Appendix B

Dielectric tensor

B.1 Anti-Hermitian part of the dielectric tensor

Taking for the electrons a Maxwellian relativistic distribution, the anti-Hermitian part of the dielectric tensor $\epsilon_{ij}^{"}$ can be expressed from Eq. (3.15) as

$$\epsilon_{jl}^{"} = \frac{\pi \omega_{pe}^{2} \mu^{2}}{\omega N_{\perp}^{2} \left(1 - N_{\parallel}^{2}\right) K_{2}\left(\mu\right)} \sum_{n > n_{0}}^{\infty} \epsilon_{jl,n}^{"} \left(Y_{n}^{2} + N_{\parallel}^{2} - 1\right)^{1/2} Y_{n}^{2} \exp\left(-\frac{\mu Y_{n}}{1 - N_{\parallel}^{2}}\right)$$
(B.1)

with

$$n_0 = \frac{\omega}{\omega_{ce}} \left(1 - N_{\parallel}^2 \right)^{1/2}$$

where the frame of reference and parameters Y_n , μ introduced in Chapter 3 (Section 3.2.4), $K_2(\mu)$ is the modified Bessel functions of the second kind (with $\mu = m_e c^2 / (kT_e)$), and n is the harmonic number. The standard Larmor radius expansions of Bessel functions in the $\epsilon_{jl,n}^{"}$ term are avoided by using the compact representation which has been proposed by Granata and Fidone [Gra91], giving the following expressions:

$$\epsilon_{11,n}^{"} = \frac{\pi}{2\upsilon} g_n J_{n+\frac{1}{2}}^+ J_{n+\frac{1}{2}}^-, \tag{B.2}$$

$$\epsilon_{12,n}^{"} = -i\epsilon_{11,n}^{"} + i\frac{\pi}{2n}g_n \left[\frac{\upsilon}{(4\upsilon^2 - \omega^2)^{\frac{1}{2}}} \sum_{\pm} J_{n+\frac{1}{2}}^{\pm} J_{n+\frac{3}{2}}^{\mp}\right], \quad (B.3)$$

$$\epsilon_{22,n}^{"} = \epsilon_{11,n}^{"} + \frac{\pi \upsilon}{n^2 (4\upsilon^2 - w^2)} \left\{ \upsilon^2 (t_n + u_n) \left(J_{n+\frac{3}{2}}^+ J_{n+\frac{3}{2}}^- - J_{n+\frac{1}{2}}^+ J_{n+\frac{1}{2}}^- \right) + \frac{1}{2} \sum_{\pm} \left[u_n z^{\mp} \left(2n + 3 \pm \frac{iw}{(4\upsilon^2 - w^2)^{\frac{1}{2}}} \right) - t_n z^{\pm} \left(2n + 1 \pm \frac{iw}{(4\upsilon^2 - w^2)^{\frac{1}{2}}} \right) J_{n+\frac{1}{2}}^{\mp} J_{n+\frac{3}{2}}^{\pm} \right] \right\},$$
(B.4)

$$\epsilon_{13,n}^{"} = sy\epsilon_{11,n}^{"} + \frac{i\pi s}{2\upsilon \left(4\upsilon^2 - w^2\right)^{\frac{1}{2}}} g_n \sum_{\pm} \left[(\pm) z^{\pm} J_{n+\frac{1}{2}}^{\mp} J_{n+\frac{3}{2}}^{\pm} \right], \qquad (B.5)$$

$$\begin{aligned} \epsilon_{23,n}^{"} &= sy \epsilon_{12,n}^{"} + \frac{\pi s}{2v \left(4v^2 - w^2\right)^{\frac{1}{2}}} g_n \left\{ -\sum_{\pm} (\pm) z^{\pm} J_{n+\frac{1}{2}}^{\mp} J_{n+\frac{3}{2}}^{\pm} \right. \\ &+ \frac{v^2}{n \left(4v^2 - w^2\right)^{\frac{1}{2}}} \left[2 \left(n+1\right) \sum_{\pm} (\pm) J_{n+\frac{1}{2}}^{\mp} J_{n+\frac{3}{2}}^{\pm} \right. \\ &+ \frac{iw}{\left(4v^2 - w^2\right)^{\frac{1}{2}}} \sum_{\pm} J_{n+\frac{3}{2}}^{\mp} J_{n+\frac{3}{2}}^{\pm} + iw \left(J_{n+\frac{3}{2}}^{+} J_{n+\frac{3}{2}}^{-} - J_{n+\frac{1}{2}}^{+} J_{n+\frac{1}{2}}^{-}\right) \right] \right\}, \quad (B.6) \end{aligned}$$

$$\epsilon_{33,n}^{"} = s^{2} \left(y^{2} + \frac{2v^{2} - w^{2}}{4v^{2} - w^{2}} \right) \epsilon_{11,n}^{"} + \frac{\pi s^{2}}{v \left(4v^{2} - w^{2} \right)^{\frac{1}{2}}} g_{n}$$

$$\times \left\{ iy \sum_{\pm} (\pm) z^{\pm} J_{n+\frac{1}{2}}^{\mp} J_{n+\frac{3}{2}}^{\pm} + \frac{v}{\left(4v^{2} - w^{2} \right)^{\frac{1}{2}}} \right.$$

$$\times \left[v J_{n+\frac{3}{2}}^{+} J_{n+\frac{3}{2}}^{-} + \sum_{\pm} \left(\frac{v}{\left(4v^{2} - w^{2} \right)^{\frac{1}{2}}} - \frac{n+1}{v} z^{\pm} \right) J_{n+\frac{1}{2}}^{\mp} J_{n+\frac{3}{2}}^{\pm} \right] \right\}, \quad (B.7)$$

where

$$\upsilon = \frac{N_{\perp}}{Y_{1}} \left(\frac{Y_{n}^{2} + N_{\parallel}^{2} - 1}{1 - N_{\parallel}^{2}} \right)^{\frac{1}{2}}, \quad w = \frac{\mu N_{\parallel} \left(Y_{n}^{2} + N_{\parallel}^{2} - 1\right)^{\frac{1}{2}}}{1 - N_{\parallel}^{2}},$$
$$s = \frac{N_{\perp} \left(Y_{n}^{2} + N_{\parallel}^{2} - 1\right)^{\frac{1}{2}}}{Y_{n} \left(1 - N_{\parallel}^{2}\right)}, \quad y = \frac{N_{\parallel} Y_{n}}{\left(Y_{n}^{2} + N_{\parallel}^{2} - 1\right)^{\frac{1}{2}}},$$

and

$$g_n = \frac{(2n-1)!!}{(2n)!!}, \quad t_n = \frac{n}{(n+1)}g_n, \quad u_n = \frac{(2n+3)}{(n+1)(n+2)}g_n.$$

The Bessel function of the first kind J_r^{\pm} is given by

$$J_r^{\pm} = J_r \left(z^{\pm} \right), \quad z^{\pm} = \frac{1}{2} \left[\left(4v^2 - w^2 \right)^{\frac{1}{2}} \pm iw \right].$$

B.1.1 Asymptotic expansion for the modified Bessel function

The Bessel function of the first kind J_r^{\pm} is related to the modified Bessel function I_r^{\pm} using

$$J_r^{\pm} = I_r^{\pm} \exp\left(\pm i r \frac{\pi}{2}\right),$$

where

$$I_r^{\pm} = I_r^{\pm} (y^{\pm}), \quad y^{\pm} = \left(\frac{w \pm \sqrt{w^2 - 4v^2}}{2}\right)$$

When $4v^2 < w^2$, which corresponds to ray path parallel or almost parallel to the magnetic field (angles θ close to 0 or π), we obtain $y^+ \gg 1$ and the Bessel function become undefined. In this case, we use the following Bessel asymptotic expansion [Abr72]

$$I_r(y^+) \sim \frac{\exp(y^+)}{\sqrt{2\pi y^+}} O_r^+,$$
 (B.8)

where O_r^+ is the expansion function given by

$$O_r^+ = \left\{ 1 - \sum_{k=1}^{\infty} (-1)^k \, \frac{\prod_{l=1}^k \left[\eta - (2l-1)^2 \right]}{k! \left(8y^+ \right)^k} \right\} \tag{B.9}$$

with $\eta = 4r^2$.

As seen in Fig.B.1, this asymptotic expansion is valable for $y^+ > r$. To obtain a precision ε with respect to the exact Bessel function value, the remainder of Eq. (B.9) in absolute value after the addition of k_{up} terms must not exceed ε , i.e.

$$\left| (-1)^{k_{\rm up}} \frac{(\eta - 1) (\eta - 9) (\eta - 25) \cdots (\eta - [2k_{\rm up} - 1]^2)}{k_{\rm up}! (8y^+)^{k_{\rm up}}} \right| < \varepsilon.$$

In addition to this, the precision ε will be only achieved if the remainder in absolute value after k + 1 terms is lower than the remainder in absolute value after k terms. Note however that the latter condition is satisfied for $y^+ > 20$ and $\varepsilon \sim 10^{-6}$ or 10^{-7} .

Applying Eq (B.8) in Eq. (B.2), we obtain

$$\epsilon_{11,n}^{"} = \frac{\pi}{2v} \frac{g_n}{\sqrt{\pi \left(w + \sqrt{w^2 - 4v^2}\right)}} I_{n+\frac{1}{2}}^- O_{n+\frac{1}{2}}^+ \exp\left(\frac{w + \sqrt{w^2 - 4v^2}}{2}\right).$$

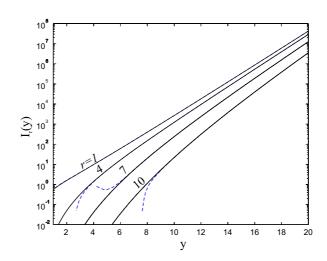


Figure B.1: Modified Bessel function of order r = 1, 4, 7, 10 (solid lines), and the corresponding asymptotic expansions (dashed lines).

and making the substitution in Eq. (B.1), the first component of the anti-Hermitian part of the dielectric tensor in the parallel or almost parallel case is given by

$$\begin{split} \epsilon_{11}^{"} &= \frac{\pi^{3/2}}{2} \frac{\omega_{ce} \omega_{pe}^{2} \mu^{2}}{\omega^{2} N_{\perp}^{3} K_{2}\left(\mu\right) \sqrt{\mu N_{\parallel} + \sqrt{\mu^{2} N_{\parallel}^{2} - \frac{4N_{\perp}^{2}}{Y_{1}^{2}} \left(1 - N_{\parallel}^{2}\right)}} \\ &\times \sum_{n > n_{0}}^{\infty} \frac{g_{n} Y_{n}^{2}}{\left(Y_{n}^{2} + N_{\parallel}^{2} - 1\right)^{\frac{1}{2}} I_{n+\frac{1}{2}}^{-} O_{n+\frac{1}{2}}^{+} \exp\left\{\frac{\left(Y_{n}^{2} + N_{\parallel}^{2} - 1\right)^{1/2}}{2\left(1 - N_{\parallel}^{2}\right)} \\ &\times \left[\mu N_{\parallel} + \sqrt{\mu^{2} N_{\parallel}^{2} - \frac{4N_{\perp}^{2}}{Y_{1}^{2}} \left(1 - N_{\parallel}^{2}\right)}\right] - \frac{\mu Y_{n}}{1 - N_{\parallel}^{2}}\right\}. \end{split}$$

Note that this expression converges if

$$N_{\parallel}^{2} \left(Y_{n}^{2} + N_{\parallel}^{2} - 1 \right) < Y_{n},$$

but this condition is always satisfied because $N_{\parallel} < 1$ in the range of parameters of interest for the synchrotron losses.

The same procedure is carried out for calculating $\epsilon_{12}^{"}$, $\epsilon_{22}^{"}$, $\epsilon_{13}^{"}$, $\epsilon_{23}^{"}$, and $\epsilon_{33}^{"}$ in the parallel or almost parallel case.

B.2 Appleton-Hartree equation

In the range of parameters of interest for the synchrotron losses problem ($\omega > 2\omega_{ce}$), the Hermitian part of the dielectric tensor is well described by the cold plasma approximation in the high frequency limit, which can be expressed as [Que68]

$$\boldsymbol{\epsilon}^{h} = \begin{pmatrix} 1 - \frac{\omega_{pe}^{2}}{\omega^{2} - \omega_{ce}^{2}} & i\frac{\omega_{pe}^{2}\omega_{ce}}{\omega\left(\omega^{2} - \omega_{ce}^{2}\right)} & 0\\ -i\frac{\omega_{pe}^{2}\omega_{ce}}{\omega\left(\omega^{2} - \omega_{ce}^{2}\right)} & 1 - \frac{\omega_{pe}^{2}}{\omega^{2} - \omega_{ce}^{2}} & 0\\ 0 & 0 & 1 - \frac{\omega_{pe}^{2}}{\omega^{2}} \end{pmatrix}$$

For every angle of propagation θ and wave frequency ω , the Appleton-Hartree equation gives the square value of the cold refraction index

$$N_{o,x}^{2} = 1 - \frac{x}{1 - t \pm \operatorname{sign}(1 - x) \left(y \cos^{2} \theta + t^{2}\right)^{1/2}},$$
 (B.10)

where

$$t = \frac{y \sin^2 \theta}{2(1-x)}, \quad x = \left(\frac{\omega_{pe}}{\omega}\right)^2,$$

and

$$y = \left(\frac{\omega_{ce}}{\omega}\right)^2.$$

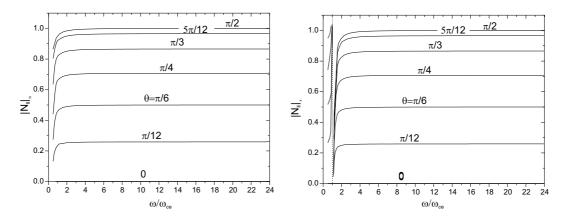


Figure B.2: Parallel refraction index for the ordinary (left side) and extraordinary (right side) modes of propagation versus the normalized frequency, for different propagation angles (θ =0°, 15°, 30°, 45°, 60°, 75°, 90°).

Note that when N = 0 we obtain the called cut-off frequency, whose value in the cold plasma approximation (see Eq. (3.61)) is given by the following equation:

$$1 - t \pm \left(y \cos^2 \theta + t^2\right)^{1/2} - x = 0.$$

In Fig. B.2, we show the parallel refractive index

$$N_{\parallel} = N \cos \theta$$

for the ordinary and extraordinary modes of propagation (o, x) resulting of the application of the Appleton-Hartree equation by the European commercial reactor parameters [Coo99] with $B_t = 6.8$ T, $n_{e_0} = 1.28 \times 10^{20}$ m⁻³, giving $\omega_{ce_0}/2\pi = 190.3$ GHz, $\omega_{pe_0}/2\pi = 100.5$ GHz, and with $T_{e_0} = 30$ keV.