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Abstract 

 
 Dielectrics are insulating materials used in many different electronic devices (e.g. 

capacitors, transistors, varistors), and play an important role in all of them. In fact, the 

dielectric is probably the most critical element in most devices, as it is exposed to 

electrical fields that can degrade its performance. Silicon dioxide (SiO2) has been 

traditionally the most widely used dielectric material in the industry; however, the 

scaling down of the devices required a reduction of the SiO2 thickness, which provoked 

a dramatic increase of the leakage current. This not only results in an increase of the 

power consumption, but also on the failure of the devices and circuits. Current advanced 

electronic devices use dielectric materials with a high dielectric constant (e.g. HfO2, 

Al2O3 and TiO2) so that their thickness doesn't need to be reduced so much, and high 

leakage currents are avoided. However, these materials show several intrinsic problems 

(e.g. large density of native defects, crystallization at high temperatures), and also a bad 

interaction with adjacent materials (e.g. rough interface with silicon, high diffusivity to 

polysilicon gate, difficulty to be deposited on two dimensional [2D] materials). 

Therefore, the race for finding a suitable dielectric material for current and future 

electronic devices is still open. 

 In this context 2D materials have become a serious option, not only thanks to 

their advanced properties, but also to the development of scalable synthesis methods. 

Graphene has been the most explored 2D material for electronic devices, and it has been 

used as channel in transistors, and as electrode in capacitors and memristors (among 

others). However, graphene has no band gap, and therefore it cannot be used as 

dielectric. MoS2 and other 2D transition metal dichalcogenides (TMDs) are 

semiconducting 2D materials that can provide more versatility in electronic devices (i.e. 
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they can increase the current ON/OFF ratio in transistors because the density of carriers 

can be tuned via electrical field), but their small band gap difficult their use dielectric. 

 In this PhD thesis I have investigated the use of monolayer and multilayer 

hexagonal boron nitride (h-BN) as dielectric for electronic devices, as it is a 2D material 

with a band gap of ~5.9 eV. My work has mainly focused on the synthesis of the h-BN 

using chemical vapor deposition, the study of its intrinsic morphological and electrical 

properties at the nanoscale, and its performance as dielectric in different electronic 

devices, such as capacitors and memristors. Overall, our experiments indicate that h-BN 

is a very reliable dielectric material, and that it can be successfully used in capacitors 

and memristors. Its performance depends on several parameters, like the substrate on 

which it is grown, the growth temperature, the growth time, the vacuum pressure, and 

even the adjacent electrodes deposited. Moreover, h-BN shows additional performances 

never observed in traditional dielectrics, such as volatile resistive switching, which may 

also open the door for new applications. 
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Abstract in official language 
 

 

 

 

Los dieléctricos son materiales aislantes utilizados en muchos dispositivos 

electrónicos (por ejemplo condensadores, transistores, varistores), en los que juegan un 

papel muy importante. En realidad, el dieléctrico es probablemente la parte más crítica 

en la gran mayoría de dispositivos electrónicos, ya que casi siempre está expuesto a 

campos eléctricos que pueden degradar sus prestaciones. El dióxido de silicio (SiO2) ha 

sido el material aislante tradicionalmente utilizado en la industria; sin embargo la 

miniaturización de los dispositivos requirió una reducción del grosor de los dieléctricos 

SiO2, lo que provocó un incremento dramático de la corriente de fugas. Esto no sólo 

produce un aumento de la energía consumida, sino que también puede provocar el fallo 

del dispositivo entero, e incluso del circuito donde se ha implementado. Actualmente los 

dispositivos electrónicos más avanzados utilizan materiales aislantes con una constante 

dieléctrica alta (por ejemplo HfO2, Al2O3 y TiO2), y así no es necesario reducir tanto su 

grosor, lo que mantiene una baja corriente de fugas. Sin embargo, estos materiales 

muestran muchos problemas intrínsecos (por ejemplo grandes cantidades de defectos 

nativos, cristalización a altas temperaturas), y también una mala interacción con 

materiales adyacentes (por ejemplo una interfaz rugosa con el sustrato de silicio, una 

alta difusividad hacia el electrodo de puerta si este está hecho de polisilicio, y gran 

dificultad para ser depositado sobre materiales bidimensionales). Por lo tanto, la carrera 

para encontrar un material dieléctrico ideal para dispositivos electrónicos sigue abierta. 

En este contexto, los materiales bidimensionales se han convertido en una seria 

opción, no sólo por sus excelentes propiedades, sino también gracias al desarrollo de 

nuevos métodos de síntesis escalables. El grafeno ha sido el material bidimensional más 

estudiado para dispositivos electrónicos, y ha sido utilizado como canal conductor en 
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transistores, y como electrodo en condensadores y memristores (entre otros). Sin 

embargo, el grafeno no tiene una banda energética prohibida, con lo cual no pude ser 

usado como dieléctrico. MoS2 y otros materiales derivados son bidimensionales 

semiconductores que pueden aportar una mayor versatilidad al ser usados en 

dispositivos electrónicos (por ejemplo pueden incrementar el ratio de corriente ON/OFF 

en transistores porque la densidad de portadores puede ser controlada aplicando una 

tensión externa), pero su banda de energías prohibidas es muy pequeña, lo que dificulta 

su uso como dieléctrico. 

En esta tesis doctoral he investigado el uso de nitruro de boro hexagonal (h-BN) 

monocapa y multicapa como material dieléctrico en dispositivos electrónicos, ya su 

banda de energías prohibidas es de ~5.9 eV. Mi trabajo se ha focalizado en la síntesis de 

h-BN mediante el método chemical vapor deposition, el estudio de sus propiedades 

morfológicas y eléctricas a escala nanométrica, y el análisis de sus prestaciones como 

dieléctrico en diferentes dispositivos electrónicos (condensadores y memristores). 

Nuestros experimentos indican que h-BN es un material dieléctrico muy fiable, y que es 

apto para su uso en dispositivos. Sus prestaciones dependen de diferentes parámetros, 

como el sustrato en el que ha sido crecido, la temperatura y el tiempo de crecimiento, el 

nivel de vacío y presión, e incluso los materiales usados como electrodos adyacentes. 

Además, h-BN muestra propiedades adicionales nunca observadas en dieléctricos 

tradicionales, como modulación volátil de la resistividad, lo que podría extender su uso 

a nuevas aplicaciones. 
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Chapter 1:  

Dissertation Summary 

 
1.1. Introduction  

 
Thin dielectric films are key elements in a wide range of electronic devices, as they 

can generate (for example) the capacitance effects required to form the conductive 

channel in field effect transistors (FETs), or the resistive switching (RS) phenomenon 

required to induce two logic (resistive) states in non-volatile memories (NVMs) [1-2]. 

With the scaling down of electronic devices, the traditionally used SiO2 dielectrics 

became too thin to withstand the electrical fields applied (that problem appeared first in 

FETs in the early 2000's, around the 45 nm technological node) [3], which threatened 

the reliability of the devices due to prohibitive leakage currents and dielectric 

breakdown (BD). The solution adopted by the industry was to replace the ultra thin SiO2 

films by thicker high-k dielectric stacks (like HfO2, Al2O3 and TiO2); the thicker nature 

of the high-k blocked the leakage current, and its higher dielectric constant produced a 

similar capacitance effect than the thinner SiO2, which is required to make the devices 

work. However, the introduction of high-k dielectrics in the semiconductors industry 

generated several new problems, such as high density of native defects, interaction with 

the polysilicon gate and Si substrate, severe inhomogeneities, polycrystallization at the 

temperatures required during the manufacturing process of the devices (>400 °C), and 

high scattering at the channel region [4-5]. Furthermore, high-k dielectrics interact very 

badly with other advanced and very promising materials for future electronic devices, 

such as two dimensional (2D) materials [6-7]. Therefore, research on alternative 

dielectrics for high performance electronic devices is necessary. 
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One excellent candidate material for becoming the dielectric of future electronic 

devices is 2D hexagonal boron nitride (h-BN). 2D h-BN is an insulating material from 

the family of graphene that exhibits several excellent physical [8], chemical [9], 

electrical [10], mechanical [11], thermal [12], magnetic [13], and optical [14] properties, 

and it has been already used in several electrical devices, such as: FETs [15], capacitors 

[16], sensors [17], and memristors [18-20] (among others). However, the most relevant 

dielectric behaviors, such as tunneling current [21-23], polycrystallization [24-25], 

charge trapping and de-trapping [26-27], stress induced leakage current (SILC) [28], 

dielectric strength [29], soft/hard BD [30], and RS [30-34], have never been analyzed in 

depth in h-BN. Moreover, these behaviors will strongly depend on the method used to 

synthesize the h-BN stacks [35], as different methods produce h-BN with different sizes, 

morphologies and densities of defects. This PhD thesis presents a complete and deep 

study about the synthesis of scalable h-BN stacks, and analyzes its performance as 

dielectric in electronic devices.  

 

1.2. Main Contribution of this PhD thesis 

 

1.2.1. Objectives of this PhD thesis 

 

The main goal of this PhD thesis is to provide useful knowledge that clarifies if 

h-BN can be reliably used as dielectric in electronic devices. This task can be divided in 

three objectives. The first one is to develop a scalable method to synthesize h-BN that 

leads to high quality and low amount of defects. The second one is to characterize the 

intrinsic properties of the materials synthesized, such as thickness, surface roughness, 

density of defects, Raman signature, and percentage of B and N atoms. And the third is 
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to study its performance as dielectric by applying electrical stresses, both at the 

nanoscale and at the device level. Another indirect goal of this thesis is to structure the 

knowledge available until now about the use of h-BN as dielectric. This is important 

because the first studies in this field didn't distinguish between h-BN stacks synthesized 

using different methods, and also because we have detected some literature that (in our 

opinion) reported irrelevant, unsupported and/or wrong claims. For this reason, this PhD 

thesis includes, not only four research articles (in the format of letters and full papers), 

but also two extensive review articles.  

 
1.2.2. Key findings 

 
In the first part of this thesis I present a deep literature review about the 

synthesis, characterization methods and performance of h-BN as dielectric in electronic 

devices. Article 1 is a review paper in which I analyze more than 179 references. We 

make critical comments related to the different performances shown by h-BN grown by 

different methods. Scalability of the synthesis process and its suitability for industrial 

applications is one of the main criteria when classifying the knowledge available on the 

use of h-BN as dielectric. 

In the second part I describe the synthesis of multilayer h-BN on different 

metallic substrates (Pt, Cu, and Fe) using chemical vapor deposition (CVD) approach, 

and in all cases I check its performance as dielectric in real devices. In Article 2 and 

Article 3 I grew the h-BN on Pt substrates. On this specific substrate we observe that 

the h-BN shows important thickness inhomogeneities depending on the metallic grain 

on which it is grown. While this is an undesired effect, nanoscale electrical 

characterization via conductive atomic force microscopy (CAFM) reveals that the 

electrical properties of the h-BN stacks (i.e. tunneling current) within one metallic grain 
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are very homogeneous, much more than in high-k dielectric films (e.g. HfO2, TiO2). In 

Article 4 I studied h-BN grown by CVD on Cu substrates, and I characterized the entire 

BD process depending on the thickness. I found out that monolayer h-BN is extremely 

resistant to changes in the morphology after the BD. In Article 5 I grew the h-BN on Fe 

substrates, and fabricated a matrix of memristors that show both volatile and non-

volatile RS with low device-to-device variability.  

Given the promising performance of h-BN as RS medium, in Article 6 I made 

an extensive literature review about the use of this and other 2D materials in memristors. 

This article analyzes more than 364 references, and contains 12 tables comparing the 

structure, size, current window, endurance, retention, operation voltages, speed, power 

consumption, transparency and flexibility of the 2D materials based memristors. I also 

discuss the status and challenges to solve in this direction. 

 
1.2.3. Thesis Outline 

 
This thesis is divided in five chapters: Chapter 1 presents the dissertation 

summary, which introduces the most relevant aspects of this thesis. Chapter 2 provides 

a technical introduction about the structure and synthesis of h-BN, as well as its 

reliability as dielectric. Chapter 2 features Article 1. Chapter 3 describes in depth the 

synthesis of multilayer h-BN stacks by CVD approach, and analyzes the properties of 

the h-BN stacks at the nanoscale (via CAFM) and at the device level (via probe station). 

Chapter 3 has three sections, one dedicated to h-BN grown on Pt, another one for h-BN 

grown on Cu, and another one for h-BN grown on Fe. In each study the experimental 

results have been also compared with theoretical simulations. Chapter 3 features 

Articles 2, 3 and 4. Chapter 4 presents a deep revision of the use of 2D materials as 

dielectric in memristors, summarizing the best performances and discussing the main 
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challenges. Finally, Chapter 5 summarizes the main results of this thesis, conclusions 

and perspectives.   

 

1.3. List of publications 

 
The list of articles shown below only includes the publications which shall be 

considered for evaluation of this PhD dissertation, although during my PhD I have 

published many other research articles. A reproduction of each publication can be 

accessed by the indicated information below. A complete list of the author’s publication 

(updated on May 4th 2018) is included in the scientific curriculum vitae (Appendix A).  
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These articles have been developed in collaboration with Massachusetts Institute 
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Chapter 2:  

On the use of 2D layered h-BN as dielectric   

 

The aim of this chapter is to describe the status of 2D layered h-BN (previous to 

this PhD thesis). This chapter is divided in three sections. Section 2.1 describes the 

structure and most remarkable properties of h-BN reported until that date. Section 2.2 

describes the different synthesis methods, and it discusses their advantages and 

challenges. Section 2.3 summarizes the most relevant investigations that used h-BN as 

dielectric, and highlights the most remarkable performances. The reliability of h-BN as 

dielectric and the entire BD process will be also described.   

 
2.1. Properties of 2D layered h-BN  

 
Boron nitride exists in multiple crystalline forms that differ in the arrangement of 

the B and N atoms, such as cubic boron nitride (c-BN), wurtzite boron nitride (w-BN) 

and hexagonal boron nitride (h-BN) [36]. Among them, h-BN is a typical sp2-hybridized 

2D insulator, which is analogous to graphene in terms of their hexagonal lattice 

structure (see Figure 2.1). h-BN is formed by B and N atoms interacting by covalent 

bonds in plane, forming a hexagonal lattice (i.e. each B atom bonds with three N, and 

each N atom bonds with three B) [37]. The lattice constant (distance between atoms) in 

this hexagonal network is 0.25 nm, and it shows a mismatch of only 1.8% with that of 

graphene [38]. An ideal h-BN sheet should be a continuous B and N lattice without any 

missing bond, and perfectly attached to the substrate. Figures 2.1a and 2.1b show a 

schematic and an experimental demonstration of the lattice structure of monolayer h-BN. 
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Figure 2.1. (a) Schematic of the hexagonal lattice of monolayer h-BN. (b) High angle 

annular dark field scanning transmission electron microscopy image proving the 

chemical composition of h-BN with sub-atomic resolution. Reproduced with permission 

from Ref. [37], copyright InTech 2013. 

 

h-BN holds several extraordinary properties that may be useful for the 

fabrication of electronic devices. For example, by using an exact numerical solution of 

the phonon Boltzmann transport equation, Ref. [12] calculated that the thermal 

conductivity of single layer h-BN can be higher than 600 Wm-1K-1 at room temperature, 

which is one of the highest values in non-carbon-based materials. Ref. [11] measured 

the mechanical properties of h-BN films by nanoindentation, and reported that the 

elastic modulus of h-BN is in the range of 200-500 N/m. And at the same time, h-BN is 

flexible and can be used to fabricate foldable devices [39]. Ref. [11] demonstrated that 

thin (<10 nm) h-BN stacks are highly transparent and can transmit over 99% of the light 

with wavelengths in the range of 250-900 nm. Furthermore, it has been reported that h-

BN stacks are chemically very stable up to 1500 ºC in air [9], which allowed their use as 

anti-oxidation coating [9].  

However, recent reports demonstrated that local defects can have a dramatic 

negative effect on the performances of h-BN. For example, it has been proved that local 
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defects (i.e. lattice distortions) in h-BN sheets can serve as focus for local oxidation due 

to the presence of dangling bonds, where oxygen can easily bond [40]. This promotes 

oxygen migration towards the underlying (protected) substrate, which degrades the 

material below (and also the h-BN). Therefore, lattice defects can remarkably shorten 

the lifetime of h-BN, and it is expected that they also contribute negatively to the 

performance of h-BN based electronic devices. In fact, the presence of defects in a 

dielectric is something in most of cases unwanted from a reliability point of view, 

independently that it is a h-BN stack or a SiO2/high-k film.  

 

2.2. Synthesis of 2D layered h-BN 

 

The first synthesis of ultra thin 2D h-BN stacks was achieved in 2005 via 

mechanical exfoliation of an h-BN crystal [41]. Taking a piece of scotch tape and 

repeatedly peeling single crystal or bulk h-BN materials, atomically thin h-BN 

nanosheets can be easily recognized on the tape using an optical microscope (see Figure 

2.2a). This method is based on a mechanical stripping process, i.e. break the weak van 

der Waals forces between each two adjacent layers, and doesn’t involve the introduction 

of any type of chemical, nor other alien species. Therefore, the obtained h-BN 

nanosheets retain their original (nearly perfect) crystal structure. However, the size of 

exfoliated h-BN flakes becomes smaller and smaller with the number of peelings, 

resulting in small lateral size of (in the best cases) few micrometers. Furthermore, 

exfoliating h-BN with a specific number of layers is not doable, and very severe 

thickness inhomogeneities are always present (see Figure 2.2b) [42], which is not 

acceptable for the industry. The need of (expensive) human labor is also an important 

drawback.  
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Liquid phase exfoliation (LPE) is a scalable synthesis process that consists on 

applying mechanical stresses to an h-BN crystal by sonication [42-43], with the 

assistance of organic reagents. After sonication, centrifugation to remove large size h-

BN particles is needed. This method allows exfoliating large amounts of h-BN flakes 

simultaneously, and it is scalable (i.e. suitable for the industry). The h-BN produced by 

this method is presented in the form of flakes suspended in a liquid, and the most 

important properties defining the quality of LPE h-BN are the flakes density, their size 

and thickness. These properties can be tuned by using different sonication parameters 

(energy, time), centrifugation parameters (revolutions per minute, time), and type of 

organic reagents. The integration in the devices is normally done by spin coating 

one/few drops of the solution containing the h-BN flakes on the desired substrate and 

drying it. This methodology is fast and cheap, but it normally produces thick (>50 nm) 

films containing a rough network of flakes with folds and random orientations [44]. 

Therefore, LPE h-BN may be suitable for some very specific applications (e.g. coatings), 

but not for others (e.g. ultra thin gate dielectric in FETs).  

  It’s known that large-area h-BN sheets can be grown by physical vapor 

deposition (PVD) methods. Among them, magnetron sputtering has been successfully 

used to produce monolayer h-BN sheets on a 100 nm Ru/α-Al2O3 substrate [45]. The 

sheets produced by this method show decent layered structure with low density of 

defects, as confirmed by cross sectional transmission electron microscopy (TEM, see 

Figure 2.2c), which results in a dielectric strength comparable to that of exfoliated 

sheets. Molecular beam epitaxy (MBE) also allows growing atomically thin h-BN 

stacks on non-crystal substrates [46], as confirmed by a characteristic Raman signature 

and by the observation of wrinkles. However, Ref. [46] didn't provide cross sectional 

TEM images, meaning that one cannot be completely sure if the material has a truly 
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layered structure. In any case, the requirements for the sophisticated equipment are still 

hindering the use of PVD methods to grow h-BN. In the case of magnetron sputtering, it 

requires an ultrahigh-vacuum system (base pressure of 2×10-10 torr) and under the 

atmosphere of high-purity Ar/N2 gas mixtures. In the case of MBE the problem is that 

both high base pressure (1.0×10-10 mbar) and high temperature (1850 °C) conditions are 

needed to form the h-BN films. 

 

 
 

Figure 2.2. Characterization of multilayer h-BN stacks fabricated following different 

methodologies. (a) Optical and (b) AFM images of a mechanical exfoliated h-BN 

nanosheets; thickness fluctuations can be seen. Reproduced with permission from Ref. 

[10], copyright American Chemical Society 2014. Cross-section TEM image of (c) 

trilayer h-BN grown by magnetron sputtering and (d) CVD-grown multilayer h-BN. (c) 

and (d) are reproduced with permission from Refs. [45] and [18], copyright American 

Chemical Society 2012, and Wiley-VCH 2017. 
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When picking up a method to grow scalable h-BN with controllable thickness, 

CVD is the approach that has produced the best results until now [18]. Figure 2.2d 

shows a cross sectional TEM image of multilayer h-BN grown by CVD approach, in 

which nearly perfect layered structure can be observed. The precursor (borazine, 

ammonium borane) and carrier gas (H2, Ar) are delivered to the catalytic metallic 

substrates (such as Cu, Ni, Pt or Fe) under high temperature. The thickness and quality 

of the h-BN stacks can be controlled by tuning the parameters of the CVD process: i) 

carrier gas flow, ii) pressure, iii) temperature, iv) growth and cooling times, v) type of 

precursor, vi) type of substrate, vii) type of CVD furnace (cold walled, rapid thermal, 

plasma assisted). The size of the h-BN is only limited by the size of the substrates, 

which at the same time is limited by the size of the tube furnace. To the best of our 

knowledge, the largest 2D materials ever produced by this method are 76.2 cm × 76.2 

cm, as shown in Ref. [47].  

When using CVD, as well as when using PVD, the main problem is the high 

temperatures used during the growth (> 900 °C), which make impossible its direct 

growth on patterned samples (i.e. the high temperatures would destroy any device 

patterned due to severe diffusion). For this reason, CVD always uses metallic foils as 

substrate. Ref. [48] reported the growth of h-BN on Fe-coated wafers by using a cold 

walled CVD system (which is 10 times more expensive than a normal one), but no 

discussion on metal de-wetting and diffusion into the wafer is available. Also, no 

devices have been reported using this method. In order to avoid this problem, the h-BN 

is grown by CVD on an independent substrate (so far it has been only synthesized on 

metals) and later it has been transferred to any arbitrary substrate using different 

methods (e.g. wet transfer [49], dry transfer [50], imprint techniques [51], electrostatic 

transfer [52], among others). This can be seen as an advantage but also as a problem, as 
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the transfer process may produce cracks, wrinkles and contamination. Interestingly, 

when fabricating prototype devices aimed to just test the performance of h-BN as 

dielectric, the substrate used during the h-BN growth (metallic foil) can be also used as 

bottom electrode. This strategy does not require the use of a transfer process. 

 

2.3. Use of 2D layered h-BN as dielectric 

 

When a thin dielectric is placed between two electrodes under polarization the 

electrical field can generate defects in its microstructure, mainly imperfect bonding (i.e. 

broken bonds between the atoms that form the dielectric or atoms that penetrate from 

adjacent electrodes) [53]. If the stress is enough aggressive (high voltage or long time), 

the density of defects increases prohibitively until forming one/few effective percolation 

path across the dielectric, leading to the complete loss of the insulating properties, and 

the circulation of very high currents across it (namely BD) [54]. The currents increase 

the local temperature, which further increases the current in a self-accelerated manner. 

Therefore, the BD process strongly depends on several properties of the dielectric 

material, such as: i) density of native bulk defects, ii) number of defects at the interfaces 

with the electrodes, iii) chemical stability, iv) mechanical stability, and v) thermal 

conductivity [55]. As an example, the BD process in high-k dielectrics show slightly 

differences compared to SiO2, as the density of defects in high-k materials is much 

higher, which accentuates charge trapping and de-trapping, producing the observation of 

random telegraph noise (RTN) signals [56]. 

2D layered h-BN is an insulating material with an energy band gap of ~5.9 eV [8] 

(measured in exfoliated samples) and a dielectric constant between 2 and 4 [57] 

(measured in CVD grown samples). Therefore, h-BN may be suitable for being used as 
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dielectric in electronic devices. In fact, it is expected that h-BN shows an excellent 

performance as dielectric, because it holds many wanted properties that are relevant 

during the degradation and BD of a dielectric, such as chemical stability, high 

mechanical stability, and high thermal conductivity (see also section 2.1). In this context, 

the strong covalent bonds of h-BN may slow down the speed for defect generation, the 

isolation between planes may difficult the propagation of the defects during the 

electrical stress, and the high thermal conductivity may avoid the formation of hot spots 

(which also slows down the BD process). Furthermore, h-BN adheres to the adjacent 

electrodes by van der Waals forces, minimizing the formation of interface defects. In 

this regard, h-BN is very promising for the interaction with graphene and MoS2, two 

materials that form very bad interfaces with SiO2 and high-k dielectrics [6-7].  

Initially, 2D layered h-BN was used as substrate to enhance the carrier mobility 

of graphene FETs [15]. Due to the atomically flat surface of 2D layered h-BN (which is 

free of dangling bonds), the mobility of the carriers in the graphene channel was 

improved one order of magnitude compared to FETs using traditional SiO2 as substrate. 

It’s also known that the use of h-BN in high-mobility graphene devices can enhance the 

energy gap in multi-terminal measurements of fractional quantum Hall effect [58-59]. 

Before the starting date of this thesis very few works reported the use of h-BN as 

dielectric. Despite h-BN has been used as dielectric in FETs [60-61], most of the reports 

focus on the properties of channels and/or transistors, not on the performance of the h-

BN dielectric itself, i.e. direct tunneling current, trap-assisted tunneling, tunneling 

current homogenity, current across defects, RTN, SILC, and soft/hard BD. So far, the 

studies on h-BN as dielectric have been performed in terms of nanoscale homogeneity 

and variability, reliability and dielectric breakdown, mainly via CAFM. For example, 

Ref. [62] studied mechanical exfoliated h-BN with different thicknesses using CAFM 
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and reported that the tunneling current across it is extremely homogeneous (see Figure 

2.3a). Ref. [62] showed that increasing the thickness of h-BN in one layer reduces the 

current in a factor 50 (see Figure 2.3b), and Ref. [62] claimed that in monolayer, bilayer 

and trilayer h-BN the tunneling current flows by Direct tunneling at low fields and by 

Fowler Nordheim tunneling at high fields, and that in thicker h-BN stacks the current 

always flows by Fowler Nordheim tunneling [62]. Ref. [63] suggested that exfoliated 

stacks of h-BN reache the BD layer-by-layer, producing dramatic physical removal of 

material after the BD of each layer (see Figure 2.3c). In that article the authors observed 

the formation of a hole with increasing depth after sequences of current vs. voltage (I-V) 

curves. 

 

 

Figure 2.3. (a) Schematic of a multilayer h-BN stack characterized by CAFM, and 

topographic (bottom left) and current (bottom right) maps. (b) Both experimental (solid 

lines) and fitting (dashed lines) I-V curves in log scale for graphite/BN/graphite devices 

with different thickness of BN insulating layer. Reproduced with permission from Ref. 

[62], copyright American Chemical Society 2012. (c) I-V curves for a fresh h-BN flake 

(black) and the remaining layers (red) inside the hole. Insert: AFM image of a BD spot. 

Reproduced with permission from Ref. [63], copyright IEEE 2016. 

 

After that, h-BN produced by CVD approach started to be studied as well. In 

parallel with the development of this thesis, Ref. [64] observed that the tunneling 

current across CVD-grown h-BN shows multilayer insulating islands (Figure 2.4a), 

which correlate with multilayer areas in the scanning electron microscopy (SEM) 

images. The CAFM was also able to detect wrinkles in CVD-grown h-BN, which 
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manifested as insulating long and straight lines. Also in that work it was demonstrated 

that monolayer (0.33 nm) h-BN resists the electrical stresses much better than six times 

thicker HfO2 (2 nm) [64]. However, the knowledge available about the electrical 

properties of CVD-grown h-BN stacks before this thesis was very limited. In Article 1 a 

deep analysis about the use of h-BN as dielectric is presented.  

 

 

Figure 2.4. (a) 10 µm × 10 µm CAFM current map collected on the BN/Cu stack by 

applying 1V. Sequence of I-V curves collected on a single spot on BN/Cu stack (b) and 

2 nm thick HfO2 layer (c). Reproduced with permission from Ref. [64], copyright AIP 

Publishing LLC 2016. 
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Chapter 3: 

Electrical homogeneity and reliability of h-BN 

grown on different substrates 

 

As mentioned, the main measurements defining the performance of an insulating 

material when used as dielectric in electronic devices are: i) tunneling current, ii) charge 

trapping and de-trapping, iii) trap-assisted tunneling, iv) SILC, v) dielectric strength, vi) 

soft/hard BD, and vii) RS. Electrical homogeneity is defined as the variability of these 

properties from one location of the h-BN to another. Therefore, the study of electrical 

homogeneity requires the use of electrical characterization techniques with high lateral 

resolution, like the CAFM. Reliability is defined as the ability of a dielectric to keep its 

insulating properties when exposed to an electrical stress in a device. In this case the 

reliability of the entire h-BN stack is defined by the weakest location, as the BD event is 

a stochastic process. In this chapter these two properties are analyzed for h-BN stacks 

grown on different metallic substrates. 

 
3.1. Growth h-BN on Pt, Cu and Fe substrates by CVD 

 

 The h-BN stacks used in this PhD thesis have been grown via CVD approach in 

two different laboratories. The first one is the laboratory of Prof. Xiaoming Xie at the 

Shanghai Institute of Microsystem and Information Technology, and the substrate used 

was always Ni-doped Cu. The second one is the laboratory of Prof. Jing Kong at the 

Massachusetts Institute of Technology, and the substrates used were mainly Pt and Fe, 

although some tests with Cu foils have been also performed. The only growth method 
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we used in this thesis is CVD because it has been proved that is the scalable approach 

that provides the best quality (i.e. the largest amount of layered area with the lowest 

density of defects).  

Cu was the substrate initially used by the 2D materials community to grow h-BN 

stacks, due to its low cost and good catalytic activity. However, controlling the 

thickness of h-BN stacks grown on Cu is not easy. Some works even claimed 

(erroneously) the growth of multilayer h-BN on Cu while showing evident amorphous 

structure (i.e. bad quality) in their own TEM images [65-66]. For this reason, here we 

explore: i) the introduction of new treatments to growth h-BN on Cu substrates, and ii) 

the use of different metallic substrates for the growth of h-BN.  

First of all, we doped the Cu substrates with Ni. The cleaning process of Cu 

substrates (25 µm thick) is different from that of Pt and Fe substrates (1 mm thick). Cu 

substrates are first immersed in nitric acid (purity 19%) and sonicated for 30 s. Then 

they are immersed in pure water and sonicated for 5 minute to clean the surface. Finally, 

the Cu substrates are dried using N2. Pt and Fe substrates were cleaned using the 

electro-polishing method. The Pt/Fe substrate and a counter electrode are immersed in a 

solution containing 940 ml acetic acid and 60 ml perchloric acid connected to the 

positive and negative terminals of an electrochemical workstation. The two electrodes 

are polarized under a bias 30 V for 30 s, which removed the oxides on the surface of the 

metallic substrates. This process is repeated three times, and finally the substrates are 

cleaned in pure water (under sonication) for 5 minutes and dried using a N2 gun. 

After cleaning, the substrates are placed in the center of the tube furnace, which is 

connected to two gas lines: the first one (line 1) drives H2 inside the tube, and the 

second one (line 2) drives the precursor. For the growth of graphene the precursor is 

typically a gas (methane, Argon), but in the case of h-BN the precursor we used is liquid 
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borazine. Other works used solid ammonia borane powder heated [67]. Therefore, in the 

precursor line (line 2) a gas was necessary to drive the borazine molecules (seeds) inside 

the tube. We also used H2 because it has provided good results in previous literature 

[68]. Both lines are controlled by a valve, and both of them are closed initially.  

After introducing the substrates in the center of the tube furnace, the system was 

closed and a pump working at a certain pressure (P) was used to remove the air 

molecules inside the tube. Once the desired vacuum level is reached, a constant flow of 

H2 was immersed in the tube using line 1 (namely F1), and the temperature of the tube 

furnace was ramped up from room temperature (RT) to the annealing temperature (TA). 

TA was maintained constant during the annealing time (tA). Despite the flow of H2 in the 

tube furnace during the annealing step may not be strictly necessary, it has been 

demonstrated that this helps to the formation of 2D materials [68]. After the annealing, a 

constant flow of H2 was introduced in the tube furnace using line 2 (F2), which carried 

borazine molecules into the tube for reaction with the metallic substrate. The time that 

the metallic substrate was exposed to the precursor is called growth time (tG), and 

during tG the temperature of the furnace was set at a suitable value for h-BN growth 

(TG), which depends on the metallic substrate used. After that, the furnace was cooled to 

RT. When using Pt substrate the cooling down time (tC) was quite fast, and when using 

Fe substrates this time needed to be enlarged. 

The value of these parameters strongly affects the quality of the h-BN stack, and 

needed to be found experimentally. We are aware that world leading scientists in the 

field of CVD-grown 2D materials suffered strong difficulties to tune these parameters, 

especially when moving to a new lab. By empirical experience and collaborations with 

other groups we have corroborated that the use of identical parameters in two different 

labs may lead to different thicknesses and amount of defects. Most probably 
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experimental factors like the brand of the equipment used and the purity and cleanness 

of the tube lines and metallic foils may play a role. Table 3.1 summarizes the values of 

the CVD parameters that we used to produce the best h-BN quality on Cu, Pt and Fe 

substrates. In order to find them, I repeated the process > 20 times for each material.  

 

Table 3.1. CVD growth parameters of h-BN on different substrates. 

Substrate 

Annealing 

process 

(ºC/min) 

Growth 

temperature 

(ºC) 

Flow rate 

ratio of 

borazine/H2 

Growth 

time 

(min) 

Cooling 

down rate 

(ºC/min) 

Cu 1000/30 1000 1/55 60 30 

Pt 1000/30 1000 1/700 60 30 

Fe 1100/30 1100 1/70 120 5 

 

Mainly two different chemical mechanisms producing the growth of layered h-BN 

at the surface of the metallic foils have been detected. The first one is surface-mediated 

growth mechanism, which happens in the metallic substrates with high solubility of 

boron but with/low nitrogen solubility under high temperature, such as Pt and Cu 

substrates [69]. The h-BN layers form on the surface of the catalytic substrates by 

decomposition of precursor and boron and nitrogen atoms deposited on the catalytic 

substrate. The second one is precipitation reaction, in which the metallic substrates have 

low solubility of boron and nitrogen; then both atoms will segregate from the substrate 

and form the h-BN layers during the cooling down process [69]. This mechanism is 

related to the use of Fe substrates. However, in some cases, mixed mechanisms with 

both surface-mediated and precipitation may contribute to the formation of thick h-BN 

stacks [70]. 
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Generally speaking, the use of larger F2, tG and tC result in thicker h-BN stacks. F2 

tunes the number of seeds on the metallic substrate, which will also control the domain 

size. Ref. [71] achieved centimeter scale single crystal graphene using a single seed 

deposited suing an external pipette but, to the best of our knowledge, this strategy has 

never been tried using h-BN. TA and TG are normally the same, and if TG is too low the 

borazine seeds cannot decompose properly to achieve the conformal growth of h-BN 

layers. Therefore, TG has a deep influence on the amount of defects within the h-BN 

stack. TG is selected mainly depending on the melting temperature of the substrate used, 

i.e. the substrate needs to be heated at a relative high temperature (lower that its melting 

point) in order to facilitate atomic rearrangements. It is also worth noting that under 

high temperature, the H2 gas could dissolve into the substrate, which facilitates the h-

BN growth. The pressure used during the entire process was set at a constant value 

between 35 and 70 mtorr. This modest vacuum level is already enough to extract the air 

inside the tube and provide a reasonable clean atmosphere for the CVD process. Some 

groups used a CVD system working in ultra high vacuum (UHV) [72], but the 

complexity of the process increased dramatically, and the quality improvement is not 

remarkable. Independently of the material used, the growth of h-BN has been always 

carried out on metallic foils. Moreover, it has been reported that monolayer h-BN stacks 

can also be synthesized on wafers coated with 500 nm Fe metal films [73]. However, 

this has been only reported by one group, which didn't repeat the experiments. 

  

3.2. Characterization of the samples and devices 

 

The characterization of the samples has been mostly carried out at the laboratory 

of Prof. Mario Lanza at Soochow University, although few data have been also 

collected at the laboratory of Prof. Jing Kong at Massachusetts Institute of Technology.  
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As-grown h-BN stacks have been usually transferred on a 300 nm SiO2/Si wafer 

for morphological characterization. The optical microscopy and SEM images have been 

used to analyze the continuity of the h-BN sheet, as well as the density and shape of 

cracks, wrinkles and multilayer islands. Several different positions of the samples were 

analyzed with Raman spectroscopy to evaluate the thickness and quality of the h-BN 

stack. Topographic AFM maps have been also collected to quantify the roughness of the 

h-BN surface, the thickness of the h-BN stacks, and the accurate width and height of the 

wrinkles. All these analyses can provide valuable information about the h-BN stacks, 

but it should be highlighted that the only technique that can 100% ensure the layered 

structure of the h-BN stacks (and other 2D materials) is cross sectional transmission 

electron microscopy (TEM). Therefore, cross sectional TEM images must be provided 

in all experimental works claiming the growth and/or characterization of any 2D layered 

material. Unfortunately, not all authors follow this good recommendation, and some 

others show cross sectional TEM images with no signal of layered structure [64-65]. In 

this work we always used cross sectional TEM images to confirm the thickness, layered 

structure and amount of defects in our samples. To do so, we followed two different 

procedures depending on lab availability: i) thin lamellas have been cut using focused 

ion beam (FIB), and placed later on the target TEM grids using vacuum tweezers. 

During the FIB, a protective Ti/Au/Cr stack was deposited on the surface of the h-BN 

stack in order to protect it from high impact energies, which may produce defects. And 

ii) the h-BN can be directly transferred on a TEM grid and the TEM user needs to find a 

fold, so that the cross section can be monitored from the top view. Despite this second 

approach brings associated more randomness, the number of folds on the TEM grid is 

usually large, and it allows rapid localization. On the other hand, direct transfer on TEM 

grids is cheaper than FIB. 
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The most innovative characterization method presented in this PhD thesis is the 

use of CAFM. CAFM consists on placing a very sharp and conductive probe tip on the 

surface of the h-BN, which needs to be placed on a conductive substrate (e.g. the h-BN 

can be studied directly on the substrate where it was grown, or transferred onto a 

different conductive substrate). When a voltage is applied between the tip and the 

sample holder an electrical field will be generated, leading to a vertical current flow 

across the h-BN stack. CAFM is a versatile tool that can collect the topographic and 

current maps simultaneously; based on this, we can make a spatial connection between 

the conductive or insulating properties and the morphological features. Moreover, the 

CAFM can apply electrical stresses to study the entire BD process of the h-BN sheets. 

Furthermore, for the first time we analyze the BD spot using adhesion and deformation 

maps, which can give information about the sign of the traps inside the dielectric, as 

well as their mobility.  

Finally, we also carry out the device level electrical characterization using 

probestation. To do so, we fabricated real devices by depositing top electrodes on the h-

BN stacks (as grown on the metallic substrates) using a laser-patterned shadow mask 

and an electron beam evaporator. The use of a mask patterned by laser is essential to 

avoid large variability on the electrode size. Using this process, we fabricated Au/Ti/h-

BN/Pt and Au/Ag/h-BN/Fe devices.  

 

3.3. Results and discussion 

 

By using the parameters described in Table 3.1, in Articles 2, 3 and 4 we 

successfully grew premium quality monolayer and/or multilayer h-BN on Pt, Cu, and Fe 

(respectively). Optical images indicate that the h-BN is continuous and that it has a low 
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density of cracks. Raman spectra show the characteristic h-BN peak between 1366 cm-1 

and 1370 cm-1, and we are able to distinguish between monolayer, bilayer and 

multilayer h-BN depending on the position of the Raman peak. The number of h-BN 

layers can be identified TEM images, which also prove that our h-BN contains low 

amount of defects.  

Article 2 shows that the thickness of multilayer h-BN grown on polycrystalline 

Pt substrates depends on the crystallographic orientation of the surface of the Pt 

substrate, which is different for each Pt grain. CAFM studies reveal remarkable 

different tunneling currents across the h-BN stack from one Pt grain to another, due to 

the different thicknesses. However, when measuring within the same Pt grain (which 

diameters are typically 60-200 µm) the tunneling current fluctuations are very low, 

much lower than that across amorphous HfO2 and TiO2. These observations are 

corroborated at the device level, i.e. Au/Ti/h-BN/Pt devices within the same grain show 

very similar pre-BD currents and dielectric strength. Therefore, h-BN grown on single 

crystalline metallic substrates may enable the fabrication of low variability electronic 

devices. In Article 3 we show that the tunneling currents across h-BN stacks grown on 

Ni-doped Cu substrates do not remarkably change from one Cu grain to another, and 

compare this observation with the data obtained on Pt. 

Article 4 compares the BD process in monolayer and multilayer h-BN stacks 

grown on polycrystalline Cu substrates. We observe that multilayer h-BN shows a BD 

event that is followed by the formation of large hillocks, which is a behavior that also 

happens in ultra-thin SiO2, HfO2 and Al2O3. However, monolayer h-BN does not show 

such hillocks (i.e. it can keep the structural properties unaltered) even after more severe 

BD. This behavior is attributed to the high thermal conductivity of monolayer h-BN, 

which should be able to spread the local heat through the adjacent metals, avoiding 
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surface modification. In this work we introduce two very novel analyses: i) by 

collecting adhesion maps at the BD location, we find out that the BD spot contains 

negative charges, which are surrounded by an area rich in positive charges. And by 

collecting deformation maps, we find out that the negative charges are fixed at the 

center and mobile at the surroundings, while the positive charges are just fixed. And ii) 

we use ionic liquid electrical stress combined with CAFM and cross sectional TEM to 

characterize structure of the h-BN stack without the need of removing a solid top 

electrode. Our experiments reveal the presence of mainly two types of defects 

promoting high currents in the h-BN stack: lattice distortions (e.g. B vacancies) and 

metal particles/clusters penetration from the substrate. 

In Article 5, h-BN stacks have been successfully grown on Fe foils, and 

Au/Ag/h-BN/Fe structures have been used to fabricate memristive devices. Memristors 

are elements that can change their electrical resistivity depending on the history of 

electrical impulses previously applied. The concept of memristor was firstly suggested 

in 1971 [74], and developed in 2008 [75]. Most of the memristors studied in the 

literature use a metal/insulator/metal (MIM) structure, which is in most cases vertically 

aligned to reduce space. These memristive MIM cells can switch their resistivity 

cyclically between (at least) two stable resistive states, namely high resistive state (HRS) 

and low resistive state (LRS). The performance of a memristor is defined by different 

performances: i) switching speed, ii) switching energy, iii) endurance (i.e. number of 

cycles that a memristor can switch before one of the states becomes permanent), iv) 

retention (i.e. minimum time that the memristor stays in the desired state without 

spontaneous state change), v) device size, vi) device integration. Despite the best 

memristive performances have been achieved using transition metal oxides (TMOs) as 

insulator in the MIM cell, the integration of 2D mateirals in this structure has started to 
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show interesting properties, and novel performances that even the most advanced 

metal/TMO/metal devices cannot achieve have been detected.  

In Article 5 we fabricate Au/Ag/h-BN/Fe memristors, and they have been 

analyzed by applying electrical stresses with opposed polarities. We observe that the 

BD induced by applying positive bias to the top Ag electrode is weak and recovers 

when the electrical field vanishes, leading to volatile BD that can be used to emulate 

threshold RS devices. On the contrary, if the BD is induced by applying negative bias to 

the top Ag electrode the BD event is non-volatile, meaning that the insulating properties 

of the h-BN stack can be only recovered by applying an additional stress of opposed 

polarity. This behavior can be used to emulate bipolar RS devices. The different RS 

behaviors may be related to the different compositions at the BD spot, which is formed 

by Ag/Fe ions when positive/negative bias is applied to the top Ag electrode. Our study 

concludes that h-BN may be suitable for the fabrication of memristors, especially those 

dedicated to emulate electronic synapses that require both volatile and non-volatile 

switching. 
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Chapter 4:  

On the use of h-BN and other 2D materials in 

memristors  

 

In Chapter 3 the fabrication of Au/Ag/h-BN/Fe memristors with very attractive 

performances has been described. The development of memristors using 2D materials is 

a strategy that has recently gained a lot of interest [76-78], as they may enhance some 

RS performances and provide flexibility and transparency capabilities. However, the 

integration of 2D materials in the structure of a memristor is not an easy task, and it 

brings associated several challenges [79]. Moreover, introducing a 2D materials in the 

structure of a memristor does not necessarily improves its performance, and we have 

detected some reports in which the real usefulness of the 2D material in the device is 

highly questionable. In this chapter we review the fabrication of memristors using 2D 

materials and summarize their most remarkable performances. 

 

4.1. Fabrication of memristors using 2D materials 

 

 The integration of 2D materials in memristive devices is complex because their 

synthesis and deposition methods are remarkably different than those used in the 

microelectronics industry. As mentioned in Chapter 3, the scalable synthesis method 

that produces the best quality so far is CVD. However, the temperatures used during the 

growth are too high (>1000 ºC). If graphene or h-BN would be grown on wafers 

patterned with devices, the high temperatures would unavoidably damage all the devices 
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due to severe atomic migration. Therefore, a transfer process is necessary in order to 

integrate the 2D material on the patterned wafers.  

Different processes have been developed to transfer 2D materials on arbitrary 

substrates, such as dry transfer [50], wet transfer assisted by different solid scaffolds 

(like poly(methyl methacrylate) [PMMA], perfluoropolymer-hyflon or rubber film) [49, 

80], roll-to-roll transfer [81], and face-to-face transfer [82], among others [83]. Among 

them, wet transfer and electro-chemical transfer are the two most widely used. Wet 

transfer method uses a polymer (PMMA) coated on the h-BN (or any other 2D material) 

as solid support, and then etches away the bottom metallic substrate. Then the 

polymer/h-BN is fished using the arbitrary substrate and the polymer support is etched 

away. Electrochemical method (also called bubble method) allows recycling the 

metallic substrate, and it is often used to transfer the h-BN grown on noble metals. 

Another possibility to integrate the 2D materials in memristors is to use LPE 2D 

materials spin coated on the wafers, but that may bring associated other problems, such 

as incontrollable thickness fluctuations that may lead to large device-to-device 

variability, and even uncovered areas or pinholes that reduce the yield (e.g. many 

devices would be initially shorted).  

Another recognized problem is that graphene forms a bad interface with TMO 

materials, which in many cases are required to build the memristor. For example, Ref. 

[6] shows that, due to the absence of dangling bonds in graphene, TMOs cannot be 

directly deposited on it using standard methods, such as atomic layer deposition (ALD). 

After that, several reports claimed that this problem does not takes place on the surface 

of MoS2 [85-87], and therefore it was believed that the mechanism for TMO growth by 

ALD on MoS2 was different than that on graphene. However, Ref. [7] proved all them 

wrong by using an in situ characterization. Using that setup it was observed that HfO2 
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aggregates at the local defects of the MoS2, leading to a multi-island pattern instead a 

conformal coating with uniform thickness (i.e. similar to what happens on graphene). 

Ref. [7] demonstrated that the samples in Ref. [86] may have been exposed to 

contamination and for that reason the HfO2 film could have been grown due to the 

presence of dangling bonds in the moisture on the MoS2. 

 

4.2. Status and best performances of 2D materials based memristors 

   

The main application of memristors is as non-volatile memories (NVM) for 

information storage, and the companies in that field (e.g. Intel, Samsung, Micron) have 

been the main players boosting its research. According to the International Technology 

Roadmap of Semiconductor (ITRS) [54], the preformance requirements for any NVM 

technology are: small operating voltages (< 1 V), low power consumption (~ 10 pJ per 

transition), high operation speed or switching time (< 10 ns per transition), high 

endurance (more than 109 cycles), long data retention time (> 10 years), small MIM cell 

sizes (< 600 nm2) and high ON/OFF current ratio (ION/IOFF > 106).  

Different 2D materials can be used to carry out different functions in memristive 

devices. Generally, graphene has been used as top or bottom electrode to provide 

flexibility and transparency [88], and as interface layer between the metallic electrodes 

and the RS medium to avoid atomic diffusions, resulting in an effective decrease of the 

cycle-to-cycle variability [89]. Moreover, the high out-of-plane contact resistance of 

graphene also contributes to reduce the power consumption [90]. Other insulating 2D 

materials, like GO, h-BN and black phosphorous (BP), can serve as active RS medium 

to induce the RS either by migration of intrinsic species or by penetration of metallic 

ions from adjacent electrodes [1]. The best performances reported so far for 2D 

materials based memristors are summarized in Table 4.1.  
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Table 4.1. Best performances reported for 2D materials based RS devices. Reproduced 

with permission from Ref [1], copyright Wiley-VCH 2017. The column Ref. applies to 

the research article where the table was extracted (i.e. Ref. [1]) 

 

Parameter 
Technology 

requirements 

2D materials based RS devices 

Best performances Device structure Ref. 

Operating voltages < 1V 

~ -0.6 V ITO/GO/Ag 91 

~ 0.4 V Ti/h-BN/Cu 18 

~ 0.7 V Al/GO/Al 92 

Power consumption ~ 10 pJ/transition ~ 100 pW Gr/TiOx/Al2O3/TiO2/Gr 93 

Switching times < 10 ns/transition 

10 ns (set) / 1 ns (reset) W/ta-C/W 94 

5 ns (set) / 5 ns (reset) Pt/RGO–th/Pt 95 

< 10 s PEN/Ti/Pt/GO/Ti/Pt 96 

Endurance >109 cycles 

2 × 1013 cycles @ 75°C W/ta-C/W 94 

108 cycles Al/PFCF/RGO/ITO 97 

103 cycles Ag/MoS2/Ag 98 

> 650 cycles Ti/h-BN/Cu 18 

Data retention >10 years > 107 s (115 days) Al/GO/ITO 99 

MIM cell Size 576 nm2 8.5 nm2 Pt/ta-C/C-AFM tip 100 

ION/IOFF ratio 106 

~ 109 Ag/ZrO2/SLG/Pt 101 

> 106 Ti/h-BN/Cu 18 

 

As it can be observed, 2D materials based memristors still do not fit the 

technological requirements for being used a NVM. RS devices using traditional metals 

and oxides have been investigated for already 50 years; however, 2D materials based 

memristors have been studied for less than 10 years. Therefore, any comparison at this 

stage is unfair. However, the introduction of 2D materials in the structure of memristors 

has already enabled several interesting functionalities that would be impossible without 

them. For example, graphne/SiO2/graphene devices showed a transparency >92%, and 

achieved stable RS even after >105 bending stresses uner a radius as small as few 
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nanometers [88]. Another example is the coexistence of bipolar and threshold type RS 

in a single device (see Article 5), which is something very complex that can only be 

achieved in very specific TMO/metal structures [90,102-103]. In the incoming years 

more studies should be carried out to determine if 2D materials based memristors could 

be used as NVM. However, if the high performances of NVMs are not achieved, may 

still be they may be used in other RS applications, such as playing the role of electronic 

synapses in aartificial neural networks, as the technological needs in terms of endurance, 

switching speed, retention, and current ON/OFF window, are more relaxed and the 

dynamic changes on the RS play a more important role. Article 6 summarizes the state-

of-the-art on 2D materials based memristors for their use as NVM, and discusses their 

prospects and main challenges. 
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Chapter 5:  

Conclusions and perspectives 

 

 In conclusion, during this PhD thesis I have learned how to grow high quality 

and large area h-BN stacks with different thicknesses using CVD method. This skill is 

very important because h-BN is a very demanded material, and because CVD is a 

method that can be used to grow many other 2D materials. I also learned how to transfer 

the 2D materials on target (arbitrary) substrates using three different methods (wet, 

bubbling, and roll-to-roll transfer). I also learned how to analyze the properties of 2D 

materials using different equipment (e.g. CAFM, SEM, Optical microscope, Raman and 

TEM). Moreover, I also fabricated h-BN based capacitors and memristors using 

photolithography, thermal evaporation, E-beam evaporation and sputtering, and I 

analyzed the properties of the devices using a probestation. Theoretical modeling and 

fittings (carried out with the help of my collaborators) helped me to understand the 

functioning of the devices. Overall, the main conclusions of my work are: 

 

 Monolayer and multilayer h-BN can be grown by CVD on Pt, Cu and Fe 

substrates. The main parameters affecting the growth of the h-BN are: i) a proper 

temperature determines the decomposition of the precursor. Temperatures below a 

threshold value produce remaining particles and more defects in h-BN stack. ii) 

The flow rate of precursor/H2 influences the density of seeds. Excessive precursor 

produces multilayer h-BN islands. iii) High vacuum and low pressure help to 

remove impurities in the tube furnace (e.g. oxygen, carbon), and therefore it 

produces better quality h-BN, i.e. uniform thickness with less defects.  
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 h-BN sheets grown on polycrystalline Pt substrates show different thicknesses 

depending on the crystallographic orientation at the surface of each Pt grain. This 

produces an undesired fluctuation on the leakage current from one Pt grain to 

another. However, the leakage current across the h-BN on the same Pt grain is 

very uniform, much more than that observed across amorphous HfO2 and TiO2 

thin films. This phenomenon doesn't take place when growing the h-BN on Cu 

substrates. For example, the leakage current across h-BN grown on Cu substrates 

display small current variability among different Cu grains. 

 The dielectric breakdown behavior in multilayer h-BN shows surface extrusion, 

similar to what happens in SiO2, HfO2 and Al2O3. However, monolayer h-BN 

keeps unaltered its structure even for harder breakdown events. The reason may 

be the extremely high thermal conductivity of monolayer h-BN.  

 Multilayer h-BN shows random telegraph noise signals when applying constant 

voltage stresses, both at the device level and at the nanoscale. This strongly 

indicates the trapping and de-trapping of charges during the stress. This 

observation has been confirmed by the detection of charges at the dielectric 

breakdown location. The breakdown spot shows a singular ring-like structure that 

contains fixed negative charges, mobile negative charges, and positive fixed 

charges. 

 The synthesis of h-BN on polycrystalline Fe substrates required longer cooling 

down times than when using Pt and Cu substrates. The reason is that the growth of 

h-BN on Fe substrates mainly takes place by surface precipitation mechanism, 

while on Pt and Cu substrates the mechanism is by surface-mediated reaction.  

 Memristors with Ag/h-BN/Fe structure show threshold resistive switching when 

the set is induced by applying positive voltage to the Ag electrode, and bipolar 
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resistive switching when the set/reset processes are induced by applying 

negative/positive voltage to the Ag electrode. The reason should be that in 

threshold mode the filament is formed by Ag+ ions that penetrate in the h-BN 

stack, while in bipolar mode Fe+ ions penetrate in the h-BN stack. Ag+ ions show 

higher diffusivity than Fe+ ions and produce volatile switching. 

 

Apart from the technical skills gained from the experiments, during my PhD I 

have made a huge effort on literature revision and knowledge organization. In my case 

this contribution is bigger than in other PhD thesis, as I have written two extensive 

review papers with, in total, more than 543 references. In the first one, published in 

Microelectronics Engineering, I analyzed the status of h-BN as dielectric in electronic 

devices (prior to this PhD thesis). And in the second one I analyzed the use of 2D 

materials in resistive switching devices. This second review paper has been written in 

collaboration with Prof. Andrea Ferrari from University of Cambridge, and has been 

highlighted as front cover in Advanced Electronic Materials. This has given me a very 

wide vision on the use of 2D materials as dielectric, which is a skill that I wish to 

exploit in the future. 

Future works in this direction should conduct RS studies in smaller devices, 

using cross point structures and the CAFM. Statistical analyses about the dielectric 

breakdown voltage and time in real devices are necessary. Analyzing the leakage 

current across the domain boundaries of the h-BN would be interesting to understand 

potential weaknesses of the material. Several parameters related to the dielectric 

breakdown process, such as charge-to-breakdown should be also analyzed. The most 

important characterization study would be to describe the performance of h-BN at high 

temperatures, as well as to observe the relationship between thermal conductivity and 
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the degradation. However, the biggest improvement would be to grow h-BN using a 

single seed. This method has been used in the past to grow graphene, but it has never 

been applied to h-BN. In addition, not only h-BN but also other 2D insulating material 

(like graphene oxide, black phosphorus) should be explored and studied as dielectric. 

The range of possibilities is very wide, and the experiments and findings that will come 

in the next years very exciting ! 
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Appendix B: Summary in official language 

 

En resumen, durante esta tesis doctoral he aprendido a crecer capas de h-BN de 

alta calidad y con diferentes grosores utilizando el método CVD.  Esta habilidad es muy 

importante porque h-BN es un material muy demandado, y porque CVD es un método 

que puede ser utilizado para crecer muchos  otros materiales bidimensionales. También 

he aprendido a transferir materiales bidimensionales sobre cualquier otro substrato 

utilizando tres métodos diferentes. También he aprendido a analizar las propiedades de 

los materiales bidimensionales utilizando múltiples equipos (como por ejemplo CAFM, 

SEM, microscopio óptico, Raman y TEM). Además he fabricado condensadores y 

memristores basados en h-BN (utilizando fotolitografía, evaporación de metal térmica, 

evaporación de metal por haz de electrones, y sputtering) y he analizado las propiedades 

de los dispositivos utilizando una tabla de puntas. El uso de modelos teóricos y ajustes 

(realizados con ayuda de mis coautores) me ha ayudado a entender el funcionamiento de 

los dispositivos. Las principales conclusiones de mi trabajo son: 

 

 h-BN monocapa y multicapa pueden ser crecidos mediante CVD sobre sustratos 

de platino, cobre o hierro. Los principales parámetros durante el crecimiento son: i) 

una temperatura adecuada para la decomposición del precursor. Bajas 

temperaturas producen la acumulación de partículas y más defectos en la capa h-

BN. ii) El ratio precursor/nitrógeno influencia la densidad de semillas. Una 

cantidad excesiva de precursor producirá la formación de islas multicapas. iii) Un 

alto vacío y una presión baja ayudan a eliminar las impurezas dentro del tubo 

CVD (por ejemplo carbón, oxígeno) y por lo tanto mejora la calidad de la capa h-

BN (es decir, produce un grosor más homogeneo y con menos defectos). 
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 Las capas h-BN crecidas sobre sustratos de platino policristalino muestran 

diferentes grosores dependiendo de la orientación cristalográfica de cada cristal de 

platino. Esto produce una (indeseada) fluctuación de la corriente de fugas a través 

del h-BN. Sin embargo, la corriente de fugas a través de la capa h-BN dentro de 

un mismo cristal de platino es muy uniforme, mucho más que a través de capas 

amorfas de HfO2 y TiO2. Este fenómeno no se observa si el h-BN se crece sobre 

sustratos de cobre o hierro. Por ejemplo, la corriente de fugas a través de h-BN 

crecido sobre sustratos policristalinos de cobre muestran una baja variabilidad de 

un cristal de cobre a otro. 

 La ruptura dieléctrica de h-BN multicapa muestra una extrusión de la superficie, 

muy similar a lo que sucede en SiO2, HfO2 y Al2O3. Sin embargo, las monocapas 

de h-BN mantienen su estructura incluso cuando la ruptura dieléctrica es mucho 

más brusca. La razón podría ser la elevada conductividad térmica de las 

monocapas de h-BN. 

 Las multicapas de h-BN muestran fluctuaciones de corriente entre dos estados al 

aplicar una tensión constante, tanto a escala nanométrica como a nivel de 

dispositivo. Esta observación indica que existe atrapamiento y desatrapamiento de 

carga. Este fenómeno ha sido confirmado mediante la detección de cargas 

atrapadas en el punto de ruptura, el cual muestra una singular estructura de anillo 

con cargas fijas negativas, cargas móviles negativas, y cargas fijas positivas. 

 La síntesis de h-BN sobre sustratos de hierro policristalinos requiere un tiempo de 

enfriamiento (durante el proceso CVD) mucho más elevados que sobre sustratos 

de platino o cobre. La razón principal es que el mecanismo de crecimiento es 

distinto, sobre hierro la capa h-BN crece por precipitación, mientras que sobre 

platino o cobre crece por reacción con la superficie.  
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 Los memristores con estructura Ag/h-BN/Fe muestran modulación de la 

resistividad de tipo volátil cuando la ruptura dieléctrica es generada aplicando 

tensión positiva en el electrodo de plata, y de tipo bipolar cuando la ruptura 

dieléctrica y la recuperación son generadas aplicando tensiones negativa y 

positiva (respectivamente) en el electrodo de plata. La razón es que en modo 

volátil el filamento está formado por iones de plata que penetran en la capa h-BN, 

los cuales tienen una alta difusividad y pueden retroceder a su estado de reposo 

cuando la tensión es desactivada. En el caso del modo bipolar, los átomos que 

forman el filamento son de hierro, que tienen una menor difusividad, y por lo 

tanto requieren la aplicación de una tensión extra para romper el filamento. 

 

A parte de las habilidades técnicas adquiridas durante los experimentos, durante 

el desarrollo de esta tesis doctoral he hecho un esfuerzo muy importante en revisar la 

literatura relacionada y organizar la información. En mi caso, esta contribución es 

mayor que en otras tesis doctorales, ya que he escrito dos artículos de revisión, y en 

total he estudiado más de 543 artículos. En el primer artículo, publicado en la revista 

Microelectronics Engineering, he analizado el uso de h-BN como dieléctrico en 

dispositivos electrónicos (estado previo a esta tesis). Y en el segundo he analizado el 

uso de materiales bidimensionales para memristores. Este segundo artículo de revisión 

ha sido escrito en colaboración con el profesor Andrea Ferrari de la Universidad de 

Cambridge, y ha sido seleccionado como portada en la revista Advanced Electronic 

Materials. Esto me ha dado una visión muy amplia sobre el uso de materiales 

bidimensionales como dieléctrico, que es una habilidad que espero explotar en el futuro. 

Futuros trabajos en esta dirección deberían concentrarse en el estudio del 

fenómeno de modulación de la resistividad a escala nanométrica, utilizando dispositivos 
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más pequeños y el CAFM. Se deberían realizar análisis estadísticos de la tensión y 

tiempo de ruptura en dispositivos reales. Sería también interesante estudiar la corriente 

de fugas a través de las fronteras de grano en el h-BN, y así poder comprender sus 

potenciales puntos débiles. Algunos parámetros relacionados con la ruptura dieléctrica, 

como la carga de ruptura deberían ser analizados. El parámetro más importante a 

analizar es la influencia de la elevada constante térmica del h-BN en la ruptura 

dieléctrica, y también el comportamiento de este material a altas temperaturas. Sin 

embargo el avance más significativo sería poder crecer capas de h-BN con una semilla 

única. Este método ha sido utilizado anteriormente en el crecimiento de grafeno, pero 

nunca antes en el crecimiento de h-BN. Además, otros materiales bidimensionales 

(como el óxido de grafeno y el fosforeno) deberían ser estudiados desde el punto de 

vista dieléctrico. El rango de posibilidades es muy amplio, y los experimentos y 

hallazgos que vendrán en un futuro serán muy excitantes ! 
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Appendix C: List of acronyms 

 

2D  Two dimensional 

3D  Three dimensional 

BD  Dielectric breakdown 

CAFM  Conductive atomic force microscopy 

c-BN  Cubic boron nitride 

CVD  Chemical vapor deposition 

F1  Tube line 1 

F2  Tube line 2 

FETs   Field effect transistors 

FIB   Focused ion beam 

h-BN  Hexagonal boron nitride 

HRS  High resistive state 

I-V  Current vs. voltage 

LPE   Liquid phase exfoliation 

LRS   Low resistive state 

MBE   Molecular beam epitaxy 

MIM   Metal/insulator/metal 

NVMs   Non-volatile memories 

P   Pressure 

PVD   Physical vapor deposition 

RS   Resistive switching 

RT   Room temperature 

RTN   Random telegraph noise 
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SEM   Scanning electron microscopy 

SILC   Stress induced leakage current 

SiO2   Silicon dioxide 

TA  Annealing temperature 

tA  Annealing time 

tC  Cooling down time 

tG  Growth time 

TG  Growth temperature 

TEM   Transmission electron microscopy 

TMOs   Transition metal oxides 

TMDs   Transition metal dichalcogenides 

UHV   Ultra high vacuum 

w-BN   wurtzite boron nitride 
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