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“Let me tell you something you already know. The world ain’t all sunshine and rainbows.
It’s a very mean and nasty place, and I don’t care how tough you are, it will beat you to
your knees and keep you there permanently if you let it. You, me, or nobody is gonna
hit as hard as life. But it ain’t about how hard you hit. It’s about how hard you can
get hit and keep moving forward; how much you can take and keep moving forward.
That’s how winning is done! Now, if you know what you’re worth, then go out and get
what you’re worth. But you gotta be willing to take the hits, and not pointing fingers
saying you ain’t where you wanna be because of him, or her, or anybody. Cowards do
that and that ain’t you. You’re better than that!”

– Rocky Balboa

“Nunca dejes que nadie te diga que no puedes hacer algo. Si tienes un sueño, tienes
que perseguirlo. Las personas que no son capaces de hacer algo por ellos mismos, te
dirán que tú tampoco puedes hacerlo. ¿Quieres algo? Ve a por ello.”
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Resumen

El descubrimiento de los rayos cósmicos a principios del siglo veinte por Victor Hess
fue la primera pieza de un rompecabezas que actualmente conocemos como astronomía
de rayos gamma. A pesar de que han transcurrido más de 100 años, algunas piezas
importantes del puzzle están por desvelarse y otras, son aún inciertas. ¿Dónde se
originan los rayos cósmicos? ¿Cómo son acelerados? ¿Cómo son emitidos los rayos
gamma? Aunque aún estamos lejos de una comprensión total, el campo de la astronomía
de rayos gamma ha experimentado un progreso extraordinario durante los últimos
quince años. El éxito rotundo cosechado por el satélite Fermi, explorando el rango de
altas energías, así como el éxito de los “Imaging Atmospheric Cherenkov Telescopes”, a
muy altas energías, han engrosado las estadísticas de fuentes que emiten rayos gamma
hasta varios miles. Entre esta impresionante cantidad de fuentes, una gran variedad de
clases de objetos astronómicos diferentes, tanto galácticos como extragalácticos, han
sido identificados.

En nuestra Galaxia, los remanentes de supernova y los púlsares, son las dos poblaciones
de objetos más numerosas que emiten radiación no-térmica. A pesar de ser objetos muy
diferentes, ambos comparten un origen común: la muerte de una estrella masiva (con
masa superior a 8 masas solares). Al final de la vida de ésta, una gran explosión expulsa
las capas externas de la estrella por medio de una onda de choque, que se propaga a
través del medio interestelar que rodeaba la estrella, comprimiendo y calentando el
material barrido a su paso. A esto se le llama remanente de supernova y puede albergar
en su centro el remanente de la estrella inicial en forma de estrella de neutrones. Estas
estrellas de neutrones emiten radiación electromagnética periódica, inducida por su
intenso campo magnético y su rotación. Si esta emisión pulsada es detectada por el
observador, se les denomina púlsares.

REMANENTES DE SUPERNOVA

Está comprobado que los remanentes de supernova son capaces de acelerar partículas
cargadas en su frente de choque, por medio de aceleración difusiva, hasta energías
muy altas, para posteriormente inyectarlas al medio interestelar. De hecho, son
comúnmente considerados como los causantes de la producción de la mayor parte de
los rayos cósmicos galácticos hasta energías de 1015 eV (1PeV). No obstante, todavía
falta evidencia observacional de que los remanentes de supernova puedan acelerar de
manera eficiente susodichas partículas hasta tales energías. Por eso, la presente tesis
tiene como objetivo el estudio de la fuente Cassiopeia A (CasA), uno de los llamados
“remanentes de supernova históricos” y el principal candidato de su clase a revelarse
como PeVatrón, acelerador de rayos cósmicos hasta energías de 1PeV.
Las observaciones de CasA presentadas en este trabajo, se han llevado acabo tanto con
el “Large Area Telescope” (LAT) a bordo del satélite Fermi, como con los telescopios
terrestres MAGIC y constan de mas de ocho años de datos, desde Agosto de 2008 hasta
Diciembre de 2016 en el caso de Fermi, y de 158 horas de observación acumuladas
entre Diciembre de 2014 y Octubre de 2016 con MAGIC. Tal cantidad de datos, nos
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ha permitido estudiar en detalle el comportamiento espectral de la fuente a energías
por encima de los 60MeV, energía mínima alcanzable con LAT. Por primera vez, se ha
detectado un corte en el espectro de rayos gamma en torno a 3TeV, lo cual implica que
la emisión observada es producida por el decaimiento de piones neutros, originados
en colisiones protón-protón por una población de protones acelerados que presenta
un corte exponencial en su espectro en torno a una energía de 10TeV. Esta energía
maxima a la que son acelerados estos rayos cósmicos (protones) en CasA, se queda
por tanto muy corta a la hora de justificar los rayos cósmicos Galácticos de 1PeV.
Considerando que CasA era el candidato a PeVatrón por excelencia, los resultados
obtenidos en esta tesis cuestionan la existencia de remanentes de supernova que se
comporten como PeVatrones, y por tanto, la teoría de que éstos son la fuente principal
de rayos cósmicos galácticos hasta la rodilla.

El estudio de las interacciones entre los remanentes de supenova y su entorno, como
podrían ser las nubes moleculares, en las cuales se forman las estrellas, y por ende,
ocurren las explosiones de supernova, también es de gran importancia. Se sabe que los
rayos cósmicos que escapan del confinamiento del frente de choque, pueden colisionar
con protones pertenecientes a la nube molecular y emitir rayos gamma mediante
decaimiento de piones neutros. Esto permite que los rayos cósmicos más energéticos,
que son los primeros que escapan del remanente, puedan ser observados en su posterior
interacción con las nubes moleculares, pudiendo así comprobar si en algún momento
el remanente ha sido capaz de acelerar protones hasta energías de en torno al PeV.
En esta tesis, hemos observado con los telescopios MAGIC y Fermi-LAT, la región
celeste en torno al remanente de supernova detectado en radio, SNRG24.7+0.6, en
busca de su contrapartida a muy altas energías. SNRG24.7+0.6 está evolucionando
en un medio denso y podría estar interaccionando con su entorno rico en CO, lo cual
lo convierte en un buen objetivo para el estudio de esta interacción, así como de la
energía máxima a la que los protones han sido acelerados. Las observaciones realizadas,
han dado como resultado el descubrimiento de dos nuevas fuentes a muy altas energías.
La primera, MAGICJ1835–069, relacionada con SNRG24.7+0.6, ha sido detectada
hasta energías de 5TeV con un espectro de energías que conecta bien con el obtenido
por Fermi-LAT. Además, su posición y extensión coincide parcialmente con el de la
fuente en radio, lo que es interpretado como protones que escapan del remanente de
supernova y que interaccionan con una nube molecular cercana. El hecho de que la
emisión gamma detectada únicamente alcanze unos pocos TeV, implicaría que los rayos
cósmicos que están siendo acelerados en el remanente no superarían las pocas decenas
de TeV. La segunda fuente detectada, MAGICJ1837–073, está muy probablemente
asociada con un cúmulo estelar, tal y como sugiere su localización en una zona plagada
de fuentes y con alto contenido molecular. La energía total en protones que emite,
puede ser explicada asumiendo una inyección casi continua de rayos cósmicos durante
la totalidad de la vida estimada del cúmulo estelar.

EL PÚLSAR DEL CANGREJO

La segunda parte de la tesis está enfocada al estudio y entendimiento de los púlsares.
Pese al gran número de púlsares de rayos gamma observados, el comportamiento de
éstos está aún por entenderse. Dónde se aceleran las partículas, qué mecanismos están
en juego en la emisión de la radiación que observamos, qué energía máxima puede
alcanzar esta radiación o porqué únicamente dos púlsares han sido detectados por
encima de 100GeV son solo algunas de las preguntas que aún buscan respuesta. Para
tratar de dar respuesta a estas preguntas, en esta tesis nos hemos centrado en el que
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sin duda es el púlsar más estudiado a lo largo de todo el espectro electromagnético,
el púlsar del Cangrejo. Debido a que es relativamente joven y que es el púlsar más
potente de nuestra galaxia, es el objetivo perfecto para testear cualquier modelo teórico
acerca de la emisión pulsada e investigar la radiación gamma que emite.

El estudio del púlsar del Cangrejo llevado a cabo, consta de más de 300 horas de
observación acumuladas con los telescopios MAGIC durante un periódo de 7 años,
lo que lo convierte en el análisis más extenso realizado hasta la fecha en MAGIC. El
objetivo principal de este análisis, es inspeccionar el rango más alto de su espectro de
energías para discernir si realmente presenta un corte en torno a algunos cientos de
GeV como preveen ciertos modelos. Los resultados que hemos obtenido muestran que
realmente la emisión pulsada se extiende hasta al menos 1.5TeV, refutando cualquiera
de los modelos postulados hasta el momento. Además, la curva de luz que caracteriza la
emisión proveniente del púlsar por encima de 400GeV, presenta dos picos sincronizados
en fase con los picos hallados a energías más bajas. El análisis conjunto con los datos
registrados por Fermi -LAT, nos ha permitido obtener una visión global del espectro y
descubrir, que realmente el espectro de energías de ambos picos está definido por una
ley de potencias de índice ∼3 que se extiende desde 10GeV hasta 600GeV y 1.5TeV
para los picos P1 y P2 respectivamente. Esta emisión pulsada, extremadamente
energética, descubierta con MAGIC, únicamente puede ser producida por electrones
acelerados hasta factores de Lorentz muy altos en regiones cercanas al cilindro de luz,
ya sea en su interior o en su exterior, y que posteriormente colisionan y transfieren
su energía a fotones térmicos. Actualmente, nuevos modelos están siendo propuestos
para tratar de dar una interpretación teórica a los resultados obtenidos, no obstante,
ninguno de ellos es todavía capaz de explicar satisfactoriamente a su vez el espectro y
la curva de luz halladas en este trabajo.
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Abstract

The discovery of Cosmic Rays in the early twentieth century by Victor Hess set the first
piece of a puzzle known as gamma-ray astronomy. Despite more than 100 years have
gone by, many important pieces of information are still missing or at least uncertain:
Where do Cosmic Rays originate? How are they accelerated? How do they emit
gamma rays?

Although we are still far from complete knowledge, the field of gamma-ray astronomy
has experienced an extraordinary progress over the last fifteen years. The success of
the Fermi satellite in the exploration of the high energy band along with the success of
Imaging Atmospheric Cherenkov Telescopes in the very high energy band have grown
the number of detected gamma-ray emitting sources to several thousands. Among this
wealth of sources a wide variety of different galactic and extragalactic astrophysical
objects have been identified.

In our Galaxy, supernova remnants and pulsars are the two most numerous populations
of non-thermal objects. On one hand, supernova remnants are believed to originate
the bulk of the Galactic Cosmic Rays. But, can they really efficiently accelerate
particles to such energies? Full coverage of the gamma-ray energy range with X-ray
satellites, Fermi-LAT and Imaging Atmospheric Cherenkov Telescopes, provides a
unique perspective for the study of Cosmic Ray acceleration within supernova remnants.
On the other hand, even though the large number of gamma-ray pulsars detected,
only and exclusively two have been detected above hundred GeV. Why? Which is
the mechanism at work that produces such emission? Where is this radiation being
produced? Pulsars offer perfect test-benches to expand our understanding of the
physics of matter in extreme conditions.

This thesis will try to unravel some of the open questions about these two very
different astrophysical objects, supernova remnants and pulsars, originated in the same
phenomenon.

The first part of this thesis is dedicated to introduce gamma-ray astronomy. Cosmic
ray particles and gamma ray production and absorption mechanism are presented in
Chapter 1. The imaging technique and analysis chain used in this work to study these
energetic particles with the MAGIC telescopes are discussed in Chapter 2. Finally,
the Fermi -LAT observation technique and data analysis procedure used for this thesis
are presented in Chapter 3.

The second part is devoted to supernova remnants. After a short overview of the
current knowledge of these objects (Chapter 4), two specific sources observed with
Fermi -LAT and MAGIC telescopes, are discussed. Chapter 5 presents the observations
and results obtained from Cas A, one of the historical supernova remnants and the
prime candidate of its class to be a PeVatron accelerator. Chapter 6 focuses on the
search of the very high energy counterpart of SNRG24.7+0.6, that is evolving in a
dense medium and might be interacting with the CO-rich surrounding.
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The last part of this thesis is committed to the study of pulsars. A brief review of the
status of rotation powered pulsars is presented (Chapter 7) to introduce the reader onto
the most studied pulsar, the Crab Pulsar. MAGIC observations of the Crab Pulsar
that resulted in the largest dataset ever analyzed within the MAGIC Collaboration
and led to striking results are discussed in Chapter 8 together with those obtained
with Fermi-LAT.



xvii

Contents

Agradecimientos ix

Resumen xi

Abstract xv

I ASTROPHYSICAL INTRODUCTION AND OBSERVATION
METHODOLOGY 1

1 High energy γ-ray astronomy 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 The acceleration of cosmic rays . . . . . . . . . . . . . . . . . . 4

1.3 γ-ray production and absorption mechanisms . . . . . . . . . . . . . . 7
1.3.1 Synchrotron radiation . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Curvature radiation . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Inverse Compton Scattering . . . . . . . . . . . . . . . . . . . . 9
1.3.5 Pion decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.6 e− − e+ annihilation . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.7 Pair production . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 VHE γ-ray sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Ground-Based γ-ray observations: IACTs and MAGIC telescopes 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Extensive Air Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Electromagnetic Showers . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Hadronic Showers . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Atmospheric Cherenkov Radiation . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Cherenkov Radiation . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Cherenkov radiation produced in the atmosphere . . . . . . . . 17

2.4 Imaging technique and IACT design . . . . . . . . . . . . . . . . . . . 20
2.5 MAGIC telecopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 MAGIC Subsystems . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 MAGIC data taking . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2.1 Brightness Conditions . . . . . . . . . . . . . . . . . . 24
2.5.2.2 Pointing modes . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 MAGIC data analysis . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.3.2 Image cleaning . . . . . . . . . . . . . . . . . . . . . . 26
2.5.3.3 Image parametrization . . . . . . . . . . . . . . . . . . 27



xviii

2.5.3.4 Data quality selection . . . . . . . . . . . . . . . . . . 29
2.5.3.5 Stereoscopic parameters . . . . . . . . . . . . . . . . . 29
2.5.3.6 γ/hadron separation . . . . . . . . . . . . . . . . . . . 31
2.5.3.7 Arrival direction reconstruction . . . . . . . . . . . . . 31
2.5.3.8 Energy reconstruction and energy resolution . . . . . 32
2.5.3.9 Background estimation . . . . . . . . . . . . . . . . . 33
2.5.3.10 Signal identification . . . . . . . . . . . . . . . . . . . 34
2.5.3.11 Region modelling . . . . . . . . . . . . . . . . . . . . . 35
2.5.3.12 Differential Spectrum . . . . . . . . . . . . . . . . . . 35

3 Space-Based γ-ray detector: Fermi-LAT 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The Fermi Large Area Telescope . . . . . . . . . . . . . . . . . . . . . 38
3.3 Fermi-LAT data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Event-level Classification . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Region Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Exposure Corrections . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4.1 Livetime Cube . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4.2 Exposure Map . . . . . . . . . . . . . . . . . . . . . . 43

3.3.5 Likelihood Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 43

II SNRs: CR ACCELERATORS 47

4 Supernova Remnants 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Types and evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Cosmic ray acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 PeVatrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 SNRs interacting with MCs . . . . . . . . . . . . . . . . . . . . . . . . 53

5 A cut-off in the TeV γ-ray spectrum of the SNR Cassiopeia A 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Fermi-LAT data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 MAGIC data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Discovery of TeV γ-ray emission from the neighborhood of the
SNRG24.7+0.6 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Fermi-LAT data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 MAGIC data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



xix

III THE PARTICULAR CASE OF THE CRAB PULSAR 77

7 Rotation Powered Pulsars 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Origin and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Global magnetospheric description . . . . . . . . . . . . . . . . . . . . 81
7.4 Pulsar γ-ray emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 TeV pulsed emission from the Crab Pulsar detected by MAGIC 89
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Fermi-LAT data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2.1 Crab Nebula spectral description . . . . . . . . . . . . . . . . . 91
8.3 MAGIC data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.4.1 Light curve in the Fermi range . . . . . . . . . . . . . . . . . . 95
8.4.2 Light curve in the MAGIC range . . . . . . . . . . . . . . . . . 99
8.4.3 Energy spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 106

Conclusions 113

Appendices 115

A Fermi-LAT Monitoring tool 117
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2 Design and Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.3 Sources and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Acronyms 123

List of Tables 127

List of Figures 129

Bibliography 137





1

Part I

ASTROPHYSICAL
INTRODUCTION AND

OBSERVATION
METHODOLOGY





3

Chapter 1

High energy γ-ray astronomy

1.1 Introduction

γ-ray astronomy is the field of study that covers the observation of photons with energies
above few hundreds of keV. Although theoretically there is no upper energy limit to
γ-rays, only energies up to about hundreds of TeV can be observed by the current
generation of detectors. Such energies cannot be attained in thermal processes as no
place in the universe is hot enough to produce radiation above few MeVs. Therefore,
the underlying γ-ray emission processes at work are of non-thermal nature. This non-
thermal radiation is associated to the presence of accelerated charged particles, known
as Cosmic Rays (CRs), that in their interaction with radiation and electromagnetic
fields in the environment of different astrophysical sources produce the high energetic
γ-ray emission observed.

In this chapter we cover the basics of cosmic radiation and provide a brief overview
of the different processes they go through to produce the γ-ray emission we detect
on Earth. Some of the potential sources originating this Very High Energy (VHE)
emission are also briefly recapitulated in the last section.

1.2 Cosmic Rays

Victor Franz Hess discovered in 1912 what we nowadays call CRs. These energetic
particles of extraterrestrial origin are accelerated in different astrophysical sources and
propagate through the Universe. It was found that the CRs are composed of charged
particles, mainly protons and Helium nuclei, as well as electrons, positrons, neutrons
and other heavier elements, to a lesser proportion.

Detection of CRs, however, it is not straight forward since they are deflected and
isotropized by the magnetic fields present in the Universe. Thus, γ-rays and neutrinos
resulting from the interaction of CRs with matter and electromagnetic fields must
be used as possible tracers to the place of their creation. CRs are currently studied
following three different approaches that allow us to either detect them or their
by-products:

• Balloon experiments dedicated to the study of the element composition of CRs
within the range from ∼ 1011 to 1015 eV.
• Space-based telescopes aimed at the detection of γ-rays in the MeV-GeV energy

range (e.g. AGILE (Tavani et al., 2009) or Fermi (Atwood et al., 2009)).
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• Ground-based detectors addressed to study energies of γ-rays above the GeV
range up to even more than ∼ 1018 eV.
– Imaging Atmospheric Cherenkov Telescopes such as Major Atmospheric

Gamma-ray Imaging Cherenkov (MAGIC) telescopes (Ferenc et al., 2005),
High Energy Stereoscopic System (HESS) (Hofmann et al., 2003) or Very
Energetic Radiation Imaging Telescope Array System (VERITAS) (Holder
et al., 2006).

– Water Cherenkov Arrays such as Pierre Auger observatory (Abraham et al.,
2004) or High-Altitude Water Cherenkov (HAWC) observatory (Weisgarber,
2013).

However, in spite of the continuous improvement of the observations techniques, there
are still a great variety of CRs features we cannot explain, such as what their origin is
or the maximum energy they can reach.

1.2.1 The Energy Spectrum

Figure 1.1 shows the CR spectrum as measured by various experiments along the
years. The flux level over the entire energy range, spanning ∼12 energetic decades
from 108 to more than 1020 eV, changes by more than 30 orders of magnitude. Such
a spectrum is clearly of non-thermal origin as it cannot be accounted for by thermal
bremsstrahlung or black-body radiation.

Approximately, the flux spectrum follows a power-law distribution given by

N (E) dE ∝ E−ΓdE, (1.1)

with spectral index Γ = 3, as represented by the green dashed line in Figure 1.1.
However, a close inspection highlights that between 100GeV and 5PeV the CR
spectrum is better described by a harder spectral index of Γ ∼2.7. Beyond the first
inflection point at 5PeV, commonly know as the knee, the spectrum steepens to Γ ∼3.2
until 3 EeV where it hardens again at the second inflection point, the so-called ankle.

The different spectral slopes are thought to be related with a different origin of CRs.
It is believed that particles below the knee are of galactic origin while those above the
ankle are likely extragalactic, since particles with those energies cannot be confined
within the Galaxy. At ultra-high-energies (beyond 1019 eV), the spectrum turns off
due to the onset of inelastic interactions between CRs and photons of the Cosmic
Microwave Background (CMB) radiation, as first discussed by Greisen (1966) and
Zatsepin and Kuz’min (1966). At the lowest part of the spectrum, below 1GeV, the
flux also presents a cut-off due to solar modulation whereby interstellar CRs diffuse in
towards the Earth through the solar wind.

1.2.2 The acceleration of cosmic rays

The formation of a power-law spectrum extending up to energies of 1020 eV is an
important feature that any plausible acceleration process must account for. The
general consensus is that CRs are accelerated via Diffusive Shock Acceleration (DSA)
mechanisms, proposed by Fermi (Fermi, 1949).

The first-order Fermi acceleration involves a strong shock wave propagating through
the Interstellar medium (ISM) with velocity V . In the case of an adiabatic shock
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Figure 1.1: CR spectrum measured by different experiments.
Credit: Hanlon (2012).

propagating into an ideal plasma, the gas downstream of the shock moves with a
velocity of 3V

4 (Longair, 2011). Particles in the upstream region crossing the shock
into the downstream region receive an increase of energy of 〈∆EE 〉 = 2V

3c (as shown in
left of Figure 1.2) and are scattered by the irregularities of the magnetic field so that
their velocity distribution becomes isotropic in the downstream frame of reference.
Now, in the frame of the shocked gas, i.e. downstream region, the material upstream
of the shock travels downwards with a velocity 3V

4 , hence, particles downstream can
cross the shock again boosting their energy another 〈∆EE 〉 = 2V

3c (right of Figure 1.2).
This process repeats until the diffusion length of particles is larger than the size of the
shock, moment at which particles are swept away from it. After k crossings, there will
be N = N0P

k particles in the shock with energies E = E0β
k, where β and P are the

average energy of the particles and the probability they remain in the shock after a
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Figure 1.2: Sketch of the first-order Fermi acceleration mechanism.
Particles upstream cross the shock into the downstream region gaining
an energy of ∆E. In the same way, particles downstream can cross
the shock into the upstream region gaining another ∆E. Left : Rest
frame of the upstream region, the gas in downstream region move
with velocity 3V

4 . Right : Rest frame of the downstream region, gas in
upstream region move with velocity 3V

4 .

crossing, respectively. Combining both equations,

ln (N/N0)

ln (E/E0)
=

lnP

lnβ
=⇒ N

N0
= (E/E0)lnP/ lnβ . (1.2)

Assuming this process repeats as not all the particles would have been able to escape
the acceleration region,

dN (E)

dE
∝ E−1+ lnP

ln β (1.3)

that leads naturally to a resulting power-law energy spectrum of accelerated particles
as required by the CR spectrum.

The second-order Fermi acceleration occurs when charged particles are scattered by
moving magnetic mirrors associated with Galactic magnetic field irregularities, Figure
1.3. The energy gain per scattering event is proportional to the square of the velocity
of the moving magnetic mirror and independent on the particle energy, 〈∆EE 〉 ∝

v2
mirror
c2

.
Assuming the particle remain within the acceleration region for some time, the particle
spectrum obtained from the diffusion-loss equation follows a power-law distribution.
This mechanism, however, is very innefficient as it result in a very slow gain of energy
by the particles for typical velocities of the mirrors in the Galaxy.

Based on both mechanisms treated here, the maximum energy CRs can achieve is
determined by (Hillas, 1984):

Emax = ZeUBRobj (1.4)

where U is the speed of the shock, Ze the charge of the particle and B and R are
the magnetic field and size of the source. Therefore, potential sources of CR particle
acceleration must be able to reach such energies. Some of these potential sources will
be reviewed in section 1.4.
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Figure 1.3: Sketch of the second-order Fermi acceleration mech-
anism. Particles with velocity v scatter against a magnetic mirror

moving with velocity vmirror and gain energy in each shock.

1.3 γ-ray production and absorption mechanisms

γ-rays are the most energetic photons found in nature extending from 511 keV (an-
nihilation radiation) up to hundreds of TeVs. They are produced in interactions of
charged High Energy (HE) CRs with their surrounding environment but they can
also be absorbed the same way. Some of the processes relevant for γ-ray production
and absorption are briefly summarized in the following. More detailed and extended
treatments can be found in Longair (2011) and Aharonian (2004) and references
therein.

1.3.1 Synchrotron radiation

Sychrotron radiation occurs when charged particles are under the influence of a
magnetic field (see Figure 1.4).

q +B → q +B + γ (1.5)

HE electrons move with velocity v in a spiral path around magnetic field lines with
constant pitch angle (α), as they accelerate towards the center of the orbit they emit
radiation beamed in the direction of motion. The total energy loss rate by synchrotron
radiation in the relativistic regime is

−dE
dt

= 2σT cUmagγ
2sin2α (1.6)

where σT is the Thomson cross-section, c the speed of light, Umag the energy density
of the magnetic field, γ the Lorentz factor of the electron and α the pitch angle.

The radiation spectrum resulting from a power-law distribution of electrons, Ne (E) ∝
E−Γ, is characterized by another power-law distribution of Nγ (ε) ∝ ε−(Γ+1

2 ). The
characteristic energy of photons emitted by synchrotron radiation is given by

Eγ =
3

2
γ3~

c

rg
(1.7)
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where rg = γmecvsinα/eB is the radius of the helical path.

Synchrotron emission is negligible at VHE since electrons need to be very energetics,
however, synchrotron photons can have an important role as target for Inverse Compton
(IC) scattering.

Figure 1.4: Synchrotron radiation mechanism.

1.3.2 Curvature radiation

Curvature radiation is similar to synchrotron radiation, only this time the radiation is
produced by the charged particle following the curvature of the magnetic field lines
(see Figure 1.5). When both processes contribute to the γ-ray emission it is called
synchro-curvature radiation.

Curvature γ-rays are proportional to the curvature radius of the magnetic field rC and
the Lorentz factor of the electron γ,

Eγ =
3

2
~c
γ3

rC
. (1.8)

For a population of electrons following a power-law energy spectrum Ne (E) ∝ E−Γ,
the resulting γ-ray spectrum will be characterized by Nγ (ε) ∝ ε−(Γ+1

3 ).

This mechanism is usually at work in regions of extreme magnetic fields (B ∼ 1011 −
1013 G), such as pulsars, where charged particles emit synchrotron radiation very
efficiently. Consequently, they quickly transit to the ground Landau level and start
sliding along the magnetic field lines emitting curvature radiation with energies up to
few GeVs.
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Figure 1.5: Curvature radiation mechanism.

1.3.3 Bremsstrahlung

Bremsstrahlung (Figure 1.6) is the radiation emitted by a charged particle accelerated
in the electric field of another particle.

q + Z → q + Z + γ (1.9)

The energy loss rate of ultra-relativistic electrons by bremsstrahlung is given by:

−dE
dt

= 4nZ2r2
eαcgE (1.10)

where n is the density of atoms in the target, Z the atomic number of the target, re
the classical radius of the electron, α the fine structure constant, c the speed of light
and g the frequency averaged Gaunt factor (Heitler, 1954).

Its density dependence makes bremsstrahlung the dominant energy loss process for
high relativistic electrons in dense regions. Moreover, a power-law distribution of
electrons, Ne (E) ∝ E−Γ results in a γ-ray spectrum of the same power-law form,
Nγ (ε) ∝ ε−Γ.

Z

Figure 1.6: Bremsstrahlung radiation mechanism.

1.3.4 Inverse Compton Scattering

In IC scattering (see Figure 1.7), ultra-relativistic electrons scatter ambient photons
to high energies. Unlike in Compton scattering, electrons transfer most of its energy
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to the target photon.

e− + γlow → e− + γhigh (1.11)

This process can occur in two different regimes depending on the photon energy in the
rest frame of the electron:

Thompson regime: the photon energy in the electron’s frame is much less than mec
2

and the probability of scattering is given by the Thompson cross section, that is
independent of the energy, σT = 8π

3 r
2
e . The maximum energy the photon can reach

after the scattering is Emax ∼ 4γ2Eγ , where γ is the Lorentz factor of the electron
and Eγ the inicial energy of the photon in the laboratory frame.

Klein-Nishina regime: the photon energy is much higher than mec
2, and the electron

transfer all its energy to the photon in one interaction. The cross section can be
approximated as σK−N = πr2

e
1
x(ln 2x+ 1

2). Here re is the classical electron radius and
x is the ratio mec2

~ω .

The energy losses in both regimes have different dependency on the electron energy,
while in the Thompson regime the loss rate is proportional to the square of the electron
energy, in the Klein-Nishina regime it is almost energy independent. Therefore, for
a power-law distribution of electrons, Ne (E) ∝ E−Γ, the resulting γ-ray spectrum
for the Thompson regime has a power-law form of Nγ (ε) ∝ ε−

(Γ+1)
2 while for the

Klein-Nishina regime the γ-ray spectrum follows Nγ (ε) ∝ ε−(Γ+1).

IC is one of the most important γ-ray production processes. Although the efficiency of
the production depends on the density of the photon field, CMB photons provide a
persistent and unavoidable source of targets for this process.

A special case of IC scattering is produced when electrons emit low energy synchrotron
photons that are up-scattered by the same electron population to γ-ray energies. This
process known as Synchrotron-Self-Compton (SSC) radiation is of special importance
in regions with high magnetic fields such as pulsars.

Figure 1.7: IC radiation mechanism.

1.3.5 Pion decay

The interaction of primary particles with target nucleus present in the acceleration
region or with the ISM result on emission of neutral pions (π0) and charged pions
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(π±) with equal probability. Neutral pions have short lifetimes (∼ 10−16 s) before
decaying into two γ-rays while charged pions have longer lifetimes (∼ 10−8 s) and
decay generally into muons (Figure 1.8).

π0 →2γ (1.12)
π+ →µ+ + νµ (1.13)

µ+ → e+ + νe + νµ (1.14)
π− →µ− + νµ (1.15)

µ− → e− + νe + νµ (1.16)

If the energy spectrum of pions follows a power-law of Nπ (E) ∝ E−Γ, then the
resulting γ-ray spectrum has the same index, Nγ (ε) ∝ ε−Γ.

The identification of pion decay γ-rays is difficult due to the contribution of the leptonic
processes already mentioned, however, it can become very significant in dense mediums.

Z

Figure 1.8: Pion decay radiation mechanism.

1.3.6 e− − e+ annihilation

Annihilation occurs when a charged particle collides with its antiparticle, producing
two photons carrying away the energy and momentum of the system (Figure 1.9).

e− + e+ → γ + γ (1.17)

For e− − e+ annihilation occurring at their rest frame, γ-rays are produced with
energies Eγ = mec

2 = 511 keV. This is the minimum energy a γ-ray can obtain in the
process.

1.3.7 Pair production

Two pair production:
The interaction of a HE photon with a low-energy photon above a certain threshold,

E1E2 >
(
mec

2
)2 1− cosθ

2
(1.18)
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Figure 1.9: e− − e+ annihilation mechanism.

would result in the production of a pair e− − e+ (Figure 1.10).

γhigh + γlow → e− + e+ (1.19)

The maximal efficiency of this process results from integrating the cross section over
all the collision angles and it is reached for photon energies satisfying E1E2

(mec2)2 ≈ 3.7.
Therefore, for a VHE γ-ray the reaction would be maximized with Ultra-Violet (UV)
to Infrared (IR) photons.

Figure 1.10: Pair creation mechanism.

Magnetic pair production:
e− − e+ pairs can also be created when photons interact with magnetic fields (Figure
1.11).

γ +B → e− + e+ (1.20)

The mean free path of photons moving with an angle θB with respect of a magnetic
field is characterized by (Ruderman and Sutherland, 1975)

λB = 6
mec

2

eBsinθB
e

(
8
3

Bcr
B sin θB

mec
2

ε

)
(1.21)

where ε is the energy photon and Bcr = m2
ec

3/e~ ≈ 4.4 · 1013 G is the critical magnetic
field relevant to quantum effects.
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This process is very relevant in presence of high magnetic fields, such as in pulsars
(see Chapter 8) where magnetic pair production limits the detection of VHE γ-rays.

Figure 1.11: Magnetic creation mechanism.

1.4 VHE γ-ray sources

A great variety of astrophysical sources can be responsible for the acceleration of CRs
and the subsequent production of the γ-rays observed. In the following a very brief
description of these sources is given. For Supernova Remnants (SNRs) and pulsars,
that are the main subjects of this work, a more extended recapitulation can be found
in Chapters 4 and 7, respectively.

• Galactic sources

Supernova Remnants are the lefts-over of the Supernova (SN) explosions of a
star. The remnant expanding into the ISM shocks and sweeps up material
along the way. Particles in the shock are accelerated to VHEsies and are
suspected to be the main source of CRs below the knee. Of the more than
270 SNRs listed in Green’s catalog, more than 100 have been confirmed by
Fermi to emit at HEs (Acero et al., 2016b).

Pulsars are rapidly rotating and highly magnetized Neutron Stars (NSs) born in
core-collapsed SN explosions. These small-sized stars (10 km diameter) are
very dense objects emitting extremely periodic radiation. Currently, more
than 200 pulsars have been detected at HEs (Abdo et al., 2013) but only
two pulsars have been observed to emit at TeV energies, the Crab Pulsar
(Ansoldi et al. (2016), details in Chapter 8) and Vela pulsar (Djannati-Atai
et al., 2017).

Pulsar Wind Nebulae (PWNe) are created in SN explosions. The magne-
tized wind released by the central NS is confined by ambient material
forming a shock wave beyond which a magnetic bubble of relativistic parti-
cles builds up, the Pulsar Wind Nebula (PWN). Relativistic particles in the
PWN produce synchrotron radiation and upscatter ambient photons (from
the star, ISM or CMB) producing IC emission at HE energies (Gaensler and
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Slane, 2006). PWNe are amongst the most common class of VHE emitters
(37 sources so far) and the most dominant class of Galactic TeV sources
with 19 PWNe firmly identified and another 10 strong candidates (Abdalla
et al., 2017).

γ-ray binaries are systems formed by a compact object (usually a NS or a
black hole) and a massive O-B type star. If the compact star is a pulsar,
wind-wind interaction occurs forming a shock wave where particles are
accelerated. Those accelerated particles scatter stellar photons via IC
producing VHE radiation. So far, only 6 γ-ray binaries have been identified.

• Extragalactic sources

Active Galactic Nuclei (AGN) are galaxies hosting a super massive black
hole in its center. The black hole is surrounded by a disc of material, where
two jets develop perpendicularly carrying out the angular momentum of the
material accreted. In the jets, particles accelerate producing electromagnetic
radiation across the whole electromagnetic spectrum. AGN are classified
based on their observational properties that depend on the viewing angle,
the accretion rate and the mass of the central black hole (refer to Urry and
Padovani (1995) for a full AGN classification). They are believed to be one
of the most powerful non-thermal sources of the Universe and therefore they
are the most copious emitters at HE-VHE with more than 1800 detections.

Gamma-Ray Bursts (GRBs) are the most violent astrophysical events known
to date, releasing energies of > 1051 erg in a short flash that last from sec-
onds to few minutes. GRBs are believed to be originated in the merging of
two NSs (Abbott et al., 2017). More than 1400 GRBs have been identified
at high energies by the Fermi Gamma-ray Burst Monitor since its launch
(Narayana Bhat et al., 2016), however, they are still undetected at VHEs.

Starburst galaxies are galaxies with a high star formation rate compared
to the usual star forming regions in most galaxies. The high birth rate
leads to high rate of SNs explosions that accelerate particles through DSA
mechanisms and radiate γ-rays at the highest energies. To date, NGC 253
is the only γ-ray starburst galaxy detected (Acero et al., 2009).
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Chapter 2

Ground-Based γ-ray observations:
IACTs and MAGIC telescopes

2.1 Introduction

γ-ray astrophysics is based on the study of the most energetic photons found in nature,
however, their observation is problematic since the atmosphere is opaque to radiation
more energetic than UV photons. Satellites are thus the best instruments to observe
γ-rays from keVs to GeVs (see chapter 3). Nonetheless, given the very low flux of
γ-rays at energies above a hundred of GeVs and the small collection area of satellites,
space-based observations are extremely inefficient.

Despite the atmosphere rapidly dissipates incoming energetic particles (50% absorption
at 20km height above 1MeV), indirect ground detection is still possible. Incident
particles initiate atmospheric showers that result in secondary products that ground-
based telescopes can efficiently detect. These cascades provide invaluable information
on the primary particles hitting the atmosphere and allow us to trace CRs back to
their initial properties.

The first part of this chapter is dedicated to the physical description of the showers
produced in the atmosphere and the imaging technique used to observe them. The
second part is addressed to the description of the hardware and software of the MAGIC
telescopes used in the major part of this thesis.

2.2 Extensive Air Showers

Extensive Air Showers (EASs) are cascades of particles initiated either by very HE
CRss or by γ-rays interacting with the molecules of the Earth’s atmosphere. Depending
of the nature of the primary particle entering the atmosphere, the EASs produced are
classified as Electromagnetic (EM) or hadronic and present different properties.

2.2.1 Electromagnetic Showers

When a γ-ray enters the upper part of the Earth’s atmosphere, it interacts with
the Coulomb field of the atmospheric molecules generating an electron-positron pair
which in turn lose their energy through bremsstrahlung. This cycle of pair production
- bremsstrahlung produces an electromagnetic cascade composed of only photons,
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Figure 2.1: Diagram of an EM (left) and Hadronic (right) induced
showers. From Wagner (2006).

electrons and positrons (left panel of Figure 2.1). The cascade terminates when the
energy of the resulting particles is that of the critical energy Ec1, i.e. when energy
lost by ionization processes dominates over bremsstrahlung. Below this energy, the
electron flux attenuates rapidly by ionization and the shower dies out.

2.2.2 Hadronic Showers

Hadronic showers are the predominant type of EASs produced in the atmosphere.
Incoming hadrons interact with atmospheric nuclei producing mainly pions (∼89%) of
all charges, kaons (∼9%) and other light nucleus. These secondary particles contribute
in a different way to the development of the shower. Hadrons and charged pions
continue to interact producing subsequent generations of particles until the energy per
nucleon reach the minimum energy needed for pion production, 1GeV. Next, charged
pions decay into muons and these muons into electrons, positrons and neutrinos (see
section 1.3.5) that initiate an EM shower. On the other hand, neutral pions decay
directly into two γ-rays that also trigger an EM shower (right panel of Figure 2.1).

The variety of particles and the interaction time involved in hadronic showers produce
an asymmetric and longer development compared to electromagnetic showers. Besides,
the larger transverse momentum of the secondary particles in hadronic collisions also
confers a wider lateral spread compared to the electromagnetic scenario (see Figure
2.2).

2.3 Atmospheric Cherenkov Radiation

Particles produced on induced EASs might be of relativistic nature and travel through
the atmosphere at velocities greater than the speed of light in air. Those relativistic
charged particles produce the so-called Cherenkov radiation (Čerenkov, 1937).

1∼80MeV and ∼86MeV for photons and electrons, respectively.



2.3. Atmospheric Cherenkov Radiation 17

Figure 2.2: Monte Carlo simulation showing the longitudinal (left)
and lateral (right) development of EM and Hadronic showers induced
by primary particles with energies of 100 and 300GeV, respectively.

From Hrupec (2008).

2.3.1 Cherenkov Radiation

Charged particles moving in a dielectric medium polarize the surrounding molecules
that in turn depolarize shortly after. The shift in the distribution of charges causes
them to emit dipole radiation. If the velocity of the particle is lower than the speed
of light in such medium the radiation emitted is incoherent. However, for the case of
velocities larger than the speed of light, the radiation adds up coherently on a cone
along its trajectory, the Cherenkov cone (see Figure 2.3):

cos(θC) =
c

vn(λ)
(2.1)

where n(λ) is the refraction index of the medium.

The number of photons produced by an ultra-relativistic particle per unit length and
unit of wavelength in air is given by (Beringer et al., 2012):

d2N

dxdλ
=

2πα

λ2

(
1− c2

v2n2(λ)

)
≈ 370 sin2 θC(λ)

[
eV −1cm−1

]
(2.2)

being α ≈ 1
137 the fine structure constant.

2.3.2 Cherenkov radiation produced in the atmosphere

The Cherenkov radiation produced by an air shower is composed of the emission from
many particles at different heights in the atmosphere. A single particle traveling across
the atmosphere emits at an angle of θC with respect to its trajectory, however, θC
depends on the refractive index n that changes depending on the altitude (Aharonian
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Figure 2.3: Cherenkov Radiation. Left: Molecules polarized by a
moving charge. Right: Representation of the Cherenkov angle θ.

et al., 2008) as:

n = ρ0 × e
(− z

h0
)

+ 1 (2.3)

with ρ0 = 2.9×10−4 and h0 = 7250m. The resulting emission produced by an individual
particle at ground level is then a donut ring shape (see Figure 2.4). Consequently,

Hump

Figure 2.4: Cherenkov emission produced by a particle at different
heights. The total emission produced by a single particle produce a

donut on the ground.

the superposition of the individual rings formed by all the particles in the air shower
generate a circular light pool on the ground (see Figure 2.5, left). The lateral photon
distribution of the pool is almost flat within a radius of ∼ 120m centered at the core
of the shower, followed by the hump where the photon density starts to decrease (see
Figure 2.5, right). The hump is a geometrical feature consequence of an increase in
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Figure 2.5: Left: Cherenkov light pool produced by all the particles
of an air shower induced by a 300GeV γ-ray particle. Right: Density
profile of the light pool for different energies of the primary γ-ray. Full
lines represent vertically incident particles while dashed lines show

particles with high incident zenith angles.

the angle θC along the trajectory of the particle, that causes that photons emitted
at different heights fall at the same position on the ground as can be appreciated
in Figure 2.4. The Cherenkov photon density inside the pool varies depending on
the primary particle origination the shower (see Figure 2.6). For EMs showers the
number of Cherenkov photons produced is proportional to the energy of the γ inducing
the shower. However, hadronic showers deviate from this linear relation and produce
widespread distributions with low densities for low energetic incident hadrons.

Moreover, Equation 2.2 indicates that the Cherenkov light intensity increases rapidly

Figure 2.6: Cherenkov photon densities inside the light pool for
different primary particles as a function of the primary energy. From

Wagner (2006).
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Figure 2.7: Cherenkov radiation from a γ-ray induced shower. Full
lines show the unabsorbed spectrum, while dashed lines represent the
spectrum measured at the MAGIC site after atmospheric absorption is

produced. From Wagner (2006).

towards smaller wavelengths causing that most of the photons are emitted in the UV
band. However, due to attenuation processes in the atmosphere, the actual Cherenkov
light observed peaks at the UV-blue wavelengths (330 nm), independently of the incident
particle’s energy as shown in Figure 2.7. The spectral extinction of the radiation
occurs as a result of the scattering of the Cherenkov light by air molecules (Rayleigh
scattering behaving proportional to λ−4) and aerosols (Mie scattering proportional
to λ1−1.5) along with strong absorption in the UV and IR regime by the presence of
ozone and water vapor, respectively.

EASs develop rapidly and last for about 100µs reaching their shower maximum (i.e.
height at which the number of particles in the cascade is maximum) at a height of
10 km above sea level for primary γ-rays of ten to hundred GeVs. The typical duration
of the Cherenkov light emitted by a γ-ray induced air showers is of 3 ns while for
hadronic induced showers it last approximately 10 ns.

2.4 Imaging technique and IACT design

When Imaging Atmospheric Cherenkov Telescopes (IACTs) are positioned inside the
Cherenkov light pool produced by an EAS, part of this light is reflected by the mirrors
and registered by the cameras. Since Cherenkov radiation is emitted at an angle θC
that is dependent on the refraction index n, from equation (2.3) it is clear that photons
emitted at higher altitudes have smaller θC values and are projected closer to the
center of the camera. The recorded image has therefore an elliptical shape since it
represents the shower development, with the major axis of the ellipse related to the
shower axis. A schematic representation of the EAS as seen in the focal plane of the
camera is shown in Figure 2.8. Additionally, the number of photons recorded along the
longitudinal extension of the shower is connected to the amount of shower particles
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Figure 2.8: Illustration of the imaging atmospheric Cherenkov
technique: reflection of the Cherenkov light emitted by an EAS into

the camera. Taken form Völk and Bernlöhr (2009).

produced. On the other hand, the lateral width of the registered image is related to
the transversal development of the cascade.

Instrument aiming to detect the Cherenkov radiation has to fulfill then two important
requirements, a large collection area to detect the scarce number of photons arriving
at ground level (of the order of 10 for a shower initiated by a γ-ray of 1TeV, see
Figure 2.6) and a fast electronic system to catch the short-lasting Cherenkov light.
Nonetheless, IACTs have to face another impediment to detect γ-ray initiated showers;
the background contribution. Hadrons are the main background contributors. On one
side, due to the random magnetic deflections they suffer in the Universe they reach the
atmosphere isotropically and cannot be associated to any specific source. On the other
side, they are much more abundant than γ-rays with an hadron-to-γ ratio of 1000 at
1TeV and are capable of triggering the detectors. Hadronic showers, however, owing to
their different development in the atmosphere, they produce different projected shapes
on the camera (see Figure 2.9), feature that can be used as a discrimination tool. A
less important background component are muonic showers since they can be easily
discriminated due to their ring-like shape in the camera. Furthermore, there are also
irreducible sources of isotropic background, like cosmic leptons producing identical
electromagnetic showers to those produced by γ-rays, or diffuse γ-rays coming from
the galactic plane.

Detection and characterization of EM showers is not an easy task, that is why modern
instruments build preferably stereoscopic or multiple systems (e.g., MAGIC or HESS,
respectively) in order to image the EM shower from different angles for improved recon-
struction of the direction of the primary γ-ray and to apply coincidence requirements
to reject single-telescope triggers for a better background suppression.
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Figure 2.9: Registered air showers produced by different types of
particles with the MAGIC’s old camera. Left: Shower image originated
by a primary γ-ray. The shower axis points to the source located at the
center of the camera. Middle: Hadronic induced shower with random

direction. Right: Ring-like shower image produced by a muon.

2.5 MAGIC telecopes

MAGIC is an stereoscopic system of two 17 meter diameter IACTs located at the
Observatorio del Roque de Los Muchachos on the Canary Island of La Palma at an
altitude of 2235m above sea level. MAGIC has undergone many upgrades since its
construction ended in 2003. Until 2009, MAGIC-I (M1) was a stand-alone IACT with
integral flux sensitivity of 1.6% of the Crab Nebula flux in 50 hours of observation
(Aliu et al., 2009). In 2009, MAGIC-II (M2) became operational lowering the energy
threshold of the system to 50GeV at low zenith angles and boosting the sensitivity
to 0.76% of the Crab Nebula flux in 50 hours for energies greater than 290GeV
(Aleksić et al., 2012b). Currently, after the major upgrade the telescopes underwent
in 2011-2012 (Aleksić et al., 2016a), the system has reached an integral sensitivity
of (0.66± 0.03)% of the Crab Nebula flux in 50 hours above 220GeV (Aleksić et al.,
2016b).

In the following, a brief description of the MAGIC subsystems will be given together
with a description of the MAGIC analysis chain used for this thesis. For further
information the reader is referred to Aleksić et al. (2016a,b).

2.5.1 MAGIC Subsystems

Structure and Drive System:
The telescopes are mounted on alt-azimuthal frames driven by two motors
per telescope on a 20m circular railway (see Figure 2.10). The structure of
the MAGIC telescopes is light-weight (∼5.5 tons), allowing fast reaction to
transient events such as γ-ray bursts, and stiff (made of carbon fiber-epoxy),
avoiding deformations of the structure. For any orientation of the telescopes, the
deformation is lower than 3.5mm (Bretz et al., 2009). The camera is located at
the focal distance of ∼17m and held by a tubular arch.

Reflector:
Each of the telescopes has a 17m diameter parabolic reflector, which allows to
preserve the temporal structure of the light flashes reflected on the focal plane.
Reflectors are tessellated in 247 individually movable mirror panels of 0.5m2 in
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Figure 2.10: Insight of different sub-systems of the MAGIC tele-
scopes.

M1 and 143 mirror panels of 1m2 in M2, for a total reflection area of ∼236m2.
Any bending of the structure due to the heavy weight of the camera (∼0.8 tons)
can be corrected by an active optic that re-orients the mirrors, the so-called
Active Mirror Control (AMC).

Camera:
Both cameras present a circular shape of ∼1.2m diameter and a Field of View
(FoV) of 3.5◦. The camera is composed of 1039 Photo Multiplier Tube (PMT),
each of them with 0.1◦ FoV (see Figure 2.11). The PMTs typically reach a
maximum quantum efficiency of ∼32% in the UV band and provide a response
of the order of ∼1 ns. PMTs are connected to High Voltage (HV) regulators that
can reduce the camera gain in order to avoid damaging the photomultipliers.

Calibration System:
The calibration system permits on one hand to maintain a uniform gain across
the camera and on the other hand to monitor the behavior of the electronic
chain. The MAGIC calibration system provides fast light pulses at different
wavelengths and different intensities in order to calibrate the dynamic range of
the camera photo-sensors and their readout.

Readout and Data Acquisition (DAQ) system:
The electric pulses at the base of the PMTs are converted into optical pulses and
the signal is transmitted to the Counting House. In the Counting House, the
optical signals are split into two branches and reconverted into electronic signals
in the receiver boards. One of the branches goes to the trigger system, whereas
the other goes to the DAQ. The DAQ in turn digitalizes the electronic signals
and records them into raw data files.

Trigger:
The trigger discriminates Cherenkov showers from the Night Sky Background
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Figure 2.11: Left: Front-side of the upgraded M2 camera. Right:
Pixel layout of the upgraded M2 camera.

(NSB) light by keeping only fast pulses (<5ns) which are detected simultaneously
in a compact region of the cameras.

Other subsystems:
GRB alert system monitors any alert from a possible GRB event in the sky.
Weather systems control the weather conditions to evaluate if observations
can be performed and provide information of the atmosphere used afterwards
for data correction.

2.5.2 MAGIC data taking

2.5.2.1 Brightness Conditions

Nowadays, MAGIC telescopes can be operated to observe under dark conditions, i.e.
nights with no moon in the sky, and moon conditions, i.e. nights with the moon in the
sky. On average every year about 1500 hours of dark time observation are scheduled,
of which ∼40% is lost mainly due to bad weather conditions and technical problems.
Operating the telescopes during moonlight and twilight time increases the number of
hours of observation by about 40% (∼600 hours per year). However, data taken during
moon time have some drawbacks, such as an increase of the energy threshold of the
analysis or higher systematics on the flux normalisation. For some specific analyses, a
higher energy threshold might not be important and therefore moon time data are as
useful and usable as dark time data (see Chapter 5).

Moonlight conditions are evaluated taking the NSB light on a dark night (NSBDark)
as a reference. Depending on brightness of the sky the HV settings of the PMTs
have to be changed accordingly. For NSB levels up to 12 × NSBDark standard HV
settings (∼ 1.25 kV) can be used, however, higher NSB levels (up to 20 × NSBDark)
require reducing the gain of the PMTs by a factor of ∼ 1.7 (reduced HV settings).
Observations can be extended to even higher NSB levels using the UV-filters recently
installed, however UV-filters have not been used in this thesis. The performances of
MAGIC telescopes under dark and moonlight conditions are examined in Aleksić et al.
(2016b) and Ahnen et al. (2017), respectively.
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2.5.2.2 Pointing modes

MAGIC can observe a source in two different modes, On/Off tracking mode or
false-source tracking mode, also known as Wobble mode (Fomin et al., 1994).

• On/Off mode: The source position is always located at the center of the
camera. Additional observations of an Off region (i.e. region with no VHE
γ-ray sources in it) is therefore needed to properly estimate the background
contribution. Off observations have to be taken under the same conditions (zenith
angle, NSBs, weather conditions, etc). The drawbacks of this observation mode
are that On/Off observations need higher observation time as half of it must be
devoted to an off region aside of the high risk of not matching the exact same
observation conditions.

• Wobble mode: The telescope tracks alternatively four opposite directions in
the sky located at an offset of 0.4◦ from the source position (see left panel of
Figure 2.12). Each of these positions are observed for about 20 minutes. This
mode profits from the fact that the background is estimated from the same data
sample as the signal and thus guarantees similar conditions and same exposure.
Wobble mode also has a drawback regarding the γ-ray detection efficiency, which
is estimated to be reduced by 20% due to the smaller trigger area around the
source position (see Figure 2.12 right panel).

Figure 2.12: Representation of the Wobble observation mode.
Left: Display of the camera with the four wobble positions located at
0.4◦ from the camera center. The source is positioned and observed
at each wobble position, the other three simultaneous positions can
be used to estimate the Off events of the observation. Right: Monte
Carlo simulated γ-ray events for an observation with the source at the
camera center (left) and offset 0.4◦ from the camera center (right). It
is important to remark that these figures represent the old design of
the camera as opposed to Figure 2.11 (see section 2.5.1). From Bretz

et al. (2005).

2.5.3 MAGIC data analysis

Within the MAGIC Collaboration, the Magic Analysis Reconstruction Software
(MARS) software (Moralejo et al., 2009, 2010; Zanin et al., 2013) is used to per-
form the data analysis. MARS is a collection of classes and executables written in
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C++ language within the ROOT2 software framework. The standard analysis chain
of MAGIC stereo data is composed of the following steps:

• Signal extraction and calibration to determine its intensity (in Photoelectron
(phe)) and arrival time, performed with sorcerer.

• Image cleaning and parametrization of the shower image with star.

• Stereoscopic image reconstruction of the data from both telescopes through
superstar.

• γ/hadron separation and reconstruction of the energy and direction of the shower
by means of a Random Forest (RF) method and energy Lookup Tables (LUTs)
with coach and melibea, respectively.

• Sky map computation (caspar) and determination of the significance (odie),
spectrum and light curve (flute) of the source.

2.5.3.1 Calibration

Calibration consists of extracting from the raw data recorded by the DAQ the arrival
time and intensity of the signal, and converting it into the number of phe by means of
the so-called F-Factor method described in Mirzoyan (1997).

2.5.3.2 Image cleaning

At this step, calibrated events consist of a signal per pixel. However, only some pixels of
the camera are illuminated by the Cherenkov light of an EAS and contain information
of the shower whereas the others are just noise from the NSB and the electronics. In
order to discard pixels containing just noise to obtain the image of the EAS we perform
an image cleaning. The image cleaning is based on the definition of core and boundary
pixels, which hold the information of the shower, following a combination of signal
intensity and timing information, and the rejection of the rest of the pixels. Within
this thesis, two different image cleaning algorithms have been used: the absolute image
cleaning (Aliu et al., 2009) and the sum image cleaning (Aleksić et al., 2011; Lombardi,
2011).

• Absolute image cleaning:
This algorithm discriminates pixels by their photoelectric charge, classifying
them into core and boundary pixels. A pixel is classified as core if its charge
is above a certain signal threshold Qcore and its arrival time is within a time
window, ∆tcore = 4.5ns, from the mean arrival time of its neighboring pixels.
The arrival time requirement is founded on the fact that Cherenkov light emitted
by a γ-ray induced air shower is much shorter than the signal produced by the
NSB. Additionally, core pixels must have at least another contiguous core pixel
in order to avoid misclassification of spurious pixels unrelated to the shower. On
the other hand, boundary pixels are pixels with at least one adjacent core pixel,
a charge above a certain threshold Qbound and an arrival time within a time
window, ∆tbound = 1.5 ns, from the mean arrival time of the core pixels. Charge
thresholds for core and boundary pixels, Qcore and Qbound, change according to

2see https://root.cern.ch/ for more detail
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the observational conditions (e.g. moon-light intensity, weather) and are listed
in Table 2.1.

• Sum image cleaning:
Unlike for the absolute image cleaning, the sum cleaning is not based on individual
pixels but in groups of 2 to 4 pixels whose summed charge is above a given
signal threshold, Qsum. Pixels passing this condition and whose arrival time is
within a certain time window, ∆tcore, are designated as core pixels. Note that
the summed charge thresholds vary depending on the number of pixels and the
noise of the observation as 4 × Qcore, 3 × 1.3 × Qcore and 2 × 1.8 × Qcore, for
groups of 4, 3 and 2 pixels respectively. The values of Qcore depend on the sky
brightness and are listed in Table 2.1. Time windows for the different group of
pixels are independent on the sky brightness and are fixed to 1.1 ns, 0.7 ns and
0.5 ns for groups of 4, 3 and 2 pixels respectively. Boundary pixels are classified
as such if they are contiguous to at least one core pixel, they have a charge signal
Qbound above 3.5 phe and their arrival time is within 1.5 ns with respect to the
adjacent core pixel.

As mentioned, charge thresholds applied for image cleaning are highly dependent on
the observational conditions. Stronger moonlight conditions would require then higher
charge thresholds in order to avoid contamination from a much higher NSB than
in dark nights. However, increasing charge thresholds implies discarding low charge
events, hence increasing the energy threshold of the analysis. Current MAGIC image
cleaning levels for different sky brightnesses are reported in Table 2.1.

Sky Brightness Hardware Settings Charge Thresholds
Qcore / Qbound

[×NSBDark] [phe]
1 (Dark) standard HV 6.0 / 3.5

1-2 standard HV 6.0 / 3.5
2-3 standard HV 7.0 / 4.5
3-5 standard HV 8.0 / 5.0
5-8 standard HV 9.0 / 5.5
5-8 reduced HV 11.0 / 7.0
8-12 reduced HV 13.0 / 8.0
12-18 reduced HV 14.0 / 9.0

Table 2.1: Image cleaning levels and hardware settings used for
different sky brightness observations.

2.5.3.3 Image parametrization

After the image cleaning, the image parametrization with Hillas parameters (Hillas,
1985) is performed. In this step, an ellipse is fitted to the surviving pixels of each
individual image as shown in Figure 2.13. Some of the Hillas parameters used to
parametrize the shower image are listed here:

Source independent parameters that are not related to the position of the source.

Size Total charge contained in the image (in phe). It is correlated to the energy of
the primary γ-ray.
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Figure 2.13: Hillas parametrization of a recorded shower image.

Width Longitude of the minor axis of the ellipse, related to the transversal develop-
ment of the shower.

Length Longitude of the major axis of the ellipse, related to the longitudinal develop-
ment of the shower.

Conc(N) Fraction of the image size contained in the N brightest pixels. This value
is expected to be higher in γ-ray induced showers.

Source dependent parameters that are computed according to the position of the
source in the camera plane.

Dist Angular distance between the image centroid and the position of the source in
the camera.

α Angle between the direction of the major axis and the line connecting the image
centroid with the position of the source in the camera. γ-ray induced showers
present smaller angles than hadronic showers.

Time dependent parameters useful to discriminate between hadronic and EM
showers since the latest develops faster.

Time RMS Root Mean Square (RMS) of the arrival time of the image, normally for
a gamma event is narrower than for hadronic showers.

Time gradient Linear coefficient of the fitted arrival time projection along the major
axis of the ellipse.

Directional parameters used to differentiate between the top and the bottom of
the shower.

M3Long Third momentum of the charge distribution along the major axis.

Assym Distance between the image centroid and the pixel with largest charge.



2.5. MAGIC telecopes 29

Image quality parameters useful to discard noisy images.

LeakageN Fraction of the signal contained in the N outermost rings of the camera
to the total signal.

Number of islands Number of cluster of pixels after image cleaning.

2.5.3.4 Data quality selection

Once the shower has been parametrized, data selection is needed in order to reject
bad quality data and ensure a final good quality sample.

Data can be affected by different factors, the most importants being bad weather
and hardware problems. The evaluation of bad weather is usually based on the sky
clearness (or cloudiness). If observations are carried out under cloudy conditions,
the rate of events registered will be lower than in optimal conditions. Therefore, by
monitoring the rate of events it is possible to identify and reject bad weather data.
As an important remark, rate of events are corrected by the zenith distance of the
observation, since at a larger zenith angles we expect lower rates due to a larger layer
of atmosphere. Usually, fluctuations of ±20% of the corrected mean rate are expected
for observations with optimal weather conditions. For the results presented in this
thesis, we discarded any data with cloudiness higher than 40% or events with rates
outside the ±20% range of confidence from the corrected mean rate (Figure 2.14).

Figure 2.14: Data quality selection based on the corrected mean
rate for an observation of the Crab. Data with rates differing more
than 20% from the corrected mean rate (represented by the yellow

band) were discarded.

2.5.3.5 Stereoscopic parameters

Up to this point in the analysis chain, any data treatment was applied to the data files
of each telescope separately. At this step, the information of the data sets from the
two telescopes is merged and new stereoscopic image parameters are created. Some of
the stereoscopic parameters are:



30 Chapter 2. Ground-Based γ-ray observations: IACTs and MAGIC telescopes

Impact Parameter describing the perpendicular distance between the pointing di-
rection and the shower axis (see top panel of Figure 2.15).

Shower Axis characterized by the impact point on the ground and the direction of
the shower, defined by the intersection of the major axes of the two images (for
the same event) on the ground and the camera plane, respectively (bottom panel
of Figure 2.15).

Figure 2.15: Top: Representation of an air shower observed
in stereoscopic mode. The impact parameters of the telescopes are
represented by red solid lines. The shower maximum height has also
been illustrated. Bottom: Scheme of the shower axis reconstruction
principle. The impact point on the ground is determined by the
intersection of the prolongation of the major axis of the two images.
The direction of the shower is determined by the intersection of the
two images on the camera plane (M2 image, green ellipse, has been
represented onto M1 for illustration purposes). Adapted from Giavitto

(2013).



2.5. MAGIC telecopes 31

Shower Height that gives the height of the shower maximum. The shower height
is related to the energy of the incident particles; the higher the energy of the
particle the deeper it penetrates into the atmosphere and therefore the closer its
maximum is to the ground.

2.5.3.6 γ/hadron separation

Most of the showers triggered by MAGIC are of hadronic origin as mentioned in
section 2.4. It is therefore necessary to efficiently separate γ-ray induced showers
from background events. To carry out this separation, MAGIC uses a multivariate
classification method based on decisional trees, called RF (Albert et al., 2008). In order
grow the trees, the RF must be ‘trained’ first with event samples of known nature,
such as γ-ray events from Monte Carlo simulations and hadronic events obtained from
off-source data. Both of them must have similar observational conditions, i.e. weather,
background light and zenith conditions, than the data of the source we are analysing.
The RF uses then a set of Hillas parameters to compute the decision trees (100 trees
are typically used in MAGIC) and discriminate between hadron and γ-rays. Initially,
a decision tree is started by applying a cut on a random parameter to divide the
data sample into two sub-samples called branches. The value of the cut is chosen by
minimizing the so-called Gini-index (Gini, 1921):

QGini = 4
Nγ

N

Nh

N
(2.4)

where N is the total number of events and Nγ and Nh, the number of γ rays and
hadrons, respectively. This process is repeated iteratively for each branch until a
sub-sample consists of only events of one nature. Each of the ending branches are
labeled as 0 or 1 depending on whether they contain γ rays or hadrons, respectively.
At this point, the RF is applied to the real data. Each recorded event passes through
all the decision trees computed and is assigned a value according to its ending branch
in each of the trees. The mean value obtained over the number of decision trees passed
is defined as the hadronness and ranges from 0 to 1. γ-like events peak at 0 while
hadronic events peak at 1. The hadronness parameter provides a powerful tool to
discriminate between γ rays and hadronic induced showers.

2.5.3.7 Arrival direction reconstruction

In order to reconstruct the arrival direction of the primary γ-ray, MAGIC uses the
Disp method (Fomin et al., 1994; Lessard et al., 2001) that was initially proposed
for stand alone observations. This method is based on the fact that EASs projected
onto the camera have an elliptical shape with their major axis related to the shower
axis, and therefore to their incoming direction, as explained in section 2.4. The source
position lies then along the major axis of the ellipse at a certain angular distance
from the center of gravity of the image. This distance is characterized by the disp
parameter (Zanin et al., 2013). The disp is computed by means of a RF algorithm
(same concept as in section 2.5.3.6) trained on a sample of Monte Carlo simulated
γ-ray events for with the correct source position in known. Each image passes then
the decisional trees and a value of the disp is assigned. However, the disp method
returns a degenerated reconstructed source position on either side of the image centroid
for each telescope, resulting in four solutions for stereoscopic observations as can be
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Figure 2.16: Sketch of the stereo disp RF determination. Shower
axis are represented with dashed lines. Both disp reconstructed po-
sitions per telescope (1A, 1B, 2A, 2B) are shown with empty circles.
Angular distances between different reconstructed positions are shown
with dotted lines. The final reconstructed position (the filled circle) is
a weighted average of the two closest ‘1’ and ‘2’ points. The true source
position is marked with a diamond. The angular distance between the
true position and the final reconstructed position is θ. Adapted from

Aleksić et al. (2016b).

seen in Figure 2.16. Angular distances between the different reconstructed source
positions of each telescopes are calculated (dotted lines in Figure 2.16) and the pair
of positions with the smallest distance is chosen. The reconstructed source position
is then determined by the average of the two estimated positions weighted with the
number of pixels in each image. The angular distance between the reconstructed
position of the source and its real position is characterized by the parameter θ, see
Figure 2.16, an important parameter in signal identification (section 2.5.3.10).

2.5.3.8 Energy reconstruction and energy resolution

The energy estimation of a registered event is performed by means of LUTs. LUTs are
created using simulated γ-rays, with known energy Etrue, to relate the energy of an
event to the impact parameter and the Cherenkov photon density for each telescope.
The estimated energy Eest is then computed as the weighted average of the mean true
energy Etrue over both telescopes.

The energy resolution of the observations is given by the Gaussian fit to the peak
of the (Eest − Etrue) /Etrue distribution and provides an estimation of the energy
reconstruction. The distance from zero of this distribution gives the energy bias.
Figure 2.17 shows the energy resolution achieved after the last MAGIC upgrade along
with its energy bias for different zenith angles.

The energy threshold of an analysis, Ethr, is defined as the peak of the Etrue distribution
of γ-ray simulated events after using the same cuts applied to the real data events,
such as zenith, hadronness and theta. The value of the energy threshold is highly
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Figure 2.17: MAGIC energy resolution and bias for different
epochs and zenith angles. From Aleksić et al. (2016b).

dependent on the size parameter and therefore each observation/analysis has it is own
energy threshold.

2.5.3.9 Background estimation

Background estimation is extremely important as it must take into account the
inhomogeneities of the camera acceptance and the different star fields. For wobble
observations, the background is estimated from the same data set as follows; in the
first wobble position, the source lies in one half of the camera (per definition) while
it lies on the other half for the second wobble position. In consequence, the events
whose arrival direction fall in the half of the camera that does not contain the source
are taken for the background subtraction (Figure 2.18).

Figure 2.18: Illustration of the background estimation from wobble
observations. The source position is represented in red. Green zones
characterize the half of the camera from which the background is

calculated. From Vovk et al. (2018).
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Figure 2.19: θ2 distribution of an observation of the Crab taken
in wobble mode. On and Off events are plotted in black and red,
respectively. The vertical dashed line represents the cut performed for

the signal extraction.

However, this simple approach for background estimation has drawbacks when the
source of analysis is an extended object or a complex region. First, not knowing the
shape of the source may result in an over-estimation of the background and thus
spoiling the signal. Second, signal from overlapping sources cannot be distinguished.
To overcome these issues, the Exclusion map technique implemented in SkyPrism
(Vovk et al., 2018) is used in order to exclude from the background computation any
region containing previously known sources.

2.5.3.10 Signal identification

The γ-ray signal identification has to be performed through parameters able to discrim-
inate between EM and hadronic induced showers. Usually, the square of the parameter
θ, i.e. the angular distance from the real source position to the reconstructed one (see
section 2.5.3.7), is used since the distribution of γ-ray events peak towards small values
while hadronic events produce a rather flat distribution (see Figure 2.19). The signal
region is therefore determined by a cut on the θ2 parameter. The significance of the
signal from the source, σ, is calculated according to Li and Ma (1983) equation 17:

σ =

√
2

(
NOn ln

[
1 + α

α

(
NOn

NOn +NOff

)]
+NOff ln

[
α

(
NOff

NOn +NOff

)])
(2.5)

where NOn are the number of events passing the θ2 cut at the source position and
NOff the background events. Background events are estimated from an analogous θ2

cut at n different off positions (located at the same distance from the camera centre
than the source) derived from the same dataset in case of wobble observations or from
an specific off-sample in case of On/Off observations (section 2.5.2.2). The parameter
α is inversely proportional to the number of Off positions selected.
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Although θ2 distributions are important for signal searches, they provide no information
about the morphology of the sources. For this purpose, the so-called Skymaps are
used. Skymaps are two dimensional histograms representing the reconstructed arrival
direction of the γ-ray events, transformed into the sky coordinates, after background
subtraction. The resulting skymap is smoothed by a Gaussian function with variance
equal to the square of the angular resolution, i.e. the standard deviation of a 2-
dimensional Gaussian fit to a point-like γ-ray source. This is also known as the
Point Spread Function (PSF): the radius containing 68% of the γ-ray events from the
point-like source.

2.5.3.11 Region modelling

Morphological analyses in MAGIC requiring a parametrization of the form, extension
and position of the source/region are performed with SkyPrism. SkyPrism first com-
putes the Instrument Response Functions (IRFs) of MAGIC, based on data and Monte
Carlo simulations, and applies them to an assumed source model. This model, together
with the estimated background map (see section ), is fit to the recorded sky images
to estimate the flux of the sources in the observed region. This is performed via a
maximum likelihood fitting method like in Fermi (see section 3.3.5). The 2-dimensional
spatial fit can also be combined with an spectral fit to obtain the spectral parameters
of the sources in the model.

2.5.3.12 Differential Spectrum

The calculation of the differential γ-ray spectrum of the observed source is the last
step in the analysis chain. Defined as:

dΦ

dE
=

dNγ

dEdAeffdteff
(2.6)

is measured in
[
photons TeV−1 cm−2 s−1

]
, where Nγ is the number of γ rays detected,

teff the effective time of the observation and Aeff the effective area. The effective
collection area defines the area around the telescopes on which air showers can be
observed folded with the detection efficiency. The collection area is highly dependent
on the γ-ray energy and zenith angle of the observation as can be appreciated in
Figure 2.20. For more information on the different parameters mentioned here and
their estimation for the current MAGIC setup, please address to Aleksić et al. (2016b).

The differential spectrum obtained is binned in estimated energy which may differ
from the true energy spectrum due to finite resolution of the telescopes. To correct
for this bias an unfolding procedure is applied (Albert et al., 2007b). Mathematically,
both energy distributions are related by:

Y (y) = M(x, y)S(x)dx+N(y) (2.7)

where Y and S are the estimated and true energy distributions, respectively, M the
migration matrix that represents the probability that an event with a certain true
energy is measured with a certain estimated energy due to the resolution of the detector,
and N the noise. Therefore, the unfolding procedure aims to determine the true energy
distribution given a certain migration matrix and estimated energy distribution. As
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Figure 2.20: Effective collection area of the MAGIC telescopes
before and after selection cuts, for different observation zenith angles

and MAGIC periods.

the migration matrix is not often invertible, a least square minimization (ξ2
0) with the

addition of a regularization term to avoid unstable results is applied (Anykeyev et al.,
1991):

ξ2 = ξ2
0 +

θ

2
Reg (2.8)

Within MAGIC, several unfolding methods are used, (Bertero, 1989), (Tikhonov and
Arsenin, 1979) and (Schmelling, 1998). The main difference among them is how the
regularization term has been implemented.
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Chapter 3

Space-Based γ-ray detector:
Fermi -LAT

3.1 Introduction

Very energetic γ-rays can be detected by ground-detectors via atmospheric Cherenkov
imaging as explained in chapter 2, however, low energy γ-rays are much more efficiently
absorbed in the atmosphere, by Compton scattering and photoelectric absorption,
preventing the detection of HE particles. Hence, the detection of MeV-GeV photons
has to be carried out outside the atmosphere by space-born detectors.

Already in the 60s, space γ-ray telescopes were observing the Universe. A huge
quality jump was achieved when the Compton Gamma-Ray Observatory (CGRO) with
Energetic Gamma-Ray Experiment Telescope (EGRET) onboard was launched in the
90s to explore the radiation from 0.05MeV to ∼30GeV. The CGRO mission ended in
2000 and ever since, no space based experiment observed the γ-ray sky above 100MeV
until AGILE and Fermi satellites were launched. Fermi -Large Area Telescope (LAT)
with a wider FoV (2.4 to 0.5 steradians) and a much better sensitivity (<6×10−9 to
∼10−7 cm−2 s−1) than EGRET was a real breakthrough on the detection of GeV γ-rays
opening new scientific objectives.

In the first of this chapter, a brief overview of the different systems onboard of
Fermi -LAT will be given, to focus on the LAT data analysis chain in the second part.
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3.2 The Fermi Large Area Telescope

The LAT is an imaging, wide FoV (∼2.4 sr), electron-positron pair conversion telescope
sensitive to gamma rays of energies from 20 MeV up to more than 500 GeV, with an
on-axis effective area of ∼8000 cm2 above 1GeV (Atwood et al., 2009).

Launched on 2008 June 11, LAT is the primary instrument aboard the Fermi Gamma-
ray Space Telescope, which also carries the Gamma-ray Burst Monitor. Fermi orbits
the Earth in 96 minutes at an altitude of 565 km and scans the entire sky every three
hours. Designed to measure the directions, energies, and arrival times of incident γ-rays
over a wide FoV, the Fermi-LAT is composed of 16 ‘converter-tracker + calorimeter’
modules arranged as a 4 × 4 array that is covered by an Anticoincidence Detector
(ACD) and attached to a DAQ system (Atwood et al., 2009). A brief description of
these main components (see Figure 3.1) is presented in the following:

Figure 3.1: Scheme of the different subsystems of the Fermi -LAT.

Converter-tracker:
Each converter-tracker has 16 planes of tungsten interleaved with 18 layers of
Silicon Strip Detectors (SSDs). Incident photons convert in the tungsten foils
and the charged particles produced are tracked by the successive planes of SSDs
(see Figure 3.2), allowing the reconstruction of the incident photon direction and
the rejection of background, i.e. charged CRs.

The tracker is divided into two regions to compromise between achieving a good
angular resolution at low energies and maximizing the effective area (important
at high energies). The ‘front’ region, consisting of the first 12 silicon tracking
planes, has thin converters to optimize the PSF1 at low energy. The ‘back’ region,
4 silicon tracking planes, are about 6 times thicker in order to maximize the
effective area. With this configuration the sensitivity of the LAT is balanced
between the front and back tracker sections.

1The PSF is energy dependent, at low energies as 100 MeV, its PSF is ∼6◦ and at high energies as
100GeV is 0.03◦.
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Figure 3.2: Sketch of an incident γ-ray converting into a pair of
charged particles in the tungsten foils and tracked up to the DAQ by

the SSDs planes.

Calorimeter:
Each calorimeter module has 96 CsI(Tl) crystals arranged horizontally in 8 layers
of 12 crystals each, Figure 3.1. When charged particles reach the calorimeter,
the CsI crystals absorb their energy and re-emit it in form of light that is in turn
detected and read out by photodiodes mounted on both ends of the crystal. The
difference in light levels on both photodiodes provides a determination of the
longitudinal position of the energy deposition along the CsI crystal.

Anticoincidence detector:
Charged CRss can also produce particle showers inside the tracker and, since they
outnumber γ rays by 3 to 5 orders of magnitudes, they introduce an important
background that can spoil the signal detection. For this reason an ACD covers
the other subsystems. Its purpose is to detect charged particles entering the
system and reject them. The ACD has 89 plastic scintillator tiles in a 5 × 5 array
on the top and 16 tiles on each side (see Figure 3.1). The ACD is segmented
in order to minimize the so-called backsplash effect where secondary particles
from electromagnetic showers, created by the incident HE photon, can Compton
scatter and create false signals in the ACD from the recoil electrons.

Data acquisition system:
The DAQ collects the information from the other subsystems and makes the
initial distinction between unwanted signals from CRs and real γ-ray signals. It
also provides an on-board science analysis to search for transients (Atwood et al.,
2009).

Data registered by LAT are transmitted to the LAT Instrument Science Operation
Center, in Stanford, where are analyzed and submitted to different quality cuts. Finally,
it is made available in the Fermi Science Support Center web-page2.

2http://fermi.gsfc.nasa.gov/ssc/data/
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3.3 Fermi-LAT data analysis

The Fermi Science Support Center provide high-level data, mainly lists of photons
after selection cuts and IRFs. IRFs describe the performance of the detector as a
function of incidence angle, photon energy and position within the conversion-tacker
where photons are converted, among other parameters.

High-level data has to be further processed in order to extract scientific results. The
analysis is usually performed using the publicly available Fermi Science Tools3 currently
at their v11r5p3 version. In particular, throughout this work we also used Fermipy4

(Wood et al., 2017), a python software package that provides a high-level interface for
analyzing the data and that automatizes the analysis with the Fermi Science Tools.

In the following a brief description of the analysis workflow will be given. For any
deeper understanding on each of the tools within the software, the reader is referred
to Wood et al. (2017) and the online documentation of the Fermi Science Tools5.

3.3.1 Event-level Classification

Although automatically performed by the LAT Instrument Science Operations Center,
the event-level classification is a key process for further steps in the data analysis.

First, the event reconstruction is performed by the LAT subsystems (i.e. the tracker,
calorimeter and ACD). The calorimeter measures the raw energy of each event and
uses it to determine their tracks in the tracker, which are then used iteratively to
refine the energy measurement. This is combined then with the ACD reconstruction
that facilitates the separation of the γ-rays from the background charged particles.
Once the energy and track reconstruction are completed, each event is submitted to
Classification Trees, in a similar procedure to the one used in MAGIC (section 2.5.3.6),
that determine their best physical parameters, such as the arrival direction and the
energy. The current simulation and reconstruction framework is the so-called PASS
8 which greatly improves the background rejection and the energy resolution, along
with a better PSF, with respect to previous Passes. A detailed analysis of all the
improvements that PASS 8 provides can be found in Atwood et al. (2013).

After the event reconstruction process, each event is submitted to selection cuts that
determine their probability of being photons and the quality of their reconstruction.
These selection cuts separate events into different event classes. In turn, event classes
are further subdivided into event types that depend on where the photon pair conversion
occurs and the instrument observation setup. Each class and event type is characterized
by its own IRF, hence, depending on the type of analysis required or even the source
of interest, some classes and types are better suited than others.

The event classes used in this thesis are SOURCE, CLEAN and ULTRACLEANVETO.
Usually, for point-like and moderately extended source analysis the SOURCE event
class (the standard class) is used as it provides an overall low residual background.
When a precise analysis above few GeVs is required, the CLEAN class is preferred
over SOURCE as the background rate is of the order of 2-4 times lower. Otherwise,
for low energy analysis the ULTRACLEANVETO class provides a 2 to 4 times lower

3https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
4http://fermipy.readthedocs.io/en/latest/
5https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/overview.html
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background rate between 100MeV and 10GeV. At the same time, as mentioned
previously, each event class is partitioned in three event types, front/back, PSF and
Energy Dispersion (EDISP), with no cross-membership events between them.

Front/Back: Standard and sole event type in previous Passes. Photons detected
in the front part of the detector have better angular resolution than those arriving
at the back section.

PSF: All the events are divided into quartiles depending on their direction
reconstruction quality, with PSF3 being the best one and PSF0 the worst.
This event type is preferably used for analysis aiming at source localization or
morphologic studies.

EDISP: All the events are divided into quartiles depending on their energy
reconstruction quality, with EDISP3 being the best one and EDISP0 the worst.
This event type is preferably used for analysis of known sources and aiming at
computing their energy spectra.

Pass 8 Release 2 Version 6 IRFs provide the current description of the instrument
response for each class and event type. Some relevant (for this thesis) performances as
a function of photon energy within PASS 8 are shown in Figure 3.3.

3.3.2 Data Selection

Prior to any Fermi analysis, a data selection must be carried out in order to keep
only the events that are best suited to the particular analysis being performed, as
aforementioned in section 3.3.1. Once the event class has been selected, some additional
cuts are required to reject bad data or possible background sources spoiling our
dataset. For all of the analysis presented within this work, only good quality events
(DATA_QUAL>0) taken in nominal science configuration (LAT_CONFIG=1) have been used.
An additional cut is performed to avoid possible data contamination from photons
produced on the Earth’s limb (lying at zenith angles θz > 113◦), that can reach
energies up to few GeVs. Thus, data registered with θz > 90◦ and a rocking angle
(angle between the z-axis of the spacecraft and the zenith) of |θr| < 52 have been
discarded (see Figure 3.4). Data selection cuts presented here has been performed by
the gtselect and the gtmktime tools.

3.3.3 Region Model

To extract accurate information from the source of study, one must account for any
possible external contribution affecting the source. On one hand, at MeV energies the
sky is highly dominated by diffuse emission, thus an accurate model of this background
emission is crucial. Through this work, we used the Galactic diffuse emission model
and the isotropic model developed by Acero et al. (2016a)6. The isotropic model
includes extragalactic diffuse emission and residual CR emission. On the other hand,
due to the large PSF in the MeV energy range, nearby sources also contribute to the
total counts of our source. For the greatest accuracy, a precise source model is essential
to attenuate the influence of surrounding sources. Usually, for this purpose the latest
Fermi -LAT source catalog is used as a starting point. In this thesis we used the LAT
2-year and LAT 4-year Point Source Catalog (2FGL and 3FGL catalog, respectively).

6https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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Figure 3.3: Fermi -LAT performance plots for the current PASS 8.

The position and spectral information of detected sources within and to some extent
outside the Region Of Interest (ROI) are included. Models, however, can be iteratively
improved by adding newly detected sources or even excess spots that can be putative
sources. For specific cases where a known extended source was lying within the ROI,
extended templates available in the web page7 were also used.

3.3.4 Exposure Corrections

3.3.4.1 Livetime Cube

Fermi-LAT IRFs vary depending on the angle between the spacecraft normal and
the direction to a source. Therefore, the registered counts (i.e. events associated
to a source) depend on the observation time the source spent at a given angle and
the effective area at that angle. In addition, as the orientation of the LAT telescope
is constantly changing due to its rotation, a given source is observed at different

7https://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/
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Figure 3.4: Representation of an observed Earth’s limb γ-ray. The
zenith (θz) and the rocking angle (θr) are shown. From Ackermann

et al. (2013a).

inclination angles and thus with different performances. Proper handling of this
inclination angle dependency is therefore crucial for the analysis. The array of the
integrated observation times as a function of the angle at every point in the sky is
called livetime cube and is computed by the gtltcube.

3.3.4.2 Exposure Map

The exposure map is defined as the total exposure for a certain position on the sky
that produces counts in your analysis region. Since the PSF of the LAT at low
energies is significantly large (see Figure 3.3 for reference), sources outside the ROI, i.e.
acceptance cone centered at the source of interest, might contribute to the emission
detected. To compensate for this, exposure maps are usually computed several degrees
larger (10− 20◦) than the analysis region. This step is done with gtexpcube2.

3.3.5 Likelihood Fitting

Counts detected by Fermi-LAT have many intrinsic variables (e.g. energy, position,
etc), therefore even with a large data sample, any binning of the parameter space
will result in a small number of counts per bin. Thus, the Poissonian distribution
characterizes the observed counts in those bins. The probability of detecting ni counts
in the ith bin is given by p = mni

i
e−mi
ni!

where mi is the expected number of counts
(model dependent parameter).

The likelihood is the product of the probabilities of observing the detected counts in
each bin, consequently

L = e−Nexp
∏
i

mni
i

ni!

defines the likelihood with Nexp the total number of counts predicted by the model.
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If we reduce the bin size up to the point where each bin is characterized by only one
count, the likelihood becomes

L = e−Nexp
∏
i

mi

This is called unbinned likelhood and it is more accurate than the binned likelihood.
However, it can only be used for small data samples, otherwise it is so time consuming
that becomes prohibitive.

In general terms, the likelihood describes the probability that the observed data could
have been originated from a given input region model. The model, as mentioned in
the previous sections, consists of many spectral parameters describing the sources
within the ROI. Fitting repeatedly the model to the data while varying the spectral
parameters of the sources allows us to compare the different likelihoods obtained for
each set of parameters. The best model is determined by the set of spectral parameters
that maximize the likelihood. The maximum likelihood fit is performed with gtlike.
Note that the spectral parameters of the sources in the model can be frozen or freed
to vary during the likelihood calculation depending on the analysis performed and
the type of sources. Usually, weak and/or distant sources from the center of the ROI,
that do not contribute much to the counts of the source studied, are frozen to ease the
convergence of the model. Specific criteria are used for each specific analysis.

Once the maximum likelihood has been obtained, the goodness of the likelihood fit is
estimated by means of a Test Statistic (TS) defined as:

TS = −2ln

(
Lnull
Ltest

)
where Lnull and Ltest are the likelihood values for the null hypothesis and our tested
model respectively. TSs are extremely important when we analyze complicated regions,
as they allow us to compare two nested models (one derives from the other by adding
n additional parameters) and estimate if one model is preferred over the other. It has
been proven that TS behave approximately as the square of the scientific significance,
TS = σ2, (Mattox et al., 1996). TS = 25 is normally accepted as the detection
threshold of a source.

At this step, one can check the consistency of the model by computing the so-called
TS map. TS maps are significance maps resulting from moving an hypothetic source
through each position of the ROI and maximizing the likelihood in each of them,
taking into account our source model. Excess regions, either point-like or diffuse, that
have not been accounted for in the model will appear in the map. TS maps are very
useful to identify sources that might be covered by the emission of stronger sources.
New sources identified in the TS map have to be introduced into the model to run the
whole analysis again. This is an iterative process that must be performed until a flat
TS map is obtained, implying no significant sources are being omitted in our model.

The output obtained after the maximum likelihood fit contains then the flux expec-
tation and the spectral parameters of each source of the model for the full energy
range. In order to obtain the Spectral Energy Distribution (SED), the energy range
is divided in narrow bins and an independent maximum likelihood analysis is run in
each of them. For these independent energy-binned likelihood fits, all the parameters
in the model are fixed to the ones resulting from the analysis of the full energy range
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except for the normalization of our source of interest.
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Part II

SNRs: CR ACCELERATORS
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Chapter 4

Supernova Remnants

4.1 Introduction

SNRs have been for long time believed to be the main source of Galactic cosmic rays
with energies up to ∼ 1015 eV, the so-called knee of the CR spectrum. This argument
is based on the fact that Supernovae (SNe) release an energy of 1051 erg at a rate of a
SN every 40 years (Tammann et al., 1994), thus, only a reasonable percentage (10%) of
their energy needs to be converted into acceleration of CRs in order to account for the
Galactic CR flux, ∼ 1040 erg s−1. However, although the presence of very HE electrons
in SNRs can be easily proven through non-thermal X-ray observations, acceleration of
hadronic CRs up to PeV energies still lacks of any observational evidence. Consequently,
SNRs have not yet been confirmed as the Galactic CR accelerators up to the knee
energies.

This chapter discusses the current understanding on SNRs along with the expectations
of γ-ray emission within these objects or from their interaction with surrounding
Molecular Clouds (MCs).

4.2 Types and evolution

SN explosions are extremely powerful phenomena that emit more than 1049 erg in form
of radiation. The explosion is triggered at the end of a star’s lifetime by two different
mechanisms depending on the nature of the progenitor.

− Type Ia or thermonuclear SNe occur when the progenitor, a white dwarf, reaches
the Chandrasekhar mass limit (∼1.4 M�) by mass accretion in a binary system.
At that time, the white dwarf undergoes a collapse that the electron degeneracy
pressure cannot counteract and explodes disrupting the system and blowing away
its companion. The resulting SNR is often a symmetrical shell with no central
compact object.

− In contrast to type Ia, all other SNe take place when the progenitor is an isolated
massive star with an initial mass comprised of between 8 and 40 M�. After these
stars have burned all the nuclear energy in their cores, they cannot produce
any more energy to sustain the pressure exerted by the gravitational force and
implode ejecting material at thousands of kilometers per second. The remnant
object after the SN explosion is a NS for initial masses of 8-25 M� or a black
hole for masses higher than 25 M�. These are usually known as core-collapsed
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SNe. Since massive stars are usually found in star forming regions, SNRs are
often associated to giant MCs.

The expelled stellar ejecta carry away the kinetic energy of the SN explosion (∼1051erg)
into the surrounding circumstellar and interstellar material forming the SNR. The
expanding ejecta create a Forward Shock (FS) that is unaltered as it sweeps up
surrounding material during the first phase of the SN evolution called free expansion
phase. A Reverse Shock (RS) starts to form at the contact discontinuity, i.e. a surface
between two different materials with different density but similar pressure and velocity,
that separates shocked interstellar material and stellar ejecta. When the swept up mass
of ambient medium is of the order of the mass of the ejecta, the RS starts propagating
inwards into the stellar ejecta. In turn, the ejecta is shocked by the RS and increases
its temperature up to the point where the expansion becomes adiabatic and is driven
by thermal pressure of the gas, the Sedov phase. The SNR keeps expanding and
cooling adiabatically until it reaches a temperature of ∼106K, at which ionized atoms
capture free electrons and radiate their excitation energy. During this radiative phase,
thermal pressure drops and the expansion slows down. Finally, when the swept up
material accumulated becomes much larger than the stellar ejecta, the shell breaks
and the SNR disperses into the surrounding medium.

Different types of SNRs have been observed in nature, shell-like, composite and
mixed-morphology remnants. Shell-like remnants emit their radiation from a shell
of shocked ISM (like CasA, left panel of Figure 4.1). Composite remnants, apart
from an interacting outer shell they additionally contain a central PWN (such as
SNRG24.7+0.6). Mixed-morphology remnants are radio shells containing primarily
thermal X-ray central emission, probably arising from the evaporation of dense clumps
of interstellar material that were not disrupted by the shock (White and Long, 1991),
an example of a mixed-morphology remnant is W28 shown in the right panel of Figure
4.1.

Figure 4.1: Left: Shell-type SNR: CasA. Spitzer IR, Hubble and
Chandra X-ray data are represented in red, orange and blue, respectively.
Right: Mixed-Morphology SNR: W28. XMM -Newton data in the 0.3-
1.0 keV and 1.0-7.0 keV bands are represented in magenta and blue,
respectively. The VLA 1.4GHz contours of the radio shell are overlaid

in white.

4.3 Cosmic ray acceleration

Relativistic particles in SNRs can be efficiently accelerated via DSA, which naturally
provides a power-law spectrum with an spectral index of ∼2 (Drury, 1983; Malkov and
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Drury, 2001). In its initial version (Bell, 1978a,b), particles are scattered repeatedly
through the shock front by magnetostatic inhomogeneities upstream of the shock and
a turbulent magnetic field downstream reaching energies of ∼1014 eV, an order of
magnitude below the knee (Lagage and Cesarsky, 1983). This energetic shortage can
be solved considering strong magnetic field amplification in the upstream region, due
to CR driven instabilities (Bell and Lucek, 2001), increasing the maximum energy of
accelerated particles to values of 1015-1016eV observed at the knee.

CR acceleration in SNRs is tied to the production of γ rays resulting from the interaction
between accelerated CR protons and the ambient medium, followed by the subsequent
π0 decay. However, detection of γ-rays is not necessarily a direct evidence of proton
acceleration since they can also be originated through leptonic processes, mainly IC
scattering of CMB photons provided that the magnetic field in the acceleration region
does not exceed ∼10µG, where synchrotron radiation dominates. The presence of
accelerated electrons come naturally from the non-thermal X-ray spectra observed
in several SNRs. The same multi-TeV electrons responsible of the IC γ-ray emission
produce X-ray synchrotron emission at keV energies when they interact with the B-field
of the SNR. The flux ratio between X-ray synchrotron and IC γ-ray emission produced
by the same population of electrons (Aharonian, 2004) is:

fIC (Eγ)

fsy (εX)
∼ 0.1

(
B

10µG

)−2

(4.1)

There are, however, some unambiguous signatures of γ-rays produced from pion decay:
i) Low-energy cut-off in the spectrum peaking at ∼70MeV (i.e. pion bump), threshold
energy at which γ-rays are produced in the decay (Figure 4.2, top). ii) γ-rays with
energies greater than 100TeV corresponding to protons accelerated up to 1PeV, energy
range where leptonic proceses are inefficient (Figure 4.2, bottom). iii) Detection of
neutrinos radiated during the decay of pions (see Section 1.3.5). And iv) Spatial
correlation of γ-ray emission and dense mediums, e.g MCs. In this last case, CR
protons are expected to produce γ rays in their interaction with the surrounding
medium, however, this is not granted in leptonic scenarios.

Therefore, the observation of a ∼70MeV cut-off in the spectra, so far detected in three
middle-aged SNRs; W44 and IC443 (Ackermann et al., 2013b) and W51C (Jogler and
Funk, 2016), as well as the detection of illuminated MCs, would provide a proof that
CRs are being accelerated in SNRs. However, the detection of multi-TeV particles
(inelastic interactions of CR protons with interstellar gas produce neutrinos of energy
Eν ∼ 50 (Ep/1PeV)TeV and gammas of energy Eγ ∼ 100 (Ep/1PeV)TeV (Kelner
et al., 2006)) would be irrefutable proof that SNRs can accelerate CRs up to the knee
and account for the Galactic CR spectrum observed.

4.4 PeVatrons

SNRs can only accelerate protons up to a maximum energy, Emax, given by Gabici
(2017):

Emax ∼
1

3

(
B

µG

)(
us

1000 km/s

)(
Rs
pc

)
TeV (4.2)

being us the velocity of the shock and Rs the shock radius.
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Figure 4.2: Hadronic-like spectral features. Top: γ-ray spectra of
W44 from Ackermann et al. (2013b). The spectra exhibits a break at
∼200MeV establishing its hadronic origin. Bottom: γ-ray spectra of
the first PeVatron (red) detected in the Galaxy from Abramowski et al.
(2016). Although the acceleration of PeV protons in SNRs has not yet
been observed, this detection confirms that protons can be accelerated

up to the knee within our Galaxy.

For typical values of the interstellar magnetic field (∼3µG), acceleration of PeV
particles is impossible unless magnetic field amplification by plasma instabilities (Bell,
2004) is assumed. The acceleration of PeV protons needs very high shock velocities
only attainable during a short period at the transition between the free expansion and
Sedov phase. Top panel of Figure 4.3 shows the γ-ray spectrum produced in a SNR
at different epochs after the SN explosion. Multi-TeV γ-rays could only be detected
during few hundred years (curve 1) since the highest energy CRs diffuse away from
the SNR, as pointed out by Ptuskin and Zirakashvili (2005). Already 2000 yr after the
explosion (curve 2), PeV and even high TeV CRs have escaped the SNR producing
a cut-off in the γ-ray spectrum at the high energies. Since the highest CRs continue
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Figure 4.3: γ-ray spectra from the SNR (top) and from a MC of
mass ∼ 104M� located 100 pc away from the SNR (bottom). Curves
refer to different epochs after the SN explosion: 400 yr (1 ), 2000 yr (2 ),
8000 yr (3 ) and ∼104 yr (4 ). The system is located at 1 kpc from the

observer. From Gabici and Aharonian (2007).

escaping the SNR and the CR acceleration at the shock is less and less efficient (due to
a decrease of the shock velocity as a result of the resistive force exerted by the swept
up material), the cut-off in the spectrum shifts to lower energies with time. Thus,
SNRs act as PeVatron accelerators only during a short time window of few hundred
years. This strong restriction limits the number of potential PeVatron candidates to a
small fraction.

Still, runaway PeV particles can be detected on their interaction with associated MCs,
located in the vicinity of the SNR, that enhance the γ-ray emission.

4.5 SNRs interacting with MCs

Massive stars that originate SNRs are usually born in massive MCs (Chevalier, 1999),
this often leads to interactions between the SNR and the cloud. About 10% of the
identified SNRs are believed to be interacting with a MC (Reynoso and Mangum,
2000).

CR protons escaping from SNRs have a power-law proton distribution Φp (E) = KpE
−Γ
p .

A time ∆t after they escape, CR protons diffuse away a distance of (Aharonian and
Atoyan, 1996)

R (E) =
√

6DISM (E) ∆t (4.3)
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where DISM (E) is the diffusion coefficient of the ISM. A MC of massM located within
the diffusion radius (e.g. at distance d) can then be illuminate by CRs producing a
γ-ray flux of:

Fγ (E) ∝ σpp
d2

M

mH
Kp (Eγ)−Γ (4.4)

where σpp is the cross section of proton-proton interaction and mH the hydrogen mass.

This estimation is under the assumption that the diffusion coefficient within the MC
does not differ much from the Galactic one, D (E) = 1028

(
E

10GeV

)0.5 cm2 s−1 (Dermer,
1986), and therefore, CRs penetrate freely into the cloud. If CR exclusion is taking
place, i.e. a diffusion coefficient much smaller than the Galactic diffusion coefficient,
low energy CRs cannot propagate inside the MC and a low energy cut-off appears in
the CR spectrum. For a detailed analysis on how CR spectra and the resulting γ-ray
emissions are affected by the suppression of the diffusion coefficient in MCs, the reader
is addressed to Gabici et al. (2007).

Bottom panel of Figure 4.3 shows the γ-ray spectrum at different epochs resulting from
the interaction of runaway particles with a nearby MC of mass ∼ 104M�. γ-ray flux
from the MC it is not detectable during the first thousand years after the SN explosion
since CRs have not had time to reach the cloud. Initially, γ-ray emission is produced by
the highest energy particles since they are released first from the SNR and propagate
faster. As time passes, lower and lower energy particles reach the cloud an produce
observable emission while the highest energy particle have already lost theirs through
proton-proton interaction. This results in a shift of the maximum of the spectrum to
lower energies with time. Multi-TeV γs could be observed in a time window going from
less than 2000 yr to more than 104 yr after the SN explosion. Despite that the γ-ray
flux from MCs is weaker than in SNRs, the larger detection window of the former
loosens significantly the intrinsic emission time restriction imposed by SNRs. Note
from equation that the flux of γ-rays from a MC depends on the mass of the latter,
thus, dense MC will be easier to detected and are better observation targets.

Leptonic contribution to the MC γ-ray emission is neglected since; electrons from the
SNR cannot reach sufficient energy due to synchrotron losses to escape confinement
and secondary electrons produced in the cloud rapidly cool via synchrotron emission
in the magnetic field of the MC.

Concluding, in the case of short lived CR accelerators, e.g. PeVatrons, the presence of
a nearby MC where runaway CRs interact, might facilitate the detection of multi-TeV
photons.
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Chapter 5

A cut-off in the TeV γ-ray
spectrum of the SNR Cassiopeia A

5.1 Introduction

Among the already known SNRs, Cassiopeia A (Cas A) appears as one of the few
good candidates for the study of hadronic CR acceleration up to PeV energies. The
precise knowledge of the age of this core-collapsed SNR (330 yrs), the remnant of a
historical SN in AD1680, allows the determination of many otherwise free parameters
when studying its morphology and spectral shape. Located at a distance of 3.4+0.3

−0.1 kpc
and with an angular diameter of 5 ′ (Reed et al., 1995), it is the brightest radio source
outside our solar system. In fact, Cas A is bright all over the electromagnetic spectrum,
offering an excellent opportunity to study particle acceleration.

Cas A has been extensively observed in radio wavelengths (Medd and Ramana, 1965;
Allen and Barrett, 1967; Parker, 1968; Braude et al., 1969; Hales et al., 1995). Most of
the emission comes from a bright radio ring of ∼1.7 pc radius and a faint outer plateau
of ∼2.5 pc radius (Zirakashvili et al., 2014), although a distinct emission coming from
several compact and bright knots has also been identified (Anderson et al., 1991).
The spectral index of the radio flux can vary from ∼0.6 to ∼0.9 over the remnant.
Several emission regions were also identified in the X-ray band (Gotthelf et al., 2001;
Maeda et al., 2009; Grefenstette et al., 2015; Wang and Li, 2016). In the gamma-ray
domain, Fermi-LAT detected the source at GeV energies (Abdo et al., 2010a) and later
derived a spectrum that displays a low energy spectral break at 1.72± 1.35GeV (Yuan
et al., 2013). In the TeV energy range, Cas A was first detected by High Energy
Gamma Ray Astronomy (HEGRA) (Aharonian et al., 2001) and later confirmed by
MAGIC (Albert et al., 2007a). VERITAS has recently reported a spectrum extending
well above 1 TeV (Kumar et al., 2015; Holder, 2017), with a spectral index larger
than the Fermi-LAT index of 2.17± 0.09. The spectrum seems to steepen from the
Fermi-LAT energy range to the TeV band, according to all IACT measurements. Still,
the statistical and systematic errors are too large for a final conclusion.

Multi-wavelength modeling of Cas A observations has not yet resulted in a clear
discrimination between hadronic and/or leptonic origin of the observed radiation in
the GeV to TeV energy range (i.e. Berezhko et al. 2003; Vink and Laming 2003; Yuan
et al. 2013; Saha et al. 2014; Zirakashvili et al. 2014). However the break in the
Fermi-LAT spectrum at ∼1 GeV combined with the observations at TeV energies
suggest that the observed gamma-ray flux has either a pure hadronic origin or that
several emission mechanisms (proton-proton interaction, IC and/or Bremsstrahlung)
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are involved. Indeed, several plausible acceleration regions have been identified in Cas
A. Chandra X-ray images (Gotthelf et al., 2001) and high-resolution Very Large Array
(VLA) radio synchrotron maps (Anderson and Rudnick, 1995) show a thin outer edge to
the SNR that has been interpreted to represent the FS where the blast wave encounters
the circumstellar medium (DeLaney and Rudnick, 2003). The cold SNR ejecta expands
supersonically outward from the explosion center producing a strong shock where its
relatively high magnetic field (Cowsik and Sarkar, 1980) can be amplified and hence
accelerate CRs to PeV energies (Bell, 2004, 2013). This scenario was reinforced by
the observations of year-scale variability in the synchrotron X-ray filaments of Cas
A (Uchiyama and Aharonian, 2008), which require a magnetic field amplification at
the shock of the order of mG. High-resolution observations (Gotthelf et al., 2001;
Morse et al., 2004; Patnaude and Fesen, 2007; Helder and Vink, 2008) also show a
RS formed well behind the FS that decelerates the impinging ejecta. The parameters
that characterize the RS can be significantly different from the ones describing the FS,
enhancing different dominant radiation mechanisms on each zone. For instance, IC
contribution, up-scattering the large Far Infrared (FIR) photon field of Cas A itself
(with energy density of ∼ 2 eV/cm3 and temperature of 97 K, Mezger et al. 1986), is
more significant in a region of lower magnetic field, as otherwise it would be suppressed
due to fast cooling of electrons. Hard X-ray observations (Grefenstette et al., 2015;
Siegert et al., 2015), if of synchrotron origin, prove the presence of relativistic electrons
with Lorentz factor γe ≥ 100, which can also produce gamma rays through relativistic
bremsstrahlung.

In the following, we present an accurate spectral measurement of Cas A at multi-TeV
energies obtained by MAGIC. We also derived the spectrum obtained with Fermi -LAT,
selecting events with the best energy reconstruction, to extend the spectrum to lower
energies and also have sufficient overlap at VHEs. The full spectrum obtained from
∼60 MeV to ∼10 TeV is investigated here to determine the underlying mechanisms
powering the young remnant, constraining the maximum energy of the accelerated
particles and their nature.

5.2 Fermi-LAT data analysis

The GeV emission of Cas A was revisited using 3.7 yr of LAT observations (Yuan
et al., 2013). The derived spectrum is well-represented by a broken power-law with a
significant break of 6.9σ at ∼1.7 GeV. To compare with the observations performed
with MAGIC telescopes, and also to update and improve the spectrum, we analysed
8.3 yr of LAT data (from August 4, 2008, MET 239557417, to December 6, 2016,
MET 502702784) on a 15◦ × 15◦ region around the position of Cas A1 (see Figure
5.1). We selected events with energy between 60MeV and 500GeV and applied the
usual cuts and corrections recommended by the Fermi-LAT collaboration (removing
intervals when the rocking angle of the LAT was greater than 52◦ or when parts of
the ROI were observed at zenith angles larger than 90◦, as well as enabling energy
dispersion). In order to derive the energy spectrum we applied a maximum likelihood
estimation analysis in 12 independent energy bins from 60MeV to 500GeV, modeling
the Galactic and isotropic diffuse emission using the templates gll_iem_v06.fits and
iso_P8R2_ULTRACLEANVETO_V6_v06.txt provided by the Fermi collaboration
(see Chapter 3.3.1 for a description of this IRF). During the broad-band fit, all the

1The analysis on a 30◦ × 30◦ region yields compatible results.
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Figure 5.1: 15◦×15◦ Fermi-LAT counts map centered at the
nominal position of Cas A above 1GeV (MET 239557417 to MET
378691203). 3FGL sources, within our ROI, used in this analysis are
plotted in red. Source1, added in our model to account for a significant

residual excess is represented in green.

sources in the third Fermi-LAT source catalog (3FGL) within the ROI were included.
A source located ∼3.7◦ away from Cas A at (RA,DEC)=(352.3◦, 62.5◦) was added
during the fitting process to account for a significant residual excess found in the TS
map (with TS= 45.08, dubbed as Source1 in Figure 5.1). The spectral parameters of
the sources in the model were fixed to those from the catalog, except for sources within
5◦ from the candidate location and the normalisation of the two diffuse background
components. Following the results obtained by Yuan et al. (2013) we used a smooth
broken power-law function to fit the broadband spectrum of Cas A

dN/dE = No

(
E

Eo

)−Γ1
(

1 +

(
E

Eb

)−(Γ1−Γ2)/β
)−β

(5.1)

with the parameter β fixed to 1 and the energy break to Eb=1.7 GeV. Eo is the
decorrelation energy fixed to 1 GeV. In order to ensure the highest accuracy in the
energy reconstruction we used the EDISP event type. Each of the four partitions
(EDISP0-3) was analyzed separately and combined later by means of a joint likelihood
fit. The SED was obtained by fitting the source normalisation factor in each energy
bin independently using a power-law spectrum with a fixed spectral index of 2. For
each spectral point we required at least a TS of 4, otherwise Upper Limits (ULs) at
the 95% Confidence Level (CL) were computed.



58 Chapter 5. A cut-off in the TeV γ-ray spectrum of the SNR Cassiopeia A

Observation conditions Time [h]
Dark and Standard HV 42.2
Moon and Standard HV 77.7
Moon and Reduced HV 38.1

All configurations 158.0

Table 5.1: Effective observation time of the different hardware and
sky brightness conditions under which Cas A samples were taken.

5.3 MAGIC data analysis

Observations were performed between December 2014 and October 2016, for a total
observation time of 158 hours after data quality cuts. They were carried in wobble
mode, with a standard wobble offset of 0.4◦ (section 2.5.2.2 for deeper information).
All the data correspond to zenith angles between 28 and 50 degrees and most of
them (∼73%) were taken during moonlight time (see Table 5.1), under NSB levels
that could be up to 12 times brighter than during dark nights. A significant part of
the data (∼24%) were obtained under reduced HV settings: the gain of the PMTs
is lowered by a factor ∼1.7 to decrease the damage inflicted by background light on
the photodetectors during strong moonlight time. The main effect of moonlight in
the performance of the telescopes is an increase in the energy threshold (see section
), which for zenith angles between 30 and 45 degrees goes from ∼100 GeV during
dark conditions to ∼300 GeV in the brightest scenario considered. As achieving a low
energy threshold was not critical for this project, Moon observations provided a unique
way to accumulate observation time. For a detailed study of the performance of the
MAGIC telescopes under moonlight the reader is referred to (Ahnen et al., 2017).

Data have been analyzed with the standard tools used for the analysis of MAGIC data,
described in section 2.5.3. Data were first divided into different samples according
to their background light level (see Table 2.1). Each sample was analyzed indepen-
dently with its own Off dataset and Monte Carlo simulations. Off data and Monte
Carlo simulations were tuned to properly reproduce the telescope response under the
corresponding observation conditions. Only at the last step of the analysis the data
from different samples were merged and a unified spectrum was produced. For the
reconstruction of the spectrum a point-like source was assumed and typical selection
cuts with 90% and 75% γ-ray efficiency for the γ-ray/hadron separation and sky signal
region radius were applied, respectively (Aleksić et al., 2016b). Three Off regions were
considered for the background estimation. Figure 5.2 shows the significance map of a
small data sample of ∼15 hours taken during dark time.

5.4 Results

Figure 5.3 shows the reconstructed SED obtained with the MAGIC telescopes (black
solid points). Red solid line is the curve obtained that best fits the MAGIC data
assuming a power-law with an exponential cut-off (EPWL):

dN

dE
= N0

(
E

E0

)−Γ

exp
(
− E
Ec

)
(5.2)
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Figure 5.2: MAGIC significance map above 600GeV of a region of
2.5◦×2.5◦ centered in Cas A. This map was produced using only ∼15

hours of dark observations at zenith angles between 35 and 50◦.

with a normalisation factor N0 = (1.1± 0.1stat ± 0.2sys) × 10−11 TeV−1cm−2s−1 at
a decorrelation energy E0 = 433 GeV, a spectral index Γ = 2.4± 0.1stat ± 0.2sys and
a cut-off energy Ec = 3.5

(
+1.6
−1.0

)
stat

(
+0.8
−0.9

)
sys TeV. The spectral parameters of the

tested models θ = {N0,Γ, Ec} are obtained via a maximum likelihood approach. The
data inputs are the numbers of recorded events (after background suppression cuts)
in each bin of estimated energy Eiest, both around the source direction (NOn

i ) and
in the three Off regions (NOff

i ). An additional set of nuisance parameters µi for
modeling the background are also optimized in the likelihood calculation. In each
step of the maximization procedure the expected number of gammas in a given bin of
estimated energy (Eest) is calculated by folding the gamma spectrum with the MAGIC
telescopes response (energy-dependent effective area and energy migration matrix).
The background nuisance parameters and the statistical uncertainties in the telescopes
response are treated as explained in (Rolke et al., 2005).

The probability of the EPWL fit is 0.42. We tested the model against the null
hypothesis of no cut-off, which is described with a pure power-law. The probability of
the power-law fit is 6× 10−4. A likelihood ratio test between the two models favors
the one that includes a cut-off at ∼ 3.5 TeV with 4.6σ significance.

Figure 5.4 compares the fit residuals for the two tested models: power-law and EPWL.
The residuals are here defined as Nobs

On /N
exp
On −1, where Nobs

On is the number of observed
events (including background) in the On region and N exp

On is the number of events
predicted by the fit in the same region. All the bins in estimated energy which contain
events are used in the fits, but only those with a 2σ significance gamma-ray excess are
shown as SED points in the upper panel of Figure 5.3.
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Figure 5.3: SED measured by the MAGIC telescopes (black dots)
and Fermi-LAT (blue squares). The red solid line shows the result of
fitting the MAGIC spectral points with equation 5.2. The black solid
line is the broken power-law fit applied to the Fermi-LAT spectrum.

One of the biggest systematic uncertainties of the IACT technique is related to the
possible variations of the atmospheric transparency, or of the light throughout the
different telescope elements, resulting in a modification of the recorded Cherenkov
light yield from showers. The systematic uncertainty due to an eventual mismatch
on the absolute energy scale between MAGIC data and Monte Carlo simulations was
constrained to be below 15% in Aleksić et al. (2016b). By conservatively modifying the
absolute calibration of the telescopes by ±15%, and re-doing the whole analysis, we
can evaluate the effect of this systematic uncertainty in the estimated source spectrum.
This does not produce a simple shift of the spectrum along the energy axis, but
changes also its hardness. Even in the unlikely scenario in which, through the 158 h
of observations, the average Cherenkov light yield was overestimated by 15% relative
to the Monte Carlo, by applying the corresponding correction the resulting spectrum
is still better fit by an EPWL at the level of 3.1σ. In the also unlikely scenario in
which the light yield was underestimated, the EPWL is preferred over the power-law
at the 6.5σ level. The systematic uncertainties in the flux normalization and spectral
index were retrieved from the publication reporting the performance of the MAGIC
telescopes during moonlight (Ahnen et al., 2017). The systematic errors in the cut-off
energy were estimated from the values of Ec obtained when modifying the absolute
light scale by ±15 percent.

For the Fermi-LAT analysis, a broken power-law function with normalisation fac-
tor No = (8.0 ± 0.4) × 10−12 MeV−1cm−2s−1, and indexes Γ1 = 0.90± 0.08 and
Γ2 = 2.37± 0.04 is obtained and showed in Figure 5.3, blue solid squares. The light
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Figure 5.4: Relative fit residuals for the two tested models fitting
the MAGIC spectral points: power-law with exponential cut-off (up-
per panel) and simple power-law (lower panel). The error bars are
calculated so that they correspond to the total contribution of each

estimated energy bin to the final likelihood of the fit.

grey shaded area shows the statistical errors of the obtained broken power-law fit
whereas the dark one marks the uncertainty coming from the imperfectness in the
Galactic diffuse emission modeling, dominating the Cas A flux uncertainties at low
energies. The later was obtained by modifying the galactic diffuse flux by ±6 percent.
Note that the systematic error due to the diffuse background is greatly reduced above
3GeV.

5.5 Discussion

MAGIC observations of the youngest GeV- and TeV-bright known SNR have allowed
us to obtain the most precise spectrum of Cas A to date, extending previous results
obtained with Cherenkov instruments up to ∼10 TeV. In the MAGIC energy range,
the spectrum is best-fit with a power-law with exponential cut-off function with index
∼2.4 and an energy cut-off at Ec ∼3.5 TeV. These findings provide a crucial insight
into the acceleration processes in one of the most prominent non-thermal objects in
our Galaxy.

We also analysed more than 8 years of LAT data and obtained a spectrum that confirms
the one by Yuan et al. (2013). Below ∼1 GeV Cas A shows a hard spectrum with
index ∼0.9. Above a few GeV, the spectrum measured with Fermi-LAT falls quickly
with a photon index of ∼2.37, which is compatible within errors with the one measured
using the MAGIC telescopes.

To investigate the underlying population of particles, we have used the radiative
code and Markov Chain Monte Carlo fitting routines of naima2 (Zabalza, 2015),
that allows us to derive the present-age particle distribution. The code uses the
parametrisation of neutral pion decay by Kafexhiu et al. (2014), the parametrization

2https://github.com/zblz/naima
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of synchrotron radiation by Aharonian et al. (2010) and the analytical approximations
to IC up-scattering of blackbody radiation and non-thermal bremsstrahlung developed
by Khangulyan et al. (2014) and Baring et al. (1999), respectively.

We first considered the possibility that the gamma-ray emission was originated by
an electron population, described by a power-law with exponential cut-off function,
producing Bremsstrahlung and IC radiation in the gamma-ray range, and synchrotron
radiation at lower energies. The photon fields that contribute to the IC component are
the ubiquitous 2.7K CMB and the large FIR field measured in Cas A, with a value of
∼ 2 eV/cm3 at 100 keV. Fixing the photon field to this value, we can obtain the highest
possible density of electrons allowed by the VHE flux. Then we can constrain the
maximum magnetic field for which the synchrotron radiation produced by the derived
population does not exceed the radio and X-ray measurements3. The multi-wavelength
SED is shown in Figure 5.5, with the radio emission displayed in purple dots (Medd
and Ramana, 1965; Allen and Barrett, 1967; Parker, 1968; Braude et al., 1969; Hales
et al., 1995; Ade et al., 2014), soft SUZAKU X-rays are marked in red (Maeda et al.,
2009) and hard International Gamma-Ray Astrophysics Laboratory (INTEGRAL)
X-rays in blue (Wang and Li, 2016). In the gamma-ray regime, the LAT points are
shown in cyan and the MAGIC ones in green. The MAGIC points can be described
by an electron population with amplitude at 1 TeV of 2·1034eV−1, spectral index 2.4
and cut-off energy at 8 TeV up-scattering the FIR (brown dash-dot line) and the
CMB photons (green dashed line). The comparison with the X-ray part of the SED
constraints the magnetic field to B/180 µG. The resulting emission from the leptonic
model is shown in Figure 5.5. A relatively low magnetic field and a large photon
field could be fulfilled in a RS evolving in a thin and clumpy ejecta medium which
provides a moderate amplification of the magnetic field and large photon fields in the
clumps which are observed as optical knots. The same population of electrons would
unavoidably produce Bremsstrahlung radiation below a few GeV (see green dotted
line in Figure 5.54). The emission observed with Fermi-LAT at the lowest energies
constrain the density to n∼1 cm−3, still compatible with the smooth ejecta density
(Micelotta et al., 2016). The model is generally compatible with the X-ray points and
with MAGIC spectrum above a few TeV, it is consistent with the radio measurements,
but fails to reproduce the γ-ray spectrum between 1 GeV and 1 TeV, being a factor 2-3
below the measured LAT spectrum. In addition, to accommodate a magnetic field of
the order of ∼1 mG, as reported in Uchiyama and Aharonian (2008), the amplitude of
the electron spectrum would need to be decreased at least by a factor 100, rendering a
negligible IC contribution at the highest energies.

Indeed the GeV-TeV emission of Cas A is usually attributed to accelerated protons.
Assuming a population of CRs characterised with a power-law function with an
exponential cut-off to fit the gamma-ray data from 60 MeV to 15 TeV, and a target
density of 10 cm−3 (Laming and Hwang, 2003). The proton spectrum is best-fit with a
hard index of 2.21 and an exponential cut-off energy of 12 TeV, which implies a modest
acceleration of CRs to VHE, well below the energy needed to explain the CR knee.
The proton energy above 1 TeV is 5.1·1048 erg, which is only ∼0.2% of the estimated
explosion kinetic energy of Esn = 2 · 1051 erg (Laming and Hwang, 2003). The total
energy stored in protons above 60 MeV amounts to 9.9 · 1049 erg.

3This constraint is due to the fact that, as reported in section 5.1, several emission regions, likely
associated to different particle populations, were identified at those wavelengths.

4Note that the structure in the spectral shape around 2 MeV is due to the transition between the
two asymptotic regimes described in Baring et al. (1999), used in the naima code.
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Figure 5.5: Multi-wavelength SED of Cas A. The different lines
show the result of fitting the measured energy fluxes using naima and
assuming a leptonic or a hadronic origin of the GeV and TeV emission.

The flat spectral index is in agreement with the standard theory of diffuse shock
acceleration, but the low cut-off energy implies that Cas A is extremely inefficient in
the acceleration of CRs at the present moment. The characteristic maximum energy
of these accelerated protons can be expressed, for standard parallel shock acceleration
efficiency (see e. g. Lagage and Cesarsky 1983), as:

Epc ' 450(
B

1 mG
)(

t0
100 yr

)(
us

3000 km/s
)2η−1 TeV, (5.3)

where us ∼ 103 km/s is the speed of the FS, t0 ∼ 330 yrs is the age of Cas A and
η ≥ 1 is the acceleration efficiency (the ratio of the mean free path of a particle to its
gyroradius), which is ∼1 in the Bohm diffuse regime. Even assuming a magnetic field
as low as a few tens of µG, a poor acceleration efficiency η �10 has to be invoked to
accommodate the low cut-off energy found. Alternatively, Cas A may also be located
in a very diffusive region of the Galaxy, resulting in a very fast escape of protons of
TeV and higher energies.

5.6 Conclusion

We report for the first time in VHE, observational evidence of the presence of a cut-off
in the VHE spectrum of Cas A. The spectrum measured with the MAGIC telescopes
can be described with a power-law with exponential cut-off at ∼3.5 TeV, which is
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preferred over a power-law scenario with 4.6σ significance. This result implies that
even if all the TeV emission was of hadronic origin, Cas A could not be a PeVatron at
its present age.

Several emission regions must be active to explain the radio, X-ray, GeV and TeV
emission of Cas A. A purely leptonic model cannot explain the GeV-TeV spectral shape
derived using LAT and MAGIC data, as previously suggested based on observations
at lower energies (Atoyan et al., 2000b,a; Zirakashvili et al., 2014; Saha et al., 2014).
A leptonic population is undoubtedly necessary to explain the emission at radio and
X-ray energies. Indeed, the bright steep-spectrum of the radio knots and the bright
radio ring, demand an average magnetic field of ∼1 mG (Vink and Laming, 2003),
whereas the faint plateau surrounding Cas A, seen in Chandra continuum images, is
consistent with a lower magnetic field, which might contribute to the observed emission
above 1 TeV.

However, the bulk of the HE and VHE γ-rays must be of hadronic origin. Cas A is
most likely accelerating CRs, although to a rather low energy of a few TeV. Even if
some leptonic contribution at VHE produced by IC cannot be excluded, this would
not affect our conclusion that acceleration in Cas A falls short of the energies of the
knee of the CR spectrum.

A detailed study of the cut-off shape is crucial to understand the reason behind this low
acceleration efficiency, displaying different characteristics if due to escape of CRs, to
the maximum energy of the accelerated CRs, or some other mechanism. Observations
with the future Cherenkov Telescope Array (CTA, Actis et al. 2011), with a superior
angular resolution and sensitivity, will allow detailed spectroscopic investigation on
the cut-off regime (Romoli et al., 2017), providing new insights on the acceleration
processes in Cas A.
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Chapter 6

Discovery of TeV γ-ray emission
from the neighborhood of the

supernova remnant G24.7+0.6 by
MAGIC

6.1 Introduction

SNRG24.7+0.6 is a 0.5◦ × 0.25◦ center-filled SNRs located at a distance of ∼5 kpc
(Reich et al., 1984; Leahy, 1989). It was discovered at radio frequencies as a couple
of incomplete shells centered at RAJ2000 = 278.57◦ and DECJ2000 = −7.09◦, and a
linearly polarized central core with a flat radio spectrum of α = −0.17 (Reich et al.,
1984), indicating the presence of a central PWN powered by an undetected pulsar.
With an estimated age of 9.5 kyrs (Leahy, 1989) it belongs to the class of middle-aged
SNRs interacting with MCs as suggested by observations in the IR energy band and
by the detection of 13CO J=1-0 line at 110 GHz (Galactic Ring Survey, Jackson et al.
2006). Petriella et al. (2008, 2012) discovered several molecular structures, including
a molecular arm extending into the center of the SNR and two clouds bordering the
remnant. An observation using VLA also revealed several ultracompact H II regions
within the SNR. The presence of many young stellar objects in the interaction region
between the SNR and the MCs (Petriella et al., 2010) also suggests that SNRG24.7+0.6
might be triggering star formation (see Figure 6.1).

In X-rays, the SNR was observed with the Einstein Observatory. Although not
included in the Einstein catalog of SNRs (Seward, 1990), Leahy (1989) derived a
flux over the entire SNR region of (3.9± 0.9) × 10−13 erg cm−2 s−1 obtained from a
very scarce statistics image. The same data yield an UL to a differential flux under
the assumption of a point source (<2′ diameter) and extended (circle of 8′ radius)
emission of < 1× 10−12 erg cm−2 s−1 and < 3× 10−12 erg cm−2 s−1, respectively. No
pulsar or PWN has been found yet, although an attempt was done with XMM -Newton
(OBS. ID:0301880301, PI: O. Kargaltsev). Unfortunately, a strong flare affected the
observation, reducing the useful exposure to only 3.5 ks and limiting the sensitivity of
the observations.

At GeV energies, Fermi -LAT (Atwood et al., 2009) has proved to be efficient detecting
SNR (Acero et al., 2015, 2016b; Ackermann et al., 2016). Above 100 MeV, two
populations of SNRs seem to be emerging: a population of young, X-ray bright,
SNRs (Abdo et al., 2011; Tanaka et al., 2011) and a second one including evolved
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Figure 6.1: 13CO J=1-0 emission integrated between +38 and
+50 km s−1. Blue contours show the radio emission at 20 cm of
SNRG24.7+0.6 from the Multi Array Galactic Plane Imaging Sur-
vey. Magenta crosses indicate the position of young stellar objects
detected with Spitzer. The red cross shows the position of the star and
star forming region G24.73+0.69. Adapted from Petriella et al. (2010).

GeV-bright SNRs, interacting with MCs (Reichardt et al., 2012; Abdo et al., 2010b).
SNRG24.7+0.6 belongs to the second group. Although initially associated with the
pointlike source 3FGLJ1833.9–0711, it appears in the first Fermi SNR catalog (Acero
et al., 2016b) as an extended source (TSext = 24.89) with a gaussian morphology of
radius 0.25◦ ± 0.04◦stat ± 0.12◦sys centered at RAJ2000 = 278.60◦ ± 0.03◦stat ± 0.1◦sys and
DECJ2000 = −7.17◦ ± 0.03◦stat ± 0.03◦sys. The Fermi -LAT extension is compatible with
the radio size, but offset by 0.08◦ towards the star-forming region G24.73+0.69. Its
extension at energies larger than 10 GeV was confirmed by the presence of the SNR
in both, the catalog of extended sources in the Galactic plane (FGES, Ackermann
et al. (2017)) and the third catalog of hard Fermi-LAT sources (3FHL, Ajello et al.
(2017)). SNRG24.7+0.6 has been, in fact, identified with FGESJ1834.1–0706 and
3FHLJ1834.1–0706e. The 3FHL tag confirms the hard spectral nature of the source,
thus a potential VHE gamma-ray emitter. The spectral results of the sources identified
with the SNRG24.7+0.6 are all compatible within each other showing that the energy
spectrum is well-represented with a power-law function of index ∼ 2.2. We take as
reference from now on the spectral results in the FGES catalog (Ackermann et al.,
2017): a photon index of 2.28 ± 0.14 and an integral flux from 10 GeV to 2 TeV of
(5.37± 0.66)× 10−10 erg cm−2 s−1.

Above ∼500GeV, the region is covered by the HESS Galactic Plane Survey (HGPS,
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Deil et al. (2015)). The HGPS shows a large and bright source, dubbed HESS J1837–
069 (Aharonian et al., 2005, 2006)), located ∼ 0.9◦ away (at RAJ2000 = 279.41◦

and DECJ2000 = −6.95◦) from SNRG24.7+0.6. HESS J1837–069 has an elliptical
extension of 0.12◦ ± 0.02◦ and 0.05◦ ± 0.02◦ (with an orientation angle ω = 149◦ ± 10◦

counterclockwise with respect to the positive Galactic latitude axis) at energies above
200GeV. The power-law spectrum of HESSJ1837–069 exhibits a photon index of
2.27± 0.06 and an integral flux above 200 GeV of (30.4± 1.6)× 10−12cm−2s−1. Deeper
observations of the region around HESSJ1837–069 (Marandon et al., 2008) led to a
more detailed morphological analysis resulting in a new position of HESS J1837–069
offset 0.05◦ from the initial report at RAJ2000 = 279.37◦ ± 0.008◦ and DECJ2000 =
−6.92◦± 0.008◦ with a size of 0.22◦± 0.01◦. These observations also revealed a second
source located to the South of HESS J1837–069, when considering the International
Celestial Reference System (ICRS). No official name was attributed to this potential
new source. However, no significant emission from the SNRG24.7+0.6 region was
claimed. Recent results from the new HGPS (Abdalla et al., 2018) characterize the
region of HESS J1837–069 as a three Gaussian morphology with a total extension of
0.36◦±0.03◦. This region of the sky was also covered by HAWC at energies above 1TeV.
The second HAWC catalog (Abeysekara et al., 2017) shows a 15σ-excess compatible
with the position of HESS J1837–069 after ≈ 1.5 year observation time.

In this chapter, we study the whole observation dataset available of the region centered
around SNRG24.7+0.6 with Fermi-LAT in the energy range between 60MeV and
500GeV. We also explore with the MAGIC telescopes the region around it to investigate
the spectral behavior above 150GeV of a possible counterpart and to constrain the
emission region observed by Fermi-LAT around the SNR.

6.2 Fermi-LAT data analysis

We analyzed ∼8 years of data, spanning from 4 August 2008 (MET 239557417) to 13
June 2016 (MET 490060804), with energies between 60MeV and 500GeV. The CLEAN
event class was chosen for this analysis since the source is expected to be extended as
reported in latest results, (Acero et al., 2016b). In addition, it benefits from a lower
background above 3GeV with respect to the standard SOURCE event class. The
corresponding IRF, P8R2_CLEAN_V6, was used. For this analysis we used the PSF
event type partition (see Chapter 3.3.1 for more details) and applied specific zenith
angle cuts, to reduce the background from the Earth limb, to each of the quartiles.
Thus photons with zenith angles larger than 70, 75, 85 and 90 for PSFs ranging from
PSF0 to PSF3 were excluded. Each of the quartiles was analyzed independently and
combined at later stages of the analysis by means of a joint likelihood fit.

We performed a maximum likelihood analysis in a circular region of 20◦ radius
centered on the radio source position (RAJ2000 = 278.57◦; DECJ2000 = −7.09◦),
this region is referred as the ROI. The emission model for our ROI includes the
LAT sources listed in the 3FGL (Acero et al., 2015) within a region of 30◦ radius
around SNRG24.7+0.6 and the diffuse gamma-ray background models; the Galac-
tic diffuse emission modelled by gll_iem_v06.fits and the isotropic component by
iso_P8R2_CLEAN_V6_PSFX_v06.txt (where X identifies the number of the PSF
quartile), including the instrumental background and the extragalactic radiation.
Sources lying within 4◦ from the source of interest were fit with all their spectral
parameters left free. For sources between 4◦ and 7◦, as well as the Galactic diffuse and
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Figure 6.2: 3◦ × 3◦ Fermi-LAT residual map (i.e. TS map) of
the region centered at SNRG24.7+0.6 after removing the sources
3FGLJ1834.6–0659 and 3FGLJ1833.9–0711 from the source model.
A single extended source, FGESJ1834.1–0706, results in a better fit

value.

isotropic components, only their normalisation parameters was allowed to vary. All
the spectral parameters for sources located farther than 7◦ from the source of study
remained fixed in the maximum likelihood fit.

Due to strong contamination from diffuse emission in the Galactic plane at low energies
and the large PSF, both mainly below 1GeV, in order to study the morphology of the
source we performed a specific analysis to the LAT data above 1GeV in a 8◦×8◦ region
centered on the SNRG24.7+0.6 radio position. Given that our source of interest might
be associated with two 3FGL sources (3FGLJ1834.6–0659 and 3FGLJ1833.9–0711),
which are tagged as ‘confused’, meaning that they are regions with significant photon
excesses (i.e. can arise from a wrongly modeled background or a confused source
pile-up), we removed them from the model to study in more detail the residual map,
Figure 6.2. We found that replacing these sources with a single point-like source (we
called it FGES J1834.1–0706 as in Ackermann et al. 2017) located at the radio position
increases the fit value (i.e. likelihood value). We performed a localisation procedure1

within a region of 3◦×3◦ to determine the correct position of FGES J1834.1–0706 and
we tested for a possible extended morphology modeling our source with a Gaussian
function rather than a point-like source. Assuming a power-law spectral shape with
spectral index -2, we performed an iterative likelihood fit for values of the source
extension2 ranging from 0.01◦ to 1.01◦ with a step of 0.1◦.

1http://fermipy.readthedocs.io/en/latest/advanced/localization.html
2http://fermipy.readthedocs.io/en/latest/advanced/extension.html
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Figure 6.3: Energy threshold of the MAGIC observations. A
gaussian function has been fit to determine the peak of the γ-ray

simulated distribution (refer to section 2.5.3.8).

For the spectral analysis we split the 60MeV–500GeV energy range into 10 logarith-
mically spaced bins. We required that each spectral point has at least a TS = 4,
otherwise 95% CL ULs were computed.

6.3 MAGIC data analysis

MAGIC telescopes observed SNRG24.7+0.6 between April 5th and August 29th, 2014,
for a total of 33 hours, at zenith angles between 35◦ and 50◦, yielding an analysis
energy threshold of ∼200GeV (see Figure 6.3). The observations were performed in
wobble-mode at four symmetrical positions 0.4◦ away from the source, so that the
background can be estimated simultaneously. After quality cuts, which account for
hardware problems, unusual background rates and bad atmospheric conditions, ∼31
hours of dark-time high quality data were selected.

The analysis was performed using the MARS software and following the standard
analysis chain explained in Chapter 2. In particular, we derived On-maps of γ-like
events based on their arrival directions in sky coordinates. On-maps need a reliable
background determination in order to minimize the contribution of hadronic CRs
surviving data selection cuts. To reconstruct the background maps from wobble
observations we use the Exclusion Map technique implemented in SkyPrism package
(Vovk et al., 2018). The Exclusion Map technique allows us to estimate the background
with no need of prior knowledge of the position of the source under evaluation while we
exclude from the computation regions containing known sources. On and Background
maps are used as input files for a two-dimensional maximum likelihood fit of the source
model that is performed using the Sherpa package (Doe et al., 2007; Freeman et al.,
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2001). Specifically, the source model is constructed and optimized by using an iterative
method in a likelihood approach. First, a single source is added to a model containing
only the isotropic background. Different positions and extensions of the source are
evaluated and the values maximizing the likelihood value are assigned to the source.
A second source is added to the model and the same procedure is executed; positions
and extensions for both sources are re-calculated. Following the approach explained in
section 3.3.5, these two nested models are compared through their maximum likelihood
fit value and the one that better represents the data is kept. Additional sources are
iteratively introduced to the model until the maximum likelihood fit is no longer
improved. For the spectral analysis of the best-fit model obtained, we performed an
additional one-dimensional maximum likelihood fit using SkyPrism.

6.4 Results

The obtained significance skymap, represented in Figure 6.4 in the ICRS coordinate
system, shows significant extended emission at energies larger than 200GeV. The
two-dimensional likelihood morphological analysis led to the detection of three distinct
sources:

• The brightest source is identified with HESS J1837–069 (Aharonian et al., 2006;
Marandon et al., 2008). It presents an extended morphology characterized by a
single Gaussian of 0.23◦ ± 0.01◦ size centered at RAJ2000=279.26◦ ± 0.02◦ and

Figure 6.4: 2◦ × 2◦ significance map of the region obtained with
MAGIC. The extension of MAGICJ1835–069 and MAGICJ1837–073
are represented by the thin and thick blue circles, respectively, while
Fermi-LAT sources from FGES and 3FGL catalogs in the FoV are
displayed by green dashed lines and a cross. The position and extension
of HESS J1837–069 as measured in this work are displayed by a yellow

dashed circle.
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F0 Γ E0

[TeV−1 cm−2 s−1] [TeV]
HESS J1837–069 (4.4± 0.2)× 10−12 2.29± 0.04 1.25
MAGICJ1837–073 (1.7± 0.1)× 10−12 2.29± 0.09 0.95
MAGICJ1835–069 (1.4± 0.2)× 10−12 2.74± 0.08 1.31

Table 6.1: Fitting spectral parameters of the three sources detected
by MAGIC. For all of them the best fit function is a power-law with
a photon index, Γ, and a normalisation factor F0 at the decorrelation

energy E0.

DECJ2000=−6.99◦ ± 0.01◦. This emission is also associated with the extended
source FGESJ1836.5–0652 in the Fermi -LAT catalog of extended sources in the
Galactic plane.

• The excess to the South from HESSJ1837–069 is significantly resolved at 7.7σ
level. It has a Gaussian morphology with an extension of 0.08◦±0.05◦ centered at
RAJ2000 = 279.34◦ ± 0.14◦ and DECJ2000 = −7.28◦ ± 0.24◦. Spatially coincident
with the hotspot reported in Marandon et al. (2008) at 11σ level, we dubbed it
MAGICJ1837–073 since no name was previously attributed to it. This source
is also coincident with 3FGLJ1837.6–0717 reported in the Third Catalog of
Fermi-LAT sources (Acero et al., 2015).

• The third significant source is, for the first time, detected at VHE, and it is named
MAGICJ1835–069. Detected at 13.5σ (TS =181) it is significantly extended and
well modelled by a Gaussian of 0.21◦±0.05◦ centered at RAJ2000 = 278.86◦±0.23◦

and DECJ2000 = −6.94◦±0.05◦. Its center position is offset by 0.34◦ (1.5σ away)
with respect to the center of the SNRG24.7+0.6. In particular, it lies between
two extended sources detected above 10 GeV by Fermi -LAT, FGES J1836.5–0652
and the FGESJ1834.1– 0706, being the first associated to HESS J1837–069 and
the second to the SNRG24.7+0.6.

Figure 6.5 shows the SEDs obtained for the three sources using the above-described
morphologies as extraction regions. The spectral fit parameters are summarized in
Table 6.1. The differential energy spectrum of HESS J1837–069 is well represented by
a power-law function with a photon index of 2.29± 0.04 and an integral flux above
200 GeV of (7.2 ± 0.3) × 10−11 erg cm−2 s−1. The spectrum obtained is compatible
within statistical errors with those measured by HESS, 2.27± 0.06 in Aharonian et al.
(2006) and 2.34 ± 0.04 in Marandon et al. (2008). For MAGICJ1837–073, the best
spectral fit model is a power-law with a 2.29 ± 0.09 photon index and an integral
flux above 200 GeV of (1.5 ± 0.1) × 10−11 erg cm−2 s−1. The emission fades away
above 3TeV, and the calculated 95% CL UL at 6TeV does not constrain any potential
cut-off. Finally, the energy spectrum of MAGICJ1835–069 is best fit by a power-law
function with a photon index of 2.74 ± 0.08 and an integral flux above 200 GeV of
(4.4± 0.6)× 10−11 erg cm−2 s−1.

The results obtained with our Fermi -LAT analysis are in good agreement with the pre-
viously published ones. Two sources are detected in the surrounding of SNRG24.7+0.6;
FGESJ1834.1–0706 and the counterpart of the MAGIC source MAGICJ1837–073,
3FGLJ1837.6–0717. The first shows an extended Gaussian emission of 0.24◦ ± 0.01◦

centered at RAJ2000 = 278.57◦ ± 0.01◦ and DECJ2000 = −7.19◦ ± 0.02◦ (see Figure
6.2), offset by 0.1◦ from the radio position. The significance of the extension is of
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Figure 6.5: Top: SED of FGESJ1834.1–0706 (red circles) and
MAGICJ1835–069 (black circles) between 60MeV and 10TeV. In the
Fermi energy range the spectrum follows a power-law of index 2.14
while it softens in the MAGIC range to an index of 2.74. The EPWL fit
for the whole energy range is represented by a blue curve. Light gray
bands are the statistical uncertainties. Bottom: SED of HESS J1837–
069 (black) and MAGICJ1837–073 (red), measured by MAGIC between
200GeV and 10TeV. Solid lines represent the power-law fits applied
to each spectrum. Light shaded bands are the statistical uncertainties.
The spectrum measured for MAGICJ1837–073 with Fermi -LAT along
with its power-law fit are represented in dark red. Blue dashed line
represents the joint χ2 fit of MAGICJ1837–073 between 60 MeV and

10 TeV.

11.4σ (TSext = 1313). This result is in agreement with the one published in the FGES
catalog. As stated in section 1, we consider as reference analysis the one of the FGES
catalog, thus we refer to the source found in our analysis as FGESJ1834.1– 0706.

3It was calculated from TSext = TSgauss − TSpoint as stated in Lande et al. (2012)
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The energy spectra obtained with our Fermi-LAT analysis from 60 MeV to 500
GeV for FGESJ1834.1– 0706 and MAGICJ1837–073 are represented in Figure 6.5.
MAGICJ1837–073, for which we used the morphology derived in the MAGIC analysis,
exhibits a power-law spectrum with a photon index of Γ = (2.15 ± 0.05) and a
normalisation factor of N0 = (3.9± 0.4)× 10−8 TeV−1 cm−2 s−1 at the decorrelation
energy of 8GeV. The mismatch between the flux level obtained by the two instruments
is well within the systematic uncertainties, estimated to be of the order of 15% for
MAGIC. A joint χ2 fit of MAGICJ1837–073 between 60 MeV and 10 TeV results
in a similar power-law of photon index Γχ2 = (2.12 ± 0.02) with a factor of N0 =
(1.52 ± 0.1) × 10−12 TeV−1 cm−2 s−1 at 1TeV. On the other hand, FGESJ1834.1–
0706 shows a power-law spectrum with a photon index of Γ = (2.14 ± 0.02) and a
normalisation factor of N0 = (2.9± 0.1)× 10−7 TeV−1 cm−2 s−1 at the decorrelation
energy of 5.8GeV. In this case, the energy spectrum of FGESJ1834.1– 0706 connects
smoothly with that of MAGICJ1835–069 even though the extraction regions are not
exactly the same, thus suggesting that the two sources most likely have a common
origin. Under this assumption, we performed a joint χ2 fit between 60 MeV and 10 TeV
that resulted in a power-law function with an exponential cut-off (hereafter, EPWL),

F0

(
E
E0

)−Γ
e
− E
EC , where F0 is the prefactor; E0 is the decorrelation energy; EC is the

cut-off energy and Γ is the photon index. The resulting fitting parameters are provided
in Table 6.2.

F0 Γ EC E0

[TeV−1 cm−2 s−1] [TeV] [GeV]
EPWL (9.1± 3.0)× 10−10 2.12± 0.02 1.9± 0.5 92

Table 6.2: Joint χ2 fit spectral parameters for SNRG24.7+0.6 from
60MeV to ∼10TeV. Photon index, Γ, normalisation factor F0 at the

decorrelation energy E0 and cut-off energy are presented.

6.5 Discussion

We observed the FoV of SNRG24.7+0.6 with the MAGIC telescopes, following the
detection of a hard-spectrum source reported by the LAT collaboration (Ackermann
et al., 2016), coincident with the position of the remnant. The analysis of 31 hours of
data using the Sherpa package on the reconstructed skymap resulted on the detection
of three different sources in the MAGIC data set. The brightest one, located at
RAJ2000=279.26◦± 0.02◦ and DECJ2000=−6.99◦± 0.01◦, has been previously reported
by the HESS collaboration and dubbed HESS J1837–069. The spectral features derived
by MAGIC in this region are compatible within errors with the ones reported by HESS.
To the South, MAGICJ1837–073, a separated gamma-ray excess located ∼ 0.34◦ away
from HESSJ1837–069 is detected at a level of 7.7σ. The spectrum of this source
extends to low energies, suggesting an hadronic origin of the emission. The region
was subject of observations with XMM -Newton (Katsuta et al., 2017) in a search for
a Multiwavelength (MWL) counterpart of the GeV emission they detect (G25B in
Figure 6.6). No PWN, SNR, or pulsar with spin-down luminosity > 1× 1034 erg s−1

was found in the region. However, the region is rich in molecular content at velocities
v = 45−65 km s−1 and the analysis of the X-ray observations reveals a large number of
point sources, suggesting a stellar cluster. Assuming a distance of d = 5 kpc (Katsuta
et al., 2017), the total luminosity above 100 MeV of MAGICJ1837–073 amounts to



74 Chapter 6. Discovery of TeV γ-ray emission from the neighborhood of the
SNRG24.7+0.6

Lγ = 7.7×1035 erg s−1, which will imply a density on CRs ofWp ≈ 2.1×1050 erg
(

cm−3

n

)
,

being n the ambient proton density. This number is comparable to the ones found in
other clusters such Westerlund 2 (Yang et al., 2017) or Cygnus Cocoon (Ackermann
et al., 2011). Such large luminosity could be achieved by assuming a quasi-continuous
injection of CRs, powered by the kinetic energy released for instance in the winds of
massive stars (∼ 1 × 1038 erg s−1), integrating during the cluster lifetime (typically
∼ 1× 104 yrs).

Finally, the statistical test performed allows us to resolve MAGICJ1835–069 (RAJ2000 =
278.86◦ ± 0.23◦; DECJ2000 = −6.94◦ ± 0.05◦) from HESSJ1837–069 at a 13.5σ level.
Moreover, the projected distance of the new gamma-ray enhancement to the pulsar
associated to HESS J1837–069 (for a distance of 6.6 kpc, from Gotthelf and Halpern
(2008)), is more than ∼65 pc, which, if not impossible, makes the association be-
tween the two sources unlikely. MAGICJ1835–069, however, partially overlaps with
the emission detected with LAT. Indeed, a new analysis presented by Ackermann
et al. (2017) describes the complex region with three very extended sources, being the
MAGIC source comprised between two sources; FGESJ1836.5–0652, which includes
also HESS J1837–069, and FGESJ1834.1–0706 which is consistent with 3FHLJ1834.1–
0706e on the position of the SNRG24.7+0.6. The flux measured with MAGIC is in
good agreement with the one measured by LAT, extending the spectrum from 60 MeV

Figure 6.6: Residual map derived from MAGIC data after sub-
tracting the emission from HESSJ1837–069 and MAGICJ1837–073.
Over the MAGIC map, the SNRG24.7+0.6 radio emission and CO
contours are overlaid in red and black, respectively. CO contours are
selected from 10 K to 50 K in step of size 4 to emphasize the cloud spa-
cial distribution. The yellow dashed ellipses (G25A and G25B) along
with their three components represent the Fermi -LAT sources found
within the region by Katsuta et al. (2017). The white cross displays the
position of the OB association/cluster G25.18+0.26 identified through

X-ray observation by Katsuta et al. (2017).
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to 10 TeV with a spectral photon index of ∼2.7. The VHE broad band spectral shape
shows a clear break in the GeV-TeV regime. This change of slope can be described
by a power-law with an exponential cut-off at EC = 1.9TeV. The source shows an
extended morphology and it is offset 0.34◦ with respect to center of the remnant, in a
region where the later seems to be blowing an IR shell. The measured offset translates
onto a projected size of 30 pc at the distance of 5 kpc. The CO-rich surrounding of
SNRG24.7+0.6 could be originating the detected GeV-TeV emission, and the offset
between the emission detected by LAT and the MAGIC source could be interpreted in
terms of diffusion mechanism similar to what was proposed for IC 443 (Torres et al.,
2008, 2010), since the diffusion radius of runaway protons of 100GeV could account
for this distance. However the large error in the position and the complexity of the
region in the GeV regime prevents further conclusions in that sense. Nevertheless, in
this scenario and similarly to other evolved SNRs, the VHE LAT/MAGIC combined
spectrum model can be explained as a result of proton-proton interaction between the
CRs accelerated in SNRG24.7+0.6 and the ones in the surrounding gas. The total
luminosity above 100 GeV amounts Lγ = 7.5 × 1034 erg s−1 , which translates to a
total energetics stored in accelerated protons of Wp = 1.3× 1050 erg

(
cm−3

n

)
.

A second scenario involving a yet-undiscovered PWN associated to the remnant cannot
be discarded. At a distance of d∼5 kpc, the separation between MAGICJ1835–069
and the position of the remnant is within the range of offsets found in VHE PWNe
(see Figure 6 from Abdalla et al. (2017)). The corresponding surface brightness, in
the energy range from 1 to 10TeV, would be ∼ 1.2 × 1030 erg s−1 pc−2. Applying
the correlation found by Abdalla et al. (2017) (S∼ Ė0.81±0.14), an extremely bright
Ė ∼ 1.4× 1037erg s−1 pulsar should be powering the VHE source. Both the upper and
the lower limit of the spin-down luminosity (S∼ Ė0.67 and S∼ Ė0.95, respectively) seem
unrealistically large for not being detected either in gamma ray or radio. However, the
strong confusion due to the several extended sources in the field limits the detection of
such pulsars in the GeV regime. In addition, the extension of the PWN would exceed
the SNR size, rendering this scenario unlikely if the putative PWN is connected to the
SNR.

Recently, Katsuta et al. (2017) carried out a study of the γ-ray emission coming
from the region around, RAJ2000 = 279.22◦ and DECJ2000 = −7.05◦, with the Fermi-
LAT telescope. They found that the emission detected is divided into two elliptical
extended region, G25A and G25B, composed of 3 components each (see Figure 6.6).
For G25A, all three components have the same spectral shapes while for G25B, the
G25B1 component has a harder spectrum than the other two. Due to their elongated
morphology and spectral similarity (similar surface brightness and hard energy spectra;
Γ = (2.14 ± 0.02) and Γ = (2.11 ± 0.04), respectively), they suggested that both
γ-ray emissions are produced by the same astrophysical object. In addition, through
X-ray observations of the region with XMM -Newton they found the candidate young
massive OB association/cluster, G25.18+0.26 (Figure 6.6). They proposed that both
extended γ-ray emissions (G25A and G25B) are associated with an star forming region
driven by G25.18+0.26. Assuming the scenario proposed by Katsuta et al. (2017) in
which either the accelerated particles are interacting with regions of enhanced gas
density or particles are being accelerated within these regions, current TeV telescopes
like MAGIC should reveal a diffuse γ-ray emission from the whole G25A and G25B
regions. However, as seen from the maps, MAGIC only detects emission from the
G25A1 component that is coincident with MAGICJ1835–069. We can conclude it
is unlikely that the emission detected at VHE with MAGIC comes from the OB
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association/cluster G25.18+0.26 detected in X-rays.

6.6 Conclusion

MAGIC observations of the FoV of the SNRG24.7+0.6 resulted in the discovery of a
new TeV source in the Galactic plane, MAGICJ1835–069, detected above ∼150GeV.
MAGICJ1835–069 lies 1.5σ away from SNRG24.7+0.6, which is in turn associated
with the Fermi source FGES J1834.1–0706. Based on the good agreement between the
LAT and MAGIC spectral measurements, the two sources are likely to be associated.
The link with the SNR is also plausible if one considers the diffusion radius of particles
to explain the observed offset. The GeV-TeV emission observed by Fermi and MAGIC
can be interpreted as CRs accelerated within the remnant interacting via proton-proton
collisions with the CO in the surrounding medium.

A second statistically significant detection of a slightly extended γ-ray signal from the
south of HESSJ1837–069 is reported. The spectrum of the source extends to 3TeV
with no sign of an spectral break. This detection is believed to be produced by CRs
interacting with a stellar cluster. If confirmed, MAGICJ1837–073 will be part of the
scarce group of similar objects like Westelund 1 and 2 or the Cygnus cocoon and may
contribute to a better understanding of whether these objects can account for the
Galactic CR flux.
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Chapter 7

Rotation Powered Pulsars

7.1 Introduction

Pulsars (PULSating stARS) are commonly defined as rapidly-rotating highly-magnetized
NSs that emit very regular pulsed emission. This emission, mainly of non-thermal
origin, can be detected over the whole electromagnetic spectrum.

Little green men was the explanation given to the first pulsar observation. In 1967, the
radio signal detected by Jocelyn Bell Burnell turned out to be emission from the source
PSR B1919+21, the first object recognized as a pulsar (Hewish et al., 1968). Ever
since, the number of detected pulsars has grown rapidly to the more than 2400 radio
pulsars currently listed (Beskin et al., 2015). Nevertheless, despite the large number of
pulsars observed and the huge improvement in detection techniques/instruments, our
understanding of how and where particles emit the radiation being observed at Earth
remains incomplete.

This chapter presents the current understanding on rotation powered pulsars (i.e.
pulsars extracting their energy from the rotation) and reviews the main γ-ray emission
models postulated so far.

7.2 Origin and properties

NSs are the remnants of massive stars (8-25M�) whose core collapsed during the SN
explosion, when nuclear reactions were no more capable of balancing the gravitational
collapse. After nuclear burning, if the star mass is larger than the Chandrasekhar
limit (∼1.4M�), but not great enough to overcome the neutron degeneracy pressure to
become black holes (∼3M�), the star evolves into a NS, i.e. beta reactions take place
transforming most of the electrons in neutrons (Kalogera and Baym, 1996).

NSs have a core radius of about 10 km and a typical observed mass between 1.4 and
2M�, although theoretically they could reach a mass of 3M� (Kalogera and Baym,
1996; Chamel et al., 2013). Conservation of both the magnetic flux and the angular
momentum gives the NS a strong magnetic field (B∼ 1012G) and a very rapidly rotating
behavior, with periods ranging from milliseconds to seconds. The rotational energy
of the pulsar is converted into electromagnetic and particle energy, slowing down its
rotation. Considering the magnetic field of the NS as a dipolar B-field, the rotational
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Figure 7.1: PṖ -diagram of detected pulsars. Known association of
pulsars are also represented. Dashed lines represent the characteristic
age, spin-down luminosity and B-fields. From Lorimer and Kramer

(2004).

energy loss rate can be therefore equated to the magnetic dipole radiation as follows

Ė = IΩΩ̇ = −4π2I
Ṗ

P 3
(7.1)

where Ω = 2π/P is the angular frequency of the NS and I the moment of inertia. This
is the so-called spin-down luminosity and ranges from ∼ 1028 to ∼ 1038 erg/s.

The pulsar rotational age can be estimated assuming that the change in the pulsar
angular velocity, Ω̇ = −κΩn, is due to magnetic dipole radiation losses, where κ is
a positive constant and n is the braking index, n = Ω̈Ω/Ω̇2, obtained differentiating
the equation for Ω̇. Integrating Ω̇ = −κΩn, assuming n is constant throughout the
lifetime of the pulsar and higher than 1, and Ω� Ωt=0, the characteristic age is then
defined by

τ ≈ − Ω

(n− 1) Ω̇
=

P

(n− 1) Ṗ
(7.2)

For the case of a magnetic dipole field, n = 3 (Becker and Pavlov, 2002), the age of
the pulsar is given by

τ ≈ − Ω

2Ω̇
=

P

2Ṗ
(7.3)

The characteristic age must be taken with care as it only represents an upper limit of
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the true age of the pulsar. Recently, Johnston and Karastergiou (2017) showed that
the braking index is in fact changing during the evolution of the pulsar. This new
understanding could naturally explain for example the change in the braking index
observed in PSRJ1846-0258 in about 6 years (Archibald et al., 2015).

The magnetic field at the surface of the NS can also be calculated within the dipole
field approximation and is given by (Manchester and Taylor, 1977)

Bs ≈ 6.4× 1019
√
PṖ (7.4)

The evolution and properties of pulsar populations can be summarized in a PṖ -diagram
(Figure 7.1). The age and magnetic flux lines are derived from equations 7.2 and 7.4
respectively. Two populations of pulsars can be distinguished: canonical pulsars and
Millisecond Pulsarss (MSPs). Canonical pulsars are identified by the large clump in
the diagram and associated with the younger pulsars. As pulsars grow old, they are
spun-down by magnetic braking and their emission weakens according to equation 7.1
until they become invisible, i.e. moving downward to the right in Figure 7.1. Some
‘death’ pulsars in binary systems can spin up again by accretion (Alpar et al., 1982;
Radhakrishnan and Srinivasan, 1982) and they enter the MSP region located at the
lower left corner of the PṖ -diagram.

7.3 Global magnetospheric description

As a first approximation, pulsars can be modeled as perfect conductors whose charge is
located on the surface of the star (Deutsch, 1955). Surface charges induce a powerful
electric field perpendicular to the surface and parallel to the magnetic field. This
component of the electric field exceeds gravitational forces by many orders of magnitude

Figure 7.2: Schematic representation of the Goldreich-Julian mag-
netosphere model for an aligned rotator. The thin long dashed line
represents the null surface (Ω ·B = 0), zone where the charge density

ρGJ changes sign. From Goldreich and Julian (1969).
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and it is capable of ripping off charges from the star filling the space around the pulsar
(i.e. the magnetosphere) with plasma. The charge density in the magnetosphere follows
then the so-called Goldreich-Julian density (Goldreich and Julian, 1969):

ρGJ =
∇ · E

4π
≈ −Ω ·B

2πc
. (7.5)

The Goldreich and Julian (1969) simplified description of the magnetosphere for an
aligned rotator is represented in Figure 7.2.

The pulsar magnetosphere should therefore be close to a force free magnetosphere
where magnetic field lines and plasma particles co-rotate with the star out to a radial
distance of

RLC =
c

Ω
=
Pc

2π
. (7.6)

This distance is known as the light cylinder and delimits the magnetosphere. Beyond
the light cylinder, magnetic field lines (known as open field lines) can no longer close
back to the NS surface and flow outwards in a spiral structure as shown in Figure 7.3.
Charged particles sliding along open field lines leave the pulsar magnetosphere into
the pulsar wind zone (see Figure 7.2).

Figure 7.3: MagnetohydroDynamic (MHD) simulation of an
oblique rotator with an angle of 60◦ between the magnetic and ro-
tation axis. B-field lines are represented in an horizontal and vertical
slice. White dashed lines delimitate the light cylinder. Adapted from

Spitkovsky (2006).

7.4 Pulsar γ-ray emission

Given the necessity to have acceleration regions where the non-thermal emission is
produced, in the standard paradigma of high-energy pulsars ad-hoc acceleration regions
(i.e. gaps) were introduced. Gaps are pair starved regions, related to the open magnetic
field lines, where the charge density departs from the Goldreich-Julian density, ρ 6= ρGJ ,
enabling an electric field (parallel to the magnetic field) to build up and accelerate
charged particles.
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Figure 7.4: Location of the acceleration regions in the pulsar
magnetosphere. From Giavitto (2013).

Depending on the location of the acceleration gaps, depicted in Figure 7.4, three main
magnetospheric scenarios have been proposed for the production of γ-rays.

• Polar Cap (PC): At the PC (i.e. the region mapped out on the stellar surface
by the footprints of the open magnetic field lines), due to the current outflow
along open magnetic field lines, a vacuum gap (Ruderman and Sutherland, 1975)
or a space-charge limited flow (Arons and Scharlemann, 1979) accelerator is
formed. Gaps are self-limited by the development of pair cascades. At altitudes
where particles reach high Lorentz factors and emit γ-ray photons via curvature
radiation, pair cascades are activated by these energetic photons, thus feeding
the region with enough charges to equalize again the Goldreich-Julian charge
density and stopping the growth of the gap. This spatial upper limit of the
gap is the so-called Pair Formation Front (PFF), and it is usually produced at
∼ 1 stellar radius from the NS surface. In PC models, γ-rays are emitted via
curvature radiation by e± moving along the curved magnetic field lines. However,
since the gap is formed close to the stellar surface where the magnetic field is
very strong, HE photons are absorbed via magnetic pair production constraining
the maximum energy of emitted γ-rays (Baring, 2004). Therefore, the energy
spectrum predicted by the PC model is characterized by a super-exponential cut-
off (Daugherty and Harding, 1996). Figure 7.5 shows the pulsar phase profiles,
also known as LCs, predicted by PC models. LCs present a double peaked
structure with almost any peak phase separation as long as the viewing angle,
i.e. inclination angle between the observer and the rotational axis of the pulsar,
is small (less than 30◦). For greater viewing angles, the PC cannot accommodate
wide-separated double peaks, e.g. the Crab Pulsar. Note that as the emission is
strongly beamed, both peaks come from only one of the poles as shown in Figure
7.5.

• Slot Gap (SG): The SG model was first presented as an extension of the PC
model (Arons, 1983). Inside the PC, E‖ is strong and the PFF forms close
to the NS surface, whereas at the PC rim E‖ vanishes. Near this edge, the
electric field decreases and a larger distance is needed to accelerate charged
particles up to Lorentz factors able to trigger pair production. The PFF grows
to higher altitudes becoming asymptotic to the last closed field line near the
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Figure 7.5: Phase plot illustrating the change in the Light Curve
(LC) as seen at different observation angles (Top-Left). LC, and sketch
of the emission in the PC model for an inclination angle of 10◦ (Bottom-
Left and Right, respectively). Dashed lines represent the null charge

surface. From Grenier and Harding (2006).

light cylinder (Muslimov and Harding, 2004; Harding, 2007). The radiation
from the high altitude SG consists of two components: curvature radiation from
primary electrons at the highest energies, and synchrotron from both primaries
electrons and secondary particles produced by lower altitude cascades. The
resulting energy spectrum is therefore characterized by a simple exponential
cut-off. SG models predict double peaked LCs where each peak is produced by
the accumulation of photons (i.e. caustics, see Figure 7.6) due to time-of-flight
delay and aberration from the trailing side of each pole (Figure 7.7).

• Outer Gap (OG): The OG model (Cheng et al., 1986; Romani and Yadigaroglu,
1995; Cheng et al., 2000; Takata et al., 2006), initially proposed by Cheng et al.
(1986) focuses on charge-depleted regions along open field lines crossing the null
surface, where Ω · B = 0. Particles are accelerated by the strong developed
E‖-field to Lorentz factors of Γ ∼107 and efficiently emit photons via curvature

Figure 7.6: Scheme of the formation of caustics. Solid and dashed
black curves represent the same magnetic field line at t and t + ∆t,
respectively. γ-rays emitted by the same electron moving along the
magnetic field lines are displayed in red. The caustic only forms at the
trailing edge due to time-of-flight delay and aberration. From Giavitto

(2013).
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Figure 7.7: Same as Figure 7.5 for the SG model with an inclination
angle of 45◦. From Grenier and Harding (2006).

radiation. Accelerated charged particles induce particle cascades self-regulating
the growth of the gap and shorting out E‖. At that high altitudes, pairs are
created via photon-photon process (using thermal photons from the NS surface)
since the magnetic field is too low, orders of magnitude weaker than near the
surface, for magnetic pair production. In this region, the maximum γ-ray energy
is determined by the balance between the energy gained through acceleration
and losses by curvature radiation due to the bending of the magnetic field lines
(Hirotani, 2013). Consequently, the energy spectrum falls more gradually than
in PC model, producing an exponential cut-off. In the OG emission model,
the observer sees emission associated with only one magnetic pole, since the
acceleration region develops only above the null surface. The LC predicted
presents two peaks coming from the caustics produced at the trailing field lines
as in the SG models, Figure 7.8.

Alternative models to the magnetospheric scenarios have also been proposed to explain
the observed emission. These models locate the particle acceleration region and
production of γ-rays in the so-called pulsar wind zone. The pulsar wind zone is the

Figure 7.8: Same as Figure 7.5 for the OGmodel with an inclination
angle of 65◦. Note that the OG develops only above the null surface.

From Grenier and Harding (2006).
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region between the light cylinder and the termination shock. This region is populated
by a relativistic magnetized wind (γ ∼106) formed by particles that have escaped the
magnetosphere (i.e. unshocked pulsar wind).

• Striped Wind: The striped pulsar wind model as an alternative site for the
production of γ-ray emission was introduced by Kirk et al. (2002) based on
Coroniti’s work (Coroniti, 1990). Beyond the light cylinder, owing to a non-
parallel magnetic and rotation axis, open magnetic field lines propagate outwards
forming a striped morphology. A current sheet, i.e. region across which the
B-field direction reverses, oscillates around the equatorial plane as the pulsar
rotates, connecting the equator with field lines of opposite polarity every half
period (Figure 7.9). The sheet corrugations increase their amplitude linearly

Figure 7.9: Striped wind for an oblique rotator. In the meridional
plane the striped wind develops with a current sheet (blue curve)
separating B-fields of opposite polarity. In the equatorial plane the

wind forms a perfect spiral. From Mochol (2017).

with distance from the star. At high latitudes, the magnetic field does not change
sign, and therefore current sheets are not present. Particles are believed to
be accelerated through magnetic reconnection in current sheets, specifically at
X-points where magnetic field re-arranges and a reconnection electric field is at
play (Figure 7.10). Those accelerated particles are then advected by magnetic
islands (i.e. plasmons) where they emit synchrotron radiation that is in turn

Figure 7.10: Structure of current sheets from particle-in-cell simu-
lations. First two panels illustrate the particle density with magnetic
field lines overlaid. Third panel shows the magnetic energy and bottom
panel the kinetic energy per particle. In the second panel, X-points are
identified in the region between plasmoids where magnetic field lines

reconnect. From Sironi and Spitkovsky (2014).
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Figure 7.11: Representation of different pulse profiles observed
from the striped wind at different viewing angles. Emission comes from
the current sheet when crossing an imaginary sphere of radius r0. From

Mochol (2017).

upscattered via IC mechanism giving rise to a SSC spectral component at VHEs
(Mochol and Pétri, 2015; Mochol, 2017). In the striped wind model, the emission
is strongly beamed into a cone of 1/Γ in the radial direction (Γ is the Lorentz
factor of the wind). Therefore, only emission in the direction of the observer
will be detected. Moreover, assuming that each corrugation of the current sheet
radiate when crossing an imaginary sphere of radius r0, an observer will see up
to two pulses depending on the viewing angle as illustrated in Figure 7.11. In the
case of a double-peaked structure, the pulse profile may also present a ‘bridge’
emission whose intensity varies in function of the observation angle.

• Unshocked Wind: The state of the wind is characterized by the ratio of electro-
magnetic to kinetic energy flux of particles in it. When ejected from the light
cylinder the wind is electromagnetically dominated and changes in its way to
the termination shock to kinematically dominated. How this transition occurs is
still a matter of debate (sigma problem). However, one possibility is to assume
that there is an acceleration region present in the unshocked wind where the
toroidal magnetic field (Figure 7.3) dissipates and converts energy into energy
of relativistic particles. Bogovalov and Aharonian (2000) and Aharonian et al.
(2012) showed that beyond a certain radius, RW in Figure 7.12, the particle
acceleration is completed and accelerated particles move tangentially to the light
cylinder in straight lines. These particles in turn IC scatter magnetospheric
photons moving radially outwards (Figure 7.12), producing γ-ray emission. The
non-zero angle (θ) between electrons and photons will greatly boost the energy
of the scattered photons. It is important to remark that only particles moving
towards the observer will produce observable emission. Moreover, LCs in this
emission model should mimic those of the target photon field but slightly shifted
in phase due to time-of-flight delay.

Currently, the detection of TeV pulsed emission from the Crab Pulsar (Ansoldi et al.,
2016) cannot be explained by any of these models in the way they were initially
presented. New and revisited models accounting for this specific VHE emission will be
overviewed in Chapter 8.
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Figure 7.12: Geometry of the unshocked wind model. Trajectories
of the different particles, with their interaction angle, θ, are illustrated.
RL represent the light cylinder radii and RW the radii at which particles
are accelerated and emit radiation. The time-of-flight delay between
X-ray photons from the star surface and γ-rays produced via IC is
estimated in the bottom right corner. From Aharonian et al. (2012).
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Chapter 8

TeV pulsed emission from the Crab
Pulsar detected by MAGIC

8.1 Introduction

The Crab Pulsar, PSRJ0534+220, is a young NS with a rotational period of 33.65ms.
It was created after the SN explosion SN1054. The Crab is the most powerful pulsar
in our Galaxy, with a spin-down luminosity of 4.6× 1038 erg s−1. It is one of the few
pulsars detected across the electromagnetic spectrum, from radio up to gamma rays,
and one of the brightest at high energies (0.1<E<10GeV, Fierro et al. 1998; Kuiper
et al. 2001; Abdo et al. 2010c; Aliu et al. 2008). The exceptionality of this source was
underlined by the discovery of pulsed emission at energies up to 400GeV (Aliu et al.,
2011; Aleksić et al., 2012a).

The Crab Pulsar emission profile is characterized by three components: two pulses sepa-
rated by ∼0.4 in phase and detected at all energies, from centimeter radio (E∼10−4 eV)
to VHE gamma rays (E> 100GeV), and a third component, the bridge, which is defined
as the pulse phase between the Main Pulse (P1) and the Second Pulse (P2). P1 is
the peak with the highest intensity at radio frequencies and defines phase 0, whereas
P2, which is often referred to as the interpulse, is weaker at radio frequencies. The
amplitude of the three components, however, exhibits a strong energy dependence
(Kuiper et al., 2001). At hard X-rays, P2 starts to dominate over P1 up to few MeVs
where the trend changes and the emission from P1 is more intense than P2. In the
gamma-ray regime, P2 becomes dominant once again above 25-50GeV. In the case of
the bridge, its emission is only substantial between ∼1 keV and ∼10MeV and in the
∼50-150GeV energy window, as reported in Aleksić et al. (2014).

The first year of Fermi observations of the Crab Pulsar spectrum validates the
consensus view of magnetospheric scenarios reporting a spectral cut-off at (5.8±0.5stat
±1.2syst)GeV (Abdo et al., 2010c). However, the gamma-ray emission later discovered
at VHE (Aliu et al., 2011; Aleksić et al., 2011, 2012a), is not compatible (at more than a
6σ CL) with an exponential cut-off in the spectrum and thus highly unlikely to be based
on synchro-curvature magnetospheric emission. This unexpected spectral component,
described by a steep power-law function (with a photon index of approximately
3.5) between 25 and 400GeV, required an ad-hoc explanation (Aliu et al., 2011;
Aleksić et al., 2011, 2012a). Some of the new postulated models proposed the same
synchro-curvature mechanism responsible for the sub-TeV emission, yet under extreme
conditions (Bednarek, 2012; Viganò and Torres, 2015), whereas others proposed a new
mechanism to be at work: IC scattering on seed photon fields (from IR to X-rays).
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In the case of IC radiation, different VHE gamma-ray production regions have been
considered; from the acceleration gap in the pulsar magnetosphere (Aleksić et al.,
2011; Hirotani, 2011; Lyutikov et al., 2012; Harding and Kalapotharakos, 2015) to the
ultra-relativistic cold wind outside the light cylinder (Aharonian et al., 2012; Bogovalov
and Aharonian, 2000; Mochol and Pétri, 2015).

In this chapter, we revisit the first 5 years of Fermi-LAT data of the Crab from 100
MeV to 300 GeV and we analyze more than 300 hours of excellent quality data of the
Crab recorded with MAGIC telescopes from 2007 to 2014, both in stand-alone and
stereoscopic mode. The main goal of this work was to shed some light on the origin of
this VHE spectral component. In particular, we looked for the highest energy reached
in the spectrum of the Crab Pulsar and for any potential spectral features of the peaks.

8.2 Fermi-LAT data analysis

The analysis was performed on 1742 days of data (∼4.8 years) taken in survey mode
from the 4th August 2008 (MET 239557417) to the 13th May 2013 (MET 390096003).
Only events with the highest quality reconstructed energies between 100 MeV and 300
GeV within a ROI of 30◦ radius around the source were selected. Data taken at zenith
angles >100◦ where the Earth’s albedo γ-rays increase the background contamination
were excluded. In addition, data periods of reported Crab glitches or flares (see
Appendix A) were also excluded from the data sample to avoid timing errors during
the analysis.

Due to the long period analyzed in this work and the high spin-down luminosity of the
Crab Pulsar, its rotational behaviour must be known precisely for a correct calculation
of the timing properties. Hence, we made use of the monthly updated ephemerides
provided by the Jordrell Bank Observatory1 (Lyne et al., 1993) to phase-fold the γ-rays
detected during the observation time. The phase-folding was applied by the TEMPO2
timing package (Hobbs et al., 2006). In order to generate highly accurate LCs, an extra
energy dependent data selection taking into account the performance of the instrument
at different energies was performed. Therefore, only photons of energy EMeV within
an angle θ < max [6.68− 1.76log10(EMeV ), 1.3]◦ around the pulsar position were kept
for the LC computation (Abdo et al., 2010c).

The spectral analysis was performed in 18 independent energy bins, using a maxi-
mum likelihood method with the old PASS7 IRF (P7SOURCE_V6 ), in a 26 ◦× 26◦

square region centered on the Crab position. Our constructed model for the ROI
accounts for 73 point-like sources and 1 extended source, IC443, extracted from the
second Fermi-LAT source catalog (2FGL), as well as the Galactic diffuse emission
and the extragalactic isotropic diffuse emission modelled by gal_2yearp7v6_v0 and
iso_p7v6source, respectively (see Figure 8.1). Among all the spectral parameters, only
those for sources within 7◦ from the Crab were left free. Additionally, normalization
factors for sources within 14◦ were also allowed to vary during the maximum likelihood
fitting process.

Note that depending on the pulsar component we want to study, i.e. P1, P2 or Bridge,
the phase interval of the analysis has to be chosen accordingly since they are not
active during the whole period of the pulsar. Moreover, the normalization factor of
all the sources in the model have to be scaled down to the considered pulsar phase.

1http://www.jb.man.ac.uk/research/pulsar/crab.html
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Figure 8.1: Fermi counts map, between 100MeV to 300GeV,
centered at the nominal position of Crab (MET 239557417 to MET
342576000). 2FGL sources, used in this analysis are plotted in green.
The Crab Pulsar + Nebula system has been represented by a red cross.

Based on Abdo et al. (2010c), we used the phase interval definition stated in Table
8.1 for the nebula and pulsar components. Moreover, as can be appreciated in Figure
8.1, the position of the pulsar and the nebula are coincident to within the angular
resolution of LAT. Thus, owing to the spatial coincidence of both pulsed and unpulsed
emission, one has to also estimate the nebula contribution to properly compute the
pulsar spectrum. While the pulsar emission dominates over the nebula in the on pulse
interval, i.e. P1-P2-Bridge (see Table 8.1), the nebula stands out in the off-pulse phase,
i.e. from 0.52 to 0.87, where the pulsar turns out. Therefore, in the off-pulse interval
the emission observed above the diffuse background is associated exclusively to the
nebula.

8.2.1 Crab Nebula spectral description

Prior to the analysis of the pulsar and its spectral characterization, we run a maximum
likelihood pre-analysis for the nebula for events belonging to the off-pulse. We find
that the emission of the Crab Nebula is well characterized by a broken power-law
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Component Phase Interval
FERMI MAGIC

P1 0.87–1.07 0.983–1.026
P2 0.27–0.47 0.377–0.422

Bridge 0.08–0.26 0.026–0.377
Nebula / off-pulse 0.52–0.87 0.52–0.87

Table 8.1: Definition of the Crab phase intervals.

defined as,
dN (E)

dE
= Nsync

(
E

GeV

)−αsync
+NIC

(
E

GeV

)−αIC
(8.1)

as shown in Figure 8.2.

In fact, the emission from the nebula has two differentiated components, synchrotron
and IC, described by simple power-laws; first and second members of the right part of
the equation 8.1, respectively. Below ∼300MeV the synchrotron emission produced by
accelerated electrons in the nebular magnetic field dominates while IC on FIR, CMB
and synchrotron emitted photons is responsible for the emission above this energy.
Since the flux obtained has been calculated from the off-pulse and the nebula emits
over the whole period of the pulsar, the resulting flux has to be normalized to the total
phase interval (factor 1

0.35). The fit parameters for both components are summarized
in Table 8.2. The spectral parameters presented here are compatible within errors with
those presented in Abdo et al. (2010c) after renormalizing to the total phase. After
characterizing the Crab Nebula spectrum, it is introduced into our constructed source
model as an additional background source with its spectral parameters fixed. Once
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Figure 8.2: SED of the Crab Nebula obtained with LAT. The
broken power-law fit to the spectral points is shown by the red curve.
Synchrotron (blue dashed line) and IC (green dashed line) components

are represented by two different power-laws.
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Nsync/IC α

[MeV−1 cm−2 s−1]
Synchrotron (1.41± 0.7)× 10−12 4.1± 0.3

IC (1.5± 0.1)× 10−11 1.72± 0.03

Table 8.2: Fermi -LAT results of the spectral fit of the Crab Nebula
to a broken power-law function. Errors indicate 1σ statistical uncer-
tainties. The normalization factors are computed at the decorrelation

energy of 1GeV.

the emission/contamination from nebula has been estimated, the spectral analysis
of the different components of the Crab Pulsar can be performed by re-running the
maximum likelihood fit for each specific phase interval.

8.3 MAGIC data analysis

The analysis was performed by using the MAGIC software, MARS, following the
standard procedure reviewed in Chapter 2. In this work, we used all the data taken in
stereoscopic mode, until April 2014, when pointing at the Crab. The selected sample
includes observations performed at zenith angles up to 70◦. In order to increase the
statistics we also reanalyzed Crab mono data recorded between 2007 and April 2009
at zenith angles smaller than 30◦. Both mono and stereo data samples were taken
partially in On and, partially, in wobble mode, the latter pointing at two symmetric
positions 0.4◦ away from the source. Data affected by hardware problems and bad
atmospheric conditions were removed from the analyzed data sample. An additional
selection based on the rate of gammas received per day was applied to ensure the
highest quality data possible. Hence, days differing by more than 30% of the mean rate
were discarded for the analysis (see Figure 8.3). In the case of the Crab Pulsar, the
background above ∼100GeV is not dominated by hadrons but by γ rays from the Crab
nebula. Therefore, we applied background rejection cuts specifically optimized for a
gamma-dominated background and specified that at least 90% of our Monte Carlo
gamma rays survive those cuts. The cut optimization is based on the maximization of
the modified formula (17) by Li and Ma 1983:

σγ = σLi&Ma

(
Non

ΓTP

ΓOP
+ αNex, Non,

ΓTP

ΓOP

)
where:

Non is the number of events in the off-peak region that survive the hadronness
and θ2 cuts.

Nex is the total number of excess events from the Crab Nebula.

ΓTP and ΓOP are the relative widths of the peak regions (TP=P1+P2) and the
off-pulsed region, respectively.

α is the ratio between the energy fluxes of the Crab Nebula and the Crab Pulsar,
as found in Aleksić et al. (2012a) and Aleksić et al. (2012b), respectively.

This formulation simulates the significance observed from the pulsar considering as
background the hadronic and nebula events derived from the nebula excess and the
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power-law spectrum for the pulsar found in Aleksić et al. 2012a. After the cuts
mentioned, data resulted in 97 hours and 221 hours of effective time for the mono and
the stereo samples, respectively. Given that the considered data sample spreads over
seven years, with different instrument performance, we divided it into nine analysis
periods, each with its corresponding Monte Carlo simulation. The whole data sample
was then further subdivided into three zenith angle ranges to better account for the
corresponding dependence of the image shower parameters at the cut optimization
stage. This resulted in 19 data sub-samples, each period with at least some low zenith
angle data used to monitor the instrument performance. RF matrices and energy LUTs
were produced separately. Figure 8.4 shows the effective area for four representative
datasets: mono, and stereo in the three zenith angle ranges. The differential energy
spectra obtained for each independent analysis were later on combined, once weighted
with the exposure, when applying the unfolding procedure to correct for the energy
bias and the detector finite energy resolution (see Chapter 2). We tested five different
unfolding methods described in Albert et al. (2007b) and verified their consistency
within statistical errors. The ULs to the differential flux were obtained by following the
Rolke et al. (2005) method under the assumption of a Gaussian background and 20%
systematic uncertainty in the flux level. Hereafter, the ULs will be given at 95% CL.
As for Fermi data, the pulsar rotational phase of each event was defined by using the
TEMPO2 package (Hobbs et al., 2006) and the monthly ephemeris publicly provided
by the Jodrell Bank Observatory (Lyne et al., 1993).

Figure 8.3: Distribution on a day-to-day basis of the rate of
gammas registered by MAGIC for the low zenith data sample (data
within 5◦ and 35◦). Days outside the 30% of the mean rate (shaded
region) were discarded. The red dashed line represent the mean rate of

the data sample: 3.67 gammas per minute.
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Figure 8.4: Effective area, after background rejection cuts, for four
representative data subsamples.

8.4 Results

8.4.1 Light curve in the Fermi range

Using the data selection cuts described in section 8.2 for our ROI, we detected a total
number of 97068 events at the Crab position. After accounting for the diffuse and
nebula contributions, we estimated in 69900 the number of pulsed γ-ray events. Figure
8.5 shows the corresponding γ-ray LC in the full energy range from 100 MeV to 300
GeV. The LC shows two clear peaks, P1 and P2 with a significant bridge emission in
between. The corresponding significances found for each of the components are 213σ
(P1), 159σ (P2) and 50σ (Bridge).

Looking at the peak shapes shown in Figure 8.5, it can be noticed that they have
different behaviors. The highest peak (P1) shows a slight asymmetry in its rise and
fall, while the second peak (P2) is clearly asymmetric with steeper fall than rise. For
this reason, we used asymmetric functions to fit both peaks. In particular, we used
two half-Lorentzian profiles with different widths for the leading an the trailing edges,
defined by:

L(x) = C0


1

1+
(

x−φ
HWHML

)2 , x < φ

1

1+
(

x−φ
HWHMT

)2 , x > φ

where C0, φ, HWHML and HWHMT identify the amplitude, peak position, and
Half Width at Half Maximum (HWHM) for the leading and trailing edges of the
peaks, respectively. The fits were performed on the 0.002 degree binned LC (Figure
8.5) to properly account for any finer structure. The results are presented in Table
8.3. We found that P1 and P2 are located at phases φP1 = 0.9997 ± 0.0003 and
φP2 = 0.3973 ± 0.0009, respectively, and therefore with a peak separation of δφ =
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LE TE

Figure 8.5: LC obtained with photons of energies between 100 MeV
and 300 GeV within an energy dependent region as described in section
8.2. Data are presented over two rotation periods, to better emphasize
the behavior of P1 which lies at ∼ phase 0. The LC is displayed with
two different binnings. Top: Binned to 0.01 in phase. The dashed
line shows the constant background level calculated from the off-region.
Vertical lines delimit the Trailing Edge (TE) and Leading Edge (LE).
Bottom: Binned to 0.002 in phase. The fits to the peaks are represented

in red.

0.3976± 0.0009. These results are comparable to those found in Abdo et al. (2010c)
and Abdo et al. (2013).

To study the energy dependent behavior of the two peaks, the 100 MeV–300 GeV
energy range has been divided in multiple energy bands. Figure 8.6 shows the pulse
profile in the resulting five energy subranges (0.1–0.3 GeV, 0.3–1 GeV, 1–3 GeV, 3–10
GeV and 10–300 GeV). Table 8.3 reports the result of the asymmetric Lorentzian fits
in each of the energy bands.

Energy Range φP1 HWHMP1
L HWHMP1

T φP2 HWHMP2
L HWHMP2

T

(GeV) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2)

0.1–0.3 99.7 ± 0.1 6.4 ± 0.1 5.6 ± 0.1 39.8 ± 0.2 14.3 ± 0.5 9.5 ± 0.5
0.3–1.0 100.0 ± 0.1 5.2 ± 0.1 4.6 ± 0.1 39.7 ± 0.1 14.1 ± 0.4 6.9 ± 0.3
1.0–3.0 99.9 ± 0.1 4.5 ± 0.1 5.9 ± 0.2 40.0 ± 0.2 17.9 ± 0.7 5.2 ± 0.3
3.0–10.0 100.5 ± 0.1 4.6 ± 0.3 6.8 ± 0.4 40.2 ± 0.3 21.0 ± 1.7 4.8 ± 0.5
10.0–300.0 102.1 ± 1.7 15.2 ± 4.3 32.3 ± 11.0 39.9 ± 1.1 26.6 ± 7.7 8.4 ± 2.6
0.1–300.0 99.98 ± 0.03 5.50 ± 0.06 5.18 ± 0.07 39.73 ± 0.09 15.2 ± 0.3 7.1 ± 0.2

Table 8.3: Detailed LC fit parameters.
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Phase

Figure 8.6: LCs in diferent energy bands, from top to bottom
0.1–0.3 GeV, 0.3–1 GeV, 1–3 GeV, 3–10 GeV and 10–300 GeV. Pulse
profiles are binned to 0.01 except above 10 GeV, binned to 0.02 in
phase. Dashed lines represent the constant background level calculated

from the off-region.

While the phases of the peaks do not present any significant shift with energy consid-
ering their statistical error, from the pulse profiles it is noticeable that their relative
amplitudes, hence the fluxes of the different components, are in fact energy dependent
with P2 and the bridge more significant the higher the energy is, contrarily to P1. We
quantitatively studied this effect by computing the flux ratio P2/P1 and Bridge/P1
calculated from the number of events detected above background as a function of
energy. These results are represented in Figure 8.7. Table 8.4 lists the number excess
events with their corresponding errors and the ratios for P2/P1 and Bridge/P1. The
Bridge/P1 ratio gradually increases with energy, as well as the P2/P1 ratio but with a
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Figure 8.7: P2/P1 and Bridge/P1 ratios as a function of energy
for Fermi -LAT.

Energy Range P1 P2 Bridge P2/P1 Bridge/P1
(GeV) (excess counts) (excess counts) (excess counts)
0.1–0.3 10947 ± 85 6239 ± 85 927 ± 85 0.570 ± 0.009 0.084 ± 0.008
0.3–1.0 17971 ± 112 11121 ± 112 2026 ± 112 0.619 ± 0.007 0.113 ± 0.006
1.0–3.0 7296 ± 54 5572 ± 54 1805 ± 54 0.764 ± 0.009 0.247 ± 0.008
3.0–10.0 1486 ± 37 1477 ± 37 761 ± 37 0.99 ± 0.04 0.51 ± 0.03
10.0–300.0 86 ± 20 152 ± 20 100 ± 20 1.8 ± 0.5 1.2 ± 0.4

Table 8.4: Numbers of excess events of P1, P2 and Bridge and
their relative component ratios.

rise less pronounced. For energies above 10 GeV the lack of statistics2 makes difficult
any analysis, even so, it is already visible a change in the trend with P2 becoming
dominant over P1.

Furthermore, the width of the pulses also change with the energy, in our case, the
broader, the higher the energy is. This is illustrated in Figure 8.8, where the last
energy bin was excluded due to its poor statistics. We found that the widening of P1 is
caused primarily by its trailing edge falling slower than the leading one for increasing
energies, whereas the other way around is true for P2. The slight widening of the
trailing and leading edge of P1 and P2, respectively, coincide with the rising of the
bridge component in between. It might be possible that a contribution from the bridge
at the higher energies, where it is more significant, is contaminating the adjacent edges
of the peaks and therefore broadening them.

Of particular importance is the last energy bin considered, between 10 GeV and
300 GeV which is the one overlapping with MAGIC. The significances found in this

2Different binnings were tested to improve the fit yielding all similar results. The election was
taken based on the χ2.
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Figure 8.8: Measured HWHM of P1 and P2 for the different energy
bands.

energy bin for P1 (4.8σ), P2 (7.9σ) and Bridge (5.5σ) show the detection of the three
components already above 10GeV.

8.4.2 Light curve in the MAGIC range

In the search for pulsation above 400GeV from the Crab Pulsar with MAGIC, we
defined the phase ranges of the two peaks according to the results obtained in previous
studies (Aleksić et al., 2012a, 2014): P1 ∈ (−0.017, 0.026) and P2 ∈ (0.377, 0.422).
The interval (0.52, 0.87) was considered as off-pulse region (Fierro et al., 1998) from
where we estimated the background to be subtracted from the histograms. Crab Pulsar
phase intervals for MAGIC observations are also summarized in Table 8.1

Figure 8.9 shows the folded pulse profile that we obtained between 100 and 400 GeV
and above 400GeV with 318 hours of observation. The choice of the lower energy limit,
100GeV, it has been made for comparison purposes with previous LCs reported by
MAGIC and VERITAS. It is, thus, by no means related to the energy threshold of the
observations. In the 100–400GeV energy range P1 is detected with a significance level
of 2.8σ, whereas P2 at 5.6σ after Li and Ma (1983, Eq.17). The statistical significance
of the detection of P1 and P2 with this analysis is smaller than that reported in Aleksić
et al. (2014) with less than half of the observation time. This is due to the fact that the
analysis presented in this work combines many periods with different sensitivities and
energy thresholds, and these factors contribute to decreasing the signal-to-noise ratio
at the lowest energies, hence worsening the overall signal significance. If we consider
only stereo data for zenith angles below 35◦, which identify the data sub-sample with
the lowest energy threshold and best gamma/hadron separation at the lowest energies,
we end up with 152 hours of observation time, yielding a signal significance of 6.6σ and
8.8σ for P1 and P2 respectively in the energy range between 100 and 400GeV. This
is in agreement with the results reported in Aleksić et al. (2014) for the 50–400GeV
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Figure 8.9: Pulse profile of the Crab Pulsar between 100 and
400GeV (upper panel) and above 400GeV (bottom panel). The pulse
profile, shown twice for clarity, is background subtracted. The bin
width around the two peaks is 4 times smaller (0.007) than the rest
(0.027) in order to highlight the sharpness of the peaks. Yellow-dashed
areas identify the phase intervals of the two peaks, whereas the gray

areas show the off-pulse region.

energy range. Beyond 400GeV (above the energy threshold of all the 19 analyses used
here) the gamma/hadron separation is efficient for all the analyses and we have a
clear gain in the signal significance for the combined sample due to the increase in
photon statistics. For energies above 400GeV, only P2 is significantly detected. The
total number of excess events are 544± 92 and 188± 88 for P2 and P1 respectively
corresponding to 6σ and 2.2σ for each peak. With a higher energy cut at 500GeV,
meant to exclude the lower energy events from the LC where no spillover correction
is applied, P2 is still detected at 5σ, while P1 shows a 2σ signal with 418± 104 and
152 ± 108 excess events, respectively. Table 8.5 summarizes the number of excess
events with their corresponding significance for different integral energy ranges. For
completeness, Figure 8.10 shows the LCs obtained above 680GeV and 950GeV where
the peaks are not significantly detected anymore. P2, however, still shows a hint of
emission above 680GeV.
The significance of the pulsation was also tested with the H-test (de Jager et al., 1989)
which does not make any a priori assumption on the position and the shape of the
pulsed emission, resulting in a 3.5 (2.8)σ significance above 400 (500)GeV.

We fitted the pulse profile above 400GeV to a finer-binned distribution with two
symmetric Gaussian functions (Figure 8.11, as in Aleksić et al. 2012a). The available
statistics does not allow us to consider more complicated functions. P1 and P2
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Energy Range P1 P2
[GeV] Nex Significance Nex Significance

100–400 1252 ± 442 2.8 σ 2537 ± 454 5.6 σ
> 400 188 ± 88 2.2 σ 544 ± 92 6.0 σ
> 680 130 ± 66 2.0 σ 293 ± 69 4.3 σ
> 950 119 ± 54 2.2 σ 190 ± 56 3.5 σ

Table 8.5: Number of excess events and corresponding significance
of P1 and P2 for different energy ranges in ∼320 hours of data.

Figure 8.10: Same as Figure 8.9 for energies above 680GeV (upper
panel) and above 950GeV (bottom panel).

are located at the phases 0.9968± 0.0020stat + 0.0055syst − 0.0048syst and 0.4046±
0.0035stat + 0.0047syst − 0.0074syst respectively, in agreement with the positions found
at lower energies between 50 and 400GeV (Aleksić et al., 2012a). The Full Width
at Half Maximum (FWHM) for P1 is 0.010 ± 0.003stat + 0.003syst − 0.010syst and
for P2 is 0.040± 0.009stat + 0.005syst − 0.008syst. The systematic uncertainty on the
estimation of the peak positions reflects the precision of the pulsar ephemerides used
for this analysis, taking into account the RMS of the timing noise, the uncertainty
on the arrival time of the first pulse taken as reference, and the error introduced by
the barycentric corrections. Systematic errors also include the effect of the histogram
binning. The width of the peaks beyond this energy are compatible within the errors
with the value measured below 400 GeV. Note that results reported above 400GeV for
P1 are obtained for a ∼2σ signal and should be taken with caution.
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Figure 8.11: Pulse shapes near the peaks above 400GeV, binned
to 0.007 in phase. The symmetric Gaussian functions fit to the peaks
are represented by the red curve along with their statistical errors (red

dashed lines).

8.4.3 Energy spectra

Figure 8.12 shows the MAGIC phase-folded SED of P1 and P2 from ∼70GeV up to
1.5TeV, obtained by using the Bertero’s unfolding method (Bertero, 1989). Both the
differential energy spectra are well-described by power-law functions with a photon
index, α, of 3.2± 0.4stat± 0.3syst and 2.9± 0.2stat± 0.3syst, for P1 and P2, respectively.
The results of the fits, shown in Table 8.6 for a normalization energy at 150GeV (being
the decorrelation energy 120 GeV and 190 GeV for P1 and P2 respectively), are in
agreement with MAGIC earlier results (Aleksić et al., 2012a, 2014). In the case of
P2, the power-law spectrum extends up to 1.5TeV, whereas P1 cannot be measured
beyond 600GeV. At energies above the last obtained spectral point, we computed ULs
to the differential flux, at 95% CL, under the assumption of the power-law spectrum
found in this work. However, a 20% change in the photon index yields a variation of
less than 15% in the UL. These ULs are not constraining any possible cut-off, given
the current sensitivity of the instrument. The spectral points and ULs are listed in
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Figure 8.12: Phase-folded SED of the Crab P1 (black circles)
and P2 (blue circles) measured by MAGIC between ∼70GeV and
1.5TeV. The butterfly identifies the systematic uncertainty on the flux
normalization and spectral index, whereas the arrow on the bottom
right corner corresponds to an energy shift of 17%. The Crab nebula
spectrum (open squares) is also shown for comparison. The differential
flux ULs, at 95% CL, are computed under the assumption of the

power-law spectrum measured in this work.

Table 8.7.

On the other hand, in the Fermi energy range (100MeV-300GeV) both peaks are well
characterized by power-laws with exponential cut-offs such as (Figure 8.13),

dN

dE
= fEo

(
E

Eo

)−α
e−E/EC

where fEo , α and EC are the differential flux at the decorrelation energy, i.e. 1GeV,
the photon index and the energy cut off, respectively. The best fit parameters
describing both components are summarized in Table 8.8, together with their statistical

Eo fEo α χ2/dof
[GeV] [TeV−1 cm−2 s−1]

MAGIC P1 150 (1.1 ±0.3)×10−11 3.2 ±0.4 0.3/3
P2 150 (2.0 ±0.3) ×10−11 2.9 ±0.2 5.4/5

Fermi P1 50 (5.3 ±0.8)×10−10 3.5 ±0.1 1.5/6
& MAGIC P2 50 (5.7 ±0.6) ×10−10 3.0 ±0.1 8.4/9

Table 8.6: Results of the spectral fit to a power-law function. Errors
indicate 1σ statistical uncertainties. Eo indicates the decorrelation

energy.
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P1 P2
Energy Bin Center E2dN/dEdAdt E2dN/dEdAdt
[GeV] [GeV] [TeV cm−2 s−1] [TeV cm−2 s−1]

×10−13 ×10−13

69–108 87 5.0 ± 1.9 8.7 ± 1.8
108–167 135 3.2 ± 1.4 6.5 ± 1.2
167–259 210 1.6 ± 0.9 3.7 ± 0.8
259–402 325 0.9 ± 0.4 1.9 ± 0.3
402–623 504 0.6 ± 0.3 1.6 ± 0.3
623–965 781 < 0.3 1.4 ± 0.3
965–1497 1211 <0.5 0.9 ± 0.3
1497–2321 1879 <0.6 < 0.6
2321-3598 2914 <0.8 < 0.8

Table 8.7: Spectral points of the MAGIC measurements shown in
Figure 8.12.

Figure 8.13: Phase-folded SED of the Crab P1 (black circles)
and P2 (blue circles) at HE and VHE (open and filled circles). The
results of the power-law with exponential cut-off fits to the Fermi
points are illustrated by the dashed lines, whereas the joint Fermi-
LAT/MAGIC fits to power-law functions above 10GeV are shown by
solid lines. The ULs to the differential flux, at 95% CL, are computed
under the assumption of the power-law spectrum found in this work,

as represented by the slope of the arrows.

uncertainties.

It can be noticed, however, that spectral points deviate from the exponential cut-off
already above few GeVs as expected from VHE observations (Aliu et al., 2011; Aleksić
et al., 2011, 2012a). Accordingly, the extrapolation of the MAGIC energy spectra to
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Eo fEo α EC χ2/dof
[GeV] [MeV−1 cm−2 s−1] [GeV]

Fermi P1 1 (8.9± 0.1)× 10−11 1.88± 0.01 3.7± 0.2 49/14
P2 1 (3.1± 0.1)× 10−11 1.97± 0.01 7.2± 0.6 23/15

Table 8.8: Fermi -LAT results of the spectral fit to a power-law with
exponential cut-off function. Errors indicate 1σ statistical uncertainties.

Eo indicates the decorrelation energy.

lower energies agrees within the statistical errors with the spectra measured with Fermi
above 10GeV. A joint correlated-χ2-fit3 of MAGIC and Fermi spectral points above
10GeV shows that the new spectral components are well-represented (χ2/ndf=1.5/6
and χ2/ndf=8.5/9 for P1 and P2, respectively) by simple power-law functions (see
Table 8.6), where the decorrelation energy is set to 50GeV. The photon indexes of the
two power-law functions are α = 3.5±0.1 and α = 3.0±0.1 for P1 and P2, respectively.
The difference in the spectral slopes by ∆α = 0.5± 0.1 is significant by more than 3σ,
indicating that the intensity of P1 drops more rapidly with energy than that of P2.
At X-ray energies (3–10 keV) NuSTAR detected a similar spectral behaviour with P2
harder than P1 and the corresponding photon indexes being 1.66 ± 0.02 and 1.80 ±
0.01, respectively (Madsen et al., 2015). A fit to a power-law function plus exponential
cut-off allows us to impose a lower limit in the spectral cut-off of 700GeV at 95% CL.

The measured spectral difference at VHE could be naturally explained either by two
distinct production locations for each peak or by the difference in the phase-resolved
spectrum of X-rays which act as targets for IC scattering.

We cross-checked the P2 energy spectrum by comparing mono data to the stereo data
and found that the results were stable within statistical errors for all the considered
unfolding methods. We also computed the Crab Nebula SED, as shown in Figure
8.12 (open squares), using the subsample of the data taken in wobble mode. The
nebula spectral measurement was obtained by analyzing the same energy range as the
pulsar analysis, using the same energy binning and gamma selection cuts. The results

of the LogParabola fit performed, dNdE = fEo

(
E
Eo

)α+βlog
(

E
Eo

)
, are shown in Table 8.9.

The resulting spectral points are consistent with the results presented in Aleksić et al.

Eo fEo α β χ2/dof
[TeV] [TeV−1 cm−2 s−1]

Nebula 1 (3.30 ±0.03)×10−11 -2.41 ±0.01 -0.17 ±0.01 21/9

Table 8.9: Results of the spectral fit to a LogParabola function. Er-
rors indicate 1σ statistical uncertainties. Eo indicates the decorrelation

energy.

(2012b, 2015) as can be seen in Figure 8.14. Therefore, we assumed that no extra
systematic uncertainty on the total flux is needed for this specific analysis. These
systematic uncertainties are 17% on the energy scale, 19% on the flux normalization,
and 0.3 on the photon index. The latter error is the only one not in agreement with
Aleksić et al. (2012b), and mainly arises from the larger uncertainty of the unfolding
given the low statistics of the result.

3The fit takes into account the correlation between the MAGIC spectral points due to the unfolding
procedure.
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Figure 8.14: SED of the Crab Nebula from ∼70GeV to 1.5TeV
obtained in this work with exact same binning and gamma cuts than
those used for the analysis of the pulsar. The red solid line represents
the LogParabola fit to the data. The blue dashed curve shows the
spectral fit of the Crab Nebula derived in Aleksić et al. (2015) from

∼50GeV to 30TeV.

8.5 Discussion and conclusions

The results presented here probe the Crab Pulsar as the second most compact TeV
accelerator known to date after the Vela pulsar which has recently been detected up
to 7TeV (Djannati-Atai et al., 2017). On a side note, in the case of the Vela pulsar,
the TeV emission comes from another component whereas in the Crab pulsar it is
compatible within systematic errors with a continuation of the GeV component. The
remarkable detection of pulsed emission up to 1.5TeV revealed by MAGIC imposes
severe constraints on where and how the underlying electron population produces
gamma rays at these energies. The electron population responsible for the VHE emission
should have Lorentz factors greater than 5×106, which can be responsible for the VHE
emission only when accelerated near or beyond the light cylinder (Bogovalov, 2014).
The TeV pulsed emission cannot be produced with synchro-curvature radiation within
the light cylinder, even in the extreme case in which the magnetic-field-aligned electric
field approaches the strength of the magnetic field. In this scenario, the curvature
radius would have to be one order of magnitude larger than the typical one, which is
believed to be between 0.3 and 2 times the light cylinder radius (Viganò et al., 2015)
(for further discussions on this issue we refer to Kalapotharakos et al. 2014; Harding
and Kalapotharakos 2015 and references therein). Therefore, the unprecedented
measurement of pulsed emission extending up to TeV energies performed with the
MAGIC telescopes implies that most likely the IC process is at work in the Crab
Pulsar, and that it dominates the emission of gamma rays above 50GeV. This partially
solves the puzzle posed by the previous published results but also opens new challenges.
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We note that although other processes (e.g. synchro-curvature radiation (Viganò
et al., 2015) or synchrotron radiation (Mochol and Pétri, 2015)) could account for
the production of 100–400GeV photons, the simple power-law function obtained by a
joint fit of Fermi and MAGIC data from ∼10GeV up to 1.5TeV (and 700GeV for P1)
suggests a single mechanism for every peak and it must be Compton up-scattering of
soft photons off HE electrons.

The two main IC scenarios proposed to explain the VHE emission below 400GeV, the
magnetospheric SSC model (Aleksić et al., 2011) and the IC in the pulsar wind region
model (Aharonian et al., 2012), are not capable of simultaneously predict the VHE
LC and the spectral shape obtained in this work.

The former assumes that there are acceleration gaps in the outer magnetosphere
(Cheng et al., 1986; Romani and Yadigaroglu, 1995; Cheng et al., 2000; Takata et al.,
2006; Arons, 1983; Muslimov and Harding, 2004) where primary positrons propagate
outwards and escape, being illuminated by a strong magnetospheric IR photon field
which is then up-scattered by positrons to TeV-scale energies. These primary TeV
photons are then efficiently absorbed by the same IR field to materialize as secondary
e± pairs with GeV to several TeV energies. Such secondary pairs are created at a greater
distance whereby there is a lower photon-field density, near to and outside the LC,
and can up-scatter the IR-UV photons into 10GeV–5TeV photons (via SSC process,
Hirotani 2013). Some of them escape from the magnetosphere and are observable
from Earth. However the synchronization of the pulse profile in the GeV and TeV
regimes limits this interpretation, suggesting a similar region of generation, where
absorption of TeV photons is unavoidable. The measured time delay between the best-
fit peak positions in the MeV–GeV and the TeV regime is 100 ± 67µs and 245 ± 121µs
for P1 and P2 respectively, which, when considering the relatively large systematics
in the determination of the peak positions, are compatible with the hypothesis of
no separation between the bulk of the radiation region where all these photons are
generated (neglecting more complicated geometrical effects and assuming the simple
case of stationary emission regions).

On the other hand, the pulsar wind scenario considers the IC scattering off the
synchrotron, pulsed IR and X-ray photons by the particles (electron/positron) of the
cold relativistic wind. It is commonly accepted that the pulsar wind is magnetically
dominated near the LC. Thus, in the wind model, the wind becomes abruptly particle-
kinetic-energy dominated over a short distance (compared to the dimension of the
wind region). Based on previous results by Cherenkov telescopes on the Crab Pulsar
(Aliu et al., 2011; Aleksić et al., 2012a), this distance was estimated to be 20-50 LC
radii (see left panel of Figure 8.15, Aharonian et al. (2012)). In this narrow cylindrical
zone, electrons and positrons are rapidly accelerated up to Lorentz factors of 5× 105.
The bulk Lorentz factor is assumed to display a power-law dependence on the distance:
Γ(R)=Γ0 + (Γw − Γ0)( (R−R0)

(Rf−R0))α, where Γ0 and Γw are the initial and the maximum
wind Lorentz factors, R0 the distance at which the acceleration starts, Rf the distance
at which Γw is reached, and the power-law index α ∼1,3,10 (Aharonian et al., 2012).
To obtain a Γw compatible with the one that is derived from the detection of TeV
photons (∼ 5× 106), the region in which particles are accelerated has to extend up to
a much larger radius than the one considered in Aharonian et al. 2012. In this case
however, the model fails to reproduce the spectral shape below 100GeV (see right
panel of Figure 8.15). Instead, a slower and continuous acceleration (for instance due
to magnetic reconnection) or a more complex radial dependence could be at play.
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Figure 8.15: Left: SEDs calculated under different assumptions
of the acceleration region and Lorentz factors reached. Right: The
green curve represents the SED produced by a wind of Lorentz factor
of 3×106 when the acceleration takes place between 25 to 70 RL. From

Aharonian et al. (2012).

Recently, the TeV pulsed emission has been adressed by Osmanov and Rieger (2017)
and Bogovalov et al. (2017) as IC scattering off thermal photons from the pulsar
surface. Both results are based on magneto-centrifugal acceleration of plasma close
to the light cylinder along open positively curved magnetic field lines (see Figure

Figure 8.16: Equatorial plane of an oblique pulsar’s magnetosphere
(60◦ inclination). Solid curves represent the magnetic field structure.
Small solid circles show important zones of magneto-centrifugal accel-
eration. A zoom in of one of these regions is represented at the top
right part of the image. In the zoom in region we can see the shape of
the positively curved field lines. The short dashed curve represents the
Alfven surface while the long dashed curve represents the light cylinder.
The dashed-dot line depicts the separatrix field line. From Bogovalov

(2014).
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8.16), (Bogovalov, 2014; Osmanov and Rieger, 2009). Within this model, particles in
the vicinity of the light cylinder can reach Lorentz factors as high as 5× 107, easily
accounting for the lower limit of 5× 106 estimated in this work. Figure 8.17 shows
the resulting photon spectrum obtained by Osmanov and Rieger (2017) assuming
up-scattering of thermal photons by a power-law distribution of electrons with index
α ∼ 2.5 in the Klein-Nishina regime. In Bogovalov et al. (2017), the distribution of
electrons they assume is slightly softer (α ∼ 3) and only consider 1% of the rotational
energy released in relativistic electrons, see Figure 8.18. Note that magneto-centrifugal
models only take into account electrons moving on positively twisted lines, thus, only
a fraction of the electrons present in the magnetosphere. Therefore, a full modelling of
the pulsar magnetosphere it is crucial to properly assess the correct spectrum and the
exact location of the emission.

Another approach in the context of the pulsar wind is presented by Mochol and Pétri
(2015) and Mochol (2017). Particles accelerated in current sheets through magnetic
reconnection emit synchrotron radiation that is upscattered by the same population
of leptons giving rise to a SSC component at VHEs. The SSC component is the one
producing the emission detected by MAGIC at TeV energies. As shown from the fits
represented in Figure 8.19, Mochol (2017) suggest that the SSC emission detected is
produced at small distances from the light cylinder (< 2RLC) and foresees a cut-off at
few TeVs due to radiative losses.

Concluding, magneto-centrifugal acceleration models (Osmanov and Rieger, 2017;
Bogovalov et al., 2017) and striped wind models (Mochol and Pétri, 2015; Mochol,
2017), seem to be capable of explaining the TeV emission detected by MAGIC as IC
scattering of thermal photons. However, predictions from these models for the γ-ray
LCs remain to be seen.

Figure 8.17: Energy spectrum of γ-rays produced as a result of
IC scattering on thermal photons within the magneto-centrifugal accel-
eration model. MAGIC phase-resolved spectral points are represented
in magenta (P1) and green (P2). From Osmanov and Rieger (2017).
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Figure 8.18: Energy spectra of γ-rays produced by electrons
scattering on thermal photons from the surface. Magneto-centrifugal
accelerated electrons have an assumed power-law distribution of α = 3
and a low energy cut-off of 6GeV (curve 1) and 30GeV (curve 2). The
fraction of spin-down luminosity carried away by relativistic electrons

is of 1%. From Bogovalov et al. (2017).
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Figure 8.19: Spectral fits to the Crab spectrum up to ∼ 2TeV.
Black data points are extracted from Kuiper et al. (2001); Abdo et al.
(2010c); Aleksić et al. (2014), while blue data points represent the
last MAGIC measurements from this work and Ansoldi et al. (2016).
Dashed lines show the SSC component whereas solid lines constitute
the total spectrum, synchrotron plus SSC component. εd, s, Γ and r̂
are the dissipation efficiency of magnetic energy into acceleration of
particles, the particle index of the fit, the Lorentz factor of the wind
and the distance from the light cylinder at which emission is produced,

respectively. From Mochol (2017).
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Conclusions

The work presented in this thesis covered the study of three sources belonging to
two very different classes of astrophysical objects, SNRs and pulsars, observed with
Fermi-LAT and MAGIC telescopes. The coverage of the gamma-ray domain above
60MeV up to tens of TeV for Cas A, SNRG24.7+0.6 and the Crab Pulsar, allowed us
to investigate them in their wider context.

The results of the Cas A observations are based on 158 hours of data gathered in
dark and moonlight conditions with MAGIC telescopes between December 2014 and
October 2016 and about 8 years of data collected with Fermi-LAT from August 2008
to December 2016. The derived spectrum of Cas A from 60MeV to 10TeV can be well
described by a power-law with an exponential cut-off at Ec = 3.5

(
+1.6
−1.0

)
stat

(
+0.8
−0.9

)
sys TeV

with 4.6σ significance. This analysis provided the first measurement of a turn-off in the
gamma-ray spectrum of this historical SNR. The GeV-TeV emission detected can be
attributed to a population of accelerated protons with spectral index of ∼ 2.2 and an
energy cut-off at about 10TeV. Such a modest acceleration of CRs implies that Cas A,
at least at present, cannot account for the HE end (∼PeV) of the Galactic CR spectrum.
Considering that Cas A was the main PeVatron candidate, the results obtained in this
work challenge the existence of SNRs as galactic Pevatrons and therefore the popular
conviction that SNRs are the main source of Galactic CRs up to the knee.

On the other hand, observations of the FoV of the SNR G24.7+0.6 with MAGIC for a
total of ∼31 hours resulted in a firm detection of two new VHE sources. The first one,
MAGICJ1835–069, has been detected up to 5TeV with a power-law spectrum of spec-
tral index 2.7. Its spectral agreement with our LAT spectrum of FGESJ1834.1–0706,
associated to the radio source SNR G24.7+0.6, together with their slight overlapping
position point to a common origin. The resulting LAT-MAGIC combined spectrum was
found to be well described by a power-law with exponential cut-off at Ec = 1.9±0.5TeV
and can be interpreted as the result of proton-proton interaction between runaway
protons from the SNR and the CO-rich surrounding. The second source, MAGICJ1837–
073, coincident with 3FGLJ1837.6–0717, is likely to be associated with a stellar cluster
as suggested by its localization in a region rich in molecular content and crowded
of sources. The total energy obtained in accelerated protons can be achieved by
assuming a quasi-continuous injection of CRs during the cluster lifetime. Concluding,
the observations of this complex region with MAGIC and LAT enlarged the known
VHE population of stellar clusters and interacting SNRs, and allowed us to associate
the VHE emission from MAGICJ1835–069 with the radio SNR G24.7+0.6.

Regarding the study of the Crab Pulsar carried out in this thesis, a large data sample
of more than 300 hours of good quality data was collected with MAGIC during a
period of seven years. This long term observation resulted in the first detection of
very energetic pulsed emission from a pulsar, reaching up to about 1.5TeV. The LC
above 400GeV shows two peaks (P1 and P2) synchronized with those measured at
lower energies. The phase-resolved VHE spectra could be determined and were found
to follow power-law functions with different photon indexes and maximum energies.
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While the differential energy spectra of P1 has a photon index of 3.2± 0.4stat ± 0.3syst
and has been measured up to 600GeV, the spectrum of P2 is harder with an index of
2.9± 0.2stat ± 0.3syst and extends up to 1.5TeV. At the low energy end, the MAGIC
spectra connect smoothly with the LAT spectra measured above 10GeV. The resulting
LAT-MAGIC joint fit slightly differs from the MAGIC-only spectra, and both peaks are
characterized by power-law functions of indexes 3.5±0.1 (P1) and 3.0±0.1 (P2). From
the theoretical point of view, the extreme pulsed emission detected by MAGIC has to
be produced by electrons with Lorentz factor of at least 5× 106 scattering low energy
photons in the vicinity of the light cylinder. Different scenarios have been proposed
to explain where and how these electrons are accelerated and how the gamma-ray
emission is produced, however, as of today, none of them is yet capable of reproducing
at the same time the LC and the spectral shape for both peaks above 400GeV.
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Appendix A

Fermi -LAT Monitoring tool

A.1 Introduction

Monitoring certain astrophysical sources is of extreme importance as they might
undergo flaring states where their flux suddenly and unexpectedly increases. The
capability to rapidly react to those outburst is crucial in order to activate follow-
up MWL observations. For this purpose, the Universitat de Barcelona (UB) group
developed a set of computing tools written in bash, C++ and python that automatize
the analysis of the latest data available in the Fermi -LAT Data Center and report any
anomalous behavior of the observed source.

A.2 Design and Workflow

The UB monitoring tool, which came online in 2013, was designed to run the analysis
automatically with no user contribution needed. The tool is activated on a daily basis
at 12AM via cronjob and downloads the last 24 hours of data available of the source
of interest. Usually, data taken the Fermi takes ∼12 hours to be transferred and
processed by the LAT Operation Center before being available online, therefore, the
dataset downloaded and used by the monitoring tool spans normally from 12AM to
12PM of the previous day.

Data downloaded are analyzed making use of the last version of the Fermi Science
Tools available at the moment of the analysis following the analysis procedure seen
in Chapter 3. Once the analysis is completed an email message is sent providing the
flux, the detection significance and difference with respect to the long term mean flux
of the source of interest. If the resulting parameters fulfill certain threshold values,
based on TS or flux depending on the source of study, a flare alert is sent instead (see
sample of the flare alert below).
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——————————————————————————————–
| This is an automatically generated message at 2018-03-16 12:48:26 |
——————————————————————————————–

Crab IS flaring in GeV gamma-rays as seen by Fermi.

The flux calculated through a maximum likelihood analysis in the daily bin
between 2018-03-15 00:00:02 and 2018-03-16 00:00:02 is 5.92864e− 06± 2.34216e− 07
with a 13.9989σ respect to the long term flux mean 2.64988e-06. Crab in the time bin
calculated has a test statistic of TS = 2664.8.

The attached plots show the Fermi/LAT light curves for the last 31 and 365
days (1 day bins) along with the long term flux mean (dashed line).

For more information on the analysis contact Daniel Galindo (dgalindo@fqa.ub.edu).

The alert is redirected to people in charge of scheduling MAGIC observations that
evaluate the interest and feasibility of a MWL observation. The daily/flare report is
accompanied by two plots (Figure A.1 and A.2), to ease the evaluation and comparison
of the daily result with previous days.
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Figure A.1: Crab daily fluxes for the past month, computed on
March 16, 2018.

A.3 Sources and Results

Currently, the tool is mainly monitoring 3 sources: Cygnus X-1, Cygnus X-3 and
Crab. Nonetheless, it has also been used to study sources like PSRJ2032+4127, that
presented an increase of emission in November 2017, or V404 Cygni, that underwent a
huge outburst in June 2015.
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Figure A.2: Crab daily fluxes for the past year, computed on
March 16, 2018.

For the case of the Crab, based on a flare criteria of 5σ increase between the flux
detected and its long term mean flux, we were able to detect every single flare the
source underwent and triggered MAGIC observations to look for possible contributions
at higher energies. Figure A.3 shows the history of the monitoring analyses with flaring
periods highlighted by red arrows as well as different published ATels related to our
triggers. Flaring periods detected by the monitoring tool were also used to discard
affected data from the Crab analysis reported in Chapter 8.
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Figure A.3: History of the Crab daily fluxes since July 2003.

For both Cygnus sources, we based our flaring criteria on a minimum TS (in this case,
TS=13 that corresponds to ∼ 4σ) to assess the source is not on a normal state. This
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resulted in 2-3 alerts per year. Figure A.4 shows the daily evolution of the TS values
starting on the first day of the mission, 5th August 2008, up to mid 2017. Various

Figure A.4: History of the Cygnus X-3 daily Test Statistics since
July 2003.

MAGIC observations were triggered by our alerts with no successful detection so far.
Additionally, the daily data analyses and results obtained by the monitoring tool were
used in Zanin et al. (2016) to report on the detection of GeV emission from Cygnus
X-1 probing that the emission is most likely associated with the relativistic jets.
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