need for a formal model of a rational agent’s reasoning
process that may be used in the case of non-ideal agents. This motivation will
also be supported in §2, after providing a detailed survey of the strenghts and
weaknesses of the main approaches that have been proposed in the literature
in order to overcome the logical omniscience problem.

1.2.1 Syntactic treatments of belief

There are two main kinds of formalisms used to model the reasoning pro-
cesses that an agent may perform on its beliefs: the syntactic treatments and
the modal approaches. The so-called syntactic treatments of belief are not
considered throughout this dissertation. In these approaches the notion of
belief is represented in the language of predicate calculus by the predicate
bel, where in bel(’a’), ’a’ is the name of the formula «. Thus, the language
must include terms that are the names of the formula of the language (that
is why the resulting logics are called “reified epistemic logics”). The main
advantage of these approaches is its expressivity (e.g. it allows statements
such as “a believes something” (3x bel(a, x)) or “3 believes everything that
« believes” (Vx (bel(w, z) = bel((3,x))), which may not be expressed in the
modal approach. However, they also suffer from some limitations ([Kono86a],
[McAr88]):

e The notation needed for a first-order meta-language is very complex,
because there must exist terms that refer to the expressions in the
object language, as explained above.

e Montague ([Mont63]) and Thomason ([Thom80]) showed that the (epis-
temic and doxastic) first-order theories that contain axioms that for-
malise number theory and axioms that correspond to standard modal
axioms T,4 and 5' are inconsistent. However, it may be shown that

! These modal axioms are defined below, in §1.2.3.
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this inconsistency disappears if the first-order language is restricted to
those formulz that have a modal counterpart, see [DRLe88].

e [t has also been argued that a system that uses standard theorem
proving techniques over the axiomatisation of these meta-language ap-
proaches may run into severe computational problems.

The notational burden imposed on the user by the syntactic approaches
has made them much less popular than the modal approaches for modelling
doxastic and epistemic notions in the last years. Some of these syntactic
approaches are deeply commented in [Kono86a], [McAr88], [DRLe88] and
[Reic89.

1.2.2 Modal doxastic logics

This proposal is centered in those approaches in which there is a modal
treatment of belief: modal logics of knowledge and belief (epistemic and
doxastic logics). These modal logics are used to analyse in a formal way the
reasoning about knowledge or belief performed by an agent.

In propositional modal logic two unary operators (0 and <) are added to
propositional logic; they are called the necessity or universal modal operator
and the possibility or existential modal operator, respectively. The existential
modal operator may be considered as the dual of the universal operator,
because it is defined in the following way: GA = —O-A. The rules used to
build formula in propositional modal logics are the following:

e The rules of propositional logic.
e If A is a formula, then OA and <A are also formulae.

The modal operators can be interpreted in a variety of ways, which give
rise to different logics. The most interesting ones are:

e Alethic logics: OA is interpreted as “A is necessary”, and CA as “A is
possible”.

e Default logics: OA denotes the fact that “A is normally the case”.

e Deontic logics: DA is interpreted as “A is compulsory”, and OA as “A
is allowed”.
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e Doxastic (or belief) logics: OA means “A is believed” and <A can be
interpreted as “A is plausible”.

e Dynamic logics: in this kind of logics there is a modal operator associ-
ated to each program. OyA means “A is the case after every execution
of the program ¢”, whereas GyA can be interpreted as “There is some
execution of the program ¢ that makes A be the case”.

e Epistemic (or knowledge) logics: OA is interpreted as “A is known”,
and OA as “A is plausible”.

e Provability logics: OA is read as “A is provable”, and OA means “A is
consistent”.

e Temporal logics: OA means “A will always be the case”, and A is read
as “A will (at some point in the future) be the case”.

1.2.3 Possible worlds and Kripke semantics

In the literature of doxastic logics the universal modal operator (O) is usually
called B. If several (m) agents are taken into account, a family of subscripted
operators (Bj, Bs, ..., By,) is considered (where B;p is read as “Agent; be-
lieves ¢”). The usual language of propositional doxastic logic for m agents
contains a set of primitive propositions (P, Q, R, ...), the basic logical op-
erators (-, V, A and =) and the modal belief operators B;, Bs, ..., By,.
The formula of this language are the primitive propositions and the appli-
cations of the logical operators or the modal operators to other formula of
the language.

The semantic model traditionally adopted as a basis in doxastic logics is
the possible worlds model ([Hint62]). This model is based on the assumption
that there is a set of possible states (or possible worlds) in which the agent
can be in any moment; when the agent is in a possible world, there is a
set of possible worlds which are compatible with the actual world, in the
sense that the agent cannot distinguish these worlds from the actual one.
The usual semantics given to the formula of the doxastic language described
above is the Kripke semantics ([Krip63b]), that states that the agent believes
a formula if and only if it is true in all the worlds that the agent cannot tell
apart from the actual world.
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Definition 1 (Kripke structures)

A normal Kripke structure is a tuple of the form (S, m, Ry, ..., Rp),
where S is the set of possible worlds, w is a truth assignment to each primitive
proposition in each world and R; is the accessibility relation between worlds
for Agent; ((s, t) € R; iff s and t are indistinguishable worlds for Agent;).
Given a normal Kripke structure M, the relation M, s = ¢ (read “p is true
(or satisfied) in state s of model M”) is usually defined in the following way:

e M, s = P, being P a primitive proposition, if m(s, P) = true
o M, s=—pif M, sl ¢
M,sE(eVY)ifM,skE ¢ orM,sE1
e M,sE(pANY)ifM,sE ¢ and M, s = ¢
M, sE(p=9)ifM,sE —¢ orM, s k=

[ J
e M, s = By if M, t = ¢ Vt such that (s, t) € R;

The last clause formalizes the conception of beliefs previously stated: an
Agent; believes a proposition ¢ when it is true in all the worlds considered
possible by the agent, i.e. in all the worlds that it cannot tell apart from the
actual world. That means that ¢ has to be true in all the worlds connected
to the actual world through R;, which is the accessibility relation between
worlds for Agent;.

Definition 2 (Axiomatic systems and Kripke structures)

A formula ¢ is said to be provable in an aziomatic system S (denoted as
Sk¢, Fsd or just =, if S is clear from the context) if it is an instance of one
of the axioms of S or if it can be obtained by applying one of the inference
rules of S to provable formule. A formula is said to be true in a class of
Kripke structures if it is true in every state of every structure of the class.
An axiomatic system S is sound with respect to a class of Kripke structures
C if every formula provable in S is true in C. S is complete with respect to C
if every formula which is true in C can be proved in S. An ariomatic system
characterizes a class of Kripke structures when it is a sound and complete
axiomatization of the class.
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Proposition 1 (Axiomatization of Kripke structures)

There exists a sound and complete axiomatization of the class of all nor-
mal Kripke structures for m agents ([HaMo92]). It has two azioms and two
inference rules, which are the following:

e A1. All the instances of tautologies of propositional calculus.
e A2. (Bip AN Bi(p = v¢)) = By (aziom K)
e R1. From by and F(p = ) infer = (Modus Ponens)

e R2. From by infer -B;p (Necessitation)

This axiomatic system is known as system K, (or K if only one agent is
considered), and it is the simplest one used to model logics of knowledge and
belief. In many approaches other properties of knowledge or belief are taken
into account by adding axioms to this basic system. The most popular ones
are the following:

By = ¢ (Axiom of knowledge, axiom T)

Bi;p = B;B;p (Axiom of positive introspection, axiom 4)

—B;p = B;—B;p (Axiom of negative introspection, axiom 5)

B;p = —B;—¢ (Axiom of consistency, axiom D)

Axiom T states that those formulse that are believed must also be true;
this property is usually required for knowledge, but not for beliefs. Axiom
4 defends that an agent must be aware of its own beliefs, whereas axiom 5
holds in case the agent is aware of the facts that it does not believe. Axiom
D holds in those situations in which the agent’s set of beliefs is logically
consistent, (it does not contain both a formula and its negation).

System KT is defined as system K plus the axiom of knowledge. If the
axiom of positive introspection is added to system KT, system K74 (also
known as 54, see [HuCr68]) is obtained; in turn S4 can be transformed into
S5 (K'T45) by adding the axiom of negative introspection. The system weak
S5 (K45) contains the axioms of introspection but does not contain the
axiom of knowledge. Adding the axiom of consistency to K45, the system
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K D45 is obtained; this system is usually assumed to be the standard modal
logic of (idealized) belief.

There exists a very strong relationship between these axioms and the
properties of the accessibility relation between worlds R; of the Kripke struc-
ture. This relationship is studied in a branch of modal logic known as cor-
respondence theory (see e.g. [VBen84], [VdHo093], [Goré99]). For instance,
table 2 shows the properties that the accessibility relation between worlds
must have in order for the previous axioms to hold.

‘ Axiom ‘ Property ‘
T Reflexive (VzR;zx)
4 Transitive (VaVyVz (Rizy A Riyz) = Rixz)
5 Euclidean (VzVyVz (Rizy A Rizz) = R;yz)
D Serial (Vz3y R;xy)

Table 2: Examples of correspondence theory

An specially important case arises when the accessibility relations are
equivalence relations (i.e. they are reflexive, symmetric and transitive). In
that case it is easy to check that the Euclidean and the serial properties also
hold, and the resulting logical system is S5, in which the four axioms shown
above hold. This is usually taken to be the logic of (idealized) knowledge.

1.2.4 Logical omniscience and perfect reasoning

Regardless of the axioms that may be added to K,,, axioms (axiom schemas,
in fact) Al and A2 and rules R1 and R2 are always kept in these basic
modal systems. Axiom A1l (all the instances of all propositional tautologies)
and rule R1 (Modus Ponens) are taken directly from classical propositional
logic (although some instances of the axiom schema Al are not standard
propositional tautologies, e.g. (B;pV —B;p)). The problems to be addressed
in this work derive from axiom K and the rule of necessitation; they (seem
to) commit us to model agents that are:

e logically omniscient, because they believe all tautologies (since all of
them are true in every world), and
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e perfect reasoners, because they also believe all logical consequences of
their beliefs (e.g. if an agent believes P and (P = Q) in a state s, it
means that these two propositions are true in all the worlds compatible
with s (all states R;-accessible from s); therefore, Q will also be true in
all of these worlds, and the agent will also believe Q).

These facts have very unrealistic implications; e.g. an agent with the
basic arithmetic axioms would have to know whether the Fermat theorem
is indeed a theorem or not, or an agent that knew the rules of chess would
have to know whether White has a winning strategy or not ([Kono85|). The
union of these problems is usually referred to in the literature as the problem
of logical omniscience?. It is worth pointing out that omniscience is relative
to the chosen language. Full rationality in an absolute sense would require a
language isomorphic to the real world, but such a language is not available.
Thus, language fashions and sets limits to the agents’ way of seeing things
([HMP96]).

Some authors (see e.g. [FHMV95], [VAHM95]) make more fine-grained
distinctions between different kinds of logical omniscience (because they re-
view some approaches to this problem that solve some of these weaker forms).
All these special cases of logical omniscience are relative to the notion of log-
ical implication (and, therefore, of validity) that is considered. The most
frequently mentioned forms of logical omniscience are the following:

e Full logical omniscience: if the agent believes all the formule in a set
I', and I" logically implies the formula ¢, then the agent also believes ¢
(this is called perfect reasoning in this dissertation).

e Belief of valid formulz: if ¢ is valid, then the agent believes ¢ (it can
be seen as an especial case of full logical omniscience, when an initial
empty belief set is considered; this is called logical omniscience in this
dissertation).

e (losure under logical implication: if the agent believes ¢ and ¢ logically
implies ¢, then the agent believes 1) (another especial case of full logical
omniscience, when the initial set of beliefs has only one element).

2Some authors prefer to call it closure under logical consequence ([Kono85]), conse-
quential closure ([Reic89]) , tautological closure ([Shoh93]) or the problem of saturated
belief ([GSGF93]).
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e Closure under logical equivalence (or belief of equivalent formulz): if
the agent believes ¢, and ¢ and 1 are logically equivalent, then the
agent believes 1 (this is an especial case of closure under logical impli-
cation).

e Closure under material implication (or just closure under implication):
if the agent believes ¢ and (¢ = ), then it also believes ¢ (it is an
especial case of full logical omniscience if v is a logical consequence of
the set {¢, (¢ = 1)}, as it is in classical propositional logic).

e (losure under valid implication: if the agent believes ¢, and the formula
(¢ = ) is valid, then the agent believes ® (it is equivalent to closure
under logical implication if ¢ logically implies 4 just in case (¢ = 1)
is valid, as in classical propositional logic).

e (losure under conjunction: if the agent believes ¢ and v, it also be-
lieves (¢ A1) (again, it is an especial case of full logical omniscience in
propositional calculus, where (¢ A1) is a logical consequence of the set

{0, ¥}).

e Weakening of belief: if the agent believes ¢, it also believes (¢ V 1), for
any arbitrary formula 1 (note that, in standard propositional logic, ¢
logically implies (¢ V ), for any formula 1); thus, it is an especial case
of closure under logical implication).

e Triviality of inconsistent beliefs: if the agent believes ¢ and —¢ (for
an arbitrary ¢), then it believes any formula v (it is a consequence of
closure under conjunction because in propositional logic any formula is
a logical consequence of a contradiction such as ¢ A —¢).

A graphical representation of the dependencies between these forms of
logical omniscience is shown in figure 1 (note that the subsumptions depicted
in that figure depend on the notion of logical consequence that is being
considered, as pointed out above). This dissertation will focus on the (coarse
grained) concepts of logical omniscience (full logical omniscience) and perfect
reasoning (belief of valid formulz), as described above.
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Figure 1: Dependencies between various forms of logical omniscience

1.2.5 Considering non-ideal agents

Logical omniscience and perfect reasoning can be acceptable in some circum-
stances and unacceptable in others, e.g. they are not considered as problems
when epistemic logics are used for reasoning about communication protocols
in distributed systems ([FHMV95])3. In that context there is an external view
of knowledge. A system is described by the sets of its possibles runs, being
a run a description of the system’s behaviour over time. At each point in a
run, a process is in some local state. A process at one point considers another
point possible if it has the same local state in both. If points are thought
of as possible worlds, the system’s designer may ascribe knowledge to the
processes by assuming that a process knows something just in case it holds
in all worlds it considers possible ([FHMV95]). Processes do not compute
their knowledge, and they are not required to answer questions about it. In
these applications the knowledge possessed by agents is so simple that com-

3This dissertation deals with doxastic logics, but most of the observations are also
applicable to epistemic logics, that also suffer from the logical omniscience and the perfect
reasoning problems. Usually, the only difference between knowledge and belief taken into
account in the literature is that one may believe false facts, but one may only know true
facts. This property of knowledge is obtained when axiom 7T holds.
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plexity of internal reasoning is usually neglected. Logical omniscience and
perfect reasoning are also accepted in the classical puzzles of the literature
of reasoning about knowledge, such as the muddy children, the wise men or
the unfaithful wives ([GaSt58], [Barw81], [Gard84]). Omniscient formalisms
have the major advantage of being simpler and easier to study, and can be
taken as modelling ideal reasoners against which real (human or artificial)
reasoners can be measured as approximations.

Some authors consider logical omniscience a sufficient reason for reject-
ing a model-theoretic analysis of epistemic concepts (see e.g. [Chom82]).
Obviously there are many circumstances in which logical omniscience and
perfect reasoning are unacceptable; that would be the case when the agent
is supposed to be able to compute its knowledge or to take actions based
on it. This would be an internal view of knowledge, as something that is
acquired after a computation. It is clearly not a realistic model of either
human agents (who are not logically omniscient) or computational agents
(which have resource limitations that can prevent them from being perfect
reasoners). Some of the undesirable consequences of the various forms of
logical omniscience listed above are the following:

e An agent with limited resources has to be somehow capable of hav-
ing access to every logical consequence of its set of beliefs (full logical
omniscience).

e Every valid assertion has to be believed by the agent, regardless of its
complexity (belief of valid formula).

o If the agent believes an assertion, it must also believe every logically
equivalent assertion, no matter how complicated they may be (closure
under logical equivalence).

In summary, omniscience is irreparably out of line with the needs of any
real reasoning agent. A number of reasons may be given in order to justify
the study of non-ideal agents ([Moli91]):

e Ideal agents are physically impossible, because real reasoners are not
logically omniscient.

e The agents that we can construct are necessarily limited, because
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— They have only limited resources (e.g. a bounded finite memory).
— They have only limited cognitive and computational capabilities.

— They are short on time (the world does not await them).

e The set of beliefs of a real agent simply cannot be closed under log-
ical consequence, since it would mean that the agent has a decision
procedure for first-order predicate logic.

e Artificial agents have in general only incomplete and probably incorrect
beliefs about reality.

e It is wrong to consider that a theory built around idealized entities will
successfully apply to non-ideal ones, because

— What is rational for an ideal agent can be judged to be irrational
for a finite agent ([Cher86]). It is very different to design a system
that exhibits perfect rationality (i.e. a system that acts at every
instant in such a way as to maximize its expected utility, given the
information it has acquired from the environment) than to build
a system that has bounded optimality (i.e. a system that behaves
as well as possible given its computational resources, [RuNo95]).
In fact, the idea of limited rationality has been around Al since
Newell and Simon’s early work (see e.g. [NeSi72]).

— By idealizing away the limitations of finite agents we resign the
possibility of gaining any insights about the nature of reasoning
with limited resources.

1.3 Overview of the dissertation

The main aim of this work is to develop a way to model the process of ratio-
nal inquiry (the evolution of a rational agent’s set of beliefs over time as a
consequence of its interaction with the world and its internal inferential pro-
cesses), keeping the general idea of the possible worlds model and the Kripke
semantics (because, after all, they seem a very natural and intuitive seman-
tics for modal logics of belief) but trying to avoid the problems of logical
omniscience and perfect reasoning (in order to take into account non-ideal
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agents). The steps that have been followed to reach this goal are described
in this dissertation, which is structured as follows:

e An extensive survey of the state of the art is presented in §2, where
the most relevant approaches that have been proposed to solve the
problems of logical omniscience and perfect reasoning are presented.
Some of the reviewed formalisms are the following:

— Montague’s intensional logic of beliefs ([Mont70]).
— Konolige’s deduction model of belief ([Kono86al).
Fagin, Halpern and Vardi’s non-standard structures ([FHV90b]).

— Levesque’s logic of implicit and explicit beliefs ([Leve84]).
Wooldridge’s belief models ([Wool95]).

— Van der Hoek and Meyer’s logic of awareness and principles
([VAHM89]).

— Thijsse’s hybrid sieve systems ([Thij92]).

This review focuses on the similarities and differences between the var-
ious solutions and shows to which degree they provide a framework in
which it is possible to model non-ideal reasoners. Part of this survey
was reported in [More98].

e As a result of this study, an impossible worlds-based framework in
which logical omniscience is avoided is proposed in §3. The main idea
of this proposal is that a situation may be perceived in different ways
by different agents; thus, a situation may be described subjectively by
each of them. Furthermore, in each situation an agent may have rea-
sons to suport and/or to reject certain facts (following the suggestion
made by Levesque in his logic of implicit and explicit beliefs, [Leve84]).
The perception that an agent has of a situation will determine its (pos-
itive and negative) beliefs in that situation. These are the basic ideas
underlying the subjective situations described in that chapter. Given
a multi-agent system, the beliefs of each agent may be modelled by
considering its perception of the actual situation. Within this new
framework, the entities that are used to model the evolution of the
beliefs of a rational agent are called conceivable situations; they are
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descriptions of the way in which an agent perceives its current situ-
ation. This proposal is motivated by the conclusions reached in the
review shown in §2. The first intuitive ideas underlying the concept
of conceivable situation were reported in [MoSa97a] and [MoSa97b].
These ideas were refined and detailed in [MCS99a] and [MCS00a]. The
framework of subjective situations has been described in [MCS99b| and
[MCSO00b].

e In order to prove the suitability of this framework to model the evolu-
tion of the beliefs of a rational agent, an analysis of the doxastic tasks
which such an agent may perform is made in §4.2. After that, and
with the aim of having a concrete intepretation of these tasks, a gen-
eral class of non-ideal reasoners, called rational inquirers, is defined.
These agents are constantly performing a multi-dimensional dynamic
analysis of their beliefs, in order to make them as similar as possible
to the facts that hold in the real world. These agents are given the
following capabilities:

— They may perform some (limited) deductive inferences on their
sets of beliefs, using a modified version of the classical analytic
tableaux method. This method was modified in order to allow for
limited, non-ideal agents; for instance, the propositional part of
the resulting tableaux method axiomatizes the logical consequence
relation defined by Kleene’s strong three-valued logic (as proved
in appendix A).

— They may have doubts about their beliefs, and may introduce
these doubts into the analysis by adding instances of the Axiom
of the Excluded Middle into the tableaux of the logical analysis.
The introduction of these doubts permits the exploration of the
two alternatives of the disjunction, and the search for examples
or counter-examples needed to corroborate (or refute) the two
available options.

— They may make questions to the environment, in order to confirm
or refute doubtful beliefs. The answers received from the environ-
ment are also included in the open tableaux of the logical analysis.
The questions to be posed to the environment are suggested by
the Skolem constants that appear in the logical analysis, linking in
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a novel fashion the rational and empirical components of rational
inquiry ([ReBr79)).

— They may also add to their beliefs the information that they re-
ceive directly from the environment (e.g. the data supplied by
other agents).

In our initial works on rational inquirers (e.g. [MoSa97al, [M0oSa97b])
the logical dimension only included the analysis of propositional dis-
junctions. In a later stage of our research, a full propositional analy-
sis was considered and the other dimensions of analysis were sketched
([MCS98], [MCS99a]). Our last works already consider the use of pred-
icate logic in the logical analysis and a more detailed account of the
other dimensions of analysis ([MCS00a]).

e In §5 it is shown how the evolution of the beliefs caused by this dynamic
multi-dimensional belief analysis may be formally modelled. This mod-
elling process is made using two basic tools:

— A new kind of semantic entities, called conceivable situations, is
considered. This kind of possible worlds is closely related to the
subjective situations described in §3, and corresponds to those
scenarios that the modelled agent is capable of considering, re-
gardless of their possible partiality or inconsistency. In our view,
a two-sided analytic tableau will be seen as the representation of
a class of conceivable situations.

— The set of doxastic alternatives considered by the agent after each
step of analysis will correspond to the classes of conceivable situa-
tions represented by the open tableaux. This evolution of the set
of doxastic alternatives is modelled with the generation of a se-
quence of accessibility relations, that are used to represent which
are the worlds considered possible by the agent at each point in
time. This fact will allow us, through the application of a modi-
fied Kripke semantics (defined in §5.4), to have a way of finding
out which are the agent’s beliefs at each point in time.

We suggested the use of a dynamic accessibility relation to model the
evolution of an agent’s set of beliefs in [More96], [MoSa97a], [MoSa97b];



Introduction 18

however, in these works the analysis of the beliefs was restricted to
logical deduction. Conceivable situations were explicitly mentioned in
[MCS98], and they have also been reported in [MCS99a]. In one of
our last works we already presented how the belief change produced
by all the dimensions of analysis may be modelled in our framework
([MCS00a]).

e Finally, in §6 the dissertation is summarized and some lines of future
research are suggested.

1.4 Main contributions

The main contributions of the work reported in this dissertation are the
following:

e We provide a very detailed review of the most interesting approaches
that have tried to deal with the problems of logical omniscience and per-
fect reasoning. This dissertation contains the description of more than
twenty different techniques that have been put forward in fields such as
Computer Science, Artificial Intelligence and Philosophical Logic. To
the best of my knowledge, this chapter subsumes all current published
reviews of this kind of approaches.

e We provide a radically different way of tackling these problems, with
the definition of a new kind of entities called subjective situations. The
parting point of this technique is quite unorthodox and non-standard,
as it proposes to deal with subjective, agent-based descriptions of pos-
sible states of affairs, instead of managing complete and consistent rep-
resentations of possible worlds. We define a first-order doxastic logic on
top of these situations, and show how logical omniscience and perfect
reasoning are avoided.

e We have identified which are the activities (the doxastic tasks) that
may modify the set of beliefs of a rational agent. In that way, we have
abstracted from all the other actions that an agent has to carry out,
in order to focus only on those that are directly related to its beliefs.
We have also defined a certain type of non-ideal agents, called rational
inquirers, that implement these doxastic tasks in a particular way. This
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kind of agents is specific enough to provide us with a concrete example
of agents whose beliefs we can model, and is general enough to show
that the belief modelling techniques that are used in this dissertation
might be used over any other kind of similar agents, irrespective of the
particular way in which they carried out their doxastic activities.

e Finally, we have used the tools provided by the subjective situations
framework in order to formally model the evolution of the beliefs of ra-
tional inquirers. Unlike the classical approaches to logical omniscience
and perfect reasoning, we are concerned with dealing with dynamic
sets of beliefs, that change in time as a consequence of the doxastic
activities in which rational agents are permanently engaged. The basic
idea that has been used in the modelling technique is to change the set
of conceivable situations that are considered as doxastic alternatives by
the agent after each doxastic task. This idea is not new in the liter-
ature of belief change (see e.g. [FHMV95]); the main contribution of
our work in this respect is to provide a systematic, formal and easy-
to-follow procedure for computing the doxastic alternatives after each
step of belief analysis, which could be applied to any kind of non-ideal
agent.

In summary, it can be argued that the main contribution of this work is
to make a first step towards seriously considering the idea of real, limited,
resource bounded, non-logically omniscient agents, unlike almost all previ-
ous attempts to deal formally with an agent’s propositional attitudes, which
provide very nice treatments of belief and knowledge but always dismiss the
issues of logical omniscience and perfect reasoning.
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2 Avoiding logical omniscience

There have been many authors that have tried to solve the problems of logical
omniscience and perfect reasoning. This chapter contains a review of some
of the more relevant approaches, classified as syntactic or semantic. In this
chapter negation and conjunction are taken as the basic logical operators,
and disjunction and implication are supposed to be defined from them in the
usual way: ((¢ V) = =(—¢ A =) and (¢ = ) = —(¢ A —7)). Some of
the proposals refer to epistemic logics (using the modal knowledge operator
K) that, as mentioned in §1.2.5, also suffer from the problems of logical
omniscience and perfect reasoning.

2.1 Syntactic approaches
2.1.1 Beliefs as sets of formulae

The basic syntactic solution to the problems of logical omniscience and per-
fect reasoning is to identify the agent’s beliefs as the set of formulee contained
in the agent’s belief base ([Perl84], [Haas85]). An agent’s set of beliefs is a
set of formulae of a certain language L. Intuitively, « believes ¢, where ¢ is a
sentence of L, if and only if ¢ belongs to a’s set of beliefs.

This idea was already considered in the works of Eberle ([Eber74]) and
Moore and Hendrix ([MoHe79]). In [FHMV95] a formalization of this ap-
proach is made using standard syntactic assignments. A syntactic structure
M is a pair (S, 7), where S is a set of states and 7 is an standard syntactic
assignment, i.e. an assignment of truth values to all formulae in all states
that satisfies the following properties:

e 7(s)(¢) = true iff 7(s)(—¢) = false.
o 7(s)(d A1) = true iff n(s)(4) = true and 7(s)(¢p) = true.

The truth of a formula ¢ in an state s of a syntactic structure M is defined
as follows:

M, s = ¢ if and only if 7(s)(¢p) = true
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Note that syntactic assignments do not impose any constraints on the
truth values given to doxastic formulae (those with the form B,). In fact,
this model does not assume anything about the nature of beliefs. An agent
can have contradictory beliefs, or it can even believe inconsistent sentences
such as (P A —P). The semantic approach analogous to this syntactic ap-
proach is Montague’s intensional logic of beliefs ([Mont70]), which is de-
scribed in §2.2.15. With this approach both logical omniscience and perfect
reasoning disappear, because an agent’s set of beliefs may not contain all in-
stances of all tautologies (it may be the case that 7(s)(Ba(¢V —¢)) = false)
and may also not be closed under logical consequence (it may be the case
that 7(s)(Ba¢) = true, m(s)(Ba(¢p = ¥)) = true and 7 (s)(Bat¥) = false).
Halpern comments in [Halp86] that this option is very difficult to analyse,
because using this representation of the beliefs there are no principles that
can guide a knowledge-based analysis. In [FHMVO5] it is argued that this
option is a way of representing belief, rather than a way of modelling belief.

2.1.2 Incompleteness of deduction rules

An interesting approach is adopted by Konolige in [Kono86a]. He models
the agent’s beliefs with a deduction structure. A deduction structure is a
tuple (B, R), where B is a base set of facts and R is a set of deduction rules
(that can be logically incomplete). Using Konolige’s notation, it is said that
[S;i]o if ¢ € bel(d;) (agent S; believes a formula ¢ if it belongs to its belief set,
which is defined as the deductive closure of the base set B using the rules R).
It is a very flexible way of modelling the agent’s beliefs, and it also avoids
the problems of logical omniscience and perfect reasoning (e.g. an agent may
believe P and (P = Q) and not believe Q, if Modus Ponens is not included
in its set of deductive rules). Deductive closure is a condition much weaker
than closure under logical consequence. If the deduction rules of an agent are
logically incomplete, then it will not be able to derive all logical consequences
of the base set; in this way it is possible to model the reasoning about belief
performed by an agent with resource limitations.

Formally, Konolige defines a model structure as a tuple <¢, vy, U>, where
U is the universe of individuals, ¢ is a mapping from the set of constants to
U, and v, assigns a truth value to each basic atom. A satisfiability relation
= is defined as follows:
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o =, Aiff yy(A?) = true, being A a basic atom. A? denotes the appli-
cation of ¢ to the constants appearing in A.

Em (AAB) iff =, A and =, B.
A e, Al

=m JrA iff 3keU such that =, A7. Af denotes the substitution of =
by k in A.

o =, VzA iff VkeU = AP holds.

A formula 1 is called valid (=, ) iff it is true in every model struc-
ture. A B(L, p)-model is defined as a tuple <¢, vy, U, D, >, where the first
three elements define a model structure, D contains a deduction structure
d; for each agent S; and ~y contains a set of functions (y;) that associate an
individual constant to each element of U for each agent S;. L is the internal
language of the agent, and p is the set of rules of each agent S; (p;). When
these models are defined, a new clause (that deals with the belief operator
for each agent, [S;]) is added in the definition of =,:

o =, [Si|¢iff ¢ € bel(d;).

A formula is B(L, p)-valid iff it holds in every B(L, p)-model. Konolige
shows how to use the analytic tableaux method to prove whether a formula
is satisfiable. A new rule is added to the classical analytic tableaux method:
a branch with the formulee T[S;|]I" and F[S;]® closes if I' I,;) ®. This rule
is obtained from the following result, that shows the relationship between
the satisfiability of sentences that contain the belief operator and derivations
in the internal language of the agent: the set {[S;|', —[S;]A} is B(L, p)
unsatisfiable iff 36eA s.t. T' F ;) d. The method is proved to be sound (in
every closed tableau B(L, p) headed by Fip -the negation of ¢-, ¢ is B(L,
p)-valid) and complete (if ¢ is B(L, p)-valid, then there is a closed tableau
B(L, p) for Fy). Konolige also provides a practical proof method based on
resolution. Van der Hoek and Meyer analyse this model in [VAHM96] and
show how it may be considered as a generalisation of the standard modal
approach on the basis of Kripke models described in §1.2.3 (certain subclasses
of deduction structures behave exactly as basic modal systems such as S4 or

S5).
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2.1.3 Belief models

Wooldridge describes in [Wool95] a way of modelling the belief systems of
resourced-bounded reasoners. This model subsumes classical ways of belief
modelling, like Konolige’s deduction model of belief ([Kono86al, see §2.1.2)
or the standard use of doxastic normal modal logics (see §1.2.3). An agent’s
belief system is represented using a belief model, that is defined as a tuple
< A,BE >, where A is the base set of (propositional) beliefs (the obser-
vations that have been made over the agent’s beliefs) and BE (the belief
extension relation) is a countable, non-empty binary relationship between
sets of formula and formula satisfying the following requirements:

o If (A, ¢)eBE, then YoeA, (A, §)eBE (reflexivity)
o If (A, ¢)eBE, (A',¢)eBE and A C A’ then (A, ¢)e BE (monotonicity)
o If (A, ¢)eBE and ({¢},%)eBE, then (A,v¢)eBE (transitivity)

The belief extension relation models the agent’s reasoning ability. This
idea is clarified with the concept of belief set (bel), that represents the agent’s
set of beliefs:

bel(< A, BE >) = {¢ such that (A, ¢)eBE}

The meaning of a tuple (A, §)eBE is the following: if the agent believes
the formulze in the set A, it will also believe the formula 6. In fact, one
of the main points of this proposal is its ability for modelling agents whose
reasoning processes are not based on logical inference (although it may also
model those that are, with an appropriate definition of the pairs included in
BE).

In this model the agent does not have to necessarily believe either a
formula or its negation, because it may fail to believe both (if o and —« are
not included in bel(< A, BE >)). The agent may also believe a formula and
its negation (if both of them are included in bel(< A, BE >)). These facts
make it similar to Levesque’s logic of implicit and explicit belief ([Leve84]),
which is described in §2.2.4, and to our own approach, to be described in §3.

As noted in [Wool95], logical omniscience is avoided in this model be-
cause neither axiom K nor the necessitation rule of normal modal logics hold
(because of the syntactic nature of belief models, and especially of belief ex-
tension relations). Wooldridge also shows how to derive the belief extension
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relation for an agent, if its base set of beliefs (A) and its set of legal belief
states (BS) are given. The set BS is supposed to contain all those belief
states (sets of formulae) in which the system could possibly be after some
chain of events. BE would be then defined as follows:

BE = {(A, §) such that VA’eBS, if A C A then eA'}

In short, the agent would believe all those formulae that are included in all
those legal belief states that contain its base set of formulee. Thus, this notion
is similar to the necessity notion in normal modal logics, although Wooldridge
stresses in [Wool95] that belief is not given a normal modal interpretation in
his model.

2.1.4 Restrictions in deductions

Hintikka suggests another syntactic solution to logical omniscience and per-
fect reasoning ([Hint86a]). His proposal is to put syntactic restrictions in the
deductive argument from S; to Sy, in order to restrict the class of logical
consequences F (S D Sy) for which it holds that {a}KS, D {a}KS, (in
Hintikka’s notation that formula is read “if v knows S; then it also knows
S5”). The number of individuals that is being considered in a formula is
denoted by the number of free individual symbols and the number of levels
of quantifiers. The basic idea is that this parameter must never be greater
during the argument from S; to Sy than in S; or Sy ([Hint75b]). Hintikka
claims that this approach yields the same results than the urn models seman-
tic approach ([Rant75]), which is described in §2.2.14. He also claims that
this idea is connected to many issues in Philosophy of Logic, Mathematics
and the psychology of deductive reasoning ([Hint73], [Hint86b]).

2.2 Semantic approaches
2.2.1 Impossible worlds

Cresswell ([Cres72], [Cres73]) pointed out that the problems of logical omni-
science and perfect reasoning could be solved by allowing non classical worlds
in the semantics (i.e. worlds in which tautologies may not be true and in-
consistent, formulae may be true). These worlds are called impossible worlds
in [Hint75a] and [FHMV95], non-designated indices in [Scot70], setups in
[RoRo72], situations in [Leve84] and non standard worlds in [ReBr79]. As
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an example of what this kind of worlds look like, let’s take Rescher and
Brandom’s non standard worlds. They are built from other worlds by using
two operations: schematization and superposition. Schematization combines
worlds conjunctively, whereas superposition combines them disjunctively. A
formula is true in the schematization of two worlds if it is true in both of
them, and it is true in the superposition of two worlds if it is true in either
of them. Thus, schematized worlds may be partial (in the sense that it is
possible that neither ¢ nor —¢ hold in one of these worlds), and superposed
worlds may be overdetermined (in the sense that both ¢ and —¢ may hold
in one of these worlds).

A formal account of this kind of approaches is given in [FHMV95]. An
impossible worlds structure is defined as a tuple (S, W, n, K1, K>, ..., K,),
where (S, K1, ..., K,) is a Kripke frame, W C S is the set of possible states or
worlds, and 7 is a syntactic assignment that satisfies the following properties
(in those states s € W):

o 7(s)(¢p A1) = true iff n(s)(¢) = true and 7 (s)(¢p) = true.
o 7(s)(—¢p) = true iff (s)(¢) = false.
o 7(s)(K;¢) = true iff w(t)(¢) = true for all ¢ such that (s,t) € K;.

Furthermore, logical implication and validity are determined only with
respect to possible states; thus, as agents consider impossible states when
determining their knowledge, logical omniscience does not necessarily hold.

Vardi ([Vard86]) mentions some disadvantages of the impossible worlds
approach:

e The intuition underlying non classical worlds is not very clear, and it is
difficult to define the semantics of logical connectives in these worlds.

e Adding new worlds does not solve the perfect reasoning problem; e.g.
the agents modelled in [Leve84] still believe all logical consequences of
their beliefs, but not the standard logical consequences but the conse-
quences in relevance logic ([AnBe75]).
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2.2.2 Belief as possibility

Van der Hoek and Meyer made a proposal to overcome the problem of logical
omniscience in [VAHM89|. They suggest to model the notion of belief using
the modal possibility operator, rather than the necessity operator. Thus,
they write the clause used to determine the satisfiability of a doxastic formula
in a world s of a Kripke model M as follows:

M, s = By if 3t such that (s,t)eR and M, t = ¢

With this definition some of the undesirable problems associated to logical
omniscience disappear (e.g. closure under implication and closure under
conjunction do not hold). However, some forms of logical omniscience are
still valid and, moreover, this idea induces the addition of other constraints
on the modelled sets of beliefs; for instance, all of the following properties
hold in this approach:

e Closure under logical equivalence.

Belief of valid formulee.

Closure under valid implication.

Weakening of belief.

Closure under disjunction: if an agent believes (¢ V 1), it must also
believe ¢ and/or .

As the authors note, this approach models a rather weak notion of belief:
an agent believes a formula ¢ just in case it thinks it is possible to conceive
a world in which ¢ holds. Thus, it may easily believe ¢ and —¢, if it does
not have any arguments that support or deny ¢ in a definitive way.

2.2.3 Non-standard structures

One way of dealing with the problems caused by the Kripkean conception
of belief (as those formula that are true in every doxastic alternative) is to
change the notion of truth, by giving a non-standard semantics to the logical
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connectives. Fagin, Halpern and Vardi follow this approach in their non-
standard structures ([FHV90a], [FHV90b], [FHV95]). Their main idea is to
allow for a formula and its negation to have independent truth values; thus,
¢ and —¢ may be both true or false in any state. They define non-standard
structures as tuples (S, 7, Kq,..., Ky, *), where all the components are the
same as in standard Kripke structures except for *, which is a function that
assigns a state to each state. This function is used to assign truth values to
negated sentences in the following way:

(M,S) ): ¢ — (MaS*) l?é 0

Thus, there may be (incoherent) worlds in which ¢ and —¢ hold and
(incomplete) worlds in which neither ¢ nor —¢ hold. These situations may
not arise in standard worlds (those worlds in which s = s*). Giving this
semantics to the negation operator, material implication is no longer equiv-
alent to logical implication, and closure under material implication does not
hold. Furthermore, it is shown in [FHMV95| that there are no tautologies
in this logic; therefore, it is pointless to wonder whether the agent believes
all valid formula or its set of beliefs is closed under valid implication. Other
forms of logical omniscience are still valid (full logical omniscience, closure
under logical implication, closure under logical equivalence and closure under
conjunction). However, the presence of these properties is not as worrying
as it was in classical logic, because non-standard structures define a weaker
notion of logical consequence. In fact, it is also shown in [FHMV95] that
non-standard agents are omniscient with respect to another implication con-
nective (called by them strong implication, <) with this semantics:

(M,s) = (¢ — ) if and only if
(M, s) = 1 holds whenever (M, s) = ¢ holds.

2.2.4 Explicit and implicit beliefs

One of the most well known approaches to logical omniscience and perfect
reasoning is Levesque’s logic of explicit and implicit beliefs ([Leve84]), de-
scribed in this section with the notation used in [FaHa85].

Levesque uses a language with two modal operators: B for explicit beliefs
and L for implicit beliefs. These operators are not allowed to be nested in
the formula of the language. A structure for explicit and implicit beliefs is
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defined as a tuple M=(S, B, T, F), where S is the set of primitive situations,
B is a subset of S that represents the situations that could be the actual one
(according to the present beliefs) and T and F are functions from ® (the
set of primitive propositions) into subsets of S. Intuitively, T(P) contains all
the situations that support the truth of P, whereas F(P) contains the ones
that support the falsehood of P. These situations are not classical worlds
because it is not compulsory that a primitive proposition is only true or false
in a given situation; it can be true, false, both of them or none of them. A
situation s can be partial, if there is a primitive proposition P which is neither
true nor false in s (s £ T(P) U F(P)) or incoherent if there is a proposition P
which is both true and false in s (s e T(P) N F(P)).

A situation is complete if it is neither partial nor incoherent (it supports
the truth or the falsehood of all primitive propositions, but not both of them).
A complete situation s is compatible with a situation t if s and t agree in all
the points in which ¢ is defined. B* is the set of all complete situations of S
that are compatible with some situation in B.

Now it is possible to define the relations =7 and =p between situations
and formula. Intuitively, M, s =r ¢ will hold when the situation s of the
structure M supports the truth of ¢, whereas M, s =r ¢ will hold when s
supports the falsehood of ¢. The definition of these relations is the following:

e M, s =7 P, where P is a primitive proposition, if and only if s ¢ T'(P)

e M, s |=F P, where P is a primitive proposition, if and only if s ¢ F\(P)

e M, s =7 —pifand only if M, s Er ¢

e M, s =F —¢ if and only if M, s =1 ¢

e M,sE=r (pAv)if and only if M, s =r ¢ and M, s =r ¢

e M,sE=r (pAt)ifand only if M, s =p @ or M, s Ep ¢

e M, sk=r Bpifand only if M, t =r ¢ Vt e B

e M, s |=r By if and only if M, s r By
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e M, s=p Ly if and only if M, t =1 ¢ Vt € B
e M, s = Ly if and only if M, s r Lo

A formula ¢ is true in a state s if M, s =7 ¢. Levesque defines a formula
¢ as valid if it is true in all the structures M = (S, B, T, F) and all complete
situations s € S.

It can be proved that, with this semantics, explicit belief implies implicit
belief (i.e. = (By = L) holds). It can also be proved that implicit be-
liefs are closed under implication and contain all propositional tautologies.
Nevertheless, explicit belief does not suffer any of these problems, because:

e It is not closed under implication (e.g. BP A B(P =Q) A —BQ is satis-
fiable).

e It is not closed under valid implication (e.g. =B(P A (Q V—Q)) A BP is
satisfiable).

e It does not contain all tautologies (e.g. =B(P V—P) is satisfiable).

e The agent may have inconsistent beliefs without believing everything
(e.g. B(P A= P) A= BQ is satisfiable).

e The agent may believe a formula ¢ and not believe a logically equivalent
formula ¢ (e.g. B(P A= P) A= B(Q A— Q) is satisfiable).

In [FaHa85] it is pointed out that all these properties derive from the
existence of incoherent situations. The following formula is valid: By A
B(p = 9¥) = BV (pA—p)). That is, it is the case that the agent’s explicit
beliefs are closed under implication, or otherwise there is an incoherent situ-
ation that the agent believes possible. Moreover, By A B(—y) = B(p A —),
so it is only possible to have inconsistent beliefs if all the situations that
the agent believes to be possible are incoherent, and this does not seem an
appropriate idea.

It can also be proved that, even though all tautologies are not believed, the
agent does believe all tautologies formed with primitive propositions which
are known to the agent (those primitive propositions P for which B(P V —
P) holds). This fact suggests that this semantics is appropriate to model the
lack of logical omniscience due to the lack of knowledge of a proposition,



Avoiding logical omniscience 31

but not to model the one due to lack of computational resources, because
there could be tautologies formed only with known primitive propositions
that could be very hard to prove.

Fagin and Halpern ([FaHa85]) add further comments to this approach:

e The relation =r is defined for all situations, but the validity relation
(=) is only defined for complete situations. That implies that there
are formula ¢ which are valid in this logic (e.g. (P V —P)) whose truth
may not be supported in all situations (it may exist a situation s such
that M, s 1 ¢). All the valid formulae of the propositional calculus
are also valid in this logic (because validity is restricted to complete
situations), and this idea does not seem to be very consistent with the
use of situations.

e The definition of the relation = with respect to the logical operators
does not seem very clear. For instance, suppose that the agent does
not know a primitive proposition P. Then neither M, s =1 P nor M, s
Er P will hold, so M, s =1 (P=P) will not hold either. But it is easy
to imagine an agent that, regardless of the knowledge of P, knows some
propositional tautologies such as P = P.

e This logic only deals with one agent, propositional logic and does not
allow nested beliefs, so it is quite limited.

However, similar logics that deal with many agents were presented by
Halpern and Lakemeyer in [Halp93|, [Lake93] or [HaLa96]. Lakemeyer
extended this approach to first-order logic ([Lake91b], [Lake94]). Some
partially nested beliefs were allowed in [Lake87] and [Lake91a| (as com-
mented in the next section). Similar approaches with explicit beliefs
may be found in [Delg95] and [LaLe88].

2.2.5 Implicit and explicit multi-agent nested beliefs

Lakemeyer incorporated in [Lake87] the possibility of having nested beliefs
in the basic framework of implicit and explicit beliefs that has just been
described. It is reported here with a multi-agent extension devised by Sim
([Sim00]). A Lakemeyer model for nested implicit and explicit belief for
n agents is defined as a tuple My, =< S,T,F,R{,..., R Ry ,..., R, >,
where S, T and F are defined as in the previous section and R; and R; are
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binary accessibility relations on S. These relations are used to validate beliefs
and disbeliefs, respectively; thus, they only coincide in complete situations.
Therefore, for all situations seB* and all situations ¢, (sR;t) if and only if

(sR;t).
As we are dealing now with the multi-agent case, two sets of modal belief
operators By,...,B, and L4, ..., L, are considered. Modal operators may be

nested, but no L; may occur inside the scope of a B;. The clauses that were
used to define the relations =1 and =p over modal formula are modified in
the following way:

e My, s =r By if and only if My, t =1 ¢ VteB such that (sR;t)

e My, s =r By if and only if JteB such that (sR; t) and My, t Er ¢

e My, s =r Ly if and only if My, t = ¢ Vt eB* such that (sR;'t)

° MLL; S ):F LZQD if and only if MLL; S %T LZQD

With this definition it is possible to deal with multiple agents and (re-
stricted) nested beliefs, and some forms of logical omniscience (such as closure
under material implication, triviality of inconsistent beliefs, belief of equiv-
alent formulae, belief of valid formulae and closure under logical implication)
are still avoided ([Sim00], [Lake87]).

2.2.6 Approximate knowledge

Schaerf and Cadoli ([ScCa92], [ScCa95]) follow a different approach (also
commented in [Sim97]). Their idea is to provide a framework in which ap-
proximate knowledge may be explicitly represented and used.

They start by defining three kinds of interpretations:

e A 3-interpretation assigns a value in the set {0,1, T} to each basic
proposition.

As pointed out below, this kind of interpretations are used to represent
complete (although possibly incoherent) situations.
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e A 2-interpretation assigns a value in the set {0, 1} to each basic propo-
sition (i.e. it is a classical interpretation).

This kind of interpretations are used to represent possible worlds (i.e.
complete and coherent situations).

e A l-interpretation assigns the value L to each basic proposition.

This kind of interpretations are used to represent coherent (although
possibly incomplete) situations.

Schaerf and Cadoli proceed by defining more complex kinds of interpreta-
tions, in which different basic propositions may be assigned values in different
sets. These new interpretations are relative to a subset S of the set of basic
propositions P:

e An S-3 interpretation maps every proposition in S to a value in {0, 1}
and every proposition in P — S to a value in {0,1, T}.

An S-3 interpretation has a 2-interpretation over S and a 3-interpreta-
tion over the rest of primitive propositions. Intuitively, an S-3 inter-
pretation represents a complete (but possibly incoherent) situation.

e An S-1 interpretation maps every proposition in S to a value in {0, 1}
and every proposition in P — S to the value L.

An S-1 interpretation has a 2-interpretation over S and a l-interpreta-
tion over the rest of primitive propositions. Intuitively, an S-1 inter-
pretation represents a coherent (but possibly incomplete) situation.

Two families of modal operators are introduced, O} and 0%. The se-
mantics of these operators is given with a variation of the classical Kripke
models. A model M is defined as a triple (Sit, R,V'), where Sit is a set of
situations, R is a reflexive, transitive and Euclidean accessibility relation and
V' is a valuation that maps any situation into a S-1, S-2 or S-3 interpretation.
S-1(Sit) is the set of those situations that are assigned an S-1 interpretation,
W(Sit) is the set of possible worlds, and S-3(Sit) is the set of those situations
that are assigned an S-3 interpretation. The semantics defined with these
models is the following:

o M,skE ¢iff V(s)(¢) =1
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M, s = O%¢ iff Vte S-3(Sit) (s R t) implies M, t = ¢
M, s = —O%¢ iff te S-3(Sit) such that (s R t) and M, t i~ ¢
M, s = O4¢ iff Vie S-1(Sit) (s R t) implies M, t = ¢
M, s = —OL¢ iff Jte S-1(Sit) such that (s R t) and M, t £~ ¢

(
)
(
)

A formula ¢ is valid (E ¢) if it is true in every possible world of every
model. This semantics induces the following results:

e The necessitation axiom does not hold for O% (& ¢ does not imply
= OL#). However, it does hold for 0% (&= ¢ implies = 0%¢). The
same situation happens to axiom 7.

e Axiom K holds for O} (E Ok(¢ = 1/1) (E|1¢ = 0O%1)), but it does
not hold for 0% (£ 0% (¢ = o) = (O%¢ = O2)).

e Axioms 4 and 5 hold for both O} and 0% (because of the properties of
the accessibility relation between situations).

Sim notes the following facts ([Sim97]):

o %30 A O3(¢p = ¢) A =034 is satisfiable (beliefs modelled with this
operator are not closed under Modus Ponens).

e 030 A O%(—¢) A =024 is satisfiable (beliefs modelled with this oper-
ator may be inconsistent without having to believe every formula).

o -%(d A —¢) and O3 A =O%(d A (v V 1)) are not satisfiable (some
tautologies have to be believed).

e The converse results hold for O}.

Schaerf and Cadoli argue that O} may be used to model skeptical reason-
ers (i.e. fully introspective agents that are capable of performing every sound
inference, although they can also perform unsound inferences). On the other
hand, 0% may be used to model credulous reasoners (i.e. fully introspective
agents that are not logically omniscient and only perform sound inferences).
They also show that Levesque’s modal operators (see §2.2.4) may be repre-
sented in this framework: L is equivalent to O} or 0% when S=P, and B is
equivalent to 0% when S=0.
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2.2.7 Logic of general awareness

Fagin and Halpern suggest in [FaHa85] different logics that try to solve the
problems of Levesque’s logic of explicit and implicit beliefs (however, they
keep both kinds of beliefs). Konolige comments in [Kono86b] one of them,
the logic of general awareness.

Assume a propositional language with the usual boolean operators of
negation and conjunction and an especial primitive proposition, 1, which is
always interpreted as false. In the case of a single agent, there are also three
modal unary operators: B for explicit beliefs, L for implicit beliefs and A for
awareness. All these operators can be nested.

A Kripke structure of general awareness is a tuple M=(S, =, A, B), where
Sis a set of states, 7(s, P) is a truth assignment for every primitive proposition
P and every state s, and B is a binary relation between the elements of S (the
accessibility relation between states) that is transitive, Euclidean and serial
(and, therefore, this is the system KD45). In each possible world s, A(s) is
a set of sentences of the language s.t. L e A(s). This is the set of formula
that the agent is aware of in state s, but does not necessarily believe.

The semantics of the language is given by the relation =, defined in the
following way:

o M,s kL

o M

, s = P, where P is a primitive proposition, if 7(s, P) = true

M, s = - if and only if M, s £ ¢
e M,skE (pAv)ifand only if M, s = ¢ and M, s = ¢
M,skE=Lpif M, t = Vtst. (s, t) e B

M, s = By if pe A(s) and M, t = ¢ Vt s.t. (s, t) eB

e M, s = Ay if pe A(s)

The implicit belief operator L has the standard Kripke semantics. As
the accessibility relation is transitive, Euclidean and serial, this operator will
satisfy the axioms of positive and negative introspection and the axiom of
consistency.
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Explicit beliefs are defined as those implicit beliefs that belong to the
awareness set. Therefore, Bp = Lo A Ap. Explicit and implicit beliefs will
only be equal if the agent is aware of all implicit beliefs.

A possible interpretation of the formula Ag could be the following: the
agent is able to prove whether ¢ is a consequence of a given set of premises
or not in a certain time T. That is, the agent is aware of a certain class of
formulae for which it is easy to make deductions (or to show that a certain
deduction does not exist). Thus, the logic of general awareness models perfect
reasoners over a restricted set of formulae.

Konolige makes some remarks about this logic ([Kono86b]):

e With this semantics, the connection between the properties of the ac-
cessibility relation and the axioms satisfied by belief is lost.

For instance, assume that the agent explicitly believes ¢; then By, Ly
and Ay are true. One can wonder whether BBy is true or not. BBy =
(LBy AN AByp) = (LLp A LAp A AByp), and (due to transitivity) LLg
is true. The following conditions are needed:

— Ap D LAy
— By D AByp

None of these conditions is affected by the accessibility relation, so the
analysis of introspective properties that was possible with the standard
Kripke semantics is lost (recall §1.2.3).

e The logic of general awareness can be characterized syntactically.

Explicit beliefs are defined as the implicit beliefs of which the agent
is aware: M, s = By if pe A(s) and M, t = ¢ Vt such that (s, t)
€ B. The first part of this conjunction refers to the presence in the
awareness set; the second part uses the Kripke semantics, but can also
be syntactically formalized. Moore ([Moor83]) proved that the system
weak S5 characterizes stable sets. A set S is stable if it contains all the

tautologies, is closed under Modus Ponens and the following conditions
hold:
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— If p e S, then Ly € S
—Ifp £S, then -Lp e S

Therefore, from a syntactic point of view, the models of the logic of
general awareness are the intersection of a stable set with an arbitrary
set (the awareness set).

e It does not seem very realistic to model agents which are perfect rea-
soners with respect to a syntactic class of formulae.

2.2.8 Principles and implicit belief

In the logic of general awareness described in §2.2.7 the set of beliefs is re-
stricted to those formulae of which the agent is aware. Van der Hoek and
Meyer ([VAHMB89], [VAHM96]) propose in their logic of awareness and prin-
ciples the opposite approach: to have a way to add arbitrary formulae to
the set of beliefs. These formula (called principles) are supposed to express
propositions which the agent desires to belief, regardless of their possible
inconsistency with respect to the rest of its beliefs.
Three modal operators are considered in this logic:

e P,¢p: ¢ is a principle for Agent;.
e B;¢: ¢ is believed by Agent;.
e B;;¢: ¢ is an implicit belief of Agent;.

The modal formulae are given a semantics with a modified version of
the standard Kripke models. The ones used in this logic are defined as
tuples (S, 7, P1,Ps, ..., Pn, R1, Ra, ..., Ry,), where S is a set of states, 7 is
an assignment of a truth value to each basic proposition in each state, P; is a
function that returns the formula that are considered as principles by Agent;
in each state, and R; is a serial, transitive, Euclidean accessibility relation
between states for Agent;. The modal formulae are given a truth value in
each state of each Kripke model with these clauses:

o (M,s) = B¢ <= Vit ((s,t)eR; — (M, 1) = o)
o (M,s) | Pip <= ¢eP;(s)
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o (M,s) = Brip <= (M,s) = Bip or (M,s) = Pi¢

B, behaves as the standard modal necessity operator. P; is similar to the
awareness operator in the logic of general awareness, as it only checks that
a formula belongs to a set (in this case, the set of principles of Agent; in a
given state). Implicit beliefs are similar to the explicit beliefs of the logic
of general awareness, although in this logic a disjunction between standard
beliefs and principles is used (rather than a conjunction between standard
beliefs and the awareness set, as shown in §2.2.7). This definition provides
a way of increasing the set of beliefs with a set of arbitrary formule in
each state and, therefore, it avoids most of the forms of logical omniscience
(e.g. closure under implication, closure under valid implication, closure under
logical equivalence, closure under conjunction and weakening of belief do
not hold). It is also possible to have inconsistent beliefs without believing
every formula. However, agents still believe (implicitly) all valid formulae.
Moreover, Konolige’s criticisms of the logic of general awareness (see §2.2.7)
can still be applied to this approach.

2.2.9 Hybrid sieve systems

Thijsse ([Thij92], [Thij96]) proposes a way of using partial logics to deal with
various forms of logical omniscience. He starts by defining a partial model as
a tuple (W, By,...,B,,V), where W is a set of worlds, B; is the accessibility
relation between worlds for Agent; and V is a partial truth assignment to the
basic propositions in each world. T is a primitive proposition that is always
interpreted as true. The truth (=) and falsity (=) relations are defined in
the following way:

e M,wkE=T
e M,wAT
e M, w = P, where P is a primitive proposition, iff V (P, w)=1

e M, w = P, where P is a primitive proposition, iff V(P,w)= 0
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<

, wEeiff M, wH @
w= —piff M, w = ¢
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=

~

W (pAY)iff M, w = g and M, w =4

W= (o A) iff M, w= g or M, w= 1

<

~

=

, w = By iff M,v = ¢ Vv such that (w, v) eB;
e M, w = B,y iff v such that (w, v) eB; and M,v 5 ¢

Validity is defined as verification: = ¢ iff VM, w (M,w) E ¢. These
models are similar to those in Levesque’s logic of implicit and explicit belief
(see §2.2.4). There are two main differences, though:

e Levesque uses two different sets in each situation: those propositions
that are supported by the situation and those that are denied by the
situation. Thus, a proposition may be in four different states in a sit-
uation (depending on whether it is supported and/or denied), defining
a four-valued logic. In the partial models a proposition may only be in
three different states with respect to a world: it may be supported, or
denied, or neither supported nor denied.

e Levesque denies a modal formula in a state when there is a doxastic
alternative in which the formula is not supported; Thijsse asks for a
doxastic alternative in which the formula is denied.

The partiality of the valuation function causes the absence of tautologies:
there are no valid formulae in this logic. Thus, some forms of logical omni-
science (belief of valid formula, closure under valid implication) disappear,
and the following axioms (representing closure under material implication
and closure under conjunction) are not valid either:

o K: - B(¢ = 1) = (Bp = Bip)
o C:F (BpABip) = B(d A)
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A notion of awareness (or rather acquaintance, as Thijsse puts it), may be
incorporated in the logic with a new modal operator, A;, defined as follows:
Ai¢ = Aw in » Bi(P A =P). Thus, an agent is aware of a formula if each of
the basic propositions that appear in the formula has a definite truth value.

In spite of these good properties, this logic also has some shortcomings:

e It eliminates too many tautologies (e.g. BP V —BP seems acceptable,
whereas B(P V —P) must be avoided).

e Some forms of logical omniscience still hold (albeit in a relativized way):

— K;: B(p = ¢)F (Bo = By)
— C,: BOABY - B(¢p Ay)

Thijsse proceeds by solving these problems with his hybrid sieve models,
defined as tuples (W, By,..., By, A1, ..., Ap, V), where W, B; and V keep
their previous meanings and A; is the set of formulae of which the agent
is aware in each state. A new modal operator (C;¢) is introduced, with
the intended meaning “Agent; consciously believes ¢”. A new satisfiability
relation (||-) is also introduced. The main aims of these models are:

e To provide a classical (two-valued) logic approach to the external part
of the logic (so that e.g. BP V —BP holds) while retaining a partial
(three-valued) logic for the internal part (so that e.g. B(P V —P) is
avoided).

e To avoid relativized forms of closure under material implication and
closure under conjunction by adding the syntactic awareness filter.

The clauses that must be added to the partial models in order to give a
semantic value to the new modal operator and the new consequence relation
are the following:

e M, w | P, where P is a primitive proposition, iff V (P, w)= 1

o M, w|—pifft M, w |-

o M, wl-(pAy)Hf M, w|-¢ and M, w [-¢
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e M, w|B;p iff M,v = ¢ Vv such that (w, v) eB;
e Myw = Cip iff Myw |-Cip iff M,w = B;p and geA;(w)
e M,w = Cip iff M,w = By or ¢ £A;(w)

A formula is said to be valid (|-¢) just in case M,w ||-¢ holds in each state
of each model. Note that ||— is a bivalent relation, whereas = is trivalent.
These clauses impose a classical external logic in the propositional formula
but they keep a partial internal logic in the modal formulz (note that M,w =
B, ¢ is true in exactly the same situations in which M,w ||-B;¢ holds). In this
way some tautologies are recovered, without having the undesired property of
believing valid formulz. Note also the similarity of this approach with Fagin
and Halpern’s logic of general awareness (see §2.2.7), where explicit beliefs
were defined as those implicit beliefs of which the agent is aware (thus, the
C; operator is very similar to the explicit belief operator (B) in that logic).
Thijsse argues that with this syntactic filter the relativized forms of axioms
C and K do not longer hold. Moreover, he affirms that this hybrid sieve
models provide a framework in which any modal logic that extends classical
propositional logic may be modelled.

2.2.10 Logic of local reasoning

Fagin and Halpern ([FaHa85], [FaHa88]) proposed a model that allows the
agent to have non-trivial inconsistent beliefs (i.e. the agent may believe ¢
and —¢ without believing everything). This model is called the logic of local
reasoning, and it is based on the idea that a real (e.g. human) agent may
often hold inconsistent beliefs, because it can easily fail to take into account
all of its beliefs in every inference. Depending on the issues it is currently
considering (call it its actual context) it may perform some inferences on a
subset of its beliefs and inadvertedly deduce facts that are inconsistent with
respect to other beliefs. Fagin and Halpern consider different states in which
the agent may be (in their notation, different frames of mind, or frames of
reference as Van der Hoek and Meyer put it in [VAHM96]). In each of these
situations the agent considers a different set of doxastic alternatives and,
therefore, it may held a different set of beliefs in each of them. While each
local set of beliefs is consistent, the union of all of them (all the formula that
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may be believed by the agent in some frame of mind) may turn out to be
inconsistent.

Formally, a local reasoning structure is defined as a tuple (S, 7,Cy,...,Cy),
where S is a set of states, m assigns a truth value to each basic proposition in
each state and C; assigns to each state a non-empty set of subsets of S (where
each of these subsets represents the set of doxastic alternatives considered in
a frame of mind that Agent; may have in that state). The clause used to
assign a truth value to doxastic formula is the following:

(M, s) = B¢ <= 3TeC;(s) such that VteT (M,t) &= ¢

Thus, the agent believes ¢ if it holds in all the doxastic alternatives, rela-
tive to a given frame of reference. In this way the agent may have inconsistent
beliefs, because it may believe ¢ in one frame of mind and —¢ in another.
Note that this situation is very different from believing (¢ A —¢). Some of
the forms of logical omniscience considered in this dissertation do not hold
in this logic (e.g. closure under implication and closure under conjunction).
However, other forms of this problem are not solved by this approach (e.g.
closure under valid formula, closure under valid implication, closure under
logical equivalence and weakening of beliefs).

2.2.11 Logic S5P

Meyer and Van der Hoek proposed ([MvdH91], [MvdH92], [MvdH93]) the
logic S5P as a way of representing incoherent beliefs, following the same
basic idea than Fagin and Halpern in their logic of local reasoning (§2.2.10):
an agent can focus on different contexts or frames of reference during its
reasoning processes, and its beliefs may be different in each of them. This
intuitive idea is formalized with an S5P model, which is defined as a tuple
(S,m, R, S1,...,S,), where S is a set of worlds, 7 is an assignment of truth
values to each basic proposition in each world, R is a universal relation on S
(i.e. Vs, teS (sRt)) and each S; is a (possibly empty) subset of S (representing
a given frame of reference). There is a knowledge operator K and several
plausible belief operators P; (one for each frame of reference). The clauses
that deal with these modal operators are defined as follows:
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e M,s = K¢ if and only if VteS M,t = ¢
e M,s = P,¢ if and only if VteS; M,t = ¢

With these definitions, knowledge is represented by an S5 logic whereas
each belief operator is ruled by a K D45 logic. Therefore, many of the forms of
logical omniscience may not be avoided (for instance all tautologies must be
believed in all contexts, and the beliefs within each context must be logically
closed). However, it is possible to represent inconsistent beliefs, because
(Pi¢ A\ Pj—¢) is satisfiable (without implying Py, for arbitraries k and ).
In this way it is possible to represent the inconsistency that may arise from
information obtained from different sources. The main difference of the logic
S5P with the logic of local reasoning described above is that in the former it
is possible to select any context (using the appropriate P; operator), whereas
in the latter we can only check whether there exists a context in which a
certain formula holds.

2.2.12 Non-standard belief structures

Fagin and Halpern’s logic of local reasoning (see §2.2.10) may be shown to be
equivalent to Vardi’s non-standard belief structures ([Vard86]). These struc-
tures take Rescher and Brandom’s non-standard worlds (see §2.2.1, [ReBr79])
as their basic notion. A non-standard possible world expression E is the
smallest set that satisfies these conditions:

e W C FE, where W is a set of worlds.
e If w;eF for all 7 in an index set I, then N w;ek.

e If w;eFE for all 7 in an index set I, then U w;eF.

A non-standard belief structure M is a triple (W, N,II), where W is a
set of worlds, IT returns the intension of each basic proposition (the set of
worlds in which it is satisfied) and N assigns to each agent in each world
the non-standard world that the agent believes to be the actual one. The
satisfiability relation is defined as follows:
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e M,w =P, where PeP, if well(P)

M,w == if M,w i ¢

M,wE (6AY) if Mw = ¢ and M, w =1

If N(a,w) =N w,;, then M,w = B,¢ if M, w; = ¢ for all iel

If N(a,w) =Uw;, then M,w = B,¢ if M, w; = ¢ for some iel

Sim ([Sim97]) reviews this approach and comments that schematized be-
lief may be viewed as a semantic counterpart of Schaerf and Cadoli’s O}
epistemic operator ([ScCa95], see §2.2.6), whereas superposed belief is a se-
mantic counterpart of their 0% operator.

2.2.13 Fusion models

Jaspars ([Jasp91], [Jasp93]) proposed a model which is very similar to the
logic of local reasoning described in §2.2.10. He also defines a kind of models
(called fusion models) that allow the agent to deal with non-trivial inconsis-
tent beliefs. His models are tuples of the form (S, 7, Ry,..., R,), where S
is a set of states, m assigns a truth value to each basic proposition in each
state and R; is a relation between a state and a set of sets of states (as in
the logic of local reasoning). These sets are seen as a kind of superstates in
which contradictory information may hold. The definition of satisfiability of
a doxastic formula in a state is given by this clause:

(M, s) = Bip <= VT C S (Ri(s,T) = 3teT (M, 1) = ¢)

Note that this approach may be considered as dual to the logic of local
reasoning described in §2.2.10. That logic looked for a set of doxastic alter-
natives in which all the members of the set supported the truth of ¢, whereas
the fusion model looks for a world that supports the truth of ¢ in each set
of doxastic alternatives.

It is interesting to note that, regarding the different forms of logical om-
niscience, this approach has the same properties than the local reasoning
one. It permits to have inconsistent beliefs without believing everything,
and it also avoids closure under implication and closure under conjunction.
However, other restricted forms of logical omniscience (such as closure under
valid implication, closure under logical equivalence, belief of valid formula
and weakening of belief) are not avoided in fusion models.
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2.2.14 Urn models

Hintikka suggested in [Hint86a] a syntactic approach to the problem of logical
omniscience (see §2.1.4). He comments that this approach is equivalent to
the semantic approach taken by Rantala ([Rant75]) with his urn models.

This approach starts with a generalization of the concept of world, which
is a variation of the notion of urn models in probability theory, and is called in
the same way. The nested quantifiers of a formula represent successive draws
of individuals from an urn (that is, the domain of the model), or successful
searches of individuals of the model. The concept of urn model is obtained
by allowing the set of individuals to vary between successive draws.

Rantala explains that not all urn models are appropriate for the role
of impossible worlds. They are only useful if they vary so subtly between
successive draws that they cannot be told apart from the (invariant) classical
models with sequences of draws as long as those involved in a given sentence
([Hint75a]). It can be shown that the conditionals (S; D Ss) which are
true in these (almost invariant) urn models are precisely those for which
the argument from F(S; D S3) to {a}KS; D {a}KS, is allowed with the
syntactic restriction mentioned in §2.1.4.

2.2.15 Intensional logic of beliefs

One of the semantic approaches to the problem of logical omniscience is
Montague’s intensional logic of beliefs ([Mont70]). Let W be a set of possible
worlds, and assume that the relation that describes whether a formula ¢ is
satisfied in a world w (w = ¢) has been defined. The intension of a formula
@, I(p), is the set of worlds in which it is satisfied. In this context, the
semantics of ¢ is fully determined by its intension. Therefore, if two formulae
¢ and ¢ have the same intension they are semantically equivalent (i.e. if an
agent believes ¢, then it also believes ¢).

With this approach the problems of logical omniscience and perfect rea-
soning are partially solved, because it is no longer true that if o believes ¢
and ¢ semantically implies ¢, then « believes ¢. An agent does not have
to believe all tautologies, and it can even believe contradictory sentences.
Nevertheless, if o believes ¢ and ¢ is semantically equivalent to ¢, then «
believes ¢. This is the price to be paid to see an agent’s beliefs as a connective
applied to intensions.
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The semantic equivalence relation partitions the set of formulae L into
equivalence classes. Therefore, if a believes ¢, one could say that a believes
[¢], where [¢] is the equivalence class of ¢. There is a natural mapping
between equivalence classes and subsets of W, because all the formulae of a
certain class have the same intension. This implies that the agent believes a
set of propositions or, equivalently, a set of subsets of W.

A belief structure is defined as a tuple M = (W, N, II), where W is
the set of possible worlds, II is a function that returns the intensions of the
atomic propositions and N is a function that assigns to each agent the set of
propositions that it believes in a certain world. A similar kind of structures
are called Montague-Scott structures in [FHMV95]. These structures contain
a set of states, a truth assignment to the primitive propositions for each
state and a set of subsets of S for each state (which is the semantic way of
representing the set of formula that is believed in each state).

Let L be the language that contains all the atomic propositions P, is
closed with respect to the boolean connectives and contains B,y (a believes
@) if ¢ isin L and a is an agent. The semantics of this language is the
following:

e M, w =P, where P ¢ P, if w € II(P)

o M, wkE=—pif M, wp ¢

e M,wkE= (pAY)if M, wEg@and M, w = ¢
e M, w= By if {u: M, u = ¢} € N(a, w)

The last line formalizes the idea that an agent believes ¢ in a world w
when the intension of ¢ is included in the propositions believed by the agent
in w. Vardi ([Vard86]) comments this approach and makes some criticisms:

e The notion of possible world is left as a primitive notion, giving no
intuitions about the nature of these worlds.

e It is also left open the issue of how to obtain the set W of possible
worlds.
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2.2.16 Belief worlds

In order to overcome these drawbacks, Vardi ([Vard86]) describes another
way of modelling beliefs using propositions. He defines belief worlds in a
constructive way, and thus he can take W as the set of all possible worlds.
Therefore, the semantic equivalence relation is the logical equivalence rela-
tion. This kind of structures are called knowledge structures by Van der Hoek
and Meyer in [VAHMO96]; they mention that this approach has also been pro-
posed in [FHV84| and [FHV91]|. They also show how knowledge based on
this kind of structures is completely axiomatized by the system S5,,.

Formally, a 0-order assignment f; is defined as an assigment of truth val-
ues to the set of atomic propositions. < fy> is called a I-ary world. Assume
that k-ary worlds (< fo, ..., fr—1>) are defined inductively. Let W}, be the set
of all k-ary worlds. A k-order assignment is a function fj that relates each
agent to a set of propositions, where each proposition is a set of k-ary worlds.
An infinite sequence < fy, f1, f2,...>, where each prefix <fy, f1,..., fr_1> is
a k-ary world, is called an infinitary world. W, is the set of all infinitary
worlds. Assignments are restricted in the following way: if the k-th level is
removed from all k+1-level propositions, all the propositions in level k are
obtained.

The notion of satisfiability of a formula in a finitary world is defined as
follows:

e <fo,..., f[r>FE P, where P is a primitive proposition, if f,(P) = true
o <fo,..., i>Epif <fo,..., [i>Fp

o <fo, ..., i>E (pAY) if <fo,..., fr>E= @ and <fo,..., fri>E 0

o <fo,..., r>F Ba(p) if (r > 0) and {w : weW, and w = ¢} €f,(a)

Belief worlds are always extensions of belief worlds from previous levels;
therefore, to determine the satisfiability of a formula it is enough to consider
a prefix long enough. Depth(¢) is the number of levels of nesting of the belief
operator in ¢. It can be proved that if a formula of depth £ is satisfiable, it
is satisfiable in a k+1-ary world, and thus the validity problem for formula
in beliefs worlds is decidable.

Belief worlds can be characterized with the following axiomatic sytem:
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e Al. All the instances of all propositional tautologies.
e R1. From ¢ = ¢ infer B,(¢p) = B,(v).

Therefore, in Vardi’s model of belief worlds, validity is characterized by
propositional reasoning plus substitution of equivalents, which somehow al-
leviates the logical omniscience problem but does not solve it. Vardi suggests
two ways of attacking this problem:

e Add non-classical worlds to belief worlds.

e Accept that epistemic notions are noy purely intensional, trying to add
some syntactic flavour into the semantic part, as Fagin and Halpern
did in [FaHa85].

2.2.17 Dynamic epistemic logic

The basic idea underlying Duc’s approach ([Duc95], [Duc97]) to the problem
of logical omniscience will be strongly defended throughout this dissertation:
it is possible to consider rational agents that are not logically omniscient, just
by noticing and enforcing the fact that agents must follow an explicit rea-
soning process in order to obtain logical consequences from its set of beliefs
(regardless of whether they have complete or incomplete deductive capabili-
ties). Thus, if an agent has a certain set of beliefs S, and it has enough will,
resources and logical capabilities, it will have the chance to deduce any logi-
cal consequence of S. Duc formalizes these ideas with the notion of dynamic
epistemic logic. Two modal operators, [F;] and < F; >, are introduced for
each agent 7; they have the following meaning:

e [F;]¢ means “¢ is true after any course of thought of i”.

o < F; > ¢ means “¢ is true after some course of thought of 2”.

Thus, the aim of dynamic epistemic logic is to allow the satisfiability
of formulae such as K;¢ A K;(¢ = ¢) = < F; > Ky, that states that,
if an agent knows ¢ and (¢ = ), it could know # in the future (e.g. if
it applies Modus Ponens to these formula). Note the important difference
between that formula and K;¢ A K;(¢ = ¢) = K1, which leads to logical
omniscience. In this way, the modelled agent is both rational (because it has
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the possibility of using its deductive capabilites to obtain new knowledge)
but not logically omniscient (because it is not forced to know every logical
consequence of its knowledge). These F; operators are not allowed to appear
inside the scope of a knowledge operator K.

The logic DES4,, (Dynamic Epistemic S4,) has the following axiomatic

definition:

e PCI:
e PC2:
e PC3:
e TL1:
o TL2:
e DEI:
e DE2:
e DE3:
e DE4:
e DE5:
e DEG:
e DET:
e DES:

¢ = (Y= ¢)

(0= W=7)=((@¢=9¢)=(0=17)

(¢ = =¢) = (¢ =)

[Fil(¢ = ¥) = ([E]o = [Fi]¥)

[Fil¢ = [Fi][F]é

Kip NKi(p = o) =< F; > K

Ki¢p= ¢

Ki¢ = [F;]K;¢, provided that ¢ does not contain any F; operator
<F>Ki(p= (¥=9))
<F>Ki((o=W=17)=(¢=1v)=(d=1))
<F > Ki((~¢ = —¢) = (6= ¢))

< F; > Ki(Ki¢ = 9)

K;¢ =< F; > K;K;¢, provided that ¢ does not contain any F;

operator

e R1 (Modus Ponens): from ¢ and (¢ = 1), infer

e R2 (Necessitation): from ¢ infer [F;]¢
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The axiom schemas PC1, PC2 and PC3, along with rule R1, axiomatize
propositional calculus. The axioms DE4, DE5 and DE6 are expressing the
fact that agents may use this propositional axiomatization in their reason-
ing. The addition of TL1, TL2 and R2 permits to axiomatize the minimal
temporal logic of transitive time. Axiom DE1 has been commented above
(agents may use Modus Ponens). DE2 is the classical axiom of knowledge,
axiom T (recall §1.2.3). DE3 states that the knowledge of an agent is persis-
tent (i.e. agents do not forget what they know). DET forces agents to trust
in their knowledge. Finally, DES8 says that agents are potentially capable of
performing positive introspection.

Duc proves that the agents modelled with this axiomatic system do not
suffer from omniscience problems such as knowledge of valid formulae, knowl-
edge of equivalent formula or closure of knowledge under logical implication.

2.3 Unifying frameworks

Some authors have developed frameworks that generalize some of the pro-
posals that have just been described; we will briefly comment Wansing’s non-
normal worlds semantics, Giunchiglia’s multi-context systems framework and
Sim’s multi-valued epistemic logic.

2.3.1 Non-normal worlds

Wansing shows in [Wans90] how different logics of knowledge and belief may
be seen as particular cases of a semantics defined in a general possible worlds
framework. This semantics is defined as follows. Let L be the language of
multi-modal propositional logic. A Rantala model M is a tuple of the form
<W,W* Ry,...,R,,V >, where

e IV is the non-empty set of normal worlds,
e W™ is the set of non-normal worlds,
e R; are binary relations on W |y W* and

e I/ is a function that assigns a boolean value to each formula of L in
each world, such that, VweW , the following conditions hold:

o V(</5/\¢,w):1 @V(%w)zv(?ﬁ,w):l
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- V(-¢,w) =1 V(p,w) =0
~ V(Oi,w) =1 & (Yu'eW UW*)(Ruww' = V(p,w') = 1)

Note that these conditions are defined only on normal worlds; more-
over, the truth or falsity of formulse need not be recursively specified in
non-normal worlds (non-normal worlds are only considered in the truth con-
dition of modal formulee). A formula ¢ is true in a model M at a world
w iff V(p,w) = 1. A formula is valid in a model if it is true in all normal
worlds of the model. It is valid if it is valid in all models. Wansing shows
how Levesque’s logic of explicit and implicit belief ([Leve84], see §2.2.4), Fa-
gin and Halpern’s logics of awareness, general awareness and local reasoning
([FaHa85], see §2.2.7 and §2.2.10) and van der Hoek and Meyer’s logic of
awareness and principles ([VAHMS88], see §2.2.8) are especial cases of this
unifying framework.

2.3.2 Multi-context systems

Giunchiglia et al. ([GSGF93|, [Bene97]) have developed multi-context sys-
tems, that provide a framework in which it is possible to formalize the rea-
soning about belief that takes place in a multi-agent environment. They
represent the agent’s beliefs with a context (an axiomatic system), in a de-
duction model of belief fashion (see §2.1.2). This idea allows them to provide
an exhaustive classification of all the ways in which an agent may happen to
be non-ideal, to be incomplete:

e Incompleteness in the signature: an agent may not be aware of all basic
propositions (this idea was also the motivation of the logic of general
awareness, see §2.2.7).

e Incompleteness in the formation rules: an agent may not be aware of
all the rules that may be used to construct formula from basic proposi-
tions, or may lack the resources (space, time) needed to build formulae
beyond a given complexity (e.g. formulse with many basic propositions,
or with many nested quantifiers).

e Incompleteness in axioms: the previous kinds of incompleteness may
prevent a (real) agent from having (in the axiomatic system that im-
plements it) all the axioms that it should have in order to be a perfect
realisation of an ideal agent.
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e Incompleteness in deduction rules: an agent may not know all the
deductive rules that are necessary in order to perform a logical closure
of its set of axioms (this kind of incompleteness was also commented in
§2.1.2). It may also know all the relevant rules but be unable to apply
them (e.g. when a certain resource has been exhausted).

In their multi-context systems every agent is modelled with an axiomatic
system, called a context. The reasoning that is performed over the beliefs of
these agents is also modelled with another axiomatic system. The interaction
between the different systems is made possible with the use of bridge rules.
The intuitive semantics of a bridge rule such as ((¢,C;) = (¢, C3)) is the
following: if ¢ is believed in context C4, then v is believed in context Cs.
Their basic system models logically omniscient agents, but they are also able
(see [GSGF93]) to model non-ideal agents; in particular, their framework
subsumes the logic of explicit and implicit belief (see §2.2.4), the logic of
general awareness (see §2.2.7) and the logic of local reasoning (see §2.2.10).

2.3.3 Multi-valued epistemic logic

Sim has also designed a framework that subsumes some of the proposals
reviewed in this chapter ([Sim95], [Sim00]). His idea is to define an epistemic
logic in which atomic sentences are assigned truth values that belong to a
bilattice ([Gins88|). A bilattice is a set with two partial orderings <; and
<k. Given two truth values z and y, (z <; y) means that y is at least as
true as z, and (z <; y) means that the evidence underlying an assignment
of the truth value x is subsumed by the evidence underlying an assignment
of the truth value y. In particular, Sim considers a basic bilattice, B, (see
figure 2). In the bilattice B4, the value | means that a sentence is neither
true nor false (i.e. there is no information about it), whereas the value T
indicates that a sentence is both true and false (i.e. there is both positive and
negative evidence for the sentence). Sim is interested in interlaced bilattices
([Fitt91]), which are lattices that have a unary operator, —, called conflation,
with the following properties:

o r<;y=>-—1 < -y

o r <y y=—-Yy < —x



Avoiding logical omniscience 53

false true

1

Figure 2: Bilattice B4

e — — T =0

With this definition in mind, a multi-valued epistemic logic (MEL) is
defined as follows: a model of MEL based on a set P of primitive propositions
is a tuple M =< S, Ry,...,R,,v, f >, in which

e S is a set of situations.

e IR, are binary accessibility relations on S.

e v is a function that assigns a truth value in B4 to each primitive propo-
sition in each situation. v =< v*,v~ >, where v* and v~ assign an
standard truth value (0 or 1) to each primitive proposition. The four
possible combinations -(0,0), (0,1), (1,0) and (1,1)- represent the B4-
values |, false, true and T, respectively.

e f is a unary function such that, for any situation seS, f(f(s)) = s and
v(f(s))(p) = —v(s)(p) for any peP.

W is the set of dual situations (those situations s such that s = f(s)). The
epistemic operators L; and B; (recall §2.2.5) are considered over dual (i.e.
complete) and arbitrary situations, respectively, as shown in the following
clauses:

e M,s =, piff v(s)(p) = true

o M,s = piff v=(s)(p) =true
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o M,s k=, ~¢iff M,s =, ¢
« M,s ;o iff Mys = ¢
o M,sk (pAY)iff M,s = ¢ and M, s = ¢
o M,sk=;(pNY)iff M,sk=ppor M,s =51

o M,s =, Lo it VieW (sRit) = M,t =, ¢
o M,s = L;¢ iff IteW (sR;t) and M, t =5 ¢

L M,S ):t Bz(b iff VteS (SRZt) =3 M,t ):t ¢
o M,s =y B¢ iff 3teS (sRit), (M,t =5 ¢) and (sRit) & (f(s)Rif(t))

Sim ([Sim00]) argues that the agents modelled in this framework keep the
desirable non-omniscient properties present in Levesque’s logic of explicit and
implicit beliefs (recall §2.2.4). He also claims that this approach subsumes
not only the (standard and nested) logics of explicit and implicit belief (§2.2.4
and §2.2.5), but also the logic of general awareness (§2.2.7) and Schaerf and
Cadoli’s approximate knowledge framework (§2.2.6).

2.4 Summary

The possible worlds model ([Hint62]) and its associated ([Krip63b]) Kripke
semantics have been used extensively in the last decades to give a formal
semantics to the modal formula of doxastic and epistemic logics. The success
attained by this model is based in facts such as the following:

e It provides a very intuitive approach to the processes of reasoning about
knowledge and belief that an intelligent agent might carry out.

e The axioms that rule the behaviour of knowledge are closely linked
to the properties of the accessibility relation between possible worlds
([VBen84]).
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In spite of these positive facts, the commitment to the possible worlds
model and the Kripke semantics makes it difficult to model the reasoning
processes of non-ideal agents, because the modelled agents are logically om-
niscient (they believe every tautology) and perfect reasoners (they believe
every logical consequence of their beliefs). This problem was detected and la-
belled by Hintikka in [Hint75a], and many authors (in Philosophy, Computer
Science and Artificial Intelligence) have provided alternative formalisms that
solve (or, at least, partially alleviate) this problem. In this chapter the fol-
lowing strategies have been considered:

e Revise the concept of possible world.

In the classical view, a possible world is a logical model (for instance,
in a propositional setting, a possible world is an interpretation of the
basic propositions). Some authors have tried to alleviate logical omni-
science by changing this notion. A possible world may be represented
in different ways, for instance the following:

— A situation in which some basic propositions are considered true
and some basic propositions (not necessarily different from the
previous ones) are considered false (logic of implicit and explicit
beliefs, [Leve84], [Lake87]).

— A partial assignment of truth values to the basic propositions (hy-
brid sieve systems, [Thij96]).

— A state in which tautologies may be false and contradictions may
be true (impossible possible worlds, [Cres72], [ReBr79], [Hint75a]).

— A possible world may be represented just with the set of formula
that are assumed to be true in it ([Perl84], [Haas85]).

e Restrict the agent’s deductive capabilities.

An agent may be prevented from having too many beliefs by restricting
its reasoning capabilities. In the deduction model of belief ([Kono86a])
and the belief model ([Woo0l95]) each agent has its own set of deductive
rules, that may not be logically complete. This solution has also been
strongly advocated by Hintikka ([Hint86a]).
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e Change the underlying consequence relationship.

The most important approach that suggests a way in which the conse-
quence relationship may be changed is the one described in §2.2.3, the
non-standard structures ([FHV95]). In this framework the interpreta-
tions of a formula and its negation are made independent; thus, a new
semantics is provided to the negation operator and, therefore, also to
the conditional operator.

e Modify the standard Kripke semantics.

The standard Kripke semantics may also be modified in a number of
ways to avoid logical omniscience. The standard clause that provides a
semantics to the doxastic formulae may be either generalised (by allow-
ing extra formula to be beliefs, as in the logic of principles and implicit
beliefs, [VAHM96]) or specialized (by requering extra conditions in or-
der for a formula to be a belief, as in the logic of general awareness,
[FaHa85]). The doxastic operator may be modelled with the modal
possibility operator, rather than with the necessity one ([VAHMS89]).
A different way of changing the Kripke semantics is to put frames of
mind into the picture, as in the logic of local reasoning ([FaHa88]), the
logic S5P ([MvdH93]) or the fusion models ([Jasp93]).

Detailed reviews of some of the approaches that have been surveyed in
this chapter appear in [McPa87], [Hadl88], [McAr88], [Reic89], [VAHM95]
[FHMV95], [Sim97] and [MvdH98|.
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3 Subjective situations

In this chapter we will suggest a new way of dealing with the logical omni-
science and the perfect reasoning problems, based on the notion of subjective
situations; these entities will replace the classical possible worlds. First, we
will mention in §3.1 the basic ingredients to be used in our approach. Sub-
jective situations will be intuitively motivated in §3.2, and formalised in a
concrete first-order doxastic modal setting in §3.3 and §3.4. Having done
that, in §3.5 the main properties of the modal operators of this doxastic
logic will be studied; it will be seen how logical omniscience is avoided, while
some interesting logical properties (such as introspection) are maintained.
The chapter will finish with the comparison of our proposal with some of the
frameworks that have been reviewed in the previous chapter.

3.1 Ways of avoiding logical omniscience

At the end of §2 we have summarised a number of ways in which the logical
omniscience problem may be alleviated. Our approach is a blend of some of
those ideas, as will be apparent in the rest of the dissertation. On the one
side, the description of what a possible world is will be changed (§3.3); we
will consider subjective descriptions of possible states of affairs, depending
on each agent’s perception of them. On the other side, the Kripke semantics
will also be somewhat modified in our approach, in order to consider the
vision that each agent has of the situation in which it is located (§5.4). The
study presented in §2 shows clearly that it is quite difficult to find a natural
way of dealing with logical omniscience without modifying any of these two
aspects. Finally, in §4 a certain class of non-ideal reasoners, the rational
inquirers, will be defined; as will be shown in that chapter, the reasoning
capabilities of these agents will be restricted (with respect to classical logic)
in order to prevent them from being ideal reasoners.

3.2 Motivation of subjective situations

The most popular way of dealing with the logical omniscience issue is to
change the concept of what a possible world is, as shown in §2. Regardless
of the way in which the concept of possible world is modified, there is a
kernel that never changes: the formal representation of a possible world is
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not related in any way with the notion of agent. Thus, it may be said that all
the approaches in the literature present an objective view of what a possible
world is (i.e. a world is the same for all the agents, it is independent of them).
In an standard Kripke structure, the only item that depends on each agent
is its own accessibility relation between possible worlds (recall definition 1).

The traditional meaning assigned to the accessibility relation R; of an
Agent; is that it represents the uncertainty that Agent; has about the situ-
ation in which it is located (e.g. (woRsw;) means that Agents cannot dis-
tinguish between worlds wy and w;, see [FHMV95]). This situation is quite
peculiar, because the formula that are true in two worlds that are linked by
an accessibility relation are, in principle, totally unrelated (i.e. in a Kripke
structure there is no relationship between the accessibility relation between
states and the function that assigns truth values to the basic propositions in
each of them). This fact is also pointed out in [Alva98|, where it is argued
that the accessibility relations should follow Kripke’s original idea that two
worlds w and w' should be related whenever every proposition that is true
in w is also true in w' ([Krip59], [Krip63a]). In that way, w’ would be an
alternative state conceivable on the basis of the present world w.

Our proposal is quite different, and it may be intuitively motivated by the
following scenario (the rest of the chapter will be of a more formal nature).
Imagine two human agents (« and () that are watching a football match
together. In a certain play of the game, a fault is made and the referee
awards a penalty kick. « thinks that the referee is right, because it has
noticed that the fault was made inside the penalty area (let us represent this
fact with proposition P); at the same time, § is thinking that the referee was
wrong because, in its perception of the situation, the fault was made just an
inch outside the penalty area. How can this situation (and the beliefs of the
two agents) be formally represented?

Following the standard approach, we could model the fact that a be-
lieves P and 3 believes —P by assuming that in all the (objectively described)
worlds considered as possible in the current state by « the proposition P
holds, whereas in all the worlds considered as possible by § (4’s doxastic
alternatives) P is false. This account of each agent’s doxastic state does not
seem very satisfactory to us, at least for two reasons:

e It does not tell us how each agent’s perception of the situation influ-
ences in its own beliefs. Recall that we are interested in modelling the
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evolution of the beliefs of agents with bounded rationality ([NeSi72]).
This kind of agents have a finite set of resources available to them. The
standard modal approach, in which an agent conceives a set of com-
plete and consistent possible worlds as doxastic alternatives, does not
seem to us to have any realistic interpretation. If an agent « believes
P and (P = Q), what sense does it make to model those beliefs as if
they had been obtained by the agent from an intersection of the for-
mula holding in an infinite set of completely specified possible worlds?
Furthermore, as we noted in the previous chapter, taking this stance
leads to logical omniscience, as the agent is also forced to believe every
logical consequence of those two formulae, such as Q or (P V —P). We
defend a much simpler picture: the fact that « believes P and (P = Q)
only means that it has perceived those facts as true in its present sit-
uation, and it has used these formula to build a partial description of
its present state of affairs. It is a framework in which the agent may
keep a partial description of the situation in which it is located, and
in which it can use the facts that it keeps perceiving from the envi-
ronment in order to keep increasing and refining its beliefs. It is even
possible to give a concrete interpretation of the positive and negative
formula that constitute the agent’s subjective description of a situa-
tion: they could be just data structures stored in the agent’s memory,
that would be updated by its perception of the environment. Huang
et al. have also noted that, in the presence of bounded rationality, the
standard approach to representing incomplete information is to have
partial descriptions (that, due to this partiality, encompass classes of
possible worlds), rather than having complete descriptions of uniquely
identified possible worlds ([HMP96]). This idea will be very important
in our work, as will become apparent in §5, when classes of possible
situations will be represented with two finite lists of formulae that will
provide a partial description of the facts that hold (or do not hold) in
those situations.

e Assuming that the fault was indeed made inside the penalty area, most
philosophers would argue that o not only believes P but also knows it
(being P true in the real world), whereas 3 believes =P but can not
possibly know —P, being it actually false?. Thus, in a magical way, one

4Tt could be argued that we are somehow neglecting in this argumentation the need of
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agent would have some knowledge (that would coincide with reality)
whereas the other wouldn’t.

In our opinion, this state of affairs (the actual situation, comprising both
the football match and the agents, along with their beliefs) may not be
adequately described with a simple assignment of truth values to the basic
propositions. Even if we had an accurate description of the real world, does
it really matter very much whether the fault was made inside the penalty
area in order to model the beliefs of the two agents involved in the scene?

The situation (s) is obviously the same for the two agents a and 3 (they
are watching the same match together). From a’s point of view, the descrip-
tion of s should make true proposition P; however, from [’s perspective, in
the present situation P should be considered false. Obviously, there would
be many aspects of s in which a and # would agree; e.g. both of them
would consider that the proposition representing the fact “We are watching
a football match on TV” is true in s.

As far as beliefs are concerned, we argue that, in this situation, « should
be capable of stating that B,P (« has seen the fault and has noticed that it
was made inside the penalty area; thus, it believes so). It would not seem
very acceptable a situation in which a perceived the fault to have been made
inside the penalty area and defended that it did not believe that a penalty
kick should have been awarded (the only possible explanation being that «
is a strong supporter of the offending team). It also seems reasonable to say
that o cannot fail to notice that it believes that the fault was made inside the
penalty area; thus, a may also assert in s that B,B,P. In a similar way, in
this situation 3 cannot state that BgP (3 cannot defend that it believes that
the referee is right, in a situation in which it perceived the fault to have been
made outside the penalty area). Thus, it seems clear that each agent’s point
of view on a situation strongly influences (or we could say even determines)
its positive and negative beliefs in that situation.

In our framework we want to include the intuition that agents are smart
enough to know that other agents may not perceive reality in the same way
as they do. In the previous example, without further information (e.g. «
shouting “Penalty!”), 3 should not be capable of supporting (or rejecting)

a justification for the belief in order for it to become knowledge (as knowledge is usually
defined in the philosophical literature as true justified belief). But, what could possibly
count more as a justification that each agent’s own on-site perception of the situation?



Subjective situations 61

that B,P; analogously, o could not affirm (or deny) that BgP. That means
that the communication between the agents is the main way in which an
agent may attain beliefs about other agent’s beliefs®. We could have chosen
other alternatives; for instance, we could have stated that an agent believes
that the other agents perceive reality in the same way as it does, provided
that it does not have information that denies that fact. In that case, in the
example o would assume that 3 also believes that P is true, as far as it does
not have any reason not to think so (e.g. [ saying “This referee is really
blind”).

A final reflection on the meaning of the accessibility relation between
situations for Agent; (R;) is necessary. It will be assumed that an agent
cannot have any doubts about its own perceptions and beliefs in a given
state. E.g. if, in situation s, « looks at the match and thinks P, then it
surely must realise this fact and believe P in s (and even believe that it
believes P, were it to think about that). Thus, if R, links s with all those
situations that a cannot tell apart from s, it must be the case that a also
perceives P as true in all those states as well (otherwise, those states would
be clearly distinguishable by «, because in some of them it would support P
whereas in some of them P would be rejected). The only uncertainty that «
may have is about the perception of s by the other agents. In the example,
« does not know whether it is in a situation in which [ supports P or in
a situation in which ( rejects P. Therefore, «’s accessibility relation must
reflect this uncertainty.

Summarising, the main points that have been illustrated with the previous
discussion are the following:

e A situation may be considered not as an entity that may be objectively
described, but as a piece of reality that may be perceived in different
ways by different agents.

Thus, it is necessary to think of a subjective way of representing each
situation, in which each agent’s point of view is taken into account. In
the previous example, the description of s should include the fact that
« is willing to support P, whereas (3 isn’t.

e An agent’s beliefs in each situation also depend on its point of view.

SHowever, as will be seen in §4 and §5, in this dissertation we will only be concerned
with the agent’s beliefs about the world, and not with its beliefs about other agent’s beliefs.
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In the situation of the example, B,P would hold from a’s perspective,
whereas it would not be either supported or rejected by 3. Thus, we
argue that it does not make sense to ask whether B,P holds in s or
not; that question must be referred to a particular agent’s point of
view. We have also defended that the beliefs of an agent depend more
on its perception of reality than in what is actually true or false in its
environment.

e The interpretation of the meaning of each agent’s accessibility relation
is slightly different from the usual one.

Each accessibility relation R; will keep its traditional meaning, i.e. it
will represent the uncertainty of Agent; with respect to the situation
in which it is located. However, our intuition is that an agent may only
be uncertain about the other agents’ perception of the present state,
not about its own perception.

3.3 Formalization of subjective situations

These intuitive ideas are formalized in the structures of subjective situations,
which are defined as follows ([MCS99b], [MCS00b]):

Definition 3 (Structure of Subjective Situations)

An structure of subjective situations for n agents F is a tuple
<S,Ry,..,R,,T1,..Tn, F1, ..., Fy, >, where

e S is the set of possible situations.
e R; is the binary accessibility relation between situations for Agent;.

e 7; is a function that returns, for each situation s, the set of first-order
formule that are perceived as true by Agent; in s.

e F; is a function that returns, for each situation s, the set of first-order
formule that are perceived as false by Agent; in s.

€ is the set of all structures of subjective situations.
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Note that this definition does not put any constraints on the 7; and F;
functions. We may have situations such as the following:

e ¢0eTi(s) and geF;(s).
In this case s is an inconsistent situation, because Agent; has reasons
both to support and to reject ¢. With this kind of situations it is
possible to model for instance states of affairs in which an agent has
received contradictory information from different sources.

o ¢ £Ti(s) and ¢ £Fi(s).
In this case s is a partial situation, because Agent; does not have any
reason to support or to reject ¢. This kind of situations might be
used to model an state of affairs in which the agent is unaware of the
existence of a certain predicate, or simply it does not have any positive
or negative evidence about its truth.

o (pV o) £Ti(s)

Agents do not have to necessarily support all classical tautologies.

o ¢eTi(s), (6 = ¥)eTi(s), ¥ £Ti(s)-
The formula that are supported by an agent do not have to be closed
under logical consequence.

o V(P = Qu)eTi(s), PueTi(s), Qu £Ti(5).

Another example of the same fact, now in the first-order case. These
situations are basic to formalise non-ideal agents, which may have to
devote some effort and resources to derive some logical consequences of
their sets of beliefs (even if they seem so trivial to obtain as the ones
we have just shown).

This kind of situations was already considered by Levesque in his logic
of explicit and implicit beliefs, described in §2.2.4. A detailed comparison of
our proposal and that of Levesque is offered in §3.6.

The accessibility relation between situations for Agent; has to reflect its
uncertainty about the way in which the actual situation is perceived by the
other agents. Thus, R; has to link all those states that Agent; perceives in
the same way but that may be perceived in different ways by other agents.
This intuition is formalized in the following condition:
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Definition 4 (Condition on Accessibility Relations)
Vs,teS, (sRit) if and only if (Ti(s) = Ti(t)) and (Fi(s) = Fi(t))

It is easy to check that this condition forces the accessibility relations
to be equivalence relations (as they are reflexive, symmetric and transitive).
This result links this approach with the classical S5 modal system, in which
this condition also holds. In S5 the presence of this condition makes true
axiom 4 (positive introspection), axiom 5 (negative introspection) and axiom
T (the axiom of knowledge); the modal operators of the system proposed in
this dissertation will have similar properties, as will be shown in §3.5.

3.3.1 Managing uncertainty

As stated above, in the standard modal approach the agents’ uncertainty is
reduced to the accessibility relations R; of the Kripke structures. As these
relations define which are the doxastic alternatives of each agent, they deter-
mine, via the Kripke semantics, which will be the agents’ sets of beliefs. In
the framework suggested in this dissertation, there are two types of uncer-
tainty that have to be dealt with:

e On the one hand, the agent’s perception of a situation may be both
partial (because it may not have information about every possible fact)
and inconsistent (because it may have reasons to believe and disbelieve
that a certain fact holds in a given situation). This kind of uncertainty
is represented by the functions 7; and F; of the structures of subjective
situations.

e On the other hand, the agent is also uncertain about the perception
of the current situation by the other agents composing the multi-agent
system. The accessibility relations of the structures of subjective situ-
ations are used precisely to model this fact.

We believe that these two types of uncertainty may not be appropriately
modelled within the standard modal approach, in which the agent may only
be uncertain about which one is its present situation, among a set of complete
and consistent possible worlds. This model is quite natural and intuitive,
but it must be abandoned if the aim is to model the beliefs of rational, real,
limited, non-ideal agents.
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3.4 Satisfiability relations

Most of the approaches to logical omniscience reviewed in the previous chap-
ter considered propositional modal logics of belief. In our work, we will turn
to the predicate case. In the classical tradition, the formulae of a first-order
doxastic language are constructed as follows:

Definition 5 (Language of first-order modal logic)

The formule F of the standard language of predicate dozastic logic may
be built in the following way:

o ' = Standard formule of the predicate calculus.
e = (—-F)|(FVF)|(FAF)
e F= B,F

Note that this definition does not allow the presence of modal formula
within the scope of a quantifier®. A simplified version of the doxastic first-
order language for n agents is considered in this dissertation, as shown in the
following definition:

Definition 6 (Doxastic Modal Language £)

Consider a set of modal belief operators for n agents (B, ..., By). L
is the language formed by all first-order formule (built in the standard way
from a set of predicates, constants, variables, the quantifiers (3, V) and the
logical operators (—,V,N\,—)), preceded by a (possibly empty) sequence of
(possibly negated) modal operators. Lpc is the subset of L that contains
those formule that do not have any modal operator. The modal formule of
L are called linearly nested.

Thus, £ contains formulae such as P, BsQ, B1Bs(RV T), B3—B,S and
—B;B;—T, but it is not expressive enough to represent formula such as
(BsP — BsQ) or (PV B;sQ). In most practical applications, an agent in a
multi-agent system will only need to represent what it believes (or not) to

6Konolige discusses in [Kono86a] the implications of this constraint, and the severe
logical difficulties that arise when it is abandoned.
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be the case in the world and what it believes (or not) that the other agents
believe (or not). This is just the level of complexity offered by linearly nested
formulee.

In an structure of subjective situations each Agent; has positive and neg-
ative information about some first-order formula in each situation (given by
T; and F;, respectively). This allows us to define two relations (of satisfia-
bility, =;, and unsatisfiability, =;) between situations and formula for each
Agent;. Given an structure of subjective situations F and a situation s, the
expression F, s |=; ¢ should hold whenever Agent; has some reason to think
that ¢ is true in situation s. Similarly, E,s =; ¢ should hold whenever
Agent; has some reason to reject ¢ in situation s.

Notice that E,s F~; ¢ should not imply that E,s =; ¢ (i.e. Agent; not
having any reason to support ¢ does not mean that it must have reasons
to reject it). In the same spirit, E, s =; ¢ should not imply that E,s #; ¢
(Agent; could have reasons both to support and to reject a certain formula in
a given situation). These facts will indeed be true, as will be seen in the next
section, due to the presence of partial and inconsistent situations commented
in §3.3.

The clauses that define the behaviour of these relations are shown in the
following definition:

Definition 7 (Relations =; and =;)

o VEe& VseS,VAgent; YoeL pc

E s E; ¢ & ¢eTi(s)
E s =; ¢ & ¢eFi(s)

o VEe£,VseS,VAgent; j,VoeLl

E,s |=; Bj¢p & VteS ((sRit) implies E,t =; ¢)
E,s=; Bj¢ < 3teS ((sRit) and E,t =5, ¢)



Subjective situations 67

o VEeE,VseS,VAgent; ;,VoeLl

E,S ):z _|Bj¢ = E,S :‘z B](ﬁ
E,S :‘z _|Bj¢ = E,S ):Z Bj(ﬁ

A first-order formula ¢ is supported in a given situation s by an Agent; if
and only if Agent; has reasons to think that ¢ is true in s. Analogously, ¢ will
be rejected if and only if there are reasons that support its falsehood (recall
that a formula may be both supported and rejected in a given situation).
As far as beliefs are concerned, in a given situation s Agent; supports that
Agent; believes ¢ just in case Agent; supports ¢ in all the situations that are
considered possible by Agent; in s (Agent;’s doxastic alternatives). Similarly,
Agent; may reject the fact that Agent; believes ¢ if it may think of a possible
situation in which Agent; rejects ¢. Finally, Agent; will support that Agent;
does not believe ¢ if it may reject the fact that Agent; believes ¢. We
do not need more clauses to define the behaviour of the satisfiability and
unsatisfiability relationships due to the restriction to linearly nested formula
imposed in definition 6.

3.4.1 Derivability and validity

We will briefly discuss in this section the properties of the logical notions of
derivability and validity that are induced from the satisfiability relationship
that has just been explained. Let us consider the following definitions of
these concepts:

Definition 8 (Derivability and Validity)
Being I' a set of linearly nested formule, we represent with the expression

M, s ;T the fact that Vy € T, the expression M, s |=; v holds.

e A linearly nested formula v is i-derivable from a set of linearly nested
formule T, denoted T |=; 4, if and only if

V structures of subjective situations M,V situations s,

(M,s =, T) = (M, s =; ¥)
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e Two linearly nested formule ¢ and 1y are called i-equivalent if ¢ is
i-derivable from {1} and v is i-derivable from {¢}.

o A linearly nested formula ) is i-valid, denoted =; 1, if and only if

V structures of subjective situations M,V situations s,
M, s E; ¢ holds

This is arguably the most natural way of defining validity and derivability
in the subjective situations framework. The analysis of validity is trivial, as
shown in the following proposition:

Proposition 2 (Valid formulae)

There does not exist any i-valid linearly nested formula.

It is easy to check that there is not any i-valid formula. We only need
to consider an structure of subjective situations with a single world, w, such
that 7;(w) and F;(w) are empty. Then, there would be no linearly nested
formula 1) such that M,w |=; 1. As there are no valid formulae, we do not
have to worry about agents believing all valid formula or having their beliefs
closed under valid implication.

With respect to derivability, the following proposition holds:

Proposition 3 (Characterization of predicate derivability)

For all sets of predicate formule ' and all predicate formule -,
' v if and only if v € T.

The proof of this proposition is quite straightforward. This result is
stating that, if we take all the situations and structures in which a given set of
first-order formulae hold, we can only expect those formula to hold, and there
would be no other formula (neither classical tautologies nor classical logical
consequences of those formulae) satisfied in those structures and situations.
This result is precisely stating that the agents modelled with this framework
are neither logically omniscient nor perfect reasoners, as we desired.

If we turn our attention to linearly nested formula, we have the following
result:



Subjective situations 69

Proposition 4 (I-equivalence of linearly nested formulae)

For any linearly nested formula ¢,
e ¢ is i-equivalent to B;¢

e —¢ is i-equivalent to —B;¢

This result is a direct consequence of some of the propositions that will
be proved in §3.5, and will be discussed with more detail there. In a nut
shell, it is formally stating the intuitions that we suggested at the beginning
of this chapter: Agent;’s positive and negative beliefs will be determined by
its perception of reality.

3.5 Properties of the belief operators

The definition of an structure of subjective situations, the fact that the ac-
cessibility relations are equivalence relations and the clauses that describe
the behaviour of the satisfiability (and unsatisfiability) relations compose a
framework in which the modal belief operator of each Agent; has several
interesting logical properties (that, in our opinion, make it an appropriate
operator to model the notion of belief for a non-ideal agent). Some of these
properties are described in this section.

3.5.1 General results

Proposition 5 (Lack of Logical Omniscience)

In the framework of subjective situations, none of the following forms of
logical omniscience (as defined in §1.2.4) holds:

o Full logical omniscience.

Belief of valid formule.

Closure under logical itmplication.

Closure under logical equivalence.

Closure under material implication.
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e (Closure under conjunction.
o Weakening of beliefs.

o Triviality of inconsistent beliefs.

Proof. Let us take a state s in which T;(s) = {P,(P — Q),—P} and
F;(s) = {P}. Consider an structure for subjective situations F that only
contains the situation s.

e £ sk=; BPand E,s |=; B;(P — Q) hold, but E, s =; B;Q does not hold.
Therefore, neither full logical omniscience nor closure under material
implication hold.

e E sk B;(QV —Q) does not hold. Therefore, there is no belief of valid
formulze.

e £, s |=; B;P holds, but E,s =; B;(PV Q) does not hold. Therefore,
closure under logical implication and weakening of belief do not hold.

e £ s =; Bi(P — Q) holds, but E,s =; B;(—Q — —P) does not. There-
fore, beliefs are not closed under logical equivalence or under valid
implication.

e E s = B;P and E,s |=; B;(P — Q) hold, but the expression E, s |=;
B;(P A (P — Q)) does not hold. Therefore, there is no closure under
conjunction.

e £ s =; B;P and E,s =; B,—P hold, but E,s =; B;Q does not hold.
Therefore, there is no triviality of inconsistent beliefs. O

There are two basic reasons that account for the failure of all these prop-
erties:

e 7; and F; are defined on sets of (arbitrary) formulae (not on basic
propositions).

e 7, and F; are unrelated. Thus, a given formula may belong to both
sets, to only one of them or to none of them.
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It is possible to impose any of the above properties on the belief operators
by requiring these sets of formula to satisfy some conditions (for instance,
if (¢ A)eT;(s) implies that ¢eT;(s) and ¥eT;(s), then Agent;’s set of beliefs
would be closed under conjunction).

Proposition 6 (Relation between =; and ;)

For any linearly nested formula ¢

E,s t~; ¢ does not imply E,s =; ¢
E,s E; ¢ does not imply E,s #H; ¢

Proof: Take the structure of subjective situations F described in the proof
of the previous proposition. It is easy to check these facts:

e E s [~ BR and E,s #; B;R. Therefore, E,s t~; ¢ does not imply
E7 S :(z QS

e £ s =; BiP and E,s =; B;P. Therefore, E,s =; ¢ does not imply
Ea § 741 ¢ O

3.5.2 Results on positive introspection

Proposition 7 (Characterization of positive beliefs)

For any linearly nested formula ¢,

E s E; ¢ if and only if E, s =; B¢

Proof: The only if side of the formula coincides with proposition 8. The
if side may be proven as follows:

E s = Bip = Vt(sRit), E,t =; ¢. As R; is reflexive, (sR;s); therefore,
E, S ):Z (b a

This result states that Agent; believes ¢ in state s if and only if ¢ is
one of the facts that is supported by Agent; in that state. In fact, the
“if” side of the proposition is the classical axiom of knowledge, axiom 7.
Thus, in our framework the difference between belief and knowledge vanishes:
both concepts have to be understood as the propositional attitude that the
agents adopt towards those formulae that they perceive to be true in the
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environment. Therefore, the (rather philosophical) difference between those
beliefs that are true in the real world (that constitute knowledge) and those
that are not (plain beliefs) is not taken into account.

Proposition 8 (Belief of supported formulae)

For any linearly nested formula ¢,
E,s |=; ¢ implies E, s |=; B;¢

Proof: There are five cases to be considered:

o ¢cLpc

E,sE; ¢ and ¢peLpc = ¢eTi(s) = Vt(sR;t), deT;(t)
= Vt(SRit),E,t ‘:Z (b — E,S ):z B,(rlﬁ

If ¢ is a modal formula that starts with an affirmed belief operator B;
(i.e. ¢ = B;y), this fact is exactly the next proposition.

If ¢ is a modal formula that starts with an affirmed belief operator B;
(i.e. ¢ = Bj1), this statement coincides with proposition 10, that will
be proved below.

If ¢ is a modal formula that starts with a negated belief operator B;
(i.e. ¢ = —B;1), this fact is the one proved as proposition 14.

If ¢ is a modal formula that starts with a negated belief operator B;
(i.e. ¢ = —Bj;1), this fact is the one proved as proposition 15. O

This proposition is telling us that an agent believes all formula that it
has reasons to support, as suggested in the motivating example. However,
this proposition has an added value over our intuitions, because it refers to
any kind of linearly nested formula, and not only to non-modal formulze.

Proposition 9 (Single-agent positive introspection)

For any linearly nested formula ¢,

E,s k; B¢ implies E, s =; B;B;¢
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Proof: If E, s |=; B;¢, that means that F, s =; ¢ holds in all the situations
R;-related to s. Being R; an equivalence relation, these situations are exactly
the ones included in the equivalence class of s induced by R;. This class is
also the set of situations that may be accessed from s in two steps (in fact,
in any number of steps) via R;, and ¢ is supported by Agent; in all of them.
Thus, Vs'(sR;s")Vs"(s'R;s")E, s" \=; ¢, and E, s |=; B;B;¢ also holds. O

This proposition states that axiom 4 (the classical axiom of positive intro-
spection) holds for each belief operator B; (i.e. every agent has introspective
capabilities on its own positive beliefs).

Proposition 10 (Generation of positive beliefs)
E,s =; B;¢ implies E, s |=; BiBj¢

Proof- E,s =; Bj¢ == Vt(sRit),E,t =, ¢. Thus, E,t =; ¢ holds in all
the worlds t that belong to the same equivalence class as s (considering the
partition defined by R;). Therefore, in all the worlds accessible from s via R;

in any number n of steps, E,t =, ¢. Taking the case n = 2, we obtain that
E,s =; BiB;¢. O
If an agent has reasons to support a certain belief of another agent, then

that belief will be included in its set of beliefs.

Proposition 11 (Inter-agent positive introspection)
E,s &=; Bj¢ implies E, s |=; BjB;¢

Proof: E,s =; Bj¢p == Vt(sRit),E,t =; ¢. Using the result given in
proposition 4, that formula implies that Vt(sR;t), E,t |=; B;j¢; thus, E, s |=;

This result is more general (proposition 9 reflected the case i = j). It
states that each agent is aware of the fact that the other agents also have
introspective capabilities.

Proposition 12 (Multi-agent positive introspection)
In general, it does not hold (for three different agents Agent;, Agent; and
Agenty and a linearly nested formula ¢) that

E,s ; B;¢ implies E, s =; ByB;¢
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Proof: We will show a counterexample. Take an structure for subjective
situations F with two situations, s and ¢, such that (sRt) holds, but (sR;t)
and (sR;t) do not. Take a formula ¢ such that ¢e7;(s) and ¢ £7;(t). In this
state of affairs, F, s =; Bj¢ holds but E, s =; ByB;¢ does not hold. a

This proposition states a negative result. It is telling that even if Agent;
has reasons to support that Agent; believes something, that is not enough for
Agent; to think that any other Agent,, will have that belief. This proposition
is essentially expressing the uncertainty of Agent; about the beliefs of a
different Agenty.

3.5.3 Results on negative introspection

Proposition 13 (Characterization of negative beliefs)

For any linearly nested formula ¢,

E s=; ¢ if and only if E,s =; 7 B;¢

Proof: The only if side of the proposition may be proven as follows. As
we know that E,s =; ¢ and (sR;s), it may be said that It(sR;t), E,t =; ¢.
Therefore, E, s =; B;¢, which is equivalent to E, s =; 7 B;®.

The ifside of the proposition (i.e. E,s |=; =B;¢ implies E, s =; ¢) will be
proved considering five different cases (as we did in the proof of proposition
8):

o ¢cLpc
E,S ):.L _|Bz¢ — E,S :|z Bz¢ > Elt(Sth),E,t :(z (b As ¢€£Pc,
E |t =; ¢ implies that ¢eF;(t); as (sR;t), peFi(s). Therefore, E, s =; ¢.

e ¢ is a modal formula that starts with an affirmed belief operator B;

(i.e. ¢ = Byp).

E,sEi ~Bi¢p = E,s F; "B;BiYp = F,s =, BiBy) =
EIt(sRit), E t :|z By = dt, ’U,(SRit), (tRZ’LL), E u :(z .

As R; is transitive, (sR;t) and (¢R;u) imply that (sR;u). Thus, we may
state that Ju(sR;u), E,u =; 1. Therefore, F, s =; B;1, which is equal
to E, s =; ¢.
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e ¢ is a modal formula that starts with an affirmed belief operator B;

(i.e. ¢ = B;v).

E. s }:z -B;¢p = FE.,s ‘:Z ﬁBiij = F.,s :(z BZij -
E]t(SRZt), Et :(Z ij = dt, U(SRZt), (tRZ’U/), E u :‘j Y.

As R; is transitive, (sR;t) and (¢tR;u) imply that (sR;u). Thus, we may
state that Ju(sR;u), E,u =, ¥. Therefore, E, s =; Bjy, which is equal
to E,s =; ¢.

e ¢ is a modal formula that starts with a negated belief operator B; (i.e.

¢ = ~Biy).

E,s =i -Bi¢ = E,s =, ~B,~BjYp = E,s =; Bi-By{) =
Ht(SRit), Et :(z =By = Ht(Sth), Et |:z B =
Jt(sRit)Vu(tR;u), E, u |=; 1.

In this expression, t is a world that belongs to the same class of equiva-
lence than s (according to the partition defined by R;), and u represents
all the worlds that belong to t’s class of equivalence; thus, u ranges over
all the worlds belonging to s’s class of equivalence (all the worlds that
are accessible from s via R; in any number n of steps). If we take n = 1,
we get that Vi(sR;t), E,t =; ¢. Thus, E| s |; By, which is equivalent
to E,s =; =B;1. Therefore, E,s =; ¢.

e ¢ is a modal formula that starts with a negated belief operator B; (i.e.

¢ = _‘qu/))'

E, S ):Z _'Bz¢ — E,S ):z _|Bz'_| jw =
E, S :‘z Biﬁij > Elt(Sth), E,t :‘Z _|ij =

In this expression, ¢ is a world that belongs to the same class of equiv-
alence as s (according to the partition defined by R;), and u represents
all the worlds that belong to t’s class of equivalence; thus, u ranges
over all the worlds belonging to s’s class of equivalence (all the worlds
that are accessible from s via R; in any number n of steps). If we take
n = 1, we get that Vt(sR;t), E,t =; . Thus, E,s =; By, which is
equivalent to E, s =; ~B;1. Therefore, E,s =; ¢. a
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Agent; does not believe ¢ at s if and only if ¢ is one the facts that is
rejected by Agent; at s. Again, this proposition agrees with the intuitions
that we had in the example that was used to motivate the need for the
framework of subjective situations.

Proposition 14 (Single-agent negative introspection)
E,s =; =B;¢ implies E, s =; Bi—B;¢

P’f‘OOfI E,S ‘:z _|BZ¢ - E,S :‘1 Bz¢ — Eit(Sth), (E,t Z(Z ¢) Thus,
there exists at least one world (say w) such that (sR;w) and F,w =; ¢. In
order to prove the proposition, we have to notice that R; is Euclidean (i.e.
whenever (sR;t) and (sR;u), (tR;u) also holds)”. Therefore, w is R; acces-
sible from all worlds that are R; accessible from s, and we may state that
Vi(sRit), (tR;w) and E,w =; ¢. Thus, Vt(sR;t) Ju(tRyu)E,u =; ¢. Thus,
Vi(sR;it) E,t =; B¢, which is equivalent to Vi(sR;t) E,t =; -B;¢. There-
fore, we have shown that E, s =; B;—B;¢. O

This proposition states that axiom 5 (the classical axiom of negative intro-
spection) holds for each belief operator B; (i.e. every agent has introspective
capabilities on its own negative beliefs).

Proposition 15 (Generation of negative beliefs)
E,s |=; 7Bj¢ implies E, s =; B;~B;¢

P’f’OOfI E,S ):z _|qu5 =4 E,S :(z B]QS — Ht(SRit),E,t :(j ¢ Let us
call w to any of the worlds referred to by this existential quantifier. Being
R; Euclidean, we know that Vit(sR;t), (tR;w); therefore, we may say that
Vi(sR;t)Fu(tR;u), E,u =, ¢. Thus, Vi(sR;t), E,t =; Bj¢, which is equiva-
lent to Vt(sR;t), E,t |=; B;¢. Therefore, E, s |=; Bi—B;¢. O

This proposition is expressing the fact that Agent; can make positive
introspection on negated beliefs of other agents.

Tt is easy to prove that any relation that is symmetric and transitive is also Euclidean.
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Proposition 16 (Inter-agent negative introspection)
In general, for two different agents (Agent;, Agent;) it does not hold that

E,s =, ~Bj¢ implies E,s =; B;~B;¢

Proof: Consider the following counterexample. Imagine an structure for
subjective situations E with three situations s, t and u, such that (sR;t) and
(tRju). Suppose that PeF;(s) but P £F;(t) (and note that F;(t) = F;(u)).
It is easy to check that E,s |=; —B;P holds, whereas E,s |=; B;~B;P does
not. O

This result states that each Agent; is aware of the fact that, even if it
has reasons to think that Agent; does not believe ¢, it may just be the case
that Agent; believes ¢ indeed (and, therefore, Agent; would believe that it
believed ¢). Thus, it is another expression of the uncertainty that any agent
has about the beliefs of the other agents.

3.5.4 Summary of the main properties
Summarising the main results shown in this section:

e All forms of logical omniscience are avoided.

None of the restricted forms of logical omniscience usually considered
in the literature holds in the framework of subjective situations. This
result is due to the presence of partial and inconsistent situations and to
the fact that the description of a situation is formed with positive and
negative information about formulae (and not about basic propositions).

e Each agent is aware of its positive and negative beliefs, and is also aware
of the fact that the other agents enjoy this introspective capability.

However, an agent is uncertain about the way the present situation is
perceived by other agents and, therefore, it is unable to know anything
about the other agent’s beliefs.

e The positive and negative beliefs of an agent in an state reflect, as our
intuitions suggested, the facts that are taken as true or false by the
agent in that state.

Thus, an agent’s perception determines its beliefs in a given situation,
as it might be expected.
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3.6 Comparison with previous proposals

The main difference of our proposal with previous works ([More98|) is the
idea of considering subjective situations, that may be perceived in different
ways by different agents. Technically, this fact implies two differences of our
approach with respect to others:

e A situation is described with two functions (7; and F;) for each Agent;.

Thus, we take into account each agent’s perception of the actual situ-
ation, considering a subjective description of each state.

e Two satisfiability and unsatisfiability relations between situations and
formulae (=; and =;) are also defined for each Agent;.

Having a subjective description of each state, it makes sense to consider
satisfiability relations that depend on each agent.

These differences make it impossible to embed the subjective situations
framework in the standard doxastic modal setting or in any of the unifying
proposals that were reported in §2.3, as none of these options allow the agent
modeller to conceive a world from the point of view of each agent. Further-
more, we may point out other general differences between our approach and
some of the ones that were described in the previous chapter:

e It is worth stressing that most of the proposals reviewed in §2 are con-
cerned with propositional doxastic logics, whereas subjective situations
are described with predicate formula. This detail will be important in
the rest of the dissertation, because the use of first-order formulz is in-
strumental in the way in which rational inquirers, to be defined in §4.3,
analyse their beliefs (and subjective situations will be used to model
the dynamic evolution of the beliefs of this kind of agents).

e The notion of awareness has been used in different ways to avoid some
of the forms of logical omniscience, as we saw in the logic of gen-
eral awareness ([FaHa85], §2.2.7), the logic of awareness and principles
([VdHM96], §2.2.8) and the hybrid sieve systems ([Thij96], §2.2.9). In
our approach it is being implicitly assumed that all agents are aware
of all the predicates and constants of the language and, therefore, this
concept does not play any esential role in the subjective situations
framework.
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e Duc’s approach (dynamic epistemic logic, [Duc97], §2.2.17) is indeed
quite interesting, and seems to be inspired in intuitions rather simi-
lar to the ones that have motivated this dissertation. However, our
presentation differs from Duc’s in two basic points. On the one hand,
our proposal to solve the logical omniscience problem, as we have seen
in this chapter, is not related in any way with dynamic modal logics.
On the other hand, we consider that rational agents must not only be
capable of performing deductive inferences over their beliefs, but they
also must perform other doxastic activities, that may influence their
beliefs. This point will be thoroughly discussed in §4.2.

The rest of the section is devoted to a more detailed comparison of our
proposal with the two approaches to the problem of logical omniscience with
which it shares more similarities: Levesque’s logic of explicit and implicit
beliefs ([Leve84]) and Thijsse’s hybrid sieve systems ([Thij96]). In both cases
we begin by recalling the basic points of these frameworks and then compare
them with our own.

3.6.1 Levesque’s logic of implicit and explicit beliefs

Levesque uses a language with two modal operators: B for explicit beliefs
and L for implicit beliefs. These operators are not allowed to be nested in
the formulae of the language. An structure for explicit and implicit beliefs is
defined as a tuple M=(S, B, T, F), where S is the set of primitive situations,
B is a subset of S that represents the situations that could be the actual one
and T and F are functions from the set of primitive propositions into subsets
of S. Intuitively, T(P) contains all the situations that support the truth of P,
whereas F(P) contains those that support its falsehood. A situation s can be
partial (if there is a primitive proposition which is neither true nor false in
s) and /or incoherent (if there is a proposition which is both true and false in
s). A situation is complete if it is neither partial nor incoherent. A complete
situation s is compatible with a situation t if s and t agree in all the points
in which t is defined. B* is the set of all complete situations of S that are
compatible with some situation in B.

The relations =7 and =p between situations and formula are defined as
follows:
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e Ms |=r P, where P is a primitive proposition, if and only if s ¢ T(P)
e M =p P, where P is a primitive proposition, if and only if s € F(P)
e M;s =1 —p if and only if M,s = ¢

e Ms =r —p if and only if M,s =7 ¢

e Ms =7 (pA)ifand only if M,s =7 ¢ and M,s =1 ¢

e Ms =r (pAv) if and only if M;s Ep ¢ or M,s = ¢

e M =r By if and only if Mt =1 ¢ VteB

e M = By if and only if M;s 7 By

e Ms =7 Ly if and only if M;t =1 ¢ VteB*

e M = Ly if and only if M,s &1 Ly

There are some similarities between our approach and Levesque’s logic of
implicit and explicit beliefs. However, they are more apparent than real, as
shown in this listing:

e Levesque also considers a satisfiability and an unsatisfiability relation
between situations and doxastic formulae.

However, these relations are not considered for each agent (even when
Levesque’s framework is extended to the multi-agent case, as described
in §2.2.5).

e Levesque also describes each situation with two functions 7 and F.

Again, these functions are not indexed by each agent, as our functions
are (Levesque considers an objective description of what is true and
what is false in each situation). This comment is also applicable in
the multi-agent extension of Levesque’s framework shown in §2.2.5.
Another important difference is that Levesque’s functions deal with

basic propositions, and not with predicate formulse as our functions
do.
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e Both approaches allow the presence of partial or inconsistent situations.

However note that, in our case, it is not the (objective) description of
the situation that is partial or inconsistent, but the subjective percep-
tion that an agent may have of it. Thus, the notions of partiality and
inconsistency have a much more natural interpretation in our frame-
work.

e Both approaches avoid all the forms of logical omniscience.

The reason is different in each case, though. In Levesque’s logic of
explicit and implicit beliefs, it is the presence of incoherent situations
that prevents logical omniscience. In our proposal, there is no need to
have inconsistent situations to avoid logical omniscience. In fact, we
solve that problem by defining 7; and F; over arbitrary sets of formulae,
and not over basic propositions.

e There are accessibility relations between situations for each agent in
both systems.

Levesque’s accessibility relation between situations is left implicit; our
accessibility relations are explicit. Furthermore, the intuition underly-
ing these relations is somewhat different, as explained in §3.2.

Other differences with Levesque’s approach that may be mentioned are
the following:

e Levesque only considers one agent, and does not allow nested be-
liefs. Thus, his agents do not have any introspective capabilities. This
statement also holds in the multi-agent extension of Levesque’s ideas
(§2.2.5), because the accessibility relations that are used to verify the
validity of modal formulze do not have to be neither transitive nor Eu-
clidean (there are no constraints imposed on them).

e Levesque defines explicit and implicit beliefs, whereas we do not make
this distinction.

e Even though Levesque avoids logical omniscience, his agents must nec-
essarily believe all those tautologies that are formed by known basic
propositions (those propositions P for which the agent believes (PV—P)),
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regardless of their complexity. This is not the case in our approach,
because we deal directly with formulsae.

e There is a different treatment of the unsatisfiability relation when ap-
plied to beliefs, because he transforms = into }~, whereas we do not.

3.6.2 Thijsse’s hybrid sieve systems

Thijsse ([Thij96]) proposes a way of using partial logics to deal with var-
ious forms of logical omniscience. He defines a partial model as a tuple
(W, By,...,B,, V), where W is a set of worlds, B; is the accessibility rela-
tion between worlds for Agent; and V is a partial truth assignment to the
basic propositions in each world. T is a primitive proposition that is always
interpreted as true. Truth (=) and falsity (=) relations are defined in the
following way:

e MwET

e MwAT

e M,w |= P, where P is a primitive proposition, iff V(P,w)= 1
e M,w = P, where P is a primitive proposition, iff V (P, w)= 0
o Myw =~y iff Myw = ¢

o Mw = —piff Myw = ¢

o Mw = (pA9) iff Myw = ¢ and M,w = ¢

o Myw= (pA9)iff Myw= ¢ or Myw = ¢

e M,w |= By iff Myv = ¢ Vv such that (w, v) eB;

o M,w = By iff v s.t. (w, v) eB3; and Mo ¢

The most important similarities between our approach and Thijsse’s are:
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e n agents and n explicit accessibility relations are considered.

However, as in Levesque’s case, there are no restrictions on these rela-
tions, and the intuitive meaning of our accessibility relations is slightly
different from the standard one, as argued in §3.2.

e Two relations (of satisfiability and unsatisfiability) are defined. More-
over, a similar clause is used to provide a meaning to the unsatisfiability
relation with respect to the belief operator.

As before, the main difference is that we provide two relations for each
agent.

e There are no tautologies in Thijsse’s system; therefore, he does not
have to care about some forms of logical omniscience (closure under
valid implication and belief of valid formula).

e Closure under material implication and closure under conjunction do
not hold in Thijsse’s approach either.

The main difference with Thijsse’s proposal is that he uses partial assign-
ments of truth values over basic propositions for each state; thus, a proposi-
tion may be true, false or undefined in each state. We deal with formulae, not
with basic propositions, and each formula may be supported and/or rejected
by each agent in each state. Therefore, Thijsse’s approach is three-valued,
whereas ours is more of a four-valued kind, such as Levesque’s.

3.7 Summary

In this chapter, it has been argued that each Agent; perceives its actual
situation in a particular way, which may be different from that of other
agents located in the same situation. The vision that an Agent; has of a
situation determines its (positive and negative) beliefs in that situation. This
intuitive idea has been formalized with the notion of subjective situations.
These entities are the base of a doxastic logic, in which the meaning of
the belief operators seems to fit with the general intuitions about how the
doxastic attitude of a non-ideal agent should behave. In particular, logical
omniscience is avoided while some interesting introspective properties are
maintained. A detailed comparison of this approach with Levesque’s logic



Subjective situations 84

of implicit and explicit beliefs ([Leve84]) and Thijsse’s hybrid sieve systems
([Thij96]) has also been provided.
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4 Rational inquirers

4.1 Introduction

In §1 we introduced the problems of logical omniscience and perfect reason-
ing, that arise when doxastic logics are used to model the reasoning processes
that a rational agent may perform on its set of beliefs. In §2 we reviewed the
most relevant approaches that have been suggested to solve these problems.
In §3 we suggested a new way of tackling them, using the concept of subjec-
tive situations. Our aim in the rest of the dissertation will be to show how
(part of) the framework developed in §3 may be used to formally model the
evolution of the beliefs of real agents (that are neither logically omniscient,
because they do not believe all tautologies, nor perfect reasoners, because
they may believe a set of facts without having to necessarily believe all its
logical consequences). It is important to stress the fact that, in the rest of
the dissertation, we will mostly concentrate on the analysis of the beliefs of a
single agent about its environment; the problems that would be encountered
if a whole multi-agent system were considered will be sketched in §6.

4.2 Considering rational agents

The concept of rational agent has been given different interpretations in the
Artificial Intelligence literature (some examples of architectures for rational
agents were given in table 1 in §1.1). It would be impossible for us to consider
in this chapter all the different agent architectures that have been proposed
in the past and to show how the evolution of the beliefs of each kind of
agents may be modelled in our framework; therefore, we will follow a different
approach. In order to encompass a wide variety of actual agents, a very
general (and quite informal) definition of rational agents will be considered
below. Later, in §4.3, a specific kind of agents, called rational inquirers, will
be defined by giving a concrete interpretation to the general characteristics
that, in our opinion, a rational agent should have. After that, in §5 it will
be shown how to formally model the evolution of the beliefs of this kind of
agents.

The starting point of our discussion on rational agents will be the follow-
ing intuitive definition:
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Definition 9 (Rational agents)

Rational agents are those agents that are permanently analysing their
belief sets in order to make them as similar as possible to the facts that hold
in the real world. Rational agents try to get rid of those beliefs that do not
reflect accurately what is true in their environment, and they also try to keep
wncreasing their sets of beliefs by adding logical consequences of their beliefs.
This continuous process of analysis will be called rational inquiry.

It may be argued that an agent behaves in a rational fashion when it
tries to reduce the gap between its beliefs and the reality that surrounds it.
Obviously this is what an intelligent agent should be always doing, because
beliefs will be the base to form the agent’s intentions and, therefore, they
will be guiding its future behaviour®. The further are the agent’s beliefs from
what is true in its environment, the least effective will be the actions that
it will take to try to reach its goals. In the worst of all scenarios, if the set
of beliefs does not describe the agent’s environment in a faithful way, the
actions that it might take could be even harmful or counterproductive.

In order to build an abstract, general model of any kind of non-ideal agent,
it is important to focus on those tasks performed by the agent that have a
direct influence on its beliefs; these tasks will be referred to as doxastic tasks.
More specifically, in our model of rational agents the following doxastic tasks
will be taken into account:

e Deductive capabilities.

It is usually accepted that any rational agent must be capable of per-
forming deductions on its beliefs and of adding the results of these
deductions as new beliefs. What we will not do is to consider that
the agent believes, right from the beginning, all tautologies and all the
logical consequences of its beliefs, without any kind of effort. Agents
will be able to deduce facts (possibly not all those that are classical
logical consequences, if they have limited deductive capabilities), but
this inferential process will have to be explicit; e.g. if an agent believes

8 Throughout this chapter we will be using a BDI-oriented vocabulary, ie. we will
consider that the main elements that determine the behaviour of an agent are its beliefs
(its conception of the environment), its desires (the agent’s goals) and its intentions (the
goals that the agent actually decides to try to accomplish). Having said that, we insist
that we are not arguing that rational agents have to fit to some specific architecture.
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P and (P = Q), it will have to perform an explicit deductive step before
believing Q. Notice the similarity of this basic idea with the one under-
lying Duc’s dynamic epistemic logic, which was reviewed in §2.2.17. It
must be noted that we are not demanding that all rational agents have
the same deductive capabilities or that they have perfect reasoning ca-
pabilities; in fact, in the concrete instantiation of rational agents that
we are going to define in the next section (the rational inquirers) they
will be able to deduce some logical consequences of its beliefs (using a
certain analytic tableaux calculus, as will be seen in §4.3.1), but not
all of them.

Thus, the possibility of having ideal agents that are (by definition) log-
ically omniscient and perfect reasoners is forbidden right from the very
beginning. Considering that a deductive inference requires a conscious
and explicit step may seem intuitive, natural and almost obvious to
most of the readers of the previous paragraph, but this assumption has
not been made by many of the researchers in the Artificial Intelligence
field of belief systems. For instance Gardenfors, in his seminal work on
belief dynamics ([Gard88]) presents epistemic states as rational ideal-
izations of psychological states and models them in a logically idealized
way, by representing an epistemic state with a belief set, which is de-
fined as a consistent and logically closed set of sentences (i.e. a logical
theory). By taking this stance, he can make a very nice and detailed
formal analysis of the logical properties that should govern the basic
operations on belief sets: expansion (adding a new belief), contraction
(removing a present belief) and revision (changing a belief into a dis-
belief, or viceversa). These properties are usually called the rationality
postulates. As we will assume that an agent’s set of beliefs may be
any set of formulae (even a logically inconsistent one), we will have to
deal with different logical frameworks, such as the subjective situations
presented in §3.

Performing logical deductions is a direct way of increasing one’s beliefs.
For instance, if an agent v has received from agent a the information
that P is true, and agent £ tells it that (P = Q), it seems clear that it will
be useful for v to draw the immediate inference and, at least as long as
it does not receive opposite information, believe that Q also holds in the
real world. Performing logical inferences seems to be such an obvious
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way of obtaining new information as receiving it from sensors or from
other agents. By performing these steps of deduction, v avoids having
to waste its time (and other agents’ time) wondering whether Q holds
in the real world. If agents were not capable of deducing consequences
from their beliefs, they would have very limited cognitive capabilities,
and they would have to be continuously asking for information to their
environment or to other agents. Thus, having certain deductive power
is useful to close the gap between the agent’s beliefs and those facts
that hold in its environment.

e Addition of external information.

Every agent performs its tasks in an environment in which there may
be several sources of information. It will be considered that rational
agents must be capable of receiving information from the environment
(e.g. coming from sensors or from other agents), and that this infor-
mation modifies directly their beliefs. We will make the assumption
that all external inputs (be they from sensors or from other agents) are
treated in the same way. Of course, this is a very strong assumption.
We can make it because, as stated in §4.1, we are only going to deal
in this dissertation with a single agent’s beliefs about the world, and
not with its beliefs about the beliefs of other agents. Thus, it will be
equivalent to receive the input P from a sensor as receiving the message
P from an agent. The distinction between these two different ways of
receiving information from the environment is indeed made by many
researchers. For instance, Parsons (see e.g. [PaGi98]) distinguishes be-
tween four types of propositions that an agent has to deal with: basic
facts (the agent’s initial beliefs), observations (things that the agent
perceives in its environment), communiqués (messages received from
other agents) and deductions (propositions that the agent derives from
its own beliefs). However, although the distinction between observa-
tions and communiqués is made, they are treated in a very similar way:
the credibility of an observation depends on the reliability of the sen-
sor or source (based on its past behaviour) whereas the credibility of a
communiqué depends on the reliability of its sender (also based on its
past behaviour).

A stronger assumption will also be made in our model of rational agents:
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the received information will be directly incorporated into the agent’s
set of beliefs. Therefore, these agents might be qualified as credulous,
because they will take external sources of information as correct (the
effects that the introduction of an external input has on a rational in-
quirer’s set of beliefs will be described in §4.4). It must be noted that
this assumption is also made in the classical approaches to belief revi-
sion and belief update, as all of them incorporate a rationality postulate
that indicates that a revised (or updated) belief set always contains the
formula that has caused the revision (or the update). This constraint
permits the agent to revise its wrong beliefs about a static world or
to adapt its beliefs to the changes that occur in a dynamic environ-
ment; however, other types of behaviour could have been considered.
For instance, we could have dealt with degrees of trust associated to
each new belief, depending on its source, using a formal framework
for trust evolution and update based on previous experiences, such as
the one suggested in [JoTr99], or the degrees of credibility proposed in
[PaGi98]. We could also have considered agents of a more persistent
flavour, that do not necessarily accept new inputs that contradict in a
direct way their present beliefs (i.e. they would not accept P if they are
currently believing that —P is the case); see e.g. [Poll98].

e Request information from the environment.

Rational agents, as mentioned in the previous definition, keep trying
to reflect in their beliefs what is true in their environment; in order
to accomplish this goal, they are going to be continuously analysing
their beliefs, trying to confirm or refute those that are uncertain, in a
Popperian style ([Popp34]). Thus, there will be occasions in which the
agent will have to search in its environment the data that it needs to
make these corroborations or refutations, to decide which beliefs should
be kept or eliminated. This search will be left in this degree of abstrac-
tion at this point; in an actual implementation of rational agents, it
could take the form of making an experiment, asking questions to other
agents, looking up information stored in databases, looking for an item
of information through the Internet, consulting the measure given by a
sensor, etc. In our actual instantiation of rational agents, the rational
inquirers described in §4.3, they will be allowed to make some questions
to the environment and to use the answers to these questions to update
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their sets of beliefs; this process will be explained in §4.3.3.

e (Generation of doubts.

In many cases the agent will need to know whether a certain fact may
be deduced from its beliefs; that may be necessary for instance to allow
the agent to decide the action to take at a particular point in time to
reach a given goal. Rational agents will be capable of having doubts, of
wondering whether they (implicitly) believe or not a given fact. These
doubts will have a big influence on the agent’s beliefs, because they will
form the basis of an analysis that will lead the agent to deduce whether
the given fact was (implicitly) believed or not. The way in which our
concrete instantiations of rational agents, the rational inquirers, will
manage these doubts will be covered in §4.3.2.

A general model of non-ideal agents has to include the four doxastic tasks
that have been just stated. These are the activities that have a more direct
influence on the agent’s beliefs and, therefore, are the ones that have to be
included in any model of doxastic activity. It is indeed a very abstract model
because it does not take into account many other important tasks that a
rational agent should perform. We will not pay attention to them because
we want to focus on the agent’s doxastic activity and not in those tasks in
which its set of beliefs is not modified. In particular, the following kinds of
tasks will not be taken into consideration:

e Inference capabilities.

We have argued that a rational agent must have some deductive capa-
bilities in order to be able to draw logical consequences from its set of
beliefs (i.e. from the information that it perceives in the environment,
from the data that it receives from other agents, etc.). This is the only
kind of inference that takes one from true premises to true conclusions,
and that is why is the capability that has been assumed to hold for all
rational agents. However, it is possible to think of many kinds of real
agents that could have different types of inference capabilities; for in-
stance, an agent could be able to perform induction, abduction or case
based reasoning, just to name a few possibilities that are not accounted
for in our framework.
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e Determination of goals.

The agent’s behaviour will be guided by its goals. The process that
the agent follows to decide which are these goals will not be taken
into account; it will be assumed that they are externally given, by the
agent’s builder, or that they are dynamically generated, by the agent
itself (e.g. if it decomposes an initial goal into a set of subgoals). In
any case, we will consider that the determination of the goals to be
achieved does not modify the agent’s beliefs about the world.

e Construction of plans.

When the agent knows its goals, it will design plans to try to achieve
them. Beliefs will certainly play an important role in the planning
module; however, this process will not modify them. Beliefs will only
be considered to decide which actions may be added to a plan or which
plans are feasible.

e Decision making.

When the agent has studied all the plans that can lead to reach its
goal, it will have to decide which one to execute. The algorithm used
to make this decision would take into account its model of the world
(i.e. the agent’s beliefs) to determine which is the most appropriate
plan, but it would not modify its beliefs.

e General control strategy of the analysis.

In this model the rational agent will be continuously performing the
tasks mentioned above (making deductions, receiving information from
the environment, asking for information or having doubts). The model
will be left in this level of abstraction, without determining the strat-
egy that the agent should use in order to decide which of these tasks
to perform at each point in time. In this way the model will be general
enough to include e.g. logical agents (oriented to the performance of
deductions) or experimental agents (more biased towards asking ques-
tions to the environment in order to obtain information).

e Execution of actions.

When the agent executes an action of a plan, their beliefs should reflect
the changes produced in its environment as a result of this action (e.g. it
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should believe open(d, 90_degrees) after executing open_door(d)). The
main problem with this strategy is that the action may not have had its
intended effect (e.g. there was a chair behind the door and it has only
opened 45 degrees). To prevent the agent from having wrong beliefs,
it will be assumed that it cannot be sure about the effects of an action
if it does not check them (e.g. it can use sensors to make certain that
the door has indeed opened in an angle of 90 degrees, or it can ask to
another agent whether that is the case). If the agent is not sure about
the result of an action, it can always generate a doubt and obtain data
from the environment that helps it to confirm whether the intended
effect has been really accomplished.

The reader should be aware by now that it is not our intention to develop
a comprehensive architecture that may be used to actually implement ratio-
nal agents. If that had been our aim, we should have had to consider the
different attitudes that should guide the agent’s behaviour (for instance be-
liefs, knowledge, desires, doubts, intentions, wants, wishes, obligations, com-
mitments or choices), how these attitudes are related to each other, which
are the agent’s capabilities (i.e. which are the actions that the agent may
perform), how actions are characterized (e.g. in terms of preconditions and
postconditions), how the agent may acquire and decompose its goals, which
is its planning process, how it can communicate with other agents or interact
with its environment, etc. Our (much more modest) goal is to have a formal
way of modelling the evolution of the set of beliefs of a rational (and not
logically omniscient) agent.

4.3 Rational inquirers

We have just described the limits that we have established as to which ac-
tivities are included in our model of rational agents (the doxastic activities)
and which are not. Having done that, we need to be more precise in deter-
mining how these doxastic activities can be really implemented, to be able
to show in §5 how the evolution of the beliefs of a rational agent may be
formally modelled. This section describes the behaviour of the rational in-
quirers, which will be the concrete instantiation of rational agents that we
will consider in the rest of the dissertation. First, the types of activities that
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this kind of agents will be able to perform when they are analysing their
beliefs are defined; after that, each of them is briefly described.

The definition of rational inquirers includes the aspects that have to be
covered by any rational agent, as discussed in the previous section:

Definition 10 (Rational inquirers)

A rational inquirer (see e.g. [MCS98], [MCS99a], [MCS00a]) is an agent
that will be continuously making a dynamic multi-dimensional analysis of its
beliefs, trying to keep them as similar as possible to the facts that hold in the
real world. The components of this analysis are the following:

e A logical dimension of analysis, in which the agent may perform (lim-
ited) deductive inferences on its own set of beliefs (see §4.3.1).

e An exploratory dimension of analysis, in which the agent may have
doubts, may wonder whether it (implicitly) believes or not a given fact

(see §4.3.2).

e An experimental dimension of analysis, in which the agent may ask the

environment for data that may be used to confirm or refute some of its
beliefs (see §4.3.3).

Rational inquirers may also incorporate to their beliefs the information
that they receive directly from their environment (see §4.4).

4.3.1 Logical analysis

Rational agents, as argued in the previous section, need to have some way
of deducing logical consequences from their sets of beliefs. Therefore, they
need to be able to use a proof method such as natural deduction, resolution,
sequent calculus or analytic tableaux calculus, to name a few possibilities
(see e.g. [Kell97] for a recent presentation of these proof techniques, both
in propositional and predicate logic). All of these proof systems are quite
similar, in the sense that proofs made with one of them may be usually easily
translated into proofs made with another one. Thus, it does not matter
very much which one of them is used by our rational inquirers, because the
logical analysis performed by the agents could be translated into a similar
analysis in another framework. Having said that, we have decided to endow
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the rational inquirers with the capacity of using a modified version of the
classical analytic tableaux method in order to perform the logical analysis of
their beliefs (a detailed description of the classical analytic tableaux method
can be found in [Smul68]). The rules of this tableaux calculus are shown in
figure 4, using Smullyan’s uniform notation®, which is depicted in figure 3. In
those figures the symbols I' and A represent sets of first-order formulz, ¢ is a
Skolem constant, o is an arbitrary individual, «, 3, v and d represent especial
kinds of first-order formulse, ¢ and 1 represent any predicate formula, z is a
variable, A; is a formula where z is free, and A{r/z} denotes the substitution
of all the free appearences of by r in A,.

a-formulae B-formulae

o  |o| o B | B B
dNY ¢ | ¥ “(PAY) | = |
~(dVY) | —d | VY | b |
(=) | ¢ | P p=% | 9| ¢

¢ ¢ | &
y-formulze d-formulae
v | ) )
VzA, | A{r/z} JzA, | A{r/z}

-3zA, | ~A{r/z} -VzA, | ~A{r/z}

Figure 3: Uniform notation for first order formula

The main differences between the classical analytic tableaux method and
the one shown in figure 4 may serve to motivate the election of this particular
tableaux calculus. They are the following:

e Use of two-sided tableaux.

The formulae of each tableau are divided into two sets, whereas in the
classical method each tableau contains a unique set of formulae!'®. The

9This notation was developed in [Smul68], and has been used e.g. in [Fitt83], [Fitt96]
and [Fitt99]. It allows us to write in a compact way many similar rules.

10Tt must be noted that this remark is referred to the modern versions of this technique,
and not to the analytic tableaux method as defined originally by Beth ([Beth55], [Fitt99]),
in which each tableau did indeed contain two sets of formulze.
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Figure 4: Rules of the logical analysis

two sides of a tableau will be called the left column and the right col-
umn. In §5 it will be argued that each of these tableaux represents a
set of potential or imaginable or conceivable situations (those in which
the formula in its left column hold and the formula in its right column
do not hold). This is our main motivation for choosing this particular
type of tableaux: they allow us to manage both positive and negative
information that an agent may have about a given situation. Recall
that, in the structures of subjective situations defined in §3, the de-
scription of a situation s by an Agent; was made using two functions,
T; and F;, which returned the formula that the agent had perceived as
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true/false in s; thus, we need a way of dealing with these two types of
information.

e The splitting rules have been modified.

The splitting rules are those that analyse a S-formula in the left column
or an a-formula in the right column, as shown in figure 4. When one
of them is applied, three subtableaux are generated (whereas in the
classical analytic tableaux method, only two subtableaux were gener-
ated, one for each of the components of the analysed formula). One of
these subtableaux contains the two members of the analysed formula
in the same column where the analysed formula appeared, whereas the
other two subtableaux contain one of them in the left column and the
other one in the right column. These are the possibilities of accounting
for the truth/falsehood of the formula that has been analysed, namely
that one (or both) of its members are true/false (depending on whether
p-formulee /a-formuls are considered). This kind of splitting rules will
allow us to make a fine-grained distinction between the class of conceiv-
able situations represented by each of the resulting subtableaux. If the
standard two-sided splitting rules were used, there would be situations
represented by both subtableaux (e.g. those in which the two mem-
bers of a disjunction hold, or those in which none of the members of a
conjunction hold). This will not be the case in our way of modelling
the evolution of a set of beliefs, as will be argued in §5; for instance,
when we analyse a disjunction in the left column of a tableau, the three
generated subtableaux represent a partition of the set of situations in
which the disjunction holds in three disjoint classes of situations: in
two of them one of the disjuncts holds and the other does not, and in
the third one both disjuncts hold.

e Analysed formula are kept in the subtableaux.

After applying a rule, the analysed proposition and all the other for-
mula in the tableau are maintained in the resulting tableaux, they
are not deleted. In the case of a-formule and [-formulae the agent
would just add a tag to the analysed proposition in other to recall
that it had already been analysed. With respect to y-formule and 6-
formulae the agent should take into account which instantiations (with
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constants representing specific individuals or Skolem constants repre-
senting generic individuals) had already been applied to each of these
formula in each one of the branches of the analytic tableaux tree.

This modification is not essential; however, it is quite convenient be-
cause later it will be easier to consider the expression the set of formulae
that appear in all open tableaux (the leaves of the tableaux tree) than
the longer and more cumbersome the set of formula that appear in all
the branches of the tableaux tree.

e There are two tableau closing conditions.

A tableau may be logically closed by the agent when it realizes that
(a) it contains either a formula and its negation in the left column
or (b) it contains the same formula in both columns of the tableau.
A logically closed tableau is permanently eliminated from the analy-
sis. Recall that, in the classical analytic tableau method, a tableau is
closed and removed from the analysis when it contains a formula and
its negation (because that tableau does not represent a logical model,
being so patently logically inconsistent). In our case, the tableaux that
are logically closed are those that represent states of affairs in which
a formula and its negation are supported or those in which a formula
is both supported and rejected at the same time. Note that those sit-
uations are not impossible, in the sense of not being representable in
our framework (recall that there are no restrictions on the functions
T:; and F; of the structures of subjective situations). By closing these
tableaux, the agent is only stating that it is not interested in consider-
ing the kind of situations that they represent, not defending that they
are epistemically impossible (especially in the case in which a formula
is both supported and defended in a situation, which may easily arise
in case the agent has several sources of information or the world is
dynamic).

Another important difference with the classical method has to be men-
tioned at this point: we do not assume that a tableau is automatically
closed when one of the above conditions holds. It may be the case
that the rational inquirer, being non-ideal, does not notice that cir-
cumstance; we demand that it has to explicitly notice this fact, and
close the tableau on purpose, with a conscious step. This characteris-
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tic permits the agent to consider situations in which it has reasons to
support a formula and its negation or situations in which it has reasons
to support and to deny a given formula, if it does not close a closable
tableau (these types of inconsistent situations were considered in the
subjective situations framework defined in §3).

The conditions under which a tableau is logically closed are not the
only ones that may cause the closing of an analytic tableau. Later,
in §4.3.3, it will be explained that a tableau may not only be logically
closed but also empirically closed. The underlying idea is that the agent
will empirically close not those tableaux that represent situations that
are logically inconsistent, but those that have information that does
not reflect what is true in its environment. However, the agent will be
allowed to re-open any empirically closed tableau, if it finds out in a
later stage of the analysis that the content of the tableau matches with
the information provided by the reality that surrounds it. Thus, the
empirical closing of tableaux will be quite different to the logical one
that has just been described, both in the circumstances that may cause
it and in the effects that it may have in the agent’s analysis of its set
of beliefs.

e Non-ideal agents.

The agents that use the classical analytic tableaux method may be
qualified as ideal, in the sense that they always build the whole tree
of analysis of an initial tableau in order to discover whether the set
of formula contained in the tableau may (or may not) be embedded
in a logical model. We do not require a rational inquirer to make a
fully fledged, complete analysis of an initial set of beliefs. In fact, as
will be apparent in the rest of the dissertation, a rational inquirer will
combine the different dimensions of analysis in time, intertwining the
logical analysis via tableaux with the experimental or the exploratory
analysis, and with the introduction of externally obtained information
about its environment.

It must also be noted that, even if the agent performed an exhaustive
analysis of its initial set of beliefs, it would still not be a perfect rea-
soner in predicate calculus, due to the kind of rules that compose the
tableaux calculus shown in figure 4. In fact, it may be proved that the
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propositional part of this calculus is sound and complete with respect
to Kleene’s three-valued logic ([Klee52]). Our own proof of this state-
ment is included in this dissertation as appendix A. This fact is also
quite interesting, because it allows us to consider a type of agents that
have limited reasoning capabilities, and show how they can still per-
form some (limited) steps of inference and keep deducing some logical
consequences of their beliefs in the logical dimension of analysis. It is
important to notice that this result does not mean at all that rational
inquirers have to be considered logically omniscient and perfect reason-
ers with respect to Kleene’s three-valued logic. A detailed argument
on this topic is made in §4.5.

4.3.2 Exploratory analysis

As we have seen in the previous section, the classical analytic tableaux
method has been modified in a number of ways (the tableaux contain two
sets of formulae, the splitting rules generate three subtableaux, there are two
tableau closing conditions, etc.). There is yet another important difference
between our analytic tableaux method and the classical one. In the standard
tableaux method it is possible to add any tautology into any tableau at any
point of the development of the tableaux tree, because a tableau is meant
to represent a logical model and, in all standard logical models, all tautolo-
gies are true. However, in our tableaux method the agent is explicitly not
allowed to add to an open tableau any tautology (an exception to this rule
will be considered below). Some reasons that may be given to support this
constraint are the following:

e If this constraint were eliminated, we would leave an open door to
introducing (and later believing, as will become apparent in §5) all
tautologies effortlessly, which is something that we argued against in
§4.2, when we defended that an agent should be able of deducing facts
from its set of beliefs, but always with a conscious and deliberate use of
a deduction mechanism. Thus, logical omniscience (in its weaker form,
i.e. believing all valid formuls, as defined in §1.2.4) could hardly be
avoided.

e The previous point may be strengthened by noting that a tautology
may be as intrincate and complicated as we wish, so it may not be
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at all readily apparent to an agent (be it human or computational)
that a formula is indeed a tautology. Thus, it would not seem either
reasonable or credible to assume that a non-ideal resource-bounded
limited agent knows which formula are tautologies and which are not,
so it can know which formule may be added for free in the tableaux
and which formulee may not be introduced in the tableaux.

e In the next chapter it will be shown that a tableau may be seen just
as a partial representation of a set of conceivable situations, i.e. of
situations that the agent may consider as real ([MoSa97al, [M0oSa97b],
[MCS00a]). Being only a representation of a certain set of possible
states or possible worlds, but not a description of a logical model (as
in the standard case), there seems to lack a clear justification to allow
the agents to modify them arbitrarily, with no apparent reason.

e It could also be argued (see e.g. [Jasp94]) that the situation where
no tautological information is believed could model, for instance, the
initial state of information in the environmentalist tabula rasa theories
of Locke and Rousseau, where it is assumed that children form their
sets of beliefs starting from scratch, with no initial information at all.

Having made this argument against the free introduction of tautologies,
we will now consider an important exception. Although it is not possible to
add an arbitrary tautology into the tableaux of the rational inquirer’s logical
analysis, in the exploratory dimension of analysis agents may still be capable
of adding some formula to the open tableaux (in fact, there will be other
ways of adding information into the tableaux, as will be further explained in
§4.3.3 and §4.4).

We argued in §4.2 that a rational agent must be capable of posing itself
questions, of introducing doubts in the analysis, of wondering whether a
certain formula ¢ is or not the case. Technically, this idea is implemented
in the rational inquirers’ exploratory dimension of analysis by allowing them
to introduce instances of the Axiom of the Excluded Middle (AEM), i.e.
formulae with the form (¢ V —¢), in the left columns of the open tableaux of
the logical analysis. As a rational inquirer deals with beliefs about the world,
but not with beliefs about other agent’s beliefs, we will stick to the case in
which ¢ is just a first-order formula, and not a modal formula; therefore, a
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rational inquirer o may not consider whether it is the case that 3 believes P,
but may consider whether P is or not the case.

The use of this particular tautology seems a natural way to allow the
agent to have doubts, to wonder whether it believes some formula () or its
negation (—¢). This exception allows the introduction of the formula (¢ V
—¢) in a tableau, which will be later split (with one of the splitting rules
of the logical analysis, the one that analyses disjunctions in the left column,
shown in figure 4) into two subtableaux containing ¢ in one column and —¢ in
the other. Notice that the third subtableau generated in the logical analysis
would be immediately (logically) closed because it would contain ¢ and —¢
in the left column and the agent, having added the two formula at the same
time, could hardly fail to notice the blatant inconsistency. In this way, the
agent can explore both alternatives independently, and the logical analysis
can guide the search of examples or counter-examples needed to give more
credence to one side of the doubt than to the other. A detailed example
that illustrates this issue is given in §4.6, where the logical analysis of an
instance of the AEM, included in the exploratory dimension, suggests to the
agent which questions may be made to the environment (in the experimental
dimension of analysis, to be described in §4.3.3) in order to check whether
one of the alternatives actually holds and, in this way, adjust the agent’s
beliefs to what is true in the real world.

In fact, the possibility of adding this kind of tautologies in the analytic
tableaux is a well-known idea in the tradition of classical proof theory, as
described for instance in [BeMa77]. It has also been suggested by Hintikka
in a general theory of argumentation called the interrogative model of inquiry
(see e.g. [Hint81], [Hint86a], [Hint87], [Hint88], [Hint92]). In that framework
the process of scientific inquiry is modelled with plays of the interrogative
game. In that game there are two players, named Inquirer and Nature. The
Inquirer seeks to know whether a certain conclusion is true (given a certain
set of premises). In order to answer this question, it can perform two kinds
of actions:

e Deductive moves

These moves model the deductive capacity of the Inquirer. They are
controlled with Beth-style ([Beth55]) subtableaux. They consist of the
application of rules of inference over the formulae contained in an open
tableau. The rules of analysis (presented in [Hint92]) are very similar
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to the ones that we have considered in figure 4, because the tableaux
are also two-sided.

e Interrogative moves

This kind of moves permit the Inquirer to put questions to Nature.
There are two types of questions that may be formulated:

— Disjunctive questions
If (¢ V ) appears in the left column of a tableau, the Inquirer
may question which of the two components of the disjunction is
actually the case.

— Existential questions

If dzS, appears in the left column of a tableau, the Inquirer may
ask for an specific individual o for which S, holds.

In these interrogative moves Hintikka allows the introduction of (some)
instances of AEM in the left side of the subtableaux. The purpose
of these formule is to serve as the presuppositions ([Hint76]) of the
disjunctive questions.

The introduction of self-posed questions (by the agent, via Excluded Mid-
dle) and the consequent splitting of tableaux, suggest a simple explanation
of a logical issue: the closing of all tableaux generated by a set of statements
(representing e.g. one’s beliefs) now means that all the conceivable situations
potentially represented by the given set are impossible; the immediate con-
sequence is that the agent, after having explored all the open possibilities,
ceases to believe in the set (a process discovered with much fracas by the
Pythagoreans, and usually called reductio ad absurdum). This point is very
much related to the Artificial Intelligence area of belief revision ([Gard88)),
as will be discussed in §4.7.

4.3.3 Experimental analysis

An agent can acquire information from the world in many different ways, for
instance the following:

e Looking up information stored in databases.
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e Asking other (human or artificial) agents.
e Making some experiences or tests in the real world.
e Searching information on the Internet.

e Studying the measures obtained by a sensor.

All these ways of acquiring external information are embedded in our
rational inquirers in their capability of obtaining information from the envi-
ronment in the experimental dimension of analysis (recall that, in §4.2, we
have argued that a rational agent needs to have a way of requesting infor-
mation from its environment while analysing its beliefs). In this dimension
agents are allowed to make questions to the environment, and to add the
corresponding answers (externally obtained, as opposed to the internally ob-
tained propositions of the logical analysis) to the left columns of the open
tableaux of the logical analysis.

The root of this dimension can be traced (as Hintikka points out in
[Hint88]) as far as Kant, who argued in his Critique of pure reason that
Reason has to take into account observations of the environment. He argued
that Reason must not approach Nature as a student, that takes everything
that its teacher chooses to say for granted, but as a judge who formulates
questions and compels the witnesses to answer them. This is the spirit that
has inspired this dimension of analysis.

We allow the agent to make questions of the following style in the exper-
imental dimension of analysis:

Does it exist an individual that has the properties Py, P,, ..., P,
and does not have the properties P11, ..., Pp,7?

These questions are more general than the existential questions suggested
by Hintikka in his interrogative model of inquiry (briefly commented in
§4.3.2), because the existence of an individual that has (or does not have)
several properties is inquired. In these questions, P; represent basic predi-
cates. We assume that there are only two kinds of admissible answers from
the environment:

e No, there are no known individuals that satisfy those properties.
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e Yes, individual r satisfies those requirements.

Thus, positive answers must actually provide an specific individual that
satisfies the requirements stated in the question made to the environment
(i.e. it must be an individual o such that Pj(0), P2(0), ..., P,(0) hold but
P,1(0), ..., Pn(0) do not). Thus, this dimension of analysis has a distinctive
intuitionistic or constructive flavour: it is not enough to know that there
exists an individual with a given set of characteristics, but we ask for the
name of one such specific individual.

This dimension is closely related to the logical dimension of belief anal-
ysis. The logical analysis can actually guide the experimental analysis, by
suggesting which experiences or tests the agent should perform in the actual
world (which questions should be put to the environment) to gain knowledge.
The idea is that the agent could keep (logically) analysing formulse until it
finds some atomic formula that contain Skolem constants. If you look back
at the tableaux calculus of the logical analysis shown in figure 4, you will
notice that a new Skolem constant is generated in two different cases:

e Each time that a y-formula (an existentially quantified formula or the
negation of a universally quantified formula) is analysed in the left
column of a tableau.

e Each time that a J-formula (a universally quantified formula or the
negation of an existentially quantified formula) is analysed in the right
column of a tableau.

These constants do not refer to any specific object, but they refer to un-
known individuals that must have the properties represented by the atomic
predicates. Thus, the agent may increase its beliefs by eliminating the
tableaux in which these Skolem constants appear, if it finds out that there
are no individuals in the real world that satisfy the required properties (in
§5 it will be shown how closing a tableau during the logical analysis implies
a possible increase in the agent’s set of positive beliefs). Therefore, the pres-
ence of Skolem constants in the atomic formula of the open tableaux of the
logical analysis is the trigger of the experimental dimension of analysis, link-
ing in a novel fashion the traditional rational and empirical components of
rational inquiry ([ReBr79]).
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Unlike other authors, we have not tried to provide in this dissertation a
formal explanation of the circumstances in which a question may arise from
a set of formulz. The interested reader may consult e.g. [Wi$n95], in which
Wiéniewski, in the context of erotetic logic, provides such a formal framework
(and reviews many other similar frameworks, such as Hintikka’s interrogative
model of inquiry). He argues that a set of declarative sentences S raises a
question ¢ when the following conditions hold:

e S does not contain any direct answer to gq.
e [t is not possible to derive from S any direct answer to gq.
e All presuppositions of ¢ may be derived from S'*.

e If all the formula in S hold, ¢ must have a true direct answer.

Most of these conditions would be applicable to the questions made in the
experimental dimensions of analysis, except the second one (as our agents
are not ideal reasoners they do not know all the logical consequences of their
beliefs and, therefore, they cannot know whether an answer to the question
put to the environment may be deduced from their explicit beliefs!?). The
framework developed in [Wi$n95] considers several types of questions, for
instance the following:

e Given an exhaustive finite set of possible answers, the environment may
be asked which one is the real answer (e.g. choose one from the set {A,

—A}).

e Given a certain predicate, the environment may be asked for a set of
individuals satisfying it (e.g. a search for one pair of individuals z,y
such that fathers, holds).

e The latter kind of questions may be generalised to require n sets of
individuals that satisfy the predicate.

1A formula p is a presupposition of a question ¢ iff p is entailed by each direct answer
to ¢ ([Beln66)).

12Tn fact, even Wisniewski argues in [Wi§n95] that this particular postulate is somewhat
controversial.
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e In a further generalisation, it is possible to ask for all sets of individuals
that satisfy a given predicate.

A part of the example developed in §4.6 may help to illustrate our vision
about how the exploratory dimension of analysis should behave, especially
the implications that each kind of admissible answer may have in the devel-
opment of the analysis of the agent’s beliefs. This example is also useful to
notice the relationships that may be established between the different dimen-
sions of analysis, in particular between the logical and the experimental ones.
Suppose that the agent doubts of the validity of a general law such as All
birds fly (i.e. it is not sure whether Vz (Bird(xz) = Flies(z)) holds). It may
introduce this doubt into the analysis by adding to its current belief set (in
the exploratory dimension of analysis) the formula Vz(Bird(xz) = Flies(z))
V =V (Bird(z) = Flies(x)), which is an instance of the AEM. When the
agent analyses this disjunction (in the logical dimension of analysis, us-
ing the rule that permits the analysis of A-formula located in the left col-
umn of the tableaux), it will have access to two subtableaux: one of them
would contain the law in the left column, whereas the second would contain
—Vz(Bird(z) = Flies(x)). From this latter formula, by standard first-order
tableaux processing the agent would get Bird(a) and —Flies(a) (for some
(undetermined) a, represented by an Skolem constant). At this point of the
analysis, the agent can notice that it can increase its beliefs if it can close this
tableau. In order to do that, it can make the following question in the exper-
imental dimension of analysis: is there any individual a such that Bird(a)
and not Flies(a)? The agent could react in different ways, depending on the
received answer:

e The answer is positive.

In this case, the answer must provide an individual with those prop-
erties, and then the Skolem constant may be replaced by that specific
individual before proceeding with the analysis. Note that a positive an-
swer only modifies the content of the tableau that contains the Skolem
constant that has triggered the question to the environment. The rest
of the tableaux are not modified because the aim of the question was
basically to corroborate (or refute) the existence of an specific individ-
ual with the properties represented by the predicates that are applied
to the Skolem constant in that tableau, in order to find out whether the
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situations represented by that tableau match the agent’s environment.
Having said that, it would not have been unreasonable to consider the
possibility of adding the positive answer to the left columns of all the
open tableaux of the logical analysis, as if it had been directly given
by the environment as an external unsolicited input (as will be seen in
§4.4).

e The answer is negative.

Then, the agent can conclude that an individual with these properties
does not exist; when this conclusion is finally reached, the agent can
see the tableau that contains the formulae with the Skolem constants as
the representation of a class of empirically impossible situations, and
so it will have grounds not to consider it any more as a conceivable,
realizable alternative. Then this tableau would be empirically closed
and dismissed from the analysis. At that moment all the open tableaux
would contain Vz(Bird(xz) = Flies(z)) and the agent would believe
this law (as will be argued in the formal modelling of the evolution of
the beliefs shown in §5). This example (extended in §4.6) shows how
the agent may combine different dimensions of analysis in order to keep
refining its set of beliefs.

A few comments about empirical closings of tableaux are in order:

e When a tableau is empirically closed, it is not taken into account when
the (somewhat modified) Kripke semantics is applied to compute the
agent’s actual set of beliefs (as will be seen in §5). In that respect,
empirical closings behave like the logical closings made in the logical
dimension of analysis.

e However, there is an important difference between logical and empirical
closings. If a tableau is logically closed, it is dismissed from the analysis
permanently, and it can never be considered again. However, tableaux
that are only empirically closed do still form part of the tableaux tree.
The agent is still allowed to continue with the analysis of formulae con-
tained in those tableaux. The spirit of this difference is that informa-
tion acquired a posteriori may make the agent reconsider the empirical
closing (e.g. it may learn about the existence of a bird that does not
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fly), whereas a logical contradiction may never be retracted. Thus,
this difference provides the agent with a way of having non-monotonic
beliefs.

Thus, as Hintikka suggested in [Hint86a], doubt can be understood as the
beginning of a dynamic process that, by reducing the number of conceivable
situations that the agent considers, reinforces one side of the doubt over the
other, sets the conditions to verify it (and falsify the other) and tendentially
gives credence to it. Such a process can be made compatible, in a natural
way, with e.g. falsification strategies in the Popperian philosophy of science
([Popp34]). It can also explain why humans finally know things; they simply
make themselves present, not directly (through the senses, as it were) but
indirectly, through their involvement in a reinforcement/disabling process
which eliminates conceivable situations (that are then seen as “impossible”)
and so reinforces -as belief, now turned into knowledge- what active expe-
rience has indirectly but forcefully shown. This analysis not only matches
some dynamic models of concept formation in Psychology or Artificial In-
telligence, but it additionally suggests a simpler approach to the “justifica-
tion” and “truth-tracking” concepts as the philosophers’ missing ingredient
for knowledge; it is certainly more akin to Barwise and Perry’s idea that
knowledge is “succesful belief” ([BaPe83|) than to standard epistemological
traditions (although the idea of “succesful belief” in [BaPe83] is of a proba-
bilistic nature).

4.4 External inputs

We also allow the agent to incorporate into the analysis the information that
it receives directly from the environment. This information, unlike the one
obtained in the experimental dimension of analysis, is not requested by the
agent; it may be received from sensors or from other agents of the system.
These new pieces of information are added to the analysis by introducing
them in the left columns of the open tableaux of the logical analysis. This
decision will cause the agent to belief immediately the received information,
as will be shown in §5; thus, as argued in §4.2, rational inquirers are very
credulous agents, that, in principle, believe everything they are told (as usual
in the Artificial Intelligence literature of belief revision and update). We also
argued in §4.2 the feasibility of treating all kinds of external inputs in the
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same way, regardless of their source; therefore, a rational inquirer will not
make a distinction between a message received from another agent and a
piece of data measured by a sensor.

The addition of the new information may cause a tableau to be closed,
if it fulfills any of the tableau closing conditions and the agent realizes that
fact. Thus, a tableau may be closed by different reasons:

e As a result of the application of a rule of the tableaux calculus of the
logical analysis, a tableau may contain a formula and its negation in
the left column, or it may contain the same formula in both columns.
If the agent notes that any of these conditions holds, it will close that
tableau (a purely logical closing) and it will cease to take it into account
in the rest of the belief analysis.

e As a result of information received directly from the environment (an
external input), one of the two closing conditions may hold in a tableau;
thus, if the agent realizes that situation, it will close it. This is also
a logical closing (due to empirical reasons, if you wish). It will be
argued in §4.7 that an agent that performed some kind of belief revi-
sion procedures could distinguish between these two different styles of
logical closing in order to decide which formula to eliminate from its
inconsistent set of beliefs in order to regain consistency.

e The agent may fail to find in the real world a set of individuals that
satisfy the properties stated in a tableau (in an inquiry made in the
experimental dimension of analysis). Thus, it may consider that the
tableau represents a situation that does not match reality, and it may
empirically close the tableau in order to (at least, temporarily) elimi-
nate it from further analysis.

There is one important issue associated to the process of closing tableaux,
namely the difference between monotonic and non-monotonic beliefs. The
former are the ones obtained from the purely logical closing of tableaux, while
the latter are those derived from the empirical closings of tableaux, that may
be defeated later. For instance, the agent can, at a later stage of the belief
analysis, notice that the answer from the environment to a previous question
(in the experimental dimension of analysis) was not accurate, and that there
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indeed exists an individual with the requested set of properties. This means
that this work has some connections with the Al field of belief revision; some
comments on this issue will be made in §4.7. An example where the agent’s
set of beliefs evolves in a non-monotonic way is developed in §4.6 and §5.8.

4.5 On logical omniscience and perfect reasoning in
rational inquirers

After having described all the different dimensions of belief analysis that
rational inquirers may perform, it is worth pausing for a moment and won-
dering to what extent it may be defended that this kind of agents are really
an example of limited, non-ideal, non-logically omniscient agents. In partic-
ular, some of the readers of this dissertation may have thought, after reading
the section devoted to the logical analysis and appendix A, that these agents
are still logically omniscient and perfect reasoners (albeit not in standard
predicate calculus, but in Kleene’s three-valued logic). In this section we
want to argue that this is certainly not the case.

Let us first consider the issue of logical omniscience (necessarily believing
all tautologies). We can make two comments concerning this point. On the
one hand, it is very easy to prove that there are no tautologies in Kleene’s
three-valued logic, because there does not exist any formula which is valid
in the three-valued interpretation that assigns the truth value w to all ba-
sic propositions. Therefore, the problem of believing all the tautologies in
this logic vanishes. On the other hand, if we are concerned about classi-
cal first-order tautologies, we have provided in §4.3.2 an argument against
the free introduction of tautologies in the tableaux of the belief analysis.
The only classical tautologies that may be introduced in the tableaux in the
exploratory dimension of analysis are the instances of the Axiom of the Ex-
cluded Middle. This allowance, in turn, does not mean that rational inquirers
believe, by definition, all the possible instances of this axiom; rather, it is
saying that the agent has the possibility of, at a certain point of the analysis,
believing a particular instance of AEM. The agent has to make a conscious
effort to introduce this formula in the tableaux, has to spend both time and
space to do it. In summary, a limited, resource-bounded rational inquirer
could never believe the infinite possible instances of the AEM; it will only
believe those that it purposefully introduces in the analysis. This state of
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affairs is radically different from believing, right from the very beginning,
every valid formula.

As far as perfect reasoning is concerned, several comments are in order.
At a given stage of the analysis, a rational inquirer will only believe, as will
be seen in §5, those formula that appear in all open tableaux (the leaves
of the tableaux tree). It should be clear by now that the sets of formulae
contained in each tableau are not logically closed (neither in classical first-
order logic nor in Kleene’s three-valued logic). In particular, it is impossible
for a finite set of formula to be logically closed in any of these logics (and
each tableau contains two finite sets of formulae because a resource-bounded
agent cannot maintain lists of infinite formula). Therefore, the (finite) belief
set of a rational inquirer will never be logically closed.

It may also be considered whether the formulae that are believed from
the agent, from an analysis of an initial belief set A, are precisely the logi-
cal consequences of A in Kleene’s three-valued logic. We can consider two
different cases:

e If the agent only uses the logical dimension of analysis, it will indeed
only believe formule that are logical consequences of its initial beliefs
in Kleene’s three-valued logic. However, it must be noted that the for-
mula that are generated in the subtableaux are only subformula of the
analysed formulee; therefore, by restricting the analysis to this dimen-
sion, the agent could only obtain as new beliefs those consequences (in
Kleene’s three-valued logic) of the initial set of beliefs that are subfor-
mule of these initial formulee. In summary, the agent would be very
far away from being a perfect reasoner. If a rational inquirer wants
to deduce a certain logical consequence ¢ of the initial set A, at least
it needs to use the exploratory dimension of analysis to introduce the
formula (¢ V —¢) in the tableaux, and then perform several steps of
logical analysis until the option in which —¢ holds is dismissed.

In the extreme case, if the agent has enough resources to perform an
exhaustive analysis of the tableaux tree, it could only discover whether
the initial set of beliefs is inconsistent in Kleene’s three-valued logic (if
all the branches of the tableau tree are logically closed). It is quite hard
to perform such an exhaustive analysis. One reason is that the number
of tableaux may be exponential with respect to the number of initial
beliefs; another one is that quantified formulae may be instantiated in a
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large number of ways, if there are many different objects in the domain
of discourse. Therefore, it seems very unlikely that a resource bounded
agent may be willing to engage in such an expensive analysis.

o If the agent uses all the dimensions of belief analysis, there are sev-
eral facts that may cause it to believe formulae that are not logical
consequences of its initial beliefs. For instance, if the agent receives
an external input, that (arbitrary) formula is introduced in all the left
columns of all open tableaux; therefore, it is instantly believed. An-
other situation that may arise (as will be seen in the example used in
§5) is that the agent poses a question, in the experimental dimension
of analysis, and receives a negative answer. In that case, one of the
tableaux is empirically closed and the agent could believe formula that
are not logical consequences of its present beliefs. In the example pre-
sented in §5, the agent will believe, at a certain point of the analysis,
that all birds fly, and this fact may not be deduced at all (neither in
classical logic nor in Kleene’s three-valued logic) from its initial beliefs.

In summary, a rational inquirer’s set of beliefs does not coincide with the
consequences (in Kleene’s three-valued logic) of its initial beliefs:

e The agent will never believe all the logical consequences of its initial
beliefs (in particular, because this is always an infinite set of formulae).

e A rational inquirer may easily come to believe facts that are not de-
ducible from its initial set of beliefs, due to aspects of the analysis
such as the acquisition of external information, the empirical closing of
tableaux that may happen in the experimental dimension of analysis,
and the re-opening of empirically closed tableaux that may also occur
in that dimension of analysis.

The example provided in the following section, which will be carefully
analysed in §5.8, serves to illustrate these comments.

4.6 Analysing a set of beliefs

The aim of this section is to show, via an small example, how a rational
inquirer can use the different dimensions of analysis over an initial set of
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beliefs. In §5.8, the same example will be considered to show how the use
of the subjective situations framework permits the formal modelling of the
evolution of the beliefs of the agent during the analysis process. Let us
assume that the agent’s initial set of beliefs is the following:

{BdeTweetya FlieSTweety: BirdPiolin; FlieSPiolina BdeWoodya
Vz(Penguing = —Flies,)}

This set will be called A throughout the example. The predicates and
constants will be abbreviated so that this set will be written as follows:

A = {Br, Fr, Bp, Fp, By, Vz(P, = —F,)}

The initial state of the belief analysis is represented by a tableau, 7j, that
contains in its left column the agent’s initial set of beliefs. The agent may
start the analysis by wondering whether all birds fly (note that neither this
fact nor its negation may be deduced from the initial set of beliefs). It can
incorporate this doubt into the analysis by using the exploratory dimension,
in which it is allowed to add (in the left column of all open tableaux) instances
of the Axiom of the Excluded Middle, i.e. formula of the form (¢V—¢). Thus,
the agent may add the formula (Vz(B, = F,) V =Vz(B, = F,)) in the left
columns of all open tableaux (7). A new tableau, 7}, which is shown in
figure 5, would be generated by the agent.

A

e, 25

TN

(VA(B = Fz)V A VY (Be = Fa) A Va(By = Fg)
Z\Bg x
Bt e 2 lte 25
Vz(Be = Fa) Vi (B = Fa) V(e = )
-Vz(By = Fg)
Tl T2 T3

Figure 5: Logical analysis of (Vz(B, = F;) V -Vz(B, = F;)) in T}

The agent may proceed the analysis of its beliefs by applying one of
the splitting rules of the tableaux calculus of the logical analysis (the one
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that is used to analyse disjunctions located in the left columns of tableaux)
to the formula that has just been introduced in the exploratory dimension,
(Vz(B, = F) V —Vz(B, = F;)). The result is the generation of three sub-
tableaux, 77, 15 and T3, as shown in figure 5.

The first subtableau, 77, contains a formula and its negation in the left
column. As both formulas come from the analysis of the same disjunction, the
agent would surely recognise this fact and would logically close this tableau.
Therefore, the remaining open tableaux at this point would be 75 and T5.

The agent may now choose to proceed its inquiry by performing the logical
analysis of the formula —Vz(B, = F,) in tableau T3. It must be noted that,
in this example, we are not considering which process would be followed by
the rational inquirer in order to decide which dimension of analysis should be
applied or which formula should be analysed at each step of analysis. We are
roughly following the strategy outlined in §4.3.3: the agent may be especially
interested in analysing, in the logical dimension, those formulas that generate
Skolem constants (d-formulas on the left column or v-formulas on the right
column, recall figure 4). These constants guide the experimental dimension
of analysis, which makes questions to the environment in order to adjust the
agent’s beliefs to what is true in its environment. The result of the logical
analysis of —=Vz(B, = F,) is a new subtableau, 7}, that contains (apart from
all the formula in 73) an instantiation of the (negated) universally quantified
formula with a new Skolem constant, c¢ (this tableau may be seen in figure
6).

Following the same strategy, now the formula —(B, = F.) may be analysed
in tableau 7. This step causes the generation of a subtableau, 75, that
contains all the formulae of 7, and also B, and —F, (see figure 6).

The agent can now notice that an open tableau (75) contains some atomic
formulae with Skolem constants. These formulae therefore, refer to proper-
ties held by generic individuals. It may try to find out whether an specific
individual with the properties expressed in these atomic formula exists or
not. If the agent is not capable of finding such an individual, that may be
due to two reasons:

e Such an individual does in fact not exist.

e The agent’s sources of information are not good enough (e.g. none of
the databases accessible by the agent contains any information about
any individual with the required properties).
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Figure 6: Incorporation of Py,

As the agent does not know which is the case, it must leave an open
door, so that, were it to find later an individual with the desired properties,
it could accommodate this information into its set of beliefs. Thus, rational
inquirers will have non-monotonic beliefs (i.e. a belief held at a certain point
in time may be later dismissed, in the face of new information).

As will be apparent in §5, the main idea in the experimental dimension
of analysis is that the agent may gain some beliefs by dismissing doxastic
alternatives that contain atomic formulae applied to Skolem constants, if it
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is not able to find any specific individual with the properties represented by
the predicates of the atomic formulze.

In our example, the agent may start by checking whether Tj (see figure
6) contains an individual that has property B and does not have property F.
There are some individuals that have property B (Tweety, Piolin and Woody)
but none of them is known not to have property F (in fact, Tweety and Piolin
do have it). Thus, the agent must resort to external sources of information
in order to try to find other individuals that satisfy properties B and —F.

Recall that in the experimental dimension of analysis (see §4.3.3) the
agent may perform questions of this form:

Does it exist an individual that has the properties P, P,, ..., P,
and does not have the properties P11, ..., Pp?

In the example developed in this section, the agent can formulate this
question:

Does it exist an individual that has property B and does not have
property F?

Notice that the experimental dimension of analysis provides the agent
with a (somehow indirect) way of asking whether all birds fly. The two
answers that can be received from the environment are:

e Yes, individual r satisfies those requirements (i.e. B, and —F, hold).

In this case, the agent could substitute all the appearances of the
Skolem constant ¢ in Ty by constant r and proceed with the belief anal-
ysis (i.e. =(B. = F.),B. and —F, would be replaced by —(B, = F,),B,
and —F,). As noted in §4.3.3, it could also be possible to add these
formulzae in all the open tableaux.

e No, there are no known individuals that satisfy those properties (being
a bird and not flying).

For the sake of proceeding with the example, let us assume that the agent
makes the previous question (in the experimental dimension of analysis) and
receives the second answer (e.g. it searches in the Internet for information
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about birds that do not fly and it is not capable of finding any such individ-
ual). In this case, the agent may decide that the tableau T5 is representing
an empirically impossible class of worlds (because the Skolem constant ¢ may
not be given any specific value). Therefore, the agent may decide not to have
this class of situations into account when computing its beliefs. The actual
implementation of this decision is the empirical closing of T5.

Recall the implications of the empirical closing of a tableau (see §4.3.3):

e An empirically closed tableau is no longer taken into account to calcu-
late the agent’s set of beliefs (see §5).

e An empirically closed tableau may still be used in the multi-dimensional
belief analysis (e.g. its formulae may still be logically analysed). How-
ever, all the branches that may be generated by that analysis are also
considered to be empirically closed (some of them may even be logically
closed, if some subtableau is considered logically impossible).

e An empirically closed tableau may be re-opened at a later stage of
the analysis, if an individual with the required properties is finally
found (e.g. after performing more logical analysis, or by receiving direct
external information).

After having empirically closed the tableau Ty, the only open tableau of
the logical analysis is 75. Imagine that, at this point of the analysis, the
agent receives (from some external source) the information that Woody is
a penguin (Py). As mentioned in §4.4, the difference between the process
of receiving external information and the experimental dimension of analysis
is that, in the latter, the agent makes an specific question and waits for a
concrete answer to that question, whereas in the former the agent cannot
control the information that it receives unexpectedly from the environment
(e.g. it can not prevent another agent from sending any kind of information).

As we said in §4.4 the behaviour of our rational agents in front of external
information will be somehow credulous: they will take that information as
reliable, and they will incorporate the formula representing that information
in the left columns of all non-logically closed tableaux (i.e. all open tableaux
and all empirically closed tableaux). This decision is motivated by the aim
of showing that our framework may model both the reception of presumably
defeasible information (in the experimental dimension of analysis) and the
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acquisition of presumably reliable information (in the addition of external
inputs). Following the example, the agent now adds the new information
(Pw) in the left columns of all non-logically closed tableaux (7% and Tj),
generating two new subtableaux, 75 and 7;. This situation is depicted in
figure 6.

Remember that one of the formulae of the initial belief set (A) was
Vx(P, = —F;). Therefore, this formula appears in the left column of both
T, and T;. The agent can decide to analyse it in 73 (recall that we allow
the agent to perform analysis of formula that are contained in tableaux that
are only empirically closed, as mentioned in §4.3.3). To analyse a univer-
sally quantified formula contained in the left column of a tableau, a specific
instantiation of that formula has to be chosen. Assume that the agent in-
stantiates the formula with the constant W; then the result of the analysis is
the generation of a new subtableau, Tg, that contains all the formule in 77}
and also (P = —Fw) (see figure 7). The agent could have chosen this par-
ticular instantiation due to the fact that the formula that has just received
from the environment matches the antecedent of the conditional. If the agent
decides to analyse the formula (P = —Fy ) in T§ it will generate three new
subtableaux, 77, Ty and Ty, as shown in figure 7.

The agent could now notice that both 77 and Ty contain a formula (Py)
and its negation in the left column. Having noted this fact, it could decide
to logically close these tableaux, and to remove them from the tableaux
tree. Summarising, at this point of the tableaux analysis the situation is the
following:

e The tableau T} is the only open tableau (and, as such, is the only one
that should be taken into account when computing the agent’s set of
beliefs).

e The only other remaining tableau in the tableaux tree is 7y. This
tableau appears in the branch of tableau 75 and, therefore, is considered
to be empirically closed.

Recall that tableau 75 was empirically closed because it contained the
formulae B, and —F, (being ¢ an Skolem constant), and the agent did not
know (and could not find in its environment, in the experimental dimension
of analysis) any individual with those properties (being a bird and not flying).
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Figure 7: Logical analysis of (P, = —Fy/) in Tj

Thus, that tableau was temporarily dismissed from the analysis. Now, after
having introduced external information in the tableaux of the belief analysis
(Py) and having performed some logical analysis, the situation has changed
radically. The only subtableau in the branch of Tj, Ty, contains By (that
belongs to A) and also —Fyy; thus, the agent now has discovered an individual
with the desired properties. Therefore, the motivation for closing that branch
of analysis has disappeared, and the agent should decide to reconsider its
previous closing decision by re-opening the tableaux of that branch of the
tableaux tree (only Ty, because T7 and Ty were logically (and, therefore,
permanently) closed). Moreover, the presence of the Skolem constant c, that
denotes an unknown, generic individual, also seems irrelevant, now that a real
individual with the desired properties is known. Therefore, the agent could
decide to generate a subtableau of Ty, called T3, in which all the appearances
of ¢ have been replaced by constant W. This generation is shown in figure 8
(recall that By, is included in A).

If the agent analyses the formula “There does not exist any penguin that
flies” (that belongs to A) in T}, instantiating this formula with the constant
W (as it did with the same formula in 77), it will obtain the tableau T}y,
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Figure 8: Replacing the Skolem constant ¢ by W

shown in figure 9.

The agent could proceed the logical analysis with the formula that it has
obtained in the previous step, (P = —Fp) (as it did with the same formula
in Tg). The result of the analysis of a conditional in the left column of a
tableau is the generation of three subtableaux (7%, 712 and T73) as shown in
figure 9.

The tableaux T7; and Tio contain Py and — Py in their left columns;
therefore, they would be logically closed and eliminated from the analysis.
Thus, the only open tableaux at this point of the analysis would be Ty and
Ti3.

The agent might now notice that it has not yet explored one of the sides
of the doubt introduced in the exploratory dimension of analysis in the first
step of the belief analysis. It can logically analyse the formula Vz(B, = F,),
contained in the left column of 713, instantiating it with the constant W. The
result is the generation of a new subtableau, 774, in which this instantiation
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Figure 9: Logical analysis of (P = —Fw ) in T

of the analysed formula appears in the left column, along with all the formula
that were already in T35 (see figure 10).

In the last step of this example the agent could analyse the formula
(Bw = Fw) in Ty4. This logical analysis causes the generation of three
new subtableaux (715, 116 and T7) as shown in figure 10.

Notice that these three subtableaux may be all logically closed, because
all of them contain a formula and its negation in the left column (By in 735
and Ti6, and Fy in 715 and 7T17). Having done this, the only remaining open
tableau of the analysis would be Tj.

4.6.1 Summary of the example

The analysis performed in this example may be summarised as follows:

e The agent starts the analysis by wondering whether all birds fly. It uses
the exploratory dimension of analysis in order to introduce this doubt
into the analysis. In this way, the agent may explore the two available
alternatives and determine whether any of them is logically impossible,
or whether there is any question that it can make to its environment
in order to confirm or refute any of the alternatives.
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Figure 10: Logical analysis of (Byy = Fy) in T14

After some logical analysis, the agent discovers that it can dismiss one
of the options if it can check whether there is an individual that is a
bird and does not fly. The experimental dimension of analysis is used
to (unsuccessfully) search in the environment for an individual with
these properties.

As the agent does not find any individual with the desired properties,
it decides to temporarily dismiss that alternative; then, it should be-
lieve that “All birds fly” (because it has not been able to find any
counterexample).

Afterwards, the agent receives external information that assures that
“Woody is a penguin”. The agent incorporates this information in the
analysis by adding it to the left columns of all the tableaux that have
not been logically closed.

After some logical analysis, the agent discovers that there is indeed an
individual that is a bird and does not fly (Woody), and that it may
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re-open the tableau that was empirically closed. Having made this
discovery, it should cease to believe that “All birds fly”.

e After further logical analysis, the agent discovers that all those situa-
tions in which “All birds fly” are logically impossible. Then, it should
reach the final conclusion that “Not all birds fly”.

The actual formal modelling of the non-monotonic evolution of the agent’s
beliefs in this example will be performed in §5.8; there, it will be shown how
the successive agent’s sets of beliefs after each step of analysis match the
ones that would be intuitively expected.

4.7 Belief revision and update

There is a whole area within Artificial Intelligence devoted to deal with the
issues related to belief revision (how to change the beliefs about an static
world) and belief update (how to keep updating the beliefs to match an
evolving world). These topics have received much attention, especially from
the logical approaches taken by Alchourrén, Girdenfors and Makinson (see
e.g. [AGMS85], [Gard88], and some of the comments made in §4.2) and Kat-
suno and Mendelzon ([KaMe91]). One of the big issues in belief revision is
what to do when finding out that a set of beliefs is contradictory; in our
framework, that would be the case when all the analytic tableaux are closed.
This is indeed an important topic, but it has not been tackled in this disser-
tation. We will just assume that the rational inquirers could use any of the
proposals that have been made in the belief revision area in order to decide
which formula should be abandoned when it is discovered that the present
set of beliefs is logically inconsistent. Having done that, they could start
a brand new analysis of its new set of beliefs. We do have a suggestion to
make, though: the agent should take into account where the formule of the
tableaux came from when it has to decide which of them should be given up in
order to regain consistency. Notice that a formula may have several origins:

e [t may be an initial belief.

e It may have been deduced from previous beliefs by deductive inference
rules.
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e It may have been obtained in the experimental dimension of analysis
(see §4.3.3) as an answer to a question put to the environment by the
agent.

e [t may have been a measure obtained by a sensor.

e [t may have been communicated by external agents.

A rational agent may have different policies (strategies) to deal with an
inconsistent set of beliefs. It could decide for instance that it should try
always to keep its initial belief set and its deduced beliefs, and that it may
prefer to eliminate those formulae that come from not-fully reliable sensors or
from untrustworthy agents. In a different setting, in which there were perfect
sensors and the good behaviour of all the agents were assumed, a rational
agent could for instance choose to trust the information proceeding from
these sources and to get rid of initial beliefs; that could be a way of updating
the belief set in front of a dynamically evolving world. Thus, we leave the
choice of the belief revision strategy to be used by the rational inquirers
absolutely open, so that it may be adapted to the varying circumstances in
which they may be located. These strategies could be implemented with
the basic belief revision frameworks proposed in the literature. For instance,
following Géardenfors’ suggestions ([Gard88]), the agent could assign different
degrees of epistemic entrenchment to its different beliefs, according to its
procedence. In that way, in the face of contradictory information, the agent
would get rid of those beliefs that had the minimal entrenchment. It should
be noted, though, that most of the formalisms that have been developed in
Artificial Intelligence deal with logically closed sets of beliefs; therefore, they
should probably have to be somewhat modified to deal with arbitrary sets of
beliefs.

There have been two recent dissertations ([Gerb99], [Lomu99]) that have
considered the complex issue of belief revision policies in the context of multi-
agent systems; however, both of them deal with ideal agents. Gerbrandy
([Gerb99]) assumes a K45 doxastic logic. She acknowledges the problem
of logical omniscience, but limits herself to comment that it may be some-
what weakened if the universal modal operator is interpreted as information,
rather than as belief or knowledge (following an idea advocated by Barwise in
[Barw88]). Another difference of her approach with ours is that she deals with
the change of information of an agent that learns modal formulae, whereas
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our rational inquirers only deal with first-order formula. The main tool used
in her modelling technique is dynamic logic, which has not been used either
in this dissertation. She also reviews other approaches to modelling informa-
tion change in multi-agent settings, but all of them belong to the standard
tradition, in which logical omniscience is simply ignored; see e.g. Veltman’s
update semantics ([Velt96]), in which the underlying doxastic logic is S5, or
the approach taken in [FHMV95], where agents are also assumed to be ideal
believers, under the logic K45. Lomuscio ([Lomu99]) studies how the agents
in a multi-agent system may share knowledge through communication. He
also admits that he restricts his attention to ideal agents, whose knowledge
is ruled by the modal logic §5. His approach to evolving knowledge relies
heavily in the framework described in [FHMV95]. Friedman and Halpern
([Frie97], [FrHa97], [FrHa99]) have also proposed a way of modelling belief
in evolving systems. In their framework, belief is defined on top of the no-
tions of knowledge and plausibility: an agent believes ¢ if it knows that the
plausibility of ¢ is greater than that of its negation. They affirm that, as-
suming natural properties of these two basic notions, belief turns out to be
axiomatised by the standard modal logic K D45.

All these approaches show the interest that the Artificial Intelligence com-
munity has in the topic of multi-agent belief revision, but they also reflect
the fact that the logical omniscience problem has been, up to now, to the
best of my knowledge, mostly ignored.

4.8 Summary

We started this chapter by arguing which were the main activities that influ-
enced on a rational agent’s set of beliefs. We identified four types of doxastic
activities:

e Performing deductions on the set of beliefs.
e Incorporating doubts into the set of beliefs.
e Adding information received from the environment to the set of beliefs.

e Requesting specific items of information from the environment, in order
to keep the set of beliefs as close as possible to the facts that hold in
the agent’s environment.
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All of these activities are oriented towards the rational agents’ main goal,
which is to keep its beliefs as close as possible to the facts that are true in
the real world. In order to present a specific way of modelling the evolution
of the beliefs of a rational agent in §5, we have defined in this chapter a more
concrete instantiation of this kind of agents, namely the rational inquirers.
These agents are permanently engaged in a multi-dimensional belief analysis,
which matches the doxastic activities listed above:

e They may perform some deductive inferences, using a modified version
of the analytic tableaux calculus (logical dimension of analysis).

e They may introduce doubts into the analysis by adding instances of the
Axiom of the Excluded Middle to the tableaux (exploratory dimension
of analysis).

e They may request information from the environment, in the experi-
mental dimension of analysis, in order to refine its set of beliefs. These
questions are triggered by some of the formula obtained in the logical
analysis.

e They may also incorporate to the tableaux the formulae that they re-
ceive directly from the environment.

We have showed a small example in which the agent uses all these dimen-
sions of analysis. In §5 the same example will be used to show how we can
model the evolution of the agent’s beliefs during the analysis process.
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5 Modelling the evolution of beliefs

5.1 Introduction

We started this proposal by stating the problems of logical omniscience and
perfect reasoning and reviewing the main ideas that have been put forward
to reduce them as much as possible. In §3 we made our own proposal, based
on the notion of subjective situations. In §4 we proposed a certain class
of rational agents, called rational inquirers, and we described how they are
capable of analysing an initial set of beliefs, with the aim of keeping it as
close as possible to what is true in their environment. The underlying idea
is that the agent’s beliefs must surely change after each step of analysis (e.g.
each time that the agent applies a rule of the analytic tableaux method in
the logical dimension of analysis, or each time that the agent introduces a
doubt into the analysis in the exploratory dimension of analysis).

In this chapter our aim is to provide a way of formally modelling the
evolution of the beliefs of a rational inquirer, using some of the ideas that
were shown in the framework of subjective situations. As will be apparent,
we are also intending to keep the flavour of the possible worlds model and the
Kripke semantics as much as possible. The main elements to be used in the
modelling process are the conceivable situations, which are the semantic enti-
ties that correspond to the subjective perception that an agent has about its
environment (see §5.2) and a sequence of accessibility relations, that serves
to keep track of the conceivable situations that are considered as doxastic
alternatives of the agent at each point of the belief analysis (see §5.3). Af-
ter describing these concepts, we explain with detail the modelling process:
which are its basic ingredients (§5.4), how the set of doxastic alternatives
is updated after each step of belief analysis (§5.5), which are the different
ways in which the set of doxastic alternatives may change (§5.6) and which
is the final algorithm to be used in the modelling process (§5.7). After that,
we apply it over the example developed in §4.6 to show which would be the
agent’s beliefs after each step of belief analysis. Even though we are going
to work with rational inquirers, the reader should realise that the modelling
techniques used in this chapter could be easily modified in order to be ap-
plied to any kind of rational agent, regardless of the especific way in which it
carried out its doxastic activities. The reader should also bear in mind that
we are only going to model the evolution of the beliefs that a single agent has
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about the facts that hold in its environment; the problems that should have
to be faced if a whole multi-agent setting with nested beliefs were considered
will be sketched in §6.

5.2 Conceivable situations

In §2 we reviewed several proposals that have tried to solve (or, at least,
partially alleviate) the problems of logical omniscience and perfect reasoning,
both in Artificial Intelligence and in Philosophy. A particularly interesting
suggestion was made by Hintikka in [Hint75a], where he proposed the idea of
considering [logically] impossible [epistemically] possible worlds (see §2.2.1).
Hintikka defines them as “those worlds that are so subtly inconsistent that
the inconsistency could not be expected to be perceived by an everyday
logician, however competent”. He identifies this kind of worlds with those
urn models which vary so subtly as to be indistinguishable from invariant
ones at a certain level of analysis ([Rant75], see §2.2.14). The concept of
impossible possible worlds has been one of the main sources of inspiration in
our work.

The main roots of the problems of logical omniscience and perfect rea-
soning are the assumptions of completeness and consistency underlying the
possible worlds model. Recall the definition of Kripke structures given in
§1.2.3: since worlds are complete'® the agent is forced to have beliefs about
the way that everything is in all of the accessible worlds; moreover, since
worlds are consistent'® as well, everything that follows from the agent’s be-
liefs must also be believed. In short, in a propositional setting a classical
possible world may be seen as a propositional model (in the logical sense of
the word, i.e. as an interpretation of the basic propositions extended in the
usual way to all the formula of the language). Therefore, a natural solution
to these problems could be reached by dropping these assumptions. What
would happen if (possibly) incomplete and/or (possibly) inconsistent possi-
ble worlds were allowed? This suggestion has been dismissed by most of the
logicians and logically concerned philosophers of the Western tradition since
Aristotle’s time. Nevertheless, this possibility can be seriously entertained,

13Possible worlds are complete because every formula « is either satisfied or unsatisfied
in each state s of every Kripke structure M.

M Possible worlds are consistent because it is not possible to satisfy both a formula o
and its negation —q in a state s of a Kripke structure M.
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and some philosophers have indeed argued for the feasibility of this kind of
worlds, e.g. Rescher and Brandom in [ReBr79]. Many inconsistency-tolerant
logics have been proposed in the literature; just to name a few, we can cite
the logics for reasoning with inconsistent knowledge proposed by Roos or
Lin ([Roo0s92|, [Lin96]), Belnap’s four-valued logic ([Beln77]), Priest’s non-
monotonic logic of minimal inconsistency ([Prie89]) or several paraconsistent
logics ([AINe84], [DCBB95]).

The presence of partial and inconsistent situations is the basis for the
failure of logical omniscience. We may make some claims in favour of this
kind of non-standard states of affairs, lest the reader think that these non-
classical states are totally unacceptable. Most of these remarks are based on
the study of the state of the art shown in §2. The partiality or incompleteness
of possible worlds has been traditionally accepted in the Artificial Intelligence
literature, the most common justifications being the following:

e The agent could be unaware of certain facts (as we have mentioned in
§2.2.7, this issue was already taken into account in the logic of general
awareness, [FaHa85]).

e The agent can have limited resources (e.g. the time required or the
space needed to perform a given inference); therefore, it must have a
bounded rationality ([NeSi72]). This is the most evident justification,
if rational agents have to be implemented at all in a real computer. For
instance, it is obvious that an agent cannot keep a belief database with
infinite entries.

e The agent can ignore some relevant rules (e.g. the agent may have not
been told what the rule of Modus Tollens is). This view was clearly
considered in the deduction model of belief ([Kono86a]), where each
agent was modelled with a base set of beliefs and a (possibly incom-
plete) set of inference rules (see §2.1.2). A similar idea is followed in
[Bene97] or [GSGF93], where the notion of a context (an axiomatic
formal system) is used to model the reasoning capabilities of ideal and
real reasoners (see §2.3).

Inconsistency is a totally different matter. Anyway, it can be argued in
its favour with a number of ideas:



Modelling the evolution of beliefs 130

e Some psychological tests show that human beings have difficulty in
putting together all the information they possess, because human mem-
ory appears to be structured in frames of mind hardly communicating
between them. Thus, an agent may be unable to take all its beliefs into
account in every inference; if it focuses in a subset of them (call that
a context ([McCa93]) or a viewpoint ([AtSi93])), it can draw conclu-
sions which are consistent within the context but inconsistent if all the
beliefs are considered at the same time. This argument was the main
motivation behind the logic of local reasoning, ([FaHa85], see §2.2.10)
and the fusion model ([Jasp94], see §2.2.13). This idea also underlies
the concept of multicontext systems ([GSGF93|, [Bene97], see §2.3).
Many other researchers have also pointed out this fact (e.g. [Stal84],
[Shoh91], [Delg95]).

e [t is certainly possible to conceive the concept of inconsistent worlds
and to define arguably interesting procedures of inquiry over them (as
shown e.g. in [ReBr79]). It is even possible to depict this kind of
worlds, as Escher proved so many times (see e.g. [Hofs80]).

e Human believers are rarely consistent, in the logical sense of the term;
they will often have beliefs ¢ and v, where ¢ F —, without being
aware of the implicit inconsistency.

e It has been argued ([Kono86a]) that logical consistency is much too
strong a property for resource bounded reasoners; being non-contradict-
ory (not believing ¢ and —¢ at the same time) is probably the most
one can reasonably demand.

e If a theory is expressed in first-order logic, it is not even decidable in
general whether it is consistent or not, so these theories would be pretty
useless if they could be used only in case they were previously proved
to be consistent.

e It can even be said that contradiction is the norm in the informa-
tion that most real applications have to deal with. Most systems have
databases or knowledge bases where information may be obtained from
different sources, or from not fully reliable sources, and we should find
ways to formalize the (potentially inconsistent or contradictory) data
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appropriately. In fact, dealing with conflicting data is part and par-
cel of what commonsense reasoning is all about. Moreover, when an
agent detects an inconsistency in its beliefs, it may interpret that fact
as a signal to take external actions, such as asking the user, invoking
a truth maintenance system, activating/deactivating certain inference
rules, etc. Thus, inconsistency may be seen as a useful tool to direct
the processes of reasoning and learning, rather than as a roadblock to
effective commonsense that must be avoided by any means (|GaHu91],
[Per194], [Perl97]).

Therefore, we are going to avoid the classical logicians’ reluctance towards
(possibly) incomplete and (possibly) inconsistent possible worlds; they will
be considered as (epistemologically and even ontologically) possible as the
standard complete and consistent possible worlds. Consider the positive
side of this move; if worlds are incomplete and inconsistent, both logical
omniscience and perfect reasoning seem to vanish. The agent can clearly
fail to believe some tautologies, and it does not have to believe any logical
consequence of its beliefs (recall §2.2.1).

In fact, the expression possible world does not convey exactly the idea
that we have of what a doxastic alternative is; in our framework, we will
call them conceivable situations, rather than possible worlds. A conceivable
situation, as its name suggests, is any situation that the modelled agent may
conceive, irrespective of its partiality or its consistency. It may be a situation
that it has experienced, that it has been told of, or even a situation that it
has just imagined as possible. The only condition for an scenario to qualify
as a conceivable situation is that the agent considers it so; it does not have
to be either consistent or physically realizable. The main point is that a
conceivable situation is not tantamount to a model (in the logician’s sense of
the term). In the rest of the dissertation the notion of conceivable situation
will be considered as primitive, and will correspond to what the modelled
agent considers as “realities”, be they experiential or just imagined.

5.2.1 Formalizing conceivable situations

We will formalize the concept of conceivable situation (from now on, a cosi)
using the formal tools of the framework of subjective situations. In §3.3 we
defined the concept of structure of subjective situations. In each of these
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structures every state was subjectively described from each agent’s point of
view, using the functions 7; and F; for Agent;. We will assume that each
of these descriptions is the representation of a cosi; i.e. each state of an
structure of subjective situations is seen as a collection of cosis, one for each
agent of the multi-agent system. As we are dealing in this chapter only with
a single agent’s beliefs about the world, we will just take into account the
cosis considered by this agent (which will usually be called 7). Therefore, a
cosi is sintactically represented in our framework with two lists of first-order
formulae: those that the agent assumes to be true and those that the agent
assumes to be false. Recall that there are no constraints on the definitions
of the functions 7; and F;; therefore, a given formula may belong to both of
them, to only one of them or to none of them. This framework is reminis-
cent of the situations defined by Levesque in his logic of explicit and implicit
beliefs, which was described in §2.2.4 (the main differences between our ap-
proach and Levesque’s were already commented in §3.6). In some respects
cosis are also similar to Barwise and Perry’s situations ([BaPe83], [Barw88)),
because they are not required to describe every aspect of the world, but
maybe just a small portion of it; however, it must be taken into account
that the situations in Barwise and Perry’s situation theory are inherently
consistent (incoherent abstract situations being the exception, as defined by
Devlin in [Dev191]).

It may be said that the sets 7;(s) and F;(s) represent the amount of
positive and negative information that Agent; has in situation s. Following
this conception, it is possible to define a partial order among cosis for each
Agent; in the following way:

Definition 11 (Information order for Agent;)

The information order among cosis for Agent;, which will be denoted <;,
1s defined as follows:

For all situations s,t, s <; t if and only if T;(s) C T;(t) and F;(s) C Fi(t).

If s <; t, it will be said that s is less i-informative than t.

A class of situations W, will be said to be less i-informative than another
class wg if for every situation sew, and every situation tewg it holds that
s <;t. This state of affairs will be noted Wy <; Wg.
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This definition implies the existence of a different partial order <; for each
Agent;. The least informative situations in this ordering <; are those cosis s
in which 7;(s) and F;(s) are empty, whereas the most informative situations
are those in which these sets contain all the first-order formulae. In §5.5 it
will be explained how some of the modifications produced in an Agent;’s set
of beliefs as a consequence of its continuous process of rational inquiry may
be formally modelled with a change in the set of doxastic alternatives that
it considers as possible, replacing a certain set of cosis by another set which
is more ¢-informative.

5.3 Dynamic accessibility relations

The goal of this research is the definition of a general model of the process of
rational inquiry, so something must be added to the classical static possible
worlds model (assuming that one indeed intends to keep the general concep-
tion of the model and the Kripke semantics) to make it suitable to model the
evolution of the beliefs due to the analysis process. A very natural idea to
model dynamic beliefs is to have some kind of variability in one of the main
elements of the possible worlds model: the accessibility relation R.

Imagine that the agent’s beliefs in world w have to be analysed. This
world is R-connected to worlds w;,ws and ws. A certain proposition P is true
in wy and w3, but not in w;y; therefore, P is not believed in w. Assume also
that Q is true in w; but false in wy and ws (therefore, it is not believed in
w either). The agent, in the course of an inferential process performed on
its beliefs, could reach the conclusion that Q is clearly unacceptable (e.g. it
contradicts a large set of other actual beliefs). Therefore, it could conclude
that the accessible worlds that contain Q are not viable alternatives to its
present world, and thus they do not have to be considered accessible any
more. This fact would imply that (w R w;) would no longer hold, and that
the set of doxastic alternatives to w would be reduced to {ws, ws}. But
these two worlds contain P, and thus, via the standard Kripke semantics, the
agent would now believe P in w (see figure 11). This example shows how
a modification of the accessibility relation (in this case a restriction in the
set of possible doxastic alternatives) can indeed model a modification of the
beliefs caused by an internal inferential process of the agent (other sources
of information could have been considered; e.g. the agent could have noticed
the impossibility of Q as a result of an observation in its environment).
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Figure 11: Belief change due to a change in R

This is another of the main ingredients of our modelling system: we will
model the evolution on time of the agent’s set of beliefs as a sequence of
accessibility relations. Each of these accessibility relations will define the
modelled agent’s set of doxastic alternatives which, in turn, will induce (via
a slightly modified version of the Kripke semantics, to be described in §5.4)
a different set of beliefs in each point in time. In fact, the use of a change in
R to model belief change is not new. Appelt describes a similar approach in
[Appe85], where he argues that actions can generate knowledge by restricting
the possible worlds that are consistent with the agents’ knowledge after the
execution of the action (following ideas from Moore, [Moor83], [Moor85]).
Fagin et al. show in [FHMV95] how the reasoning processes followed by
the (extremely idealised) muddy children in order to answer the question
posed to them by their father (“Does any of you know whether you have
mud on your head?”) may be modelled with a progressive restriction in the
accessibility relation between the states that they consider possible!®. As
will be seen later, some of the modifications caused in a rational inquirer’s

15However, Fagin et al. do not provide in [FHMV95] a formalisation of this process.
Recent works ([Lomu99], [Gerb99]) have shown that it is not obvious at all how to provide
an appropriate formal account of how the accessibility relations of the agents in a multi-
agent system change as a consequence of their external communicative acts and their
internal inference procedures.
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set of beliefs by the analysis process may be modelled by using a sequence of
decreasing accessibility relations.

Other approaches have also tried to provide a framework in which it is
possible to model the evolution of a set of beliefs over time. Nirkhe et al. (see
[NKP94]) show how step-logics may be used as a way to model the agent’s
ongoing process of reasoning; they even take into account the actual time that
the agent consumes in its reasoning processes ([EMP95], [Elgo88], [E1Pe90]).
Kraus and Subrahmanian develop in [KrSu95] a family of temporal logics in
which belief update is captured by how the agent’s beliefs about the present
are changing over time. A chapter of [FHMV95] is devoted to study how
knowledge evolves in multi-agent systems (considering axioms that express
some constraints on the semantics of temporal modal operators). The agents
defined by Wooldridge in [Woo0l92| keep updating their beliefs, using inputs
that may come from the result of previous actions of the agent or from
messages received from other agents. The agents considered in [PaGi98]| also
modify dynamically the extent to which they trust their beliefs, taking into
account the results of their inference processes or the external inputs that
they may receive from sensors or other agents.

5.4 Basic ingredients of the modelling process

The following list shows the main ingredients that will be used to model the
evolution of a rational inquirer’s set of beliefs over time:

e Each two-columned analytic tableau (the formal object that is manip-
ulated by the agent in the course of its inquiry) may be seen as the
representation of a class of conceivable situations: those in which all
the formule wn the left column hold and none of the formule of the
right column holds.

For instance, the tableau T3 of the example shown in §4.6 (see figure
12) represents all those cosis in which (Vz(B, = F,)V—Vz(B, = F};)),
—Vz(B, = F;) and all the formulz in A hold but Vz(B, = F}) does
not hold. Thus, it would represent conceivable situations in which it
is not true that all birds fly. In the framework of subjective situations
outlined in §3 these situations s would be formally defined as those in
which T;(s) = AU {(Vz(B; = F,)V ~Va(B, = F,)), Vz(B, = F,)}
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and F;(s) = {Vz(B, = F,)}, being i the index of the agent whose

beliefs are being modelled.

A
Vr(By = Fg)V
(Ve (Be 2 RN

(%U(Bm = Fp)V A —Vz(B, = Fa)| | A Vz(By = Fy
vatos o P} Ol 2 ) i)
—Vz(Bsz = Fz) z @ z z

Tl T2 T3

Figure 12: Logical analysis of (Vz(B, = F;) V -Vz(B, = F,)) in T}

In the rest of the dissertation, the reader should always bear in mind
that the expression “¢ holds in a cosi” is always referred to the modelled
agent’s perception of the situation; recall that the structures of subjec-
tive situations do not include an objective description of the possible
worlds. Therefore, ¢ “holds in s” if it belongs to 7;(s), and it “does
not hold in s” if it belongs to F;(s).

e Therefore, when, at a certain stage of the analysis, the agent keeps a
tableaux tree with a set of open tableaux, we may consider that the
agent’s doxastic alternatives (possible states or possible worlds) are all
those cosis represented by the open tableaux.

For instance, in the state of analysis depicted in figure 12 (and just
before logically closing 77) the agent would consider as doxastic al-
ternatives all those cosis represented by the tableaux 77, 75 and T3.
Intuitively, the situations represented by 7} are logically inconsistent,
in the sense that they have information defending that all birds fly and
that it is not true that all birds fly (these situations could easily arise,
for instance when an agent receives contradictory information from dif-
ferent sources). The situations represented by T» are those in which it
is assumed that all birds fly, whereas the ones in T3 model those cases
in which it is not true that all birds fly.
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e At each point of the analysis, the set of doxastic alternatives will
change, as the set of open tableaux changes. This continuous change
will be modelled as a sequence of accessibility relations (a new accessi-
bility relation will be generated after each step of belief analysis). In
§5.5, we analyse the different situations that may turn out in the belief
analysis performed by rational inquirers, and how the agent’s set of
doxastic alternatives changes in each case.

Just to provide an example, consider the first step of logical analysis of
the example shown in section 4.6, in which the agent analysed the for-
mula ((Vz(B, = F;)V—Vz(B, = F;)) in the tableau T and generated
three subtableaux, 77, 75 and T3 (see figure 12). In the formal mod-
elling method that we propose, the accessibility relation would change
from a situation in which we consider as doxastic alternatives all those
cosis represented by T to a situation in which the doxastic alternatives

would be all those cosis represented by any of the tableaux 77, T, and
Ts.

e When we have determined which are the agent’s current doxastic alter-
natives, we can compute its present beliefs by using a modified version
of the Kripke semantics, that takes into account the presence of posi-
tive and negative information about a cosi. The standard semantics is
modified as follows:

Definition 12 (Modified Kripke semantics)

An agent’s set of beliefs is obtained after applying the following rules
to the positive and negative information of the agent’s doxastic alter-
natives:

— The agent believes a formula if it holds in all its doxastic alterna-
tives.

— The agent does not believe a formula if it does not hold in at least
one dozastic alternative.

To give an specific example, consider again the situation shown in figure
12, after the generation of 7}, T, and T3. The tableau 7; would be



Modelling the evolution of beliefs 138

5.5

logically closed and dismissed from the analysis, because it contains a
formula and its negation in its left column; therefore, the only open
tableaux at this stage of the analysis would be 7T, and 73. We may
obtain the agent’s beliefs after this step of logical analysis by applying
the modified Kripke semantics that has just been stated. The result
would be the following:

— The agent would believe all the formule in A and (Vz(B, =
F,) VvV —Vz(B, = F},)), because all these formula hold in all the
cosis represented by Ty and Tj.

— The agent would not believe Vz (B, = F}), because it does not
hold in some doxastic alternatives; being more especific, it does
not hold in all those cosis represented by Tj.

— The agent would not believe —Vz(B, = F;) either, because it
does not hold in all the cosis represented by 7.

Thus, at that point of the analysis the agent would believe a disjunction
while disbelieving its two components.

Determining the doxastic alternatives

In order to prove the viability of the technique that has been presented in
the previous section for the task of modelling the evolution of the beliefs of
any rational inquirer, irrespective of the order in which it applies the different
dimensions of analysis, it has to be carefully explained how the set of doxastic
alternatives has to change after each doxastic task, i.e. we have to provide a
systematic procedure for computing these changes. The different situations
that may arise are the following:

e The rules of the analytic tableaux method of the logical dimension of

analysis can be divided in two categories: the splitting rules (those
that generate three subtableaux, e.g. the analysis of disjunctions in
the left columns) and the extending rules (those that generate only
one subtableau, e.g. the analysis of conjunctions in the left columns).
The way in which the agent’s set of doxastic alternatives changes after
applying a logical rule of analysis is the same in both cases. First, the
agent should apply the rule to a formula of a tableau, obtaining one
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or three subtableaux. After that, it could devote some resources to
finding out whether any of the resulting subtableaux may be logically
closed. Having done that, there are two possibilities:

— If all the resulting subtableaux have been closed, the agent’s dox-
astic accessibility relation is restricted by eliminating those cosis
that were represented by the tableau that contained the analysed
formula. If there was no other open tableau then the set of doxas-
tic alternatives would be empty, and the agent would have found
out that the initial set of beliefs was inconsistent; in that case, as
commented in §4.7, it should apply a belief revision procedure in
order to regain consistency, and start a brand new belief analysis
from the revised set of beliefs.

— If there is at least one open subtableau, the agent’s doxastic ac-
cessibility relation is changed from considering all the cosis rep-
resented by the tableau that contained the analysed formula as
doxastic alternatives to just taking into account those cosis repre-
sented by the open subtableau(x).

All the formula of a tableau are always contained in the tableaux gen-
erated below it in the tableaux tree; therefore, the cosis represented by
a tableau are always less informative (according to the agent’s infor-
mation order, <;) than the cosis represented by its subtableaux. That
implies, due to the definition of the modified Kripke semantics, that the
agent’s positive and negative sets of beliefs may only grow as a result
of an step of logical analysis (assuming that at least one subtableau
generated in this analysis remains open).

A logical step of analysis serves to eliminate situations such as the
following:

— Logically incomplete situations. For instance, those in which a
disjunction (¢ V 9) is supported but there is neither positive nor
negative information about ¢ or .

— Logically inconsistent situations. For instance, those in which
there is both positive and negative evidence about a given formula.
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— Logically contradictory situations. For instance, those in which
a disjunction (¢ V ) is supported but there is negative evidence
about ¢ and .

Having eliminated all these kinds of undesirable states of affairs, Agent;
considers as doxastic alternatives situations that are more i-informative
than the previous ones and, therefore, in this way it logically refines its
set of beliefs.

e If the agent adds a doubt in the exploratory dimension of analysis, it
incorporates an instance of the Axiom of the Excluded Middle (i.e. a
disjunction of a formula and its negation) in the left column of an open
tableau 7. In that moment, the set of cosis that are considered as dox-
astic alternatives by the agent must change from the ones represented
by T to those represented by the generated subtableau (that contains
the same formula as T plus the new disjunction). It is theoretically
possible that this tableau is logically closed by the agent, but it seems
pretty unlikely. That state of affairs would arise only if T" contained
explicitly the negation of the introduced doubt and, in those circum-
stances, it seems reasonable to think that the agent would not introduce
the doubt in the first place. Recall that the aim of this dimension of
analysis is to generate a doubt that serves to explore two alternatives
that, in principle, are not deducible (or, at least, not trivially deducible)
from the present beliefs.

Asin the case of the logical analysis, note that the remaining subtableau
contains the set of formule of its parent in the tableaux tree; therefore,
the set of conceivable situations considered as doxastic alternatives by
Agent; is more i-informative than the previous one and, thus, its posi-
tive set of beliefs may only grow (with the inclusion of the introduced
disjunction, in case there are no other open tableaux in the analysis).
The set of negative beliefs does not change, because the right column
of the analysed tableau is not modified. In fact, the only alternatives
that are dismissed with this dimension of analysis are those in which
the instance of the AEM does not hold, i.e. non-classical situations
(intuitionistic situations, if you wish) in which standard tautologies are
not taken for granted, do not necessarily hold.



Modelling the evolution of beliefs 141

e In the experimental dimension of analysis, the agent delivers a ques-
tion to its environment concerning the existence of an individual with
certain characteristics. This question is triggered by the presence in
a tableau T of a set of (affirmed and/or negated) primitive predicates
applied to a given Skolem constant c. The change of the agent’s set of
doxastic alternatives depends on the received answer.

If the answer is positive, the agent is provided with the name of an
individual o that satisfies the required properties, and it generates a
subtableau of T" in which the Skolem constant c is replaced by o. Thus,
the agent changes from believing that there is an individual with certain
properties to believing that o has those properties. This belief change is
induced by a reduction on the agent’s set of doxastic alternatives, which
changes from the set of those cosis in which there is an individual with
the properties represented by the primitive predicates to the set of those
cosis in which it is precisely o who has those properties. Obviously, this
latter set of cosis is a subset of the former one; therefore, the agent’s
set of viable alternatives has reduced, and its set of positive beliefs has
increased. We might say that the agent has somehow refined its beliefs,
as it has been capable of transforming a merely existential belief into an
specific belief related to a given individual. There exists the possibility
that the resulting tableau has to be logically closed, as a result of the
replacement of ¢ by o; in that case, the agent’s doxastic alternatives
would also have to be restricted, as the set of cosis represented by T’
would be eliminated from consideration.

If the answer is negative, the agent must empirically close T'. The
change in the agent’s beliefs produced by this action is also induced by
a restriction on the set of alternatives it considers possible, as it must
get rid of those cosis which were represented by 7. Thus, the way in
which a logical closing and an empirical closing transform the set of
accessible worlds is exactly the same: they produce the elimination of
a certain set of cosis (those represented by the closed tableau) from
the set of doxastic alternatives. There is a very important difference
in the belief analysis process, though: logical closings are irreversible,
whereas empirical ones may be re-considered later, in the face of new
information.
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e An agent may also add information that it has received directly from
the environment to the left column of a tableau 7. In this case, the
change produced in the agent’s set of beliefs may be explained by say-
ing that it will change from considering as doxastic alternatives those
cosis represented by 71" to noticing that the more <;-informative cosis
represented by the obtained subtableau are indeed feasible.

As in the case of the exploratory dimension of analysis, there are two
possibilities to be considered. If the new subtableau is not logically
closed, the agent’s set of positive beliefs will incorporate the added for-
mula (in case there are no other open tableaux in the tableaux tree).
The set of negative beliefs will not change, as the right columns of the
open tableaux will not have suffered any modification. If the inclusion
of the received information produces the logical closing of the new sub-
tableau, there will be a restriction on the set of doxastic alternatives,
as all the cosis represented by T will cease to be considered as poten-
tial alternatives. This restriction may cause an increase in the set of
positive beliefs and a decrease in the set of negative beliefs, due to the
way in which the modified Kripke semantics has been defined.

e We have just explained how there are some situations in which the
evolution of the beliefs of a rational inquirer may be formally modelled
with a sequence of restrictions on the set of situations that it considers
possible. However, there is an important situation left to be analysed
which will require a different treatment. The only occasion in which
the agent will increase its set of doxastic alternatives is when an em-
pirically closed tableau T is re-open at a later stage of the analysis.
This situation may arise in three different ocasions: after an step of
logical analysis, after receiving a positive answer in the experimental
dimension of analysis, and after receiving a direct external input. We
explain the change in the agent’s set of beliefs by assuming that, at
that moment, the agent will realise that the class of cosis represented
by 7' is indeed feasible, and that it has to be taken into account when
computing its beliefs. Thus, the agent will add the cosis represented
by T to its present set of doxastic alternatives. This is the only way in
which the agent can reduce its present positive beliefs, because it can
consider new possible worlds in which previously held positive beliefs
are not necessarily true. The set of negative beliefs may only grow,
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as the new doxastic alternatives may have negative information about
new formuleae.

5.6 Ways of changing the set of beliefs

In summary, an agent may modify its positive and negative beliefs in three
different ways:

e It may eliminate some doxastic alternatives from consideration.

This situation arises for instance when the agent decides to close a
certain tableau; at that point, the agent ceases to consider as viable
alternatives the cosis represented by that tableau.

If the modified Kripke semantics is applied after eliminating some dox-
astic alternatives, the set of positive beliefs may only increase, as there
are less alternatives to be considered. On the other side, the set of neg-
ative beliefs may only decrease, as the formulae which were negatively
supported only in the eliminated situations will cease to be negative
beliefs.

e It may change some doxastic alternatives by others than are more i-
informative.

This situation arises for instance when the agent performs an step of
logical analysis, and it does not close all the resulting subtableaux.

If the <;-informativeness of the doxastic alternatives is greater, by ap-
plying the modified Kripke semantics both the positive and the negative
sets of beliefs may only grow (as all the formulae which were already
positively or negatively supported in the previous doxastic alternatives
will keep the same status).

e [t may consider new doxastic alternatives.

This situation only arises when the agent decides to re-open a previ-
ously empirically closed tableau. In this case the set of positive beliefs
may only decrease, as the modified Kripke semantics checks that the
previously held positive beliefs are also supported in the new doxas-
tic alternatives. The set of negative beliefs may only grow, as it will
now include all the formulae that are negatively supported in the new
alternatives.
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The standard possible worlds tradition (see e.g. [FHMV95]), in which
only complete and consistent possible worlds are considered, basically in-
cludes only the first of these ways of acquiring more beliefs (restricting the
set of doxastic alternatives considered by the agent). There are different ap-
proaches, such as a very interesting one developed in [Jasp94]. In that work,
Jaspars proposes a way of modelling the changes that occur in the informa-
tion of a group of agents as a result of their reasoning and communication
processes. He uses partial possible worlds, in which there is a partial assign-
ment of truth values to the basic propositions in each world. In that way, a
fact may be supported, denied, or neither supported nor denied in a certain
state of affairs. In his framework, information may grow along two different
dimensions: an standard eliminative one, in which certain doxastic alterna-
tives are eliminated, and a constructive one, in which the agent changes a
doxastic alternative by another one which has more information, in the sense
of being defined with a less partial assignment of truth values. Therefore,
in some way it may be said that we share with Jaspars two of the ways of
acquiring more information. However, there are many differences between
the two approaches; just to name a few, he does not consider the third possi-
bility of changing the set of beliefs (adding more doxastic alternatives, which
is the only way of having non-monotonic beliefs), he uses partial logics (and,
thus, his approach is more of a three-valued style), he defines a full modal
calculus and he deals with multiple communicating agents. In general, his
alm is much more ambitious and his framework is much more technically
detailed and complex than ours.

5.7 Modelling process

Now we can give a complete account of the belief modelling process. The
agent’s beliefs keep changing in time because the conceivable situations that
are considered as the agent’s doxastic alternatives change after each step of
analysis. The process may be summarised as follows:

e At the beginning, the agent has a given set of initial data. The agent
starts the analysis with a tableau, Tj, that contains in its left column
this initial information.

e In our model, we build the initial accessibility relation, Ry,. The cosis
that will be accessible through this relation (from the agent’s situation,
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which will be always named w,) are the ones in which all the initial
formulee hold.

e By applying the modified Kripke semantics to Ry, we notice that the
agent’s initial set of beliefs corresponds to the initial set of formulae,
because these formula are the ones that hold in all the cosis represented
by Tj, which are just those cosis that are Rj-accessible.

e While the agent decides to keep applying any of the dimensions of belief
analysis, follow these steps:

— The agent performs one step of logical, exploratory or experimen-
tal analysis, or receives some external input from the environment,
and changes the tableaux tree accordingly.

— If the agent decides so, it may logically or empirically close some
of the tableaux generated in the previous step. It may also decide
to re-open a previously empirically closed tableau, in the light of
the information obtained in the last step.

— In our model, we have to build a new accessibility relation, R, ;.
The only modification from R; to R;; is that the agent’s doxastic
alternatives change from all those cosis represented by the open
tableaux in the previous stage to all those cosis represented by the
open tableaux after the last step of analysis.

— The agent’s set of beliefs is updated by applying the modified
Kripke semantics over the cosis that are R;,i-accessible.

5.8 Example

In §5.4 we explained the basic tools needed to model the evolution of the
beliefs of a rational inquirer on time. In §5.5 and §5.6 we described how an
agent’s set of doxastic alternatives changes as a result of any step of analysis
that a rational inquirer may carry out. This was the basic point in the
modelling process shown in §5.7. The aim of this section is to illustrate all
those ideas by providing an example of how the evolution of the beliefs of
a rational inquirer, caused by a multi-dimensional belief analysis, may be
modelled using the process that has just been explained above. We will use
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the example of belief analysis developed in §4.6 to show which would be the
agent’s beliefs after each step of the analysis.

Before starting with the example, a notational explanation must be made.
In the figures used in this section, each class of cosis is represented by a
rectangle divided in two parts; a formula appears at the top if it holds in
all the cosis of the class, and it appears at the bottom if it does not hold in
any cosi of the class. The formulae shown at the top/bottom of the square
labelled w, in the figures depicted in this section reflect the positive/negative
beliefs of the agent (which are computed with the modified Kripke semantics
stated above).

Let us consider now the example of §4.6. Recall that the analysis started
with the following set of formulae:

A = {By, Fr,Bp, Fp, By, V2 (P, = —F,)}

The initial state of the belief analysis was represented by a tableau, 7§,
that contained in its left column the initial information of the agent. We
have already commented that a two-columned tableau may be considered as
a (partial) representation of a class of cosis: all those cosis that contain all
the formulee of the left column and do not contain any of the formule of
the right column'®. Thus, Tj represents a class of cosis: all those cosis in
which all the six formulae of A hold. This class will be called wg. Therefore,
Wy contains all those situations s such that 7;(s) = A and F;(s) = . The
semantic modelling of the agent’s doxastic state in this initial point is done
by generating an initial accessibility relation, Ry, in which the agent’s initial
doxastic alternatives are those in class wy. This situation is depicted in figure
13.

Let us recall how the agent’s beliefs are calculated in base to its doxastic
alternatives:

e The agent believes a formula ¢ (i.e. ¢ is a positive belief) if it is
contained in all doxastic alternatives.

e The agent does not believe a formula ¢ (i.e. ¢ is a negative belief) if
there exists at least one doxastic alternative in which it is not contained.

16We use the expressions “p holds in the cosi” and “p is contained in the cosi”
interchangeably.



Modelling the evolution of beliefs 147

A R, A

>
-

We Wo

Figure 13: Initial accessibility relation

In this case, the agent believes all those formula contained in all cosis of
Wy, i.e. the six formula of the set A. Therefore, the agent’s beliefs at this
point (before starting the analysis) are the following:

{B(Br), B(F1), B(Bp), B(Fp), B(By), B(Vz (P, = —F,))}

This fact is shown at the top of w, in figure 13, where the agent’s positive
beliefs are displayed.

In the first step of analysis the agent wondered whether all birds fly. It
incorporated this doubt into the analysis by using the exploratory dimension,
adding the formula (Vz(B, = F,) V =Vx (B, = F,)) in the left column of 7,
generating thus a new tableau, 7§, shown in figure 5.

In order to provide a formal model of the evolution of the agent’s beliefs
due to this step of analysis we have to consider the class of cosis Wy, that
contains those situations s such that 7;(s) = AU{(Vz(B, = F;) V —Vz(B, =
F.))} and F;(s) = 0.

The new tableau generated by the agent, 7, represents class wy. There-
fore, the semantic counterpart of the application of the exploratory dimension
of analysis is the generation of a new accessibility relation, R, in which the
set of doxastic alternatives is changed from wg to wy. Note that wy <; wy,
that is, the new doxastic alternatives are more i-informative. This change is
shown in figure 14.

The agent’s beliefs at this point of the analysis are obtained by applying
our modified Kripke semantics. As the only accessible cosis are those in Wy,
the agent’s actual set of beliefs would be the following:

{B(Br), B(Fr), B(Bp), B(Fp), B(By), B(Vz(P, = —F,)),
B(Vz(B, = F,) V -Vz(B, = F,))}
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Figure 14: Generation of R,

Thus, the change in the set of accessible cosis accounts for the increase
in the set of positive beliefs caused by the incorporation of the agent’s doubt
into the analysis. The agent now would believe that either all birds fly or
that it is not the case that all birds fly.

The agent proceeded with the analysis of its beliefs by logically analysing
the formula that it had just introduced in the tableau, (Vz(B, = F,) V
—Vz(B, = F,)). The result was the generation of three subtableaux, 77, Ty
and T3, as shown in figure 12.

We can now consider the following classes of cosis:

e wy: cosis in which A, (Vz(B, = F,)V —Vz(B, = F,)), Vz(B; = F,) and
-z (B, = F;) hold (e.g. a situation in which a database has received
contradictory information from independent sources).

e Wy: cosis in which A, (Vz(B, = F,) V —Vz(B, = F,)) and Vz(B, = F,)
hold but —Vz(B, = F,) does not hold (i.e. situations in which the
agent has information supporting that all birds fly).

e ws: cosisin which A, (Vz(B, = F,)V—-Vz(B, = F,)) and ~Vz(B, = F,)
hold but Vz(B, = F,) does not hold (e.g. the real world, in which it is
not true that all birds fly).

Following our conception of tableaux as representations of classes of cosis,
it may be noticed that 7) represents wy, 15 represents wy and 73 represents
ws. T contains a formula and its negation in its left column, so the agent may
consider the class of cosis represented by this tableau as logically impossible
and can dismiss these situations from the analysis by logically closing 7.
After this operation, the only open tableaux in the logical analysis are T,



Modelling the evolution of beliefs 149

and T3. The semantic modelling of the belief change caused by the agent’s
logical analysis is the generation of a new accessibility relation, Ry, that
changes the set of doxastic alternatives from those in Wy to those in classes
w, and w3, which are the classes represented by all open tableaux. Note
that wy <; wy and Wy <; w3, i.e. the new doxastic alternatives are more i-
informative than the previous ones; therefore, as explained above, the agent’s
positive and negative sets of beliefs may only grow as a result of this change
of accessible situations. This state of affairs is shown in figure 15.

A
(Vz(By = Fz)V
—|V.’L‘(Bm = Fm))
Vz(By = Fz)

A —Vz(Bgy = Fz)
(Vz(By = Fq)V
—Vz(By = Fz))

Ra

A

Vz(By = Fz) \ (Vz(Bz = Fz)V
—~Va(By = Fz) WV (By = Fz))
—Vz(By = Fz)

Vz(By = Fg)

Figure 15: Generation of R,

The agent’s positive beliefs have not changed, because the only formulee
contained in all doxastic alternatives (all Ry-accessible cosis) are those in A
and (Vz(B; = F,) V —Vz(B, = F;)). However, the agent has now attained
two negative beliefs:

e The agent does not believe Vz(B, = F,), because the cosis in w3 (that
are Ry-accessible) do not contain this formula.

e The agent does not believe =Vz (B, = F,), because the cosis in w; (that
are Ry-accessible) do not contain this formula.

Thus, the agent’s beliefs at this point are:
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{B(Br), B(Fr), B(Bp), B(Fe), B(By), B(Vz(P; = —Fy)),
B(Vz(B, = F,) V -Vz(B, = F,)),
-B(Vz(B, = F,)), " B(—Vz(B; = F;))}

The agent chose to proceed its inquiry by performing the logical analysis
of the formula —Vz(B, = F,) in tableau T3. The result of this analysis was
the generation of a new subtableau, 7}, that contained a formula with a new
Skolem constant ¢, =(B, = F.) (recall figure 6). An Skolem constant does
not refer to any specific individual; it may be considered as a placeholder,
that occupies an space that may be later filled with an appropriate concrete
value. In order to see the change produced in the agent’s beliefs after this
step of analysis, consider the following class of cosis, Wy:

e Wy: cosis in which A, (Vz(B, = F,) V -Vz(B, = F;)) , =Vz(B, = F,)
and —(B, = F,) hold (for some object o), but Vz(B, = F,) does not
hold.

The tableau generated in this step of the analysis, T}, represents the class
of cosis w;'". Note that the agent has inferred a condition that a cosi should
satisfy in order to belong to that class. Obtaining this kind of conditions is
important, because the agent can later dismiss a class of cosis if it can check
(in the experimental dimension of analysis) that there are no objects in its
environment that satisfy those requirements.

The evolution of the agent’s set of beliefs at this point may be explained
by considering that it would change from believing that all the situations
in classes wy and w3 are possible to believing that the only viable doxastic
alternatives are those cosis in w; and w;. Formally, this fact is represented
with the generation of a new accessibility relation, Rz, in which the set of
cosis considered as possible by the agent is changed. This situation is shown
in figure 16'®. As may be seen in this figure, the (positive and negative)
beliefs of the agent have not changed, even though some of the accessible
cosis are more i-informative than the previous ones (w3 <; wy).

17 As a side remark, it may be noticed that the previously considered classes of cosis (i.e.
Wy, Wor, W1, Wz and W3) were equivalences classes (with respect to the partition defined
by R;). This is not the case of wz, which contains the union of several such classes (one
for each object o).

18The term “3*” that appears in that figure is a meta-expression, representing the fact
that, in each cosi of the class, there must exist one object that satisfies the given condition.
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Figure 16: Generation of Rj

In the tableau generated in the following step of logical analysis (75, see
figure 6) there are three formulae that contain the Skolem constant ¢ (the
one that appeared in the previous step plus B, and —F,). Thus, this tableau
postulates the existence of an object that fulfils these three conditions. The
change caused in the agent’s beliefs in this new step of analysis may be
modelled, again, with a change in the set of scenarios considered possible by
the agent. That modification may be described with the help of the following
class of cosis, ws:

e Wy cosis in which A, (Vz(B, = F,)V -Vz(B, = F,)) , =Vz(B, = F,),
—(B, = F,), B, and —F, hold (for some object o), but Vz(B, = F,) does
not hold.

After this step of analysis the agent would notice that the cosis that are
really feasible (apart from those in ws) are not those in @y, but those in ws,
i.e. the ones represented by tableau T5. This fact is represented in Fig. 17
with the generation of a new accessibility relation, R4, that modifies (again)
the agent’s set of doxastic alternatives.

The cosis in w5 contain more information that those in wy; to put it
more precisely, for each situation sewy there exists a situation tews such that
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Figure 17: Generation of R,

s <; t. However, applying the modified Kripke semantics it may be noticed
that the agent’s beliefs would not change at this point of the analysis either;
they would still be the following:

{B(Br), B(Fr), B(Bp), B(Fp), B(By), B(Vz(P, = —Fy)),
B(Vz(B, = F;) V —Vz(B, = F,)),
ﬁB(Va:(Bm = Fz)), —|B(—|V$(Bz = Fz))}

The agent continued the analysis of its beliefs using the experimental di-
mension of analysis, posing the following question to the environment: Does
it exist an individual that has property B and does not have property F'7
In this example, the agent received a negative answer, which implied the
empirical closing of Ts. After having empirically closed T, the only open
tableau of the logical analysis is T5. The semantic counterpart of this em-
pirical closing is the generation in our model of a new accessibility relation,
Rs, that restricts the set of doxastic alternatives (by eliminating the class of
cosis represented by Ty, ws). This situation is shown in figure 18.

That figure also reflects the change produced in the agent’s beliefs by the
empirical closing of T5. That closing has reduced the doxastic alternatives
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Figure 18: Generation of Rj

to those cosis represented by the only open tableau, 75 (i.e. those conceiv-
able situations that belong to class ;). Therefore, if our modified Kripke
semantics is applied to update the agent’s beliefs, the positive beliefs will be
those formulza in the left column of 75, while the negative beliefs will be those
formulae in the right column of 75. Thus, the agent’s actual set of beliefs is
the following:

{B(Bt), B(Ft), B(Bp), B(Fp), B(By), B(Vz(P, = —F,)),
B(Vz(B, = F;) V ~Vz(B, = F;)),
B(Vz(B; = F;)),~B(—-Vz(B, = F;))}

Notice that the agent now believes that “all birds fly” (just because it
has looked for individuals that are birds and do not fly and it has not been
capable of finding any such object), and it still disbelieves that “not all birds
fly”. This situation is quite common in the rational inquirer’s analysis of
belief: if it keeps reducing the number of doxastic alternatives, the set of
positive beliefs may only grow. If a formula ¢ is positively believed at a
certain stage of the analysis, and accessibility relations keep decreasing, ¢
will always continue to be positively believed by the agent. On the other
hand, if there is an increase in the set of doxastic alternatives, the set of
positive beliefs can only reduce (as some of them may not hold in the added
situations).

Following the example, the agent now added a new piece of information
received from its environment (Py) in the left columns of all non-logically
closed tableaux (73 and T5), generating two new subtableaux, 75 and T;.
This situation was depicted in figure 6.

Recall that the tableaux 7T, and T represented the classes of cosis W, and
w5, respectively. Consider now these classes of cosis:
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e Wy: cosis in which A, (Vz(B, = F;) V -Vz(B, = F,)), Vz(B, = F,)
and Py hold but —Vz(B, = F,) does not hold.

e Wy cosis in which A, (Vz(B, = F,) V -Vz(B, = F,)) , "Vz(B, = F,),
Pw, =(B, = F,), B, and —F, hold (for some object o), but Vz(B, = F,)
does not hold.

The new subtableaux, T3 and T}, represent the classes of cosis Wy and Wy,
respectively. Thus, our model will reflect the change of belief produced by the
incorporation of the new information, Py, by generating a new accessibility
relation, Rg, that will change the set of doxastic alternatives. The cosis
that were Rs-accessible were those in ws (only the ones represented by 75,
because T5 was empirically closed); now, the only Rg-accessible cosis will be
those in class Wy (the cosis represented by T3). The class of cosis represented
by T} will not be accessible because that branch of the tableaux analysis is
empirically closed. Thus, the resulting semantic situation is shown in figure
19.

A A
(Vz(By = Fz)V (Vz(By = Fz)V
—Vz(By = Fy)) —Vz(By = Fz))
Vz(By = Fe) Vz(By = Fg)
Pw Re Pw
—Vz(By = Fz) —Vz(By = Fg)
We War

Figure 19: Generation of Rg

Let us analyse the relationship between the classes of cosis previously
considered (w; and ws) and those that have just been defined (wy and ws).
On the one hand, it is easy to see that wy; <; Wy; on the other hand, there
is also a gain of information in the change of w5 by ws in the sense that it
holds that, for any situation sews, there exists a situation tews such that
s <; t. Therefore, the change of beliefs caused by the transformation of the
tableaux 75 and T5 into Ty and Ty is modelled as climbs in the information
hierarchy defined by <.

As the only accessible cosis are those in Wy, the agent’s positive beliefs
are those formulee known to be contained in every cosi of the class, whereas
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the agent’s negative beliefs are those formulee known not to be contained
in any cosi of the class. Therefore, the agent’s beliefs at this stage of the
analysis are the following:

{B(B1), B(F1), B(Bp), B(Fe), B(By), B(Vz(Py = —F,)),
B(Vz(B, = F;) V =Vz(B, = F,)),
B(Vz(B, = F,)), B(Pw), ~B(—Vz(B; = F,;))}

The only difference with respect to the previous set of beliefs is that the
agent has incorporated the information received from an external source, Py,
as a new positive belief. This situation would happen with any externally
obtained formula, as long as it is included in the left columns of all the
tableaux that are still being considered in the dynamic multi-dimensional
belief analysis. It would not be the case if the new formulae were included
only in some of the open tableaux of the open analysis.

The agent continued the belief analysis by logically analysing the formula
Vz(P, = —F,) in T}. This decision caused the generation of a new tableau,
Ts, that contained the formula (Py = —Fy ), as shown in figure 7. The
agent’s beliefs do not change as a result of this analysis, because this branch
of the tableaux tree is empirically closed and, therefore, the classes of cosis
represented by the tableaux in this branch are not taken into account when
applying the modified Kripke semantics to compute the agent’s beliefs. Thus,
in our semantic account of the evolution of the agent’s beliefs, the accessibility
relation between cosis does not change, and the only accessible cosis are those
in class wy. The only change experienced in our model is the realisation that
Ts represents the following class of cosis:

e Wg: cosis in which A, (Vz(B, = F;) V =Vz(B, = F;)) , =Vz(B, = F,),
Pw, (Pw = —Fw), =(B, = F,), B, and —F, hold (for some object o),
but Vz(B, = F,) does not hold.

It may be seen that each situation in ws is less ¢-informative than its
counterpart in wg.

The agent decided now to analyse the formula (P = —Fyw ) in T, ob-
taining the result shown in figure 7. The classes of cosis represented by the
new tableaux, 77, Ty and Ty, are the following ones:
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e Wr: cosis in which A, (Vz(B, = F,) V -Vz(B, = F,)) , =Vz(B, = F,),
Pw, Pw = —Fw), “Pw, “Fw, =(B, = F,), B, and —F, hold (for some
object o), but Vz(B, = F,) does not hold.

e Wg: cosis in which A, (Vz(B, = F,)V —-Vz(B, = F;)) , =V (B, = F,),
Pw, “Pw, (Pw = —Fw), =(B, = F,), B, and —F, hold (for some object
0), but Vz(B, = F;) and —Fy do not hold.

® Wy: cosis in which A, (Vz(B, = F,) V -Vz(B, = F;)) , =Vz(B, = F,),
Pw, “Fw, (Pw = —Fw), =(B, = F,), B, and —F, hold (for some object
0), but Vz(B, = F;) and =Py do not hold.

T represents Wy, Tg represents wg and Ty represents wy. 17 and T contain
a formula (Py) and its negation in their left columns, so they represent classes
of logically impossible cosis, and the agent may decide to get rid of these
classes in the analysis by logically closing these tableaux. Thus, at this point
of the analysis, the only open tableau is still T3, while Ty is empirically closed.
The agent’s beliefs do not change after this logical analysis either, because
the analysed formula was contained in an empirically closed tableau (and,
therefore, the set of open tableaux, {7, }, remains unchanged). As happened
in the previous stage of analysis, notice that each situation in wg is less
i-informative that its counterpart in .

An interesting situation arised at this point; the agent realised that Tj,
that was empirically closed, could be now re-open, because it had discovered
the existence of an specific individual (W) that “is a bird and does not fly”.
Moreover, a new tableau, 7§, in which all the appearances of ¢ were replaced
by constant W, was generated (see figure 8).

Now there are two open tableaux in the tableaux tree, T, (that represents
all those cosis in wy) and Tj. Recall that Ty represented the class of cosis
Wy; it is easy to describe the class of cosis represented by Ty if the following
subclass of Wy is considered:

e Wy cosis in which A, (Vz(B, = F,) V -Vz(B, = F,)) , -Vz(B, = F,),
Py, —Fw and (Py = —Fy ) hold but Vz(B, = F,) and —Py do not
hold.

Wy is a subclass of Wy, as it contains the situations in this class in which
the generic object (referred to as o above, in its definition) is precisely W'°.

198y is not missing in the definition of wgr, recall that it belongs to A.
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Another interesting side-effect of this restriction is that Wy is an equivalence
class (according to the partition defined by R;), whereas Wy was a collection
of such classes.

The new tableau, 7§, represents Wy. The change in the agent’s beliefs
produced by the re-opening decision is modelled by generating a new acces-
sibility relation, R7, in which the accessible cosis will be those of wy and
Wy (those cosis represented by the open tableaux, 73 and 73). Notice an
important fact: it is the first time in this example that the set of accessible
cosis increases, and not decreases (the only Rg-accessible cosis were those in
Wy ). Therefore, it is also the first time in which the agent’s positive beliefs
may be reduced, and not increased. This situation is depicted in figure 20.

A
(VZ(Be = Fq)V
_|V$(B¢ = Fm))
Vz(By = Fy)
Pw
A Rs
> —Vx(Bzy = F
(Vz(By = Fy )V Ry . z(Bz z)
—Vz(By = F JE—
( x pW m)) Wor
~V(By = Fy) R Vo(By = Fu)V
—Pyw —Vz(By = Fz))
—Vx(B; = F,
We PW
Pw = —-Fw
—Fyy
—(By = Fy)
Vz(By = Fg)
—Pw
wyr

Figure 20: Generation of Ry

The only formulse common to ws and Wy (that constitute, through the
application of the modified Kripke semantics, the agent’s positive beliefs)
are those formula of A plus (Vz(B, = F,) V —Vz(B, = F,)) and Py. The
formulae that are known not to appear in some doxastic alternative (that
constitute, following our way of applying the Kripke semantics, the agent’s
negative beliefs) are Vz(B, = F,), "Vz(B, = F,) and —Py. Thus, the agent’s
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beliefs at this point of the analysis, after re-opening a branch of the analysis
that was previously (empirically) closed, are:

{B(Br), B(F1), B(Bp), B(Fp), B(By), B(Vz(P, = —Fy)),
B(Vz(B, = F;) V -Vz(B, = F,)), B(Pw),
ﬁB(Va:(Bm = Fz)) —|B(—|V$(B = F )), ﬁB(ﬂPW)}

One of the effects of the addition of doxastic alternatives has been the
generation of a new negative belief, =Py,. A more interesting effect is the
restriction in the agent’s positive beliefs: the agent has stopped believing
that all birds fly (which is a rational thing to do, after having discovered
that there exists an accessible conceivable situation in which an specific bird,
namely Woody, does not fly). Now it does not believe in this law, as it did
with the previous accessibility relation; thus, our model can deal with non-
monotonic beliefs (i.e. beliefs that hold in a particular point in time but may
be retracted later, for instance in the face of new external information or new
conclusions obtained in the logical analysis). Note that rational inquirers are
not, however, perfect reasoners: the agent, even after having discovered a
bird that does not fly, does not still believe that not all birds fly (in fact,
it explicitly disbelieves this fact). The reason is that there are doxastic
alternatives (those represented by the open tableau T3j) in which the law
“All birds fly” still holds. After some steps of logical analysis in T, however,
the agent will be able to dismiss all the cosis in that class and will finally
reach the conclusion that not all birds fly. Those steps constitute the rest of
the example.

The agent initiated those final steps with the logical analysis of the for-
mula “There does not exist any penguin that flies” in T}, instantiating it
with the constant W (see figure 9, where the new subtableau, T}y, is shown).
Recall that T, represented the class of cosis Wy . Consider now the following
class:

e Wi cosis in which A, (Vz(B, = F,) V -Vz(B, = F,)), Vz(B, = F,),
Py and (Py = —Fy ) hold but —-Vz(B, = F;) does not hold.

This new class of cosis, which is represented by the tableau 77, is more i-
informative than @y . The other open tableau, T§, represents Wy . The change
produced in the agent’s beliefs by the last step of analysis is modelled with
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the construction of a new accessibility relation, Rg, in which the agent has
access to those cosis represented by the two open tableaux. This situation is
reflected in figure 21.

A
(Va(Bg = Fy)V
—Vz(By = Fy))
Vz(By = Fg)
Py
Pw = -Fw
A
(Va(By = Fy )V Bs —Vz(B, = Fy)
—Vz(By = Fg))
Py —
Pw = -Fw w10
Vz(By = Fg)
~Vz(By = Faz) Bs gw(Bw = Fy v
Py - EBw = Fz))
—Vz(By = Fg
We Pw
Pw = —|FW
—Fw
-(Bw = Fw)
Vz(By = Fyz)
_'PW

Wy

Figure 21: Generation of Rg

The agent’s positive beliefs are those formulae common to all the cosis
in wy; and wy (i.e. the formule in A plus (Vz(B, = F,) V =Vz(B, = F,)),
Py and (P = —Fw)). The agent’s negative beliefs are those formulae that
are known not to be contained in at least one doxastic alternative: in this
case, the formule Vz(B, = F,) and =Py do not appear in the cosis of Wy,
whereas —Vz(B, = F,) does not appear in the cosis of wi;. Summarising,
the last step of analysis has produced the addition of a new positive belief,
(PW = _|Fw)2

{B(Br), B(Fr), B(Bp), B(Fp), B(By), B(Vz(P, = —Fy)),
B(Vz(B, = F;) V Vz(B, = F )) B(Pw), B(Pw = —Fw),
_'B(vx(Bw = Fsc)) (—N’x( w))ﬂ _'B(_'PW)}

The agent continued the logical analysis with the formula that it had ob-
tained in the previous step, (P = —Fp ), generating three new subtableaux
(T11, Tio and T13), as shown in figure 9.



Modelling the evolution of beliefs 160

These new subtableaux represent the classes of cosis Wiy, W2 and w3,
which are more i-informative than w1y, as shown in the following definition:

e Wi cosis in which A, (Vz(B, = F,) V =Vz(B, = F,)), Vz(B, = F,),
Pw , (Pw = —Fw), “Pw and —Fy hold but —Vz(B, = F,) does not
hold.

® Wy cosis in which A, (Vz(B, = F,) V -Vz(B, = F,)), Vz(B, = F,),
Pw, (Pw = —Fw) and =Py hold but —-Vz(B, = F,) and —Fy do not
hold.

e W3 cosis in which A, (Vz(B, = F,) V -Vz(B, = F,)), Vz(B, = F,),
Pw, (Pw = —Fy) and —Fy hold but —-Vz(B, = F,) and =Py do not
hold.

T, and T3 contain a formula (Py) and its negation in their left columns,
so they represent classes of logically impossible cosis. The agent decided to
eliminate these classes from the analysis by logically closing the tableaux that
represent them. Thus, the only open tableaux at this point of the analysis
were T3 and Ty.

The change produced in the agent’s beliefs as a consequence of the last
logical step of analysis is reflected in our model in the generation of a new
accessibility relation, Ry, that changes the set of doxastic alternatives (the
cosis in Wiz are Rg-accessible, whereas those in wg cease to be considered as
viable alternatives). This situation is pictured in figure 22.

The agent’s belief set, built by applying the modified Kripke semantics
to this state of affairs, is the following:

{B(Br), B(Fr), B(Bp), B(Fp), B(By), B(Vz(P, = —Fy)),
B(Vz(B, = F,) V -Vz(B, = F,)), B(Pw), B(Pw = —Fw),
B(—|FW), ﬁB(V.T(BI = FI)), ﬂB(ﬁVa:(Bm = FI)), —|B(—|PW)}

Notice that the only change produced in the agent’s beliefs (as a result of
the last logical analysis) is the inclusion of a new positive belief, —=Fy,. The
agent believes that Woody does not fly because this information is included
in the left columns of the two open tableaux of the logical analysis, T3 and
T3.
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Figure 22: Generation of Ry

The agent analysed now the formula Vz (B, = F,), contained in the left
column of 733, instantiating it with the constant W. The result was the
generation of a new subtableau, 774 (see figure 10).

It was already seen that 713 represented the class of cosis wiz. Consider
now the class w4, which is more i-informative:

e Wiy cosis in which A, (Vz(B, = F;) V —Vz (B, = F,)), Vz(B, = Fy),
Pw, (PW = _|Fw), —Fw and (BW = Fw) hold but _|V£E(Bz = Fm) and
=Py do not hold.

The new tableau, T4, represents the class of cosis wi;. The only other
open tableau in the tableaux tree is T}, that represents class Wg. Thus, the
cosis in these two classes are the only doxastic alternatives considered by
the agent in this stage of the analysis. This fact is reflected in our model
by creating a new accessibility relation, Ry, that modifies again the set of
accessible cosis; basically, it substitutes the cosis in w3 by those in w4, as
shown in figure 23.

The agent’s (positive and negative) beliefs have not changed after this log-
ical analysis, because all the formula that were common to all Rg-accessible
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Figure 23: Generation of Ry

cosis also appear in those that are Rqp-accessible, and the formulae that were
known to be missing from at least one Rg-accessible cosi keep the same status.

In the last step of this example, the agent analysed the formula (By = Fy)
in T74. This logical analysis caused the generation of three new subtableaux
(T'5, T16 and T17) as shown in figure 10.

The new tableaux represent classes of cosis which are more i-informative
than those represented by 714 (i.e. Wiz). The agent noticed that the three
subtableaux represent classes of logically impossible cosis, because all of them
contain a formula and its negation in their left columns (Fy in 715 and Ti7,
By in T15 and Tig). As it decided to logically close all of these tableaux, that
branch of the tableaux tree was dismissed from the analysis, and the only
remaining open tableau was 7y. The change in the agent’s beliefs produced by
this decision of the agent is semantically reflected in our model by generating
a final accessibility relation, R;;, that restricts the set of accessible cosis to
those that are represented by the only open tableau, T3. This situation is
shown in figure 24.

This reduction of doxastic alternatives has caused two changes in the
agent’s beliefs:
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Figure 24: Generation of Ry

e There is a new positive belief, =(By = Fy). This formula is a new
positive belief because it is included in all R;;-accessible cosis, i.e. in
all the cosis in class Wqz.

e The formula —(Vx (B, = F;)) (“Not all birds fly”), that was negatively
believed by the agent (when the agent’s beliefs were considered after
generating the accessibility relation Rjy) is also a new positive belief.
The agent has discovered that all the cosis in which the general law
held were logically impossible and, after having dismissed them, in all
its doxastic alternatives the negation of the law holds and, therefore,
the agent now incorporates this formula into its positive set of beliefs.

5.8.1 Summary of the example

A summary of the example (more detailed than the one given in §4.6.1,
because now we have established which are the agent’s beliefs at each step)
may be now given:

e The agent starts the analysis by wondering whether “all birds fly”. It
uses the exploratory dimension of analysis in order to introduce this
doubt into the analysis. In this way, the agent may explore the two
available alternatives and determine whether any of them is logically
impossible, or whether there is any question that it can make to its
environment in order to confirm or refute any of the two alternatives.
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o After some logical analysis, the agent discovers that it can dismiss one
of the options if it can check whether there is an individual that is a
bird and does not fly. The experimental dimension of analysis is used
to search in the environment for an individual with these properties.

e As the agent does not find any individual with the desired properties,
it decides to temporarily dismiss that alternative, and then it believes
that “All birds fly” (because it has not been able to find any counterex-
ample).

o Afterwards, the agent receives external information, that assures that
“Woody is a penguin”. The agent incorporates this information in the
analysis by adding it to the left columns of all the open tableaux.

o After some logical analysis, the agent discovers that there is indeed an
individual that is a bird and does not fly (Woody). Having (logically)
discovered this fact, it ceases to believe that “All birds fly”, although
it does not believe (yet) that “Not all birds fly”.

o After further logical analysis, the agent discovers that all those situa-
tions in which “All birds fly” are logically impossible. Then, it reaches
the final conclusion that “Not all birds fly”.

Figure 25 represents the evolution of the set of doxastic alternatives con-
sidered by the agent in the course of its inquiry. Each circle represents a set
of cosis which is an equivalence class (under the partition induced by R;).
A link between two classes denotes that the upper one is more i-informative
than the lower one. Note that there are eight times in which the agent has
climbed in the information hierarchy (in the generation of Ry, Ry, R3, Ry, Rs,
Rg, Ry and Ryp), two times in which the set of doxastic alternatives has been
reduced (R; and Rj;) and one case in which the set of viable alternatives
considered by the agent has grown (Ry).

5.9 Summary

In this chapter we have shown how the evolution of the beliefs of a rational
inquirer, caused by its continuous dynamic multi-dimensional belief analysis,
may be formally modelled. The basic semantic entities that are used in this
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Figure 25: Sequence of accessibility relations

modelling are the conceivable situations, which correspond to the kind of
situations described in §3. We construct a sequence of accessibility relations
that determine, at each step of the analysis, which are the situations that
are conceived as possible by the agent. The analysis of the formulae that
hold (or do not hold) in these doxastic alternatives, via our modified Kripke
semantics, serves to establish the agent’s set of beliefs at each point in time.
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6 Summary and future work

In this final chapter we provide a brief summary of the main ideas that
have been described in this dissertation and we suggest some lines of future
research.

6.1 Summary of the proposal

The main aim of this work has been to develop a way to model the process
of rational inquiry (the evolution of a rational agent’s set of beliefs over time
as a consequence of its interaction with the world and its internal inferential
processes), keeping the general idea of the possible worlds model and the
Kripke semantics. 1t is well known that the use of this classical framework
leads to the problems of logical omniscience and perfect reasoning. As real
agents do not have these properties, one of our objectives has been to avoid
them. Thus, we started this proposal by making a thorough review of the
main formalisms that have been put forward to solve these problems (§2,
[More98|). Having done that, we suggested another alternative, based on
the new concept of subjective situations (§3, [MCS99b], [MCS00b]). This
proposal is based on the idea that a given situation may be perceived in
different ways by different agents, and that this perception influences (or
even determines) the agent’s beliefs. These states of affairs are described by
each agent with two sets of formulae, that represent the positive and negative
information that the agent has about them.

As we want to model the evolution of a rational agent’s set of beliefs,
we identified in §4 which are the main doxastic tasks that may modify the
set of beliefs of a rational agent. After that, we defined a particular class of
rational agents, called rational inquirers, that have specific ways of making
these doxastic tasks ([MCS99a], [MCS00a]). These agents are constantly
performing a multi-dimensional dynamic analysis of their beliefs, in order to
make them as similar as possible to the facts that hold in the real world.
These agents are given the following capabilities:

e They may perform some (limited) deductive inferences on their sets
of beliefs, using a modified version of the classical analytic tableaux
method.
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e They may have doubts about their beliefs, and may introduce these
doubts into the analysis by adding instances of the Axiom of the Ex-
cluded Middle into the tableaux of the logical analysis.

e They may make questions to the environment, in order to confirm or
refute doubtful beliefs. The answers received from the environment
are also included in the open tableaux of the logical analysis. The
questions to be posed to the environment are suggested by the Skolem
constants that appear in the logical analysis, linking in a novel fashion
the rational and empirical components of rational inquiry ([ReBr79]).

e They may also add to their beliefs the information that they receive
directly from the environment (e.g. the data supplied by other agents
or the measures made by external sensors).

In §5 it is shown how the evolution of the beliefs caused by this dynamic
multi-dimensional belief analysis may be formally modelled. This modelling
process is made using two basic tools:

e We consider conceivable situations (cosis) as the primitive semantic
entities; they include all the situations that the modelled agent is ca-
pable of imagining or considering, regardless of their partiality or in-
consistency. A cosi is partially represented with two sets of first-order
formulee.

e The accessibility relation between cosis is not constant, fixed, but vari-
able. This variability accounts for the evolution of the agent’s beliefs
over time (through a modified version of the usual Kripke semantics).

The agent performs steps of analysis of its beliefs over an analytic tableaux
tree. Each tableau represents a class of conceivable situations, and the set of
open tableaux defines the situations that are considered as doxastic alterna-
tives by the agent at each point in time. After each step of belief analysis,
the set of open tableaux changes; therefore, the set of doxastic alternatives
is modified. This fact is represented in our model with the generation of an
accessibility relation, that limits which are the worlds considered as possible
by the agent. By applying a slightly modified version of the Kripke semantics
on this set of alternatives, we obtain which are the agent’s sets of positive
and negative beliefs in each point in time.
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In summary, the contributions of this work are:

e An extensive review of more than twenty ways in which the logical
omniscience problem has been tackled.

e The definition of a radically new approach to avoid this problem, based
on the new concept of subjective situations.

e The definition of an abstract model of rational agents, identifying the
tasks that they perform on their sets of beliefs.

e The definition of a particular class of rational agents, called rational
inquirers, in which the doxastic tasks are implemented in specific ways.

e A detailed explanation of the way in which the evolution of the be-
liefs of this class of agents may be formally modelled in the subjective
situations framework.

6.2 Future work

The first questions to be addressed in our future work will probably be among
the following:

e There are several issues related to the logical dimension of analysis that
could be studied:

— It could be interesting to increase the expressivity of the modal
language presented in §3.4, eliminating the constraint of dealing
with linearly nested formula; in that way, an agent could analyse
formulae such as BsP = B;Q (if Agents believes P, then Agent;
believes Q). In that case each agent should have a modal calculus,
and not a predicate calculus such as the one used by rational
inquirers. This would be a change of strategy in our research
because, in this dissertation, we have used modal logic as a meta-
language to talk about the beliefs of an agent, but actual agents
perform their internal reasonings in first-order logic.
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It is arguable whether it is appropriate to allow an agent to keep
open some tableaux that could be closed, just because it could
have not noticed that the tableau contained a contradiction. We
defended in §4.3.1 that this property seems appropriate to model
limited reasoners, that may have not noticed that they believe
a formula and its negation or that they have both positive and
negative evidence of a certain fact; however, it could also be argued
that, regardless of the complexity of the information contained in
a tableau, the agent could not fail to observe a fact as obvious as
the presence of one of the tableau closing conditions.

In appendix A the relationship between the propositional part of
our tableaux calculus and Kleene’s strong three-valued logic is
shown. We wonder whether some small changes in the tableaux
calculus could lead to other interesting kinds of logics, such as
linear, intuitionistic or relevance logic. That possibility is quite
clear, especially taking into account that the agents modelled by
Levesque’s logic of explicit and implicit belief are perfect reason-
ers in relevance logic (see [Vard86]). If that were the case, the
feasibility of modelling the evolution of the beliefs of an agent in
these frameworks could be also studied.

e The experimental analysis also raises some questions:

Which type of experiences should be allowed in the experimental
dimension of analysis? How does the restriction on the allowed
answers from the environment change the potential results of the
process of inquiry? Those facts are important, as Hintikka notes in
[Hint88] and [Hint92]. There is a whole hierarchy of possibilities:
we could allow only atomic questions with boolean answers, or
we could permit the agent to make any question and receive any
answer. Some intermediate points could be also considered, e.g.
to allow disjunctive (P or Q) or existential (give me an x such that
S, holds) questions, such as the ones mentioned in §4.3.2.

It is also important to consider which conditions must be satisfied
before the agent may make a question (e.g. we could require the
agent to have the atom P in an open tableau before being allowed
to ask whether P is or not the case).
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¢ We may also suggest some future research concerning the exploratory
dimension of analysis:

— Following Hintikka’s ideas ([Hint86a|), it must be carefully con-
sidered whether we allow the introduction of any doubt or we only
allow (in a very natural restriction) that only doubts referred to
concepts known by the agent may be considered (e.g. instances
of the Axiom of the Excluded Middle in which the used formula
appears as a subformula of a formula of the tableau in which the
doubt is to be added).

— It could be considered whether it is interesting to allow the agent
to introduce into the open tableaux instances of other tautologies,
different from the Axiom of the Excluded Middle (that may upset
the intuitionistic readers). Another possibility is to allow the agent
to perform hypothetical reasoning, to allow it to analyse how their
beliefs would evolve if some formula ¢ were true (it could add this
formula to all the open tableaux and study which conclusions may
be reached, always keeping in mind that it is inside a hypothetical
mode of reasoning).

— It could be thought whether it is necessary to give the agent the
capability of being able to forget, at some point of the analysis,
a doubt that it had considered in a previous stage of the analysis
(e.g. it could have used a lot of resources trying to solve the doubt
and it might not have come up with an answer; thus, it could
decide that it is not worth wasting more efforts in that direction).

e Regarding the incorporation of external inputs into the tableaux, we
should study specific ways in which a rational inquirer may implement
a belief revision strategy; we should look for ways in which the agent
may use the information that it has about the origin of each belief in
order to determine which formula should be withdrawn in the presence
of contradictory information, if that were necessary. For instance, some
of these policies could be implemented:

— If some of the formula involved in the contradiction were received
as external inputs or were obtained in the experimental dimension,
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they could be eliminated to avoid the contradiction (assuming that
the source of the formula was not fully reliable).

— The opposite direction could be taken: the agent could maintain
the last information that it has received, discarding previously
held beliefs that were in contradiction with the new data. This
strategy could help the agent to update its set of beliefs when the
facts that hold in its environment change over time.

— If a formula comes from the exploratory dimension, it could be
a sign that the introduced doubt may be solved in favour of the
other alternative.

— If all the used formulae came from the logical analysis, the agent
could make some experiments in order to try to refute some of
them, and thus avoid the contradiction.

The bottom line is that the presence of contradictions would not be
a negative fact, to be avoided, but a positive one, that would guide
the agent towards a progressive refinement of its beliefs (by eliminat-
ing alternatives, solving doubts, pointing out information that may be
wrong, etc.).

e We should also study the different alternatives that an agent has when
it analyses its set of beliefs, i.e. what strategies it could use to combine
the different available dimensions of analysis. For instance, we could
consider alternatives such as the following:

— Logic: it only performs logical analysis, making it as exhaustive as
its resources permit; it could also consider some restricted use of
the exploratory dimension, posing doubts that could be logically
analysed.

— Physicist: it could make continuous questions to the environment
(through experiences or tests) to incorporate new information to
its beliefs. It could also use, in especial occasions, the logical and
exploratory dimensions.

— Robot: it could be constantly receiving information through its
sensors, and adding this information to its beliefs. It could also
use sometimes the logical dimension in order to deduce new facts.



Summary and future work 173

— Human: it combines in a rational way all the dimensions of anal-
ysis. It receives information from the environment, and takes this
information into account in its beliefs. It also performs a limited
logical analysis of its beliefs. Sometimes it would pose itself some
questions, and it would also perform experiences in the environ-
ment in order to increase its set of beliefs by eliminating impossible
alternatives.

e In this dissertation we have considered the different doxastic activities
in which a single agent (more specifically, a rational inquirer) may
engage, and we have shown a formal way of modelling the evolution of
the beliefs of this kind of agents. However, it would be much harder to
consider the evolution of the beliefs of all the agents composing a multi-
agent system, because a lot of new issues that are not being considered
in this proposal would arise. Some of these future topics of research
could be the following:

— A detailed study of each agent’s introspective properties men-
tioned in §3 should be made. We think that they can be given a
natural interpretation in the case of beliefs about the own agent’s
beliefs: it could just be said that an agent is aware of the fact
that it has an internal structure where it keeps the formula that
it has reasons to support and the formula that it has reasons to
deny, and that these formula constitute its positive and negative
beliefs about the state of the world.

— It is worth pointing out that, in the modelling of beliefs made in
§5, we have not used the full strength of the subjective situations
framework defined in §3. As we have been dealing with just one
agent, we have not considered a modal belief operator for each
agent and the possibility of an agent having linearly nested beliefs
(recall definition 5) about other agents (e.g. « believing that (3
believes that v believes P). Thus, the framework developed in §3
could probably be very useful when modelling multi-agent systems
composed by non-ideal agents.

— We should differentiate between those formulae that are received
from external sensors and those that are sent by other agents of
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the system. We could assign a degree of credibility to each of these
formulze, using some degree of trust associated to each sensor and
to the other agents (see e.g. [PaGi98], [JoTr99]).
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A Soundness and completeness of the propo-
sitional tableaux calculus

Let’s consider the tableaux calculus shown in figure 26:

r A T A
a B
Y Y
r A
Q A T 8
aq ﬂl
[6D) 52
T A
B
/ Y \
T
3 A g A g A
/6; /6 | ﬂ2 ,62 ,61
T A
o
/ Y \
r A r A r A
g (651 o (6%) (6]
a; (6] (651

Figure 26: Rules used in the logical analysis

In this figure the symbols o and 3 represent especial kinds of formulee
as shown in figure 3. These rules deal with the propositional part of the
tableaux calculus shown in figure 4, which is the one that may be used in
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the logical analysis described in §4.3.1. In that section the conditions under
which a tableau may be closed by the agent were also described:

e It contains a formula and its negation in the left column.

e It contains the same formula in both columns.

In this appendix we are going to study the power of this tableaux calcu-
lus. £ will denote the standard language of propositional logic. We define
the following consequence relationship (F745) between sets of propositional
formulae (', A):

Definition 13 (Consequence relationship using tableaux)

VI,A € 25, T Frap A iff there exists a logical analysis of the tableau
containing ' in the left column and A in the right column such that all the
branches of the tableaux tree are closed.

In order to find out the sets of formulae I', A for which the above conse-
quence relationship holds, we need to state some preliminary definitions.

Definition 14 (Three-valued valuations)

A three-valued valuation is a total function from P (the primitive propo-
sitions of L) to the set {0, 1, w}. The set of all three-valued valuations over
P will be called T. An extended valuation is a function from the set of for-
mule of L to the set {0, 1, w}. The set of all extended valuations over L
will be called T¢®t. A valuation IeZ may be extended to a valuation JeI¢ by
the function ext, defined in the following way: ext(I) = J such that

o J(P) = I(P),VPeP

o« J(~¢) =0, if I(¢) =1
o« J(~¢) =1, if I($) =0
o J(~¢) =w, if I($) = w
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e J(6V ) =0, if () =0 and I(4) = 0
« JGVY) =1, I(¢) =1 or I(¥) =1
e J(¢ V) =w, otherwise

o J(GAE) =0, if I(6) = 0 or I() = 0
e J(oAY)=1,if I(¢p) =1 and I(¢p) =1
e J(¢ ANY) =w, otherwise

o J(p=1)=0,if I(§) =1 and I(x)) = 0

« J(6= ) =1,if I() =0 or [(¥) =1
e J(¢ =) =w, otherwise

The previous definition of the extension function is equivalent to the use
of the following three-valued truth-tables:

¢ | ¢

0] 1

110

w| w
¢ Y| (@VY) | (BAY) | (¢=1)
0 0 0 0 1
0 w w 0 1
0 1 1 0 1
w 0 w 0 w
w w w w w
w 1 1 w 1
1 0 1 0 0
1 w 1 w w
1 1 1 1 1
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In fact, all the above definitions correspond to a well-known logic, Kleene’s
strong three-valued logic ([Klee52]). Now, we define in which conditions a
formula is satisfied by a valuation:

Definition 15 (Satisfiability of formulae in a valuation)

A propositional formula ¢ will be said to be true in a valuation I (I = ¢)
iff the valuation of ¢ in the extension of I is 1:

VIEL Voel I &= ¢ iff ext(I)($)=1

We also define another consequence relation (f=,) between sets of propo-
sitional formulee (' = {v1,7%,.--, T}, A = {01,02,...,0m}) in the following
way:

Definition 16 (Consequence relationship using valuations)

VI,A €2
D=, AffVIEZ® (I = (mARA AT —TE1VELV.. Vi)

Now we can state the following proposition, that characterizes the sets of
formulee I', A for which I" 745 A holds:

Proposition 17 (Soundness and completeness of the propositional
tableaux calculus with respect to Kleene’s three-valued logic)

\ F, A(—ZZE (F |_TAB A+—T ’:p A)

This proposition postulates that the consequence relationship induced
by our modified analytic tableaux method (Frap) is equivalent to the one
defined using Kleene’s three-valued logic (=,). Thus, the calculus is sound
and complete with respect to three-valued logic. In the rest of this appendix
we provide our own proof of this proposition?’.

20Tt is not difficult to check that a similar demostration could be made if the analysed
formula were not repeated in the subtableaux obtained after the application of a rule of
the tableaux calculus.
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The more logically oriented readers of this dissertation may have noticed
from the very beginning of this appendix that the tableau system shown in
figure 26 is, in fact, the cut-free upside-down version of well-known Gentzen
systems for Kleene’s three valued logic (see e.g. [Busc96], [Jasp94], [Thij92]
for works related to these proof techniques) and may therefore have skipped
this proof. It has been included here because many readers may not be
familiar with this kind of topics (and I may confess that, at the beginning
of this research, this equivalence was not known to me, and that I actually
became aware of it after constructing this proof).

A.1 Soundness

The definition of soundness is the following:

Definition 17 (Soundness)

The tableaux calculus shown in figure 26 is sound with respect to the
consequence relationship |=, iff the following relation holds:

A F, Ae2kpo (F I_TAB A—T ):p A)

In other words, we have to prove that, for any two sets of propositional
formulee I' and A, if the tableau containing I' in its left column and A in
its right column may be analysed in such a way that all its branches are
closed, then every three-valued interpretation that satisfies all the formula
in I must satisfy at least one formula in A.

First we will prove that this condition holds in those tableaux that satisfy
at least one of the tableaux closing conditions (i.e. tableaux that are leaves in
the analytic tableaux tree). Then, we will complete the soundness demostra-
tion by showing that, if the condition holds in all the children of a given
tableau, it must also hold in the tableau itself. Following these two steps,
we will have proved that, if all the branches that appear in the analysis of a
given tableau are closed, the condition related to =, holds in every tableau
of the tree (every three-valued interpretation that satisfies all the formule in
its left column satisfies at least one formula in its right column). A tableau
with the set I' in its left column and the set A in its right column will be
called a I' — A tableau.
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o Step 1: The condition T' =, A holds in every I' — A closed tableau.

If Tis a I' — A closed tableau, one of the tableau closing conditions
must hold; thus, there are two cases to be considered:

— I contains a formula and its negation.
Notice that, in this case, there cannot exist any three-valued in-
terpretation that makes true all of the formulea in I' (because a
three-valued interpretation cannot assign the truth value 1 to a
formula and its negation). Therefore, I' =, A would trivially hold.

— A formula ¢ is contained both in I' and A.
If a three-valued interpretation makes true all of the formula in T,
it makes true ¢ (because ¢ is contained in I'). But ¢ also belongs

to A; therefore, that interpretation also satisfies at least one of
the formulae of A, and I' =, A holds.

o Step 2: If all the children of a tableau satisfy the condition I' =, A,
then it also holds in the tableau itself.

We must consider all the rules of the tableaux calculus and show that
this proposition is true in each of them. Therefore, four cases must be
studied:

— a-formula on the left column.
Assume that the condition holds in a {I', o, a1, s} — A tableau.
That means that all three-valued interpretations that satisfy I, «,
oy and «y also satisfy at least one member of A. The following
lemma shows that the condition also holds in a {I", «} — A tableau,
i.e. its parent in the tableaux tree.

Lemma 1 All the interpretations that satisfy o also satisfy oq
and og.

Proof:

* a=(pAY), o = ¢ and ap = 1.
If a proposition satisfies (¢ A 1), it also satisfies ¢ and .
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x a=-(pVY), a; =¢ and ay = ).
If a proposition satisfies =(¢ V 1), it assigns the truth value
0 to (¢ V 4). Thus, it also assigns the truth value 0 to ¢ and
to 1. Therefore, it satisfies both —¢ and —.
x a="(¢p=1), a1 = ¢ and ay = .
If a proposition satisfies —(¢ = 1), it assigns the truth value
0 to (¢ = ). Thus, it must assign the truth value 1 to ¢ and
the truth value 0 to . Therefore, it satisfies both ¢ and —).
x =0, ap = ¢ and ay = ¢.
If a proposition satisfies =—¢, it assigns the truth value 0 to
—¢. Thus, it must assign the truth value 1 to ¢. O

— a-formula on the right column.

In this case we must analyse an splitting rule. We must show that,
if these statements are true:

1. The condition holds in a I' — {A, a, o, a } tableau.
2. The condition holds in a {I', ay } — {A, o, ay} tableau.
3. The condition holds in a {I', as} — {A, o, o } tableau.

then the condition also holds in a I' — {A, a} tableau (i.e. the
parent of those three subtableaux in the tableaux tree).

Assume that a given interpretation I satisfies I'. For any « for-
mula, we must consider four different situations:

* [ satisfies oy and os.

As it satisfies oy, statement 2 says that it satisfies a, ay or
a member of A. As it satisfies ay, statement 3 says that it
satisfies a, «; or a member of A. Thus, either I satisfies
« or a member of A (attaining the desired conclusion) or it
satisfies both a; and as. In that case, the following lemma
(the converse of the previous one) shows that it must also
satisfy a.

Lemma 2 All the interpretations that satisfy oy and g also
satisfy .
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Proof:

ca=(pAY), o = ¢ and ay = .
If a proposition satisfies ¢ and v, it also satisfies (¢ A 1).
ca=-(p V), a; = ¢ and ay = ).
If a proposition satisfies ¢ and —1), it assigns the truth
value 0 to ¢ and to . Thus, it also assigns the truth
value 0 to (¢ V ¢). Therefore, it satisfies =(¢ V ¥).
- a=-(p = 1), a1 = ¢ and g = .
If a proposition satisfies ¢ and —), it assigns the truth

value 0 to . Thus, it must assign the truth value 0 to
(¢ = v). Therefore, it satisfies =(¢p = ).

- a="7¢9, a; = ¢ and ay = .
If a proposition satisfies ¢, it assigns the truth value 0 to
—¢. Thus, it must assign the truth value 1 to ~—¢. O

x I satisfies a1 but does not satisfy as.
As it satisfies oy, statement 2 says that it satisfies a, ay or
a member of A. But we know that it does not satisfy as.
Therefore, it must satisfy o or a member of A.

x I satisfies ay but does not satisfy a;.
As it satisfies an, statement 3 says that it satisfies a, a; or
a member of A. But we know that it does not satisfy «;.
Therefore, it must satisfy o or a member of A.

*x I does not satisfy either a; or as.
As it satisfies I', statement 1 says that it satisfies «, a1, as or
a member of A. But we know that it does not satisfy either
a1 or . Therefore, it must satisfy « or a member of A.
— (B-formula on the left column.
In this case we must analyse another splitting rule. We must show
that, if these statements are true:
1. The condition holds in a {T', 3, 81, B2} — A tableau.
2. The condition holds in a {I', 3, 81} — {A, (2} tableau.
3. The condition holds in a {I, 3, 52} — {A, 41} tableau.



Proof of soundness and completeness 201

then the condition also holds in a {I', 3} — A tableau (i.e. the
parent of those three subtableaux in the tableaux tree).

Assume that a given interpretation I satisfies I' and . The fol-
lowing lemma shows that it must also satisfy 3, or [.

Lemma 3 All the interpretations that satisfy (8 also satisfy (1 or
Pa.

Proof:

* B=(pV), p1=¢ and (B, = 1.
If a proposition satisfies (¢ V 1), it also satisfies ¢ or .

* B=-(pA7), 1 = ¢ and B = .
If a proposition satisfies —(¢p A 1)), it assigns the truth value 0
to (¢ A 1). Thus, it also assigns the truth value 0 to ¢ or to
1. Therefore, it satisfies =¢ or —1).

* = (= 1), 1 =—¢ and B, = 1.
If a proposition satisfies (¢ = 1)), it must assign the truth
value 0 to ¢ or the truth value 1 to 1. Therefore, it satisfies —¢
or . O

Thus, [ satisfies 31 or 5. The following cases may be considered:

x I satisfies #; and (.
As it satisfies §; and (5, statement 1 says that it satisfies a
member of A.

x I satisfies 3; but does not satisfy .
As it satisfies ;, statement 2 says that it satisfies 3, or a mem-
ber of A. But we know that it does not satisfy (5. Therefore,
it must satisfy a member of A.

x I satisfies B, but does not satisfy f;.
As it satisfies 35, statement 3 says that it satisfies 3; or a mem-
ber of A. But we know that it does not satisfy ;. Therefore,
it must satisfy a member of A.

— (B-formula on the right column.

Assume that the condition holds in a I' — {A, 3, 81, 5>} tableau.
That means that all three-valued interpretations that satisfy I’
also satisfy 3, (1, (B2 or at least one member of A. The following
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lemma (the converse of the previous one) shows that the condition
also holds in a I' — {A, #} tableau, i.e. its parent in the tableaux
tree.

Lemma 4 All the interpretations that satisfy 31 or B2 also satisfy
B.

Proof:

* B=(pV), p1=¢ and (B, = 1.
If a proposition satisfies ¢ or 1, it also satisfies (¢ V ).

* B==(pAY), b1 =—¢ and By = .
If a proposition satisfies —¢ or —, it assigns the truth value 0
to ¢ or to ¢. Thus, it also assigns the truth value 0 to (¢ Av).
Therefore, it satisfies =(¢ A ).

* B=(¢p=1), 1 =¢and B, = 1.
If a proposition satisfies —¢ or v, then it assigns the truth
value 0 to ¢ or to —tp. Thus, it satisfies (¢ = ). O

In this way the second step is completed and the soundness proof is over.

A.2 Completeness

The definition of completeness is the following:

Definition 18 (Completeness)
The tableaux calculus shown in figure 26 is complete with respect to the
consequence relationship |=, iff the following relation holds:

A F, ACQ‘CPC (F I_TAB A«T ’:p A)

That expression is equivalent to the following one:
A F, A62LPC (F VTAB A—T Fép A)

Let T'= {v,72,---,7} and A = {61, 0s, ..., 0 }. Applying the definition
of |=p, the following expression is obtained:
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V T, Ae2tPo
T rap A — 3T1eZ such that I(yy A2 A...A7v,) =1 and
I(61 Voo V...V by) # 1.

We provide a constructive demostration of this proposition. Given a I'—A
tableau that cannot be closed in an exhaustive tableaux-based analysis, we
build a three-valued interpretation I that satisfies all the formula in I' and
does not satisfy any formula in A.

The demostration has two steps:

e Step 1: Selection of a leaf of the tableauz tree and construction of the
desired interpretation.

If T Yrap A then there is at least one open tableau in an exhaustive
logical analysis of the I' — A tableau. Let’s call this (open) leaf of the
tableau tree a I'* — A* tableau (where I'* = {+{,75,...,7:} and A* =
{67,05,...,0%}). We want to build an interpretation that satisfies all
the formula in I'* and does not satisfy any formula in A*.

Let’s consider the following definitions:

— I'% contains all the atoms that are affirmed in I'™.

— I'* contains all the atoms that are negated in I'*.

— A7 contains all the atoms that are affirmed in A*.

— A* contains all the atoms that are negated in A*.
For instance, if ['* = {P,-~Q} and A* = {R,—S}, then I'} = {P},
I'* ={Q}, AL = {R} and A* ={S}.

Recall that the I'* — A* tableau is open. Therefore, none of the tableau
closing conditions is applicable, and the following relations hold:

— AT =0,
- NAL=0.
~I* NAL =9

We consider any three-valued interpretation I that satisfies the follow-
ing requirements:
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— V pel I(p) = 1.
— V pel™ I(p) =0.
~ VpeA: I(p) =0orw
— VpeA* I(p) =1orw

It is indeed possible to build at least one interpretation with those
properties, because of the relationships that have been stated above.
The precise rules that should be followed to construct an interpretation
that meets those requirements are the following:

— If pel then I(p) = 1.

If pel'™* then I(p) = 0.

— If peA% and p AI'* and p £A* then I(p) =0 or w.
— If peA* and p A and p £A% then I(p) =1 or w.
— If peA* and peA?% then I(p) = w.

It can be easily checked that any interpretation I that fulfills these
requirements has the following property:

Ity A A Ay =T1and 16 Vo3 V... V) # 1.

In the example shown above, we might build the following interpreta-
tion I:

— PeI™, therefore I(P) = 1.

— Qel'™* | therefore I(Q) = 0.

— ReA% and R £I'* and R £A*, therefore I(R) =0 or w.
SeA* and S I and S A% then I(S) =1 or w.

Thus, I(PA—-Q)=1and I(RV —S) =0 or w, as intended.

The property stated above is trivially true for literals, and can be also
shown to be true for more complex formula. In order to do that, we
will state two preliminary definitions:
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Definition 19 (Hintikka set) [Hint62]
A Hintikka set is a set S that satisfies the following requirements:

— It does not contain a formula and its negation.
— If =—¢eS, then ¢eS.

If aeS, then a1eS and az€eS.

— if BeS, then (1S and/or [yeS.

Definition 20 (Hintikka-inverse set)

We will call Hintikka-inverse sets to those sets S that satisfy these
requirements:

— If ~—¢eS, then GeS.
— If aeS, then aqeS and/or aseS.
— if BeS, then B1eS and [€S.

It can be easily seen that this lemma holds:

Lemma 5 (Characterization of leaves of tableaux analysis)

— After an erhaustive logical analysis, all the formule in the left
column of any open tableau form a Hintikka set.

— After an exhaustive logical analysis, all the formule in the right
column of any open tableau form a Hintikka-inverse set.

The proof of the previous lemma is very straightforward from the rules
of the tableaux analysis and the definition of Hintikka and Hintikka-
inverse sets. It is also immediate to check that the following lemma
also holds:

Lemma 6 (Satisfiability in Hintikka and Hintikka-inverse sets)

— If all the literals of a Hintikka set are satisfied by a given interpre-
tation, all the formule of the set are satisfied by that interpretation
as well.
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— If none of the literals of a Hintikka-inverse set is satisfied by a
given interpretation, none of the formule of the set may be satis-
fied by that interpretation.

These lemmas complete the proof of the first step.

o Step 2: If the interpretation of a tableau satisfies all the formule of its
left column and does not satisfy any formula in its right column, then
this property is also true in its parent in the tableauz tree.

Let’s call I'™ — A* to the tableau that satisfies the property mentioned
above, and I' — A its parent in the tableaux tree. We have to show that
the latter tableau also satisfies the property.

If the I'™ — A* satisfies the property, that means that there exists an
interpretation I that satisfies all the formula in I'* and does not satisfy
any formula in A*. It can be noticed that the rules of the tableaux
calculus are written in such a way that I' C I'* and A C A*?!. Thus,
if I satisfies all the formula in ['* it also satisfies all the formula in
I', and if it does not satisfy any formula in A*, it cannot satisfy any
formula in A.

This argument closes step 2 and the completeness proof.

2LTf the rules of the tableaux calculus were modified (and the analysed formulae were
not repeated in the subtableaux) then this property would not hold, but the completeness
demostration could still be easily made. For instance, in the rule of the double negation
in the left column, if 7(¢) = 1 then I(——¢) = 1.



