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ABSTRACT

In this thesis, we report on the design and construction of a quantum
simulator experiment using quantum gases in Spain. This experiment
exploits mixtures of the three isotopes of potassium, which give
access in an original approach to the study of Bose-Bose or
Bose-Fermi mixtures using the same experimental setup.

We validate our experimental setup with the observation of a
Bose-Einstein condensate (BEC) of #'K and %K. Moreover we observe
the dual Bose-Einstein condensation of 3K-*'K. These results
represents the first observation of BECs in Spain and give access to a
novel quantum degenerate mixture in the field. Since the control of
interactions in our experiment are crucial, we characterize the
scattering properties of the 3YK-*'K mixture, and spin mixtures of ¥K
and #K.

In addition, using a spin mixture of 3K BEC, we report on the
observation of a novel state of matter: a composite quantum liquid
droplet. This dilute quantum droplet is a liquid-like cluster of
ultra-cold atoms self-trapped by attractive mean-field forces and
stabilized against collapse by repulsive beyond mean-field
many-body effects. This system follows the original proposal of D.
Petrov, who predicted the formation of self-bound liquid droplets in
mixtures of Bose-Einstein condensates.

In the first series of experiments, we have observed the formation
of quantum droplets in a regime where the Bose-Bose mixture should
collapse from the mean-field perspective. We directly measure the
droplet size and ultra-low density via high-resolution in situ imaging,
and experimentally confirm their self-bound nature. We demonstrate
that the existence of these droplets is a striking manifestation of
quantum fluctuations. These droplets do not exist in



single-component condensates characterized by short-range contact
interactions. Finally, we observe that for small atom numbers,
quantum pressure dissociates the droplets and drives a liquid-to-gas
transition, which we map out as a function of interaction strength.

These measurements open an intriguing line of investigation: the
difference existing between droplets and bright solitons. In the
second series of experiments, we address it by placing the mixture in
an optical waveguide, realizing a system that contains both composite
bright solitons and quantum liquid droplets. In analogy to non-linear
optics, the former can be seen as one-dimensional matter-wave
solitons stabilized by dispersion, whereas the latter corresponds to
high-dimensional solitons stabilized by a higher order non-linearity.
We find that depending on atom number, interaction strength and
confinement, solitons and droplets can be smoothly connected or
remain distinct states coexisting only in a bi-stable region. We
measure their spin composition, extract their density for a broad
range of parameters, and map out the boundary of the region
separating solitons from droplets.

Our experiments demonstrate a novel type of ultra-dilute quantum
liquid, stabilized by contact interactions. They provide an ideal plat-
form for benchmarking complex quantum many-body theories beyond
the mean-field approximation in a quantum simulation approach. Fur-
thermore, they constitute a novel playground to explore experimen-
tally self-bound states stabilized by unconventional higher order non-
linearities, similar to those relevant in non-linear optics.



RESUMEN

En este trabajo de tesis se reporta el disefio y la construccién de uno
de los experimentos pioneros en Espafia que permite realizar simu-
laciones cudnticas usando dtomos ultra frios. En este experimento se
enfrian hasta alcanzar la degeneracién cudntica los tres diferentes iso-
topos de potasio los cuales permiten, de manera particular y original,
el estudio de mezclas cuanticas degeneradas de tipo Bose-Bose o Bose-
Fermi.

El funcionamiento del experimento es validado por medio de la pro-
duccién de condensados de Bose-Einstein de 41K y 39K. Ademas, se
reporta la condensacién de la mezcla degenerada 4K - K, la cual
no habia sido previamente reportada en la literatura. Estos resultados
son los primeros de su tipo en Espafia y por lo tanto abren un amplio
panorama en el estudio de fendmenos cuanticos en el pais. La mezcla
cudntica reportada en esta tesis permite acceder a sistemas cuanticos
novedosos en el campo de dtomos frios. El control de las interacciones
atémicas es una herramienta ampliamente usada en el campo, por lo
cual se han caracterizado las propiedades de dispersién en esta nueva
mezcla, asi como en diferentes mezclas de espin entre los isotopos 'K
y 39K

El resultado mds importante de esta tesis reside en la creacién de
un nuevo estado de la materia: una gota liquida cuéntica ultra-diluida.
Esta gota cudntica se compone de una mezcla de dos estados difer-
entes de espin de ¥K. Este liquido se encuentra ligado por sf mismo
debido a la compensacién de las fuerzas atractivas de campo con el
cardcter repulsivo de efectos cuanticos que van mads alla de la aprox-
imacién de campo medio. Este sistema sigue la idea original de D.
Petrov, esta propone la formacién de liquidos cudnticos usando mez-
clas de condensados de Bose-Einstein.



En la primera serie de experimentos, hemos observado la formacion
de gotas cuanticas en un régimen donde una mezcla de Bose deberia
de colapsar de acuerdo con teorias de campo medio. Se ha medido su
tamafio y ultra-baja densidad por medio de imagenes in situ. De esta
manera confirma cémo este liquido permanece ligado por si mismo
en la ausencia de confinamiento externo. Hemos demostrado que la
existencia de estas gotas cudnticas se debe a una manifestacién sor-
prendente de las fluctuaciones cuédnticas. Finalmente hemos observado
cémo debido a la presencia de la presiéon cudntica, debajo de un nu-
mero critico de dtomos el sistema se disocia en gas dando lugar a
una transicion cudntica liquido-gas. Esta transicion se ha medido ex-
perimentalmente como funcién de las interacciones atémicas entre los
atomos.

Estas mediciones traen consigo una pregunta intrigante: ;Cuél es la
diferencia entre nuestras gotas cudnticas y los ya conocidos solitones
de materia? En una segunda serie de experimentos, hemos dado re-
spuesta a esta interrogante al estudiar las propiedades de una mezcla
de Bose confinada en una guia 6ptica. En este tipo de geometria ambos
estados pueden existir. En analogia a sistemas 6pticos no-lineales, soli-
tones son sistemas estabilizados por efectos de dispersién, mientras
las gotas cuanticas corresponden a solitones de més alta dimensién
estabilizadas por efectos no lineales de alto orden. Hemos encontrado
que, dependiendo del ntiimero de dtomos, fuerza de interaccién y con-
finamiento, solitones y gotas cuanticas son dos estados cudnticos que
pueden estar conectados, permanecer como dos estados distintos, o
coexistir en una regién de bi-estabilidad. Se ha medido su composi-
ciéon de espin, densidad del sistema y encontrado experimentalmente
la frontera que separa ambos sistemas.

En conclusién, los experimentos mostrados en esta tesis demuestran
la existencia de un nuevo liquido cudntico ultra-diluido estabilizado
Unicamente por interacciones de contacto. Su existencia es puramente
debida a las fluctuaciones cuanticas presentes en el sistema. Este sis-
tema provee una plataforma ideal para el estudio y la comprensién de



teorfas cudnticas mds complejas las cuales van mads alla de la aproxi-
macién de campo medio.
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INTRODUCTION

1.1 LIQUIDS BEYOND THE VAN DER WAALS PARADIGM [1]

Gases and liquids are ordinary states of matter which are connected
to each other as a function of the interaction strength between the
atoms. These phases, also called fluids, have the same internal symme-
try (isotropy and translational invariance), however, the liquid phase
appears only when a sensitive balance between attractive and repul-
sive energy terms takes place.

In the van der Waals picture, two neutral atoms do not interact if
they are far apart from each other. However, when they become closer,
they attract each other through the so-called van der Waals forces. At
even shorter distances, a strong repulsion appears that stems from the
Pauli exclusion principle of the electrons. This pair potential in such
situations has the generic shape shown in Fig. 1.1 (a). The liquid phase
appears when the distance between the atoms is on the order of the
van der Waals radius, this is the length scale where the attractive in-
termolecular interactions compensate the repulsive energy term. This
is why, liquids are normally dense and incompressible systems.

Even though it is possible to describe the properties of fluids (lig-
uids or gases) through the well know van der Waals theory (see [2]
and references therein), the details of the two-body potential that fully
define the properties of the system must be included. Unfortunately,
in many cases this potential may be complex or even unknown, which
makes the description of "conventional" liquids non-universal. Here we
refer to universality when in a given limit the system simplifies and
can be described with a small set of parameters.
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In this thesis we demonstrate that ultra-cold quantum gases can be
used to create liquids that differ completely from the van der Waals
picture. These liquids are ultra-dilute (with densities eight orders of
magnitude lower than water) and can be described in a more general
frame. The liquids presented are made of a mixture of two atomic
Bose-Einstein condensates. The advantage of ultra-cold atoms is that at
ultra-low temperatures and ultra-low densities the interactions in the
system can be described in a simple picture using a single parameter:
the scattering length.

The stabilization mechanism of our dilute quantum liquid droplets
arises from the competition of the attractive mean field energy and
repulsive beyond mean-field effects that stem from quantum fluctua-
tions. In this situation, the characteristic length scale is not given any
more by the details of the potential but instead by the scattering length
parameter. Therefore, this dilute droplet makes possible the study of a
liquid state in a universal frame. A pictorial representation of the differ-
ence between a dense "conventional" liquid and our ultra-dilute liquid
is sketched in Fig. 1.1. In this schematic representation, the dense lig-
uid (see Fig. 1.1 (a)) interacts through the two body potential given
by the van der Waals theory. The range of the attractive part is rep-
resented in light blue, and the range of the repulsion, given by the
hardcore part of the potential, is represented in red.

Fig. 1.1 (b) represents our quantum liquid stabilized by quantum
fluctuations. In contrast to the van der Waals liquids, the system is so
dilute that the atoms do not observe the details of the potential. How-
ever, they remain self-bound due to the compensation of attractive
mean field forces and the repulsive effect of quantum fluctuations.

In ref. [1], D. Petrov presents more information about these exotic
liquids that goes beyond the van der Waals paradigm.
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Figure 1.1: Schematic representation of a "conventional" liquid. (a) Particles are bound together
at an inter-particle distance where the repulsive core of the potential (red) is compen-
sated by the attraction between particles given by the van der Waals interaction (blue).
(b) Ultra-dilute liquid stabilized by quantum fluctuations. The particles are bound at
a length scale where the details of the two body potential are negligible. This liquid
is a direct consequence of pure quantum mechanical effects. Image inspired by ref.

[1].
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1.2 OVERVIEW OF THIS THESIS

The place where we have performed all the experiments presented in
this thesis is located in the LABoo2 at ICFO — The Institute of Photonic
Sciences in Barcelona, Spain. In particular, I started my Ph.D. officially
in January 2014 and one month later we received our empty lab. From
then on we have focused on the design and construction of a new ultra-
cold quantum gas experiment in Spain and recently in the observation
of quantum liquid droplets in a mixture of Bose-Einstein condensates.
Along the next chapters we will explain the main results obtained
during the last years.

In the first part of the thesis, we focus on the production of the
first dual BEC of ¥K-*'K and the characterization of its inter and in-
traspecies interactions. The second part of the thesis explores some
properties of these exotic liquid droplets and the connection with the
well-known bright solitons. Each chapter contains an introduction to
it to motivate the main ideas. The thesis is organized as follows:

The first chapter introduces in a general context the concept of Bose-
Einstein condensation in ultracold atoms. We discuss the derivation of
the Gross-Pitaevskii equation, the excitation spectrum of a BEC and
the modification of the thermodynamic properties of the condensate
in the presence of interactions. We extend this formalism to the two-
component condensate and discuss as well the properties of the mix-
ture. We discuss the first correction to the mean field energy of a BEC,
the so-called Lee-Huang-Yang energy. We introduce this term for both
the single and two component case. The existence of quantum droplets
is a striking manifestation of this beyond mean-field correction. We
show why this contribution can be easily revealed in two-component
condensates in comparison to the single component case.

The second chapter and third chapter go hand in hand. We explain
there the design and construction of an ultra-cold quantum gas ex-
periment together with the route to achieve quantum degeneracy. The
second chapter is devoted to the experimental details of our potassium
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machine. We discuss the laser system required to manipulate the three
different isotopes of potassium (laser cooling and evaporative cooling
in conservative traps), we present in detail the vacuum system em-
ployed and we introduce the high numerical aperture objective used
to image the atomic cloud. Among other technical details presented in
this chapter, we include for completeness the reference of every single
device introduced. We are convinced this is useful information for the
future generations of people working in the experiment.

The third chapter explains how we have set the different experi-
mental tools together to obtain a degenerate quantum gas. Here we
introduce the experimental sequence used to condense *'K. We char-
acterize in detail the different cooling stages (laser cooling and evap-
orative cooling), and we introduce the idea of sympathetic cooling of
3K using *IK as a coolant. This technique turns out to be as efficient
as ¥K-¥Rb experiments but with a faster production cycle. Moreover,
we have simplified the experimental setup using the same atom. We
finally report on the production of, to the best of our knowledge, the
first dual BEC of ¥K-*K.

The fourth chapter presents a detailed characterization of the inter-
action between the mixture *K-*'K and some spin mixtures of *K and
4IK. We report on the observation of 20 unobserved resonances in the
mixture *K-*'K. We located the resonances using Feshbach loss spec-
troscopy. In addition, we develop an asymptotic bound-state model
(ABM) for potassium mixtures. Finally, we compare our experimental
results with our ABM model and coupled-channel calculations based
on the model potentials reported in the literature.

The fifth and sixth chapter are devoted to the study of composite
quantum droplets. The fifth chapter is split in two: the theory behind
quantum droplets and the experimental observation of this self-bound
state. In the theory section, we introduce the main ideas behind the sta-
bilization mechanism of the Bose-Bose mixture with effective attractive
interactions. We present the theoretical model introduced by D. Petrov
[3] which is based on an extended Gross-Pitaevskii equation where
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the effect of quantum fluctuations is included as an additional term.
We introduce the phase diagram of the system as a function of atom
number and interaction strength. Finally, we discuss the liquid-to-gas
transition induced by the quantum pressure of the system. We sum-
marize the main properties of the droplet, as discussed by D. Petrov
in its original proposal. In addition, we include the state-of-the-art of
dipolar droplet experiments and comparisons between dipolar and
composite droplets.

In the experimental section, we reveal the effect of beyond mean-
field effects by presenting the absence of collapse in a Bose-Bose mix-
ture. The system becomes self-bound for a given atom number and
interaction strength. Taking advantage of the three-body recombina-
tion present in the system, we reveal the presence of the liquid-to-gas
phase transition as a function of atom number. Below a critical atom
number, the droplet dissociates into a gas. We map out experimentally
for different parameters the phase transition. We conclude this chapter
by comparing our results with the ones published recently at LENS.

The sixth chapter presents how Bose-Einstein condensates with at-
tractive mean-field interactions allow us to explore in the same setting
different self-bound states like bright solitons and quantum droplets.
We compare both systems where the former is stabilized due to the
interplay with quantum pressure while the latter is due to beyond
mean-field effects. In this chapter we show the spin composition of
the system and its dependence with interaction strength. We discuss
how solitons and droplets are different solutions that appear when an
effective change of the dimensionality takes place in the system.

This thesis concludes by explaining our current and future research
directions.
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2.1 INTRODUCTION

In this chapter, we introduce the fundamental concepts and theoretical
background on Bose-Einstein condensates (BECs) in ultra-cold alkali
atoms. In the first part of this chapter we give a brief introduction
about the thermodynamic and dynamic properties of a BEC, the inter-
actions between atoms and the mean-field theory used to describe the
system. We describe the elementary excitations of a single component
Bose-Einstein condensate and the first beyond mean-field correction to
the energy of the gas.

The second part of the chapter is dedicated to the study of the
fundamental properties of degenerate Bose-Bose mixtures. Combining
two Bose-Einstein condensates increases the complexity of the many-
body problem and enriches the physical properties of the ground state
phase diagram. We present the condition for the miscible-immiscible
scenario where strong repulsive interactions between condensates lead
to the phase separation of the system. If the intra-species interactions
are instead attractive, the Bose-Bose mixture is predicted to collapse.
These two scenarios are expected in the frame of the mean-field for-
malism.

We then introduce the generalization of the Gross-Pitaevskii equa-
tion for a multicomponent BEC. Finally, we present an effective de-
scription of a Bose-Bose mixture with beyond mean-field corrections.
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2.2 ULTRA-COLD BOSE GASES: FROM THERMAL GASES TO BOSE-
EINSTEIN CONDENSATION

2.2.1  Non-interacting Bose-Einstein condensate

Bose-Einstein condensation is a pure effect of quantum statistics. It
corresponds to the macroscopic population of the ground state of
the system in a gas of bosonic atoms. For a homogeneous and non-
interacting Bose gas, the occupancy of states in the system follows the
Bose-Einstein distribution

1
”i(gi) = m/ (2.1)

where kg is the Boltzmann constant, u defines the chemical poten-
tial, ¢; the energy of the i state and T the temperature of the system.
Following the normalization condition with the total atom number
N = X;n;(¢;), for a given temperature T there is a maximum number
of particles N, that can occupy excited states (i > 0). If the total atom
number N is superior to N, all the "extra" atoms occupy the ground
state (i = 0) which can become macroscopically populated.

Using the thermal de-Broglie wavelength associated with the parti-
cles

h
V2mmkgT’
with h representing the Planck constant and m the mass of the particles,

we can recast the differences between a thermal gas and Bose-Einstein
condensation in terms of the phase-space density

A = (2.2)

PSD = nA3, (2.3)

where n = N/V represents the density for a given particle number N
in a volume V. For thermal gases, the PSD is much lower than one,
while close to the BEC transition it becomes on the order of unity. The
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latter indicates that when the inter-particle distance (d o n71/3) is on
the order of the thermal de-Broglie wavelength, the wave functions
associated to each particle will overlap and give rise to a single macro-
scopic quantum matter wave.

For the homogeneous case, the critical temperature T? where the
system begins to occupy the ground state macroscopically is given by

2 hZ 2/3 hz 2/3
IR RSy Y L (2.4)
£(3/2)2/3 m
with i = h/27 the reduced Planck constant and {(s) defined as the
Riemann zeta function [4]. Here the phase space density is equal to
PSD = ((3/2). At fixed atom number Niy,, the amount of atoms in

the condensate Ny increases by reducing the temperature T below TV.
Here the condensed fraction scales as a function of temperature as

No ( T )3/ 2
=1—| = . 2.
Ntotal T? ( 5)

Trapped Bose-Einstein condensates

kpT? =

In cold atoms experiments, the atomic cloud is usually confined with
a harmonic potential Vey. The presence of this potential modifies the
critical temperature and atom number at which the macroscopic oc-
cupation of the lowest state energy appears. For a three-dimensional
harmonic oscillator potential, the transition temperature is given by

[4]

1/3
kpT? = hawo <€(3)> ~ 0.94 hwN'/3, (2.6)
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where @ = (wywyw,)!/3 represents the geometrical mean of the har-

monic oscillator trap frequencies. The condensed fraction in this situa-
tion is given by

= (m)
=1-(= . (2.7)
Ntotal TCO 7

For typical parameters in our experiment, the critical temperatures
are in the order of hundreds of nK.

All the expressions presented above are derived by assuming a non-
interacting system. In section 2.4, we will see how these properties are
modified due to the interactions between the particles and finite size
effects.

2.3 ULTRA-COLD INTERACTIONS
2.3.1 Introduction

In the experiments, the collisional properties of the atoms are essential.
In fact, the re-thermalization of the gas during evaporative cooling
is only possible due to the presence of scattering events between the
atoms. Moreover, the interactions in the system define the ground state
energy and the different properties of the condensate (superfluidity,
collective excitations and shape, among others) [5].

The collisional properties of ultra-cold gases have been studied ex-
tensively in the literature [4—8]. Therefore, in this section we only re-
view the most important concepts.

2.3.2 Interactions between pairs of neutral atoms

The scattering properties in a collision of two neutral atoms with mass
my and my depend on the central potential V(r) and the inter-particle
distance r. At long distance, the inter-particle forces between atoms
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are mainly governed by the instantaneous induced dipole-dipole in-
teractions. This results in an attractive van der Waals force that scales
as —1/7°. The characteristic length scale associated is the so-called van
der Waals range

1/4
ro = % <27};[2C6> , (2.8)
with Cg being the dipole-dipole dispersion coefficient and m, the re-
duced mass
_ Iy
m, = ——— (2.9)

For potassium atoms ry = 65 ap (3.5nm), where 4y is the Bohr radius
[o]-

As the particles approach each other, a short-range repulsion be-
comes dominant. This is a consequence of the overlap of the wave
functions associated to the electrons of the atom pair (Pauli exclusion
principle). Taking into account the total electronic spin configuration
of the atom pair, the central potential V(r) can be decomposed into
singlet Vs(r) and triplet V;(r) terms:

V(r) = Vs(r)Ps + Vi(r) Pr. (2.10)

Here P; and P; represents the probability of the atom pair to be either
on the singlet or triplet spin state. In Fig. 2.1 we sketch an example of
the singlet and triplet potentials.

2.3.3 Ultra-cold collisions

In ultra-cold scattering theory it is well-known that van der Waals
potentials similar to the one shown in Fig. 2.1 can be described and
parametrized in terms of a single paramater a so called the the s-wave
scattering length. This is valid in the low energy limit where the par-
ticles have extremely low temperature that they scatter only through

11
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t} Singlet state
t1 Triplet state o o

interparticle distance

1
,"VanfderfWaaI interactions
/ 1/r¢

Figure 2.1: Neutral atoms interact through a van der Waals type potential. Here the attractive
part of the potential (red dashed line) is due to dipole-dipole interactions and scales
as Viyqw (r) = Ce/1%. The repulsive part of the potential, is given by Pauli exclusion
principle between the electrons (see text). The depth of the potential will be defined
by whether the two valence electrons are in the symmetric (singlet) or antisymmetric
(triplet) configuration.

the lowest partial wave (I = 0). Here, higher partial waves do not
contribute to the scattering problem. In this limit the corresponding
cross-sections can be written as:

0o = 8ma® identical bosons.
0o = 4ma®> non-identical atoms.
o0 = 0 identical fermions.

(2.11)

One major implication of Eq. 2.11 is that identical fermions have a
vanishing cross-section at low temperatures. This implies that evapo-
rative cooling is not possible and therefore other means to cool down
polarized fermions are required. The usual solution is a mixture of two
distinguishable fermions [10] or sympathetic cooling with a different
atomic species [11].
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In addition to the low energy limit, the system is so dilute that the
average distance between particles d = n~1/3 is larger than the van der
Waals range rg. To give an example, in potassium experiments ry ~ 3.5

nm while for our typical densities d ~ 8 ym . The latter implies that

¢ It is possible to consider only two-body collisions in the system
and neglect higher order ones. The cloud is so dilute that the
probability to find more than two particles colliding at the same
point is very low.

* The particles on average are not affected by the details of the
two-body potential ry < d.

In this situation, it is not required to know the details of the po-
tential, and instead, we can use a simple model potential to describe
the same scattering properties of the system. The simplest way to
parametrize the scattering of two neutral particles is using contact in-
teractions. This sort of interaction can be represented using a delta
function potential

) 4rth*a
V(r):gé(r)gr; g§=— (2.12)

Here g is known as the coupling constant. We use this potential in
further derivations where the interactions of the particles are taken
into account.

Finally, we can parametrize the diluteness of the system by compar-
ing the inter-particle distance d and the scattering length a by intro-
ducing the concept of gas parameter defined as
.

nla (2.13)

This quantifies as well whether the system is in the weakly
(n|a\3 < 1) or strongly interacting regime (n|a|3 ~ 1).

13
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2.3.4 Feshbach resonances

Due to the internal atomic structure, the collision between two atoms
depends on the electronic spin configuration (singlet and triplet) but
also on the internal state of the atom pair. Therefore there are several
scattering channels similar to the ones presented in Fig. 2.1. The energy
difference on each available potential depends on the internal states
of the atom pair (hyperfine or Zeeman states). When two of these
channels conserve the same total momentum M they can couple to
each other and modify the scattering properties of the collision. This
effect was studied a long time ago in nuclear physics [12] and then
in atomic physics [13] and is known as Feshbach or Fano-Feshbach
resonance.

(@) (b)

A A No-coupling
5 || g® 8
5| ||@ 5| @
S IE, S| ©
0,,_ ,,,,,,,,,,,,,,,,
open channel
® ‘
Interparticle distance  d Magnetic field

Figure 2.2: (a) Feshbach resonance mechanism. If the energy of any bound state E}, approaches
the energy E of the free particle threshold the amplitude of the scattering length a
is modified. (b) When the energy becomes degenerate between the molecular bound
state and a pair of two free atoms, a resonance takes place. The position of the cross-
ing can be adjusted using magnetic fields because the two states have different mag-
netic moments.

The main idea behind a Feshbach resonance is the following. Let us
consider for simplicity the existence of the two-body potentials pre-
sented in Fig. 2.2 (a). These potentials represent the interaction of a
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pair of atoms with a distinct internal degree of freedom. One (red
potential) we call the open channel V(r) in which we consider the col-
lision of a pair of free atoms. The other one (green potential) is the
closed channel which has overall a higher energy, but a bound state
with energy E,, similar to the energy of two free atoms.

By tuning the magnetic field, we modify the energy of the free atom
pair as sketched with the red dashed line on Fig. 2.2 (b), and also the
energy of the bound state in the closed channel. Due to the difference
in magnetic moments of the free atom pair and the bound state, for
a given magnetic field By the energy of the two states crosses (degen-
erated energies), and a resonance event occurs. This crossing between
two channels gives as a consequence a modification in the scattering
length a.

The scattering length close to a Feshbach resonance follows the rela-
tion [14]

a(B) = apg (1 - B—ABO> , (2.14)

where the background scattering length (apg) denotes the scattering
length away from the resonance condition. The width of the resonance
is represented with A and B the resonant magnetic field.

An example of the tunability of the scattering length as a function
of the magnetic field is shown in Fig. 2.3. Such tunability of the s-wave
interactions, from repulsive to attractive character, is one of the main
tools exploited in our experiments.

15
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Figure 2.3: Scattering length vs. magnetic field. The scattering amplitude diverges at B = By.
The red line represents the energy of the molecular state. This state exists only for
positive values of the scattering length.

Feshbach molecules

At the limit of large and positive scattering length, close to the Fesh-
bach resonance, there is a two-body bound state with energy Ej, that
can be described in terms of the scattering length a as

hZ

—W (2.15)

Ep =

This is known as Feshbach molecule (see Fig. 2.3 red line). Eq. 2.15 is
valid in the universal regime where the scattering length a associated to
the potential is larger than the range of the two-body potential [5]. For
resonances where the range of the potential is important, deviations
of this binding energy are observed [15, 16].

These sort of molecules are the key ingredient in experiments in the
study of the BEC-BCS crossover [17] in ultra-cold fermion systems or
in the formation of ultra-cold polar molecules [18].
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2.4 BOSE-EINSTEIN CONDENSATES IN THE PRESENCE OF INTER-
ACTIONS

In this section, we discuss the mean-field description of a single com-
ponent BEC. We start by introducing the Hamiltonian that describes
the many-body problem using the second quantization formalism. Us-
ing this formalism we derive the well-known Gross-Pitaevskii equa-
tion (GPE).

2.4.1  The time-dependent Gross-Pitaevskii equation

Consider N interacting bosons confined with an external potential
Vext(r). In such situation the Hamiltonian of the system reads

H= Ho + H[, (2.16)
. . h? .
Hy = /dr CI>+(r,t) < — %Vz + Vext(r))cb(r,t), (2.17)

H = ;/drdr’ & (r, )T (¢, )V (r — ¥)D(, 1) D(r, 1), (2.18)

where &*(r,t) and &(r,t) are the creation and annihilation bosonic
tield operators which satisfy the usual commutation relations. The in-
teraction term of the Hamiltonian H; describes the two-body collisions
where the term V(r — ') is the two-body potential introduced in Eq.
2.12.

The time evolution of ®(r,t) can be derived in the Heisenberg pic-
ture [4]

LoD [ .
zhg = [CD,H]. (2.19)

By substituting Eq. 2.16 into Eq. 2.19 we obtain as a result the equa-
tion of motion of the field operator ®(r, t).

17
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Bogoliubov decomposition

Let us now introduce the mean-field approximation (MF) for dilute bosonic
gases formulated by N. Bogoliubov [19]. We decompose the field op-
erator ®(r,t) as

&(r,t) = P(r,t) + 6¢(x, ). (2.20)

The first term represents the macroscopic population of a single
quantum state (the condensate wave-function) defined as
¥(r,t) = ($(r,t)) the mean-value of the field operator. The second
term 6¢(r, t) corresponds to the non-condensed fraction of atoms pro-
moted to higher energy states due to internal interactions of the atoms
in the condensate or thermal excitations. At T = 0 this contribution is
only due to quantum fluctuations. The main result of this thesis is the
existence of a self-bound liquid droplet in BEC mixtures, based on this
beyond mean-field correction. Its main consequences are explained in
detail in chapter 6 and chapter 7.

Zero temperature

The mean-field picture allows to simplify the description of the con-
densate and neglect the contributions of 6¢(r,t). This is a very good
assumption for weakly interacting systems (quantum fluctuations are
negligible) and well below T, where we can assume that all the atoms
are in the lowest state of energy (thermal excitations are not impor-
tant). By inserting Eq. 2.20 into Eq. 2.19 we obtain the time-dependent
Gross-Pitaevskii equation (GPE) [4]

2
S0P ) (_ "

5 - V2 4 Vext (1) + g (x, 1) ]2> P(r, t). (2.21)
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This equation is similar to a Schrodinger equation but with an ad-
ditional non-linear term (g|¢(r,t)|?) which accounts for the energy
associated with the inter-particle interactions.

In Eq.2.21, it is necessary to ensure that the wave function is normal-
ized, therefore we require that

/(131'|1/J(1‘,1‘)|2 =N, (2.22)

which as a consequence implies that the density of the system is equal
to n(r,t) = |p(r,t)|%

2.4.2  The time-independent Gross-Pitaevskii equation

The static properties of the condensate can be studied by substituting
P(r, t) = ¢(r) exp(—iut/h) into Eq.2.21:

2
Wm=<7;W+%MWWW®O¢m, (223)

where here y represents the chemical potential of the condensate. The
stationary solutions of the condensate ¢(r) can be found by minimiz-
ing the energy functional E[¢] = [ d°r € which reads

E[‘P] = /d31‘ {gkin + Etrap + gMF]

2
Elol = [ 1] 3 V0P + Vel + Slp(o)

Ein @ quantum pressure.
Ewap : trapping potential energy.
Evr  :  mean-field energy.

(2.24)
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In the next chapters, we will show how by choosing the right trial
wave function it is possible to obtain the fundamental properties of the
system.

Remarks. The GPE is the main theoretical tool used to describe BECs.
This equation can be extended to describe more complex scenarios
with additional degrees of freedom (multicomponent BEC, coherent
coupling between internal states of the condensate, etc). Nevertheless,
this equation is valid if the following criteria are satisfied:

¢ The system is in  the  thermodynamic  limit
(N = 00,V = 00, N/V = const).

* The system is in the weakly interacting regime (n|al>* < 1) and
at low temperatures. Quantum and thermal depletion of the con-
densate can be neglected.

* The size of the system is much larger than the characteristic
length scale given by the scattering length a.

2.4.3 Bose-Einstein condensate in a harmonic trap

In typical experiments, the BECs are trapped either in a magnetic trap
or in a far-off resonance optical dipole trap. As a first approximation
they experience a harmonic potential of the form:

1
Em(wxx2 + wyy? + w.z%). (2.25)

It is well known that the ground state energy of a non-interacting
BEC has a Gaussian form with a width given by the harmonic oscil-
lator length imposed by the trap [4]. For the isotropic confinement
case (wy = wy = w; = wy) this length scale is given by the harmonic
oscillator length ay, = (1/mewp)'/?.

In a weakly interacting BEC, the characteristic size of the condensate
wave function increases with respect to an ideal Bose gas, however its

Vext -
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shape remains approximately Gaussian [4]. Therefore we can study
some elemental properties of trapped BECs using a Gaussian ansatz.
The idea is to employ a trial wave function with free parameters that
can be minimized to find an upper bound of the energy of the system.
The trial wavefunction we employ is given by

VN 2 2 2
Pos) = i 2P\ 2 T2 22 ) @2
Introducing this function in Eq. 2.24 and assuming for simplicity
the isotropic confinement case we find the width of the condensate
that minimizes the total energy of the system. This yields

E(o 1
N(ha)) = Niwo (Ekin + Etrap + EMF)

_13&%0 +1E+1Nﬂﬁoi
4\ 2 4\ a2, V2r 0® \ano /)’

(2.27)

where Eyi, Etrap and Eyr represents the kinetic, trapping and potential
energy respectively. Here ¢ = 0, = 0, = 0. In the non-interacting case
(a = 0) the mean-field energy does not contribute and the minimum
of Eq. 2.27 is obtained as expected when ¢ = ay,,.
We can associate to Eq. 2.27 the dimensionless parameter
(= M, (2.28)
Gho

which defines when the trapping and kinetic term are of the same or-
der of magnitude compared to the interaction term. Here there are two
important limits: on one side for { < 1, we can neglect the interaction
term in the condensate while on the other side for ¢ > 1 the ground
state of the system is dominated by the interactions. This last regime
is known as the Thomas-Fermi limit [4].
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The result obtained from the minimization of Eq. 2.27 depends strongly
on the interaction character of the scattering length. For positive scat-
tering length (a > 0) the width ¢ of the condensate scales with atom
number as N1/5. For attractive case (a < 0), a stable solution does not
exist unless certain requirements are fulfilled. In this thesis we study
in detail the regime where the system is dominated by attractive in-
teractions, therefore we will particularly focus on this aspect in the
following section.

2.4.3.1 Bose-Einstein condensate with attractive interactions

A homogeneous BEC in the presence of attractive interactions is an
unstable system that collapses due to its negative compressibility [4].
However, in the presence of a trap, the collapse point can be circum-
vented if the number of atoms in the condensate is low. In an intuitive
picture this is due to compensation of the attractive interacting term
Evr with the quantum pressure (kinetic energy term Ey;,) that results
from the position-momentum uncertainty of the atoms given by the
presence of the trap [20].

Solving Eq. 2.27 for the isotropic harmonic confinement case, we
observe in Fig. 2.4 the local minimum of the total energy as a function
of the condensate width ¢ for different values of interaction strength
and atom number. Each plot represents a different parameter ¢ = %
For a critical value of { = (., the local minimum disappears. This
indicates that there is a maximum value of N beyond which the energy
terms cannot compensate each other. This critical atom number N, is
given by

N, = Ccaﬂ. (2.29)
|a]

Here (. is a coefficient that can be found numerically. This value
could change depending of the hypothesis made about the shape of
wavefunction . For the isotropic case, where a variational Gaussian
ansatz technique is used, ¢, = 0.671. Numerical calculations of the
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Figure 2.4: Energy of a Bose gas with attractive interactions determined with a variational Gaus-
sian ansatz. Each curve represents a different value of {. For a critical value (. the
minimum in energy dissapears and the system collapses.

complete GPE give as a result ~ 0.575 [21]. This last value is closer
to what it has been reported in the literature experimentally [22, 23].
Thus, the variational technique overestimates the critical atom number
Ne.

2.4.4 The bright soliton solution

Constraining spatially the condensate allows us to explore dimensional
crossovers or physics of Bose gases in lower dimensions. The effective
change in dimensionality of a Bose gas is obtained when the mean-
tield energy is below the energy level spacing provided by the har-
monic trap. In the experiments, the presence of a strong external con-
finement limits the excitations of the condensate along the trapping
direction.

In particular, the Gross-Pitaevskii equation presented in Eq. 2.23
has a self-bound solution in one dimension for attractive interactions
(¢ < 0). This is called bright soliton [24, 25]. Solitons are non-linear
wavepackets that can propagate without dispersion. Bright solitons in
this context are matter-wave analogues of optical solitons.
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The condensate wavefunction that describes a 1D-soliton is given by

[4]

2u 1/2 1 .

pet) = < 8 ) cosh[(2m|u|/1*)1/22] xXp(—ipt/1). (230)
We observe the peculiar density profile which differs from Bose-Einstein
condensates in a trap.

Bose-Einstein condensates confined in cigar-shaped potentials (opti-
cal waveguide) allows to explore situations where bright solitons exist.
This has been shown in “Li [26-28], ®Rb [29-31] and %K [32]. Here the
systems are confined transversally but the condensates are allowed to
evolve in either weak or zero longitudinal confinement. The potential
in such situation reads

V(r) = %mwﬂfz, (2.31)

where w represents the transverse trapping frequency. Here the inter-
action energy of the condensate is smaller than the energy level spac-
ing provided by the radial trap, so the condensate wavefunction in the
radial direction has essentially a Gaussian shape with a size given by
the transverse harmonic oscillator length. In fact, one can show that
in such situation the condensate wavefunction can be written as the
product of the longitudinal f(z,t) and transversal contribution [33]

2
204

1 2 2
P(r,t) = f(z,t)mexp (x ty ) . (2.32)

The axial wavefunction f(z, t) satisfies the 1D GPE equation with the
solitonic solution given by Eq. 2.30 [33]. Throughout this thesis, when
we recall to quasi 1D systems, we restrict our discussion to situations
where the propagation in one direction is free while the other two are
constrained.
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Finally one can show, by introducing the proper Gaussian ansatz
in Eq. 2.27, that in quasi-1D systems the interaction term scales with
1/0, while the kinetic term goes as 1/ (TZZ. At small values of o, the
interaction term is not able to overcome the repulsion of quantum
pressure, but instead they equilibrate and form a bright soliton.

2.4.5 Collapse of a condensate with attractive interactions

At the mean-field level, we have discussed that attractive interactions
of the condensate lead to the collapse of the system. Even for quasi 1-
D systems, where bright solitons partially overcome the collapse and
create this self-bound state, for a critical atom number and interaction
strength, the mean-field energy overcomes the repulsive character of
the quantum pressure. Solitons also collapse following the same ar-
gument given in Eq. 2.29. Here the value of {. changes due to the
geometry of the trapping potential.

The collapse of the system is due to the striking increase of density.
This density change brings a significant rise of inelastic collisions in
the system (mainly two- and three-body) which induce atomic losses.

The collapse of a condensate has been studied extensively in refs.

[22, 23, 34—36].
2.4.6  Thermodynamics of an interacting Bose gas

Using the GPE equation it is possible to compute some of the ther-
modynamic properties of the condensate and how they are modified
in the presence of interactions and trapping potential [37]. Here we
present how interactions modify the critical temperature T in order
to explain our results in chapter 4.
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In a trapped interacting Bose gas, the two main contributions to the
shift in the critical temperature with respect to an ideal Bose gas (T?)
are given by

6T, = 6T” 4 6T, (2:33)

where the first term is due to finite size corrections and the second
one comes from the interactions in the system. In a harmonic trap, the
finite size term follows the relation

) Tsize
c
T?

_ Wa y7-1/3
= —0.73—N , .
= (2.34)

with w, = (wx + wy + w;)/3 representing the mean trap frequency
and w the geometrical average.
The second term scales as
(STint

a
¢ — _133—NVe :

with ay, = (f1/mw)!/? defined as the characteristics length scale of the
harmonic oscillator. In general, the contribution of these two terms is
usually negative; therefore the measured critical temperature is always
below T? of the ideal case presented in section 2.2.1.

2.4.7 Elementary excitations

Other interesting results extracted from the GPE are the elementary
excitations of the condensate. These can be found by the linearisa-
tion of Eq. 2.21 around the ground state solution. To this end we
have included in our total wave-function ¢ (r) a deviation d¢y(r) in
the ground state wave function as following:

P(r,t) = ¢o(r, t) + o¢po(r, t). (2.36)



2.4 BOSE-EINSTEIN CONDENSATES IN THE PRESENCE OF INTERACTIONS

By introducing Eq. 2.36 onto Eq. 2.21, the elementary excitations will
be given by the periodic solutions in time and space of the system. If
we restrict to the homogeneous case, the perturbations d¢y(r) can be
described as a set of plane waves of the form d¢o(r) o< (1, vq)ei(q'r_“’t).
This set of plane waves are also known as: Bogoliubov modes. Here q is
the wavector and w the frequency of the perturbation. The energy of
an excitation in the condensate ¢, is given by

€ = y/2nge) + (€9)? (2.37)

hz 2
o_"4q
€ = g (2.38)

with

This dispersion relation was first derived by N. Bogoliubov and is
known as the Bogoliubov spectrum. In Fig. 2.5 (a) we show the ex-
citation spectrum of a homogeneous BEC. For small values of q, we
observe a linear behavior in resemblance to the propagation of sound
in materials. In this phonon-like regime, we could define a velocity c
associated with the propagation of the excitations in the condensate.
This will be given by

c=+/ng/m. (2.39)

This defines the critical velocity in which the condensate could prop-
agate without dissipation. Below this velocity the system is in the su-
perfluidity regime.

The spectrum remains linear up to the point where the kinetic en-
ergy of the excitations is comparable to the interaction energy of the

2.2
uasi particle (U ~ 2n¢). The wave vector magnitude ¢ where this
q P m 8 g q
occurs is

\/2mng

Ge = "7 (2.40)
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Single component
BEC

Free particle-like

Phonon-like dispersion
dispersion
q. q

Figure 2.5: Bogoliuvov spectrum for a single component BEC. For low values of g, the quasipar-
ticles follow a phonon-like dispersion while for large q they follow a free particle-like
dispersion. The healing length gives the point where the quasi-particles go from act-
ing collectively to behave as free particles in the BEC. This is defined as § = 1/4c.
The red dashed line represents this characteristic length scale.

This value is the inverse of the healing length of the BEC

¢=1/qc. (2.41)

If the wavelength of a perturbation is longer than ¢, the quasi-particles
act collectively. If it is shorter, then the excitations behave as free parti-
cles in the condensate.

Remarks:

¢ The Bogoliubov approximation is valid in the dilute limit
(na3 < 1). In fact, when the gas parameter is close to one, it
deviates from the spectrum presented in Eq. 2.37, as observed
experimentally in [38].

¢ Here we have restricted this formalism to positive values of the
scattering length a. The energy of the Bogoliubov modes is real
for the full range of q.
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Attractive interactions revisited

In the formalism presented before, we have assumed that the scatter-
ing length is positive. Therefore the energy of the excitations is positive.
However, we have shown in section 2.3 that we can control the inter-
action strength via Feshbach resonance. For attractive interactions we
have shown in section 2.4.3 that a trapped condensate collapses when
the repulsive character of quantum pressure is overwhelmed. We can
revisit the collapse of the condensate in the frame of Bogoliubov exci-
tations.

A system with attractive interactions implies that the speed of sound
defined in Eq. 2.40 becomes imaginary. This leads to an exponential
growth of the Bogoliubov modes that make the atoms clump together
[4]. For a sufficiently large atom number this mechanical instability
leads to the collapse of the system.

As we will see in the next chapters, if this mechanical instability is
counterbalanced, it could lead to the formation of self-bound solutions.
If the attraction between the atoms is compensated through the repul-
sive character of the quantum pressure a bright soliton will be formed
[39]. If a higher order non-linear term prevents the collapse, it could
lead to the formation of quantum droplets [3].

2.5 BEYOND MEAN-FIELD CORRECTION: THE LEE-HUANG-YANG
ENERGY

The main result of this thesis is the experimental study of quantum
liquid droplets stabilized by quantum fluctuations. In this section, we
summarize the most important concepts behind this beyond mean-
tield (BMF) correction together with state of the art and previous ex-
perimental observations.

Up to now we have assumed that all N bosons occupy the same
quantum state described by the macroscopic wave function ¢(r) and
the system is well described in terms of the Gross-Pitaevskii equation.
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As remarked before, the mean-field approximation is valid for dilute
systems at low temperatures satisfying the condition na®> < 1. How-
ever, once the interactions or the temperature of the system increase
either quantum or thermal fluctuations become important since they
modify the equation of state due to the depletion of the ground state
[38].

At zero temperature, the ground state energy density of a homoge-
neous Bose gas is given by

2
Ezg;l<1+1;f/8EW+~~'), (2.42)
the first term represents the usual mean-field energy while the second
term is the first beyond mean-field (BMF) correction to the ground
state energy, the so-called Lee-Huang-Yang (LHY) energy derived by
Lee T. D., Huang K. and Yang C.N. in the 507s [40, 41]. Similar to the
zero-point motion of particles in the lowest ground state of a quantum
mechanical system, the origin of the LHY correction is the zero point
motion of the Bogoliubov excitations in the BEC. In that sense, this
correction is intrinsically quantum [3].

State of the art

In typical experiments, the gas parameter (14%) is usually small; there-
fore the LHY correction in front of the MF term is negligible. Usually
large values of the scattering length are required to observe these be-
yond mean-field contributions.

With the help of Feshbach resonances, the contribution of this LHY
term has been revealed experimentally. The first demonstration of this
additional term was done by using composite bosons (molecules made
of two fermionic atoms). Here, deviations of the equation of state and
collective oscillations in the BEC-BCS crossover® were observed [17].

1 Here the scattering length needs to be replaced by the dimer-dimer scattering length
[42, 43]
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In bosonic atomic systems, the zero-temperature equation of state
of a homogeneous Bose gas was measured in ref. [44] where it was
shown that by increasing the interaction strength, the equation of state
departs from the expected mean-field result. Moreover, the correction
of the two-body contact parameter C, due to the presence of the LHY
correction was measured using RF spectroscopy [45]. Finally, using
two-photon Bragg spectroscopy the energy of particle-like excitations
was measured in a weakly interacting BEC together with the quantum
depletion of the condensate [46, 47].

In general, these experiments have explored the properties of strongly
correlated Bose gases. A review of this topic can be found in ref. [38]
and the references therein.

Recently, the observation of quantum droplets in dipolar gases and
Bose-Bose mixtures have revealed the contribution of beyond mean-
field terms in weakly interacting systems. This topic is presented in
detail in chapter 6.

2.6 ULTRA-COLD BOSE-BOSE MIXTURES
2.6.1 Introduction

Multicomponent Bose-Einstein condensates offer the possibility to study
different rich phenomena not achievable in single component BECs.
This thesis explores the physics of ultra-cold Bose-Bose mixtures, there-
fore in this section we introduce the notation together with the theo-
retical formalism used to describe a binary mixture.

2.6.2  Mean-field Gross-Pitaevskii equation for multicomponent BEC

Let us assume a ground state Bose-Bose mixture at T = 0 composed
by two wave functions associated to each component: (i1, 1,) [48].
We assume that both functions are independent and therefore there is
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no phase relation between them. The system can be described by the
coupled time-dependent Gross-Pitaevskii equations given by

g (1) = (=" + V) + grp [ (e O + g1y [9,0 ) 9 ()

g (e, 1) = (<50 + Ve ) + g [, (00 4+ gy, [0 (D7) 9,0 0)
(2.43)
where the masses (1) and trapping potential (V]-e"t(r)) are defined for
each component using the label indexes j = (1, ). The non-linear term
here is proportional to the coupling constants ¢4+ and g, which de-
scribe the intra-species interaction of each condensate. Finally the set
of equations are coupled through the inter-species interaction gy, =
27th2a¢ 1/ m;, with m, representing the reduced mass of the mixture.
Similar to section 2, both wave functions are normalized through
the condition.

[y nP =N, (2.49)

[ 5|10+ 19100 = N 245)
with Nisa = Ny + N| representing the total atom number.

The stationary coupled Gross-Pitaevskii equations are:

n?v?2
B ZmT

Hwrr(r) = ( +V$Xt<r>+gw\¢T<r>\2+g¢¢\¢¢<r>\2) Pr (1)

hZVZ ext 2 2
pp(r) = o, + V) + gy o1 (0] + 81y o1 (1) ] 1)
(2.46)



2.6 ULTRA-COLD BOSE-BOSE MIXTURES

The energy functional E[¢] = [ d®r £ associated to them is given by

n? 1
Elpy gl = [ |5 99167+ VU 0ly (0 + g1l o)
3 hz 2 ext 2 1 4
[ | g D00+ VIO + g5l (o)

+ /d3r [8N o1 (0)* [ (0)]* |-
(2.47)

2.6.3 Miscible, immiscible and collapse of a Bose-Bose mixture

Using Eq. 2.47, we can predict the different ground states of a binary
mixture. In the repulsive regime (g1, g}, 81 > 0), one expects a tran-
sition between the miscible and the immiscible phase [49]. In such
situations, the repulsive inter-species energy between the condensates
can be so large that for a given range the system minimizes the energy
by spatially separating the two components. This transition has been
extensively studied theoretically and experimentally in ref. [50-56].

Another expected result is the collapse of the mixture. In this case,
even if each condensate has repulsive intra-species interactions
(811,811 > 0), if the inter-species interaction is negative enough, the
system cannot overcome the attraction and collapses. Similar collapse
of a degenerate Bose-Fermi mixture has been studied in refs. [57-61].

For the homogeneus case the criterion that divides the regimes of
miscibility, immiscibility and collapse depends only on the different
interaction strengths. This condition is given by [52]

g11| = V&8 (2.48)

This is shown Fig. 2.6. For ¢4, > ,/¢118|, phase separation occurs,
here the phase segregated state has lower total energy (the system is
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Figure 2.6: Phase diagram of a Bose-Bose mixture. The horizontal axis represents the inter-
species scattering length, the vertical axis represents the intra-species interactions on
each condensate. Three different regimes are observed: miscibility, immisicbility and
collapse. The miscible phase is bounded from the right and the left by the condition

lgri| = v&mew -

immiscible). In the intermediate regime —,/g118; < g1 < /8118y the
condensates overlap (the system is miscible). Finally for —,/gw1g1] >
g1) the attractive inters-species interactions overwhelms the repulsive
ones on each condensate and the system collapses.

Here it is useful to introduce the quantity

08 = 81, + V811811 (2.49)

which is valid close to the collapse regime. This describes the devia-
tions with respect to ¢1|. Moreover this quantity is useful to compare
the results to the single component BEC. In both cases the unstable
regime where the system collapses is when g or dg is lower than zero.

The condition presented in Eq. 2.48 is slighlty modified in the pres-
ence of a trapping potential and finite temperature [62, 63].
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2.6.4 Elementary excitations in a two-component BEC

The calculation of the excitation spectrum in a two-component BEC is
more demanding than the single component case. Due to the presence
of the two components, there are two different types of excitations:
density modes and spin modes [48]. The density modes, similar to the
single component case, are density fluctuations of both condensate
wave functions (see Eq. 2.36). The spin modes instead, are spatial de-
viations of one component with respect to the other. Following this
argument, by comparing the wave function of each condensate, the
density modes and spin modes are just in- and out- phase excitations
in the system.

Similar to Eq. 2.36, we can write the deviation in the wave functions
due to the excitations for each component as

i (x) = o j(x) + do j1p(x). (2.50)

Introducing Eq. 2.50 in Eq. 2.6.2, and for simplicity assuming the
symmetric case where g1+ = ¢|| = ¢ and m = m; = m |, we obtain the
dispersion relation of the system [48, 64]. As expected we obtain two
Bogoliubov branches of the form

=

= /(g +gr)el + ()2
& = \/n(E—gi)ed+ ()2

%)

(2.51)

The indexes d and s refer to density or spin excitations respectively. In
Fig. 2.7 both branches are sketched. Similar to the dispersion relation
for the single component case (see Fig. 2.5), both branches exhibit a
linear regime for small values of q and free-particle dispersion for
larger values. The healing length associated to each Bogoliubov branch
is given by

35



36

THEORETICAL FRAME

& = h/ (Vamey)
és = h/ (\@mcs),
(2.52)

where ¢; and ¢, are the sound velocities of the density and spin branches
respectively [65]. Approaching the boundaries of the stability condi-
tion of Eq. 2.48 (which in the symmetric case reads |g1,| > 3), either
the density of the spin branch start to soften. In fact, by looking at Eq.
2.51 when crossing the boundary condition the spin (g4 > g) or the
density (¢4 < —g) branches become imaginary. Both situations are
sketched in Fig. 2.7. In the left inset we sketch the g1 > ¢ regime. For
a given value of g the spin branch (green line) becomes imaginary (yel-
low area). This means when crossing the miscible-immiscible phase
transition a mechanical instability occurs and it is given by the spin
branch: the system phase separates.

On the right inset of Fig. 2.7, we explore the regime with ¢ < —g.
In this situation the density branch (blue line) becomes imaginary, and
this time the growth of the long wavelength modes make the atoms
clump together and collapse.

Remarks

The physics behind the phase separation and the collapse of a Bose-
Bose mixture is very similar in the mean-field picture. In both situations,
one of the modes becomes soft close to the condition of Eq. 2.48. At the
transition point, the effective speed of sound defined for each mode is
zero and then becomes imaginary. A mechanical instability drives the
system to either phase-separation or collapse.

Note. In chapters 6 and 7 we discuss how a Bose-Bose mixture in the
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Figure 2.7: The absolute value of the imaginary contribution of the modes is represented in the
yellow area. For values gy > g the system phase separate (left panel) while for
g1, < —g the mechanical instability leads to the collapse of the Bose-Bose mixture
(right panel). In both cases either the spin mode (left panel) or the density mode
(right panel) become imaginary at the critical point.

regime ¢4| < —g does not collapse, but instead, the mechanical insta-
bility given by the density mode is "cured" by quantum fluctuations

[3].

2.6.5 The effective single component GPE

Up to now we have presented the general description of a Bose-Bose
mixture. However, in some regimes, we can describe the properties of
the system in a simpler way without using the set of coupled GPE
equations. In the miscible phase and close to the collapse point, we
can describe the system with an effective low-energy theory: an effec-
tive single component Gross-Pitaevskii equation. The idea is to neglect
spin excitations (which for this regime are more energetic than den-
sity excitations) and treat the mixture as an effective single component
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BEC. To fulfill this condition, we assume identical spatial modes for
the two components

Pr(r) = Vrp(r); ¥ (r) = /ng(x), (2.53)

which implies that the density ratio is locked to the condition

ny/nyg = \/m (2.54)

in order to minimize the mean-field energy density where the spatial
overlap of the two components is maximized.

In the homogeneous case by inserting Eq. 2.53 into Eq. 2.47, the
corresponding energy density functional reads

E = &un+Emp

- hin IVo(r)[* +6
- 2m o[V 8

V81L/ &1t 2o (0)|*
1+ /g /8m)? '

(2.55)

where ng = n4 +n and &, Emrp denote the kinetic and mean-field
contributions to the energy density of the mixture respectively. This en-
ergy functional results in an extended Gross-Pitaevskii equation given

by
- h? 2
ing(x) = [(—vaz) o+ ()| ] o(x), (256)

where « is defined as

2/811/ 811 5g
263,
(1+ /g1 /8)

(2.57)
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At the mean-field level Eq. 2.56 is equivalent to a single-component
Gross-Pitaevskii equation provided one does the replacement

x—g. (2.58)

We recall that, at the mean-field level the system becomes unstable
for 6g = g1, + /811811 < 0. There the energy of the soft mode (density
mode) becomes imaginary and in principle should drive the system to
mechanical instability. This effect is equivalent to what happens in the
single component BEC case.

2.7 BEYOND MEAN-FIELD CORRECTIONS IN BOSE-BOSE MIXTURES

In section 2.5, we have explained the main features of the LHY correc-
tion and how it has been revealed in single component condensates.
Recently it has been proposed theoretically and observed experimen-
tally that such correction in two-component Bose-Einstein condensates
gives rises to the creation of quantum liquid droplets [3, 66, 67]. Here
we introduce the LHY energy for a binary mixture.

2.7.1  Lee-Huang-Yang energy of a Bose-Bose mixture

For a three-dimensional homogeneous Bose-Bose mixture, the excita-
tion spectrum consists of two branches which contribute to the quan-
tum fluctuations in the system [68]. Following ref. [3] the energy func-
tional of a Bose-Bose mixture is given by the contribution of the mean-
tield energy, and the additional repulsive term which includes the ef-
fect of quantum fluctuations. This functional reads
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where for the equal mass case m = my = m

5/2
F(l,xy) =Y, (1 +y+4/(1—y)? +4xy> /4V2. (2.60)
T

The symmetric case

In order to obtain a deeper insight about the scaling of these contribu-
tions, let us examine again the symmetric case where g = g+ = g|.
In terms of the ¢ parameter and n(r), we can rewrite Eq. 2.59 as

1
E= in%(r)ég + Kng/Z(r)§5/2, (2.61)

—3/2 2 . .
where k = \1?:2# F(1, ggij, 1 ). Under this form we can clearly appreci-

ate the different scaling of both the MF and BMF term together with
its dependence on the interaction strength. The following points are
important to remark:

* The LHY term presented in Eq. 2.61 depends only on the con-
tact interaction depicted with the coupling constant g while the
mean-field depends on §g. This means if we explore the regime
close to the collapse point of a Bose-Bose mixture (g ~ 0) we
can find a situation where the MF energy is small while keeping
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the LHY term sizeable. Beyond mean-field effects become signif-

icant.

¢ For 6g < 0, the different density scaling of the LHY (ng/ 2) and

mean-field term (n%) allows us to find an equilibrium density 71¢q
where the attractive mean-field term &vr is compensated by the
repulsive LHY energy (€rny). This will give rise to a self-bound
solution: the so-called quantum liquid droplet.

In conclusion, the presence of quantum fluctuation in a system where
the mean-field contribution can be tuned close to zero allows beyond
mean-field effects to be revealed. The ground state of the mixture is
modified for g < 0 and the collapse at the mean-field level can be
suppressed. This will be explained in detail in chapter 6.






THE POTASSIUM EXPERIMENT AT ICFO

3.1 OVERVIEW

The experimental apparatus described in this chapter is one of the
main achievements of my Ph.D. The lab was empty when I started
(see Appendix B), therefore I have been involved in the process of
designing, building and developing our complete quantum gas exper-
iment. Along this project I have worked together with P. Cheiney, L.
Tanzi (post-docs) and J. Sanz (Ph.D. student).

The production of ultra-cold atomic gases uses experimental tech-
niques that are nowadays standard. In particular laser cooling fol-
lowed by evaporative cooling in conservative traps (magnetic or op-
tical) is the standard path to reach quantum degeneracy [4, 69, 70]. In
this chapter, we describe the details of the approach followed in our ex-
perimental apparatus to reach quantum degeneracy with potassium.

3.2 DESIGN AND CONSTRUCTION OF AN EXPERIMENTAL APPARA-
TUS

3.2.1  Choice of the atomic species: why potassium?

One of the central decisions to make in the design and construction
of an ultra-cold quantum gas experiment is the proper selection of the
atomic element. The most common atoms employed are alkalis. The
reason behind this choice is their simple internal atomic level structure
(one valence e™) that can be described by a hydrogen-like equation
[71]. This picture simplifies their manipulation as compared to dipolar
atoms or two-electron atoms.
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Among the different alkali metals, we have decided to work with
potassium (K). It has three stable natural isotopes (two bosons and
one fermion), and degenerate quantum gases of each of them has
been achieved [72-74]. Moreover, this atom is well known for the high
tunability of its interactions via Feshbach resonances [75—78]: for the
three isotopes it is possible to control with high accuracy the scattering
length a. In addition, the different possible isotopic mixtures (**K-*'K
or ¥K-4K) show similar tunability (see Ref.[79] and chapter 5).

The control of interactions and the possibility to perform experi-
ments with bosonic or fermionic statistics makes potassium an ex-
citing candidate to study a broad range of phenomena such as Bose
(Fermi) gases at unitarity [17, 38], Bose (Fermi) Hubbard models [8o,
81], among others. In our case, we chose potassium to study quan-
tum degenerate Bose-Bose or Bose-Fermi mixtures. Compared to quan-
tum mixtures composed of different atoms, here the similar mass of
each isotope allows neglecting the gravitational sag between the com-
ponents of the mixture. Therefore, we could explore different topics
such as Bose/Fermi polarons [82, 83] with an extraordinary overlap of
the bath with the impurity, unitary Bose-Bose or Bose-Fermi mixtures,
miscible-immiscible phase transition, two component quantum liquid
droplets (Bose-Bose or Bose-Fermi) to mention a few.

In the next chapters, the relevant properties of potassium will be
discussed.

3.2.2 Potassium properties: summary

During my thesis, I found highly useful the Appendix A of the Ph.D.
thesis of T. Tiecke [9]. There, the most relevant potassium properties
needed to perform and understand the different experiments and the-
oretical elements explained in the following chapters are presented in
detail. This section summarizes some of its content in order to make
this thesis self-contained.
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General properties

The atomic number of potassium is Z=19. Natural potassium is mainly
composed of three different stable isotopes: two bosons (*?K and 1K),
and one radioactively stable fermion (“’K). Table 3.1 shows the natural
abundance of each isotope.

Mass number Neutrons Natural . Nuclear Spin
Lifetime
A N abundance (%) 1
39 20 93.2581(44) stable 3/2
40 21 0.0117(1) 1.28 x 107 years 4
41 22 6.7302(44) stable 3/2

Table 3.1: General properties of potassium isotopes

Optical properties

The optical properties of potassium relevant to quantum optics ex-
periments are summarized in Table 3.2. These values are given for the

strongest spectral lines: D1 (251/2 —+ 2Py 5) and D2 (251/2 —2P3)2).

D2-line D1-line
Wavelength A 766.700921822(24) nm 770.108385049(123) nm
Lifetime T 26.37(5) ns 26.72(5) ns
Natural linewidth T/2m 6.035(11) MHz 5.956(11) MHz
Recoil velocity Urec 1.335736144(7) cm/s 1.329825973(7) cm/s
Doppler Temperature Tp 145 pK 145 pK
Saturation intensity Isat 1.75 mW/cm2 1.70 mW /cm?

Table 3.2: Optical properties for ¥K
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D2-line

D1-line

Wavelength

766.700674872(173) nm

770.108136507(144) nm

Lifetime

26.37(5) ns

26.72(5) ns

Natural linewidth T/211 6.035(11) MHz 5.956(11) MHz
Recoil velocity Urec 1.302303324(7) cm/s 1.296541083(7) cm/s
Doppler Temperature Tp 145 pK 145 pK
Saturation intensity Isat 1.75 mW /cm2 1.70 mW /cm?

Table 3.3: Optical properties for 'K

D2-line Di-line
Wavelength A 766.70045870(2) nm 770.107919192(123) nm
Lifetime T 26.37(5) ns 26.72(5) ns
Natural linewidth T/211 6.035(11) MHz 5.956(11) MHz
Recoil velocity Urec 1.2070579662(7) cm/s 1.264957788(6) cm/s
Doppler Temperature Tp 145 pK 145 pK
Saturation intensity Isat 1.75 mW/cm2 1.70 mW /cm?

Table 3.4: Optical properties for 4K

Scattering properties

The scattering properties of the atoms are important to ensure ther-
malization during the evaporative cooling and the production of a
degenerate quantum gases. In fact, stable BECs require having pos-
itive scattering lengths [4]. The s-wave scattering length can be esti-
mated from the singlet a; and triplet a; scattering length presented in
Table 3.5 for different isotopic potassium mixtures.

In the elastic approximation [84] the s-wave scattering length is given

by

a ~ Psas + Piay, (3.1)

where Ps; and P, represents the probability of the atom-pair to be ei-
ther in the singlet or triplet state. The electronic spin configuration of
potassium pairs has almost pure triple character, therefore a ~ a;.
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Isotope as (ap) ag(ag)
39/39 138.49(12) | -33.48(18)
39/40 -2.84(10) -1985(69)
39/41 113.07(12) 177.10(27)
40/40 104.41(9) 169.67(24)
40/41 -54.28(21) 97-39(9)
41/41 85.53(6) 60.54(6)

Table 3.5: Scattering length for the different isotopic potassium mixtures.

In the different isotopic combinations presented in Table 3.5 we ob-
serve that there are combinations that do not need the use of Feshbach
resonances to condense the sample. In particular the combinations K-
41K, 90K-41K and #K-*'K have in common a positive and large back-
ground scattering length (bold values). This is why the central part of

our experiment relays in the efficient production of 4K degenerate gas
to use it to sympathetically cool 3K and 4°K.

47
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2DMOT 3D MOT ms;‘;es Ma?rggtic Op“ctar:;ipde Imaging
ngo LD "
?‘?ﬁ(— \:/\..;\é,(i L]
Laser cooling Evaporative cooling

Figure 3.1: Basic scheme of the experimental sequence used to prepare a degenerate quantum
gas of ¥'K. Using a combination of laser cooling (2D MOT-3D MOT-molasses) and
evaporative cooling (Quadrupole trap - optical dipole trap) techniques it is possible
to prepare ultra-cold atoms every ~ 45 s. At the end of the sequence the system is
imaged by either absorption of phase contrast imaging.

3.2.3 Cooling strategy: *'K as coolant

The key ingredient in our experimental approach is 'K. On the one
hand, the favorable scattering properties of this isotope allow its con-
densation without using Feshbach resonances, as demonstrated in LENS
(Italy) [72], IEI (Tokyo) [78], MIT (US) [79], and HEN (China) [85]. On
the other hand, 'K can be used as a coolant for the other two iso-
topes. In fact, the quantum degeneracy of “°K has been achieved by
sympathetic cooling with 'K [79]. In principle, the same technique
should apply for the mixture ¥K - #'K due to the positive background
scattering length.

To provide an overview of our experiment, the cooling sequence
used to obtain a degenerate quantum gas of 'K is presented in Fig. 3.1.
Minor changes are required to condense any of the additional isotopes.
The experimental apparatus is shown in Fig.3.2 and the following list
briefly summarizes each of the experimental steps.

* The experiment starts in a chamber with a high vapor pressure
of natural potassium. A cold atomic beam is generated from the
background pressure using a 2D Magneto-Optical Trap (MOT)
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¢ The atoms are sent from the 2D MOT chamber to a ultra-high
vacuum (UHV) science chamber where a 3D MOT captures the
atoms. Subsequently, the density of the cloud is increased in a
hybrid D1-D2 compressed MOT (CMOT).

¢ Gray optical molasses on the D1-line are used to obtain efficient
sub-Doppler cooling.

e The atoms are prepared in |F = 2, mp = 2) by optical pumping
and captured in a magnetic quadrupole trap.

¢ Radio-frequency (RF) evaporation on the hyperfine transition
leads to a phase-space density (PSD) of ~ 10™%.

¢ The atoms are transferred to a hybrid trap (optical dipole trap
beam plus a weak quadrupole field) and subsequently to a crossed
optical dipole trap and evaporated to BEC. If required a Fes-
hbach field is used to control the interactions during the final
evaporation stage.

¢ The system is characterized using absorption imaging after time-
of flight (ToF) or in situ phase contrast imaging.

We will now explain in detail the tools needed to implement each
of these steps.

3.3 DESCRIPTION OF THE EXPERIMENTAL SETUP
3.3.1  Vacuum setup

The production of a degenerate gas requires an ultra-high vacuum
(UHV) to avoid losses due to collisions between the atoms of interest
and the background atoms. In this section, the design of our vacuum
system is explained in detail.

49



50

THE POTASSIUM EXPERIMENT AT ICFO

Figure 3.2: Experimental apparatus: 1) Ion pump. 2) Atomic source. 3) 2D MOT. 4) Mechanical
shutter. 5) Gate valve. 6) Science Chamber. 7) NEG pumps.

General Features

The main part of the vacuum setup consists of two stainless steel cham-
bers (the science chamber and the 2D MOT chamber) separated by a gate
valve and a mechanical shutter as depicted in Fig. 3.2. The vertical
gate valve dissociates the two chambers; therefore both vacuum sec-
tions can be independent to each other. The mechanical shutter blocks
the atomic beam coming from the 2D MOT during the sequence. The
rotation of the shutter is induced with a magnetic rotary drive’.

To obtain high vapor pressures of potassium on the 2D MOT cham-
ber while keeping UHV on the science chamber, both sections are
connected through a differential pumping tube (dpt). The differential
pumping section is performed in two stages. First, the dpt is designed
to keep pressure differences up to a factor of 1000 between the 2D
MOT chamber and the first getter pump (see Fig. 3.3). The second
stage is given by a CF16 bellow that connects the gate valve with the
science chamber and gives an additional factor of 10. The overall differ-

1 MD16RAXo00Z-Kurt ] Lesker
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Source 1

Mechanical

shutter

Valve

Science
chamber

Getter pump 2
lon Pump

Getter pump 1 Source 2

Figure 3.3: Sketch of the vacuum system. The two different vacuum sections are connected
through the differential pumping tube (dpt). A gate valve between the science cham-
ber and the 2D MOT chamber dissociates the two sections. The mechanical shutter
blocks the atomic beam created in the 2D MOT chamber during the sequence. In ad-
dition, we place two more valves on the back of the 2D MOT chamber which allow
to install or replace two independent potassium sources. Three different pumps are
used to maintain the vacuum.

ential pumping section then offers ~ 10* pressure difference between
the two chambers.

Note. The shutter is currently not used because during rotation the
pressure read by the vacuum gauge® increases. We attribute it to out-
gassing of the in-vacuum ball bearings.

Pumping sections

To maintain the desired pressure in the experiment, we exploit three
different pumps as shown in Fig. 3.2.

A 201/s ion pump3 maintains the vacuum in the 2D MOT chamber.
Initially, we installed a manual plate in front of the pump to control
the conductivity of the pumping section; however, we replaced it later
by a valve which has the advantage of allowing us to change the pump
when it dies due to the presence of potassium. In fact, after two years
of operation, the 2D MOT ion pump has stopped working. Allegedly

2 UHV-24p extended range ion gauge, dual-thoria-iridium filaments (9715015)- Agilent
3 TiTanTM 255 Ion Pump - Gamma Vacuum
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the high vapor pressure of potassium damage the cathodes of such
pumps. We achieve pressures of the order of 2 x 1071 mbar before
placing the potassium source in the chamber. In the presence of potas-
sium the pressure increases by almost two orders of magnitude.

On the other side of the differential pumping tube, the vacuum sys-
tem is maintained by two Non-Evaporable Getter (NEG) pumps* of
200 1/s (pump 1) and 500 1/s (pump 2). The pumping speed leads to
pressures limited by the reading of our vacuum gauge> (10~ ! mbar).
This relatively new technology offers a very compact and lighter de-
sign than any other type of commercial pumps for UHV.

4 NEXTorr Dsoo and NEXTorr D2oo - SAES Getters
5 UHV-24p extended range ion gauge, dual-thoria-iridium filaments (9715015)- Agilent



3.3 DESCRIPTION OF THE EXPERIMENTAL SETUP

(a) (b)

Science chamber 2D MOT chamber
X
‘ i Insets for indium
Top . " ﬂ_ ‘ sealed windows
objective _* 4 & - .

1 Antenna 1

Atoms

Push window
Antenna 2

Figure 3.4: Sketch of the two main vacuum chambers. (a) The science chamber provides large
optical access in the different directions through its several windows. All of them are
anti-reflection (AR) coated from both sides at different wavelengths. (b) The full 2D

MOT chamber is made of electro-polished stainless steel. In comparison to the one

in [86], the chamber is longer with a size of 255 mm x 70 mm X 70 mm. The large

rectangular windows (120 mm X 40 mm) are anti-reflection (AR) coated from both
sides at 767 nm.

The science chamber

All the experiments presented in this thesis are performed in the sci-
ence chamber. The design of our chamber takes into account several
requirements:

¢ Ultra-high vacuum (UHV)
¢ Large optical access
* Magnetic coils close to the atoms

¢ RF antennae close to the atoms and in-vacuum antenna

To fulfill these conditions we have chosen the octagonal stainless-
steal chamber® presented in Fig. 3.4 (a). In the vertical direction two

6 8.0" Spherical Square MCF800-SphSq-G2E4C4 - KIMBALL
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CF150 custom re-entrant view-ports’ allow implementing a high nu-
merical aperture imaging system (see section 3.4). The 6 mm thick
re-entrant viewport has a 50 mm clear view. Before welding it to the
vacuum flange, the specifications are a transmitted wave-front error
(TWE) A/10 at 767 nm (imaging transition of potassium). The distance
between the inner surfaces of the re-entrant viewports is 30 mm. This
allows us to implement large MOT beams®.

The magnetic coils are placed inside the re-entrant view-ports, this
allows to produce large magnetic fields with small power supplies
where the atoms are. Finally, we can place the antennae ((1) and (2),
see Fig. 3.4 (a)) close to the viewports to manipulate the internal states
of the atoms via RF and increase the coupling efficiency to the atoms.

In the transverse direction of the chamber the access is provided by
two CF-63 and four CF-40 viewports. All view-ports are anti-reflection
(AR) coated for several wavelengths® (AR 405 + 532 + 767 + 852 + 1064
+ 1178nm/0°), see Appendix A.1 for more details. Finally, we install in
one of the two CF-16 ports a power feedthrough that connects to an
in-vacuum antenna.

The 2D MOT chamber

The 2D MOT chamber shown in Fig. 3.4 (b) is a home-made design
similar to [86]. The rectangular shape provides large optical access
which is used to implement large elliptical MOT beams that increase
the atomic flux of the 2D MOT. Due to the chamber geometry, there
are no commercial rectangular view-ports available, instead we use

7 Spectrosil synthetic fused silica - UKAEA special techniques group

8 Potassium has large light assisted collisions during the MOT stage; therefore large
beams and large detunings are required to reduce the density of the cloud and in-
crease the atom number in this stage [87, 88].

9 custom made - LaserOptik
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indium-sealed™ AR coated rectangular windows'" (see coating details
Appendix A.1).

In the push window (see Fig. 3.4 (b)), we initially installed a CF40
viewport' made of a fused silica window brazed with Kovar®3 onto a
304 stainless steel flange. After only ten months of operation, a consid-
erable leak appeared on this viewport, presumably due to a reaction
between Kovar and potassium. Our experience is that glass-to-metal
transitions react with alkali atoms in short/long term.

To circumvent this problem, we replaced our CF-40 viewport with
a demountable viewport conflat flange'4. In this sort of viewports, the
window is mounted to the flange with the help of a Viton ring that
provides the air-tight metal/glass seal. In our case, we have replaced
the Viton ring by a 4 mm indium wire. This ensures good vacuum. In
addition, indium seals do not react with alkali atoms. To date, we have
not observed vacuum problems in this configuration.

The potassium source

The atomic sources (source 1 and source 2 presented in Fig. 3.3) consist
of potassium ampoules placed inside of a CF16 vacuum bellow (see
Fig 3.2). These are connected to the 2D MOT chamber through two
CF16 valves' as sketched in Fig 3.3). These valves allow us to switch
between the two sources arbitrarily. In our current experiment, we
have used only one source where we have placed a 5 g ampoule of
natural potassium?®. In the second source a 30 mg enriched sample'”
of 90K will be installed for future experiments.

10 Indium wire 99.99% @ 4mm (1N522407)-Advent research materials

11 AR 767 nm/0°- LaserOptik

12 CF4o Fused Silica view-port 304L / Kovar - Trinos

13 Kovar is a nickel-cobalt ferrous alloy that allows building glass-to-metal seals.
14 VPCHg42-Thorlabs

15 54124-GEo2-0001 - VAT

16 244856-SygmaAldrich

17 #0K enrichment 10% - Trace Sciences International
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Under vacuum, we broke the potassium ampoule by just twisting
the CF16 bellow manually. By implementing a temperature gradient
from the source to the 2D MOT chamber (see section 4.1.1), the potas-
sium migrated in approximately one week. Using Doppler spectroscopy,
we reveal the presence of potassium in the chamber. The vapor pres-
sure in the chamber is ~ 5 x 108 mbar.

Note. During the first days of heating, we have observed a dramat-
ical increase in pressure of both the 2D MOT chamber and science
chamber. After one week, these values went down and a signature of
the presence of potassium in the 2D MOT chamber was measured. We
suspect that the huge increase in pressure could be related to the pu-
rity of our potassium ampoule. This pollution could come from the
filling and sealing of the ampoules, which needs to be pumped first.

3.3.2 Laser system
Laser cooling of potassium isotopes

Here we present the laser system that generates the frequencies re-
quired to trap, cool down and detect the three different isotopes of
potassium.

In our experimental sequence, we use both the D2-line
(Ap2 = 766.701 nm) and Di-line (Ap; = 770.10 nm) to perform ei-
ther laser cooling, optical pumping or detection of the cloud. Fig. 3.5
shows the level scheme of the three isotopes of interest. We depict
the cooler (red)- repumper (blue) and optical pumping (orange) tran-
sitions. The energy spacing between the states is given with respect
to the cross-over resonance of *K (black dashed lines) which is our
reference locking point.

For the three different isotopes we use D2 transitions during the
2D MOT and 3D MOT stage. The D1 transitions are used to perform
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Figure 3.5: Fine and hyperfine states of the three potassium isotopes. In parenthesis we show (in
MHz) the energy shift between the states respect to the cross-over resonance of ¥K.
The cooling, repumping and optical pumping transitions are indicated.

sub-Doppler cooling in optical molasses and optical pumping. On the
CMOT stage, we employ both transitions.

Due to the small and similar energy splitting of the relevant transi-
tions (see Fig. 3.5) on each isotope, it is possible to develop a shared-
laser system that can easily bridge all the transitions by using either
acousto-optical’® (AOM) or electro-optical (EOM) modulators*®. Com-
pared to mixture experiments with different atoms, here we do not
need to build independent laser systems with different wavelengths.
However, in dual-operation (1 K-*K or #'K-4°K) it is important to en-
sure that the optical transitions of each of them do not overlap or
induce undesired heating. Fig. 3.6 shows the frequency distance of the
cooler (C), repumper (R) and optical pumping (OP) transitions respect
to the D2 (left panel) and D1 (right panel) cross-over of PK.

From Fig. 3.6 we can conclude that the laser cooling in dual-operation
works since there is no overlap between the light needed on each iso-

18 ATM-A1/A2 series ,Tellurium Dioxide (TeO;) - IntraAction Corp
19 Electro optic phase modulator (EO-D250/450L3) - Qubig
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Figure 3.6: Frequeny distance of the different optical transitions required in the experiment. The
notation is cooler (C), repumper (R) and optical pumping transition (OP). The dif-
ferent colours denote the frequency for each isotope (*K-blue,*’K-red, 'K-green).

The values are computed with respect to the D2 (left panel) and D1 (right panel) ¥K
Cross over.

tope. The closest transitions are at around 22 T far apart (C:*°K with
R:*!K and R:*K with C:*!K). Therefore crosstalk can be neglected dur-
ing laser cooling.

Laser system: Overview

Given the potassium structure and the optical transitions required, we

sketch in Fig. 3.7 the central part of our potassium laser system. This
is briefly summarized in the following:

* A Dz-master laser is stabilized spectroscopically on the crossover
of the D2-line of 3K by using a potassium vapor cell heated up
to 65 °C. This laser is used as a frequency reference for the D2
transition. Moreover, it is as well used for absorption imaging
and 2D MOT push beam of the three isotopes.

¢ Slave I and slave II lasers are the cooler and repumper for
4IK. Both lasers are offset locked with respect to the D2-master
laser with an optical beat-note frequency scheme [89]. Using this
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scheme, we can scan the slave lasers in a range of up to 5 GHz
with respect to the locking point. The latter is limited only by the
bandwidth of the electronic components.

¢ Slave IIl is used for laser cooling of the additional isotope (either
%K or 9K). The cooler and repumper frequencies correspond to
the carrier and a sideband created with an EOM. The laser is
offset locked with respect to the D2-master laser.

¢ Slave IV is only used for our phase contrast imaging (Faraday
imaging). It is offset locked with respect to the D2-master laser.

¢ A Di1-master laser is stabilized spectroscopically on the crossover
of the D1-line of K by using a potassium vapor cell heated up
to 100 °C*°. The cooler and repumper transitions correspond to
the carrier and a sideband of an EOM respectively. After am-
plification, this laser source is used during the CMOT, optical
pumping, gray molasses and (if required) repumper during the
absorption imaging.

¢ Di-additional isotope laser is used to implement Di-molasses
in any of the additional isotopes in dual-operation (either 3K
or *°K). This laser is offset locked with respect to the D1-master
laser.

Laser system for 41K

The 2D MOT, 3D MOT, and imaging of *'K are based on a laser sys-
tem tuned at Ap;. Fig. 3.5 shows the internal structure where the cooler
(red) and repumper (blue) transitions are red detuned <y from the cor-
responding transition. The cooler (slave I) and repumper (slave II) light

20 This cell is heated up more than the one used to lock the D2-master laser due to
the difference in coupling strength of the D1 and D2-transition. Here a higher vapor
pressure is required to obtain a comparable absorption signal
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Figure 3.7: Schematic of the laser setup used on the experiment.

comes from a distributed feedback laser*' (DFB) amplified to 1.5 W us-
ing a home-made tapered amplifier** (TA). The beams are controlled
both in frequency and intensity. Finally, they are split for the 2D MOT
and 3D MOT.

The D1-molasses in potassium require a narrower laser source than
a DFB (linewidth ~ 1 MHz) [85, 90—92], therefore we employed an
external cavity diode laser in Littrow configuration (linewidth ~ 300
kHz)?3 tuned at Ap;. Here the cooler and repumper transitions cor-
respond to the carrier and sideband of an electro-optical modulator
(EOM) placed before a 1.5 W home-made TA>°. The relative frequency
between both transitions is fixed and corresponds to the hyperfine
splitting of the ground state (for #'K ~ 254 MHz). The inherent sec-
ond sideband produced by the EOM is more than 40 I' blue-detuned
from the transition. We do not observe additional heating effects in its
presence.

21 EYP-DFB-0767-00050-1500-TOC03-0005 - Eagleyard photonics
22 EYP-TPA-0765-01500-3006-CMTo03-0000 - Eagleyard photonics
23 SYST DL PRO 780 - TOPTICA
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Additional isotope: Laser system for ¥K or K

The laser system for the additional isotope is composed of two laser
sources: a DFB laser tuned on the D2-line (Slave III) and an external
cavity diode laser tuned at Ap;. Both laser sources are combined in
a single fiber by using an interference filter** at 780 nm. Interestingly,
by placing this filter at 17°with respect to the incident light, Ap, is
reflected while Ap; is transmitted. We combine with more than 95%
efficiency two sources with the same polarization and only 3 nm dif-
ference.

After combination, both beams pass through an EOM (C-carrier/R-
sideband) and then they are subsequently amplified using a single
TA?°. In the experimental sequence, first the Ap; light is used during
the MOT. It is then switched to the Ap; light for the molasses stage.

Note. In dual-operation, **K atoms are cooled down through sympa-
thetic cooling with #'K. Due to the high efficiency of this technique,
large MOTs are not needed to obtain a degenerate gas. Therefore, us-
ing one single laser source and an EOM is enough to trap the required
atom number.

2D MOT and 3D MOT splitting

The laser beams are coupled into polarization maintaining fibers and
sent to the "experimental table". For the 2D MOT, 3D MOT and mo-
lasses stages, we need to combine beams of very similar frequencies
(cooler and repumper of 4'K and *K). As dichroic optics cannot be em-
ployed, we use instead a 4—4 fiber cluster®>. By means of the evanes-

SYST DL PRO 780 - TOPTICA

B-06650: IF78onm/6° - LaserOptik

Spliceless PM Coupler arrays (optimized in between Ap; and Ap,) - Evanescent Op-
tics Inc
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cent field in the fiber, the four different inputs are mixed and the four
frequencies are delivered at each output.

We have observed that adjusting the input polarization of the beams
is critical; otherwise, the splitting ratio on each output could have
significant power fluctuations. The latter is solved by placing a high-
quality polarization beam splitter aligned with the fast axis of the fiber.
Moreover, a proper thermal stability of the splitting box is required.

We use one cluster for the 2D MOT chamber and one for the science
chamber.

3.3.3 Magnetic fields: Overview

One of the most appealing features of potassium is the tunability of
its interactions via Feshbach resonances. Therefore, a homogeneous
magnetic field along the extent of the cloud is required to control the
scattering length a. Depending on the isotope or internal spin state,
the Feshbach resonance properties can change dramatically in posi-
tion and width. Several resonances have been reported in K [77] and
40K [75, 76, 93, 94] together with the mixture *K-*'K [79]. These res-
onances range between 20 and 560 G; therefore a good magnetic coil
design is needed to fulfill, at low or high B-field, stability and homo-
geneity. For this aim and inspired by ref. [95], we designed a Bitter-
type electromagnet in our experiment.

The Bitter configuration, traditionally used in high field magnets, al-
lows for parallel cooling of the different coil layers avoiding unwanted
coil heating.

The Bitter coil

Principle of operation. The Bitter-type electromagnet is depicted in Fig.
3.9 (a). It is constructed from solid copper arcs (1 mm thickness) in
which the current flows in a helical pattern. The arcs are insulated
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using silicon?® layers (0.3 mm thickness) with the same shape as the
copper arcs, but with small channels through which the water can
flow(blue arrows). The successive copper arcs are rotated one-eight of
a turn, and with the help of a copper insert the current can flow from
one copper layer to the other.

In total we use 36 copper arcs which are splitted for the Feshbach
coil (24 copper arcs) and jump coil (16 copper arcs), see Fig. 3.8 (b).
Each assembly is delimited with a thicker copper arc (depicted in yel-
low in Fig. 3.8 (b)) that is used as an input/output of the current in
the coils.

The full assembly is held with eight threaded brass rods which press
the copper arcs against each other with a nut and a sealing washer.
One rod and one nut are made of copper in order to drive the current
in the Feshbach coil, the rest are made of brass. In addition, the rods
are teflon-coated in order to avoid electrolisis between the coils.

Water cooling mechanism

In contrast to the hollow copper tubing coils, the advantages of a Bitter
type electromagnet is the very efficient water cooling mechanism. The
water flows in parallel through each insulating layer maintaining in
this way each layer of the coil at the same temperature. Therefore,
temperature gradients along the coil are suppressed. This allows to
operate the coils at high current (< 400 A) with low heat dissipation.

With only 4 bar of pressure we can operate the Bitter electromag-
nets at high current at room temperature. The water flow is provided
by a chiller?” filled with commercial drinking water?. In between the
chiller and the coils, a 7 ym filter® is placed to prevent bottlenecks in
the small channels due to impurities in the water circuit.

26 Silicone Rubber Sheet - 60 Shore A - Merefsa
27 P205-16968 WW-S - Termotek

28 Sant Hilari

29 7 um filter (55-4F-K4-7) - Swagelok
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Figure 3.8: a) The Bitter configuration allows efficient parallel cooling of the different copper
layers. Several alternated copper arcs allow the flow of current in a helical pattern.

The water flows through the small channels on the silicon insulators (grey). (b) Half

section view of the Bitter assembly. This consists of a Feshbach coil and a jump coil
hold together with threaded bars.

The full Bitter assembly

A breakout of our magnetic coils is displayed in Fig. 3.9. The full as-
sembly is made of two pairs of isolated Bitter coils (Feshbach coils
and jump coils), one pair of coils made of enamelled copper wire (op-
tical pumping coils) and also eight elliptic coils in “cloverleaf" config-
uration. This assembly allows us to produce homogeneous magnetic
fields and magnetic gradients in different directions as follows:

¢ The Feshbach coils are the ones closer to the atoms, they pro-
duce either a homogeneous field or a quadrupole trap depend-
ing if they are in Helmholtz or anti-Helmholtz configuration.
During the sequence, the quadrupole trap is employed during
the MOT and magnetic trap while the homogeneous field is used
to control the interaction of the atoms.

¢ The jump coils are used to either increase or decrease instanta-
neously the B-field (Helmholtz configuration) by switching them
on/off. This circumvents possible limitations of the power sup-
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(a) Top coil

Jump coil
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Figure 3.9: The Bitter assembly consists of a Feshbach coil, jump coil, optical pumping coil and
an array of cloverleaf coils. The four coils allow producing homogeneous magnetic
fields or gradients in different directions.

ply or PID bandwidths. In anti-Helmholtz configuration they
produce a magnetic gradient needed to perform Stern-Gerlach
separation during time-of-flight or spin distillation during the
optical evaporation (see section 4.3.1).

¢ The optical pumping coils are used to define the quantization
axis by creating a small homogeneous magnetic field (< 5 G).
This pair of coils is mostly used during the optical pumping and
imaging stage.

¢ The cloverleaf (CL) coils are used to compensate for the curva-
ture or magnetic gradients that can be generated by the Feshbach
coils in the radial direction.

In addition to the Bitter coil assembly, on each viewport of the sci-
ence chamber, we installed copper wire coils that can be used for differ-
ent tasks during the experimental sequence. They can be used either to
create a homogeneous field for spin transfers or to control the position
of the minimum of the quadrupole trap.
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The earth field is compensated using three coils placed outside the
optical table 3° .

Cloverleaf configuration

In Fig. 3.10 (a) we depict the cloverleaf configuration used in our exper-
iment. This configuration allows us to compensate gradients or curva-
tures along the radial plane even in the presence of a transversal strong
magnetic field.

Each pair of coils (denoted with and without "*") are connected in
Helmholtz configuration. Depending on the direction of the field, we
compensate in any direction the magnetic gradients and curvatures.
An example of a possible configuration is presented in Fig. 3.10 (b).
In the top panel both pairs AA* and CC* produce a magnetic field
in the same direction. In dotted red line is represented the magnetic
tield along the x-axis produced by the cloverleaf coils. The blue and
green lines represent a homogeneous magnetic field created by our
Feshbach coil with and without the presence of the CL coils. In the
bottom panel the magnetic field produced by the CL coils is created in
opposite directions. Here we induce a magnetic gradient (green line)
or homogeneous magnetic field (blue).

For the droplet experiments presented in chapter 6 we have can-
celled out magnetic gradients in the presence of a Feshbach field of
~ 50 G. Compensation of magnetic gradients is crucial for these mea-
surements.

Two of these coils have a dimension of 160 cm X 150 cm (top and bottom coils) while
the lateral coil has a dimension of 160 cm X 120 cm. All of them are made of 5 turns
of 20 multi-wire planar cable
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Figure 3.10: Cloverleaf coils. (a) Each pair of coils is connected in Helmholtz configuration. They
are placed in a cloverleaf configuration aligned with respect to the vertical axis of
the science chamber. (b) Depending of the direction of the magnetic field on each
coil we can compensate for either magnetic curvatures or magnetic gradients along
any direction in the radial plane.

Inducing curvature

Feshbach and jump coils electronics

As explained before, the Feshbach coils are used during the magnetic
trap and also to provide a homogeneous bias field. During the ex-
perimental sequence the coils are changed from anti-Helmholtz to
Helmholtz configuration by using an H-bridge circuit made of four
mechanical relays3'. As sketched in Fig. 3.11, by opening and closing
the different relays we can control the current flow direction in only
100 ms. We use an FPGA to control the relay logic.

The switching on/off of the coils is provided by one high power
IGBT3? before the H-bridge circuit. In series to the IGBT a high power
diode33 is installed to protect the power supplies from any reverse
current. Due to the inductive-load switching (on/off) generated by

31 LEV200A4NAF - Farnell
32 CM600HA-24H - RichardsonRFPD
33 LS410860 - RichardsonRFPD
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Figure 3.11: Four relays form the H-bridge configuration. When the relays R1/R3 are opened,
and R2/Ry are closed, a positive voltage is on the coil. In contrast, when R2/R4
are opened, and R1/R3 are closed, the voltage can be reversed. This defines the
Helmholtz or anti-Helmholtz configuration. In addition to the H-Bridge, the elec-
tronic circuit contains one IGBT that switches on and off the current of the coils,

a varistor that protects the IGBT for transient signals and a high power diode that
protects the circuit from reversed induced current.

the coils, a 95 V varistor34 is placed in parallel to the IGBT to limit the
transient peak voltage and protect the electronic circuit. The switch-
off time of the coils is not limited by their inductance nor the circuit
used (which leads to the extinction of 180 A in 50 us), but by the eddy
currents induced in the science chamber. This results in a switch off
time of 100 G in ~ 4 ms.

Stabilization of the Feshbach field

The stabilization of the magnetic field is essential to control the scatter-
ing length a precisely and is crucial if narrow Feshbach resonances are
used. We deliver the current to the Feshbach and jump coils by using
two different power supplies that range between o and 400 A and o-50
A.

As a first approach, the jump coils are stabilized only by the internal
PID of its power supply3> while the current injected on the Feshbach

34 B7222050950K101 - Farnell
35 Delta SM50-15- Delta
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Figure 3.12: PID controller. The signal is boosted by increasing the number of turns around the
current transducer. In our current configuration, four loops are wound around the
current transducer. The noise in the PID controller can be improved by seeding the
PID circuit with an automotive battery.

coil is stabilized with the locking scheme shown in Fig. 3.12. Here, the
current given by the power supply3® is measured with a high precision
current transducer?’. The signal then is compared with the set value
imposed by the computer control?® and fed into a home-made PID
controller. This PID is designed along the same lines as ref. [96]. With
this simple scheme, we were able to stabilize our magnetic Feshbach
tield up to & 15 mG at 105 G. This stabilization technique was used
for the Feshbach spectroscopy experiments presented in chapter 5.

In addition to the stabilization scheme, an extra current transducer3?
is used to readout the signal. To avoid unwanted noise, it is essential
to have independent signals for reading and stabilization.

Delta SM400-15

DS600ILSA - DaniSense

We use National Instruments devices to control the experiment. The analog cards are
the NI PXI-6733. The output of the cards are connected to a noise rejecting shielded

BNC Connector Block (NI BNC-2110). The cards are installed in the PXIe-1082 rack.

The experimental controll and interface were developed in the group of T. Esslinger
at ETH.
DS600IDSA - DaniSense

69



70

THE POTASSIUM EXPERIMENT AT ICFO

Delta SM50-15

'“-- - q_"\? ]

A:ON/OFF | | Mechanical....,
B:ON/OFF | |: = ! relays i |
L ¥ : g
T -
- '+— - +
Jump Feshbach
coils coils

Delta SM400-15

Figure 3.13: Power supply exchange. To improve the magnetic stability, we exchange during the
sequence the power supply used for the Feshbach coils (A and B configuration). We
match the range of the power supply to the current range required. This is done by
using different mechanical relays.

The current stability is improved for the droplet experiments pre-
sented in Chapter 6 and 7 by performing some modifications in the
locking scheme. First, we switched the power supplies between the
Feshbach and jump coil during the experimental sequence by using
mechanical relays (see Fig. 3.13). With this procedure, we matched the
power supply to the current range required. To produce the quadrupole
trap, where high current is required, we use a broad range power sup-
ply. However, when the coils are changed to Helmholtz configuration,
the broad range power supply is exchanged by the small one.

In addition, the sensitivity of the current transducer is increased by
wounding four times the copper wires that carry the current to the
Feshbach coils.

Finally, the home-made PID is no longer connected to the AC trans-
mission line but instead to two commercial automotive batteries. This
suppresses the 50 Hz noise from the electric line. After these modifica-
tions, we measured through RF spectroscopy a magnetic field stability
of £ 4 mG at 50 G.
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Currently, in our experimental setup, we are limited by the magnetic
field fluctuations in the environment. This will be solved in the future
by implementing active magnetic stabilization similar to [97].

3.3.4 Radio-frequency sources

In our experiment, we use a radio frequency knife to evaporate the
most energetic atoms in the magnetic quadrupole trap. It also allows
us to prepare the internal state of the ultra-cold gas. Therefore a com-
bination of several antennae, RF-amplifiers, and frequency signal gen-
erators are required.

The first stage of evaporative cooling consists of RF-evaporation in a
magnetic quadrupole trap. In our cooling scheme, we only evaporate
4K using RE. We use the transition |F = 2,mp = 2) (low field seeker)
to |[F = 1,mp = 1) (high field seeker) to remove the more energetic
atoms. We evaporate using the hyperfine transition instead of the Zee-
man one because during sympathetic cooling it allows us to selectively
evaporate only 41K,

The range of frequencies used during the RF evaporation ranges be-
tween 400 MHz and 265 MHz. We use a broad range flat response
antenna (antenna 1) in combination with a 50 W RF amplifier® to
address the transition. The antenna and RF amplifier are connected
through a forward power circulatort* to dump back reflections from
the antenna. The frequency source is a commercial FPGA based fre-
quency generator4.

To manipulate and modify the internal state of the atoms, we per-
form either adiabatic frequency-sweeps or RF-pulses. This is done by
using the antenna (2) in combination with a high power amplifier*3

ZHL-50W-52-5+ - Mini-Circuits
F2520-0338-675 - WENTEQ

SD AOU-H3444-PXIe-1G - Signadyne
ZHL-100W-GAN+ - Mini-Circuits
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and a frequency generator#t. Different impedance matching circuits
between the antenna and the amplifier are connected to maximize the
RF-field at the location of the atoms. With this we broaden the atomic
transition, and therefore we are less sensitive to magnetic field fluctu-
ations.

3.3.5 Far-detuned optical dipole trap: 1064/532 nm
Harmonic traps

In the experiment, we trap the atoms optically in harmonic traps with
either red (1064 nm) or blue (532 nm) detuned beams far from the
potassium resonance.

The red detuned optical dipole trap beams in the experiment are created
with a 25 W single mode YAG laser4> with an ultra-narrow linewidth
of 1 kHz4%. The laser is protected against back reflections with a high
power, high extinction ratio optical isolator47. The water cooling circuit
is provided by a chiller* and monitored with a water flow sensor4?
interlock.

The power of this laser source is divided in different paths by using
polarization optics®°. In particular, one rotating waveplate>' is installed
to redistribute the power during the sequence into the different paths.
Given the high power of the laser beams, the light is delivered to the

SMC100A Signal Generator - Rohde and Schwarz
Mephisto MOPA 25 W - Coherent

Value reported by the seller

Faraday Isolator FI-1060-55C OEM4 - QIOPTIQ
P307-18344 WW-S - Termotek

800 Series flow meter - Proteus

Thin Film Polarizer (PO1045-FY) - Advanced Thin Films
PRM1Z8 - Thorlabs
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atoms using single-mode photonic crystal fibers>® with high power
fiber couplers3.

The crossed optical dipole traps (CDT) in the experiment are cre-
ated by the intersection of the different beams presented in Fig. 3.14.
Depending on the experiment performed, a different trap can be cre-
ated with different trap depths and aspect ratio. The power of each
beam is stabilized by using AOMs>+. In particular, these AOMs are
operated in opposite diffraction orders to avoid interference effects.

The blue-detuned lattice potential

The blue-detuned optical dipole beam is obtained from a single mode, sin-
gle frequency optical fiber laser amplifier>> at 532 nm. The laser source
delivers 10 W of power using a seed of 30 mW from our Mephisto
laser. The seed sets the linewidth of the blue-detuned laser. This laser
source passes through an optical isolator® and then is coupled into a
standard polarization maintaining fiber. The laser beam is stabilized
in intensity as well with an AOM?7 placed before the fiber.

Besides the harmonic traps we have a small angle lattice potential
for the droplet experiments presented in chapter 6. This setup was de-
veloped by P. Thomas [98]. The periodic potential is done by using the
blue-detuned optical dipole beam presented before. The basic princi-
ple of our method is shown in Fig. 3.15. The 532 nm laser beam enters
into a polarizing beamsplitter (PBS) cube that splits the light into two
different paths. The horizontal beam is transmitted through the cube
while the vertical one is reflected in a right angle prism>® placed on top

52 LMA-PM-15 (SMA-905/SMA-905) - NKT Photonics.

53 60FC-SMA-T23-A7.5-03(input FIBER) and 60FC-SMA-T23-A15-03(output fiber) -
Schifter + Kirchhoff

54 ATM-A1/Az2 series , Tellurium Dioxide (TeO;) - IntrAction Corp

55 ALS-GR-532-10-A-SP - Azur Light systems

56 Tornos series 190-11944-0003-A - Electro-Optics Technology: EOT

57 ASM-B SERIES UV Grade Fused Silica - IntraAction Corp

58 Precision Bending Prism Pgo-050-532-UV - CVI Laser Optics
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Figure 3.14: Axis convention. The different viewports are used to either image the atomic cloud
or send dipole trap beams through. The convention is given for each axis and it will
be employed along this thesis.

of the beamsplitter>®. This setup produces a pair of parallel beams (at
a distance D) which is then focused on the atoms with a single lens of
focal length f. In the focal plane both beams interfere with a small an-
gle 6, this produces a one-dimensional lattice potential of periodicity
given by

A
d= 55 ()" (3-2)

In our current setup, the lattice spacing is 10 ym. With this large lat-
tice spacing, the loading of one single planes is straightforward. How-
ever, the probability to load more than one plane is not zero. Using
the matter wave focusing technique introduced in [99], we measured
that the population in other planes is below 5 %. More details about
the characterization of our lattice potential can be found in [98].

3.4 IMAGING SYSTEM

In our experiment, the atomic cloud is characterized by using either
absorption or phase contrast imaging. In the horizontal plane of the
science chamber (X-axis, Y-axis, and W-axis), the atomic cloud is far

59 Fused silica PBS cube (L335534000)-PI Micos
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Right angle

Laser beam

Beam splitter Lens Interference
cube pattern

Figure 3.15: Schematic drawing of the lattice potential. Two parallel beams are produced by the
combination of a beam splitter cube and a right angle prism. They interfere in the
focal plane of a lens forming a periodic intensity pattern with spacing d. The beam
spacing D is given by the size of the optical elements.

away from the viewports (~ 150 mm); therefore we use low-resolution
optics and standard CCD cameras®. Here, we use standard absorp-
tion imaging techniques to obtain the atomic column density and the
temperature of the gas after time-of-flight (ToF).

Along the vertical axis (Z-axis) the cloud is imaged in situ using
dark field polarization phase contrast imaging [100, 101]. In contrast
to the horizontal plane, here we have designed a high numerical aper-
ture objective which consists of one catalogue aspheric lens®! and one
custom-made positive meniscus®? [102] that corrects from the aberra-
tions introduced by the viewport (see Fig. 3.16) . Thanks to the re-
entrant viewports explained in section 3.3.1, the asphere lens is only
35 mm away from the atomic cloud. This provides a numerical aper-
ture of NA=0.43. The latter leads to a theoretical resolution of 1.1 ym
(Rayleigh criterion) at 767 nm. In a test setup, the actual resolution has
been measured to be below 1.5 ym [103].

60 CMLN-1352C-CS- Point Grey
61 KPA24 - Newport
62 MSCPo1o0 - Ross optical
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Figure 3.16: Homemade objective (red dashed area). Using an asphere lens and a commercial
meniscus lens we obtain a high N.A objective (NA=0.43) and compensate the spher-
ical aberrations introduced by the viewport. The lenses in the objective are mounted
in a five-axis mount where it possible to control the different degrees of freedom.
The best performance of the objective is achieved by aligning the objective perpen-
dicular to the viewport. This is done by aligning the reflections of each optical
element and make them overlap with the help of a probe beam. We magnify in two
stages, besides the objective we use three additional achromat lenses to achieve a
total magnification of M = 49.6(9). The polarization beam splitter (PBS) is placed
in the optical system to perform dark field phase contrast imaging.

The objective is mounted in a five-axis lens positioner®> which al-
lows controlling the different degrees of freedom required to align the
objective with respect to the atoms and the 6 mm thick view-port®+
of the science chamber. The lens positioner is mounted in a high pre-
cision translational stage controlled by a piezo linear actuator®. This
stage allows us to scan precisely the focal plane of the objective with
respect to the atomic cloud.

In the final configuration the system has a total magnification of
M = 49.6(9) measured using Kapitza-Dirac diffraction[104] on a one-
dimensional lattice potential.

63 LP-2A - Newport
64 Spectrosil synthetic fused silica - UKAEA special techniques group
65 N-470 PiezoMike Linear Actuator - PI



3.4 IMAGING SYSTEM

3.4.1 Dispersive imaging

Dark field polarization phase contrast imaging

Dispersive imaging techniques have been used in cold atoms experi-
ments to perform non-destructive imaging of dense systems. The main
idea is to measure the phase shift of the imaging light due to the pres-
ence of the atomic cloud. The scalar and vectorial part of the atomic
polarizability gives this phase shift.

In our experiment, we use dark field polarization phase contrast
imaging (DFPPC), also known as Faraday imaging. Here the vectorial
part is the main contribution to the phase shift of our probe beam.
The idea is to probe the atomic cloud with linearly polarized light,
and measure its rotation due to the birefringence of the cloud. This
rotation in polarization (Faraday angle 6r) is measured by introducing
a polarizer in between the cloud and the detector (see Fig. 3.17 (a)).
In this way, we project the changes of polarization into intensity. In
particular, we are in dark field configuration, this means, the polarizer
does not transmit the light in the presence of atoms.

The Faraday angle 6r is given by

Or = crn; (3-3)

where n; represents the integrated density of the cloud and cr the
Faraday coefficient.

The advantage of dispersive imaging techniques is the possibility to
image in a non-destructive way the atomic clouds, however, far from
the atomic resonance there is a low signal-to-noise ratio. To increase
the contrast we acquired the signal in phase contrast imaging using an
EMCCD camera®®.

66 iXonUltra897- Andor
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3.4.2 Atom number calibration

Absorption imaging

An absolute calibration of the atom number in the experiment is per-
formed with time-of-flight absorption imaging. Experimentally, we ex-
ploit the atom number dependence on the critical BEC temperature T
(see Eq. 2.4). Here we take into account the shift of T, due to inter-
action effects (scattering lengths of potassium computed by A.Simoni
and M.Tomza) and finite size effects (see section 2.4.6). Detailed mea-
surements of ¥K and #K T are presented in chapter 4. This calibration
has a systematic uncertainty of 25%.

In situ imaging

We calibrate our in situ imaging system by measuring experimentally
cr of Eq. 3.3. We extract 0r from the light intensity transmitted through
the PBS due to the presence of the cloud.

To measure the phase shift (which is linked to cr) imprinted by the
atomic cloud, we have implemented a new scheme with the help of
a rotating half-wave plate®”. The idea is to record the response of the
polarizer with and without atoms. We measure the transmitted light
intensity vs. polarization angle of the light 6. We rotate the angle of the
linear polarized light several multiples of 77. A sketch of the response
function obtained is shown in Fig. 3.17 (b). Both profiles with (green)
and without atoms (red) follow the Malus’s law

1(8) = Ipsin®(0 + 6r), (3.4)

where I represents the total intensity of the light and 0 the angle set
by the half-wave plate. The phase shift 6r is given by the presence of
atoms during the measurement.

67 PRM1Z8 - Thorlabs
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Figure 3.17: (a) Dark field polarization phase contrast imaging. The incoming light has a polar-
ization orthogonal to the transmission of the cube. The detector records the phase
shift in the presence of the atomic cloud. (b) Phase shift as a function of density. (top
panel) We scan the response of the cube with (green) and without (red) the atomic
cloud. We observe a phase shift of the light 6. (Bottom panel) Depending on the
density of the cloud the 6r increases. Here the Faraday coefficient is proportional to
Or and n,

The Faraday coefficient. Using a single-component BEC, the coeffi-
cient cr is calibrated in two steps. First, we perform an absolute calibra-
tion of the atom number with absorption imaging as explained above.
Then we measure directly the polarization phase shift as a function of
n; by performing measurements after different expansion times of the
gas in a single-beam optical dipole trap. The density is given by the
atom number N (calibrated in ToF), the volume of the cloud set by the
harmonic oscillator length of the trap (measured in independent ex-
periment) and the extension of the cloud after expansion in the optical
waveguide.

In the linear regime, the value of cr is represented as the slope of
the 0r vs n; sketch in Fig. 3.17 (b).

Remarks.
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¢ For a given density range of interest, the detuning of the light
must be such that 0 < 6 < 71/2.

¢ If the detuning of the light is close to resonance, absorption ef-
fects need to be taken into account.

This phase contrast imaging technique is crucial in chapter 6 and
chapter 7 to obtain qualitative results.

The development of the imaging system and its calibration has been
mainly carried out by J. Sanz, and his Ph.D. thesis will describe it in
more detail.



DEGENERATE QUANTUM MIXTURES: DUAL-BEC
OF 39K_41K

In June 2015 we produced the first Bose-Einstein condensate of 'K
in our experimental apparatus. A few months afterwards the con-
densation of ¥K and the dual-Bose-Einstein condensation of *K-*K
were observed. In this chapter, we describe the experimental route em-
ployed to obtain the first quantum degenerate gases in our team.

4.1 LASER COOLING STAGE

The laser cooling stage is divided into different steps: 2D MOT, 3D
MOT, CMOT, and molasses. Here the two different bosonic isotopes
are trapped simultaneously on each step.

411 Dual-2D* MOT of ¥K-41K
Vapour pressure of potassium

The road to the quantum degenerate regime starts in an enhanced
2D*MOT. With a background pressure of ~ 10~% mbar of natural
potassium (measured through the absorption of a propagating beam
along the chamber [105]), we can selectively create an atomic beam of
the three different isotopes by just tuning the frequency of cooler and
repumper beams. The atomic flux for each isotope is limited by the
partial pressure given by its natural abundance (see Table 3.1).

The potassium pressure is kept on the 2D MOT chamber by im-
plementing a temperature gradient from the source to the 2D MOT
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Figure 4.1: 2D MOT chamber. (a) The temperature gradient along the 2D MOT allows keeping
the right vapor pressure needed to perform the experiments. Around the body of the
2D MOT chamber, four permanent magnets and 2 pairs of coils are placed to create
the magnetic field required. (b) In the 2D*MOT configuration longitudinal molasses
are implemented with a gold-coated in-vacuum mirror. The top panel shows the pol-
ished steel mirror with and without coating. In bottom panel the in-vacuum mirror
is mounted on the differential pumping tube.

chamber. The temperature gradient implemented is shown in Fig. 4.1
(a).

Several heating tapes' and PID controllers? are used to stabilize the
temperature. We have observed that otherwise long-term temperature
drifts modify the loading rate of the 3D MOT.

2D MOT configuration

In our configuration the 2D MOT consists of two pairs of retro-reflected
elliptical beams (1/¢? diameter = 70 mm X 20mm) and a pair of lon-
gitudinal molasses beams (1/¢? diameter = 20 mm). These molasses
provide longitudinal cooling allowing to increase the density of the
cloud and therefore increase the atomic flux up to a factor of two on

1 SWH251-060 - Omega
2 CNy7000 - Omega



4.1 LASER COOLING STAGE

each isotope [105, 106]. As shown in Fig. 4.2, the molasses are imple-
mented by using a gold-coated in-vacuum mirror. We image a dark
spot on the molasses beam to avoid distortions due to the mirror hole
that connects to the differential pumping tube.

In addition, a small blue-detuned push beam (1/¢? diameter = 800
pum) is used to transfer the atoms to the science chamber [107].

2D MOT in-vacuum mirror

On one end of the differential pumping tube explained in section 3.3.1,
a home-made 45°gold-coated mirror with a 2 mm hole in its center is
installed in the front of the 2D MOT chamber (see Fig.4.1 (b)). The
mirror is a polished piece of steel with three different layers deposited
on its reflective side: titanium (100 nm), gold (100 nm) and SiO; (100
nm). The first layer is Titanium (Ti) because it is a common adhesive
thin-film material used to attach gold on different surfaces. The gold
layer increases the reflectivity of the mirror, and the SiO; one protects
the mirror against potassium deposits due to the high vapor pressure.
This prevents the decrease of the mirror reflectivity over time.

Magnetic fields and push beam

The magnetic field gradient required for the 2D MOT is created by four
permanent rectangular magnets3? placed around the 2D MOT chamber
(see Fig. 4.1 (a)). This configuration creates a magnetic gradient of B'=
11 G/cm transversal to the 2D MOT chamber. We do not observe resid-
ual stray fields on the science chamber due to the presence of these
magnets. More details about the magnetic field decay and characteri-
zations of these magnets can be found in ref. [108].

Once the atoms are trapped in the 2D MOT, the clouds are sent to
the science chamber with the help of a push beam aligned in the axis

3 6x6x148 NdFeB magnets (Q148x06x06Zn-30SH) - HKCM
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Figure 4.2: Configuration of our 2D* MOT. Two transverse elliptical beams and a pair of lon-
gitudinal molasses beams are used. One of them is directed to the atoms using the
in-vacuum mirror. To avoid beam distortions due to diffraction by the hole, a dark
spot is imaged on it. The table below presents the optimal parameters for our 2D
MOT.

of the atomic cloud. The push beam of each isotope is blue detuned
from the cooling transition allowing to accelerate the atoms towards
the science chamber (see beam parameters in Fig. 4.2).

We find that the best performance of our atomic source is highly
sensitive to the centering of the 2D MOT (quadrupole and laser field)
with respect to the mirror hole and push beam. Therefore, in addition
to the permanent magnets, two pairs of coils in Helmholtz configura-
tion are used to fine-tune the center of the 2D MOT quadrupole field.
This is done independently for each isotope.
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Best performance

The optimal parameters of the 2D MOT are indicated in Fig. 4.2. They
are found by maximizing the fluorescence of the 3D MOT of each iso-
tope. We measure a *'K atomic flux of 1.8 x10® atoms/s extracted from
the loading rate on the 3D MOT. Due to the higher natural abundance
of ¥K, the flux is more than twice bigger (4.6 x10® atoms/s) although
the beam intensities are lower compared to *'K.

The atomic beam velocity for both cases ranges between 20-50 m/s
depending on the detuning and power of the push beam. This has
been measured by sending a probe beam at 45 °to the atomic beam
and recording the fluorescence emitted when scanning its frequency
around resonance [109].

4.1.2 Dual-3D MOT and CMOT

3D MOT. The atomic beam created by the 2D MOT is then captured

in the science chamber in a 3D MOT. The dual-3D MOT consists of
six independent beams (1/ e? diameter = 22 mm), and a magnetic field
gradient (B’ = 5.3 G/cm) produced by the Bitter coils described in
the previous chapter. Both cooler and repumper beams of each iso-
tope are red detuned ¢ from the respective transition (see values Ta-
ble. 4.1). The combination of such large beams, large detunings, and
a small magnetic gradient gives, as a result, a dilute MOT. This dilute
MOT reduces the particularly large light assisted collisions reported
in potassium MOTs [87, 88].

The optimum dual-MOT-loading scheme is the following: we first
load #'K during 10 s (1/e loading time T = 2.1(1) s), and then only dur-
ing 650 ms, the ¥ K MOT beams are switched on together with the 'K
beams. This scheme reduces the losses observed in the double-species
MOT. With the parameters in Table. 4.1, around 1.5 x 10° atoms of
#IK and 3 x 108 of 3K are captured. The population ratio between the
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41K 39K
Stage (6 (D2)-l.  6(D2)-I.  6(DN)-I.  6(D1)-I || 6(D2)-I. J(D2)-1. 5 (DN)-I. 6 (D1)-I,
MoT -6-6.8 -3-9 - - 4-36 4-21 R
cmot - -3--15-9-0  55-92 - - - 5-7 5-23
Molasses| - - 55-92-0 55-3-0 - - 5-7-0 5-23-0

Table 4.1: Optimal parameters during the MOT, CMOT and optical molasses sequence for K
and K. The intensities reported are normalized respect to the saturation intensity I
of the transition at resonance. The detunings J are presented in units of I' (linewidth
of the transition).

two isotopes can be tuned easily by adjusting the MOT loading time
of K.

CMOT. To further increase the density of the atomic clouds, a hy-
brid D1-D2 CMOT strategy is employed on *'K [90] while performing
during this time a sort of gray molasses for K.

In the 4K CMOT the cooling is performed on Ap, while the re-
pumper transition is on Ap, (see detuning Table 4.1). The CMOT lasts
100 ms. The experimental sequence of the CMOT stage is summarized
in Fig. 4.3.

In our experimental sequence, we first reduce the Irep 4K to zero
while keeping the maximum power in the D1 I cler. During this time,
instead of increasing the magnetic gradient we reduce it to 3.8 G/cm.
We have observed that compressing the magnetic field gradient en-
hances the losses in the system. We do not perform a CMOT in ¥K
due to experimental constraints, because in our current setup we use
sequentially the same tapered amplifier for both Ap, and Ap, (see sec-
tion 3.3.2).

After using this hybrid scheme, interestingly each isotope reaches
temperatures close to 70 uK. This value is lower than the Doppler
temperature (Tp) of potassium (Tp ~ 145uK). Similar to the observa-
tions reported in ref. [90], the 'K CMOT experiences a gray molasses
type cooling in the presence of the blue-detuned D1 light. In the case
of ¥K, it just experiences a long time D1 molasses. Due to the weak
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Figure 4.3: Sequence used to laser cool 'K and K. The lines in the drawing just indicate the
change of magnitude of the parameter, and not the exact ramp shape. The cooler and
repumper transitions on the Ap, are represented in red and blue respectively. The
cooler transition in Ap, is represented in yellow. The repumper transition on the Ap,
is created with a side-band of an EOM and is not represented here. The green line
represents the magnetic gradient used during the MOT and CMOT.

magnetic gradient provided by the CMOT, *K reaches sub-Doppler
temperatures as well.

Finally, the magnetic field is removed, and the clouds are further
cooled down in the molasses scheme described below.

4.1.3  Sub-Doppler cooling with D1 gray molasses

Dual-D1 gray molasses. Compared to other alkali atoms, potassium
has a relatively narrow hyperfine structure in the excited state of the
D2 manifold. This is shown in Fig. 3.5. The energy splitting of the F’
sublevels are on the order of the natural linewidth (I' = 27t x 6.03
MHz), therefore having an isolated single cooling transition is compli-
cated due to the presence of off-resonant excitation. With this limita-
tion, traditional sub-Doppler cooling on the D2-line has been difficult
to achieve with standard optical molasses. Although a more complex
scheme implemented in ref. [110] allows to achieve sub-Doppler tem-
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Figure 4.4: 'K gray molasses characterization. (Left panel) gray molasses rely on a A level
scheme where the detuning 6 = 0 provides the optimum parameters. We observe
for § < 0 that the temperature of the atomic cloud is approximately constant (25
uK) while for positive values of J a resonant heating increases the temperature of
the system. (Right panel) In this Sisyphus-like cooling mechanism, the "height of the
hills" needs to be reduced to cool down efficiently the cloud [69], we observe that by
lowering the global intensity of the beams we achieve sub-Doppler temperatures in
tenths of milliseconds.

peratures in ¥K, this method is highly sensitive to power balance, de-
tuning parameters and intensity of the cooler and repumper beams.
To circumvent these problems we use the D1-line.

A first reason to use the Di-line is that its states for all isotopes are
well resolved. Therefore off-resonant excitation is less important. Here
we implement the so-called gray molasses. In particular, this laser cool-
ing technique has been reported to work successfully for the different
potassium isotopes [85, 90, 91].

In our experimental setup, we perform this sort of molasses for both
isotopes simultaneously. We obtain sub-Doppler temperatures by us-
ing a A-configuration between the F=1 (repumper) - F=2 (cooler) hy-
perfine ground states and F'=2 D1 excited state of PK and 4K (see
inset Fig. 4.4). We observe that the relative detuning between cooler é¢c
and repumper g beams is a critical parameter that defines crucially
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the final temperature of the cloud. Fig. 4.4 (a) depicts the tempera-
ture dependence of the cloud as a function of the Raman detuning
(6 = 6c —Ir). For /T < —0.15 the temperature of the cloud is ~ 25uK.
Interesting close to § = 0 a narrow feature appears lowering first the
temperature of the cloud close to 16 K (6 < 0) followed by resonant
heating for § > 0. This effect is observed for both ¥K and 'K with
similar results.

We study the temperature of the cloud as a function of the global
detuning A (A = 6¢c = dg) of ¥K and #!K. The final temperature of the
clouds is reduced below the Doppler cooling limit for a broad range of
positive detunings as soon as we are blue-detuned from the transition.

As explained in 3.3.2, in ¥K as in #'K the cooler and repumper fre-
quencies are the carrier and sideband created by an EOM. The optimal
amplitude ratio between the carrier and side-band is ~ 2:1 for both
cases. The additional side-band created in both cases by the EOM is
so far detuned from the cooling transition (by the hyperfine splitting)
that heating effects are not observed.

In conclusion, with the saturation intensities presented in Table 4.1,
by reducing the global intensity of the D1 beams in 8 ms we cool
down to sub-Doppler temperatures (from ~ 70 uK to ~ 16 uK) the two
bosonic isotopes of potassium (see Fig. 4.4 right panel). We achieve at
the end of this stage typical atom numbers of 8 x 10® and 2 x 10® for
41K and 3K respectively.

This stage is extremely robust against external magnetic fields* and
global detuning of the laser beams. However, we observe that it is
highly dependent on the relative detuning between the cooler and re-
pumper light. Similar results have been previously reported in single
species potassium experiments for *K and “’K [9o, 111]. Here, in addi-
tion, we have explored the molasses scheme for 'K and dual-molasses
4l 39k,

We passively cancel out residual magnetic fields on the position of the atoms below 5
mG.
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Note. In addition to the both MOTs, by using the same experimental
setup we have already produced a MOT of the fermionic isotope “°K.
After 30 s of loading time, we trap approximately 5x10° atoms in the
3D MOT. We are currently employing a natural potassium source, and
the abundance of the fermionic isotope is only 0.01%. This number
should be sufficient for our sympathetic cooling strategy to work and
create a degenerate Fermi gas. Nevertheless, a solid sample enriched
of ¥K has already been purchased and will be installed, if necessary,
during the upcoming years.

4.2 EVAPORATIVE COOLING IN CONSERVATIVE TRAPS
4.2.1  Optical pumping and spin purification

After the laser cooling stages, the atoms are transferred into conserva-
tive traps. In our case, we first load the atoms in a magnetic quadrupole
trap. Here the system needs to be prepared in a low-field seeker state
that can be trapped by the magnetic gradient. In our case we decide to
transfer the atoms to the state |F = 2, mp = 2). This transition is par-
ticularly easy to prepare by just optically pumping the atomic cloud
with circular polarized resonant light. This can be achieved by using
either the D1 or D2 transition.

In our experiment, we optically pump using the Di-line. In com-
parison to the D2 transition, the well resolved hyperfine structure al-
lows us to prepare colder and purer samples. In this way, the initial
conditions of the RF evaporation stage are improved, and unwanted
two-body collisions are suppressed. The optical pumping sequence
consists of two stages: with a bias field of 2.5 G, we first repump the
atoms from F = 1 — F' = 2 during 100 ps (hyperfine pumping).
Then a 200 us pulse with circularly polarized resonance light on the
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Figure 4.5: (top panel) By reducing the magnetic gradient atoms with lower magnetic moment
cannot be held against gravity. (left panel) No optical pumping. The 'K atom num-
ber is sketched as a function of the purification magnetic gradient. The step close to
12.8 G/cm is an indication of the critical gradient Bl needed to hold the atoms in
states different from |F = 2, mp = 2). (right panel) Optical pumping in the D1-line.
Within error bars, the atom number remains constant for any value of B'. This is a
clear indication of the spin purity of the cloud.

D1 transition F = 2 — F/ = 2 is applied (Zeeman pumping). This is
performed for both isotopes simultaneously.

At the end of the optical pumping stage, around 100% of both iso-
topes are optically pumped to the state |F = 2, mp = 2).

After optical pumping, the cloud is captured in the magnetic quadrupole
trap produced by the same pair of coils used for the 3D MOT. The
atoms are trapped with a gradient of B, = 50 G/cm (along the verti-
cal direction). Subsequently, the trap gradient is reduced to 20 G/cm
to only support the stretched state |F =2,mp = 2) of both isotopes
against gravity. A pictorial representation of the spin purification scheme
is presented in Fig. 4.5 (top panel). We find that this process is cru-
cial to avoid inelastic collisions and spin relaxation during the RF-
evaporation.
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Figure 4.6: Phase-space density (PSD) in the magnetic quadrupole trap. Different PSD are pre-
sented: 41K alone (blue dots), #'K - 3K optimal ratio (green dots - red squares).
Although for ¥K a factor of ten in atom number is lost during the RF-evaporation,
its PSD increases several orders of magnitude. The PSD of #!K is slightly modified in
the presence of K.

Fig. 4.5 shows for comparison the effects of the spin purification
with (left panel) and without (right panel) Zeeman pumping. In the
left panel (no Zeeman pumping) the atoms with lower magnetic mo-
ment escape from the trap at a critical magnetic gradient B.. Only
the atoms in spin |F = 2, mp = 2) remain trapped. In the right panel
(with Zeeman pumping on the D1 transition) we do not observe a pro-
nounced change in the atom number as a function of magnetic field.
The latter implies that our optical pumping procedure pumps nearly
100 % of the atoms to the right spin state. Similar results are found for
%K. It is interesting to remark that in our experiment we initially per-
formed optical pumping in the D2-line and only ~ 85 % of the atoms
were transferred to the right spin state for both cases. This is nearly
the value obtained in the absence of the Zeeman pumping ( ~ 8o %).
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4.2.2  RF Evaporation

After spin purification, the trap is recompressed back to B, = 105
G/cm, increasing the elastic collision rate. At this point, we start the
radio-frequency evaporative cooling of 'K. In particular we use the
hyperfine transition from |F = 2,mp = 2) (low field seeker) to |F =
1,mp = 1) (high field seeker). The large and different ground state
hyperfine splitting of the three isotopes allows evaporating only 4'K.

The RF signal is generated with the top antenna, located at ~ 25 mm
from the atoms. During 10 s an exponential frequency sweep from 365
MHz to 265 MHz lowers the temperature of 'K. Due to the back-
ground scattering length of the mixture #'K-**K (177 ao), *K is cooled
down by sympathetic cooling.

The evolution in phase-space density (PSD) is shown in Fig. 4.6 for
three different situations: 'K alone (blue circles), #'K-**K optimal ratio
(green-orange). In dual-operation, we observe an increase in the phase
space density of *K by four orders of magnitude. The optimal ratio in
such configuration is ~ 4:1 of 'K with respect to 3 K. The evaporation
efficiency is usually represented as 17 = %IZZS\;)D))), where N represents
the total atom number. In our situation this yields efficiencies of 77 =
2.34 for K alone and 5 = 4.355 for the sympathetic cooling of K
with the optimal ratio. The #!K efficiency is slightly modified in the
presence of ¥K (< 10%).

In single operation, the typical atom number at the end of this stage
is ~ 6 x 107 at 25 uK. In the sympathetic cooling scheme, 2.5 x 107
of ¥K and 4 x 107 of 'K are measured with a slight increase in tem-
perature of 30 uK. The latter corresponds to a phase space density of
~ 10~%. We stop the evaporation at this point due to Majorana losses
and a subsequent decrease in the evaporation efficiency.

5 The efficiency # is computed for each isotope, here N = Nuyg or N = Nay.
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Conclusion. The favorable increase in PSD of *K is a proof of con-
cept of sympathetic cooling by using *'K as a cooler. The mixture 4°K-
K ( ~ 97 a9 background scattering length) presents similar proper-
ties [79]. In our experimental approach, achieving condensation in the
magnetic quadrupole trap is not possible due to Majorana spin flips.
Moreover, ¥ K has an attractive background scattering that needs to
be tuned via a Feshbach resonance to achieve condensation. These two
problems are circumvented in our experimental setup by transferring
the atoms to fully optical traps.

4.2.3 Hybrid trap

After magnetic evaporation, the final route to the quantum degener-
ate regime of the clouds is achieved in two different stages. First, the
atoms are transferred from the quadrupole trap to a combined mag-
netic and optical trap. In this hybrid trap [112] an off-axis beam fo-
cused below the minimum of the quadrupole trap provides the transver-
sal confinement while the longitudinal confinement is mainly given by
a weak curvature of the magnetic field B. This technique offers large
loading-volume avoiding the use of high power lasers. After some
evaporation time in the hybrid trap, the magnetic gradient is removed
adiabatically, and the atoms are transferred to a purely crossed optical
trap. This opens up the possibility to control the interactions of the
different isotopes by using the different Feshbach resonances available
in the system. On this second step, the atoms are evaporated until con-
densation.

Hybrid trap. In our scheme, the atoms are transferred from the mag-
netic trap to a far-detuned optical trap. This dipole trap (aligned on
the "W-axis"®) consist of a 7 W single YAG beam (1064 nm) that is fo-
cused to a waist of wy = 65um below the magnetic field zero of the

6 see section 3.3.5 for axis convention
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quadrupole field (see Fig. 4.7 (a)). This gives an optical trap depth of
~ 130 K as shown in Fig.4.7 (b).
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Figure 4.7: Hybrid trap. (a) The transversal confinement is given by a single dipole trap. The
atomic scattering rate here is limited by the weak longitudinal confinement provided
by the coils (~ 12 Hz). (b) The initial trap depth is ~ 130uK. The transfer to the atomic
cloud is limited by the volume of the optical dipole trap (ODT). (c) (left panel) The
gravitational sag due to the decompression of the magnetic trap allows transferring
the atoms to the ODT. (right panel) The optimal value is approximately one waist
below the zero of the quadrupole field

By decompressing adiabatically the B-field gradient from 105 G/cm
to 8 G/cm, the gravitational sag allows capturing the atoms. The fi-
nal value of the magnetic gradient is just above the minimum value
required to levitate both 'K and *K in state |F = 2, mr = 2) against
gravity.

We display in Fig. 4.7 (c) the normalized maximum transfer from
the quadrupole field to the dipole trap as a function of the optimal
position of the optical dipole trap beam after magnetic decompression.
The value that maximizes the atomic cloud transfer to the ODT is off-
centered approximately one waist from the zero of the quadrupole
tield. Either above or below the zero of the quadrupole the transfer
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Figure 4.8: The first BEC in our apparatus was observed in June 2015. Here we present the
momentum distribution after time-of-flight. From left to right the system goes from
a thermal gas to a quantum degenerate gas. The atom number in the pure BEC phase
was 2 x 10%. This first BEC was achieved in the hybrid trap.

and the evaporation is similar. At the optimal position (~ 65 ym) the
curvature of the magnetic field provides a longitudinal trap frequency
close to 12 Hz. In optimal configuration around 15 % of the total atom
number is transferred to the hybrid trap with typical temperatures of
9 uK.

We then perform forced evaporation. The power of the "W-beam" is
reduced by rotating a half-wave plate in front of a polarization beam
splitter (PBS). The intensity of the beam is additionally controlled with
a PID connected to an AOM (see section 3.3.5). This technique reduces
the optical potential while recycling the total power of our laser source
for other dipole trap beams. The initial dipole trap depth is decreased
by a factor of five in 3 seconds. After evaporation in the hybrid trap,
the atoms are transferred to a crossed optical dipole trap where the
interactions between the atoms can be controlled. The evaporation is
optimized by increasing the initial PSD in the crossed optical dipole
trap.

Note. In single-species operation (only *'K) and by further decreasing
the optical power of the "W-beam", quantum degeneracy was achieved.
At T ~ 300 nK, a bimodal distribution in the time-of-flight (ToF) ab-
sorption images appeared. By further evaporation, a nearly pure Bose-
Einstein condensate with N = 20,000 atoms of 'K was observed. This
is shown in Fig. 4.8.



4.2 EVAPORATIVE COOLING IN CONSERVATIVE TRAPS

4.2.4 Crossed optical dipole trap

Crossed optical dipole trap. This trap is formed by crossing an addi-
tional far detuned vertical beam on the "Z-axis" derived from the same
laser source as the "W-beam" (see section 3.3.5). The "Z-beam" waist is
150 ym and it has 3 W of power. As a result, the trap frequencies at the
beginning of the evaporation are w ~ 27 (300,300,145) Hz. The trans-
fer from the hybrid trap is as follows: At the end of the hybrid evapo-
ration, the vertical beam is ramped up to the maximum power in 500
ms, then the remaining weak magnetic gradient is ramped down to
zero in 1 s. Because the trapping volume of the crossed optical dipole
trap is considerably smaller compared to the hybrid trap, not all the
atoms are trapped. Nevertheless, the presence of the additional verti-
cal beam increases the PSD to 1 x 10~2. Typical values at the beginning
of this stage are around 1.5x10° at 1 uK in single isotope operation.
In dual-operation, we measure similar temperatures with only half of
this atom number for each isotope.

Internal state preparation

Before the last evaporation sequence, the Bitter coils are switched from
anti-Helmholtz to Helmholtz configuration as presented in section
3.3.3. Subsequently, both isotopes are prepared in states where, either
in single or dual-isotope operation, condensation is possible. In par-
ticular, they are prepared to exploit the tunability of the intra-species
scattering length of ¥K.

At low magnetic field (~ 5 G) and using the W- coils, we sweep a
465 MHz and 270MHz radio frequency ramp to transfer K and 'K
respectively to the state |F = 1,mp = 1) + |F = 1,mp = 1). This is
the lowest Zeeman state of the mixture and therefore is stable against
two-body inelastic collisions. Subsequently, we ramp up the Feshbach
tield to ~ 51.6 G where a series of Landau-Zener sweeps in magnetic
tield are done in both isotopes depending on the experiment required.
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Figure 4.9: Feshbach resonances in ¥K and #!K for the different channels in the ground state
manifold F=1 (calculations from A. Simoni). Due to the presence of various Feshbach
resonances, the transfers from the ground state |[F = 1,mp = 1) + |[F = 1,mp = 1)
to the final state must be performed in the proper magnetic field range in order to
minimize losses.

During the preparation of the final state, it is important to take care
about the order of the Zeeman transfers to prepare at any moment the
lowest energy state of the mixture.

Feshbach resonances in ¥K and 'K

We choose this magnetic field window due to the presence of different
Feshbach resonances that allow condensing *K and also perform the
droplet experiments presented in chapter 6. The multiple Feshbach
resonances for ¥K and #'K are shown in Fig. 4.9.

d-wave shape resonance of 'K

During the preparation of the different internal states of the system,
we have observed by coincidence in |F = 1,mr = 1) of 'K two broad
loss features centered at ~ 17 G.
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Figure 4.10: Due to inelastic losses we observe a loss feature at around ~ 17 G in the internal
states |F = 1,mp = 1) of ¥'K. It is attributed to a d-wave shape resonance [113].

We measure the dependence of the loss feature as a function of the
temperature of the cloud using loss spectroscopy (see details of this
technique in chapter 5) . In Fig. 4.10 we report our observations. We
observe that at low temperatures (right panel) the feature becomes
narrower. In fact a second peak appears at ~ 17.5 G.

Different models including s- or p-wave resonances do not predict
such feature. Interestingly in a recent publication [113] a detailed anal-
ysis is performed in the same vicinity of magnetic field for 'K. They
concluded that this feature is due to a high partial wave resonance. In
particular, they associate it to a d-wave shape resonance.

4.3 QUANTUM DEGENERATE GASES OF POTASSIUM

Once we prepare the system in the correct spin configuration, three
possible options are possible:

¢ Bose-Einstein condensation of ¥K.
* Bose-Einstei densation of “'K
ose-Einstein condensation o .

¢ Dual-Bose-Einstein condensation of 3?K-*1K.
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In all of them, the production of a degenerate gas is possible with
minor changes in the final evaporation ramp. They are explained in
detail in the following section.

4.3.1 Bose-Einstein condensation of ¥K and YK

* Bose-Einstein condensation of *K. The isotopic mixture *K-

4K is prepared in state |F = 1,mr = —1) and state |F = 2, mp =
—2) respectively. Due to the opposite magnetic moments at the
Feshbach field, we can employ during the evaporation a spin
distillation scheme to remove, if required, one of the isotopes.

In the final evaporation ramp, the trap depth of the "W beam" is
reduced in 1.5 seconds while tuning the scattering length of K
to 180 a9 (B ~ 39 G). During the time of evaporation, a magnetic
gradient of 20 G/cm is applied with the jump coils to remove
4K

The bimodal distribution, signature of the thermal gas to BEC
phase transition is shown in Fig. 4.11 (right panel). It is observed
after absorption imaging in time of flight at zero field. Before
turning off the magnetic fields, the first 10 ms of ToF take place
at the condensation field. Once the cloud is dilute enough the
magnetic field is switched off, and 10 ms of ToF are performed.
Because of the high densities of the 3K condensate, this proce-
dure is required in order to cross the |F = 1,mp = —1)+|F =
1,mp = —1) resonance (see Fig. 4.9) without loss of atoms due
to three-body recombination or molecule formation.

Bose-Einstein condensation of 'K is achieved with the same
evaporation ramps as *K. The positive background scattering
length (~ 60 ag) at zero field allows condensing the system in
any spin configuration. The use of Feshbach resonances is not
needed, and therefore the experiment is performed using a small
bias-field to avoid spin-depolarization. If *K is initially not loaded,
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Figure 4.11: Bose-Einstein condensation of 'K (left panel) and K (right panel). We perform
the experiments with 41K in the state |[F = 1,mp = 1). Here the system is robust
against spin exchange collisions. For ¥K experiments, we prepare the system in
|F = 1,mp = —1) where we can control the interactions between the atom via a
Feshbach resonance. In both cases the solid red line and the dotted blue line cor-
respond to the condensate fraction of a non-interacting and interacting condensate
respectively.

the initial conditions in the crossed optical dipole trap are ~ 1
uK with ~ 1.5 X 10°. With these values, the PSD doubles com-
pared with the dual-operation. Similar to 3K condensates, the
bimodal distribution and phase transition is shown in Fig. 4.11
(left panel).

The critical temperature T, where condensation occurs in both cases
is sketched in Fig. 4.11. We compare our results to the theoretical T?
curve (solid red line) of a non-interacting BEC (see chapter 2). In both
plots, the measured temperature is normalized to the transition tem-
perature Tp of an ideal bosonic gas with harmonic confinement. As
expected for an interacting condensate we observe that the measured
T. is slightly lower. Due to the small gas parameter of the system, we
neglect shifts in critical temperaure given by beyond-mean-field effects

[114].
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Potassium cond t Evaporation cooling technique Atom number Ref.
LENS (Italy) 4K Sympathetic cooling 8 Rb - 41K 1 x10% [72]
HFN (China) 41K Magnetic trap followed by ODT 1.2 x10° [85]
1EI (Japan) 4K Magnetic trap followed by ODT 3 x10° [78]
MIT (US) 4K Optically plugged magnetic trap 3 x10° [75]
I0GS (France) 39K All optical 3 x10°* [90]
LENS (Italy) PK Magnetic trap followed by ODT | 8 x10° [115]
LENS (Italy) 39K Sympathetic cooling 8 Rb - 37K 3 x10% [116]
Cavendish Lab (UK) 39K Sympathetic cooling 87Rb - K 4><105 [88]
IFA (Denmark) MK Sympathetic cooling 87Rb - K 3 x109* [55]

Table 4.2: Bose-Einstein condensates of potassium reported in the literature. The symbol "*"
means the literature does not report this value explicitly.

The shift in T, for *K and 'K is due to the different intra-species
scattering length used during the last optical evaporation. We remind
the reader that we use this measurement to calibrate the atom number
in our experiment.

At the end of the evaporation, a pure condensate of 3K is observed
with nearly 3.5x10° atoms. For #'K we obtained condensates of ~
5%10° atoms. The condensation of **K by using *'K as a coolant vali-
dates our new experimental approach.

Comparison to other experiments

Potassium experiments have been developed around the world us-
ing different approaches. Different techniques have been used such
as: sympathetic cooling, all optical or combination of magnetic traps
followed by optical traps. Here we summarize only the different potas-
sium BECs published in peer-reviewed journals.

For comparison, both 41K BEC and %K BEC have atom numbers sim-
ilar to the ones presented in Table 4.2. In particular, the sympathetic
cooling of ¥K using 'K as a coolant obtains similar results as the
experiments using 87Rb, however here we have simplified the experi-
mental setup by only dealing with different isotopes. We do not need
different laser systems; instead, we can share the same laser sources.
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Figure 4.12: Dual-BEC of K- *1K. (a) Bose-Einstein condensation is observed after ToF. On each
experimental sequence, both absorption images are taken in independent axes and
CCD cameras simultaneously. Due to the large frequency difference between the
imaging transitions, we do not observe crosstalk in the measurements. The system
phase separates due to the difference in intra an inter-species scattering lengths.
(b) At the beginning of the evaporation, both isotopes have similar atom numbers;
however, due to the differences in scattering length of each isotope, they cross T, at
different moments in time. After crossing T, the center of mass of the two isotopes
is displaced differently due to phase separation (see inset).

Moreover, the vacuum system operates with one single atomic source.
This means that we only need one single 2D MOT/ Zeeman slower. Fi-
nally the length of our experimental sequence is considerably shorter
compared to Rb-K experiments.

In contrast to all optical experiments, we do not require high power
lasers.

4.3.2  Dual-Bose-Einstein condensation of ¥ K-*'K

In this section, we present the creation of, to our knowledge, the first
quantum degenerate mixture of the two bosonic isotopes of potassium.
The dual-BEC of ¥K-*K is obtained by preparing the mixture into
states |F = 1,mp = —1) + |F = 1, mp = —1) at the same magnetic field
used for condensation of ¥ K. We have observed that both isotopes
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need to be in the same spin state otherwise any residual magnetic field
gradient evaporates in an uncontrolled manner one of the isotopes
during the evaporation.

In the vicinity of this magnetic field, the scattering length of K can
be tuned to a30= 150 ag while keeping the inter-species *K-*'K interac-
tion
(a39—41= 170 ag) and intra-species 41K interaction (a41= 60 ag) constant.

Using similar evaporation ramps, after two seconds of evaporation
we produce a dual-BEC of ¥K- 'K with ~ 5 x 10* atoms on each
isotope. This is observed after ToF (see Fig. 4.12 (a)). As expected, due
to the intra- and inter- species scattering length of the mixture at this
magnetic field, the system is in the immiscible phase.

Thus the repulsive interactions between the two isotopes is large
enough that the ground state energy of the system is minimized by
phase separating the two components (see Fig.4.12 (a)).

The inset in Fig. 4.12 (b) shows the center of mass evolution after
ToF as a function of the evaporation time. Even though both isotopes
have similar mass, the small gravitational sag breaks the symmetry
between them making *K (orange dots) go upwards compared to 'K
(blue dots).

In Fig. 4.12 (b), the condensed fraction N, of K (orange dots) and
4K (blue dots) is shown as a function of the evaporation time. Both
systems condense in a different timescale due to the difference in the
initial atom number and intra-species scattering length.

Remarks. During the dual-evaporation, a large shot-to-shot fluctu-
ation in the atom number of the condensates is observed. A possible
explanation could be that both isotopes do not cross T, at the same
time and therefore more complicated thermalization takes place. In
fact, given the intra- and inter- species scattering length of the mix-
ture, the system is in a strongly immiscible phase. Therefore the char-
acteristic bimodal distribution of a BEC is displaced above (*K) and
below (*1K) with respect to the center of the thermal clouds just after
crossing T.. Due to the shift of the center of mass of the clouds, the
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thermalizacion process on each isotope is no longer spatially homoge-
neous and different parts of the cloud experience different inter- and
intra- species scattering events. The thermalization process during the
production of a dual-BEC in the immiscible phase has been studied
previously in ref. [117].

Note. For this particular spin state and magnetic field, we have tuned
the inter-species scattering length of K to values above 600 a9 in order
to be in the miscible phase. However, at such large scattering length
the two and three body losses are enhanced and therefore the lifetime
of the gas is reduced.

This chapter describes the first Bose-Einstein condensate in Spain.
This marked the beginning of very exciting experiments in our lab!!!
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FESHBACH SPECTROSCOPY OF POTASSIUM
BOSE-BOSE MIXTURES

5.1 INTRODUCTION

After the achievment of our first dual BEC of the two bosonic potas-
sium isotopes, we have characterized the scattering properties of this
mixture. In this chapter, we report on the observation of 20 previously
unobserved resonances in a *K-#'K system. We measure the position
of the resonances by loss spectroscopy and perform a consistent as-
signment to molecular levels using an asymptotic bound-state model
[118, 119]. Coupled-channel calculations are then employed to perform
a full analysis of the width and position of the resonances, using the
available model potentials for potassium scattering [120].

Additionally, Feshbach resonances are studied in spin mixtures of
a single potassium isotope both in 'K and ¥K. In the latter we char-
acterize the resonance parameters by radio-frequency association of
Feshbach molecules, giving a precise determination of the scattering
length.

5.2 FESHBACH LOSS SPECTROSCOPY

Feshbach loss spectroscopy is a powerful tool to locate the position
of Feshbach resonances experimentally. It consists on the observation
of the atom number decay (atomic losses) due to the enhancement of
inelastic losses close to the resonance. The low temperatures of the
atomic clouds (temperatures below a few micro-Kelvin) increase the
visibility of the loss feature and in particular s-wave Feshbach reso-
nances are enhanced while high order partial waves are suppressed.
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5.3 FESHBACH RESONANCES IN POTASSIUM MIXTURES
5.3.1 Experimental preparation

Our experiments are performed with ultra-cold clouds prepared in a
crossed optical dipole trap and subjected to a homogeneous magnetic
tield in the range of 10 — 650 G. The clouds are prepared by using the
experimental sequence presented in chapter 4, however during the last
stage of evaporation we do not cross the critical temperature 7.

All experiments reported in this chapter are performed in a crossed
beam optical dipole trap with trap frequency w/2m = (67,163,176) +
5 Hz. The initial atom number corresponds to ~ 10° atoms of both
isotopes and a temperature of ~ 420 nK. Under these conditions, this
results in T/ T, ~ 10.

5.3.2  Feshbach spectroscopy in ¥K-*'K mixtures

In a first series of experiments, we locate Feshbach resonances in the
¥K-*K mixture. This atomic combination has not been studied exper-
imentally before. Therefore, and in order to provide sufficient data for
a complete characterization of the inter-isotope interaction potentials,
we explore scattering channels corresponding to all My = m$ + m#!
values where the mixture is in the lowest state of energy. The latter
ensures that we will observe the decay in atom number only due to
three-body losses and not due to spin exchange relaxation.

The different spin state combinations are prepared using Landau-
Zener radio-frequency (RF) sweeps. Feshbach spectroscopy is then per-
formed by ramping the magnetic field to the desired value and mea-
suring simultaneously the atom number of K and #!K after a variable
hold time. This is adjusted empirically in order to optimize the exper-
imental signal. As explained before, a resonance manifests itself as an
enhancement of atomic losses and the corresponding increase of tem-
perature. Typical data is presented in Fig. 5.1 (a), where for a given
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Entrance channel Mp BSXP [G] B(")\BM [G] S [up) Bgc [G] ACC [G] uEC [ag]
39K |1, 1)+41K[2,2) 3 341.5(2) 340.608 1.56 341.619 0.138 135.2
3 353.8(3) 351.706 1.26 354.010 0.493 135.2
39K |1, 1)+41K]|1,1) 2 139.27(4) 139.122 -2.97 139.400 0.0374 173.0
2 146.24(7) 146.011 -2.45 146.411 0.111 173.0
2 338.12(7) 337.758 -1.95 338.281 0.0461 176.4
2 500.2(3) 495.592 -0.73 500.049 0.700 176.1
2 518.4(1) 516.038 -1.56 518.433 0.128 176.1
39K|1,1)+41K]1,0) 1 88.2(1) 68.898 0.02 88.475 0.0258 168.4
1 160.05(6) 159.805 -2.62 160.128 0.0474 172.5
1 165.80(5) 165.409 -2.23 165.933 0.110 172.5
1 344-4(1) 343.864 -193  344.509 0.128 176.2
1 522.6(2) 518.198 -0.78 522.478 0.621 176.0
1 553.1(1) 550.218 -1.30 552.964 0.198 176.0
IK|1,1)+4K]|1, -1) 0 189.88(5) 189.343 -2.97 189.999 0.0766 172.6
0 348.4(1) 347.567 -1.92 348.463 0.180 176.2
0 384.91(7) 384.631 -1.92 385.073 0.0635 175.4
0 553.5(2) 549759 -0.94 553.378 0.506 176.1
39K|1,0)+41K|1, —1) —1 228.88(8) 228.256 -0.88  229.039 0.989 171.8
39K |1, —1)+4K|[1, —1) -2 149.84(6) 145.561 0.07 149.764 -0.0252 163.7
K1, —1)+4K[2, —2) -3 649.6(6) 645.937 -1.00  649.167 0.673 176.2

Table 5.1: Summary of the Feshbach resonances between ¥K and *'K observed in this mixture.
The experimental positions are determined from Gaussian fits to the measured loss
features. Their uncertainty corresponds to the 1/e? half-width of the Gaussian fit.
B4BM and éu denote the theoretical predictions of the asymptotic bound-state model
for the resonance positions and difference in magnetic moments for the open and close
channels. B§<, AC and aC are the results of a coupled-channel calculation using the

model potentials of ref. [120].

magnetic field, the atom number decays while the temperature of the
systems increases.

We find a total of 20 loss features within the range 88 — 650 G, which
are summarized in Table 5.1. Since all observed features are narrow in
magnetic field (between 10 mG and 100 mG), we identify the position
of the resonance with the center of the loss curve. For all the measure-
ments the magnetic field is calibrated to a precision of 10 mG using
radio-frequency transitions between Zeeman sublevels in the vicinity
of each of the resonances.
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Figure 5.1: Feshbach resonances for ¥K|1,1)+*K]|1,1) collisions. (a) Top and bottom panel de-
note typical data of experimentally measured resonances. Here we present two inter-
isotope Feshbach resonance: one at ~ 500 G and the other one at ~ 518.5 G. The
loss in atom number (top panel) comes with an increase of temperature of the clouds
(bottom panel). The blue and red colors represent the measurements in 41K and ¥K
respectively. The solid lines represent a Gaussian fit. (b) Results of the ABM model
4K-¥K mixture. In red, open-channel threshold energy. In blue, uncoupled s—wave
molecular state energies. The crossing between the red and blue lines is where a
Feshbach resonance appears. The A and B letters make reference to the Feshbach
resonances presented in (a).

5.4 THEORETICAL ASSIGNMENT OF FESHBACH RESONANCES IN
POTASSIUM

The Feshbach resonances reported in Table 5.1 might provide the op-
portunity to improve the model potentials used to predict the potas-
sium scattering properties. We compare our results with the predic-
tions of two different theoretical models: The coupled channel (CC)
method [121] and the asymptotic-bound-state model (ABM) [118, 119].

On the one hand, the coupled channel calculation makes a quantita-
tive prediction of the properties of a resonance. Here the Schrodinger
equation associated to the full Hamiltonian that describes the collision
of an atomic pair is solved numerically. In order to obtain precise re-
sults, this requires a good knowledge of the two body potential (the
single and triplet part). This calculation was performed by M. Tomza.
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On the other hand, the asymptotic-bound-state model (ABM) is a
method that allows predicting the position of Feshbach resonances
in a simpler way'. The main idea of this model consists on finding
at which magnetic field the closed-channel bound-state energy will
intersect the energy of the free atom pair. This is sketched in Fig. 2.2
(b). Usually, the required ingredient is the zero-field energy offset Ey, of
the closed-channel bound-states with respect to the energy of the free
atom pair. This depends on the details of the potential of the atomic
pair.

5.4.1 The asymptotic-bound-state model for potassium mixtures

The model is explained in detail in ref. [118, 119, 122] and has been
adapted to ¥K-*K-4K resonances. This calculation was performed
in the group by L. Tanzi. We have employed this model to have a
first assignment of the observed Feshbach resonances and identify the
molecular channels responsible for them. In order to reproduce all
of the observed loss features, the two last vibrational states of both
potentials need to be taken into account. The corresponding energies
and Franck-Condon factors are E{/h = —32.1 MHz, EL/h = —8.33
MHz, E3/h = —1698.1 MHz, E3/h = —1282.5 MHz, 111 = 0.9180,
22 = 0.9674, 1, = 0.0895 and 7,1 = 0.0463. Here S(T) denotes a
singlet (triplet) bound state, v’ (with v(v’) = 1,2) the overlap between
the singlet and triplet wavefunctions in the vibrational state v and v’
respectively.

In Fig. 5.1 (b) we show an example of our calculation. The blue lines
represent the energy of the molecular states as a function of magnetic
field in the mixture 3*K|1,1)+*'K|1,1). The red line depicts the energy
of a free atom pair. The crossing between these lines gives rise to a
Feshbach resonance. We confirm our predictions experimentally, the

The ABM model is a good starting point to locate Feshbach resonances theoretically
in different systems, however it is not as precise as the CC calculation.
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two crossing points depicted as A and B at around 500 G correspond
to the loss features sketched in Fig. 5.1 (a).

5.4.2 The coupled-channel calculation

A more accurate description of the scattering properties of the 3*K-#'K
system is obtained by performing a coupled-channel (CC) calculation
using the model potentials of potassium from [120]. We neglect the
spin-dipole-spin-dipole interaction and second-order spin-orbit cou-
pling responsible for the dipolar relaxation, which are expected to
have a negligible effect on the s-wave resonances (except in the case
of overlapping higher partial wave resonances). The coupled-channel
equations are solved as in refs.[123, 124], assuming a temperature of
100 nK in all calculations. The resonance position By, the resonance
width A, and the local background scattering length a;,¢ are obtained
by fitting the numerical points with the analytical expression

A
a(B) = Apg + Ares = Abg (1 T B_ Bo) . (5.1)

For two overlapping Feshbach resonances we use instead the more
general expression [125]

B Ay Ay

where the i = 1,2 denote each of the resonances.

The results of the CC calculation are summarized in table 5.1. By
quantifying the agreement with the experimental data through 6 =
BSXP — Bgc. Given the accuracy of our data, our measurements could
be used to construct improved scattering potentials for potassium. Fur-
thermore the use of an isotopic mixture could be used to verify the
validity of the Born-Oppenheimer approximation made to derive the

model potentials.
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5.5 4K SPIN MIXTURE

In a second series of experiments we study spin mixtures of K. We
locate a new Feshbach resonance in the |1,0) + |1, —1) channel, in the
vicinity of 51.92 G, close to the single-component resonance |1, —1) +
|1,—1) (51.14 G) reported in ref. [126]. This situation provides good
control over both the inter- and intra-state scattering lengths, and
makes “!K an interesting system for the study of two-component Bose
gases with repulsive intra-state interactions, and tunable inter-state
ones. This situation can lead to the formation of quantum droplets, as
those studied in chapter 6 and 7.

Fig.5.2 displays the measured loss features, together with the rele-
vant inter and intra-state scattering lengths predicted by our CC model.
We find good agreement between experiment and CC calculations
when the mass-scaled model potentials of ref. [120] are employed.

5.6 39

K SPIN MIXTURE
We perform a last series of experiments in a spin mixture of *K.
This isotope has several broad single-component Feshbach resonances
[127]. Recently, a resonance in the |1,0) + |1, —1) channel, with a width
AB ~ 16 G, was reported [128]. Since it is in a magnetic field range
where the scattering length of |1, —1) is approximately constant and
positive, it is very well adapted to the study of Bose-polaron physics
using |1, —1) as bath and |1,0) as impurities. Such studies were per-
formed by the Aarhus group [128]. In order to determine experimen-
tally its parameters, we measure the binding energy of the Feshbach
molecules. Combined with our coupled-channel model, this allows us
to obtain accurate values of the resonance position, width and back-
ground scattering length.

Two different techniques are employed to measure the binding en-
ergy E,. In the close vicinity of the resonance, we directly associate
molecules starting from a |1,0) + |1, —1) mixture and subjecting it to a
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Figure 5.2: (Top and central panel.) Feshbach resonances in a |1, —1) + |1,0) mixture of K.
The top panel present the loss features for |1, —1) + |1, —1) while the central panel
presents the losses in state |1,0). The bottom panel shows the scattering lengths
predicted by our CC calculations for the single component resonance (solid line) and
the spin mixture (dashed line).

modulated magnetic field of frequency corresponding to Ey, [129, 130].
For larger binding energies, we exploit instead radio-frequency asso-
ciation [131]. Starting from the non-resonant state |1,0), we apply a
radio-frequency pulse near the |1,0) to |1, —1) transition and transfer
atoms to the bound state. In both cases, the formation of molecules
is signalled by a reduction of the trapped atom number because the
molecules decay due to vibrational quenching induced by collisions
with unpaired atoms, and leave the trap. The top inset of Fig. 5.3 dis-
plays a typical radio-frequency spectrum. The association of molecules
corresponds to the asymmetric feature, which reflects the fact that the
association frequency depends on the kinetic energy of the atom pair
forming the molecule. We model it by a convolution of a Maxwell-
Boltzmann distribution and a Gaussian function (solid line) [132]. The
latter results from the finite molecule lifetime, as well as technical
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Figure 5.3: Binding energy of the molecular state in 3K measured by radio-frequency spec-
troscopy. Red dashed line: Binding energy of a Feshbach molecule in the universal
regime. Black solid line: CC prediction. (Top inset) Typical data for RF spectroscopy.
The asymmetric peak represents the position of the molecular energy, the additional
peak corresponds to the atomic hyperfine transition. The distance between the two
features is the molecular binding energy E,,. (Bottom inset) Regime where the uni-
versal relation E,, = —1?/ma? is valid.

broadening. The binding energy here is given by the distance between
the molecular peak and the additional peak that corresponds to the
atomic hyperfine transition.

Fig. 5.3 summarizes the measured molecular binding energy as a
function of the magnetic field. Near the resonance, it follows the uni-
versal relation E, = —#?/ma?. At larger detunings, finite range correc-
tions become important and this simple expression loses its validity. In
order to provide a model-independent parametrization of the scatter-
ing length we thus restrict ourselves to the range above ~ 112 G, where
the non-universal corrections are negligible. The fit to the universal
formula (red dashed line) yields By = 113.79(2) G for the resonance
position, and apgAB/ag = 755(20) G for the product of the resonance
width and background scattering length. The coupled-channel calcula-
tion (black solid line), on the other hand, provides a good description
of our measurements in the complete magnetic field range.
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5.7 CONCLUSIONS

In conclusion, in this chapter we have performed a comprehensive ex-
perimental and theoretical study of the low energy scattering proper-
ties of our new Bose-Bose mixture. Using the isotopic mixture ¥K-41K
we have confirmed the validity of the model potentials of ref. [120]. In
addition we have explored spin mixtures of *K and #!K.

Moreover, we have compared our ABM model predictions with a
full CC calculation. Both approaches have been corroborated experi-
mentally. The discrepancy between theory and experiments is in agree-
ment within experimental error bars.



QUANTUM FLUIDS: FROM QUANTUM GASES TO
QUANTUM LIQUIDS

Quantum droplets are small clusters of atoms self-bound
by the balance of attractive and repulsive forces. Here we
report on the observation of a novel type of droplets, solely
stabilized by contact interactions in a mixture of two Bose-
Einstein condensates. We demonstrate that they are sev-
eral orders of magnitude more dilute than liquid helium
by directly measuring their size and density via in situ
imaging. Moreover, by comparison to a single-component
condensate with only contact interactions, we show that
quantum fluctuations stabilize them against collapse. We
observe that droplets require a minimum atom number
to be stable. Below, quantum pressure drives a liquid-to-
gas transition that we map out as a function of interaction
strength. These ultra-dilute isotropic liquids remain weakly
interacting and constitute an ideal platform to benchmark
quantum many-body theories.

This chapter is partially published in ref. [66].

C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas,
P. Cheiney, and L. Tarruell, Science 359, 301 (2018).
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6.1 INTRODUCTION

This chapter presents the first observation of quantum liquid droplets
in a mixture of Bose-Einstein condensates. This new exotic phase of
matter, predicted by D. Petrov [3] and observed first in dipolar systems
and now in a mixture of alkali atoms [66, 67], exhibit properties of a
liquid such as surface tension, surface excitations (ripplons) and the
gas-to-liquid phase transition.

For a better understanding, this chapter is divided in two parts. In
section 6.2 we first present the state-of-the-art in quantum liquids with
ultra-cold quantum gases. Subsequently in section 6.2.2 we explain the
theoretical background and the main mechanism responsible for giv-
ing rise to a quantum gas-to-liquid phase transition in a Bose-Bose
mixture. We present in sections 6.2.3 and 6.2.4 the main properties of
our quantum droplets such as excitation spectrum and density profile.
We introduce the phase diagram of the system for the free space case
as a function of the different experimental parameters. This phase di-
agram is investigated by performing a variational ansatz. Finally in
section 6.3 we conclude the first part of this chapter by comparing the
well known dipolar droplets with the composite droplets.

In the second part, we present in section 6.4 the experimental obser-
vation of this self-bound quantum liquid droplet state and its proper-
ties in our experimental apparatus. We characterize in sections 6.5 and
6.6 the quantum liquid-to-gas phase transition as a function of interac-
tion strength and atom number in the condensates. We compare our
results with the theory presented in the first part of this chapter.

Given the novelty of the system, different experimental groups have
explored the formation of this self-bound state. We conclude in section
6.6.6 this chapter by discussing our results and the ones recently pub-
lished from European Laboratory for Non-Linear Spectroscopy (LENS)
group [67]. In both groups, we follow different experimental approaches,
and therefore both publications complement each other in the under-
standing of this liquid phase.
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6.2 QUANTUM FLUIDS
6.2.1 State-of-the-art

Quantum fluids can be liquids — of fixed volume — or gases, depend-
ing on the attractive or repulsive character of the inter-particle inter-
actions and their interplay with quantum pressure. On the one hand,
gases are dilute systems where attractive interactions are not enough
to create a finite size system. Here the system has high compressibility
and volume defined by the container. On the other hand, liquids are
dense, and they exist when the attractive forces which hold the parti-
cles together equilibrate the repulsive ones that stabilize them against
collapse. In such circumstances, the system acquires properties such
as surface tension, fixed volume, and very low compressibility.

Two primary examples of quantum fluids are liquid helium (He)
and Bose-Einstein condensates of ultra-cold atoms. Both systems ex-
hibit similar properties such as superfluidity. However, an inherent
property of a liquid not previously seen in BECs was the formation of
droplets: a self-bound cluster of atoms with finite size.

In liquid He for example, such clusters are self-bound states that
emerge from the compensation of attractive forces, associated to van
der Waals interactions, and repulsive terms that stem from the over-
lap of the electronic wavefunction of the atom pair (Pauli exclusion
principle). This picture is valid for most of the liquids that can be de-
scribed using the van der Waals equation of state. In ultra-cold atoms,
these "common" liquids are not possible due to the low density of the
system. As explained in chapter 2, the interaction between atoms are
effectively described using the s-wave scattering length a. Even though
we can impose attractive interactions in the condensate via a Feshbach
resonance, at the length scale imposed by the density of the system in
the single component case no restoring force can prevent the system
from collapse.
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To circumvent the collapse of the condensate and create ultra-cold
atomic droplets several stabilization mechanisms have been proposed
so far, including either three-body correlations [133, 134], dynamical
stabilization using Rabi oscillations between two states [135], or quan-
tum fluctuations [3].

It has been shown recently that indeed quantum fluctuations can sta-
bilize a two-component mixture with inter-component attraction and
intra-component repulsion [66, 67, 136]. In contrast to He droplets, in
this system, the repulsion stems from quantum fluctuations, which
are a genuine quantum many-body effect, while the mean-field en-
ergy gives the attraction. Shortly before these experiments, similar
droplets have been realized in magnetic quantum gases with attractive
dipolar and repulsive contact interactions [137-142]. In this case, the
anisotropic character of the magnetic dipole-dipole force leads to the
formation of filament-like self-bound droplets with highly anisotropic

properties [141, 143, 144].
6.2.2  Stabilization mechanism of composite quantum droplets

The formation of quantum droplets in ultra-cold atoms is due to the

competition of repulsive beyond mean-field effects and attractive mean-
field interactions. The original prediction proposed to use a Bose-Bose

mixture in the regime where the collapse is predicted (6g < 0)[3]. Let

us recast the simplest form of the energy density function of a homo-
geneous Bose-Bose mixture with equal masses presented in Eq. 2.61.
This reads

£ = n3(r)oa+&ny *(r)a®’?, (6.1)

2
where 77 = %12 and k¥ = \/glg‘fnhzlf(l,ﬁj,l). Here @ = ay = ay).
Notice that in comparison to chapter 2, here we express this equation

using explicitly the scattering length 2 and the parameter da. This al-
lows to compare with the experimental results directly.
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Figure 6.1: In a two-component BEC with competing interactions, it is possible to go in regimes
where the MF energy is canceled and therefore beyond mean-field corrections are re-
vealed. Strikingly, for a given density 71¢q the competition of the mean-field (MF) and
beyond mean-field (BMF) energy give rise to the formation of a self-bound quantum
liquid droplet. Figure adapted from [145], notice the rescaling on the vertical axis
E/N.

For da < 0, the mixture is expected to collapse in the mean-field
formalism. However, the collapse is avoided by the repulsive character
of the BMF term. Due to the different density scaling of both terms,
they compensate when

2 |oal

Meq ® 572

(6.2)

A pictorial representation of the stabilization mechanism is shown
in Fig. 6.1.
The following points are important to remark:

¢ For a given interaction strength given by da and a, there is a
fixed equilibrium density. Once 7.4 is reached, increasing the
atom number will only increase the size of the droplet, but the
density remains constant. A flat top density profile is expected
for large atom numbers [3] (see discussion section 6.2.3).

¢ The system has very low compressibility. It costs a large amount
of energy to change the density of the liquid droplet.
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¢ For typical experiments, this quantum liquid droplet is several
orders of magnitude more dilute than He droplets.

¢ Unlike their dipolar counterparts, the equilibrium density 7¢q
depends only on s-wave contact interactions and the droplets
are therefore isotropic (see discussion section 6.3).

¢ Finally, the fact that the density depends only on a and éa implies
that the details of the potential are not required to describe the
system.

6.2.3 Properties of composite quantum droplets
Density profile

In this section we discuss several aspects calculated by D. Petrov in his
original proposal [3]. First the formation of a quantum droplet in the
absence of any external potential is proposed. This droplet is stabilized
in a system that is described only with s-wave contact interactions.
Therefore it is isotropic in space.

For large atom number, once the equilibrium density Meq has been
reached, the system exhibits a flat-top density profile as depicted in
red lines in the left panel of Fig. 6.2 (a). More atoms in the droplet
increase its size however the bulk density remains constant. This is
the regime of a uniform liquid. In the edges the density decreases
exponentially, this represents the surface thickness. At this length scale
the quantum pressure is not negligible with respect to the interaction
energy terms. This thickness is usually defined as the length where
the bulk density drops from go to 10% [146].

For low atom number, below the saturation density 7.4, the dilute
self-bound droplet has a profile dominated by surface effects. This is
appreciated in the dashed and solid lines in Fig. 6.2 (a). In this partic-
ular case, the droplet is mainly made of "surface." Finally for a critical
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Figure 6.2: Figures taken from [3].(a) For large atom number a flat-top density profile, an inher-
ent property of a liquid, is expected to occur. For low atom number, if the saturation
density is not reached, the density profile is mainly dominated by surface effects. (b)
The excitation spectrum of an isotropic droplet. The different modes are sketched.
The dashed blue line represents the boundary between discrete modes and the con-
tinuum. The gray area represents the region where no excitations exist. The axis are
presented in rescaled units, see [3] for details.

atom number N, the repulsive character of the quantum pressure dis-
sociates the system into a gas. This phase transition is explained more
in detail in the following sections.

Excitation spectrum

The quantum droplet is predicted to have a peculiar excitation spec-
trum. In particular with very few or absence of discrete modes. In the
large droplet limit, its spectrum contains surface modes or so-called
ripplons. These quantized surface waves are analogous to the ones
found in superfluid “He [147].

Fig. 6.2 (b) shows the different modes @; as a function of the total
atom number in the droplet. Here | represents the angular momen-
tum. The axis is rescaled with respect to the critical atom number N,
(see [3] for details). The solid blue line represents the particle emis-
sion threshold which separates the discrete modes of the droplet with
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respect to the continuum. We observe how by decreasing the atom
number the different modes cross the threshold and disappear. How-
ever, the monopole mode @ (solid red line) reappears again at low
atom number.

This monopole mode corresponds to the breathing of the droplet
radius, and therefore it does not conserve volume. This mode can be
associated to the compressibility of the system [148]. The lower the
monopole frequency is the larger the compressibility of the system. In-
tuitively we can expect that the compressibility of the droplet is larger
close to the dissociation point N. this is why the frequency of the
monopole is low in Fig. 6.2 (b). It costs less energy to deform or com-
press the droplet surface. At-large atom number, kinetic effects are not
dominant, and it cost more energy to compress the bulk.

Regarding the surface modes I = 2, they do not change the den-
sity of the droplet, and therefore the volume remains constant. The
monopole is not coupled to the surface modes, this is why in Fig. 6.2
even though the monopole mode disappears close to @s the surface
modes are still present.

For | = 1, the so-called dipole mode describes the evolution of the
center of mass of the droplet. In BEC experiments the frequency of
this mode is given by the harmonic confinement and its independent
of two-body interactions. In the absence of external trapping potential
@1 = 0. This is why it is not included in Fig. 6.2 (b).

Finally, in an unexpected way a regime with no excitations appears
(gray area) where any excitation in the droplet will couple directly to
the continuum. The droplet will expel atoms, or in other terms will
"self-evaporate" to a regime with not excitations. The consequence, as
stated from the publication of D. Petrov is the possibility to create
macroscopic zero-temperature objects:

"This means that starting from an ordinary finite temper-
ature trapped condensed mixture one arrives at a macro-
scopic zero-temperature object; excitations corresponding
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to the continuum spectrum evaporate, when the trap is
switched off [3]."

In the next section, we study more properties of these quantum
droplets using an extended Gross-Pitaevskii equation together with
a variational ansatz technique.

6.2.4 Extended Gross-Pitaevskii equation with quantum fluctuations

Following ref. [3] and using the effective low-energy theory presented
in chapter 2 for Bose-Bose mixtures, we can write an extended Gross-
Pitaevskii equation (eGPE) with an additional repulsive term. This ad-
ditional term includes the effect of quantum fluctuations as an effec-
tive potential for the low-energy degrees of freedom of the system. We
assume in our theory that both wavefunctions overlap by minimizing
the mean-field energy through the condition n/n, = \/a; /a; and
therefore our measurements are valid in the absence of spin excitations
[3]. In this chapter, we do not analyse the validity of this approxima-
tion, however in chapter 7 a detailed experimental analysis of the spin
composition of the system is performed.

In the homogeneous case, the corresponding energy density func-
tional reads

& = &in + EmF + ELny
v AT LT s
2m mo (L4 /ay Jap 2" (63)
%—256‘/”h2<i Poy/ a1t >5/%F<1 o a¢¢)|¢P
B \1+\/ay, /ar;

“aypay, "\ ay
where ng = ny +n; and &n, Emr and &y denote the kinetic, po-
tential, mean-field and quantum fluctuation (Lee-Huang-Yang) contri-
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butions to the energy density of the mixture, respectively. This energy
functional results in an extended Gross-Pitaevskii equation given by

2
ihg = K—zhsz) +anolpl® + 7n8/2|¢|3] 2 (6-4)

where « and 7y of the two last terms are defined as

87Th255l \/au/aﬁ
mo(1+/ay /a)?
5/2 2
128/7th’ < VAL > v (1 a, ﬂu)
dm A1+ /ay/ay

Carpay”\ ay
6.2.5 Variational Gaussian ansatz
To obtain the ground state phase diagram given by Eq. 6.3 we use a

variational technique. Similar to the calculation performed in section
2.4.3, we introduce a Gaussian ansatz of the form:

2P 72 )
4)(x,y,Z) = /o exp _E_flﬁ_@ , ( 5)
where ng is the peak density of the system normalized through the
condition
N
= 6.6
o 273/ 20,0y 0, 6:6)

We explore the regime where éa < 0. In particular we focus in the
free space case where Vey¢ = 0. In such situation the system is isotropic
therefore o, = oy = 0y = 0. With these assumptions we minimize
numerically Eq. 6.3.
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Figure 6.3: (a) The green line represents the total energy of the system for the total atom number
N = 500, 000 and éa = —2.884y as a function of the radial size o,. We observe that a

local minimum appears for a given width. The stabilization of a self-bound state in
the absence of a trap is what we call quantum droplet.

Ground state phase diagram

The ground state phase diagrams shown in this section are obtained
for the relevant parameters in the mixture of ¥K (see section 6.4 for
details).

Using the previous formalism, we find the equilibrium points where
the width of the system minimizes its energy. In Fig. 6.3, we show the
energy of the binary atomic cloud as a function of ¢ (green line). For
a total atom number N = N; + N| and interaction strength da < 0
the cloud does not collapse, as expected from mean-field theory, but
instead minimizes the energy forming a system with finite size. This
self-bound phase in the absence of trapping potential is what we iden-
tify as: quantum liquid droplet.

Without the presence of the BMF contribution (yellow line), we
could recover for low atom number the stability diagram shown in
Fig. 2.4. Due to the competition of the BMF (yellow line) and MF (blue
line) energy, a minimum appears which defines the size of the quan-
tum droplet.
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Figure 6.4: (a) Droplet energy as a function of atom number. We observe that for low atom
number the droplet becomes metastable (Egropler > 0) and then unstable for a critical
atom number N¢. (b) Droplet minima for three different values of N. For large atom
number (N > N,) the droplet is stable (green line). Close to the critical atom number
N ~ N, the droplet becomes metastable (red line). Finally for low atom number
(N < N;) the droplet dissociates into a gas.

In Fig. 6.4 (a) we depict the droplet energy as a function of the total
atom number. We find that the droplet becomes metastable Egroplet > 0
(shaded area) by decreasing the atom number. For a critical value N,
the minimum in energy disappears; In Fig. 6.4 (b) we show the minima
in energy for a stable droplet (green) and metastable droplet (red).
Below N; when the minimum in energy disappears this results in a
liquid-to-gas phase transition.

In fact, if we compute the density landscape of the droplet as a
function of the total atom number N (see Fig. 6.5 (a)), for a critical
atom number N, the droplet solution vanishes and instead the system
goes back into a gas phase.

This gas phase is interesting on its own. Effectively the system is
dominated by the attractive character of the mixture (remember we
are at éa < 0); however, the gas does not collapse. In chapter 2, we
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Figure 6.5: (a) Phase diagram of a 39K Bose-Bose mixture for da < 0. Depending of the criti-
cal atom number and interaction strength the system could form a quantum liquid
droplet or remain in the LHY gas phase. (b) For a critical atom number N, the system
dissociates into a gas. This is depicted in the shadowed area where the width of the
droplet diverges.

have explained that a homogeneous condensate with attractive inter-
actions collapses. We have presented as well that a trapped condensate
can circumvent the collapse for low atom number due to the quantum
pressure. However, in the present case, the condensate exists for at-
tractive interactions without the atom number constraint and in the
absence of a trap. This we call a LHY gas.

Following refs. [3, 141, 149, 150], we attribute this liquid-to-gas phase
transition to the effect of quantum pressure, which acts as a repulsive
force. As the atom number decreases, the relative weight between ki-
netic (£x) and interaction energies (Emr, ELHY) changes, for each en-
ergy term scales differently with N: £k o« N, Eyp N? and &y «
N5/2. Below a critical atom number, kinetic effects become sufficiently
strong to drive this transition. In Fig. 6.5 (b) we show the evolution
of the droplet width as a function of atom number for two different
interaction strengths da. For a critical atom number N, (depicted in
shadow area) the width of the droplet diverges.
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Figure 6.6: Dipolar droplets vs. Composite droplets. (Left panel) Figure taken from [141]. Dipo-
lar droplets have two sorts of interactions: Dipole-dipole interaction and contact in-
teraction. Depending on the quantization axis and geometry of the trap, this two
interactions can be tuned in order to create a dipolar quantum droplet. (right panel)
Composite droplets are formed using a Bose-Bose mixture, this is revealed with a
Stern-Gerlach experiment after ToF. Here the two interactions that can be controlled
are the inter- and intra-species one. (Black box) Correspondence between dipolar
and composite droplets. In both systems the two sorts of interactions can compete to
reduce the MF energy and allow to reveal BMF effects.

Regarding the density profile of this self-bound state, for an equilib-
rium density nq, a flat top profile is expected (see section 6.2.3). We
cannot account for this effect in our variational model due to the shape
of our initial Gaussian ansatz.

In the following sections we present how the phase diagram in Fig.
6.5 (a) is modified in the presence of a trapping potential. This will be
discussed in detail in section 6.6.4.

63 COMPOSITE DROPLETS VS DIPOLAR DROPLETS

Along this section we have explored the mechanism of stabilization
in composite quantum droplets together with the main properties of
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such liquid phase. However, it is essential to remark some similarities
and differences between these droplets and the dipolar droplets.

Both composite and dipolar droplets are stabilized through the same
mechanism: quantum fluctuations. In both cases, the competing inter-
actions in the system allow observing beyond mean-field effects. For
composite droplets (right panel of Fig. 6.6 shows after ToF its compos-
ite nature) the contribution of the mean-field energy is reduced due to
the competition between inter- (positive) and intra- (negative) interac-
tions.

Dipolar droplets, instead, are made of a single component dipolar
BEC. In contrast to non-dipolar BEC, here dipole-dipole interactions
are important in addition to the contact interaction. Depending on
the quantization axis and geometry of the trap, in this system, the
mean-field energy is reduced due to the competition of this two sort
of interactions. This is sketched in Fig. 6.6 (left panel).

The anisotropic character of dipole-dipole interactions gives the main
difference between these two quantum liquids. Dipolar droplets are
elongated systems along the magnetic field quantization axis (see left
panel Fig. 6.6). In the case of composite droplets only contact interac-
tions play a role and therefore they are isotropic.

If several dipolar droplets are formed, they tend to spatially separate
due to the strong dipole-dipole interaction between them, however for
the composite ones, the interaction effects between several droplets are
negligible.

Remark. We conclude this section emphasizing that in dipolar droplets

and composite droplets, despite of being two different systems, the sta-
bilization mechanism has the same origin. In the inset of Fig. 6.6, the
mapping between both systems due to the interactions is presented.
In both cases the mean-field energy is reduced by the competition of
two different terms. In our case, intra- and inter-species interactions
compete while in dipolar droplets these are contact and dipolar inter-
actions.
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6.3.1  Dipolar droplets state-of-the-art

Before presenting our results in composite droplets, here we summa-
rize the current research in dipolar droplets.

So far two different groups have been working with dipolar droplets:
T. Pfau’s group with Dysprosium (1*Dy) and F. Ferlaino’s group with
Erbium ('°Er) atoms. In several publications, they have characterized
different properties of their systems.

The first observation of dipolar droplets was performed with Dy
atoms [137]. They reported the "crystallization" of a Dysprosium dipo-
lar condensate in the regime where a mechanical instability should oc-
cur. This self-organized structure made of several long-lived droplets
is analogous to the Rosensweig instability in classical ferrofluids [151].
Shortly after they reported the observation of stable dipolar droplets
that confirmed quantitatively that indeed quantum fluctuations stabi-
lized the system against the expected mean-field collapse [138]. This
was tested by measuring the density of these small droplets (~ 800
atoms) and comparing the density scaling as a function of the inter-
action strength. The three-body repulsion mechanism proposed to ex-
plain the observation of quantum droplets could not explain the exper-
imental observations. In addition, in the same publication they have
observed matter wave interference of several droplets.

This dilute liquid phase has been characterized in terms of the to-
tal atom number and interaction strength. In fact, a liquid-to-gas phase
transition in the system was observed [141]. Below a critical atom num-
ber, it was shown that the droplet dissociates into a gas.

The peculiar excitation spectrum of ultra-cold quantum droplets
is one of the properties that is object of attention. However, it has
been shown theoretically that dipolar droplets do not exhibit the no-
excitation regime proposed originally for composite droplets [152].
Nevertheless, the collective modes of an Er droplet have been mea-
sured to unveil the presence of the LHY energy as a key ingredient
of the stabilization mechanism [139]. Dy experiments have explored
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as well the collective modes of the droplet. Here they have focused in
particular in the scissor mode [153]. By measuring the mode frequency
they have extracted the unknown background scattering length of Dy.
Finally, recent experiments with Dy atoms have explored the phase
diagram of a dipolar condensate as a function of the contact interaction
a and trap aspect ratio Atrap [140]. For Ayap above a critical value of A,
the BEC could evolve into a droplet adiabatically and create a single
self-bound state. However for Ayap < Ac @ modulation instability could
lead to the formation of crystals. These results provide the connection
between the formation of dipolar crystals in ref. [137] with respect to
the formation of a single dipolar droplet presented in refs.[138, 141].

6.4 QUANTUM DROPLETS: EXPERIMENTAL OBSERVATION
6.4.1  Scattering lengths: the magic magnetic field window

The mechanism of stabilization of such droplets is general for any
Bose-Bose mixture. The main condition is to find a configuration where
the intra-species interaction is repulsive while the inter-species interac-
tion is attractive. Despite the diversity of degenerate atomic mixtures
that have been produced, the promising candidates are ¥ K-*Na [154],
8Rb-*K [55], Rb-*'K [155, 156]. There the overlap of several Fesh-
bach resonances presents a regime where da < 0.

Interestingly a Bose-Bose mixture made of internal states of either
4K or ¥K presents such condition as well. This is convenient because
gravitational sag is therefore negligible and both components over-
lap perfectly. Undoubtedly, this feature simplifies the experiment and
therefore we have decided to explore both options.

In Fig. 6.7, the scattering length of the states |1) = |mr = —1) and
|}) = |mp = 0) of the F = 1 manifold for **K and #'K are shown as a
function of magnetic field B. In both cases the green line depicts the
parameter da defined previously. The gray vertical dashed line splits
the regime where da is positive or negative.
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Figure 6.7: Scattering lengths a (solid lines) and parameter éa = ay + ,/arya;; (dashed line)
vs. magnetic field B for a ¥K (left) and #!K (right) mixture both in states |1) =
|[F=1,mp=—1) and |}) = |F =1, mp = 0). The condition da = 0 (dashed vertical
line) separates the repulsive (da > 0, grey area) and attractive (da < 0, white area)
regimes. In both cases a statistical mixture in the internal states |1) = |mp = —1) and
|{) = |mp = 0) is prepared with a radio-frequency (RF) pulse.

For K the regime where droplets exist is broader in magnetic field
compared to 4! K. Concerning the magnetic field stability, it is experi-
mentally less demanding; therefore we have decided to perform the
experiments presented in this thesis using the bosonic isotope K.
However, it is important to stress that we have observed similar re-
sults to the ones presented in this chapter using 4'K.

Key ingredients

Experimentally, the main idea behind the observation of composite
quantum droplets is to prepare a Bose-Bose mixture in the right range
of magnetic field (éa < 0) and look for a "smoking gun" of the gas-
to-liquid phase transition. The droplet should exist in the absence of
external confinement and the time evolution of the system needs to
behave completely different from the BEC. In one case (éa > 0), the
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binary condensate should expand in the absence of external confine-
ment (as expected for a gas in the absence of container). In the other
case (da < 0) the ground state should form a self-bound object (liquid
droplet).

In our experiments, the droplet is highly sensitive to the preparation
procedure and therefore it is easy to excite the ground state of the sys-
tem and create multiple droplets. Therefore, to resolve the formation
of one single droplet, we observe the system in situ using a high nu-
merical aperture objective together with a dark phase contrast scheme
(see section 3.4). Using absorption imaging after time-of-flight would
not resolve in many cases the formation of several droplets during
the preparation, and therefore it could lead to misinterpretation of the
results’.

We prepare the system adiabatically as it will be explained in the
following section. Due to the low atom number in our initial *K con-
densate (see chapter 4), we neither achieve flat-top density droplets
nor access the regime where collective excitations are suppressed [3].
Therefore the different ramps in the sequence need to be at least com-
parable to the frequency of the low branch monopole mode of the
droplet. This is on the order of ~ 10 Hz>. Dipolar droplets present sim-
ilar sensitivity to the preparation sequence as reported in [157, 158].

One important thing to consider is that self-bound solutions for
attractive BEC exist in the presence of confinement, these are called
bright solitons (see [159] and references therein). Therefore we need to
ensure that we do not confuse the observation of a quantum droplet
with this self-bound matter wave. These two finite size systems are
a priori different states that can coexist in some specific conditions,
however, a full discussion on this topic is presented in chapter 7.

In order to discern bright solitons from quantum droplets, and ex-
plore the properties of the system, here we perform the experiment in

1 We started our experiments using absorption imaging after ToF without success. Only
after using in situ imaging we understood the sensitivity of the preparation.
2 According to our variational calculation not presented in this thesis
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one single plane of a blue-detuned optical lattice (see section 3.4). This
configuration is convenient for the following reasons:

¢ We can levitate the two-component mixture against gravity (spin
independent potential). Magnetic levitation is not possible due
to the opposite magnetic dipole moment of the different internal
degrees of freedom of the mixture. In this situation, we do not
have to deal with gravitational sag (this will be crucial in case of
using a Bose mixture of two different atoms).

¢ The high N.A aperture objective is orthogonal to the lattice plane.
We can observe the evolution of the system within the field of
view.

¢ The lattice potential provides confinement only on the vertical
direction and a small anti-curvature in the radial plane. With this
geometry, bright solitons (mean-field localized solutions) do not
exist [21, 160]. Therefore in our experimental setup, the presence
of any self-bound state corresponds to a quantum droplet state.

In addition, to corroborate the absence of bright solitons in our ex-
perimental geometry, we have explored the regime of attractive inter-
actions in a single component condensate. Here the system should
collapse due to the negligible contribution of the LHY energy. Using
either a one- or two- component condensate, we can effectively com-
pare in the same experimental setup the behavior of systems with and
without the presence of the LHY contribution.

Finally, with this potential the radial plane is free of confinement,
therefore we have observed that it is important to compensate the
residual magnetic gradients in this plane. This increases the lifetime
of the droplets. We use the cloverleaf coils presented in chapter 3 to
perform this task .

Remark. In this chapter, we observe the evolution (dynamics) of the
system on the lattice plane. Even though the word lattice is employed,
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we do not study any sort of Hubbard model. In fact, the lattice spacing
between planes is so large that the hopping term is close to zero and
can be neglected in our experimental timescales.

6.5 MAKING AND PROBING QUANTUM DROPLETS
6.5.1 Experimental sequence

The experimental sequence developed to observe our composite quan-
tum droplets is sketched in Fig. 6.8. We can summarize it as follows

* (a) The experiment starts with a pure BEC of ¥K in state |1) =
|mp = —1) of the F = 1 hyperfine manifold. The atoms are
loaded in one plane of a vertical blue-detuned lattice potential.
Here, a crossed vertical red-detuned optical dipole trap provides
radial confinement in the horizontal plane. In this configuration,
a balanced mixture is prepared in the states |1) = |[mr = —1) and
|1) = |mp = 0). To this aim we apply a radio-frequency pulse at
B ~ 57.3 G, which lies in the miscible regime (éa ~ 7 ag) [50].

¢ (b) We ramp down the magnetic field at a constant rate of 59 G/s
and enter the attractive regime da < 0. At the same time, we
ramp up the magnetic field of the cloverleaf coils to compensate
for magnetic gradients. During the magnetic sweep, we decom-
press the radial confinement to a value depicted as Zg,,) in Fig.
6.8. This confinement defines the width of the atomic cloud, and
therefore it is matched to the expected initial size of the droplet
in order to avoid excitations. We observe large oscillations of the
droplet that dissociate the system if the initial size is not matched

properly.

* (c) Once the system is at the right magnetic field value and opti-
mum radial confinement, we switch off the vertical red-detuned
optical dipole trap while keeping only the lattice confinement.
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Figure 6.8: After transferring the atoms to a single plane of the lattice potential, we adiabatically
go from the miscible regime to the droplet regime. The radial confinement (red line)
is reduced in order to match the theoretical width of the droplet for a given interac-
tion strength with the size of the atomic cloud. The in situ imaging is performed at
high field in the absence of trapping.

This allows the atoms to evolve freely in the horizontal plane for
a time T.

¢ (d) The integrated atomic density is imaged in situ at high mag-
netic field for different evolution times. We remove the levitation
potential just before the imaging pulse in order to avoid light
shifts of the transition that could affect our imaging calibration.

6.5.2 Loading the blue-detuned lattice potential

The droplet experiment is performed in a blue-detuned lattice poten-
tial. The lattice spacing is close to 10 ym as explained in section 3.3.5.
In order to maximize the transfer of the atoms to one single plane of
the lattice potential we use the following protocol (see Fig. 6.9): (a)
The condensate is first prepared in a nearly isotropic optical crossed
dipole trap. (b) We then reshape the atomic cloud by transferring the
atoms to a red-detuned elliptical pancake trap with an aspect ratio 5:1.
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Figure 6.9: Experimental protocol used to transfer the atoms from a crossed optical dipole trap to
one single plane of a blue-detuned lattice potential. The atoms on the crossed optical
dipole trap (a) are first preshaped in a pancake trap (b) in order to maximize the
loading into one plane of the lattice potential (c). The vertical width of the condensate
in the pancake trap is smaller than the lattice spacing of the blue-detuned potential.

This gives, as a result, a "flat" BEC of vertical width smaller than the
lattice spacing of the blue-detuned potential. At the end of this pro-
tocol, close to 100 % of the atoms are transferred to one single plane.
More details about the transfer to the blue-detuned lattice potential,
its characterization, and some other features can be found in [98].

6.5.3 3-D criteria

Using small angle lattices has been shown to be an alternative way to
create 2-dimensional systems [161]. However, we are interested in the
properties of the liquid state in the three-dimensional regime. In our
case, although the system is not isotropic due to the vertical confine-
ment, the vertical trap frequency is chosen such that it is large enough
to compensate gravity but small enough that the BEC can still be con-
sidered as three-dimensional.

For the experimental parameters, the vertical trapping frequency
is w,/2m = 635(5) Hz. We compare the vertical harmonic oscillator
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length a,, = 0.639(3) um with the characteristic length of the most
energetic Bogoliubov excitation branch of the Bose-Bose mixture (see
Eq. 2.51). The ay, is typically a factor of 3 larger than ;. We assume
that this corresponds to a three-dimensional regime.

6.5.4 Imaging and atom number calibration with open transitions

In order to perform reliable in situ imaging of the droplets, we em-

ploy the dispersive polarization phase-contrast technique explained

in chapter 3. We image orthogonally to the plane where the system

evolves; therefore we obtain the integrated density of the atomic cloud

along the vertical direction. The vertical confinement imposes the width

o, of the cloud, this is on the order of the harmonic oscillator length.
The major challenges for imaging our system are the following;:

¢ The densities of the condensate/droplet are high therefore we
cannot perform reliable in situ absorption imaging [162]. We use
a dispersive imaging technique where we exploit the birefrin-
gence of the atoms to circumvent this problem.

¢ We cannot extinguish fast enough the magnetic Feshbach field to
perform imaging at zero field with a closed optical transition. We
observe that during switch-off the results of the measurements
are modified. Thus the imaging is performed at high field using
non-cycling transitions.

¢ We perform phase contrast imaging at high field, however the
shift of polarization is low. Thus due to the composition of the
states in terms of the electronic spin projection (m5), we need to
perform the imaging "close to resonance" to increase the signal-
to-noise ratio. However close to the resonance transition we can-
not perform non-destructive imaging.

¢ We must use short imaging pulses to avoid depumping to states
that are not coupled to the imaging light.
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¢ In our current configuration it is not possible in one single shot
to obtain spin-resolved images.

To circumvent these problems we illuminate the atoms for only 3 ys
with a probe beam linearly polarized along a direction perpendicular
to the applied magnetic field. The imaging pulses are shorter than
the depumping time. We obtain the Faraday coefficients of the two
states independently using the method presented in chapter 3. For
each state, we measure the polarization phase shift as a function of n.
We choose an imaging beam frequency for which we have the same
sensitivity for both spin states. This condition is found with a detuning
Ay = =73(1) MHz and A|)y = —105(1) MHz from the respective
transition

1) = [mp = =3/2,mp = =1/2)
1) = |mp = —3/2,mp =1/2),

with | the total electronic angular momentum and I the nuclear
spin. For the magnetic field range of the experiment this yields nearly
identical Faraday coefficients for the two components ¢ = 1.1(1) x
107! rad-cm? and ¢y | = 1.4(1) x 107! rad-cm?.

Several challenges were found during the calibration of the atom
number, therefore we have just summarized here the essential experi-
mental details. The full analysis and comparison with theoretical cal-
culations will be reported in the thesis of J. Sanz.

Cross-check of the imaging calibration

We perform an independent cross-check of our calibration procedure
exploiting the transition

|F=2,mp==2)=|my=-1/2,m; = =3/2) = |mp = =3/2,my = =3/2),

which is cycling at any magnetic field.
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To this end, we transfer the atoms from [1) to |F = 2, mp = —2) with
an RF pulse before imaging them on the cycling transition at different
detunings. This allows us to compare our calibration with the expected
two-level system prediction, finding excellent agreement. Second, by
transferring a variable fraction of atoms to |F = 2, mp = —2), we con-
firm the linearity of our imaging scheme and rule out the existence of
collective atom-light interaction effects in the imaging.

6.6 QUANTUM DROPLETS VS. QUANTUM GASES

The "smoking gun" in our experiment is the observation of a self-
bound state in the presence of only vertical confinement. After the ex-
perimental sequence presented in section 6.5, we let the system evolve
for different times t. Subsequently, the mixture is imaged in situ.

Typical images of the mixture time evolution in the repulsive and
attractive regimes are displayed in Fig.6.10. For da = 1.2(1) a9 > 0 (top
row), the cloud expands progressively in the plane, as expected for a
repulsive Bose gas in the absence of radial confinement. In contrast, in
the attractive regime, da = —3.2(1) a9 < 0 (central row), the dynamics
of the system is remarkably different, and the atoms reorganize in an
isotropic self-bound liquid droplet. Its typical size remains constant
for evolution times up to 25 ms.

In the presence of a small trapping potential in the radial direction,
at the mean-field level, the system should also form a self-bound state
as explained in chapter 2. To verify that our results at this level are not
corresponding with bright solitons, in an analogous experiment with
a single-component attractive condensate |} ) of scattering length a =
—2.06(2) agp < 0, we have observed how the system collapses (bottom
row). This is expected to happen due to the absence of any restoring
force. In section 2.6.5, we have explained that the theory for single
and two-component condensates are equivalent at the mean-field level
provided one replaces da —~ 2a; therefore we can conclude that in our
experimental geometry, quantum pressure can never stabilize bright
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solitons due to the presence of weak anti-confinement in the horizontal
plane.

In dipolar experiments, it is complicated to study systems close to
the collapse point where the effect of the LHY energy does not con-
tribute. Comparing in the same experimental setup equivalent systems
where beyond mean-field corrections can be effectively "switched off"
is a unique property of composite mixtures.
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Figure 6.10: Evolution of the mixture. Typical in situ images taken at time t after removal of the
radial confinement but in the presence of the lattice potential. Top row: expansion of
a gaseous mixture (B = 56.935(9) G and da = 1.2(1) ap > 0). Central row: formation
of a self-bound mixture droplet (B = 56.574(9) G and da = —3.2(1) ap < 0). Bottom
row: collapse of a single-component ||) attractive condensate (B = 42.281(9) G
and a = —2.06(2)ayp < 0). In our geometry, quantum pressure cannot stabilize
bright solitons. Therefore, the existence of self-bound liquid droplets is a direct
manifestation of beyond mean-field effects.

6.6.1  Characterization of the liquid phase

To further characterize the mixture, we perform a quantitative analysis
of the Fig. 6.10 by fitting the integrated atomic density profiles with a
two-dimensional Gaussian Ne /% ¥"/% / (mtoxoy). Wefind oy /0y =~ 1
for all our measurements and therefore we define o, = V/0x0y. We ex-
tract the atom number N and radial size ¢, and infer the peak density
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Figure 6.11: Experimental density profiles. In situ column density profile of a quantum droplet
integrated along the imaging direction z, for N = 1.7(4) x 10* and B = 56.574(9)
G (6a = —3.2(1) ap). The right and bottom panels depict the corresponding doubly-
integrated density profiles 7 (solid lines), together with the two-dimensional Gaus-
sian fit used to analyze the data (dashed lines). Both are normalized to the peak
value 7ig.

nyg = N/(n*?¢?0;) by assuming a vertical size ¢ identical to the har-
monic oscillator length ay,,.

Data analysis

For the initial atom number in our experiment, as we will explain in
the next section, we do not reach the equilibrium density 7.q. There-
fore our droplet is mainly made of "surface" (see Fig. 6.2 (a)) and the
titting function accounts well for the measured density profiles.

We have verified that the zeroth and second moments of raw images
give compatible results for the atom number and radial size, respec-
tively.
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Figure 6.12: Liquid-to-gas transition. (a) Atom number N and radial size 0, of the mixture for

different evolution times t. The measurements are taken in the repulsive (éa =
1.2(1) ag > 0, red circles) and attractive (da = —3.2(1) a9, blue circles) regimes. Top
panel: while for éa > 0 the atom number in the gas remains constant, for éa < 0 it
decreases on a timescale compatible with three-body recombination. Central panel:
the radial size of the droplet remains constant at o, ~ 6um, demonstrating its

self-bound nature. In contrast, the size of the gas increases continuously with time.

Bottom panel: closer view of o; for da < 0. For t > 25 ms the droplet dissociates and
a liquid-to-gas takes place. The inset displays images corresponding to t = 25 — 35
ms. (b) Radial size o, (top panel) and peak density ny (bottom panel) vs. N. For
éa < 0 and large atom number both remain approximately constant, as expected
for a liquid. For a critical atom number we observe that o, diverges and ny drops
suddenly, signalling the liquid-to-gas transition. In the gas phase, the da < 0 system
behaves as the da > 0 one. Inset (top panel): sketch of the phase diagram. In the
liquid phase (blue region), observing the mixture at variable evolution times gives
access to different values of N (black arrow). Error bars represent the standard
deviation of 10 independent measurements. If not displayed, error bars are smaller
than the size of the symbol. Additionally, N has a calibration uncertainty of 25%

The evolution time of the atom number N and size ¢, is measured

for the interaction parameters of Fig. 6.10. This is represented in Fig.6.12

(top and central panel). For éa > 0 (red circles) the gas quickly expands

while its atom number does not vary. Instead, for da < 0 (blue circles)
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the system is in the liquid regime, and the radial size of the droplet
remains constant at ¢, ~ 6um. Initially its atom number is N =
24.5(7) x 10%, corresponding to a peak density of ng = 1.97(8) x 10
atoms/cm®. We attribute the subsequent decay of the droplet atom
number shown in the top panel of Fig. 6.12 (a) to three-body recombi-
nation. By directly measuring the density of our droplets we confirm
that they are more than eight orders of magnitude more dilute than
liquid helium and remain very weakly interacting. Indeed, the interac-
tion parameters of each component are small.

3 3 3 -5
(nyaiy, nyaj,, /nnpas)) ~ 1077,
6.6.2 Inelastic losses and three-body decay model

In Fig. 6.12 (a), we attribute the atom number decay to inelastic pro-
cesses. The main contribution could be given by either two- or three-
body losses. We neglect two-body inelastic processes (dipole-dipole
interactions), because these rates3 are too small to explain the fast de-
cay time observed. Since no theoretical predictions are available for
the three-body recombination rates Kyyy, Ky, Ky and K|, we de-
termine their values experimentally.

Measuring the three-body coefficient K3

In the experiment we trap thermal atomic clouds using an additional
trap along the X — axis with 100 ym waist and 1.5 W of power to-
gether with the optical dipole trap along W — axis. The mean trap fre-
quency of the resulting potential is @ /27 = 331(7) Hz and the depth
is U()/kB = 36(2) ]/lK.

Ki) <192 x 10710 em®/s, Kpy < 2.34 x 10715 em®/s, and K| < 7.28 x 10716 em3/s
computed by A. Simoni using a coupled-channel calculation.
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Figure 6.13: Three-body recombination rate K'fl | as a function of magnetic field B. Inset: time

evolution of the atom number N and temperature T at B = 55.811(9) G, fitted to eq.
(6.7) (dotted line) and eq. (6.8) (solid line).

We then record the time evolution of their atom number N and
temperature T. For single-component systems, we model our measure-
ments by the set of coupled equations

N KhN?

E = L& 6
N V27 T

T B KONYT+T,) 68)
T 27 3T4 ’ '

which includes the effect of anti-evaporation [163]. In other words, we
include the heating of the cloud due to the loss of the less energetic
atoms after the three-body collision. Additionally, the parameter Ty,
is introduced in order to account for recombination heating. Finally,
here B = (m@?/27kg)3/2, K denotes the corresponding three-body
recombination rate. We neglect evaporation effects, which is a good
assumption in our parameter regime T < 2.5uK< Up/kg.

We have performed these measurements in single-component sam-
ples of |1), |{) and in mixtures of different concentrations. The in-



148

QUANTUM FLUIDS: FROM QUANTUM GASES TO QUANTUM LIQUIDS

set in Fig. 6.13 represents typical data during the measurement. For
the magnetic field range of the experiment, we find that losses of |{)
dominate over all the other processes and that the effective three-body
loss rate of the mixture is proportional to the fraction of atoms in this
state. The Fig. 6.13 summarizes the magnetic field dependence of Kﬁ !
as a function of magnetic field B. It remains approximately constant
in the range 55.5 — 56.5 G studied in Fig. 7.8. We analyze the corre-
sponding decay of the self-bound atom number using the average

value Kﬁ L =3(1) x 10~% cm®/s. The other three rates are compati-

ble with the ¥K background value 7.74 x 10-% cm®/s [32, 164]. Note
that all our three-body loss rate measurements have a large systematic
uncertainty (not included in the error bar) of up to a factor of two,
dominated by the 25% systematic uncertainty of the atom number cal-
ibration (see section 3.4).

In conclusion for the densities explored in the experiment inelas-
tic processes are dominated by three-body recombination in the |||
channel.

Unexpected enhancement of the three-body collisions

During the measurement of the three-body loss coefficient K3 in the
state ||) = |F =1,mp = 0) we discovered that for a magnetic field
~ 54.8 G (~ 39a9p), an enhancement of the three-body loss rate appears.
This is depicted in Fig. 6.14.

The evidence of a three-body recombination maximum might corre-
spond to Efimov physics [165].

Further investigation is required to provide a deeper understanding
of the origin of this unexpected enhancement in the three-body colli-
sion rate. This feature appears in a regime where we do not expect an
Efimov resonance using the theory presented in [166]. This theory is
valid in the universal regime where the scattering length a is larger
than the effective range of the potential ro. However here we are in a
situation where a ~ r.
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Figure 6.14: Enhancement of the three-body recombination rate in the state |F = 1,mp = 0) at
~ 54.8 G. This corresponds to a scattering length of ~ 39 a,.

This enhancement could also be associated with higher partial waves
resonances. Preliminary calculations (A. Simoni and P. Julienne, pri-
vate communication), seem however to discard this possibility.

6.6.3 The quantum liquid-to-gas phase transition

For a given atom number, we expect that the quantum liquid droplet
should dissociate into a gas due to the effect of quantum pressure,
which acts as a repulsive force. Below a critical atom number, kinetic
effects become sufficiently strong to drive a liquid-to-gas transition.
An insight of the phase transition is observed in the bottom panel of
Fig. 6.12 (a). A closer view of the droplet size shows that at ¢ ~ 25 ms,
oy starts to increase and the system behaves like the da > 0 gas. To
support this scenario, Fig. 6.12 (b) depicts the radial size and atomic
density as a function of atom number. For da < 0 (blue circles) we
observe that both size (top panel) and density (bottom panel) remain
constant at large N. For decreasing atom number, we observe a point
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where the size diverges, and the density drops abruptly. This indi-
cates a liquid-to-gas transition, which takes place at the critical atom
number N.. Below this value, the attractive gas is still stabilized by
quantum fluctuations (LHY gas) but expands due to kinetic effects,
similarly to the repulsive mixture (éa > 0, red circles).
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Figure 6.15: Liquid-to-gas phase diagram.(a) Radial size of the mixture ¢, as a function of atom
number N for different magnetic fields B, from strong to weak attraction (top to
bottom). The critical atom number N, increases as attraction decreases. Solid lines
display the phenomenological fit 0, (N) = 0p + A/ (N — N¢) used to locate the liquid-
to-gas phase transition. (b) N; (top panel) and o; for fixed N = 1.5(1) x 10* (bottom
panel) as a function of B. The upper horizontal axis shows the corresponding values
of da. Solid lines are the predictions of an extended Gross-Pitaevskii model without
fitting parameters (see main text). Error bars for o, correspond to the standard
deviation of 10 independent measurements. If not displayed, error bars are smaller
than the size of the symbol. Error bars for B and N show the systematic uncertainty
of the corresponding calibrations.

The liquid-to-gas transition is also expected to depend on éa and
N, as sketched in the homogeneous phase diagram computed in Fig.
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6.5 (b). We expect to have similar phase diagram but the critical num-
ber N, is modified in the presence of the trapping potential (see sec-
tion 6.6.4). We explore the phase diagram by tuning the interaction
strengths with magnetic field B. Fig. 6.15 displays the measured size
as a function of the atom number for magnetic fields corresponding to
da between —5.5(1) ap and —2.4(1) ay.

The critical number N, shows a strong dependence on the magnetic
tield. The top panel of Fig. 6.15 (b) presents our experimental determi-
nation of the phase transition line. We observe that N, increases when
the attraction decreases, confirming that weakly bound droplets are
more susceptible to kinetic effects and require a larger atom number
to remain self-bound. Fig.6.15 (a) also yields the droplet size as a func-
tion of atom number and magnetic field. In the bottom panel of Fig.
6.15 (b) we display the measurements obtained at a fixed atom number
N = 1.5(1) x 10*%, always larger than N, for our interaction regime. As
expected, the droplet size decreases as the attraction increases.

6.6.4 Theoretical model in the presence of a trap

To compare our experimental measurements, we provide a simplified
theoretical model similar to the one presented in section 2.5. Here in
addition to the effective low-energy theory explained before we in-
clude the experimental confinement along the vertical direction Virap =
Imaw?z?.

One assumption in our model is the form of LHY energy term.
Since the corresponding harmonic oscillator length ay, typically ex-
ceeds (s by a factor of three, the Lee-Huang-Yang term has been cal-
culated assuming the Bogoliubov spectrum of a homogeneous three-
dimensional system. Thus, it does not take into account finite-size or
dimensional crossover effects due to the presence of the vertical har-

monic confinement. The energy density functional reads

E = Exin + Etrap + Emr + ELny (6.9)
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We compare the results of the variational technique with a numeri-
cal solution of the extended Gross-Pitaevskii equation presented in Eq.
2.55 ( this calculation was performed by P. Cheiney and B. Naylor). We
observe that even for the densest droplets realized in the experiment,
their density profile is well approximated by a Gaussian. Indeed, for
the atom numbers and magnetic fields considered in the experiment,
the bulk density of the liquid is not reached, and the droplet size is
comparable to the surface thickness [3]. As depicted in Fig. 6.16, we
find excellent agreement between the two approaches, with deviations
that remain well below the experimental error bars for the complete
parameter range explored in the measurements.
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Figure 6.16: Theoretical density profiles. Density profiles predicted by the extended Gross-
Pitaevskii model along the radial (left panel) and vertical (right panel) directions,
for N = 25000 and B = 56.57 G (da = —3.20 ag). Blue circles: full numerical solution.
Red lines: variational calculation with a Gaussian ansatz. The excellent agreement
between both, even for the densest droplets realized in the experiment, justifies the
Gaussian fitting function used to analyze the measured density profiles (see data
analysis section).

Therefore the experimental points in Fig. 6.15 are compared for sim-
plicity (computing power) with the variational predictions. For the top
panel of Fig. 6.15 (b) the critical atom number is obtained by applying
to the theoretical 0, — N curves the same phenomenological fit used
for the experimental data. We have verified that including the residual
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anti-confinement of the optical lattice does not modify the theoretical
predictions appreciably.

6.6.5 Discussion of the results

In Fig.6.15 (b) we compare the experimental results to the predicted
critical atom number and droplet size (solid lines). We find qualitative
agreement for the complete magnetic field range with no adjustable
parameters. In the weakly attractive regime, the agreement is even
quantitative, similarly to the dipolar Erbium experiments of ref. [139].
In contrast, when increasing the effective attraction, the droplets are
more dilute than expected. In particular, their size exceeds the theo-
retical predictions by up to a factor of three. This is almost one order
of magnitude larger than our measured imaging resolution, excluding
finite-resolution effects. Furthermore, the critical atom number is a
factor of two smaller than the theoretical value. Interestingly, a similar
discrepancy was reported for dipolar Dysprosium droplets, with a crit-
ical atom number one order of magnitude smaller than expected [141].
In this case, the deviation was attributed to insufficient knowledge of
the background scattering length. This explanation seems unlikely in
the case of potassium, where excellent interaction potentials are avail-
able [77, 120, 167]. Furthermore, for deeply bound droplets the role
of the magnetic dipole-dipole interactions (computed similarly to ref.
[144]) can be neglected. We conclude that none of these effects seem
to explain the discrepancies between our model and the experimental
measurements.

Other physical mechanisms might be responsible for the diluteness
of the observed droplets. Although our system is three-dimensional,
the confinement along the vertical direction might affect the Lee-Huang-
Yang energy, modifying its density and interaction dependence or in-
troducing finite-size effects. A description of quantum fluctuations in
the dimensional crossover between two and three dimensions is chal-
lenging and goes beyond the scope of this thesis. Nevertheless, theoret-
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ical studies have been performed just before submission of this thesis
in order to understand the scaling of the LHY term in the dimensional
crossover [168, 169]. Comparisons between these models and the ex-
periment will be performed in the near future.

Interestingly, the almost perfect cancellation of the mean-field en-
ergy could reveal other corrections besides the Lee-Huang-Yang term.
Higher-order many-body terms might play a role, as proposed in ref.
[134] for single-component systems. Taking them into account requires
a good knowledge of the three-body interaction parameters of the mix-
ture, which are non-universal and difficult to estimate in our interac-
tion regime. Alternatively, our results could be compared to ab initio
quantum Monte Carlo simulations, as recently performed in ref. [146].
Given the ultra-dilute character and simple microscopic description
of our system, a direct comparison to different theoretical approaches
could give new insights on yet unmeasured many-body effects.

6.6.6 ICFO and LENS quantum droplets

During the experimental realization of our quantum droplets, related
experiments were performed by LENS group [67]. This is an interest-
ing result because it allows corroborating in an independent way the
existence of quantum droplets in atomic mixtures.

In this complementary work, they have studied the formation of
spherical quantum droplets using the same atomic mixture and mag-
netic field range as the one presented in this chapter. In their case, they
have studied the formation of this self-bound state in the "absence" of
external confinement. To achieve this, the atoms were levitated opti-
cally using a fast modulated optical potential that creates an optical
gradient large enough to compensate for gravity. In this aspect, their
system is similar to the one presented in the original proposal.

Similar to our results they have observed the dynamics of the Bose-
Bose mixture and how it remains self-bound for different propagation
times. As expected, for a critical atom number the droplet dissociates
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into a gas, giving rise to the liquid-to-gas transition. In addition to
these results, they have measured the spin ratio that in principle min-
imizes the energy of the mixture Ni/N; = v/a/aj1. In our case we
discuss this aspect in chapter 7.

In terms of experimental sequence, we perform an adiabatic prepa-
ration of the system. We ramp down slowly the magnetic field from
da > 0 to éa < 0 while removing the z optical dipole trap. In their
case, the droplet is prepared by quenching the system. A BEC in state
1 is prepared in a magnetic field range where éa < 0, then a RF pulse
transfer 50% of the atoms to state ||).

In both preparations schemes, if the initial size of the system is
matched with the size of the droplet, collective modes should not be
observed. However, in both experiments, we do observe a small oscil-
lation around the equilibrium size of the droplet. This implies that the
system is highly sensitive to excitations.

Regarding the geometry, the main difference between the two sys-
tems is the vertical confinement that we imposed on the atoms to lev-
itate them. Although this should not affect the results 4, we observe
discrepancies in the critical atom number and size for larger values
of da. In their case this discrepancy is small and fits with the theory
within error bars. This is an interesting result because probably the
LHY energy in our case is slightly modified due to the presence of the
trap.

To summarize, both experiments present a smoking gun of the liquid-
to-gas phase transition in Bose-Bose mixtures. In two distinct scenarios,
different experimental sequences and analysis of data both converge to
similar results. They reveal the existence of BMF effects that stabilizes
the system into the quantum liquid droplet.

Remember that the healing length associated to each mode in our systems is larger
than the confinement, therefore we are in the 3D regime






BRIGHT SOLITON TO QUANTUM DROPLET
TRANSITION

Attractive Bose-Einstein condensates can host two types of
macroscopic self-bound states: bright solitons and quan-
tum droplets. Here, we investigate the connection between
them with a Bose-Bose mixture confined in an optical waveg-
uide. We show theoretically that, depending on atom num-
ber and interaction strength, solitons and droplets can be
smoothly connected or remain distinct states coexisting only
in a bi-stable region. We measure their spin composition,
extract their density for a broad range of parameters and
map out the boundary of the region separating solitons
from droplets.

This chapter is partially published in Ref. [136].

P. Cheiney, C. R. Cabrera, ]J. Sanz, B. Naylor,
L. Tanzi, and L. Tarruell, Phys. Rev. Lett. 120, 135301 (2018).
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7.1 INTRODUCTION

In this chapter we address a fundamental question that was raised
when performing the experiments presented in the previous chapter:
The difference between bright solitons and quantum droplets. Both
states are self-bound solutions that appear in an attractive BEC, there-
fore it is important to reveal and clarify the difference between the two
systems. Setting aside the semantic problem, we show in this chapter
how the two systems are stabilized by different mechanisms, however
in some regimes of parameters the two solutions can connect to each
other.

7.2 BRIGHT SOLITONS VS QUANTUM DROPLETS

Bose-Einstein condensates (BECs) with attractive mean-field interac-
tions constitute ideal model systems to explore in the same setting self-
bound states stabilized by repulsive forces of different classes. On the
one hand, bright solitons in optical waveguides have been observed
with “Li [26—28], 8Rb [29-31] and *K atoms [32]. These matter-wave
analogs of optical solitons are stabilized against collapse by the disper-
sion along the unconfined direction, which is a (single-particle) kinetic
effect. On the other hand, quantum droplets, as explained in chapter
6 are stabilized due to the contribution of quantum fluctuations.

Bright solitons and quantum droplets are a priori distinct states which
exist in very different regimes. Solitons require the gas to remain effec-
tively one-dimensional, which limits their maximal atom number [21,
25, 170]. In contrast, droplets are three-dimensional solutions that exist
even in free space and require a minimum atom number to be stable
[3, 66, 139, 141, 143, 149]. Up to now, quantum droplet experiments
focused exclusively on systems where solitons were absent, enabling
unambiguous identification of the droplet state. Therefore, they could
not provide any insights on their connections to solitons. Here we ad-
dress such question.
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7.3 ATTRACTIVE BOSE-BOSE MIXTURE IN AN OPTICAL WAVEG-
UIDE

As explained in chapter 2, a pure BEC of ultracold atoms can be de-
scribed in terms of the Gross-Pitaevskii equation. In quasi 1D systems,
Bose-Einstein condensates support a self-bound solution a bright soli-
ton. This stable state can be predicted for either single or two compo-
nent condensates using only a mean field description.

In chapter 6, we have discussed how in a Bose-Bose mixture the
presence of quantum fluctuations can modify strikingly the predic-
tions using only MF theories. In particular, in a 3D system, we have
explored exotic self-bound states called quantum droplets.

Here we explore the physics of Bose-Bose mixtures trapped in an
optical waveguide. In such geometry (see Fig. 7.1 (a)), we explore the
regime where the strong radial trapping potential allows us to freeze
the transversal excitations and explore, at first sight, the dynamics only
in the longitudinal direction.

Due to the non-negligible presence of quantum fluctuations, here
we can expect to observe an interplay between the bright solitons and
quantum droplets.

Using our extended GPE presented before (see Eq. 2.21), it is possi-
ble to describe the properties of an attractive Bose-Bose mixture in an
optical waveguide.

7.3.1  Two-component bright soliton and quantum droplets

The energy density functional of a Bose-Bose mixture in an optical
waveguide is similar to the one presented in Eq. 6.9:

Bright solitons

€ = €kin + Etrap + EMF + ELHY (7.1)
—_————

Quantum droplets
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where the brackets denote the terms involved in the stabilization of
bright solitons and quantum droplets. Here the trapping potential is
given by the one in Eq. 2.31, however we neglect for simplicity the
weak longitudinal confinement:

V(r) = %mwﬂfz. (7.2)

Taking into account quantum fluctuations there is an interplay of
the different energy terms and not only bright solitons exist but also
quantum liquid droplets. In the regime da < 0, these three different
terms of different origins compete (interaction strength or atom num-
ber) and they could give rise to the following solutions:

* "Bright-bright” solitons. Similar to the one-component bright soli-
tons explained before (Emr ~ Ekin), but including two compo-
nents.

* Quantum droplets. Self-bound solutions that do not depend on
the characteristic length scale imposed by the harmonic oscillator
length of the trap (Emr ~ ELny)-

e Soliton-to-droplet like state. Regime where the three energy scales
relevant to the system are comparable (Emr ~ ELny ~ Ekin)-

7.3.2  Full numerical simulation and variational ansatz

To clarify the nature of the self-bound states and their relation to the
well-known bright solitons and quantum droplet limits, we perform
a theoretical analysis of the system. We compute the ground state of
the system by solving Eq. 7.1 numerically. We employed two differ-
ent methods: full numerical simulation of the eGPE (the full numeri-
cal simulation has been performed by P. Cheiney, B. Naylor) or mini-
mization of the energy through a variational ansatz. The two methods
provide different information that allows to understand the different
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features and interplay of the different energy terms presented in Eq.
7.1.

The simulations are performed using the effective eGPE introduced
for a Bose-Bose mixture of 3K previously (see Eq. 6.3 ). Here in addi-
tion we confine the system with a cigar shape potential with a radial
trapping frequency w,; = 27 x 109 Hz". The mixture is assumed to be
in the same internal degrees of freedom as in the one used in chapter
6. The scattering length for the different terms (a4, a4, a;|) and da is
calculated by A. Simoni (private communication) from the *K model
interaction potentials of refs. [77, 167]. Notice that we have changed
the axis definition compared to previous chapters in order to simplify
the calculation (see Fig. 7.1).

Full numerical simulation

We find the stationary solutions numerically wusing the
three-dimensional MATLAB toolbox of ref. [171]. For each magnetic
field B we first solve the eGPE for N = N; + N| = 1000, using as
a initial guess for ¢ a three-dimensional Gaussian function of size
ano. We subsequently compute the solution for increasing values of
N, choosing as initial guess the function ¢ determined in the previous
step. The phase diagram of the system is presented in Fig. 7.1 (b). The
peak density ng is depicted as a function of the total atom number
N = N; + N| and magnetic field B (equivalently, interaction strength
da). For large attraction we find two distinct behaviors: a high-density
solution (19 ~ 10'¢ atoms/cm?) for large N, and a low-density one
(np ~ 103 atoms/cm?) for small N.

In between, the gray region corresponds to a bi-stable regime where
both solutions are possible. A discontinuity of the density signals its
boundaries. This behavior disappears above a critical magnetic field

This trapping frequency is chosen such that we can compare the simulations with
further explained experiments.
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Figure 7.1: Soliton-to-droplet density diagram. (a) Experimental geometry. The atoms experience
a radial trapping potential while they propagate free of confinement along z direction.
Notice that we have changed the axis definition compared to previous chapters in
order to simplify the calculation. (b) Ground state peak density as a function of atom
number N and magnetic field B computed numerically from the effective single-
component eGPE in the presence of a cigar-shaped potential. Solitons and droplets
are distinct solutions, which coexist in a bi-stable region (shaded area) and become
smoothly connected in the crossover above B. ~ 55.8 G.

(B; ~ 55.85 G, for the confinement given above). Beyond, the system
supports a single solution whose density increases progressively with
N. This situation is analogous to a quantum (T = 0) first-order liquid-
to-gas phase transition: the bi-stable regime contains metastable re-
gions surrounding a transition line, and a crossover region appears
above B.. The B. where the critical point appears depends on w, in
fact, the atom number required to enter in the bi-stable regime is larger
by reducing w . In the limit w; — 0 the soliton solution disappears
and the phase diagram of Fig. 6.5 is recovered.

For all the parameters explored in the experiment (see section 7.4),
we find that ¢ is well approximated by a Gaussian. Therefore we use
our variational technique introduced in chapter 2 and chapter 6 to gain
further insight into the properties of the system.
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Figure 7.2: Energy E of the Gaussian ansatz as a function of the radial ¢, and longitudinal o
sizes, for B = 55.6 G and N = 9000 (top, droplet), N = 4000 (center, bi-stable region)
and N = 2500 (bottom, soliton). Right panel: one-dimensional cuts along o, for o;
minimizing E. All panels, solid lines: complete model; top panel, dashed line: no
optical waveguide; bottom panel, dotted line: no quantum fluctuations.

Variational Ansatz

In this geometry the appropriate Gaussian ansatz is:

¢ = \/n*oe—rz/ZU,z—zz/Zazz.

It yields the following functional for the total energy of the mixture

E=[dré:
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In fact, by replacing the expression presented in Eq. 2.58, we recover
at the mean-field level the behaviour of a single-component conden-
sate of scattering length a [4]. For da < 0 Eq. (7.3) contains a composite
bright soliton solution stabilized by the balance between Ey;, > 0 and

Emr < 0. In the mean-field approximation (Epgy = 0), we can define a
collapse criterion similar to the one defined in Eq.2.29

N, — 06268 (VL0 0y
2\/ay/arr|oa|
where the pre-factor has been computed numerically using the same
MATLAB toolbox but without including the LHY energy. This prefac-
tor can be in principle computed using the variational ansatz, however,
is known that this calculation overestimates the soliton stability® [21].
Using the variational ansatz we study in particular the bistable re-
gion (gray region in Fig. 7.1). In Fig. 7.2 we display the energy land-
scapes obtained at a fixed magnetic field B = 55.6 G < B.. For small

The variational calculation predicts a prefactor equal to 0.7598 while the numerical
simulation 0.6268 as we already explain in chapter 2.
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values of N (bottom row), the energy has a single minimum corre-
sponding to a dilute and elongated cloud: a bright composite soliton.
Its radial size o, corresponds to the harmonic oscillator length a,, and
its longitudinal size ¢, and energy E are similar to those obtained in
a mean-field treatment without quantum fluctuations (bottom right
panel, red dotted line). For large values of N (top row) the minimum
corresponds to a dense and isotropic solution with ¢, < ape: a quan-
tum liquid droplet. Its properties are not affected by the trapping po-
tential, and it exists in its absence (top right panel, red dashed line). In
the bi-stable region (central row) both composite bright solitons and
liquid droplets exist simultaneously. Above the critical magnetic field,
B. a crossover takes place, with a single solution which evolves from
soliton-like to droplet-like upon increasing the atom number. A related
behavior, involving a bistable region and a crossover regime, has been
studied in harmonically trapped dipolar gases [139, 141, 149, 172]. In
this case, the low- and high-density solutions correspond to a BEC and
a quantum droplet.

7.3.3 Dimensional crossover: From quasi-1D to 3D

Using the variational technique we have observed how the solitons
and droplets are two different solutions. We find that depending on
atom number, interaction strength and confinement, solitons and droplets
can be smoothly connected or remain distinct states coexisting only in
the bi-stable region.

In chapter 2 we have shown that single component quasi-1D soli-
tons collapse for a critical atom number that depends on the harmonic
oscillator length and the s-wave scattering length. This collapse is sup-
pressed in the two-component case due to the presence of the LHY
correction. Here instead of the collapse, the droplet solution appears.

In fact, on this system we are exploring a dimensional crossover
that goes from quasi-1D to 3D. In Fig. 7.3 we show the values of o,
(red) and o, (blue) that minimize the functional presented in Eq. 7.3.
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Figure 7.3: For an atom number N = 3000, we explore the bistability region between solitons and
droplets. We observe that preparing the system in the soliton regime (top branch) for
a given magnetic field B; there is a discontinuity in the radial and longitudinal size of
the soliton (black dashed line). The system jumps to a phase where both directions
of the system are isotropic and below the size of the harmonic oscillator (orange
dashed line). By preparing the system on the bottom branch (quantum droplet), for
a magnetic field By, the system goes back to the soliton phase. An hysteresis loop is
observed due to the soliton-to-droplet transition.

For a fixed atom number (N = 3000) we observe in the top branch
how as a function of the magnetic field, ¢; reduces its size until it
becomes comparable to the size of the harmonic oscillator ay, (orange
dashed line). As mentioned before, in the soliton regime this system
is essentially quasi-1D and therefore o; ~ ap,. For a given magnetic
tield there is a discontinuity on both sizes (black dashed line), and
then the system jumps to the bottom branch where the size of the
self-bound solution is isotropic and below the size of the harmonic
oscillator length (0, = 0 < ap,).

This behavior implies the following: In a single component soliton,
the system collapses when both sizes go below the harmonic oscillator
length (the bottom branch does not exist). There the system goes from
the quasi-1D regime (imposed by the confinement of the harmonic
trap) to a 3D situation where the length scale of the external poten-
tial is larger than the characteristic length scale of the system. In these
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circumstances, the mean field energy becomes comparable to the ki-
netic energy term, and therefore a bright soliton behaves similarly to
an attractive 3D homogeneous BEC: the system collapses.

In contrast, composite bright solitons are protected against collapse
due to the presence of the LHY energy. When the system goes below
the size of the harmonic oscillator length, instead of collapsing, the
system becomes isotropic and self-bound. The system at this moment
is not affected by the length scale imposed by the trap. In analogy to
the droplets presented in the previous chapter, it is a fully 3D system
mainly stabilized by the LHY contribution.

The insets presented in Fig. 7.3 sketch the dimensional crossover.
The top inset shows a soliton propagating in an optical waveguide
with a radial size given by the trap. In the droplet phase (bottom inset),
the size of the system is below the length scale of the trap (ay,). The
latter implies that it is effectively a self-bound state in the absence of a
trapping potential: a quantum droplet.

One last remark. In Fig. 7.3 we observe that the transition from
soliton-to-droplet appears at different magnetic fields depending on
the initial state and whether the magnetic field is decreased or in-
creased. This sort of hysteresis loop is associated to phase transitions
where metastable states are present. Such soliton-to-droplet phase tran-
sition is discussed in detail in section 7.4.5. A similar hysteresis loop is
predicted in the dipolar BEC-to-quantum droplet transition [137, 149].

167



168 BRIGHT SOLITON TO QUANTUM DROPLET TRANSITION

7.4 EXPERIMENTS WITH BRIGHT SOLITONS AND QUANTUM DROPLETS
7.4.1 Experimental sequence: observation of self-bound states

Similar to the experiments with quantum droplets in Chapter 6, we
perform experiments with a mixture of 3K BECs in Zeeman states
|T) = |mp=—1) and |]) = |mp =0) of the F = 1 hyperfine man-
ifold. Here instead, the lattice potential presented before is replaced
by a 1064 nm red detuned dipole trap propagating through the "W-
direction" (see inset Fig. 7.5.). This potential acts as an optical waveg-
uide. The radial trapping frequency is w/2m = 109(1) Hz. For our
experimental parameters, this is the lowest value needed to levitate
the mixture against gravity.

The interactions are tuned via magnetic Feshbach resonances and
parameterized by the intra- and inter-component scattering lengths
ayy,ap; > 0 and ayp < 0 [167]. We use the same magnetic window
presented in section 6.4. In contrast to the quantum droplet experi-
ments presented in Chapter 6, here we extend the range in which the
phase diagram is explored. We scan the magnetic field range from
B = 55 —575 G, in the vicinity of a Feshbach resonance for state
[4). In accordance with the parameter da = a;| + ,/a11a, |, the overall
mean-field interaction goes from positive to negative values (da = 0
corresponds to B = 56.84 G). The intra- and inter-component scatter-
ing lengths on this range for the different Zeeman states are presented

in Fig. 7.4.
Experimental sequence

The experiment starts with a pure BEC in state |1) confined in a
crossed optical dipole trap of frequencies

Wy, /270 = [119(1),109(1),49(1)] Hz.
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Figure 7.4: Scattering lengths ay, a| |, a;, and parameter da = ay| + ,/arpa;| (expressed in units
of the Bohr radius ag) as a function of magnetic field B for a ¥K mixture in states
M =|F=1mp=—-1)and ||) =|F =1,mp =0).

A radio-frequency (RF) pulse is used to prepare a controlled mixture
of the two components. The pulse is performed at B ~ 57.2 G, where
da > 0 and the system is in the miscible regime [50]. Subsequently, the
magnetic field is ramped down at a constant rate of 11.8 G/s while
reducing the longitudinal confinement. The latter is removed in 5 ms
at the final magnetic field, leaving the system unconfined along the
z direction (the beam creates a longitudinal confinement of frequency
w: S 21t x 1 Hz along its propagation direction. This value is small
compared to the radial confinement and therefore is neglected).

Fig. 7.5 (b) shows typical in situ images of the time evolution of the
mixture after release in the optical waveguide. Fig. 7.5 (a) displays its
longitudinal size o, as a function of magnetic field, for three different
evolution times. In the repulsive regime (da > 0) 0, increases with da,
reflecting the increase of the released energy of the gas. In contrast, in
the attractive regime (da < 0) the absence of expansion indicates the
existence of self-bound states. Experimentally, we only observe this
behavior below da ~ —2ay, where ag denotes the Bohr radius. As in
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Figure 7.5: Self-bound states. (a) Gaussian 1/e width o, of the mixture as a function of the mag-
netic field B (corresponding to different values of da), for various evolution times
after release in the optical waveguide (inset). For B < 56.6 G the system becomes
self-bound and the value of ¢, saturates our imaging resolution. Solid lines are linear
fits to the data in the expanding regime and error bars denote the standard deviation
of 10 independent measurements. (b) Typical in situ images for increasing evolution
times, corresponding to a self-bound state (expanding gas) in the attractive (repul-
sive) regime with da < 0 (éa > 0) and initial atom number N ~ 7000 (N ~ 30000).

ref. [32], we attribute this effect to the initial confinement energy of the
system.

7.4.2  Spin composition

The observed self-bound states are intrinsically composite objects, in-
volving both [1) and |]) atoms. To probe this aspect, we prepare mix-
tures of different compositions by varying the RF pulse time 7. Large
population imbalances between the two states result in bi-modal den-
sity profiles in the in situ images, see left panel of Fig. 7.6 (a). They
consist of a self-bound state surrounded by a wider and expanding
cloud of atoms of the excess component. We find that the fraction of
self-bound atoms is maximized for an optimal pulse time, see the cen-
tral panel of Fig. 7.6. We do not perform spin-resolved in situ imaging
due to the electronic spin composition of the states at high magnetic
field (see section 6.5.4).
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Figure 7.6: Spin composition. In situ images of the mixture for various RF pulse times T and
B = 56.35(1) G. Away from an optimal value the density profile is bi-modal, with a
self-bound state surrounded by atoms of the excess component. Central panel: frac-
tion of self-bound atoms Nsg/N (red squares) and spin composition N;/N, (blue
circles) as a function of 7. Error bars denote the standard deviation of 4 measure-
ments. Right panel: corresponding time-of-flight (ToF) Stern-Gerlach analysis of the
spin composition.

To determine its spin composition we perform a complementary
set of measurements, modifying the detection sequence. We dissociate
the self-bound state by increasing the magnetic field to the repulsive
regime (B ~ 57.3 G) in 1 ms. When the system is dissociated, we do
not observe losses after ToF and therefore absorption imaging can be
used. This technique has been used in ref. [137] to extract the atom
number in the droplet phase.

We then measure the atom number per spin component N; and N|
via Stern-Gerlach separation during time-of-flight expansion, see right
panel of Fig. 7.6. We extract the optimal composition as a function of
B by combining the in situ and time-of-flight measurements, see Fig.
7.7. The interaction energy of the system is minimized by maximizing
the spatial overlap of the two components [3, 173]. The theoretical
prediction assuming that both occupy the same spatial mode yields
Ny/Ny = \/a| /a4 (solid line), which is in fair agreement with the
data.
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Figure 7.7: Spin composition. Optimal ratio Ny /N, as a function of magnetic field B. Error bars
correspond to the confidence interval of the fit. The solid line depicts the theoretical

prediction Nt /N, = \/W .
7.4.3 Exploring the phase diagram

We explore experimentally the phase diagram presented in Fig. 7.1 by
preparing self-bound states at different interaction strengths, starting
from the high N regime. We observe that their atom number decreases
in time due to inelastic processes, see Fig. 7.8). For our experimental
parameters these are completely dominated by three-body recombina-
tion in the |} channel (see section 6.6.2).

We model the decay of the self-bound atom number using the sim-
plified rate equation N/N = —K§f(n?), where (n?) is the total mean
square density and KS! an effective three-body loss coefficient pre-
sented in section 6.6.2. The model assumes that the ||) losses are ac-
companied by the expulsion of |1) atoms from the self-bound state in
order to maintain the value of N;+/N| constant. For more details see
Appendix C.1.

Similarly to recent experiments on dipolar ®°Er droplets [139], we
extract the density of the self-bound state by measuring the decay of
its atom number. The later allows us to map out the density as a func-
tion of N from a single decay curve. Moreover, this technique allows
circumventing the limitations imposed by the imaging resolution. The
harmonic oscillator length imposes the size of a bright soliton in the
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Figure 7.8: (a) Peak density extracted from the decay of the self-bound atom number. Self-bound
states are stabilized by beyond mean-field effects well above the mean-field collapse
threshold for composite bright solitons (dashed line). (b) Evolution of the self-bound
atom number Neop, determined from the zeroth moment of the cropped region (in-
sets), as a function of time t. Solid lines: empirical fit for extracting the decay rate.
Error bars: standard deviation of 4 measurements.

radial direction of the optical dipole trap (~ 1.5 um). This value is
below our imaging resolution. Note that on these measurements our
resolution is worse than the one reported in the previous chapter. This
is due to a misalignment of the objective.

We determine the atom number of the self-bound states from the
in situ images quantitatively by evaluating the zeroth moment of the
images N = Moy = Y, ,nc(x,z), which is independent of lens aber-
rations [100]. In order to count only the self-bound atoms we crop
the images around the maximal column density and extract N from
this observation region (see inset Fig. 7.8 (a)). We have verified that
increasing the crop size in the direction perpendicular to the waveg-
uide does not modify the results. The longitudinal crop size needs to
be adjusted more carefully to avoid counting excess atoms that are
expanding in the waveguide. We fix its value by comparing the atom
number extracted from in situ images with no excess component with
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time-of-flight measurements. We find that for all the data, possible er-
rors in N associated to incorrect choices of the longitudinal crop size
remain < 10%, below the systematic error of the N calibration (25%).

The Fig. 7.8 (b) displays the determined peak densities as a function
of atom number and magnetic field. Interestingly, a large fraction of
the measurements lie well above the mean-field bright soliton collapse
threshold (black dashed line). At the theoretical optimum N;/N|, as
presented in section 7.4, it corresponds to the condition

Ne = 0.6268 ap, (1+ 1/au/aﬁ)2 / (2l0al/ay /ar).

The absence of collapse in our measurements shows the existence of
a stabilizing beyond mean-field mechanism.

In the deeply bound regime, the measured peak densities agree only
qualitatively with the eGPE predictions. The discrepancies might stem
from two sources. First, we have considered that the spin composi-
tion of the system adjusts to Ny/N| = \/a|| /ay+ while we have seen
experimentally that population imbalances are possible. Second, our
decay model is very simplified and assumes that the || ) losses are im-
mediately accompanied by the disappearance of |1) atoms when, in
reality, these require a finite time to exit the observation region. This
assumption imposes a lower bound in the measurement because it
underestimates the total atom number.

7.4.4 Density and three-body decay
Three-body decay model

In the regime explored in the experiment, one- and two-body pro-
cesses are negligible compared to three-body recombination (private
communication from A. Simoni). Moreover the K3 coefficient mea-
sured in the previous chapter is for a thermal gas, however, in order to
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describe properly the decay observed in Fig. 7.8, we need to take into
account the following:

¢ The system is in the BEC phase; therefore there is no bunching.
A proper normalization of the K3 needs to be performed in order
to avoid double counting [174].

¢ For a Bose-Bose mixture in the regime where da is small, the
LHY energy is non-negligible and therefore beyond mean-field
corrections to the three-body correlation functions need to be
taken into account.

Considering the later points the three-body recombination rates are
described in the form

1 0
Kmm = *Kth gLHY

6

31 { nZ 98oo ] ’
2
o

1 o€ ny 2 J&ny
Koo = —KP |14 ,
oee 21000 [ T 0g00 * Ny 000

where 0,0’ denote the spin states, g, = 4rthta,y, /m, and K_E’h are the
thermal rates determined in section 6.6.2. The numerical pre-factors
result from the indistinguishability of bosonic atoms [175], and the
terms involving &y correspond to the beyond mean-field corrections
to the three-body correlation functions of the mixture. In the regime
explored in the experiment, they remain < 10%. Since this is well
below the uncertainties of the thermal rates, we neglect them as in
ref. [139]. This calculation was performed by D. Petrov and L. Santos
(private communication).

Describing the decay of the self-bound states requires taking into ac-
count simultaneously two effects: (i) real loss of ||) atoms, since K| | is
much larger than the three other rates; (ii) expulsion (and subsequent
expansion along the waveguide) of |1) atoms, in order to maintain the
optimal spin composition of the self-bound state. Modeling accurately
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the dynamics of these combined loss, expulsion and expansion pro-
cesses goes beyond the scope of this work. We instead simplify the
problem considerably by assuming that |]) losses are instantaneously
accompanied by the disappearance of |1) atoms required to maintain
N; /N, fixed in the self-bound state. The decay of the self-bound atom
number is then given by the rate equation

=K,

where (n?) = % [ drn® and the effective three-body loss coefficient

2
is Kgff = Ky / (1 + %) . For more details about the model are
V ar

included in the Appendix C.1.
To extract N/N from the decay curves, we fit them with the empiri-
cal function

N(t) = Neo + pNoe™"T0)/ T - (1 — p)Npe 7T/ T2,

where Ny, N, To, T1, T2 and p are free parameters.
We finally determine the peak density of the system from

_3/4 [ o\ _ a3/4 s 1 |N
=3y =3 <1+\/ﬂﬁ>\/1<m‘N"

Here, we have assumed a Gaussian density profile to relate the peak
and average densities to facilitate the comparison to the theoretical
model.

We have verified that the results obtained using a different experi-
mental fitting function are well below the uncertainties introduced by
the K W systematic error. In any case, we expect our determination of
the density to be dominated by the simplifications of the decay model.
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7.4.5 Crossing the bi-stability region

In between the soliton and droplet solution we find a bi-stability re-
gion (gray area in Fig. 7.1) where both solutions coexist and are stable.
In a last series of experiments, we study in detail this region. First, we
compute for comparison the boundaries of the bi-stability region us-
ing the full numerical simulation and the variational Gaussian ansatz.
In both methods we perform two separate N sweeps in order to find
the ground state: increasing N starting from the soliton regime yields
the soliton solution, whereas decreasing N starting from the droplet
regime yields the droplet solution. To determine the boundaries of
the bi-stable region we then compute (n) —nj) / (n} +n3). This is
shown in Fig. 7.10). Here the super-indexes depict the either the soli-
ton (S) or droplet (D) solution.

In the deeply bound regime solitons and droplets are distinct so-
lutions. They co-exist only in the bi-stable region. The top black line
(IIT) in Fig.7.10 represents the upper boundary of the bistable region.
This corresponds to the collapse of solitons into droplets when the
system no longer behaves as one-dimensional. The lower line one (I)
indicates the dissociation of droplets into solitons, here the kinetic en-
ergy becomes dominant. The distinction between solitons and droplets
disappears when the free-space droplet size becomes comparable to
the harmonic oscillator length ay,,, which determines the radial soliton
size. Both become then smoothly connected in a crossover. Thus, the
position of the critical point separating the transition and crossover
regimes is determined by the confinement of the optical waveguide.

Experimentally the bi-stability is explored by preparing self-bound
states in the soliton regime, and then the magnetic field is swept onto
the bi-stability region (see left inset of Fig. 7.9). We prepare the system
in the crossover region at B ~ 56.3 G and hold it in the crossed optical
dipole trap for a variable time (1 to 120 ms). Owing to three-body
recombination, this results in atom numbers N = 3000 to 7000. We
then remove the vertical trapping beam, decrease B to its final value
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Figure 7.9: Soliton-to-droplet transition. Left panel: Atom number in the self-bound region Nerop
as a function of magnetic field B when approaching the bi-stable region from the
soliton regime, see inset. The green and red points represent two different initial
atom numer. Top right panel: initial soliton image (S) and corresponding doubly-
integrated density profile. Bottom right panel: fragmentation observed when enter-
ing the droplet regime (D).

at a rate of 93.8 G/s3, and take an in situ image 3.5 ms after the end of
the ramp.

As explained before, in the boundaries of the bi-stable region the
density of the system becomes discontinuous. This point is where only
the soliton (droplet) solution exists. Experimentally, we observe that
the self-bound state cannot adjust to this abrupt change and fragments
(see Fig. 7.9 (right panel)). The shape of the final distribution after
fragmentation varies from shot-to-shot. To locate the fragmentation
point, we record the atom number in the initially self-bound region
and observe an abrupt drop at a critical magnetic field. In the left panel
of Fig. 7.9, we show how the position of fragmentation depends on the
initial atom number. The critical magnetic field for fragmentation B,

Due to the discontinuity in density at the transition point, the fragmentation of the
system is independent of the magnetic field ramp rate. This value is chosen such that
the magnetic ramp is faster than the three-body losses timescale. Therefore the atom
number during the ramp remains constant.
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Figure 7.10: Soliton-to-droplet transition. To determine the boundaries of the bi-stable region we

compute (nf —nf) / (nd +n3). The experimental points represent the measured

fragmentation point vs. N and B. Error bars: systematic error in N and magnetic
field width of the fragmentation curve. Colored area: bi-stable region computed
numerically from the eGPE. Lines: variational model, indicating the boundaries of
the bi-stable region (dashed) and the transition line where solitons and droplets
have identical energies E (solid). Insets: sketch of E vs. o, for the metastable soliton
and droplet regions and the transition line.

for different initial values of N; is obtained by fitting curves analogous
to those of Fig. 7.9 (left panel) with an error function

Ni — Nf B — B,
NCI‘Op - <2> erf <—\/§0-> + Nf/ (74)

where N;, N Iz and B, are free parameters. The horizontal error bars of
the fragmentation points correspond to ¢, and the vertical ones to the
25% systematic error on the atom number calibration. We summarize
the position of the fragmentation point in the N — B plane in Fig. 7.10.

We exploit the variational model to interpret our observations. Ac-
cording to it, although in the bi-stable region both solitons and droplets
exist, their energies coincide only along a transition line (solid line).
Above (below) it, solitons (droplets) become metastable and only dis-
appear at the upper (lower) boundary (dashed lines). The three situ-
ations are depicted in the right panel of Fig. 7.10. Experimentally, we
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prepare the mixture in a regime where only solitons exist. Therefore,
when entering the bi-stable region, we expect it to follow preferen-
tially the metastable soliton solution, with which it connects smoothly.
At the upper boundary, the metastable soliton disappears, and only
dense droplets are possible. Hence, the system is expected to fragment
and form an excited state with equal total energy. Our experimental
results support this hypothesis: within error bars, the fragmentation
point agrees with the upper boundary of the bi-stable region predicted
by the variational (solid line) and numerical eGPE (coloured area) cal-
culations without any fitting parameters.

Note. The fragments observed experimentally do not correspond to
the ground state of the system. Instead, immediately after the ramp
we expect to form an excited state with the same total energy (see
refs. [149, 150] for related theoretical studies in the dipolar case). Since
the atom number in each of the fragments is typically below the atom
number required to form a droplet we expect that, after some relax-
ation dynamics, the system will evolve into a soliton train. Thus, al-
though the fragmentation point corresponds to the onset of a modula-
tion instability in the system and allows to map out the boundary of
the bi-stable region, the final state is the result of complex non-linear
dynamics and is not directly related to the ground state droplet so-
lution. We have therefore not studied it in detail. In dipolar droplets,
similar behaviour is reported by crossing from a repulsive dipolar BEC
to the quantum droplet regime. The fragmentation patterns are located
in their case by using a principal component analysis (PCA) of the data
sets [172].

7.4.6  Conclusion

In conclusion, we have shown that an attractive mixture of BECs con-
fined in an optical waveguide always hosts self-bound states, which
correspond to composite bright solitons, quantum liquid droplets, or
interpolate smoothly between both limits depending on the values of
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the atom number, interaction strength, and confinement. We have char-
acterized their spin composition and density and mapped out the up-
per boundary of the bi-stable region separating solitons and droplets.
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The main achievement of this thesis is the demonstration of a self-
bound state in a Bose-Bose mixture with effective attractive interac-
tions. This self-bound state can be understood as quantum liquid
droplet and its existence is purely given by quantum fluctuations
which are BMF effects.

Due to the novelty of this quantum liquid, some possible research
directions can be summarized as follows:

¢ Characterization of the fundamental properties of quantum droplets.
¢ Quantum fluctuations and their tunability.

¢ Exotic systems composed of mixture droplets.

Characterization of the fundamental properties of quantum droplets

In this thesis, we have mainly focused on the self-bound properties
of our droplet together with the quantum gas-to-liquid transition. In
addition, we have compared this state with a bright soliton finding
interesting connections between both states. However a precise char-
acterization of the fundamental properties of these quantum droplets
is still missing. Experimental measurements in several aspects such
as the superfluid character or the possible role of finite temperature
effects for example remain to be performed.

One fundamental open question in this system is the peculiar ex-
citation spectrum predicted in the original theoretical proposal [3]. It
is suggested that such liquid should have a regime where no excita-
tions exist (see chapter 6). Therefore, it would be interesting to study
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its collective modes. We could study both in- and out-of-phase excita-
tions of the two components and map out with precise measurements
the frequencies of the modes as a function of interaction strength. If
this regime exists, the system should self-evaporate into a zero tem-
perature object. There is no doubt this is an interesting prediction that
needs to be verified experimentally.

In addition, by characterizing the frequency response of the system,
we could give an extra constraint to beyond mean field theories that
could explain the discrepancies between theory and experiment pre-
sented in chapter 6.

A different method to study the excitation spectrum of a Bose-Bose
mixture is to employ Bragg spectroscopy. The stabilization of quantum
droplets as explained in chapter 6 is a manifestation of the peculiar
Bogoliubov spectrum (spin and density modes) of a Bose-Bose mix-
ture. It would be then interesting to measure the energy spectrum at
da > 0 and see the progressive softening of the density branch as we
approach the mean-field instability. At da < 0, in the homogeneous
regime where a flat-top density profile is expected, we should observe
a single branch (absence of the spin mode) with a linear behaviour.
This is valid for low energy excitations. The slope of the linear regime
should give us information about the critical velocity up to which su-
perfluid phenomena exists.

These measurements could help us gain a deeper understanding of
the system at the microscopic level.

Quantum fluctuations and their tunability

The absence of collapse in an effective attractive Bose-Bose mixture is
an unexpected result that comes in principle from quantum fluctua-
tions. Therefore, this particular topic deserves further investigation.

A second possible route of research in the field of quantum liquid
droplets is the demonstration of novel tools to control the quantum
fluctuations in the system. Being able to modify their value would re-
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sult in a modification of the beyond-mean-field stabilizing energy term
and therefore a strong modification of the droplet properties. With
this in mind, two different approaches could play an important role:
droplets in low dimensions or coherent coupling of the two compo-
nents.

Liquids in lower dimensions. In this thesis, we have explored the
properties of this quantum liquid in the 3D-regime. However low di-
mensional systems are interesting due to the well-known enhancement
of quantum fluctuations. For instance, it has been already predicted
that a Bose-Bose mixture in two-dimensions holds as well a droplet
solution without the restriction of the critical atom number N, [176].
As soon as attractive inter- and repulsive intra-species interactions are
available, the self-bound state should form. This will lead to more ro-
bust droplet formation and to longer lifetimes as compared to the 3D
regime, because atom loss due to e.g. three-body decay is not as impor-
tant. In particular, it should allow the realization of droplets reaching
the bulk liquid limit, where surface effects can be neglected. This re-
sults will mark the transition from a quantum droplet with finite size
and mainly formed of surface to a quantum drop with a significant
bulk region. This last configuration should allow us to investigate the
exotic liquid properties of our system, including its compressibility,
equation of state, excitation spectrum, superfluid character, vortices,
etc.

We could also explore the physics in one-dimensional systems. Con-
trary to the 3D and 2D case, in this regime, the liquid regime appears
when the beyond mean-field term is attractive while the mean-field
interactions are repulsive. In this case analytical results are available
in the weakly interacting regime. Interestingly, in one dimension the
parameter characterizing the interaction strength of the system is pro-
portional to the inverse of the particle density. By making the system
more dilute, this should allow us to investigate the strongly interact-
ing regime, where higher-order beyond mean-field terms become rel-
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evant. Thus, one-dimensional systems offer the possibility to explore
systematically the evolution of the system between the weakly and the
strongly interacting limits.

Finally, playing with dimensionality also allows us to study inter-
esting scenarios such as dimensional crossovers (intermediate regimes
between two dimensions) [168, 169], and its interplay by crossing the
dimensionality. We could explore the situation in a regime of param-
eters where droplets exist in 2D but not in 3D. By starting with a 3D
system we could go to a 2D system by compressing the gas. In the
process, a liquid will be formed. In this sense, this could be seen as a
quantum "dimensional liquefaction."

Coherently coupled droplets. In our system we need two different
internal states to form an incoherent mixture that gives rise to our
quantum droplet . However, it has been predicted that droplets should
also exist when the two states are coherently coupled [177]. This could
be achieved either by using RF or Raman coupling. In this situation
the scattering properties of the “dressed” atoms can be controlled de-
pending of the parameters of the coupling field. This coupling would
modify both the mean-field and beyond-mean field energy terms.

In particular it is predicted that large effective three-body interac-
tions (elastic and repulsive) could be induced. These have never been
demonstrated so far in the quantum gases context, and their demon-
stration could open the possibility to explore novel exotic many-body
phases [178-180].
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Exotic systems composed of mixture droplets

Up to this point, we have discussed the possible research directions
using our current experimental setup. However, we could explore as
well the realization of novel exotic quantum systems using our quan-
tum droplets.

Impurities and quantum droplets. The first idea could be to trap im-
purities inside the droplet. Here we could study the polaron problem
with a quantum bath that is self-bound and with the presence of sur-
face tension [181]. This is something that is not accesible in experi-
ments with impurities in a Bose-Einstein condensate. In this context,
we could also perform similar experiments with a Rydberg atom in-
side the droplet and study analogous situations as molecules trapped
inside helium nano-droplets and the formation of the so-called an-
gulon quasiparticles [182]. This could extend our knowledge of the
properties of molecules immersed in a quantum bath.

Also, a droplet with impurities could serve as a bath to sympathet-
ically cool the atoms to zero temperatures. This is true provided first
that the droplet can self-evaporate as mentioned at the beginning of
this chapter.

Bose-Fermi droplets. In quasi-1D geometries an attractive Bose-Fermi
mixture has been predicted to form a bright soliton [183]. Moreover,
in a recent proposal it has been shown that it could also hold a self-
bound liquid droplet stabilized by quantum fluctuations [184, 185].
These predictions have not been observed experimentally and there-
fore we could follow this research line.

In our potassium experiment we could work arbitrarily with the
three different isotopes of potassium; therefore it would be possible,
with minor changes in the experimental setup, to go from Bose-Bose
to Bose-Fermi mixtures. We could study in our system the validity of
these theoretical proposals and the properties of the system.

187



188

OUTLOOK

Droplets as high dimensional solitons

In chapter 7 we have presented the connection between bright soli-
tons and droplets, regarding this topic we could study in the future
the metastability and hysteresis when crossing the soliton-to-droplet
transition from different directions.

Another exciting possibility is to perform collisions between two
self-bound states, which are expected to display very different behav-
ior in the soliton and droplet limits [140, 186, 187]. In our system there
is no critical number where the soliton collapses, therefore during the
collision of two solitons they could either merge or pass one on top of
the other without this constrain.

Finally, spin imbalanced systems offer the possibility to explore fi-
nite temperature effects [188] in a well-controlled setting, exploiting
the excess component as a thermal bath.

And more...

The novelty of this system opens new frontiers on the understanding
of quantum liquids at low temperatures and low densities. This is just
the beginning of exciting experiments. In the upcoming years we hope
we could adventure in more complicated and sophisticated problems
in which we could even explore the universe in a composite quantum
droplet [147].
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APPENDIX CHAPTER 2

A.1 COATING FOR 2DMOT AND SCIENCE CHAMBER WINDOWS

The different coatings are custom-made from LaserOptik. The coating
is placed on the viewports using an electron-beam physical vapor de-
position technique.

2D MOT rectangular windows

10
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630 660 690 720 750 780 810 840 870 900 930

Wavelength [nm]

B-05853-01: AR767nm/0°

Figure A.1: Coating of the 2DMOT rectangular windows. AR coated from both sides at 767
nm/o°.



192 APPENDIX CHAPTER 2

Science chamber viewports
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Figure A.2: Anti-reflection (AR) coating for several wavelengths used for the lateral viewports
of the science chamber.
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Figure A.3: Anti-reflection (AR) coating for several wavelengths used for the re-entrant view-
ports of the science chamber.



APPENDIX CHAPTER 3

The place where we have performed all the experiments presented in
this thesis is located in the LABoo2 at ICFO — The Institute of Photonic
Sciences in Barcelona, Spain. This is called at ICFO the the quantum
gas experiment (QGE) lab.

I started my Ph.D. officially in January 2014; we received our lab in
February 2014. In Fig. B.1 we show our empty lab. In Fig. B.2 we show
the current status.

B.I THE QGE LAB
B.1.1 The optical tables

In the QGE potassium experiment we have two independent optical ta-
bles (see Fig. B.1). One is used for the laser system required to perform
laser cooling and imaging of the three different potassium isotopes.
The second one is where the experiment takes place. Here we have
mounted the UHV system and also the laser system for the different
optical dipole traps presented in section 3.3.5.

The optical tables are caged with anodized aluminium Alucobond
panels that provide laser safety while improving the temperature sta-
bility of its environment (see Fig. B.2). In addition, each optical table is
climatized independently from the room with stability of +0.1°C. The
excellent temperature stabilization of the optical tables makes that the
laser system shown in Fig. B.2 only needs to be realigned sporadically.
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February 2014

Laser table

Experimentitable
LAB QGE-002

Figure B.1: QGE lab in 2014

B.1.2 RF Isolation

During the magnetic evaporation of 'K and also some of the RF pulses
needed to control the internal state of our BEC, we have observed that
the RF couples to several of our electronic devices and produce un-
wanted noise in neighbouring laboratories. We have therefore isolated
the walls of our lab with an electromagnetic field shielding fabric*. We
observe an RF isolation of more than 20 dBm.

In addition, the power supplies used for the Feshbach coils and the
PID control are located in a different room to reduce the RF noise and
improve the current stabilization.

B.2 THE LATERAL BREADBOARDS

Around the vacuum system, we have placed four optical breadboards.
One for the 2D MOT optics and three for the optics required around
the science chamber (see Fig.B.3).

The lateral breadboards are custom-made aluminium plates® that
lay on top of four stainless steel balls (see bottom panel Fig. B.3). The

1 CobalTex - Less EMF
2 Standa
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Lasel"‘%,systeh‘n

5

Vacuum system

Figure B.2: QGE lab in 2018.

stainless steel balls3 are in contact with four brass inserts that define
without mechanical constrains the position of each lateral breadboard.
In our case we use a groove, a cone and two flat surfaces. Using this
mechanism we in principle improve the stability of the breadboard.
Up to date, we have not been limited in our experiment by vibrations
or displacement of the lateral breadboards.

The top breadboard is where the Andor camera is placed together
with the imaging optics. This breadboard is concentric to the "Z — axis"
axis of the Feshbach coils, therefore it is made of epoxy resin rein-
forced fiberglass* in order to avoid eddy currents during the manipu-
lation of magnetic fields.

3 304 stainless steel balls (7154155964) - Alwayse
4 EP GC 201 - Hippe
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Top breadboard

2D MOT
breadboard

Lateral
breadboard

Groove Cone <‘I Elat

Bottom view lateral breadboard Stainless steel balls

Figure B.3: The lateral breadboards lay on top of for stainless steel balls and four insets that
define the final position. In principle using this configuration the breadboards are
free of mechanical contrains, resulting on a higher stability.
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C.1 THREE-BODY DECAY MODEL

We extract the density of the system in chapter 7 by assuming that
there are only losses on the state ||). We assume that |1) is instanta-
neously lost in order to conserve the optimal ratio of the self-bound
state.

We start with the condition presented in Eq. 2.53 where we assume
identical spatial modes for the two components. Therefore the density
ratio is locked to the condition

ni(r)/ny(r) = 1\/ar /ap = a. (C.1)

Assuming that the losses in ||) state are only due to three body
collisions with atoms in |]) we have:

ny(r,t) = —Kyni(nt), (C.2)

where 11 (r) = ”L—(:) extracted from the time derivative of Eq.C.1.

The total variation in density 7 in the system is thus given by

. . . 1
n=n,+n =— <1+M> Kiiini(r’t)' (C.3)

We can express then the density distribution in terms of the average
density as

<nf> = ;h/ni(r) dr. (C.g)
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By inserting Eq. C.4 into Eq. C.3 and rewriting the equations in
terms of atom number we obtain

N 1 )
E—— (1—|—M) K¢¢¢ <7li> (C5)
which in terms of the total atom number reads
N _ 2
N_Klll <TZ¢>. (C6)

We now express <ni> as a function of (n?). This is convenient be-

cause in our experiment we do not perform spin resolved in situ imag-
ing but instead we measure the total atom number.

3
1 1+ 4+ n
2 3 3 &y 3
(1) Ni/” (i =—5 <1+0}y> '

1 1
: (1+;)2N/ Fre) ()

2 :é n2)
<¢> (1+D}r>2< >

In conclusion we obtain

N 1
~ = Ky (n?) (C8)
N (1+ %)2

which is presented in the chapter 7 in Eq. 7.4.
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