
Appendix B

Dielectric tensor

B.1 Anti-Hermitian part of the dielectric tensor

Taking for the electrons a Maxwellian relativistic distribution, the anti-Hermitian
part of the dielectric tensor�"ij can be expressed from Eq. (3.15) as�"jl = �!2pe�2!N2? �1�N2k�K2 (�) 1Xn>n0 �"jl;n �Y 2n +N2k � 1�1=2 Y 2n exp � �Yn1�N2k !

(B.1)
with n0 = !!e �1�N2k �1=2
where the frame of reference and parametersYn, � introduced in Chapter 3 (Sec-
tion 3.2.4),K2 (�) is the modified Bessel functions of the second kind (with� =me2= (kTe)), andn is the harmonic number. The standard Larmor radius expan-
sions of Bessel functions in the�"jl;n term are avoided by using the compact rep-
resentation which has been proposed by Granata and Fidone [Gra91], giving the
following expressions: �"11;n = �2�gnJ+n+ 12J�n+ 12 , (B.2)�"12;n = �i�"11;n + i �2ngn " �(4�2 � w2) 12 X� J�n+ 12J�n+ 32# , (B.3)
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B. Dielectric tensor�"22;n = �"11;n + ��n2 (4�2 � w2) n�2 (tn + un)�J+n+ 32J�n+ 32 � J+n+ 12J�n+ 12�+ 12X� "unz� 2n+ 3� iw(4�2 � w2) 12 !�tnz� 2n+ 1� iw(4�2 � w2) 12 !J�n+ 12J�n+ 32#) , (B.4)�"13;n = sy�"11;n + i�s2� (4�2 � w2)12 gnX� h(�) z�J�n+ 12J�n+ 32 i , (B.5)�"23;n = sy�"12;n + �s2� (4�2 � w2) 12 gn(�X� (�) z�J�n+ 12J�n+ 32+ �2n (4�2 � w2) 12 "2 (n+ 1)X� (�) J�n+ 12J�n+ 32+ iw(4�2 � w2) 12 X� J�n+ 12J�n+ 32 + iw �J+n+ 32J�n+ 32 � J+n+ 12J�n+ 12�#) , (B.6)�"33;n = s2�y2 + 2�2 � w24�2 � w2� �"11;n + �s2� (4�2 � w2) 12 gn�(iyX� (�) z�J�n+ 12J�n+ 32 + �(4�2 � w2) 12� "vJ+n+ 32J�n+ 32 +X�  �(4�2 � w2) 12 � n+ 1� z�!J�n+ 12J�n+ 32#) , (B.7)

where � = N?Y1  Y 2n +N2k � 11�N2k ! 12 ; w = �Nk �Y 2n +N2k � 1� 121�N2k ,s = N? �Y 2n +N2k � 1� 12Yn �1�N2k� ; y = NkYn�Y 2n +N2k � 1� 12 ,

and gn = (2n� 1)!!(2n)!! ; tn = n(n+ 1)gn; un = (2n+ 3)(n+ 1) (n + 2)gn.
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B. Dielectric tensor

The Bessel function of the first kindJ�r is given byJ�r = Jr �z�� ; z� = 12 h�4�2 � w2�12 � iwi .

B.1.1 Asymptotic expansion for the modified Bessel function

The Bessel function of the first kindJ�r is related to the modified Bessel functionI�r using J�r = I�r exp��ir�2� ,

where I�r = I�r �y�� ; y� = �w �pw2 � 4�22 �
.

When4�2 < w2, which corresponds to ray path parallel or almost parallel to the
magnetic field (angles� close to0 or �), we obtainy+ � 1 and the Bessel function
become undefined. In this case, we use the following Bessel asymptotic expansion
[Abr72] Ir(y+) s exp (y+)p2�y+ O+r , (B.8)

whereO+r is the expansion function given byO+r = (1� 1Xk=1 (�1)k Qkl=1 �� � (2l � 1)2�k! (8y+)k )
(B.9)

with � = 4r2.
As seen in Fig.B.1, this asymptotic expansion is valable fory+ > r: To obtain a

precision"with respect to the exact Bessel function value, the remainder of Eq. (B.9)
in absolute value after the addition ofkup terms must not exceed", i.e.�����(�1)kup

(� � 1) (� � 9) (� � 25) � � � �� � [2kup� 1℄2�kup! (8y+)kup

����� < ".
In addition to this, the precision" will be only achieved if the remainder in

absolute value afterk+1 terms is lower than the remainder in absolute value afterk
terms. Note however that the latter condition is satisfied for y+ > 20 and" s 10�6
or 10�7.

Applying Eq (B.8) in Eq. (B.2), we obtain�"11;n = �2v gnq� �w +pw2 � 4�2�I�n+ 12O+n+ 12 exp�w +pw2 � 4v22 �
,
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B. Dielectric tensor
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Figure B.1: Modified Bessel function of orderr = 1; 4; 7; 10 (solid lines), and the
corresponding asymptotic expansions (dashed lines).

and making the substitution in Eq. (B.1), the first componentof the anti-Hermitian
part of the dielectric tensor in the parallel or almost parallel case is given by�"11 = �3=22 !e!2pe�2!2N3?K2 (�)s�Nk +r�2N2k � 4N2?Y 21 �1�N2k�� 1Xn>n0 gnY 2n�Y 2n +N2k � 1� 12 I�n+ 12O+n+ 12 exp8><>:�Y 2n +N2k � 1�1=22�1�N2k�� "�Nk +s�2N2k � 4N2?Y 21 �1�N2k�#� �Yn1�N2k ) .

Note that this expression converges ifN2k �Y 2n +N2k � 1� < Yn,

but this condition is always satisfied becauseNk < 1 in the range of parameters of
interest for the synchrotron losses.

The same procedure is carried out for calculating�"12, �"22, �"13, �"23, and�"33 in the
parallel or almost parallel case.
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B. Dielectric tensor

B.2 Appleton-Hartree equation

In the range of parameters of interest for the synchrotron losses problem(! >2!e), the Hermitian part of the dielectric tensor is well described by the cold plasma
approximation in the high frequency limit, which can be expressed as [Que68]�h = 0BBBBBB� 1� !2pe!2 � !2e i !2pe!e! (!2 � !2e) 0�i !2pe!e! (!2 � !2e) 1� !2pe!2 � !2e 00 0 1� !2pe!2

1CCCCCCA
For every angle of propagation� and wave frequency!, the Appleton-Hartree

equation gives the square value of the cold refraction indexN2o;x = 1� x1� t� sign(1� x) (y os2 � + t2)1=2 , (B.10)

where t = y sin2 �2 (1� x) , x = �!pe! �2 ,

and y = �!e! �2 .
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Figure B.2: Parallel refraction index for the ordinary (left side) and extraordinary
(right side) modes of propagation versus the normalized frequency, for different
propagation angles (�=0Æ, 15Æ, 30Æ, 45Æ, 60Æ, 75Æ, 90Æ).

Note that whenN = 0 we obtain the called cut-off frequency, whose value in
the cold plasma approximation (see Eq. (3.61)) is given by the following equation:1� t� �y os2 � + t2�1=2 � x = 0.
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B. Dielectric tensor

In Fig. B.2, we show the parallel refractive indexNk = N os �
for the ordinary and extraordinary modes of propagation (o; x) resulting of the ap-
plication of the Appleton-Hartree equation by the Europeancommercial reactor pa-
rameters [Coo99] withBt = 6:8 T, ne0 = 1:28� 1020 m�3, giving!e0=2� = 190:3
GHz,!pe0=2� = 100:5 GHz, and withTe0 = 30 keV.
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