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Abstract

The simulation and modelling of complex applications involving the interaction of
processes governed by different physical principles is addressed in this thesis. The
interaction of a fluid with a deformable body, or the exchange of thermal energy
between fluid and solid are examples of these multi-physics applications. In these
two cases, the modelling strategy proposed here combines the solution of separated
physical systems to account for the interactions taking place through the entire
domain. As a consequence, the simulation process resulting from the use of sepa-
rated systems considers independent codes to find the solution of each system, while
the entire system is reconstructed through an iterative approach combining these
solutions.

One of the main advantages of this partitioned approach is that each parallel
code can use the most appropriate model and algorithm which allow achieving an
accurate solution for the complete physical system. Nevertheless, several challenges
must be considered when using this approach. For instance, from a physical point of
view, the most of variables involved in the modelling of a multi-physical application
must be continuous across the entire domain. From a computational point of view,
efficient data transference between parallel codes is required to model the physical
interactions taking place through the entire system. In addition, the simulation of
multi-physics applications must be robust and maintain scalability not only for each
parallel code, but also for the coupling problem.

The present work describes the development, validation and use of a high per-
formance computing coupling tool designed for solving efficiently partitioned multi-
physics applications. The emphasis has been placed to the development of strategies
to make efficient use of large-scale computing architectures, but always keeping the
robustness and accuracy of the solutions. The coupling tool developed controls
the data transference between the parallel codes establishing peer-to-peer commu-
nication layouts between the processors, the dynamic localization of regions where
physical interactions take place, and the possible interpolations required between the
different meshes composing large-scale multi-physics application. In this work, these
features are applied to solve two multi-physics applications: contact of deformable
bodies, and conjugate heat transfer.

The contact problem involves the interaction of two or more solids which could
deform. The state of this system is determined by the fact that its interactions are
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limited to the exchange of momentum through its closed surfaces. In this work,
a parallel algorithm to deal with this problem is described. Firstly, the continu-
ity of the variables involved in the coupling problem is ensured using a domain
decomposition method, i.e., solving iteratively pairs of independent problems (par-
titions) where boundary conditions are modified. Broadly, Dirichlet-like boundary
conditions are used on a given partition, while, Neumann condition are applied on
the other. The regions of the surface for each body where the contact takes place
are identified using the localization process implemented in the coupling tool. The
results show that the parallel algorithm used here for the solution of contact prob-
lems agrees well with those achieved by the elastic contact theory as well as those
obtained by commercial codes.

The conjugate heat transfer problem referes to the thermal interaction between
a fluid and a solid. The state of this system requires to determine the tempera-
ture and heat flux distribution through its fluid-solid interface. In this case, the
coupled process is similar to the contact problem. An iterative process based on
the Dirichlet-Neumann coupling algorithm is also used to enforce the exchange of
thermal energy at the fluid-solid interface. The results show the capability of the
framework developed in this thesis to deal with practical engineering applications.
Finally, a method to deal with the disparity between the temporal scales involved in
fluid-solid thermal coupling encountered in practical applications is also proposed.

In order to demonstrate the capability of the coupling tool to deal with large-scale
applications, a parallel performance study of the partitioned approach is developed
in this thesis. The study leads to a load balance strategy that allows estimat-
ing the optimal performance of a parallel multi-physics application. In general,
these expressions can be used to calculate analytically the maximum efficiency, and
scalability achievable by a multi-physics application. Like in the case of parallel
performance analysis conducted for a single parallel code, the analytical estimations
presented here can be compared with the results achieved by the performance anal-
ysis of general multi-physics problem. As a result, the behaviour of this application
is described and analysed in order to identify and overcome the issues introduced by
parallel codes interacting through a coupling tool. The parallel performance anal-
ysis of a conjugate heat transfer problem shows that the optimal efficiency of this
application is well represented by the expressions derived in this study and therefore,
under some assumptions, it can be used to assign the most appropriate distribution
of processors to guarantee an optimal performance.
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Introduction

1.1 Motivation

A relevant issue in the Exascale age is the modelling of multi-physics applications
where a physical phenomenon is addressed by combining separate physical systems
[1]. Applications as climate modelling [2], fluid-structure interaction [3], or conjugate
heat transfer [4] are examples of these type of problems. In general, the solution of
all of them depend on the physical interactions taking place in the entire system.
For instance, in a convective heat transfer problem as the cooling of a turbine
blade, a fluid interacts with a solid through a common interface in which thermal
energy is exchanged [5]. In this case, an accurate solution of this problem requires to
determine the temperature and heat flux distribution through the common interface
between them.

Partitioned approach In general, two main approaches can be used to model
multi-physics applications: monolithic and partitioned [6]. A monolithic approach
makes use of an unique solver code to simulate a multi-physics system. A partitioned
approach is based on splitting the entire computational domain into independent
regions (partitions) each of them governed by a particular physical principle. In this
approach, the solution of the entire domain can be reconstructed from each partition
through a coupling algorithm. This algorithm firstly assumes that an appropriate
numerical method is used to solve individually each partition. Then, the physical
interactions between pair of partitions are modelled by an appropriate iterative
procedure.

Coupling tool The responsible for accomplishing most of the operations related
to this algorithm is a coupling tool. Lets establish a coupling tool as a software
which has been specially designed to solve a multi-physics problem by combining the
single-physics present in each partition. Particularly, a coupling tool deals with the
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parallel coupling problem. It has been defined as the transmission and transformation
of the various distributed data between the component models comprising a parallel
coupled system [7]. Transmission usually refers to move the necessary data from one
partition to another. Transformation consists principally of interpolations between
partitions.

A great deal of effort has been made to develop parallel coupling tools specialized
on the solution of partitioned multi-physics application. In this sense, each of them
have developed its own application programming interface (API), which usually al-
lows defining different coupling schemes along with appropriate methods to deal
with the parallel coupling problem. Coupling tools should satisfy other important
characteristics such as robustness, efficiency, and scalability [6]. Examples of these
developments are MCT (Model Coupling Toolkit) [7], CHIMPS (Coupler for High-
Performance Integrated Multi-Physics Simulations) [8] MpCCI (Mesh-based parallel
Code Coupling Interface) [9], OpenPALM (Projet d’Assimilation par Logiciel Multi-
methodes) [10,11], LIME (Lightweight Integrating Multi-physics Environment) [12],
DTK (Data Transfer Kit) [13], and CTL (Component Template Library) [14]. Of
particular interest are those recently developed and that furthermore have shown
to be appropriate to solve large scale multi-physical problems. Such is the case of
libraries as CWIPI (Coupling With Interpolation Parallel Interface) [15,16], pre-
CICE (Precise Code Interaction Coupling Environment) [17], and MUT (Multiscale
Universal Interface) [18].

Challenges In this work, the emphasis is on those challenges related to the cou-
pling problem. For instance, most of the physical variables involved in a multi-
physical application should be continuous through the entire domain. Then, an
important challenge when a partitioned approach is used to solve a multi-physical
system is related to how to achieve the continuity through the coupling interface.
Another challenge is related to a suitable use of the computational resources. In this
sense, the reduction of the number of coupling iterations is an important area of re-
search, as well as the convergence and stability of different coupling approaches [19].
Regarding the operations related to the coupling procedure, the time spent on locati-
zation and data transference (data mapping and data communication) can produce
major disadvantages. This can take place when the sizes of the meshes given to
each partition are significantly different. In this case, the localization time could
increase due to the differences on the number of vertices forming each partition.
A last example is the workload related to the coupling. Generally, in order to use
a large-scale computer in the most efficient manner, each partition is divided so
that the set of processors perform the same amount of calculations. Although it is
possible to fulfil this requirement for each partition, usually it requires additional
considerations when the entire coupled system is considered. For details related to
another challenges see [1,6,20].
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1.2 Scope of the thesis

The aim of this thesis is to describe the development, validation and use of a high-
performance computing coupling tool that allows the solution of partitioned multi-
physical simulations. The emphasis is on the efficient use of large-scale computers,
but always considering the robustness and accuracy of the solutions. In this sense,
this thesis can be divided into three main parts. In the fist part, the computational
development of the coupling tool PLE++ (Parallel Location and Exchange++) is
presented along with a mathematical background related to the parallel coupling
problem. Then, two multi-physics applications are addressed: contact between de-
formable bodies, and conjugate heat transfer. Finally, in the last part, a performance
analysis for multi-physics applications is introduced.

The development of this thesis has been part of three projects: PRACE Sec-
ond Implementation Phase (PRACE-2IP) [21], Coupled Parallel Simulation of Gas
Turbines (COPA-GT) [22], and Structural HEalth Monitoring, Manufacturing and
Repair Technologies for Life Management Of Composite Fuselage (SHERLOC) [23].
The PRACE-2IP project was focused on the re-design and refactoring of a number
of codes for scientific numerical applications. In order to effectively run on new
generation of supercomputing architectures. The COPA-GT project was a Marie
Curie Action designed to train young fellows in Europe in Gas Turbines design using
High Performance Computing (HPC). The objective of the SHERLOC project is to
combine advanced Structural Health Monitoring (SHM) and smart repair technolo-
gies with a probabilistic design philosophy. A common interest in these projects has
been the capabilities shown by the HPC-code Alya. It is a finite element code de-
veloped by the Barcelona Supercomputing Center (BSC) which has already proved
to be highly scalable in advanced HPC facilities [24]. In this sense, the possibility of
coupling Alya with others parallel codes appears to be very attractive. The results
achieved during the PRACE-2IP project allowed to develop an interface for the cou-
pling of Alya with Code_Saturne and Syrthes [25,26]. This first stage was done by
modifying the internal coupling tool of Code_Saturne named PLE (Parallel Loca-
tion and Exchange). During COPA-GT project, PLE evolves into an independent
library named PLE++, which has the capability of coupling parallel codes written
in Fortran, C/C++, or Python.

Results achieved during PRACE-2IP and COPA-GT projects allow dealing with
multi-physics applications as: systems involving heterogeneous computing [27], con-
jugate heat transfer problems [28-30], and contact between deformable bodies [31].
The first case considers the use of PLE++ for the solution of large-scale Eulerian-
Lagrangian systems. Regarding conjugate heat transfer problems, PLE++ has been
used to study the effect of the heat transfer condition at the solid wall on a pre-
mixed impinging jet flame, and the heat loss of a confined turbulent jet flame in a
labscale combustor. Finally, the PLE++ library is crucial in the SHERLOC project

3
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for predicting impact damage in composite panel structures. Details related to how
these applications make use of the PLE++ library are given along this work.

Another important point related to the modelling of partitioned multi-physical
applications is a suitable use of the computational resources. In this sense, two
important contributions are given in this thesis. Firstly, one of the main issues in
conjugate heat transfer problems is the time-disparity due to the time-scales charac-
terising each partition. In this thesis, a strategy which allows reducing this disparity
is presented. The results show that the computational time necessary to perform
fluid-solid thermal coupling can be reduced by applying this approach. Another
important contribution is related to the parallel performance analysis of partitioned
multi-physics applications. This analysis allows the introduction of a load balance
strategy that takes into account details related to how a multi-physics application
solved by a partitioned coupling approach can be affected by the distribution of
processors. These two strategies along with a suitable use of the HPC coupling tool
PLE++ make possible the modelling of large-scale multi-physical application.

In the remaining of this work details related to the coupling library developing as
part of this thesis are given. Before of that, a general introduction of the procedure
followed throughout this work for the modelling of a partitioned multi-physical sim-
ulations is given below. Finally, the content of this thesis are summarised for each
chapter.

1.3 Partitioned approach

The entire process of a multi-physical simulation solved as a coupled system is
summarized in Figure 1.1. Broadly speaking, each partition domain is solved in-
dependently, while the interaction between them are taken into account through
the operations related to the parallel coupling problem. A brief description of the
procedure followed is given below. Details are extensively covered in the following
chapters.

Parallel coupling problem

Firstly, lets suppose that inside a given computational domain €2, two different phys-
ical systems interact. Furthermore, lets suppose that each of these physical systems
defines a computational region (partition), so that the interactions between this pair
of partitions take place exclusively throughout the common interface I'. The next
step consists on defining a suitable numerical method for the solution of each parti-
tion. Under the assumptions mentioned above, it results on two system of algebraic
equations A,w, = b, and Ayw; = by, one for each partition €2, and €, respec-
tively. These two systems replace an unique system of equations A w = b, which
would have been derived from discretizing the partial differential equation £ w = b
through the whole ). In order to use a large-scale computer in the most efficient

4
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manner, generally each partition is divided into as many sub-domains as processors
has been assigned to a given partition. Thus, each partition (2, is constituted of a
number p,, of sub-domains {Q},Q2,...,QF}. In turn, each of these sub-domains is
associated with an unique processor. As a result, each of them allocates one of the
corresponding values {w!, w2, ..., wPo} which result from resolving each algebraic

equation A,w, = b, in parallel.

Once each partition has been prepared to be solved through a large-scale com-
puter, the next step consists of accomplishing the operations related to the iterative
coupling procedure. The main features to solve a partitioned multi-physical ap-
plication with a coupling procedure are: I) coupling approach, II) data mapping,
and III) data communication [17]. Additionally to this three features, a prepro-
cessing is necessary before starting the coupling simulation. Figure 1.1(d) depicts
the chronology in which the workflow of a staggered coupling approach is executed
in parallel. In this case, the partitions €2, and €2, in which the entire domain )
has been split, are composed of three and four processors, p, = 3 and p, = 4, re-
spectively. Before executing the iterative coupling approach, the pairs of processors
related to the coupling must be identified. In order to do that, a localization process
must be executed by all the processors p = p, + py during a time 7%°. As a result,
it is possible to know what coupling takes place between sub-domains 2} and 2}
(processors 1 and 4) of partition €, and the sub-domain Q! (processor 5) of the
partition €2,. Once this preprocessing has finished, the staggered coupling approach
establishes that algebraic equations must be solved one after the other. In the case
under study, for each k-iteration, the system AFw®) = b® is firstly executed
during a time 7% usmg gj processors. Now, data transference takes place before
solving the system A(k " = b during time T*®). The localization processes
determines that this transference is performed from processor five to one, and from
processor five to four. This transference is necessary due to the fact that all val-
ues wib) = {wllh) w2k w3kl in Q, are updated, so that the values Wl(,k) through
the boundary mterface F in €2, must be also updated before solving its system of
algebraic equations. The transference time 7% includes the time spent on data
transmission (sending and receiving data between processors), as well as data trans-
formation (the data mapping in case of non-conforming meshes). Once this is done,
the p, processors associated to {2, can solve its corresponding system of algebraic
equations enforcing the received information as boundary conditions on its coupling
interface I'. Each k-iteration finishes when the first partition executed (£2,) receives
from the other partition (£2;,) the new boundary conditions to be enforced through
its coupling interface. Finally, the whole procedure is repeated as often as necessary.
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Figure 1.1: (a) Whole domain. (b) Partitioned domain. (¢) Discretization. (d) Execution. The
total number of processors p = p,+p, assigned to the whole coupled system Q@ = Q2 U
2, are divided between two disjoint partitions 2, and €, involved in the coupling.
Each partition 2, is constituted of a number p, of sub-domains {Q},Q2, ..., QP=}.
The interface I'py, = 2, N Q, defines the communication between the partitions. In
this case, communication takes place between sub-domains Qll) and Qg (processors
1 and 4) of partition b, and the sub-domain €} (processor 5) of the partition a.
The data transfer is only performed between overlapping sub-domains, in two steps:
interpolation and exchange. The interpolation maps property values v, on Q! to
values v& on Qg through the coordinates rg.
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1.4 Thesis outline

As stated above, this thesis is organized in three main parts. Chapters 2 and 3
address on the mathematical background and the computational development used
in this thesis. Two multi-physics applications addressed through the PLE++ library
are analysed in Chapters 4 and 5. Finally, in Chapter 6, a performance analysis for
multi-physics applications is presented.

Chapter 2 The aim of this chapter is to introduce the mathematical nature of the
coupling approaches used in this thesis for the solution of partitioned multi-
physics applications. These approaches are based on domain decomposition
methods: to divide a large problem into smaller problems forming partitions
of the original domain.

Chapter 3 In this chapter, details related to the implementation of a parallel cou-
pling tool that allows the solution of large-scale partitioned multi-physical
simulations are given. The coupling tool developed here (the PLE++ library)
allows dealing with the parallel coupling problem using a coupling approach
to combine the solution achieved by the single-parallel solver present in each
partition.

Chapter 4 This chapter addresses the development of a novel parallel algorithm
to deal with the problem of contact between deformable bodies. This algorithm
make uses of an iterative coupling approach to enforce the constrains arising
from contact, while the PLE++ library is the responsible for identifies regions
on the surface of each body where contact takes place.

Chapter 5 This chapter is focused on describing a methodolgy to address conjugate
heat transfer problems using a partitioned approach. Here, an iterative process
is used to enforce the effects related to the exchange of thermal energy through
the fluid-solid interface. Additionally to this iterative process, a methodology
to deal with the time-disparity arising form the difference in the temporal
scales between fluids and solids is also presented.

Chapter 6 In this chapter, a load balance strategy to run partitioned multi-physics
applications on extreme scale architectures with an optimal parallel perfor-
mance is presented. This strategy provides a detailed analysis of the influence
of the assignment of the processors to the partitions and provides an expres-
sion that relates the performance metrics of each partition with the overall
parallel efficiency of the coupled simulation.
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Approaches and algorithms

Divide and conquer

The aim of this chapter is to introduce the mathematical nature of the coupling
approaches used in this thesis for the solution of partitioned multi-physics applica-
tions. These approaches are based on domain decomposition methods: to divide a
large problem into smaller problems forming partitions of the original domain. In
general, an important challenge is to ensure that the solution found individually for
each partition converges to the one achieved when the whole system is solved by
using an unique solver code.

Details related to the iterative coupling approaches used along this thesis are given
as follows: A general introduction of domain decomposition for non-overlapping
partitions is presented in next section. Iterative methods to deal with partitioned
multi-physical systems are then introduced. In Section 2.2 an overview of muti-
physical systems to be solved in the next chapters is given. Finally, remarks and
conclusions are drawn in last Section.

2.1 Domain decomposition methods

Domain decomposition makes reference to the splitting of a partial differential equa-
tion into coupled problems on smaller sub-domains forming a partition of the original
domain [32]. In general, two classes of domain decomposition methods can be con-
sidered: Schwarz and Schur complement [33]. Schwarz methods are the earliest
domain decomposition method known [34]. They are generally applied when parti-
tions have overlapping regions. In multi-physics, the Schwarz method can be used
to solve the interactions of a fluid containing particles [35], as well as the solution
of aero-acoustic problems where the domain is divided into two regions; an acous-
tic near field where a fluid flow simulation is considered, and a far field where the
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acoustic wave propagates [36]. It is worth noting that, in general, as the overlapping
region is reduced, the rate of convergence of the Schwarz method decreases [33]. If
the interaction between the partitions is reduced to the common surface defined
between them (in a 3D case), a Schur complement method can be used instead.
This is the case of fluid-solid interaction, conjugate heat transfer, or contact of de-
formable bodies. In these three cases, the interaction between partitions are given
exclusively through a common boundary. Due to the fact that this thesis is focused
on the contact of deformable bodies, and the conjugate heat transfer, the rest of
this chapter emphasises some features of domain decomposition methods that can
be applied for non-overlapping (disjoint) partitions.

2.1.1 Iterative methods for non-overlapping partitions

As stated above, domain decomposition methods considering non-overlapping parti-
tions are known as Schur complement methods (also referred as Steklov-Poincaré [37]
or Substructuring methods [33]). The Schur methods are based on the physical prin-
ciple of continuity: the transmission conditions [37]. These conditions establish that
a given variable and its corresponding flux must match across the coupling inter-
face, i.e., they must be continuous throughout the surface defined between each
pair of partitions. In order to achieve this matching, an iterative process must be
performed. Without limiting the generality, details are given through an example.
Firstly, the case studied is defined. Then, transmission conditions for this case
are described. An iterative method which allows achieving the continuity of the
transmission conditions is finally described.

Case study

An advection-diffusion system is firstly considered. Based on the above, its inter-
action with a convection dominated system is analysed in the next section. The
interaction between Navier-Stokes and Euler equations is an example of this situa-
tion. Details can be found in [37,38].

Definition Lets consider the non-conservative form of a diffusion-transport-reaction
equation

Lu=—-V-(a(x)Vu)+b(z) Vu+c(z)u = f(x) in Q C R?
u = ¢ onI'p CON (2.1.1)
n-aVu = v on I'y C 092

in the domain 2 with boundary 0f2, enforced to the Dirichlet boundary condition
u = on I'p C I, and Neumann boundary condition n - aVu = v on I'y C 012,
see Figure 2.1. Where I'p ULy = 09, I'p N T'y = 0, and unit outgoing normal
n. a, b, and ¢ are three smooth assigned functions with 0 < ay < a, ¢ > 0, and

10
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—%V -b+c¢> [ >0Vr € ) Note that Dirichlet boundary conditions can be used
to prescribe either a velocity profile on the inflow boundary

Iy = {TpCoQ:n-b<0} (2.1.2)

or forcing the fluid to stick to a wall (no-slip boundary conditions). On the other
hand, free outflow boundary conditions I',,; are prescribed where the force per unit
area at the Neumann boundary is zero, i.e., where 1) = 0. Equation 2.1.1 can be seen
as the scalar version of a stationary linearized problem in fluid dynamics where a
represents the kinematic viscosity, b the transport field, and f the source term [39].

Figure 2.1: Geometry of the domain 2. The arrows denote the local directions of the transport
field b.

Transmission conditions In order to understand the role of the transmission
conditions some details should be considered. The decomposition of a domain
Q = U_,Q;, in p non-overlapping partitions €2;, involves the existence of an in-
terface I';; separating two regions €2, and €2;. As consequence, it is necessary to
identify suitable boundary conditions throughout the interface, the so-called trans-
mission conditions. These boundary conditions should ensure (whenever possible)
that the coupled problem is well posed, i.e., the solution w; in each partition 2;
exists, be unique, and it depends continuously on the data [37]. Furthermore, such
boundary conditions must ensure that the solutions w; converges to the real solution
u of the problem 2.1.1, i.e., w; — ulg, — 0. Thus, the application of the domain
decomposition of Equation 2.1.1 leads to the solutions w, and w, of the partitions
Q, and €2, along with the suitable transmission conditions across the interface I'y,
between €2, and €.

Weak form As shown below, the weak form of Equation 2.1.1 can be used to
clarify the origin of the transmission conditions. Under the given mixed boundary
conditions, the weak form of the diffusion-transport-reaction equation reads:

findueld: Alu,v) = F(v) YWwey (2.1.3)

11



12 Approaches and algorithms

where
A(u,v) = [ (aVu-Vv+vb-Vu+curv)d
Fv) = JofrdQ+ [p, v dl
U = {ue H(Q): u=¢ponTp }
V = {veH(Q): v=00nTp }

Here, Equation 2.1.1, has been multiplied by a test function v and integrated on
the domain 2. In order to have well defined integrals, each function u and v along
with its respective derivative must be square integrable, i.e., U and V represent
Sobolev spaces of order one' . The difference between both spaces is related to the
condition to be fulfilled when Dirichlet boundary conditions are imposed. In the
first case, U, the values of u are enforced to be equal to . On the other hand,
V), the test functions v must vanish [39,40]. Equation 2.1.4 shows the deduction of
the weak form 2.1.3 in detail. The Neumman boundary I'y comes naturally as a
consequence of the integration by parts of the diffusive therm V - (aVu). However,
the test functions v vanish where Dirichlet boundary conditions are applied, and
then its contribution on the boundary I'p is small and can be neglected. This fact
is important in order to understand the origin of the transmission conditions.

| (V- (=aVu) +b - Vu+ cu)v a0
:/Q(aVu-VV—V-(VaVu)—l—l/b-VzH—cw/)dQ

= / (aVu -Vv+vb-Vu+ cul/)dQ + | —vaVu-ndl (2.1.4)
Q o0

:/ (aVu-VV+Vb-Vu+cuy)dQ+/ V¢dF+W.
Q I'n

In this equation, the integral of the flur —raVu - n throughout the boundary I is
defined over Neumann I'y and Dirichlet I'p, boundaries. It is worth noting that the
integral throughout I'y is different from zero only where ¢ # 0. On the other hand,
the integral corresponding to Dirichlet boundary is removed due to the fact that,
by construction, » = 0 on I'p. Despite this, the integral of —rvaVu - n throughout
the interface I';; between two partitions §2; and €2; of 2 can be different from zero.
This is because v is nullified in order to enforce the physical Dirichlet boundary
conditions throughout I'.

LA Sobolev space of order k on € is the space formed by the totality of functions of L?(£2) whose
derivatives up to order k belong to L?(Q):

HFQ) = {feLl?*Q):DfecL?*Q) Va:l|aof <k}
The space of square-integrable functions on §2 is defined as:

L2(Q) = {f:Q— R such that [,(f)*dQ < +oo}

12
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Figure 2.2: Geometry of the partitions €2, and €2,. The arrows denote the local directions of the
transport field b.

In summary, given a partition €;, the integral of —vaVu - n can be: (1) zero on
its physical Dirichlet boundary, (2) different from zero when either physical non-
homogeneous Neumann boundary conditions are used, or throughout the interface
I';; with other partition €2;. Finally, these results are used to define the transmission
conditions needed to solve a partitioned system.

Partitioned approach From the previous discussion, the weak form of Equation
2.1.1 shows that an additional term is introduced when the problem is decomposed
into partitions. As shown below, this term allows coupling the partitions, so that
the given problem can be solved.

The additivity of the volumetric and superficial integrals in 2.1.4 allows splitting
them in as many partitions as necessary, so that

/ (aVu -Vv+vb-Vu+ cuy)dQ + [ —vaVu-ndl (2.1.5)
Q a0

p
:Z{/ (aVu-Vl/+Vb-Vu+cul/>dQ+ —vaVu-n dl’

= L 0,

+/ —vaVu-n dF]
Fij

The transmission conditions that couple these p local problems are then defined by
how the integral on I';; are tested. Without limiting the generality, suppose that the
domain €2 is decomposed into two non-overlapping partitions €2, and €, separated

13



14 Approaches and algorithms

by an interface I', thus

/ (aVu -Vv+vb-Vu+ cuy>dQ + | —vaVu-ndl (2.1.6)
Q o9

= (aVu -Vv+vb-Vu+ cw/)dQ + —vaVu-n dl
Qa 904

+ (aVu -Vv+vb-Vu+ cuy)dQ + —vaVu-n dl
o a0,

—|—/ —vaVu-n dl' + —vaVu-n dl’
Fab

Fpa

where 'y, and I'y, stand for the contribution of each partition €2; to the weak form
of Equation 2.1.1. Under the assumption that the partitions are solved indepen-
dently, and considering that the boundary conditions must ensure that the whole
coupled problem is well posed, then one alternative is the use of Dirichelet boundary
conditions by an unique partition.

Suppose that ¢, is enforced as Dirichlet boundary condition on the interface I',.
Then, due to the fact that v = 0, the integral [ —vaVu-n dI" vanishes. On the
other hand, in the partition €2, Neumann boundary conditions —aVu - n|g, = 1,
are necessary on [',,. The value v, to be enforced on this boundary can be provided
by the flux ¥, = —aVu - nl|q, leaving (reaching) the partition 2, throughout the
interface I'yy. Thus, the weak form in each partition reads: find u € U:

/ (aVu-Vu+ub-Vu+cu1/—f)dQ+/ P, -ndl=0 (2.1.7)
a FNa
for the Dirichlet partition, and

/Q(aVu~Vu+yb-Vu+cu1/—f>dQ+/F z,bb-ndF—i—/F—@bab-ndF:O
(2.1.8)

for the Neumann partition. It is worth noting that, the negative value of the flux
P, on 'y, enforced as Neumann boundary condition on I'y,, ensures that the global
effect of the integral on I' is zero. As a result, the weak form of the Equation 2.1.1
is recovered.

Iterative algorithm Given a domain §2 composed by two partitions 2, and €2y,
where €2 = , U}, the boundary value problem 2.1.1 can be solved by an iterative
algorithm where the transmission conditions of Equations 2.1.7 and 2.1.8 can be
used. An iterative algorithm is necessary because, clearly, the values of ¢, and )4,
to be imposed on 'y, and I'y,, respectively, are unknown. Thus, it is necessary to
start imposing certain values ¢(® and «,bfj;) and to use iterative methods to solve

the interface problem. One of the most widely used iterative methods to solve these
problems uses of a sequential execution order of the partition solvers [40]. Thus, in

14



2.1. Domain decomposition methods 15

order to solve Lu = f, Equations 2.1.7 and 2.1.8 suggest that, firstly the partition
(), must be solved by imposing Dirichlet conditions on 'y, and then enforcing
Neumann conditions on the boundary I',, of the partition €2,.

Figure 2.3 depicts the details related to this algorithm. It starts by enforcing an

initial guess »® on the Dirichlet boundary for the solution of ngk) = f1, where
(k)

w:

;  stands for the solution of the k’s iteration on the domain ;. Now, the flux of

wgk) is enforced through the interface I'y, of €2,. As result of Ewék) = fy, the local

solution wék) matches the flux n; - (angk)), but not necessarily the value of wgk),

ie., wék) — wgk) # 0. Thus, in order to achieve the desired convergence, an under
relaxation factor 0 < 6 < 1 can be used such that vékﬂ) = wék) + Q(wék) — wgk)).
This relation allows updating the value of Uék) in such a way that the difference
wék) — w;(lk) decreases gradually with each iteration. Finally, when vékH) ~ wék), the

k-iteration is dropped, and the algorithm finishes.

Lets véo) denote a starting guess
1. For £ = 0,1, ..., until convergence do:

2. Solve for wgk) as follows:

,ngk) = fl in Qa

w® = o, onTp, (2.1.9)
wgk) = vék) on 'y
3. Solve for wék) as follows:
E”LUék) = f2 in Qb
T, on I'p, (2.1.10)
n, - (anék)) = nj- (an%k)) on Iy,
4. Update:
oD = w® Lol —w®y  onT (2.1.11)
5. Endfor

Output: (w%k), wék))

Figure 2.3: Tterative Dirichlet-Neumann algorithm (DNA).

15



16 Approaches and algorithms

2.1.2 Partitioned multi-physics approach

As stated above, domain decomposition methods are based on decomposing a given
problem into coupled smaller problems [32,39]. Heterogeneous domain decomposition
methods generalizes this idea by assuming that different kind of problems can take
place in each partition [40]. The interaction between fluids and solids is an example
of multi-physics showing such heterogeneity.

Case Study

Definition The advection-diffusion system analysed in the previous section can be
addressed by an heterogeneous domain decomposition method under the assumption
that there exists a sub-region of the system completely governed by the convective
term.

Figure 2.4 shows a situation in which a domain €2 is composed by a partition
), governed by the the diffusion-transport-reaction equation (Equation 2.1.1), and
another partition 2, = Q\, completely governed by the convective term b - Vu.
Thus, if in Equation 2.1.1 the function a is re-defined as

_Jn for Q, C Q
“= e for €, C Q

where |V - (eVu)| << |b-Vul, then Lu = f can be approximated as Lyu = f in the
region €2y, with L,u = b-Vu+-cu. For a system where convection is predominant over
diffusion, the projection n - b of convective vector b on the outgoing normal vector
n defines the portion of 92 to be considered as inflow or outflow boundary [40].
Thus, 0 can be split into four parts: Dirichlet I'p, Neumann I'y, inflow I and
outflow I'°“*| where

(2.1.12)

Pin
Fout

{TCcoQ:n-b<0}

(Tco:n-b>0}. (2.1.13)

a Qb

ou
ra

FD

a

Figure 2.4: Geometry of the partitions 2, and €. The arrows denote the local directions of the
transport field b.
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2.1. Domain decomposition methods 17

Lets Uéo) denote a starting guess
1. For k£ = 0,1, ..., until convergence do:

2. Solve for wgk) as follows:

Lo = fi  inQ,

w = o, onIn (2.1.14)
w(k) _ U(k) on n
1 - 2 ab
3. Solve for wék) as follows:
Ewék) = f2 in Qb
0 _ T
brooT on - Dy (2.1.15)
n, - (anék) — bwék)) = n,-bu”  on rout
n, - (aVuwd)) = 0 on I'j"
4. Update:
o = ) 4 Q(wék) - wgk)) on I' (2.1.16)
5. Endfor

Output: (w&k), wék))

Figure 2.5: Tterative Robin-Neumann algorithm (RNA).

In the same way that 02, it can be expected that the coupling interface I can
be sub-divided into inflow and outflow parts, so that a change of the transmission
conditions should be considered in order to ensure that the new coupled system is
still well posed.

Iterative algorithm Due the presence of two different physical systems in €2, a
similar analysis to the iterative Dirichlet-Neumann algorithm must be performed.
By following the procedure used to infer Equations 2.1.6 and 2.1.8, an iterative
algorithm with new transmission conditions can be defined.

Figure 2.5 shows the resulting iterative algorithm. Firstly, the Dirichlet condition

wgk) = vék) throughout I',; is changed so it takes place exclusively through the inflow
part of the boundary I'”” 'i.e., where n-b < 0. Meanwhile, the Neumann boundary is

divided into two complementary sections, inflow and outflow. In both sections, the

17



18 Approaches and algorithms

original Neumann condition ny - (aVws,) = n; - (aVw;) is changed by a Robin type
condition ny - (aVws —bwsy) = ny -bw%k). These transmission conditions result from:
(1) integrating by parts the convective term in Equation 2.1.3, and (2) the weak
form of the approximation Lou = f in the partition €2,. Due to the fact that, w%k) is
only equal to wék) on ' then the Robin condition is simplified to ny - (aVw,) = 0,
while in the complementary section T'%% = T",\I'"?_ the entire Robin type condition
is applied.

The iterative Robin-Neumann algorithm shown in Figure 2.4 takes into account
the physical and numerical nature of the equations involved in the coupled problem.
Similarly, alternative algorithms can be proposed in order to improve a particular
aspect of the coupling. For instance, both Dirichlet-Neumann and Robin-Neumann
algorithms consider a sequential execution order of the partition solvers. However,
from a computational point of view, a concurrent execution order encourages the
use of the computational resources. Nevertheless, concurrent algorithms can lead to

other issues.

2.2 Multi-physics systems

The previous section introduced essential concepts behind domain decomposition
methods. Principally, the emphasis is given to describe how the transmission con-
ditions work. They establish the foundations for the solution of a multi-physics
system whose partitions are defined by the kind of physics predominant in each of
them. Summarizing, the continuity of certain transmission conditions throughout a
coupling interface between a pair of non-overlapping partitions can be achieved by
using an appropriate iterative procedure.

The focus of this section is on providing an overview of muti-physical systems
where the heterogeneous domain decomposition methods above described can be
applied. Contact of deformable bodies (CDB), conjugate heat transfer (CHT), and
fluid structure interaction (FSI) problems are briefly introduced. Details are exten-
sively discussed in Sections 4 and 5.

2.2.1 Contact of deformable bodies

Definition In general, when two bodies interact, the Newton’s third law states
that the forces on the bodies from each other are always equal and opposite in di-
rection [41]. These forces are transmitted from one body to another by a compress-
ible force along with tangential tractions due to friction. How these tractions are
distributed throughout a deformable body as consequence of the contact can be
described by the equation of balance of momentum

2
@—V-a = f in Q (2.2.1)
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2.2. Multi-physics systems 19

where p, d, o and f, stand for material density, displacement field, stress field, and
volume force density.

When a deformable body €2, comes into contact with other deformable body €2,
each of them changes its shape due to the non-penetration condition. Thus, at any
time, the shape adopted by the surface of each body depends of the surface of other
body. When these bodies are in mechanical equilibrium (i.e. the sum of all forces is
zero), the final state is achieved. The state for each body can be determined as the
sum of its undeformed state and the displacement field d given by the equation of the
balance of momentum. As a coupling process, this can be done by firstly computing
the overlapping area (or volume) of the undeformed bodies when they are placed in
their desired final positions. After that, this overlapping g is subtracted from the
deformable body. The final state is the one where the equilibrium is achieved.

Transmission conditions For a frictionless contact case (tangential tractions are
neglected) with two deformables bodies 2, and €2, the normal component of the
overlapping g is enforced as Dirichlet boundary condition to the normal displacement
d, - n, through the contact interface of the solid €2,

d,'n, = n,-gn, (2.2.2)

Simultaneously, the action-reaction principle requires that the normal force acting
on the contacting surfaces must be equal and opposite. Thus, the normal component
of the reacting stress oy, - n, can be enforced as Neumann boundary condition on
the contact interface in the solid €,

n, -o,-n, = n,-o0,-n, (2.2.3)

2.2.2 Conjugate heat transfer

Definition The term conjugate heat transfer (CHT) is generally used when a
fluid interacts with a solid through a common interface in which thermal energy is
exchanged. An accurate solution of this problem requires to determine the temper-
ature and heat flux distribution through the fluid-solid interface. For the fluid, the
heat transfer is usually dominated by convection, while for the solid is characterized
by a diffusive process. The continuity of this fluid-solid thermal coupling problem
can be achieved by enforcing suitable transmission conditions between the energy
equation of the fluid

opE
% YV (pHu) = —V-q (2.2.4)
and the heat conduction equation in the solid
aoT
S TV (-aVT) = Q (2.2.5)
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20 Approaches and algorithms

where p, u, p, E, H, q, o, and () stand for density, velocity, pressure, total energy,
enthalpy, density heat flux, thermal diffusivity, and external heat source, respec-
tively.

Transmission conditions One of the most widely used CHT approaches imposes
the density heat flux q; = —r;VT} from the fluid into the solid domain by Neumann
boundary conditions

q,-ny = q;-ny (2.2.6)

while the solid imposes its surface temperature Ty onto the fluid domain through
Dirichlet boundary conditions

T, = T, (2.2.7)

2.2.3 Fluid-Structure Interaction

Definition The problem considered here consists of an elastic body that can be
deformed by the interaction with a fluid flow. This problem can be solved by the
use of the arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes
equations

Ju

1
5 o + (u—u®) - Vu — ;V o =0 (2.2.8)

that takes into account the domain’s modifications that the displacements dr of the
body surface performs into the fluid.

Transmission conditions The effect of the fluid on the body are due to the
pressure force that the fluid exerts on the interface of the body. Thus, the normal
component of the fluid stress oy - ny can be used as Neumann condition in the
equation of balance of momentum for the body

O; " Ng =0y Njy. (229)

In order to consider the effect of the body on the fluid, firstly the current configuration
of the fluid domain, consequence of the displacements dr on the fluid-body interface,
are estimated. The velocity ur on the interface of the fluid domain results from the
temporal variations of the interface displacements ddr/0t. The fluid velocity field
u results from considering the velocity ur as a no-slip boundary condition

u = adp/ot (2.2.10)

to the ALE formulation of the incompressible Navier-Stokes equations.
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2.3. Summary and remarks 21

2.3 Summary and remarks

The aim of this chapter is to introduce the mathematical basis of the coupling
approaches used in this thesis

Firstly, the domain decomposition method for non-overlapping partitions was
presented. Then, the iterative Dirichlet-Neumann algorithm was introduced. Fi-
nally, an overview of the multi-physics systems to be used through this thesis was
presented.

The domain decomposition method for non-overlapping partitions is based on
the transmission conditions (suitable boundary conditions throughout the coupling
interface). These conditions establish that a given variable and its corresponding flux
must be continuous throughout the surface defined between each pair of partitions.
To maintain the continuity is fundamental in order to ensure that the solution
achieved in each partition converges to the real solution of the entire domain.

The diffusion-transport-reaction equation was used to show how the transmis-
sion conditions operate. By using the weak form of this equation, it was found that
an additional term is introduced when the problem is decomposed into partitions.
This term defines the more appropriate transmission conditions for this problem.
Through a suitable use of these conditions, the iterative Dirichlet-Neumann algo-
rithm can be used to obtain the solution. A partitioned multi-physics approach can
essentially be addressed by using domain decomposition methods with different kind
of physical problems in each partition [40]. This has been exemplified by assuming
an advection-diffusion system with a partition completely governed by the convec-
tive term. Under this assumption, the iterative Dirichlet-Neumann used to solve the
original advection-diffusion system was modified. The modification is mainly due
to the fact that new transmission conditions were necessary in order to ensure that
the new coupled system is still well posed.

An iterative coupling approach results from each set of physical equations compos-
ing a given multi-physics system. In this sense, the procedure used in both examples
involving the advection-diffusion system can be used to derive suitable transmission
conditions for each of the multi-physics systems studied in this thesis. As shown in
the following chapters, the transmission conditions for contact and conjugate heat
transfer problems are essentially similar to those used in the advection-diffusion sys-
tem, i.e., Dirichlet-like conditions imposed in a partition, and Neumann conditions
enforced on the other. The difference between them is the physical meaning of the
transmission conditions for each problem. In the case of contact, the transmission
conditions are related to the conservation of the momentum, while in conjugate heat
transfer, the transmission conditions ensure the continuity of the thermal energy.
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3

Multi-physics Software

We often think that when we have
completed our study of one we
know all about two, because ‘two’
is ‘one and one.” We forget that we
still have to make a study of ‘and’

Eddington, A. S. (2012)

In this chapter, details related to the implementation of a parallel coupling tool
that allows the solution of large-scale partitioned multi-physical simulations are
given. The coupling tool developed here (the PLE++ library) allows dealing with
the parallel coupling problem using a coupling approach to combine the solution
achieved by the single-parallel solver present in each partition.

One of the main goals of this chapter is to present an overview of the chal-
lenges related to the implementation of partitioned coupling approaches by using
the PLE++ library. In order to do that, the rest of the section is divided in three
main parts. The first part, Section 3.1, describes the parallel execution mode that
is required for the solution of two coupling schemes: parallel and staggered. Section
3.2 describes the implementation of a coupling tool that allows to solve a multi-
physics problem using parallel or staggered schemes. In the last part, Section 3.3,
two cases are briefly discussed. The fist addresses the parallel implementation of a
staggered coupling scheme. In the second case, an example involving heterogeneous
computing is shown. A brief overview of coupling tools recently developed is given
in Section 3.4. Finally, in the last section a summary of the chapter is given.
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24 Multi-physics Software

3.1 Parallel execution modes

This section gives an overview of the execution of two parallel coupled codes using
two partitioned approaches: parallel and staggered. Firstly, a brief overview of
the structure of a parallel code is given. After that, two execution modes of MPI
known as simple-program-multiple-data and multi-program-multiple-data are briefly
presented. Finally, the relation between the execution modes and the coupling
schemes is discussed.

3.1.1 Parallel code structure

The type of problems addressed in this work are those where the equations gov-
erning the system evolves in time. Additionally, these equations can be highly
non-linear, so that sophisticated numerical algorithms must be used to solve them.
The solution of these systems involves a set of stages that can be divided into
three: pre-processing, solution, and post-processing. Pre-processing can include the
discretization of the physical domain, as well as the domain decomposition of the
discretization. The domain decomposition allows solving the set of equation, re-
sulting from the discretization, using small sub-equations. Each of them must be
solved by the processors in which such sub-equation is allocated. Additionally to
the spatial discretization, a temporal discretization is also neccesary when transient
problems are considered. Finally, post-processing generally refers to the analysis of
the numerical results, e.g., visualization.

The structure of a parallel code taking into account the stages described above
is depicted in Figure 3.1(a). Turnon and Turnof tasks represent pre- and post-
processing stages, respectively. In the case of non-linear transient problems, the
solution stage is represented by a set of tasks. Timste represents a loop dealing
with the time step strategy. Each of these time steps is composed by five tasks.
Begste performs operations related to the initialization of each time step. Endste
checks if the overall system has achieved a given temporal convergence, additionally,
if necessary, it can perform post-processing tasks related to the current time step.
The last three tasks are associated to the solution of the set of equations arising
from the discretization. These tasks consider the possibility of solving multi-physics
problems through the sequential execution of their physical components, see the
next section for details. Begzon executes a loop through each equation A;u; = by;
coming from the discretization of each physical component. In Doiter an iterative
method for the numerical solution of a non-symmetric system of linear equations is
used to solve individually the equation associated to each physical component #:.
The interaction that a given physical component i enforces over another component
J is considered introducing an extra term A,; into the original system. Finally,
Endzon determines if the set of equations has achieved the target solution, otherwise
the procedure is repeated from Begzon. Figure 3.1(b) shows how these stages are
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3.1. Parallel execution modes 25

executed sequentially by a set of processors p; assigned to the parallel code 7. Details
are discussed in the next section.

Physici Physic j
_—

Monolithic Approach (SPMD*)

subdomains

(a) (b)

Figure 3.1: (a) Parallel code structure (b) Single-program-multiple data execution mode.

3.1.2 Single-program-multiple-data

Once a given partition Q' has been divided into as many sub-domains {Qf, Q5 ..., Q! }
as p” processors, each processor a € p* can execute any task 3 during a time AT,.
Each of these times can vary with the type of processor, the size of each sub-domain,
or with the complexity of the task to be executed. An ideal case where identical
processors execute simultaneously the same task through different sub-domains is
depicted in Figure 3.1. This case shows three time steps of a multi-physics system
formed by two physical components i and j sequentially executed one after the other.
The partition has been divided through five processors. Each of these processors
can execute as many times as necessary each of the seven tasks described above,
however only Begzon, Doiter, and Endzon are shown.

The procedure described above can be classified as a mode of MPI known as
single-program-multiple-data (SPMD) [42]. In general, the tasks are divided and
executed simultaneously on multiple processors in order to achieve the results faster.
The SPMD mode is widely used in cases where the physical components act across
the same physical domain, for instance, a turbulent reacting flow. Another example
is a monolithic solver. In this case, the multi-physical system is completly solved
using a single matrix equation.

3.1.3 Multiple-program-multiple-data

The partitioned multi-physical approach studied in this thesis is based on another
mode of MPI known as multiple-program-multiple-data (MPMD) [42]. In this case,
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Physical Domain

Partitioned Approach (MPMD*)
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Physic j

Physici

*Flynn-Johnn classification:
SPMD: Single Program Multiple Data
MPMD:Multiple Programm Multiple Data

Figure 3.2: Multiple-program-multiple-data execution mode.

the multi-physics system has regions governed by particular physics, so that each of
these regions define a partition. The essential idea is that the physical solution asso-
ciated to each partition is found independently to each other, so that each partition
has its own allocation of processors. Additionally, extra communication between
partitions is necessary in order to account for the interaction between them.

Figure 3.2 depicts an example of the partition of a multi-physical system. Lets
suppose that a total number p = p' + p? of five processors are divided between
two partitions Q' and Q2 each of them are governed by certain physics interacting
exclusively across a common boundary interface I', so that p! = 3 and p? = 2,
respectively. Due to the fact that each partition is independent, its execution is
equivalent to solve each partition using a SPMD mode. The physical interaction
between partitions is considered to take place exclusively in processors where the
interface I € 90 is hosted. Thus, a given sub-domain 2} hosting a section T}
on its boundary interface 9 can exchange information with another sub-domain
section Q{ if and only if GQ}’;DGQ{ # (). In the present case, the physical interactions
are regarded to take place between sub-domains Q3 and Q%, and sub-domains 2}
and Q2.

Summarizing, a partitioned multi-physical approach based on the MPMD execu-
tion mode to solve each partition as a SPMD mode requires extra communication
between processors. This extra communication takes place in those processors allo-
cated in different partitions with common regions. These regions are defined by the
overlapping between the sub-domains hosted in the processors. Details about how
to determine if a pair of sub-domains overlap is given in Section 3.2.1.

3.1.4 Coupling schemes

Additionally to the execution mode, another important point is the execution se-
quence of the partitions. The sequence is defined by the scheme used to couple
the multi-physical system. Two cases are considered here: parallel and staggered
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Parallel-MPMD at the same time (Gauss-Seidel)

I--III--III-
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\

Staggered-MPMD one after the other (Jacobi)
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Figure 3.3: Parallel and staggered executions for a partitioned multi-physical system.

schemes. The parallel scheme is characterized by the fact that partitions are exe-
cuted concurrently, i.e., at the same time. On the other hand, the partitions in the
staggered scheme are executed one after the other. Generally, the resulting data
obtained from a partition can be used as input for the other, so that the data ex-
change takes place after a given partition finalizes its execution, and just before the
second partition initializes its own execution.

Figure 3.3 shows the execution sequence of the parallel and staggered schemes for
the partitioned multi-physical system described in the last section; two partitions
Q! and Q2 are solved independently through a SPMD mode. In the parallel scheme,
the partitions start their execution at the same time. A common situation is that
the fastest solver (in this case Q?) must wait while the slowest solver (2!) finishes its
execution. Once Q! finished its execution, the data exchange is performed between
pairs of sub-domains previously identified as coupled. Now, the data received is used
by each partition as an input which can be employed to update the properties of
the current partition. Finally, the whole procedure can be performed as many times
as necessary. Unlike the parallel scheme, a partition must wait while the other is
being executed in the staggered scheme. In general, the data exchange takes place
after a given partition starts its execution (in this case Q'), and finish it. Once the
other partition has received the data, it can be executed. The updated data is now
sent to the started partition Q', and then the procedure can be repeated.

The choice of the scheme is generally defined by the physical interactions between
partitions involved in the coupling. For instance, the implementation of the iter-
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ative Robin-Neumann algorithm described in Section 1.1.2 involves the use of the
staggered scheme. Thus, for each iteration k of this particular case, partition Q¢ is
firstly solved. Then the values of wgk) through the coupling interface T' are sent,
and once received them in Q°, the values of wgk) can be obtained enforcing a Robin
boundary condition on I'{“. Finally, the values to be enforced on the Dirichlet in-
terface ' can be updated and sent back to Q% Other coupling cases where the
staggered scheme is used are discussed in Chapters 4 and 5.

An important point is the parallel performance of each coupling scheme. In gen-
eral, the performance of a parallel application is strongly related to two parameters,
concurrency and load imbalance. The concurrency refers to the number of tasks
that can be executed simultaneously at any given time. The load imbalance is con-
sequence of assigning different amount of workload to the available processors. One
of the main drawbacks of coupling schemes is related to the unbalance introduced
when an inappropriate selection in the allocation of the available processors is done.
In order to overcome this drawback, a strategy based on a suitable resources dis-
tribution is introduced in Chapter 6. The goal is to achieve an optimal balance in
the data distribution so that, the load is balanced not only for each component, but
also for the whole coupled system.

0 for Q) ={Q},...Q)} do
if QF NQL # 0 then
Interpolation, (vE, ) — vh
Communication,s(vh)
&5 S ——c——— end
end

(a) (b)

Figure 3.4: (a) Disjoint partitions with their own sub-domains, QF and €Q}. The data transfer
is only performed between overlapping sub-domains, in two steps: interpolation and
exchange. The interpolation maps property values v% on Qf to values vl on Qf
through the coordinates r%. (b) Brute force transfer algorithm. The overall system
Q is divided into a o number of partitions €, each of them constituted of a number
Po of sub-domains {21, Q2. ..., QP>}. The number of communication qu that a sub-
domain 2% should perform with other partition j, is defined by the number of times
that this sub-domain overlaps with the sub-domains Qf In this particular case,
the overlapping surface I';; = €; N Q; # () defines the communication between the
partitions €; and ;. It takes place between the sub-domains Q7 and €7 of the
partition ¢, and the sub-domain le of the partition j.
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3.2 Coupling tool

Lets define a coupling tool as a software that allows solving a multi-physics problem
by combining different single-physics codes. This coupling tool should satisfy some
important characteristics such as robustness, efficiency, and scalability for multi-
physical algorithms [6]. In light of the above, a high performance computing tool
designed to solving multi-physics simulations is presented. The Parallel and Locator
Exchange Library+-+ (PLE++) described here is a C++ environmental library with
the capability of allowing the communication between parallel applications written
in C/C++, Fortran or Python. Note that the PLE++ library is based on the
Parallel and Locator Exchange library, originally developed to couple the CFD code
Code_Saturne, and the heat transfer code Syrthes [43]. Some of the most important
features of the PLE+4+ are described in the rest of this section.

3.2.1 Parallel Location and Exchange Library-+-

The workflow of PLE++ can be divided into three main stages. Firstly, the tool
defines the set of MPI communicators to be used by each partition. In the second
stage, a localization algorithm is applied and as result a peer-to-peer communication
layout is established. The exchange of data is performed in the third stage and
repeated as often as necessary.

The data exchange performed by the coupling schemes only takes into account
sub-domains of each partition with common overlapping regions. Since each parti-
tion is executed independently, it is possible to assume for each of them that the
workload across the processors has been performed by a suitable domain decompo-
sition method, for instance using Metis [44]. The set of vertices assigned by Metis
to each processor along with their respective connectivities define the sub-domains
of each partition. Thus, if a pair of sub-domains, each of them belonging to two
different partitions, share a common region (surface or volume), such sub-domains
are involved on the coupling. This means that operations related to the coupling
(communication and interpolation) take place locally. Interpolations are performed
on each processor, while communications are performed in pairs of processors (by a
parallel peer-to-peer communication approach), see Algorithm 1 and Figure 3.4.

Parallel localization

As shown in Figure 3.5, each partition solver is executed by different set of proces-
sors, and each of these processors can only contain a sub-domain of such partition.
Due to the fact that, the partitions are independent between them, the vertices and
its connectivities (elements) are locally known into each partition, and not between
them. In order to create additional connectivities, each vertice of a local partition
must know the element of the other partitions containing it. Additionally, each
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vertice must know which processors contain such elements. Thus, at the end, it is
necessary to know: a) vertices involved in the coupling, b) the cells contained, and
c) the processors exchanging information.

The rest of the section describes the algorithm used for localization of the vertices
and elements involved in the coupling. The algorithm makes use of a hierarchical
localization based on geometrical properties of the partitions. It is divided into two
main parts: Global and Local search. See Figure 3.6.

Global search In the global search, the processors are associated in pairs related
to the coupling. Moreover, it checks which vertices and elements into such pairs of
processors can be potentially related.

Without limiting the generality of the algorithm, lets suppose that each partition
Q, and Qy is divided into sub-domains QF = {Q} 02 Q3} and QL = {Q}, 02, Q3 O},
and each of them is assigned to only a single processor p, see Figure 3.7. Such
processors can be classified as local or remote. Local processors are those that

AVANAZavy
SINAvAVL(

AVA#A#A%A#A#AV
A -
RAASAANAZ Partitions
WAVAVAVAY:
\STAVAVAVAY.
STAVAVAVAVA

INNINE

AVAVAVA'
AVATSANAAVAVAY.

Partitions
+
Communication

6 ‘ processors
ﬁ sub-domains
- g MPMD mode

mpirun . —np p, Solver, T —np Py Solvery, syntaxis

Figure 3.5: The overall physical domain is divided into independent partitions, each of them
characterised by particular physics. Additionally, each of these partitions can be
solved using different set of processors, and each of such processors can contain an
unique sub-domain’s partition. The figure sketches a physical domain formed by two
partitions 2, = {Q},Q2,Q3} and Q, = {Q},Q7, Q3. Q!}. A total of seven proces-
sors are used to the whole configuration, three processors are allocated to €2, and
four to €,. Two vertices hold in the surface of the sub-domain €2 (processor 1) are
contained by two elements in different sub-domain €} (processor 3) and €2} (proces-
sor 6). Thus, processors 1, 3 and 6 are involved in the coupling, and communication
between such processors must be performed to exchange physical properties between
partitions.
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belong to each partition, while remote processors are used to execute the rest of
partitions. Thus, the global search seeks the remote processors whose sub-domains

QF = GetBoz(QF), k=2

for [ ={1,2,...,p} do

L = SendRecv(QF)
if Q"N@Q.,, #0 then
Id* = WithinBox(RF, Q! )
r, = R;(Id;)
v, = SendRecv (RE(IdY))
Id?* = LocateCells(r,,,,, %)
Id}* = SendRecv,(1d;")
IDL] = (1d", 1d7)

T = GetOctree(r])
foreach e; € 2 do
g = GetQueryBox(ey)
Id) = WithinQueryBox (T}, qu)
), d] += WithinCells(Idj,r})
end

end
end

PF = ArgMin(DE[:, 1 : py])
Ci = Lu[, Py

(a) (b)

Figure 3.6: (a) Global search. (b) Local search.

() (@)

Figure 3.7: (a) Bounding boxes Q, = {Q},Q2,Q3} and Q, = {Q}, Q7. @}, Q}} around each sub-
domain used to find processors related to the coupling. (b) If two bounding boxes
hold in different processors overlap, i.e. Q2N Q} = 0, a sub-set of remote vertices
in the partition §2} can be contained by local elements in the partition Q2. (c)
Remote vertices and local elements situated into the overlapping region Q2N Q,l). An
octree search T2 is created only with the remote vertices situated into the overlapping
region. Finally, homogeneous barycentric coordinates are used to determine which
of such vertices are localized into a particular element.
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are overlapped. This is performed by a Multiple Program Multiple Data (MPMD)
model described in Section 3.1.3. where all the processors execute the Algorithm 2,
concurrently to each other, see Figure 3.6.

First, the sub-domains Q% and €} are characterized by bounding boxes Q¥ and
Q!, see Figure 3.7. The information contained locally by each bounding box Q is
shared with each remote partition €, and vice versa. Thus, the bounding boxes
Q! of each remote sub-domain are available into each local sub-domain. Now, the
local and remote bounding boxes are compared. If such bounding boxes overlap

M =QN Q) # 0, the processors associated to these sub-domains can be related
to the coupling. The next step involves the searching of the local vertices r® and
their respective connectivities w® which can be allocated into the overlapping region

M. Now, the sub-set of local vertices r” is shared with the remove processor [ where
the overlapping partition 2! is hold, and vice versa. After that, the sub-set of local
elements w” are used to determine if some of such remote vertices are contained
into local elements (see the next section for details). Once the remote vertices
localized into local elements are found, their identifiers Id,.,,; are shared respect to
the remote processor [, and vice versa. As a result, the identifiers Id, received are
used to assign the remote processor into each local vertex r¥ that has been localized.
Thus, the results of the global search are: (a) mapping list of each local vertex with
its corresponding remote processor, and (b) list of local elements occupied by remote
vertices.

The list of remote processors where the elements associated to each local ver-
tex are allocated is used to develop a communication scheduling. This scheduling
determines the processors involved in the coupling, and when and how the data
is exchanged between them. The list of local elements and the coordinates of the
remote vertices are used to perform operations related to the coupling, for instance,
interpolation of values from the local sub-domain to the remote sub-domain.

Local search In the local search, the far vertices are associated to local elements.
This is done by an octree search algorithm along with some suitable method that
allows finding if a vertice is or not inside a given element, see Algorithm 3 and Figure
3.6.

Once the remote vertices r,, , and the local elements w* allocated into the over-
lapping region Q* has been identified. it is required to search the sub set of remote
vertices allocated into a sub set of local elements. In order to do that efficiently,
an octree search is performed. Such octree Tg is created using the remote vertices
r,,..- Now, each element e; into the set of local elements w” searches for the vertices
allocated within it. Thus, for each local element, a query box is created and used as
input for the octree. Such query box is compared with the range occupied by each
node of the octree. If the dimensions of a leaf are smaller than the dimensions of the
query box, the sub set of vertices can be considered as the closest to such element.
The last step uses a suitable method to decide if a vertex is located in an element.
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For instance, in the case of triangles or tetrahedrons homogeneous barycentric coor-
dinates can be used, or even spherical barycentric coordinates [45] for general cases.
The algorithm is detailed in Figure 3.7.

3.2.2 Application programming interface

Communication mechanism Figure 3.8(b) shows the syntax used to execute
different instances of the codes involved in a coupled simulation. Each code instance
use a SPMD execution mode, so that each code ¢ is responsible for independently
solving a given domain (; using a determined number of processors p;. Once the
coupled simulation is lunched, the number of requested processors is associated
to each code. For this, local- and inter- communicators must be created. The
local-communicators are used by each code to exchange information between the
local processors p, associated to each partition a. Inter-communicators are those
responsible of exchange information between processors p. and pf allocating the
coupled sub-domains Q! and QF respectively, see Section 3.2.1. The communicators
are created by the PLE++ API during the initialization of the coupling, see Listing
3.1. After PLE++ initialization (line 4), the set of communicators Commij is
created (line 11). Each communicator Commij has associated a group of processors
belonging to a particular coupling. The different couplings among the existing code
instances are determined by the list of identifiers Names. FEach identifier of the
list Names corresponds to the string namei used to tag each one of the solver
codes. For the case depicted in Figure 3.8(b), the solver identified as 1 has two
communicators, comm12 and comm13, each of them with 5 and 4 processors
respectively.

Localization As stated in the previous section, for each pair of overlapping par-
titions Q% and Q7 the overlapped elements (cells or points) of partition Q® must be
associated to the overlapped elements of partition 7, see Figure 3.8 and Figure 3.9,
Listing 3.2, line 3. A local mesh structure must be associated to a set of points in
each partition. The cells defined by the vertices vertex_coords__ i and their con-
nectivities vertex_ num__ i are used as a base mesh to find the points of the other
partition, which overlaps with the local mesh. Furthermore, the set of points ver-
tex__coords__j are the coordinates of the local mesh, which is visible to be located
by the other partition. These points, for instance, can be defined by the centres of
the cells, the gauss points of the cells, or even equal to vertex_ coords_i. The
other partition searches through all the points in the set vertex_ coords__j over-
lapping its mesh. Once the points, vertices and connectivities are defined, PLE++
applies Algorithms 3.6 to look for the set of local cells dist__locations__i holding
the set of localized points dist__coords__j. Note that the set of localized points
dist_ coords__j is a subset of vertex_ coords__j established by the other parti-
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namei 1 2 3
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Figure 3.8: Localization procedure. (a) Partitions (1), tree data structure (2), barycentric coor-
dinates (3), and particle source in cell interpolation (4). (b) Launch syntax, sketch

of the vectors related to the PLE++ APIL.
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from mpid4py import MPI
from plepp import PLEPP

CD = PLEPP ()
CD.set_app_name (namei) ;
CD.set_world_comm (MPI.COMM_WORLD)

local_comm = CD.set_mpi_comms ()
local_size = local_comm.Get_size ()

= O © 00Uk W~

—

Commij = {namej:CD.get_mpi_commij(namej) for namej in Names if not
namei==namej }
Ranksij = {namej:commij.Get_rank() for commij in Commij 2}

— =
w N

Listing 3.1: Defining communicators

CD.locator_create(local_comm, commij, tolerance)
3 CD.locator_set_mesh(n_vertices_i, n_elements_i, vertex_coords_i,
vertex_num_i, n_vertices_j, vertex_coords_j)

o N

4 .
Listing 3.2: Defining geometry

1 ...
2 n_send = CD.get_n_dist_points ()
3 ...
4 # integer, n_send
5 dist_locations_i = CD.locator_get_dist_locations( )
6 ...
7 # double, n_send * dim
8 dist_coords_j = CD.locator_get_dist_coords ()
9 ...
10 # double, n_send * dof
11 var_ij = interpolation(dist_coords_j, propa_i, vertex_coords_i,

vertices_num_i)
12 ...
13 # double, n_recv * dof
14 var_ji = CD.locator_dexchange (var_ij)
15

Listing 3.3: Sending

1
2 n_recv = CD.get_n_interior ();
3 ...
4 # double, n_recv * dof
5 var_ji = CD.locator_dexchange(var_ij)
6 ...
7 # integer, mn_recv
8 interior_list_j = CD.locator_get_interior_list( )
9 propb_il[interior_list_j-1] = var_jil[l:n_recv]
10 .

Listing 3.4: Receiving

Figure 3.9: PLE++ application programming interface (APT).
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Figure 3.10: (a) Strong-scaling curve for the fluid partiton (without coupling) and (b) Trace of
coupling case (flat-plate experiment).

tion. In addition, each localized point of dist__coords__j is associated to only one
cell of dist_ locations__i. However, a cell can hold more than one point.

Data exchange Once PLE++ creates the connection between the cells and points
of each partition within the overlapping region, it exchanges (send and receive) the
data related to the physical variables involved in the coupling scheme, see Figure
3.9 and Listing 3.3 and 3.4. Before the exchange, each cell of dist_ locations_ i
is used to interpolate the local physical values propa__i on each localized point of
dist_ coords__j. The result of the interpolation is stored in the variable var__ij.
Afterwards, PLE++ sends this variable from the local partition to the other par-
tition. The values var__ji received by the other partition are then used to enforce
the values of the property propb__i in its own domain.

After the exchange of information, each partition uses the received data to com-
pute the solution. Once this is done, the last two stages are repeated when necessary.

3.3 Application cases

Two cases are briefly discussed below. The first addresses the parallel implementa-
tion of a staggered coupling scheme. The second case describes the implementation
of a heterogeneous simulation on GPU and CPU.
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3.3.1 Parallel performance analysis

In order to apply the approaches described along this chapter to large-scale problems,
two factors must be taken into account: (1) the performance of the computations for
each individual partition and (2) the performance associated to the selected coupling
scheme. This section addresses the parallel implementation of the coupling scheme
for a confined premixed jet flame described in Section 5.4.3. In particular, the anal-
ysis presented here is limited to show the availability of the partitions to achieve
a good performance, and also to show the possible limitations of the coupling per-
formance. In Section 6, a strategy to run partitioned multi-physics applications on
extreme scale architectures with an optimal parallel performance will be presented.

In general, a reduction in parallel performance when computing single partitions
usually leads to a full breakdown of the performance of the coupling scheme, despite
the algorithm can be very efficient. Because of that, the analysis of the parallel
performance of the code without coupling is the first step to be verified. Figure
3.10 (a) shows the strong-scaling curve performed on the supercomputer Vesta at
the Argonne National Laboratory. The curve shows an excellent performance of
the code up to 16384 MPI processes on the modelling of the fluid partition for the
confined premixed jet flame. The efficiency achieved for this problem was around
91%. As the solid partition uses the same numerical framework as the fluid, the
focus can now be restricted to the features of the coupling scheme.

The parallel implementation of the staggered coupling scheme is now considered.
The coupling execution consisted of 64 MPI processes divided between the fluid
and solid partitions (60 and 4, respectively). The number of time steps performed
were limited to six. Figure 3.10 (b) shows the parallel execution of the case unfolds
over time (the trace) obtained by the parallel performance tool HPCToolkit [46].
The figure shows the time line of each MPI process with colours in the vertical
direction showing different computing stages. In the case of the fluid, the first stage
(LM) represents the solution of the low Mach equations, while the second stage (Cy)
corresponds to the coupling. At the same time, there are also two stages in the solid
case, the coupling (Cs) and the solution of the energy equation (Ej).

As stated above, in the sequential strategy, the domains are solved one after the
other, which can be clearly seen on the trace. Each time step sequence starts with
the solution of the low Mach equations in the fluid partition (LM), while the solid
partition is waiting for the solution (Cg). Once the solution of the fluid partition
is achieved, the solid partition performs its own solution (Eg). It should be noted
that between the solution stages LM and Eg no overheads due to the exchange of
information were introduced into the algorithm. This approach requires that both
partitions wait during the calculation stage of the other partition introducing a
limitation in the maximum performance that can be achieved when the number of
MPI processes are not selected appropriately.
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3.3.2 Heterogeneous computing

Examples where heterogeneous simulations on GPUs and CPUs have been employed
to model fluid—solid systems can be found in [47-50]. Although different strategies
can be used to solve each partition, in general most of them are based on CPUs
to solve the fluid and GPUs to solve the particles. Among these examples, those
that make use of heterogeneous CPU-GPU clusters are the particular interest, see
Figure 3.11(a). In this context, the data is transferred along the computer nodes
by a high performance low latency interconnection network, such as Infiniband (IB)
and then throughout the PCI-Express (PCle) topology until reaching the GPUs
[51,52]. In that sense, the MPI can be used for the communication among distributed
processes. Multiple GPUs using a MPI-based parallelization can rely on either
traditional or CUDA-aware MPI implementation. In the case of a traditional MPI
implementation, the bunch of data should be transferred via cudaMemcpy and
MPI__Send/MPI_Recv [53,54]. The cudaMemcpy instruction moves the data
from the CPUs to the GPUs and vice versa, while MPI__Send and MPI__Recv
are used to send and receive that data among processors.In the particular case of the
CUDA particles simulator described above, once all the system has been updated,
the positions and velocities of the particles are transferred to PLE++. After this
step, the localization is done. The Figure 3.11(b) shows the results obtained in
an example were localization was performed by using 16384 particles and 56401
tetrahedron cells. A total of 110 steps were employed. The localization was carried
out in each time step. The simulation has been executed in a NVIDA GeForce 320M
with 768 CUDA Cores and a processor 1.86 GHz Intel Code 2 Duo, CUDA 4.6 and
OpenMPI 1.6.

j@ $ 3 reew
1ill se%w

(a)
Figure 3.11: (a) Localization procedure for a heterogeneous simulation on GPU and CPU. In this
case, the GPU and Alya transfer the data throughout interconnection network and
PCI-Express. PLE++ performs the localization and mapping. In the sketch the
GPU code uses the first MPI thread while the rest is occupied by the Alya code. (b)
Time evolution of the particles and tetrahedron cells involved on the localization.
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3.4 Related work

In resent years a great deal of effort has been made to develop coupling tools spe-
cialized on the solution of partitioned multi-physics application. Examples of these
developments are the libraries MUI (Multiscale Universal Interface) [18], preCICE
(Precise Code Interaction Coupling Environment) [17]. and CWIPI (Coupling With
Interpolation Parallel Interface) [15,16]. As PLE++, these libraries provide a com-
munication layer for exchanging information between two or more parallel codes.
Of particular interest are these three libraries due to the fact that their developing
is continuous, and because they have shown to be appropriate to solve large-scale
multi-physics problems.

MUT uses a Smoothed Particle Hydrodynamics (SPH) simulation as an example
to perform a strong scalability test [18]. Such example involves two overlapping SPH
partitions, each of them containing the same quantity of fluid particles (~ 1.4 x 10°).
The results show that, by using a concurrent execution of the SPH solvers and
allocating the same number of MPI processors to each domain, it is possible to
achieve a parallel efficiency of ~ 80% when the total number of processors range
from 2 to 28. When the MPI ranks move from 2% to 2'° the efficiency drops to 40%.

The parallel performance of preCICE is studied via a strong scalability for two
coupled configurations. Firstly, a cubic fluid domain is artificially divided into two
halves and used to demonstrate that the coupling implementation is able to main-
tain the trend of a linear strong scaling in the solution of hyperbolic conservation
laws. The second coupling configuration consists of a partitioned fluid structure
interaction case where the number of processors in the solid partition varies from 3
to 27 | while the number or processors dedicated to solve the fluid domain remains
fixed at 2! . This is done in order to identify the best relation between the number
of processors used for each partition. The study claims that, for this particular case,
such relation is achieved when six processors are assigned to the solid partition, in
other case the scalability tend to decrease.

Regarding CWIPI, and as part of the OpenPALM software [11], parallel per-
formance studies has been mainly focused on partitioned conjugate heat transfer
problems. Exchanges times between solvers as function of the number of cores of
the coupled system has been studied in [55], or [16] where the analysis of a coupled
combustion chamber with a total of ~ 40 millions of elements shows the impact of
imbalanced repartitions of cores among the solvers. In [5] the parallel and staggered
coupling schemes are applied to the study of a cooled turbine blade with about 7
millions of elements. This last example claims that existence a relation in the dis-
tribution of the processors which encourages the load balance for a parallel coupling
scheme exists. Such relation associates the execution times T and T of the solid
and the fluid solvers, respectively, with the number of processors ps and p, assigned
to each solver, so that ps/pr = Ts/T}.
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As will be shown later (Chapter 6) the parallel performance studies related to
PLE++ lead to comparable results as those obtained by MUI, preCICE and CWIPI.
It is due to the fact that they share similar features in their development. Firstly,
all of them have been designed to encourage flexibility and scalability. In this sense,
each of them have developed its own application programming interface (API) that
usually allows to define the communication, coupling schemes, and data mapping
to be used. On the other hand, despite of the fact that the most of them are able
to solve the same problems (for instance, of all them are able to solve conjugate
heat transfer problems) the main difference between the libraries is the application
target.

3.5 Summary and remarks

This chapter presents an overview of the main challenges related to the implementa-
tion of a coupling tool with the capability of dealing with partitioned multi-physics
systems for extreme scale architectures. Firstly, execution models of MPI and their
relation with the two coupling schemes are introduced. After that, the workflow
of the coupling tool developed here is described. Then, two application cases are
discussed. The first case addresses the parallel performance analysis of a fluid-solid
thermal coupling, while the second case describes the implementation of a hetero-
geneous simulation involving GPU and CPU.

The execution sequence of the parallel and staggered schemes are based on the
Multiple-program-multiple-data (MPMD) execution mode. This execution model
solves each of the partition solvers involved in the coupling as a Single-program-
multiple-data (SPMD) execution mode. A partitioned multi-physics approach based
on the MPMD execution mode requires extra communication between processors due
to the fact that partitions are independently executed. This execution of the parti-
tions is the source of the parallel coupling problem (transmission and transformation
of data between partitions).

The Parallel and Locator Exchange Library+-+ (PLE++) presented here provides
flexibility and scalability and allows the definition of different coupling schemes along
with appropriate methods to deal with the parallel coupling problem. PLE++ is
a C++ environmental library with the capability of allowing the communication
between parallel applications written in C/C++, Fortran or Python. The workflow
of PLE4++ overcomes the parallel coupling problem by using three main stages.
Firstly, the set of MPI communicators to be used by each partition, localization
algorithm as a peer-to-peer communication layout, and the exchange of data.

Finally, the application cases introduced here show that the PLE++ library pro-
vides scalability and flexibility. The trace of a staggered coupling approach shows
that no overheads due to the exchange of information are introduced into this ap-
proach. The second case proves that PLE++ can be used in heterogeneous sim-
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ulations involving GPUs and CPUs. In this case, a CUDA particles simulator is
coupled to the HPC-Alya code. Positions and velocities of the particles are then
transferred from the GPU to the CPU through the PLE++.
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4

Contact of deformable bodies

This chapter addresses the development of a parallel algorithm to deal with the
problem of contact between deformable bodies. In general, the solution of a contact
problem involves two main stages: contact resolution and contact search. Contact
resolution refers to how constrains arising from contact are enforced, while contact
search identifies regions on the surface of each body where contact takes place. In
this work, an iterative coupling approach is used for the contact resolution of the
frictionless interaction between two bodies, whereas the contact search is performed
by the PLE++ library.

One of the main contributions of this chapter is to show how the parallel local-
ization procedure implemented in the PLE++ library is crucial for the development
of the contact algorithm described in this thesis, for details see [31]. It is worth
noting that this development has been performed in collaboration with a special-
ist in computational mechanics, Matias Ignacio Rivero. The nowvel algorithm here
described was developed taking profit of his knowledge in the physics of contact as
well as of the advantages presented by localization procedure. Details are given as
follows. Firstly, basic physical principles behind the contact of deformable bodies
are revised in Section 4.1. The fundaments of computational mechanics applied to
deal with the contact resolution are briefly discussed in Section 4.2. The iterative
Dirichlet-Neumann approach used in this thesis for the solution of frictionless con-
tact problems is described in Section 4.3. Case studies are given in Section 4.4,
including a validation case, and a practical application of industrial interest.

4.1 Physical background

This section introduces basic physical principles behind the interaction between two
bodies in contact: (1) non-penetration constrain, and (2) equilibrium of forces be-
tween bodies. These physical principles are introduced using two examples. Firstly,
a simple case describing the modelling of elastic particles is presented. Afterwards,
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44 Contact of deformable bodies

the interaction between deformable and rigid bodies is used to show how the contact
constrains define the shape that a deformable body must reach.

4.1.1 Elastic particles

The interaction between non-spherical rigid particles is modelled by considering each
of them as elastic. [56]. The main characteristic of this approach is that the contact
forces are computed based on the magnitude of overlap. When two particles are
in contact, it is possible to assume that a repulsive force F,, appears as result of
the overlapping 9,, between them. The magnitude of this force can be obtained as
proportional to the overlap and a spring stiffness constant &

Fab = —knénnab (411)

where ng, = (r, — ry) /|1y — 1| stands for the unit vector between the center of the
particles r, and r,. More sophisticated models can even include a damping propor-
tional to the normal relative velocity vector between the particles, and tangential
forces [35].

Without loss of generality, lets suppose the case of two identical spherical particles
of radius R,, see Figure 4.1. The repulsive force F,;, appears only when the distance
rq between their centers is smaller than 2R, so that

—kd,ngy, for rop < 2R,

Fop = { 0 for rqap > 2R, (4.1.2)

In order to maintain the overlapping parameter as a non-negative number, it must
be calculated as §,, = 2R, — rq instead of ro, = 2R, + 9,,. Considering the above,

AY
rap®,
\

(@) (b) ()

Figure 4.1: Soft-sphere model of a particle-particle interaction.
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the Equation 4.1.1 can be rewritten as

—koyng, 0, >0
Fo, = 0 6 =0 (4.1.3)
0 0, <0

i.e., when the overlapping is positive (d§,, > 0), a force (Fu < 0) opposed to the
movement is applied, otherwise (4,, < 0) the force is always zero.

In more general cases of the discrete element method, for instance, non-spherical
particles, the magnitude of the force is calculated as proportional to the overlapping
area or volume between these particles [57], see Figure 4.2. In these cases, Equation
4.1.2 is even valid if an appropriate stiffness constant is used.

4
v

Figure 4.2: Soft-nonspherical model of a particle-particle interaction. Some of the variables are
need to compute the relative velocity vap of the particles at the contact point: r4
and rp are the vectors from the centroids C; and Cy of the particles to the force
point P.

4.1.2 Unilateral contact

Like the soft particles, the contact forces for deformable bodies are also computed
based on the overlap between them. However, in this case, the value of the stiffness
is not a constant, but a distribution of forces depending on the displacements across
the contact interface.

Figure 4.3 depicts the interaction between a deformable body and a static un-
deformable body. Once the bodies overlap, the non-penetration constrain defines
the shape that the deformable body must reach across its contact interface. Thus,
in order to achieve this shape, the contact interface of the deformable body must
be displaced. The magnitude of these displacements can be calculated similarly as
the overlapping parameter 9,,. A first approach is to use the difference between
the initial configurations of the bodies as displacements. As result of enforcing
these displacements, the distribution of the forces inside the deformable body must
change. These forces are transmitted from one body to another by a compressible
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46 Contact of deformable bodies

force, normal to the contact interface, and a friction force acting tangentially. It
is worth noting that, the action-reaction principle requires that the normal forces
acting through the contacting surface are equal and opposite.

4.2 Formulation of multi-body contact problem

The previous section describes basic physical principles behind the contact of de-
formable bodies. This section briefly introduces the fundamentals of the computa-
tional mechanics applied to model contact problems, see [56,58-64] for details. The
modelling presented here involves the use of a master-slave approach, which neglects
the friction, and where the conservation of momentum is solved by the finite ele-
ment method, see Figure 4.4. The partitioned multi-physics approach whereby the
contact conditions are enforced is described later in Section 4.3.1.

4.2.1 Constrains

Non-penetration

The overlapping parameter introduced above is generalized here as a gap vector g.
Given two bodies, the gap vector measures the distance from a point r on the surface
0€) of a master body to a point p allocated on the surface S of a slave body

gpesS,00)=p—r (4.2.1)

The value of the penetration g, can be defined as the closest distance to the master
body, and, therefore, in the direction of the normal v of the master surface [58]

gn(p € 5,00) = (p—r1)-v(r) (4.2.2)

Thus, the mathematical condition for non-penetration is given as gy > 0.

(a) (b)

Figure 4.3: (a) Penetration. (b) Deformation.
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Figure 4.4: Master-slave approach. Gap vector g is measured from surface §§2 of the master
(top) body, to the surface S of the slave (bottom) body. Vectors (v, T) and (n,t)
stand for normal and tangential directions on the surface of each body. Components
of the stresses are given as (no,, o).

Equilibrium

Likewise it occurs for elastic particles and unilateral contact, reacting forces appear
as result of the penetration g,. These forces are divided into normal and tangential.
The normal force p, generally compressible, acts along a common normal n to the
contact surface, while the tangential force q results in a friction force acts on the
tangential plane.

In the case of deformable bodies, normal and tangential forces are transmitted
from one surface to another by contact tractions: pressure (normal traction) and
friction (shear traction). In turn, these tractions are used to calculate the resulting
deformations d, and the internal distribution of stresses o.

The action-reaction principle requires that the normal forces acting through a
frictionless contact interface are equal and opposite at any moment, i.e., in the
contact point r € 02 the normal force p acts on both interfaces S and 052, so that

P = Pg + Poo = 0, (4.2.3)
leads to the equilibrium of stresses throughout the contact interfaces
Ng - 05 -Ng + Ny - Oya - Ny = 0. (4.2.4)

In order to find the pressure distribution at any point of the contact surface of a
given profile, the solution of an integral equation for the pressure is required [62].
This is discussed in the next section.
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48 Contact of deformable bodies

4.2.2 Mathematical modelling

Following the procedure presented in Section 2.1.1, the transmission conditions for
the contact problem can be found once the contact constrains are introduced in the
weak form of the equation of linear momentum.

Solid mechanics problem

The conservation of linear momentum is the base of solid mechanics. It is a gener-
alization of the Newton’s law of motion to a deformable solid, for details see [65,66].
The equation is given as

_&d
~ o
where p, d = x — X, o and f, stand for material density, displacement field, stress
field, and volume force density for a solid partition €2, respectively. Stress bound-
ary conditions are given by the traction condition o - n = ty, while displacement
boundary conditions are given by d = dp, whered : QUT x [0,7] — R3 T > 0. Ad-

ditionally, initial conditions for displacements and velocities are required d(.,0) = d
in ©, 0d(.,0)/0t = dy, respectively.

Ld ~V-o = f in QeR® (4.2.5)

Weak form
The weak form (in the current configuration) of Equation 4.2.5 reads:

finddel: Ad,n) = F(n) VneV (4.2.6)
where

A(d, n) Jo (=p0d /0t -m + o - Vn)dQ

F) = Jof 0 d2+ fooln- o] - dF
U = {de H(Q): d=dpon D }
V = {neH(Q): n=0on D}

By using arbitrary test displacements dd = 6(x — X) = dx instead of test functions
1, and applaying appropriate boundary conditions, Equation 5.2.12 can be written
as

—/pad/at-add9+/a-v5dd9 — [ ty-éddr
Q Q o0

+ / £0dd2=0  (4.2.7)
Q

Now, in order to find appropriate transmission conditions (the boundary conditions
to be used in the coupling) for the contact problem, the constrains must be in-
troduced to the weak form of the linear momentum equation. Details are given
below.
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4.2. Formulation of multi-body contact problem 49

Contact constrains At any point across the contact interface, the displacements
depend on the contact tractions and vice versa. The mechanics of contact intro-
duces the non-penetration constrain (Equation 4.2.2) inside the weak form of the
conservation of linear momentum (Equation 5.2.12), in order to find the distribution
of displacements and tractions throughout the contact interface.

Following the procedure presented in Equation 2.1.4 (Section 2.1.1), the integral
through the boundaries can be divided into three parts

[ neosdar = WJr/tN-éddF (4.2.8)
0B N
/ n-o-oddl
CI+C2

The contribution of the Dirichlet boundary D is zero. The integral on the Neumann
boundary N is different from zero when traction conditions ty are given. The last
part corresponds to the contact interfaces C* and C? of each partition. By splitting
the contribution of this integral into two parts, and along with the equilibrium of
stresses, the gap vector g can be introduced

/ n-o-éd] ar = / n1-01~5d1dF1+/ n?.g?.6d? dr’
cl4C? c1 Cc?
- / n'. ol §(d! — d?) drt
Cl
— /C (n'o} + o)) 5(g) drt (4.2.9)

1

where the last relation results of projecting the traction n' - o' as normal and

tangential components to the master surface C*.

Frictionless contact Equation 4.2.9 integrates the conservation of linear momen-
tum and the contact constrains. In the particular case of contact without friction,
it is possible to show that (n'c, + o) - d(d' — d?) reduces to o, dg,, so that

/ n-o-éddr = / ol 8, dT'! (4.2.10)
Cl4+C2 c1

where dg, = n'- (6d' — dd?) is the first variation of the normal gap g,, and
n' = d' —d? represents the closest distance from a slave node to the master surface.
Thus, by using Equations 5.2.13 and 4.2.10, the weak form of the frictionless contact
problem can be expressed as

— [ podjor-sdae + [ o-Vidd2— [ ty-sdar

+ [ o, b9, dF+/ b-ddd2 =0  (42.11)
Cl ~—~— Q
P
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50 Contact of deformable bodies

Transmission conditions

From the weak form of the equation of linear momentum (Equation 4.2.11), trans-
mission conditions can be established. In Equation 4.2.9, the integrals corresponding
to the contact interfaces are combined. The resulting integral is simplified for the
case of frictionless contact in Equation 4.2.10. For this particular case, the problem
is to find the normal traction o, allowing the nullification of the gap ¢,, so that
when contact constrains are satisfied, the integral on C! tends to zero. In this work,
the coupling approach uses the gap g, to enforce Dirichlet-type boundary condi-
tions in one body (partition), while Neumann conditions n - o = o,, are imposed on
the other body. The next section briefly describes the parallel algorithm of contact
introduced here. Detail are widely described in the Ph.D. thesis [31].

4.2.3 Contact resolution: Treatment of contact constrains

In this section, two contact models used to enforce the contact constrains are briefly
discussed. The objective is to show the relation that these models have with the
iterative Dirichlet-Neumann approach described in the next section. It is worth
noting that the arguments given in this section introduce a novel form to understand
how the methods used for the treatment of the contact constrains are related. The
details about each method can be seen in [61,65].

Lagrange multipliers and penalty methods are numerical models widely applied
for the solution of contact problems [61,65]. Both methods are used to introduce
the term given by Equation 4.2.10 into the discretization of Equation 5.2.13, so
that contact constrains can be modelled. In [61], a system consisting of two bars
separated by a gap ¢ is used to illustrate how the Lagrange multiplier method can
be applied when contact takes place. Here, this example is modified in order to
show how the iterative approach described in Section 2.2, the Lagrange multiplier
method, and the penalty method are related.

Figure 4.5 (a) shows an axially loaded bar whose solution is found by the finite
element method. The resulting system of equations K d = fis shown. Four discrete
elements of length h; and five nodes are used in the discretization. Now, lets suppose
that a discrete element is removed (arbitrarily hs), see Figure 4.5 (b). The resulting
configuration consists of two bars separated by a gap g. Another consequence is that
the system of equations must be modified. The new system is now composed by two
parts K;ads + K;gdp = f; each of them corresponding to bar ¢. Fundamentally,
K;;d; stands for what takes place inside each bar i, while off-diagonal sub-matrices
K;; stand for interactions between bar ¢ and j. In the simplest case, when bars are
insulated to each other, off-diagonal sub-matrices are zero, so that systems K;;d; = f;
can be solved independently. On the other hand, when bars are in contact, the term
K;;d; needs to be considered. Three situations are now analysed.

In Figure 4.5 (b) sub-matrices K;; are explicitly shown for two bars separated
by a gap g. Bar €4 is composed of two discrete elements and three nodes, while
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4.2. Formulation of multi-body contact problem 51

bar (25 is composed of one element and two nodes. Gap between them is of length
hs. Because these two bars arise as consequence of removing the element hgz from
the original bar it can be assumed that the sub-matrices K;; can be found removing
appropriate terms from the original matrix K. The symbol &5 stands for the effect
that the removed element hs could cause. Two cases are evident. In the original
system K, &5 = AFE/hs. When bars are insulated to each other, & = 0. From
these limits, it can be concluded that the value of &5 must be determined in order to
perform the contact between these two bars. This is the essential concept behind the
penalty method, see [61,65]. The Lagrange multiplier method can also be inferred
from this example. For this case, the products inside all sub-matrices K;;d; are
explicitly performed, so that terms +&3g appear for the nodes being in contact. The
Lagrange multiplier method considers these terms as extra unknowns, so that a new

(a) 1 h 2 ha 3 hs 4 hy 5
AE/hy —AE/hy 0 0 0 dy fi
—AE/hy AE/hy+ AE/h, —AE/hy 0 0 dy fa
I 0 —AE/hy  AE/hy+AE/hy  —AE/hy 0 dy by | —Kd=f
[ ] 0 0 —AE/hs AE/hs+ AE/hy —AE/hy dy f1
0 0 0 —AE/hy AE/hy ds fs
L
1 ]
T 1
TIIIII 7777777777777 777777 7777777777777
000000000004500005500000557 0000500000507
LIIIIIIIIIIATY I /7277777777 /////Q///////
A s AR
50000000000 58000550000757 0000039820507
00000000000500000500000000 0000050000000
I ; ; ; i
(b) 1 hy 2 ha 3 g 4 hy 5
AE/h, —AE/hy 0 0 0 dy f
—AE/hy AE/hi+ AE/hy —AE/hy 0 0 dy f2
1] 0 “AEJhy  AEJhy 6| & 0 Ay = || {%’%} HA ] _ [ﬁi}
0 0 —&3 AE/hy+ & —AE/hy dy fa Ba | BB s B
0 0 0 —AE/hy  AE/hy ds fs
AE/hy —AE/hy 0 0 0 0 d, f
—AE/hy AE/hi+ AE/hy —AE/h,y 0 0 0 dy f2
0 —AE/hy AE/hy 0 0 +1 d | | B
(111] 0 0 0 | AB/hi —AE/h: || 4 | T | T
0 0 0 —AE/hy AE/hy; 0 ds fs
0 0 F1 +1 0 0 &ag +g

Figure 4.5: Axially loaded bar example. (a) Discretization of equilibrium equation by using four
discrete elements of length h; and five nodes. (b) Discretization under supposition of
that the element hg is removed so that a gap g arises. The bar is supposed of length
L and constant cross-section A. By using Hooke’s law 017 = Fe1; as constitutive
model, Equation 4.2.5 reduces to F9%d/0x? + f/A = 0 in equilibrium. In the first
case, the finite element discretization results on the system of equations K d = f.
For the second case, the matrices show the treatment that three different methods
give to the contact constrains.
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52 Contact of deformable bodies

system of equations is established. For instance, rows three and four in matrix II
y1€1d to —AEdg/hg + AEdg/hg + fgg = fg, and AEd4/h4 — AEd5/h4 — fgg = f4,
with g = d3 — dy4, giving rise to row and column six in matrix III.

In the Iterative Dirichlet-Neumann algorithm described in the next section, the
systems Kj;;d; = f; are solved independently, off-diagonal sub-matrices K;; are as-
sumed as zero, while their effects are modelled through boundary special boundary
conditions on the contact interface.

4.3 Methodology

This section summarizes the contact resolution proposed in [31] for the frictionless
interaction between two deformable bodies. It is worth noting that the methodol-
ogy presented here has been developed as a collaborative work where the PLE++
library which is crucial for the parallel contact search (localization) as well as for the
transmission and transformation of the data (exchange). See Chapter 3 for details
of localization and exchange.

The contact resolution presented here is based on two works introduced for the
numerical solution of contact problems: the Method of partial Dirichlet Neumann
boundary conditions (PDN), and the Contact algorithm of Dirichlet-Neumann type
(CDN) [63,67]. The first case is focused on the contact between a rigid surface and
a deformable body. In the second case, the contact between linear elastic bodies
is addressed. Summarizing, the method described here avoids the use of Lagrange
multipliers widely applied in contact mechanics [59,62]. One of the main drawbacks
of Lagrange multipliers is the fact that the matrix system to be solved changes as
the contact evolves. By contrast, the iterative method described here overcomes
this drawback by enforcing the contact constrains through the use of Dirichlet and
Neumann boundary conditions. Details are described in the rest of this section.

4.3.1 TIterative Dirichlet-Neumann algorithm

As shown in Section 2.1.1, the variational form of a given equation can be used
to define the appropriate transmission conditions required by an iterative domain
decomposition method. In Equation 4.2.11, the integral through the contact inter-
face incorporates the concepts introduced in Section 4.1.2. Firstly, non-penetration
constrain imposes the shape that a deformable body can reach. This is done by
enforcing Dirichlet boundary conditions that ensure n' - (d' — d?) = 0. Once Equa-
tion 4.2.5 is solved along with Dirichlet conditions, the normal traction o, to be
applied on the other body can be calculated from the stress field. This fulfils the
action-reaction principle n' - o' -n' +n?- o2 -n? = 0 between these bodies. Thus, a
contact problem can be solved by an iterative domain decomposition method where
Dirichlet and Neumann boundary conditions can be applied sequentially. Algorithm
4.7 along with Figure 4.6 depicts this iterative process introduced here in detail.
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(a) Interaction (b) Overlapping (c) Location
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Figure 4.6: Parallel algorithm for contact (search and resolution). Slip and Neumann conditions
correspond to the boundary conditions enforced through the coupling interface I" for
steps (2) and (3) of Algorithm 4.7. Starting guess stands for the update position of
Q.

Initially, the iterative method supposes that the bodies Q2% and Q are far from
each other. As the distance between them decreases, the localization process de-
scribed in Section 3.2 takes place. When the bounding boxes around each body
overlap, the bodies can interact, see Figure 4.6(a). The interaction starts as soon
as the bodies overlap (Figure 4.6(b)). This overlap consists of finding the set of
vertices V, on the surface 92 of the deformable body 2%, which are localized inside
of any element E; on the surface 9Q° of Q¥ (Figure 4.6(c)). Once the localization
algorithm 3.7 has a vertex v, € V, associated inside an element e, € E;, then the
gap ¢, can be calculated as the distance from the vertex v, to the boundary face of
e,. Because this boundary face can be approximated as a 3D plane passing by the
boundary vertices of ey, then the distance from this plane to v, defines g,,, which in
turn, defines the displacement to be enforced as Dirichlet condition in Q¢ (Figure
4.6(d)). This boundary condition must be enforced in such a way that the vertex
v, can only move in parallel to the boundary plane of e,. This is similar to impose
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54 Contact of deformable bodies

Lets déo) denote a starting guess

1. For k£ = 0,1, ..., until convergence do:

2. Solve for d® € Q¢ as follows:

cd® = f in Q¢ C RY
o®).n = ty on 0%,
A" = dp  on 90 (4.3.1)
d® = dgk) on I'}
3. Solve for d® € QP as follows:
£d® = f in Q° C R?
o®).n = ty on 904
d® = d, on 9QY (4.32)
o®.n = %  onTy
4. Update:
df =di” +0(d —d)  onT (4.3.3)
5. Endfor

Output: (d® e Qe d® e Qb)

Figure 4.7: Iterative Dirichlet-Neumann algorithm for the contact resolution

slip boundary conditions to a fluid (Figure 4.6(e)). The displacement d = [d, d,]”
to be imposed is divided into normal d,, and tangential d; components respect to
the boundary plane. The boundary conditions are enforced so that the normal
component is maintained fixed, while any restriction is imposed in the tangential
components. As result of enforcing this slip condition to Equation 4.2.5, the stress
field o, in QP is updated through the contact interface (Figure 4.6(f)). If an uni-
lateral contact is considered, the process is repeated until the desired convergence
is achieved. In other cases, the stress field o, is interpolated from the element e,
in €, to the vertices V, located inside . It is worth noting that localization and
exchange are need here, due to the fact that 2 has changed. Finally, for a fric-
tionless contact case, the normal stress ot.,, is enforced as Neumann condition in
Q. The entire process can be repeated until the desired convergence for each case
is achieved.
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So far, after introducing the fundamentals related to computational mechanics,
the iterative Dirichlet-Neumann algorithm for contact has been described. This
algorithm results from introducing the physics enforced by the contact constrains
into the weak form of the frictionless contact problem. As part of this algorithm, the
contact interface must be identified. Additionally to this identification, the exchange
of transmission conditions (displacement and stresses) must be performed since it
is assumed that each body is independently solved. In this work, identification and
exchange are performed by the PLE++ library described in Section 3.2. Now, the
rest of the chapter is focused on establishing the validity of the ideas developed
above, as well as describing some applications currently under development.

4.4 Case studies

The aim of this section is to show the validity of the approach presented here. Two
relevant cases are presented. The first case corresponds to the contact problem,
while the second case corresponds to a problem of impact. For all cases, the com-
putational solid mechanics problem is solved using standard Galerkin method for a
large deformation framework using a generalized Newmark time integration scheme.
The details related to this framework developed in a total Lagrangian formulation,
can be found in [68].

4.4.1 Hertzian contact: sphere on a rigid plate

An elastic ball contacting with a rigid plane is considered here, see Figure 4.8. An
upwards displacement ¢ is applied to the rigid plane while the topmost node ny of
the sphere is fixed. The contact interaction is produced at the bottom part of the
sphere and is assumed to be frictionless. Additionally to the problem setup, the
numerical solution achieved is shown.

Analytical solutions for the contact traction distribution are well-known from
Hertzian elastic contact problems [69]. This particular problem is characterized by
the contact radius a, and the maximum normal contact traction P,.., which are
given as

3Fd1 —v?

a* = == EV (4.4.1)
3F

Pmax - m (442)

where F' is the reaction force at the fixed node and d is the diameter of the sphere.

Figure 4.9(a) shows the normal stress solution for an eighth of the deformed
sphere. Figure 4.9(b) shows the reacting force F' at node n; as function of the mesh
size. The starting point for the resolution of this problem is a reference mesh of
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Figure 4.8: 3D Hertz contact problem. (a) problem setup. (b) mesh. Sphere of radius R = 8m
and material properties £ = 200N/m? and v = 0.32. The top most node of the
sphere ny is fixed while an upwards displacement ¢ = 0.05m is applied to the rigid
foundation. The contact interaction is produced at the bottom part of the sphere

and is assumed to be frictionless.

32198 elements while the finer mesh used here has approximately 14.5 times more
elements (465603).

By using the converged value of F' = 0.913N, analytical solutions of the con-
tact radius and the maximum normal contact traction can be calculated. Thus,
a = 0.292m and Py = 5.11N/m?, respectively. Figure 4.10 shows the contact
zone achieved from the numerical solution, and the analytical value of a. A good
agreement, between numerical and analytical solutions is found.
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Figure 4.9: (a) (b) reacting force F' an node ny as function of the mesh size.
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Figure 4.10: Contact zone for converged mesh. (a) View of the contact zone in the sphere. (b)

Zoom in tha contact zone. Comparison of analytical (green line) and numerical
solutions for the contact radius a.

Figure 4.11 shows the simulated contact pressure distribution at the contact zone
for the converged mesh. As expected, the point of maximum contact pressure is
located at the bottom part of the sphere, on the axis of rotation. The contact

pressure at this node gives P,,, = 5.10N/m? which differes from the analytical
value in 0.2%.

Paim [N/m?] Paim [N/m?] Piim [N/m?]

Figure 4.11: Contact pressure distribution at the contact zone.
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58 Contact of deformable bodies

4.4.2 Impact problem

In this section, the impact of a rigid hemisphere against a plate is studied. One of
the main objectives of impact analysis is to obtain the forces as function of time
and velocities of the bodies after impact.
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Figure 4.12: Impact setup. (a) 3d view. (b) backview. The diameter of the impactor is d =
16mm and its mass is m = 2kg. The dimensions of the plate are 100mm x 150mm X
4.16mm. Plate is simply supported (u; = uy = u, = 0) along four internal edges
leaving an inner region of 75mm x 125mm.

Impact set-up and boundary conditions for this problem are based on ASTM
D7136/D7136M-05 standard [70], see Figure 4.13. Similar numerical and experimen-
tal analysis have been performed in [71,72]. The plate is modelled as a transversally
isotropic material assuming it as a 7'700/M21 unidirectional carbon/epoxy lami-
nate with stacking sequence of [02/455/905/ — 455]s. Material properties are listed
in Table 4.1. The impactor is assumed as an isotropic linear elastic material with
an impact energy level of 1.6.J. For the numerical solution of this problem, a mesh
composed of approximately 8 x 10* elements for the impactor and 1 x 10° elements
for the plate are used. The meshes have been generated in order to enforce node-
matching situation at the contact interface. Finally, a total of 48 processors have
been used to solve the problem.

Property Value

E Longitudinal Young’s modulus 130 GPa
FEy = FE33  Transversal Young’s modulus 7.7 GPa
V12 = 113 Poisson’s ratio 0.3

Vo3 Poisson’s ratio 0.45 (assumed)
G119 = G13  Shear modulus 4.8 GPa

Gos Shear modulus 2.655 GPa

Table 4.1: Material properties
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Figure 4.13: (a) contact force-time, (b) contact force-displacement, (c¢) velocity-time, and (d)
energy-time

For low velocity impact, the inertia effects are relatively small [73], and hence, an
implicit quasi-static solver can be used to solve such problems. The results obtained
here, are compared against the ones obtained by the commercial code Abaqus [74].
This code solves the contact problem through a general implicit dynamic contact
algorithm based on the node-to-segment discretization of the contact interface. For
the enforcement of contact constraints, the introduction of a penalty method is used.
It is worth noting that Abaqus uses a completely different approach that the one
proposed in this work.

Figure 4.13 shows curves for low velocity impact tests. The Results obtained
here agree well with those achieved by Abaqus. From the beginning of the im-
pact (t = 0) until about 0.75ms, a good agreement between contact force-time,
contact force-displacement, velocity-time, and energy-time curves are found. It is
worth mentioning that these are preliminary results, intended to evaluate the im-
pact response of the algorithm for non-conforming meshes and further development
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Figure 4.14: (a) The artificial case studied. It consists on two identical rectangular cuboids
with with n® = (2™ + 1)? vertices distributed at the coupling interface (coupled
points) perpendicular to the z-axis, N¢,, = (27 + 1)(2™ 7 + 1) vertices, and
Niy = 3-23m=2) cells. The colors correspond to the subdomains assigned to the

processors, three (one subdomains is hidden) and seven. (b) Number of coupling

points N7, by processor, and the time T , requested for the location as function

of the total number of processors p. Four test series are showed (marks) each has
associated two curves, one for each partition Q! and Q2. Each series corresponds
to maintain constant the number of processors p! (16, 32, 64 and 128), while the
processors p? ranges from 16 to 256. Similar parallel analysis can be found in [36,75]
[76,77].

is required. This problem evidences the importance of a conservative transference of
loads in Dirichlet-Neumann type contact algorithms for impact problems. For fixed
interfaces, as in the case of fluid-structure interaction problems, several methods
based on conservative load interpolation schemes that can deal with the informa-
tion transfer between non-matching meshes have been proposed However, to the
best of our knowledge, the extension of such methods to moving interfaces have not
yet been reported, and their implementation in a parallel computational code is not
straightforward and requires additional development. This key issue is left for future
work.

4.4.3 Parallel performance analysis

In order to apply the contact approach described in Section 4.3 to large-scale prob-
lems, two factors must be considered: (1) the performance of the computations
for each individual subdomain, and (2) the performance associated to the coupling
scheme. This section addresses the parallel implementation of the coupling scheme
for the contact approach. In particular, it is limited to show the availability of the
localization algorithm employed to achieve a good performance, as well as the pos-
sible limitations of the coupling performance. When the coupled systems remain
unchanged during the simulation process, the localization can be performed as a
preprocessing task at the beginning of the simulation. In this case, the required
time for the localization task is not important when it is compared with the rest
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of the simulation [78]. However, it can represent a serious drawback in the perfor-
mance of a coupled system where at least one of the systems dynamically changes
its position in time. This is the case of the contact of deformable bodies.

Figure 4.14(a) shows an artificial case where two geometrically identical meshes
are used to exemplify how the localization algorithm operates on a parallel system.
The analysis addresses the behaviour of the algorithm when the number of processors
p' and p’ for each partition changes, while the number of vertices N, and cells
N¢,,. used in the discretization of each partition is maintained constant. See Figure
4.14(a) Table I for details.

Figure 4.14(b) shows the number of coupling points N’ by processor, and the
time T° , requested for their the location as function of the total number of pro-
cessors p = p' 4+ p%. The tilde is used to indicate the median of the values. Four
test series are showed. Each of them correspond to maintaining the number of pro-
cessors pl (2%, 25, 26 and 27) constant, while the processors p? range from 22 to
28, Furthermore, each serie has two curves associated, which corresponds to each
partition.

The results show that the coupling points N1 of the partition Q' remain constant

cou

for each test serie. For the partition Q2, the coupling points N, 2 decrease as the total

number of cores increases. As consequence, the location times T2 corresponding

to Q2 remain relatively constant, while T'L =~ decreases as the total number of cores
increases. It is worth noting that, the difference between the lowest (~ 1 x 10°) and
the highest (~ 1 x 107) values achieved by N2 (about two orders of magnitude)
produces a decrease of ~ 100% in T2,. The above suggests that a suitable selection

of the processors distribution is necessary to achieve optimal location times.

4.5 Summary and remarks

In this chapter, a method to address contact between deformable bodies has been
described. This method considers the use of a partitioned coupling approach to
simulate two deformable bodies interacting through a common interface in which
momentum is exchanged. In order to show the validity of the proposed approach,
two relevant cases are presented. The first case involves a contact problem, while
the second case corresponds to a problem of impact. Finally, an artificial case is
used to exemplify how the localization algorithm operates on a parallel system.

In order to validate the coupling approach and tool, an elastic ball contacting with
a rigid plane is firstly considered. The contact pressure obtained by the proposed
coupling approach is compared with the analytical solution calculated in [69]. The
results show an excellent agreement with the theory. Regarding the impact prob-
lem, a rigid hemisphere is impacted against a carbon/epoxy laminate. Results are
compared with these obtained from the comercial code Abaqus [74]. It is worth not-
ing that Abaqus makes use of a penalty parameter for the enforcement of contact
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62 Contact of deformable bodies

constraints, resulting in a different modelling strategy. These preliminary results
show some differences achieved by using Abaqus. Finally, two identical rectangular
cuboids are used to perform a parallel analysis of the localization algorithm used to
search the contact interface. Results show that an appropriate distribution of pro-
cessors used in the simulation encourages the time employed to identify the contact
interface. Chapter 6 gives a detailed study related to times employed to exchange
data and execute the solvers.

To conclude, the iterative coupling approach described here has been successfully
validated and applied to impact problems. Additionally, a performance analysis
shows that the iterative Dirichlet-Neumann approach used here to model contact
problems properly executed in parallel architectures. The future work, considers the
use of this methodology in the solution of more general applications, its validation,
as well as the investigation of its limitations.
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5
Conjugate heat transfer

This chapter is focused on describing a methodolgy to address conjugate heat transfer
problems using a partitioned approach. Here, an iterative process is used to enforce
the effects related to the exchange of thermal energy through the fluid-solid interface.
Additionally to this iterative process, a methodology to deal with the time-disparity
arising form the difference in the temporal scales between fluids and solids is also
presented.

The rest of the chapter describes the details related to the iterative coupling
approach and the time-disparity methodology as follows: In Section 5.1, a convective
heat transfer problem is used to introduce basic concepts related to heat transfer in
solids and fluids. Section 5.2 describes the mathematical details related to solve the
coupled partitions. Section 5.3 deals with the numerical approach used to solve the
coupling system. Section 5.4 describes briefly the results achieved using the proposed
coupling approach, as well as the methodology used to overcome the time-disparity.
Remarks and conclusions are given in last section.

5.1 Physical background

This section introduces basic concepts widely used in heat transfer, particularly
convective heat transfer. The study of convective heat transfer problems is based
on heat transfer and fluid mechanics principles. These principles will be introduced
using two examples. The first example is related to forced convection, while the
second is related to transient heat conduction. In convective heat transfer problems
the Fourier’s law of conduction along with the Newton’s law of cooling are used to
approximate the effect that a convective fluid has on a solid. In a transient heat
transfer problem, Biot and Fourier numbers can be used to estimate the behaviour of
a solid subjected to different conditions. The relations between these four ingredients
allows understanding the solid-fluid thermal coupling discussed later.
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64 Conjugate heat transfer

5.1.1 Forced convection

This section describes the calculation of the convective heat transfer coefficient using
the Newton’s law of cooling, and the Fourier’ law of conduction, along with an
appropriate calculation of the fluid velocity and temperature distributions.

The hydrodynamic boundary layer is the result of the friction due to relative
movement of a fluid with respect to a non-slipping surface. Figure 5.1 depicts the
case when a laminar viscous flow with a free stream velocity vo, = (ve0,0) comes
into contact with a isothermal flat plate. From the contact point O, and through
the fluid-solid interface, the fluid velocity v; = (v, v,) is zero. As the normal
distance y from the interface increases, the x-velocity component v, of the fluid also
increases until it reaches the free stream velocity v, again. The normal distance
0 in which this takes place defines the thickness of the hydrodynamic boundary
layer. For the flat plate, it can be shown numerically that this thickness is related
to the Reynolds number Re, = xpV};/u, and the distance = to the contact point, as
6 ~ 5z Re, /% [79].
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Figure 5.1: Hydrodynamic boundary layer

As the hydrodynamic boundary layer, the difference in temperature between the
flow and solid also results in the development of a thermal boundary layer along the
fluid-solid interface. Figure 5.2 depicts the case when the free stream temperature
T, is longer than the interface temperature T;. In general, the thermal boundary
layer thickness 6; is achieved when the difference of temperature AT = T, —T'is zero.
This difference increases as the thickness d; decreases, until it achieves a maximum
AT =T, —T; on the fluid-solid interface. From the integral boundary layer energy
equation for the laminar flow over a flat plate [79], it can be demonstrated that

hydrodynamic and thermal boundary layers are related by d;/6 = (/13/(14Pr),
where Pr = v/a = (u/p)/(k/(pcy)) stands for the Prandtl number, and x, marks
the point where the heating of the plate starts.
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Figure 5.2: Thermal boundary layer.

The Newton’s law of cooling establishes that the difference of temperatures be-
tween fluid and solid at the interface leads to a heat flowing from the higher to the
lower temperature region. Thus, from Newton’s law, the heat flux density due to
convection (the rate of heat transfer per unit of area)

. Q 9

i= S =h(T~Ta) [3/sm] (5.1.1)
relates the rate of heat transfer ) through the surface S, due to the difference of
temperature T, —T;. Under certain conditions this relation can be used to determine
the wall temperature variation 7;, the heat flux ¢ from the wall to the fluid, or an
appropriate value for the coefficient of convective heat transfer h.

Because the fluid velocity is zero at the fluid-solid interface, the rate of heat trans-
fer at the wall can be attributed to conduction in the solid in absence of sources. The
Fourier’s law of heat conduction can be used to determine the corresponding rate of
heat transfer per unit of area ¢ transferred through the wall interface. With the wall
along z-coordinate, Fourier’s law states that heat flux density due to conduction can
be expressed as

aT
Iy = —k— 5.1.2
where k is the thermal conductivity in J/s-m-K.
In the case of a laminar flow over a flat plate, an energy balance can be used to
obtain the relation between the coefficient of heat transfer and the Fourier’s law [79].
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66 Conjugate heat transfer

Thus, at the fluid-solid interface
§ = h(T; — Tos) = —K(OT /0y (5.1.3)

In particular, it can be demonstrated that for the flat plate under consideration, the
heat flux density can be calculated from its temperature profile (T'—1T5) /(T — 1) =
3y/(26;) — 1/2(y/6;)3, which in turn, is calculated from the equation of the thermal
boundary layer. Thus, the coefficient of heat transfer in the case of a laminar flow
over a flat plate is given by h = 3k/(24;).

Summarizing, in order to quantify the convective heat transfer coefficient h,
firstly, it is necessary to find the temperature profile 7' = T'(z, y) through the fluid-
solid interface, along with the hydrodynamic ¢ and thermal ¢; boundary layers. This
can be performed using the Prandtl’s boundary layer equations under certain as-
sumptions (the flow is steady, incompressible, and with viscosity constant; the shear
in the tangent direction, and the vertical pressure gradient are negligible). Once this
is done, the Fourier’s law of conduction —k0T /0y can be used to calculate the heat
flux ¢ from the wall to the fluid. Finally, the convective heat transfer coefficient is
given by the Newton’s law of cooling as h = ¢/(T; — T). It is worth noting that,
identifying accurate values of the coefficient of heat transfer h is one of the principal
challenges in convective heat transfer.

5.1.2 Transient heat transfer

While the transfer of heat in a fluid is usually dominated by convection, the heat
transfer in a solid is a diffusive process. This can lead to differences of orders of
magnitude between the temporal scales of the fluid and solid. For transient heat
transfer problems, the Fourier number can be used to provide an estimation of
the order of magnitude of the diffusion time process. Additionally, if the problem
involves the interaction with a fluid, the Biot number can be used to estimate the
effect that convection can perform on the solid.

The Fourier number Fo = at/L? arises from the non-dimensional form of the
Fourier equation

o1’
0Fo

Here, the apostrophe ['] indicates the dimensionless form of the temperature T, and
a = k/(pc,) represents the thermal diffusivity. p, ¢,, and k stand for density, calorific
capacity, and conductivity, respectively. L represents a characteristic length scale
used to obtain the dimensionless position gradients.

The Biot number Bi = hL/k appears when Newton’s law of cooling is considered
as boundary condition in the non-dimensional form of the Fourier equation

o1’
ds) — VT -dr Bi (T' —T'c0)dl’ =0 5.1.5
o 0Fo Ty + r,, A ) ( )

+V-(=VT)=0 (5.1.4)
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Figure 5.3: Relation between the Biot number and the temperature profile. Temperature gra-
dients for slabs are presented as function of both space and time. In the first slab,
thermal conductivity is so high that temperature anywhere within the slab is assumed
to be the same. In the second slab, thermal conductivity is smaller by a factor of 10.
We see that temperature varies noticeably within the slab. In the third slab, thermal
conductivity is smaller by a factor of 100. In this case, temperature varies markedly
within the slab [80].

Here, the integral is performed through a solid body €2, with Dirichlet or Neumann
boundary conditions on I'j, and convective boundary conditions applied particularly
on I,

In order to study the effect that convective heat transfer has into a solid, some
simplifications can be considered [80]. A widely used simplification assumes steady-
state conditions, i.e., Fo — co. Another simplification assumes that the tempera-
ture is exclusively a function of time. An example of that is the lumped analysis. In
this case, the temperature changes only with the time, then the dimensionless form
of Fourier equation can be spatially integrated. By considering an arbitrary solid of
surface S, characteristic length L, volume V &~ S L, and initial conditions T" = Ty,
then the temperature 7" at any time ¢ can be obtained as

T-T
ﬁ = exp(—t/7>:exp<—BiOzt/L2>ZGXP<_BiFO> (5~1~6)
0 410

where 7 = (pc,V')/(h S) is the thermal time constant, hS the convective resistance,
and pc,V the lumped thermal capacitance. Thus, the Biot number can be used to
quantify the effect of convection on the solid. Temperature profiles within the solid
respect to the surface temperature are shown in Figure 5.3. At a given time ¢;, the
condition Bi < 0.1 states that the temperature 7" of the body remains spatially
uniform, i.e., (T'—Ty)/(T; — Tw) =~ 0. On the other hand, if Bi > 1, the change in
temperature T' — T, within the solid due to convection becomes important.
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68 Conjugate heat transfer

5.1.3 Coupled problem

An accurate solution of problems where conduction and convection are combined,
requires the exact calculation of the convective heat transfer coefficient. Firstly,
the solution of a solid exchanging heat with a fluid involves the calculation of the
convective heat transfer coefficient h. It is worth noting that, rather than a constant,
the coefficient h is distributed on the solid-fluid interface. Thus, accurate solutions
of the temporal evolution and the spatial distribution of the temperature in the solid
can be achieved if these spatial and temporal dependences of h are considered. On
the other hand, if, for instance, either the solid or the fluid evolves with time, the
temperature 7T; and the conduction heat flux density ¢ on the interface, as well as
the fluid temperature T, will also evolve, so that a new distribution of A must be
considered. Additionally, the heat transfer coefficient is influenced by the physical
properties of the fluid and solid when they are function of the temperature. From
the above, it is possible to conclude that due to these issues, an exact calculation
of the distribution of the convective heat transfer coefficient represents a difficult
challenge.

The coupling approach proposed in this thesis makes use of boundary conditions
of fourth kind to perform an ezact solution of convective heat transfer problems [81].
Instead of simply using the convective heat transfer coefficient, a boundary condition
of fourth kind uses the temperature and heat flux distributions through the common
interface defined by fluid and solid partitions. The use of these boundary conditions
in the solution of fluid-solid thermal coupling problems is detailed in the following
sections.

5.2 Formulation for CHT problems

The previous section introduces basic physical principles behind convective heat
transfer problems: the convective heat transfer coefficient, the Biot number and the
Fourier number. This section will briefly introduce mathematical details related to
the fluid and solid solvers, see [30] for details. The modelling presented here involves
the use of a low-Mach approximation of the Navier-Stokes equations for the fluid,
while the solid is solved using a general conduction equation. These equations are
solved using the finite element method as implemented in the Alya code [24]. The
partitioned multi-physical approach whereby the coupling boundary conditions are
enforced will be described in Section 5.3.1.

5.2.1 Mathematical modelling

68



5.2. Formulation for CHT problems 69

General conduction equation

The governing equation describing the temperature distribution of a rigid solid is
given by the general conduction equation

LT = pc,d0T /ot +V - (—=kVT) = ¢q, in Q°CR® (5.2.1)

where p, ¢,, K, and ¢, are density, specific calorific capacity, conductivity, and volu-
metric heat source, respectively. Additionally, initial conditions T'(.,0) = T} in the
solid partition 2° complement to the Dirichlet T = Tp on 093, C 09Q°, and Neu-
mann n-kV7T = ¢y on 0Q% C 9Q°, boundary conditions, so that 0Q° = 9Q5,U00%,
and 903, NI = 0.

Low-Mach equations

The governing equations describing the fluid flow correspond to the low Mach num-
ber equations given by the zeroth-order Navier-Stokes equations

Op/ot+V -(pu) = 0
L, U=} 0(pu)/ot+V -(puu)+Vp = V-7 in Qf cR® (5.2.2)

I(pE)/0t +V - (pHu) = V- (—q)

where p, u, p are density, velocity field, and pressure, respectively. The total energy
FE and the enthalpy H are given by

1

E = —T 2
— (5.2

H::E+i:%T (5.2.4)

Moreover, T indicates the sum of the molecular and Reynolds stress tensor compo-
nents. According to the Boussinesq approximation, one has:

2
T = p(Vu+ (Vu)') - guV -ul (5.2.5)
The heat flux vector components, q, are given by the Fourier law

q=—rVT (5.2.6)

The transport properties are expressed in terms of the molecular viscosity i and the
conductivity x with the Sutherland law

T3/2
e
a ! T+ Cy
T3/2
=C 5.2.7
& 3T +Cy ( )
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where C-C}y are constants for a given gas. For air at moderate temperatures, C; =
1.458 x 107%kg/(msK'?), Oy = 110.4K, Cy = 2.495 x 1073 (kgm)/(s*K3/?), Cy =
194 K. Finally, the system is closed by the equation of state that relates the density
p and temperature 71" as

p = pRT (5.2.8)

where py and R stand for a reference pressure and the specific gas constant, respec-
tively.

Additionally, initial conditions U(.,0) = U, in the fluid partition Q/ complement
to the Dirichlet U = Up on GQfD C 0%/, and Neumann vy on 89{\, c oV,
boundary conditions, so that 9Qf = 9, U 9Q% and Q4 N oQ% = 0.

Energy equation

The energy equation from the Navier-Stokes equations, is the one directly interacting
with the conduction equation of the solid. This equation, rewritten in terms of the
temperature reads
LT = ey T) + V- (peyul) = dp + V- (kVT) (5.2.9)
ot dt

Note that, this equation, along with the general conduction equation, is a convective-
diffusive reaction equation. In this sense, and as shown below, most of the conclu-
sions given in Section 2.1.1 can be applied for the solution of a conjugate heat
transfer problem.

Likewise in the case of the Fourier equation, the non-dimensional form of the
energy equation highlights important parameters that must be taken into account.
The non-dimensional form reads

NPT
ot

yoldpt ok
v dt  ResPrs

+ V- (pu'T) = VT (5.2.10)
where the apostrophe [] indicates the dimensionless form of the variables. The
Reynolds number Re., = pUL/p and the Prandtl number Pro, = ¢,u/k represent
the ratio of inertial forces pU?L to viscous forces uUL, and the ratio of the mo-
mentum diffusivity p/p to heat diffusivity o, respectively. The product Res, Pro is
called Péclet number Pe. It represent the ratio of the rate of advection to the rate
of diffusion. A convective time scale ¢y can be approximated as the ratio L/U of
given characteristics length L and velocity U.

Finite element method

Unless indicated, the governing equations are solved using the Finite Element method
with the Variational Multiscale Stabilization (VMS) approach [82] for the spatial
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5.2. Formulation for CHT problems 71

discretization and with a second order Crank-Nicholson scheme for the time in-
tegration. The discretization of the low-Mach number equations yields a coupled
algebraic system of the form

Ann Ant Un bn
= 5.2.11
G ) ()= () 5211

which is solved iteratively through a Gauss-Seidel method at each linearization step
within a time loop. The diagonal submatrix A, is related to the discretization of
continuity and momentum (fluid motion), while the submatrix Ay is associated to
the energy equation. The off-diagonal submatrices A,; and A, take into account
the coupling between the terms of the fluid motion and the energy equation. The
vectors [U, U;]T and [b,, b;]" represent the unknowns and right-hand side terms of the
individual subsystems, respectively. The momentum and continuity equations are
solved independently, applying the iterative Orthomin solver for the pressure-Schur
complement [83].

Weak formulation

The weak form of Equation 5.2.1 reads:

find T eld: A(T,n) = F(n) YneV

where
AT,m) = [q(n d(pc,T)/0t dQ2+ kVT - Vn)dQ
= {TeH'(Q): T=Tpondp } o
V = {neH(Q): n=00n0Qp }
Similarly, for Equation 5.2.9:
AT,m) = Jo (0 [0(pe,T) /0t + ¥ - (peyuT)] + V- KVT) dS)
U = {TeHYQ): T=Tpondp } o
V = {neH(Q): n=00n00p }

By applying appropriate boundary conditions, these equations can be written as

| |oteer)oe aa v [ vnkvT d (5.2.14)
/ mbNdF—/ N ¢y d2 =0
a0y, Qf
[ [ (pe,T) /0t + ¥ - (peul)| do + /Qvn-k:VT 4o (5.2.15)

d
+ / andF—/ ne
a0, - d
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72 Conjugate heat transfer

The weak form of both, energy and general conduction equations, enable under-
standing the iterative Dirichlet-Neumann algorithm widely applied to conjugate heat
transfer problems. This is completely related to the fact that the nature of these
two equations is similar to those found in the heterogeneous domain decomposition
example discussed in Section 5.3.2. Details are shown in the next section.

Transmission conditions

Partitioned multi-physics problems make use of boundary conditions that ensure the
coupled system is well posed. These boundary conditions can be found, following the
procedure described in Sections 2.1.1 and 2.1.2. Once the weak form is established,
and given a partition O, the integral across its boundary 9€) is divided into three
disjoint parts: 9Q%, 9% and T. In the first two parts, physical Dirichlet and
Neumann % boundary conditions are enforced. In the third part, transmission
conditions 1% are imposed on the coupling interface I'*. Thus, from the weak form
of the fluid partition 2/ (Equation 1.1.11) the boundary integral reads

_ mdl — / _EVT.
/mf n kYT -n dT /8% n Wl dr + /Ff n k:ZT ndl  (52.16)
rf

The same process applied to the solid partition 2* (Equation 1.1.12) results in

—n kVT - dF:/ s dl / _kVT -n dT 5.2.17
/ms n n Emn% + ). kT ( )

Prs

These equations demonstrate that the normal component of the density flux —kVT
can be used as transmission condition to couple both partitions f and Q°. Further-
more, these integrals are similar to those found for the diffusion-transport-reaction
equation, see Equation 2.1.6. It can be concluded that the iterative Dirichlet-
Neumann algorithm shown in Figure 2.3 can be applied to conjugate heat transfer
problems. Although this iterative algorithm can fulfil the constrains imposed by
the domain decomposition methods other algorithms can be used to improve the
convergence and the stability of the algorithm. These alternative algorithms will be
briefly discussed in the next section.

5.3 Methodology

The iterative algorithm proposed in this thesis to deal with conjugate heat transfer
problems is described here.
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5.3.1 Iterative Dirichlet-Neumann algorithm

In the last section, the weak form of the energy and conduction equations lead to
the conclusion that conjugate heat transfer problems can be solved as an hetero-
geneous domain decomposition problem. This means solving iteratively two inde-
pendent problems. An early approach introduced in [84] proposes to solve the fluid
partition using Dirichlet conditions, while Neumann conditions are applied to the
solid partition, respectively. Most recent developments suggest the use of the Biot
number in order to determine efficient transmission conditions (Dirichlet-Robin or
Neumann-Robin conditions) at the fluid-solid interface for weakly transient heat
transfer problems [85,86]. Even though, these methods have been successfully ap-
plied to the solution of real configurations, e.g. [87], their use involve the assumption
that one partition is solved by a steady state approach, while the other is modelled
as a transient simulation. For the cases studied in this work, these assumptions have
not been required to obtain accurate and stable solutions using a general approach,
so that the original Dirichlet-Neumann algorithm was chosen.

From the above, the iterative Dirichlet-Neumann algorithm is based on the fol-
lowing procedure. Firstly, lets suppose that initial and boundary conditions are
applied to Equation 1.1.1, along with an initial guess 7}, as Dirichlet condition on
the fluid-solid interface I'y of 2%, so that

LT = q, in Q* C R?
—kVT -n = Yy  on N
T = Tp on 00},
T = T, on I'y

(5.3.1)

The updated temperature field T' is used to calculate the normal flux ¢rs = —kVT'n
crossing the interface I'},. Once this is done, the low-Mach equations £;U are solved
enforcing the normal flux ¢rs as Neumann condition in the energy equation LT
Thus, on the interface I'; of Qf

LT = ¢, in QO c R?
—kVT -n VN on 89{\,
T = Tp on 904,
—kVT-n = tp;  onT}

(5.3.2)

As described in Section 1.1.1, throughout the fluid-solid interface I, the value of the
temperature 7' calculated on F{V can be different from the temperature 7T obtained
on I'Y,. In this case, the procedure should be repeated as many times as necessary
through an iterative process where the value of the guess field Ty is updated as
a combination of Ty and Ty with a relaxation factor 0 < ¢ < 1 to accelerate the
convergence. The resulting algorithm is given in Figure 5.4.
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Lets TO(O) denote a starting guess

1. For k£ = 0,1, ..., until convergence do:

2. Solve for T¥) as follows:

EsTs(k) = q, in Q° C R?
—kVT® . n N on 903,
TH = T,  on 99 (5.3.3)
T® = 7Y onTy
3. Solve for T}k) as follows:
L fT}k) = q, in Qf c R?
—/{VT]Ek) ‘n = Py on 90,
7 = 1p on 02y,
—RVT]EIC) ‘n = Yrs on T},
4. Update:
k k k
Y =1 o™ —1Y)  onT (5.3.5)
5. Endfor

k
Output: (T®), T} N

Figure 5.4: Iterative Dirichlet-Neumann algorithm for conjugate heat transfer

5.3.2 Time scale disparity

Due to the physical nature of a conjugate heat transfer problem, the temporal scales
between fluids and solids are usually very different. While the heat transfer in a
solid is a diffusive process, a fluid is usually dominated by convection. The time
scale disparity can be measured by the solid-fluid time scale ratio as ts/ty. As
shown above, the convective time scale ¢; is given by the ratio of the characteristic
length L and velocity U of the flow. For a solid, the factor L?/a coming from the
Fourier number provides an estimation of the order ot magnitude of the diffusion
time process. As a result, the time scale ratio can be calculated as

ts L2/0é8 ar L2
s s - S Re,P 5.3.6
tf Lf/Uf Qg L?c ety ( )
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which, as shown later, leads to differences of orders of magnitude between their
temporal scales, specially as the Reyincreases. Numerically, it means that the fluid
can require several time steps to generate a change in the solid. i.e., temporal
perturbations in the fluid are almost negligible in the solid. In order to deal with
this drawback, different approaches can be used. In [87], several time steps are used
before updating the fluid partition, while a steady state approach is used to solve
the solid partition. Another approach is to consider the flow field as a sequence of
steady states, so that transient calculations are performed in the solid, while the
fluid is steady [85]. The synchronization in physical time between fluid and solid
can be taking into account by enhancing the material conductivity of the solid. It
supposes that the ratio of thermal conductivities is almost set to unity [28,88]. This
last strategy will be tested in this work, along with a proposed methodology to
address the time scale disparity.

5.4 Case studies

This section describes the results of the coupling methodology presented above.
Firstly, two validation cases are presented along with two practical applications.
The heat transfer between a thin plate and an incompressible flow is studied in
both validation cases. In the first case, the solution obtained with the methodology
proposed here is compared against an analytical solution. Additionally, a methodol-
ogy to overcome the time scale disparity is presented. In the second validation case,
the cooling of a steel plate with constant air stream is analysed using the time scale
disparity methodology introduced. Regarding the practical applications, a premixed
impinging jet flame and a confined premixed jet flame are studied.

5.4.1 Flat-plate

The heat transfer between a thin plate and an incompressible flow is studied here.
This problem has been widely analysed so that results can be readily validated
[86,89]. The 2D geometry is depicted in the Figure 5.5. The fluid is characterized
by the Reynolds number Reo, = pooUsoL/ i based on the length L of the plate, and
where the index oo is used to indicate the properties of the fluid at region 0 (inlet).
At the bottom, there are three succeeding regions. In region 1, symmetric and
adiabatic boundary conditions are assumed. In the next region, a wall temperature
T, and no-slip conditions are prescribed. In the last region, symmetric and adiabatic
boundary conditions are also applied. Finally, the rest of the domain is supposed
to be adiabatic with open boundary conditions.

This conjugate heat transfer problem is now used to validate the methodology pro-
posed in this work. Firstly, velocity and temperature profiles for the fluid partition
are obtained. Afterwards, the conjugate results are compared against the analytical
solution given by [89]. Finally, results for the conjugate heat transfer benchmark
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Figure 5.5: Computational domain for flat plate.

proposed in [90] are presented. Note that, this benchmark constitutes a severe test
case since it comprises high velocities along with real material properties for the

solid.

Fluid partition

A laminar boundary layer flow (Res, < 2 x 10%-10°) with constant air properties

~J

(Pr =0.71) is assumed for validation proposes.

Figure 5.6 shows the normalized temperate distribution = (T —T,,)/(Ts — T)
and the thermal boundary layer thickness 7 corresponding to Re,, = 100 when the
steady state is achieved. As discussed in Section 5.1.1, the value of this thickness is
proportional to the hydrodynamic boundary layer ¢, which is defined by the relation
VRe, x/y ~ 5.0 [79].

In Figure 5.7(a), the velocity U/Uy is compared against four solutions given by
well-established correlations. An excellent agreement is obtained for results corre-
sponding to 2(y/8) — 2(y/d)? as well as for the numerical solution of the Blasius
differential equation [91-93] Note that the profile (3/2)(y/d) — (1/2)(y/d)? is fre-
quently used along with an integral heat transfer equation to obtain a temperature
profile approximation in many engineering applications [79,89]. This temperature
profile is compared with the normalized temperature ¢ in Figure 5.7(b). The numer-
ical results show that the best agreement of 6 is achieved with the Blasius profile.

Thermal coupling

The flat-plate considered in the last section is solved here using a four-kind bound-
ary condition approach in region 3. The results are compared with the analytical
solution proposed in [90]. The expression for the analytical temperature profile is
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Figure 5.6: Normalized temperature distribution 6§ = (T — T,,)/(Toc — Ty) on the fluid parti-
tion. The curve marks the thickness d7 of the thermal boundary layer. The wall
temperature is T, = 0.97,, with a Reynolds number fixed to 1 x 103.

14l T v/ 1) Lal T Y/
L 2y/ep)-(y/er)t : : — 2(y/dp)—(y/dr)’
L2 1/3(y/0r) ~2/3(y/ )’ : : 12l 1/3(y]0r)=2/3(y/67)?
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Figure 5.7: Velocity (left) and temperature (right) profile at = L/2. 67 = §/v/Pr

given by
V=T —Tar =< Vp+3/2(000 — V) (y/0:) — 1/2(00 — 90)(y/6:)> 0<y/d <1
D + D (y/ D) -1<y/A<0

(5.4.1)

where ¥, = J9z/(1 4 2), 2 = 3k /(2k50;). It is worth noting that for this case,
the wall temperature T, depends on three properties from the solid: (1) isothermal
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temperature Ta imposed on its bottom wall, (2) conductivity r,, and (3) thickness
A. The 9 represents the temperature of the plane with zero thermal resistance [81].

The numerical solution of the coupled system has been performed using fluid and
solid matching meshes consisting of 119529 and 9728 quadrilateral elements, respec-
tively. For this specific simulation, the properties of solid and fluid are assumed to
be constant. Additionally, the conductivity and thermal diffusivity of fluid and solid
are supposed to be equal, i.e., ks/ko = 1, and a,/as = 1. Finally, the temperature
T in the bottom of the solid (y = L/10) is fixed to 0.97,. Under these assump-
tions, the normalized temperature distribution 8 = (T'—Ta)/(Ts — Ta) along with
the boundary layer thickness dp are shown in Figure 5.8. Figure 5.6 shows a com-
parison of the temperature distribution against the one obtained for the uncoupled
fluid. The boundary layer thickness is decreased due to the heating introduced by
the coupling in region 1, see Figure 5.9.

Figure 5.8

Velocity and temperature profiles at x = L/2 for this coupled problem are shown
in Figure 5.9. Additionally to the fluid partition (y/d; > 0), the solid has also been
included (—A/d0; < y/é; < 0). The results show the velocity profile is practically
unaffected, while the temperature profile changes. Of particular interest is that
from Equation 5.4.1, the effect of the heating/cooling is to move and scale the
original temperature profile F'(y/d;), so that (9 —4y,) /(0o — V) = (3/2)(y/0:) —
(1/2)(y/d:)®. From Figure 5.9, it can be seen that these effects are well captured by
the methodology used in this work, even for the Blasius profile. Another important
aspect is the temperature profile in the solid. Given as a line of slope ¥,,(d;/A),
which achieves the wall temperature ¥, on the coupling interface (y/d; = 0).

So far, the results have shown an excellent agreement with the theory. In what
follows, it will be shown that the continuity of the temperature and the heat flux
is achieved throughout the coupling interface. After that, the effect of changing the
conductivity ratio ks/kKs, and the thermal diffusivity ratio a,/as will be analysed.
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Figure 5.9: Velocity (left) and temperature (right) profile at x = L/2.

Continuity of the transmission conditions Figure 5.10 shows the continu-
ity of the transmission conditions achieved when the iterative Dirichlet-Neumann
algorithm 5.4 described in Section 5.3 is applied to the solution of the conjugate
flate-plate. In this case, the fluid partition is defined as the Dirichlet partition,
while the solid partition is considered as Neumann. Thus, the fluid partition is
firstly solved in parallel using an initial guess 7;), then the results obtained for the
current k-iteration are used to calculate the normal flux ¢rs to be enforced as Neu-
mann boundary condition on the coupling interface I'}, of the solid. Once the solid
solver has finished, the temperature T}k) on I'}, is used to calculate the tempera-

TO(RH) to be imposed on the fluid partition. The process is repeated as many

ture
times as necessary to achieve a given convergence e so that |Ts(k) — T}k)| <e In
this case, the maximum number of sub-iterations is fixed to 50, with a convergence
€ < 1 x 107, relaxation factor # = 0.8 and variable time steps. Figure 5.11 shows
that, by means of this iterative algorithm, the continuity of the transmission condi-
tions (temperature Tr and heat flux density ¢r) through the interface I' is ensured

at every time step.

Temporal evolution The evolution of the temperature in a point p = (Lg/2,0.0)
until the steady state is reached is shown in Figure 5.11. Before starting the coupling
(t < 0), the fluid is simulated using 71 = 0.9 as Dirichlet condition. At the beginning
of the coupling (¢t = 0), the fluid partition is assumed to be in steady state, with an
uniform temperature 7" = 0.9 in the whole solid partition. A total of six curves are
shown in the figure. Three for the evolution of the fluid y/A = {0.0,0.05,0.10}, and
three for the solid {—0.10,—0.05,0.0}. The overlapping beetween two of these six
curves provides the continuity of the transmission conditions through the coupling
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Figure 5.10: Temperature T' and heat flux ¢r for solid (marks) and fluid (line) partitions through
the coupling interface I when the steady state is achieved.

interface at any time. After the initialization, the curves show an increase of the
temperature, until the steady state (¢ ~ 10) is achieved. For the particular case of
the curves at the interface (y/A = 0), the temperature has changed from 0.9 to ~
0.963. Note that when Equation 5.1.6 is used to fit the evolution of the temperature
in y/A = 0, a value for thermal time constant 7 ~ 4.028 is obtained. Another
observation is that 7 is directly related to the Biot number and to the thermal
diffusivity, i.e., 7 = A?/(Bi «). The thermal diffusivity of the solid can be easily
calculated, however in order to find a Biot number, it is necessary to characterise
the heat coefficient using its mean value, for instance. It is due to the fact than
h, rather that a constant value, is a number changing along the coupling interface.
Thus, when the mean h = 8.203 is used, the Biot number can be estimated as
Bi ~ 1.651. Additionally, the thermal time value obtained by h (7 ~ 4.301) is close
to the one found by the fitting of Equation 5.1.6. As stated in Section 5.1.2, inside a
solid whose Biot number exceeds 0.1, the temperature changes substantially in space.
This effect is clearly observed in this case, since the temperature for the three curves
inside the solid (y/A = {—0.10, —0.05,0.0}) have different distributions. The effect
of modifying the Biot number and the thermal diffusivity inside the solid is analysed
in Appendix A. The main results obtained from this approach are used to study the
behaviour of the coupled system in the next section.

Thermal diffusivity effect This section addresses the effect of solid properties
variations have on the fluid domain. Appendix A concludes that, given a solid,
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Figure 5.11: Temporal evolution of the temperature T at /Ly = 0.5 for five vertical points
y/A = {-0.10,-0.05,0.0,0.05,0.10}. Normalised time scale t/7 = Bi « t/L?
is shown in the top part. Dashed lines correspond to the evolution of the fluid,
while the solid evolution is shown with continuous lines. Dotted line correspond to
Ts(t) = (Tr — Too) exp(t/7) + Teo.

numerical simulations with the same Biot number can be considered physically and
numerically equivalent. These assumptions are examined for this thermal coupling
problem.

Five cases are analysed here, which are defined based on the product psc,s, so
that the thermal activity ratio K range is {10,+/10,1,1/4/10,1/10}. For all cases,
the properties of the fluid are kept constant, along with the conductivity of the
solid. This is done under the assumption that, in this way, the Biot number is
preserved and the simulation time ¢ can be modified without changing the physical
characteristics of the solid. The results of this analysis are shown in Figure 5.12 (al)-
(c1) and have good agreement with the ones obtained in Figure A.3. As the thermal
activity ratio increases, the time to achieve the steady state decreases. In practice,
all temperature curves overlap when they are plotted against the normalised time
t/T (7 is calculated for each case). Finally, the number of steps na; to achieve
the steady state decreases as the thermal activity ratio increases. Note that the
behaviour of a fluid partition is similar to the one found in the solid domain.

Figure 5.12 (a2)-(c2) shows the response of the fluid to the changes performed in
the solid. When temperature curves are plotted against the normalised time ¢/, all
of them tend to overlap. In general, this behaviour is observed for all cases except
for t/7 < 1. This difference is produced by the initialization of the simulations.
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Figure 5.12: Temperature T at /Ly = 0.5 and y/A = 0.0 as function of (a) time ¢, (b) nor-
malised time ¢/7, and (c) number of time steps na;. K = {10,4/10,1,1/4/10,1/10},
a/as = {100,10,1,1/10,1/100}, cases 3, 5, 1, 4, 2, respectively.

Regarding the number of steps, as the thermal activity ratio increases, more time
steps are required to reach the same temperature.
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5.4.2 Convective cooling of a plat plate

The problem analysed here consists of a constant air stream cooling a steel flat plate
[94,95]. The air coolant entering is assumed to be a gas with temperature T, = 273
K, Prandtl Proc = flooCpoo/koo = 0.71. and Reynolds Reo = pocUscLo/flce =
4.01 x 10%. Before reaching the coupling interface I', two succeeding regions are
present. After I', a third region is defined. In the first and last regions, adiabatic and
slip boundary conditions are applied. Isothermal and no-slip boundary conditions
are also applied on the second region. Finally, for the rest of the domain, open
boundary conditions are used.

Regarding the solid partition, a flat plate of length Ly = 0.2 m and thickness
A = 0.015 m made of steel with properties such that k,/k,, = 1.99 x 10, and
s/ = 7.58 x 1071 is defined. Under these assumptions, the values corresponding
to the time scale ratio and thermal activity ratio (t;/ts = 2.1167 x 10* and K =
4.353 x 107*, respectively) lead to an important disparity between the time scales.
This also means that low level of fluctuations throughout the coupling interface
should be expected. Finally, Neumann boundary conditions (¢ = 0) are applied
on the solid, which is initially set to 900 K. Note that the coupling simulation is
started once the fluid partition has achieved the steady state with constant wall
temperature T = 900 K at the interface.

The solution of this problem is obtained applying the iterative Dirichlet-Neumann
algorithm described in Section 5.3. A convergence study has been conducted to se-
lect matching meshes consisting of 119529 (fluid) and 9728 (solid) quadrilateral
elements, ensuring sufficient resolution near the wall (y*© < 1). For this specific
simulation, Equation 5.2.1 for the solid is solved assuming constant properties. For
the fluid, the low-Mach equations described in Section 5.2.1 are used (density, vis-
cosity, and conductivity are function of the temperature). Regarding the coupling
treatment, the time step is given by the fluid partition, and is allowed to evolve as

0.05 0.05 0.20 0.1
Inlet E E Outlet
s ; =
! I-/ ===l

Figure 5.13: Computational domain for convectively cooled plate.
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the simulation progresses. The convergence is set to 1 x 107°, being required less
than 10 iterations for the first three time steps, and only one iteration per time step
for the rest of the simulation.

Figure 5.14 shows the temperature evolution at the beginning (x/Ly = 0) and
ending (x/Ly = 1) of the coupling interface. Results obtained are compared against
the temporal evolution of temperature reported in [94]. A good agreement with the
reference data is observed for the entire time history of these two interface points.
Due to the fact that the non-coupled walls of the solid are adiabatic, it is expected
that, the solid reaches the temperature of the air stream, as the system evolves.
The effect of cooling is slightly captured in the range of time simulated. From ¢t = 0
to 1, the temperature at the beginning of the interface drops faster than at the
ending point. In z/Ly = 0, the temperature changes from 900 to ~ 874K, while in
x/Ly = 1, the temperature drops from 900 to ~ 895K (only five degrees). Thus,
it is possible to conclude that many time steps should be required to simulate the
cooling of the solid down to 273K (a difference of ~ 600K). In this sense, the
methodology proposed in Section 5.4.1 to deal with the time scale disparity can be
applied to simulate the entire cooling process reducing the number of time steps.

Figure 5.15 shows the entire cooling process at the beginning and ending point
of the coupling interface. The time that the solid needs to achieve the air stream
temperature seems to be ~ 3.5 x 10% s, which agrees well with the fact that the time
scale ratio t,/ts is ~ 2 x 10%. In order to simulate the entire process, the properties
of the solid are modified. For this specific case, the original thermal activity ratio
Ky = 4.343 x 10~* has been increased up to 4.343 x 1072 by decreasing ten thousand
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0 0.2 0.4 0.6 0.8 1

Figure 5.14: Temperature evolution at beginning (diamonds) and end (squares) of the interface
I'. A good agreement with results given by [94] is observed for the entire time
history of both interface points.
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Figure 5.15: Complete temperature evolution at beginning (diamonds), and end (squares) points
over interface I'. The entire cooling process takes ~ 3.5 x 10% s. Sub-figure shows
the evolution during first second. Dashed line correspond to the temperature air
(273K).

times the value of p,cps. This change should maintain the original Biot number, and
with different thermal activity radio the physical behaviour of the solid partition.

In order to validate the results two simulations (K = Ky and 10Kj) have been
performed. The temperature evolution obtained at the beginning point of the cou-
pling interface for the three values of thermal activity ratio are compared in Figure
5.16. In (b), the time ¢ corresponding to each curve plotted in (a) has been multi-
plied by the same factor used to obtain its respective thermal activity ratio. Thus,
the curves 1,2, and 3 corresponding to Ky, 10K, and 100K, scaled by 1, 1 x 102,
and 1 x 10%, respectively.

The resulting curves overlap, so that it is possible to conclude that all of them are
physically equivalent. Figure 5.15 (b) shows the temperature as function of number
of the time steps na;. From this figure, it can be clearly seen that given a number
of steps, the change of temperature increases as the thermal activity ratio increases.
This means that a larger amount of time steps can be performed as the thermal
activity ratio increases. For instance, when na; = 400, the temperature in curve 1
(K = Kj) has hardly changed from 900 to ~ 870K, simultaneously the temperature
in curve 2 (K = 10K)) is close to 650K, while in curve 4 (K = 100K,) the steady
state has been already achieved. Finally, it is worth noting that the total number
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Figure 5.16: Temperature T at /Ly = 0.0 as function of (a) time ¢, (b) scaled time ¢', and (c)
number of time steps na;. K = ((kpcy) s/ (kpcy)s)t/? = {Ko, 10Ky, 100K}, cases
1,2,3, respectively.

P ot

of time steps performed in each curve is different (approximately 725, 550 and 550,
respectively). This is due to the fact that these three simulations have been executed
during the same computational time (and with the same number of processors). As
result, at the end of the simulations, curve 1 is around 350K, curve 2 seems to have
reached the steady state, while the state achieved in curve 3 is completely steady.

5.4.3 Practical applications

So far, the iterative Dirichlet-Neumann algorithm described in Section 5.3 has been
applied in the solution of the thermal coupling between a fluid and a flat-plate.
Additionally, the effect of changing the thermal properties of the solid have been
studied. The results show that the validity of the iterative algorihm along with the
possibility of enhancing the response of a solid when it interacts with a fluid. The
rest of this section summarizes the results obtained when the algorihm described
here is applied to the solution of two more complex applications: a impinging flame
interacting with a wall and for the prediction of heat losses in a confined premixed
jet flame.

Premixed impinging jet flame

The present study addresses the effect of the heat transfer condition at the solid
wall on a premixed impinging jet flame. Different thermal conditions are imposed
at the impinging plate and its effects on the flame dynamics, heat transfer, shear
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Figure 5.17: (a) Computational domain and boundary conditions. (b) Interface between solid
and fluid domain and matching between fluid and solid meshes. The impinging
flame configuration considered in this work corresponds to a methane premixed
flame with equivalence ratio ¢ = 0.8 at T' = 298K impinging on a flat plate. The
nozzle-to-plate distance is H/D = 2 and the inlet velocity is set as 30m/s. The jet
inlet diameter is D and the length of the fluid domain parallel to the plate is 20D.
The solid part is represented by a squared domain of length 20D and thickness
2D. The isothermal temperature on the upper side of the solid domain is set as
Ts = 800K. The nodes at the fluid—solid interface are matching in order to avoid
interpolation errors.

stress and wall-jet development are discussed in the context of large-eddy simulation
(LES). Aspects regarding heat transfer effects are summarized here, but for details
refer to [28].

The computational domain with the corresponding boundary conditions is sketch
in Figure 5.17(a). The velocity at the inlet is imposed with a top hat profile and
the turbulence is generated in the wake of a bluff body. The inflow condition for the
temperature is prescribed with 7" = 298K . All solid walls are assumed adiabatic
except the impinging wall, where five different heat transfer conditions are exam-
ined. The cases are defined with an isothermal wall, constant heat flux, Robin-type
boundary conditions and as a conjugate heat transfer problem. In addition, taking
into account the thermal activity ratio (K = 7 x 107°) and the synchronization in
physical time between fluid and solid, the material conductivity of the solid was
enhanced by a factor of 100.

The results reveal differences when the boundary conditions are varied at the
impinging wall. The differences among the cases not only affect the mean temper-
ature and gradients in the near wall region (Figure 5.18), but also the temperature
fluctuations and dynamics of the flow (Figure 5.19). The distribution of gradients
over the plate indicates that Dirichlet-type conditions favour localized temperature
gradients that can be larger than Neumann-type boundary conditions at particular
locations, (Figure 5.20). The analysis of the results indicate that temperature vari-
ations, gradients and fluctuations in the near-wall region also require information of
the solid domain, and that can only achieved by the use of a conjugate heat transfer
approach.
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Figure 5.18: Global response of the impinging wall to flame heating. Time evolution of heat flux
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(top) and temperature (bottom) integrated over the plate. The temporal trends
indicate that all the cases (except the adiabatic case) dissipate approximately the
same amount of heat after initialization. The wall temperature for the adiabatic
case reaches values around the equilibrium temperature (' ~ 1996K). The lower
bound is given by the CHT case. The other cases are found in between and have a
similar response from the perspective of global heat exchange.
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Figure 5.19: Mean wall shear stress along the radial direction. An enlargement of the thickness

of the wall jet occurs due to effects of turbulent mixing and convection in the near-
wall region. This effect reduces the maximum velocity of the jet and affects the
shear stress in the radial direction.

Confined premixed jet flame

The presented study addresses the investigation of the heat loss of a confined tur-
bulent jet flame in a lab-scale combustor. Here, the effect of different heat transfer
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Figure 5.20: (a) Contour plots of temperature gradients at the wall, and (b) probability distri-
bution of the temperature gradients at the impinging plane at time ¢t = 0.045s. A
distribution of the temperature gradient over the normalized surface area associates
the magnitude of the gradients to the portion of area on which they are distributed
relating the sensibility of the boundary respect to changes in flame temperature.
In general, it is observed that boundary conditions based on flux prescriptions tend
to widen the pdf distribution, lowering the peak of the curve and inducing more
uniform temperature gradients over the solid plate. The CHT case undergoes the
highest temperature gradient, while the case with constant heat flux has the mini-
mum. The CHT and the isothermal case show narrow distributions indicating that
gradients are rather large over particular sections of the plate. Dirichlet-type condi-
tions favour localized temperature gradients that can be larger than Neumann-type
boundary conditions at particular locations.

mechanisms and thermal conditions for the chamber walls of a turbulent jet flame
configuration is investigated in detail by means of numerical simulations. Aspects
regarding heat transfer effects are summarized here, but for details refer to [29].

An sketch of the computational domain for the fluid and solid including main
dimensions in mm is shown in Figure 5.21. The test case consists of a premixed
turbulent jet flame confined in a rectangular combustion chamber. A lean mixture
of methane and air at equivalence ratio 0.71 is injected into the combustor through
a circular pipe with diameter d. No-slip boundary conditions are set for the velocity
at the walls. In order to obtain a turbulent flow field at the inlet plane of the flow
domain, a precursor LES simulation is performed in a pre-processing step and the
velocity components are sampled at the inlet plane of the combustor simulation at
every time step.

In this work, the dual heat transfer (DHT) approach is used to obtain steady
temperature distributions in the solid [96]. In essence, this approach differs from
the the original iterative Dirichlet-Neumann algorithm described in Section 5.3 only
in the fact that steady states of both partitions are used at each coupling step.
Thus, fluid and solid are computed at the same time, so that each of them is fully
converged. Only the fully converged solution at the interface is used as a bound-
ary condition in the other domain. The fluid domain is computed with an initially
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Figure 5.21: Experimental facility at the German Aerospace Center (DLR). The combustor is
operated at atmospheric pressure. The premixed fuel-air mixture is injected with
an inlet velocity of 90m/s and a temperature of 573K . The walls of the combustion
chamber are made of synthetic quartz glass with a thickness of 8mm. In the stream-
wise direction, the combustion chamber walls consist of two 200 mm segments with
narrow (2 x bmm) flanges of stainless steel. The burner base plate is 10 mm thick
and made of stainless steel. Constant values are used for the density of Quartz
glass and stainless steel (2200 kgm =3 and 1750 kgm ™3, respectively). Isothermal
boundary conditions are used at the outside walls of the solid. The thermal activity
ratio for the current case is about 2 x 1073,

(b)

Figure 5.22: (a) The unstructured mesh for the fluid simulation consists of about 9.13 M el-
ements. The cell size in the inlet pipe and the flame region is about 0.08d and
gradually coarsens in the downstream regions towards the outlet. A total number
of 10 prism layers are added at all wall boundaries in order to capture the strong
gradients in the boundary layer. (b) The mesh for the structure consists of 13.44M
prism elements. A total of 40 elements are distributed in the direction normal to
the heat flux following a log law with a growth rate of 1.15. The nodes at the
fluid—solid interface are matching in order to avoid interpolation errors.

uniform temperature distribution. The temperature field in the solid is computed
under consideration of the heat flux from the fluid domain. The new wall tempera-
ture distribution from the solid domain is used as a boundary condition in the fluid
domain. The loop is continued until the exchanged fields are converged. The study
is divided in two main parts. Firstly, the temperature distributions obtained by
the DHT approach are used to obtain RANS solutions of the flow field. Then, the
influence of external walls on the gas temperature inside the combustion chamber
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Figure 5.23: (a) The location of the inlet pipe is indicated. [; corresponds to the wall close to
the recirculation zone, further away from the jet exit while I3 is the short wall close
to the jet exit. (b) Profiles of wall temperatures along ;-4 for the different outside
wall boundary conditions.

is investigated. Results are compared with the baseline case with fixed temperature
at walls.

Figure 5.23 shows the temperature distribution at the fluid-solid interface when
the temperature of the quartz glass fixed to 900K. A significant spatial variation
of the temperature at the interface is observed. The deviation of the temperature
at the inner wall seen by the fluid is significant with a maximum deviation of about
~ 350K between hot and cold regions. The comparison for the temperature range
from 800 to 1000 K of the outside wall boundary is presented in Figure 5.24. When
different temperatures are applied to the outer solid wall, the overall gas temper-
ature inside the combustion chamber and the prediction of the flame length are
affected. In the fluid part, the cold region is hardly affected by the variation of
the outside wall boundary condition and also the flame front does not show any
sensitivity to the wall condition. However, in the hot regions and the recirculation
zone, the influence is the highest and the temperature reduces nearly linear with
the wall boundary values. Regarding the solid, the profiles for the fluid domain
are extended by addition of the temperature development across the chamber walls.
The conduction through the walls leads to an almost parallel temperature develop-
ment in the walls for the different boundary conditions. Although, the temperature
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Figure 5.24: Influence of the outside wall boundary condition on the temperature distribution
in fluid and solid. The profiles for the fluid domain are extended by addition of the
temperature development across the chamber walls.

development is not exactly linear. This has the effect that the 100 K temperature
difference at the outer walls between the different cases is reduced at the inner walls
seen by the fluid.

5.5 Summary and remarks

In this chapter, a method to address conjugate heat transfer problems has been
described. This method considers the use of a partitioned coupling approach to
simulate a fluid interacting with a solid through a common interface in which thermal
energy is exchanged. The heat transfer between a thin plate and an incompressible
flow is used to validate the methodology. After that, this methodology is applied to
analyse a steel flat plate cooled by an air stream at high Reynold number. Finally,
the results of the application of this approach to two engineering applications using
LES are summarised. The first case considers the investigation of an impinging
flame configuration. In the second case, the heat loss of a confined turbulent jet
flame is analysed.

In order to validate the coupling methodology, the temperature distribution ob-
tained using the coupling approach described here is compared against analytical
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solutions. The results obtained have shown an excellent agreement with the the-
ory. Continuity of the transmission conditions (temperature and the heat flux) is
achieved throughout the coupling interface. The effect that the properties of the
solid enforce in a fluid is also analysed. Particularly, the effect of modifying the Biot
number and the thermal diffusivity inside a solid is studied. The results show that:
(1) given a Biot number, an increase of the thermal activity ratio reduces the simu-
lation time; and (2) for a particular solid, numerical simulations with the same Biot
number can be considered physically equivalent. These results are applied to the
case of a steel flat plate cooled by an air stream at high Reynolds number. In this
case, the air coolant entering is assumed to have a Reynolds number of ~ 4 x 106.
Additionally, real properties are applied to the flat plate. Under these assumptions,
an important disparity between the time scales exists (about four order of magni-
tude). By modifying the thermal activity ratio, the entire cooling process can be
successfully simulated. The results show the validity of the iterative algorithm ap-
plied as well as the possibility of enhancing the response of a solid when interacts
with a fluid.

To conclude, the iterative coupling approach described here has been successfully
validated and applied to engineering applications. Additionally, the study of the
properties of the solid allows accelerating the coupling process in orders of magnitude
maintaining the physical properties. The ongoing work considers the use of this
methodology in the solution of more general applications, its validation, as well as
the investigation of its limitations.
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6
Parallel Performance Analysis

In this chapter, a load balance strategy to run partitioned multi-physics applications
on extreme scale architectures with an optimal parallel performance is presented.
This strategy provides a detailed analysis of the influence of the assignment of the
processors to the partitions and provides an expression that relates the performance
metrics of each partition with the overall parallel efficiency of the coupled simulation.

The main contribution of this chapter is to present a load balance strategy for
partitioned multi-physics applications. This strategy is based on a suitable resources
distribution in which the parallel performance metrics for the overall multi-physics
application are considered. The details related to this load balance strategy are
described in the rest of this chapter as follows. In the first section, a general in-
troduction of the load balance problem for partitioned multi-physics applications
is presented. The metrics used to evaluate the parallel performance of bi-coupling
schemes, and the proposed load balance strategy are detailed in Section 6.2. Rel-
evant results are presented in Section 6.3, where the parallel performance of the
confined premixed jet flame presented in Section 5.4.3 is analysed.

6.1 Introduction

In general, the performance of a parallel application is strongly related to two param-
eters, concurrency and load imbalance [97]. The concurrency refers to the number
of tasks that can be executed simultaneously at any given time. The load imbalance
is consequence of assigning different amount of workload to the available processors.
In the particular case of partitioned multi-physical applications, a factor that can
introduce limitation into the concurrency is the data dependency among the field
components. Such dependencies can be a source of overhead since some components
can be idle while others are involved in finalizing its own calculations. Regarding
the load imbalance present in multi-physics applications, it is associated to the
computational operations arising from the interaction among the field components
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(partitions). The main operations to consider here are the exchange of data among
the field components, and also those operations related to the coupling scheme used
to achieve the targeted convergence in the overall system.

In general, an improvement of the parallel performance of any application can be
achieved when the idle-time produced by load imbalance is reduced at the lowest
possible level, i.e, enhancing the load balance [98]. In the particular case of par-
titioned multi-physics applications as those studied here, the load balance can be
associated to the coupling scheme. For instance, in the parallel coupling scheme, it
is possible to assume that the field components running concurrently should final-
ize their execution at the same time. Nevertheless, this assumption is not always
fulfilled. Sometimes while the slowest component finishes its execution, the fastest
component waits. A possible solution to this limitation is to redistribute the load
into each component, so that the idle time is minimized. In this respect, two alterna-
tives have been identified, the resources distribution and the data distribution [99].
In the first case, the idea addresses how to assign the available processors resources
among the components. In the second case, the goal is how to achieve a balance in
the data distribution between processors so that, the load is balanced not only for
each component, but also for the whole system. Thus, in order to maximize the par-
allel performance of a partitioned multi-physic application, a bottleneck that must
be overcome is how to achieve a load distribution, with the computation completed
in optimal execution time.

Examples where the load distribution have been considered can be found on fluid-
structure-acoustic (FSAI) problems [100], where strong scaling analysis is performed
for different stages of a coupling implementation. A similar example but applied
to Smoothed Particle Hydrodynamics (SPH) simulations is found in [18]. Another
example where exchange times between parallel solvers as function of the number
of cores for a conjugate heat transfer (CHT) problem can be found in [55]. Further
examples applied to CHT problems can be found in [16] where the analysis of a
coupled combustion chamber shows the impact of imbalanced repartitions of cores
among the solvers; and in [5] where the parallel and staggered coupling schemes
are applied to the study of a cooled turbine blade. It is worth noting that this
example claims that there exists a relation in the distribution of the processors that
encourages the load balance for a parallel coupling scheme. Such relation associates
the execution times T and T of the solid and the fluid solvers, respectively, with
the number of processors py and p, assigned to each solver, so that p,/py = T/T7.
A last example dealing with the distribution of processors is related the performance
for coupled climate systems models [101]. In this case four physical components are
combined to predict weather and climate along thousands of years. In this case, a
rectangular packing method [102] is used to determine the best number of processors
to be assigned to each component, and how to combine these components in order
to maintain efficiency and the scalability of the whole system.
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Figure 6.1: Schematic view of three coupling approaches. In staggered scheme, the solvers are
executed one after the other while, in the parallel scheme, the solvers are executed
concurrently to each other. The parallel execution model can involve either the use
of all the processors by the solvers (Single Program Multiple Data mode), or sharing
the processors between the solvers (Multiple Program Multiple Data mode).

Motivated by the objective of solving efficiently partitioned multi-physics prob-
lems described along this thesis on extreme scale architectures, the problem of re-
sources distribution of multi-physics applications that only involve two coupled field
components (bi-coupling schemes) is studied in this section. The goal is that each
bi-coupling scheme can reach an optimal load balance for the overall multi-physics
application. The main purpose is to analyse the parallel performance of each com-
ponent field, but considering additionally the constrains enforced by the bi-coupling
schemes. In this way, such constrains can be used to relate the run time of the
component fields, and to establish a load balance for each bi-coupling scheme. In
addition, a complementary restriction should be imposed in order to achieve an opti-
mal configuration for the load balance. This restriction can arise from the resources
distribution problem, i.e., how to distribute the processors among the component
fields. In order to overcome this restriction, the strategy proposed here establishes
that, for a given machine, the distribution of the processors resources is based on
the metrics used to quantify the parallel performance of each component field. In
particular, the interest is on how the execution time and the efficiency change when
the number of processors vary for a fixed problem size. In this case, it is possible
to determine the largest number of processors, which enables to maintain an opti-
mal efficiency. As a result, this constraint imposed by the efficiency can be used to

97



98 Parallel Performance Analysis

determine the resources distribution that enables reaching the optimal load balance
for the overall multi-physic application, i.e., for the coupling scheme and for each
component field. Summarising, the novel load balance strategy proposed here is
based on a suitable resources distribution in which the parallel performance metrics
for the overall multi-physics application are considered. The details related to this
strategy are described in remainder of this chapter.

6.2 Methodology

Parallel metrics used to evaluate the performance of a coupling scheme along with
the proposed load balance strategy are introduced in this section. Despite of the fact
that, in practice, parallel performance metrics are widely used, appropriated defi-
nitions of them are hardly found. In this sense, load balance, efficiency, scalability,
and speed-up are firstly defined before to introduce a geometrical interpretation for
each of them. This novel interpretation allows understanding what the load balance
means, its relation with the performance metrics, and finally, to be the basis of the
proposed load balance strategy for coupling schemes.

6.2.1 Parallel performance metrics

The effectiveness of a parallel program can be evaluated by using metrics in perfor-
mance evaluation. Additionally to the load balance (workload across processors),
the study presented here makes use of the tracing as well as of widely used metrics:
Efficiency, and Speed-up.

Figure 6.2: Time lines for ranks are placed from top to bottom and time flows from left to right.
The colours in each time line state the task that is being executed at the time.
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Tracing

A parallel activity trace shows the chronology in which the workflow of a parallel
code is executed. It can be interpreted as a two dimensional diagram that shows
how the parallel workflow deploys over time [46,103]. The workflow is composed by
different tasks taking place at a given time and place, see Figure 6.2.

Load Balance

For a parallel algorithm solving a problem of size n, the load balance L evaluates the
fraction of utilization of a parallel system [103]. It is measured as the ratio between
the time that the entire system of p processors are busy Thysy(p,n) (running tasks
or communication), and the total time that all processors are occupied Tyoa(p, 1)
(running tasks, communication or being idle)

Tbusy(p7 n) o Sum(Tbusy)
T;fotal (pa n) pmax (Ttotal)

ZZ:I Ta,busy o Z:l (ATom"un + AT‘a,com)
pmax (Ta,total) B pmax (ATa,Tun + AT‘a,com + ATa,idle)

L = (6.2.1)

where ATy run, ATy com, and ATy, g stand for the time during a processor « is
executing a task, communicating, or being idle, respectively. Both busy and total
times are calculated as the sum of all the task executed by a given set of processors.
In general, the measurements of these times are related to the machine architecture
where the algorithm is being executed. It can also be related to the problem size,
which, can be associated to the physics of the problem, or to the number of elements
and vertices used to discretize the partitions, among others.

Work, Efficiency, and Scalability

A measure of the performance of a given algorithm is the work. For a parallel
algorithm solving a problem of size n in a certain machine architecture, the work W
can be determined by the product of the number of processors p used, and its running
time 7" = T'(p,n) [104,105]. Generally, the efficiency E of a parallel algorithm is
defined as the ratio of the work of the sequential algorithm W (1,n) =1 xT(1,n) to
the work W(p,n) = p x T(p,n) of the parallel algorithm when it is executed using
p processors [106]

W(l,n) 1xT(1,n)
W(p,n) pxT(pn)

If an algorithm performs the same amount of work as the fastest known sequential
algorithm, it can be called work-efficient (or just efficient).

The scalability is a property of a parallel algorithm to maintain the efficiency
constant while the problem size and/or the number of processors change [105]. In

E(p,n) =

(6.2.2)

99



100 Parallel Performance Analysis

particular, a strong scalable algorithm maintains the efficiency constant while the
problem size ng is kept constant, and the number of processors is modified, i.e.,
E(p,ng) = cst. On the other hand, a weak scalable algorithm is the one keeping the
efficiency constant only when the problem size increases along with the number of
processors i.e., E(p,n) = cst.

Speed-up

The speed-up S of a fixed problem size ng is used to measure the performance of a
parallel algorithm when the number of processors p changes [42,107]. It is given as
the ratio of the running time 7'(pg, ng) when py processors are used, relative to the
running time 7'(p, no)

~ poT'(po, mo)

S(p,ng) = =pFE

T(p7 TL()) "

Hereafter, unless otherwise indicated, it is assumed to solve the same problem size
ng, and then, it is omitted in the notation.

(6.2.3)

Load balance and trace area

This section introduces a geometrical interpretation of the parallel performance met-
rics introduced above. In the next sections, this novel interpretation is used to cal-
culate values to achieve a coupled simulation with a suitable load balance. This
methodology is premised on the idea that the trace can be seen as a rectangular
coordinate system which can be used to depict the computation performed by a
specific processor at any given time [46,103], see Figure 6.2. Each axis in the coor-
dinate system can be divided into units so that a point in the trace can be specified
by a pair of coordinates (T, p), where T is the time, and p is the processor rank.

Thus, in the coordinate system 7-p, the amount of time AT, 3 during a processor
a is computing any task [ is represented by an horizontal bar with length of AT,z
and height of Ap, = 1. The set of tasks each processor executes is depicted by a
horizontal time line composed by a sequence of bars. The length of this time line
can be used to calculate the total computing time Ti, = >~ 5 AT, s performed by each
processor . In general, a parallel solver uses a set of processors p = {1,2,..,p} to
compute a sequence of tasks 7 = {1,2,..,7}. Based on the above, the among of
time that a parallel solver computes a sequence of tasks 7 using a set of processors
p can be calculated as

T={N,Ts,...T,} ={>_ ATiz, Y ATss, ... Y ATy} (6.2.4)
B=1 8=1 B=1

The vector T contains the sum along each row of AT, 3, i.e., it holds the total length
of the bars that lies at the time line of each processor. From the above, the load
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balance, Equation 6.2.1, can be rewritten as

Zf:l T‘z busy
L = —= 6.2.5
(p) pmax (E,total) ( )
?:1 Apz(Aﬂ,run + Aﬂ,com) o Abusy

Z?:l Apl max (Aﬂ,run + Ajﬂ’i,com + Aﬂ,idle) B Atotal’

and interpreted as the ratio of the area busy A,s, and the total area occupied
Agotar- The sum 37 T pusy = 257 5= ApiATjg can be seen as the area formed by
the set of all the tasks (including communication and idle) with area A;s = Ap;,ATg.
SimﬂarlY7 the iT%,total = Airi,run + AT‘i,com + AT‘i,idle and Az = Apz max (E,total) is seen
as the maximum area each processor can cover, so pmax (7} ;ota1) can be constructed
as the total area that the set of processors p can occupy.

Similarly to the load balance, the relative Efficiency can be defined from Equation
6.2.2 as

B — Lp, _ W, _ i1 Ti(p1) _ Ap,

Epz Wp2 B Zfil E(p2) B "41127

where Wy, and W), define the work performed by parallel algorithm run with two
different set of processors p; and p,, respectively. When the algorithm is work-
efficient, such algorithm must perform the same amount of work, i.e., W, = W,,.
This means that the areas Ay and Ay, defined by each set of processors should be
equivalent.

An ideal performance is achieved when a parallel algorithm that runs in py pro-
cessors and performs % steps in time 7 can perform the same ¢y steps in half of the
time Tj/2 when two times processors 2p, are used, Ty /4 for 4py processors, and so on.
In line with the above, the work achieved for each of these cases is W, = (po)(70),
Wape = (2p0)(T0/2), Wap, = (4po)(Th/4), and so on, respectively. For all cases, the
areas are equivalent. In order to achieve this result, the parallel algorithm must be
perfectly load balanced, with no latency, and with the communications completely
overlapped [108].

(6.2.6)

6.2.2 Load balance strategy

The resources distribution problem of a coupling system involving two partitions as
presented in Section 3.1.4 is analysed here. The goal is that the coupling system
can achieve an optimal load balance. The approach is to analyse the parallel perfor-
mance of each partition, but considering additionally the constrains enforced by the
coupling scheme. The result shows that it is possible to find a resources distribution
that allows achieving a load balance that equilibrates the parallel performance of
the coupling system and its partitions.

The load balance strategy is based on two points. First, the constrains enforced
by the coupling schemes can be used to create a link between the execution time of
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all partitions. Second, the metrics used to quantify the performance of the coupling
schemes can be used to find a suitable distribution of the processors resources for
each partition.

Coupling schemes and load balance

As said above, the load balance of a partitioned multi-physics system can be asso-
ciated to the coupling scheme. In the parallel coupling scheme, usually the fastest
solver must wait while the slowest finishes its execution. In the staggered scheme,
a solver must wait while the other solver is being executed. For both schemes, the
objective is the same, how to distribute the workload so that the computation can
be completed within an optimal execution time. The workload and the execution
time are related through the load balance, Equation 6.2.1. Such equation establishes
that the load balance can be calculated from the execution time of each task across
all processors.

Figure 6.3 sketches the trace for each of the coupling schemes analysed here.
It shows the chronology of the execution of the tasks composing the workload in
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Figure 6.3: Coupling schemes traces: (a) parallel, and (b) staggered. The total number of pro-
cessors p = p' + p? assigned to the whole coupled system Q = Q! U Q? are di-
vided between the partitions {Q!, 22} involved in the coupling. For the parallel
scheme, the total execution time T}, can be approached either as T}, = Tt + T2

or T2, = T?> + T%,, + T?'. Where T, T?, T2, T?!| and T?,, stand for the me-
dian of the execution time across all processors of the solver partition Q' and 2,
the data exchange between Q' and 2, the data exchange between Q2 and Q', and
the idle time of the domain 2, repectively. Likewise, for the staggered scheme, the
total execution time can be calculated either as T}, = T' + T2 + T, + T%! or

Tiy =Tige + T2 + 1% + T2
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detail. Two set of tasks are performed. The first set is related to the solution
of each partition. The second 1is constituted by operations that only take place
when the partitions are coupled. The operations arising as result of the coupling
are: localization, data exchange, and idle. The localization task is performed at
the beginning of the coupling simulation, but its study is out of the scope of the
present work. During data exchange, the interpolations, and sending/receiving data
between partitions take place. The idle time mainly arises from the difference in
the execution time of the solvers in the parallel scheme. On the other hand, in
the staggered scheme, the limitation introduced by the lack of concurrence in the
execution of the solvers is the source of the idle.

Once the tasks composing the workload of each coupling scheme are determined,
the load balance can be calculated for each of them. Firstly, from Equation 6.2.5 is
possible to establish that the load balance is given by

Abusy o Sum(Abusy) Zl Abusy
Atotal Sum(Atotal) Zl total

where the total area A;yq and the busy area Ay, are calculated from the contri-
bution Af,,, and Af,, given by each partition Q*. To begin with, the total area
Agorar = sum({ AL, A2, 1, ..., A1) covered by the partitions © = {Q Q% ... Q"}
involved in the coupling can be calculated as

L= (6.2.7)

total Z Atotal = Z Apllﬁ maX<Tkl,total) + Z Api maX(Tl?,total) (628)

kepl kep?
+... + Z Apy; maX(Tgtoml)
kepn
p' maX(Tgoml) +p? maX(Tmml ) + o+ p" max(Ty,,)
= max(T,,,)(p" +p° + ... +p")
= max(T,,,)sum(p),

where p is a vector holding the total number of processors p' = sum(p') used
by each partition Q'. On the other hand, max(T,,,) is a constant value which
corresponds to the maximum total time across all domains. Likewise, the area
Apusy = sum({A} Ap,s,}) during which the processors are busy is given
by

busy» busy’ st
Abusy Z Abusy = Z Asol + Alcou (6.2.9)

=1 kep!

= > (> AP Thsa + > AP T o)
=1 kep!

= Z Suir Tsol + Sum(szou))

~
—_
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where sum(T". ;) and sum(T’,,)
defined by each partition Q.

Now, from Equations 6.2.7, 6.2.8 and 6.2.9, along with the trace depicted on
Figure 6.3, it is possible to obtain the load balance for each coupling scheme as

stand for the solution area and the coupling area

_ Abusy — Zlnzl (Sum(Tlsol) + Sum(Tlcou)) (6210)
Atotal Sum(l)) maX<Ttotal)

sum(T’) + sum(T) + sum(T7) + sum(T7)
(pl + p]> maX(Ttotal)
Al + A+ AT 4 A
B Atotal ’

L

where, A" and A’ define the solution areas, while A% and A7 stand for the coupling
areas of partitions 2° and V.
It is worth highlighting that when the coupling time is small relative to the
calculation time, i.e., T% << T* | the load balance can be approximated as
AP+ AT + AT 4 AT

L = (6.2.11)
Atotal

Q

Coupling schemes and performance metrics

The load balance of a coupled system can be based on the analysis of the compu-
tational and coupling times for a range of processors configurations [101,109]. This
analysis allows optimizing the global iteration time required to solve a time step of
the coupled problem. Additionally to the analysis of the processors configurations,
the static load balance strategy presented in this thesis considers the parallel per-
formance metrics for the overall coupling system as well as the performance of each
field component.

The Equation 6.2.11 establishes a general relation between the partitions and the
total run time for each coupling scheme. Under the assumption of ideal parallel
algorithm (E = 1), an expression for the run time of each partition can be obtained.
Thus, it is possible to relate the total run time of the schemes with the distribution
of processors in each partition. This can be performed by the assumption that each
partition can maintain the efficiency constant. It means that, given a problem of
size n{ and a set of processors {pi, p, ..., p,}, the work must be constant

Al =pl - Ti(pi,n') = ph - Ta(ph,n') = ... = pl,, - Ti (ph,, ). (6.2.12)

Thus, under the assumption of an ideal parallel algorithm, the work A defined by
an arbitrary point (77, p!) can be used to define a general relation for the running
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time T of a partition as
S At
Ti(pi,nl) = —=. (6.2.13)
pl
Now, for the coupling schemes depicted on Figure 6.3, under the supposition that
(1) the coupling time is almost negligible, and (2) the parallel solver used by each

partition can mantain the efficiency constant, it can be found that the load balance
can be achieved when

A+ A p'T! 4 p°T?
Atotal p T

max

L(p", T p*, T%) =

(6.2.14)

where p = p' + p’ is the total number of processors, and T, . is the value given
by the maximum total time across both partitions. This equation makes use of
the efficiency to associate the execution time 7" of each partition with the total
execution time Tl and the distribution of the processors resources p = p* + p’ of
the coupling scheme. As demonstrated above, Equation 6.2.12, the areas A* and A7
are constants into the range [pmin, Pmax) Within which E* = 1 and E7 = 1. As result,
the load balance mainly depends on the relation between the total execution time
Thnax, and the distribution of the processors p.

Coupling schemes and total run time

Figure 6.4 depicts an example of the behaviour that it is possible to find when the
number of processors allocated to perform the solution of each coupling scheme is
modified. The aim is to show the relation between the partitions and the processors
with an example solved using the parallel and the staggered schemes. It consists of
a domain € divided into two identical partitions Q' and Q2 where Equation 6.2.14
is applicable. Each partition deals with the same problem of size ng using a number
of processors p! and p?, respectively.

Parallel scheme In general, for this scheme, the fastest solver must wait while
the slowest solver finishes its execution. As a result, the maximum time 7,,,, across
the whole system is given by the execution time 7 of the slowest solver. Thus, from
Equation 6.2.14, an optimal load balance L = 1 can be achieved when

sTs fo sf fo
L=%51—>p5 = 1+ (6.2.15)
p*lI; Do Po1o
pl . Al
s - + As?
Po Ag

where p/ and T/ stand for the processors and run time of the fastest solver, and
p*f = p* + p/. Tt is worth noting that the optimal number of processors to be
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Figure 6.4: Usage and Wall time as function of the total number of processors for (a) parallel, and
(b) staggered schemes. The total execution time (dash-dotted lines) is constituted by
the composition of execution times in each partition (dash and dotted lines). In the
parallel scheme, the execution time 7% = T}, of the partition Q’ fixes the value of the
total execution time T of the coupling. In the staggered scheme, the total execution
time T of the coupling is calculated as the sum of the execution time T% = T}, of the
partition Q¢, and the execution time 77 = T (p) of the partition £27. In both schemes,
it is possible to achive an optimum load balance L(p,). Whether less processors that
the optimum p, are used, then idle time is added to the coupling. The same situation
takes place when more processors that the optimum p, are used.

assigned to the fastest solver is given by the product of the ratio of areas A(’; JA§ and
the processors assigned to the slowest solver.

For the particular case depicted on Figure 6.4(a), a perfect load balance is ex-
pected when the same number of processors p/2 is assigned to each partition, i.e.,

;}1: - il P (p</p2/)2T+;/(§)/2T)1T _1. (6.2.16)

Staggered scheme For an optimal load balance, Equation 6.2.14 can be inter-
preted as having the total calculation area completely covered by the calculation
areas defined by all partitions, i.e., 4,,, = A' + A%. As a result, the area A,
arising from the difference between the execution time of the fastest and slowest
partitions, has been practically eliminated from the parallel scheme. The situation
in the staggered scheme is different. In this case, it is not possible to achieve an
ideal load balance, due to the idle time, since a solver must wait while the other
is running. As a consequence, the total calculation area always contains a fraction
of idle. To overcome this limitation, a search for the extremum values (maximum
or minimum) on the load balance can be made. A necessary condition for the load
balance L(p) to have a relative extremum value at pey; i dL(pest)/dp = 0. In order
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to find such extremum value, it is necessary to establish an expression for T},,,. For
this scheme, the maximum total time across partitions can be calculated as the sum
of the execution time of all solvers, i.e., Tmax = 1T 4+ T2, since they are executed one
after the other.

Based on the above, the load balance for the staggered scheme can be calculated
as

plTl + p2T2
(p' +p?) (T +T2)

L(p', p*) = (6.2.17)

This expression can be interpreted as the ratio of area busy and total area occupied
for a particular configuration of processors p = p'+p?. Now, when a set of processors
{po, p1, .-, Pm } is considered, different ratios {L(p}, p3), L(pt,p?), ..., L(pL ,p?,)} are
expected. For all of them, the numerator p'T* + p*T? is constant. This is due to
the fact that the efficiency of each partition is assumed to be constant, see Equation
6.2.12. In spite of this assumption, the total coupling area (p' + p?)(T* + T?) is
modified when the distribution of processors is changed. In order to show this, it is
possible to assume that a set of processors {p} + g, pg +p?, ..., pp +p2,} is considered
when the processors p} assigned to the domain Q' are maintained constant. Thus,
it is possible to demonstrate that when the expression for the load balance

nTy +p°T*

L(pt, p?) = 2.1
<p07p ) (p(l) + pQ)(Tol + T2) ) (6 8)
is rewritten as
be + a
L = 2.1
®) = TPt a (6:2.19)
bc+a

(p)(c+a/(p =)

where p)T3 + p*T* =bc+a, p=0b+p* and T = c+ a/(p — b), the extreme value
Popt calculated from dL/dp = 0 is given by

A2

Popt = b+ /ab/ec — ﬁﬁt=1+— o (6.2.20)
0

For the particular case depicted on Figure 6.4(a), the optimal load balance is
expected when the same number of processors p/2 is assigned to each partition, i.e.,

2
%:1+iﬁ:2—+L: ot be == (6.2.21)
P A (b++/ab/c)(c+ \/ac/b)

DN | —
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Wall time

Equations 6.2.15 and 6.2.20 show that using a suitable distribution of the available
processors, an optimal load balance can be achieved. Furthermore, such distribution
of processors are associated to a workload so that the computation can be completed
within an optimal execution time.

Figure 6.4 shows this execution time 7, as function of the optimum distribution
of processors po:. Additionally, the effect of the use of different sets of processors
p = {po, P1, .--, Pm }, is also regarded in the parallel and staggered schemes. As stated
above, the example consists of two identical partitions solving the same problem size

ng by using equal set of equations.

When a total of 2"*! processors are used, p},, = pay = Popt/2 = 2". As a result,
the parallel scheme can achieve an ideal load balance (L = 1), while a maximum
value (L = 1/2) is achieved by the staggered scheme, Equations 6.2.21 and 6.2.16,
respectively. The assignation of 2" processors to the partition Q! establishes its
running time as 7)) = A}/2", Equation 6.2.13. These values fix a point (2", 7}) in
the Figure 6.4. Likewise for the partition 2, a point (2", T?) is defined, where
T? = A3/(2"t! — 2m) = AZ/2". Thus, the total wall time in the parallel scheme is
given by the point (2" T?) = (21 T}}), while for the staggered scheme the point
is found in (2", T} + T?) = (2+1 2T1).

Now, the effect of using different sets of processors {27+ +p2 27+t p2 . 2n+l 4
p2 } can be evaluated by the general expression of the wall time T2 = AZ/(p — 2")
in the partition Q% Two situations are considered: (1) using less processors than
the optimum, or (2) assigning more processors than the optimum.

In the parallel scheme, when less processors than the optimum are used (2" +
p? < 2"1) | the total execution time T! is exceeded. It is due to the fact that,
in this situation the execution time T)? of the partition Q2 is slower than T}. As
a consequence, either less processors p? should be used, or a reallocation of the
processors p! must be considered. On the other hand, when more processors than
the optimum are assigned (2" + p*> > 2"*1) the difference between the execution
time of both partitions introduces the idle time T,;, = T! — T?. This difference
can even reach the total execution time 7, when the processors assigned to Q? are
significantly greater (p >> 2"™1). Finally, it is worth noting that as the idle time
increases with the number of processors, the load balance decreases monotonically
towards zero.

The behaviour of the load balance and the total execution time is different in
the staggered scheme. As stated above, the load balance achieves a maximum
value L = 1/2 when p = 2! and T = 27!, When 2" + p? < 2""! the load
balance decreases because the increase of the execution time T? expands the total
area A = (2" + p?) (T} + T?). Likewise, the total area Ajpq expands when
2" + p? > 271 In both cases, the coupling areas 2" T? and T'p? occupy most of
the total area, and are minimal only when p = pg.
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6.3 Numerical tests

In this section, the load balance strategy described above is applied to the solution
of the conjugate heat transfer problem presented in Section 5.4.3. This problem is
selected with the aim of analysing three different aspects of the load balance strategy.
First, the validation of the relations introduced in the previous section, and the
effects of ranging the processors of an unique partition are discussed. Additionally
to the wall time, the efficiency, the speed-up, and their relation with the load balance
are also analysed. Next, the behaviour of the performance metrics referred above
is analysed when the processors in both partitions are ranged under two situations:
fixed problem size, and variable problem size.

6.3.1 Coupling problem

Fluid-solid thermal coupling

In this work, the confined turbulent jet flame presented in Section 5.4.3 is considered
for a parallel performance analysis. The unstructured mesh for the fluid subdomain
consists of 9.13 M tetrahedral elements, while the mesh for the solid subdomain
consists of 13.44 M prismatic elements. The details related to the physical aspects
of the problem can be found in [4].

6.3.2 Assessment of the load balance strategy

Figure 6.4 shows that each coupling scheme can achieve an optimum load balance for
a particular distribution of processors, and such distributions are given by Equations
6.2.15 and 6.2.20. In this section, these relations are validated using the confined
premixed jet flame described on Section 5.4.3. Figure 6.5 shows two numerical test
where the distribution of processors p = p 4+ p° has been ranged. The range for each
partition is chosen so that each of them runs with the maximum efficiency, i.e., as
close as possible to the ideal & = 1, Thus, for this case, the number of processors p =
pf" for the fluid partition is maintained constant to 512 processors, while processors
for the solid partition are ranged as p° = {4, 8, 16, 32, 64, 128,256, 512}. Now, from
the curves in Figure 6.5, it is clear that the load balance distribution, (Equations
6.2.15 and 6.2.20), agree with the measurements resulting from the wall time of the
partitions.

In the parallel scheme, the load balance practically achieves an ideal load balance,
i.e., L ~ 1, when the number of processors is p = 516, which corresponds to pf" = 512
and p° = 4. As stated in Section 6.2.2, this takes place when the execution time
of both partitions are equal, and then, the idle time is not introduced. Thus, as
the number of processors p° increases, the load balance drops, while the execution
time of the fluid T decreases and the idle time T°"¢ increases. When the number
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Figure 6.5: Load balance and wall time as function of the distribution of processors for (a) the
parallel scheme, and (b) staggered scheme. The total number of processors p = p*" +
p® ranges from 516 to 1024, with p* = 512 and p°® = {4,8,16,32,64,128,256,512}.
The total wall time T' (triangles) is composed of the wall time of the solid partition
T% (squares), and the wall time of the fluid partition T = T, when pf' = 516 (dia-
monds), which is taken as reference. The optimum distribution of processors (vertical
dashed line) has been calculated by using Equations 6.2.15 and 6.2.20, along with
the wall time measurements, which result on the relation of areas of approximately
AF =122A4° and where the optimum p’ is rounded to the nearest power of 2 i.e.,
Poye = 2" With n = [log(p" A5 /Af)/log(2)], and n = [log((p™)>AF/AF)/ log(4)]
for the parallel and staggeres schemes, respectively.

of processors of the solid is p® = 512, the execution time of the solid is almost
negligible and, as consequence, the load balance is L = 0.5. On the other hand, in
the staggered scheme, when the distribution of processors is pf’ = 512 and p°® = 64,
the optimum load balance L ~ 0.83 of this problem is achieved. When the total
number of processors is either smaller or larger than the optimum p = 576, the load
balance drops again. It is worth noting that the decrease of the load balance is faster
in cases where p is below the optimum than when p is higher than the optimum.

6.3.3 Performance metrics

The efficiency and speed-up for the setup described in the last section are shown
in Figure 6.6. The efficiency compares the amount of total work that a parallel
algorithm performed using different set of processors is conducted. Under the as-
sumption that each partition maintains the efficiency constant, the area defined by
each set of processors should remain constant, and the efficiency of each of them
should be equal to one. In a coupled system, this can be different because the total
area depends on the sub-set of processors used to execute each partition. For the
setup described in the last section (where the processors allocated to a partition are
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Figure 6.6: Efficiency and Speed-up as function of the distribution of processors of the overall
coupling (triangles) for (a) the parallel scheme, and (b) staggered scheme. The
total number of processors p = p + p¥ ranges from 516 to 1024, with p!" = 512
(squards) and p® = {4,8,16,32,64,128,256,512}. The speed up and the efficiency
are compared with their ideal values (continuum blue lines) E = 1 and S = p,
respectively. The optimum distribution of processors (vertical dashed line) has been
calculated by using the wall time measurements and Equations 6.2.15 and 6.2.20.
The corresponding values of efficiency F = 0.83, and speed up S = 512 are given by
Equations 6.3.1 and 6.3.2.

maintained constant, while the processors for the other partition are ranged) a first
chance here considered is to calculate the efficiency respect to the distribution of
processors corresponding to the ideal load balance. Another chance considered is
to use the same values employed to calculate the efficiency of a given partition as
reference. In the first case, the efficiency is equal to one when the optimum distri-
bution of processors is achieved, while in the latter case, the efficiency of the chosen
partition is taken as reference. For the setup described in the last section, the val-
ues related to the fluid partition AJ = pf'T{" are used as reference to calculate the
coupling efficiency.

From the Equation 6.2.6, the efficiency for the parallel scheme can be calculated
as EP = pl'T¥ /(p T), which for the ideal load balance (Equation 6.2.15) is given by

o A S (6.3.1)
o popt 1 + AOS/Ag

These relations show how the efficiency of the fluid partition is affected by the
coupling. When the ratio of areas tends towards zero A5 /Al — 0, the efficiency
of the original partition is recovered, otherwise, the efficiency drops. On the other
hand, due to the fact that the efficiency EP is independent of the total time, the
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speed up of the parallel sheme S? is equal to the number of processors assigned to
the fluid partition, i.e., from Equation 6.2.3, SP = pl’, see Figure 6.6(a).

Similarly to the parallel scheme, the efficiency of the staggered scheme can be
calculated using the expression E* = pl'T{"/(p T), while the speed-up is given by
Ss = plTE /T, see Figure 6.6(b). Note that a maximum value of efficiency E, can
be achleved when the distribution of processors is the optimum, i.e,

pETE 1
By = 0
" v Do (14 ,/A5/A5)?

This expression is calculated using the Equation 6.2.20, and considering that the
total time is given by T = T + p5 Ty /(p — p&’). Under the assumption of negligible
coupling time, this expression for the total time relates the total coupling area p T’
with the area of each partition (see Figure 6.3)

(6.3.2)

(T = TF)p — o) = piTS — ot = (1+T—S)(1+ S) (6.3.3)
poTo To po

so that the optimum load balance is obtained by

Dopt Ly AS AS
pngtz <1+ AF) <1+ ar ) (6.3.4)

This expression indicates that, for an optimum distribution of processors, the areas
defined by the partitions are distributed so that the ratio of running times, and
the ratio of allocated processors are equivalent, i.e., Ty /TE = p§/pf = \/A§/AL.
From Equations 6.3.2 and 6.3.4, it can be interpreted as the efficiency, the area of
the reference partition p{T{" to the ratio of the optimum coupling area popiTop, is

equivalent to the area enclosed in a square of side 1+ (/ Ag/A}.

6.3.4 Weak scaling

Given a particular problem characterized by the ratio A5 /AL, Equation 6.2.20 allows
calculating the optimum distribution of processors p = p” + p° for a staggered
scheme. Thus, a change in the distribution of processors is expected only when such
ratio is modified. On the other hand, Equation 6.3.2 indicates that a maximum
value of efficiency Ej, can be achieved, and its value is maintained constant while
A5 /AL remains unchanged. In general, this assumption is preserved just as much
as the efficiency of the partitions remain close to one. As a result, the efficiency
calculated in the latter section remains constant despite of the fact that the number
processors ph used as reference changes. The effect of changing the value of the
processors allocated for the fluid partition, is shown in Figure 6.7.
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Figure 6.7: Speed up (top) and efficiency (bottom) as function of the distribution of processors
for staggered scheme. The total number of processors p = p + p° ranges from
128 to 2048. Values pf corresponding to the fluid partition (triangles) are taken
as reference, while the processors p° of the solid partition range from 4 to 1024.
The speed up and the efficiency of the overall coupling (circles) are compared with
their ideal values corresponding to the fluid partition (continuum black lines) E = 1
and S = p, respectively, as well as, with the expression given by Equation 6.3.4
(dashed curves). The optimum distribution of processors (vertical dashed lines) has
been calculated by using the wall time measurements and Equation 6.2.20, while the
corresponding values of efficiency £ = 0.84, are given by Equation 6.3.2.

As in last section, each numerical experiment consists of modifying the num-
ber of processors of the solid partition p®, while the processors of the fluid par-
tition pf are used as reference. Four numerical experiments are shown, pf =
{128,256,512,1024}. They are chosen so that the efficiency of the fluid partition
remains above 80%, taking as reference the execution time when p* = 128. In the
other hand, for each experiment, the number of processors of the solid partition p°
ranges from 4 to p°, while the distribution of processors p ranges from p* + 2 to
2p¥. Note that, in general, the observations given in section 6.3.3 are fulfilled in
each experiment. Initially, the overall efficiency increases due to the increase of p.
This takes place until the ratios of running times, and allocated processors follow
Equation 6.3.4, point where maximum efficiency is present. After that, as the total
number of processors continues to rise, the efficiency decreases following the values
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of efficiency of the fluid partition. Due to the fact that in each experiment the fluid
partition is taken as reference to calculate the efficiency, its speed up is maintained
constant while p increases (T is constant). However, its efficiency decreases because
of the increase of p.

6.4 Summary and remarks

This chapter presents a load balance strategy that takes into account an optimal
distribution of processors for multi-physics applications solved by a partitioned cou-
pling approach. It describes the influence of the assignment of the processors by
means of expressions relating the performance metrics of each partition. The assig-
nation is based on a suitable distribution of the available processors, which considers
the performance metrics of each partition under the influence of the constrains es-
tablished by the coupling approach. The results show that it is possible to find an
optimal distribution of processors to achieve a load balance that equilibrates the
parallel performance of the coupling system and its partitions. Firstly, it is shown
that the load balance of a coupling scheme establishes a relation between its total
execution time, the execution time of each partition, and how the total processors
are distributed between partitions. This relation allows to assign an optimum num-
ber of processors to each partition so that an ideal load balance can be achieved in
the parallel scheme. On the other hand, it is shown how to overcome the constrains
imposed by the staggered scheme demonstrating that a maximum value of efficiency
can be achieved.

Finally, in order to also evaluate the proposed load balance methodology, the
confined turbulent jet flame presented in Section 5.4.3 is analysed. The scaling
tests carried out indicate that the expected parallel performance for the different
distribution of resources as well as the optimal performance of the coupled simu-
lation is well represented by the expressions derived in this study. Therefore this
strategy, can be used to assign the most appropriate distribution of processors to
guarantee optimal performance. The proposed strategy holds under the following
assumptions: (1) the coupling time is negligible, and (2) that the parallel solver used
by each partition must maintain the efficiency constant. These results encourage
the application of this methodology to other large-scale multi-physics applications
including contact (Chapter 4), particles-fluid flow (Section 3.3.2), fluid-solid interac-
tion problems, multi-fields couplings, and others, as well as large-scale architectures,
and other coupling approaches.
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Conclusions

In this work, the development, validation and use of a high-performance computing
coupling tool for the solution of partitioned multi-physical simulations has been de-
scribed. The emphasis has been placed on the efficient use of large-scale computers,
but always considering the robustness and accuracy of the solutions.

Two of the main challenges related to the modelling of multi-physics applications
by combining separate physical systems has been addressed in this thesis: the par-
allel coupling problem, and the efficient use of large-scale computers. In this sense,
the thesis has been divided into three main parts:

Development A mathematical background related to coupling approaches used in
the solution of partitioned multi-physical systems was presented in Chapter 2,
along with details related to the computational development of the coupling
tool PLE++ (Parallel Location and Exchange++) were given in Chapter 3.

Validation and use Two multi-physics applications were addressed in Chapters
4 and 5: contact between deformable bodies, and conjugate heat transfer,
respectively.

Performance A parallel performance analysis for multi-physics applications was
introduced in Chapter 6.

Main contributions of this study along with future challenges are presented in the
following sections.
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7.1 Summary of the thesis

Chapter 2 discussed the mathematical nature of the coupling approaches used in
this thesis. The details related to the iterative Dirichlet-Neumann approach used
to solve contact and conjugate problems were shown. Firstly, it was established
that a suitable use of boundary conditions through the interface defined between
pairs of partitions is necessary to find an accurate solution of a coupled system. In
order to do that, transmission conditions arising from heterogeneous domain decom-
position methods for non-overlapping partitions are necessary. It was shown that
these conditions stablish that a given variable and its corresponding flux must be
continuous through the coupling interface. As indicated, for each coupling sim-
ulation, these coupling variables can be determined using the weak form of the
equations modelling each partition. For instance, for the advection-diffusion system
with convection dominated flow in a partition, transmission conditions are the nor-
mal component of a convective vector, and a Robin-type condition. As shown, these
variables are iteratively imposed as boundary conditions to each partition. Firstly,
the projection of the convective vector is enforced as Dirichlet boundary condition
in the inlet region of the coupling interface of a given partition. After that, in the
other partition, Robin-type conditions are enforced in outflow boundaries. Using the
procedure introduced in this chapter, the corresponding transmission conditions for
contact between deformable bodies and for conjugate heat transfer problems were
deduced in Chapters 4 and 5.

Chapter 3 presented an overview of the main challenges related to the imple-
mentation of the coupling tool developed in this thesis. The Parallel Location and
Exchange++ (PLE+4+) library is a coupling tool developed to deal with large-scale
partitioned multi-physical simulations. Here, it was shown that the workflow of
PLE++ can be divided in three main stages: (1) Defining the set of MPI commu-
nicators to be used by each partition. (2) Establishing peer-to-peer communication
layouts between pairs of sub-domains allocated in different partitions. (3) Exchang-
ing data between sub-domains identified as associated to the coupling. The first
stage is necessary because for a coupled system using the MPMD execution mode,
the physical solution for each partition is found independently (i.e., each solver is
executed as a SPMD), so that a internal MPI-communicator must exist for each par-
tition. During the second stage, the parallel localization allows identifying the pairs
of processors related to the coupling. It is performed by detecting sub-domains
allocated in different partitions which share common regions. These regions are
identified using a hierarchical algorithm based on geometrical properties of the par-
titions. Broadly, a global search allows associating overlapped sub-domains allocated
in different partitions. At the same time, a local search allows associating vertices
of a local partition which are contained inside of elements allocated in a remote
partition. At the end, these geometrical associations allow defining the external
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communicators to be used during exchange. It includes the interpolation of proper-
ties related to transmission conditions as well as the exchange of them between pairs
of partitions Finally, two application cases were shown as examples. The first case
addressed the parallel implementation of a coupling scheme for a confined premixed
jet flame. In particular, part of the analysis presented here was limited to show the
possible limitations of the coupling performance. The staggered approach used here
requires that both partitions wait during the calculation stage of the other partition.
It introduces a limitation in the maximum performance that can be achieved when
the number of MPI processes are not selected appropriately. In the second case, the
capability to perform heterogeneous simulations on GPUs and CPUs was consid-
ered. In this case, the GPU and Alya transfer the data throughout interconnection
network and PCI-Express, while PLE++ performs the localization and mapping.

Chapter 4 described the development of a novel parallel algorithm to deal with
contact of deformable bodies. Regions where the contact constrains take place are
identified using the parallel localization implemented in the PLE++ library. At
the same time, the algorithm makes use of an iterative Dirichlet-Neumann coupling
approach for the contact resolution of the frictionless interaction between two de-
formable bodies. Broadly, Dirichlet boundary conditions are used in a partition
to enforce the non-penetration constrain. After that, the action-reaction principle
between two bodies is considered using Neumann boundary conditions in the other
partition. These transmission conditions are enforced through the set of remote ver-
tices on the surface of the deformable body, which are localized inside of any local
element on the surface of the other partition. Firstly, Dirichlet conditions are en-
forced so that vertices can only move in parallel to each boundary face corresponding
to the element in which each vertex is localized. The magnitude of this Dirichlet-
type condition is calculated as the distance from each vertex to the boundary face of
the element containing it. As a result of enforcing this slip condition, the stress field
is updated through the contact interface, then the stress is interpolated from local
elements to the remote vertices. Finally, once these values have been received in the
other partition, they are enforced as a Neumann condition. The entire process can
be repeated until the desired convergence is achieved. The validity of the approach
presented here is shown through two cases. In the first case, an elastic ball con-
tacting with a rigid plane is considered. The results showed a good agreement with
the analytical solution for the contact traction distribution given by the Hertzian
elastic contact theory. In the second case, the impact of a rigid hemisphere against a
plate is studied. For this case, forces as function of time and velocities of the bodies
are compared. Broadly, the plate is modelled as a transversally isotropic material,
while the impactor is assumed as an isotropic linear elastic material with an impact
energy level of 1.6J. The results obtained here agree well with those achieved by
the commercial code Abaqus. Finally, a parallel performance analysis focused on
the availability of the localization algorithm has been provided. The results sug-
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gests that a suitable selection of the processors distribution is necessary to achieve
optimal location times. A deeper analysis of this key issue is left for future work.

Chapter 5 was focused on describing a method to address conjugate heat transfer
(CHT) problems using a partitioned approach. Thus, the CHT problem was solved
using domain decomposition methods, i.e., solving iteratively two independent prob-
lems, where the fluid partition is defined as the Dirichlet partition, while the solid
partition is considered as the Neumann one. By means of this algorithm, the con-
tinuity of the transmission conditions (temperature and heat fluz density) through
the coupling interface is ensured at every time step. On the other hand, one of the
main drawbacks in CHT problems is the time-disparity. Due to the physical nature
of a CHT problem, the temporal scales between fluids and solids are usually very
different. In this thesis, a method to deal with this problem has been proposed.
It consists on synchronizing the physical time in fluid and solid by increasing the
thermal activity ratio while the Biot number is maintained. The result achieved for
a constant air stream cooling a steel flat plate shows that the entire cooling process
can be successfully simulated. Finally, two practical applications are solved here.
Firstly, the effect of the heat transfer condition at the solid wall on a premized im-
pinging jet flame was presented. The main results regarding heat transfer effects
were summarized here. Different thermal conditions were imposed at the impinging
plate and its effects on the flame dynamics, heat transfer, shear stress and wall-jet
development were discussed in the context of large-eddy simulation. Secondly, the
heat loss of a confined turbulent jet flame in a labscale combustor was investigated.
In this case, the dual heat transfer approach was used in order to obtain the steady
temperature distributions in the solid. For this case, one of the main results shows
that a significant spatial variation of the temperature at the interface is observed.

Chapter 6 introduced a load balance strategy to run partitioned multi-physics
applications on extreme scale architectures. The goal was to achieve an optimal
balance in the data distribution so that the load is balanced not only for each
component, but also for the whole coupled system. Here, it has been shown that,
in a partitioned system using the MPMD execution mode, concurrency is related
to the coupling scheme chosen, while load balance is associated to the amount of
processors assigned to each partition. Thus, if an appropriate selection of the set of
processors is done in the parallel scheme, then it is possible to remove completely
the idle time arising from the difference between execution times of the solvers. As
consequence, an ideal load balance can be achieved for the whole coupled system.
In the case of the staggered scheme, it has been demonstrated that the idle time
can only be reduced since at any time there exist a waiting solver. One of the main
results has been to find analytical expression which can be used to measure the
efficiency of a partitioned multi-physical application. This was done by introducing
a geometrical interpretation for the load balance, and for the performance metrics
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(efficiency, scalability, and and speed-up). The interpretation introduced is based on
the idea that the amount of time that a parallel solver computes a sequence of tasks
using a set of processors can be associated to an area covering a trace (if it is seen as a
rectangular coordinate system). The results show that for the confined turbulent jet
flame presented in Section 5.4.3, the optimal performance of this coupled simulation
is well represented by the expressions derived in this study and therefore, under some
assumptions, it can be used to assign the most appropriate distribution of processors
to guarantee optimal performance.

7.2 Future work

Based on the contributions summarized above, some future improvements are listed
below.

Firstly, regarding the computational development of the PLE++ tool, numerical
methods to deal with interpolations and accelerations methods should be consid-
ered. Interpolations methods which avoid the use of the computation mesh seems
to be attractive in multi-physics simulations as fluid containing particles [110]. In
particular, the use of radial basis meshless methods [111,112] could be considered
in future versions of PLE++. Regarding accelerations methods, the quasi-Newton
least-squares (QNLS) [19], or similar methods widely used in fluid-solid interaction
problems, could be implement in order to improve the convergence in contact and
conjugate problems.

With reference to the multi-physical systems addressed here. For the contact of
deformable bodies, a deeper parallel performance analysis must be considered. In
particular the localization algorithm used for the contact search must be included in
the load balance strategy proposed in this thesis. Regarding conjugate heat transfer
problems, the method proposed to deal with the time-disparity must be validated
against numerical cases which consider transient states, as well as cases considering
different properties for the fluid and solid partitions.

Finally, the load balance strategy introduced in this thesis must be validated
in different computer architectures, as well as for more general multi-physical ap-
plications. In particular, one interesting challenge is related to the application of
this strategy to simulations involving more that two partitions (as in the case of
climate modelling). Another important case is the validity of the strategy when
the coupling involve overlapping partitions. In this case, the volume of data can
be important since exchange and interpolations can represent an import source of
time. To conclude, extensions to hybrid architectures could be also considered.
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A
Solid partition parameters

In this section, the effect of the variation of the Biot number and the thermal
diffusivity inside a solid is analysed. The solid under study is the one considered in
the thermal coupling described in Section 5.4.1.

For a conjugate heat transfer problem, the coefficient of convective heat transfer
h is a quantity distributed on the coupling interface. At the same time, the thermal
activity ratio K, defined as i/ (as/ay)l/?, relates the thermal diffusivity of the
fluid and the solid. This ratio characterises the thermal behaviour of a solid inter-
face, and leads to two opposite situations. When K — oo, the maximum level of
fluctuations are expected at the interface. On the other hand, when K — 0, the
interface behaves like an isothermal wall with small fluctuations to be expected [113].

In the particular case analysed in Section 5.4.1. the conductivity and thermal
diffusivity of fluid and solid have been taken as constant and equal, so that the
thermal activity ratio K is fixed to one and then low level of fluctuations would be
expected. This agree well with the fact that the time scale ratio (Equation 5.3.6) is
around seven, i.e., t, ~ 7t;. In general, this indicates that, the solid must be subject
to the influence of the fluid during a considerable amount of time to have changes.
In order to change this behaviour without modifying the properties of the fluid, the
thermal diffusivity of the solid can be altered.

Biot Bi and Fourier F'o numbers are dimensionless parameters controlling the
physical behaviour of the solid. A relation between these numbers is found in Equa-
tion 5.1.6. The product of both of them is equivalent to the ratio given by the
physical time ¢ and the thermal time constant 7. From this relation, it is possi-
ble to conclude that 7 is controlled by the Biot number Bi and the diffusivity «
since 7 = L?/(Bi «). Considering that the geometry of the problem, and the fluid
properties are fixed, the Biot number can only change as consequence of varying
the conductivity of the solid. However, this modification results on a change in
the physical behaviour of the solid, since this number controls how the temperature
is distributed in space. Thus, when the main interest is to maintain the physical
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Figure A.1: Heat transfer coefficient interface distribution. h = 5.559, h = 6.495, Kf/ks = 1,
ap/as =1, Bi=hA/rk; ~1.118, a = 1.408 x 1073, 79 = pre,pA/h ~ 6.346.

behaviour of the fluid and the solid, a variation of the diffusivity in the solid can be
used.

The effect of modifying the Biot number and the thermal diffusivity inside a
solid is analysed here using five cases, see Table A.1. The first case corresponds to
the same properties as the fluid studied in Section 5.4.1, so that o;/af = 1, and
ks/ks = 1. In the next two cases, the density p, is modified. As a result, the thermal
diffusivity as and the thermal time constant 7 changes, while the Biot number is
kept constant. In the last two cases, the thermal time 7 is maintained constant
by modifying the conductivity ;. Bt and a4 change for these two cases. Finally,
for the five cases, the convective heat transfer is approximated as the mean of its
distributed value h obtained from the coupled simulation, see Figure A.1.

Ds Ks Qs T Bi K?
[kgm=®] | [Wm™ C™] Ks/ (PsCps) psCpsLs/h hLs/ks (rpcp)r/(Kpcy)s
13528 x10% [ 4.969 x 107" [ 1.408 x 1077 | 6.347 x 10° [ 1.118 x 10° | 1 x 10°
2 ][ 3.528 x 10" | 4.969 x 10" ]| 1.408 x 10~* | 6.347 x 10" | 1.118 x 10° 1 x 10
3] 3.528 x 10° | 4.969 x 10" [] 1.408 x 10~* | 6.347 x 10" | 1.118 x 10° 1x107"
4] 3.528 x 107 | 4.969 x 102 ]| 1.408 x 10~* [ 6.347 x 10° [ 1.118 x 10" 1 x 107
5] 3.528 x 107 | 4.969 x 10° || 1.408 x 107% | 6.347 x 10° | 1.118 x 10" 1x107"

Table A.1: h=5.559 [W K~! m~2]
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Figure A.2: Three point inside the solid {—0.10,—0.05,0.0}, squares, triangles, and circles re-
spectively.

Each plot in Figure A.2. shows the temporal evolution for three points inside the
solid, y/A = {—0.10,—0.05,0.0}. From left to right, the density increases, while
from bottom to top the conductivity increases. As p, increases, o, decreases, Bi
is constant, and the shape of the three temperature curves is qualitatively similar.
Furthermore, the effect of modifying p, can be seen in the simulation time ¢. The
rise of p, increases the thermal time 7, resulting in the increase of the simulation
time necessary to achieve the steady state. The behaviour of the curves in cases 4
and 5 is completely different. In case 4, the reduction of conductivity leads to the
increase of Bi. It results in a change in the shape of the curves, along with the
increase of the simulation time. This occurs despite of the fact that 7 is maintained
fixed in both cases. In case 5, the lumped analysis, as described in Section 5.1.2, is
completely suitable since Bi ~ 0.1. The temperature remains uniform within the
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Figure A.3: Temperature T at x /Lo = 0.5 and y/A = 0.0 as function of (a) time ¢, (b) normalised
time t/7, and (c¢) number of time steps na;.

body at all times and changes only with time. It is worth noting that, for the cases
with the same Biot number, the steady state seems to be achieved around the same
value of the ratio ¢/7, despite of the differences in the time scale ¢. For cases 2,1
and 3, the steady state is reached approximately when the simulation times are 5, 50
and 500, respectively. These times correspond to t/7 ~ 6 for all cases, see Figure
A.3. Regarding the thermal activity ratio K for these three cases, a reduction of T
is associated to an increase of K.

A comparison of the curves corresponding to y/A = 0 for the five cases discussed
above is shown in Figure A.3(a). An additional case is also included (curve 6). It
corresponds to increase the time step size of the case 2. It is done to perform a
faster simulation. The equivalence between the curves with equal Biot number is
shown in Figure A.3(b). Here, the thermal time 7 corresponding to each case is
used to plot each temperature curve as function of its own ratio ¢/7. Cases 1 to
3 are completely overlapped. The difference with curves 4 and 5 can be clearly
observed. Figure A.3(c) shows the temperature curves as function of the number of
time steps na; used to perform each simulation. Once again, cases 1 to 3 overlap. It
means that, given a Biot number, the same temperature can be achieved by using
the same number of time steps, even though the simulation times are different. On
the other hand, for the same number of time steps, as the Biot number increases
the temperature achieved decreases. From this analysis, it is possible to conclude
that, given a solid with prescribed thermal properties, numerical simulations with
the same Biot number can be considered physically equivalent. Finally, these results
are applied to accelerate the thermal coupling in Section 5.4.1, and can be considered
as a numerical strategy to deal with the scale disparity in conjugate heat transfer
problems.
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