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Application and Use of Quality Metrics for the Prediction of Grasp Success and
Evaluation of Artificial Hands

by Carlos Rubert Escuder

Artificial manipulation has been one of the great areas of interest in robotics for
decades. Find a proper grasp to seize objects and design robotic hands capable of
such grips are two of the main issues in this field.

First, grasp synthesis is focused in generate a proper hand configuration to re-
solve a manipulation task. This derives in finding a good grasp among the infinite
set of candidates. The selection of this configuration implies to use a methodology to
evaluate grasps hypotheses. Quality metrics have been widely used in the robotics
field to evaluate grasp candidates. However, experiments showed these metrics are
not capable to classify properly these grasps as good or bad.

On the other hand, finding a good grasp is also dependent on the gripper capa-
bilities. For this purpose, different robotic grippers and artificial hands have been
developed. Although there are notable differences between grippers, there is no
proper way to evaluate their performance. Different approaches have been defined
to solve this problem, but none of them seemed to give a convincing evaluation.
We consider quality metrics can be applied in this field to provide an evaluation on
different gripper capabilities and also, generate a benchmark to evaluate artificial
hands.

The work described in this thesis has three objectives: first, study the charac-
teristics of grasp quality metrics. Second, find a combination of metrics capable of
predict the success of a grasp hypotheses. And third, the appliance of these mea-
sures to evaluate the performance of artificial hands.

In order to achieve these objectives, we perform an exhaustive statistical study
on the characteristics of the most common quality metrics. Then, different classifica-
tion methods are trained to generate a model capable to predict the outcome of real
grasp executions. Finally, quality metrics are considered as evaluators of different
manipulator properties. A methodology is proposed in order to evaluate different
hands and design improvements.

The results of this thesis will provide a better understanding of quality metrics.
A model to predict grasp success. And a methodology to evaluate the functionality
of artificial hands.
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Application and Use of Quality Metrics for the Prediction of Grasp Success and
Evaluation of Artificial Hands

by Carlos Rubert Escuder

La manipulación artificial ha sido una de las grandes áreas de interes en robótica du-
rante décadas. Encontrar un agarre adecuado para sostener objetos y deñar manos
robóticas capades de dichos agarres son dos de los principales problemas en este
campo.

Primero, la síntesis del agarre está centrada en generar una configuración de la
mano adecuada para resolver una tarea de manipulación. Esto deriva en encontrar
un buen agarre entre las infinitas posiblidades. La selección de esta configuración
implica el uso de una metodología para evaluar las hipótesis de agarre. Las métricas
de calidad han sido ampliamente utilizadas en el campo de la robótica para evaluar
agarres candidatos. Sin embargo, los experimentos han mostrado que estas métricas
no son capaces de clasificar de forma adecuada estos agarres como buenos o malos.

Por otra parte, encontrar un buen agarre depende también de las capacidades
del manipulador. Con este propósito, distintos manipuladores robóticos y manos
artificiales han sido desarrollados. Aunque hay diferencias notables entre manipu-
ladores, no existe una forma adecuada de evaluar su rendimiento. Distintos intentos
se han realizado para resolver este problema, pero ningun de ellos parece porpor-
cionar una evaluación convincente. Nostros consideramos que las métricas de cal-
idad pueden ser aplicadas en este campo para proporcionar una evaluación de las
distintas capacidades de los manipuladores, y también proporcionar unos puntos de
referencia para evaluar manos artificiales.

El trabajo descrito en esta tesis tiene tres objetivos: primero, estudiar las carac-
terísticas de las métricas de calidad del agarre. Segundo, encontrar una combinación
de métricas capaz de predecir el éxito de una hipótesis de agarre. Y tercero, la apli-
cación de estas medidas para evaluar el rendimiento de manos artificiales.

Con el objetivo de lograr estos objetivos, se realiza un exahustivo estudio es-
tadístico sobre las características de las métricas de calidad más comunes. A contin-
uación, se entrenan distintos métodos de clasificación para generar un modelo capaz
de predecir el resultado de ejecuciones de agarre reales. Finalmente, las métricas de
caldiad son consideradas como evaluadores de distintas propiedades en los manip-
uladores. Se propone una metodología con el objetivo de evaluar distintas manos y
mejoras de diseño.

Los resultados de esta tesis proporcionarán un mejor entendimiento de las métri-
cas de calidad. Un modelo para predecir el éxito del agarre. Y una metodología para
evaluar la funcionalidad de manos artificiales.
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Chapter 1

Introduction

For decades, the way humans manipulate objects has served as inspiration for de-
veloping grasp techniques and artificial hands in the robotics field. However, there
is still a huge gap between human and robotic manipulation. Humans start grasp-
ing since they are born and after several trial and error iterations, they learn to grasp
(Oztop et al., 2004). This acquired knowledge make them capable of grasping new
and unknown objects without difficulty. Even the lack of some primary sense, such
as vision, can be overcome using other developed senses such as tactile (Castiello
et al., 1993). Be on par with such intelligent manipulation skill acquired after years
of evolution and learning is a great challenge in the field of robotic manipulation
(Yoshida et al., 2007; Dang et al., 2011).

We suggest the human manipulation ability has two key factors: the shape and
kinematics of the human hand and the developed intelligence to perform manipu-
lation tasks. There are a lot of examples of different hands and paws in nature, but
only the characteristics of the human hand allowed humans to increase their intelli-
gence (Wilson, 2010). This made up a mutualistic relationship, the hand capability
for manipulation incited a great rise in the human intelligence but also, with this
great intelligence, new manipulation tasks are achieved (Wilson, 2010).

We define this intelligent manipulation skill as the capability to choose wisely and
arrange a grasp among the infinite number of possibilities. Humans only need the object
shape and an aim task, to decide the proper grasp type (Cutkosky and Howe, 1990).
Thus, basic information as object geometry and expected contact points could be
enough to select a good grasp among other possibilities in the robotic field.

Grasp quality metrics use mainly contact points and object shape information.
These metrics, based in different principles and heuristics, evaluate aspects of the
grasp similar to those a human will consider. The area of the grasp polygon or dis-
tance between the object center of mass and the centroid of the contact polygon are
examples of measurable grasp properties. Therefore, a good combination of grasp
quality metrics should be able to evaluate and predict the success of a grasp hypothe-
ses. Furthermore, these aspects of the grasp evaluable with quality metrics could
serve as desirable properties an artificial hand should achieve or, in other words,
evaluable properties of artificial hands.

This thesis analyze two hypotheses: first, grasp quality metrics can be com-
bined to predict the success of grasps candidates. And second, it is possible to
use these quality metrics to define evaluable properties on artificial hands and
evaluate their performance. On one hand, the characteristics of quality metrics
and its predictive capabilities should be analyzed. On the other, a methodol-
ogy based on a selection of metrics can be used to evaluate artificial hands per-
formance.
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1.1 Motivation

Robot applications

Currently, autonomous robotic systems are mainly used in industrial environments.
Some examples are: the UR10 robot at Continental 1, the Baxter robot at Corner Du-
bilier 2, the Motoman SV-3 robots at Calypso Soft Drinks3 or the KUKA KR 180 at
Jamestrong Packaging4 (Figure 1.1). The use of this robots present advantages and
inconveniences. On the one hand, these environments are deterministic, robots do
programmable and repetitive tasks where artificial intelligence and great manipula-
tion ability is not needed.

On the other hand, traditionally this robots are designed and restraint to such
environments. Adapt this robots to work in human industrial robot collaboration
(HIRC) is an open problem in robotics. There are limitations in terms of automation
constraints (Ore et al., 2016) and human safety (Zanchettin et al., 2016).

(1) Kuka KR 180 (2) UR 10

(3) Motoman SV-3 (4) Baxter

FIGURE 1.1: Example showing different robots in industrial environments.

The use of industrial robots has allowed to increase greatly the productivity be-
sides reducing the production costs (Graetz and Michaels, 2015). In near future,
industries will need more skilled autonomous robots. The factories of tomorrow
will need robots who perform different tasks (Pedersen et al., 2016) or able to op-
erate following objectives rather than orders or precise instructions (Rüßmann et al.,
2015). One example of this request is the Amazon Robotic Challenge (Amazon Pick-
ing Challenge in the first edition). In this contest a robot has to serve the costumer

1Universal Robots https://www.universal-robots.com/
2Rethink Robotics http://www.rethinkrobotics.com/
3Yaskawa Motoman https://www.motoman.com/
4Kuka https://www.kuka.com/
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orders, picking different objects from a shelf system and place them in a tote for de-
livery, Figure 1.21. This is an example of application where predefined grasps are
useless, as the robot has to be able to select the proper grasp for known or unknown
objects, which can also be in any (6D) pose.

(1) UJI Baxter in APC (2) Librarian UJI

FIGURE 1.2: Example of robots working in stochastic environments. In a)
the UJI Baxter robot has to pick objects in a shelf system during the Amazon
Picking Challenge 2015. In b) the UJI librarian robot is picking books from a

library.

Other example is the UJI librarian robot (Figure 1.22). This robot is able to au-
tonomously locate a book in an ordinary library, and grasp it from a bookshelf. Some
of the difficulties it has to deal in this manipulation task are to perform a grasp with-
out damaging the books, create gaps between books to perform the grasp or avoid
grasping multiple books at once (Prats et al., 2008).

Another of the current aims in robotics is developing collaborative robots which
should stand shoulder to shoulder with humans (Kemp et al., 2007). It is important
then to develop robots capable not only of perform different manipulation task, but
also to decide which grasp to perform in every situation. For example, a robot should
be able to grasp a tool (e.g. a hammer) as a human will do (Laguillaumie et al., 2016).

This makes necessary to state a methodology that given a manipulator and an
object, assess different grasp hypotheses and select, at least, one good grasp candi-
date among the infinite number of possibilities. Grasp synthesis is focused in solving
this problem. However, the selection of the proper grasp for every situation is still
an open problem.

Grasp evaluation

Select a good grasp among other possibilities is not an easy task. Grasp planning
aims to determine the contact points over the object surface to generate different
grasp candidates. Then, this grasp hypotheses must be evaluated in order to select
a good one. Grasp analysis consists on evaluate whether a grasp hypotheses is sta-
ble. For doing this evaluation, different grasp quality metrics have been developed
during last decades. These metrics are based in different principles and heuristics.
However, the predictive capability of the metrics should still be analyzed.

According to their theoretical definition, quality metrics evaluate different logical
properties in a grasp. However, their practical use show these properties are not
enough to classify a grasp as stable. Evaluate a grasp with quality metrics usually
means, transfer it from simulated to real world, or viceversa. This process introduce
some inaccuracies in the grasp itself. To know the exact location of the object or
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the contact points is not always possible. This means the evaluated grasp not being
the real one. Taking in account dynamic simulation and pose uncertainty usually
leads to more accurate evaluation of grasp success (Kim et al., 2013). However this
dynamic simulations are computationally more expensive.

These metrics are usually applied to specific tasks, grippers or objects. This could
introduce a bias, as a good value obtained using one specific gripper or object does
not has to be satisfactory for other grippers or objects. The characteristics of these
metrics are also quite unknown. There is no study about the behavior and limits of
their values on practical cases. Neither how can be related one to other, if in case.
Is assumed a better value in one metric result in a better grasp, but there is a lack
of such ground truth. Even a simple binary classification of grasps as good or bad
among the values of a metric doesn’t show an uniform distribution.

As an example of misleading evaluation is the metric developed by Ding et al.,
2001; Ponce et al., 1997. This metric measures the distance between the centroid of
the contact polygon and the object’s center of mass (CM). This principle has sense
from a human perspective, but humans don’t consider only one aspect of the grasp.
Our knowledge make us take in account different constraints and preconceptions.
Examples of this metric misjudging grasps are shown in Figure 1.3. In the first case
the grasp will succeed although is far away from the object’s CM. In the second case
where the contact polygon is close to the object’s CM, the object won’t be grasped.

(1) Good grasp with poor quality value (2) Bad grasp with high quality value

FIGURE 1.3: Example of a metric misjudging a grasp. The quality of grasp A
is worst than B. However the grasp B fails when applied in real world.

Hence, applying individual metrics could not be enough to evaluate grasps. A
more complex combination of different metrics using machine learning methods
showed to improve their predictive ability (Goins et al., 2014). Therefore, analyze
which metrics are more accurate to predict the success of a grasps and combine them
for the evaluation of a grasp can be a better approach to evaluate grasp hypotheses.
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Robotic hands

The grasp planning not only depends in the selection of the grasp pose or the final
contact points. It is important to consider the manipulator being used and its charac-
teristics. Different studies aimed to classify artificial hands. The work of Kappassov
et al., 2013 classify robotic hands in two categories according to its design principles:
industrial grippers and anthropomorphic (or artificial) hands. According to its ap-
plications, the study of Tai et al., 2016 classify robotic hands as: industrial grippers,
grippers for known or unknown environments, grippers for fragile objects, medical
applications, micro and nano grippers and soft fabric grippers.

(1) ArmarIII
hand

(2) Barrett
hand

(3) Festo mul-
tichoice

(4) Robotiq 3-
fingers

(5) Schunk
MPG

(6)
Shadow
Dexterous

FIGURE 1.4: Some of the most known robotic grippers.

Figure 1.4 show some of the most known robotic manipulators: the Schunk MPG5

is an example of parallel gripper designed for industrial environments; the Shadow
Dexterous and Armar-III6 hands are anthropomorphic hands designed for humanoid
robots, capable to perform a wide variety of different grasps; the other three grip-
pers, Barrett7, Festo8 and Robotiq9, are examples of industrial grippers with more DoF
than the classical parallel grippers, which allow them to perform a wide variety of
grasps.

The design and construction of suitable artificial grippers is one of the most ac-
tive fields on the robotics realm. Through the years many designs have been pro-
posed, with different degrees of success. Two trends have stood out in the approach
to gripper design. On one side there is the construction of robot grippers that try to
keep the trade-off between the functionality of the design and its simplicity and low
cost. This has lead to devices composed of up to four fingers, where issues like ro-
bustness, under-actuated mechanisms, compliance and softness have been the most
relevant features. This type of grippers are focused to be used by robots on a variety
of manipulation tasks, and their aim is to provide robots with capable manipulation
devices.

On the other side, all humanoid robots are equipped with robot hands that, in
most cases, are intended to grasp and manipulate objects in the operating scenarios
of the robots. These are, often, human-centered scenarios where the target objects
are designed for human manipulation. It is important for this purpose to be able
to measure the hand’s capability to grasp the objects that will appear in the daily

5Schunk https://www.schunk.com/
6Armar III http://www.kcist.kit.edu/
7Barrett Technologies http://www.barrett.com/
8Festo https://www.festo.com/
9Robotiq http://robotiq.com/
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working routine. For this reason, methodologies to evaluate not only the mechanical
structure of a robot hand, but also its grasping capabilities are extremely useful.

In industrial environments, task-oriented grippers are commonly used. This
kind of grippers are usually conceived to perform a few predefined grasps, always
under the same circumstances, in a full-restraint environment. This manipulators
are suitable to work perfectly in specific tasks, but can be inadequate for other pur-
poses. For example, the gripping force required in a car factory will be overwhelm-
ing for grasping eggs in a farm. Also, some industries require grippers to work in
production lines with unknown objects or poses. On these cases, external sensory
data, vision systems or flexible materials are used to solve the grasping problem
(Lippiello et al., 2013).

The manipulation requirements for an industrial gripper are often simple. How-
ever, more complex task (e.g. manipulate fragile objects) are also required in produc-
tion lines. Adding end-effector sensors in a gripper is a common solution for solving
most of the more complex grasping tasks. This more complex grippers, as the Barrett
or Schunk SDH hands, are often used also for academia and research purposes.

In the field of service robotics, there is a lot of effort in the development of an-
thropomorphic hands for humanoid robots. This kind of hands try to imitate the
shape and performance of the human hand. There is a great interest in developing
more human robots. Therefore, having an anthropomorphic hand is a requirement
for this humanoid robots. However, in terms of grasping and manipulation, there
is no proof more fingers means better functionality. The control and mechanisms in
these hands is more complex than classic industrial grippers. For this reason, their
use is usually limited to research purposes and their employment in other fields is
scarce.

Having such amount of manipulator designs is good in terms of having a wide
range of possibilities to select the proper tool to satisfy an specific task. However,
there is no way to establish which designs are good or better than others. Or even
if a hand design is really useful or just a cosmetic gadget, which is the case for most
humanoid robots.

Selecting or designing a robotic hand, lay out some questions: How many DoF
are needed? and fingers? Which type of control? Does it fit in my aim task? How
good it is? Is it better than others? How can be compared?...Usually, the comparison
between robotic manipulators is done in terms of weight, force, DoF or control, but
there is no discernible relation between this mechanical properties and the real grasp
performance.

Currently there is a lack of a methodology to evaluate the performance of robotic
manipulators. Thus, it is necessary to define some desirable properties or capabil-
ities a robotic hand should achieve, in order to be considered an useful tool. Our
proposed solution to this problem is the use of quality metrics. The features evalu-
ated in a grasp can be considered as measurable properties in a robotic hand and,
consequently, be useful to evaluate their performance.

Anthropomorphic hands

The design and construction of artificial hands that resemble not only in the appear-
ance but also the functionality of the human hand has been a driven force in robotics
and biomechanics for a long time. Through the years, many designs have been pro-
posed with different levels of success, but nowadays stills remains a challenge.

Having a functional prosthesis usually means to install an invasive, complex and
unpleasant mechanism, which usefulness is limited. This make amputees tend to



1.1. Motivation 7

use more cosmetic prosthesis, usually latex gloves, with little or non-existent ma-
nipulation ability (Jang_2011). Developing attractive and functional prosthesis is
an urge and, although there are a lot of different designs, these are usually highly
expensive or their performance is far away from the real human hand.

In recent years the availability of cheap prototyping technologies like 3D Print-
ing and electronic platforms like Arduino has caused an explosion of artificial hand
models that can be obtained, shared, built and operated at an affordable cost. This
is definitively positive since it allows the participation of more agents and conse-
quently increase the possibility of novel ideas coming up.

However, with so many design alternatives available, there is an urge for having
objective procedures to evaluate these prototypes. Hand prosthesis are designed to
achieve a series of predefined grasps following a taxonomy, Figure 1.5. This method
provide desirable grasp poses an amputee would need to perform in his activities of
daily life (ADL). However, the process of manufacturing a hand prototype and evalu-
ate these grasp poses is highly expensive, in time and materials. Thus, developing a
methodology to evaluate more efficiently the grasp performance could be beneficial
in the biomechanical field.

FIGURE 1.5: Extract of the taxonomy of human grasps, full table can be found
in Feix et al., 2016. This tables shows most of the common grasp poses em-

ployed by humans in his ADL.

In our research we are specially interested in the functional evaluation of artifi-
cial hands. That is, measuring how much of the human hand functions, and more
specifically the grasping functions, can be performed by an artificial hand. This can
be done either by benchmarking real prototypes on predefined tests, or by measur-
ing the virtual models using analytic tools. Analytic evaluation of virtual or simu-
lated models allow a more exhaustive, fast and cheap study of a hand, though less
reliable and realistic. In any case, both approaches have their pros an cons, but are
complementary to obtain a full evaluation. The implementation of a methodology
based in quality metrics to evaluate the prosthesis grasp capabilities and the use of
simulated environments instead of real world grasps could improve the designing
process of current hand prosthesis.
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Simulation vs. real world

Evaluating grasp hypotheses and hand designs has some restrictions attached to the
real world: the time needed to perform a grasp, the inaccuracies in the detection and
tracking of objects, the cost of manufacture different hand prototypes, etc. Virtual
environments can solve most of this problems, but introduce some other limitations.

In a simulated environment, there is no inaccuracy in the object or grasp poses,
the cost over hand manufacture and the time needed to perform a grasp is trivial
compared to real world. In contrast, including in such virtual models simulation of
physics, forces or surface properties, such as friction coefficients, can be a problem
and computational expensive. Therefore, virtual environments commonly provide
unrealistic results.

Simulation environments are commonly used in the robotic field. Although they
lack of some of the properties of the real world, and the expected behavior in the real
world does not always match the simulated one, their advantages in terms of time
and cost offset their scarcities. Therefore, using a simulated environment, although
not faithful with respect to reality, can help to accelerate the study and evaluation of
thousand of grasp hypotheses and hand designs.

1.2 Objectives

In this thesis we want to explore the applications of grasp quality metrics and how
their use could lead to: first, improve the accuracy of robots to select good grasp
hypotheses, second, provide a methodology to evaluate artificial hands, and third,
assist in the designing process of an anthropomorphic hand. To do so, we will com-
plete a series of goals:

1. The first goal is characterize the most commonly used quality metrics. Grasps
will be generated and evaluated in a simulation environment. Different robotic
hands and sets of objects will be used for this experiments. The results of these
experiments will provide practical information about: the range of values of
the metrics, how are distributed, the robustness against pose inaccuracies and
finally, the correlation between metrics.

2. The second goal is provide a ground truth for the grasp evaluation. In this
experiments different grasp evaluated in simulation will be performed in real
environments and the predictability of the metrics will be studied. With the
results of the real grasps, different machine learning methods will be applied
in order to find a combination of metrics capable to predict the grasp success.

3. The third goal is to develop a methodology to evaluate artificial hands. Us-
ing the quality metrics previously studied, different grasps and hands will be
evaluated in simulation. The result of these experiments will provide a pro-
tocol to evaluate the functionality of artificial hands using only a simulation
environment.

4. Finally, we will demonstrate how to use this methodology to improve the de-
sign of a prosthetic hand.

1.3 Outline

This thesis is structured as follows:
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• Chapter 2 - Basic Foundations Chapter 2 presents the basic background in
grasping, involving the use of quality metrics, grasp prediction and hand eval-
uation methods. This will show the current methodologies, their problems and
how we’ll try to solve them.

• Chapter 3 - Methodology To accomplish our objectives, the work in this thesis
will be done using both, simulation an real world experiments. This chapter
will introduce the OpenHand simulator and the real robotic systems used to
perform grasps and evaluate hands. It will describe also the software, materi-
als, hands and objects models used in our experiments.

• Chapter 4 - Quality metrics analysis The experiments done in this chapter will
fit with the first objective of the thesis, the results get there will provide a set of
quality metrics evaluating different aspects of the grasp and its characteristics.

• Chapter 5 - Grasp prediction In this chapter different classification algorithms
will be trained to develop a grasp predictor. To test this predictor, real grasp
experiments will be performed using different objects and manipulators.

• Chapter 6 - Artificial hand evaluation Chapter 6 will present a methodology
to evaluate and compare hand designs. This methodology will be applied in
the design process of a low-cost prosthetic hand. This will point out how the
use of combined quality metrics improve the design of artificial hands.

• Chapter 7 - Conclusions Chapter 7 will highlight the contributions of this the-
sis, and discuss the future lines of work to extend the results obtained here.
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Chapter 2

Basic foundations

Disclaimer This Chapter presents a summary on the basic theoretical knowledge
about grasping, contact points and quality metrics for evaluate grasps. Most of the
definitions and formulas presented here have been widely discussed and studied in
previous works (Prattichizzo and Trinkle, 2008; Roa, 2009; Leon et al., 2013a).

2.1 Grasp theory

Definition 2.1. A grasp is defined as a set of contact points over the object surface, which
purpose is to constrain the potential movements of the object in the event of external
disturbances (Murray et al., 1994; Bicchi and Kumar, 2000; Prattichizzo and Trinkle,
2008; Roa, 2009).

Assume there is a contact between two rigid bodies (Figure 2.1), let be {W} the
inertial frame fixed in the world and {O} the the frame fixed to the object, whose
origin is defined relative to {W} by a vector p ∈ �3 and correspond to the object’s
center of mass. The position of the contact point i is defined by the vector ci ∈ �3

relative to {W}. At the contact point i, a frame {C} is defined with axes {n̂i, t̂i, ôi}
with n̂i containing ci normal to the contact tangent plane and directed toward the
object. The other two vectors are orthogonal and lie in the tangent plane of the
contact. A list of notations is included in Table 2.1.

Definition 2.2. A contact point can be defined as a joint between the finger and the object.
The shape of the contacting surfaces and the stiffness and frictional characteristics of the
contact bodies define the nature of this joint (Mason, 2001).

Definition 2.3. A twist is the representation of the spacial velocity of a rigid body and can
be written as t ∈ �6:

t =

(
υ
ω

)
(2.1)

where υ ∈ �3 is the linear velocity of point p and ω ∈ �3 is the angular velocity of
the object in the world frame {W}. When a contact is produced, two velocities or
twists are generated, ti,hand, ti,obj referred to the contact i relative to the hand and the
object, respectively.
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FIGURE 2.1: Notation for a contact between two rigid bodies.

The force applied by a finger at the contact point generates a wrench on the object
with force and torque components, represented by vector wi ∈ �6:

wi =

(
fi
τi

)
(2.2)

where fi ∈ �3 is the force applied to the object at the point ci and τi ∈ �3 the
resulting moment at point p. As forces and torques are dimensionally different, a
parameter ρ is introduced:

wi =

(
fi
τi/ρ

)
(2.3)

selecting ρ to have length units, allows all the components of w to have units of force.
If there are multiple contacts acting on an object, the total set of wrenches wo that
can be transmitted to the object through the nc contacts is the linear combination of
all individual wrenches:

wo =

nc∑
i=1

wi (2.4)

To prevent a grasp from slipping, the forces in the contacts (and their correspond-
ing wrenches wi) and any external disturbing force or wrench wext have to be in
equilibrium:

wo + wext = 0 (2.5)

This equation is valid always that the contact forces satisfy the contact constrains
described in the next section.
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TABLE 2.1: Notations

{W} Word coordinate frame
{O} Object coordinate frame
nc Number of contact points
ci Contact point i relative to {W}
{C}i Contact point i coordinate frame with axis {n̂i, t̂i, ôi}
n̂i Unit normal to the contact tangent plane directed toward the object
p Position of the object relative to {W}
v Linear velocity of point p
ω Angular velocity of the object relative to {W}
wi Generalized force acting on the object for a unit force along n̂i
fi Force applied to the object at the point ci
τi Resulting moment at point p
wo Total set of wrenches transmitted to the object through the nc
wext Disturbing external wrenches
µ Friction coefficient of the contacting materials
β Half-angle of the friction cone
m Number of faces of discretized friction cone
B Selection matrix
l Total number of twist components transmitted
G Grasp matrix
G̃i Partial grasp matrix
G̃ Complete grasp matrix
J Hand Jacobian matrix
J̃i Partial Hand Jacobian matrix
J̃ Complete Hand Jacobian matrix
GJ Grasp Jacobian matrix

Contact model

The set of contact points contained in a grasp is defined by the contact model. This
models characterizes both the forces that can be transmitted through the contact as
well as the allowed motions of the contact bodies. Two different contact models are
used in robotics: rigid-body models and compliant models. Rigid-body models held
two different types of point contact: point contact without friction and point contact
with friction. Compliant models define soft-finger contact, a type of point contact with
friction.

• Contact without friction: These contact points can only transmit forces through
the normal to the object surface at the contact point. Contact force arise from
the constraint of incompressibility and the impenetrability between rigid bod-
ies. This model is used when the contact patch is very small and the surfaces
of the hand and object are slippery (Prattichizzo and Trinkle, 2008). It does
not represent the real contact situations that appear in robotic manufacturing
operations (Cutkosky, 1989; Lin et al., 2000) and, when used, the machine ac-
curacy is negatively affected. Moreover, they are not capable of predicting the
individual contact forces of a multiple-contact fixture (Bicchi, 1994; Harada et
al., 2000).

• Contact with friction: A contact point with friction can transmit forces in the
normal and tangential directions to the surface at the contact point but non of



14 Chapter 2. Basic foundations

the moment components are transmitted. This is used when there is significant
contact friction, but the contact patch is small so that no appreciable friction
moment exists (Prattichizzo and Trinkle, 2008).

• Soft-finger contact: The soft contact model is used when the surface friction
and the contact patch are large enough to generate significant friction forces
and a friction moment about the contact normal. It is used to model the contact
between a soft finger and a rigid object allowing the finger to apply an addi-
tional torsional moment with respect to the normal at the contact point (Cio-
carlie et al., 2005; Ciocarlie et al., 2007; Howe et al., 1988; Kao and Cutkosky,
1992; Howe and Cutkosky, 1996; Kao and Yang, 2004).

The Coloumb friction is a classical model that defines the friction coefficient. It is
based on the idea that friction opposes motion and that its magnitude is independent
of the velocity and contact area. It is an empirical model that asserts that the allowed
tangential force is proportional to the applied normal force by ft ≤ µfn, where µ is
called the friction coefficient of the contacting materials. The friction forces can be
represented geometrically as a friction cone where the set of all forces that can be
applied is constrained to be inside a cone centred about the surface normal with
half-angle β = tan−1(µ). In the spacial case, the friction cone is a circular cone,
defined by √

f2ti + f2oi ≤ µfni , fni ≥ 0. (2.6)

A particular contact model is defined through the selection matrix Bi ∈ �li×6,
which works like a filter selecting li components of the relative contact twist and
sets them to zero.

Bi(ti,hand − ti,obj) = 0 (2.7)

2.2 Grasp analysis

Definition 2.4. Grasp analysis consists on finding whether the grasp is stable using
common closure properties, given an object and a set of contacts. Then, quality mea-
sures can be evaluated in order to enable the robot to select the best grasp to execute
(Leon2013d).

The first test for evaluating a grasp consists of determining its ability to constrain
the motions of the manipulated object and to apply arbitrary contact forces on the
object without violating friction constraints at the contacts (Bicchi, 1995). Two com-
monly used properties have been proposed to ensure this condition: force and form
closure.

Definition 2.5. A grasp is in force-closure if the fingers can apply, through the set of con-
tacts, arbitrary wrenches on the object, which means that any motion of the object is resisted
by the contact forces (Nguyen, 1988).

Definition 2.6. A grasp is in form-closure if the location of the contact points on the object
ensures its immobility (Bicchi, 1995).
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Form closure is a stronger condition than force closure and it is mostly used when
executing power grasps (Prattichizzo and Trinkle, 2008). Force closure is possible
with fewer contacts, making it suitable for executing precision grasps, but it requires
the ability to control internal forces. The analysis of form closure is intrinsically
geometric. A necessary and sufficient condition for form-closure is that the contact
wrenches of the grasp positively span the whole wrench space (Salisbury and Roth,
1983).

Definition 2.7. A grasp wrench space (GWS) is the space of wrenches that can be applied
to the object at each contact point.

The boundary of the wrench space can be calculated as a convex hull. Form-
closure then can be equivalently determined verifying if the origin of the wrench
space lies inside this convex hull (Mishra et al., 1987). Based on the above neces-
sary and sufficient conditions, many tests that have been proposed in the literature
(Nguyen, 1988; Hirai and Asada, 1993; Xiong, 1994). The test of Ferrari and Canny,
1992 is the most widely used. They proposed to calculate the radius of the largest
ball inscribed in the convex hull centred in the origin and verify that it is larger than
zero. Zhu and Wang, 2003 developed a numerical test which measures the scaling
factor for the maximum compact set inscribed in the GWS with centre in the origin.

Assessing the force-closure property of a robotic grasp is much more difficult be-
cause of the nonlinear nature of the Coulomb friction cone (Zhu and Wang, 2003).
Nakamura et al., 1989 formulated the force-closure test as 12 nonlinear programming
problems. Trinkle, 1992 formalized the force closure condition as a linear program-
ming problem. Bicchi, 1995 observed that the force-closure problem is equivalent to
the stability of an ordinary differential equation. Liu, 1999 reformulated the force
closure condition as a ray-shooting problem by linearizing the friction cones and
proposed a clean-cut test for force closure grasps. Han et al., 2000 proposed a force-
closure test representing the nonlinear friction cone constraints as linear matrix in-
equalities, for which efficient algorithms are now available. With the linearization of
the friction cone, most of the existing form-closure tests can be generalized to force-
closure analysis. Zhu et al., 2004 proposed a numerical criterion for 3-D grasps with
frictional point contacts or soft contacts, formulated as a convex constrained opti-
mization problem without linearization of the friction cone. More recently, Zheng
and Chew, 2009 proposed an algorithm for computing the distance between a point
and a convex cone in n-dimensional space that can be applied to force-closure test
and improve their efficiency.

Grasp matrix G and hand jacobian J

There are two matrices of the utmost importance in grasp analysis: the grasp matrix
G and the hand Jacobian J . They are introduced here, but a complete explanation
can be found in Prattichizzo and Trinkle, 2008. The grasp matrix G and hand Jaco-
bian J define the relevant velocity kinematics and force transmission properties of
the contacts. The hand Jacobian maps the joint velocities to the twists of the hand
expressed in the contact frames. The inverse of the grasp matrix refers the object
twist to the contact frames.

For each contact frame i, the partial grasp matrix G̃i can be calculated as:

G̃i =

(
Ri 0
S(ci − p)Ri Ri

)
(2.8)
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where Ri ∈ �3×3 represents the rotation matrix of the {C}i contact frame with re-
spect to {W}, ci the position of the contact point, p the position of the object and
S(ci − p) is the cross-product matrix.

The complete transposed grasp matrix G̃T is the combination of the transposed
grasp matrices for each of the ni contact points:

G̃T =

 G̃T1
...
G̃Tni

 (2.9)

The transpose of the complete grasp matrix G̃T ∈ �6×6 maps the object twist from
W to the contact frame C:

ti,obj = G̃Tt (2.10)

where t denote the object twist related to {W} and and ti,obj ∈ �6ni is a vector
containing all the twist of the object in the contact frames:

ti,obj = (tT1,obj . . . t
T
ni,obj

)T (2.11)

The complete hand Jacobian J̃ is the combination of the hand Jacobians for each
of the ni contact points:

J̃ =

 J̃1
...
J̃ni

 (2.12)

Each partial hand Jacobian, J̃i can be calculated as:

J̃i = Ri

(
di,1 . . . di,nq
li,1 . . . li,nq

)
(2.13)

where:

di,j =


03×1 if contact i does not affect the joint j
ẑj if joint j is prismatic
S(ci − ζj)T ẑj if joint j is revolute

li,j =


03×1 if contact i does not affect the joint j
03×1 if joint j is prismatic
ẑj if joint j is revolute

(2.14)

being ζj the origin of the coordinate frame associated with the j-th joint and ẑj is the
unit vector in the direction of z-axis in the same frame, expressed in {W}.

The complete hand Jacobian J̃ relates the joint velocities to the contact twists on
the hand:

ti,hand = J̃ q̇ (2.15)
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where q̇ = [q1 . . . qnq ]
T represents the vector of joint displacements and nq the

number of hand joints and ti,hand ∈ �6ni is a vector containing all the twist of the
hand in the contact frames:

ti,hand = (tT1,hand . . . t
T
ni,hand

)T (2.16)

Replacing equations 2.10 and 2.15 in the contact model equation 2.7, the contact
constraint equations are defined as:

B(J̃ q̇ − G̃T t) = 0 (2.17)

Therefore, the grasp matrix G and hand Jacobian J can be defined as:

GT = BG̃T (2.18)

J = BJ̃, (2.19)

Grasp jacobian

The grasp Jacobian GJ is the transformation from the joint velocities to the velocity
of the object being grasped (Shimoga, 1996):

t = GJ q̇

It takes into account the transformations for each finger from joint velocities to
fingertip Cartesian velocity (J), the contact relationships and the transformations
from the contact frames of reference to the object frame of reference (G). Thus, it is a
function of the hand posture and the lengths of the finger segments.

GJ = (G+)TJ (2.20)

with G+ being the generalized inverse of G. Figure 2.2 summarizes the relationships
between velocities in a multi-fingered grasp.

FIGURE 2.2: Relationship between grasp matrix, hand Jacobian and grasp Ja-
cobian (Leon2013d).

2.3 Grasp planning

Definition 2.8. Grasp planning consists in determining the finger contact locations on
an object surface and the appropriate gripper configuration which allow the constraints,
forces and torques produced on the object through the contact points to reach one or more
desirable properties like dexterity, force-closure, stability or equilibrium and other which
has been defined in the literature (Sahbani et al., 2012; Shimoga, 1996; Bicchi, 2000).
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Analytical approaches try to solve the grasp planning problem by using kinemat-
ics and dynamics formulations (Sahbani et al., 2012). There exists a vast literature
focusing on the development of algorithms to find grasps under a variety of assump-
tions regarding dimensionality, contact models, object shapes and others (Sahbani et
al., 2012; Shimoga, 1996; Bicchi, 2000). Often the proposed solutions produce a large
number of possible grasps. Quality metrics are the tools that allow these sets of solu-
tions to be ranked. Actually, metrics play a triple role: allowing relative comparisons
between grasps, providing an absolute quantitative assessment of the goodness of a
grasp, and, finally, serving as evaluation functions in grasp synthesis optimization
algorithms (Mishra, 1995).

In recent years, though more attention has been paid to alternative data-driven
and experimental approaches for grasp planning, many of them still rely on ana-
lytical algorithms as an important part of their pipelines. Bohg et al., 2014, point
out that most methods assuming a previously known model of the objects perform
an offline initial analysis of the possible grasps for each object using analytical tech-
niques, being quality metrics a critical tool to rank grasps.

2.4 Grasp quality metrics

Definition 2.9. A grasp quality metric is an algorithm based in different mathematical
principles and heuristics that quantifies the goodness of a grasp. They measure the ability
of a grasp to restrain an object and ensure his stability against external disturbances.

Many grasp quality metrics have been proposed in the robot grasping research
literature. Roa and Suárez, 2014 identify up to 24 different grasp quality metrics
designed to quantify the goodness of a grasp. Quality metrics play a principal role in
the so called analytical approach to the grasp planning problem, also often referred
as grasp synthesis.

A limitation of the use of metrics is that each of them is designed to assess a
specific aspect of a grasp. The work of Roa and Suárez, 2014 distinguish between
metrics associated with the contact points and those associated with the hand con-
figuration. The former ones are the most populated, being subdivided into metrics
based on the properties of the Grasp matrix, metrics based on geometric relations,
and those that consider limitations of the applied forces.

They also reviewed several attempts to define global metrics by combining exist-
ing metrics. Combined metrics can be a solution to overcome the specificity of each
one. An early correlation study of several quality metrics showed the existence of
at least five independence dimensions on the evaluation of human grasps (León et
al., 2012). Roa and Suárez, 2014, identify two trends for building combined indexes,
serial and parallel. On the serial approach one metric is used to generate and select
a subset of grasp configurations, then a second metric is used to rank them (Hester
et al., 1999). A most common approach is the parallel combination of metrics. In this
approach every grasp is evaluated by a set of metrics, and the values obtained are
added to produce a unique evaluation index (Boivin et al., 2004; Aleotti and Caselli,
2006). Different normalization procedures can be applied to every metric for their
combination, as well as different weighting coefficients (Chinellato et al., 2005).

But combined indexes are not free of limitations. First, each combinatorial method
is still based on a subset of quality metrics, and there are no clear criteria on how to
choose them. Some metrics might be measuring the same property while others
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capture different underlying properties. And second, there is no obvious way of
merging metrics since they do not provide values on the same range not even on the
same physical magnitudes.

For our research, ten different quality metrics have been selected, these can be
classified into four categories depending on which principles they obey: the alge-
braic properties of G, the distribution of the contact points, the magnitude of forces
and the configuration of the manipulator. A summary of these metrics is presented
in the following sections, for a more detailed and complete review the reader is re-
ferred to Leon et al., 2013b and Roa and Suárez, 2014. Table 2.2 summarizes the
definition of these metrics.

TABLE 2.2: Summary of the selected quality metrics

Name Formula Min Max

Group A: Algebraic properties of G

QA1 Smallest singular value of G (Li and Sastry, 1987) σmin(G) 0 -

QA2
Volume of G in the wrench space (Li and Sastry,
1987)

r∏
i=1

σi 0 -

QA3 Grasp Isotropy Index (Kim et al., 2001)
σmin(G)

σmax(G)
0 1

Group B: Distribution of contact points

QB1

Distance between the centroid of the contact poly-
gon and the center of mass of the object (Ding et
al., 2001; Ponce et al., 1997)

1− distance(p, pc)
distancemax

0 1

QB2
Area of the grasp polygon (Mirtich and Canny,
1994)

Area(Polygon(p1, ...pn))

Areamax
0 1

QB3 Shape of the grasp polygon (Kim et al., 2001) 1− 1

θmax

nf∑
i=1
|θi − θ̄| 0 1

Group C: Magnitude of Forces

QC1
Smallest maximum wrench to be resisted (Ferrari
and Canny, 1992; Kirkpatrick et al., 1990)

min
w∈CW

‖w‖
√

2
0 1

QC2 Volume of the convex hull (Miller and Allen, 1999)
Volume(CW )

Volumemax
0 1

Group D: Configuration of the manipulator

QD1 Posture of manipulator joints (Liegeois, 1977) 1− 1

nq

nq∑
i=1

(
yi − ai
ai − yiM

)2 0 1

QD2
Inverse of the condition number of GJ (Salisbury
and Craig, 1982; Kim and Khosla, 1991)

σmin(GJ)

σmax(GJ)
0 1

2.4.1 Group A: Algebraic properties of G

These are stability indicators that consider the algebraic properties of the grasp ma-
trix G to measure the grasp capability of withstanding external wrenches; they use
the contact points and normal directions. They do not consider any limitation on
the finger forces, so that in some cases the fingers have to apply very large forces to
resist small perturbations.

The grasp matrix G is the linear transformation between the contact force vector
and the net wrench on the object. Geometrically, G maps the unitary sphere in the
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force domain of the contact points into an ellipsoid in the wrench space (Roa, 2009).
The lengths of the principal axes of the ellipsoid are the singular values of G, which
are the n nonnegative square roots σi of the eigenvalues of GGT . The following
quality measures use these singular values to define the quality of the grasp.

QA1 - Smallest singular value of G

It measures how far the grasp configuration is from falling into a singular configu-
ration (Li and Sastry, 1987). A grasp matrix G ∈ �6xr has 6 singular values given by
the positive square roots of the eigenvalues of GGT , when a grasp is in a singular
configuration, at least one of the singular values of G is zero. It is calculated as:

QA1 = σmin(G) (2.21)

where σmin(G) is the smallest singular value of the matrix G. The lower limit is zero
and the upper limit is not determined.

QA2 - Volume of G in the wrench space

Considering the grasp matrix G as an ellipsoid in the wrench space, it measures the
global contribution of all the contact forces as the volume of this ellipsoid (Li and
Sastry, 1987). is calculated as:

QA2 = v(G) =

r∏
i=1

σi (2.22)

where r is the rank of G, and σ1 ≥ σ2 ≥ . . . ≥ σr denote the nonzero singular values
of G. The lower limit is zero and the upper limit is not determined.

QA3 - Grasp Isotropy Index

A grasp is considered isotropic when the magnitudes of the internal forces are sim-
ilar (Kim et al., 2001). This index measures how uniform is the contribution of the
contact forces to the total wrench over the object. It is calculated as:

QA3 =
σmin(G)

σmax(G)
(2.23)

It approaches to one at a desirable configuration (isotropic) and is equal to zero
at the singular configuration. Therefore, it is already restraint into the range 0 to 1.

2.4.2 Group B: Distribution of contact points

These are indicators that use the distribution of the contact points. Better stability is
assumed when contact points are distributed in a uniform way on the object surface
and around the object centre of mass aiming to minimize the effect of gravitational
and inertia forces.
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QB1 - Distance between the centroid of the contact polygon and the center of mass
of the object

It estimates the effect of gravitational and inertia forces during the motion of the
robot, which tends to zero when the distance between the centre of mass p of the
grasped object and the centroid of the contact polygon pc (Ding et al., 2001) is mini-
mized. The centroid of the contact polygon is calculated as:

pc =
1

nc

nc∑
i=1

ci (2.24)

where nc is the number of contact points and ci is the location of each contact point.
We propose its lower limit to be zero, calculated as the maximum distance from

the centre of mass of the object to any point in the object’s contour, distancemax can
be obtained as the maximum distance from the center to any of the corners of the
object bounding box. The center of mass of the object is assumed to be at the center
of the bounding box. Thus, this metric is calculated as:

QB1 = 1− distance(p, pc)
distancemax

(2.25)

QB2 - Area of the grasp polygon

This measure is defined as the area of the polygon formed by the contact points. With
the same finger force, a grasp with a larger area can resist larger external torques
(Xiong et al., 1999). In 3-finger grasps a triangle is considered, for four or more
contact points, the indicator is extended defining a contact plane as proposed by
Supuk et al., 2005. The contact plane is generated by selecting three fingers and the
remaining contacts are perpendicularly projected onto that plane.

We propose to take into account that its lower limit is zero and the upper limit
(Areamax) can be calculated as the area of the polygon when the manipulator is open
in a plane with the joints at their maximum aperture limits. Then, the measure can
be calculated as:

QB2 =
Area(Polygon(p1, p2, ..., pn))

Areamax
. (2.26)

where pi are the projected on a plane contact points of the manipulator.

Limitations This metric is limited to grasps containing at least three contact
points as it is not possible to have a polygon with only two contact points.

QB3 - Shape of the grasp polygon

This measure compares how far the internal angles of the grasp polygon are from
those of the corresponding regular polygon (Kim et al., 2001). For a planar grasp,
is desirable that the contact points are distributed in a uniform way on the object
surface to improve the grasp stability (Park and Starr, 1992). This index is calculated
as:

QB3 =
1

θmax

nc∑
i=1

|θi − θ̄| (2.27)
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where nc denotes the number of contacts, θi is the inner angle at the ith vertex of
the polygon, θ̄ denotes the average angle of all inner angles of the grasp polygon
and θmax is the sum of the differences between the internal angles when the polygon
has the most ill-conditioned shape (degenerates into a line) and those of the regular
polygon:

θmax =

nc∑
i=1

|θi − θ̄|ill conditioned = (nf − 2)(180− θ̄) + 2θ̄ (2.28)

For four or more contact points, the planar grasp polygon is obtained in the same
way as for QB2 and the contact points are set in groups of three to estimate the aver-
age inner angles. The lower limit is zero and his upper limit is 1, which correspond
to an equilateral triangle.

Limitations As with metric QB2, this metric is limited to grasps with three or
more contact points due to requirements of the grasp polygon.

2.4.3 Group C: Magnitude of forces

These are stability indicators that take into account the magnitude of forces applied
at the contact points.

QC1 - Smallest maximum wrench to be resisted

This index is defined as the largest perturbation wrench that the grasp can resist
with independence of its direction (Ferrari and Canny, 1992). Only the directions
of forces are used and their magnitudes are upper-bounded to 1. Defining GWS as
the set of all possible wrenches w acting on the object, the maximum of w ∈ GWS
lies on the boundary approximated as the convex hull over the discretized frictions
cones (CW ). Then the quality metric is the radius of the largest sphere centred at the
origin, which is contained in GWS:

QC1 = min
w∈CW

‖w‖ (2.29)

The index depends on the choice of the origin of the reference system used to
compute torques and the ρ parameter used to scale the torque to the force magni-
tude. In this work, we use the centre of mass of the object and limited the magni-
tude of the torques to 1 choosing ρ as distancemax defined previously for the measure
QB1. Then, the upper limit of the index is

√
2 and the lower limit is zero. Then, we

can normalize this index between 0 and 1 as:

QC1N =
QC1√

2
(2.30)

Limitations The Convex Hull is calculated using the PyHull library 1. In some
specific cases, the distribution of the contact points cause the library to not be capable
to estimate the CW. Also, as like metricsQB2 andQB3, this metric is limited to grasps
with at least three contact points.

1https://github.com/materialsvirtuallab/pyhull
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QC2 - Volume of the convex hull

This measure is defined to avoid the dependence of the previous index on the selec-
tion of the origin of the reference system. The measure calculates the volume of the
boundary of the set of all possible wrenches acting on the object (Miller and Allen,
1999).

QC2 = Volume(CW ) (2.31)

The reference system and ρ have been chosen as described in the previous measure.
Lower limit is zero and upper limit is not determined so that it is initially not pos-
sible to normalize the index in the range 0 to 1. However, we used the Monte Carlo
method (see Leon2013d) to estimate the upper limit in each manipulator. The nor-
malized measure then can be calculated as:

QC2N =
QC2

Volumemax
(2.32)

Limitations The same limitations applied to QC1 apply to this metric.

2.4.4 Group D: Configuration of the manipulator

The measures presented here are intended as manipulability indices, describing the
ability to reach a certain position or to change the position or orientation at a given
configuration.

QD1 - Posture of manipulator joints

This metrics looks for configurations of the manipulator whose joints are far from its
physical limits (Liegeois, 1977):

QD1 = 1− 1

nq

nq∑
i=1

(
yi − ai
Ri

)2

(2.33)

where nq is the number of manipulator joints, yi the actual position of the joint i and
Ri is the joint angle range between the middle-range position ai and either the upper
or lower angle limit, used to normalize the index. It is defined as:

Ri =

{
ai − yim if yi < ai
yiM − ai if yi > ai

where yiM and yim are the maximum and minimum angle limits of the ith joint .
With this index, the grasp is optimal when all joints are at the middle-range po-

sition, having a quality measure of one, and it goes to zero when all its joints are at
their maximum or minimum angle limits.

QD2 - Inverse of the condition number of GJ

This index measures the capability of a hand to move the object in any direction with
the same gain. This is a dexterity measure which implies a good manipulation ability
(Suárez et al., 2006). The ratio between the maximum singular value to its minimum
singular value is defined as the condition number of a matrix. In the Jacobian, the
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inverse condition number gives a measure of the uniform transformation between
the velocity in the finger joints and the velocity of the object. it is calculated as:

QD2 =
σmin(GJ)

σmax(GJ)

where σmin and σmax are the smallest and largest singular values of the grasp Ja-
cobian matrix GJ (defined in Sec. 2.2). This measure has his lower limit in zero
and upper limit is one, indicating a uniform transformation and a grasp with the
maximum quality.



25

Chapter 3

Experimental platform

The experiments performed in this thesis will be done in both, simulation and real
environments. In the first part of the experiments, simulation will be used to char-
acterize quality metrics, obtain its statistical values and correlations. Then, real ex-
periments will be performed to classify the grasp evaluated in simulation and to
generate a prediction model for grasp success.

For the functional evaluation of robotic hands, simulation will be used to mea-
sure the grasping capabilities of different hand models. This properties will be com-
pared to other indexes for measuring hands capabilities. Finally, this evaluation
method will be applied to evaluate and improve the design of a prosthetic hand.

In this section a global view on the platforms, methods and materials will be
explained. Details of the methodology applied in each experiment will be explained
in the corresponding chapter.

3.1 Simulation environment

The first goal in this thesis is the study of quality metrics. In order to do that, dif-
ferent hands and objects will be used to generate and evaluate grasps in a simulated
environment. We will use OpenHand-Simulator (Leon et al., 2013b) as our simulation
environment. OpenHand is a simulation toolkit based in OpenRAVE (Diankov and
Kuffner, 2008). OpenRAVE is an open architecture targeting a simple integration of
simulation, visualization, planning, scripting and control of robot systems.

With OpenRAVE we are able to simulate different hands, objects and generate
grasp hypotheses. OpenHand allows us to evaluate these grasp hypotheses using
different quality metrics. Also, OpenHand, in contrast to OpenRAVE, presents an
User Interface (UI) which allows to:

• Configure the parameters for grasp hypotheses generation

• Determine the number of hypotheses to be generated

• Set the grasp generation method, following an uniform or random distribution

• Manually generate grasp hypotheses over an object surface

• Evaluate grasp hypotheses using different quality metrics

• Compare the functional performance of robotic hand models
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FIGURE 3.1: The OpenRAVE simulator.

3.1.1 OpenHand

OpenHand (Figure 3.2) presents a UI over openrave. It is based in Python and Qt.
OpenHand uses static simulation, this is, the object and gripper pose never changes
during the grasping process. OpenHand includes:

• User Interface: This interface allows the user to perform most of the common
grasping tasks available in openrave through command-line functions

• Quality Metrics library: this python library has the implementation of 10 dif-
ferent common quality metrics used for grasping. This metrics can be used
either trough the OpenHand UI or importing the library directly in the code.

• Utilities library: this python library implements some utilities needed by Open-
Hand to simulate and perform grasps. It includes also an upper layer over the
some native functions of openrave.

• Human hand library: this is a C++ library which includes the simulation of
a human hand. Parameters and characteristics of the hand can be configured
through the UI or the code.

The OpenHand tool has 4 different main modules. With this modules, the user
is capable of performing different experiments, and evaluate different grasp-related
characteristics: grasp generation parameters, hand performances, object’s graspabil-
ity, grasp types, etc.
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FIGURE 3.2: The OpenHand interface.

Human Hand This modules allows to load a virtual model of a human hand and
arm, parameters such as hand length or width can be easily configured. With this
module you can set the values for different joints of the hand and define different
grasp postures. It allows you to load different objects models, perform and evaluate
grasps. It is also possible to set different grasp types and configure which fingers
will be closing for each grasp.

Generate Grasps This module allows the user to generate different sets of grasps
using a wide variety of artificial hand models and objects. It allows to configure
different parameters for the grasp generation and also to generate grasp poses man-
ually. The grasps generated in this module are stored as experiments using the hdf5
file format.
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Evaluate Grasps With this module, you can load the different grasp experiments
generated in the generate grasps module and evaluate them. It shows also the pre-
dicted successfulness of the grasp. The results of this grasp evaluation are shown in
the UI but also stored in the hdf5 file of the experiment.

Benchmark Hands This module allows to evaluate the performance of different
robotic hand models. The evaluation of a hand require a set of different grasp hy-
potheses and evaluates them in order to estimate the expected performance of the
hand. It is possible to define the grasp generation method.

3.2 Artificial hands

The experiments in simulation are done using up to 11 different robotic hands, in-
cluding common manipulators used in robotics and industrial applications, as well
as prosthetic hands.

Four models correspond to classic robotic grippers: the Barrett hand, the PR2
hand, the Model-T and the dexterous three-fingered Schunk SDH hand. Two models
correspond to robotic anthropomorphic hands: the four-fingered Schunk SAH hand
and the 5-fingered Shadow dexterous hand.

(1) PR2 hand (2) Barrett hand (3) Schunk SDH hand

(4) ModelT hand (5) Schunk SAH hand (6) Shadow hand

FIGURE 3.3: Robotic grippers.

In our virtual models, all these grippers are assumed to have rigid bodies. In all
the models, the finger joints close at the same rate. Table 3.1 summarize the details
on each robotic hand model. Virtual models are shown in Figure 3.3.

The PR2 hand is a robotic gripper from the robot PR2 developed by Willow-
Garage1. This gripper has two fingers with two joints each, controlled by the same
DoF. For the virtual model, we added an extra DoF, making each finger independent.

1Willow Garage: http://www.willowgarage.com/

http://www.willowgarage.com/
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TABLE 3.1: Robot Hand Models

Hand Name Joints Actuators DOFs

PR2 Gripper 4 2 2

BarrettHand 6 4 8

Schunk SDH 6 7 8

Model T 8 4 8

Schunk SAH 12 13 13

Shadow
Dexterous

15 7 17

The two links on the finger are still connected to the same DoF. When a collision is
detected in a link the closure of the finger stops.

The Barrett hand is a robotic gripper developed by Barrett Technology2. It has
3 fingers with two joints each. Finger closure is controlled by strains. The closure
starts in the lower link and when a collision is detected, it continues in the upper
link. It has also an extra DoF for a symmetric abduction up to 180°of the two parallel
fingers. For the virtual model, this abduction DoF is blocked and only varies to
predefined positions prior the closure event.

The Schunk SDH hand is a robotic gripper developed by SCHUNK GmbH &
Co. KG3. This gripper has 3 fingers with two joints each. Each joint has its own DoF.
It also has an extra DoF for the counterwise rotation, up to 90°, of the two parallel
fingers. In our virtual model this rotation is applied only in predefined positions
prior the closure event.

The Model-T hand ((Ma et al., 2013; Dollar and Howe, 2010)), is an under-
actuated robotic gripper designed for the Yale OpenHand Project 4. This printable
gripper has four fingers and two compliant flexure joints each. It has one actuator
for all the fingers. During grasp acquisition, each finger will continue to move until
the links make contact with the object. In our virtual model, we consider each joint
independent, having its own DoF. In total this model has 8 DoFs.

The Schunk SAH hand is an anthropomorphic robot hand developed by SCHUNK
GmbH & Co. KG. This hand has four fingers with three phalanxes each. Each joint

2Barrett Technologies: https://www.barrett.com/
3SCHUNK GmbH & Co. KG: https://schunk.com/us_en/homepage/
4Yale OpenHand Project: https://www.eng.yale.edu/grablab/openhand/

https://www.barrett.com/
https://schunk.com/us_en/homepage/
https://www.eng.yale.edu/grablab/openhand/
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has its own DoF, there is an additional DoF for the Thumb abduction. In total, this
hand has 13 DoFs.

The Shadow dexterous hand is an anthropomorphic hand developed by Shadow
Robot Company5. This hand has 5 fingers with three phalanxes each. Each joint has
its own DoF. It also has two extra DoF for the abduction of the Thumb and the Little
fingers. In our virtual model the abduction of the little is disabled. In total this hand
has 16 DoFs.

Finally, the other five models correspond to hand prosthesis intended for hu-
mans: the Michelangelo hand, the Fley-Hand 2 prosthetic hand, the BruJa Model-B
hand, the Tact hand and the Imma hand. These hands are designed to be used by
amputees.

(1) Michelangelo
hand

(2) Flexy hand (3) Tact hand

(4) Imma hand (5) BruJa hand

FIGURE 3.4: Prosthetic hands.

These hand prosthesis are assumed to have rigid bodies. In all the models, the
finger joints close at the same rate. Table 3.2 summarize the details on each prosthetic
hand. Virtual models are shown in Figure 3.4.

The Michelangelo hand is a prosthetic hand developed by Ottobock6. this
hand prosthesis has 5 fingers. It has one DoF for the closure of the Thumb and
another for the other 4 fingers. It has an extra DoF for the abduction of the Thumb
to up 6 pre-defined positions. In our virtual model this abduction is fixed. In total
this model has 2 DoF.

The Flexy-hand 2 is a prosthetic hand developed by Gyrobot7. This hand has
5 fingers with three Phalanxes each. The thumb has only two phalanxes. There is

5Shadow Robot Company: https://www.shadowrobot.com/
6Ottobock: https://www.ottobockus.com/
7Gyrobot: http://www.gyrobot.co.uk/

https://www.shadowrobot.com/
https://www.ottobockus.com/
http://www.gyrobot.co.uk/
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TABLE 3.2: Prosthetic Hand Models

Hand Name Joints Actuators DOFs

Michelangelo 6 2 3

Flexyhand 14 5 14

Tact hand 11 6 6

Imma hand 15 6 15

BruJa hand 15 6 6

no thumb abduction. The fingers are actuated by strains. In our virtual model each
joint has its own DoF. Thus, this model has 14 DoFs.

The Tact hand is a prosthetic hand developed by Slade et al., 2015. It has 5
fingers with two phalanxes each. Fingers are linked by a bar mechanism. When a
collision is detected in a phalanx the closure of its finger stops. It has an extra DOF
for the Thumb abduction. In total this hand has 6 DoFs.

The Imma hand is a prosthetic hand developed in the Devalhand Project8. This
hand has 5 fingers and three phalanx each. The Thumb has two phalanxes for the
closure and another for the abduction. The joints are linked trough strains. It has
one actuator for each finger and a last one for the Thumb Abduction. Our virtual
model for this hand has 15 DoFs.

The BruJa hand is a prosthetic hand developed in the Devalhand Project. This
hand has 5 fingers and three phalanxes each. It has one DoF only for the Thumb
abduction. Joints are linked through a bar mechanism. In our experiments we use
the original design of the BruJa hand Model-B inspired in the TBM hand (Dechev
et al., 2001). This hand has 6 DoF.

Except for the Michelangelo hand, the other four models can be built using 3D
printing technologies. Models for download and instructions for print and build are
available on their web pages.

On chapter 4, the PR2, Barrett, Schunk SDH and SAH, Shadow, Michelangelo
and Model-T hands are used. Chapter 5 uses the Barrett and Schunk SDH grippers.
Finally the 11 hand models are used in Chapter 6.

8Devalhand Project: https://sites.google.com/a/uji.es/devalhand/

https://sites.google.com/a/uji.es/devalhand/
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3.3 Object models

In order to perform the grasps, different sets of objects are used. First, we will ex-
plode the KIT objects Database (Kasper et al., 2012). This database contains virtual
models of more than a hundred different objects commonly found in a domestic
environment. Figure 3.5 shows a sample of some of the objects in the database.

FIGURE 3.5: Sample of the different objects from the KIT Database.

The second set of objects are from the 3DNet database (Wohlkinger et al., 2012).
This database contains more than 700 different objects. Some of the object models
of the dataset are built physically using 3D printing technologies for the real experi-
ments. Figure 3.6 shows the virtual models of the objects used for real experiments.

The third set of object models used are from the Yale-CMU-Berkeley (YCB) Object
and Model set (Calli et al., 2015b; Calli et al., 2015a). This dataset contains more than
30 physical models of the objects. This objects were virtually modeled to be usable
in the simulation environment.

Finally, we use 15 common objects from the ADLs (Feix et al., 2013). This objects
are used for the computation of the Anthropomorphic Index of prosthetic hands. With
this set of objects is possible to represent all the hand configurations of the taxonomy
of human grasps.

Objects from the KIT Database are used in chapter 4 and chapter 6. Objects from
the 3DNet are used in chapter 5. Finally objects from the YCB dataset and ADLs are
used in chapter 6.

3.4 Grasp generation

In pursuance of obtaining a significant set of candidate grasps applicable to an ob-
ject, a large set of grasp hypotheses needs to be generated and evaluated. A grasp
hypothesis is defined as the combination of an object, a hand, an initial position of
the hand with respect to the object, and the initial configuration of the hand joints.
Generation of a variety of grasp hypotheses for a given object with a given hand is
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(1) Bottle_050 (2) Bottle_047 (3) Camera_015

(4) Lemon_003 (5) Bowl_022 (6) Bowl_025

(7) Toaster_001 (8) Jar_002 (9) Jar_004

FIGURE 3.6: Virtual object models used for the real experiments from the
3DNet database.

performed using the Grasping Module9 from the Database Generators available in
OpenRAVE.

This algorithm provides a parametric approach to generate a number of grasps
distributed over the object surface. Among the different algorithms to generate can-
didate grasps we have chosen this because a number of reasons: it is able to produce
an almost uniform distribution over the object surface; it can be tuned easily to pro-
duce more or less candidates; it starts from the bounding box of the shape, which
limits the candidates to grasps to be able to approach the object with a gripper; and
last but not least, its implementation is fully available.

In short, the algorithm generates a square grid of points uniformly distributed
around the object bounding box and projects it over the object surface (Fig. 3.7).
From each of these points, an approach ray is created pointing outwards the object
surface. The hand is placed along the approach ray, facing the object at a given
distance, and it can be rotated about the approach ray by a given angle.

The algorithm depends on five parameters (Fig. 3.8):

• δ: Distance between the points in the square grid around the surface of the
bounding box to place the approach rays.

9OpenRAVE Grasping Module: http://openrave.org/docs/0.6.6/openravepy/
databases.grasping/

http://openrave.org/docs/0.6.6/openravepy/databases.grasping/
http://openrave.org/docs/0.6.6/openravepy/databases.grasping/
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FIGURE 3.7: Example of the approach-rays generation process used by Open-
RAVE: (left) square grid of points around the object and (right) the projection

of this box over the object surface.

• α: Angle between the approach ray and the normal to the object surface (de-
fault value of zero). Depending on the value of α, a set of oblique approaching
rays is generated.

• θ: Standoff distance along the approach ray where the reference point of the
hand is placed.

• Nr: The angles to rotate the hand (roll) about the approach ray.

• HJ : Configuration of the hand joints (preshape) before the closing algorithm
starts.

FIGURE 3.8: Example showing the parameters needed for grasp generation.

Using these parameters, a large variety of grasp hypotheses are generated, and
subsequently evaluated with the methods described in the following chapters. The
size of the objects also affects the number of hypotheses generated, varying from
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a few hundreds to dozen of thousands. Section 4.1 analyses the selection of these
parameters.

This grasp generation method is applied in all the chapters. As the simulation
and generation of grasps is computationally expensive, in some experiments there
are variations in the parameters used. This will reduce the computational cost of the
experiments.

3.5 Robotic platforms

The evaluation of real grasps (chapter 5) will be done using two different robotic
platforms: the Apollo robot at the Max-Planck Institute for Intelligent Systems and
the Tombatossals robot at the Robotic Intelligence Laboratory at the Universitat Jaume
I.

Apollo Apollo10 (Figure 3.9) is a dual-arm manipulation platform used to study
active perception, grasping, and manipulation. It has two arms, hands with tactile
sensors, and an active vision head. The robot has two KUKA lightweight robot arms
(7 DOFs), two Barrett hands, and a Sarcos head featuring different vision sensors.
This robot has also an Asus Xtion PRO for the vision system.

FIGURE 3.9: The Apollo robot system.

Tombatossals Tombatossals11 or tombato (Figure 3.10) is a a multipurpose hu-
manoid torso, for research of autonomous grasping and manipulation tasks in un-
structured household scenarios. The humanoid torso is composed of two arms, two
hands and a head for a total of 29 DOF. Both arms are Mitsubishi PA10-7C, 7 DOFs

10Apollo Robot: https://am.is.tuebingen.mpg.de/pages/robots
11Tombatossals Robot: http://robinlab.uji.es/our_robots

https://am.is.tuebingen.mpg.de/pages/robots
http://robinlab.uji.es/our_robots
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industrial manipulators with a position repeatability of 0.1mm. Each arm weights
40Kg and has 10Kg payload.

It has a Barrett Hand in its right arm and a Schunk SDH Hand on the left arm. Both
hands are equipped with tactile sensors from Weiss Robotics 12. The head is composed
of a TO40 pan-tilt-vergence system and a Kinect. More details on Tombatossals are
described in Felip et al., 2015.

FIGURE 3.10: The Tombatossals robot system.

3.5.1 Robotic Grippers

The Barrett and Schunk SDH grippers (Figure 3.11) are used for performing the ex-
periments with real robots. In both models the closure of the fingers is done until a
contact is detected. Then, the joint is blocked and the closure continues for the distal
joint. For the Barrett hand, a strain measurement detects the collision in the finger.
In the case of the Schunk SDH, there are tactile sensors for detecting the contact on
each link of the hand.

The Barrett hand has a weight of 980 g. Its payload is 6 kg. It has three fingers
with two joints each. Two of them have an extra degree of freedom with 180 degrees
of lateral mobility supporting a large variety of grasp types. All joints have high-
precision position encoders. It has 3 fingertip torque sensors, one per finger.

The Schunk SDH hand weights 1.95 Kg. It has 3 fingers with two links each.
Two fingers can contrariwise rotate up to 90°. It presents high flexibility in terms
of shape, size and position of the objects to be gripped. It has 6 tactile sensors for
pressure and surface recognition.

These two robotic grippers are used for performing the experiments on Chapter
5.

12Weiss Robotics sensors: http://www.weiss-robotics.de/

http://www.weiss-robotics.de/
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(1) Barrett hand (2) Schunk SDH hand

FIGURE 3.11: Real models of the robotic grippers.

3.6 Real grasp evaluation

Some of the grasps generated and evaluated in simulation, will also be tested in the
real world. Two different experiments are performed for this evaluation. One with
the Barrett hand and the Apollo robot. The other experiment will be done with the
Schunk SDH Hand and the Tombatossals robot. The grasps evaluated in real world
will be labeled as stable or unstable.

For the experiments it is necessary to take in account different constraints from
real world, not present in the simulation environment. First, the influence of gravity
can be critical for the success of a grasp. Second, the constraints of the workspace
limits the number of reachable grasps. The kinematic of the robot and the presence
of objects, as the table surface, are obstacles to perform grasps. Third, the vision
system and object tracking is a critical point. Having a perfect estimation of the
object pose is complicated.

It is necessary to assume there will be always a small error when tracking the
object’s pose. The movements of the robots could also be erratic. The grasp pose
is highly dependant on the accuracy of the robot arms. As with the tracking of the
object, a small error should be assumed for the gripper pose before grasping. The
vision system used in the experiments is based in the Depth Based Object Tracking
Library (dbot) (Wüthrich et al., 2013; Issac et al., 2016). This library only needs an MS
Kinect or Asus XTION depth sensor, and the mesh model, to detect and track the
pose of an object.

As setup for the experiments (Figure 3.12), objects are placed on a table. Objects
in a table surface require to be stable prior to the grasp execution, which could dis-
card several grasp hypotheses. In the experiments, the robot should reach the grasp
pose, close the fingers and lift the object to ensure the stability of the grasp. If the
object is lifted and does not slip from the fingers, the grasp will be considered as
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stable. For every candidate grasp 3 tries are performed in order to be sure the grasp
is stable or not.

Specific details on the experimental protocol will be described in Chapter 5.5.

FIGURE 3.12: Example of the experimental setup with the Tombatossals robot.

3.7 Robotic hands evaluation

The evaluation of hands performance is done in simulation. Two different method-
ologies are applied to evaluate the design of robotic hands. On one hand, an statis-
tical study on their properties when grasping is done. On the other hand, a grasp
prediction model is used to evaluate the successfulness of a hand for grasping.

The statistical study on the hand properties is based in the use of quality metrics.
Grasp metrics are considered as evaluators of different hand properties. In this study
several grasps are evaluated among different objects. The values obtained from this
experiment give us an estimation on the performance of the hand according to each
property. This evaluation allows to establish similarities and difference between
hand models.

Using a grasp success prediction model it is possible to estimate how likely is
a prosthetic hand to successfully grasp an object. With this model we can estimate
how often a grasp will we robust, fragile or futile. This evaluation gives an assessment
on the grasp performance of artificial hands.

Specific details on the evaluation of artificial hands will be seen in chapter 6.
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3.8 Grasp databases

Different databases of objects and grasps are used to perform the experiments. The
first database contains objects from the KIT object model dataset. This database of
grasps is used to analyze the relations and behavior of quality metrics. This database
is used for the experiments on chapters 4 and 6.

The second database of grasps is from Kappler et al., 2015. This database con-
tains objects from the 3DNet. Simulated grasps of this database are evaluated using
physics simulation and human labeling. For the human labeling, different humans
are sown grasps from three angles. These humans have to label the grasps as sta-
ble, unstable or unknown. Some of the grasps on this database will be evaluated with
real world with the Apollo platform. More details of this database are explained in
Chapter 5.

The third database contains grasp candidates evaluated both, in simulation and
real world. This database contains objects from the 3DNet object model set. Grasps
on this database are executed using the Tombatossals robot platform. These grasps
are classified using a 3-grade scale: Robust, Fragile and Futile. This database is used
for the experiments on chapter 5.

The fourth database contains grasps with objects from the ADLs. This database
is used for estimating the AI on different anthropomorphic hands and compare it
to the evaluation with quality metrics. This database is used in the experiments of
chapter 6.

Finally, a database of grasps containing objects from the YCB model set is used.
This database contains 24 different objects modeled in virtual environments. This
database is used to improve the design of the Imma prosthetic hand. Details on this
database are explained in chapter 6.

More details on the objects, hand models and grasp generation method for each
database will be explained in the corresponding chapter.
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Chapter 4

Quality metrics analysis

The main goal of the work described in this chapter is to answer the relevant ques-
tions about practical use of grasp quality metrics. For each metric, which are the
practical ranges within a grasp that can be considered good or bad? How sensitive is
the evaluation of a grasp with respect to contact location uncertainty? And, which
quality metrics are similar or measure different grasp aspects?

To address these questions this chapter describes a numerical study of the char-
acteristics of a set of ten metrics selected among the most commonly used, with the
purpose of deepening the knowledge on them. This provides factual data to decide
about which metrics to select and how to combine them. The assumed focus of this
work is on metrics oriented to the analysis of static grasps performed by a robot
gripper on rigid 3D objects for holding and transporting them.

The contribution of this study is a set of numerical ranges and thresholds which
establish the practical parameters that can be used to interpret the grasp evaluation
provided by the selected quality metrics. The methodology followed consists in the
statistical analysis of the quality values obtained for 10 different metrics (Chapter
2.4) used to evaluate the grasps of a wide database, generated on a simulation en-
vironment using 126 different models of rigid objects (Chapter 3.3) and 7 models of
robot hands (Chapter 3.2).

The study contains three different analyses:

• Variability analysis: The distribution of each metric values are studied when
grasping different objects with different robotic hands and with different grasp
configurations. The range of values for each metric is established and used to
homogenize the scales of the different metrics and to set practical thresholds
for good and bad grasps (see Section 4.2).

• Sensitivity analysis: Metrics are recomputed when displacements and rota-
tions are applied to grasp postures. The robustness of each metric with respect
to inaccuracies in the placement of the finger contact points is determined (see
Section 4.3).

• Correlation analysis: The underlying relations between metrics are determined
(see Section 4.4).

The section is structured as follows. Subsection 4.1 analyze the parameters used
to generate grasp hypotheses. Subsections 4.2 to 4.3 explain the analyses on vari-
ability and sensitivity and show their results. Subsection 4.4 analyze the correlations
between metrics.
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4.1 Grasp generation study

An initial study on the parameters used to generate grasp candidates is done. This
study aims to avoid the possible biases derived from generating grasps under the
same circumstances, discarding other possibilities. The procedure to generate grasp
candidates is explained in Chapter 3.4.

(1) Variations in δ (0.01 to 0.02 m)

(2) Variations in α (0 to π/3 rad)

FIGURE 4.1: Example showing the variations in δ and α studied to generate
approach rays

A proper selection of the values for the parameters presented in Section 3.4, es-
pecially for δ and α, is required to generate an appropriate set of grasps hypotheses
for every pair object-hand. Although Rombokas et al., 2012; Balasubramanian et al.,
2012 showed a high efficiency when using orthogonal approach angles for grasp
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success, considering only orthogonal approach angles could introduce a bias on the
grasp set.

A preliminary study on the the influence of the selection of δ and α values on the
quality metrics is performed. A subset of 21 different objects from the KIT database
and two hands (BarrettHand and Schunk SDH) is selected. Two δ values are tested:
a small value (0.01 m) and a high value (0.02 m) (Fig. 4.11).

Additionally, three ways for generating the direction of the approach rays are
tested (Fig. 4.12): orthogonal to the object surface (α = 0), at a fixed angle (α = π/3),
and at a variable angle (α ∈ [0, π/3]). To summarize, four methods are tested with a
combination of the selected δ and α values, as presented in Table 4.1.

TABLE 4.1: Parameters used in each approach-rays generation method

Generation method α (rad) δ (m) N◦ hypotheses
1 Small delta 0 0.01 84968
2 Big delta 0 0.02 24208
3 Fixed alpha π/3 0.01 4078464
4 Variable alpha [0, π/3] 0.01 4163432

The other parameters needed to define the grasp hypotheses are selected as fol-
lows, and are kept unchanged throughout the four methods:

θ = [0.01 m, 0.02 m]
Nr = [0, π/2, π, 3π/2, 2π]

HJ =


[0,0,0,0,0,0] if hand != BarrettHand
[0,0,0,0], [0,0,0,π/4],
[0,0,0,π/2], [0,0,0,3π/4]

if hand = BarrettHand

Using these parameters with the procedure described in Chapter 3.4 a set of
grasp candidates is produced . The number of grasp hypotheses generated per ob-
ject ranges from a few hundreds with the first two methods to hundred of thousands
with the other methods. Thus, in order to have a tractable number of candidate
grasps for these former methods, a 1% of the total amount of candidates are ran-
domly selected in this preliminary study.

Next, the grasp quality values obtained using each metric for all the candidates
are statistically analyzed; median and interquartile ranges of the different distribu-
tions obtained from the use of the four different methods are compared in order to
select the most appropriate to generate the approach rays.

4.1.1 Results

The median and interquartile ranges of the quality metrics obtained in the prelim-
inary study are summarized in the box plots presented in Fig. 4.2. The dark line
in the middle of the boxes is the median. The bottom of the box indicates the 25th
percentile. The top of the box represents the 75th percentile. The T-bars that extend
from the boxes extend to 1.5 times the height of the box or, if no case/row has a value
in that range, to the minimum or maximum values. The points are outliers (extreme
values). The asterisks or stars are extreme outliers.

No significant differences between the grasp qualities obtained using the differ-
ent methods can be observed from the box plots. Furthermore, the results do not
consistently show better grasp qualities for any of the methods.

The variable method to generate approach rays provides a wider range of pos-
sibilities for grasping, and it is, thus, selected for analyzing the full set of grasps. A
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(1) QA1 (2) QA2

(3) QA3 (4) QB1

(5) QB2 (6) QB3

(7) QC1 (8) QC2

(9) QD1 (10) QD2

FIGURE 4.2: Results of the grasp quality metrics for the different approach-
rays generation methods detailed in Table 4.1. The grasp quality scale varies

to better how the results.
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summary of the selected parameters used to generate the grasp hypotheses in the
next subsections, is presented in Table 4.2.

TABLE 4.2: Parameters selected to generate grasp hypotheses

Value Hand
δ 0.01 m All
α [0, π/3] All
θ [0.01 m, 0.02 m] All
Nr [0, π/2, π, 3π/2, 2π] All
HJ [0,0] PR2

[0,0,0,0], [0,0,0,π/4], [0,0,0,π/2], [0,0,0,3π/4] Barrett
[0,0,0,0], [0,0,0,π/4], [0,0,0,π/2], [0,0,0,3π/4] Schunk SDH
[0,0,0,0,0,0,0,0,0,0,0,0,0] Schunk SAH
[0,0,0,0,0,0] Shadow
[0,0,0,0] Model T
[0,0,0] Michelangelo

4.2 Variability

The distribution of the values for each of the selected metrics is studied in this sec-
tion. This is relevant, as previous studies suggested that these values tend to be
contained in very narrow ranges (León et al., 2013). In this section, the range of
values for each metric is experimentally established and subsequently used for its
normalization, so that all the metrics have a more homogeneous distribution in the
range [0,1]. Also, the distribution is used to set practical thresholds for good and bad
grasps.

The methodology consists in generating and evaluating a sufficiently large amo-
unt of grasp hypotheses for every pair object-hand on the simulation environment.
For each of these selected grasps, the values for each quality metric are obtained
and statistically analyzed. With these results, appropriate thresholds are selected to
normalize each metric in the range of [0,1].

Once all the required parameters are selected from the results of the preliminary
study, a set of grasp hypotheses is generated for each pair hand-object, using the
selected parameters. With this method more than 25 million grasp hypotheses are
generated. In order to make it computable, we decided to select only 1.000 random
grasps per object and hand, being a total of 882.000 different grasps evaluated within
the 7 hand models.

Each grasp is simulated and, using the contact information, the grasp quality is
evaluated according to each of the 10 selected metrics. First, the Probability Density
Function (PDF) for each metric is estimated. This provides information about the
distribution of the data, its shape, variability and how is grouped. This information
is useful, as it could be used as benchmark for analyze grasp generated and eval-
uated in other databases. Then, different methods are compared in order to select
appropriate thresholds to normalize the data and make it comparable.

Different options are considered to select appropriate thresholds to normalize
each quality metric: 1) Full Range, using the maximum and minimum values ob-
tained for each metric; 2) Soft Statistics, using the mean ± the standard deviation to
define the thresholds (to minimize the effect of atypical values that may appear in
case of values grouped within smaller limits Leon et al., 2014); 3) Percentiles, using
the 10th and 90th percentiles of the grasp quality values (to avoid negative values for
the minimum threshold in case of high standard deviations).

Once the appropriate threshold values are selected for each metric, the following
formula is used to normalize the values:
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QN =
Q− Tmin

Tmax − Tmin
(4.1)

where Q is the grasp quality value and Tmax and Tmin the selected lower and
upper thresholds for each metric.

Finally, the normalized quality values are graded using a four level scale: bad,
fair, good, and great quality. The grasp falling under 0 are qualified as bad, those
between 0 and the 50-percentile value are labeled as fair, those up to 1 are good,
and finally those over 1 are considered great. In any case, this classification has no
practical implication and is given as a suggestion to sort out grasps.

4.2.1 Probability density function

For each quality metric, several Probability Density Functions (PDFs) are tested in
order to obtain the best fit for the distribution of data 1. Results reported are the best
4 PDFs on each metric, and the corresponding parameters for fitting the data to the
distribution function. The principal PDFs found were2:

• Exponential: The exponential distribution (also known as negative exponen-
tial distribution) is the probability distribution that describes the time between
events in a Poisson process. The probability density function (pdf) of an expo-
nential distribution is:

f(x;λ) =

{
λe−λx x ≥ 0,

0 x < 0.
(4.2)

• Extreme Value: The extreme value distribution is appropriate for modeling
the smallest value from a distribution whose tails decay exponentially fast, for
example, the normal distribution. It can also model the largest value from a
distribution, such as the normal or exponential distributions, by using the neg-
ative of the original values. The probability density function for the extreme
value distribution with location parameter µ and scale parameter σ is

y = f(x|µ, σ) = σ−1exp(
x− µ
σ

)exp(−exp(x− µ
σ

)) (4.3)

• Generalized Extreme Value: The generalized extreme value (GEV) distribu-
tion is the only possible limit distribution of properly normalized maxima of
a sequence of independent and identically distributed random variables. The
GEV distribution is often used as an approximation to model the maxima of
long (finite) sequences of random variables. The probability density function
is:

f(s;σ, ξ) =
1

σ

{
(1 + ξs)(−1/ξ)−1 exp(−(1 + ξs)−1/ξ) ξ 6= 0

exp(−s) exp(− exp(−s)) ξ = 0
(4.4)

1The best fit is measured using the Bayesian Information Criterion (BIC) https://en.
wikipedia.org/wiki/Bayesian_information_criterion

2More details on the pdfs can be found in: https://es.mathworks.com/help/stats/
fitdist.html

https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://es.mathworks.com/help/stats/fitdist.html
https://es.mathworks.com/help/stats/fitdist.html
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• Generalized Pareto: The generalized Pareto distribution (GPD) is a family of
continuous probability distributions. It is often used to model the tails of an-
other distribution. It is specified by three parameters: location µ, scale σ, and
shape ξ. The probability density function (pdf) is:

f(ξ,µ,σ)(x) =
σ

1
ξ

(σ + ξ(x− µ))
1
ξ
+1

(4.5)

• Normal: The normal (or Gaussian) distribution is a very common continuous
probability distribution. Normal distributions are important in statistics and
are often used in the natural and social sciences to represent real-valued ran-
dom variables whose distributions are not known. The probability density of
the normal distribution is:

f(x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.6)

Where µ is the mean or expectation of the distribution (and also its median and
mode), σ is the standard deviation and σ2 is the variance.

• Rician: The Rice distribution, Rician distribution or Ricean distribution is the
probability distribution of the magnitude of a circular bivariate normal ran-
dom variable with potentially non-zero mean. The probability density func-
tion is:

f(x | ν, σ) =
x

σ2
exp

(
−(x2 + ν2)

2σ2

)
I0

(xν
σ2

)
(4.7)

where I0(z) is the modified Bessel function of the first kind with order zero.

• t Location-Scale: A location–scale family is a family of probability distribu-
tions parametrized by a location parameter and a non-negative scale param-
eter. The t-distribution is any member of a family of continuous probability
distributions that arises when estimating the mean of a normally distributed
population in situations where the sample size is small and population stan-
dard deviation is unknown. The probability density function is:

p(x | ν, µ, σ) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνσ

(
1 +

1

ν

(
x− µ
σ

)2
)− ν+1

2

(4.8)

4.2.2 Statistic values and normalization

For the study of variability on each quality metric, different statistical values are
obtained and compared: mean, median, std, max and min values. Also, percentiles
10 and 90 are obtained for each metric.

This values are later used for the normalize the metrics, comparing three differ-
ent methods of normalization:

• Full Range: Max and Min values on each metric are used as thresholds for
normalize the values.
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• Soft Statistics: The thresholds for normalize the metrics are obtained using the
mean and std values.

• Percentiles: Percentile-10 and Percentile-90 are considered as minimum and max-
imum values for normalize the metrics. The grasps below or over this thresh-
olds are considered as outliers on the metric.

4.2.3 Results

First, we analyze the shape and distribution of values for each metric. Results pro-
vided are: Probability Density Functions, and Statistic values. For the PDFs it is de-
tailed in some cases a narrow sample of the data to better show the results. Also in
some cases, there are peks of values, these corresponding to specific hand models.
A specific analysis on the variability of the hands is performed in Chapter 6.

Table 4.3 summarize the statistic values obtained per each metric.

TABLE 4.3: Summary of statistic values and percentiles for each metric.

Min Max Mean STD Median 10th Pctl 90th Pctl
QA1 0.0000 1.8773 0.4218 0.3747 0.3137 0.0398 0.9820
QA2 0.0000 735.5761 12.9225 24.4199 3.4270 0.0671 35.6456
QA3 0.0000 0.9997 0.2104 0.2131 0.1486 0.0267 0.4323
QB1 -0.1365 0.9987 0.5808 0.2248 0.6175 0.2764 0.8423
QB2 0.0000 0.9992 0.0953 0.0732 0.0770 0.0237 0.1907
QB3 0.0001 0.9988 0.4756 0.1715 0.4653 0.2648 0.6892
QC1 0.0000 0.2804 0.0282 0.0364 0.0136 0.0000 0.0803
QC2 0.0000 0.9988 0.0200 0.0271 0.0104 0.0013 0.0499
QD1 0.0000 1.0000 0.4631 0.2355 0.3925 0.2116 0.8636
QD2 0.0000 0.9954 0.0528 0.1381 0.0021 0.0000 0.1839
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QA1 - Smallest singular value of G

Figure 4.3 shows the histogram of metric QA1 along with the PDFs that best fit this
metric. Table 4.4 shows the values of the PDFs, along with the statistical values of
the metric.

FIGURE 4.3: Histogram and Probability Density Function for metric QA1

TABLE 4.4: Parameters for best fits of distribution functions and statistical
values on metric QA1

Distribution Name k sigma theta mu nu
Generalized pareto -0.2828 5.32E-01 -2.22E-15 NA NA
Expponential NA NA NA 0.4082 NA
Generalized Extreme Value 0.9455 0.1541 NA 0.1372 NA
Normal NA 0.3747 NA 0.4218 NA

Statistics Min Max Median Mean SD
QA1 0.0000 1.8773 0.3137 0.4218 0.3747

The results show the values on this metric are concentrated around two main
points, 0.1 and 1, having an uniform distribution for the range of values: [0.2, 1].
This metric has also some values higher than 1, but these seem to be uncommon.
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QA2 - Volume of G in the wrench space

Figure 4.4 shows the histogram of metric QA2 along with the PDFs that best fit this
metric. Table 4.5 shows the values of the PDFs, along with the statistical values of
the metric.

FIGURE 4.4: Histogram and Probability Density Function for metric QA2. De-
tailed graph for PDFs in range [0, 3].

TABLE 4.5: Parameters for best fits of distribution functions and statistical
values on metric QA2

Distribution Name k sigma theta mu nu
Generalized Extreme Value 2.2156 1.589 NA 7.08E-01 NA
Generalized Pareto 1.8018 1.4243 -2.22E-15 NA NA
Exponential NA NA NA 12.9288 NA
T-Location Scale NA 0.8355 NA 0.4203 0.4326

Statistics Min Max Median Mean SD
QA2 0.0000 735.5761 3.4270 12.9225 24.4199

Although this metric has a wide range of values, from 0 to 700, half of them are
concentrated in the range [0, 3.427]. As it shows the subfigure in 4.4 more than 50%
of the grasps are concentrated in this narrow range. This graphs show better the
PDFs on metric QA2.
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QA3 - Grasp Isotropy Index

Figure 4.5 shows the histogram of metric QA3 along with the PDFs that best fit this
metric. Table 4.6 shows the values of the PDFs, along with the statistical values of
the metric.

FIGURE 4.5: Histogram and Probability Density Function for metric QA3

TABLE 4.6: Parameters for best fits of distribution functions and statistical
values on metric QA3

Distribution Name k sigma theta mu a b
Generalized Pareto -0.0567 0.2062 -2.22E-15 NA NA NA
Exponential NA NA NA 0.1952 NA NA
Generalized Extreme Value 0.7812 0.0757 NA 0.0765 NA NA
Beta NA NA NA NA 0.7936 2.8836

Statistics Min Max Median Mean SD
QA3 0.0000 0.9997 0.1486 0.2104 0.2131

This metric has half of its values between 0 and 0.1486. Also it presents a gap
between values 0.6 and 0.8. It has an uniform distribution of values of values in the
range [0.1, 0.5].
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QB1 - Distance between the centroid of the contact polygon and the center of mass
of the object

Figure 4.6 shows the histogram of metric QB1 along with the PDFs that best fit this
metric. Table 4.7 shows the values of the PDFs, along with the statistical values of
the metric.

FIGURE 4.6: Histogram and Probability Density Function for metric QB1

TABLE 4.7: Parameters for best fits of distribution functions and statistical
values on metric QB1

Distribution Name k sigma theta mu nu
Generalized Extreme Value -0.4679 0.2058 NA 0.5579 NA
Extreme Value NA 0.1631 NA 0.7012 NA
Normal NA 0.1930 NA 0.6088 NA
T-Location Scale NA 0.1930 NA 0.6088 4.61E+06

Statistics Min Max Median Mean SD
QB1 -0.1365 0.9987 0.6175 0.6088 0.1930

This metric shows a normal distribution of values centered in 0.80 for the range
[0.1, 1]. Values under 0.1 are rarely shown for this metric.

Note: this metric has a minimum value below zero. Although theoretically its minimum
value should be zero, the computation of the metric depends on the estimation of the max
distance between the object’s center of mass and its surface, which could be inaccurate in
some objects.
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QB2 - Area of the grasp polygon

Figure 4.7 shows the histogram of metric QB2 along with the PDFs that best fit this
metric. Table 4.8 shows the values of the PDFs, along with the statistical values of
the metric.

FIGURE 4.7: Histogram and Probability Density Function for metric QB2

TABLE 4.8: Parameters for best fits of distribution functions and statistical
values on metric QB2

Distribution Name k sigma theta mu a b
Generalized Extreme Value 0.2363 0.0484 NA 6.52E-02 NA NA
Beta NA NA NA NA 1.5629 13.099
Generalized Pareto -0.1169 0.1169 -2.22E-15 NA NA NA
Exponential NA NA NA 0.1062 NA NA

Statistics Min Max Median Mean SD
QB2 0.0000 0.9992 0.0770 0.0953 0.0732

The distribution of values on QB2 shows a clear PDF of generalized extreme
values. Most of its values are concentrated in a narrow lower range between 0 and
0.2, having a long tail until its maximum values, close to 1.
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QB3 - Shape of the grasp polygon

Figure 4.8 shows the histogram of metric QB3 along with the PDFs that best fit this
metric. Table 4.9 shows the values of the PDFs, along with the statistical values of
the metric.

FIGURE 4.8: Histogram and Probability Density Function for metric QB3

TABLE 4.9: Parameters for best fits of distribution functions on metric QB3

Distribution Name k sigma theta mu s nu
Generalized Extreme Value -0.2204 0.1658 NA 0.4106 NA NA
Rician NA 0.1816 NA NA 0.4355 NA
T-Location Scale NA 0.1690 NA 0.4751 NA 67.4197
Normal NA 0.1715 NA 0.4756 NA NA

Statistics Min Max Median Mean SD
QB3 0.0001 0.9988 0.4653 0.4756 0.1715

This metric presents a normal distribution along its full range [0, 1] with two
peaks on values 0.35 and 0.5.
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QC1 - Smallest maximum wrench to be resisted

Figure 4.9 shows the histogram of metric QC1 along with the PDFs that best fit this
metric. Table 4.10 shows the values of the PDFs, along with the statistical values of
the metric

FIGURE 4.9: Histogram and Probability Density Function for metric QC1

TABLE 4.10: Parameters for best fits of distribution functions on metric QA1

Distribution Name k sigma theta mu nu
Generalized Pareto 23.7244 9.88E-15 -2.22E-15 NA NA
Generalized Extreme Value 3.6031 1.02E-04 NA 2.80E-05 NA
Exponential NA NA NA 2.86E-02 NA
T-Location Scale NA 0.0227 NA 0.0176 2.7422

Statistics Min Max Median Mean SD
QC1 0.0000 0.2804 0.0136 0.0282 0.0364

This metric shows a short range of values, from 0 to 0.25, having most of them
concentrated around 0.02.
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QC2 - Volume of the convex hull

Figure 4.10 shows the histogram of metric QC2 along with the PDFs that best fit this
metric. Table 4.11 shows the values of the PDFs, along with the statistical values of
the metric.

FIGURE 4.10: Histogram and Probability Density Function for metric QC2

TABLE 4.11: Parameters for best fits of distribution functions on metric QC2

Distribution Name k sigma theta mu nu
Generalized Pareto 0.3093 0.0139 -2.22E-15 NA NA
Exponential NA NA NA 0.0197 NA
Generalized Extreme Value 0.7938 0.0073 NA 0.0062 NA
T-Location Scale NA 0.0084 NA 0.0091 1.3899

Statistics Min Max Median Mean SD
QC2 0.0000 0.9988 0.0104 0.0200 0.0271

Although this metric has its values along its theoretical range [0, 1], most of them
are concentrated in a narrow range from 0 to 0.1.
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QD1 - Posture of manipulator joints

Figure 4.11 shows the histogram of metric QD1 along with the PDFs that best fit this
metric. Table 4.12 shows the values of this PDFs, along with the statistical values of
the metric.

FIGURE 4.11: Histogram and Probability Density Function for metric QD1

TABLE 4.12: Parameters for best fits of distribution functions on metric QD1

Distribution Name k sigma theta mu nu
Generalized Extreme Value -0.0632 0.1974 NA 0.3587 NA
Normal NA 0.2355 NA 0.4631 NA
T-Location Scale NA 0.2355 NA 0.4631 6.35E+06
Generalized Pareto -0.8040 0.8044 -2.22E-15 NA NA

Statistics Min Max Median Mean SD
QD1 0.0000 1.0000 0.3925 0.4631 0.2355

This metric doesn’t present a clear distribution of values along its range. Thus,
it’s difficult to classify it with the classic parametric distribution functions.
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QD2 - Inverse of the condition number of GJ

Figure 4.12 shows the histogram of metric QD2 along with the PDFs that best fit this
metric. Table 4.13 shows the values of this PDFs, along with the statistical values of
the metric.

FIGURE 4.12: Histogram and Probability Density Function for metric QD2

TABLE 4.13: Parameters for best fits of distribution functions on metric QD2

Distribution Name k sigma theta mu nu
Generalized Pareto 22.6694 8.93E-15 -2.22E-15 NA NA
Generalized Extreme Value 5.1432 1.08E-04 NA 2.10E-05 NA
T-Location Scale NA 3.34E-06 NA 3.79E-08 0.1458
Exponential NA NA NA 0.0541 NA

Statistics Min Max Median Mean SD
QD2 0.0000 0.9954 0.0021 0.0528 0.1381

As it is with metric QC1, metric QD2 has most of its values around 0. However it
has values along its theoretical range from 0 to 1.
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Normalization

The information required to obtain all different thresholds proposed are detailed in
Table 4.14. Results corroborate that the Full Range thresholds are much higher than
the Soft Statistics and Percentiles thresholds, because of the high amount of atypical
values, especially for metric QA2. Also, the high standard deviations of metrics QA2,
QA3, QC1, QC2, andQD2 result in negative minimum thresholds for the Soft Statistics
thresholds.

TABLE 4.14: Statistic thresholds of the grasp quality values for each metric

Full Range Soft Statistics Percentiles Nº of
Min Max Mean-SD Mean+SD 10th Pctl 90th Pctl Grasps

QA1 0.0000 1.8773 0.0471 0.7965 0.0398 0.9820 882000
QA2 0.0000 735.5761 -11.4975 37.3424 0.0671 35.6456 882000
QA3 0.0000 0.9997 -0.0026 0.4235 0.0267 0.4323 882000
QB1 -0.1365 0.9987 0.4158 0.8018 0.2764 0.8423 882000
QB2 0.0000 0.9992 0.0220 0.1685 0.0237 0.1907 634446
QB3 0.0001 0.9988 0.3041 0.6471 0.2648 0.6892 634446
QC1 0.0000 0.2804 -0.0082 0.0647 0.0000 0.0803 634446
QC2 0.0000 0.9988 -0.0071 0.0471 0.0013 0.0499 634446
QD1 0.0000 1.0000 0.2276 0.6986 0.2116 0.8636 882000
QD2 0.0000 0.9954 -0.0853 0.1910 0.0000 0.1839 882000

Histograms on Figure 4.13 shows the distribution of each of the grasp quality
metrics using the three different normalization methods. As is shown, the Percentile
normalization shows an even distribution of the values for each metric. It can be
seen that most of the metrics are distributed along the [0,1] range, with the notorious
exception of metric QD2, which presents 50% of the grasp quality values within the
range [0, 0.1]. Also note QC2 and QD1 have a lot of values under 0, due to their
Percentile 10 coincide with Percentile 30.

Finally, the values of metrics, normalized with the Percentiles method, are classi-
fied into grades according to the 50th percentile. Ranges for each grade are presented
in Table 4.15.

TABLE 4.15: Ranges to classify the quality of a grasp for each metric

Bad Quality Fair Quality Good Quality Great Quality
QA1

[-∞, 0]

[0, 0.2887] [0.2887, 1]

[1,∞]

QA2 [0, 0.0944] [0.0944, 1]
QA3 [0, 0.3018] [0.3018, 1]
QB1 [0, 0.6103] [0.6103, 1]
QB2 [0, 0.3092] [0.3092, 1]
QB3 [0, 0.4679] [0.4679, 1]
QC1 [0, 0.1684] [0.1684, 1]
QC2 [0, 0.1886] [0.1886, 1]
QD1 [0, 0.3015] [0.3015, 1]
QD2 [0, 0.0147] [0.0147, 1]
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(1) Full Range normalization for metric QA1 (2) Full Range normalization for metric QA2

(3) Soft Statistics normalization for metric QA1 (4) Soft Statistics normalization for metric QA2

(5) Percentile normalization for metric QA1 (6) Percentile normalization for metric QA2

FIGURE 4.13: Histograms showing the comparison of different normalization
methods for each metric. Red line points out the Percentile 50.
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(7) Full Range normalization for metric QB1 (8) Full Range normalization for metric QB2

(9) Soft Statistics normalization for metric QB1 (10) Soft Statistics normalization for metric QB2

(11) Percentile normalization for metric QB1 (12) Percentile normalization for metric QB2
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(13) Full Range normalization for metric QB2 (14) Full Range normalization for metric QB3

(15) Soft Statistics normalization for metric QB2 (16) Soft Statistics normalization for metric QB3

(17) Percentile normalization for metric QB2 (18) Percentile normalization for metric QB3
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(19) Full Range normalization for metric QC1 (20) Full Range normalization for metric QC2

(21) Soft Statistics normalization for metric QC1 (22) Soft Statistics normalization for metric QC2

(23) Percentile normalization for metric QC1 (24) Percentile normalization for metric QC2
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(25) Full Range normalization for metric QD1 (26) Full Range normalization for metric QD2

(27) Soft Statistics normalization for metric QD1 (28) Soft Statistics normalization for metric QD2

(29) Percentile normalization for metric QD1 (30) Percentile normalization for metric QAD2
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4.3 Sensitivity

A sensitivity analysis is conducted to assess the robustness of each quality metric
with respect to the uncertainty in the object’s pose. The effect of inaccuracies in the
positioning of the real robot hand on the quality of the grasp is investigated. This
problem may arise when the final execution of a selected grasp does not succeed in
placing the contacts in the desired grasp locations.

4.3.1 Methods

An initial set of grasp configurations are selected as reference. Several modifications
of the hand position are computed for each reference grasp configuration by intro-
ducing a random translation and rotation on each of the hand position axes (see Fig.
4.10).

FIGURE 4.10: Variations in the hand posture along their axes.

The measurement variation of the metric values for a given object is computed
using the Sensitivity Index (SI), which is defined as the mean value of the standard
deviations with respect to the metric calculated for the reference grasp:

SI = 1
n

n∑
x=1

σx

where n is the number of grasps for each object and σx the standard deviation
calculated as:

σx = 1
nv

√
nv∑
i=1

(xi − x0)2

where nv is the number of variations of the reference grasp, x0 the value of the
metric of the reference grasp and xi the value of the metric calculated for each varia-
tion. Finally, a Global Sensitivity Index (GSI) has been calculated for each metric, as
the mean value of the SI per object previously calculated:
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GSI = 1
no

n∑
i=1

(SIi)

where no is the number of objects and SIi is the Sensitivity Index calculated for
each object.

GSI is expressed in percentage (GSIN ) by using the metric ranges obtained in the
variability analysis (see Table 4.3):

GSIN = GSI
max−min100%

where min y max are the proposed minimum and maximum thresholds, respec-
tively.

A preliminary study is carried out to determine the number of variations re-
quired for the analysis. Two hands (Barrett and Schunk SDH and 10 objects are
chosen for this study. For every pair hand-object, 10 reference grasps are selected
randomly from those generated in the experiments described in Section ??. Grasp
variations are generated by introducing random translations and rotations on each
of the hand position axes obtained from Gaussian distributions with standard devi-
ation of 1 cm and 0.1 rad for translations and rotations, respectively (these Gaussian
distributions provide 68% of the deviations inside the bell curve). Set sizes from 10
to 300 variations are investigated (with increments of 10 variations until set size of
50 variations, and with increments of 50 variations afterwards). Grasp variations not
meeting the force-closure condition were discarded, as well as variations resulting
in an initial collision between the hand and the object in order to avoid unreachable
grasps.

The metrics’ values are computed for all variations, and the GSIN is calculated
for each metric, using the 10%-90% percentile thresholds determined in Section ??.
The number of variations from which the GSIN gets stabilized is used as the set
size Nvar to be considered in the full analysis. The full analysis considers 126 objects
and 7 hand models. A set of 20 reference grasps is randomly selected for every pair
hand-object from those generated in the experiments described in Section ??.

For each reference grasp, Nvar grasp variations are generated analogously as in
the preliminary study. GSIN values are computed using the thresholds defined by
the Percentiles method. For each metric, a distinction between good and bad reference
grasps is considered as those for which the metric value is over or below the 50th

percentile threshold (thresholds taken from the Table 4.15).
Several analysis are conducted regarding the different distribution of variations

that improve or worsen the value of the metric from their respective reference grasp.
First a comparison on the GSIN for each metric grouping by good and bad quality
grasps and differentiating between variations which improve or worsen the qual-
ity. A similar study is conducted analyzing the number of grasps which accomplish
these characteristics. Finally an study on the influence of each hand model to the
sensitivity of the metrics is conducted. Results are reported individually per each
metric.
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4.3.2 Results

Preliminary study

Figure 4.11 shows the GSIN values calculated in the preliminary study for each
metric versus the different set sizes considered. GSIN gets stable for sets equal or
larger than 50 variations. Thus, the number of variations Nvar to be used for the full
analysis was set to 50. This preliminary study also revealed that only 20-23% of the
variations randomly generated meet the necessary force-closure condition (see Tab.
4.16).

FIGURE 4.11: Graph comparing the Global Sensitivity Index between different
set sizes for each quality metric.

TABLE 4.16: Percentage of grasps accomplishing force-closure

Set Size 10 20 30 40 50 100 150 200 250 300
Valid Grasps (%) 22.8 21.2 22.8 20.1 20.2 22.4 22.5 21.4 21.6 22.0

The full analysis considers, then, a subset of 50 variations for every reference
grasp, which makes a total amount of 1020 grasps (references plus variations) per
object, 882000 total variations, and 128520 different grasps for each hand. The force-
closure analysis performed to discard unstable grasps provides, in average, only
20.06% of feasible grasps (176,900 from the initial set of 882,000 variations).
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QA1 - Smallest singular value of G

Graphs on Figure 4.12a show the GSIN for metric QA1. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.12b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.12: GSIN for metric QA1.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.13 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.13: Variation in the metric QA1 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QA2 - Volume of G in the wrench space

Graphs on Figure 4.14a show the GSIN for metric QA2. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.14b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.14: GSIN for metric QA2.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.15 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.15: Variation in the metric QA2 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QA3 - Grasp Isotropy Index

Graphs on Figure 4.16a show the GSIN for metric QA3. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.16b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.16: GSIN for metric QA3.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.17 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.17: Variation in the metric QA3 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QB1 - Distance between the centroid of the contact polygon and the center of mass
of the object

Graphs on Figure 4.18a show the GSIN for metric QB1. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.18b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.18: GSIN for metric QB1.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.19 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.19: Variation in the metric QB1 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QB2 - Area of the grasp polygon

Graphs on Figure 4.20a show the GSIN for metric QB2. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.20b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.20: GSIN for metric QB2.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.21 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.21: Variation in the metric QB2 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QB3 - Shape of the grasp polygon

Graphs on Figure 4.22a show the GSIN for metric QB3. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.22b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.22: GSIN for metric QB3.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.23 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.23: Variation in the metric QB3 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QC1 - Smallest maximum wrench to be resisted

Graphs on Figure 4.24a show the GSIN for metric QC1. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.24b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.24: GSIN for metric QC1.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.25 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.25: Variation in the metric QC1 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QC2 - Volume of the convex hull

Graphs on Figure 4.26a show the GSIN for metric QC2. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.26b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.26: GSIN for metric QC2.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.27 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.27: Variation in the metric QC2 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QD1 - Posture of manipulator joints

Graphs on Figure 4.28a show the GSIN for metric QD1. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.28b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.28: GSIN for metric QD1.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.29 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.29: Variation in the metric QD1 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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QD2 - Inverse of the condition number of GJ

Graphs on Figure 4.30a show the GSIN for metric QD2. This graphs differentiate
between good and bad quality grasps, it also compares the sensitivity in variations
which improve or worsen the quality of the grasp. The distribution of grasps in
these categories are shown in Figure 4.30b. It compares how many grasps were
for good/bad quality grasps, and how many variations improved or worsen the
reference grasp.

(A) GSIN (B) Distribution of grasps

FIGURE 4.30: GSIN for metric QD2.

In each graph there are three groups of columns: the left one shows the results for
the good references grasps (value over the 50% threshold); the middle group for the
bad reference grasps; and the third group for all reference grasps. In each group blue
column represents all the variations in the category; the orange, those which improve
the metric values; and the yellow column which worsen the metric.

Finally, Figure 4.31 shows the comparison ofGSIN between different hand mod-
els.

Barrett Hand

Michelangelo

Model T

PR2 Gripper

Schunk SAH

Schunk SDH

Shadow Hand

FIGURE 4.31: Variation in the metric QD2 for each grasp with respect to the
distance to its reference grasp. Each point represents a grasp, and grasps on
different hands are coloured differently. Horizontal lines are drawn to indicate

the limits containing 10%, 50% and 90% of the grasps.
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Summary

The GSIN for each metric is detailed in Table 4.17

TABLE 4.17: GSIN (%) for every metric

QA1 QA2 QA3 QB1 QB2 QB3 QC1 QC2 QD1 QD2

23.19 30.12 25.39 12.76 33.23 35.91 31.76 27.98 15.25 25.88

In general, higher GSIN values are observed for good reference grasps than for
bad ones, especially for QA2, QC2, and QD2 metrics; very low differences between
good and bad reference grasps are found for QB1 and QD1.

If we analyze the distribution of grasps and GSIN for variations that improve
or worsen the quality of the reference grasp, is shown, in general, the sensitivity is
higher in good grasps which are worsen and bad grasps which improve. This sug-
gest is easier to improve, and at a bigger rate, a bad grasp than to worsen it, and
backwards, it’s easier to make worst a grasp which is actually good. According to
the distribution of values seen in the previous section 4.2, values of metrics tend to
concentrate in specific ranges, which agree to the fact that its easier to worsen a good
grasp and improve a bad one. The values corresponding to these graphs are detailed
in Appendix A.1.

Finally, in the relations between the quality variation versus the distance from a
grasp to its reference grasp, deviations are clearly different for some metrics depend-
ing on the hand considered; lowest deviations correspond to the Shadow Hand for
all metrics, while the Michelangelo prosthetic hand produce high deviations for the
metrics QA1, QA3, QD1, and QD1, as well as PR2 Gripper for metrics QD1 and QD2.

This differences in GSIN with different manipulators, suggest each manipulator
could have their own properties and some could perform better than others accord-
ing to specific metrics. Details in this properties and some others will be discussed
later, on section 6.
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4.4 Correlation

The purpose of this study is to find out which metrics provide similar evaluations for
the wide set of grasps considered in this chapter. This would indicate that such met-
rics are basically representing the same underlying property and, consequently, that
one of them is sufficient to evaluate that property, while the others are redundant.
As a final consequence, this would allow the reduction of the number of metrics to
be computed without losing any relevant information.

4.4.1 Methods

For this study, the same set of grasp generated in Section 4.2 is used, since it is suf-
ficiently exhaustive and representative of grasping. The grasps are compared with-
out any normalization method. This is done to avoid distorting the numeric values,
as the correlation coefficients could be influenced by this variations. The Pearson
correlation coefficient is calculated for each combination of metrics. However, this
method is highly sensitive to outliers and, as it was shown in Section 4.2, this is quite
common in data from quality metrics. Thus, the Spearman correlation coefficient is
also calculated, as it has been shown to be more robust in front of outliers Fieller
et al., 1957. Spearman correlation is also interesting since it can measure non-linear
mappings between metrics.

4.4.2 Results

Table 4.18 shows the results for the Pearson and Spearman correlation coefficients for
each pair of metrics. Cells with weak correlation values (≥ 0.4 and≤ 0.7) are colored
in yellow; cells with strong correlation values (≥ 0.7) are colored in green and full
correlation cells (≥ 0.95) are colored in blue. When using the Pearson coefficient,
only a strong case of correlation is found,QA1 withQA3; when the effect of outliers is
mitigated using the Spearman coefficient, three strong binary correlations are found,
the ones between all metrics of group A.

Figure 4.32 plots the relation between metrics with highest correlation values:
QA1 vs. QA2, QA1 vs. QA3, QA2 vs. QA3, QA2 vs. QC2 and QC1 vs. QC2.
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TABLE 4.18: Correlation coefficients

(A) Pearson correlation coefficient

QA1 QA2 QA3 QB1 QB2 QB3 QC1 QC2 QD1 QD2

QA1 1
QA2 0.65 1
QA3 0.86 0.31 1
QB1 -0.13 0.07 -0.36 1
QB2 0.21 0.26 0.16 0.07 1
QB3 -0.12 -0.15 -0.06 0.03 0.01 1
QC1 0.34 0.43 0.24 0.23 0.22 -0.04 1
QC2 0.38 0.35 0.33 0.23 0.22 -0.02 0.66 1
QD1 -0.20 -0.16 -0.09 -0.05 0.17 0.16 0.16 0.22 1
QD2 -0.30 -0.17 -0.24 0.00 0.15 0.18 -0.07 -0.01 0.40 1

(B) Spearman correlation coefficient

QA1 QA2 QA3 QB1 QB2 QB3 QC1 QC2 QD1 QD2

QA1 1
QA2 0.86 1
QA3 0.98 0.79 1
QB1 -0.04 0.09 -0.05 1
QB2 0.26 0.34 0.21 0.08 1
QB3 -0.13 -0.22 -0.07 0.03 0.00 1
QC1 0.34 0.46 0.26 0.19 0.27 -0.02 1
QC2 0.49 0.56 0.44 0.23 0.39 -0.02 0.59 1
QD1 -0.22 -0.31 -0.19 -0.01 0.18 0.11 0.19 0.31 1
QD2 -0.28 -0.24 -0.28 0.05 0.08 -0.06 0.06 0.32 0.48 1

Yellow: soft correlation (≥ 0.4), Green: strong correlation (≥ 0.7) and Blue: full
correlation (≥ 0.95). In both tables, the significance values are less than 0,05.
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(A) QA1 vs. QA2

(B) QA1 vs. QA3

(C) QA2 vs. QA3

FIGURE 4.32: Comparison between highest correlated metrics. Outlier values
are discarded.
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4.5 Discussion & conclusions

Sections 4.2 to 4.4 describe the three analyses that have been carried out on an ex-
tensive set of simulated data. The amount of results presented in the form of figures
and tables is large and a careful review of them is necessary in order to reach useful
conclusions. The most relevant of them are discussed in this section.

First, Section 4.2 describes the variability analysis, and the first question ad-
dressed is how to generate an unbiased set of grasps. Four alternatives are proposed
and compared. The results shown in Fig. 4.2 indicate that the four methods produce
indistinguishable sets of grasps, as long as these sets are sufficiently large.

The analysis of PDFs show the shape of metric values on the dataset. With is
information, it is possible to establish benchmarks to study if other datasets of grasps
are biased for any metric. There are some peaks of values for metrics QA1, QA2, QB3,
QC1 and QD1. These peaks correspond to specific hand models. Chapter 6 will
present a more deep study in the characteristics and performance of different hand
models according to specific quality metrics.

The results of the complete variability study are summarized in Table 4.3. These
results are relevant, as they can be used to assess the room for improvement of a spe-
cific grasp, regarding a given quality metric. An important phenomenon observed
on these results, also, is the characteristic distribution of most of the values of the
metrics which tend to concentrate in narrow ranges with an important number of
atypical values above and below these ranges. This phenomenon complicates the
selection of upper and lower thresholds for normalization if the aim is to obtain an
almost uniform distribution of values within the proposed limits.

Several approaches to set those range limits have been tested, and finally the
use of 10th and 90th percentiles seem to be a good compromised option for all met-
rics. Some of them, however, still show a non uniform distribution, especially QD2

and QC1, and more refined approaches could be used for these specific metrics. In
practical terms a normalization based on the 10/90 percentiles and the thresholds
derived form them seem to be most advisable since it provides the most uniform
distributions, but with the limitations discussed above.

The second study is the sensitivity study detailed in Section 4.3, which is aimed
to determine the behavior of the metrics in front of uncertainty in hand positioning.
According to Table 4.17, all metrics present a GSIN over 10%. Globally, the most
robust metrics are QB1 and QD1, while QB2, QB3, QC1, and QA2 are the more fragile
ones. More detailed information can be obtained from figures 4.12a to 4.30a, that
shows the GSIN distinguishing between good and bad reference grasps.

The obvious conclusion from these figures is that reference grasps whose values
are over 50th percentile are more fragile than those under 50th percentile for most of
the quality metrics, and especially for the cases of QA2, QC2, and QD2. Metrics QD1

and QB1, which are the most robust ones globally, have a similar robustness inde-
pendently of the goodness of their quality value. Also, for good reference grasps, the
metrics are more fragile for those grasps variations that worsen the quality metric,
except for metricsQD1 andQD2; while for bad reference grasps, the metrics are more
fragile for those grasp variations that improve the quality metric.

It is also interesting to note on figures from 4.13 to 4.31 that quality deviations
are significantly different depending on the robotic hand considered. The Shadow
Hand presents the lowest deviations for all metrics, while the PR2 Gripper and the
Michelangelo prosthesis present the highest deviations for several metrics, which
could be related with the low number of actuators of both hands, that greatly re-
duces their versatility. Grasp quality is, thus, highly dependent on the robotic hand
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design. Therefore, the design of robotic hands and prostheses could benefit from the
grasp simulation and computation of grasp quality metrics if improvement of these
magnitudes were used to guide design modifications.

Finally, an important result of this second analysis that should not be neglected is
the high rate of grasp variations that do not meet the force-closure condition. Almost
four fifths of them are discarded for this reason. We have decided to do so because
some of the metrics require the force-closure condition to be met so the metric val-
ues make sense. It should be considered if some more relaxed condition could be
chosen and how this could affect the results, and more importantly whether results
sensitivity are relevant with such amount of variations discarded.

The third and final analysis is the correlation analysis presented in Section 4.4,
aimed to determine relations between metrics. The results from this analysis are
again deeply affected by the presence of atypical values in the metrics. This problem
has been addressed by using the Spearmam correlation coefficient. Table 4.18 shows
the results using both the Pearson and Spearman correlation rules. The latter table
shows higher correlations than the former.

These results indicate that all the metrics based on the algebraic properties of
G matrix (QA1, QA2, and QA3) represent the same underlying principle. Metrics of
Group C, shows a weak correlation with this group. Finally, QC2 also shows a weak
correlation with metric QC1, from its same group.

In short, the ten metrics could be reduced to seven groups composed of five in-
dependent metrics QB1, QB2, QB3, QD1, and QD2, a pair of metrics, QC1 and QC2,
and a triplet of metrics, QA1, QA2, and QA3. Because of the weak correlations be-
tween the metrics from groups C and A (both groups based on algebraic properties
of G), all these metrics could be even reduced to the same group without losing a
significant amount of assessment information.

Once analyzed the robustness of the different metrics, we can postulate that QA1
could be a good choice for representing the triplet of metrics: QA1, QA2, and QA3, as
it is the one among them that has the lowest GSIN .

Conclusions

To conclude, this chapter presents a numerical study on the practical parameters that
characterize the use of ten quality metrics for evaluating grasps performed by robot
hands on rigid objects. In the first place, the thresholds that indicate the practical up-
per and lower limits of the quality metrics have been established. These thresholds
allow a more realistic normalization of the metrics values. However, the influence
of object’s size on these thresholds should be addressed in future work.

Second, the sensitivity analysis has shown the fragility or robustness of the met-
rics in front of positioning uncertainty. Finally, a correlation analysis has revealed the
underlying relations between some metrics and the independence of others, which
leads to conclude the existence of at least seven relevant grasp aspects to be taken
into account when evaluating a grasp.

The results presented in this work may provide several benefits. First, they
provide parameters regarding quality metrics which allow a better use of them in
grasp planners, by the setting of data-based thresholds for evaluating and ranking
of grasps. Second, the resulting data are a guidance in the selection of metrics in
terms of robustness and equivalence between different alternatives. And finally, the
results also give good hints in order to build combined metrics, which can capture
more relevant aspects of a grasp and, thus, provide a better prediction of the grasp
performance.
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Limitations

However, this study has also some limitations that should not be disregarded. First,
this work only considers ten quality metrics, while at least 24 have been surveyed
Roa and Suárez, 2014. Though some of them were not compatible with the present
study, i.e., biologically oriented, combined, and task oriented metrics, others could
have been included, but were discarded.

Second, this study is focused on static grasp for holding objects, consequently,
no task-oriented grasp metrics or analyses have been considered. An obvious com-
plementary extension of this work would be to include task oriented analyses.

Third, only static contacts and states were simulated. Dynamic behavior of ob-
jects during grasping would provide a much more realistic study of the metrics as
quality predictors. This should be possible using physics engines in order to sim-
ulate dynamic effects of grasps, though the unreliable physical fidelity that kind of
engines are able to achieve poses some shadows on this approach.

Fourth, the selection of hand models may introduce a bias, as the metrics could
be giving better or worst values depending on the hand used, as will be demon-
strated in Chapter 6. In any case, we believe that the wide variety of hands and
models used is enough the reduce if not eliminate this possible bias. And fifth, the
election of OpenRave as simulation tool can also affect the results as information of
contact points may differ from those that could be obtained using other simulators.
Replicating the study, using other simulators and grasp generation procedures could
clarify the concerns.

Finally, the friction coefficient through this analysis has a constant value of 0.4,
which adds another limitation. The friction cones produced at the resulting con-
tact points are affected when changing the value of the friction coefficient, which
could lead to different evaluations of the quality measures for the same grasp pose.
Therefore, the friction coefficient has a major role as a filter to discard more or less
candidates. The sensitivity of the metrics to friction coefficient changes has been
previously studied to some extentZheng and Qian, 2005; Hang et al., 2013 and it is
not discussed in this thesis.

And last but not least, the most obvious limitation is the problem of transferring
results from simulation to real robots. There are some studies that compare and
analyze the performance of metrics for real applications. In fact, recent experiments
have questioned the utility of analytical metrics. In Diankov and Kuffner, 2008;
Balasubramanian et al., 2012 the authors show that grasps highly ranked by the ε-
metric (QC1 in this thesis, see Table 2.2) perform poorly on real robots. It has also
been demonstrated that this metric has a high sensitivity to positioning errors Weisz
and Allen, 2012.

There can be several reasons for this fragility of the grasp quality metrics. On
one hand, the metric used in the above works, QC1, has shown to be very sensitive
to uncertainty, a key aspect on the execution on real robots. On the second hand, the
correlation analysis has shown that there are at least seven independent dimensions
for evaluating a grasp. Grasp planners which rely on a single metric and ignore the
other dimensions are probably providing incomplete grasp quality predictions.

Future & related work

The results on this chapter are exclusively based on static simulation. They might be
taken with cautions until a proper validation and correlation with results obtained
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from a real-world scenario. However, the preparation and realization of such ex-
perimentation is complex and out of the scope of this chapter. We see the results
presented here as the first and necessary phase of such a work which will be dis-
cussed next, in Chapter (Chapter 5).

We foresee applications which could take profitable use of the results and method-
ology proposed in this chapter. The results on this chapter constitute a huge back-
ground database to be used as reference for evaluating hand designs. The method-
ology would consist on testing a hand on a sufficiently large database of objects,
and employing a large number of grasps in each case. The results could be statis-
tically compared against the ones shown in this work, and evidence-based conclu-
sions could be reached regarding the capabilities of the novel design. The methodol-
ogy and results described in this chapter could be easily adapted for this application.
The results of such application would be seen in Chapter 6.

The motivation, studies and experiments described in the present chapter have
been partial or totally published in Leon et al., 2014 and Rubert et al., 2018.
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Chapter 5

Grasp success prediction

In this chapter, we analyze how well different, commonly-used grasp metrics (Chap-
ter 2.4) are able to predict grasp success, either individually or in combination. We
hypothesize that these metrics capture different aspects of precision grasp stability
and thereby have different biases and generalization characteristics. There seems to
be a non-trivial mapping from each of these metrics or a combination of them to the
binary decision of grasp success.

Our aim is to find a classifier that takes one or all of these metrics as input and
outputs a success label. We test a set of classification methods that covers different
potential characteristics of the function of interest (linear versus non-linear; paramet-
ric versus non-parametric). In this way, we aim to understand the underlying struc-
ture of the data and whether these commonly used metrics are expressive enough.

As ground-truth for training these classifiers, three different studies are applied.
First, we use human labeled data from Kappler et al., 2015. Second, we compare
these human labels with real grasp executions and this data is used for training the
classifiers. Details on the dataset used for these first two experiments are detailed
in Section 5.2.1. Third, we propose a model to predict the outcome of real grasp
execution using machine learning and a combination of grasp quality metrics.

We also analyze how much the context of a grasp influences its outcome. With
context we refer to object properties or the gravity orientation. This is, how object
properties or gravity orientations can influence the success or failure of a grasp. We
also analyze whether this information can enhance the grasp success prediction in
addition to the metrics.

With the experiments and results obtained we propose a design of classifier able
to predict the outcome of real grasp executions. This classifier employs a two-step
classification to label grasp candidates as Robust, Futile or Fragile. The success rate of
the designed classifier is over 90%.

Finally, we test whether this classification model could be generalized to other
grippers and objects.

The contributions of this chapter are: (i) an analysis of classic grasp metrics given
a much larger data set of human annotations (4699) on a much larger variation of
objects (616) than previous studies; (ii) we use a wide set of classification methods
to analyze the underlying structure of the function mapping; (iii) we quantitatively
and qualitatively compare the outcome of our analysis with previous similar studies
(Leon et al., 2014; Rubert et al., 2018; Goins et al., 2014; Kappler et al., 2015); (iv)
we study how reliable humans are as oracle for grasp prediction; (v) we analyze
the outcome of real grasp executions using two different grippers and varying the
weight of the objects (vi) we analyze how relevant contextual information is for the
success of a grasp and (vii) a classifier for label grasp candidates is presented.
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Outline This chapter is structured as follows: first, we introduce a review of
previous and related work which inspired and motivated this study. Next we present
the basic foundations of the machine learning algorithms used in our experiments
and finally, the results. We split our work in three different studies. The first study
is a comparison between the predictive capability of grasp metrics with a physic
metric generated in dynamic simulation. In the second experiment, real grasp exe-
cutions are used as ground-truth to analyze the predictive ability of quality metrics,
physics metric and human labels. In the third and last experiment, we study grasp
executions in objects with different weights and propose a grasp prediction model
based on a 3-categories scale.

5.1 Introduction

Definition 5.1. The prediction of a grasp consist in determining whether a simulated
grasp will be successful in real world. A grasp is considered successful or stable, if it is
able to hold and restrain an object, constraining its potential movements.

An open problem in autonomous robotic manipulation is the prediction of grasp
success before executing it in the real world. This is especially the case for precision
grasps. They are characterized by few contact points between hand and object which
makes them more brittle than power grasps. Precision grasps allow for deliberate
object motion within the hand (Feix et al., 2016) but are also more brittle than power
grasps where the hand envelopes the object.

Many analytic metrics have been developed to reliably predict precision grasp
success. They usually assume known object and robot hand models along with their
relative pose to compute precise contact points between object and hand. Some of
these metrics have been carefully evaluated by comparing their prediction with the
outcome of real robot experiments (Balasubramanian et al., 2012; Weisz and Allen,
2012). The results of these studies showed that the most popular grasp metrics are
not very good predictors of grasp success in the real world. This insight lead to the
development of data driven techniques for finding metrics to predict grasp success
even for the cases where significant uncertainty is introduced through unknown
object shape, uncertain object pose estimation and inaccurate actuation (see Bohg
et al., 2014 for an extensive review).

Data-driven approaches require ground truth annotations of grasp success, of the
kind shown in Fig. 5.1. One way to generate these annotations is to execute grasps
with a real robot through an existing grasp strategy and observing their outcome.
For instance, Levine et al., 2016; Pinto et al., 2016 approach the objects always from
the top using a simple gripper. In both works, convolutional neural network are
trained they predict the success of a grasp execution. large-scale dataset are used for
the training and the data is obtained through hour and months of experimentation.
Detry et al., 2011 sample not only top grasps but consider all 6 DOF for generating
grasp candidates. In his work the robot follows a sequence on grasp-and-drop ac-
tions with the object to generate a grasp density. It links object-relative grasp poses to
their success probability.

In other approaches, humans demonstrate a grasp to the robot (Balasubramanian
et al., 2012; Goins et al., 2014; Herzog et al., 2014) or manually label images of objects
with good grasps (Lenz et al., 2015; Redmon and Angelova, 2015). In these works the
grasp candidates relies in the human knowledge and expertise, which could discard
successful grasp candidates. All of these approaches are expensive, tedious and
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may require an entire robot farm (Levine et al., 2016) to sample sufficiently many
annotated data points.

FIGURE 5.1: Examples of Successful (green mark) and Unsuccessful (red mark)
grasps.

Another possibility is to execute and automatically label grasp candidates in sim-
ulation (Kappler et al., 2015; Mahler et al., 2016; Popovic et al., 2011). This way, sev-
eral hundred thousand data points can be generated without any manual labeling
or time-consuming execution in the real world. However, this leads to a chicken-and-
egg situation: We want automatically label training data for the purpose of learning
more informative grasp metrics. However, existing metrics do not lend themselves
well to the automatic labeling task (Balasubramanian et al., 2012; Weisz and Allen,
2012). Kappler et al., 2015 propose to use physics simulation for this purpose. By
comparing to the answers of a human oracle, the authors show how this leads to
more realistic labels than when using a classic grasp stability metric. However, a
full physics simulation is orders of magnitude more expensive than to compute the
classic grasp metrics.

5.2 Foundations and related work

5.2.1 Grasps database

There are several publicly-available databases that contain grasps with ground truth
annotations (Pinto et al., 2016; Levine et al., 2016; Lenz et al., 2015; Mahler et al., 2016;
Goins et al., 2014). However, only (Mahler et al., 2016; Kappler et al., 2015; Goins et
al., 2014) include the ground truth object models and relative pose between hand
and object. This is necessary to compute the classic grasp metrics which we study in
this chapter.

There are two ways to obtain ground-truth annotations. One is using real grasp
execution and label it as Stable or Unstable. The other way is using showing grasp
candidates to humans which will label them as Stable or Unstable.

In some databases, ground truth labels of grasp success are generated by exe-
cuting grasps in the real world (Pinto et al., 2016; Levine et al., 2016; Goins et al.,
2014). These are much more informative labels than can be generated by human
subjects just looking at pictures of grasps. However, they are also much more time-
consuming and expensive to generate. Consequently, the resulting data sets are of-
ten much smaller than data sets generated in simulation or may require an entire
robot farm (Levine et al., 2016) to generate sufficiently many grasps.

In previous work, Kappler et al. (2015) generated a large-scale grasp database on
a wide variety of objects in simulation using OpenRave. The work of (Kappler et al.,
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2015) serve as precursor of the studies and experiments performed in this chapter. In
this work, the grasps are generated by sampling grasp candidates uniformly around
the object surface; thereby introducing less bias. In total, it contains approximately
half a million grasps generated on more than 600 different object models with the
BarrettHand.

Kappler et al. (2015) aimed at automatically generating training data with ground
truth labels of grasp stability. The authors assumed that human subjects are perfect
oracles for this prediction task and their judgment could therefore be used to val-
idate the proposed automatic labeling process. Therefore, a subset of the grasps
from the database were presented to human subjects using Amazon Mechanical Turk
(AMT). They labeled them as either Stable, Unstable or Unknown. Each grasp was
judged by at least 5 different subjects. The final label per grasp was averaged over
their responses to normalize for the remaining noise.

In this chapter, we are using this extensive database as a basis to analyze an
entire suite of grasp metrics (Section 2.4) and whether they are useful by themselves
or in combination to predict grasp stability. As a ground truth label of this data, we
will use the human labels, only for Stable and Unstable grasps. The database is the
only one that has human grasp annotation for a large set of grasps (4752) and applied
to a wide variety of different objects (616) with a known 3D shape model. It also
considers noise in the object pose for each candidate grasp.

5.2.2 A physics metric

The central hypothesis by Kappler et al. (2015) is that physical forward simulation
of grasps is more suitable for automatic labeling of data than the classical and most
common Ferrari & Canny metric (QC1 in this thesis). The final labels are computed
by averaging over the physically-simulated outcomes of 30 grasps on a slightly per-
turbed object pose around a reference pose. This mimics noise in perception and
actuation of a robot.

The hypothesis is tested against the answers of human subjects on a subset of the
generated grasps. The results show that the labels based on the physics simulation
are more realistic and therefore more suitable to learn from. However, it is also
orders of magnitudes more expensive to compute than the classic metrics.

For reference, we also report this physics metric in the results section. It indicates
the prediction performance of grasp stability that can be achieved when investing
into this computationally expensive physics simulation.

5.2.3 Selection of quality metrics

In Chapter 4 is performed a statistical analysis of the values produced by ten se-
lected quality metrics on a database that included grasps for seven different hands
and more than hundred objects, resulting in around 900.000 different grasp con-
figurations. The analysis is performed exclusively in simulation and consisted in
establishing upper and lower thresholds for the normalization of the metrics; mea-
suring the stability of the metrics in the presence of small disturbances; and more
importantly, visualizing the correlation between different metrics. This last result al-
lowed to discard three metrics reducing the initial set to seven. These are the seven
independent metrics which will be used in this chapter (see Table 5.1).

The results of these works offer numerical and practical information about the
use of the metrics. The main motivation of this chapter is to address the limitation
of Leon et al. (2014) and Rubert et al. (2018) that no relation between highly ranked
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TABLE 5.1: Summary of the selected independent quality metrics

Name Formula

QA1 Smallest singular value of G (Li and Sastry, 1987) σmin(G)

QB1

Distance between the centroid of the contact poly-
gon and the center of mass of the object (Ding et
al., 2001; Ponce et al., 1997)

1− distance(p, pc)
distancemax

QB2
Area of the grasp polygon (Mirtich and Canny,
1994)

Area(Polygon(p1, ...pn))

Areamax

QB3 Shape of the grasp polygon (Kim et al., 2001) 1− 1

θmax

nf∑
i=1
|θi − θ̄|

QC2 Volume of the convex hull (Miller and Allen, 1999)
Volume(CW )

Volumemax

QD1 Posture of manipulator joints (Liegeois, 1977) 1− 1

nq

nq∑
i=1

(
yi − ai
ai − yiM

)2

QD2
Inverse of the condition number of GJ (Salisbury
and Craig, 1982; Kim and Khosla, 1991)

σmin(GJ)

σmax(GJ)

grasps and the success of their execution is presented. The human labels from Kap-
pler et al., 2015 and the real experiments performed in this chapter, provide a valu-
able ground truth to fulfill this purpose.

5.2.4 Human oracle

The work in Kappler et al., 2015 used humans as ground-truth to evaluate the grasp
success. In this study several images of a grasp are shown to a human subject who
evaluates it as Stable, Unstable, or Unknown. Each grasp is evaluated by at least 5
humans and the average of the evaluations is used to set a grasp as successful or
not.

To filter spamming during the human experiments a rejection ratio is applied to
the evaluations. This rejection ratio discards the evaluations of subjects who failed to
correctly classify the grasp at least n times. In their work, Kappler et al., 2015 applied
a rejection ratio of 0.3.

However, the use of humans as ground-truth is still questionable. There are no
report or study on the accuracy of human knowledge to evaluate simulated grasps.
Is thus, part of this chapter study the predictive capability of humans.

5.2.5 Related work

Goins et al. (2014) present very relevant work to this chapter. The authors address
the problem of learning a predictor for successful grasps. In their approach, candi-
date grasps are instructed by humans and tested on a real robot. Up to 13 metrics
are calculated for each grasp. Dimensionality reduction and a Gaussian Process are
used to produce a predictor that demonstrates better performance than when using
individual metrics.

There are similarities with our approach but there are also relevant differences.
First of all, we are using 7 metrics instead of 13, but our subset has been previously
reduced by discarding highly correlated metrics (Rubert et al., 2018). Although the
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classifiers may be able to cope with 13 metrics, we simplify the learning problem
and the subsequent analysis by reducing the dimensionality of the input space. An
obvious strength of (Goins et al., 2014) is that grasps are tested on a real robot, which
is a more valuable ground-truth.

However, all of these grasps have been demonstrated by humans. In our opinion,
this introduces a bias in the selection of grasps that could affect the learned models.
This process potentially discards grasp configurations which could be successful but
are not intuitive for humans. Furthermore, the dataset in their work is much smaller
than the dataset used in this chapter. Also fewer objects are considered.

5.3 Binary classifiers

We aim to find a model y = f(x;w) that can predict binary grasp success y given an
input feature vector x consisting of different grasp quality metrics. Our approach is
to learn a binary classifier from the data in (Kappler et al., 2015) that ideally mini-
mizes the following equation:

min
w

∑
(x,y)∈D

1− l(f(x;w), y) (5.1)

where w denotes the parameter vector of the classifier and

l(f(x;w), y) =

{
1, if f(x;w) = y

0, otherwise
(5.2)

Every classifier considered in this chapter minimizes a loss in this setting. For
various reasons, the exact loss formulations may vary per method, e.g. through
different regularizers or by dropping the indicator function in order to get gradients.

Given this data set D, we train the following classifiers that have different char-
acteristics (linear versus non-linear, non-parametric versus parametric) using SciKit-
Learn (Pedregosa et al., 2011) or Matlab (MATLAB, 2010).

The optimization for each method was done using grid search and cross-validation.
Details are presented in each subsection. A more in-depth description of the classi-
fication methods used in this chapter can be found in (Bishop, 2006).

Logistic regression

Logistic regression is a linear model for classification. The logistic function σ(wTx)
models the probability P (y = 1|x) of feature vector x describing a stable grasp y = 1
with

σ(a) = 1/(1 + exp(−a)). (5.3)

To find the weight vector w, we optimize the following regularized loss function:

min
w
‖w‖1 − C

∑
(x,y)∈D

y ln t+ (1− y) ln(1− t) with (5.4)

with t = σ(wTx), ‖ · ‖1 denotes the L1-norm and encourages a sparse weight vector.
C balances between the classification loss and the regularizer. The key assumption
in logistic regression is linearity between the input features and the log odds, i.e. the
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log of ratios of binary class probability. If the data is linearly separable this method
can recover the global minima of (5.1). We optimized the parameters using two loss
functions (L1 and L2) and two values for C: [1,2]. The loss functions L1 and C = 1
showed the best performance.

The logistic function σ(wTx) is defined as:

f(x;w) =
et

et + 1
=

1

1 + e−t
(5.5)

Naive bayes

Naive Bayes models the probability of a grasp being either stable or not using Bayes
theorem.

P (y|x) =
P (y)P (x|y)

P (x)
. (5.6)

Its key assumption is that given the class label y, the distributions of the input vari-
ables x = (x1, . . . , x7)

T are independent. Thus, we can rewrite Bayes theorem as:
Formally, this means

P (xi|y, x1, . . . , xi−1, xi+1, . . . , x7) = P (xi|y) (5.7)

leading to the following simplification of (5.6):

P (y | x1, ..., x7) =
P (y)

∏7
i=1 P (xi | y)

P (x1, . . . , x7)
(5.8)

To finally classify a data point, we have

f(x;w) = ŷ = arg max
y
P (y)

7∏
i=1

P (xi | y) (5.9)

The parameters of this Naive Bayes model are P (y) (the relative frequency of
class y in the training set) and P (xi | y) (the distribution of a grasp quality met-
ric given a class label; modeled as Gaussian in this chapter). We use Maximum A
Posteriori (MAP) estimation to determine these parameters.

k-Nearest neighbors

K-Nearest Neighbors (KNN) is a non-parametric approach. It makes no assumptions
about the distribution that generates the data. Instead, it classifies a test data point
based on the class membership of its K nearest neighbors in feature space. To define
distances, we assume that this space is Euclidean.

Formally, KNN uses Bayes theorem to model the posterior probability of a grasp
being successful or not

P (y = c|x) = Kc/K (5.10)

where Kc is the number of data points belonging to class c among the K nearest
neighbors of x and c corresponds to either Stable or Unstable. To classify a data point,
we maximize this posterior distribution over the binary class labels.



94 Chapter 5. Grasp success prediction

K is the hyperparameter in this classification method. In general a larger K
suppresses the effects of noise, but makes the classification boundaries less distinct.
We used a validation set to find the optimal K for our data set. KNN is well suited
for our relatively low-dimensional feature space. However, in its most basic form
inference for this method does not scale well with the number of data points and
dimension of feature space.

Two different weight functions were compared during the training: uniform and
distance. Theweights = uniform, assigns uniform weights to each neighbor. weights =
distance assigns weights proportional to the inverse of the distance from the query
point. The K value was analyzed from 1 to 20. In our results the distance function
showed a better performance with a K value of 5.

The distance function is:

f(x;w) =

√√√√ k∑
1

(xi − yi)2 (5.11)

Classification trees

Classification Trees (CTs) are another non-parametric approach. A CT is a binary tree
that divides the input feature space at each node j into two regions according to
whether xi ≤ θj or xi > θj . θj is a parameter of the model. These sub-regions are
independently subdivided further by moving down in the tree until a leaf node is
reached.

Each leaf node of the tree encodes a region Rτ in the input space. This region
contains Nτ training data points associated with class labels yn. Let us assume that
a test data point with features x ended up in the leaf node corresponding to Rτ .
The probability P (y = c|x) is then the fraction of data points labeled with c in that
region.

P (y = c|x) = mc,τ with mc,τ =
1

Nτ

∑
(xn,yn)∈Rτ

1(yn, c) (5.12)

For the final classification of a test data point, we again maximize P (y = c|x) over
the class labels c.

To learn a CT, we need to find the optimal split parameters θj at each node of
the tree. This is done by a standard greedy strategy where at each new node, we
optimize a certain criteria over a set S of candidate pairs of input features xi and
thresholds θj . The criteria has to capture the purity of class labels within the sub-
region Rτ resulting from a candidate split of the input region. In this chapter, we
chose the Gini impurity g(Rτ ):

min
sτ∈S

g(Rτ ) with g(Rτ ) = 1−
∑

c∈{0,1}

m2
c,τ (5.13)

The more nodes are added, the deeper the tree and therefore also the more complex
the decision rule. To avoid overfitting, we have found a maximum tree depth = 5
using the validation set. We have further investigated using entropy as an impurity
measure with no significant difference in the results.
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Support vector machines

In this chapter, we use Radial Basis Function Support Vector Machines (RBF SVMs)
as a non-probabilistic binary classifier. It is characterized by defining a max-margin
hyperplane that separates the two classes such that the distance between the closest
data point and the hyperplane is maximized. Given a data point with x as feature
vector, we classify it as 1 if f(x;w) > 0 or 0 otherwise

y =

{
1, if f(x;w) > 0

0, otherwise
(5.14)

To find the optimal parameters w and b of the classifier given the dataset, we
maximize the dual problem formulation

max
α

‖D‖∑
i=1

αi −
‖D‖∑
i=1

‖D‖∑
j=1

yiαik(xi,xj)yjαj (5.15)

st.

‖D‖∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C (5.16)

where C trades off between margin size and correct classification of the data points
and k(xi,xj) = exp(−γ‖xi−xj‖2) is the RBF kernel with the hyperparameter γ. The
hinge loss defines a soft margin that is beneficial in case the data is not separable
but otherwise reduces to the hard margin SVM. In order to infer the class label we
replace f(x;w) with the result of the dual optimization problem,

f(x;α) =
∑

αi:αi>0

αik(xi,x) + b. (5.17)

Here the weight is determined based on the kernel evaluation and the dual variable.

Gaussian processes

A Gaussian Process (GP) is a probabilistic, non-parametric method. More specifically,
it is defined as a collection of a finite number of random variables with a joint Gaus-
sian distribution. In our case, this collection consists of the grasps in the training
data D = {x, y}‖D‖. In the following, we summarize the data in the matrix X and
vector y. A GP can be seen as a distribution over functions with a mean µ and co-
variance Σ. If we want to query the label y0 of a test data point with feature vector
x0, we have f(x0) ∼ N(µ,Σ) with

µ =k(x0,X)T [K(X,X) + σ2MI]−1y (5.18)

Σ = k(x0,x0)−k(x0,X)T [K(X,X) + σ2MI]−1k(x0,X). (5.19)

σ2M is the variance of the noise on the target values.
The entries of the covariance matrix K(X,X)p,q at row p and column q are de-

fined based on a covariance function k(xp,xq) with some hyperparameters θ. We
use the squared exponential covariance function

k(xp,xq) = σ2l exp(−((xp − xq)
TL−1(xp − xq))/2) (5.20)
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where the hyperparameters are σl, the signal variance, and L, the identity matrix
multiplied with the length scale l. We optimize these hyperparameters in the stan-
dard way by maximizing the marginal likelihood. To compute P (y0 = c|x0), we
squash f(x0) through the logit function (5.3).

Neural networks

Neural networks are nonlinear functions that we use in this chapter to map from
our input feature vector x to the binary labels y. They are organized in multiple lay-
ers. Except from the input layer, each layer takes the output of the previous layer as
input, potentially transformed with some non-linear function. For a binary classifi-
cation, the output of the last layer is transformed using the logistic function (5.3). To
classify a test data point with for instance a two-layer network, we need to compute

P (y = c|x) = σ
(∑

j = 0Mw
(2)
cj h

(∑
i = 17w

(1)
ji xi

))
(5.21)

where h(·) refer to the logsig transfer function of the output from the first layer. The
superscript (1) and (2) indicates the different weights of each layer.

Up to 12 different algorithms and 100 hidden layers for training the Neural Net-
work were tested using the Matlab Neural Network Toolbox1. The best one was
Bayesian Regularization (Foresee and Hagan, 1997), with layer size 17. It relies on
the Levenberg-Marquardt algorithm to learn the optimal weights w(l) for each layer.
The validation set is used for early stopping and manual network structure opti-
mization.

Evaluation metrics for classifiers

For comparing the different classification methods, we report accuracy, precision,
recall and f1-score.

• The accuracy score correspond to the count of correct predictions, i.e. the count
of true positives (tp) and true negatives (tp).

• The precision is the ratio tp/(tp + fp) where fp is the number of false posi-
tives. Intuitively, it measures the capability of the classifier to avoid labeling a
negative as a positive sample.

• The recall is the ratio tp/(tp + fn) where fn the number of false negatives.
Intuitively, recall measures the capability of a classifier to find all the positive
samples.

• The f1-score is the harmonic mean of precision and recall: F1 = 2∗ (precision∗
recall)/(precision+ recall). It reaches its maximum at 1 and minimum at 0.

1MATLAB, 2010
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5.4 Case study 1: Human oracle

In this study we aim to find a model that predicts grasp success given an input
feature vector of seven grasp metrics. Our approach is to learn this model from a
large scale dataset with human annotations. In the following, we first describe the
input features and the output label.

Then the methodology applied for the training procedure is explained and fi-
nally, the results are presented. We present results from two sets of experiments.
First, we compare different classification methods to analyze their predictive capa-
bility. Second, we analyze the relevance of each grasp metric.

5.4.1 Feature vector and label

We compute the input feature vector x for each grasp in Kappler et al., 2015 with
OpenHand (3.1). This input feature vector is composed by the evaluation with qual-
ity metrics on each grasp. Most of these metrics use the contact point information
provided by the simulator, along with different information about the object and
gripper geometry. The implementation and details of the quality metrics used is
widely discussed in the literature: Roa and Suárez (2014), Leon et al. (2014), and
Rubert et al. (2018) and the previous chapter (Chapter 4).

For contact detection, we use ODE. The friction coefficient of the contact points is
0.4. Each grasp has a ground truth success label provided by a human oracle where
y = 1 refers to a Stable and y = 0 to an Unstable grasp. Our data set D is comprised
of tuples (x, y), a feature vector and the corresponding label.

5.4.2 Methodology

Dataset

The null error rate of the dataset is 57%. This rate measures the accuracy of a classifier
that would label all grasps in the dataset as Unstable. We use this as a lower baseline
to study the effectiveness of the different predictors.

The dataset of grasps is split in the two following ways. First, we perform a
random split where the Train set contains 80% and the Test set 20% of the grasps.

Second, we split the dataset such that the Train set only contains grasps from 80%
of the objects and the Test set grasps from the remaining 20%. In this way, the trained
models will be tested on a set of held-out objects they have not previously seen.

Training, validation and testing

For both split methods (random and held-out) the Train dataset is used to perform
a 10-fold cross-validation. This method splits the train dataset into 10 smaller sub-
sets (folds). It trains 10 models, each using one of the folds for validation and the
remaining folds for training. We report the mean classification accuracy and its stan-
dard deviation (std) over these 10 models. We optimized the hyperparameter of
the classification methods using this 10-fold cross-validation. Once each classifier is
cross validated, a new training is done using the Train dataset and the model’s per-
formance is tested on the Test set. The results of the cross-validation and testing are
reported for the two types of data set splits: random and held-out objects. Results on
the held-out objects are only shown for the comparison of the classification methods
as scores remained similar to the random split in the second set of experiments.
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5.4.3 Results

In this section is shown first, the results comparing different machine learning algo-
rithms for training our prediction model. Next, are shown the results on the perfor-
mance of individual metrics to predict grasp success.

TABLE 5.2: Comparison of classification models. We report mean/std of clas-
sification accuracy using cross validation as well as accuracy on a test set.
Results are computed for two dataset splits: random and held-out objects. As

baseline, the Null Error rate on each dataset is showed.

Classifier
Random Split Held-out Objects
CrossVal Test CrossVal Test

Logistic Regression 0.73 ± 0.03 0.72 0.73 ± 0.05 0.72
Naive Bayes 0.55 ± 0.02 0.55 0.55 ± 0.06 0.58
K-Nearest neighbors 0.80 ± 0.02 0.78 0.76 ± 0.02 0.74
Classification trees 0.80 ± 0.01 0.78 0.75 ± 0.01 0.72
SVM 0.70 ± 0.02 0.70 0.69 ± 0.07 0.70
Gaussian Process 0.75 ± 0.03 0.75 0.74 ± 0.04 0.76
Neural Networks 0.80 ± 0.05 0.75 0.76 ± 0.05 0.73
Null Error Rate 0.55 0.55 0.55 0.58

Comparison of classification methods

Table 5.2 presents the mean classification accuracy and its standard deviation per
algorithm using cross-validation for the two different splits of the dataset. It also
reports classification accuracy on the test sets.

The results shown in this table are achieved with models whose hyperparameters
are already optimized on a validation set.

A deeper analysis of the performance of different algorithm is shown in Table 5.3.
Additionally to the accuracy already reported in Table 5.2, it also report precision,
recall and F1-score. As a reference, we also calculate these metrics for the binary
labels generated through physics simulation of the grasps (Kappler et al., 2015).

TABLE 5.3: Comparison of classification methods using different metrics to
evaluate models performance.

Accuracy Precision Recall F1-Score
Logistic Regression 0.72 0.75 0.72 0.72
Naive Bayes 0.55 0.73 0.55 0.50
K-Nearest Neighbors 0.78 0.77 0.77 0.77
Classification Trees 0.78 0.78 0.78 0.78
SVM 0.70 0.72 0.70 0.70
Gaussian Process 0.75 0.76 0.76 0.76
Neural Networks 0.75 0.75 0.75 0.75
Physics Metric 0.87 0.87 0.87 0.87
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Quality metrics predictive capability

In this second set of experiments, we analyze the performance of individual quality
metrics to predict the stability of a grasp. This analysis is done in two ways, first a
study on the individual performance of each metric and then, an ablation study on
the influence of each metric for the predictors. To support this analysis, we visualize
the distribution of Stable/Unstable grasps for each metric. Next figures, from fig. 5.2
to fig. 5.8 show the histograms of this data (with normal or log scale).

FIGURE 5.2: Distribution of Stable (green) and Unstable (red) grasps for metric
QA1. Histogram with log scale of y-axis.

FIGURE 5.3: Distribution of Stable (green) and Unstable (red) grasps for metric
QB1. Histogram with log scale of y-axis.

Given the results from the comparison of classification models, we selected Clas-
sification Trees and KNN to study the capability of individual quality metrics to
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FIGURE 5.4: Distribution of Stable (green) and Unstable (red) grasps for metric
QB2. Histogram with log scale of y-axis.

predict grasp success. Table 5.4 reports classification accuracy. Additionally, we an-
alyzed the performance of these classifiers when they use as input features all but
one of the quality metrics. Table 5.5 shows the results of this ablation analysis.

TABLE 5.4: Performance of individual Quality Metrics to predict grasp stabil-
ity.

Selected
Metric

Classification trees K-Nearest neighbors
CrossVal Test CrossVal Test

QA1 0.60 ± 0.03 0.62 0.61 ± 0.02 0.61
QB1 0.57 ± 0.00 0.59 0.57 ± 0.02 0.58
QB2 0.57 ± 0.00 0.59 0.57 ± 0.01 0.56
QB3 0.57 ± 0.00 0.59 0.63 ± 0.02 0.64
QC2 0.75 ± 0.03 0.72 0.73 ± 0.02 0.71
QD1 0.57 ± 0.00 0.59 0.57 ± 0.03 0.58
QD2 0.57 ± 0.00 0.59 0.57 ± 0.03 0.59
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FIGURE 5.5: Distribution of Stable (green) and Unstable (red) grasps for metric
QB3. Histogram with log scale of y-axis.

TABLE 5.5: Ablation analysis on the use of Quality Metrics to predict the sta-
bility of grasps.

Discarded
Metric

Classification trees K-Nearest neighbors
CrossVal Test CrossVal Test

QA1 0.73 ± 0.02 0.74 0.75 ± 0.02 0.76
QB1 0.74 ± 0.02 0.75 0.78 ± 0.02 0.76
QB2 0.74 ± 0.02 0.74 0.76 ± 0.02 0.77
QB3 0.72 ± 0.02 0.73 0.76 ± 0.03 0.80
QC2 0.69 ± 0.03 0.70 0.72 ± 0.02 0.72
QD1 0.74 ± 0.02 0.74 0.75 ± 0.02 0.76
QD2 0.74 ± 0.02 0.76 0.77 ± 0.02 0.77

Discussion

In this section has been studied the reliability of different machine learning algo-
rithms for predicting the stability of a grasp. A database with more than 4699 grasps
labeled by humans as Stable or Unstable has been evaluated using the quality metrics
listed in Table 5.1. With this data, we analyzed the direct relation between indepen-
dent Quality Metrics and the human-evaluated stability of the grasp.

Table 5.2 shows the results for the different learning models using the seven qual-
ity metrics. Four types of models obtain the best results (K-Nearest neighbors, Classi-
fication trees, Gaussian Process and Neural Networks). The column presenting results
when the data is split by objects is a good indicator of the generalization capability of
the models. Here, a Gaussian Process performs best. An additional comment comes
from the comparison between the cross-validation performance on the training set
and the performance on the test set. The values are close in general, indicating that
overfitting is well controlled. In general, non-parametric and non-linear methods
seem to capture the structure of the data best. As expected from figures 5.2 to 5.8,
assuming conditional independence of the input quality metrics (Naive Bayes) leads
to the worst performance.
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FIGURE 5.6: Distribution of Stable (green) and Unstable (red) grasps for metric
QC2. Histogram with log scale of y-axis.

Table 5.3 reports similar results as Table 5.2. Interestingly, this table also includes
the performance of the Physics Metric (Kappler et al., 2015) on the test dataset. It
clearly outperforms the models learned using the combination of the other seven
quality metrics, and as we show below the performance of any individual metric.
The drawback is that this metric is based on a dynamic simulation and is compu-
tationally much more expensive than computing the grasp quality metrics. For real
time grasp prediction, the computation of a few quality metrics will be always faster
than dynamic simulation.

Between the four more successful models some practical considerations in terms
of computational effort can be made. Especially, prediction time is of interest in this
context. Except from K-Nearest Neighbors and Gaussian Processes, all classification
methods scale well with an increasing number of training data points.

More interesting is the analysis of the contributions of each individual metric in
the prediction. This is shown in Tables 5.4 and 5.5. Two main results can be ob-
served. First, only metric QC2 shows a clear discriminative capability ( 72% using
Classification trees) while the remaining metrics remain at the null error rate, 57%, or
slightly above. These results highlight the complexity of the classification problem.
Evidence of this can be found in figures 5.2 to 5.8 where, for each metric, the distri-
bution of Stable and Unstable labels is represented. There is a strong overlap of these
distributions making it hard to establish clearly differentiated clusters on any of the
metrics.

Second, however, when combined, the predictive capability of the quality met-
rics increases to 12% above null error rate in the worst case (70% when only dis-
carding QC2 in Table 5.5). This suggests that the data is easier separable when rep-
resented in the combined space. This structure can be exploited by the classifiers
(except by Naive Bayes).

To relate to results in similar chapters (Goins et al., 2014), we also report the
results from a Gaussian Process model in Table 5.2. It shows similar performance to
other learned models. However, we cannot draw further conclusions as the dataset
used in (Goins et al., 2014) is very different (in terms of size, features and labels) and
the results are reported differently.
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FIGURE 5.7: Distribution of Stable (green) and Unstable (red) grasps for metric
QD1. Histogram with log scale of y-axis.

The evaluation through metrics lays in the ability to obtain accurate data from
simulation, that will be noisy in real world. Although the robustness of metrics is
studied in other works Rubert et al., 2018; Leon et al., 2014, direct application of
these results to real experiments should be taken carefully.
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FIGURE 5.8: Distribution of Stable (green) and Unstable (red) grasps for metric
QD2. Histogram with log scale of y-axis.

5.4.4 Conclusions

This section presented a study on the capability and relevance of quality metrics
to predict the stability of a given grasp. A large database of human labeled samples
has been employed to train several binary classifiers. The results have demonstrated
the complexity of the problem but also that a combination of different metrics can
deliver a performance up to 0.78; more than 0.20 over the null error rate and higher
that any individual metric.

The contributions of the section are therefore: we analyzed classic quality met-
rics on a database of 4699 human labeled samples, more that in any other study; a
set of classification methods has been used and compared, showing which of them
performs best; and, the results have been quantitatively and qualitatively compared
with previous results.

There are several future directions. In the current data set, human subjects have
judged the stability of a grasp by looking at pictures of it that are taken from different
viewpoints. Although this allows a very large amount of labels, they have not been
verified by executing the grasps on a real robot and checking the outcome. A further
study with samples executed on real robots is performed in the following section
5.5, to confirm the results of this work. Two main questions should be addressed:
Do the results presented here translate to real robot executions?, and How good are humans
as predictors of grasp success?.
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5.5 Case study 2: Real grasp execution

In this study we address three main questions: first, are humans good grasp predic-
tors? Second, can we find a combination of metrics able to predict the outcome of
real grasp executions? And third, can we use contextual information to improve the
prediction of grasp executions?

To answer these questions we perform a series of grasp using a real robot system.
We score these grasp executions as Stable or Unstable. These results are compared to
the evaluation using dynamic simulation and human labeled data. Finally we train
and compare four classifiers, non-linear and non-parametric, using as input feature
vector the evaluation with grasp metrics and contextual information.

This section is structured as follows, first a description on the notation and se-
mantics used to detail the experiments, second the experiments and evaluation of
grasps with a real robotic system are explained, and third we output the results of
this grasp executions and the analysis with other grasp evaluation methods and ma-
chine learning algorithms.

5.5.1 Notation

For a better understanding of the experiments and results, the notation and defini-
tions used are detailed next:

• Pose: A pose is defined as a 7 elements array: translation + rotation quaternion
(x, y, z, w, ax, ay, az).

• Grasp pose: A grasp is defined by two different poses, a hand and an object.
First, the pose of the gripper prior closing its fingers. Second, the pose of the
object. A grasp is assumed to have been evaluated using real experiments, QM
and the Physics Metric.

• Experimental score: A experimental score is the result of a grasp preformed in
real world. Such score can be Stable, Unstable or Unknown2.

• Candidate grasp: A candidate grasp is a grasp generated and simulated in
OpenRave. Such grasps are evaluated using quality metrics and some have
been evaluated by a physics metric and/or labeled by humans.

• Quality metrics (QM): The quality metrics are a set of 7 independent metrics
used to evaluate the quality of a grasp.

• Physics metric: The physics metric (Kappler et al., 2015) is a metric for evaluate
grasps based in dynamic simulation. It is a binary metric: 1-Stable, 0-Unstable.

• Human grasp label: Candidate grasps are labeled by a human subject who
predicts whether this grasp will be successful or not. Each candidate grasp is
evaluated by multiple subjects and their scores are averaged. We call the final
binary success label a human grasp label.

• Experimental grasp: An experimental grasp is a grasp performed in the real
robot. Each experimental grasp has an associated candidate grasp and gravity

2Unknown grasps are discarded from the experimental results as they do not provide relevant in-
formation
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vector. The presence of noise in the real robot, makes the candidate and exper-
imental grasp poses slightly different. Each experimental grasp is evaluated in
simulation using quality metrics and has an associated experimental score.

On each grasp execution, the gripper and object poses are recorded, and are
later evaluated with QM using OpenHand (see Section 3.1). The experimental
score associated to the experimental grasp is annotated by the human operator.

• Grasp cluster: A cluster of grasps is defined as a set of different experimental
grasps which have the same candidate grasp and the same gravity vector. A
cluster of grasps contains from 3 to 5 experimental grasps.

• Gravity Vector: The gravity vector represents the direction of gravity relative
to the local object coordinate system. For example, a bottle in its canonical
pose (Figure 5.9a) will have a gravity vector [0,0,-1], if it’s upside down it will
be [0,0,1]. Each experimental grasp has an associated gravity vector. Figure 5.9
shows different gravity vectors over a bottle.

(A) Gravity 0,0,-1 (x,y,z) (B) Gravity 0,-1,0 (x,y,z) (C) Gravity 0,0,1 (x,y,z)

FIGURE 5.9: Example of an object with three different gravity vectors. World
axis is showed as reference for the normal gravity vector (0,0,-1).

• Average Grasp: For each cluster of grasps we define an average grasp. We
use this average grasp as representative of the cluster. We also assume that it
is similar to the candidate grasp that generated the cluster. Its quality is the
averaged QM for each of the experimental grasps within the cluster. It has an
experimental score associated as the most frequent value of the experimental
scores of the experimental grasps. An average grasps has the same physics
metric, human label and experimental score as its candidate grasp. The values
of the QM are different but still similar.

Figure 5.10 illustrates the relations between candidate grasps, experimental
grasps, grasp clusters and average grasps.

• Object Properties: For each object we consider two properties: object volume
and object weight.

• Contextual Information: We consider Contextual Information as external data
related to the grasp, object or gripper, but not directly related to the contact
points or quality metrics. In this study, we analyze how the Gravity Vector or
the Object Properties could influence the outcome of grasp executions.
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FIGURE 5.10: Relationships between candidate grasps, experimental grasps,
grasp clusters and average grasps.

• Input Signal: We define the input signal as a set or subset of QM, object prop-
erties and gravity vector related to an experimental grasp. This input signal is
used by the classification methods to train or test different prediction models.

5.5.2 Methodology

To obtain the experimental score of a candidate grasp, it is necessary to evaluate it on
a real robotic platform. In this experiment we use the Apollo Robot (Section 3.5). For
the purpose of the experiments we will use only one arm and one hand of the Apollo
system.

For performing the experiments we selected 9 different objects from the dataset
of the previous study (Section 5.4). These objects are printed using 3D printers and
cover different weights, dimensions and shapes. The objects are: bottle 1, bottle 2,
toaster, camera, lemon, bowl 1, bowl 2, jar 1 and jar 2. Figure 5.11 shows the object
models.

Experimental protocol

To perform the experiments, we apply the following experimental protocol:

Step 1: Initial setup. Move the arm/gripper to an initial pose. The gripper is
placed initially in a top left position. This way the robot is able to plan and move the
arm to a variety of poses over the table for grasping an object.
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(A) Bottle_050 (B) Bottle_047 (C) Camera_015

(D) Lemon_003 (E) Bowl_022 (F) Bowl_025

(G) Toaster_001 (H) Jar_002 (I) Jar_004

FIGURE 5.11: Object models used for the experiments with the Apollo robot
system. Objects are: (a)Bottle 1, (b)Bottle 2, (c)Camera, (d)Lemon, (e)Bowl 1,
(f)Bowl 2, (g)Toaster, (h)Jar 1 and (i)Jar 2. Subcaptions show the object name

in the dataset.

Step 2: Detect and track the object pose. To recognize and track the object we
use the Depth-Based Bayesian Object Tracking Library (Wüthrich et al., 2013; Issac et
al., 2016). This library implements two different algorithms for object tracking: a
particle filter and a Gaussian filter. In our experiment the particle filter is used. This
library allows to automatically detect the desired object and obtain its pose w.r.t. the
robot platform.

Step 3: Select a candidate grasp to be tested. Among the different candidate
grasps generated and evaluated with OpenHand, the human operator selects one to
be tested. A candidate grasp has to be feasible to be selected. This means the robot
or hand won’t collide with the table when trying to acquire the grasp pose and the
arm/planner is capable to move to that pose.

Also, when possible, the candidate grasps are evaluated using different object
poses or orientations. In these cases, although it is the same candidate grasp, it is
considered as a new grasp cluster, performing a new series of experimental grasps.
This way, a candidate grasp could be evaluated in up to 6 different object poses
(gravity vectors), each executed for at least three different trials.

Depending on the object shape and environment restrictions, some candidate
grasps are evaluated with only one gravity vector, while others are evaluated with
different gravity vectors. There is no specific protocol to set whether a grasp is evalu-
ated with different gravity orientations. It depends on the human operator decisions
whether a candidate grasp is evaluated with different gravity vectors.
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Step 4: Move the arm/gripper to the grasp target pose. Once we have selected
a feasible grasp, the planner moves the arm/gripper to desired grasp target pose.
In case the arm hits the object during its movement or the plan fails to achieve the
goal gripper pose, the grasp try is considered as Not Valid or Unknown and a new
experimental grasp is attempted.

Step 5: Close the hand. If the gripper achieves the desired grasp target pose,
the robot starts closing its fingers until a minimum strain is detected for each finger
joint on the gripper. Each joint has a strain threshold to ensure the gripper applies
enough pressure over the object and not just touches it.

Step 6: Move the gripper up: 15cm for small/medium objects, 25 cm for larger
objects. Once the minimum strain on each joint is achieved, the joints of the fingers
are blocked and the arm starts moving the gripper between 15 to 25cm up in the air.
If the grasp is stable the object will be lifted. For unstable grasps, the object will not
be lifted or will slip during this lifting event.

Step 7: Hold the hand in the lift pose for three seconds. Once the lift pose
is achieved. The arm keeps this pose for 3 seconds, if the object remains in the
gripper for this time, the grasp is considered Stable. If this time has expired and the
object is not in the gripper, the grasp is considered Unstable. Figures 5.12 and 5.13
illustrates two examples of successful and unsuccessful experimental grasps. Both
experimental grasps correspond to the same candidate grasp.

Step 8: Place the object on the table. After holding the object, the gripper is
placed again on the desired grasp pose. A margin of +2cm is applied in the Z axis to
avoid the object hitting directly the table surface.

Step 9: Release the object. After achieving the releasing pose, the fingers are
opened and the object is finally released (in case the grasp was Stable).

Step 10: Move the arm/gripper to the initial pose. Finally the arm/gripper are
moved to its initial pose (step 1).

FIGURE 5.12: Example of a successful real grasp execution
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FIGURE 5.13: Example of an unsuccessful real grasp execution

Experimental score

For each experimental grasp, we score it as success(1), fail(0) or unknown(-1). If we
get three trials with the same result we stop the series of trials and move to the next
candidate grasp to be evaluated. In total, 1349 experimental grasps are performed.
On average, 50 candidate grasps are tested and 150 different experimental grasps
are performed with each object.

Exceptions: There are some circumstances which may diverge the experimen-
tal protocol: the arm/gripper hits the object during the movement, the object pose is
unstable prior to grasping, the object falls while the hand closes, the planner moves
to a wrong pose or the object tracking fails/loses the object. Figure 5.14 illustrates
an example of a Not Valid try. In this case the motion planner moves the arm too
close to the object pose and the gripper hits the object, making it fall before closing
its fingers.

FIGURE 5.14: Example of a failed try. The gripper throws the object when
approaching to the grasp pose.

In all these cases, the experimental grasp was considered as Not valid and thus,
discarded. From the 1349 experimental grasps performed, 243 (18%) were discarded.
Our final dataset contains 1106 Stable/Unstable experimental grasps. All of them are
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evaluated with QM, 830 were evaluated with the physics metric, 600 have the human
label and 324 have both, the human label and the physics metric (see Figure 5.15).

FIGURE 5.15: Distribution of grasps evaluated with quality metrics, physics
metric and human label.

Input feature vector and dataset

For defining the input signals used by the classification methods, we will use differ-
ent data sets. These data sets depend on the type of grasp used: experimental grasp,
grasp clusters or average grasps; and how we select or filter them. In all our datasets
we split the data in Train and Test with 80% and 20% of the grasps respectively. We
will define 5 different data sets:

• FS (full set): This dataset uses the experimental grasps and the data is split
randomly between train and test.

• CS (cluster set): Experimental grasps are split according to different clusters of
grasps. This is, held-out clusters in the test test. Thus, the prediction models are
tested with unseen clusters of experimental grasps.

• SS (synthetic set): Only the averaged grasps are used. It is split randomly be-
tween train and test as in FS.

• GS (gravity set): This set contains only clusters of grasps with same candidate
grasp but different gravity vectors. I.e. lets say we have five clusters of grasps
(A.B,C,D,E) with candidate grasp (1,2,1,3,3) respectively, Only clusters A,C,D
and E are selected for this data mode. The data is splitted randomly among
different tries as in FS.
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• OGS(XYZ) (one gravity set): This sets contains only experimental grasps with
the same gravity vector. I.e. if we have only five grasps (A,B,C,D,E) with
1D gravity vectors [1,0,1,-1,1]. We’ll have three different OGS: Gravity 1 with
grasps (A,C,E), Gravity 0 with grasp (B) and Gravity -1 with grasp (D). As
our gravity vectors are 3D and have 3 different values, this generates could
generate to 27 seven different OGS modes of training. In our dataset, there are
only 10 different OGS models. Data is split randomly between train and test.

Table 5.6 shows the distribution of grasps on each dataset.

TABLE 5.6: Distribution of Stable-Unstable grasps among the different filtered
datasets. For the OGS the name indicates the gravity axis. OGSX: gravity only
in axis X. OGSX-Y gravity in axis X and -Y. Only OGS models which contain

grasp tries are included in the table.

Stable Unstable Nº of Grasps
FS 582 524 1106
CS 582 524 1106
SS 128 215 343
GS 194 181 375
OGS-X-Y 9 14 23
OGS-X 14 32 46
OGS-XY 6 15 21
OGS-Y 11 21 32
OGS-Z 272 202 474
OGSZ 103 120 223
OGSY 10 8 18
OGSX-Y 3 12 15
OGSX 18 32 50
OGSXY 11 6 17

Finally, for each one of the data sets 4 different types of input signals are consid-
ered:

• QM: 7 Dimensional input signal containing the evaluation of grasps with qual-
ity metrics.

• QMO: 9-D input signal with the evaluation with QM and the Object Properties
(object’s volume and weight) .

• QMG: 10-D input signal with the evaluation with QM and the Gravity Vector.

• QMOG: 12-D input signal with the evaluation with QM, the Object Properties
and the Gravity Vector.

Classification methods

From the results obtained in the study with Human labels, four different classifiers
are tested to generate the prediction model:

• Classification trees

• Neural networks
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• k-Nearest neighbors

• Gaussian process

These classifiers correspond to those non-linear and non-parametric algorithms
which showed better prediction results in the previous case study, Section 5.4.

5.5.3 Results

Experimental score vs. human labels vs. physics score

First, we will compare the capability of the physics metric and the human labeling
to predict the outcome of real executions of grasps. As the evaluation with human
labels and physics metric was done with the specific grasp poses of the candidate
grasps, we use only the averaged grasps (Figure 5.10). This data set contains 343
grasps.

These results are shown in Table 5.7. A more detailed analysis on the predictive
capability of Humans and Physics metric is shown in Table 5.8. It shows different
metrics to report the score of a prediction model. These tables show for the success
and fail labels, the scores on precision, recall and f1-score.

TABLE 5.7: Predictive ability between Human labels, Physics Metric and Real
Experiments. Results shown are accuracy score.

Humans Physics Real Exp.
Humans 1.00
Physics 0.85 1.00
Real 0.61 0.64 1.00

TABLE 5.8: Score report on the use of humans and Physics to predict grasp
success on real experiments. Upper table shows results for human labels.

Lower table shows results for physics metric.

Human Labels
Real Score Precision Recall f1-Score
0 1.00 0.03 0.05
1 0.60 1.00 0.75
avg/total 0.76 0.61 0.47

Physics Metric
Real Score Precision Recall f1-Score
0 0.78 0.53 0.63
1 0.55 0.80 0.65
avg/total 0.68 0.64 0.64

Table 5.9 shows the capability of humans and the physics metric to predict the
outcome of real grasp executions according to specific gravity orientations. it em-
ploys the OGS datasets, we selected only averaged grasps with specific gravity vec-
tors.
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TABLE 5.9: Predictive ability of Human Labels and Physics metric according
to specific gravity vectors. Number of averaged grasps evaluated by humans
and physics metric is also provided. Only two gravity vectors (green) have

enough data points to provide reliable results.

Real vs. Human vs. Physics Nº of Grasps
OGS-X-Y 0.33 0.75 3 / 4
OGS-X 0.86 0.54 7 / 13
OGS-XY 0 0.6 2 / 5
OGS-Y 0.5 0.88 2 / 8
OGS-Z 0.66 0.64 56 / 146
OGSZ 0.54 0.68 35 / 77
OGSY 0.67 0.2 3 / 5
OGSX-Y 0 0.67 2 / 3
OGSX 0.71 0.45 7 / 11
OGSXY 1 1 2 / 3

This table compares if the predictive capability improves to specific gravity vec-
tors (or object poses). The N°of Grasps shows how many averaged grasps were evalu-
ated by humans and the physics metric. As is shown in this table, only two gravity
vectors (OGS-Z, OGSZ) have enough grasps to provide reliable results.

Classification algorithms

First, the predictive capability of individual QM is tested as benchmark for the mod-
els trained in next experiments. Table 5.10 shows the performance of each metric.
The dataset used for this experiment is FS and QM as input signal.

TABLE 5.10: Predictive ability of individual quality metrics. Table shows the
classification accuracy. Graphs show the training ± std (red line) and the ac-

curacy on the Test set (blue bar).

Metric CrossVal Test
QA1 0.62 ± 0.05 0.64
QB1 0.58 ± 0.03 0.60
QB2 0.60 ± 0.03 0.64
QB3 0.64 ± 0.04 0.66
QC2 0.58 ± 0.03 0.64
QD1 0.69 ± 0.07 0.72
QD2 0.55 ± 0.06 0.59
QM 0.77 ± 0.07 0.80

Next, Table 5.11 shows the results training the classifiers using the FS dataset. The
4 types of input signals are also tested. The FS dataset uses the experimental grasps
and the data is splitted randomly between train and test.

Table 5.12 shows the classifiers trained with the CS dataset and different Input
Signals. In the CS dataset the experimental grasps are split according to different
clusters of grasps. The prediction models are tested with unseen clusters of experi-
mental grasps.
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TABLE 5.11: Classification methods trained with the FS dataset and different
Input Signals. Table shows the classification accuracy. Graphs show the train-

ing ± std (red line) and the accuracy on the Test set (blue bar).

Classifier Input CrossVal Test
Classification Trees qm 0.75 ± 0.06 0.77
Classification Trees qmo 0.72 ± 0.05 0.73
Classification Trees qmg 0.76 ± 0.05 0.72
Classification Trees qmog 0.73 ± 0.04 0.77
Gaussian Process qm 0.74 ± 0.06 0.78
Gaussian Process qmo 0.74 ± 0.06 0.78
Gaussian Process qmg 0.73 ± 0.04 0.77
Gaussian Process qmog 0.73 ± 0.04 0.77
K-Nearest Neighbors qm 0.77 ± 0.07 0.80
K-Nearest Neighbors qmo 0.77 ± 0.07 0.80
K-Nearest Neighbors qmg 0.77 ± 0.04 0.79
K-Nearest Neighbors qmog 0.77 ± 0.04 0.79
Neural Networks qm 0.75 ± 0.06 0.78
Neural Networks qmo 0.72 ± 0.06 0.74
Neural Networks qmg 0.73 ± 0.05 0.75
Neural Networks qmog 0.75 ± 0.04 0.78

Results of classification using the SS dataset are shown in Table 5.13. In the SS
dataset only the averaged grasps are used. It is split randomly between train and test
as in the FS dataset.

Table 5.14 shows the classification using the GS dataset. This dataset contains
only clusters of grasps with same candidate grasp but different gravity vectors. The
data is split randomly among different tries as in FS.

For the OGS dataset Table 5.15 summarize the results using different classifiers
and input signals with the specific gravity vectors. This datasets contains only grasp
trials with the same gravity vector. The data is split randomly between train and
test.

Figure 5.16 shows an example of the distribution of grasps for metrics QA3, QB1,
QB2 and QB3 for the FS dataset and SS dataset. These graphs illustrate the dispersion
and space of the grasps within the metrics.

Finally, a wide study trying to find the best combination of QM is performed.
In this study we vary our input signal selecting all possible combinations of quality
metrics. Table 5.16 shows the best results obtained selecting different combinations
of metrics.

Appendix B.1 presents more results on the study of different combinations of
metrics to predict the outcome of real grasp executions.

5.5.4 Discussion

Are humans good grasp predictors?

Results in Tables 5.7 and 5.9 showed neither humans nor physics metric are good
choices for predicting the outcome of real grasp executions. Both methods showed
good performance ro predict the failure of a grasp. Humans are perfect at this with
a precision score of 100%. However, they lack of reliability for predicting the success
of a grasp as they have a lot of false positives.
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TABLE 5.12: Classifiers trained with the CS dataset and different Input Signals.
Table shows the classification accuracy. Graphs show the training ± std (red

line) and the accuracy on the Test set (blue bar).

Classifier Input CrossVal Test
Classification Trees qm 0.71 ± 0.08 0.74
Classification Trees qmg 0.70 ± 0.10 0.59
Classification Trees qmo 0.71 ± 0.08 0.73
Classification Trees qmog 0.70 ± 0.07 0.75
Gaussian Process qm 0.71 ± 0.07 0.71
Gaussian Process qmg 0.69 ± 0.08 0.66
Gaussian Process qmo 0.71 ± 0.07 0.71
Gaussian Process qmog 0.69 ± 0.08 0.66
K-Nearest Neighbors qm 0.71 ± 0.06 0.70
K-Nearest Neighbors qmg 0.68 ± 0.06 0.63
K-Nearest Neighbors qmo 0.71 ± 0.06 0.70
K-Nearest Neighbors qmog 0.68 ± 0.06 0.63
Neural Networks qm 0.72 ± 0.11 0.71
Neural Networks qmg 0.70 ± 0.09 0.72
Neural Networks qmo 0.70 ± 0.08 0.72
Neural Networks qmog 0.69 ± 0.06 0.70

The analysis on specific gravity orientations didn’t prove humans seems to eval-
uate better when specific conditions are applied. It is important to note, there was
no specific gravity orientation when humans had to label the grasps. So it is un-
clear which assumptions they made during the experiments. Only two orientations
showed good results OGS-X and OGSXY but there are not enough data points in
these models to provide strong results.

Physics metric seem to have a better behavior for specific gravity orientations. It
is important to consider, the physics metric didn’t take into account possible gravity
forces when calculated. Alongside with the favorable orientations for humans, with
OGS-Y and OGS-X-, the physics metric showed good performance. However, as
with humans, there are not enough data to make convincing assumptions.

Can grasp quality metrics predict the outcome of real grasp executions?

Results on Table 5.10 showed individually, metrics are not good grasp predictors,
only one metric QD1 showed a good performance (72%). According to results on
Table 5.11, it is possible to find a proper combination of metrics to predict with high
precision (up to 80%) the outcome of real grasps executions.

The study with the CS dataset showed lower values than the FS dataset. This could
mean these experiments could be biased by the similarity between grasps within a
cluster which leads to an over-fitting of the classification methods.

However, according to the graphs showed in Figure 5.16 for the FS dataset, is
shown different cluster of grasps share the same dimensional space. Thus, two dif-
ferent clusters of grasps are not necessarily in different dimensional spaces and there
is not such bias in the dataset. Although prediction results with the CS dataset are a
bit worse, they are still inside the range of their standard deviation.

It is important to consider the possibility of not having enough candidate grasps.
If we compare results with the FS dataset (Table 5.11 ) and SS dataset (Table 5.13), it
is shown a model trained with the averaged grasps will also provide good results.
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TABLE 5.13: Classifiers trained with the SS dataset and different Input Signals.
Table shows the classification accuracy. Graphs show the training ± std (red

line) and the accuracy on the Test set (blue bar).

Classifier Input CrossVal Test
Classification Trees qm 0.73 ± 0.08 0.83
Classification Trees qmo 0.76 ± 0.05 0.81
Classification Trees qmg 0.74 ± 0.10 0.84
Classification Trees qmog 0.76 ± 0.07 0.72
Gaussian Process qm 0.72 ± 0.08 0.74
Gaussian Process qmo 0.72 ± 0.08 0.74
Gaussian Process qmg 0.70 ± 0.11 0.70
Gaussian Process qmog 0.70 ± 0.11 0.70
K-Nearest Neighbors qm 0.74 ± 0.07 0.77
K-Nearest Neighbors qmo 0.74 ± 0.07 0.77
K-Nearest Neighbors qmg 0.77 ± 0.07 0.75
K-Nearest Neighbors qmog 0.77 ± 0.07 0.75
Neural Networks qm 0.77 ± 0.08 0.72
Neural Networks qmo 0.74 ± 0.06 0.80
Neural Networks qmog 0.74 ± 0.10 0.75
Neural Networks qmg 0.77 ± 0.09 0.75

Graphs on Figure 5.16 showed although the SS dataset has less datapoints than the
FS dataset (see Table 5.6) the distribution of points in its dimensional space is still
wide and dispersed. This suggest the dataset is large enough and the selection of
candidate grasps is representative of the population of feasible grasps.

Regarding the selection of quality metrics, if we compare the results on predic-
tive capability of metrics from Tables 5.10 and 5.16, it is shown individual metrics
have poor performance for predicting the stability of a grasp. However, it is easy
to find a combination with high accuracy (>80%). These results showed also this
combination does not rely in one metric, and different combinations of metrics are
able to capture different and independent aspects of the grasp which are relevant to
predict its success. An extend version of these tables is given in Appendix B.1.

Finally, results showed an upper bound in the prediction for the FS dataset with a
82% of maximum accuracy. This could be either a limit in the predictive capability of
metrics, meaning that almost 20% of grasps cannot be explained by quality metrics.
Or with this selection of candidate grasps it is not possible to have a better accuracy.
To test which hypothesis is true, one would need to collect a larger dataset.

Can contextual information help improve the grasp prediction?

Our analysis with different classifiers and data models included also the comparison
of the training when adding contextual information to the quality metrics. Experi-
ments showed the grasp success varies with different gravity vectors.

Regarding the object properties, heavier objects seemed to be more difficult to
grasp, but this could be also due to the selection of grasp tested. Another study
addressing this feature should be done to analyze the influence of different object
weights in the successfulness of a grasp.

A deeper analysis on the influence on different gravity orientations is shown in
Table 5.15. In this case, classifiers trained with specific gravity orientations can better
fit a model able to predict the outcome of real grasp executions. However, as stated
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TABLE 5.14: Classifiers trained with the GS dataset and different Input Signals.
Table shows the classification accuracy. Graphs show the training ± std (red

line) and the accuracy on the Test set (blue bar).

Classifier Input CrossVal Test
Classification Trees qm 0.78 ± 0.07 0.76
Classification Trees qmg 0.73 ± 0.05 0.75
Classification Trees qmo 0.77 ± 0.09 0.79
Classification Trees qmog 0.79 ± 0.08 0.76
Gaussian Process qm 0.74 ± 0.05 0.71
Gaussian Process qmg 0.70 ± 0.09 0.63
Gaussian Process qmo 0.74 ± 0.05 0.71
Gaussian Process qmog 0.70 ± 0.09 0.63
K-Nearest Neighbors qm 0.80 ± 0.05 0.75
K-Nearest Neighbors qmg 0.82 ± 0.05 0.76
K-Nearest Neighbors qmo 0.80 ± 0.05 0.75
K-Nearest Neighbors qmog 0.82 ± 0.05 0.76
Neural Networks qm 0.76 ± 0.10 0.69
Neural Networks qmg 0.77 ± 0.10 0.77
Neural Networks qmo 0.78 ± 0.08 0.71
Neural Networks qmog 0.74 ± 0.04 0.76

for the human labeling and physics metric, the lack of enough datapoints in some
gravity orientations does not allow to make valid conclusions.

Finally, in our experiments it was shown the same candidate grasp can succeed
or fail depending on the gravity orientation. However, this information seems to be
useless in combination with quality metric and classification methods.
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TABLE 5.15: Summary of the training with the OGS datasets. Reported best
results with each variation of the gravity vector. For OGSY and OGSXY datasets
there are not enough datapoints to perform a proper 10-fold CV. Table shows
the classification accuracy. Graphs show the training ± std (red line) and the

accuracy on the Test set (blue bar).

Gravity CrossVal Test
OGS-X-Y 0.87 ± 0.31 1.00
OGS-X 0.96 ± 0.12 1.00
OGS-XY 1.00 ± 0.00 1.00
OGS-Y 0.80 ± 0.31 0.86
OGS-Z 0.77 ± 0.07 0.80
OGSZ 0.79 ± 0.10 0.80
OGSY NA NA
OGSX-Y 0.85 ± 0.32 1
OGSX 0.83 ± 0.15 0.7
OGSXY NA NA

TABLE 5.16: Summary of best training results obtained using different combi-
nations of metrics as input feature vector. The training was done using the FS

model and only with KNN classifier

Classifier Metrics Used CrossVal Test
K-Nearest Neighbors (QA1, QD1) 0.73 ± 0.07 0.78
K-Nearest Neighbors (QA1, QC2, QD1) 0.74 ± 0.07 0.81
K-Nearest Neighbors (QB1, QB3, QD1) 0.75 ± 0.03 0.80
K-Nearest Neighbors (QA1, QC2, QD1, QD2) 0.75 ± 0.05 0.81
K-Nearest Neighbors (QA1, QB1, QB3, QD1, QD2) 0.76 ± 0.06 0.81
K-Nearest Neighbors (QB1, QB2, QB3, QC2, QD1) 0.77 ± 0.04 0.81
K-Nearest Neighbors (QA1, QB1, QB2, QC2, QD1, QD2) 0.78 ± 0.04 0.81
K-Nearest Neighbors (QA1, QB1, QB2, QB3, QC2, QD1, QD2) 0.77 ± 0.07 0.80
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(A) Map of Values in FS model (B) Map of Values in SS model

(C) Map of Values in FS model (D) Map of Values in SS model

(E) Map of Values in FS model (F) Map of Values in SS model

FIGURE 5.16: Maps of values for metrics QA2 vs QB1, QB2, QB3. Graphs
on left show the FS dataset, Graphs on the right column show the SS dataset.
Graphs for the FS dataset contain 1106 datapoints, graphs in the SS dataset

contain 343 datapoints.
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5.6 Case study 3: Metrics limitations and contextual infor-
mation

On the previous study, it has been shown metrics alone are not enough to predict the
success of a grasp. Contextual information as gravity orientation or object properties
could provide relevant information to help improve the prediction of grasp execu-
tions in the real world. Also, experiments showed a candidate grasp not always fails
or succeeds, the same grasp could sometimes work and next fail. Its success could
depend on the gravity orientation or an accurate gripper pose.

In this study we analyze the influence of the object weight and gravity orienta-
tion in the success of a grasp. For analyzing the influence of the object weight we
will perform new experiments with the Tombatossals (section 3.5) robot platform and
two different object models with different weights: light and heavy.

We will consider a 3-categories scale for the evaluation of a grasp execution: Ro-
bust, Fragile and Futile.

A grasp is considered Fragile if its success or failure is dependent in the grav-
ity orientation, object’s weight or is highly dependent in the specific contact
points.

A grasp is considered Robust if it always succeeds, independently of the grav-
ity orientation, object properties or having accurate contact points.

A grasp is considered Futile if it always fails, independently of the gravity ori-
entation, object properties or having accurate contact points.

This study has two main objectives. First, establish if a grasp is influenced by the
object weight or gravity orientation and how to use this information in combination
with quality metrics. And Second, analyze whether this 3-categories scale is a better
approach to label grasp executions.

5.6.1 Methodology

This study will consider two different datasets of grasps. First, the dataset with
grasps from the Apollo system obtained in the previous study. This dataset con-
tains a large database of grasps executed with different gravity orientations. Sec-
ond we will use the Tombatossals robot platform to generate a new dataset of grasps.
This dataset will contain grasps from two different object models with two different
weights each.

Although results are shown mainly with the Tombatossals platform, the Apollo
grasp dataset is used as benchmark to evaluate the performance of the trained mod-
els and the new proposed prediction model.

The methodology and experimental protocol applied will be the same described
in section 5.5.2. There are also some differences in this study, first, the experimental
platform will be Tombatossals(3.5). Second, only two different object models are
used: Bottle_050 and Toaster_001. These objects will have two versions, varying its
weight: light and heavy.

Third, we consider a different scale to evaluate real grasp executions:Robust,
Fragile and Futile. The real executed grasps are initially labeled as in the previous
study: Stable or Unstable, and a post-processing is done later in this study to identify
the Robust, Fragile and Futile grasps.
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Unlike in the previous study, where clusters of grasps are divided according to
different gravity orientations, in this study a cluster of experimental grasps only
require to have the same candidate grasp. Thus, experimental grasps with different
object weights are considered also belonging to the same cluster of grasps.

Grasp evaluation

Grasp executions on the real robot are initially scored as Stable or Unstable. After
all the experiments are done, a post-processing is done for evaluating grasps using
the 3-categories scale. If for a cluster of grasps there are different experimental scores,
all the grasps in the cluster are labeled as Fragile, otherwise they are considered as
homogeneous and we keep their original score.

A homogeneous grasp could be either Robust or Futile. The term homogeneous
denotes a candidate grasp will always succeed or fail independent of the object’s
weight or the gravity orientation.

According to this, the classifiers and training applied consider a 3-Dimensional
space where grasp trials will be scored as Robust, Futile and Fragile.

Classification models

As in the previous study, we will formulate the problem as a classification prob-
lem and train a classifier to predict the outcome of real grasp executions. In this
experiment we will use only k-NN and Classification Trees, as they showed the best
performance in previous studies. Initially, we consider three categories to train our
models: Robust, Fragile and Futile grasps.

Object models

Two object models are used (Figure 5.17): Bottle 1 and Toaster. These object models
are made using 3D printing technology with two different infill values. This allows
to make objects with different weights and robustness. Table 5.17 summarize the
properties of the objects used in this study.

TABLE 5.17: Object weights (grams) of different printed models

Object Light Heavy
Bottle 1 181.5 726.5
Toaster 527 885.5

Grasps dataset

First, we generate randomly 100 grasps per object model, following the methodol-
ogy described in section 3.4. These grasps candidates are executed with the real
platform using the light and heavy object models. The same grasp candidates are
evaluated using the two weights of the objects.

Then, these grasps tries are post-processed and the final Robust, Futile or Fragile
label is settle. Our final dataset contains more than 600 experimental grasps dis-
tributed as shown in Table 5.18.
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FIGURE 5.17: Object models used for the experiments with Tombatossals. Up-
per row 3D Models. Lower row 3D printed objects. Left column: Bottle 1,

Right column: Toaster.

5.6.2 Results

First, we will compare the classic binary classification against the 3-categories scale.
We will use both, the grasp dataset with Tombatossals and the grasps with Apollo.
Second, we will study the grasp capability of individual metrics using this 3-categories
scale.

Tombatossals grasp dataset

First, we will train a prediction model using the original methodology detailed in
the previous study (section 5.5) and compare it with a 3-categories scoring method.
Results are shown in Table 5.19. Results shown the accuracy of the classifier with the
train dataset following a 10 fold cross-validation, and the results against the test set.

TABLE 5.18: Dataset distribution of grasps and scores among different objects.

Binary classification 3-categories scale
Stable Unstable Robust Futile Fragile

Toaster 127 204 48 132 151
Bottle 1 156 129 78 39 168
Total 283 333 126 171 319
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Grasps on the dataset are randomly split between train and test, as in the FS dataset
from the previous study (Section 5.5).

TABLE 5.19: Classification results using binary score and 3-categories scale

Binary Score 3-categories scale
Classifier Train ± Std Test Train ± Std Test
K-Nearest Neighbours 0.70 ± 0.08 0.72 0.83 ± 0.04 0.83
Classification Trees 0.68 ± 0.05 0.65 0.86 ± 0.04 0.86

Table 5.20 shows the results of classifiers using a test data set held out during
training. In this case 20% of the candidate grasps for each object are used as test.
With this method, the trained classifiers are tested with new grasp types.

TABLE 5.20: Classification results using held-out grasps method for testing
the prediction models with new and unseen grasp types.

Classifier Train ± Std Test
K-Nearest Neighbors 0.75 ± 0.15 0.75
Classification Trees 0.78 ± 0.11 0.81

Apollo grasp dataset

First, we show the performance of models trained with the 3-categories scale and
compare it with the original binary classification system. Results are shown on Table
5.21. In the Tombatossals data set, the object weight could turn a robust/futile grasp
into fragile. In the Apollo data set, the gravity orientation is the key feature which
changes the outcome of grasp executions.

TABLE 5.21: Classification results with the Apollo grasps dataset. First col-
umn shows classification using the Binary classification system. Second col-

umn shows the 3-categories scale.

Binary Classification 3-categories scale
Classifier Train ± Std Test Train ± Std Test
K-Nearest Neighbors 0.77 ± 0.07 0.80 0.76 ± 0.04 0.78
Classification Trees 0.75 ± 0.06 0.77 0.73 ± 0.04 0.79

Individual metrics

Next, Table 5.22 shows the results of the training when considering only one metric
as the input feature vector and the 3-categories score. Results are shown for the
Tombatossals grasp dataset the data is split randomly between train and test sets.

This table shows first, the prediction with the three categories model. Second
column shows the performance considering only Robust/Futile grasps.
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TABLE 5.22: Classification results for individual quality metrics. First col-
umn shows the 3-categories scale. Second column considers only Robust/Futile

grasps.

3-categories scale Robust vs. Fragile
Metric Train ± Std Test Train ± Std Test
QA1 0.67 ± 0.09 0.68 0.92 ± 0.06 0.85
QB1 0.55 ± 0.04 0.56 0.72 ± 0.10 0.60
QB2 0.54 ± 0.04 0.52 0.61 ± 0.07 0.63
QB3 0.53 ± 0.01 0.48 0.57 ± 0.10 0.53
QC2 0.55 ± 0.03 0.52 0.62 ± 0.07 0.53
QD1 0.72 ± 0.04 0.73 0.90 ± 0.05 0.85
QD2 0.51 ± 0.02 0.50 0.65 ± 0.10 0.60

5.6.3 Discussion

In our experiments, we showed that the object weight or gravity vector could vary
the outcome of real grasp executions. These are two variables which are indepen-
dent from the grasp evaluation with quality metrics and should be considered when
predicting the success of a grasp.

Results in real experiments showed that there is a clear difference between Ro-
bust, Futile and Fragile grasps. First, our results show adding a new category for
scoring the grasps: Fragile, could improve the classification methods. Table 5.19
showed this method is better than the binary scoring system for the Tombatossals
dataset.

With this scheme of three labels for a grasp type, our models are more accurate
for predicting the outcome of real grasp executions. This scoring method improves
the classifiers between a 11% and 21% as is shown in Table 5.19. Although for the
Apollo dataset, the 3-categories scale did not improve the performance of the pre-
dictors, classification accuracy was also not decreasing. As was discussed in the
previous case study, this could be due to a limitation of the dataset itself.

Next, the analysis on individual metrics showed that this score method fits better
for evaluating grasp executions. MetricsQA1 andQD1 showed a great performance(90%)
for evaluating only Robust/Fragile grasps. Although the other metrics showed better
results with this 3-categories scale model, they are still not sufficient individually for
predicting the success of a grasp.

From these results, we can conclude this 3-categories scale for scoring grasp exe-
cutions could be a better option than a classic binary classification.

The training using the held-out grasps method, showed our trained methods can
be useful for new grasps using these objects and manipulator, as the performance of
the trained classifiers is similar between tables 5.19 and 5.20.

5.6.4 Prediction model

With the experiments and results obtained in this study, we propose a new predic-
tion model. To predict the outcome of real grasp executions we will consider a two-
step prediction model. First, we will train our predictors to differentiate between
Fragile and homogeneous grasps. Second, we will generate a prediction model for the
homogeneous grasps, differentiating between Robust and Futile grasps.
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Table 5.23 compares the accuracy of classifiers for filtering Fragile grasps. First
column shows the performance to classify a grasp as homogeneous or Fragile (bi-
nary classification), second column shows the performance of classifiers trained and
tested only with homogeneous grasps (binary classification: Robust vs. Futile).

TABLE 5.23: Classification results with the Tombatossals dataset and the pro-
posed prediction model. First column shows the performance for filter the
Fragile grasps. Second column shows the performance when considering only

Robust and Futile grasps.

Filter Fragile Robust vs. Futile
Classifier Train ± Std Test Train ± Std Test
K-Nearest Neighbors 0.85 ± 0.05 0.89 0.90 ± 0.05 0.85
Classification Trees 0.89 ± 0.06 0.91 0.91 ± 0.04 0.97

Table 5.24 shows the proposed prediction model using the grasp dataset from the
experiments with the Apollo robot (Section 5.5). For this dataset we selected the FS
dataset with the 7 QM as input feature vector. As in the previous table, results show
first the performance for differentiating between Fragile and homogeneous grasps.
Second column shows the classification models trained and tested only with the
Robust/Futile grasps on this dataset.

TABLE 5.24: Classification results with the Apollo dataset and the proposed
prediction model. First column shows the performance for filter the Fragile
grasps. Second column shows the performance when considering only Robust

and Futile grasps.

Filter Fragile Robust vs. Futile
Classifier Train ± Std Test Train ± Std Test
K-Nearest Neighbors 0.76 ± 0.06 0.71 0.80 ± 0.04 0.90
Classification Trees 0.77 ± 0.06 0.75 0.84 ± 0.03 0.87

Finally, we train our prediction models combining both, Apollo and Tombat-
ossals, datasets. Table 5.25 shows the performance comparing the 3-categories scale
and the binary classification. Table 5.26 shows the performance with the proposed
prediction model. First column shows the capability of the model to filter Fragile
grasps. Second column shows the performance of the trained models when consid-
ering only Robust/Futile grasps.

TABLE 5.25: Comparison between the classification models for the 3-
categories scale and the Binary Classification method. Combined datasets

from Apollo and Tombatossals experiments.

Binary Classification 3-categories scale
Classifier Train±Std Test Train±Std Test
K-Nearest Neighbors 0.74±0.03 0.71 0.74±0.04 0.74
Classification Trees 0.72±0.05 0.69 0.76±0.04 0.76
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TABLE 5.26: Classification results with the Tombatossals and Apollo datasets
and the proposed prediction model. First column shows the performance for
filter the Fragile grasps. Second column shows the performance when consid-

ering only Robust and Futile grasps.

Filer Fragile Robust vs. Futile
Classifier Train ± Std Test Train ± Std Test
K-Nearest Neighbors 0.79±0.02 0.81 0.82±0.04 0.82
Classification Trees 0.79±0.04 0.81 0.85±0.04 0.84

Discussion

Results on Table 5.23 showed quality metrics have high prediction capability (>90%)
with Robust and Futile grasps. This shows that it is possible to first, filter Frag-
ile grasps with high accuracy (~90%), and then classify the remaining homogeneous
grasps as Robust or Futile. This reinforces the idea of using quality metrics as grasp
predictors, but filtering them first, in order to discard Fragile grasps.

Table 5.24 showed the methods applied in this study can be used with other
grasps dataset. Although in this case the performance of the classifiers is similar
between the binary scoring and the 3-dimensional method (Table 5.21), results con-
sidering only Robust and Futile grasps showed again a high performance (~90%).

Finally, tables 5.25 and 5.26 showed first, the 3-categories scale is a better option
to classify grasps than a binary method. And Second, the proposed prediction model
has also a high performance (>80%) with different gripper designs (Barrett and SDH
hands).

From the results of this study, we can conclude first, a 3-categories scale system
provides a more reliable approach to classify real grasps. Second, classifiers trained
and tested with only Robust and Fragile grasps have a high rate of success (>90%).
And third, it’s possible to use quality metrics to filter Fragile grasps with great accu-
racy (between 75%− 90%)

The applications and results obtained in this study are limited to only two dif-
ferent grippers and a few objects. Although the held-out method proved the pre-
diction models could work well with new grasps, apply the classifiers trained with
this datasets to new objects or robotic manipulators is not advisable. A more in-deep
study using other object models of different characteristics and manipulators could
provide a more robust background for the classification methods described in this
study.

5.7 Generalization of the prediction model

One important remark about the prediction model proposed is the generalization
itself of the predictor. Can we use it with other objects and hands? Or is it restricted
to be used only with these two grippers and this limited set of objects? For studying
this possible generalization, we will exploit our databases of real grasps and train
different classifiers using different combinations of train/test sets.
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5.7.1 Methodology

Using the methodologies described in the previous case study, we will compare the
predictive ability of a model trained with one gripper and tested with another dif-
ferent. We will study its capabilities using the 3-categories scale and the the binary
classification for filtering Fragile grasps and identify Robust/Futile grasps.

We will consider the Tombtossals and Apollo datasets independently. Our models
will be trained with the Barrett hand, and tested with the Schunk SDH or viceversa.

5.7.2 Results

Table 5.27 shows the results of a classifier trained with the Tombatossals database and
tested with the Apollo database. Table shows the results using the 3-categories scale,
the filtering of Fragile grasps and the classification with only Robust/Futile grasps.

TABLE 5.27: Classification results or the classifiers trained with the Tombat-
ossals dataset and tested with the Apollo dataset. First column shows the per-
formance using the 3-categories scale. Second column shows the accuracy
for filtering Fragile grasps. Third column shows the performance considering

only Robust/Futile grasps.

Classifier 3-categories scale Filter Fragile Robust vs. Futile
Train±Std Test Train±Std Test Train±Std Test

K-Nearest Neighbors 0.78±0.09 0.41 0.93±0.06 0.58 1.00±0.00 0.78
Classification Trees 0.82±0.13 0.38 0.90±0.05 0.48 1.00±0.00 0.83

Table 5.28 shows the results of a classifier trained with the Apollo database and
tested with the Tombato database. Table shows the results using the 3-categories
scale, the filtering of Fragile grasps and the classification with only Robust/Futile
grasps.

TABLE 5.28: Classification results or the classifiers trained with the Apollo
dataset and tested with the Tombatossals dataset. First column shows the per-
formance using the 3-categories scale. Second column shows the accuracy
for filtering Fragile grasps. Third column shows the performance considering

only Robust/Futile grasps.

Classifier 3-categories scale Filter Fragile Robust vs. Futile
Train±Std Test Train±Std Test Train±Std Test

K-Nearest Neighbors 0.61±0.13 0.31 0.70±0.26 0.52 0.80±0.16 0.81
Classification Trees 0.57±0.10 0.47 0.67±0.26 0.39 0.91±0.15 0.33

5.7.3 Discussion

Results show that generalize a predictor trained with one gripper to another is not
initially possible. Results using the 3-categories scale and the filtering of futile grasps
have a low accuracy. However, what seems promising, is the fact that the classifiers
keep good performance (>80%) when we consider only the Robust and Futile grasps.

A model trained only with the Barrett hand is capable to keep its success rate
(~80%) with the Schunk SDH hand. In the case of the model trained with the Schunk
SDH and tested with the Barrett hand, the success rate lowers (from 100% to 80%),
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but it is still high (>80%). It is important to note the Barrett hand uses 9 objects while
the Schunk SDH only 2 object models.

These results suggest first, metrics are good evaluators for Robust and Futile
grasps. Second, it is important to find a methodology capable to filter or discard
such Fragile grasps. And third, it is possible to generalize a classifier trained with
one gripper to another different, but its performance require a previous filtering of
those Fragile grasps.

5.8 Conclusions

In this chapter we presented the results of three different studies to analyze the pre-
dictive capability of grasp quality metrics and to propose a model to predict the
outcome of real grasp executions. In the first study this predictive capability was
compared to human labeled data. The second study compared this predictive capa-
bility using real grasp executions. The third study introduce a new category to score
real grasp executions. With this method it is possible to filter ambiguous grasps and
improve the predictive capability of combined grasp metrics.

Case study 1: human oracle

Results on the first study showed individually, metrics are not good enough to pre-
dict the outcome of grasp executions. This study also pointed out that it is possible
to combine different metrics using classification methods to improve their perfor-
mance. This study showed finally, using non-linear and non-parametric methods
are better options for finding an underlying structure of combined metrics to predict
the outcome of grasp executions.

Comparing the results of combined quality metrics against dynamic simulation,
we showed that the physics metric is a better approach to predict the human labeled
data for grasp executions. However, this study presented a huge disadvantage: all
experiments and studies were based first, in simulated grasp which may differ from
conditions in the real world (for example gravity is active).

Second, the ground-truth for grasp success is based in using humans as oracles
which reliability must be proven. Humans have to judge the grasp in a physical
environment that is different from the usual one (vacuum + three-fingered robotic
hand). Our results in the next case study showed humans are not reliable as grasp
oracles.

Case study 2: real grasp execution

The second study aimed to solve these problems from the previous study. In this
study grasp candidates are evaluated on a real robot system. This provided a reliable
ground-truth for comparing the physics metric, human labeling, and the predictive
capability of grasp quality metrics. Results on this study showed first, humans and
physics metric are not as good predictors as it culd be expected. Although their
predictions are highly accurate to identify unsuccessful grasps, they fail to predict
the success of a grasp.

Second, this study showed that individually, metrics are not good predictors, but
they can be combined to improve their performance, up to an 80% of accuracy. This
study showed also contextual information such as gravity orientation can change the
outcome of real grasp executions, but do not provide relevant information to predict
the outcome of grasp executions.
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Case study 3: metrics limitations and 3-categories scale

The third study analyzed the limitations of grasp metrics and how the object’s weight
can affect the outcome of grasp executions. This study showed the same grasp can
succeed or fail depending on the object’s weight, as it occurs with different gravity
orientations. This is an object property not considered by the grasp metrics, and
connote a limitation on their predictive capabilities.

In our study, we assume we only have the information provided from the sim-
ulation for the classifiers. This is, we only have information regarding the contact
points, quality metrics and object shape. Object’s weight and gravity orientation is
unknown and is not included as input for the classification models.

Under these assumptions, a 3-categories scale system for grasp executions was
proposed. With this scoring method, grasps can be classified as Robust, Futile or
Fragile, depending if the execution of the candidate grasp always succeeds, fails or
both.

This 3-categories scale method improved the classification and predictive capa-
bility of the models using quality metrics. Results showed this 3-categories scale
reflects better the outcome of real grasp executions. The use of different gravity
orientations and object weights proved to be useful, not for the classification of Sta-
ble/Unstable grasps, but for determining which grasps are Robust, Futile or Fragile.

5.8.1 Prediction model

Using our proposed prediction model is shown metrics are capable to first, filter
Fragile grasps. And second, classify grasp candidates as Robust or Futile with a high
success rate (>90%). This suggests metrics are good solutions to identify and classify
Robust and Futile grasps, while the characteristics and qualities of Fragile grasps are
fuzzier.

Although classifiers are able to identify Fragile grasps with good performance
(>70%), it is important to consider using the contextual information as a factor which
could help to identify these cases.

With respect to the generalization of the prediction model, it is shown first, met-
rics are good evaluators for Robust and Futile grasps. Second, it is important to find
a methodology capable to filter or discard such Fragile grasps. And third, it is pos-
sible to generalize a classifier trained with one gripper to another different, but its
performance require a previous filtering of those Fragile grasps.

Finally, from the studies performed in this chapter we can conclude:

• Human labeled data, dynamic simulation and grasp quality metrics alone, are
not the best options to predict the success of a grasp in real world.

• There seems to be some underlying information, not intuitive for humans,
which helps to better understand the outcome of grasp executions.

• Combinations of different quality metrics seem to enable finding this underly-
ing structure to predict grasp success.

• Contextual information: geometric properties (volume, weight) or the gravity
approach vector affect to the outcome of real grasp executions, but the predic-
tion with quality metrics cannot benefit from it.

• Real grasp executions can be classified using either, a binary model (stable vs.
unstable) or a 3-categories scale: Robust, Futile and Fragile grasps.
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• Classifiers that use QM as input, perform better when using this 3-categories
scale than the classic binary classification.

• Quality metrics prediction performs better when considering only Robust and
Futile grasps.

• It is possible to combine different grasp metrics using classification methods
to generate a model able to predict the outcome of real grasp executions with
high precision (90%).

• The proposed prediction models could be generalized to other objects and
grippers, but first it is necessary to find a better method to discard/filter fragile
grasps.

5.8.2 Limitations

This chapter presented an extensive study on the performance of different quality
metrics for predicting grasp success, but it had also some limitations. First, only two
manipulators were used to perform the experiments and evaluate grasps. Extending
the results on prediction models to other grippers should be done carefully, as results
may vary. Second, we used a reduced number of objects to perform the experiments,
although different shapes and weights were tested, an extended study with more
objects should be done.

Third, we considered different geometric characteristics of the objects, but there
are other properties that should be taken in account: materials, elasticity, friction
coefficient, etc. Fourth, the real grasps executions were restricted to an environ-
ment with a table holding the object prior the grasp. Repeating these experiments
in other environments with different restrictions or without restrictions is advisable.
Finally, the prediction models were generated using few different types of classifica-
tion methods. A wider study with this data can be done using other algorithms or
methods, as it could provide better results.

5.8.3 Future & related work

As future work, is suggested to extend this study using other grippers and object
models. It will provide a wider view on the predictive capability of combined or
independent quality metrics. As showed the results for the generalization of the
model, there is not enough data to reliably apply the models trained here to other
grippers or objects. Try to find a prediction model generalizable to new data should
be a next step.

Our studies showed the outcome of grasp executions is dependent on object ge-
ometric properties but the prediction based on quality metrics does not benefit from
it. Therefore a study using the same object models but with different materials and
size could provide new relevant information to improve the prediction of grasp ex-
ecutions.

For comparing the influence of different gravity directions relative to the local
object frame, we did not have enough data and therefore could not reach convincing
conclusions. It is recommendable to make a more deep study varying the orientation
of the objects prior grasping and compare these results to human labels, physics
metric and grasp metrics.

The 3-categories scale showed great results for Robust and Futile grasps, but is
important to find a better method to filter first those Fragile grasps. Using different
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quality metrics or contextual information could be a key factor for being able to filter
those fragile grasps.

The studies, methodology and results presented in this chapter were total or par-
tially published in Rubert et al., 2017.
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Chapter 6

Artificial hands evaluation

In this chapter, we use grasp quality metrics to evaluate artificial hands. We propose
to use grasp quality metrics as evaluators of different hand properties. We want to
build a benchmark procedure that produces numeric evaluation of artificial hands.

In Chapter 4, we have studied the quality of a grasp using several quality met-
rics. Also, we have developed a methodology to characterize the practical param-
eters of the different quality metrics. These results showed that the average values
of a metric greatly depends on the hand that was being used. A first approach in
benchmarking hand models was made in Leon et al., 2013a comparing the quality
of different grasps when using two different models of hands: a simulated model of
a human hand and a prosthetic hand.

In Chapter 5 we have developed a methodology to classify grasp hypotheses.
Making use of machine learning algorithms and quality metrics, we developed a
model capable to predict the successfulness of a grasp hypotheses. Following this
methodology we are able to classify a grasp hypotheses as Robust, Fragile or Futile.
These results allowed to classify grasps with the Barrett and the SDH Schunk hand
with more than a 80% of success rate.

In this chapter we want to exploit both methodologies in order to evaluate arti-
ficial hands. First we’ll analyze quantitatively the characteristics of different hand
models. We hypothesize quality metrics evaluate not only independent aspects of
the grasp, but also different properties of hand models. We will make use of seven
quality metrics to assess the performance of each hand according to specific proper-
ties. Results obtained with grasp metrics will be compared to other indexes used to
evaluate hands.

Second, we will use the prediction models developed in Chapter 5 to evaluate
the grasping capabilities of different artificial hands. With the trained models we
are be able to predict the outcome of different grasp hypotheses with different object
models and hands. We will propose a methodology which evaluates the likelihood
of a hand to produce successful grasps.

Finally, we intend to exploit this methodology by defining a standard that can be
used not only to analyze different robot hands but also to allow comparison between
different designs of the same hand. This evaluation is based on the independent
grasp aspects evaluated by each selected quality metric and the prediction models.

With these studies we want to answer some questions: Can quality metrics re-
veal differences between artificial hands? Can these quality metrics be related to
other indexes used to evaluate hands? Can we evaluate the likelihood of a hand
to produce successful grasps? Can we apply these methodologies to improve hand
designs?

This chapter presents three studies that try to establish: (i) differences and simi-
larities between artificial hands, (ii) the relations between the grasp metrics and the
anthropomorphism index (AI) developed by Feix et al., 2013, (iii) a methodology to
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evaluate the successfulness of hand models and (iv) how to apply this methodology
to improve the design of a prosthetic hand. To achieve this, several virtual models
of robotic grippers and anthropomorphic hands are used. All the experiments are
performed in simulation and their results are compared statistically.

Outline The chapter is structured as follows: first, an introduction and review
of different studies which aim to evaluate artificial hands. And second, we expose
four different studies which evaluate the properties of different hand models. The
first study uses quality metrics to establish benchmarks between artificial hand mod-
els. The second study aims to find a correlation between the quality values and the
anthropomorphism of artificial hands. The third study uses a classification model to
evaluate the likelihood of a hand to produce successful grasps. An last, the fourth
study evaluates different designs of the same prosthetic hand.

6.1 Introduction

The design of robot hands usually has been focused on three main aspects: dex-
terity in manipulation, robustness in the grasp and human operability (Bicchi and
Kumar, 2000; Bicchi, 2000). Additionally, there are two ways of design: emulate hu-
man anatomy or focus on specific tasks (Kappassov et al., 2013; Tai et al., 2016). The
survey of Tai et al., 2016, reviews the state of the art in robotic gripper designs and
applications. Several authors (Butterfass et al., 2001; Dollar and Howe, 2010; Bir-
glen et al., 2007; Kappassov et al., 2013) have analyzed different robot hands mainly
studying the hands’ physical properties such as their sensors, degrees of freedom or
skeleton.

The work of Dollar and Howe, 2010 evaluates experimentally the grasping ca-
pabilities of the SDM Hand under unstructured scenarios. The analysis of Butterfass
et al., 2001 is focused in the physical characteristics for designing the DLR hand.
The book of Birglen et al., 2007 present a full study on the design of underactuated
robotic hands and the properties of their fingers. Kappassov et al., 2013 compares
the grasp patterns, force capabilities, maximum payloads and control of different
different robotic grippers and multigrasp robotic hands.

Physical characteristics on the hands as fingers, DOF, motors or control are the
most common properties compared in robotic hands. However, there is no direct
relation between this properties and their grasping capabilities. It is needed to find
a methodology capable to evaluate the grasping capabilities of different artificial
hands.

Different studies have addressed the problem of how to evaluate prosthesis. Bul-
lock et al., 2015 and Feix et al., 2014 perform a deep analysis in how humans grasp
objects, analyzing hours of record of humans during activities of daily living and
how to replicate these grasps in prosthesis. Kargov et al., 2004 measure and com-
pare the grip force distribution between human and artificial hand grasps, defining
this as a metric for evaluating hand prosthesis. Matheus and Dollar, 2010 expose a
series of benchmarks for evaluating manipulator grasp contacts based on common
objects and its physical properties, coefficient frictions and contact forces. Belter et
al., 2013 compared the mechanical designs and performance specifications, in terms
of forces, velocities and kinematic characteristics, of different prosthetic hands.

Feix et al., 2013 propose an anthropomorphism index (AI) which summarizes
which percentage of the configuration space of the human hand can be replicated
by an artificial hand while grasping objects. This configuration space is defined
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by the positions of the fingertips. Thus, a high percentage on this index indicates
the artificial hand is able to replicate a large number of human hand shapes. The
hypothesis behind this metric is that artificial hands with a high index have a similar
working space to that of the human hand and consequently are more functional.

All these studies focus the evaluation of artificial hands in their ability to repli-
cate the behavior and shape of human hands or the kinematic characteristics of the
fingers. However, this has not been proved to be a good benchmark for evaluat-
ing hand prosthesis. As shown by Jang et al., 2011, amputees tend to prefer cosmetic
prostheses over such more functional, due to the poor performance on the functional
ones. This exposes that actual prosthetic hands are far from provide a good substi-
tution of the human hand. Therefore, it is needed to focus in develop functional
tests to evaluate the grasping capabilities in artificial hands during its design phase
instead of only seek replicate the human hand behavior.

6.2 Artificial hand properties

In this first study we will analyze the properties of different artificial hands. These
hand properties are defined as the 7 independent quality metrics (see Table 5.1) ob-
tained in Chapter 4. Results on this chapter showed hand models present different
statistical values for each metric. We consider each one of this metrics evaluates a
property in a hand and thus, can be used for establish benchmarks between artificial
hands.

In this section we will exploit the grasp database generated in Chapter 4 in order
to evaluate different hand models. These grasps have been already evaluated with
quality metrics and we will analyze these values to compare different hand models.
Results will provide a qualitative analysis on different hand models. With the qual-
ity values on each hand we will be able to asses differences and similarities between
hand models according to specific grasp aspects.

6.2.1 Methodology

Our database contains 9 different hand models, 126 different objects and 1.000 grasps
per hand and object. The hand models correspond to the 7 hands used in Chapter
4 plus two more hand models: FlexyHand and Tact hand. For this two new models,
grasps are generated using the same methodology and parameters applied in Chap-
ter 4.1. Grasps are also evaluated using OpenHand (section 3.1). Objects used are
from the KIT Database (see Chapter 3.3.

We will analyze the variability and sensitivity of each hand for performing grasps
and compare them. First, a variability analysis on the properties evaluated by differ-
ent metrics for each robot hand. This will establish the statistical values and range
of variation of different hands for each metric. For each metric we obtain their max
and min values, the mean and standard deviation, and their percentiles 10, 50 and
90. We compare in tables and figures this values for each hand model and metric.

Secondly, we will focus on analyze the sensitivity of each hand against position-
ing errors. This will provide a sensitivity index of the hand and how reliable it is to
replicate the same grasp with the same quality. We will introduce uncertainty in the
grasp pose for 20 random grasps from the database for each hand model and object.
We will measure, for a reference grasp pose, 50 small variations in translation and
rotation. Results will provide a Sensitivity Index (SI) on each hand model for each
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metric. Details on the variations for each grasp pose and how to obtain the SI are
described in section 4.3.

To demonstrate the methodology we compare nine hand models: the Barrett
hand, the FleyHand prosthetic hand, the Model-T, the PR2 hand, the four-fingered
Schunk SAH hand, the dexterous three-fingered Schunk SDH hand, the 5-fingered
Shadow hand and the prosthetics Tact and Michelangelo hands. See section 3.2 for
details of each hand model.

6.2.2 Results

Variability analysis

Tables 6.1 to 6.7 show the statistical values on each hand for the 7 independent qual-
ity metrics. The blue line shows the variation of values between its mean±std. The
green box represents the values between percentiles 10 and 90. Finally, the red line
correspond to the median value (percentile 50). Tables show these statistical values
and the number of grasps generated and evaluated with each hand model. This is
relevant, as not all the hand models were capable of generating the minimum of
1.000 different grasps per object.

QA1 Min Max Mean Std P10 P50 P90 N°Grasps
Barrett 0.0082 1.3749 0.2691 0.2525 0.0576 0.1608 0.6941 126000
FlexyHand 0.0002 1.7885 0.5348 0.3813 0.0710 0.4926 1.0732 84744
ModelT 0.0075 1.5440 0.5105 0.3180 0.1098 0.4765 0.9665 126000
PR2 0.0147 0.4448 0.0555 0.0139 0.0354 0.0559 0.0739 126000
SAH 0.0034 1.7993 0.6606 0.3760 0.1287 0.6830 1.1494 126000
SDH 0.0071 1.3961 0.4838 0.2988 0.1091 0.4617 0.9031 126000
Shadow 0.0000 1.9408 0.5633 0.3587 0.0983 0.5589 1.0400 126000
Tact 0.0008 1.4629 0.3536 0.2767 0.0700 0.2820 0.7681 125319
Michelangelo 0.0004 0.9484 0.0469 0.0250 0.0257 0.0460 0.0667 126000

TABLE 6.1: Statistical Values for metricQA1 per hand model. Green box shows
percentiles 10-90.

Sensitivity analysis

Table 6.8 shows the robustness of each hand for the different metrics. Values shown
areGSIN per metric and hand. Values are normalized over 10/90th percentiles from
Table 4.3 in Chapter 4.2.
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QB1 Min Max Mean Std P10 P50 P90 N°Grasps
Barrett 0.0634 0.9995 0.6805 0.1624 0.4535 0.7071 0.8722 126000
FlexyHand 0.0000 0.9825 0.4937 0.2151 0.1958 0.5039 0.7753 84744
ModelT 0.0285 0.9945 0.6020 0.2044 0.3108 0.6254 0.8560 126000
PR2 0.0015 0.9974 0.6148 0.2162 0.2917 0.6585 0.8726 126000
SAH 0.0428 0.9959 0.6189 0.1855 0.3485 0.6447 0.8462 126000
SDH 0.0317 0.9973 0.6830 0.1745 0.4267 0.7134 0.8888 126000
Shadow 0.0016 0.9933 0.5569 0.1952 0.2768 0.5825 0.7995 126000
Tact 0.0033 0.9915 0.5540 0.2052 0.2629 0.5760 0.8134 125319
Michelangelo 0.0084 0.9972 0.5750 0.1901 0.3056 0.5926 0.8152 126000

TABLE 6.2: Statistical Values for metricQB1 per hand model. Green box shows
percentiles 10-90.

QB2 Min Max Mean Std P10 P50 P90 N°Grasps
Barrett 0.0022 0.4063 0.0550 0.0371 0.0210 0.0462 0.0979 119277
FlexyHand 0.0001 0.9595 0.1085 0.0740 0.0314 0.0928 0.2032 84074
ModelT 0.0002 0.6834 0.1479 0.0691 0.0690 0.1372 0.2415 125201
PR2 0.0341 0.3403 0.1225 0.0922 0.0429 0.0860 0.2583 63
SAH 0.0001 0.8518 0.0951 0.0629 0.0310 0.0814 0.1752 125781
SDH 0.0000 0.3928 0.0674 0.0402 0.0236 0.0597 0.1215 125718
Shadow 0.0000 0.8700 0.0964 0.0676 0.0287 0.0808 0.1842 124745
Tact 0.0000 0.9598 0.1053 0.0758 0.0303 0.0869 0.2034 124947
Michelangelo 0.0083 0.3195 0.0785 0.0487 0.0302 0.0675 0.1436 543

TABLE 6.3: Statistical Values for metricQB2 per hand model. Green box shows
percentiles 10-90.
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QB3 Min Max Mean Std P10 P50 P90 N°Grasps
Barrett 0.0000 0.9987 0.5378 0.1771 0.2910 0.5401 0.7584 119277
FlexyHand 0.0006 0.9891 0.4268 0.1295 0.2717 0.4207 0.5867 84074
ModelT 0.0055 0.9973 0.4715 0.1629 0.2790 0.4579 0.7038 125201
PR2 0.0021 0.7311 0.4176 0.1555 0.2639 0.4230 0.6526 63
SAH 0.0029 0.9932 0.4338 0.1224 0.2851 0.4291 0.5881 125781
SDH 0.0001 0.9956 0.4801 0.1559 0.3068 0.4748 0.6944 125718
Shadow 0.0001 0.9842 0.4260 0.1238 0.2747 0.4222 0.5822 124743
Tact 0.0001 0.9960 0.4518 0.1518 0.2656 0.4488 0.6394 124947
Michelangelo 0.0006 0.9336 0.3655 0.1685 0.1169 0.3972 0.5544 543

TABLE 6.4: Statistical Values for metricQB3 per hand model. Green box shows
percentiles 10-90.

QC2 Min Max Mean Std P10 P50 P90 N°Grasps
Barrett 0.0000 0.1902 0.0122 0.0157 0.0008 0.0064 0.0313 119277
FlexyHand 0.0000 0.6846 0.0218 0.0310 0.0018 0.0118 0.0513 84073
ModelT 0.0000 0.2786 0.0133 0.0162 0.0021 0.0082 0.0291 125201
PR2 0.0003 0.0289 0.0084 0.0080 0.0005 0.0042 0.0191 63
SAH 0.0000 0.2396 0.0191 0.0181 0.0031 0.0138 0.0420 125769
SDH 0.0000 0.3170 0.0311 0.0279 0.0051 0.0236 0.0670 125718
Shadow 0.0000 0.9213 0.0377 0.0474 0.0039 0.0233 0.0855 124736
Tact 0.0000 1.1636 0.0232 0.0368 0.0021 0.0118 0.0536 124943
Michelangelo 0.0000 0.0608 0.0041 0.0057 0.0004 0.0022 0.0099 543

TABLE 6.5: Statistical Values for metricQC2 per hand model. Green box shows
percentiles 10-90.
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QD1 Min Max Mean Std P10 P50 P90 N°Grasps
Barrett 0.1174 0.8259 0.3938 0.0823 0.3136 0.3672 0.5054 126000
FlexyHand 0.0000 0.7964 0.3155 0.0980 0.1963 0.3124 0.4420 84744
ModelT 0.1238 0.9651 0.5565 0.1456 0.3730 0.5458 0.7609 126000
PR2 0.0057 0.9999 0.6353 0.2105 0.3185 0.6461 0.9121 126000
SAH 0.0238 0.8619 0.3650 0.1121 0.2273 0.3561 0.5149 126000
SDH 0.2405 0.8216 0.5379 0.1007 0.4034 0.5390 0.6708 126000
Shadow 0.0791 0.6433 0.3294 0.0635 0.2482 0.3281 0.4116 126000
Tact 0.1783 0.9950 0.6097 0.1249 0.4403 0.6166 0.7651 125319
Michelangelo 0.2072 0.9990 0.8289 0.0971 0.7007 0.8361 0.9533 126000

TABLE 6.6: Statistical Values for metric QD1 per hand model. Green box
shows percentiles 10-90.

QD2 Min Max Mean Std P10 P50 P90 N°Grasps
Barrett 0.0000 0.0178 0.0007 0.0011 0.0000 0.0002 0.0019 126000
FlexyHand 0.0000 0.1602 0.0021 0.0024 0.0002 0.0017 0.0044 84744
ModelT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126000
PR2 0.0000 0.9391 0.0680 0.0758 0.0352 0.0493 0.0957 126000
SAH 0.0000 0.0480 0.0068 0.0045 0.0016 0.0060 0.0131 126000
SDH 0.0000 0.0188 0.0008 0.0014 0.0000 0.0002 0.0024 126000
Shadow 0.0000 0.0219 0.0048 0.0031 0.0011 0.0045 0.0091 126000
Tact 0.0000 0.0253 0.0005 0.0012 0.0000 0.0000 0.0018 125319
Michelangelo 0.0000 0.9980 0.3492 0.2029 0.1074 0.3170 0.6419 126000

TABLE 6.7: Statistical Values for metric QD2 per hand model. Green box
shows percentiles 10-90.
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TABLE 6.8: Sensitivity Values per each Hand and Metric

QA1 QB1 QB2 QB3 QC2 QD1 QD2

Barrett 15.72% 14.57% 12.33% 27.94% 14.16% 7.76% 0.43%
Flexyhand 24.13% 7.93% 31.71% 24.91% 19.68% 10.62% 0.59%
ModelT 23.04% 10.46% 34.29% 34.54% 13.26% 16.72% 0.00%
PR2 0.29% 10.74% 16.43% 7.76% 7.03% 4.80% 39.76%
SAH 30.55% 13.40% 34.22% 28.33% 29.69% 15.19% 1.92%
SDH 20.99% 13.06% 17.00% 34.47% 27.83% 11.78% 0.52%
Shadow 25.50% 9.85% 33.90% 23.72% 42.50% 8.09% 0.97%
Tact 14.69% 9.40% 28.48% 28.81% 20.06% 9.29% 0.40%
Michelangelo 20.25% 11.52% 50.22% 36.41% 30.10% 14.03% 59.69%

6.2.3 Discussion

The quantitative evaluation with metrics allows us to establish similarities and dif-
ferences between hand models. According to metrics QA1 and QC2, PR2 hand and
Barrett hand, have a similar low performance. Shadow, Tact and Michelangelo showed
also similar values for metric QB1. Same similarities with this metric are found for
hands Barrett and SDH. According to metric QB2 hands Tact and Flexyhand are the
most similar.

For the metric QB3, there are similarities between hands SAH, Shadow and Flexy-
hand. Tact and Flexyhand showed also similar values in metric QC2. In the case of
metric QD1, none of the hands seemed to be similar to the others. Finally for met-
ric QD2, most of the hand models showed low values, only PR2 and Michelangelo
presented a huge difference in terms of range of values for this metric.

It is shown each hand model has different values for the metrics. Results did not
show a hand clearly overwhelming the other models in terms of variability. Regard-
ing the sensitivity of hand models, the PR2 hand shows the lowest SI in most of the
metrics.

As show results on Chapter 5, there is no direct relation between metric values
and grasp successfulness. In this terms, we can hypothesize a hand with high vari-
ability between metrics will have more chances of finding a stable grasp hypotheses.
In the other hand, having a low SI implies the hand will be more robust against
inaccuracies and noise in the grasp pose.

It is also important to remark not all the hand models were capable to generate
the 126.000 initial grasp hypotheses. This is a value to take in account, as it implies
some hand models have more chances to achieve a favorable grasp hypotheses. Also,
some of the metrics require a minimum number of contact points, which is difficult
to achieve with some hand models (PR2 and Michelangelo).

Although it is not possible to state which hand is better than others. Is possible
to use quality metrics to find similarities between different hand models. This could
be beneficial in the industrial environment, as it will be possible to replace robotic
grippers with cheaper models with the same grasp properties.

Also, it could be useful in the case of prosthetic hands, which aim to replicate
the behavior of the human hand. Thus, with this methodology it is possible to eval-
uate a model of the human hand in order to establish a benchmark for comparing
anthropomorphic hand models.

Results reported are purely statistical and doesn’t imply one hand model is better
or worse than others. An study relating the values in quality metrics and the real
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grasping capabilities of each hand model is needed to validate the results obtained
in this analysis.

6.3 Quality metrics and anthropomorphic index

From previous section, it was shown each hand has its own values according to
different grasp aspects. But, can we asses one hand model is better than other ac-
cording to this values? It is necessary to determine whether specific metric values
are related to grasp success or particular hand characteristics. Regarding the first,
studies on chapter 5 showed there is no direct relation between having higher or
lower values in a metric and providing successful grasps. Thus, in this study we
want to determine if it is possible to relate quality metrics to other hand indexes.

The Anthropomorphic Index (AI) (Feix et al., 2013) is a metric which evaluates the
similarity between a prosthetic hand and the human hand. It is assumed, the human
hand is the perfect manipulator. Therefore, an artificial hand capable of achieving
the same workspace and movements will be considered as good as the human hand.

In this chapter we aim to establish a relation between quality metrics evalua-
tion and the Anthropomorphic Index (AI). We will evaluate prosthetic hands using
a similar procedure done in the previous section to establish the quality values of
hands. Then, we will evaluate these same hands with the AI. With the results ob-
tained we will try to find a correlation between the quality values and their anthro-
pomorphism.

6.3.1 Anthropomorphic index

Feix et al., 2013 defines a metric for comparing the anthropomorphic capability of ar-
tificial hands. This metric calculates an Anthropomorphism Index (AI) which gives
a value of similarity between human and artificial hands. It measures if an artificial
hand is capable of producing the same movements and postures of the human hand.

The workspace of a hand is determined using a 2D latent space. This space is
generated with the recording of the finger tips of the hand model for different grasps
or hand postures. Then it is compared the latent space of the artificial hand to the
space the human hand (base space).

The space for the human hand is generated using 31 different grasp types based
on an extensive grasp taxonomy (Figure 1.5). For each grasp event, the finger tips
of the hand are recorded. This produces a high dimensional workspace, then, with
non-linear dimensionality reduction techniques and kinematic structures, it is pos-
sible to generate the 2D latent space.

Over this latent space, different configurations of artificial hands can be pro-
jected, which gives an estimation of the anthropomorphic index of a given hand
as the percentage surface covered by the artificial hand on the human hand space.

To generate a latent space for an artificial hand requires different hand configura-
tions. This could be done either from different grasp poses or random configurations
of the hand model. A problem that arises is the huge computational cost in terms of
memory, related to the size of the matrix that defines the set of different configura-
tions a hand can achieve. This matrix depends on the number of DoF, the range of
movement for every DoF and the step chosen for the joint movement on each DoF.

The Grade your Hand Toolbox1 (Feix et al., 2013) provides the latent space for the
human hand and the tools necessary to calculate the latent space of any other hand.

1http://grasp.xief.net/

http://grasp.xief.net/
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For this computation only the hand kinematics are necessary. It is important to
note this metric is intended for anthropomorphic hands and thus, classic grippers
or robotic manipulators are impaired.

6.3.2 Methodology

Anthropomorphic hands

We have selected 5 artificial anthropomorphic hand models (Figure 6.1): TactHand,
Michelangelo, FlexyHand, ShadowHand and BruJa. More details of this hand are pre-
sented in section 3.2. Table 6.9 summarizes the specifications for the whole set of
hand models. All of them are assumed to have rigid bodies.

(A) TactHand (B) Michelangelo (C) Flexyhand

(D) Shadow Hand (E) BruJa

FIGURE 6.1: Hand models analyzed with metrics and the AI

TABLE 6.9: Details of the Hand Models Used

Hand Fingers Joints Actuators Description
Flexy 5 14 5 FlexyHand model
Mich 5 6 2 Michelangelo Hand model
Tact 5 11 6 TactHand model
BruJa 5 15 6 BruJa Model-B hand model
Shadow 5 17 7 ShadowHand model

Objects

Different object models are selected depending on the index. For the AI we selected
15 objects models of common objects. These object models are the same used by
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Feix et al. Feix et al., 2013 in their calculation of the latent space of the human hand,
which is the base to calculate the Anthropomorphism Index. This ensures that both
approaches are based on the same set of objects. Figure 6.2 shows the whole set of
objects.

FIGURE 6.2: Sample of the different objects used for calculate the Anthropo-
morphic Index.

Experiments

First, we will generate 1000 random grasps with the 15 objects models for each hand.
Each one of these grasps are generated and evaluated with the seven independent
quality metrics using OpenHand.

The second part of the analysis computes the AI for each hand model. The com-
putation of the AI is dependent on the number of DoF of the hand and the range of
movement of each joint. For hands with many DoFs or large edges of movement,
it is not feasible to take in account all the configurations, so a subset of grasp hand
configurations has to be sampled. For the sampling, two different methods have
been used: a random sub-sampling and a grasp configuration based selection:

Random sub-sampling A step size of 1°is used and 100.000 random configu-
rations of each hand are selected randomly. This sub-sampling has been done ten
times per hand, in order to get a standard deviation of the measure. In the case of
the Michelangelo the sub-sampling is not necessary, since the total amount of hand
configurations is 420, (it has only 2 DoF).

Grasp Configuration sub-sampling 1000 random grasps from the quality met-
rics analysis for every hand are selected. With this data a series of configurations go-
ing from initial common position of the hand to these selected grasp configurations
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is generated using steps of 1°. This method gives hand configurations representing
real grasp postures, in opposite to the first method which can give any type of hand
posture.

The range of movement of the different DoF in every hand is detailed in Table
6.10.

TABLE 6.10: Range of the DoFs used to generate hand configurations in the
AI evaluation.

Hand Thumb Thumb Abduction Index/Middle Ring/Small Small Abduction
Flexy [0°- 70°] NA [0 70°] NA
Mich [0°- 70°] [0,4,8,12,16,20] [0°- 70°] NA
Tact [0°- 90°] [0°- 90°] [0°- 90°] NA
BruJa [0°- 90°] [0°- 90°] [0°- 90°] NA
Shadow [0°- 45°] [0°- 90°] [0°- 90°] [0°- 45°]

6.3.3 Results

Table 6.11 shows the values of the metrics for each hand. The ranges are selected
using the Percentiles 10 and 90. These limits indicate typical ranges for a hand with
respect to a specific metric. As showed results in previous study (section 6.2), the
ranges of values on metrics typically present many outliers. These outliers would
distort the intervals in which most of the values lay if maximum and minimum
values were chosen as range limits.

TABLE 6.11: Quality Evaluation in Anthropomorphic Hands

A1 B1 B2 B3 C2 D1 D2 Grasps

Shadow
Perc10 0.02 0.26 0.00 0.23 0.00 0.21 0.00

13504
Perc90 1.06 0.77 0.13 0.61 0.06 0.38 0.01

Tact
Perc10 0.03 0.31 0.01 0.23 0.00 0.36 0.00

9561
Perc90 0.72 0.75 0.16 0.65 0.04 0.71 0.00

BruJa
Perc10 0.02 0.23 0.02 0.30 0.00 0.22 0.00

6884
Perc90 0.62 0.73 0.17 0.72 0.02 0.61 0.00

Flexy
Perc10 0.03 0.20 0.02 0.25 0.00 0.18 0.00

8099
Perc90 1.17 0.78 0.17 0.59 0.04 0.42 0.00

Mich
Perc10 0.02 0.30 0.02 0.10 0.00 0.44 0.02

10994
Perc90 0.06 0.78 0.11 0.57 0.02 0.68 0.26

This table shows also the number of grasp candidates generated per each hand
model. Figure 6.3 shows graphically a comparative between grasp quality metrics
for different hand models.

Table 6.12 shows the AI for every hand, using both methods for hand configura-
tion sampling, for the Michelangelo hand this study was not needed as in this hand
model all possible configurations can be calculated. This values are shown in Figure
6.4. This figures show the 2D latent space of the hand models projected over the
human hand.
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(A) QA1

(C) QB1 (D) QB2

(E) QB3 (F) QC2

(G) QD1 (H) QD2

FIGURE 6.3: Percentiles of Quality Metrics for Artificial Hands.
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TABLE 6.12: Anthropomorphism Index Results

Hand Random Sampling Grasp Sampling
Model AI ± std AI Set Size
Mich 0.65 ± 0.00 NA NA
Flexy 4.65 ± 0.11 4.73 69821
Tact 3.91 ± 0.13 3.75 87346
BruJa 6.61 ± 0.28 7.66 88720
Shadow 14.10 ± 0.32 9.12 82718

(A) Michelangelo Grasp (B) Flexyhand Grasp (C) Flexyhand Random

(D) Tacthand Grasp (E) Tacthand Random (F) BruJa Grasp

(G) BruJa Random (H) Shadowhand Grasp (I) Shadowhand Random

FIGURE 6.4: 2D latent space of artificial hands projected over the human
space. Red lines/dots denotes the space covered by the artificial hand. La-

tent spaces are showed for both sampling methods: grasp and random
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Finally graphs in Figure 6.5 show the comparative between the AI of each hand,
using the Random sampling method, and its mean quality for each quality metric.
The data plot on these graphs are shown in Table 6.13.

TABLE 6.13: Quality Evaluation and AI in Hands models

Median Shadow Tact BruJa Flexy Mich
QA1 0.582 0.259 0.185 0.304 0.037
QB1 0.499 0.517 0.459 0.453 0.534
QB2 0.043 0.057 0.056 0.069 0.053
QB3 0.418 0.473 0.510 0.426 0.338
QC2 0.017 0.012 0.007 0.012 0.003
QD1 0.291 0.522 0.395 0.277 0.546
QD2 0.004 0.000 0.000 0.001 0.077
AI 14.100 3.910 6.610 4.650 0.650

6.3.4 Discussion

The results shown in Figure 6.3 and Table 6.11 with the distribution of each quality
metric for every hand are relevant because indicate the capability of each hand to
produce good grasping configurations. In general there are no significant differences
between hands, with only small variations.

The AI has shown to be strongly dependent on two factors (Table 6.12), the la-
tent space used for making comparisons and the parameters used for generating
the different configurations of the hand. Two different methods for sampling hand
configurations have been tested. The grasp based method, which is more related to
real grasp configurations, only gives better results in a few models, being the random
sampling method also a good choice for generating hand configurations. A more
deep analysis of this metric should be made, in order to more accurately define the
parameters needed for the step size in the range of the DoFs and the set size for
generating configurations.

For this study, the latent space used in the AI was related to evaluate configura-
tions used to make certain type of grasps, which means there are a lot of different
human poses that are not taken in account. This makes it unable to evaluate other
common human hand configurations, such from a person typewriting or playing pi-
ano. Thus, is really important to define a full latent space not only limited to grasps
in Activities of Daily Life, but also common hand gestures and movements from
humans.

The AI measure gives an assessment of how human the configurations of a arti-
ficial hand can be, even though it is dependent of the latent space defined to make
the comparison, it is a good metric for evaluating the anthropomorphism and the
behavior of a hand in different situations. So, in spite of its limitations it can be used
to optimize the design of artificial hands , focusing in mimic only certain configura-
tions of the human hand or making them task oriented.

Finally the comparison between both methodologies for evaluating hands shows
there is not a clear relation between the anthropomorphism of a hand and its grasp
qualities. Although the AI could be used to design more human hands, the grasping
ability related to this index should still be proven. Similar real experiments as the
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(A) QA1

(C) QB1 (D) QB2

(E) QB3 (F) QC2

(G) QD1 (H) QD2

FIGURE 6.5: Comparative between AI and Grasp Quality.
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performed in Chapter 5 will provide a better insight on whether more human-like
artificial hands are better manipulators.

6.4 Grasp success prediction and evaluation
of artificial hands

In this study we propose a methodology capable to evaluate the expected perfor-
mance of an artificial hand, using a grasp success prediction model. From the previ-
ous chapter (Chapter 5) it was shown it is possible to train and generate a prediction
model capable to classify, with high success rate (>80%), the outcome of real grasp
executions.

This prediction model uses a 3-categories scale to classify grasps as Robust (al-
ways succeeds), Futile (never works) and Fragile(Its success depends on precise con-
tact points, object characteristics or gravity orientation). This prediction model had
its limitations: it was tested with only two different grippers and a small set of ob-
jects. More important, results showed generalize this model to other grippers is still
not advisable. But, what if we consider a prediction model trained with more grip-
per/hand designs and a huge set of objects? If this is the case, we could assume, this
prediction model would be capable of evaluate grasp candidates with any kind of
artificial hand and object.

In this section we propose to apply the grasp prediction model trained in the pre-
vious chapter as an evaluator for artificial hand designs. We will assume it has been
trained and tested with a variety of robotic hands and objects, and the success rate
remains as in the previous chapter (>80%). The objective in this study is not to pro-
vide a specific evaluation of different artificial hands, but to present a methodology
capable of doing such evaluation.

Disclaimer The study done in this section is purely hypothetical. We assume there
is a grasp prediction model capable to classify the outcome of grasp executions with
an accuracy higher than 80%. Results obtained for each hand model are not reliable
and conclusions about them should not be done.

6.4.1 Methodology

First, we will simulate and evaluate a wide variety of grasp poses and objects with
an artificial hand. For this purpose we will use the grasps database generated in
Chapter 4 and extended in the first study of this chapter (see Section 6.2). We have
added also to this study the BruJa used in the previous study (see Section 6.3) with
the anthropomorphism index.

Then, we will classify these simulated grasps with our trained model. Results
will provide an estimation on the number of grasps which will be Robust, Fragile
or Futile with each artificial hand. With this method we will be able to evaluate
independently different artificial hands and compare them.

Our grasp database contains 10 different hand models and 126 objects. For each
hand an object we selected up to 1.000 random grasps to be evaluated. In some
models (tacthand, flexyhand and bruja) it was not possible to obtain this thousand
random grasps.

The hand models to be evaluated in this section are: PR2 hand, Barrett hand,
Schunk SDH hand, Model-T, Schunk SAH hand, Michelangelo hand, Shadow hand,
Flexy-hand, BruJa-hand and Tact hand. The first four models correspond to classic
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robotic grippers. The other six models correspond to anthropomorphic hands. See
section 3.2 for more details of the hands.

To predict the outcome of real grasp executions, we will use the classification
model generated in Chapter 5.6. This prediction model uses a 3-categories scale to
classify grasp candidates as Robust, Futile and Fragile.

6.4.2 Results

Table 6.14 shows the distribution of Robust, Fragile and Futile grasps among different
hand models. Results are reported in percentage of grasps per category. Also the
total number of generated grasps per hand model is reported.

Graphs in Figure 6.6 show the distribution of grasps on each category and hand
model.

TABLE 6.14: Summary of grasps distribution per each hand model. Results
shows percentage and number of grasps on each category.

Hand Distribution of Grasps (%) Number
Model Futile Fragile Robust of grasps
PR2 0.08 0.56 0.36 126000
Barrett 0.16 0.29 0.55 126000
SDH 0.44 0.30 0.26 126000
ModelT 0.13 0.32 0.56 126000
SAH 0.13 0.32 0.55 126000
Michelangelo 0.15 0.69 0.17 126000
Shadow 0.05 0.30 0.66 126000
Flexy 0.08 0.30 0.62 84744
Deval 0.20 0.35 0.45 105911
Tact 0.26 0.34 0.40 125319

6.4.3 Discussion

As shown results obtained in this study. The Shadow hand seems to be the best model
for grasping as it has the highest success rate (66%) and lowest failure rate (5%). The
Flexy-hand model showed also similar values to the Shadow hand. These two models
of anthropomorphic hands seemed to be the best options for grasping.

On the other hand, the Schunk SDH hand model showed the worst performance,
with a high failure rate (44%) and a low success rate (26%). The Michelangelo hand
model showed a lower success rate (17%), but it has a high number of Fragile grasps
(69%) meaning most of these grasp candidates could be good options for grasping.

It is important to take in account in this analysis, fragile grasps could easily turn
into successful grasps. This would depend in first, the error detection and grasp
reconfiguration for robotic grippers and second, the human reaction and manipula-
bility with the prosthetic hands.

In the case of prosthetic hands, we can assume humans would react and adapt
easily to overcome these fragile grasps and turn them into successful grasps. For
robotic grippers, it would depend in the intelligence implement in the robotic system.
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FIGURE 6.6: Distribution of grasps on each category for different artificial
hand models. Green: Robust, Yellow: Fragile, Red: Futile.

6.5 Hand design improvement

The previous study presented a methodology to evaluate the grasping capabilities
of artificial hands. In this study we aim to exploit this methodology to evaluate the
design of a low-cost prosthetic hand.

Prosthetic hands are intended for human use. They are designed to help am-
putees and one armed people on their activities of daily life (ADL). The YCB-Dataset
(see Section 3.3) contains up to 77 different object models of daily life with different
shapes, sizes, textures, weight and rigidity. In this study we will simulate and eval-
uate different grasps with this object set.

Disclaimer The study done in this section is purely hypothetical. We assume there
is a grasp prediction model capable to classify the outcome of grasp executions with
an accuracy higher than 80%. Results obtained for each hand design are not reliable
and conclusions about them should be done carefully.

6.5.1 Methodology

In this study we will evaluate different designs of the Imma Hand 3.2. Our objective
is to improve the original design of the Imma hand. We will evaluate the perfor-
mance of the hand with different orientations of the thumb joints. We will change
the orientation of the thumb cmc-joint from 0 to 45 degrees and the mcp-joint from 0
to 90 degrees, with a step size of 15 on each joint (Figure 6.7).

As this is a prosthetic hand, intended to be used by humans, we have selected
common objects from the ADLs. We have selected 24 different objects from the YCB
Dataset (Figure 6.8). Following the grasp generation method described in Chapter
3.4, we have used a simple procedure to generate up to 100 different grasp candi-
dates per object. Details on the parameters used for generating the grasps are shown
in Table 6.15.
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FIGURE 6.7: CMC and MCP joints to be modified in the Imma Hand.

In total, 28 different designs for the same hand model and up to 2400 grasp can-
didates per design will be evaluated.

TABLE 6.15: Parameters selected to generate grasp hypotheses

Parameter Value
δ Delta Space 0.01 m
α Alpha Angle [0, π/3]
θ Standoff Distance [0.01 m, 0.02 m]
Nr Gripper Rotations [0, π/2, π, 3π/2, 2π]

6.5.2 Results

We have split our results among the different orientations of the thumb cmc joint.
Table 6.16 shows the values and comparison of grasp successfulness for the thumb
joint cmc 0°and the mcp from 0°to 90°. Table 6.17 shows the values and comparison
of grasp successfulness for the thumb joint cmc 15°and the mcp from 0°to 90°.

Table 6.18 shows the values and comparison of grasp successfulness for the thumb
joint cmc 30°and the mcp from 0°to 90°. Table 6.19 shows the values and comparison
of grasp successfulness for the thumb joint cmc 45°and the mcp from 0°to 90°.

Tables show the number of grasps on each category and the total number of
grasp candidates generated with the params specified on Table 6.15.

6.5.3 Discussion

Results on tables 6.16 to 6.19 showed our hand evaluation methodology could help
to improve the design of a hand prosthesis. On each table we remarked the best
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FIGURE 6.8: Sample of the different objects used from the YCB Database.

TABLE 6.16: Summary of grasps distribution for Joint CMC 0. Graph shows
percentage of grasps on each category.

MCP Futile Fragile Robust Total
0° 0.09 0.28 0.63 1991
15° 0.08 0.32 0.60 2010
30° 0.10 0.46 0.44 2040
45° 0.11 0.43 0.46 2038
60° 0.11 0.46 0.43 2032
75° 0.08 0.31 0.61 2046
90° 0.09 0.32 0.59 2010

TABLE 6.17: Summary of grasps distribution for Joint CMC 15. Graph shows
percentage of grasps on each category.

MCP Futile Fragile Robust Total
0° 0.08 0.32 0.60 2043
15° 0.09 0.30 0.61 2063
30° 0.08 0.30 0.62 2071
45° 0.09 0.29 0.63 2068
60° 0.07 0.32 0.61 2076
75° 0.08 0.32 0.60 2034
90° 0.06 0.36 0.59 2039
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TABLE 6.18: Summary of grasps distribution for Joint CMC 30. Graph shows
percentage of grasps on each category.

MCP Futile Fragile Robust Total
0° 0.06 0.33 0.61 2027
15° 0.05 0.32 0.62 2003
30° 0.06 0.32 0.62 1975
45° 0.07 0.32 0.62 1944
60° 0.07 0.34 0.59 2044
75° 0.06 0.35 0.59 2050
90° 0.06 0.37 0.57 2006

TABLE 6.19: Summary of grasps distribution for Joint CMC 45. Graph shows
percentage of grasps on each category.

MCP Futile Fragile Robust Total
0° 0.05 0.31 0.64 2008
15° 0.06 0.30 0.64 1990
30° 0.06 0.29 0.65 1955
45° 0.07 0.29 0.65 1931
60° 0.05 0.36 0.60 2060
75° 0.06 0.37 0.57 2009
90° 0.07 0.38 0.56 2001

design for the different orientation of the Thumb.
The criteria applied to select the best design was, first, we compared the rate of

Robust and Futile grasps. Then we checked the number of grasp hypotheses gener-
ated. It is important to note we can not rely in only one criteria for selecting the best
design.

In the case of Thumb Joint CMC 45 (Table 6.19) it was not very clear the best de-
sign, as four different models (mcp0, mcp15, mcp35 and mcp45) had a high success
rate (> 60%). In this case we considered as criteria for selecting the best design the
number of grasp hypotheses generated.

In this study we applied a methodology to evaluate artificial hands to different
designs of the same prosthetic hand. We considered as the main criteria for selecting
a design the success rate of robust grasps. However, other criteria such as the num-
ber of grasp hypotheses generated or the rates of fragile and futile grasps could be
taken in account.

Our results rely on a prediction model which has to be tested with more objects
and hands, thus, conclusions on which is the best hand design could not be valid.
This study aimed to show how our methodology to evaluate artificial hand can help
to improve the design of prosthetic hands.

6.6 Conclusions

6.6.1 Artificial hand properties

In this experiment we applied and exhaustive analysis on the characteristics of dif-
ferent artificial hands. We analyzed the quality of different hands according to spe-
cific grasp metrics. These metrics evaluate independent aspects of the grasp which
we consider as hand properties.
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The solely evaluation with quality metrics can’t provide information about the
performance of an artificial hand, or how good it is for grasping. However, it could
be used as benchmark for comparing different hand models. Moreover, it could be
used as a method to find similarities in the performance between hand models.

The evaluation of grasp candidates with quality metrics showed different combi-
nations of metric values could provide good grasp solutions. Thus, a hand capable of
achieve a large range of different quality values in different metrics is more suitable
to make successful grasps.

6.6.2 Comparison with hand indexes

In the analysis with the Anthropomorphic Index, two different approaches to evalu-
ate the functional performance of anthropomorphic artificial hands have been stud-
ied and compared. The anthropomorphism index (AI) focused on how an artificial
hand can replicate the workspace of a human hand. On a different trend, robotic
quality metrics (QM) offer different alternatives to asses how good is a grasp per-
formed by a robot hand on an object. Our results show that the assessments pro-
vided by both approaches are basically independent. That is, it does not matter how
anthropomorphic is the design of an artificial hand, in the sense defined by the AI,
in order to obtain more stable grasps.

A final remark on this study is that it has been constrained to simulation. The
quality assessments provided by either the quality metrics or the anthropomorphism
index has not been validated nor compared against assessments obtained with real
hands on real scenarios. Therefore the results obtained should be taken with caution.
Preparing proper experimental scenario and carrying out exhaustive prototype ex-
periments should be definitively the next step on this research.

6.6.3 Grasp success prediction and evaluation
of artificial hands

In the last two studies we presented a methodology to evaluate hand models based
on its capability to achieve successful grasps. The methodology relies on a prediction
model capable to evaluate grasp candidates using a 3-categories scale to classify
them as Robust, Futile and Fragile.

All the experiments performed in this studies are based on a prediction model
tested only with two hand models and a few objects. Thus, results obtained are
not conclusive and the evaluation and comparison between different hand models
should be tested with real experiments.

The main objective of this section was not to provide an evaluation of different
hand models, but to present a methodology capable of this procedure. As show the
experiment comparing different hand designs, this methodology could be applied
in the process of designing hand prosthesis. This methodology, with the proper
prediction model, is also suitable to different sets of objects and task oriented designs
of artificial hands.

6.6.4 Limitations

The main limitation on this Chapter is the lack of a ground-truth of real experiments
for the evaluation of artificial hands. The evaluation with metrics and the anthro-
pomorphic index require real experimentation to relate the evaluation in simulation
and the real performance of artificial hands.
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The evaluation using the classification model for predicting the grasp success
also require a wider ground-truth. The real experiments in which rely this evalua-
tion method were done with only two different grippers and a few objects. Thus,
is needed a larger set of real experiments with different artificial hand and object
models.

6.6.5 Future & Related Work

As future work, it is necessary to evaluate the artificial hands analyzed in this chap-
ter in real world. Thus, we should define a methodology to evaluate the grasping
capabilities of different hand models and compare them to the evaluation done with
quality metrics and the grasp success prediction model.

This applies also to evaluate the different designs of the Imma hand. As this is a
prosthetic hand intended to be built using 3D-printed materials, construct and test
in real world the different designs evaluated in this chapter should be the next step
to do.

The studies, methodology and results presented in this chapter were total or par-
tially published in Rubert et al., 2014; Rubert and Morales, 2016; Rubert et al., 20182.

Also, the use of OpenHand and the methodologies described in this Chapter
have been used to evaluate prosthetic hand designs in: Llop-Harillo et al., 2017;
Llop et al., 2017; Cardín-Catalán et al., 2016; Llop-Harillo et al., 2018; Andrés et al.,
2018.

2In Rubert and Morales, 2016 the BruJa hand is referred as Devalhand
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Chapter 7

Conclusions

This chapter highlights the main contributions of the thesis. As well as a list of
publications and some ideas on future lines of research.

7.1 Contributions

7.1.1 Quality metrics analysis

In this chapter we realized a deep analysis on the characteristic of 10 different grasp
quality metrics. The main contributions are:

1. We analyzed and defined a method to generate grasp hypotheses to avoid bi-
ases.

2. We provided an statistical study to obtain thresholds and ranges of values in
different metrics.

3. We obtained a sensitivity index of different metrics against pose errors.

4. We established correlations between metrics.

5. We obtained 7 independent grasp metrics for evaluate grasp hypotheses.

7.1.2 Grasp success prediction

In this chapter we analyzed the prediction capabilities of different quality metrics.
The contributions on this chapter are:

1. We studied the prediction capabilities of humans and dynamic simulation.

2. We analyzed different machine learning algorithms to define a grasp predic-
tion model using quality metrics as input feature vector.

3. We found non-linear and non-parametric algorithms work better for combin-
ing grasp metrics and predict grasp success.

4. We analyzed how the object’s weight and gravity orientation influence the
grasp success.

5. We propose a grasp prediction model able to classify grasp candidates as
Robust, Fragile and Futile.
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7.1.3 Artificial hands evaluation

In this chapter we used quality metrics as evaluators of hand models. The main
contributions of this chapter are:

1. We defined grasp metrics as evaluators of hand properties.

2. We proposed a method for benchmarking and compare hand models.

3. We compared the evaluation with metrics to the anthropomorphism of hand
prosthesis.

4. We defined a methodology to evaluate the grasp capability of different hands.

5. We applied this methodology to improve the design of a hand prosthesis.

7.2 Future work

As future work, we should consider three lines of research.

Grasp metrics Our studies considered only 10 grasp quality metrics, but there
are more in the literature. The studies on Chapter 4 should be repeated considering
new metrics and analyze possible correlations between them.

Grasp prediction The ground-truth to define a prediction model considered
only two grippers and a few objects. More real experiments with other gripper and
objects should be definitely done. Also, it should be considered a more deep analysis
on the object characteristics and influence of the gravity on the grasp success.

Hand evaluation This study relied in simulation. It is necessary to perform
real experiments to evaluate the characteristics and grasping capabilities of different
hand models, and how are related to quality metrics and methodologies proposed.

7.3 Related publications

The studies and experiment exposed in this thesis were total or partially published
in:

Journal papers

1. C. Rubert, B. León, A. Morales, J. Sancho-Bru (2018). "Characterisation of grasp
quality metrics". Journal of Intelligent & Robotic Systems.

2. J. Andrés, A. Pérez-González, C. Rubert, J. Fuentes, B. Sospedra (2018). "Com-
parison of grasping performance of tendon and linkage transmission systems
in an electric powered low cost hand prosthesis". Journal of mechanisms and
Robotics. 1

1Accepted. Pendent publishing.
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Conference Papers

1. B. Leon, C. Rubert, J. Sancho-Bru, and A. Morales (2013). "Evaluation of pros-
thetic hands prehension using grasp quality measures". IEEE International Con-
ference on Intelligent Robots and Systems (2013).

2. B. Leon, C. Rubert, A. Morales, and J. Sancho-Bru (2014). "Characterization
of Grasp Quality Measures for Evaluating Robotic Hands Prehension". IEEE
International Conference on Robotics and Automation (2014).

3. C. Rubert, B. León, A. Morales (2014)."Grasp Quality Metrics for Robot Hands
Benchmarking". 2014 IEEE/RSJ International Conference on Humanoid Robots

4. C. Rubert, A. Morales (2016). "Comparison between grasp quality metrics and
the anthropomorphism index for the evaluation of artificial hands". IEEE -
BioRob 2016. Singapur.

5. D. Cardín-Catalán, M.C. Mora, J. Andrés, B. Sospedra, C. Rubert (2016). "Dis-
eño y simulación de un prototipo de mano protésica de bajo coste". XXI Con-
greso Nacional de Ingeniería Mecánica, Elche.

6. C. Rubert, A. Morales (2016). "Evaluación de manipuladores robóticos medi-
ante métricas de calidad del agarre". Jornadas de Automática 2016, Madrid.

7. I. Llop-Harillo, A. Pérez-González, V. Gracia-Ibañez, C. Rubert (2017). "Design
and evaluation of anthropomorphic hands". Summer School on soft manipula-
tion. July, 17th-21st 2017 Lake Chiemsee, Germany.

8. I. Llop, A. Pérez, C. Rubert (2017). "Anthropomorphism index of opposition
for hand prostheses". 23rd Congress of the European Society of Biomechanics, Jul
2017, Sevilla.

9. C. Rubert, D. Kappler, A. Morales, S. Schaal, J. Bohg (2017). "On the relevance
of grasp metrics for predicting grasp success." IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2017), Sep 2017, Vancouver.

10. I. Llop-Harillo, C. Rubert, A. Pérez-González (2018). "Computation of grasp
quality metrics in OpenHand simulator to improve a 3-D printed prosthetic
hand". Computer Methods in Biomechanics and Biomedical Engineering Congress,
Lisboa.
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Conclusiones

Este capítulo destaca las principales contribuciones de la tesis. Así como una lista de
publicaciones y algunas ideas para futuras líneas de investigación.

7.4 Contribuciones

7.4.1 Análisis de métricas de calidad

En este capítulo hemos realizado un exhaustivo análisis sobre las características de
10 métricas de calidad del agarre distintas. Las contribuciones principales son:

1. Hemos analizado y definido un método para generar hipótesis de agarre para
evitar sesgos.

2. Se ha proporcionado un estudio estadístico para obtener los umbrales y rangos
de valores en distintas métricas.

3. Hemos calculado un índice de sensibilidad de las distintas métricas ante la
presencia de errores de posición.

4. Se han establecido correlaciones entre métricas.

5. Hemos obtenido 7 métricas independientes para evaluar las hipótesis de
agarre.

7.4.2 Predicción del éxito del agarre

En este capítulo hemos analizado la capacidad de predicción de distintas métricas
de calidad. Las contribuciones del capítulo son:

1. Hemos estudiado la capacidad de predicción de humanos y la métrica física en
simulación.

2. Hemos comparado distintos métodos de clasificación para definir un modelo
de predición del agarre, utilizando métricas como vector de características de
entrada.

3. Hemos comprobado que los algoritmos no lineales y no paramétricos funcio-
nan mejor para combinar métricas y predecir el éxito del agarre.

4. Hemos analizado como el peso del objeto y la orientación de la gravedad in-
fluyen en el éxito del agarre

5. Hemos propuesto un modelo de predicción del agarre capaz de clasificar
agarres candidatos como Robustos, Frágiles y Futiles.
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7.4.3 Evaluación de manos artificiales

En este capítulo hemos utilizado las métricas de calidad como evaluadores de mod-
elos de manos. Las contribuciones principales del capítulo son:

1. Hemos definido las métricas de agarre como evaluadores de distintas propiedades
de las manos.

2. Hemos propuesto un método para establecer valores de referencia y comparar
modelos de mano.

3. Hemos comparado la evaluación con métricas con el antropomorfismo de manos
protésicas.

4. Hemos definido una metodología para evaluar las capacidades de agarre de
distintas manos.

5. Hemos aplicado dicha metodología para mejorar el diseño de una mano pro-
tésica.

7.5 Trabajo Futuro

Como trabajo futuro, deberíamos considerar tres líneas de trabajo:

Métricas del agarre Nuestros estudios han considerado sólo 10 métricas de cal-
idad del agarre, pero hay muchas más en la literatura. Los estudios en el Capítulo 4
podrían ser repetidos considerando nuevas métricas y analizando posibles correla-
ciones entre ellas.

Predicción del agarre Los datos de base para definir un modelo de predición
utilizan sólo dos manipuladores y unos pocos objetos. Más experimentación real
con otros manipuladores y objetos debe ser realizada. Se debe considerar también,
realizar un análisis más profundo en las características de los objetos y la influencia
de la gravedad en el éxito del agarre.

Evaluación de manos Este estudio está basado en simulación. Es necesario
realizar experimentos reales para evaluar las características y capacidades de agarre
de los distintos modelos de manos, y como están relacionadas con las métricas de
calidad y las metodologías propuestas.

7.6 Publicaciones relacionadas

Los estudios y experimentos propuestos en esta tesis han sido total o parcialmente
publicados en:

1. B. Leon, C. Rubert, J. Sancho-Bru, and A. Morales (2013). "Evaluation of pros-
thetic hands prehension using grasp quality measures". IEEE International Con-
ference on Intelligent Robots and Systems (2013).

2. B. Leon, C. Rubert, A. Morales, and J. Sancho-Bru (2014). "Characterization
of Grasp Quality Measures for Evaluating Robotic Hands Prehension". IEEE
International Conference on Robotics and Automation (2014).
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3. C. Rubert, B. León, A. Morales (2014)."Grasp Quality Metrics for Robot Hands
Benchmarking". 2014 IEEE/RSJ International Conference on Humanoid Robots

4. C. Rubert, A. Morales (2016). "Comparison between grasp quality metrics and
the anthropomorphism index for the evaluation of artificial hands". IEEE -
BioRob 2016. Singapur.

5. D. Cardín-Catalán, M.C. Mora, J. Andrés, B. Sospedra, C. Rubert (2016). "Dis-
eño y simulación de un prototipo de mano protésica de bajo coste". XXI Con-
greso Nacional de Ingeniería Mecánica, Elche.

6. C. Rubert, A. Morales (2016). "Evaluación de manipuladores robóticos medi-
ante métricas de calidad del agarre". Jornadas de Automática 2016, Madrid.

7. I. Llop-Harillo, A. Pérez-González, V. Gracia-Ibañez, C. Rubert (2017). "Design
and evaluation of anthropomorphic hands". Summer School on soft manipula-
tion. July, 17th-21st 2017 Lake Chiemsee, Germany.

8. I. Llop, A. Pérez, C. Rubert (2017). "Anthropomorphism index of opposition
for hand prostheses". 23rd Congress of the European Society of Biomechanics, Jul
2017, Sevilla.

9. C. Rubert, D. Kappler, A. Morales, S. Schaal, J. Bohg (2017). "On the relevance
of grasp metrics for predicting grasp success." IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2017), Sep 2017, Vancouver.
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Appendix A

Quality Metrics Analysis

A.1 Numeric Results from Sensitivity Analysis

Table A.1 details theGSIN values for every metric computed for the reference grasps,
distinguishing between hand models. This table is related to the grapsh on section
4.3.

TABLE A.1: Comparison of GSIN for each hand and metric

PR2 Barrett Schunk Mich SAH ModelT Shadow
QA1 18.28% 17.90% 23.54% 3.19% 25.14% 22.89% 18.33%
QA2 8.55% 2.68% 28.36% 1.09% 72.69% 32.76% 21.59%
QA3 20.63% 33.49% 22.93% 3.72% 20.19% 21.83% 17.54%
QB1 12.63% 11.93% 10.31% 8.95% 11.99% 13.32% 8.39%
QB2 19.24% 17.36% 27.74% 13.10% 29.87% 26.20% 24.41%
QB3 29.44% 20.28% 36.37% 14.91% 27.57% 35.67% 23.94%
QC1 27.10% 6.27% 23.37% 4.00% 34.24% 35.62% 18.38%
QC2 16.76% 8.70% 12.37% 5.00% 23.07% 39.63% 24.45%
QD1 5.18% 21.32% 15.38% 13.30% 12.68% 12.36% 4.92%
QD2 1.60% 112.34% 0.00% 29.00% 1.80% 2.57% 0.62%
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Table A.2 details the GSIN values for every metric computed for the reference
grasps, distinguishing between good or bad reference grasps and between those
variations that improve or worsen the metric values from the reference grasp. This
table is related to the grapsh on section 4.3.

TABLE A.2: GSIN calculated for each quality metric distinguishing between
good or bad reference grasps and variations that improve or worsen the metric

values

Good Quality Bad Quality All Grasps
All Variations 28.36% 11.57% 11.64%

QA1 Improve 19.89% 21.11% 10.95%
Worsen 33.89% 4.11% 10.87%
All Variations 42.72% 3.98% 1.46%

QA2 Improve 43.21% 6.62% 1.18%
Worsen 44.57% 1.28% 1.44%
All Variations 28.01% 16.25% 10.30%

QA3 Improve 22.63% 31.29% 11.54%
Worsen 33.43% 4.56% 8.86%
All Variations 11.27% 11.24% 6.36%

QB1 Improve 9.44% 12.62% 6.08%
Worsen 12.94% 9.95% 6.47%
All Variations 31.38% 12.63% 5.55%

QB2 Improve 26.89% 25.15% 4.59%
Worsen 40.66% 11.38% 5.23%
All Variations 28.32% 20.95% 15.26%

QB3 Improve 23.40% 37.84% 15.66%
Worsen 39.94% 18.57% 14.79%
All Variations 28.27% 10.96% 9.09%

QC1 Improve 24.53% 33.37% 9.24%
Worsen 31.88% 8.34% 9.49%
All Variations 33.13% 4.94% 1.36%

QC2 Improve 30.66% 11.32% 1.22%
Worsen 37.86% 5.76% 1.45%
All Variations 12.99% 14.19% 9.94%

QD1 Improve 12.82% 17.82% 12.30%
Worsen 11.10% 7.73% 7.78%
All Variations 34.04% 2.18% 4.78%

QD2 Improve 37.52% 8.59% 7.24%
Worsen 32.08% 0.33% 8.12%
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Table A.3 shows the distribution of the variations of good and bad reference
grasps according to whether the variation improve or worsen the reference quality
value. This table is related to graphs on section 4.3.

TABLE A.3: Distribution of the variation of reference grasps (good or bad)
according to whether the variation improve or worsen the reference quality

value.

Good Quality Bad Quality All Grasps
All Variations 53.12% 46.88%

QA1 Improve 33.60% 52.29% 43.22%
Worsen 66.39% 46.88% 56.20%
All Variations 58.40% 41.60%

QA2 Improve 34.92% 50.54% 41.95%
Worsen 65.08% 49.35% 57.86%
All Variations 52.64% 47.36%

QA3 Improve 34.07% 54.41% 44.66%
Worsen 65.90% 44.48% 54.60%
All Variations 54.71% 45.29%

QB1 Improve 43.48% 54.41% 46.81%
Worsen 56.45% 45.53% 50.25%
All Variations 51.51% 48.49%

QB2 Improve 30.74% 64.92% 30.16%
Worsen 69.18% 34.97% 36.86%
All Variations 42.37% 57.63%

QB3 Improve 28.39% 72.34% 34.09%
Worsen 71.11% 27.31% 32.71%
All Variations 59.91% 40.09%

QC1 Improve 43.91% 68.10% 31.77%
Worsen 55.93% 19.13% 34.00%
All Variations 49.31% 50.69%

QC2 Improve 37.03% 50.27% 28.25%
Worsen 62.70% 46.78% 37.97%
All Variations 60.33% 39.67%

QD1 Improve 48.85% 63.84% 53.51%
Worsen 51.05% 33.90% 45.72%
All Variations 64.99% 35.01%

QD2 Improve 42.65% 29.02% 37.88%
Worsen 56.84% 10.94% 40.90%
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Appendix B

Grasp prediction for different
combinations of metrics

B.1 Precission results for best combinations of metrics

This appendix shows the results on prediction models using different combinations
of grasp metrics. Except for combinations of two metrics, only models with high
precision (>= 80%) are reported.

TABLE B.1: Best results on models trained using combinations of two different
metrics.

Classifier Combined Metrics CrossVal Test
K-Nearest Neighbors (QA1, QD1) 0.73 ± 0.07 0.78
K-Nearest Neighbors (QB1, QD1) 0.72 ± 0.03 0.76
K-Nearest Neighbors (QB2, QD1) 0.72 ± 0.05 0.77

TABLE B.2: Best results on models trained using combinations of three differ-
ent metrics.

Classifier Combined Metrics CrossVal Test
K-Nearest Neighbors (QB1, QB3, QD1) 0.75 ± 0.03 0.80

TABLE B.3: Best results on models trained using combinations of four differ-
ent metrics.

Classifier Combined Metrics CrossVal Test
K-Nearest Neighbors (QA1, QB1, QB3, QD1) 0.75 ± 0.06 0.81
K-Nearest Neighbors (QB1, QB2, QC2, QD1) 0.76 ± 0.03 0.80
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TABLE B.4: Best results on models trained using combinations of five different
metrics.

Classifier Combined Metrics CrossVal Test
K-Nearest Neighbors (QA1, QB1, QB2, QB3, QD1) 0.76 ± 0.07 0.80
K-Nearest Neighbors (QA1, QB1, QB3, QD1, QD2) 0.76 ± 0.06 0.81
K-Nearest Neighbors (QB1, QB2, QB3, QC2, QD1) 0.77 ± 0.04 0.81
K-Nearest Neighbors (QB1, QB3, QC2, QD1, QD2) 0.76 ± 0.03 0.80

TABLE B.5: Best results on models trained using combinations of six different
metrics.

Classifier Combined Metrics CrossVal Test
K-Nearest Neighbors (QA1, QB1, QB2, QB3, QD1, QD2) 0.77 ± 0.06 0.80
K-Nearest Neighbors (QA1, QB1, QB3, QC2, QD1, QD2) 0.75 ± 0.06 0.80
K-Nearest Neighbors (QB1, QB2, QB3, QC2, QD1, QD2) 0.77 ± 0.04 0.80
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