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Abstract

The present dissertation is focused on the energy optimization of systems which contain
multiple energy carriers. The objective of the research is the development of a methodology
and the corresponding software tools, which permit to calculate the optimal energy flow of a
multi-carrier system in order to satisfy its energy demands and minimize a set of established
optimization criteria. The topics that are covered in this research include the description of
the mathematical formulation of a multi-carrier energy system based on the energy hub
concept, the modelling and prediction algorithms that are used to forecast the energetic needs
of the plant, as well as the proposed optimization methodology to obtain the system’s optimal
operating strategy and its complete state, including transmission and conversion of multiple

energy carriers within defined security constraints.

Digital models and software-based simulations demonstrate the feasibility of the proposed
solution. The testing and validation of the proposal was made under real operating conditions
of a car manufacturing plant in the framework of the FP7 European research project
EuroEnergest. The findings provided valuable output conclusions of the suitability and
usefulness of this methodology to calculate the optimal control of a multi-carrier energy
system, as well as the potential energetic, environmental and economic benefits that could be

resulted from its application.

Mepiinym

H mapoloa Aldaktopikr AlatplBr mpaypateVeTal Ty BeATIOTONOINCN EVEPYELAC CUCTNUATWY
TIou TeplEXouv N amotedolvtal omd TOAMAMAEC TINYEG EVEPYELOC KOl KOTOVAAWOELG.
AVTIKEIPEVO AUTNAC, lval N PeAETN Kal 0 oxeblaopog plag pebodoloyiag, kabBwg eniong kot o
TIPOYPOUUATIONOC TWV OVAAOYWV TIPOYPAUUATWY, YloL TOV UTIOAOYLOUO TNG PBEATIOTNG
Aettoupylag evog evepyelakol CUOTHUATOC LE TEALKO OKOTIO TNV LKOWVOTIOINGN TOU EVEPYELAKOU
Tou dpoptiou Kal TNV gAaylotomnoinon TMOANAMAWY QVTIKELMEVIKWY KpLtnpiwv. Ta BEpata mou
KOAUTITOVTOL OtV mapoloa €peuva TEPNAUBAVOUV TNV padnuatiky meplypadn Twv
EVEPYELOKWY CUCTNUATWVY TIOAWV TTINYWV KL KATOVAAWGEWYV, TNV EMEENYNON Kal tapouaciacn
TWV oAYOPLBUWY YLOl TNV HOVTEAOTIOINON KoL TIPOYVWON TWV EVEPYELOKWVY OTOLTOEWY TOU
cuotAuartog, kabwg eniong kat tnv mpoteivouca pebBodoroyia yia tnv BeAtiotonoinon tng

PONG EVEPYELAG OTO CLUOTNA.



Abstract X

H UeAETn Kal EMIKUPWON TNG TPOTACNG TPAYLOTOMOLRONKE UTIO TIPAYUATLIKEG CUVONKEG O€ Eval
£PYOOTACLO KOTAOKEUNC OUTOKWATWY TG lomaviag, oto mAaioo tou Eupwmaikou
gpeuvnTkol Tpoypappatoc FP7 EuroEnergest. Ta amotehéopata tng UeAETNG mapeiyav
TOAUTIUO CUUTEPACUOTA OXETIKA HE TNV KOTOAANAOTNTA KAl QITOTEAECUOTIKOTNTA TNG
peBodoloylag yLa Tov UTtOAOYLOUO TG BEATLOTNG AELTOUPYLOC EVOC EVEPYELAKOU CUOTHHATOC
TIOAAQUITAWY TINYWV Kol KotavoAwoewy. Katd tnv Slapkela tng LEAETNG KATEOTN SuvaTov va
UTTOAOYLOTOUV T OLKOVOMULKA, TEPIPAANOVTIKA Kal evepyelakd odEAn tng mpotelvoucacg

pueBodoloylag, og clyKPLON UE TV CUUPATLKA AsLlToUpylot TOU GUCTAMATOCG SOKLUAG.

Resumen

En la presente Tesis doctoral se estudia la optimizacién energética en sistemas que contienen
multiples fuentes y demandas energéticas. El objetivo de la investigacién es desarrollar una
metodologia y los correspondientes algoritmos de control, que permitan controlar la
operacion de sistemas con multiples portadores energéticos de forma dptima, con fin de
satisfacer sus demandas energéticas y minimizar una serie de criterios establecidos. Los temas
que se tratan en esta investigacion consisten en la descripcion, formulacion matemadtica y
analisis de sistemas multiportadoras de energia, basandose en el concepto del Hub Energético
y en algoritmos adaptativos para el modelado y prediccion de las demandas energéticas de
estos sistemas. Ademas, se desarrolla una metodologia de optimizacion para calcular la

Optima estrategia de operacion de los equipos y el uso de sus energias.

Los modelos digitales y las simulaciones realizadas demuestran la viabilidad de la solucion. La
evaluacion y validacion de la metodologia se ha realizado bajo condiciones de operacion reales
en una planta de fabricacidon de automoviles, en el marco del proyecto de investigacion
Europeo FP7 EuroEnergest. Los resultados de validacién presentan un gran potencial de ahorro
cuando se aplica la estrategia de operacidn calculada por el algoritmo, mostrando beneficios

energéticos, econémicos y medioambientales.
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of 24 hours ahead.
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Energy carrier. Energetic infrastructure that forms a connection between an energy supplier
and a demand.

Ampacity. The maximum current that a conductor can carry continuously under the
conditions of use without exceeding its temperature rating.

Utopia Point. The utopia point of an optimization criterion describes the global optimal

point (ideal point), either for cases of maximization or of minimization.
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1.Introduction

In order to settle the scope of this research, Chapter 1 presents the framework and outline of

this dissertation, as well as it describes the research objectives and the starting hypotheses.

1.1 Thesis Framework and OQutline

In recent years, the production and usage of energy has become a hot topic over the word.
Due to the climate change and the decrease in fossil fuel reserves, society has been
significantly focused on the development of more efficient systems. Reforms such as the
restructuring of monopolistic frameworks toward liberalized markets have provided an open
access to various new energy participants. Furthermore, new established legislations now
permit the use of small distributed energy resources for power generation, opening the way
for the implementation of self-supporting independent energy systems. However, there still a
major problem in the treatment of energy sources in today’s research due to its specific focus
on the electric power management but the reduced attention to other kinds of energy
systems. Even though promising development have been observed in the area of energy
technologies, the overall energy efficiency can be greatly improved if multi-energy sources are

analyzed and be utilized in a more unified way. This will allow to face critical issues which
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concern the energy utilities and the community such as the global political target of reducing
the greenhouse gas emissions. Important examples of this aim are the established EU
20/20/2020 climate and energy package and 2030 climate and energy framework which
intend to convert Europe to highly energy-efficient and low carbon economy [1]. Furthermore,
another demanding subject that has to be handled is the minimization of use of fossil fuel
energy sources that are inherently being limited. Fossil fuels today account for 65% of
electricity production and over 80% of the world’s energy consumption [2]. This situation
cannot continue, as reserves of fossil fuels are not infinite and even worse, they are the main
cause of the environmental contamination. Furthermore, the promotion of the use of
renewable energies and self-consumption systems are strategic plan for the European
industry. Renewable energies have experienced a notable increase in Europe in the last
decade, presenting a great technological progress in the fields of photovoltaics, wind energy
and biomass. During 2015, three relevant events occurred in the international sphere,
concerning the energy sector: oil price developments, European climate and energy
framework 2030 and Paris COP 21. The sharp fluctuations in the price of oil over the last
decade, which have ranged the oil price from $130 to $30 for a barrel, highlight more than
ever the economic, geopolitical and stability benefits that can be obtained by the renewable
energies. The mirage of the transient drop in oil prices may induce to exhaust the option of
fossil fuels or, on the contrary, take advantage of the savings of resources that the low price

entails to reinforce and relaunch the renewable option.

Focused on these targets, the energy hub concept has been recently introduced by Geidl and
Anderson as a new paradigm for future multicarrier energy systems [3]. Its key idea is to link
different energy sources using current energy infrastructures and a variety of energy converter
and storage elements in an optimal manner. It is considered as a unit where multiple energy
carriers can be converted, conditioned and stored, representing an interface between
different energy infrastructures and/or loads. It is a concept that can be applied to industrial
plants, buildings of the tertiary sector, as well as urban and rural districts, as they contain
multi-source and multi-production structures. One of its main advantages is that it increases
the operational flexibility of a multi-carrier energy system due to the redundancy in
connections between the system’s inputs and outputs. This flexibility, apart from improving
the reliability of supply, also permits to optimize the energy flow of the system, focusing on
different objectives that can have an energetic, economic or environmental aspect. On the
other hand, the multi hub systems permit an easier local management of the energies and

thus are a great paradigm for the promotion of the use of renewable sources. These benefits
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are as the main factors incentivizing the extension of energy hubs' utilization, being the main
topic of this dissertation which is focused on the development of a methodology for energy
portfolio optimization applied to multi-carrier systems. Along these lines, this dissertation tries
to deal with the improvement of energy efficiency and energy reliability, as they have emerged

as the greatest societal challenges of our age.

Settled the framework, it is the objective of this thesis to provide methods that allow to
adequate optimize the energy use in multi-carrier energy systems, especially focused on real
time operations of industrial environments, where a high accuracy of the results and a low
computation effort are required. The optimization methodology, proposed in this dissertation,
combines different approaches that are executed systematically. Initially, a modelling process
of the energetic behavior of the plant (energy consumptions) is made by use of a hybrid
algorithm, consisting of genetic algorithms (GA) and adaptive neuro-inference systems
(ANFIS). This algorithm permits to accurately characterize the different types of energy
demands in the system, correlated with parameters that potentially affect their consumption
behavior. This is especially important for the proposed methodology, as it permits to calculate
short-term demand forecasts that are later be used during the dynamic optimization of the
system. Then, the system’s structure is formulated mathematically by using the energy hub
concept, in order to obtain the relations between the primary energy sources and the
demands (energy carriers), and to identify possible restrictions on its operating. Finally, a
mixed-integer multi-objective optimization algorithm is applied in order to calculate the
optimal operation of the system for the whole prediction horizon, focusing on the satisfaction
of the energy demands and the minimization of the established criteria. During the calculation,
the algorithm takes into consideration the dynamic system response to guarantee that the
calculated operation strategy is feasible and it does not provoke any anomalies to the system’s

operating.

On this line of topics, the dissertation is structured as follows. Chapter 1 presents the Thesis
framework, its objectives and its main hypothesis. In chapter 2, the energy hub concept is
presented in detail, describing the state of the art, the benefits that it provides as well as the
methodology for its mathematical formulation, including a detailed analysis of the system of
the car manufacturing plant that has been used for the validation of the proposal. Chapter 3
describes the methodology for energy load modelling and prediction, showing several
validation results of its implementation in the validation plant. Chapter 4 presents the

optimization methodology and formulation, as well as several validation results and
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comparisons that were obtained by its testing through simulations, compared with real-site
data. In both of the above chapters, the state of the art for load modelling and prediction as
well as for optimization methodologies applied to energy management are presented
respectively. Finally, chapter 5 states the general conclusions of the dissertation, it proposes

future researching work activities and presents a list with the published articles of this work.

The following figure summarizes the thesis structure in chapters and partial contents.

Chapter 1. Introduction
Introduction, objectives and hypothesis of
the dissertation

v

State of the art of Energy Hub concept,
benefits and mathematical formulation

v

State of the art, methodology and
algorithms for load modelling and forecasting

v

State of the art, multiobjective dynamic optimization of
multi-carrier energy systems and validation results

v

Chapter 2. Multi-Carrier Energy Systems

Chapter 3. Energy Demand Forecasting

Chapter 4. Optimization

Chapter 5. General Conclusions

Final conclusions, future work and list of publications

Figure 1.1: Block diagram of the Thesis overview.

1.2 Objective

The main objective of this thesis is to determine an optimization methodology and tools that
permit to obtain the optimal operating strategy of an energy plant and its complete state for
a specified future horizon, including transmission and conversion of multiple energy carriers
within defined security constraints. This is managed by the implementation of a hybrid multi-
objective optimization methodology based on artificial intelligence methods and energy
prediction, applied to multi-carrier energy systems. The proposed methodology has as
objective to improve the energy use efficiency of the multi-carrier energy systems, as well as
to reduce their energy consumptions, their associated costs and the system’s overall CO,

emissions.
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1.3 Hypotheses

In order to achieve the thesis objective, the following hypotheses were performed.

= Artificial intelligent algorithms can be used to accurately characterize the operation of
the energy consumptions of a multi-carrier energy system, based on their historical

data, as well as to precisely predict their future behavior under given conditions.

= By using a hybrid algorithm, which combines energy predictions and optimization
algorithms, it is possible to calculate the optimal operations of a multi-carrier energy
system that maximizes the overall energy efficiency of the system and minimizes a set
of established criteria, taking into account the future demand profiles and considering

influence parameters that can affect to the system’s operating.

= The use of a mixed-integer optimization algorithm will permit to resolve problems of
energy systems which can contain production equipment with a non-linear operation

behavior.

The exposed hypotheses are investigated by means of the research work that is reflected in

the core of this dissertation document and presented in the subsequent chapters.
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2. Multi-Carrier Energy Systems

2.1 Overview

Residential, commercial and industrial consumers require various types of energy services that
are provided by different energetic infrastructures. The coal, the biomass as well as grid-bound
energy carriers such as electricity, natural gas, district heating and district cooling are the most
commonly used [4]. However, standard planning tools for the design of the energy networks
do not generally provide an integrated view of the different infrastructures. In these cases the
production, transmission and distribution of various energy carriers are treated as a set of
independent problems, where each system is optimized individually without taking into

account the possible existing interactions between the available energy carriers [5].

In some cases, it may be better to produce and supply the energy locally instead of consuming
it from higher network levels. Subsequently, the characteristics of the infrastructure nodes
change from passive points of distribution to entities, giving the flexibility to not only transmit
but also convert and store the energy. These flexible systems can be represented as energy
hubs [6] and are considered as an interface between different energy infrastructures and
power loads. The core idea of the energy hub concept is the definition of a conversion matrix,
which is able to describe the energy interactions of production, transmission and consumption

in multi-carrier energy systems.

The energy hubs consume power at their inputs (e.g. electricity, natural gas, district heat, etc.)

and provide certain energy services at their outputs. It should be noted that input power can
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be generated locally or be supplied by external grids. The possibility of local generation
encourages the concept of self-consumption energies, mainly provided by renewable
energies. Within the hub, the energy can be converted and be stored to different forms by the
use of energy equipment, such as transformers, heat exchangers and compressors among
others. An example of an energy hub structure of a system with multiple energy carriers is
presented in Figure 2.1, consisting of four inputs (i.e. electricity, natural gas, district heat and
biomass source), several energy conversion equipment (i.e. transformer, CHP, heat exchanger,
biomass boiler and chiller), an energy storage system (i.e. electric batteries) and three outputs

(i.e. electricity, heat and cool).

Inputs Energy Hub OQutputs
[ ) .
electricity electricity

O

natural gas |
district heat heat
== - Bl

biomass cool
é o m T
.

Figure 2.1: Example of an energy hub structure.

v

A 4

The concept of the multicarrier energy systems, formulated as an energy hub structure was
initially presented in [7]-[8]. Before that, several conceptual approaches for an integrated view
of transmission and distribution systems with dispersed generation and storage have been
published, such as “energy-services supply systems” [9], “basic units” [10] and “micro grids”
[11]. There are few studies that discuss the hub design issue, while the majority are focused
on the different operational concerns in the multi-carrier energy systems, such as the
economic dispatch [12]-[13], the optimal power flow [14]-[15], the unit commitment [16]-[17],
and the optimal coupling of the energy carriers [18]. An approach in [19] considers the
optimization of couplings among multiple energy networks consisting of electricity, natural
gas and district-heating loads, while [20] presents a financial investment valuation method for
energy hubs which includes conversion, storage and demand side management capabilities.
An integrated planning approach based on portfolio theory is discussed in [21], which

calculates the optimal portfolio of energy supplies. In [22], a mixed-integer nonlinear
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programming problem is discussed, focused on the optimal coupling of the energy hub. This
method is then extended in [23], evaluating the potential of connecting renewable energies

into the system.

On the other hand, recent studies have focused on the integration of the EH in the framework
of the Smart Grid, characterizing the concept of the smart energy hubs [24]. In this topic, a
cloud-computing framework is presented in [25] that aims to resolve the problem of
coordinating several SEH, in order to optimize the performance of the network. Furthermore,
an integrated DSM technique is shown in [26], which models the interactions between
different SEH as a non-cooperative game. Other studies of this topic propose and integrate a
demand response program for SEH in order to modify the consumption patterns on the
customer side [27]-[28], a MINLP probabilistic scheduling model for demand response
programs integrated into Energy Hubs [29] and scheduling strategies for the integration of
renewable energy sources and how to tackle the volatility and randomness of their production

[30]-[31].

Nevertheless, the usage of the EH concept is mainly applied in real-time control applications
that take decisions depending on data that are being received from the plant at the moment,
or in some cases, the state of the network. Therefore there is great potential for improvement
in this regard, when taking into consideration the future status of the plant in two aspects:
upcoming changes in power demand and the system’s dynamics in terms of the equipment’s
operation inertias. Together these aspects may cause inefficiencies and instabilities to the
system because of the EH’s inability to entirely satisfy the energy demands, or due to operating

decisions that result to unstable operation for the equipment.
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2.2 Potential Benefits

Due to the existence of different energy forms, as well as multiple energy carriers inside of an
energy hub, it presents several advantages over the conventional or traditional energetic
infrastructures. The increased reliability of the system, the flexibility of the energy supply, as
well as the improvement of the system’s overall performance are some of the key advantages

of this concept [32].

Reliability is the ability of a power system to maintain a continuous service even with large
changes in the supply or the demand side. The fact that energy hubs contain several ways of
producing and transmitting the energy to the system’s output ports gives the advantage of a
flexible distribution. In this case, the system can fulfill the demand by using several energy
carriers, involving simultaneously different production or conversion technologies.
Furthermore, the existence of alternative ways of the energy supplying enables the system to

continue operating properly in the face of the failure of some of its components.

Based on the above characteristics, the energy flow of the system can be optimized by
selecting the proper energy carriers that can satisfy the demands at every instant of time. That
means that the energy flow of the system can be controlled in such a way that fulfills a set of
specific conditions or criteria, such as the minimization of energy use and costs, the
prioritization of energy sources or production technologies, or the reduction of the system’s
emissions. To improve such optimization, demand forecasts and dynamics of the system must

be considered, which define the control problem of the system in real time.

Finally, the overall performance of the system can be improved by taking into advantage the
characteristics of the different energy forms that are available into the hub, such as the energy

storage in thermal or compressed air form, the energy transmission in electric form, etc.
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2.3 Mathematical Formulation

A multi-carrier energy system can be formulated as a set of vectors and matrices that describe
the transmission and conversions of power from the inputs to the outputs of the system,

indicating the available energy carriers. The generic modeling concept is presented in (2.1),
whereas P e R” is defined as the energy source vector (input ports), as n eR” the coupling

matrix that contains the energy efficiencies of the equipment and by the vector L eR” are

represented the energy demands of the system (output ports).

[L“] [naa Nap ™" an] B,
|L.ﬂ|=|”ﬂ“ neg " Mbaf |Ps (2.1)
[ij [nd)a My - ThpwJ Py
where
L=(Lg L), P =Py ... Ley) and 1 = (Mg s My (2.2)

2.3.1 Energy conversion

Four basic conversion systems can be considered for a multicarrier system, which can be
classified by the number of their energy inputs and outputs (energy sources and productions,

respectively).

e Single input and single output conversion systems, which are able to convert a
determined energy form to another (e.g. gas boilers, electric chillers, etc.) or transmit
and modify the characteristics of a same energy form (e.g. power electronics,
transformers, etc.);

e Single input and multiple outputs conversion systems, which transform a single energy
form to multiple energy types (e.g. cogeneration and tri-generation equipment, etc.);

e Multiple input and single output conversion systems, which require more than a single

energy sources and produce one output (e.g. absorption machines, heat pumps, etc.);
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e Multiple input and multiple output conversions systems, which consumes several
energy types and produce numerous outputs of different energy forms (e.g.

gasification processes).

An energy production equipment can be considered as an energy converter that produces a
specific energy form at its input (P) and converts it to a different one at its output (L). The
conversion factor depends on the coefficient of performance of the equipment (COP) and can
be constant or variable depending on the equipment, the technology and the environmental

conditions.

An example of a single input and output converter with constant conversion efficiency is

presented in Figure 2.2.

Pq Energy LB
Converter

Figure 2.2: Converter with single input and single output, with constant COP.

The relationship between input and output of the equipment can be formulated as presented
in (2.3), whereas ngq is described the coefficient of performance of the equipment in order to

produce energy of y form by consuming energy of a form.

Lﬁ = Pa 'nﬂa (23)

Due to the conservation of power, the produced energy must be equal or lower than the input,
considering the same power units, resulting to a coupling factor limitation, as described in
(2.4). In cases of an energy conventions to different forms, the coupling factor can be higher

than 1 (e.g. heat pump equipment).

L, <P, = 0<p,<1 (2.4)

Thus the energy converters can be classified to 5 types (Table 1) depending on their coupling

factor and energy carriers [33].

Table I. Conversion Types
TYPE OF COUPLING COUPLING FACTOR ENERGY CARRIERS

Lossless transmission Nea =0 a=p
Lossy transmission 0<ne <1 a=p
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Lossless conversion Nea=1 azp
Lossy conversion 0<ne. <1 azp
No coupling Nea =0

As mentioned previously, there are energy converters with a variable COP values. In such
cases, the performance of the converter can be found influenced by different external or
internal factors (e.g. operating temperature, state of maintenance, operation point, etc.),
varying the energy amount that is consumed by the converter, and thus its efficiency, in order
to achieve its established setpoint. In this respect, the COP can be formulated as a transfer

function with dependence on the influence factors, as described in (2.5).

Nga = (X1, X2, v, Xn) (2.5)

Whereas x1, X2,..., Xn are defined the influence factors of the converter’s performance and as

Nea its COP value, as depicted in Figure 2.3.

X1 Xy Xn
P L
a Energy | B
Converter

Figure 2.3: Converter with single input and single output, with variable COP.

2.3.2 Multi-stage energy conversion

A multi-carrier energy system can contain numerous stages of energy conversion to transmit
the input energy source to the required output energy form. The multi-carrier energy system
topologies are very common in industrial installations. For instance, in processes of cool
production, where there is an initial stage of water heating through cogeneration or boiler
technologies (consumption of gas) and a second stage of water cooling through absorption
chillers (consumption of heat). Figure 2.6 presents an example of multi-stage energy
conversion for a case of a double conversion, while (2.6) describes the mathematical

relationship between the energy source (P,) and the output (Ls).
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Pq Ener L L
gy B Energy 9
Converter 1 Converter 2

Figure 2.4: Example of a double-stage energy conversion.

Lo =Ls 195 =P, 115 119 VaeA, V p,0eB (2.6)

Whereas L, and Ls are defined the energies that are produced by converter 1 and 2
respectively, as P, is defined the energy source of the system and n,, and ns, represent the
COP values of the converters. It has to be mentioned, that the simple states of the equipment

can be influenced by external factors, as mentioned previously.

2.3.3 System restrictions

The operation restrictions of an Energy Hub can be classified in to two main categories:

e Restrictions related to the dispatch of converted energy inside the hub;

e Restrictions related to the dispatch of input energy of the hub.

In the first case, the total energy amount that is produced by a single converter (or group of
converters) and is distributed to the energy carriers cannot exceed the nominal power of the
converter (or group of converters). Taking as an example the system of Figure 2.5, the
aggregation of the dispatched energy Lg; and Lg, cannot surpass the total production of

Converter 1 (COP = ngq).

Lps I Energy Lo
Converter 2 .
Py Energy Lg
Converter 1
Lg

Figure 2.5: Dispatch of converted energy.

Mathematically, the system’s dispatch restriction can be described in a form of inequality as

presented in (2.7).
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2
0<> Ly<P,-m, VaeA, VBeB (2.7)
i=1
where
Ly=L,-v,and O0<v; <1, i=(1, 2), (2.8)

whereas v is defined the dispatch factor of the total energy input L, to the different carriers.

In the case of a restriction related to the dispatch of the input energy, the total energy amount
that is distributed to the energy carriers cannot exceed the total energy supply of the input.
Taking as an example the system of Figure 2.6, the aggregation of the dispatched energy Pq1,

Pa2,..., Pan, cannot exceed the total energy supply of P,.

0<> P, <P (2.9)
i=1
where

Pyi=Pyxv;, i=(12,..,n) (2.10)

Put > Energy I-v
Converter 1

Pa PCIZ Energy Lé
Converter 2

Pan Energy LlIJ
Convertern

Figure 2.6: Dispatch of input energy.

2.3.4 Operating bounds

The operating bounds describe the lower and upper energy production limits of a converter.

Mathematically, the bounds can be formulated as an inequality relationship, as presented in
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(2.12), where the [b, and ub, describe the lower and upper bounds of the converter of Figure
2.3. P, describes the energy consumption of the equipment, L, the minimum possible

operation value of the converter and the n, the converter’s COP.

Ib, <P, -, <ub, (2.11)

where

" 0 , L =0 (2.12)
Y7 Loy L mpim>o0

2.4 Procedure for calculating the mathematical

formulation of an energy hub system

For a given hub configuration, the mathematical equations that describe the energy flow
between the input and output ports, the system’s restrictions as well as the converters’

operation bounds can be obtained according to the following procedure.

(1) Determination of the different output port groups: To analyze the hub’s structure
and determine which loads are being supplied from the same energy sources. The
number of the load groups defines the size of the coupling matrix of the system (rows

of the matrix).

(2) Determination of the different energy converts: To analyze the hub’s structure and
determine the different energy converts as well as the interconnections between
them (e.g., gas to electricity, gas to heating water, electricity to cooling water, etc.).
The total number of energy transmissions and conversions defines the column

number of the coupling matrix.

(3) Determination of the energy flow inside the hub: In this step, the formulation of the
coupling matrix of the hub is made, which describes the energy flow from the system’s

input ports to the outputs, towards the energy converts.
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(4) Determination of the system’s restrictions: To formulate the necessary matrices that
describe the energy dispatch restrictions (related to the converted energy and input

energy respectively) in a set of inequalities relationships.

(5) Calculation of the converter’s operation bounds: The last step of the formulation is
the calculation of the upper and lower bounds of the converters, in relation to their

energy inputs.
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2.5 Application Example

This section contains a short example, demonstrating the use of the suggested procedure for

formulating the mathematical equations and constraints that describe a stable operation of

an energy hub system. The example considers an actual case of an automotive industrial

manufacturing system, depicted in Figure 2.7. The system is supplied from the electrical grid

and the natural gas network and it contains a total of 4 loads with 3 types of energy demands

for each one: electrical, heating and cooling demand. The total heating demand is fulfilled by

a cogeneration equipment and three gas boilers with identical characteristics. The cooling

supply is provided by two absorption machines and six electric chillers, connected in pairs.

Gas Network

Electrical
Grid

> Boiler 1
> Boiler 2
) . 7
. Absorption Chiller
|- —
> Boiler 3 > ACL
_ | Absorption Chiller
> Cogeneration AC2 8
) ) 9
> Electrical Chiller
EC1
_ | Electrical Chiller
EC2 10
_ | Electrical Chiller 11
EC3
> ElectriE?:IL‘Chiller
12
Electrical Chiller |13
EC5
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EC6 14
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Electric Demand
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Cooling Demand

Electric Demand
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Figure 2.7: Block diagram of the energy hub system of an automotive manufacturing system.
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The system of Figure 2.7 has been used as an experimental plant for the testing and validation

of the different hypotheses of this dissertation, as presented in the following chapters.

Determination of the different output port groups:

Based on Figure 2.7, it can be observed that the electric demands of the four loads are all
connected to the same input port and converter (i.e. electric grid and cogeneration
equipment). Thus, they can be grouped and considered as a unique demand, formed by their
sum. Similarly, the same action and can be made for the heating demands, due to they are all

supplied by the same converters (i.e. three boiler equipment and cogeneration).

Moreover, the energy hub supplies four cooling demands that are independent of each other
as they are connected to different group of converters. Thus, by the number of demand

groups, it can be concluded that the coupling matrix has a row size of six.

Determination of the different energy converts:

By analyzing the energy transmission and conversion possibilities of the energy hub system,

result a total of fourteen cases, as detailed in Table Il.

Table Il. Energy transmission and conversion cases of the energy hub of Figure 2.7.

# DESCRIPTION

1 A direct transmission of electricity to electricity (from the grid to the demand)
2 A gas to heat conversion through the gas boiler 1 equipment

3 A gas to heat conversion through the gas boiler 2 equipment

4 A gas to heat conversion through the gas boiler 3 equipment

5 A gas to heat conversion through the cogeneration equipment

6 A gas to electricity conversion through the cogeneration equipment
7 A heat to cool conversion through the AC1 absorption equipment

8 A heat to cool conversion through the AC2 absorption equipment

9 An electricity to cool conversion through the EC1 electric chiller

10  An electricity to cool conversion through the EC2 electric chiller

11  An electricity to cool conversion through the EC3 electric chiller

12 An electricity to cool conversion through the EC4 electric chiller

13 An electricity to cool conversion through the EC5 electric chiller

14  An electricity to cool conversion through the EC6 electric chiller

Nevertheless, as the electric and heating production by the cogeneration are not autonomous
but linked, the total conversion cases result to thirteen. Thus it can be concluded that the
coupling matrix of the energy hub has a size of six by thirteen (6 x 13).
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Determination of the enerqy flow inside the hub:

The following equations describe the energy flow of each point inside the hub of Figure 2.7.

Qy define the electric or the thermal power of a numeric point x, as numerated in the scheme.

The heat production from the cogeneration equipment and the gas boilers can be formulated
as the product of the amount of natural gas consumed by each equipment and its thermal
coefficients, as described by the following equations, where g2h represents an energy

conversion from natural gas to heat and Pg"a‘;ax defines the maximum amount of natural gas

that is supplied by the network.

Q =78 - F)gigsmax v, 0=y <1 (2.13)
Q,=n&, Por= v, , 0<v,<1 (2.14)
Q, =1 Par v, , 0<v;<1 (2.15)
Q, =n&y Pl -v, , 0<vy,<1 (2.16)

The electric power that is generated by the cogeneration depends on its thermal production
as well as on the amount of its primary energy consumption. It can be formulated as presented

in (2.17), where g2e represent an energy conversion from natural gas to electricity.

Qs =& - Py -V, (2.17)

The electric power that is supplied by the grid can be varied from 0 to the maximum value of

the contracted power (or the power that the infrastructure supports), represented as Pg':‘i"c;ax .

0<Qg-Vs <PIlm = 0<v,<1 (2.18)

grid

The supplying of cold water for load 1 is provided by the two absorption machines, which
consume a part of the heat produced by the cogeneration and the three boilers. The cooling
production can be formulated as the product of the quantity of the absorption machines’ input
source (heat) and their thermal coefficients. Whereas h2c and e2c are described an energy

conversion from heat to cool and an energy conversion from electricity to cool, respectively.
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Q,=(Q+Q,+Q,+Q,)-v,- 7'y, , 0<v,<1 (2.19)

Q=(Q+Q,+Q+Q) v, 7%, , 0<v,<1 (2.20)

Similarly, in the case of the electric chillers, the cooling production can be formulated taking

into account the electric consumption of each equipment and their thermal coefficients.

Q=(Qs+Q¢)-Vs-7ie; » 0<vy<1 (2.21)
Qu=0Q,+Q,)-vy-77%, , 0<v,<1 (2.22)
Q. =(Q+Qy) V-, , 0<vy,<1 (2.23)
QuL=(Q+Qy) vy 7%, , 0<v,<1 (2.24)
Qu=(Qs +Qg) -V, 775, . 0=V, <1 (2.25)
Qu=(Q+Q,) V-7, , 0<v,<1 (2.26)

The points Qi5 to Q2 represent the energy demands of the system, whose values are
considered as known.

Table lll. Description of node points of Figure 2.7.

POINT IN HUB DESCRIPTION
Pis Electric demand of Load 1
Qis Heating demand of Load 1
Qi Cooling demand of Load 1
Pis Electric demand of Load 2
Qis Heating demand of Load 2
Qo Cooling demand of Load 2
P2 Electric demand of Load 3
Q2 Heating demand of Load 3
Qa3 Cooling demand of Load 3
P2a Electric demand of Load 4
Qs Heating demand of Load 4
Qs Cooling demand of Load 4

Combining the above equations, the total heating demand can be expressed in terms of energy
input as described in (2.27).
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heat __ — D IiNmax g2t g2t
otal — Q16 + ng + Q22 + QZS - Pgas '(nboilerl 'Vl + 77b0i|er2 'VZ +

g2t g2t
Moniters * Va + Mcup *Va)

(2.27)

Likewise, the electric power flow from the source to the demand can be described as:

I i 2 i max
eoet};}rlc =Qs + Qg +Qp +Qyy = Qg + 773Hep ’ Pgls:s “Vy (2.28)

Equations (2.29), (2.30), (2.31) and (2.32) refer to the energy flow from the energy sources to
the cooling demand for Loads 1 to 4 respectively.

3 h2c h2c (2.29)
Qy = ZQ. (Mac1 Vs + a2 *V7)

i=1
Qy = (Ugﬁfp ) Pgigg'ax “V; + Q) (77;ch1 Vg + ’7;2CC2 "Vg) (2.30)
Q= (ngHep : Pgi;;"ax “V, +Qq)- (Uézccs Vo + 77;2004 Vi) (2.31)
Qy = (ngHep : Pgi;‘?“ “V, +Qg)- (UEZCCS Vi, t+ UE?:CG “Vi3) (2.32)

Finally, by combining the above equations, the expression (2.1) can be rewritten as follows,
describing the case of the system of Figure 2.7.

L=p-P (2.33)

where
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(2.34)

Whereas Phreqtz and Preqt2 are defined the amount of heating energy that is consumed by the

absorption machine 1 and absorption machine 2, respectively.

1 0 0
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Determination of the system’s restrictions:
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0 n&
0 0

o O o

0

e2c
Neca

0

0 0]
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0 0 (2.35)
0 0
77:;2:05 77;?6_

The total of electric power that is used to fulfill the electric demand together with the power

that is consumed by the electric chillers cannot exceed the maximum limit of power that is

available in the hub (i.e. grid supply and electric power produced by the cogeneration).
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iNmax in g2e iNax
(Vs + Vg + Vo + Vo +Vyy +Vp, + V13)' Pgrid < Pgrid + (n(:HP : Pgas 'V4) (2.36)

The dispatch factors v; to v4 represent the percentage of the natural gas use as input in the
equipment, compared with the maximum amount of gas. The sum of these factors cannot
exceed the maximum quantity that can be supplied by the network and thus, equation (2.37)

is confirmed.
vV, +V, +Vy+v, <1 (2.37)

The total heat that is consumed by the absorption machines together with the energy that is
used to fulfill the heating demand cannot exceed the total energy that is produced by the

cogeneration and the three boilers.
h 4
eat
F)heatl + Pheatl + Ltotal = ZQ| (2.38)
i=1

Calculation of the converter’s operation bounds:

Finally, the operation bounds of the equipment can be expressed as inequality in terms of their

energy input, as presented in (2.39).

Lrt:]oiinlerl l:)glgsm TV nt?oflterl I-rk?oai)l(erl

Lg]oi?lerz Pglggnax "V, nt?o?lterz LE;Terz

L?(:inlerS Pglggn v V3 ’ nljgoflterii Lg?i)l(erS

Lrgigp F)glgsmax Yy '7735:3 Lor

Ln,;gl I:)heatl ' 772(2:01 Lxéxl

Liacz < PheatZ 7 2?:02 < Liaco (2.39)
Lnl;g]l - Pglpi«mjax “Vg 77;(2;1 - L'Eéxl .
Lré"cn 2 Pgif{a“ Vg 17 E?:cz Lrgéxz

Lnggla PgTiTjaX Vi 17 Ecz:cs Lrggxs

Lrgicn4 F)glpin&aX Vi '77;?6(:4 Lic,

ng]s Pg'rnﬂ“ Vi, '77;?:05 Lecs

i I—E?e 1L Pg;:i"&ax Vi3 '77;?:‘:6 1L Lecs ]
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2.6 Conclusions

The energy hub concept presents a promising concept in terms of energy efficiency, as it
provides a way of interpreting complex energy infrastructures as a unique interconnected
system. Additionally, it permits to analyze the infrastructure of the system and its energy flow
in terms of robustness, reliability and capacity, allowing to study and evaluate stable operation

strategies for the system’s management.

The main contribution of this chapter is the presentation of a methodology for the analysis of
the energetic infrastructure of a multi-carrier energy system, as well as its mathematical
formulation in terms of system interconnections, energy restrictions, as well as operation
bounds and energy availability. The obtained equations guarantee that the system is working
into the engineering boundaries, avoiding operation anomalies that can be caused by

unsatisfied energy requirements or overload of the infrastructure.

This methodology has been used for the analysis of the system of a car manufacturing plant,
which has been used as test bench for the evaluation and validation of the hypotheses of this

dissertation.
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3.Energy Demand Forecasting

3.1 State of the art

With the continuously growing demand of the energy, it is getting more important to develop
systems capable to optimize the energy use. Energy management is nowadays a subject of
great importance because of the facing emerging problems of the global warming and fossil
fuel shortage. In the industrial sector, the energy management systems have focused so far
on the monitoring and the off-line management of energy, as outlined in [34]. The typical
energy management systems are based on the real time collection of information about the
plant’s operation using energy meters and sensors. Those systems help to monitor the
operation of the installations, collect data and generate reports to identify the possible critical
points of the processes and consumptions. However, intelligent systems can improve the
operation of the energy management systems, offering further and more advanced
functionalities such as supervision and fault diagnosis, predictive maintenance, energy
optimization and energy forecasting. All of the above functionalities have a common core:
They use information of the consumption’s historical behaviors by means of mathematical
models, in order to predict their future patterns under known conditions. This information is
even more important when advanced control actions that take into consideration the future
conditions are implemented into the system, where the demand profiles are those that define
the operation strategies. Thus, the accuracy of the demand forecasts is crucial for the

operation of the system, as it can alter the demand pattern in the prediction horizon.
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On this topic, several approaches have been studied over the past years to analyze and study
the demand patterns based on historical data of the loads. For instance, different
implementations of ANNs were presented in [35], [36] and [37], focused on the modeling and
prediction of the load behavior in electrical distribution systems. Furthermore, the
consideration of fuzzy logic as a forecasting tool for predicting a short-term load demand was
investigated in [38], comparing its accuracy with ANN models. On the other hand, an
application that uses traditional neuronal networks was presented in [39], in which it faces
multi-input-multi-output applications with single input and output networks. A combination
of support vector regression and differential evolution algorithms was used in [40], trying to

deal with building energy consumption forecasting.

An ANFIS implementation for energy prediction of regional electrical loads in Taiwan was
presented in [41], comparing its performance with other similar techniques (i.e., regression
models, ANN-based models, genetic algorithms and hybrid ellipsoidal fuzzy systems). A cellular
multi-grid genetic algorithm was presented in [42] to face balancing problems in assembling
lines. Techniques based on cultural algorithms were presented in [43] to resolve complex

mechanical design optimization problems in an efficient and effective method.

On this line of approaches, Section 3.2 presents a combination of Genetic Algorithms and
Adaptive Neuro-Fuzzy Inference Systems as modeling and prediction algorithm, as well as the
proposed methodology of their operation, with aim to generate high accuracy customizable
mathematical models for different consumptions in order to obtain short-term demand

forecasts that will be used in the energy hub optimization strategy.

Figure 3.1 depicts the block diagram of the proposed method, in which the GA is being used
to determine the best training inputs of the ANFIS structure for an optimized data learning.
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Figure 3.1: Block diagram of the proposed demand modelling and prediction method.
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3.1.1 ANFIS

ANFIS is based on systems of Takagi-Sugeno type, combining fuzzy logic and neural networks.
It was developed on 1993 by Rogen Jang [44] as a technique, able to overcome the
shortcoming of the existed ANNs and fuzzy systems, whose major disadvantage was the
inability to give any explicit knowledge or causal relationships for a system [45]-[46]. One of
the main advantages that ANFIS presents is its flexibility over the training datasets. It can be
adapted in different time intervals and prediction horizons, being able to model and accurately
predict the dynamics that present the studied signals. This flexibility in adaptation is what it
makes it a great tool for use in industrial consumptions, where infrequent and varying patters

are very commons.

The fuzzy part of the ANFIS is constructed by means of input and output variables, membership
functions (MF), fuzzy rules and inference method. The inputs consist of data that are
correlated with the output as, for example, for the case energy consumptions, the scheduled
production (related to the load), the climatic condition and the day of the week, among others
[47]. The MFs of the system are the functions that define the fuzzy sets [48]. Finally, the fuzzy
rules have a form of if-then rule and define how the output must be calculated for a specific

value of membership of its inputs [49].

Figure 3.2 depicts the general architecture of an ANFIS model, which consists of multiple

inputs x and one output z.
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Figure 3.2: ANFIS architecture with two inputs, four rules and one output.
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where n describes the number of the ANFIS inputs, m describes the number of the adaptive

nodes (where m = n? for two linguistic terms per input) , A;(X;) is the linguistic label associated
with the MF p of input i, W, is the product of all the incoming signals of node i and W,

describes the normalized firing strength of node i.

The typical ANFIS architecture consists of five layers. The first layer executes the fuzzification
process on the inputs in order to convert them to fuzzy values through some membership
functions u. In the proposed method, a bell-shaped membership function has been selected

with maximum equal to 1 and minimum equal to 0, as described in (3.1).

H (Xi):—gbi , 1=1,2
X; —C. (3.1)

where ¢, a; and b; are the premise parameters and define the bell center, width and
fuzzification factor of node i, respectively. Figure 3.2 presents an example of the membership

function for different values of fuzzification factor.
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Figure 3.3: Fuzzy membership function with modified fuzzification factor (a=0.8, c=10).

The second layer calculates the fire strength of the rule, performing the AND operator of the

incoming signals.
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Wi:E[yAij(Xi) . j=1,2 (3.2)

The third layer normalizes the membership functions, calculating the ration of the i-th rule’s

firing strength to the sum of all rules’ strengths [50], applying the equation of (3.3).

W, =

S, (3.3)

The fourth layer executes the consequent part of the fuzzy rules by performing the Takagi-
Sugeno fuzzy reasoning method, described in (3.4). During the execution, the consequent

parameters k; of each node are calculated.
W fi =W (kg + kg * Xy + kig x Xp + ki * Xp) (3.4)
Finally in layer 5, the only neuron computes the overall output of the incoming signals:

m
z=) w-f (3.5)

i=1

The same steps are used in both modelling and prediction operations. Their main difference
is that in the modelling process, the objective is to train the consequent and premises
parameters of the nodes by using known operation conditions (cases with known inputs and
outputs), while in the prediction process, the objective is to obtain the output by using only

known inputs (known values of the trained parameters).

In this architecture, the first and fourth layers contain the parameters that can be modified
during the training (premises and consequent parameters respectively). There are two stages
for the learning process. The forward path and the backward path. In the course of the forward
path, the premises parameters are being set in steady state, while a recursive least square
estimator method is applied to repair the consequent parameters. Next, after the consequent
parameters are obtained, the input data are passed back to the ANFIS inputs and the
generated output is compared with the actual one. During the backward path, the consequent

parameters are set in a steady state and the error that occurred during the comparison
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between the outputs (generated and actual) is propagated back to the first layer, by updating

the premises parameters using the back propagation method [51].

Table IV. Training process procedure of ANFIS.

FORWARD PATH Backward path
Premise parameters Fixed Gradient descent
Consequent parameters Least-square estimator Fixed
Signals Node outputs Error signals

3.1.2 Genetic Algorithms

Genetic algorithms consist of a heuristic method that is based on the mechanism of natural
selection and natural genetics, inspired by the Darwin’s theory of evolutions, Mendelian’s
genetics and Weizmann's species selection theory [52]. A GA allows a population that is
composed of many individuals (chromosomes) to evolve under specified selection rules to a
state that maximizes the fitness. One of its main characteristics is that evaluates multiple
solutions at the same time rather than a single one per iteration. It uses arithmetic operations,
such as selection, mating and mutation, to perform organized but random information
exchanges of the evaluated solutions, with objective to inherit the individuals that present
high fitness value and eliminate the low ones [53]-[54]. The operation of the genetic algorithm

consists of the following steps.

Generation of the initial population: In this step, the initial population is generated with
individuals that are typically created with random values of the permitted domain range.
Alternatively, their values are obtained by applying calculation methods that are determined

by the problem domain.

Fitness calculation: In this step, all the individuals of the current population are evaluated in

terms of a fitness measure, and are being classified based on their fitness rank.

Evaluation of criteria: In this step, the algorithm evaluates the established termination criteria

and determines whether the process can end or proceed to the next generation.

Application of operators: In case the process continues, the algorithm generates a new
population by selecting some of the current best individuals based on their fitness rank. Then,
this new population is completed by applying the genetic operators of crossover and mutation

to the new individuals [55]. Depending on the case, some implementations extend the current
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population by adding new individuals in the current population, omitting the elimination of
the least fit ones. Other implementations create a completely new population of individuals
by applying the genetic operators to the current population. Moreover, there are GAs that do

not use generations at all, but they use continuous replacements [56].

Finally, the process is repeated from step b until the satisfaction of any of the predefined
termination criteria. The following figure depicts the flowchart with the steps of the genetic

algorithms’ process.

Application of the

genetic operators

Not met

Generation of the Fitness calculation
initial population for each individual

Figure 3.4: Simplified flowchart of the Genetic Algorithms’ process.

Return of the best
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Compared to other search procedures, the genetic algorithm present the following important

advantages:

e The formulation and execution of the algorithm permits to optimize problems with
both continuous and discrete variables;

e It doesn’t require derivative information through the evaluation of the solutions and
is able to search simultaneously a wide sampling of the cost surface;

e |t is capable of dealing with problems that contain a large number of variables and
complex cost surfaces (solutions with multiple local minimums);

e It provides a list of optimum variables than just a single solution.

These advantages produce good results in problems where traditional optimization
approaches fail. Nevertheless, GA is not the best way to solve every problem, such as in convex
analytical functions of few variables, where the traditional methods are tuned to quickly find
the solution. In such cases, the calculus-based methods outperform the GA in terms of
computational effort and time response. Considering all the above, the combination of GA and
ANFIS can result to a powerful tool for the autonomous determination of the optimal training
inputs for the demand modelling, as well as to enhance the flexibility on adapting to different

consumption patterns with irregular behavior.
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3.2 Energy Modeling and Prediction

This section presents a short-term load forecasting methodology based on adaptive neuro-
fuzzy inference systems and genetic algorithms, which uses historical data from the
consumptions’ operation as well as other operation parameters that can influence on the
demands’ behavior. Despite that other data-driven modelling techniques can be suitable for
this task, the combination of ANFIS and GA has been selected due to its flexibility on adapting
easily in data patterns with irregular and infrequent behavior, while maintaining high accuracy
results. These characteristics makes it suitable for applications in industrial processes, where

auto-adjustment tasks and tuning actions have to be made periodically.

Nevertheless, independently of the modelling technique to be used, a series of preprocessing
tasks have to be applied over the acquired data to equalize and adequate them for the data

modelling process.

The proposed methodology consists of two main parts, as described in the following

subsections:

i.  The training and auto-tuning algorithm for the mathematical modelling of a
consumption’s pattern based on its historical behavior and its operation conditions;
ii. The prediction algorithm that forecasts the short-term future energy demand of a

modelled consumption, for known operation conditions.

3.2.1 Modelling Process

In the modelling and auto-tuning process, the genetic algorithm is used for the identification
of the best training inputs of the model with objective to obtain the maximum possible
prediction accuracy by minimizing the forecast error. During the operation, the genetic
algorithm evaluates several combination of training inputs, which are being used to train the
ANFIS structure. This process consists of 10 steps, as presented in Figure 3.9, which are

described below.

Step 1: GA initialization

In the fists step of the process, the initial population of the genetic algorithm is formed by
generating random chromosomes of bit patterns. The populations is formed as a Npop X Npits

matrix, where N, defines the number of individuals to be created and Nyi:s defines the
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maximum number of training candidates to be considered for the modelling of the

consumption.

population=|P| ,  PeR""™ pe{01} (3.6)

Figure 3.5 describes the structure of the chromosome in connection with the training

candidates of the model.
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Figure 3.5: Codification of the chromosomes.

Step 2: Input filtering

During the second step of the process, the evaluated chromosome is used as a selector for the
training candidates of the models, by filtering the inputs that correspond to the 0 bits, as
depicted in Figure 3.5. In case of chromosomes that contain only O values, they are

automatically rejected and replaced with new ones.

For the initial selection of the training input candidates, correlation analysis can be applied
between the studied signal and the candidates. Most frequently, the input candidates can be
selected based on the user’s experience, the demand’s energy type and the periodicity of the

signal’s pattern.

The following list presents the variables that have been selected as the most potential training
candidates for the modelling of the energy consumptions of the industrial plant that has been

used for the validation of the hypotheses of this dissertation.

o Day of week: Variable that takes values from 1 to 7, and correspond to the weekdays.
This variable helps to identify energy patterns that can be related to specific days of

the week and are repeated in weekly cycles.
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e Time of day: Variable that indicates the daily time reference of the consumption,
expressed in minutes (from 1 to 1440). It permits to identify patterns that are related
to specific time periods during the day, such as daytime work periods and day shifts.

e External temperature: Variable that indicates the external temperature at the time of
the consumption measurement. It permits to identify the effect of the temperature
monomial in the energy consumption.

e Scheduled production: Variable that indicates the operation condition of the plant, in
terms of production, at the time of the consumption measurement.

e Historical reference of the consumption: Variable that indicates the energy
consumption of the studied load on a past moment (i.e. 1 day ago, 2 days ago, and 1
week ago). This information permits to identify patterns that are repeated in weekly

cycles but are not day-dependent.

Step 3: ANFIS Configuration

During this step, the datasets for the training and the evaluation of the consumption’s model
are generated by splitting the input matrix (formed in the previous step) in two parts. The
splitting proportions of the datasets depend on the configuration of the ANFIS and are typically

the 2/3 and 1/3 for the training and evaluation sets, respectively.

Training dataset Validation dataset
r - Y o )
Training
candidates
| > Signal
—_
time

Figure 3.6: Schematic depiction of the training and validation datasets.

In case that any of the historical references of the consumption is being used as input, the
corresponding samples of the signal vector, in the beginning of each dataset, are being
dismissed and do not take part neither in the training nor in the validation process of the
model. This occurs due to the necessity of using a part of samples of the signal as input
(historical reference) and thus it cannot be used as reference. Similarly, all the input’s data of
the same time-series are discarded. Figure 3.7 presents an example of this case, whereas s is
defined the consumption value of a time instant t, while as m is defined the time offset that
corresponds to the maximum historical reference that has been selected as input (e.g. 1 day,

2 days or 1 week).
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Figure 3.7: Depiction of unused data due to the use of historical signal references as inputs.

Typically, the database is split based on a chronological order (chronological splitting), using
the most recent information as validation dataset. Nevertheless, this method presents mayor
inefficiencies when parameters that are related to time are being used as inputs (e.g. external
temperature). In such cases, the validation dataset may contain operation conditions that are
not included in the training data (e.g. values of winter season in the training dataset and values
of spring season in the checking dataset) and thus, they do not represent all the cases that are
intended to be emulated. Thus, the behavior of the signal for some cases may be unknown for
ANFIS. This has as a consequence to obtain bad performance indices for the trained model,
even if the selected training inputs are the most adequate for the model. In order to handle
this problem, the proposed methodology creates the training and validation datasets from
different parts of range of the database as shown in Figure 3.8. The number of data splits to
be made (successive splitting), varies on each model depending on the nature and range of its

inputs.
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Figure 3.8: Creation of the training and validations datasets from several parts of the database.
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The disadvantage of this approach is that, in case of use of any historical reference as input,
the part of the database that is being dismissed as signal reference, increases with the number
of data splits. Nevertheless, this disadvantage can be easily solved by incrementing the
samples to be used during the modelling process. Furthermore, this approach reduces both
the overfitting and under fitting errors, as it separates the data homogeneously in different
periods, to assure that at least a part of all the possible trends of the signal are considered

during training.

Step 4: Model Training

During this step, the training process of the ANFIS structure takes place, based on the
procedure of Section 3.1.1. The algorithm applies a combination of the least-squares method
and the back-propagation gradient descent method, in order to train the FIS membership

function and emulate the given training data set.

Step 5: Model Training

After the finalization of the training process, the validation data are evaluated, applying an
over fitting model validation. The evaluation of the forecast accuracy is made by the use of
three statistical indicators that permit to calculate and interpret the prediction errors, as well
as to compare the evaluated models under different training candidates. The selected
performance evaluation indicators are the mean absolute percentage error, the symmetric
mean absolute percentage error, as well as the root mean squared error, as defined in (3.7)-

(3.9) respectively.

The mean absolute percentage error (MAPE) is one of the most widely used measure
indicators for the forecast accuracy, having as main advantages the interpretability of the error
and a non-scale dependency with the data. It is expressed in percentage terms, allowing to
easily interpret the magnitude of the forecasting error. Nevertheless, MAPE should be only
computed with positive data vectors, due to it presents infinite or undefined values when data

are close to zero or have zero values [57].

n real _ , pred (3.7)
MAPE = 1 . Z Yi —¥

real

n i=1 y|

The Symmetric mean absolute percentage error (SMAPE) is a variation on the MAPE that is

calculated using the average of the absolute value of the actual and the absolute value of the
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forecast in the denominator. In comparison to the MAPE, it provides better results with data
that contains outliers. Its main disadvantages is that it applies heavier penalties on negative
forecast errors than on positive ones, as well it reaches its upper (or lower) error bound when
forecast is zero.

pred y_real (3.8)

zzll Yi
Zl”:l (yireal + yipred )

SMAPE =

Even though, the disadvantages that present MAPE and SMAPE indicators, they have been
selected for the evaluation of the prediction’s performance, as the energy consumption data

contains only positive values.

Finally, the root mean squared error (RMSE) has the advantage that gives disproportionate

weight to very large errors.

RMSE = Zinzl(yipred - Yireal )2 (3.9)

n

whereas n is defined the number of fitted points, as y;"” a vector with the real consumption

values and as y”®“the forecasted consumption values.
The process between steps 2 to 5 is being repeated for the whole number of population.

Step 6: Genetic Algorithm Decision

In the sixth step, the performance values of the model of the evaluated chromosome are
stored and are used for the comparison with the models of the rest of the population. In case
that the optimization criteria have not been reached, the algorithm proceeds to apply the
genetic operation in the population (steps 7 to 9) and the process is repeated from Step 2. In
case that any of the criteria has been met, the process ends, and the chromosome that results

in the best performance is returned.

Step 7 to 9: Genetic Algorithm Operations

In this step, the selection, the mutation and the crossover process are applied in order to

define the new population that will be evaluated in the next iteration.
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During the selection process, random chromosomes are being selected in order to be used for
the mating and crossover operations, as well as to directly continue to the next population. In
the mating process, a random part of 2 chromosomes are selected and be combined in order
to form two new chromosomes. The same process is repeated for a pre-defined number of
pairs of chromosomes. Finally, the mutation process is made of a uniform way, where the
algorithm selects a fraction of the vector entries of an individual and replaces it with a random

number from the entry’s range.

Step 10: Selection of the Best Training Candidates

Finally the de-codification of the chromosome vector is made, defining the optimal data input

configuration for the training of the consumption model.

Figure 3.9 presents the flowchart of the proposed modelling procedure, indication the

different steps that compose it.
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Figure 3.9: Flowchart of the modelling and tuning process.
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3.2.2 Prediction Process

For the prediction of the demand, the ANFIS model is applied, taking into account the FIS
structure of the trained model as well as the optimal identified chromosome during the

training process.

Initially, the algorithm prepares an input matrix that contains the future values of the input
candidates for the whole prediction horizon. Then, the input matrix is being filtered, remaining
only the parameters that coincide with the model’s chromosome. Furthermore, the FIS
structure that contains the premise and consequent parameters as well as the membership
functions and rules, stored into the model, are being read by the algorithm. Finally, the
calculation of the energy demand takes place, by processing the input data through the layers

of the ANFIS structure.

Figure 3.10 presents the block diagram of the prediction process.

----- Chromosome------------ Model
Predicted values of V FIS Stryctu re
input candidates Filtered :
> 1 inputs M Demand
>0 > forecast
| 1 > ANFIS —
_—
> 1
DB

Figure 3.10: Block diagram of the prediction method.
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3.3 Implementation and Results

The presented methodology has been implemented and tested under the real operation
conditions of the automotive factory plant described in Section 2.4. The evaluation has been
carried out for 14 cases of consumptions, which represent the most significant loads in terms
of manufacturing processes, power and load profiles. The selected cases include the global
energy consumption loads of the plant (i.e. electric and heating), as well as 2 electric and 2
heating consumptions of each one of the manufacturing processes (i.e. body shop, painting

and assembling).

For the training process, as described in subsection 3.2.1, seven variables have been selected
as the most potential candidates, which are: Day of week, time of day, external temperature,
scheduled production, historic consumption of 7 days, historic consumption of 2 days and

historic consumption of 1 day.

The following figure presents the structure of the chromosome, describing the parameter that

corresponds to each gene.

Chromosome
A

0 1 1 0 1 1|0

A A A A
Day of week 4+ T

Time of day

External temperature

Scheduled production

Signal reference of 1 week ago

Signal reference of 2 days ago

Signal reference of 1 day ago

Figure 3.11: Description of the chromosome’s genes.

Based on the number of the training candidates, it results that the Genetic Algorithm can form
chromosomes with seven bits, which produce 127 possible binary combinations (27-1) lying

between value 0000001 and 1111111.

The following part presents the detailed validation process and the obtained results of the

proposed methodology applied on the total electric demand of the automotive manufacturing
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process. All the consumption quantities are expressed as per-units to preserve confidentiality

and to generalize the results.

For the evaluation of the methodology applied on this case, a historical database with a total
of 9 months has been used. It consists of samples of 15 minute intervals, containing energy
consumption data, as well as operation variables that can affect, with a direct or indirect way,

the energy profile.

Figure 3.12 presents the energy consumption profile for the complete period of 9 months that

contains 25920 data samples.

Total electric demand of the plant

T T T T T

0.8 -

0.6

0.4 4

Energy consumption (pu)

0 1 1 1 1 1
0.5 1 15 2 2.5

Samples (15min) 10
Figure 3.12: Consumption profile of the total electric demand of the plant for a period of 9 months.

During the evaluation of the algorithm, the training process has been executed in a total of
nine times (one execution per month), completing each time its existing database with the
dataset from the following month. The genetic algorithm was configured empirically after a

series of evaluations with a population of 20 individuals per generation.

Figure 3.13 presents the part of training and evaluation dataset that were used in each case,
depicted in red and green colors respectively. As it can be observed in the figure, a successive
data splitting has been applied to use the 2/3 of every 2880 samples (1 month) for the training

set, while the remaining 1/3 is used for the model’s validation.
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Figure 3.13: Consumption profile for the different execution periods. Red: training dataset; Yellow: validation
dataset.

Figure 3.14 depicts the optimal chromosomes that were selected by the GA in each period by
using the successive data splitting approach, while Figure 3.15, Figure 3.16 and Figure 3.17
present the performance indices of the model in terms of MAPE, SMAPE and RMSE,

respectively, for both approaches (i.e. successive splitting and chronological splitting).
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Figure 3.14: Optimal chromosome for each training period.
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Figure 3.15: MAPE indices for each training period using the two data splitting approaches.
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Figure 3.16: SMAPE indices for each training period using the two data splitting approaches.

- Successive splitting
250 | - Chronological splitting -

200

150

RMSE (kW)

100

50

1 2 3 4 5 6 7 8 9

Database range (months)
Figure 3.17: RMSE indices for each training period using the two data splitting approaches.

As it can be observed by comparing the results of the two modelling approaches, for all the
testing periods, the performance indices are better when the successive splitting approach is
applied on the data. This occurs due to the premise and consequent parameters are trained

with samples from all the time range of the database, rather than from one part that could
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contain partial information of the consumption’s operation. The following table presents the

numerical values of the performance indices, as well as the percentage of their improvement

by using the successive data splitting approach.

Table V. Energy performance indices for the two data splitting approaches.

TRAINING SUCCESSIVE APPROACH CHRONOLOGICAL APPROACH IMPROVEMENT
PERIOD MAPE  SMAPE RMSE MAPE  SMAPE RMSE MAPE | SMAPE RMSE
1 month 0,089 0033 1446 | 0,089 0,033 144,6 0% 0% 0%
2 months 0,138 0069 82,71 0,156 0,091 138,8 | 11,7% | 24,4% | 40,4%
3 months 0,135 0054 1979 | 0,139 0,061 245,8 | 3,08% | 12,3% | 19,4%
4 months 0,130 0049 184,0 | 0,142 0053 2158 | 883% | 875% | 14,7%
5months | 0,107 0,042 162,1 | 0,111 0,042 187,0 | 4,03% | 0,94% | 13,2%
6 months 0,151 0,068 150,5 0,158 0,084 172,8 | 4,61% | 19,1% | 12,6%
7 months 0,158 0,059 164,1 0,204 0,076 190,2 | 22,8% | 22,3% | 13,7%
8 months | 0,136 0,049 1457 | 0,143 0,049 1758 | 4,89% | 0% | 17,1%
9 months 0,085 0,033 120,1 0,123 0,044 152,6 | 31,2% | 25,0% | 21,2%

Onthe other hand, in order to evaluate the efficiency of the results of the presented algorithm,

each selected chromosome was used to train all the different sets of data (dataset from one

month till nine months, split with the successive approach) in order to calculate the

performance indicators that result in each case. Table VI presents the results of this evaluation.

The solution that presents the best indices for each training period has been marked in bold,

indicating the optimal input configuration (chromosome) of each case.

Table VI. Energy performance indices for the different training periods.

0111111 0001101 0011100

TRAINING PERIOD

MAPE SMAPE RMSE MAPE SMAPE RMSE MAPE SMAPE RMSE
1 month 0,089 0,033 144,6 | 0,090 0,033 147,9 | 0,102 0,037 284,6
2 months 0,182 0,092 1078 | 0,138 0,069 82,71 | 0,159 0,079 93,63
3 months 0,169 0,073 733,6 | 0,149 0,062 2350 | 0,135 0,054 197,9
4 months 0,598 0,230 1037 | 0,130 0,049 184,0 | 0,160 0,065 227,2
5 months 0,165 0,072 240,6 | 0,131 0,050 192,1 | 0,134 0,052 1884
6 months 0,287 0,086 310,7 | 0,207 0,069 221,5| 0,178 0,076 236,3
7 months 0,219 0,078 217,7 | 0,204 0,070 1951 | 0,193 0,076 1381
8 months 0,189 0,064 201,7 | 0,141 0,050 166,5 | 0,149 0,054 183,7
9 months 0,107 0,045 150,1 | 0,093 0,038 1383 | 0,108 0,046 173,5

1001101 0011101 1011011

TRAINING PERIOD

MAPE SMAPE RMSE MAPE SMAPE RMSE MAPE SMAPE RMSE
1 month 0,095 0,036 2387|0092 0,034 1525|0094 0,035 396,2
2 months 0,139 0,073 86,82 | 0,139 0,069 152,5| 0,171 0,079 113,9
3 months 0,149 0,064 270,2 | 0,168 0,063 2383 | 0,182 0,080 312,0
4 months 0,424 0,136 1904 | 0,261 0,091 2356 | 0,170 0,062 411,4
5 months 0,107 0,042 162,1 | 0,150 0,062 233,7 | 0,181 0,085 234,7
6 months 0,154 0,076 183,7 | 0,151 0,068 150,5 | 0,296 0,090 2883
7 months 0,158 0,059 164,1 | 0,219 0,079 2354 | 0,234 0,081 209,5
8 months 0,146 0,058 151,0 | 0,152 0,056 191,7 | 0,136 0,049 145,7
9 months 0,085 0,033 120,1 | 0,094 0,040 146,7 | 0,095 0,039 150,2
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From the obtained results, it can be observed that in all the cases the chromosome of the
training data is changing during the time. This happens because the consumption’s behavior
depends on different variables that vary during the time. Analyzing the genes of the
chromosomes that are selected in each case, it results that the most important training inputs
for the selected consumption is the scheduled production, the historical consumption of a day
and the historical consumption of a week. The following table highlights the selection of the

input candidates during the nine months of operation, as well as the total number of their use.

Table VII. Results of the optimal training candidates for the different periods.
GENES OF THE CHROMOSOME

TRAINING PERIOD

1 2 3 4 5 6 7
1 month 0 1 1 1 1 1 1
2 months 0 0 0 1 1 0 1
3 months 0 0 1 1 1 0 0
4 months 0 0 0 1 1 0 1
5 months 1 0 0 1 1 0 1
6 months 0 0 1 1 1 0 1
7 months 1 0 0 1 1 0 1
8 months 1 0 1 1 0 1 1
9 months 1 0 0 1 1 0 1
Times of selection 4 1 4 9 8 2 8

Figure 3.18 to Figure 3.26 depict the comparison between the real consumption and the
predicted one for the validation datasets of the 9 cases, applying the optimal input

configurations.
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Figure 3.18: Comparison between real and predicted consumption for a database range of 1 month.
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Figure 3.19: Comparison between real and predicted consumption for a range of 2 months.
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Figure 3.20: Comparison between real and predicted consumption for a range of 3 months.
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Figure 3.21: Comparison between real and predicted consumption for a range of 4 months.
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Figure 3.22: Comparison between real and predicted consumption for a range of 5 months.
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: Comparison between real and predicted consumption for a range of 6 months.
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Figure 3.24: Comparison between real and predicted consumption for a range of 7 months.
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Figure 3.25: Comparison between real and predicted consumption for a range of 8 months.
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Database range: 9 months | Validation samples: 8640 | Chromosome: 1001101
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Figure 3.26: Comparison between real and predicted consumption for a range of 9 months.

3000 4000

Samples (15min)

5000

6000

7000

Finally, Table VIII presents an overview of the performance evaluation indices that resulted

from the testing of the modelling and prediction methodology on the 14 different

consumptions.

Table VIII. Performance evaluation indices of the demand forecasting for the validation cases.

MANUFACTURING

TITLE MAPE(pPU) SMAPE(PU) RMSE (%)
PROCESS
Total electric demand of the plant Global 0,085 0,033 6,22%
Total heating demand of the plant Global 12,00 5,37 7,49%
Total electric demand of workshop 1 Body Shop 16,89 6,89 6,33%
Total heating demand of workshop 1 Body Shop 36,81 11,40 11,48%
Total electric demand of workshop 1A Body Shop 21,31 6,94 11,39%
Total heating demand of workshop 1A Body Shop 32,99 16,35 10,80%
Total electric demand of workshop 2 Painting 5,14 2,13 4,77%
Total heating demand of workshop 2 Painting 30,82 14,22 9,52%
Total electric demand of workshop 4 Painting 6,34 2,46 5,56%
Total heating demand of workshop 4 Painting 30,17 15,26 11,52%
Total electric demand of workshop 9 Assembling 7,11 2,45 5,76%
Total heating demand of workshop 9 Assembling 21,97 10,03 7,27%
Total electric demand of workshop 10 Assembling 4,45 1,88 3,64%
Total heating demand of workshop 10 Assembling 25,55 11,23 11,08%

Appendix Al contains validation cases of energy prediction, applied on 8 of the above

consumptions (1 per manufacturing process and energy type), for prediction horizons of 24

hours.



55 Multi-objective optimization of an energy hub using artificial intelligence

As it can be observed in the figures, there are cases in which the trained mathematical model
fails to predict accurately the energy consumption even if the selection of the energy inputs

has been optimized by the genetic algorithm.

This is presented mainly on consumptions that are strongly influences by parameters that tend
to vary on time (e.g. external temperature, scheduled production, etc.), having as a
consequence, the premise and consequent parameters of the FIS model to be trained for
multiple operation conditions at ones (e.g. workdays and holidays, seasons of year, production
variations, etc.), resulting to large offsets between the signal points and the trained

parameters (e.g. during the least squares fitting).

In order to handle this problem and increase the prediction accuracy, a multi-model training

approach is proposed and described in the following section.
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3.4 Smart Multi-Model Training Approach

Despite the possible performance improvements that can be obtained during the training of a
model by using the successive database splitting, it has been concluded that in many cases the
resulted prediction accuracy is not satisfactory, mainly in short-term demand forecasts where

the prediction requirements are high.

In order to handle this problem, a multi-model training approach is proposed, in which
multiple models are developed for a single signal, based on a hierarchical clustering of similar
load behaviors [58]. This approach is able to identify the necessary number of models to be

trained, based on the operation conditions and the profile of the consumption.

The clustering analysis takes place in step 3 of the modelling process (depicted in Figure 3.9),
where the training and validation datasets are being created. In this step, the signal profile is
being compared in terms of similarity, and is classified into clusters based on a predefined
minimum distance. Once the distance indicator of each sample is calculated, pairs of data are
merged iteratively until only one cluster remains, using the linkage algorithm. The sequence
of states defined by the iterative algorithm represents a binary, hierarchical cluster tree. The
branches of the tree that violate the working constraints are removed so that only maximum

N clusters of minimum distance D remain.

Finally, the subsets of data that are identified by the clusters are assembled and converted
back into time-series, creating the individual databases that include different operation
patterns of the signal. Then each database is treated individually, defining the training and

validation dataset for the model and proceeding to step 4 of the modelling process.

The following part present the proposed multi-model approach applied to the energy
consumption of Figure 3.12. The configuration of the algorithm has been set for a maximum

number of 10 clusters (N = 10) and a minimum distance of thirty percent (D = 0.3).

The classification obtained by the clustering process is depicted in Figure 3.27 and Figure 3.28
where they present dendrograms with the maximum number of the identified clusters and

the final selection of clusters based on the defined maximum distance limit, respectively.
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Figure 3.27: Dendogram that presents the maximum number of the identified clusters.
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Figure 3.28: Dendogram that presents the resulted clusters of the database.
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Once the clusters are identified, the database is filtered using the cluster id, as depicted in
Figure 3.29. Then the training process continues with the generation of the different models

for each database, following the steps that are described in section 3.2.

As it can be observed in the following figure, 5 different clusters (consumption profiles with

similar patterns) have been identified and presented in different colors.

Bl 02 B3 m4 ®S

]

¥ g ]
Egu R § Tﬁ Tl i ﬁ A
i m —]: i : i
é s | TR
.5 06 ikl M
s
£
3
w
5
O 04r i
02 -
0 1 1 1 1 |
0 50 100 150 200 250

Time (days)

Figure 3.29: Energy consumption profile classified by cluster id.

Table IX presents a comparison of the forecasting and maximum obtained errors between the
single model approach, using successive data splitting and the multi-model training approach,

using hierarchical clustering.

Table IX. Comparison of forecasting performance indices between the single model and multi-model approach.

RMSE (%) MAX ERROR (%)
CLUSTERID
SINGLE MODEL MULTI-MODEL SINGLE MODEL MuLTI-MoDEL
1 7,87 46,10
2 4,03 21,85
3 6,22 3,80 34,84 14,52
4 4,16 27,93
5 4,75 29,43
Avg 6,22 4,92 34,84 27,97
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It can be observed that an important accuracy improvement is achieved in most of the subsets,
specifically an average (Avg.) 21% of RMSE reduction and a 20% of maximum error reduction.
On the other hand, it can be observed that there are cases where the calculated error is worse
than the single models’ (i.e. id 1). Such cases typically correspond to operation periods with
complex patterns, that are mainly influenced by the human behavior and are difficult to

predict based on data models (e.g. holidays, maintenance periods, etc.).

The following table shows the optimal training chromosomes that were identified by the

genetic algorithm during the training process of each cluster.

Table X. Results of the optimal training candidates for the different clusters.

GENES OF THE CHROMOSOME

CLUSTERID

1 2 3 4 5 6 7

1 1 0 1 0 0 0 1

2 0 1 0 1 1 0 1

3 1 1 0 1 1 0 1

4 0 1 1 1 1 0 1

5 0 1 1 1 0 0 1
Total 2 4 3 4 3 0 5

As it can be observed, a different training input combination has been resulted as the optimal
one for all of the clusters, and thus, it can be concluded that the use of a GA-ANFIS training

methodology gives rise to potential increase of the forecasting accuracy.

The following figures depict the comparison between the real consumption and the predicted
one for a period of 2 days, obtained for the models of cluster 3, 4 and 1, which correspond to

the cases with the best, medium and worst forecasting performance, respectively.
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Figure 3.30: Comparison between real profile and prediction for cluster id: 3.
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Figure 3.31: Comparison between real profile and prediction for cluster id: 4.
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3.5 Conclusions

The main contribution of this chapter is the presentation of a methodology for the modeling
and energy forecasting using a combination of Genetic Algorithms and Adaptive Neuro-Fuzzy
Inference Systems, with aim to generate high accuracy customizable mathematical models for
different consumptions in order to obtain short-term demand forecasts that are used in the

energy hub optimization strategy.

In the proposed methodology, the ANFIS is used to train the mathematical model of the
consumption and to provide a short-term load forecast while the GA is responsible for
analyzing the database and the possible correlations between the demand and the input
candidates and evaluate which are the optimal ones to be used as inputs in the training and

the prediction process.

Although there are many approaches for the load forecasting, in the presented methodology,
the use of ANFIS has been selected due to the capacity of the algorithm to model different
time series patterns without the need of any modifications in its structure, making it ideal for
implementation on multi-carrier energy systems, where different type of consumptions are
present. That results to an algorithm that requires few configurations for its operation and it
can be integrated easily into an industrial application. Furthermore, the combination of GA-
ANFIS, permits to evaluate periodically the accuracy of the predictions, and update (if
necessary) the training inputs of the models. Thus, in this methodology, the genetic algorithm
has a fundamental role in the performance of the energy modelling, as it identifies changes in
the load's behavior and always selects the best training candidates based on correlation
analyses. Additionally, the use of a successive splitting filtering of the database for the
definition of the training and checking data has proved to present better result than the
chronological one, being advantageous for the training of consumptions of which the future

behavior and profile is unknown.

On the other hand, a multi-model training approach is presented, which increases even more
the modelling performance and the prediction accuracies by clustering the database into
separate datasets, based on the consumption patterns. Since the initially complex modeling
problem is split into a set of smaller problemes, it is easier for the algorithm to train each group,
as its members present a similar behavior, and so it helps the training algorithm converge
faster. Also, the proposed methodology accomplishes a forecast response that adapts better

to the different dynamics of the load demand signal.
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Another important advantage of this systemis that it welcomes parallelization during the input
selection and training process. On a single model approach, the training algorithm usually
needs to run on a single machine. But once the patterns have been identified and classified by
the system, the data subsets can be trained by different nodes or even in cloud computing
services. In addition, each set of data can take advantage of the different cores of the node
and run multiple input selection search scenarios of the genetic algorithm concurrently,

reducing even more the processing time.

Simulations and experimental validations have been carried out to verify the performance of
the proposed methodology under different conditions and for several consumptions of an
automotive manufacturing plant. From the obtained results, it can be observed that the use
of the GA to evaluate the training data can offer an improvement in the prediction results, as
it detects modifications in the consumption’s behavior and selects always the input dataset

that presents the best performance.

Finally, it has to be mentioned that the proposed forecasting methodology can be
implemented to any energy load profile, of both the industrial and tertiary sector, due to its
flexibility and easy adaptation over existing databases. Thus, it is a suitable methodology for
real time application, which require to determine accurately and rapidly the prediction

operating profiles of different type of consumptions.
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4.Energy Flow Optimization

4.1 State of the art

Since energy can be produced by using different technology or capacity mixes, it is important
that the energy infrastructure adopt that flexibility to meet the energy demand patterns at
maximum efficiency and minimum cost. To achieve that, optimization techniques can be
implemented, taking into consideration several conditions and multiple variables
simultaneously, such as the demand profiles (of the entire optimization horizon), the
infrastructure restrictions, the energy availability, the equipment's operation bounds as well

as the resulting impact of each strategy.

Up to now, different applications and algorithms have been used in order to optimize
multivariable problems. For simple systems the optimization can be done by differentiating
the equations with respect to each parameter in turn, setting the set of partial differential
equations to zero and solving this set of simultaneous equations. However, in more
complicated cases, it may be impossible to differentiate the equations, or very difficultly

soluble non-linear equations may result.

The available methods for constrained optimization can be divided into two main categories:
the deterministic and the stochastic ones. Based on the literature review of this field, the
generalized reduced gradient methods and the sequential quadratic programming methods

are two of the best deterministic local optimization methods. These gradient-based methods
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always look for the optimum, which is located closest to the starting point of the search,
whether it is a local or a global one [58]. Although there are several methods for the solution
of constrained nonlinear programming problems, there is not any known method able to
determine the global minimum with certainty in the general non-linear programming problem

[60].

In the cases of optimal power flow, and given the increased complexity of the resulting
objective function, an appropriate strategy would require employment of efficient
optimization algorithms in order to determine the distributed generation capacity. Traditional
linear programming, mixed-integer linear programming and mathematical programming have
been the most widely applied methods for the optimization problem of linear formulations,
aiming at minimizing the discounted investment and operational costs associated with
meeting energy demand [61]-[62]. While a linear algorithm is well suited for optimization of a
system described by a linear model, the nonlinear programming approach is also commonly
employed when nonlinear formulations and logistical constrains are applied to the energy

production or energy conversion equipment [63].

Algorithms such as particle swarm optimization, sequential quadratic programming, and
Lagrangian relaxation were used successfully in applications of power dispatch as published in
[64]-[66], respectively. Solutions addressing the forecasting problem in optimization, often
account for the random-like behavior of the load and price using stochastic and fuzzy methods.
In the stochastic approach, mean values for electric power and heat are estimated by taking
the randomness in electricity and heat demand into account [67]-[68]. Other iterative
evolutionary algorithms have been employed by several authors to maximize social utility to
the customers and minimize operational costs [69], or to minimize costs and GHG emissions
[70]. The use of genetic algorithms has been presented in [71] with objective to minimize the
generation and environmental costs of an electric distribution system, taking into
consideration its operation and maintenance costs as well. Some other proposed methods
which deal with the multiobjective optimization of energy hubs, include the “jump and shift”
technique [72] to solve each objective at a time until they converge to a single solution, and

the scalarization technique as presented in [73] and [74].

On this line of approaches, this chapter presents a new methodology for the dynamic
optimization of multi-carrier energy systems, combining demand forecasting (based on the
GA-ANFIS approach, presented in Chapter 3) and nonlinear mixed-integer programming. The

energy flow of the system is being optimized by means of a multiobjective genetic algorithm
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with objectives to satisfy the energy demands, to minimize the total operation costs and
energy, and to minimize the generated CO; emissions. Furthermore, the methodology takes
into account the dynamic system response, expressed as thermal inertias of the energy
production equipment, to calculate its effect to the equipment’s operation bounds during the

multi-time period optimization.

Figure 4.1 depicts the block diagram of the proposed method, in which the GA is being used

to determine the best training inputs of the ANFIS structure for an optimized data learning.

y co, J
€ 1}
Energy
production Optimization
models criteria
oy o =
Energy 0 B
consumption Load forecasting Energy hub Engrg.y f|<_)W
modelling formulation optimization

Future operation setpoints

Figure 4.1: Structure of the proposed optimization process.
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4.2 Mathematical Formulation

Depending on the structure of the multi-carrier energy system as well as the type of
technologies and equipment that contains, the mathematical formulation of the problem can
vary between continuous linear, continuous nonlinear, mixed-integer linear and nonlinear, as
well as multi-period continuous and multi-period mixed integer problems [75]-[77]. The
following sections describe the general formulas of these cases.

4.2.1 Continuous Linear or Nonlinear Problems

Linear and nonlinear programming problems with continuous optimization variables X can

be formulated mathematical as follows:
Minimize  f(x)

(4.1)

where

e x= (xl, ...,xNx) is the 1x Nxvector of continuous optimization variables,
xeS c RN

o f (X): RN — R is a scalar-valued objective function;

J g(X): R — R" is the v x1vector of equality constraints;

o h(x):\" — R" isthe wx1vector of inequality constraints.

4.2.2 Mixed-Integer Linear or Nonlinear Problems

The mixed-integer programming problems include both continues variables X, as well as

discrete variables y , and can be formulated as follows:

Minimize f(X, y)

(4.2)

where
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x=(x{,..,%x is the 1x N, vector of continuous optimization variables,
1 Ny X

XxXeS RV

y = (yl, ...,yNy) is thelxN, vector of discrete optimization variables,
yeDcZ Ny ;

e f(xy): {ERNX z"” }—) R is a scalar-valued objective function;
. pN N v
. g(x,y). R, Z (=R isthe v x1vector of equality constraints;

AN 7Y . . . .
° h(x,y).{iR Z }—)93“’ is the wx1vector of inequality constraints.

4.2.3 Multi-Period Continuous Problems

The multi-period optimization consists in the calculation of an optimal solution taking into

account multiple time periods t € {1, 2,K, Nt} instead of one instance of the problem. In the

continuous case, multi-period problems are generally stated as:

N[
Minimize th(x)
=1
subject to gt(x)=0 Vi (4.3)

h'(x)<0 Vvt

where

Ny-N) . . o .
e Xe 93( ) is the 1x (NX . Nt) vector of continuous optimization variables;

t €{1,2,..,N.}isthe 1x N, vector of the optimization time instants;

f t(X): RN 5 R is a scalar-valued objective function, reflecting the result for the
time instant {;

g'(x): 9t
ht(X): RN 5 R is the wx 1vector of inequality constraints at instant 1.

Nx:Nt )

— RVis the v x1vector of equality constraints at instant {;

4.2.4 Multi-Period Mixed-Integer Problems

The multi-period mixed-integer problems are the ones that represent the most the operation
of the multi-carrier energy systems due to the discrete operation of the energy production

equipment. These problems can be formulated mathematically as follows:
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Nl
Minimize th(x,y)
1
subjectto  g'(x,y)=0 Wt (4.4)

h'(x,y)<0 Wt

where

NN, . o .
xeSc RN s the 1><(NX . Nt) vector of continuous optimization variables;

yeDc Z(NV‘N‘) is the 1x (Ny . Nt) vector of discrete optimization variables;

t €{1,2,...,N;}isthe 1x N, vector of the optimization time instants;

N, VY
ft(X, y). {SR xZ }—> R is a scalar-valued objective function, reflecting the result

for the time instant t;

g'(x,y): {‘RNX z" }—) R is the vx1vector of equality constraints at instant t;

t N, oY
h (X, y). {93 “Z }—) R" is the wx1vector of inequality constraints at instant t.

4.2.5 Multi-Carrier Power Flow

The multi-carrier optimal power flow can be defined as the determination of an optimal
operating strategy of an energy system and its complete state, including transmission and

conversion of multiple energy carriers within security constraints.

Mathematically, a multi-carrier optimal power flow can be formulated as a linear or nonlinear
constrained optimization problem, which as presented in (4.5) it consists of the mathematical
expressions that describe i) the cost function of the problem (subject of minimization or
maximization), ii) the energy flow of the system in terms of the available energy carriers, iii)

the energy system’s restrictions and iv) the equipment’s operation bounds.

Minimize f = Z ft(F’it,Viak)
=)
subjectto L, —7;-P, =0 VieH
P, <P, <P, veek (4.5)

Pig <9y P <Pix VieH,VaecE Vkern,

o
IN

o <1 VieH,Va<€E,Vken,

iok



71

Multi-objective optimization of an energy hub using artificial intelligence

where

a,pB,v, ..., w € Eis aset of primary energy sources;

i,j € H= {1,2,..,Ny}is asetof hubs;

k €nig = {1,2, ""Nma} is a set of converters 77;,0f hub i; the subset 7, c7,
contains all the elements of hub i, which convert energy O into another carrier;
P,and Ei are the power limitation vectors of the hub inputs P, (lower and upper limits

respectively).
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4.3 Optimization Criteria

In contrast to single-objective problems, in multi-objective optimization, the fitness function
consists of several criteria that have to be evaluated simultaneously in order to determine
whether a proposed solution presents better score than others and thus tends to optimum.
The criteria might be of qualitative or quantitative nature (e.g. the cost of an energy source
can be numerically measured while the comfort rating could be subjectively describe as high,
medium or low) and they depend on the problem to be resolved. In the case of the multi-
carrier power flow, the fitness function requires quantitative information about scores of each
criterion, which as described above, are i) minimization of the input energy use, ii)
minimization of the energy costs and iii) minimization of the equivalent carbon dioxide

emissions (COzeq).

Thus, for the formulation of the criteria, the total energy use (fi1) can be calculated by
aggregating the energy amount of the system’s inputs for all the time instants of the

optimization horizon.

ff=>>"Ph3 (4.6)
a t

Similarly, the energy cost of the system (f,) can be calculated as the product of the consumed

energy and its corresponding price as described in (4.7).

=Y Y PoL Al (4.7
o t

Finally, the total emissions (fs) can be calculated considering the product of the total

consumed energy amount and the greenhouse gas equivalencies.

fy =D > Pt -ed (4.8)
a t
where
. PTigt represents the total input energy of the hub;

e aistheindex of the hub’s input energy carriers [1 : A];
e tisthe index for the optimization time instants [1 : T];

e J describes the energy price of energy carrier a at time instant t;

e ¢« describes the emission factor of the input energy carrier a.
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Among the different quantitative methods to handle multi-criteria decisions (e.g. value and
utility analysis, ideal point method, outranking method, analytical hierarchy process, etc.), one
of the most commonly used is the weighted summation (weighted global criterion method),
in which all the objective functions are combined to form a single one. In this method, the
score of the fitness function is obtained by aggregating the individual normalized scores of the

criteria, which have been previously multiplied by an assigned weight (4.9).

0 4.9
ff — Z fjtrans W, ( )

j
=1

whereas ff is described the fitness function of the optimization problem, j is the index for

trans
optimization criteria [1 : O] and as fj and w; are described the normalized score and

assigned weight of criterion j, respectively. The normalization process of the criteria’s scores
is made in order to remove dimensions or possible balance magnitude differences that may
exist between the criteria. Equation (4.10) present the transforming approach that has been
selected to normalize the criteria’s scores, as it is considered one of the most robust [78],

regardless of the objectives’ original ranges.

fi(xy)-f° (4.10)

f trans _
i fmax _ o
i ]

trans
In this approach, the values of fj typically lies between zero and one depending on the

max 0
accuracy of values fj and f]. , Which describe the maximum and minimum fitness scores of

criterion j, respectively, for the case in which the problem is resolved as single objective.
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4.4 Optimization Process

The proposed optimization process consists of 8 steps that can be classified in 3 main blocks
(Figure 4.2): the demand prediction for the optimization horizon; the mathematical
description of the problem, formulated as an intertemporal optimization problem, taking into
account the conditions and restrictions of the system; and finally, the calculation of the
optimum energy flow to satisfy the energy demands. The detailed characteristics of the

method’s steps are discussed next.
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Figure 4.2: Dataflow of the optimization process.
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Step 1: Demand Modelling and Prediction

The demand modelling and prediction tasks, as described in Chapter 0, are performed by
means of a combination of an ANFIS of Takagi-Sugeno type and genetic algorithms, with
objective to train the mathematical models of the system’s energetic requirements,
referenced to operation conditions and external parameters (e.g. climate conditions, time,
etc.). The GA is used to select the training inputs for the model, while ANFIS calculates the
relationships and the inference rules between the selected inputs and the demands, training

the mathematical model.

The training and evaluation process is repeated for all the input combinations of the models
and the most accurate ones are kept. Once all of the mathematical models are obtained, they
are used by the same algorithm to forecast the energy demands of the system for a predefined
optimization horizon and time intervals (e.g. 10 seconds, 1 minute, 15 minutes, etc.). In this
step, current and future data for the model’s inputs are used, obtained by different sources

(e.g. information given by a user, data gathered from a weather service, etc.).

Step 2: Demand Analysis and Restructuring

In this step, the algorithm analyses the total energetic requirements of the system for the
complete prediction (and optimization) horizon and applies a descending sorting to the
demand vectors. Thus, the vectors are converted from time-ordered to descending-ordered,
permitting to evaluate initially the time instants that present the higher energetic needs,
calculating the optimal operation of the equipment and their settling times. In this way, the
algorithm analyses and evaluates each time instant individually but it takes into account the
operation of the equipment at the rest of the evaluated time instants (past and future) in order
to recalculate (if necessary) the equipment’s operation bounds. This evaluation process has as
objective to calculate initially the optimal operation of the energy production equipment and
carriers (e.g. cogeneration, boilers, grid supply, etc.) for the higher demand periods (before
evaluating the lower ones), to guarantee that the required demand of the system, even for

the peak demands, will be entirely fulfilled and the system will operate in an optimal manner.

In this context, Figure 4.3 presents an example of an energy profile that consists of 20 time-
instants. The figure depicts both the time order of the demand that appears at the top x-axis,

as well as the evaluation order (descending-order, depicted at the bottom x-axis), which is
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used by the algorithm to optimize each one of the time instants individually till completing the
entire horizon. In the following paradigm, the algorithm begins by optimizing the time instant
that is located at time t=11 and corresponds to the higher demand point of the prediction
horizon. Then the evaluation continues with time-instants: t=10, t=12, t=13, and so on,
following the depicted evaluation order. The axes of the figure depict both the time order of
the signal, as well as the evaluation order of the signal, depicted in the upper and lower axis
respectively.
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Figure 4.3: Example of the evaluation order of the time instants, based on descending-order.

Figure 4.4 presents graphically a comparison between the original and reconstructed demand
vector of Figure 4.3, depicting the initial time ordered demand vector, calculated by the GA-
ANFIS algorithm, and the restructured descending ordered demand vector, which is finally

used as reference for the energy flow optimization of the system.

Time-order sorting Descending-order sorting
1 4 1l o
G-6-g

0.9 4 09 | .

S-eq

[N

08 4 08 |
07 4 o7 |
0.6 + 06 L A\

05 L Q

Demand (pu)
. °
&
|
Demand (pu)

0.4 4 04 | o
03 4 03 | S
0.2 4 02
01 L Y o1 | 1
0 . L L 0 . L . .
0 5 10 15 20 0 5 10 15 20
Time order (pu) Evaluation order (pu)

Figure 4.4: Comparison between time-ordered demand vector and descending-order demand vector.
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Step 3: Coefficient of Performance Constraints

During this step, the algorithm calculates the coefficient of performance of the energy
production equipment along time, which can be constant or its values can vary depending on
the type of equipment and the operating conditions, as well as the energy demand of the

evaluated time instant in order to formulate the system’s equality constrains.

In the case of a variable COP, the calculation is made by use of mathematical models of the
equipment, which characterize the operation of the equipment in different operation states.
In the case of static ones, the equipment's efficiency remains constant in spite of its operation

conditions, which can typically be obtained by the manufacturer technical sheets.

As expressed in (4.11), the equality constraints state the available energy carriers between the
primary energy sources and demands, which represent the hub inputs and hub outputs,

respectively.

Pet? =P -y Ya,vB,Vi, vk (4.11)

it
where

° Rf};t’ﬂ represents the output power (of type ) of the k' energy converter of type i at

the time instant t;

. P“‘:t'“ represents the input power (of type a) of the k' energy converter of type i at

the time instant t;
e tisthe index for the optimization time instants [1 : T];
. ni/’t”‘ represents the efficiency of the energy convert of type i, at time instant t, for

converting energy of carrier o to carrier .

Step 4: Energy Supply Constraints

On the fourth step, the algorithm calculates the restrictions of the system and formulates the
inequality constraint vectors. These restrictions can vary depending on the evaluated time
instant and as shown in (4.12) and (4.13), they are related to the maximum available supply

limits of the primary energies and the maximum limits of energy production by equipment.
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3 SR < Prory Va, Vi, Yk, vt (4.12)
i k
S SRS [nfe <Pl Va, VB, Vi, VK, Vit (4.13)
i k
where

P”‘:t'“ represents the input power (of type a) of the k" energy converter of type i at
the time instant t;

° EITnota represents the maximum supply limit of energy carrier «;

° P“fi‘ﬁ represents the output power (of type ) of the k™ energy converter of type i at
the time instant t;

. niﬁ“ represents the efficiency of the energy convert of type i, at time instant t, for

converting energy of carrier a to carrier f3;

e Pi: represents the maximum input power for the energy converter of type i at the

time instant t.

Step 5: Equipment’s Operating Bounds

This step is focused on the calculation of the equipment’s operating bound vectors. The bound
levels can be affected by the dynamic response of the equipment, as inertias and delays could
be present while reaching the desired energy outputs from their current operating point. Thus,
in order to obtain a feasible and stable operating strategy for the energy production
equipment, which results to optimal power flow, the algorithm needs to consider the
equipment’s inertias and dynamics, which are formulated as additional constraints in the

optimization problem.

Furthermore, the algorithm takes into account the effects and implications of its decisions of
each single time instant at the rest of the prediction horizon, as they can influence the future
operating possibilities. Equation (4.14) presents the generic formulation of the equipment’s

operation bounds in relation to their energy production.

P < pne <Py Va, Vi, vk, Vit (4.14)



79 Multi-objective optimization of an energy hub using artificial intelligence

where

° E:“t“ represents the minimum input power for the energy converter of type i of

energy carrier o at the time instant t;

. P“i“t’“ represents the input power (of type a) of the k™ energy converter of type i at
the time instant t;
. E:Z’a represents the maximum input power for the energy converter of type i of

energy carrier a at the time instant t.

Step 6: Optimization of Time Instant

On this step the algorithm calculates the optimal energy flow of the multi-carrier energy
system for the current time instant by means of the GA algorithm. Initially, the mixed-integer
problem is solved for every criterion individually to obtain their minimum feasible points
(utopia points) and their maximum values. These values are used for the normalization of the
optimization criteria, when are being evaluated into the multiobjective weighted-sum
function. Then the whole multi-objective problem is solved, normalizing the criteria values

with the transforming approach of (4.10).

The execution of the genetic algorithm is based on the same evaluation steps, as depicted in
Figure 3.4, applying also the three genetic operators that consist on i) the selection of the best

chromosomes, ii) the mating of individuals and iii) the mutation of random genes.

During the generation of the initial population, the problem variables are being encoded in
binary format in order to simplify their processing and the execution of the genetic operators.
The mathematical formulation for the binary encoding of the nth variable p is presented in
(4.16), while (4.15) describes the normalization process that is used to adapt equal

guantization levels for all the variables that form part of the chromosome.
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_n (4.15)
pnorm — pn pmln
Prmax — Prin
it (4.16)
gene[m] = round ( Prorm —2 " — >_ gene[p]- 2"’]
p=1

Similarly, before evaluating the fitness cost of the chromosomes, a decoding process takes
place in order to restore the natural values of the variables. Equations (4.17) and (4.18)

describe the decoding formulation.

= (4.17)
pquant = Z gene [m] 27"+ 2_(M+1)
m=1
On = pquant (pmax - pmin)+ Prin (418)
where
Puorm FePresents the normalized variable with range [0, 1];

® P, represents the minimum value of the evaluated variable;

® P, represents the maximum value of the evaluated variable;

e gene[m] represents the binary version of p,;

® round [-] represents the round value of a number to the nearest integer;

Pyuant FEPrESENtS the quantized value of p,.;

e (, represents the quantized version of p,;

Ngene defines the number of bits (b) that contains the chromosome;

Figure 4.5 depicts the generic structure of the chromosome's formulation, consisting of

multiple encoded variables (genes).

chromosome = [101100110100011101 111010]

' JL ’ [ ' J L I
gene, gene, gene; gene,

Figure 4.5: Example of the chromosome structure, consisting of n-number genes.
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Once the algorithm optimizes the operation of the time instantt {t e N | 1 <t < T}, the
mathematical models of those equipment that present inertias, are used to calculate their

maximum and minimum energy production bounds for the nigh time instants.

These bounds may vary from the minimum and nominal output powers of the equipment due
to possible delays in their operation. Thus, the equipment bounds are recalculated (are
reduced if necessary) for the time instants [t-1,...,t-m] and [t+1,...,t+n] (where t-m and t+n
cannot exceed the values 1 and T, respectively) and are taken into account by the optimization

algorithm during the evaluation of the following instants.

In this context, the following figures present an example of the step-by-step evaluation
process of the algorithm, based on the demand case of Figure 4.3, which is considered as the
heating demand of the energetic infrastructure of Figure 2.7. As stated previously, in the case
of the following paradigm, the optimization process initializes by evaluating the demand and
operations conditions of the time instant located at t=11, which corresponds to the higher
demand point of the prediction horizon. In cases where the same demand value appears in

more than one time instant, the algorithm make a chronological sort for their evaluation.
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Figure 4.6: Example of the descending evaluation order of a heating energy demand vector.
At the initial iteration of the algorithm, there are no limitation on the operation bounds of the

equipment (i.e. cogeneration and gas boilers) and thus, in terms of primary energy use, the

corresponding constraints are formulated as follows:



Energy Flow Optimization 82

P < poutteat [po2 < POt t=11 (4.19)
P < PO pott  <Ph . t=11 (4.20)
E:)r:)ﬁ:rSZt < szl:ltepgatt/ Uk?ozn'lm < ELZ.?:rszt , t=11 (4.21)
P, < PoRtet [zt < Pums: , t=11 (4.22)

Where the minimum energy supply values are equal to 0 and refer to a disconnected status,
while the maximum energy supply values correspond to the required amount of gas to operate

at nominal powers.

Once the current iteration is evaluated, the algorithm analyses the operation of the equipment
and calculates the influence of their inertias at the nigh time instants. Considering as an
example that the demand of time instant t=11 is fulfilled entirely by the cogeneration
equipment with an operation point of 80% of its nominal power, then the algorithm uses the
mathematical model of the equipment to recalculate the minimum operation bounds of the
equipment at the previous time instants t = [1, 2,..., 10] and following time instants t = [12,
13,..., 20]. In this case, the following figure depicts an example of the inertia behavior,
calculated by use of the space state model of Figure 4.7. It has to be mentioned that in terms
of representation, Figure 4.7 depicts positive time units and negative time units for the cases

where the equipment has to increase or decrease its output power, respectively.
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Figure 4.7: Example of the space state model of the equipment, indicating its response time to reach the final set
point, based on its current operating condition.



83 Multi-objective optimization of an energy hub using artificial intelligence

Time order
2 4 6 8 10 12 14 16 18 20
T T T T T T T T T T T T T T T T T T T
1 1 Demand 0.8
CHP

09 - Unstable operstion )72

08I~ -1 0.64
g_ | _
=07 [ -oss 2
= =
e -
@ £
Eos <048 2
- Curve with minumum required operation point o
= £
Zos - o4 B
c @
@ &
o4 032 4
- I
3 ]

Tosf i i J 024

Instability operation zon: Minimum operating point of CHP at t=12
02 [ y / -10.16
1 v 0.08
L L L ! I 1 1 1 | | 1 | L 1 1 !

Evaluation order (pu)

Figure 4.8: Example of the minimum operation bound curve of the equipment, based on its optimal operation of
instant t=11.

The red curve indicates the minimum required operation point of the equipment in terms of
produced power, in order to be able to achieve the optimum set-points that were calculated
for time instant t=11. Thus, at the second iteration of the algorithm, which based on the
example it corresponds to time instant t=12, the minimum operation bound of the CHP would

be reestablished at the 11% of its nominal power (0.11pu) and would be formulated as follows.

—in,gas —in,gas .
Peupr -0.11< Pg:gieat/ng,igyt <Pcwrr , t=12 (4.23)

Additionally, the figure depicts in red area the instability operation zone of the equipment,
which refers to the operating zone, in which, due to the equipment's inertias, it will not be

able to achieve its defined setpoint. Thus, it will not be able to predict the behavior of the

energy system, if the energy demand will not be fulfilled.

With the same procedure, the algorithm continues optimizing the rest of the remaining time
instants (with descending order), recalculating the possible limitation of the operation bounds

for all of the equipment.

The following figure presents the bound restrictions of the cogeneration equipment after the
second iteration, considering that based on the optimization strategy, at t=12 it produces only

the 60 percent of the demand while the remaining is fulfilled by the rest of the equipment.
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Figure 4.9: Example of the minimum operation bound curve of the equipment, based on its optimal operation
scenario of time instants t = [11, 12].

Similarly as previous, at the third iteration (t=10), the minimum operation bounds would be
recalculated focusing on the minimum required operating point of the equipment to reach the

operating condition of t=11.

—in,gas

Peirs -0.29 < POt [pet <PEE | t=10 (4.24)

Figure 4.10 presents the results of the entire demand vector, depicting the operation points
of the cogeneration equipment and the minimum operation point curve for each time instant,
based on the inertia calculation of each iteration. As it can be observed in the figure, in order
to fulfil the energy demand in t=1, the equipment has to be activated before the time instant

t=0, where the optimization horizon begins.
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Figure 4.10: Example with the comparison between the operation strategy of the equipment and the minimum
instability zones for the entire demand vector.

Finally, a comparison between the minimum operation bounds of the equipment and its final
operation strategy can be observed in Figure 4.11, following the evaluation order of the time

instants.
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Figure 4.11: Evolution of the operation bounds of the equipment during the evaluation of the time instants.

As it can be observed by the example, the operation strategy of each equipment, at each time
instant, can significantly affect the operation bounds of the rest optimization horizon, and thus

affect the stability of the system.
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Step 7: Evaluation and Updating of Conditions

In case that the optimization horizon has not yet evaluated completely, the algorithm
continues to the next time instant, updating the entire problems values (i.e. demands,
constraints, bounds, prices and emissions). Furthermore, the updating of the necessary upper
and lower equipment bounds is made, based on the calculated inertias from the previous time

instants. Then steps 3 to 6 are repeated.

Step 8: Optimization of Time Instant

When all the optimization horizon is evaluated, the algorithm restores the results’ order to
the natural one (time-referenced) and provides the obtained optimal solution for the

optimization horizon.
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4.5 Implementation and Results

This section presents the validation results of the proposed optimization methodology,

applied at the energy hub structure that is depicted in Figure 2.7.

The testing period of the algorithm took place during a total of 3 months, evaluating the
performance and impact of the algorithm compared with the real operating profiles of the
industrial site. The following table presents the different periods of validation, indicating the

climatic and production conditions of the site.

Due to confidentiality, the production conditions are represented as percentage, referred to
the maximum production capacity of the production lines. Similarly, the energy consumption
and energy production results that are presented in the following subsections, are depicted in

per-unit values.

Table XI. Real case evaluation periods of the proposed optimization methodology.

TEMPERATURE (°C) PRODUCTION (%)
DATE RANGE
AvG MIN MAX Bopy sHoP PAINTING ASSEMBLING
01 -31January 2015 871 0,3 19,7 73,5% 81,2% 73,3%
01 — 28 February 2015 8,86 0 20,8 90,7% 87,7% 88,8%
01 - 31 March 2015 13,25 3 26,9 91,7% 94,54% 91,1%

The validation of the proposed methodology was made by applying different optimization
criteria into the algorithm, using the actual energy demands of the site, which were monitored
and acquired by the SCADA system. After that, a comparison of the real operation and the
predicted one (calculated by the developed algorithm) was made in order to analyze the
differences in terms of primary energy use, costs and CO, emissions and to evaluate the
performance and the impact of the proposed methodology into the process. Specifically, the

validation tests were made for two optimization criteria sets, as presented below.

a. Minimization of the use of primary energy sources and CO, emissions;

b. Minimization of primary energy sources, energy costs and the CO, emissions.

The following subsections present the description of the models of the energy production
equipment of the plant, the detailed results of the proposed methodology for a period of 24

hours, as well as a long term validation analysis for the whole validation period of 3 months.
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4.5.1 Energy Production Equipment Models

As commented in the previous chapters, the final objective of the proposed methodology is to
model the behavior of a given multicarrier energy system and to optimize its energy flow. In
order to achieve that, it is necessary to dispose the coefficients of performance of the
equipment and their operating inertias. This information can be obtained by several ways,
such as provided by the manufacturer, by applying measurements during the operation of the
equipment, or by developing their mathematical models. In this case, the mathematical
modelling of the energy production equipment were developed by the VTT Technical Research
Centre of Finland in the framework of the FP7 EuroEnergest project. The design and the initial
developments of the models have been done in the Apros software [79], permitting to analyze
their operating behavior. After that, the models have been exported as Matlab functions in
order to be used by the developed optimization algorithm. The models are based on
mechanistic simulations, using physical dimensions of the processes and pipelines, as well as
equipment-specific parameters. They utilize dynamic conservation equations of mass, energy
and momentum to calculate flows, temperatures, concentrations and pressures in the
systems. During their development, the obtained simulation results were compared with
measured data from the real system and adequate adjustments were made in the models'
structure and parameters to improve their accuracy. Nevertheless, it has to be mentioned that
the proposed optimization method is not restricted to use mechanistic simulation models, but
other type of models could be used as well (e.g. data-based models, stochastic, physical, etc.)

maintaining a defined input-output structure.

A detailed description of the equipment’s modelling process is presented in [80], discussing

the modelling structure, the mathematical formulation and the obtained accuracy.
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Figure 4.12: View of the Cogeneration diagram of Apros model, which includes the gas turbine, the steam
processes and the heat recovery side of the superheated water system.
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Figure 4.13: View of the Boilers' model, developed in Apros software by VTT.
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Figure 4.14: Example of the Chiller models, developed in Apros software by VTT.

It has to be highlighted that VTT maintains the property of the energy production equipment
models of the industrial site that has been used for the experimental validation of the

proposed optimization algorithm.

4.5.2 Validation Results

This subsection presents the performance of the optimization methodology for a validation
period of 24 hours. Figure 4.15 depicts the energy demand profiles of the industrial site, which
as described in Chapter 2.5, they consist of the total electric and total heating demands of the

industrial site, as well as the cooling demands of 4 individual loads.
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Figure 4.15: Energy demand profiles of the validation plant for a period of 24 hours.

In case of the cooling production, based on the available energy equipment and their
interconnection with the rest of the system, the required energy is produced by 4 chiller
groups that contains 2 equipment each; two absorption chillers and 6 electric chillers (Figure
4.16). For the case of the absorption chillers, their energy supply depends on the heating
energy that is produced by the cogeneration and the boilers, and thus, their operation can
affect significantly the whole operating strategy of the heating production process. For the
case of the electric chillers, the energy supply has to be provided by the grid and the
cogeneration's electricity production, and thus, this amount of energy has to be considered as

an additional amount of the electric demand, used for the production of cool.
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Thus, the optimization problem can be resolved separately for each production stage, which
consist of the initial calculation of the optimal operation of the chiller equipment, which will
result to the required heating and electric energy for their operation, and then the calculation
of the optimal operating strategy of the heating equipment, considering the new updated
demands. Figure 4.16 depicts the two separate production stages, indicating the energy

interconnections between the equipment.
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Figure 4.16: Energy production stages of the system.

Based on the mathematical formulation of the system, described in (2.34) to (2.39), the stage
of the cooling production can be formulated as follows, where (4.25) describes the equality
constraints of the problem, (4.26) to (4.27) the inequality constraints and (4.28) the operating

bounds of the chillers.
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where the sum of the electric power consumption by the electric chillers cannot exceed the
amount of available electric power that is provided by the grid and the maximum electric
power that can be produced by the cogeneration equipment, minus the actual electric

demand of the plant.

6
electricity in electr electric
Z PECi,t < Fyrig e + PCHP,t ~ Liotal t (4.26)
i=1
Similarly, the amount of the heating energy that can be consumed by the absorption machines
cannot exceed the amount of energy that can be produced by the cogeneration and the 3

boilers, minus the actual heating demand of the plant.

heat heat M (,,02 g2t g2t g2t | heat
Pacit T Pacar < Pt (Mooiers + Mrier2 T Moaiterss  Mckp) ~ Logal (4.27)
Finally, the operating bounds of the equipment can vary between their minimum and
maximum production levels, or if were the case, between the updated production limits,

affected by the inertias of the equipment.
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EC5,t
min

Figure 4.17 presents the descending-order profile of the cooling demands, which indicates the

evaluation order of the optimization algorithm.
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As a result of the evaluation of the optimization criteria (described in (4.9)) for the entire

demand profile, the following figure summarizes the fitness values of each criterion in

Evaluation order

Figure 4.17: Evaluation order of the cooling demands.

quartiles, as well as their variability during the evaluated operating strategies.

(4.28)
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Figure 4.18: Comparison between cooling demand and production of the 4 loads.

Figure 4.19 presents a comparison between the demand profiles and the energy production

of the absorption and electric chillers. Additionally, Figure 4.20 depicts the fitness results that

were obtained by evaluating different combination of the criteria, applying similar weights.
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Figure 4.20: Fitness values of the optimization of the cooling process, applying different criteria combinations.

From the point of view of the chillers' production, Figure 4.21 to Figure 4.24 present the

equipment's operations that result to the satisfaction of the cooling demands of load 1 to load

4, respectively.
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Figure 4.21: Comparison between the cooling demand of Load 1 and the production profiles of the absorption
chillers.
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Figure 4.22: Comparison between the cooling demand of Load 2 and the production profiles of the electric chillers

Energy (pu)

Energy (pu)

Energy (pu)

EC1 and EC2.

0.5
—&— Cooling demand of Load 3
0 Il Il Il Il Il Il Il
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
1 T T T T T T T ]
—>— Cooling production of electric chiller EC3
0.5 -
o W
0 Il Il Il Il Il Il Il
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:.00 00:00
1 [ T T T T T T T ]
l —— Cooling production of electric chiller EC4 l
05 | -
292( A M W
O
0 Il Il Il Il Il Il Il
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

Figure 4.23: Comparison between the cooling demand of Load 3 and the production profiles of the electric chillers

EC3 and EC4.
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Figure 4.24: Comparison between the cooling demand of Load 4 and the production profiles of the electric chillers
EC5 and EC6.

In terms of energy use for the operation of the absorption and electric chillers, Figure 4.25
depicts the heating and electricity amounts that were consumed by each equipment at the

different time instants.
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Figure 4.25: Heating and electric consumption of the chillers.

Figure 4.26 presents a comparison between the real operation of the chiller equipment and
the optimized one, expressed in terms of total energy production. As it can be observed in the
figure, the operation of the equipment in both cases is almost the same. This could explained
due to the fact that all of the four chiller groups consist of 2 identical equipment of the same
technical characteristics. Thus, any modification of the energy production proportions of the

equipment would result to the same fitness values.
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Figure 4.26: Total energy production of chiller equipment. Comparison between real and optimized operation.

Finally, Figure 4.27 presents the total amount of electric and heating energy that is required
for the cooling production. The values are depicted in per-units and are referred to the range

of the actual electric and heating demand profiles.
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Figure 4.27: Total energy consumption of the chillers.

Based on the calculated energy requirements for the cooling production, the new demand
vectors of heat and electricity are updated, including the necessary energy for the operation
of the chillers. The new demand vectors are depicted in Figure 4.28, which are compared with

the initial demand profiles, presented in Figure 4.15.
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Figure 4.28: Comparison between the initial demand profiles and the updated ones, for the case of electricity and

heat.

Then, the optimization process is executed for the electricity and heating production stage of

the system (Figure 4.16), evaluating every time instant in descending order, based on the

peaks of the heating vector (Figure 4.29).
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Figure 4.29: Evaluation order of the electric and heating demands.
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As the operation of the boilers is scalar (due to the existing control system that is implemented
in the plant), the GA uses a discrete codified variable d to define their operation status. This
variable, as shown in (4.31), takes integer values between 0 and 4, which corresponds to an
available produced output of the equipment (i.e. 0%, 25%, 50%, 75% and 100% respectively).
Of course, more accuracy can be obtained by a finer discretization, but calculation burden is
incremented. Equations (4.29)-(4.30) express the mathematical formulation of the available

energy carriers (equality constraints) for the production of electricity and heat.

Luee = Pia ™ + P - e (4.29)
Liear = Perie - Ccie + Paiiers * Cooners (1) + Pagiier - Caoner2 (d 5) + Pogiters * Cooters (d ) (4.30)
where

d,eNI [04] (4.31)

Figure 4.30 presents the fitness results that were obtained by evaluating different combination

of the criteria, applying similar weights.
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Figure 4.30: Fitness values of the optimization, applying different criteria combinations.

Figure 4.31 presents the operation profiles of the real operation strategy of the system, as well
as the optimized one, that was calculated by the algorithm, for the whole optimization horizon

of 24 hours by considering all of the criteria.
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Furthermore, a comparison between the optimal operation of the plant and the conventional
one is shown in Figure 4.32, indicating the energy amounts of electricity and gas, as well as

the total energy production per equipment for the evaluated period of 24 hours.
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Figure 4.31: Energy production per equipment.

It can be observed that the conventional operation strategy of the multi-carrier plant gives
operation priority to the cogeneration equipment for the satisfaction of the heating demand
(and partially the electric one), minimizing the use of the boilers and the grid’s electric supply.
However, the algorithm’s solution presents a homogeneous distribution of effort between the
equipment, reducing the consumption of natural gas. This occurs because of the higher

performance value of the boilers in comparison to the cogeneration, which results in reduced
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amount of primary energy use for the fulfillment of the heating demand. Nevertheless, the
consequence is the increment of the electric supply by the grid in order to satisfy the electric
demand as well. This operation strategy may vary by considering different weight of the
optimization criteria, or in cases in which the system has different price rates for the energy

through the day.
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Figure 4.32: Comparison of total energy use and production between conventional and optimized operation.

Finally, Figure 4.33 shows a comparison of the optimized results between the two operations.
It can be observed that the optimized operation of the system presents a minimization of the

energy use by 33%, a 22.7% of operating cost savings, and a 60.2% of CO2 emissions reduction.
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Figure 4.33: Comparison of total energy use and production between conventional and optimized operation.
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It is worth to mention the presented comparisons have been done by using as a reference a
well hand-optimized plant, which is operated by maintenance experts with years of experience
in energy optimization. Therefore, these improved values can be considered as excellent

results for the demonstration of the advantages of the proposed methodology.

The following subsections present the results of the long term validation analysis of the

proposed methodology for the three 3 months period, as described in Table XI.
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4.5.3 Validation period - January 2015

Figure 4.34 presents the energy demand profiles of electricity and heat for all the validation
period of January 2015. The consumption data reach a total of several tens of GWh/month for
both the cases of electric and heating demand. Due to their confidentiality, their energy
values, as well as their costs and emissions are represented in per-unit values, referenced to

the total heating demand value of the month.
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Figure 4.34: Energy demand profiles of the validation plant: 01 — 31 Jan. 2015.

Table XIl. Total energy demands of the plant: 01 — 31 Jan. 2015.

DEMAND ENERGY (PU)
Total electric demand 0.9698
Total heating demand 1

The following sections present the obtained results by operating the optimization algorithm
with different criteria. A comparison between the real operation and the optimized one is
presented, indicating the differences in term of costs, primary energy sources and CO2

emissions.



107 Multi-objective optimization of an energy hub using artificial intelligence

4.5.3.1 Minimization of the primary energy use and the CO:

emissions

This section presents the results of the optimization algorithm, focused only on the
minimization of the primary energy use and the minimization of the generation of CO2
emissions. The primary energy sources of the plant are: electricity supplied by the grid and

natural gas supplied by the network.

The following figure presents a comparison between the real operation of the plant and the

optimized strategy that was obtained by the optimization algorithm.
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Figure 4.35: Total energy production: Jan. 2015 — Minimization of PES and CO;.

The following table presents the numeric values of the energy production equipment, as well

as the use of electricity from the grid, which are depicted in Figure 4.32.

Table XllI. Total energy production: Jan. 2015 - Minimization of PES use and CO,.

OPERATION ELECTRICITY (PU) HEAT (PU)
GRID COG.EL COG.HT BOILER 1 BOILER 2 BOILER 3
Real 0.4259 0.5439 0.8584 0.0424 0.0983 0.0009
Optimized 0.9698 0 0 0.3340 0.3332 0.3328

The following table presents the amount of primary energy sources that was used for the
operation of the energy production equipment. Furthermore, the table contains the
approximate resulting costs of the energy sources, as well as the difference of the energy use

between the real operation of the plant and the optimized one.



Energy Flow Optimization 108

Table XIV. Use of primary energies: Jan. 2015 - Minimization of pes use and co.

ENERGY USE (PU) TOTAL COSTS (PU) ENERGY DIFFERENCE (PU)
OPERATION
ELECTRICITY GAS ELECTRICITY GAS ELECTRICITY GAs
Real 0.4259 2.3310 0.4842 0.2028
Optimized 0.9698 1.4190 1.1027 0.1235 “0.5439 0.9120

As it can be observed by the analysis of the data, by operating the plant with the
recommendations of the optimization algorithm, it would result to an approximate energy
savings of 0.3681 pu. This occurs due to the algorithm focuses on the operation of the boilers
which present a higher COP than the cogeneration, satisfying the electric demand by using

electricity supplied by the grid.

energy savings = —0.5439 + 0.9120 = 0.3681 pu (4.32)

Finally, the following figure present a comparison of the primary energy use, the total energy
costs and the total CO2 emissions between the real operation and the optimized one,
presented in Table XV. Due to the difference on the parameters’ units, all the values have been

normalized for their better representation.
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Figure 4.36: Optimization criteria: Jan. 2015 — Minimization of PES and CO ;.

Table XV. Optimization criteria: Jan. 2015 — Minimization of PES and CO;.

OPERATION ENERGY (PU) ENERGY COST (PU) EMISSIONS (PU)
Conventional operat. 2.7569 0.6870 0.5874
Optimized operation 2.3888 1.2261 0.3576

Based on the results, the savings of CO, emissions would be approximately 0.2298 pu.
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CO0, savings = 0.5874 — 0.3576 = 0.2298 pu (4.33)
The total energy savings percentage of the algorithm would result to:

0.3681
2.7569

(4.34)

energy savings % = ( ) * 100 = 13,35%
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4.5.3.2 Minimization of the primary energy use, costs and CO:

emissions

This section presents the results of the optimization algorithm, focused on the minimization
of the primary energy use, the cost of the primary energies and the minimization of the CO2
emissions, referred in the following tables and figures as “minimization of 3 objectives”. The
following figure presents a comparison between the real operation of the plant and the

optimized strategy that was obtained by the optimization algorithm.
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Figure 4.37: Total energy production: Jan. 2015 — Minimization of 3 objectives.

The following table presents the numeric values of the energy production equipment, as well

as the use of electricity from the grid, which are depicted in Figure 4.37.

Table XVI. Total energy production: Jan. 2015 - Minimization of 3 objectives.

OPERATION ELECTRICITY (PU) HEAT (PU)
GRID COG.EL COG.HT BOILER 1 BOILER 2 BOILER 3
Real 0.4259 0.5439 0.8584 0.0424 0.0983 0.0009

Optimized 0.4206 0.5493 0.8667 0.0445 0.0444 0.0444

The following table presents the amount of primary energy sources that was used for the
operation of the energy production equipment, or used directly for the fulfillment of the
energy demands (case of electricity). Furthermore, the table contains the approximate
resulting costs of the energy sources, as well as the difference between the real operation of

the plant and the optimized one.
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Table XVII. Use of primary energies: Jan. 2015 - Minimization of 3 objectives.

OPERATION ENERGY USE (PU) TOTAL COSTS (PU) ENERGY DIFFERENCE (PU)
ELECTRICITY GAS ELECTRICITY GAS ELECTRICITY GAS
Real 0.4259 2.3310 0.4842 0.2028
. -0.0022
Optimized 0.4206 2.3559 0.4782 0.2050 0.0060 0.00

As it can be observed by the analysis of the data, by operating the plant with the
recommendations of the optimization algorithm, it would result to an approximate cost
savings of 0.0039 pu. This occurs due to the algorithm takes into consideration also the prices
of the primary energy sources. Therefore, it focuses on the operation of the cogeneration to
its maximum point, due to the lower price of the natural gas. Furthermore, the operation
priority is focused on the cogeneration because of its parallel generation of heat and
electricity, which offers an additional energy and monetary saving, by reducing the grid’s

electric energy as well as its equivalent cost.

Finally, the following figure present a comparison of the primary energy use, the total energy
costs and the total CO2 emissions between the real operation and the optimized one,
presented in Table XXXV. Due to the difference on the parameters’ units, all the values have

been normalized for their better representation.
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Figure 4.38: Optimization criteria: Jan. 2015 — Minimization of 3 objectives.

Table XVIII. Optimization criteria: Jan. 2015 — Minimization of 3 objectives.

OPERATION ENERGY (PU) ENERGY COST (PU) EMISSIONS (PU)
Conventional operat. 2.7569 0.6870 0.5874
Optimized operation 2.7764 0.6831 0.5937
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It has to be mentioned that by modifying the weighted factors of the optimization criteria by

giving more importance to the desired ones, the obtained results will change.

4.5.4Validation period - February 2015

Figure 4.44 presents the energy demand profiles of the electricity and heat for all the period
of February 2015. All the below values are represented in per-units, referenced to the total

heating demand value of the month.
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Figure 4.39: Energy demand profiles of the validation plant: 01 — 28 Feb. 2015.

Table XIX. Total energy demands of the plant: 01 — 31 Jan. 2015.

DEMAND ENERGY (PU)
Total electric demand 0.9873
Total heating demand 1

The following sections present the obtained results by operating the optimization algorithm
with different criteria. A comparison between the real operation and the optimized one is
presented, indicating the differences in term of costs, primary energy sources and CO2

emissions.
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4.5.4.1 Minimization of the primary energy use and the CO:

emissions

This section presents the results of the optimization algorithm, focused only on the
minimization of the primary energy use and the minimization of the generation of CO2
emissions. The following figure presents a comparison between the real operation of the plant

and the optimized strategy that was obtained by the optimization algorithm.
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Figure 4.40: Total energy production: Feb. 2015 — Minimization of PES and CO.

The following table presents the numeric values of the energy production equipment, as well

as the use of electricity from the grid, which are depicted in Figure 4.40.

Table XX. Total energy production: Feb. 2015 - Minimization of PES use and CO;.

OPERATION ELECTRICITY (PU) HEAT (PU)
GRID COG.EL COG.HT BOILER 1 BOILER 2 BOILER 3
Real 0.4827 0.5046 0.8265 0.0112 0.1547 0.0076
Optimized 0.9873 0 0 0.3339 0.3332 0.3329

The following table presents the amount of primary energy sources that was used for the
operation of the energy production equipment. Furthermore, the table contains the
approximate resulting costs of the energy sources, as well as the difference of the energy use

between the real operation of the plant and the optimized one.

Table XXI. Use of primary energies: Feb. 2015 - Minimization of pes use and co;.

ENERGY USE (PU) TOTAL COSTS (PU) ENERGY DIFFERENCE (PU)
OPERATION

ELECTRICITY GAS ELECTRICITY GAS ELECTRICITY GAs
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Real 0.4827 2.3379 0.5488 0.2034

Optimized 09873 14190 11225 01235 0204 09189

As it can be observed by the analysis of the data, by operating the plant with the
recommendations of the optimization algorithm, it would result to an approximate energy

savings of 0.4143 pu.

energy savings = —0.5046 + 0.9189 = 0.4143 pu (4.35)

The following figure present a comparison of the primary energy use, the total energy costs

and the total CO2 emissions between the real operation and the optimized one.
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Figure 4.41: Optimization criteria: Feb. 2015 — Minimization of PES and CO;.

Table XXII. Optimization criteria: Feb. 2015 — Minimization of PES and CO,.

OPERATION ENERGY (PU) ENERGY COST (PU) EMISSIONS (PU)
Conventional operat. 2.8206 0.7522 0.5891
Optimized operation 2.4063 1.2460 0.3576

Based on the results, the savings of CO, emissions would be approximately 0.2316 pu.
C0, savings = 0.5907 — 0.3576 = 0.2331 pu (4.36)
The total energy savings percentage of the algorithm would result to:

0.4143
2.8206

(4.37)

energy savings % = ( ) * 100 = 14,69%
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4.5.4.2 Minimization of the primary energy use, costs and CO:

emissions

This section presents the results of the optimization algorithm, focused on the minimization
of the primary energy use, the cost of the primary energies and the minimization of the CO2
emissions. The following figure presents a comparison between the real operation of the plant

and the optimized strategy that was obtained by the optimization algorithm.
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Figure 4.42: Total energy production: Feb. 2015 — Minimization of 3 objectives.

The following table presents the numeric values of the energy production equipment, as well

as the use of electricity from the grid, which are depicted in Figure 4.42.

Table XXIII. Total energy production: Feb. 2015 - Minimization of 3 objectives.

OPERATION ELECTRICITY (PU) HEAT (Pu)
GRID COG.EL COG.HT BOILER 1 BOILER 2 BOILER 3
Real 0.4827 0.5046 0.8265 0.0112 0.1547 0.0076

Optimized 0.4722 0.5151 0.8127 0.0654 0.0616 0.0603

The following table presents the amount of primary energy sources that was used for the
operation of the energy production equipment, or used directly for the fulfillment of the
energy demands (case of electricity). Furthermore, the table contains the approximate
resulting costs of the energy sources, as well as the difference between the real operation of

the plant and the optimized one.
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Table XXIV. Use of primary energies: Feb. 2015 - Minimization of 3 objectives.

ENERGY USE (PU) TOTAL COSTS (PU) ENERGY DIFFERENCE (PU)
OPERATION
ELECTRICITY GAS ELECTRICITY GAS ELECTRICITY GAs
Real 0.4827 2.3379 0.5488 0.2034
Optimized 0.4722 2.2975 0.5369 0.1999 0.0115 0.0035

As it can be observed by the analysis of the data, by operating the plant with the
recommendations of the optimization algorithm, it would result to an approximate cost
savings of 0.0154 pu. Finally, the following figure present a comparison of the primary energy
use, the total energy costs and the total CO2 emissions between the real operation and the
optimized one.
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Figure 4.43: Optimization criteria: Feb. 2015 — Minimization of 3 objectives.

Table XXV. Optimization criteria: Feb. 2015 — Minimization of 3 objectives.
OPERATION ENERGY (PU) ENERGY COST (PU) EMISSIONS (PU)
Conventional operat. 2.8206 0.7522 0.5891
Optimized operation 2.7698 0.7368 0.5790
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4.5.5Validation period - March 2015

Figure 4.44 presents the energy demand profiles of the electricity and heat for all the period
of March 2015. All the below values are represented in per-units, referenced to the total

electric demand value of the month.
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Figure 4.44: Energy demand profiles of the validation plant: 01 — 31 Mar. 2015.

Table XXVI. Total energy demands of the plant: 01 — 31 Mar. 2015.

DEMAND ENERGY (PU)
Total electric demand 1
Total heating demand 0.7036

The following sections present the obtained results by operating the optimization algorithm
with different criteria. A comparison between the real operation and the optimized one is
presented, indicating the differences in term of costs, primary energy sources and CO2

emissions.

4.5.5.1 Minimization of the primary energy use and the CO:

emissions

This section presents the results of the optimization algorithm, focused only on the

minimization of the primary energy use and the minimization of the generation of CO2
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emissions. The following figure presents a comparison between the real operation of the plant

and the optimized strategy that was obtained by the optimization algorithm.
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Figure 4.45: Total energy production: Mar. 2015 — Minimization of PES and CO.

The following table presents the numeric values of the energy production equipment, as well

as the use of electricity from the grid, which are depicted in Figure 4.45.

Table XXVII. Total energy production: Feb. 2015 - Minimization of PES use and CO,.

OPERATION ELECTRICITY (PU) HEAT (PU)
GRID COG.EL COG.HT BOILER 1 BOILER 2 BOILER 3
Real 0.5039 0.4961 0.6808 0.0089 0.0062 0.0077
Optimized 1 0 0 0.2350 0.2344 0.2342

The following table presents the amount of primary energy sources that was used for the
operation of the energy production equipment. Furthermore, the table contains the
approximate resulting costs of the energy sources, as well as the difference of the energy use

between the real operation of the plant and the optimized one.

Table XXVIII. Use of primary energies: Feb. 2015 - Minimization of pes use and co;.

ENERGY USE (PU) ToTAL COSTS (PU) ENERGY DIFFERENCE (PU)
OPERATION
ELECTRICITY GAs ELECTRICITY GAs ELECTRICITY GAS
Real 0.5039 2.0153 0.5730 0.1753
Optimized 1 0.9984 1.1370 0.0869 -0.4961 1.0169

As it can be observed by the analysis of the data, by operating the plant with the
recommendations of the optimization algorithm, it would result to an approximate energy

savings of 0.5208 pu.
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energy savings = —0.4961 + 1.0169 = 0.5208 pu (4.38)

The following figure present a comparison of the primary energy use, the total energy costs

and the total CO2 emissions between the real operation and the optimized one.
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Figure 4.46: Optimization criteria: Mar. 2015 — Minimization of PES and CO;.

Table XXIX. Optimization criteria: Mar. 2015 — Minimization of PES and CO;.

OPERATION ENERGY (PU) ENERGY COST (PU) EMISSIONS (PU)
Conventional operat. 2.5192 0.7483 0.5079
Optimized operation 1.9984 1.2239 0.2516

Based on the results, the savings of CO2 emissions would be approximately 0.2563 pu.
C0, savings = 0.5079 — 0.2516 = 0.2563 pu (4.39)
The total energy savings percentage of the algorithm would result to:

0.5208
2.5192

(4.40)

energy savings % = ( ) * 100 = 20,68%
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4.5.5.2 Minimization of the primary energy use, costs and CO:

emissions

This section presents the results of the optimization algorithm, focused on the minimization
of the primary energy use, the cost of the primary energies and the minimization of the CO2
emissions. The following figure presents a comparison between the real operation of the plant

and the optimized strategy that was obtained by the optimization algorithm.

l:l Conventional operation
1 e — [ ovtimized operation B

0.8 -

0.6 -

Energy (pu)

0.4 i

0.2 -

0 | | | s | s | s 1| s

Grid Cog.el Cog.ht Boilerl Boiler2 Boiler3

Figure 4.47: Total energy production: Mar. 2015 — Minimization of 3 objectives.

The following table presents the numeric values of the energy production equipment, as well

as the use of electricity from the grid, which are depicted in Figure 4.47.

Table XXX. Total energy production: Mar. 2015 - Minimization of 3 objectives.

OPERATION ELECTRICITY (PU) HEAT (pu)
GRID COG.EL COG.HT BOILER 1 BOILER 2 BOILER 3
Real 0.5039 0.4961 0.6808 0.0089 0.0062 0.0077

Optimized 0.5046 0.4954 0.6792 0.0082 0.0081 0.0081

The following table presents the amount of primary energy sources that was used for the
operation of the energy production equipment, or used directly for the fulfillment of the
energy demands (case of electricity). Furthermore, the table contains the approximate
resulting costs of the energy sources, as well as the difference between the real operation of

the plant and the optimized one.

Table XXXI. Use of primary energies: Mar. 2015 - Minimization of 3 objectives.

OPERATION ENERGY USE (PU) ToTAL COSTS (PU) ENERGY DIFFERENCE (PU)
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ELECTRICITY GAS ELECTRICITY GAS ELECTRICITY GAS
Real 0.5039 2.0153 0.5730 0.1753
Optimized 0.5046 2.0024 0.5738 0.1742 -0.000787 0.0011

As it can be observed by the analysis of the data, by operating the plant with the

recommendations of the optimization algorithm, it would result to an approximate cost

savings of 0.000337 pu. Finally, the following figure present a comparison of the primary

energy use, the total energy costs and the total CO2 emissions between the real operation and

the optimized one.

Amount (pu)

T T T

[ Covertional operation
- Optimized operation

0.9

Energy Use Energy Cost CO2 emissions

Figure 4.48: Optimization criteria: Mar. 2015 — Minimization of 3 objectives.

Table XXXII. Optimization criteria: Mar. 2015 — Minimization of 3 objectives.

OPERATION ENERGY (PU) ENERGY COST (PU) EMISSIONS (PU)

Conventional operat. 2.5192 0.7483 0.5079
Optimized operation 2.5070 0.7480 0.5046
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4.6 Conclusions

The main contribution of this chapter is the presentation of a methodology for the
determination of the optimal operating strategy of a multi-carrier energy system, combining
demand forecasting and nonlinear mixed-integer programming. This methodology uses
multiple optimization objectives, focused on the fulfilment of the energy demands, the
minimization of the total operation costs and energy, as well as on the minimization of the
equivalent CO, emissions. Additionally, it has to be highlighted that other criteria could be
considered, as the maintenance cost of the equipment, the investment and devaluation costs
of the equipment, the human and material resources for their operation, among other, based
on the user's preferences and the operating conditions of the system. Furthermore, the
presented methodology takes into account the dynamic system response, expressed as
thermal inertias of the energy production equipment, to calculate its effect to the equipment’s
operation bounds during the multi-time period optimization, with objective to guarantee that
the system is working into the engineering boundaries, avoiding operation anomalies that can
be caused by unsatisfied energy requirements or overload of the infrastructure. Additionally,
the presented methodology permits to optimize the energy flow of the system for an entire
prediction horizon, but resolving the problem’s instants individually. By this way, the required
computational effort and time are reduced, due to the problem is split in multiple single-
instants problems. The methodology uses a multiobjective genetic algorithm for the

optimization, which has been selected based on its following advantages:

v’ Its ability to optimize with both continuous and discrete variables, making it adequate
for resolving problems of systems that contain equipment with both continuous
operating ranges, as well as scalar operating modes.

v" It does not require any derivative information, simplifying the complexity and the
computational effort of the general system.

v" It simultaneously searches from a wide sampling of the defined cost surface,
permitting to avoid or bypass local minimums of the solution, making capable of
optimizing variables with extremely complex cost surfaces.

v' ltis able to deal with a large number of variables, making ideal for solving problems
of energy systems with multiple sources, energy carriers, equipment and demands.
Thus, its use in an optimization system that is focused on the industrial environment

is beneficiary based on its flexibility on adapting on different structures
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(interconnections of the energy hub system of each plant) without complex
configurations.

v It does not provide just a single optimum solution but multiple strategies, permitting
to decide between possible alternatives for the operation of the plant.

v" It uses encoding techniques to simplify the processing of the variables and thus

accelerate the optimization process.

The validation process of the proposed methodology was performed in a car manufacturing
plant, in the framework of the FP7 Euroenergest project. During the validation, the developed
algorithm was executed continuously for a total period of 3 months, while its results were
being registered in the database of the software, together with the conventional operation of
the system. After that, comparisons between the results of the real operation and the
optimized one were performed. The validation of this algorithm was applied in the energy
production equipment related to the electric and heating generation, while the cooling
production equipment were partially used due to the lack of cooling demand during the
validation period (winter season). All the tests were made by applying two combinations of
optimization criteria: minimization of the use of primary energy sources and CO, emissions,

and minimization of primary energy sources, energy costs and CO, emissions.

Finally, by analyzing the registered results it was observed that in all of the cases the
optimization algorithm was capable of satisfying the energy demand of the plant. In the
presented examples, detailed information related to the primary energy use, primary energy
costs and generated emissions, are included for both operation cases (real operation and

optimized one).

Related to the optimization criteria, it was observed that by operating the system focused on
the energy and environmental impact (first case), the energy savings could result to a value
between 13.35 % and 20.68% of the total power. Nevertheless, even this operation presents
an important amount of energy savings, it is more expensive than the actual one. On the other
hand, by operating the system giving more priority to the minimization of the energy costs, it
was observed that the outputs of the algorithm were very similar to the real situation of the
plant (for all the validation period of 3 months). In such a case, the obtained results presented
a cost savings between 0.2% and 0.56%. In summary, from the 3 months validation of the
algorithm in real-site it was concluded an average potential savings of 16.24% of energy use,

a 4.75% of energy cost decrement, and a 42.96% of generated emissions reduction.
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Nevertheless, it has to be mentioned that the energy saving potential of the algorithm strictly
depends on the implemented energy plant and its current operation mode. That means that

the obtained energy savings from the validation reflects only the situation of the

demonstration plant, based on its current operation strategy.
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5.Conclusions

Finally this chapter presents the conclusions that were derived from this dissertation thesis.
Some observations, comments and conclusions of the research are summarized, and
publications in international conference proceedings and international journals are
synthesized. The future research lines that can be derived from this research work are

mentioned at the end of the chapter.

5.1 Key Contributions

In order to achieve the thesis objective and to validate the initial performed hypotheses, a
methodological approach was used during the elaboration of this dissertation, as presented

below.

As a starting point, a complete review was made, describing the state of the art of the energy
hub concept, applied to multi-carrier energy systems, its potential benefits in terms of
reliability and improvement of the system's overall performance, as well as its key elements
for its mathematical representation. Additionally, a procedure for calculating the formulation
of a given energy hub system was introduced, together with an application example that
describes the experimental plant for the testing and validation of the hypotheses of this

dissertation. This procedure, applied to multi-carrier energy systems, describes the physical
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limitations of the energy equipment of a given system, their operating restrictions and bounds,

their interconnection and their operating inertias.

On the other hand, the state of the art of the recent data-driven approaches for the load
modeling and prediction was performed, describing the disadvantages and potential
advantages of each one, as well as the fields of their application. In this line, a short-term load
forecasting methodology, based on adaptive neuro-fuzzy inference systems and genetic
algorithms was presented. This algorithm uses historical data from the consumptions’
operation as well as other operation parameters that can influence on the demands’ behavior,
with aim to generate high accuracy customizable mathematical models for different
consumptions in order to obtain short-term demand forecasts, able to be used in the energy
hub optimization strategy. This methodology was implemented and validated under real
operation conditions of the demonstration plant, applied to 14 cases of consumptions, which
represent the most significant loads in terms of manufacturing processes, power and load
profiles. Finally, a multi-model training approach was proposed, aiming at improving the
training performance of the models. This approach develops multiple models for a single
signal, based on a hierarchical clustering of similar load behaviors, being able to identify the
necessary number of models to be trained, based on the operation conditions and the profile

of the consumption.

As final point, the review of different applications and algorithms used to optimize
multivariable problems was performed, covering both deterministic and stochastic methods.
Additionally, the mathematical description of the optimization problems of the energy flow in
multi-carrier energy systems was made, which depends on the structure of the system as well
as the type of available technologies and equipment that it contains. Finally a new
methodology for the dynamic optimization of multi-carrier energy systems, combining
demand forecasting and nonlinear mixed-integer programming was presented, based on a
multiobjective genetic algorithm. The methodology takes into account the dynamic system
response, expressed as thermal inertias of the energy production equipment, to calculate its
effect to the equipment’s operation bounds during the multi-time period optimization. The
validation process of the proposed methodology was performed using real operating data of
the demonstration plant, permitting to compare and evaluate the potential benefit of the
proposed optimization algorithm. During the validation, two optimization strategies were
applied, consisting of different combinations of economic, energetic and environmental

criteria.
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Summarizing, the following main contributions can be stated for this thesis work, related to

the mentioned activities:

1. A methodology was presented for the analysis of the energetic infrastructure of a
multi-carrier energy system, as well as for its mathematical formulation as an energy
hub in terms of system interconnections, energy restrictions, as well as operation
bounds and energy availability. The energy hub model obtained by implementing this
methodology, guarantee that the system is working into the engineering boundaries,
avoiding operation anomalies that can be caused by unsatisfied energy requirements

or overload of the infrastructure.

2. Another contributions is the presentation of a methodology for the modeling and
energy forecasting using a combination of Genetic Algorithms and Adaptive Neuro-
Fuzzy Inference Systems, with aim to generate high accuracy customizable
mathematical models for different consumptions in order to obtain short-term
demand forecasts that are used in the energy hub optimization strategy. In the
proposed methodology, the ANFIS is used to train the mathematical model of the
consumption and to provide a short-term load forecast while the GA is responsible for
analyzing the database and the possible correlations between the demand and the
input candidates and evaluate which are the optimal ones to be used as inputs in the

training and the prediction process.

3. Also related to model forecasting is the presented multi-model training approach,
which increases even more the modelling performance and the prediction accuracies,
by clustering the database into separate datasets, based on the consumption patterns.
Since the initially complex modeling problem is split into a set of smaller problemes, it
is easier for the algorithm to train each group, as its members present a similar
behavior, and so it helps the training algorithm converge faster. Also, the proposed
methodology accomplishes a forecast response that adapts better to the different

dynamics of the load demand signal.

4. Finally, the last and main contribution of this thesis is the presentation of procedures
and mathematical tools for the determination of the optimal operating strategy of a
multi-carrier energy system, combining demand forecasting and nonlinear mixed-

integer programming. This methodological solution uses multiple optimization
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objectives, focused on the fulfillment of the energy demands, the minimization of the
total operation costs and energy, as well as on the minimization of the equivalent CO2
emissions, taking also into account the dynamic system response to guarantee that

the system will work under stable conditions.

Simulations and experimental result have been presented in order to validate the proposed

methodology, energy flow analysis and optimization approach.

The flexibility and power of the presented solution allows its application to complex problems
of energy optimization, which include multiple sources of energy and different forms of
thermal and electrical demand. The energy hub solution allows the mathematical modeling of
complex energy infrastructures, thus facilitating the application of advanced multivariable

optimization solutions in real time.
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5.2 Future Work

For future work related to these thesis developments, the following issues could be addressed.

1. The integration and analysis of energy storage systems in the mathematical
formulation as well as in the optimization strategies of the multi-carrier energy
system. It is possible to develop new strategies that improve the performance of the
operation of the multi-carrier energy systems, by implementing energy storage
systems. Nevertheless, due to these elements can behave both as energy suppliers, as
well as, as energy consumptions, it is challenging to determine their optimal operation
in a long term (prediction horizon), taking simultaneously into account the energy
availability and flow that depends on the entire operating strategy of the system. Thus,
this topic could be considered as a new field of research, with an immediate potential
of application in both industrial as well as tertiary sector. Also, local renewable power
sources can be included as energy producers, thus allowing considering not only an
additional freedom for energy optimization but also bidirectional energy flows in

energy infrastructures.

2. The adaptation and implementation of the optimization methodology at the stage of
the design of the energetic infrastructure, rather than only at its operation. Facing the
scenario shift in the building sector, promoted by the EU towards a Zero Energy
Building paradigm (directive 2010/31/EU), the society has been significantly focused
on the development of more efficient systems. Thus, a potential use of the proposed
methodology would be applying it with objective to determine the optimal energetic
infrastructure of a given system. The challenge of this task is the simultaneously
evaluation of multiple combinations of competing systems, for both the energy
sources (including grid connection and renewable sources), the conversion systems
(energy equipment) as well as consumptions (HVAC terminals). This optimization
problem, also formulated as a multi-objective mixed-integer problem, could be
analyzed and resolved by adapting the proposed methodology. Nevertheless, further
study on both the mathematical formulation as well as on the optimization strategies

should be made, applying necessary adaptations and improvements.
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A.Appendix

A.1 Forecasting Validation Cases

This section presents the validation cases of the energy modelling and prediction
methodology, which is presented in Section 3.2, based on real data of the automotive
manufacturing plant. The presented cases consists of 1 electric and 1 thermal energy load for
each car manufacturing process, evaluated in 3 time periods (i.e. February 11th, March 11th
and April 15th, respectively). The test of the prediction was made in different periods of time
to validate the correct operation of the proposed methodology, having different weather and
production conditions as inputs in the models. Table XXXIII presents the external temperature

and the total production units of the three indicated dates.

Table XXXIIl. Temperature and production data of the validation periods.

DATE RANGE TEMPERATURE (°C) PRODUCTION (PU)
AvVG. MIN MAX  BoODYSHOP PAINT ASSEMB.
11 -12 Feb. 2015 7,86 1,4 16,7 2141 1754 2162
11-12 Mar. 2015 15,43 9 26,8 2213 1672 2088
15-16 Apr. 2015 16,6 9,1 23,9 2152 1658 2178

Table XXXIV lists the selected consumption cases, indicating their energy type and the

production area in which they belong.

Table XXXIV. Validation cases of the modelling and prediction methodology.

TITLE ENERGY TYPE MANUFACTURING PROCESS

Total electric demand of the plant Electric energy Global

Total heating demand of the plant Thermal energy Global

Total electric demand of workshop 1 Electric energy Body shop

Total heating demand of workshop 1 Thermal energy Body shop

Total electric demand of workshop 4 Electric energy Painting

Total heating demand of workshop 4 Thermal energy Painting

Total electric demand of workshop 9 Electric energy Assembling

Total heating demand of workshop 10 Thermal energy Assembling
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Total electric demand of the plant

Table XXXV. Characteristics of the model: Total electric demand of the plant.

MODELS CHARACTERISTICS

Training inputs Day of week

Time of day

External temperature
Scheduled production

Signal reference of 1 day ago
Signal reference of 1 week ago

MAPE index (pu) 0,085
SMAPE index (pu) 0,033
RMSE index (%) 6,22%
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Figure A.1: Prediction result of the total electric demand of the plant: 11" February 2015.
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Total electric demand of the plant
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Figure A.2: Prediction result of the total electric demand of the plant: 11*" March 2015.
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Figure A.3: Prediction result of the total electric demand of the plant: 15" Abril 2015.
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Total heating demand of the plant

Table XXXVI. Characteristics of the model: Total heating demand of the plant.
MODELS CHARACTERISTICS

Training inputs Day of week
Time of day
External temperature
Scheduled production
Signal reference of 1 day ago
Signal reference of 1 week ago

MAPE index (pu) 12,00
SMAPE index (pu) 5,37
RMSE index (%) 7,49%
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Figure A.4: Prediction result of the total heating demand of the plant: 11" February 2015.
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Total heating demand of the plant
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Figure A.5: Prediction result of the total heating demand of the plant: 11" March 2015.
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Figure A.6: Prediction result of the total heating demand of the plant: 15" Abril 2015.
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Total electric demand of workshop 1

Table XXXVII. Characteristics of the model: Total electric demand of workshop 1.
MODELS CHARACTERISTICS

Training inputs Day of week
Time of day
External temperature
Scheduled production
Signal reference of 1 day ago
Signal reference of 1 week ago

MAPE index (pu) 16,89
SMAPE index (pu) 6,89
RMSE index (%) 6,33%
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Figure A.7: Prediction result of the total electric demand of workshop 1: 11" February 2015.
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Total electric demand of workshop 1
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Figure A.8: Prediction result of the total electric demand of workshop 1: 11" March 2015.
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Figure A.9: Prediction result of the total electric demand of workshop 1: 15t Abril 2015.
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Total heating demand of workshop 1

Table XXXVIII. Characteristics of the model: Total heating demand of workshop 1.
MODELS CHARACTERISTICS

Training inputs Day of week
Time of day
External temperature
Scheduled production
Signal reference of 1 day ago
Signal reference of 1 week ago

MAPE index (pu) 32,99
SMAPE index (pu) 16,35
RMSE index (%) 10,70%
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Figure A.10: Prediction result of the total heating demand of workshop 1: 11t" February 2015.
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Total heating demand of workshop 1
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Figure A.11: Prediction result of the total heating demand of workshop 1: 11" March 2015.
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Figure A.12: Prediction result of the total heating demand of workshop 1: 15t Abril 2015.
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Total electric demand of workshop 4

Table XXXIX. Characteristics of the model: Total electric demand of workshop 4.
MODELS CHARACTERISTICS

Training inputs Day of week
Time of day
External temperature
Scheduled production
Signal reference of 1 day ago
Signal reference of 1 week ago

MAPE index (pu) 6,34
SMAPE index (pu) 2,46
RMSE index (%) 5,56%
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Figure A.13: Prediction result of the total electric demand of workshop 4: 11t February 2015.
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Figure A.14: Prediction result of the total electric demand of workshop 4: 11t March 2015.
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Figure A.15: Prediction result of the total electric demand of workshop 4: 15t Abril 2015.
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Total heating demand of workshop 4

Table XL. Characteristics of the model: Total heating demand of workshop 4.
MODELS CHARACTERISTICS

Training inputs Day of week
Time of day
External temperature
Scheduled production
Signal reference of 1 day ago
Signal reference of 1 week ago

MAPE index (pu) 30,17
SMAPE index (pu) 15,26
RMSE index (%) 11,52%
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Figure A.16: Prediction result of the total heating demand of workshop 4: 11t February 2015.
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Figure A.17: Prediction result of the total heating demand of workshop 4: 11" March 2015.
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Figure A.18: Prediction result of the total heating demand of workshop 4: 15t Abril 2015.
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Total electric demand of workshop 9

Table XLI. Characteristics of the model: Total electric demand of workshop 9.
MODELS CHARACTERISTICS

Training inputs Day of week
Time of day
External temperature
Scheduled production
Signal reference of 1 day ago
Signal reference of 1 week ago

MAPE index (pu) 7,11
SMAPE index (pu) 2,45
RMSE index (%) 5,76%
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Figure A.19: Prediction result of the total electric demand of workshop 9: 11t February 2015.
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Figure A.20: Prediction result of the total electric demand of workshop 9: 11" March 2015.
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Figure A.21: Prediction result of the total electric demand of workshop 9: 15t Abril 2015.
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Total heating demand of workshop 10

Table XLII. Characteristics of the model: Total heating demand of workshop 10.
MODELS CHARACTERISTICS

Training inputs Day of week
Time of day
External temperature
Scheduled production
Signal reference of 1 day ago
Signal reference of 1 week ago

MAPE index (pu) 25,55
SMAPE index (pu) 11,23
RMSE index (%) 11,08%
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Figure A.22: Prediction result of the total heating demand of workshop 10: 11t" February 2015.
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Total heating demand of workshop 10
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Figure A.23: Prediction result of the total heating demand of workshop 10: 11t March 2015.
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Figure A.24: Prediction result of the total heating demand of workshop 10: 15 Abril 2015.
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