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Abstract

The ability to control the optical frequency of quantum state carriers (i.e.

photons) is an important functionality for future quantum networks. It al-

lows all matter quantum systems - nodes of the network - to be compatible

with the telecommunication C-band, therefore enabling long distance fiber

quantum communication between them. It also allows dissimilar nodes

to be connected with each other, thus resulting in heterogeneous networks

that can take advantage of the different capabilities offered by the diversity

of its constituents. Quantum memories are one of the building blocks of

a quantum network, enabling the storage of quantum states of light and

the entanglement distribution over long distances. In our group, two dif-

ferent types of memories are investigated: a cold atomic ensemble and an

ion-doped crystal. In this thesis I investigate the quantum frequency con-

version of narrow-band photons, emitted or absorbed by optical quantum

memories, with two different objectives: the first one is to connect quantum

memories emitting or absorbing visible single photons with the telecom-

munication wavelengths, where fiber transmission loss is minimum. The

second and main goal is to study the compatibility between disparate quan-

tum nodes, emitting or absorbing photons at different wavelengths. More

precisely the objective is to achieve a quantum connection between the two

optical memories studied using quantum frequency conversion techniques.

The main core of this work is the quantum frequency conversion inter-

face that bridges the gap between the cold ensemble of Rubidium atoms,

emitting photons at 780 nm, and the Praseodymium ion doped crystal,

absorbing photons at 606 nm. This interface is composed of two different

frequency conversion devices, where a cascaded conversions takes place:

the first one converts 780 nm photons to the telecommunication C-band,

and the second one converts them back to visible, at 606 nm. This comes

with several challenges such as conversion efficiency, phase stability and

parasitic noise reduction, which are important considerations to show the

conservation of quantum behaviors through the conversion process.



This work can be divided in three parts. In a first one, we built a quan-

tum frequency conversion interface between 606 nm and the C-band wave-

length, capable of both up and down-conversion of single photon level

light. We also characterized the noise processes involved in this specific

conversion. In the down-conversion case we showed that memory compat-

ible heralded single photons emitted from a photon pair source preserve

their non-classical properties through the conversion process. In the up-

conversion case, we showed the storage of converted telecom photons in

the praseodymium doped crystal, and their retrieval with high signal to

noise ratio.

The second part of the work was devoted to the conversion of photons from

an emissive Rubidium atomic quantum memory to the telecom C band. In

this work we converted the heralding photons from the atomic ensemble

and measured non-classical correlations between a stored excitation and a

C-band photon, necessary for quantum repeater applications.

In the last part of the thesis, we setup the full frequency conversion inter-

face and showed that heralded photons emitted by the atomic ensemble

are converted, stored in the solid state memory and retrieved with high

signal to noise ratio. We demonstrated that a single collective excitation

stored in the atomic ensemble is transfered to the crystal by mean of a sin-

gle photon at telecom wavelength. We also showed time-bin qubit transfer

between the two quantum memories. This work represents the first proof

of principle of a photonic quantum connection between disparate quantum

memory nodes.

The results presented in this thesis pave the way towards the realization

of modular and hybrid quantum networks.



Resum

La capacitat de controlar la freqüència òptica dels portadors d’estats quàntics

(és a dir, els fotons) és una funcionalitat important per a les futures xarxes

quàntiques. Permet que tots els sistemes quàntics de matèria (nodes de la

xarxa) siguin compatibles amb la banda C de telecomunicacions, perme-

tent aix́ı la comunicació quàntica de llarga distancia amb fibres entre ells.

També permet connectar nodes diferents, de manera que es generen xarxes

heterogènies que poden aprofitar les diferents capacitats que ofereix la di-

versitat dels seus components. Les memòries quàntiques són un dels blocs

bàsics d’una xarxa quàntica, que permeten l’emmagatzematge dels estats

quàntics de llum i la distribució d’entrellaçament a llargues distàncies. En

el nostre grup, s’investiguen dos tipus de memòries diferents: un conjunt

d’àtoms freds i un cristall dopat amb ions. En aquesta tesi investigo la

conversió de freqüències quàntiques de fotons amb ample de banda estret

emesos o absorbits per memòries quàntiques òptiques amb dos objectius

diferents: el primer és connectar memòries quàntiques que emeten o ab-

sorbeixen fotons individuals visibles amb longituds d’ona de telecomuni-

cacions, on les pèrdues en fibra són mı́nimes. El segon objectiu principal

és estudiar la compatibilitat entre nodes quàntics diferents, emetent o ab-

sorbint fotons a diferents longituds d’ona. Més precisament, l’objectiu és

aconseguir una connexió quàntica entre les dues memòries òptiques estu-

diades mitjançant tècniques de conversió quàntica de freqüències.

La part principal d’aquest treball és el desenvolupament de la interf́ıcie de

conversió quàntica de freqüències que fa de pont entre el núvol d’àtoms

freds de Rubidi, emetent fotons a 780 nm, i el cristall dopat amb ions

de Praseodimi, que absorbeix els fotons a 606 nm . Aquesta interf́ıcie es

compon de dos dispositius diferents de conversió de freqüència, on es pro-

dueixen conversions en cascada: el primer converteix fotons de 780 nm

a la banda C de telecomunicacions, i el segon els converteix a 606 nm.

Això comporta diversos desafiaments com ara l’eficiència de la conversió,



l’estabilitat de la fase i la reducció del soroll paràsit, que són considera-

cions importants per mostrar la conservació dels comportaments quàntics

a través del procés de conversió.

Aquest treball es pot dividir en tres parts. En una primera, hem constrüıt

una interf́ıcie de conversió quàntica de freqüències entre 606 nm i la lon-

gitud d’ona de la banda C, capaç tant de conversió cap amunt i avall de la

llum al nivell de fotó individual. També hem caracteritzat els processos de

soroll implicats en aquesta conversió espećıfica. En el cas de conversió cap

avall, vam mostrar que fotons individuals anunciats compatibles amb les

memòries quàntiques i emès a partir d’una font de parells de fotons pre-

serven les seves propietats no clàssiques durant el procés de conversió. En

el cas de conversió cap amunt, vam mostrar l’emmagatzematge de fotons

de telecomunicacions convertits en el cristall dopat de praseodimi i la seva

recuperació amb una alta relació senyal / soroll.

La segona part del treball es va dedicar a la conversió de fotons a par-

tir d’una memòria quàntica atòmica de Rubidium emissiva a la banda de

telecomunicacions C. En aquest treball es van convertir els fotons anun-

ciats del núvol atòmic i es van mesurar correlacions no clàssiques entre

una excitació emmagatzemada i un fotó de banda C, necessàries per a les

aplicacions de repetidor quàntic.

En l’última part de la tesi, vam configurar la interf́ıcie de conversió de

freqüència completa i vam mostrar que els fotons anunciats emesos pel

conjunt atòmic es converteixen, s’emmagatzemen en la memòria d’estat

sòlid i es recuperen amb una alta relació senyal / soroll. Hem demostrat

que una sola excitació col·lectiva emmagatzemada al conjunt atòmic es

transfereix al cristall mitjançant un fotó individual a la longitud d’ona de

telecomunicacions. També vam mostrar la transferència de qubit codificat

en temps entre les dues memòries quàntiques. Aquest treball representa la

primera prova de principi d’una connexió quàntica fotònica entre nodes de

memòria quàntica diferents. Els resultats presentats en aquesta tesi obren

el camı́ cap a la realització de xarxes quàntiques modulars i h́ıbrides.
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Chapter 1

Introduction

Efficient communication between distant places has always been a chal-

lenge and a strategic technology. Different solutions to the problem have

been found throughout the history. In the late 18th century, Claude

Chappe (1763-1805) developed a novel optical semaphore system, permit-

ting to convey information by means of visual signals between two towers

separated by 10 to 20 km. On top of each tower, the system had two arms

connected by a cross-arm (Fig. 1.1(a)). Each arm had seven positions,

and the cross-arm had four more permitting a 196-combination code. This

encoding technique appeared to be much faster and more efficient than the

traditional post riders in the long distance. In 1794, a first test between

the cities of Paris and Lille, separated by 193 km, was successful. A single

“bit” of information could travel along the 15 relay towers with an equiva-

lent speed of 1200 km/h. The system was then developed across Europe to

become the first functional data network (Fig. 1.1(b)) and was extensively

used for political and military purposes. In 1845 the first electric telegraph

line was created and the optical semaphore was rapidly abandoned.

The modern Internet was developed in the late 20th century, together with

fast and efficient computers. This on-going revolution deeply impacts our

society, reshaping the way we consume, communicate and socialize. It also

1



Chapter 1. Introduction

Figure 1.1: Chappe’s Semaphore system. (a) Relay tower with me-
chanical arms. (b) 1844 map of France, with 534 towers covering a

distance of 5000 km.

gives access to close to infinite knowledge, although to a limited number of

people. The binary encoding of information on bits of 0s and 1s, processed

with fast electronics and transmitted thanks to multiplexed photonic ca-

pabilities and optical fibers, led to the massive and efficient network of

today. This classical data network will not likely be replaced anytime

soon but shows some weaknesses though, mainly concerning the security

of information and some computation limitations. This is where Quantum

Information Science (QSI) comes into play. With the study of quantum

mechanical effects, researchers realized that encoding information on quan-

tum states of particles (quantum bits) can be technologically useful, giving

powerful capabilities and advantages for secure communication [1], com-

puting [2] and complex simulation [3]. The idea of a quantum internet [4]

emerged and could eventually extend the capabilities of nowadays telecom-

munication network in which quantum communications [5] or distributed

quantum computing [6] could be implemented. Quantum networks also

have applications in sensing and metrology [7].

2



Chapter 1. Introduction

In this chapter, I will first explain the basic concepts of quantum infor-

mation science. After an introduction on quantum communication and

quantum networks, I will describe how a long distance quantum commu-

nication link could be implemented, using the quantum repeater concept.

This leads to the need of quantum memories for light compatible with the

telecommunication wavelengths. Two quantum memory protocols, used

during the PhD, will then be described in more details. I will also dis-

cuss the compatibility between fundamentally different quantum systems

together, paving the way towards hybrid quantum networks. Finally I will

introduce the concept of quantum frequency conversion, permitting the

frequency manipulation of quantum states of light.

1.1 Quantum information science

1.1.1 Qubits

Unlike classical bits that are either 0s or 1s, quantum bits (qubits) [8]

are encoded on the state of a quantum system. In quantum mechanics a

quantum system can be in a superposition of orthogonal states. Using the

the Dirac notation a qubit can be expressed as:

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are the complex probability amplitude such that |α|2+|β|2 =

1, and |0〉 and |1〉 are two orthogonal basis states.

An easy way to visualize such state is using the Bloch sphere representation

(Fig. 1.2):

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉, (1.2)

where θ and φ are azimuthal and longitudinal angles. The state of the qubit

is then represented on the surface of the sphere. Once measured the wave

function of the qubit collapses on one of the two orthogonal basis set by the

3



Chapter 1. Introduction

Figure 1.2: Bloch sphere representation.

measurement with probability α and β. Qubits are particularly sensitive

to external perturbations that could destroy the quantum superposition.

A qubit can be stationary, meaning that it is based on a matter system

such as single ions, single atoms, cold or hot atomic gases, color centers

in diamonds, quantum dots, Josephson junctions or ion doped crystals.

Depending on the system used, a qubit can be encoded on different degrees

of freedom of the considered particle such as nuclear spins, electronic spins

or circulation flux. Another kind of qubit called flying qubit, refers to

qubits that can travel long distances. They are usually encoded on photons

(even though cold atomic experiments sometimes fly on a plane [9]). The

most used photonic qubit is the polarization of light using for instance

horizontal and vertical orthogonal bases. Other degrees of freedoms like

photon number (Fock states) or time of arrival (time-bin) can also be used.

Time-bin qubit

Polarization qubits are probably the most practical in term of genera-

tion and analysis but for long distance fiber-transmission, it is prone to

decoherence caused by polarization fluctuation or polarization mode dis-

persion. Time-bin qubits [10], based on the time of arrival of a photon, are

4
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more suitable for long distance communication. A relatively easy way of

generating such a state is to send a single photon through an unbalanced

Mach-Zehnder interferometer with a path length difference longer than the

coherence length of the photon (Fig. 1.3), in which the phase ϕ between

the short and long arm of the interferometer can be controlled. At the

output, the photon is in a superposition state of having traveled in the

short arm (early time-bin) and the long arm (late time-bin). The state

can be then written as

|ψ〉 = αe|early〉+ αle
iϕ|late〉, (1.3)

where αe and αe are the probability amplitudes.

The analysis of the state can be performed using a second interferometer

with the same path difference (Fig. 1.3). At the output 3 modes can be

observed. The central one corresponds to the interference between the

early and late time-bin of interest. The basis of measurement of this qubit

can be set by rotating the phase difference β of the analysis interferometer.

Interference fringes can then be measured, rotating either ϕ or β where

the intensity of the interference is ∝ 1± V cos(ϕ− β). High visibilities V

can be challenging to obtain, mainly when the time difference between the

bins is long. Stable interferometers or phases involved in the preparation,

the analysis or along the channel are needed.

Preparation Analysis

single photon

ea
rl
y

la
te

Figure 1.3: Time bin qubit preparation and analysis.

Since its introduction [10, 11], time-bin encoding was used in several QSI

experiments such as long distance quantum teleportation [12–14], long dis-

tance distribution of qubits [15], high dimensional entanglement between

5



Chapter 1. Introduction

two photonic systems [16, 17], storage of time-bin photons in a quantum

memory [18, 19], time-bin entangled photons from a quantum dot [20]

and recently entanglement between a photonic time-bin qubit and a spin

excitation in an atomic ensemble [21].

1.1.2 Entanglement

Entanglement is a key concept in quantum mechanics, which led to strong

philosophical debates and new technological promises in quantum infor-

mation science.

Two or more particles are said entangled when they cannot be described

individually but only as a whole. The joint quantum state of two or more

entangled particles cannot be factorized. For instance two entangled par-

ticles A and B can be described mathematically as

|Ψ±A,B〉 =
1√
2

(|0A, 1B〉 ± |1A, 0B〉) . (1.4)

The striking effect is that when one particle is measured, the state of its

twin particle collapses. This means that the measurement on the state

of one particle has an effect of the state of the other. The non-intuitive

fact is that this happens instantaneously, no matter the distance between

the two particles, which contradicts the laws of local realism. This led

to multiple debates in the scientific community, highlighted by the EPR

(Einstein, Podolsky and Rosen) paper in 1935 [22], which suggested that

quantum mechanics is not a complete theory. In 1964 John Bell proposed

an inequality [23], know as the Bell inequality and testable experimentally.

If violated, it proves that hidden variables [24] that could solve the EPR

paradox do not exist and thus shows that the correlations between dis-

tant entangled particles do not obey local realism. The first experimental

demonstration violating the Bell inequality was done in 1972 [25]. Since

then, many experiments have been performed with various systems, in-

cluding photons [26, 27], ions [28], atoms [29, 30] and hybrid light-matter

6
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systems [31, 31–34]. Finally in 2015, the first loophole-free Bell test exper-

iment was reported [35], measuring the entanglement between NV centers

separated by 1.3 km. Shortly after, other experiments [36–38] also demon-

strated loophole free Bell tests.

1.2 Quantum network and quantum communica-

tion

A quantum network is a general concept that has implications in quan-

tum communication, distributed quantum computing [6] and metrology [7].

The idea is to have quantum nodes connected with each others via quan-

tum channels [4]. Quantum nodes are matter systems, able to generate,

store and process quantum information. In between, they exchange flying

qubits (i.e. photons) that carry the information along quantum channels.

Depending on the application and on the types of quantum nodes, a quan-

tum network can have different architectures. Ideally the quantum nodes

have moderate processing capabilities and are able to store and distribute

entanglement across the network.

QN1

Quantum channel

QN2

-store
-process
-emit

Figure 1.4: Quantum network.

Quantum communication is the ability to distribute information coded on

quantum states of particles to distant places, e.g. for secure communica-

tion purposes [39]. One way of securing information is to use quantum key

distribution (QKD). The first proposed implementation is the BB84, by

7
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Charles Bennett and Gilles Brassard [40], and is today available commer-

cially. The idea is to share a secrete key transmitted with single photons

between two parties. Another protocol, the E91 [41], makes use of entan-

glement between two nodes. For long distance communication two types of

network are generally considered: one is fibered and uses existing telecom

cables, and the other uses free space transmission with for instance satellite

based-communications. In a recent work, a satellite-based entanglement

distribution of entangled photon pairs to two locations separated by 1203

kilometers on Earth has been reported [42]. Another remarkable free-space

communication is the demonstration of entanglement based teleportation

between two islands separated by 144 km. For fiber transmission, demon-

strations of quantum entanglement or teleportation never reached more

than few hundreds of kilometers [14, 43, 44].

The main issue with direct transmission in fiber is the loss of signal over

very long distances. Unlike the classical network in which the signal is am-

plified along the way, quantum information cannot be copied with 100 % fi-

delity (no-cloning theorem) [45]. Considering a single photon source at the

telecom wavelength for which transmission losses are the lowest in fiber (0.2

dB/km), only 1 % is transmitted after 100 km, 0.000000000000000001 %

after 1000 km. At such distances, direct quantum communication in op-

tical fibers is impossible. To extend quantum communications to longer

distances quantum repeaters have been proposed.

1.2.1 Quantum repeater

In order to overcome transmission losses and decoherence over long dis-

tances, the quantum repeater was proposed in 1998 [46].

The idea is to divide a long distance channel of length L by several seg-

ments of shorter lengths. Each segment is composed of two quantum nodes

that can share entanglement together. Once two neighboring segments are

simultaneously entangled, an operation called entanglement swapping is

8
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QN1 QN2 QN3 QN4
BS

D

QN1 QN4

single photons

L12

L

Figure 1.5: Entanglement swapping operation.

performed (Fig. 1.5). If successful, it extends the entanglement to the

two outer nodes, although they have never interacted. The entanglement

swapping [47] is a joint measurement (Bell state measurement) between two

entangled states, which is actually a special case of quantum teleportation

[40], and permits the distribution of entanglement in a heralded fashion.

Repeating the operation many times, the length of the channel can con-

siderably be extended. The issue is that entanglement generation within

an elementary link is not a deterministic process, and the probability that

N nodes are entangled with their neighbors at the same time decreases

exponentially with the number of segments. The idea of a quantum re-

peater is to use quantum memories as nodes to store the entanglement

while waiting that a neighboring node is ready for the entanglement swap-

ping. Therefore, in such an architecture, a quantum node must be able to

share entanglement with its neighbor, to store it and to emit it via single

photons. Moreover in a fibered channel the single photons must be at the

telecom wavelength to reduce the transmission losses. The compatibility

of quantum memories with the telecom wavelength will be discussed in the

next section.

Different architectures have been proposed for the quantum repeater [48].

The first one in 2001 is the DLCZ (named after Duan Lukin Cirac and

Zoller) protocol [49]. It uses single collective spin excitations in atomic

9
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ensembles, that are heralded by the emission and detection of single pho-

tons (detailed in the next section). Noticeable different architectures later

proposed combine multimode absorptive quantum memories with photon

pair sources [50] or single photons sources [51].

Note that new generations of quantum repeaters based on error correction

have been proposed [52, 53] and do not require quantum memories and

entanglement creation.

1.2.2 Quantum memories

An optical quantum memory is a device capable of storing a quantum state

carried by light and of retrieving it on demand with high fidelity. A flying

qubit (ie photon) should interact strongly with the matter system, and be

transfered to an internal degree of freedom of the quantum memory.

Quantum memories are not only useful for quantum repeater applications.

They also have interest in different quantum technologies such as deter-

ministic single photon emissions [54, 55], linear optics quantum computing

[56] or single photon detection [57]. They can be implemented in many

systems such as single ions or atoms, vacancy centers in diamonds, warm

or cold atomic ensembles and rare-earth ion doped crystals.

We can distinguish between two different types of quantum memories [58].

Some are emissive systems, equivalent to a photon pair source with em-

bedded on-demand delay between the two photons. Other memories are

absorptive and must re-emit the photon on-demand.

Several figures of merit of a quantum memory are to be considered. The

storage and retrieval efficiency is an important characteristic. For quan-

tum repeater applications, an efficiency above 90 % is often required [48].

Coherent light storage has been observed at this regime [59]. A second

figure of merit is the storage fidelity, which estimates how the retrieved

qubit is faithful to the stored one. It can be measured via quantum state

10
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tomography [60]. In order to show the quantum character of a storage de-

vice, the classical limit of F = N+1
N+2 [61] is often used, as a value to surpass

for the storage of a N-particle Fock the state. However higher fidelities

are required for quantum repeater applications [48]. Another important

characteristic of a quantum memory is the storage time as it limits the

possible length of the entanglement distribution. Up to now the longest

storage time observed is in the order of the minute [62] with classical light

pulses, and 220 ms in the quantum regime [63]. Another requirement is

the multimodal (in term of time, frequency and even space) capacity of

the memory that can increase its performance[50].

One last important requirement discussed previously is the compatibility of

a quantum memory with telecom light when considering fiber transmission.

Three solutions are generally considered. The first one is to use a storage

device that absorbs and emits light at the telecommunication wavelength.

Currently the only promising system is Erbium ions for which quantum

storage has been demonstrated, using Erbium-doped fiber [64]. Unfortu-

nately it often suffers from very low storage efficiencies. A second solution

is to use non-degenerate photon pair sources: one photon is resonant with

the memory and is stored while the other one, at telecom wavelength, can

travel long distances in fiber [50]. This approach has been shown in sev-

eral experiments [65, 66]. A third solution is the use of quantum frequency

conversion techniques [67] in order to shift the frequency of the quantum

state carrier when needed. This will be the subject of this thesis.

Several protocols exist for light storage [58, 68, 69], however I will only

describe two which I used during the PhD: the Atomic Frequency Comb

(AFC) protocol, mainly used as an absorptive memory and the DLCZ

protocol, used as an emissive memory. The two protocols are based on

single collective excitations in atoms or ions ensembles.
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1.2.2.1 AFC

The AFC protocol, proposed in Ref. [70], is well suited for inhomogeneously

broadened and spectral holeburning media. When an incoming photon is

collectively absorbed by such medium, an atomic coherence is created and

is delocalized over N ions. This single collective excitation dephases due

to the inhomogeneity as

|Ψ〉 =

N∑
j=1

eiδjte−ik.rj |g1 · · · ej · · · gN 〉, (1.5)

where δj is the detuning of the jth ion, and rj its position. However, if the

absorption line is tailored into a periodic structure (Fig. 1.6) with a well

defined frequency spacing of ∆ (referred to as a comb), we can assume

that δj = mj∆. The atomic excitation will therefore rephase at a time

τAFC = 2π/∆ resulting in photon-echo like emission. For a given storage

time and optical depth, there is an optimal finesse, F , that maximizes the

efficiency. F is defined as the ratio of the comb teeth spacing ∆ to the comb

tooth width γ. The theoretical maximum storage efficiency in the forward

𝜏 =
2𝜋

Δ
 

a          AFC preparation b       Photon storage 

Input  

photon 
Echo 

𝛾 

Figure 1.6: AFC protocol

direction is 54 % but up to unity conversion is possible in the backward

direction. Note that the storage time here is predetermined and therefore

the light can not be recalled on-demand. However, in the full AFC scheme

(3-level AFC) [71, 72], the optical excitation can be transferred to the
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ground state to be stored as a long-lived spin-wave and then recalled on-

demand.

After its first demonstration [18], the AFC protocol was used in several

experiments including single photons and qubits storage [34, 64–66].

1.2.2.2 DLCZ

The DLCZ, named after its inventors Duan, Lukin, Cirac and Zoller [49],

is an emmissive type of memory protocol, developed to be the basis of

a quantum repeater architecture. It makes use of single collective spin

excitations in an atomic ensemble. The protocol is depicted in the Fig. 1.7.

It uses a three level system in a Λ configuration: two long lived ground

Write 

pulse 

Read 

pulse 

|𝑔  

|𝑠  

|𝑒  
Storage time 

|𝑔  

|𝑠  

|𝑒  

read 

photon 

write 

photon 

Write pulse 

Read pulse read photon  

write photon 

a b 

Figure 1.7: DLCZ protocol (a) Schematics of the DLCZ protocol on a
atomic ensemble. (b) Level schemes.

states |g〉 and |s〉 and an excited state |e〉. All the N atoms are first

prepared in the ground state |g〉. The first step of the protocol is the writing

process: a weak pulse, called write pulse, off-resonant with the transition

|g〉 − |e〉, eventually transfers an atom to the |s〉 state, thus emitting a

photon via Raman scattering, called write photon. These write photons

are strongly correlated with the excitations created in the ensemble. The

detection of a write photon heralds a single collective spin excitation - or

spin-wave - which can be described directly after detection as

|Ψ(0)〉 =
1√
N

N∑
j=1

ei(kW−kw).rj |g1 · · · sj · · · gN 〉, (1.6)
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where rj is the position of atom j, and kW and kw are the wave vec-

tors of the write pulse and write photon respectively. The write photons

are emitted isotropically but in practice only one mode is detected (at a

small angle with respect to the write pulse to facilitate filtering). To avoid

multiple excitations, reducing correlations between the write photons and

spin-wave, low optical power is used for the write pulse. Conditioned on

the detection of a write photon and after some storage time, the spin-wave

can be efficiently read-out. A read pulse, sent on the |s〉-|e〉, maps the

single collective excitation into a single read photon. The spatial mode is

given by the phase-matching condition kr = kW + kR − kw, with kR and

kr the wave vectors of the read pulse and read photon respectively. The

temporal mode is given by the read pulse temporal waveform [73].

The first demonstrations of non-classical correlations between a spin wave

and a photon were reported in Refs. [74, 75] and the first elementary seg-

ments of the DLCZ protocol were demonstrated few years later [76–79].

1.2.3 Hybrid quantum networks

As seen in the last sections, a quantum network can be much more powerful

than the simple sum of its constituent. Pioneering experiments in this

line of research include the photonic coupling of identical quantum nodes,

such as atomic ensembles [76, 80, 81], single trapped atoms [30] and ions

[29], and solid-state devices [82–84]. However, each platform comes along

with individual functionalities, e.g., in terms of processing and storage.

Hence, a hybrid quantum network, which benefits from the strengths of

different platforms, would offer more capabilities than a network consisting

of identical quantum systems.

The main challenge to efficiently interface two different quantum systems

via a photonic link, is to obtain strong light-matter interaction between a

single mediating photon and both matter systems, whose atomic transi-

tions can differ significantly in wavelength and linewidth.
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As a non-exhaustive list, an hybrid network could for instance combine

the multiplexed and long lived storage of solid-state systems [48], the pro-

cessing capabilities of single ions [85] or NV centers in diamonds [86], the

efficient single photon emission of molecules and quantum dots [87, 88] and

the non-linearity at the single photon level of Rydberg atoms [89].

1.3 Quantum frequency conversion

In the last sections, we have seen that it is necessary to manipulate the opti-

cal frequency of the flying qubit, in order to have different types of quantum

nodes working with visible light to be compatible with the telecommunica-

tion wavelengths but also to be compatible with each-other, thus making

hybridization of the quantum network possible. This is achievable using

Quantum Frequency Conversion (QFC). In this section, I will introduce

QFC based on non-linear interactions.

Non-linear optical effects occur when the response of a material depends

non-linearly on the strength of an applied optical field [90]. Together

with the development of the first laser systems, the first observations of

such processes were made, for instance the second-harmonic generation,

experimentally demonstrated by Franken et al. in 1961 [91]. The high non-

linearities offered by some materials together with advanced fabrication

and phase matching techniques led to the improvement of non-linear effects

efficiencies. The conversion of single quanta of light then became possible.

QFC aims for the energy shift of an optical field, in a coherent and noise-

free fashion, such that quantum properties are preserved to a high degree.

Prem Kumar introduced quantum frequency conversion [67] in 1990 and

demonstrated it experimentally one year later [92]. In his experiment, non-

classical intensity correlations of squeezed light were preserved through the

conversion using a Potassium titanyl phosphate (KTP) crystal. Optical

frequency conversions based on three or four-wave mixing processes, have

been demonstrated using different platforms. Non-linear effects in atomic
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systems can be used to convert single photons [93, 94]. In ref. [93] Radnaev

et al. used four-wave mixing in a cold Rubidium cloud and demonstrated

quantum frequency conversion to the telecom wavelength of single photons

emitted by a second cold atomic cloud. However the most used platform

today are periodically poled non-linear crystals using quasi-phase match-

ing technique [95]. In particular waveguides [96, 97], made out of Lithium

Niobate or Potassium titanyl phosphate crystals, are used for their ability

to confine light in longer distances and is compatible with integrated op-

tics. Theses devices are finally relatively easy of use, and can offer close

to unity internal conversion efficiencies [98]. There is also the possibility

of using non-linear crystals in a cavity [99]. After cautious optimizations

of the cavity parameters, up to 84 % external conversion efficiencies (with-

out counting for filtering and fiber coupling efficiencies) was reported in

Ref. [100]. Another promising platform in term of integration capability

are microresonators based on Silicon Nitride or Aluminium Nitride waveg-

uides [101, 102] although conversion of non-classical state has not been

demonstrated yet. However highly efficient and low noise quantum fre-

quency conversion in photonic crystal fibers using Bragg-scattering four-

wave mixing were reported [103, 104].

The high conversion efficiencies offered by these different platforms, led to

multiple experiments showing the increase of telecom detection efficiencies

[99], the generation of non-classical states of light at a specific wavelength

[105, 106], or the manipulation photon spectral bandwidth [107, 108]. To-

wards connecting quantum nodes to the telecommunication wavelength, a

key experiment reported the entanglement between a C-band photon and

an up-converted (800 nm) photon [97]. Two important contributions to the

field of QFC showed phase-preserved frequency conversion [109, 110]. In

the last few years many experiments finally demonstrated the connections

of quantum systems to the telecommunication band for long distance com-

munication application, such as quantum dots [111, 112], Rubidium atomic

ensembles [93, 113–116], Praseodymium doped crystal [117], trapped ions

[118–121] and NV centers [122].
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The main challenge of QFC is to achieve high conversion efficiency to-

gether with a low noise generation at the target wavelength, given that

the required pump light often generates a high amount of noise photons.

Depending on the wavelengths of the input signal and the converted pho-

tons, we can distinguish between three different cases of noise generation

in non-linear materials [98]. One in which the pump field frequency is

far below the signal and idler photons, thus making noise-free frequency

conversion possible [106, 123, 124]. A second case in which one of the two

photons frequencies are close to the pump, where Raman noise is generated

[112, 125]. A third case in which the pump field is in between the signal

and idler photons and generates non-phase matched parametric fluores-

cence noise [126]. Note that cascaded conversion using a long wavelength

pump, proposed in Ref. [126], is a solution to avoid noise generation at the

target wavelength.

Suppression of these broadband noises is then often necessary when con-

verting light at the single photon level. In particular, for photons emitted

or absorbed by narrow-band quantum memories, temporal filtering of the

noise (using a short detection gate) is limited by the long temporal wave-

form of the photons. In this case the challenge is therefore to implement

efficient and stable narrow-band frequency filtering in order to achieve high

signal-to-noise ratio of the converted photons.

A QFC device can also be used as a frequency domain beam splitter, as

proposed in Ref. [127]. The idea is to reduce the conversion probability

to 50 % such that a photon at the output is in a superposition of two col-

ors. With this idea in mind, Ramsey interferences with single photons in

a four-wave mixing process have been reported by Clemmen et al. [128].

Hong-Ou-Mandel interferences between two photons of different colors us-

ing a three-wave mixing process have been demonstrated by Kobayashi et

al. [129].
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1.4 Scope of this thesis

During my PhD, I studied frequency conversion of light compatible with

quantum memories. The main result of this thesis is the experimen-

tal demonstration of an elementary link between heterogeneous quantum

nodes, towards the realization of a hybrid quantum network. I will present

the results of the quantum connection between a cold 87Rb atomic ensem-

ble and a Pr3+:Y2SiO5 crystal, both systems being promising quantum

nodes. This connection was performed using quantum frequency conver-

sion techniques, bridging the wavelength gap between the two memories.

I will start, in chapter 2, by explaining in detail the quantum frequency

conversion process. I will then describe two intermediate steps towards the

connection between the two disparate nodes: the first one in chapter 3, in

which I will describe a frequency converter device, connecting the 606 nm

and the telecom wavelengths, that is then used to show the compatibility

of the visible Praseodymium based quantum memory with the telecommu-

nication wavelength. The second one, in chapter 4, is the connection of a

cold atomic ensemble with the telecom C-band. We showed non-classical

correlations between a spin wave stored in the atomic ensemble and a tele-

com photon. Finally in chapter 5, I will explain how the different systems

and the QFC interface are combined to finally demonstrate quantum state

transfer between the two disparate systems.
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Chapter 2

Theory of Quantum

Frequency Conversion

This chapter is largely inspired by Robert W. Boyd’s textbook [90] and Ja-

son Pelc’s thesis [130]. It describes the theoretical background of quantum

frequency conversion, starting with the classical description of non-linear

optics and in particular the three-wave mixing process. I will finally give

a quantum description of frequency conversion.

2.1 Three wave mixing

To describe non-linear optical phenomena in a dielectric material we con-

sider its polarization (dipole moment per unit volume) P upon its inter-

action with an optical field. In linear optics P depends linearly on the

applied field E as:

PL = ε0χ
(1)E, (2.1)

where ε0 is the vacuum permittivity, and χ(1) the linear susceptibility. In

non-linear optics one can decompose the polarization as a power series in
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the field strength as:

P = ε0χ
(1)E + ε0

∑
j>1

χ(j)Ej

= PL + PNL

(2.2)

where χ(j) are the non-linear optical susceptibilities of order j. The second

term is the non-linear component PNL of the polarization.

Let’s now consider two electric fields E1 and E2 with frequencies ω1 and

ω2 respectively in the form:

E(t) = E1e−iω1t + E2e−iω2t + c.c. (2.3)

The second order non-linear polarization P
(2)
NL, corresponding to 3-wave

mixing processes, then becomes

P
(2)
NL(t) =ε0χ

(2)[E2
1e−i2ω1t + E2

2e−i2ω2t

+ 2E1E2e−i(ω1−ω2)t + 2E1E2e−i(ω1+ω2)t + c.c.]

+ 2ε0χ
(2)[E1E

∗
1 + E2E

∗
2 ].

(2.4)

The polarization of the medium develops here new frequency components:

the two first terms (2ω1 and 2ω2) correspond to the second harmonic gen-

eration of each field E1 and E2. The two next terms correspond to the

difference generation (ω1 − ω2) and sum frequency generation (ω1 + ω2).

The non-oscillating term is the DC component of the polarization induced

by the optical field and corresponds to optical rectification [131].

The wave equation for the propagation of light through a non-linear medium

can be estimated considering Maxwell’s equations:
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∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B
∂t

∇×H =
∂D

∂t
+ J

(2.5)

where D = ε0E + P , ρ is the free charges density, B is the magnetic flux

density, H is the magnetic field, J is the current density.

We assume that the material does not contain free charges (ρ = 0), neither

free currents (J = 0) and that the material is non-magnetic (B = µ0H).

We also consider that the material is non-linear with D = ε0E + P . Us-

ing the above simplifications, and combining Eq. 2.5.3 with Eq. 2.5.4, we

obtain:

∇×∇×E = −µ0
∂2D

∂t2

= − 1

c2

∂2E

∂t2
− 1

ε0c2

∂2P

∂t2

(2.6)

Using the identity ∇ × ∇ × A = ∇(∇.A) − ∇2A and assuming slowly

varying amplitude such that ∇(∇.E) ≈ 0 we find:

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
. (2.7)

Decomposing D in a linear and non-linear terms as D = D(1) + PNL,

where D(1) = ε0ε1E and ε1 = n2 with n the refractive index, we can write

Eq. 2.7 as:

∇2E − ε1
c2

∂2E

∂t2
=

1

ε0c2

∂2PNL
∂t2

. (2.8)

This is a driven wave equation. Therefore the non-linear dielectric medium

acts as a source upon its interaction with optical fields.
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We now assume two collimated optical fields E1, E2 and E3 interacting in

a lossless optical medium and propagating along the z direction. This is

a good approximation of a waveguide. In the absence of non-linear term

the solution of Eq. 2.8 is a such that

Ei(x, y, z, t) = ζiui(x, y)Ai(z)e
−i(kiz−wit)+c.c., (2.9)

where ki = niωi
c with n2

i = ε1(ωi) the effective refractive index of mode i,

ζi =
√

2Z0
nj~ωi

is a scale factor with Z0 =
√

µ0
ε0

, and Ai(z) is the amplitude

(slowly varying envelope) of mode i. ui is the spatial mode of the optical

field i propagating in a waveguide for example.

The non-linear polarization components at the three considered frequencies

ω1,ω2 and ω3 are [130]

PNL(ω1) = ε0χ
(2)E2(ω2)E∗3(ω3)

PNL(ω2) = ε0χ
(2)E1(ω1)E∗3(ω3)

PNL(ω3) = ε0χ
(2)E1(ω1)E∗2(ω2).

(2.10)

Using the solution Eq. 2.9, combining Eq. 2.8 and Eq. 2.10 and assuming

slowly varying amplitude approximation (
∣∣∣∂2Ai
∂z2

∣∣∣ � ∣∣∣ki ∂Ai
∂z

∣∣∣) we find the

following coupled equations:

dA1

dz
= −iκA∗2A3e−i∆kz

dA2

dz
= −iκA∗1A3e−i∆kz

dA3

dz
= −iκA1A2ei∆kz,

(2.11)

where κ = ε0
χ(2)

2

(
2~ω1ω2ω3Z3

0
n1n2n3

)1/2
Θ is the coupling coefficient. Θ is the

mode overlap given by

Θ =

∫∫
χ(2)(x, y)u1(x, y)u2(x, y)u3(x, y)dxdy. (2.12)
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∆k is the phase mismatch (∆k = k1 +k2−k3 for sum frequency generation

or ∆k = k1 − k2 − k3 for difference frequency generation).

Here we consider that a weak signal A1 is converted by a strong pump A2

to a field A3. We assume the pump undepleted (A2(z) = A2(z = 0) = Ap

and dA2
dz = 0), perfect phase matching (∆k = 0) and the initial conditions

A1(z = 0) = A10 and A3(z = 0) = 0. We find the following solutions for

the signal and converted amplitudes:

A1(z) = A10 cos(γz)

A3(z) = A10 sin(γz),
(2.13)

where γ = κApe
−iπ/2.

Figure 2.1: Conversion efficiency (solid blue line) following Eq. 2.14
and depletion of the signal (dashed red line) as a function of the pump

power.

We define the conversion efficiency as the ratio of the intensity of the

converted field at the output of the waveguide of length L by the input

field intensity is

η =
|A3(L)|2

|A10|2
= ηmax sin2(

√
ηnPL), (2.14)
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where ηn = κ2 is the normalized efficiency and P = |A2|2 is the pump

power. The parameter ηmax is here added to take into account experimental

imperfections (losses or non-perfect mode matching in a waveguide).

2.1.1 Quasi-phase matching

In the first section we saw that the response of a material on a optical field

can be non-linear with the effect that each atom of the material has a dipole

moment that oscillates with different frequency components (Eq. 2.10). For

the material to radiate constructively a new field at a new frequency, the

ensemble of N atoms must oscillate in phase. This is known as the phase

matching condition ∆k = 0. For example for sum frequency generation

the phase matching condition is n1ω1
c + n2ω2

c = n3ω3
c . Phase matching is

often difficult to achieve in a collinear configuration as the refractive index

increases with the frequency (dispersion). This issue can be solved using

the birefringence properties of some materials (dependence of the refractive

index on the polarization of the field). Fine tuning can then either be

achieved by angle tuning of the interacting beams or the temperature of

the crystal. However it is limited to some frequency ranges or types of

materials.

The technique currently widely used is the quasi-phase matching technique

using periodically poled non-linear materials in which the orientation of

one crystalline axis is inverted periodically. As a result, the non-linear

coefficient is inverted every half period Λ/2. The effect of a periodic poling

on an emitted field is shown in Fig. 2.2. Without phase matching, the

generated field oscillates around zero as a function of the distance. The idea

of QPM is to inverse the sign of the non-linear coupling coefficient every

time the generated field would start decreasing due to phase mismatch. As

a result the field adds up constructively. The period Λ must be twice the

coherent length Lcoh = π/∆k. In that case the wavevector mismatch is now

∆kQPM = ∆k− 2π/Λ and can be set to zero with the right poling period.

Fine tuning can then be performed with the crystal angle or temperature.
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Figure 2.2: Quasi-phase matching. Converted field amplitude as a
function of the length of the crystal for different phase matching condi-

tions. Figure taken from Ref. [90].

2.2 Quantum description

To describe the frequency conversion of quantum states of light, a quantum

approach must be taken. We therefore use the annihilation and creations

operators âi and â†i for signal and converted states, instead of the envelope

fields Ai introduced in the previous classical description. âi (â†i ) annihilates

(creates) a photon at frequency ωi. They obey the following commutation

relation [âj , â
†
k] = δjk. Applied on a Fock state they have the property

â|n〉 =
√
n|n− 1〉

â†|n〉 =
√
n+ 1|n+ 1〉

(2.15)

For consistency with the classical description, we consider a photon that

can swap between the frequencies ω1 and ω3 using its interaction in a non-

linear medium with a pump field at frequency ω2. Such process can be

described with a field interaction Hamiltonian. We here consider that the
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pump field A2 is classical as described in [67]:

Ĥ = i~κA∗2â1â
†
3 − i~κ

∗A2â3â
†
1. (2.16)

In the Heisenberg picture the evolution of an operator Ô with time is given

by
dÔ

dt
=
i

~

[
Ĥ, Ô

]
. (2.17)

Applying this relation to the Hamiltonian. 2.16, we find the following cou-

pled equations:
dâ1

dt
= κA∗2â3

dâ3

dt
= −κ∗A2â1,

(2.18)

that have the solutions

â1(t) = â1(0) cos(|κA2|t) + eiφp â3(0) sin(|κA2|t)

â3(t) = â3(0) cos(|κA2|t)− eiφp â1(0) sin(|κA2|t).
(2.19)

For initial conditions |Ψ(0)〉 = |n1(0), n3(0)〉 = |1, 0〉 the evolution of the

photon number operators can be calculated as

〈Ψ|n̂1(t)|Ψ〉 = 〈n̂1(0)〉 cos2(|κA2|t)

〈Ψ|n̂3(t)|Ψ〉 = 〈n̂1(0)〉 sin2(|κA2|t),
(2.20)

which evolution is depicted in Fig.2.3. One observes here the same behavior

as in the classical case 2.13. At the proper interaction time t = π
2|κA2| , the

input photon is entirely converted to the other frequency with a phase

factor φp given by the pump field. The final state is now |Ψ(t = π
2|κA2|)〉 =

|0, 1〉, which means that the state is preserved while the photon frequency

is shifted.

The Hamiltonian. 2.16 can also be interpreted as a frequency domain beam-

splitter. As the coupling can be tuned with the pump field or interaction

length, one can also use such device as a frequency domain beam splitter

[127] where interference between photons of different colors is possible.
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Figure 2.3: Top: Input/Output schematics of quantum frequency con-
version. Bottom: Photon number time-evolution.
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Chapter 3

Quantum Frequency

Conversion between 606 nm

and the Telecom C-band

In this chapter I will introduce the quantum frequency conversion device,

that bridges the gap between the 606 nm and 1552 nm wavelengths, capable

of both up and down-conversion of single photons compatible with narrow-

band Praseodymium-based quantum memories. In section 3.1 I will first

describe the setup and show the classical performances of the converter. In

section 3.2 I will describe and characterize the noise processes, and show

the conversion of single-photon level light. The two last parts are based

on the two following papers [132] and [117]. The first paper, described in

section 3.2 and 3.3, shows the down-conversion of storable heralded single

photons emitted by a photon pair source. The second one, described in

section 3.4, shows the storage in the Pr3+:Y2SiO5 quantum memory of

up-converted telecom C-band light at the single photon level.
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3.1 The frequency converter

In this section I will first describe the setup of the converter device and

show the classical performances of the device in both up and down-conversion

configuration.

3.1.1 Waveguide

During the PhD we used several commercial non-linear waveguides based

on Lithium Niobate (LN) or Potassium Titanyl Phosphate (KTP). The

bulk crystals are first periodically poled for quasi phase matching (de-

scribed in chapter. 2). This is generally done by applying high voltage

periodically along the crystal length in order to invert the domain struc-

ture and change the sign of the non-linear coefficient [133]. Waveguides

are then engineered by creating a guiding channel inside or on top of the

crystal. This can be done with different techniques [134], separated in two

categories: one in which the refractive index is modified inside the crystal

(buried waveguides). Ti-doping for LN, Annealed and reverse proton ex-

change are the most used techniques. Waveguides can also be fabricated

by etching part of the crystal to create a refractive index step with the air

(ridge waveguides).

3.1.2 Setup

The frequency converter, depicted in Fig. 3.1, is based on a 1.4 cm long

Periodicaly Poled Lithium Niobiate (PPLN) ridge-waveguide (HC Photon-

ics). It is glued with silver paste to a copper mount, itself attached to a

Y-translation stage. The crystal chip is actively stabilized in tempera-

ture using a Peltier element placed in between the copper mount and the

translation stage. The temperature of the mount is measured and stabi-

lized using an home-made proportional-integral-derivative (PID) controller
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Figure 3.1: Setup of the frequency converter device. Acousto Optical
Modulator (AOM), Polarization Maintaining Fiber (PMF), Half Wave
Plate (HWP), Dicroic Mirror (DM), Polarization Controller (PC), Single
Mode Fiber (SMF), Aspheric Lens (AL), Periodically Poled Lithium

Niobate (PPLN). Beam Block (BB).

(ICFO) that feedbacks a correction signal on the Peltier device. The con-

verter is here stabilized at around 65 degrees Celsius. At both input and

output of the waveguide, XYZ translation stages (Elliot Scientific) hold

aspheric lenses that couple or out-couple the light. The 994 nm pump

radiation is derived from an external cavity diode (Toptica) and then am-

plified using a tapered amplifier (Toptica). The amplified light is then sent

through a gating acousto-optical modulator (AOM) used to switch on and

off the pump field. A polarization maintaining (PM) optical fiber cleans

the spatial mode and sends up to 850 mW towards the converter. The po-

larization of the pump light is controlled by a λ/2 wave plate. The pump

beam is then overlapped with the signal mode using a dicroic mirror and

coupled with about 60 % efficiency into the waveguide. At the output, it

is separated from the converted mode using a dicroic mirror and finally

blocked or monitored, using a photo-diode or a powermeter.

The QFC can be used in both up or down-conversion configuration: either

telecom or 606 nm light can be used as signal. They come from single mode

fibers and their polarizations are adjusted with polarization controllers.

The signal is then reflected onto a dicroic mirror to be overlapped with the

pump mode. The converted signal at the output of the waveguide is then
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separated from the pump and coupled into a single mode fiber. Depending

on the experiment it can be spectrally filtered with several elements (band-

pass filter, diffraction grating, fiber Bragg grating, etalon...) and finally

detected with a powermeter, photodiode or a single photon detector.

3.1.3 Classical characterization

The classical characterization of the converter device mainly consists in

measuring the efficiency of the conversion process. In this thesis it is

always defined as the number of photons converted relative to the number

of signal photons. Three different efficiencies are defined here: the external,

the internal and the device conversion efficiency.

The external conversion efficiency

ηext =
Pout

conv

Pin
sig

λconv

λsig
(3.1)

is the conversion efficiency “outside” the waveguide, where Pout
conv is the

power of the converted light measured at the output of the waveguide and

Pin
sig is the power of the input signal measured before the waveguide. The

ratio of signal and converted wavelengths λconv
λsig

corrects for the energy loss

or gain of the converted photon.

The internal efficiency

ηint = ηext/ηcoupling (3.2)

is the external efficiency, corrected for the coupling efficiency ηcoupling of the

signal in the waveguide. Another way of estimating the internal efficiency

is to measure the depletion of the signal after the waveguide:

ηdepl = 1−
Pout

sig

Pout
sig (P = 0)

, (3.3)
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depending on the ratio of signal power measured after the waveguide with

and without pump power P applied. This has the advantage of being

insensitive of any losses and calibration errors.

Finally, the device efficiency

ηdev = ηextηloss (3.4)

takes into account all possible losses ηloss of the converted light before and

after the waveguide. In this thesis it always takes into account a fiber

coupling, but also different filtering elements in the converted mode or

other optical transmission losses.

3.1.3.1 Sum frequency generation

I first characterized the converter in the up-conversion configuration where

1550 nm telecom light (Toptica DL) is coupled as an input with the 994 nm

pump laser, resulting to a converted light at 606 nm via sum frequency gen-

eration. Fig 3.2a shows the measured converted light power at the output

of the waveguide as a function of the input telecom signal wavelength.

It differs from the expected sinc behavior [90], most probably because of

imperfections in the poling period of the crystal. The waveguide is here

at room temperature and optimized for the conversion of 1549 nm light

to 605.5 nm. It will later be stabilized at 65 degrees Celsius to reach the

desired phase matching condition of the process: 1
1552 nm + 1

994 nm = 1
606 nm .

About 1 mW of continuous wave light at 1552 nm is coupled using an as-

pheric lens (51 % efficiency) together with the 994 pump with (62 % cou-

pling efficiency). The internal conversion efficiency is plotted as a function

of the coupled pump power (red empty squares in Fig 3.2b). It is moni-

tored by measuring the converted signal and correcting for all transmission

losses and waveguide coupling efficiency (Eq. 3.2). Up to the available
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Figure 3.2: Classical characterization of the converter. (a) Quasi-
phase matching curve: 606 nm converted power as a function of the
input telecom signal wavelength. (b) Internal efficiency measurement as
a function of the coupled pump power. The internal efficiency measure-
ment is estimated first by measuring the converted signal power (red
empty squares) or by measuring the depletion ηdepl of the coupled in-
put signal (green empty dots). The data from the direct measurement
(red squares) is fitted with Eq. 2.14 (blue curve). (c) Spatial mode of
the converted 606 nm light measured with a camera (Imaging Source)
directly after the waveguide (left) or corrected by an anamorphic prism

pair (right).
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coupled pump power of 415 mW, we measure an internal conversion ef-

ficiency of 59 %. The depletion of the signal (empty green circle) as a

function of the pump power is also measured and is always consistent with

the internal efficiency measurement, meaning that there are no calibra-

tion errors or significant loss of the converted light in the waveguide. The

internal efficiency (red squares data points) is fitted with Eq. 2.14 [135]:

ηint = ηmax sin2
(
L
√
ηnP

)
. We find that, with ηmax fixed at the bound of

100 %, the normalized efficiency ηn is (94±1) %W−1 cm−2. This measure-

ment can be imprecise though as changing the pump power often leads to

local change of temperature of the waveguide and thus modifies the phase

matching condition [136]. It means that, at fixed input wavelength, the

temperature of the waveguide has to be slightly re-optimized for each pump

power, which can moreover lead to misalignment of the setup. A solution

to this problem is shown in the following subsection (down-conversion ex-

periment).

The output mode at 606 nm is measured to be elliptical (Fig 3.2c). In order

to increase single-mode fiber coupling efficiency of the converted light, it is

circularized by an anamorphic prism pair with an horizontal magnification

of 2.5.

In this up-conversion configuration this setup will be used for the experi-

ment described in Chapter 5.

3.1.3.2 Difference frequency generation

In the down-conversion configuration the output mode becomes the input

mode and the pump field is coupled from the other side of the converter.

Here the pump laser at 994 nm is coupled with 55 % efficiency, together

with a 606 nm signal with 57 % coupling efficiency inside the waveguide.

The frequency converter is first characterized using classical light as input.

The conversion efficiency of the device is measured as a function of the

coupled pump power inside the waveguide, using 1 mW of classical input
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Figure 3.3: (a) Monitored pump power after the waveguide using a
photodiode. (b) Monitored converted signal power after the waveguide
using a second photodiode. The red line is the selected data for the
measurement. (c) The red trace shows the internal conversion efficiency
as a function of the coupled pump power deduced from the data shown

in (a) and (b). The blue curve is a fit of the data using Eq. 2.14

light at 606 nm (derived from Toptica DL SHG pro). The pump power

is swept using an AOM over a short time of 100 µs. The coupled pump

power and the difference-frequency converted light are then monitored at

the output of the waveguide using photodiodes. This fast measurement has

the advantage of avoiding thermal effects explained in section 3.1.3.1. The

blue trace in Fig. 3.3(a) shows the measured internal efficiency depending

on the pump power, inferred by correcting for all losses. At the maximum

coupled pump power available of 530 mW, we measure an internal con-

version efficiency of 62 %. This value is in accordance with the measured

depletion of the 606 nm signal. The device efficiency, also shown on the

right axis, includes all optical losses: signal transmission (93 %), coupling

efficiency of the signal in the waveguide (57 %), filtering efficiency (62 %)

36



Chapter 3. Quantum Frequency Conversion between 606 nm and the
Telecom C-band

for single-photon level operation (see next section) and single mode fiber

coupling efficiency (79 %) of the converted signal. The conversion efficiency

is fitted with the Eq. 2.14. The fit gives a maximum internal efficiency of

(95± 0.1) % (24.5 % device efficiency) at 1.45 W of coupled pump power

and a normalized efficiency of (86.1± 0.1) %W−1cm−2. The results are

consistent with the up-conversion operation.

In this section we demonstrated the high efficiency of our device, capable of

≈15 % conversion efficiency at maximum available pump power. In order

to reach the maximum conversion efficiency given by the extrapolation,

higher pump powers or a longer waveguide could be used. We would then

reach a device efficiency of 25 %. This could also be greatly improved, for

example using fiber pigtailed waveguide in order to increase the waveguide

coupling efficiency. Higher filtering efficiencies could also be achieved using

for instance volume Bragg gratings.
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3.2 Down conversion of memory compatible weak

coherent states to telecom

Converting single photon level light is more challenging as the converted

photons must be detected with high signal-to-noise ratio whereas the con-

verter often generates pump-induced noise photons. In this section I will

first describe the different noise processes possible in a conversion exper-

iment and characterize the specific noise involved in the conversion be-

tween 606 and 1552 nm light. Finally I will explain how we estimate the

performance of our converter device in term of signal-to-noise ratio, and

in particular the µ1 parameter. Finally I show that, using strong filtering

of the noise, our QFC is compatible with narrow-band quantum memory.

These results are described in Ref. [132].

3.2.1 Noise processes

The noise processes are depicted in Fig. 3.4(a). A strong pump field gen-

erally generates Raman noise around its central frequency. In a PPLN

waveguide Raman noise has been estimated to have a width of about

30 THz [98, 137]. It therefore does not play a significant role in our exper-

iment, since the frequency shift between the pump and the telecom signal

is 109 THz. A second type of noise is weakly-phase matched Spontaneous

Parametric Down Conversion (SPDC) noise created by the pump. This

noise is enhanced by imperfection in the poling period of the crystal, as

described in Ref. [126] and is generated over the region of lower frequencies.

When converting from 606 nm to 1552 nm (λ > λpump) we then observe

direct SPDC noise. This process is expected to be linear with the pump

field intensity. Part of this noise, within the phase matching bandwidth

of the frequency converter, can be eventually converted to 606 nm by the

pump field via sum frequency generation. In the case of conversion from

1552 nm to 606 nm (λ < λpump), the expected behavior is therefore very
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different as the reconversion of the noise leads to a quadratic dependence

with pump power.

We measure the noise using only the pump as the input of the waveguide,

and detecting the photons either at the 1552 nm output or at the 606 nm

output. In order to limit the noise detected, we use filtering stages in

each output modes. The 606 nm noise is filtered with a diffraction grating

and an etalon (10 GHz bandwidth) and the telecom noise is filtered with a

fiber Bragg grating (2.5 GHz) and an etalon (210 MHz). Figs. 3.4(b and c)

show the noise count rates at the telecom and 606 nm wavelengths, at the

output of the waveguide and normalized as counts per seconds over 1 GHz

bandwidth. The telecom noise (Figs. 3.4b) saturates as a function of the

pump power due to the above explained back-conversion to 606 nm. This

gives approximately a factor 2 reduction of the expected linear noise at the

maximum pump power. Taking the first 3 points to fit a linear slope, we

find an internal SPDC noise generation coefficient of αN=76 kHz/mW/cm

normalized to a 1 THz bandwidth, similar as the one described in Ref. [138].

The blue curve, matching our data, shows a simple model of the expected

noise level taking into account αN and the back-conversion effect as:

Ntelecom(P ) = αNP

∫ L

0

(
1− ηmax sin2

(
(L− x)

√
ηnP

))
dx, (3.5)

where the parameters ηmax and ηn are the efficiencies found with the clas-

sical conversion efficiency measurement. The converted noise detected at

606 nm (Figs. 3.4c) shows a clear quadratic behavior, as expected. The red

line shows the expected back-converted noise level using the same model

as Eq. 3.5:

N606(P ) = αNP

∫ L

0
ηmax sin2((L− x)

√
ηnP )dx. (3.6)

The expected behavior of the signal-to-noise ratio of a converted photon

as a function of the pump power are shown in Figs. 3.4(d-e). It takes into

account the classical efficiency measurement (section 3.1.3.2) and the noise

models 3.5 and 3.6.
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Figure 3.4: QFC noise characterization. (a) Schematic of the differ-
ent noise processes induced by a strong pump field in the waveguide.
(b) Measurement of noise in the 1552 nm region, dominated by Sponta-
neous Parametric Down Conversion (SPDC) noise photons, as a function
of the pump power coupled in the waveguide. (c) Noise measurement
in the 606 nm region. The two measurements are performed gating
the single-photon detector and using the narrow band filters shown in
the setup section (of 10 GHz bandwidth for the 606 nm photons and
210 MHz bandwidth for the converted 1552 nm photons). The data are
normalized as counts per second at the output of the waveguide, over
1 GHz bandwidth assuming a continuous measurement (i.e. eliminating
temporal gate). (d-e) Expected behavior of the signal-to-noise ratio of a
down-converted (d) or up-converted (e) photon taking into account the
classical efficiency measurement and the noise models shown in plots
b and c. This figure is meant to show the behavior of the SNR and
does not show quantitative numbers which depends on the experimental

parameters.
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3.2.2 The µ1 measurement - Weak coherent states down-

conversion

To estimate the performance in term of signal-to-noise ratio of our noisy

device, a typical measurement that will be shown all along the manuscript,

is the so called µ1 measurement. It gives the number of input photons µin

per pulse at the input of the device, such that the signal-to-noise ratio

(SNR) of the converted photon at the output of the device is equal to

1: µ1 = µin
SNR [125]. In practice it is estimated by measuring the SNR

of the converted photon for several input photons number per pulses of

attenuated laser light (weak coherent states) and by fitting a linear function

to it.

This parameter depends on the external conversion efficiency, on the noise

filtering applied to the converted mode, but also on the photon duration

used (as the amount of noise detected depends on the integration window

duration). µ1 is a practical and useful parameter to estimate the feasibility

of connecting the converter to a specific system with a specific bandwidth.

A single photon, heralded with an efficiency ηherald, can be converted with

a SNR = ηherald
µ1

.

To assess the potential of our QFC device for converting light emitted by

narrow-band quantum memories to the telecom wavelength, we charac-

terize it sending 606 nm weak coherent states with 200 ns FWHM Gaus-

sian shape, mimicking long single photons compatible with Praseodymium

doped quantum memories [19, 66, 139]. To reduce this amount of detected

noise, the converted telecom photon is filtered with a fiber Bragg grating

(65 % transmission, 2.5 GHz bandwidth) and an etalon (95 % transmis-

sion, 210 MHz bandwidth and free spectral range (FSR) of 4 GHz). The

converted photons are then detected with an InGaAs single photon de-

tector (ID230, ID Quantique, 10 % efficiency, 10 Hz dark counts) and inte-

grated over a 400 ns time window, containing more than 98 % of the pulses.

Fig. 3.5 a and b show examples of histograms of the converted photons for

0.3 input photon number per pulse, without the etalon (a) and with the
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Figure 3.5: µ1 measurements. Figure (a) show the histogram (51 ns
bin size) of converted weak coherent states with an input photon number
of 0.3 per pulse at 606 nm. The 1552 nm converted signal is filtered with
a Fiber Bragg grating (2.5 GHz bandwidth) and measured over 400 ns
integration window. The grey histogram shows the noise level measured,
for which a 6µs integration window is used. Figure (c) shows the SNR
as a function of the input photon number per pulse, together with the
fit of the data, revealing the µ1 parameter. Figures (b and d) show the
same measurement done adding a filtering etalon of 210 MHz bandwidth,

which increases significantly the SNR.

etalon (b) showing strong noise suppression. We then measured the signal

to noise ratio of the converted photons

SNR =
Cconv − Cnoise

Cnoise
, (3.7)

where Cconv(Cnoise) is the number of converted (noise) photon counts in

the integration window. It is measured with different average input photon

numbers per pulse, ranging from 0.04 to 1 and from a linear fit we extract

the parameter µ1 (Fig 3.5c d). We show that adding the etalon as a filter
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Figure 3.6: QFC performances. (a) Conversion efficiency from 606 nm
to 1552 nm as a function of the coupled pump power. The blue curve
shows the efficiency using bright classical light and sweeping the coupled
pump power from 0 to 530 mW in 100 µs. The red curve shows the fit
of the efficiency shown in section 3.1.3.2. The greens points show the
efficiency measured with weak coherent states. (b) µ1 measurements of
the converted weak coherent states as a function of the coupled pump

power.

decreases by on order of magnitude the µ1, compatible with the filtering

bandwidth improvement. This confirms that the noise is broadband.

Fig. 3.6(b) shows a measurement of µ1 (with the full filtering) as a func-

tion of the pump power. Interestingly, we observe a decrease in µ1 with

increasing pump power, down to (7± 0.5)×10−3 at 500 mW pump power.

Although not intuitive, the decrease of µ1 (i.e increase of SNR) with the

pump power is explained by the saturation of the noise at telecom in the

waveguide, discussed in the previous section. The green curve shows the

expected values of the µ1, calculated from the classical conversion effi-

ciency measurement, and the noise level (eq. 3.5). The device efficiency is

also extracted from this measurement and plotted in Fig. 3.6(a), matching

with the classical measurement.

These measurements show the capability of converting long photons with

high signal to noise ratio, thanks to the high efficiency of the process and

to the strong spectral filtering of the QFC noise.
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3.3 Down-conversion of storable heralded single

photons to the telecom C-band

To prove that our QFC device preserves the quantum properties of memory

compatible quantum light, we use a photon pair source, schematically de-

picted in Fig. 3.7(b), that generates heralded single photons at 606 nm com-

patible with the Praseodymium based quantum memory [66, 139]. This

experiment has been performed together with Dario Lago-Rivera [132] who

was operating the photon pair source. We show that non-classical corre-

lations between heralding and heralded photons are preserved. We also

measured the heralded autocorrelation function of the heralded photon

using the converter device as a frequency-domain beam splitter, yielding a

value of 0.19±0.07. The results are published in Ref. [132].

3.3.1 The photon pair source

The source is a new generation of an earlier source [140, 141] that has been

used to to demonstrate quantum storage of heralded single photons in a

Pr3+:Y2SiO5 memory [66, 139]. It is based on a 2 cm long PPLN crystal,

placed in a bow-tie cavity (FSR of 261 MHz). Pumped with 426 nm light

in CW, it generates a signal photon at 606 nm, and an idler photon at

1436 nm. The biphoton linewidth is 1.8 MHz, making the 606 nm photon

compatible for storage in a Pr3+:Y2SiO5 based quantum memory [66, 139].

The idler telecom photon is filtered with a Fabry-Perot cavity (linewidth

of 80 MHz, FSR = 17 GHz) in order to select a single frequency mode out

of the 8 modes at the output of the bow-tie cavity. It is then used to herald

the signal 606 nm photon with an efficiency ηh
S of 25 % in single mode fiber.

In the 606 nm arm, there is no filtering of a single frequency mode and

the non-correlated modes contribute to accidental coincidences. Pumped

with 1.65 mW of 426 nm light, the source generates about 280 heralded

606 nm photons per second which are strongly non-classically correlated to

the heralding photon. This number is limited by the transmission of the
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Figure 3.7: (a) QFC setup. At the input of the device, single photons
at 606 nm can be coupled together with a strong 994 nm pump into the
Periodically Poled Lithium Niobate (PPLN) waveguide. At the output,
the pump, the unconverted and the converted lights are separated by
means of Dicroic Mirrors (DM). The coupled pump is monitored with a
Photodiode (PD). The unconverted and the converted fields go through
filtering stages and are coupled into a single mode fiber. Finally they are
detected with single-photons detectors (D2 and D3) (b) Source setup.
The photon pair source consists of a PPLN crystal inside a bow-tie
cavity. It is pumped with a 426 nm continuous-wave laser beam. The
generated idler photon at 1436 nm and signal photon at 606 nm are
doubly resonant with the cavity. At the output of the cavity they are
separated by means of a dicroir mirror. The idler photon passes through
a Filter Cavity (FC), is then coupled to a single mode fiber and finally
detected at D1. The 606 photon is also coupled to a single mode fiber

and sent to the quantum frequency converter.

heralding photons (filtering cavity and fiber coupling) and their detection

at D1 (10 % efficiency). The correlation time of the photon pair is measured

to be 120.9 ns. We measure the normalized cross correlation function g
(2)
s,i =

Ps,i

PsPi
,where Ps,i describes the probability for a coincidence detection of a

signal and an idler photon, and Ps (Pi) is the detection probabilities for

single signal (idler) events. Using a detection window of 400 ns we obtain

g
(2)
s,i =15.9±0.9, well above the classical threshold of 2, assuming thermal

statistics for the signal and idler fields. The single photon nature of the

heralded 606 nm photon is verified measuring the heralded second-order
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autocorrelation function g
(2)
H,source. This is done using a 50/50 fiber-beam

splitter in the 606 nm arm and detecting the heralded correlations between

the two outputs. The source exhibits g
(2)
H,source = 0.12 ±0.01, well below

the classical threshold of 1, and below the threshold of 0.5 for a two photon

Fock state.

3.3.2 Preservation of non-classical correlations and frequency-

domain beam splitter

Finally, we connect the photon pair source to the quantum frequency con-

verter. The correlations between the herald and the non-converted signal

(detectors D1 and D2), and between the herald and the converted sig-

nal (detectors D1 and D3) are measured as a function of the QFC pump

power and are shown in Fig. 3.8(a). At 0 mW pump power, the normalized

cross correlation function of 13.6±0.9 for the non-converted light (grey

open squares) corresponds to the source without any effect of the QFC

(except for the additional transmission losses). The g
(2)
s,i value for the non-

converted photons then rapidly drops when increasing the pump power

due to the drop of SNR induced by the high amount of quadratic noise

generated through the 10 GHz etalon filter. In contrast, when looking at

the 1552 nm converted signal (blue dots) we observe that the value of g
(2)
s,i

slightly increases with pump power up to 12.3 ±0.7 at 440 mW. It is worth

mentioning that the filtering stage of the converted signal used to obtain a

high SNR of the converted photon also filters a single frequency mode from

the bow-tie cavity. It then reduces the number of accidentals coincidences

from the source, as the other modes, non-correlated with the single fre-

quency idler mode, are not detected. On the contrary, the QFC itself adds

noise to the channel, thus reducing the cross correlation function. Thus

it is difficult to directly compare the converted cross correlation function

with the non-converted one shown in the Figure 3.8(a). Instead we mea-

sured the cross-correlation g
(2)
s,i of the source before the QFC sending the

606 nm heralded single-photon through a 12 MHz transparency window of
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Figure 3.8: Non-classical correlations. (a) Cross correlation measure-
ment between the 1436 nm heralding photon and the converted 1552
nm photon (blue dots) The blue shaded area shows the expected values
taking into account the SNR of the converted light and the estimated
cross-correlations for the source in single mode before the conversion.
The grey open squares show the depleted 606 nm photon as a function
of the coupled pump power of the QFC. Error bars are smaller than
the points. The dotted line represents the classical threshold of 2. The
dashed blue line represents the measured cross-correlation of the source
in single mode configuration for signal and idler. (b) Histogram of the
triple coincidence between the heralding photon, the 1552 converted pho-
ton and the 606 unconverted photon, measured with 250 mW of coupled
QFC power. The left (right) inset shows the histogram of the heralded

converted (unconverted) photons.
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a Pr3+:Y2SiO2 doped crystal [139], that filters a single frequency mode of

the bow tie cavity and measure g
(2)
s,i = 42±7. We now have an estimate

of the performance of the source in fully single mode operation that can

be compared with the converted one measured (blue dots in Fig. 3.8(a)).

The effect of the noise of the QFC device on correlations can be estimated

using the same approach as in Ref.[113]:

g
(2)
c,i = g

(2)
s,i

ηhS/µ1 + 1

ηhS/µ1 + g
(2)
s,i

, (3.8)

where g
(2)
c,i (g

(2)
s,i ) is the cross-correlation function of the converted (uncon-

verted) photon. We plot the expected correlations after conversion (blue

shaded area in Fig. 3.8(a)) using the µ1 model shown previously (green

curve of Fig. 3.6(b)). We can then observe that, up to the pump power

of 1.45 W for which the maximum conversion efficiency should occur, the

correlations, although degraded by the QFC-induced noise, remain well

above the classical limit of 2. The model suggests that the converted light

can exhibit non-classical correlations at any pump power. The small dis-

crepancy between the measured data and the model is probably due to an

overestimation of the non-converted correlations as the filtering is much

narrower in that case.

In order to show the preservation of the single photon nature of the con-

verted heralded photon, we measure – for the first time to our knowledge –

the heralded-autocorrelation function of the signal photon using the QFC

as a frequency-domain beam splitter [128, 129]. The pump power of the

QFC can be tuned in such a way that the photon entering the waveguide

has a probability of 50 % to be converted and 50 % to stay in its origi-

nal state (Eq. 2.16). We can then record the triple coincidences between

the heralding photon at D1, the unconverted 606 photon at D2 and the

converted 1552 nm photon at D3 to measure the heralded autocorrelation

function g
(2)
s,c|i in a 400 ns window. To equalize the photon detection rates

between the two outputs of the frequency beam splitter we fix the QFC

pump power at 250 mW, which also dramatically reduces the amount of
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quadratic noise detected at D2. The histogram of the triple coincidence

is shown in Fig. 3.8(b), sorted by the number of heralding events between

succeeding detections at signal or converted photon detectors [142]. The

value at bin 0 corresponds to g
(2)
s,c|i of 0.19±0.07. It is well below the clas-

sical threshold and proves the single photon nature of the converted light.

Note that this value is an upper bound as a high amount of uncorrelated

noise is added to the non-converted output of the beam splitter. This mea-

surement also highlights the potential of a quantum frequency converter

as a beam splitter device, which for instance could be used to perform Bell

measurements between modes of different wavelength [127].
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3.4 Storage of up-converted telecom C-band pho-

tons in a doped crystal

Of great interest to long distance quantum communication is the imple-

mentation of a quantum memory for telecommunication light (1550 nm).

It is well known that telecom C-band optical fibers have the least loss

(0.2 dB/km), so a telecom optical memory would integrate directly with

fiber-optical networks and quantum repeater architectures.

In this section, I will present the storage of up-converted single-photon

level telecom light at 1570 nm, in a Praseodymium doped crystal, using

the Atomic Frequency Comb protocol (introduced in section 1.2.2.1). This

experiment was performed in 2014 [117] together with Kutlu Kutluer who

was operating the Praseodymium doped quantum memory. I will first

describe the converter device and the solid state memory. Finally I will

show that the up-converted photons can be retrieved after storage, with

high signal-to-noise ratio.

3.4.1 The frequency converter

The frequency converter used for this experiment is a 2.6 cm long Periodically-

Poled Potassium Titanyl Phosphate (PPKTP) waveguide, used in the early

stage of the PhD. It is quasi-phased matched for the sum-frequency gen-

eration process 1
1570 nm + 1

987 nm = 1
606 nm . The setup is very similar to the

one described previously in section 3.1. The telecom light, coupled with

55 % efficiency, is overlapped in the waveguide with the 987 pump, cou-

pled with 36 % efficiency. The converted light at 606 nm is filtered with a

diffraction grating (Thorlabs, GR13-1205) and an etalon (Light Machin-

ery) with finesse 6 and linewidth 10 GHz. It is finally coupled to a telecom

fiber, slightly multimode for 606nm but allowing for an efficient coupling

of 75 %. At maximum coupled pump power available of 252 mW, the mea-

sured device efficiency is 21±1 %, corresponding to 75 % internal efficiency.
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Figure 3.9: PPKTP characterization. (a) Visible noise spectrum of
the PPKTP waveguide with a 994 nm coupled pump. The left inset
shows a closer look at the data around 606 nm. The right inset shows
the dependence of the noise at 606 nm with the pump power. Note that
some optical elements used in this measurement were optimized for 606
nm and not for wavelengths around 1µm. (b and c) Weak coherent state
conversion. Device efficiency (b) and signal-to-noise ratio (c) measured
for an input photon number per pulse of µin=1, as a function of the

coupled pump power.
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In a PPKTP waveguide the noise processes are similar as in a PPLN

waveguide. To verify this, we measured the spectrum of the noise in the

visible range using a monochromator (Horiba microHR, 0.25 nm resolution

at 400 nm). Only the pump field was sent at the input of the waveguide,

and the dicroic mirror and filtering stage were removed. The data is shown

in Fig. 3.9. We observe the anti-Stoke Raman noise up to 14 THz above the

pump frequency. At the conversion target 606 nm wavelength, we observe

a noise peak. Its width is limited by the resolution of the monochromator.

It is quadratic with pump power (see right inset of Fig.3.9(a)), clearly

showing that it is parametric down-conversion noise, back-converted to

606 nm within the phase matching bandwidth.

The converter is then characterized converting weak coherent states with

1 average photon per 140 ns long pulses, as a function of the pump power

coupled. From this measurement, the device efficiency (Fig 3.9a) and the

signal to noise ratio (Fig 3.9b) are extracted. The fit of the efficiency using

Eq. 2.14 gives a maximum device efficiency of ηdev = (22±1 %) at 360 mW

of pump and a normalized efficiency of ηn = 100±10 %/W cm2. The signal

to noise ratio decreases dramatically with pump power, as expected for a

quadratic noise behavior.

3.4.2 The solid state memory

The building of the solid state memory setup was not part of my PhD.

However I will briefly describe it here. The solid state storage device is

based on the atomic frequency comb (AFC) protocol [70], described in

section 1.2.2.1. As the memory medium, we use a 5 mm long Pr3+:Y2SiO5

crystal with 0.05 % doping leading to an absorption coefficient of 23 cm−1

with light polarized along the D2 crystal axis. For light polarized along the

D1 axis, the absorption coefficient is reduced greatly [143]. The transition

of interest is at 606 nm which connects the first sublevels of the 3H4 ground

and the 1D2 excited manifolds. To cool this crystal down to 3 Kelvin we use

a Montana Instruments Cryostation. For this experiment only the 606 nm

52



Chapter 3. Quantum Frequency Conversion between 606 nm and the
Telecom C-band

± 5/ 2g

17.3 MHz

± 3/ 2g
10.2 MHz

± 1/ 2g

± 1/ 2e
4.6 MHz

± 3/ 2e4.8 MHz
± 5/ 2e

3H4(1)

1D2(1)

60
5.
97
7
n
m

a b c

Figure 3.10: (a) Picture of the doped crystal sitting in the Mon-
tana cryostation (Credit: Kutlu Kutluer). (b) The level scheme for
Pr3+:Y2SiO5 with the hyperfine splittings given in MHz. (c) an exam-
ple of the AFC for a storage time of τAFC = 1.6µs. This AFC is resonant

with the ±1/2g −±3/2e transition.

laser source used for preparation is based on sum-frequency-generation of

1570 nm and 987 nm in a second PPKTP waveguide.

We use a double pass AOM to first create a 12 MHz wide transparency

window (referred to as ‘pit’ ) via spectral holeburning the atoms to other

hyperfine levels of Pr3+:Y2SiO5. We burn ions back into the pit by sweep-

ing the laser 4 MHz centered at +30 MHz with respect to the pit centre.

This populates the ± 1/2g and ± 3/2g ground states within the pit (see fig.

3.10(b) for level diagram), and by then emptying again the ± 3/2g ground

state via optical pumping, we are left with a 4 MHz wide single class of

ions within the ± 1/2g ground state [144, 145]. Within this single class,

spectral holes at regular ∆ intervals are burnt resulting in a 4 MHz wide

AFC resonant with the ± 1/2g −± 3/2e transition (see fig. 3.10(b)). The

burnt ions are then placed into the ± 3/2g and ± 5/2g ground states. The

total preparation time for the memory is around 200 ms.

Finally, the preparation mode is sent at an angle of about 4 ◦ with re-

spect to the input mode, overlapping only on the memory. This allows to

spatially filter the strong preparation light away from the single photon

detection mode.
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3.4.3 Results
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Figure 3.11: Experimental set-up. Pulses of 1570 nm light are created
with a double pass acousto-optic modulator (DP AOM) and are then
reduced to the single-photon-level using a neutral density filter (OD Fil-
ter). Both signal and pump at 987 nm are coupled into the periodically-
poled potassium titanyl phosphate (PPKTP) nonlinear waveguide pro-
ducing the 606 nm output. The output mode of the FC is filtered with
first a diffraction grating and then an etalon with finesse 6, linewidth
10 GHz. The mode is then coupled to the memory based on the AFC
protocol (see text) via a telecom fiber (slightly multimode for 606 nm).
The light used to create the AFC passes a DP AOM before being in
and out coupled of a single mode optical fiber, giving a total of 2 mW of
power before the crystal. The AFC output mode is coupled to a single
photon detector via a multimode fiber. A shutter is used to protect the

SPD during the preparation period.

We now couple the light to the crystal, with Fig. 3.12 showing the re-

sults. At the input of the FC, photon numbers ranging from 0.05 to 2

photons per 140 ns pulse were used and the µ1 parameter was measured

for 3 cases: the frequency converter alone, the photons passing through

a 12 MHz transparency window created in the memory crystal and finally

the stored and retrieved photons from the memory. For the second case,

the light is polarized along the D1 crystal axis, whereas for the third case

the polarization is along the D2 axis. For all measurements in this section,

the pump power is set to 144 mW leading to an QFC device efficiency of

15± 1 %.
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For the case of the frequency converter alone, where the photons are mea-

sured after coupling to the telecom fiber, we measure µ1 = µin
SNR = 0.37± 0.02

photons. The integration window taken is 400 ns which includes the entire

pulse.

We then out-couple the light and steer it toward a 12 MHz transparency

window tailored in the inhomogenous absorption line of the Pr3+:Y2SiO5

crystal and we measure µ1 = 0.23± 0.004 photons. The signal and noise

detection windows here are the same as the previous case. An improvement

in the µ1 is seen, this is due to the absorption of the noise by inhomoge-

nous linewidth of the sample. The etalon placed after the converter (see fig.

3.11) has a linewidth of around 10 GHz resulting in noise with this band-

width. With the noise polarized along the D1 axis we measure a reduction

of 33 % which is consistent with an absorbing line of width 6− 12 GHz.

Finally, for the case of the stored light we measured µ1 = 1.38± 0.03× 10−3

photons, about a factor of 270 improvement compared to the frequency

converter only case. The memory efficiency is measured to be ηAFC =

19.8 ± 0.1 %. One key feature here is that the echo signal is delayed by a

known time of τAFC = 1.6µs, which allows us to disable the 987 nm pump

of the frequency converter before the echo is re-emitted from the sample.

This can be seen clearly in Fig. 3.12(a) where at a time of about 1µs the

pump is disabled resulting in a dramatic drop of noise in the echo tempo-

ral window. The pump is disabled for a total time of 5µs by turning on

an AOM (see Fig. 3.11). Most of the pump is then diffracted and is not

coupled to the waveguide. The remaining pump in the zero order mode of

the AOM can be coupled, this is why the noise does not go down to the

dark count level.

Due to the narrowband nature of the memory (about 4 MHz relative to

the > 5 GHz noise), the memory itself acts as a filter of the noise storing

only a fraction of it. This, in combination with the fact that the pump is

gated, thus allows for a 2 orders of magnitude reduction in the µ1 for the

echo.
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Figure 3.12: Signal to noise ratio as a function of the input telecom
photon number, µin for a pump power of 144 mW after the waveguide.
The integration window is 400 ns. The red triangles show the results
for the FC only, the orange circles show the case of the photons passing
through a transparency window and finally the blue squares show the
AFC echo. The dashed lines show a linear fit forced to go through zero.
The black dotted line represents SNR= 1, with the thin vertical lines
showing the µ1 for each case. Error-bars (smaller than the symbols)
represent one standard deviation. Inset: An example of an input (light,
orange histogram) and an echo (dark, blue histogram) for µin = 0.1
photons per pulse and τ = 1.6µs. Note the echo histogram is multiplied
by 10. The vertical dashed lines indicate the integration window for the
signal. A comb is prepared 200 times, with 6000 pulses sent per comb.

The bin size is 10.24 ns.

From the echo and the input photon number we can extract the total

efficiency of our device (including frequency conversion, all optical loss

and storage efficiency), which we measure to be ηtot = 1.55±0.02 %. From

the device efficiency of the converter (∼ 15 % at 144 mW pump power), an

additional 66 % transmission loss from memory input to the SPD and the

AFC efficiency (∼ 20 %), we have quantitative agreement between using

strong and single-photon-level light. In this experiment we have also shown

that the signal-to-noise ratio and the total efficiency stay constant up to

5µs storage time [117], before decreasing due to the loss of finesse of the

comb. In order to increase storage time, spin wave storage [70, 139] could

also be implemented.
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To conclude, we have demonstrated the storage of up-converted single-

photon-level telecom light in a Pr3+:Y2SiO5 crystal with storage times of

up to 10µs. This was the first demonstration of single-photon-level light

storage interfaced with frequency up-conversion. We have shown that the

stored photon can be retrieved with high signal to noise ratio, despite the

high amount of noise generated by the converter device. With this in mind,

we view our memory also as a noiseless converter of telecom light to the

visible.

Conclusion

In this chapter, I introduced a frequency converter setup, capable of both

up and down conversion of single-photon level light between 606 nm and

telecom wavelength, with high efficiency and high signal-to-noise ratio de-

tection, possible thanks to strong filtering of the pump-induced noise.

In a first experiment we showed the frequency conversion of memory-

compatible single photons. We demonstrated that the non-classical corre-

lations between heralded and heralding photons from a photon pair source

are preserved thanks to the high signal to noise ratio conversion. We

also highlighted the possibility of using a converter device as a frequency-

domain beam splitter. This work opens the route towards connecting

different solid-state quantum memory systems emiting in the visible range

(e.g. Europium and Praseodymium quantum memories or NV centers) to

the telecom C-band.

In a second experiment, we demonstrated that telecom single photon level

light can be converted and stored in a visible photonic quantum memory

based on Praseodymium doped crystal and finally retrieved in a noiseless

time window.

Whereas noiseless conversion is possible in cascaded processes [126], these

results show that filtering allows single stage conversion with low noise.
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Non-classical correlations

between a spin-wave and a

telecom photon

In this chapter we demonstrate non-classical correlation between a fre-

quency converted telecom C-band photon and a spin-wave stored in an

atomic ensemble quantum memory. The QM is implemented in a cold

ensemble of 87Rb atoms following the DLCZ protocol (see 1.2.2.2). The

photons emitted from the ensemble and heralding the spin-waves are con-

verted from 780 nm to 1552 nm by means of a non-linear waveguide. We

show ultra-low noise operation of the device enabling a high signal to noise

ratio of the converted single photon, leading to a high spin-wave herald-

ing efficiency. This chapter is based on Ref. [115] which was published in

Optica. The experiment was done in collaboration with Pau Farrera who

was in charge of the cold atomic memory.
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Figure 4.1: (a) Picture of the atomic cloud, trapped inside the vaccuum
cell. (b) Energy levels and coupling scheme for the DLCZ experiment.

The experimental setup is depicted in Fig. 4.2 and basically consists of

two parts – the atomic QM and the quantum frequency conversion device

(QFCD). We will first describe the two systems.

4.1 The cold atomic quantum memory

The building and operation of the cold atom QM was not part of my PhD.

I nevertheless describe it here (text from Refs. [115, 146]), to help the

reader understand the full experiment.

The cold atomic QM consists of a cloud of 87Rb atoms (Fig 4.1), kept in a

UHV chamber and cooled via magneto optical trapping (MOT). The cool-

ing and repumping beams are derived from the write and read diode lasers

(two external cavity diode lasers, Toptica) which are locked via doppler

free absorption spectroscopy to Rubidium reference cells to be resonant

with the D2 line of 87Rb at 780 nm. After passing through acousto op-

tic modulators (AOMs) in double pass configuration, the cooling beam

is 20 MHz red-detuned to the |F = 2〉 ↔ |F ′ = 3〉 transition, and the re-

pumping beam is resonant to the |F = 1〉 ↔ |F ′ = 2〉 transition. They are

combined with a magnetic gradient of 20 G/cm to load N ≈ 108 Rubid-

ium atoms into the MOT. After a 2 ms long optical molasses phase, the

temperature of the atoms is about T ≈ 100µK. Next, all population is
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prepared in the |gA〉 = |5S1/2, F = 2,mF = 2〉 Zeeman sublevel by apply-

ing the repumping light and the σ+ polarized optical pumping light on the

|F = 2〉 → |F ′ = 2〉 transition.

To generate the spin-wave inside the atomic cloud, we send write pulses

(derived from the write laser and a subsequent AOM) which are 40 MHz

red detuned from the |gA〉 → |eA〉 = |5P3/2, F = 2,mF = 1〉 transition and

exhibit a duration of 20 ns (full width half maximum FWHM). The write

pulses pass a polarization beam splitter (PBS) and a quarter wave plate to

set their polarization to σ− in the frame of the atoms. The quantization

axis is set by a bias magnetic field of B = 110 mG along the write/read pho-

ton direction. The write pulses generate Raman-scattered write photons,

which are emitted on transition |eA〉 → |sA〉 = |5S1/2, F = 1,mF = 0〉. A

small fraction of the isotropically emitted write photons is collected at an

angle of 3.4◦ with respect to the write/read pulse axis. The write photons

pass a combination of quarter wave plate, half wave plate, and PBS to

couple just the ones with the correct σ+ polarization into a polarization

maintaining (PM) optical fiber. Afterwards the write photons are either

sent to the converter device (see next section), either spectrally filtered by

a monolithic Fabry-Perot cavity with approx. 50 MHz linewidth and 24%

total transmission (including subsequent fiber couling) before finally being

detected by SPD D1 with 41% efficiency and a dark count rate of 130 Hz.

To gain information about the spin-wave, we sent a read pulse (τR = 35 ns,

PR = 190µW) resonant to the |s〉 ↔ |e〉 transition to convert the spin-

wave back into a single read photon. Due to collective interference of the

atoms, the read photon is emitted in a spatial mode given by the phase

matching condition kr = kR+kW −kw, with kr,R,W,w denoting the respec-

tive wave vectors of the single photons and pulses [49]. The read photon

is then polarization filtered before being sent through a monolithic Fabry-

Perot cavity (ηcav ≈ 20% total transmission, including cavity transmission

and subsequent fiber coupling) for spectral filtering and finally detected

in a window of 100 ns by a silicon SPD (Excelitas SPCM-AQRH-14) with

ηd,780 = 40% efficiency. The retrieval efficiency is defined as the probability
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Figure 4.2: (a) Experimental setup. Write pulse (W ) and Read pulse
(R) are sent counter-propagating into the atomic cloud. Write and read
photonic modes are denoted by w and r. The QFCD consists of the
PPLN waveguide, a bandpass filter (BF), a narrowband etalon (Et),

and a fiber bragg grating (FBG).

to map a heralded spin-wave onto a read photon. Its raw value is calculated

as ηret = pcw,r/pcw, where pcw,r is the probability per trial to detect a coin-

cidence between a converted write and a read photon and pcw is the prob-

ability per trial to obtain a detection event in the converted write photon

detector. The fiber-coupled retrieval efficiency ηfiberret = ηret/(ηcavηd,780)

corresponds to the probability of finding a read photon in the optical fiber

after the vacuum cell, i.e. corrected for filtering and detector efficiency

only.

4.2 The quantum frequency converter

The quantum frequency converter device (QFCD) used to shift the wave-

length of the write photons is based on a PPLN waveguide, initially devel-

opped by Xavier Fernandez Gonzalvo and Boris Albrecht [113, 125]. The

write photon is sent to the QFCD and first overlapped on a dichroic mirror

with the spatial mode of the pump laser at 1569 nm which before was spec-

trally cleaned by two bandpass filters (Semrock NIR1, center wavelength

1570 nm, transmission bandwidth 8.9 nm), leading to an ASE suppression

of more than 100 dB at 1552 nm. A combination of lenses ensures optimal

focussing and mode matching of the beams into the temperature stabilized
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3 cm long buried-PPLN-MgO waveguide (HC Photonics) in which the con-

version of the write photon from 780 nm to 1552 nm takes place. After-

wards, the pump radiation is blocked by a combination of two bandpass

filters (Semrock NIR01-1550/3-25) each with a transmission bandwidth of

7 nm around 1552 nm and an maximum optical depth of OD ≈ 12. How-

ever, further filtering is required to detect the converted write photon at

the single photon level because of noise generated by spontaneous Raman

scattering of the pump beam which leads to a broad background around

the target wavelength (only 2.1 THz away from the pump frequency). In

contrast to former work [113, 125], we apply a two-stage additional filtering

consisting of an etalon with a bandwidth of 210 MHz and a free spectral

range of 4 GHz and a fiber Bragg grating (FBG) of 2.5 GHz bandwidth.

The total extinction ratio of the whole filtering stage for the pump radi-

ation at 1569 nm is > 150 dB (100 dB for the two bandpass filters, 44 dB

for the FBG and 11 dB for the etalon). This allowed us to achieve high

values of SNRs at low photon number, which is necessary for the quantum

frequency conversion of the heralding write single photons. The converted

write photons are finally detected by an InGaAs single photon detector

(SPD) (ID Quantique ID230) with an detection efficiency of ηd,1552 = 10%

and a dark count rate of 10 Hz.

We measured a clear linear dependence with pump power of the Raman

noise. Interestingly no saturation or deviation from the linear behavior due

to back-conversion was observed, as in Chapter 3 with SPDC noise. This

is yet not explained, but could be due to imperfect filtering, or polarization

dependent noise.

The performance of the QFCD can be deduced from Figure 4.3. For char-

acterization of the QFCD, we couple 1.2 mW continuous wave input light

at 780 nm to measure the total conversion efficiency and single photon

level coherent input pulses of 16 ns duration with a mean photon number

per pulse of µin = 0.16 to measure the SNR versus the coupled pump

power (measured behind the waveguide). The plotted internal efficiency

63



Chapter 4. Non-classical correlations between a spin-wave and a telecom
photon

Figure 4.3: Signal to noise ratio SNR (blue dots for full filtering, grey
squares without etalon, left axis) measured with a mean input photon
number per pulse of µin = 0.16 and internal efficiency ηint of the QFCD
(green circles, right axis) measured with classical input light vs. pump
power measured after the waveguide. The data are fitted by functions,
modeling the expected behavior (solid lines). (b) µ1 measurement: SNR

vs. µin for a fixed pump power of Ppump = 287 mW.

ηint excludes all optical losses, e.g. due to initial coupling in the waveg-

uide (ηcpl ≈ 74%), all subsequent filtering stages (ηfilter ≈ 36%), all optical

surfaces including one optical isolator (ηsurf ≈ 70%) and the final fiber cou-

pling (ηfiber ≈ 75%). The data are fitted with the Eq. 2.14 and we retrieve

a normalized conversion efficiency of ηn = 61 %/W/cm2 and a maximum

internal efficiency of ηmax
int = 72% which corresponds to a maximum total

device efficiency of ηmax
dev ≈ 10% with ηdev = ηintηloss, with ηloss = 14%.

The SNR, defined as the background subtracted conversion signal over

the background, follows the expected behavior (blue line) showing a drop

for low pump powers due to the dark count limitation of our detector

(DC1552 = 10 Hz) as well as a decrease for very high pump powers due

to the non-linear dependence of ηint on Ppump. For comparison we also

included a trace of the SNR measured without the etalon (grey squares)

which shows significantly worse filtering. Fig 4.3(b) shows the SNR de-

pending on the mean input photon number µin for full filtering (including
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the etalon) for a fixed pump power of Ppump = 287 mW. We observe the

expected linear dependence SNR = SNRmax × µin with SNRmax = 452 for

a single photon input (i.e. µin = 1). This represents a more than fivefold

improvement compared to former reported results [113].

4.3 Frequency conversion of write photons

We then combined the QFCD with the cold atomic QM to convert the

write photons from 780 nm to 1552 nm and investigate the joint properties

of the telecom photons and the atomic spin-wave stored in the QM.

To demonstrate that the conversion of the write photon preserves its quan-

tum character, we measured the normalized second-order cross-correlation

between the converted write photon and the read photon defined as g
(2)
cw,r =

pcw,r/(pcwpr). For comparison we also took the cross-correlation g
(2)
w,r with-

out write photon conversion, for which we replaced the QFCD by a Fabry-

Perot filtering cavity with similar characteristics as the one used for the

read photons but resonant with the write photons. The obtained data are

shown in the Fig. 4.4(a) as blue dots for g
(2)
cw,r and light blue dots for g

(2)
w,r

vs. the applied power of the write pulse. We observe the highest cross-

correlation of g
(2)
cw,r ≈ 20 for a write pulse power of PW ≈ 10µW . For

higher PW , g
(2)
cw,r decreases, as expected for a DLCZ-type QM. For lower

values of PW , g
(2)
cw,r slightly drops due to noise introduced by the QFCD

and the dark counts of the SPDs [147]. This also explains the deviation of

g
(2)
cw,r from g

(2)
w,r in the low PW regime. The measured g

(2)
cw,r in Fig. 4.4(a) are

well above the classical limit of 2, assuming thermal statistics for the write

and read beams (see below). This shows that we can operate the combined

QM-QFC device for a large range of write pulse powers in a highly non-

classical regime. The experimental data follow well the expected behavior

taking into account the background noise created by the QFCD pump

laser (indicated by the blue shaded area) which can be deduced from (see
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Figure 4.4: (a) Normalized cross-correlation of the unconverted write
photons (light blue dots, left axis) and the converted ones (blue dots)
with the read photons and SNR of the converted write photons (green di-
amonds, right axis, errorbars smaller than symbol size) vs. peak power of

the write pulse. The blue shaded area corresponds to the expected g
(2)
cw,r

as inferred from Eq. (4.1), and the SNR is fitted by a linear regression
(green line). (b) Retrieval efficiency (red circles, left axis) and normal-
ized cross-correlation of the converted write photons and read photons
(blue empty diamonds, right axis) vs. storage time in the QM. The write
and pump powers were fixed at PW = 0.18 mW and Ppump = 290 mW.
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Appendix A)

g(2)
cw,r =

g
(2)
w,r + SNR−1

1 + SNR−1 . (4.1)

Here, g
(2)
w,r denotes the measured cross-correlation if the write photon is sent

through a filtering cavity (similar to the read photon cavity) instead of the

QFCD and SNR is the signal to noise ratio of the converted write photon.

SNR = (pcw−pN )/pN , where pN is the probability to have a detection when

the write photon is blocked before the QFCD (see Supplementary material

of Ref. [115]). The good agreement between the experimental data and

the simple model suggests that the noise generated by the QFCD pump

beam is the main limiting factor for the value of g
(2)
cw,r.

Moreover, we proved unambigusously the high degree non-classical correla-

tions between the converted write photons and the retrieved read photons

by violating the Cauchy-Schwarz inequality for classical light, given by

R =
(g

(2)
cw,r)

2

g
(2)
cw,cw · g(2)

r,r

≤ 1 (4.2)

where where g
(2)
cw,cw =

pcw,cw

pcwpcw
(g

(2)
r,r =

pr,r
prpr

) denotes the unheralded auto-

correlation function of the converted write (read) photons. The mea-

sured correlation values for different write powers and the inferred Cauchy-

Schwarz parameter R are given in Table 4.1. Even for relatively high write

pulse powers we clearly violate equation (4.2). For PW = 0.17 mW we

obtain R = 31 violating the Cauchy-Schwarz inequality by more than four

standard deviations, clearly demonstrating strong non-classical correla-

tions between the converted write photons and the retrieved read photons.

Finally, we investigated the capability of the combined QM-QFC device

to preserve the non-classical correlations of the converted write photons

and the stored spin-wave depending on the storage time in the QM. The

retrieval efficiency ηret (green circles in Fig. 4.4(b)) decreases over storage

time due to dephasing of the stored spin-wave mainly induced by thermal

atomic motion and to a smaller degree by external spurious magnetic field
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Table 4.1: Measured values of the coincidence detection probability

pcw,r, the cross-correlation g
(2)
cw,r and the unheralded auto-correlations

g
(2)
cw,cw and g

(2)
r,r of the converted write photons and read photons for

different write pulse powers PW . Errors correspond to ±1 standard de-
viation. The Cauchy-Schwarz parameter R is calculated from Eq. (4.2).

PW [mW] pcw,r [%] g
(2)
cw,r g

(2)
cw,cw g

(2)
r,r R

2.39 4.2 · 10−3 2.48(6) 2.0(2) 2.16(9) 1.4(2)
0.65 1.2 · 10−3 4.49(8) 2.3(3) 2.04(9) 4.4(7)
0.17 0.3 · 10−3 9.9(2) 1.6(4) 2.0(1) 31(7)

gradients. The decay can be fitted with a theoretical model introduced

in the supplementary material of Ref. [115] (see green line in Fig. 4.4(b))

giving a decay time of τ = 23.6 ± 0.8µs. However, the storage time is

not a fundamental limitation here, as it could be increased by orders of

magnitude using other techniques [93, 148–151]. The normalized cross-

correlation g
(2)
cw,r between the converted write photons and the retrieved

read photons is shown as blue dots in Fig. 4.4(b) for a write pulse power of

PW = 0.18 mW. We observe the expected decay of g
(2)
cw,r and fit the data

with the above mentioned model, giving a decay time of τ = 25.8± 1.2µs

which is consistent with the result obtained when fitting ηret. Fig. 4.4(b)

shows that we stay in the non-classical regime (g
(2)
cw,r > 2) up to storage

times of about 40µs which corresponds to a fiber transmission length of

approximately 8 km.

Discussion and conclusion

The performance of the QFCD is currently mainly limited by technical

issues like coupling efficiencies in the PPLN waveguide and into the final

optical fiber as well as transmission efficiencies through the filtering stage

and other optical surfaces. However, with the current device conversion

efficiency of about 10 % and typical fiber-absorptions of 0.2 dB/km for

1552 nm and 3.5 dB/km for 780 nm, the unconverted photon travelling in

a 780 nm fiber would experience a higher loss after around 3 km than a
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frequency converted photon travelling in a telecom fiber. Hence, even with

this seemingly low conversion efficiency, QFC beats direct transmission

already after a few km.

Second, we note that a QFCD converting photons to the telecom C-band

with a given device efficiency ηdev is equivalent in terms of loss to an ad-

ditional fiber length of L = −10/0.2 · log(ηdev). For the current device

efficiency of 10 %, this corresponds to an additional loss of −10 dB mean-

ing an equivalent of 50 km extra fiber in each arm of a telecom quantum

repeater. A device efficiency of 50 % would correspond to 15 km of addi-

tional fiber in each arm.

Finally, we note that to alleviate the requirements for spectral filtering

and thus to increase the QFC efficiency, also different conversion strate-

gies with further separated wavelengths could be considered [98]. A larger

wavelength separation would decrease the Raman noise or could even sup-

press it completely. However, to convert the 780 nm photon into the tele-

com C-band (1530 nm− 1565 nm) where the losses in optical fibers are the

lowest, not much flexibility is possible. The Raman noise is present up to

700 cm−1 (21 THz) away from the excitation pump, as measured in [137].

In our case, the frequency separation between the pump at 1569 nm and

the target wavelength at 1552 nm is 2.1 THz. Using a pump at the edge of

the gain spectrum of Erbium amplifiers, around 1605 nm, the separation

in frequency between that pump and the target wavelength at 1517, nm

would be 11 THz, which is still inside the Raman noise window. The so-

lution for a noise-free conversion as mentioned in Ref. [98] would indeed

be to use a pump at around 2000 nm converting the 780 nm photons to

1280 nm into the telecom O-band (frequency difference of 84 THz). This is

an interesting approach, but one would have to deal with other issues such

as higher transmission losses in fibers, a more challenging mode matching

in the non-linear wave-guide, and the need for more sophisticated technical

resources.
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In conclusion, we demonstrated highly non-classical correlations between a

frequency converted telecom C-band photon and a spin-wave stored in an

atomic quantum memory. The photon heralding the spin-wave was con-

verted from 780 nm to 1552 nm using an integrated non-linear waveguide.

We showed that by improved optical filtering very high signal to noise ra-

tios (up to SNRmax = 452 for a weak coherent input pulse with in average

one photon per pulse) could be achieved. This was the key to obtain high

non-classical correlations between the converted write and read photons

up to g
(2)
w,r ≈ 20 when the QFCD was combined with the QM, as well as

high SNRs for the detection of the converted write photon, leading to high

spin-wave heralding efficiencies. Moreover, we proved that the quantum

character of the converted write photons and read photons are preserved

by violating the Cauchy-Schwarz inequality by more than four standard

deviations. Finally, we demonstrated that the non-classical correlations

between the heralding telecom write photon and the near infrared read

photon could be stored in the QM up to 40µs. Our experiment shows that

quantum frequency conversion based on integrated non-linear waveguide is

a viable approach to create quantum correlation between telecom photons

and long-lived spin-waves.
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Quantum state transfer

between the cold atomic

cloud and the solid-state

memory

Although significant efforts have been devoted to build hybrid quantum

systems e.g. devices combining different quantum systems on a single

chip [152], or different species of closely spaced trapped ions [153, 154],

interactions between these systems are typically mediated by microwave

photons or Coulomb interactions, which are not favorable for long distance

quantum communication.

Instead, photonic interconnections between different quantum systems have

so far been realized only in very few experiments. Ref. [155] reported the

interaction (slow light) in a warm Rubidium cell of a single photon emit-

ted from a quantum dot. In Ref. [156], a similar experiment is reported

with single photons emitted from a molecule, interfaced with a hot Sodium

ensemble. Refs. [157] and [158] reported the photonic coupling of a quan-

tum dot with a single ion and a solid-state memory, respectively. However
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these experiments neither demonstrated quantum state transfer nor inter-

faced two different long-lived quantum memory (QM) systems, which are

both crucial requirements for quantum networks applications. A photonic

quantum interconnection between different platforms was demonstrated

in Ref. [159], using a single atomic species. The main challenge to effi-

ciently interface two different quantum systems via a photonic link, is to

obtain strong light-matter interaction between a single mediating photon

and both matter systems, whose atomic transitions can differ significantly

in wavelength and linewidth.

In this chapter I will present the photonic connection between the Ru-

bidium cold atomic ensemble and the Praseodymium doped crystal, in-

troduced in the previous chapters, using a quantum frequency conversion

interface. In Chapters 3.3 and 4, I showed that non-classical properties of

single photons can be preserved through a noisy frequency conversion pro-

cess to the telecom C-band, under the condition that the converted single

photons are retrieved with high enough signal-to-noise ratio. In Chapter

3.4, I showed that telecom light at the single photon level, converted using

a noisy device, can be stored in the solid state memory and retrieved with

high signal to noise ratio. The conditions seem to be met for the con-

nection of the Rubidium-based cold atomic cloud - emitting non-classical

light at 780 nm - with the Praseodymium-doped crystal - able to store

single-photon level light at 606 nm - using a noisy frequency conversion

interface.

This chapter is based on Ref. [146] and the text is mostly adapted from

this reference. This experiment was performed together with Pau Farrera

who was in charge of the cold atomic memory and Kutlu Kutluer who was

responsible for the solid state memory. In this work I was in charge of the

connection between the two systems, including the frequency conversion

interface, the frequency stabilization and the data collection. In section 5.1,

I will first depict the full experiment, composed of the cold atomic quantum

memory, the frequency conversion interface and the solid state quantum

memory (introduced previously) and explain how they are adapted for
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bandwidth and precise frequency matching. In a second section 5.2, I will

test the conversion interface and solid state memory together, showing

the conversion and storage in the solid state memory of weak coherent

states at 780 nm. In the last part 5.3, I will show that a single collective

spin excitation (spin-wave) stored in the cold atomic QM can be optically

transferred onto a long-lived collective optical excitation inside the crystal.

I will also show that time-bin qubits can be faithfully transfered between

the two systems. By transmitting correlated single photons and qubits, we

demonstrate quantum correlation preserving and coherent quantum state

transfer between the disparate quantum nodes.
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5.1 The experiment

The full setup is depicted in Fig. 5.1 ((a) for schematics (b) for full pic-

ture)1. It is composed of 3 different experiments: the cold atomic memory,

the frequency conversion interface and the solid state memory. At site A

the cold atomic memory emits a photon at 780 nm. It is then first con-

verted to the telecom C-band and sent to another laboratory, at site B.

There, it is converted back to visible at 606 nm and finally stored in the

solid state memory.

5.1.1 The cold atomic memory

The Rubidium cold atomic based DLCZ memory used in this experiment

is described in chapter 4.1. Contrary to that chapter, we here convert

the read photons. To match the acceptance bandwidth of the solid state

memory, the read photons must exhibit long temporal waveform. To that

end we use the capability of this system of shaping the temporal waveform

of the emitted read photon, shown in [115].

1 Fig 5.1 caption. (a) Schematic setup and relevant level schemes. At
site A a cold cloud of 87Rb atoms is held inside a MOT. Following the DLCZ proto-
col, non-classically correlated photon pairs are produced by first sending classical write
pulses (1) generating a spin-wave inside the atomic cloud heralded by a write photon
(2) which is spectrally filtered by a monolithic Fabry-Perot cavity (not shown). Upon
a write photon detection at D1, the spin-wave is read-out by sending a classical read
pulse (3) generating the read photon (4). QFCD1 consists of a periodically poled lithium
niobate (PPLN) crystal with an integrated proton exchange (PE) waveguide continu-
ously pumped by a strong pump laser at 1569 nm. It converts the read photon from
780 nm to 1552 nm (5). The converted photon is then separated from the strong pump
light via dielectric band pass filters (not shown) before it is sent via a telecom fiber to
site B where QFCD2 (consisting of a PPLN ridge waveguide pumped by strong 994 nm
laser radiation) converts it to 606 nm via SFG (6) before the photon is again spectrally
filtered by several elements. The Pr3+: Y2SiO5 crystal was initially prepared with an
AFC (0) using a strong preparation beam at 606 nm, to store the converted read photon
(7). After retrieval it is finally detected at D2 (8).

(b) Full Setup Abbreviations: PBS polarizing beam splitter; λ/2 (λ/4) half (quarter)
wave plate; AOM acousto optic modulator; PC polarization controller; FS fiber switch;
DM dichroic mirror; BF band pass filter; Gr diffraction grating; PP anamorphic prism
pair; Et etalon; S mechanical shutter.
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Figure 5.1: Experimental setup: Description in footnote.
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Figure 5.2: Time-bin single read photon. (a) Anti-bunching pa-
rameter of the read photon after the MOT vs pe. The dashed line indi-
cates the threshold for classical states (α ≥ 1) and the dotted line for a
two-photon Fock state (α = 0.5). (b) Conditional histograms of a 200 ns
long read photon, (c) time-bin read photon. Both histograms are taken

at pe = 5% after the MOT at site A.

The write photons, heralding spin waves in the atomic ensemble are spec-

trally filtered by a monolithic Fabry-Perot cavity with approx. 50 MHz

linewidth before finally being detected by SPD D1.

To read-out the atomic spin-wave, the intensity and temporal wave shape

of the read pulses are tailored to efficiently generate read photons with

tunable waveform [115]. We are thereby able to create single photons

which exhibit sub-natural linewidths in the range of 2 MHz, matching the
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spectral requirements of the AFC memory.

Fig 5.2(b) shows an example histogram of a 200 ns long read photon gen-

erated at pe = 5% in the cold atomic QM detected right after the MOT at

site A. Fig. 5.2(a) shows the heralded autocorrelation function α = g
(2)
rA,rA|w

for different pe measured via a Hanbury Brown Twiss setup inserted di-

rectly after the MOT. We obtain strongly anti-bunched read photons in

the single photon regime (α < 0.5) for low pe . 11%, in the non-classical

regime (α < 1) for pe . 25%, before surpassing the classical threshold for

higher pe due to multiple spin-wave excitations.

To generate sub-natural linewidth single photons in the cold atomic QM

which exhibit a temporally delocalized wave shape suitable for encoding

photonic time-bin qubits, we follow the approach also described in [115].

Instead of sending a simple Gaussian shaped read-out pulse to the cold

atomic ensemble, we apply an appropriately imbalanced doubly-peaked

read-out pulse. The first (early) peak reads out the stored spin-wave with

half the retrieval efficiency ηAret/2, and the second (late) peak with full

retrieval efficiency ηAret. This creates the desired time-bin read photon with

equal photon detection probabilities in both time-bins (c1 = c2 = 1√
2
). By

controlling the phase ϕ between both read-out peaks we can thus create

a time-bin photon representing an equatorial qubit state |Ψeq〉 = 1√
2
(|e〉+

eiϕ|l〉).

We are thus able to generate two sub-natural linewidths time-bins photons

with identical shape as needed for high visibility interference for the co-

herence preservation and qubit analysis experiments. Fig 5.2(c) shows an

example histogram of a time-bin read photon generated at pe = 5% in the

cold atomic QM detected right after the MOT at site A. Characterization

of that photon via a Hanbury Brown Twiss setup after the MOT yields a

heralded autocorrelation function of g
(2)
rA,rA|w = 0.26± 0.02 confirming the

single photon nature of that time-bin read photon.

The read photons then are filtered by a combination of half wave plate and

PBS before they are coupled with an efficiency of approximately 60% into

77



Chapter 5. Quantum state transfer between the cold atomic cloud and the
solid-state memory

a PM fiber. The fiber is connected to a micro-electro-mechanical single-

mode fiber-optic switch (FS1) which directs the read photons or classical

lock light to the QFC interface (see subsection 5.1.3).

5.1.2 The solid-state memory

The solid state memory is based on Praseodymium ion-doped crystal. We

use the Atomic Frequency Comb (AFC) protocol described in Chapter 3.4.

In this experiment we take adavantage of the intrincic temporal multi-

modality of the AFC scheme [18]. We can imprint two simultaneous combs

by performing the comb burning operation twice with two different period-

icities, ∆1 and ∆2, such that the AFC gives access to two different storage

times, τB1 and τB2. Fig 5.3(a,b,c) show the combs structures and their

corresponding echos for the different storage times used in the experiment.

Fig 5.3(c) shows the simultaneous double comb, leading to two balanced

echos after storage of a single input pulse. In this way, the AFC memory

can also act as an interferometer, capable of analyzing a time-bin qubit.

To illustrate the capability for the AFC to act as time-bin analyzer, we

send double Gaussian pulses separated by 500 ns, mimicking a time-bin

qubit. The pulses are stored on two superimposed combs with 2µs and

2.5µs storage times, such that the late echo of the early bin and the early

echo of the late bin overlap in time and interfere. The phase ϕ of the late

pulse is controlled and strongly constructive and destructive interference

are observed. In Fig 5.3(d) the red trace shows the interference with ϕ = 0

and the green one with ϕ = π. The data on the left panel shows the area of

the interfering peak as a function of the phase ϕ of the late pulse, yielding

a visibility of 95 %. This shows the capability of the solid state memory

to store and analyze a time-bin photon, acting as an interferometer.

In order to fully analyze a time-bin qubit, the phase of one arm of the in-

terferometer must be controlled. We exploit the fact that the emitted echo

from an AFC acquires a phase shift of ei2πδ/∆, where δ is the frequency
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Figure 5.3: AFC storage characterization. Different absorption
spectra of atomic frequency combs with different periodicities ∆ are
shown on the left side. 200 ns FHWM input pulses derived from the
606 nm preparation laser are sent to the different AFC structures at
0 µs and their corresponding echos are shown on the right side. (a)
∆ = 500 kHz (b) ∆ = 400 kHz (c) double periodicity with ∆1 = 400 kHz
and ∆2 = 500 kHz leading to a double echo at 2µs and 2.5µs. (d)
Interference fringe of doubly peaked classical pulses separated by 500 ns
stored on two superimposed AFC, as a function of the phase ϕ of the

late pulse.
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Figure 5.4: Interference of doubly peaked classical input pulses on two
superimposed AFC combs (with storage times 2 and 2.5µs) as a function

of the center of the second comb with periodicity ∆2 = 400 KHz.

detuning between the center of the AFC and the input photon, and ∆

the periodicity of the comb [70]. Fig. 5.4 shows that we can achieve high

visibilities of the interference by shifting the center of one of the two su-

perimposed comb. In this measurement we used classical 606 nm pulses on

two superimposed AFCs (with storage times 2 and 2.5µs) and measured

the intensity of the interference as a function of the center of the sec-

ond comb with periodicity ∆2=400 kHz. We observed the expected phase

shift of 2π for a 400 kHz comb detuning. Hence, shifting δ for one of the

two AFCs, allows full control of the interferometer and permits us to set

the measurement basis. This will be used for quantum state tomography

measurements, shown in the last section of this chapter (5.3.5).

5.1.3 The interface

The interface is based on the cascaded-conversion from 780 to 606 nm,

using two frequency converters described in the previous chapters. The

first frequency conversion device, converting 780 nm photons to 1552 nm,

is described in Chapter 4.2, with the exception that the filtering stage is
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here not used (except for bandpass filters blocking the pump light). This

leads to a device efficiency of 17 % at 290 mW of coupled pump power.

The converted light is sent to the solid state lab via a 10 meters single-

mode telecom fiber where the second conversion happens. The second

device is described in Chapter 3.1 2. It is here used in the up-conversion

configuration, from 1552 to 606 nm. The converted light is filtered with

a diffraction grating (diffraction efficiency η606 nm
Gr = 75%) and an etalon

(T 606 nm
Et = 95%, FSR = 60 GHz, finesse F = 6). The device efficiency of

this device is ηQFCD2
dev = 15% at 450 mW of 994 nm pump power.

As explained in 3.2, a high amount of noise is induced by the pump fields,

at the target conversion wavelength. In the first converter the pump at

1570 nm generates Raman noise at 1552 nm. This noise can then be con-

verted by the second QFC to the target wavelength 606 nm. In the second

converter, the 994 nm pump generates non-phase matched fluorescence at

longer wavelengths. This noise at 1552 nm is phase-matched with the con-

version and is back-converted to 606 nm. In order to stop the generation

of noise at the target wavelength in this cascaded conversion interface,

switching off only the 994 nm pump field is then sufficient. The technique

presented in Chapter 3.4, that consists in switching the pump off during

storage of the photon in the AFC memory, thus retrieving it in a noiseless

time window, can here be applied as well.

2Initially we planned to use the PPKTP waveguides (AdvR) originally generating
606 nm light for the solid state experiments, from the 1570 and 987 nm pump lasers. To
meet the new phase matching conditions we attempted to cool them down to ≈2 degrees
Celsius in a Nitrogen environment but ended up damaging the chips. We later purchased
a PPLN buried-waveguide (HCP) meeting our quasi-phase matching conditions, but
this waveguide showed signs of 994 nm pump-induced absorption effects, degrading the
conversion efficiency after few hours of operation. We later obtained a new PPKTP
waveguide (AdvR), which showed a good internal conversion efficiency from the depletion
measurement, but about half of the converted light was lost at the output facet of the
chip. This effect was then confirmed with a second chip from the same fabrication batch.
We finally acquired a PPLN ridge-waveguide (HC photonics). Although not as long as
planned, it did not exhibit transmission losses or absorption effects.
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5.1.4 Frequency stabilization

Active stabilization of the involved laser frequencies is necessary to ensure

that the converted read photons emitted by the cold atomic QM are reso-

nant to the AFC structure prepared in the crystal. Herefore, the conversion

interface is used in two different configurations: a ‘QFC’ mode where the

read photons are converted and sent to the AFC memory, and a ‘LOCK’

mode where 780 nm continuous wave (CW) light, derived from the write

laser, is converted and used to stabilize the frequency of the converted read

photons. Two single mode fiber switches (FS1 & FS2) placed before and

after the interface are used to swap between the two modes.

The first FS placed before the interface has two inputs and one output and

the second one after the interface has one input and two outputs. In the

QFC mode, the first FS couples the 780 nm read photons to the frequency

converters and the second switch directs the converted 606 nm photons to

the solid state storage device. In the LOCK mode, FS1 couples 2 mW

of 780 nm CW light to the interface and FS2 sends the converted light

to the lock system. An optical beat note between the converted ‘LOCK’

light and the reference 606 nm laser (used to prepare the AFC structure in

the crystal) is measured using a photodiode. The beat note is stabilized

at 104 MHz using a frequency comparator (based on a phase locked loop

referenced to an internal clock) which feeds back an error signal to the

1569 nm pump laser. Any drift of the involved lasers, inducing a frequency

shift of the converted photons is then compensated by acting on the current

of the 1569 nm pump laser, thus ensuring that the later converted 606 nm

read photons are resonant to the AFC structure in the crystal. Frequency

drifts of the lasers also have an impact on the transmitted qubits phase

preservation, as discussed in section 5.2.2.

Note that in order to increase the frequency stability of the experiment the

linewidth of the 994 nm pump laser diode is reduced, locking its frequency

using the Pound Drever Hall technique to an external reference cavity with

690 kHz linewidth and a free spectral range (FSR) of 1 GHz.
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The probability for a 780 nm photon entering the first fiber switch FS1

and to exit the second fiber switch FS2, at 606 nm is about 1.2%. This

includes all possible losses: conversion efficiencies, waveguide coupling,

fiber coupling, optical filtering and transmissions (see Table 5.1).

5.2 Weak coherent states conversion and storage

The QFC interface, the storage in the crystal, and the locking system were

first tested and characterized with weak coherent states of light mimick-

ing the single read photons and time-bin qubits obtainable from the cold

atomic QM.

5.2.1 Signal to noise ratio and time-bin qubit

Using light from the 780 nm write laser which is sent through another AOM

beam line and a set of neutral density filters, we generated attenuated laser

pulses of Gaussian shape and 200 ns duration, at the same optical frequency

of the read photons from the cold atomic QM. The weak laser pulses are

converted through the QFCDs, then stored for τB = 2.5µs in the crystal

and eventually retrieved and detected at D2. The histogram for a mean

input photon number of 2 at 780 nm is shown in Fig 5.5(a). The leakage

of the input photon can be observed at 0µs, the strong noise suppression

at 1µs and the echo at 2.5µs. The obtained SNR of the retrieved echo

is shown in Fig 5.5(b), as a function of the average input photon number

per pulse. The linear fit highlights the performance in term of SNR of our

system, showing µ1 = 0.022± 0.001 – with µ1 being the minimum number

of photons per pulse at the input necessary to achieve a SNR of 1 for the

detected echo. The echo then shows a SNR of 14 for an average photon

number of 0.3 per pulse at 780 nm - corresponding to the expected number

of read photons at the input of the first QFCD per heralded excitation in

the cold atomic QM (fiber-coupled DLCZ retrieval efficiency ηret
A ≈ 30%).
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Figure 5.5: Weak coherent state measurements. (a) Histogram
of an echo after 2.5µs storage time with an mean input photon number
per pulse of 2 at 780 nm. The shaded area shows the integration window.
(b) SNR of the echo retrieved from the crystal, if a weak coherent state is
frequency converted in the QFCDs and stored in the memory depending
on the mean input photon number per pulse µin before the interface.
The green line is a fit with the expected linear behaviour. (c) Visibility
of interfering weak coherent time-bin pulses depending on their mean
input photon number µin, after the pulses were frequency converted and
stored for τB1 = 2µs and τB2 = 2.5µs in the AFC memory. The green
line is the predicted behavior of the visibility taking into account the
measured SNR. The inset shows as an example the interference fringe

taken at µin ≈ 5.
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Next, weak coherent time-bin qubits – attenuated doubly-peaked Gaussian

pulses, separated by 500 ns and with tunable phase difference ϕ between

the early and late bins – were sent through the QFCDs and the solid

state storage device. The memory is prepared with two AFCs offering

simultaneous storage for τB1 = 2µs and τB2 = 2.5µs. The early and late

bins are overlapped and the interference between the early and late pulses

is measured as a function of the relative phase ϕ. The visibility of this

interference is shown in Fig 5.5(c) as a function of the photon number

per time-bin qubit µin. With strong coherent pulses the visibility of this

interference is measured to be V0 = 67%. The decrease of visibility for

lower input photon number µin is due to a decrease in SNR. Taking this

effect into account, the visibility becomes [19]

V (µin) = V0
µin

µin + 2βµ1
, (5.1)

where V0 is the maximum visibility, and β the correcting factor for the re-

duced efficiency of a double comb AFC compared to a single one. The sim-

ple model reproduces well our data, using the SNR measured in Fig 5.5(a)

and V0 measured with strong light pulses (see following section). The visi-

bilities in the single photon regime, presented in the main text correspond

here to a regime where µin ≈ 0.3 (mimicking the retrieval efficiency ηA of

the atomic memory).

5.2.2 Visibility limitation

Due to our relatively high SNR, the main limitation in our case is most

likely given by laser jitter, which stochastically shifts the central frequency

of the read photon. A frequency shift δ induces a relative phase 2πδ(τ1−τ2)

between the two interferometer arms, thus reducing the measured visibility

over several experimental trials. This can be seen in Fig. 5.6, showing the

global phase of the interference fringe using doubly peaked pulses at the

input of the solid state memory with two superimposed AFC with storage

times of 2 and 2.5µs as a function of the optical frequency detuning of the
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Figure 5.6: Global phase versus input pulse frequency detun-
ing. Global phase of the interference fringe using classical pulses at
the input of the solid state memory with two superimposed AFC with
storage times difference of 500 ns as a function of the optical frequency

detuning of the input light pulses to the center of the combs.

input light pulses to the center of the combs. We here observe a 2π phase

shift for a 2 MHz frequency shift. All the lasers involved in the experiment

contribute to this effect — the 780 nm read laser generating the time-

bin photon, the two pump lasers of the QFCDs converting the time-bin

photon, the 780 nm write laser generating the lock light, and the 606 nm

laser preparing the AFCs and acting as the reference for the beat-note

lock.

Considering a Gaussian global laser linewidth of σ, the visibility V0 of the

interference between the two time-bins separated by ∆τ can be expressed

as [160]

V0 = exp

(
−(2πσ∆τ)2

2

)
. (5.2)

Depending on lasers stability, maximum visibilities V0, measured with

strong coherent pulses, between 65% and 75% have been observed. This

corresponds to a global linewidth of the lasers between 570 and 700 kHz

FWHM (=̂ 2.35σ). Fig 5.7 shows the visibility as a function of the FWHM

of the Gaussian linewidth, according to equation (5.2).
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Figure 5.7: Interference visibility. Visibility as a function of the
laser linewidth FWHM (2.35σ) depicting Eq. 5.2. The shaded area

shows the operating range.

When the pump laser at 994 nm was not stabilized on a Fabry-Perot cavity,

we observed a significantly lower maximum visibility, around 60% (corre-

sponding to a visibility of around 50 % in the single photon regime). At

this time we could measure the stabilized beating signal at 104 MHz (plot-

ted in the inset of Fig 5.8a). The Fourier transform of the beating signal

is shown in Fig 5.8a. Although not clearly Gaussian it appears to have a

width lower than 1 MHz, in accordance with the above estimation. This

spectrum profile was used to simulate the interference fringe between two

bins separated by 500 ns, which showed a visibility of 58 % (Fig 5.8b), in

agreement with the measured one.

5.3 Quantum state transfer

5.3.1 Time sequence

The timing of our experiment is synchronized on the 1 Hz cycle of the Mon-

tana cryostation. Over this one second cycle, the vibrations induced by
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Figure 5.8: Beating spectrum. (a) Fourier transform of the sta-
bilized beating signal (plotted in the inset) integrated over 400µs. (b)
Simulated interference fringe for a time-bin difference of 500 ns, taking

into account the beating spectrum shown in (a).

the Helium pumping affect the efficiency of the AFC memory. Fig 5.9(a)

shows an estimation of the timing of these vibrations windows. We first

prepared an AFC structure in the first 200 ms of the cycle, and measured

the AFC echo amplitude, for different delays between the end of the AFC

preparation and the input pulse (to be stored in the AFC). A full cryosta-

tion cycle can be here observed between 1 and 2 seconds in Fig 5.9(a). We

observe an exponential decay of the echo amplitude due to the AFC degra-

dation induced by the finite ground state population lifetime. We can also

observe dramatic drops of efficiency, caused by the vibrations. We here

conclude that after the AFC preparation, we have a window of 300 ms to

perform the experiment, where the storage efficiency is high enough.

The time sequence for the experiments is shown in Fig 5.9(b). It starts

by preparing the AFC in the crystal for up to 200 ms. Once completed,

the Master Computer sends a trigger to the Slave Computer that controls

the rest of the experiment (see also Fig 5.1(b)). The main experiment is

then performed during the next 290 ms (corresponding to the low vibration

time window of the cryostat cycle). The rubidium atoms are cooled at site

A inside the MOT for 17 ms while the frequency conversion interface is

in the LOCK mode. The interface is then switched to the QFC mode
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Figure 5.9: a. Cryostation cycle. Amplitude of the AFC echo as
a function of the time delay between the end of the comb preparation
and the input pulse. The AFC preparation is triggered every second
based on the cycle of the cryostation. The data was measured together
with Kutlu Kutluer, and is also shown in his thesis. b. Experimental
time sequence. First the AFC in the crystal is prepared (bottom row)
before the main experiment involving the cold atomic QM (top row) and
the conversion interface (center row) starts. Eventual detections of write
photons at D1 and converted, stored and restored read photons at D2

are indicated by stars.

and 20 ns long write pulses are sent to the atomic memory. If a write

photon is detected at detector D1, the atomic ensemble is read out after a

DLCZ storage time τA by sending a 340 ns long read pulse. The emitted

read photon is converted in the QFCDs and afterwards stored for τB in

the AFC. During the storage, the 994 nm pump is gated off [117] for 5µs

by the AOM behind the tapered amplifier in order to retrieve the read

photon in a noiseless time window. The write/read process lasts for 1 ms
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until the Rb atoms are recaptured by a new MOT and the interface is

switched to the lock mode for the next 17 ms. After 15 MOT captures

and the corresponding write/read trials, the sequence restarts at the next

cryostat cycle, preparing a new AFC in the crystal. Accounting for the

AFC preparation, the MOT captures and the frequency locking, the duty

cycle of the experiment is 1.5 %.

5.3.2 Losses

The probability to obtain an emitted, converted, stored and retrieved pho-

ton after the crystal, conditioned on a write photon detection at D1, is

approximately 10−3. This includes 1.2% total conversion efficiency (with

all optical losses) from 780 nm to 606 nm. The optical losses of the system

are listed in Table 5.1.

Table 5.1: System losses. Detailed optical transmissions and effi-
ciencies of the experiment.

T, η

Cold gas read retrieval (in fiber) 30%

FS1 transmission 72%

waveguide coupling 44%
QFCD1 conversion 56% ηdev = 17%

filtering & fiber cou-
pling

68%

waveguide coupling 51%
QFCD2 conversion 60% ηdev = 15%

filtering 75%
fiber coupling 64%

FS2 transmission 70%

AFC storage 29%
Crystal optical transmission 52%

detection 45%
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Figure 5.10: Photon conversion and storage. (a) Time histogram
of detections at D2 if the spin-wave (excitation probability pe ≈ 35%)
is read-out from the cold atomic Rb QM, the photons are frequency
converted in the QFCDs, and stored at t = 0 in the crystal. During
storage (at t = 1.2µs), the pump of QFCD2 is gated off, and the re-
emitted photons are detected as a pronounced AFC echo at t = 2.5µs
(red trace, detected coincidence rate ∼ 90 /h in a 400 ns window around
the echo). The green trace corresponds to the noise level, i.e. if no

read photon is sent. (b) Normalized cross-correlation g
(2)
w,rB between the

write photons from the cold atomic QM and the converted, stored and
retrieved read photons from the crystal for different pe. The green area

corresponds to the expected g
(2)
w,rB as deduced from a similar model as in

[113]. The dashed line represents the classical upper bound g
(2)
w,rB ≤ 2.

The inset shows a typical g(2) histogram of coincidence detections for
several read-out trials separated by the trial period of ∼ 13µs obtained
at pe ≈ 11%. Error bars correspond to ±1 s.d. of the photon counting

statistics.
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5.3.3 Quantum correlation preservation

We now present the photon generation, conversion, and storage involving

the whole experimental setup. We first verify that photons emitted by the

atomic QM can be successfully converted and stored in the crystal. We

create at site A a heralded 200 ns long (FWHM) Gaussian read photons

at pe ≈ 35%. Figure 5.10(a) shows the histogram of detection events at

D2. The photons arrive at the crystal at t = 0µs, however, no leakage is

visible here, as they are buried in the noise generated by the QFCDs. The

noise is suppressed at t = 1.2µs by gating off the pump of QFCD2. At

t = 2.5µs we detect a pronounced echo signature from the retrieved read

photons with a Signal to Noise Ratio SNR = 17± 2, mostly limited by the

dark counts of D2. The echo shows the same Gaussian temporal shape as

the initial read photons with a FWHM of 200 ns.

To investigate the non-classicality of the state transfer, we measured the

normalized cross-correlation function g
(2)
w,rB of the converted, stored and

retrieved photons with the initial write photons for different pe by com-

paring coincidences in different storage trials (see Fig. 5.10(b)). At pe ≈ 5%

(with a coincidence rate of approximately 20 counts per hour) we obtain

g
(2)
w,rB = 11.4 ± 2.4, demonstrating quantum-correlation preserving state-

transfer, as the g
(2)
w,rB value stays well above the classical bound of g(2) = 2

assuming thermal statistics for the write and read photons. Note that the

unheralded autocorrelation of the write photon was measured with a value

g
(2)
w,w ≈2, as expected for the two-mode squeezed state generated at the

output of the atomic cloud and that the read photon at the output of the

atomic cloud showed some bunching with 1 < g
(2)
rA,rA < 2 (see Tab. 5.2).

However the unheralded autocorrelation of the read photons after storage

in the solid state memory was not measured due to unrealistic integration

times. Alternately we measured it after the frequency conversion interface

and found a value g
(2)
rQFC ,rQFC ≈1, meaning that the noise added by the

QFC has a Poissonian statistics. From these measurements, we conclude

that the autocorrelation of the read photons at the output of the crystal
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should not have a value higher than 2, which means that g
(2)
w,rB > 2 is

a strong non-classical bound. The preservation of quantum correlations

holds true for a broad range of pe and for storage times τB up to 10µs.

The experimental data in Fig. 5.10(b) match well with the expected be-

havior (green area) calculated via a simple model taking into account the

measured cross-correlation g
(2)
w,rA after the MOT and the total SNR of the

read photon after conversion and storage [113].

Table 5.2: Unheralded autocorrelation measurements. Normal-
ized autocorrelation values for the write and read photon fields. g

(2)
wA,wA

is measured after the write photons are filtered with the Fabry-Perot

cavity. g
(2)
rA,rA is measured at the output of the fiber that collects the

read photons from the atomic cloud. g
(2)
rQFCD2,rQFCD2 is measured at the

output of QFCD2 at site B.

pe [%] g
(2)
wA,wA g

(2)
rA,rA g

(2)
rQFCD2,rQFCD2

35 1.97(0.10) 1.36(0.05) 1.06(0.05)
10 1.91(0.10) 1.48(0.06) 0.96(0.04)
5 2.13(0.20) 1.35(0.07) 1.00(0.04)

The preservation of non-classical correlations between the write photons

– detected at D1 at site A – and the converted, stored and retrieved read

photons – detected at D2 at site B – depending on the storage time τB

in the crystal is also investigated. First, we show in Fig. 5.11(a) the to-

tal detection probability at D2 of a converted-stored read photon when a

heralding write photon is detected at D1. For small τB we obtain total

efficiencies up to 0.02% matching the expected range determined by in-

dividual optical losses. The decrease of the total efficiency over storage

time follows the drop of the AFC memory efficiency due to the change in

finesse and effective optical density of the prepared AFC at different τB

caused by the finite laser linewidth [70]. In Fig. 5.11(b), the normalized

cross-correlation g
(2)
w,rB between the write and read photons depending on

τB is shown. We observe a relatively constant g
(2)
w,rB ≈ 6 up to a storage

time of τB ≈ 8µs until it finally drops below the classical threshold of

g
(2)
w,r = 2 at τB ≈ 10µs, where the AFC efficiency is low and its echo detec-

tion is limited by dark counts of the detector D2. The green area shows
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Figure 5.11: Storage efficiency and cross-correlation versus
storage time. Total storage efficiency and normalized cross-correlation

function g
(2)
w,rB of the initial write photon at site A and the converted,

stored and retrieved read photon at site B depending on the storage
time τB in the crystal, taken at pe ≈ 10%.

the expected correlations taking into account the SNR of the AFC echo,

inferred from the AFC efficiencies of Fig. 5.11(a), using the same model as

[113].

5.3.4 Coherence preservation

Next, we studied the coherence properties of the state transfer between

the two different quantum systems. We use time-bin qubits, which offer
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Figure 5.12: Coherence Preservation. (a) Detected echo of Gaus-
sian shaped read photons which were created (pe ≈ 35%) at either an
early time t = 0 (red) or at a later time t = 0.5µs (blue) at site A
and stored for τB = 2.5µs at site B. (b) Time-bin photons stored and
retrieved after either a short storage time τB1

= 2µs (top) or a long one
τB2

= 2.5µs (bottom). (c) Time-bin interference fringe, i.e. coincidence
counts between initial write photon detections at D1 and detection events
during the time-bin-overlap at D2 if a time-bin read photon is stored and
retrieved from the crystal prepared with two AFCs. Error bars corre-
spond to ±1 s.d. of the photon counting statistics. On the right two
examples of time histograms between detection events at D1 and D2 are
shown for ϕ = 0◦ (top) and ϕ = 180◦ (bottom). The 400 ns coincidence

window where the time-bins overlap is indicated by dashed lines.

advantages for long distance quantum communication due to their robust-

ness against external perturbations. If a heralding write photon is detected

at D1, we shape the read pulse in a way that the spin-wave stored in the

Rb QM is mapped onto a photonic time-bin qubit |Ψ〉A = c1|e〉+ c2e
iϕ|l〉,

where |e〉 and |l〉 represent early and late time-bin, ϕ is their relative phase,

controlled by the phase of the second read pulse, and c2
1 + c2

2 = 1. To store

the photonic time-bin qubit, we take advantage of the intrinsic temporal

multimodality of the AFC scheme [18].
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Figure 5.12(a) shows the time histogram of detection events at D2 of the

early and late time-bins (created at pe ≈ 35%) sent through the QFCDs,

and stored and retrieved from the crystal prepared with a single AFC of

τB = 2.5µs storage time. The two echoes represent the polar states of a

time-bin qubit and exhibit an average SNR above 19± 2. If a delocalized

time-bin photon (c1 = c2 = 1√
2
) is created in the Rb QM, converted in the

QFCDs and stored in the crystal for either τB1 = 2µs or τB2 = 2.5µs, we

detect the histograms shown in Fig. 5.12(b). In order to analyze the qubit,

we use the crystal as an interferometer by preparing two overlapped AFCs

with storage times τB1 and τB2 (ηB = 10% each) [18]. In that case, we

obtain the histograms shown in the right panels of Fig. 5.12(c). These two

histograms were recorded with a phase shift of ϕ = 0◦ (top) and ϕ = 180◦

(bottom) between the early and late time-bin. Strong interference between

the two temporal modes can be seen in the central region where the time-

bins overlap. Measuring the coincidences in that time window vs. ϕ gives

the interference fringe depicted in Fig. 5.12(c) with a fitted visibility of V =

60 ± 9.9%, confirming the high degree of coherence preservation between

the two disparate quantum systems.

5.3.5 Time-bin Qubit transfer

Finally, to demonstrate qubit transfer between the cold atomic cloud and

the crystal via telecom photons, we decreased pe to 5% generating true

single time-bin read photons at site A with an anti-bunching parameter of

α = 0.26 ± 0.02 (cf. Fig. 5.2(a)). Following the same approach as above,

we show in Fig. 5.13(a) that with converted and stored single time-bin

photons, we obtain interference between overlapping bins with visibilities

around 70%. Moreover, we show that, by changing the central frequency

of the second AFC by 200 kHz, the phase of the interference fringe can be

shifted by 180◦ verifying the intrinsic phase analyzing capabilities of the

AFC. This capability permits the measurement of time-bin qubits in differ-

ent bases and hence a full analysis of the stored qubits by quantum state
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Figure 5.13: Single photon qubit transfer. (a) Interference fringes
from a single time-bin read photon |Ψeq〉 = 1√

2
(|e〉 + eiϕ|l〉) generated

at site A (pe ≈ 5% corresponding to α = 0.26) if the second AFC is
prepared with zero detuning (red dots, V = 70 ± 6%) or shifted by
200 kHz (blue open squares, V = 76 ± 3%). Error bars correspond to
±1 s.d. of the photon counting statistics. (b) Real and imaginary parts
of the reconstructed density matrices measured after the crystal at site
B if the qubits |E〉, |+〉, |R〉 are generated at site A, converted in the

QFCDs and stored at B. Open boxes indicate the target state.

tomography. Figure 5.13(b) shows the reconstructed density matrices ρ

of the retrieved states after the crystal at site B when three orthogonal

time-bin qubits (|E〉=|e〉, |+〉 = 1/
√

2(|e〉+ |l〉), |R〉 = 1/
√

2(|e〉+ i|l〉)) are

generated in the cold atomic QM at site A, afterwards converted in the

QFCDs, and stored at site B. The state reconstruction is based on maxi-

mum likelihood estimation. The qubit fidelity conditioned on a successful

detection of the photon after the retrieval from the crystal (conditional

fidelity) is calculated as Fc|ψ〉 = 〈ψ|ρ|ψ〉 with |ψ〉 denoting the target state.

From Fig. 5.13(b) it is evident that we obtain a high overlap between the

reconstructed qubits and the target states with conditional fidelities of

Fc|+〉 = 85.4 ± 6.6%, Fc|R〉 = 78.2 ± 6.9%, and Fc|E〉 = 93.8 ± 2.8%, where
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the errors were estimated via Monte Carlo simulations taking into account

the uncertainty of the photon counting statistics. Despite the low total

efficiency of the state transfer we demonstrate an average conditional fi-

delity of Fc = 85.8 ± 3.3% for the generated and transferred qubit which

is consistent with results inferred at higher pe and surpasses the classical

threshold of 66.7% [61] by more than 5 standard deviations.

The fidelity of the polar states is limited by the SNR of the detected

photons: Fpol ≈ SNR+1
SNR+2 . The fidelity of the equatorial states is mainly

limited by the visibility of the interference between early and late time-

bins: Feq ≈ (1 + V )/2. The visibility V depends on background noise

and the overall frequency jitter of the lasers involved in the experiment (as

shown in the previous section 5.2.2).

Conclusion

In this chapter, I showed a proof of principle of quantum communication

between heterogeneous quantum nodes, opening prospects for combining

quantum nodes with different capabilities. Using the systems introduced in

the previous chapters, we built an interface capable of connecting the cold

atomic ensemble and the solid state memory. We proved it in two different

ways: we first demonstrated that quantum correlations between a photon

and a single collective spin excitation in the cold atomic ensemble can be

transferred onto the solid-state system. We also showed that single-photon

time-bin qubits generated in the cold atomic ensemble can be converted,

stored and retrieved from the crystal with a conditional qubit fidelity of

more than 85%.

Discussion and perspectives

For potential applications in hybrid quantum networks, the transfer effi-

ciency (currently 10−3) should be greatly increased. Note that the largest
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part of the inefficiency is due to technical optical loss in the various ele-

ments (ηloss = 0.04). This could be significantly improved, using e.g. fiber

pigtailed waveguide converters. The combined quantum memory efficiency

(ηQM = 0.09) could also be largely increased with state of the art tech-

niques [63, 161]. Increased efficiencies would also enable spin-wave storage

in the crystal, leading to on-demand read-out and longer storage times

[139]. While all efficiencies could be in principle pushed towards unity, an

interesting direction to alleviate optical losses would be to implement a

non-destructive detection of the time-bin qubit with the AFC, as recently

proposed in ref. [162]. The duty cycle of the experiment (and hence the

total count rate) could also be greatly enhanced, e.g. by using a dipole

trap in the cold atomic cloud, and by reducing vibrations in the cryostat,

e.g. using damping springs.

In this experiment we have been using short storage times in order to

maximize the efficiency and the strong quantum correlations. As shown

in Chapter 4, we have measured storage times of a spin wave created in

the cold atomic cloud up to ≈ 50µs. Here the storage time is mainly lim-

ited by the spin wave dephasing induced by the atomic motion as well as

spurious magnetic field gradient. Much longer storage times are possible

using state of the art techniques like optical lattices [63, 93]. Concern-

ing the solid state memory, the storage time with the two-level AFC is

limited to several microseconds (up to 15µs has been observed in our lab

[163], 50µs in Europium doped crystal [164]). At larger times the echo

efficiency is strongly affected by the loss of comb finesse due to the finite

linewidth of the preparation laser (as the teeths of the comb get closer to

each other). The 3-level AFC protocol (spin wave storage), on top of en-

abling on-demand storage as discussed above, gives access to much longer

storage times by converting the optical coherence into a long-lived spin

coherence. However this protocol generally adds noise to the retrieved

echo, induced by the strong control pulses necessary for the population

transfer [139], and very long storage times using advanced spin rephasing

techniques is still a challenge at the single photon level [62, 165]. In our
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lab, in order to implement spin-wave storage of the converted single photon

emitted by the atomic ensemble and achieve a signal to noise greater than

1 after the retrieval, we estimate that the total conversion efficiency should

be increased by one order of magnitude. The mean photon number at the

input of the memory would then be equivalent to the µ1 of ≈ 0.035 mea-

sured in our system for 11µs spin-wave storage (see Dr. Kutlu Kutluer’s

thesis [163]).

In the experimental setup a 10 meters telecom fiber was used to connect

the two QFC devices. The low transmission losses of a telecom fiber

(≈ 0.2 dB/km) opens up the possibility to increase the quantum channel

length. In the current state of our experiment the noise level per trial in

a 400 ns detection window was measured to be ≈ 8×10−6 and photon de-

tected in the same window per trial ≈ 1.5×10−4 leading to a SNR ≈ 18. In

order to observe non-classical correlations, we can assume that a SNR>1

is needed. We could therefore afford a 12 dB transmission loss in between

the two experiments, corresponding to 60 km of fiber. However here a large

proportion of the observed noise comes from the dark counts of the APD,

which could be replaced with superconducting nano-wires detectors with

lower dark counts level, permitting a much longer channel length.

A next milestone would be to demonstrate entanglement between disparate

systems. In our experiment, this could be done by converting and storing

in the solid state memory, the write photon, heralding a spin wave in the

cold atomic ensemble. Entanglement between the two memories could be

then proved measuring correlations between the read out spin wave (read

photon) in the cold atomic ensemble and the retrieved write photon after

being mapped onto a single collective excitation in the crystal. In the

case of time-bin qubit encoding, two interferometers must be used. For

the converted and stored photon, the AFC memory can act as one as

shown in this chapter. For the read photon one need to build a stable

110 meters long fiber-interferometer (as the separation between the time

bins must be at least 500 ns as required by the AFC memory acceptance

bandwidth). The stability of these interferometers is key to showing high
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interference visibilities. Towards this goal, Pau Farrera et al. [21] showed

time-bin entanglement between a spin wave and single photon at 780 nm,

with time-bin separation of 170 ns using two stabilized fiber interferometers

of 40 meters.

The tunability of the frequency conversion processes also shows that our

technique could be extended to connect other physical platforms, e.g. sin-

gle ions or NV centers. Moreover, it gives a perspective on how the distance

between nodes can be extended by back- and forth-conversion of photonic

qubits into the telecom C-band.
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Conclusion

In this conclusion I will first summarize the content of this work, listing

the obtained results and advancements in the chronological order. I will

finally introduce the future directions based on the different aspects of the

thesis.

6.1 Summary of the thesis

The main result of the thesis is the quantum connection between the

cold Rubidium ensemble and the Praseodymium-doped crystal. It im-

plied building a quantum frequency conversion interface that bridges the

wavelength gap between the two quantum memories.

We started by developing a quantum frequency up-conversion interface

from 1570 nm to 606 nm. This was implemented using a PPKTP waveguide

and a pump field at 987 nm. The device could reach 21 % conversion

efficiency and a µ1 of 0.37, thanks to the proper filtering applied on the

parasitic pump-induced noise. This device was then used to show the

conversion of C-band weak coherent states followed by storage in the ion-

doped crystal using the 2-level AFC protocol. The photons were retrieved
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in a noise-free window, with a signal-to-noise ratio 2 order of magnitude

higher than before storage. This experiment is reported in Ref. [117] and

explained in Chapter 3.4.

As a second contribution, we improved the frequency down-conversion

setup from 780 nm to 1552 , initially built by Xavier Fernandez Gonza-

lvo. The conversion efficiency was increased and the filtering narrowed.

Following the work of Boris Albrecht [113] and in collaboration with Pau

Farrera, the device was used to convert write photons emitted by the Ru-

bidium ensemble to the C-band wavelengths. We could demonstrate non-

classical correlations between a telecom photon and a spin-wave stored in

the ensemble. This is reported in Ref. [115] and explained in Chapter 4.

Meanwhile we started to work on the full conversion interface. This im-

plies using the down-converter from 780 nm to 1552 nm and to modify the

up-conversion device to now shift the photons wavelengths from 1552 nm

to 606 nm, using a pump at 994 nm. The PPLN based-converter we used

is fully described in Chapter. 3, and exhibits a device conversion efficiency

from 1552 nm to 606 nm of 15 %. The full interface is also composed of

two fiber switches, that permit to swap between the conversion of single

photons and the one of classical light for laser locking purposes. A Pound-

Drever-Hall stabilization was also implemented for the 994 nm pump. Fi-

nally the full interface could reach a total conversion efficiency of 1 % and

a frequency stability of the converted photons of 600 kHz. With this inter-

face we performed the main experiment of the thesis, which is the quantum

state transfer between the cold atomic cloud and the crystal: we showed

that a read photon emitted from the atomic ensemble is converted, stored

in the crystal and retrieved with high signal-to-noise ratio. We showed

that this photon conserves its non-classical correlations with its twin write

photon, which means that a single collective excitation stored in the atomic

cloud is transfered to the ionic ensemble in the crystal by mean of a sin-

gle telecom C-band photon. We also showed that time-bin qubits can be

transfered with a conditional fidelity of 85 % between the two memories.

These results are reported in Ref. [146] and in Chapter 5 of this thesis.
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Finally we used the same conversion device to now convert photons from

606 nm to 1552 . Several quantum nodes emit is the visible range around

600 nm [35, 165–167] where fiber losses are important. The quantum fre-

quency conversion from these wavelengths to the C-band was never re-

ported, mainly because of noise processes induced. We started with the

characterization of the noise and showed that heralded single photons

emitted from a photon pair source preserve their non-classical properties

through the conversion process. This is a step towards connecting more

quantum nodes to the telecommunication band. This work is reported in

Ref. [132] and described in Chapter 3.3. A similar experiment, showing

the quantum frequency conversion of NV center photons was also reported

in Ref. [122].

6.2 Future directions

With the motivation of having entanglement between a matter qubit and

a flying qubit at the telecommunication wavelength, several experiments

can be pursued. The frequency conversion of write photons emitted by the

cold atomic memory can be followed by showing the entanglement between

a spin-wave and a photonic qubit at the telecommunication wavelength.

We could use the same approach as the recent work done by Pau Farrera

[21]. This implies using time-bin qubits and building a ≈50 meters long

telecom fiber interferometer to analyze the qubits after conversion. Similar

experiments were reported recently in which polarization insensitive quan-

tum frequency conversion were developed to demonstrate entanglement

between a Rubidium ensemble [116] or a trapped-ion [118] and a telecom

photon.

In the same spirit, the conversion from 606 nm to the C-band wavelength

can be used to pursue the work of Kutlu Kutluer, who showed non-classical

correlations between two photons emitted from the Praseodymium-doped

crystal, in a similar manner as the DLCZ protocol. It uses the creation of
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heralded single collective excitation in an AFC absorption structure that

can later be mapped into a photonic qubit. Recently he demonstrated

non-classical correlations [166] and entanglement between write and read

photons.

The connection between the two heterogeneous systems opens many more

possibilities. Using the same approach as Ref. [21], one could show the en-

tanglement between the disparate memories. In that case the write photon

must be converted instead on the heralded read photon. This entangle-

ment creation would not be heralded though but it could be solved using

heralded absorption techniques as recently reported [162]. One could also

use the DLCZ-AFC protocol for the Praseodymium memory. The two

memories would then act as emissive systems and entanglement swapping

could be perform at an intermediate location using quantum frequency con-

version to match the photons wavelengths or using the frequency-domain

beam splitter technique. More importantly, we see this experiment as a

new platform and opens the route of implementing connections between

more complementary platforms. One promising connection would be to

connect processing capabilities, such as single ions, with long lived and

multiplexed storage devices like rare-earth crystals.
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Appendix A

Theoretical model for the

second-order cross

correlation function

As mentioned in the main text, the second order cross-correlation function

between the frequency converted write photons and the read photons, is re-

lated to the photon detection probabilities as g
(2)
cw,r = pcw,r/(pcwpr). During

the frequency conversion process, the write photons experience two kinds

of imperfections: the first one is imperfect transmission and the second one

is that they are mixed with noise photons (coming mainly from residual

pump light and detector dark counts). Considering these two effects, we

can rewrite the photon detection probabilities as pcw = ηQFCpw + pN and

pcw,r = ηQFCpw,r + pNpr. In these expressions ηQFC is the total efficiency

of the quantum frequency conversion device (QFCD), pw is the probabil-

ity that a write photon arrives at the input of the QFCD and pN is the

probability to detect a noise photon. These effects can be included in the

expression of the cross-correlation function.
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function

g(2)
cw,r =

ηQFCpw,r + pNpr
(ηQFCpw + pN )pr

=

pw,r

pwpr
+ pN

ηQFCpw

1 + pN
ηQFCpw

(A.1)

From the previous expression we can identify two terms. The first one is

the cross-correlation of the fields without any frequency conversion g
(2)
w,r =

pw,r/(pwpr) and the other one is the signal-to-noise-ration of the frequency

converted photons SNR = (pcw − pN )/pN = ηQFCpw/pN . Introducing this

terms in eq. (A.1) leads to the expression of eq. (1) from the main text

g(2)
cw,r =

g
(2)
w,r + SNR−1

1 + SNR−1 (A.2)
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Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer,

Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam,

Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton

Zeilinger. Significant-Loophole-Free Test of Bell’s Theorem with En-

tangled Photons. Physical Review Letters, 115(25):1–7, 2015.

[37] Lynden K. Shalm, Evan Meyer-Scott, Bradley G. Christensen, Pe-

ter Bierhorst, Michael A. Wayne, Martin J. Stevens, Thomas Ger-

rits, Scott Glancy, Deny R. Hamel, Michael S. Allman, Kevin J.

Coakley, Shellee D. Dyer, Carson Hodge, Adriana E. Lita, Varun B.

Verma, Camilla Lambrocco, Edward Tortorici, Alan L. Migdall, Yan-

bao Zhang, Daniel R. Kumor, William H. Farr, Francesco Mar-

sili, Matthew D. Shaw, Jeffrey A. Stern, Carlos Abellán, Waldimar

Amaya, Valerio Pruneri, Thomas Jennewein, Morgan W. Mitchell,

Paul G. Kwiat, Joshua C. Bienfang, Richard P. Mirin, Emanuel

Knill, and Sae Woo Nam. Strong Loophole-Free Test of Local Real-

ism. Physical Review Letters, 115(25):1–10, 2015.

113



Bibliography

[38] Wenjamin Rosenfeld, Daniel Burchardt, Robert Garthoff, Kai Re-

deker, Norbert Ortegel, Markus Rau, and Harald Weinfurter. Event-

Ready Bell Test Using Entangled Atoms Simultaneously Closing De-

tection and Locality Loopholes. Physical Review Letters, 119(1):1–6,

2017.
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[124] Andreas Lenhard, José Brito, Matthias Bock, Christoph Becher,

and Jürgen Eschner. Coherence and entanglement preservation

of frequency-converted heralded single photons. Optics Express,

25(10):11187, may 2017.

124



Bibliography

[125] Xavier Fernandez-Gonzalvo, Giacomo Corrielli, Boris Albrecht, Mar-

cel.li Grimau, Matteo Cristiani, and Hugues de Riedmatten. Quan-

tum frequency conversion of quantum memory compatible photons

to telecommunication wavelengths. Optics Express, 21(17):19473,

2013.

[126] J S Pelc, C Langrock, Q Zhang, and M M Fejer. Influence of do-

main disorder on parametric noise in quasi-phase-matched quantum

frequency converters. Optics letters, 35(16):2804–2806, 2010.

[127] M.G. Raymer, S.J. van Enk, C.J. McKinstrie, and H.J. McGuinness.

Interference of two photons of different color. Optics Communica-

tions, 283(5):747–752, mar 2010.
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[136] Helge Rütz, Kai Hong Luo, Hubertus Suche, and Christine Silber-

horn. Quantum Frequency Conversion between Infrared and Ultra-

violet. Physical Review Applied, 7(2):1–7, 2017.

[137] Sebastian Zaske, Andreas Lenhard, and Christoph Becher. Efficient

frequency downconversion at the single photon level from the red

spectral range to the telecommunications C-band. Optics express,

19(13):12825–36, jun 2011.

[138] Rikizo Ikuta, Toshiki Kobayashi, Shuto Yasui, Shigehito Miki, Taro

Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto,

Masato Koashi, Masahide Sasaki, Zhen Wang, and Nobuyuki Imoto.

Frequency down-conversion of 637 nm light to the telecommunica-

tion band for non-classical light emitted from NV centers in diamond.

Optics Express, 22(9):11205, 2014.

[139] Alessandro Seri, Andreas Lenhard, Daniel Rieländer, Mustafa
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ios Beveratos, Nicolas Gisin, and Hugo Zbinden. High-quality asyn-

chronous heralded single-photon source at telecom wavelength. New

Journal of Physics, 6:1–11, 2004.

[143] Y. C. Sun. Rare Earth Materiais in Optical Storage and Data Pro-

cessing Applications. In Spectroscopic Properties of Rare Earths

in Optical Materials, pages 379–429. Springer-Verlag, Berlin/Heidel-

berg, 2005.

[144] Mattias Nilsson, Lars Rippe, Stefan Kröll, Robert Klieber, and Di-
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