
Chapter 3

Study of synchrotron power losses in
tokamak plasmas

3.1 Introduction
Synchrotron losses are usually estimated in system studies, with expressions de-

rived from a plasma description using simplifying assumptions on the geometry,
radiation absorption, and density and temperature profiles. The use of these approx-
imate expressions can be explained both by the small magnitude of the synchrotron
radiation losses in present tokamaks and by the complexity of the exact calculation.
As synchrotron losses become significant in the power balance of high temperature
plasmas envisaged for a steady state commercial reactor (see Chapter 6), it is time to
propose a complete formulation of the transport of synchrotron radiation performed
for realistic conditions of toroidal plasma geometry with elongated cross-section,
using an accurate method for the calculation of the absorption coefficients, and for
arbitrary shapes of density and temperature profiles.
The effects of toroidicity and temperature profile on synchrotron radiation losses

are analysed in detail. In particular, when the electron temperature profile is almost
flat in the plasma centre as, for example, in internal transport barrier confinement
regimes, synchrotron losses are found to be much stronger than in the case where
the profile is represented by its best generalized parabolic approximation, though
both cases give approximately the same thermal energy content. Such an effect is
not included in presently used approximate expressions.
Finally, considering the quantitative importance of the new effects introduced in

our analysis, we propose a seven variable fit for the fast calculation of synchrotron
radiation losses. This fit is derived from a large database, which has been generated
using a code implementing the complete formulation, and optimized for massively
parallel computing.
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3. Study of synchrotron power losses in tokamak plasmas

3.2 Physics issues

3.2.1 Electron cyclotron frequency
The synchrotron radiation has its origin in the gyromotion of the electrons around

the magnetic field lines confining the plasma. The trajectory of these electrons is
determined by the Lorentz force of motion

F =
dpe
dt

= e (v ×B) , (3.1)

where pe is the electron momentum and e is the absolute charge of the electron. The
magnetic field in a tokamak is the resultant of the superposition of two independent
components: the toroidal magnetic field and the poloidal magnetic field. The latter
one is perpendicular to and much smaller than the toroidal magnetic fieldBt.Hence,
only Bt is considered in the calculation of the electron synchrotron radiation.

B
t

e

�

Figure 3.1: Synchrotron motion and emission of an electron turning around a mag-
netic field line Bt

In the non-relativistic limit (v ¿ c), Eq. (3.1) may be solved as a uniform rota-
tion with frequency

ωce =
e

me
Bt, (3.2)

combined with a uniform translation. Here ωce is the electron cyclotron frequency
andme is the electron mass.
The electromagnetic wave emitted by an electron moving with a velocity v and

a frequency ωce is periodic but not simply harmonic, due to the relativistic effects
included in Maxwell’s equations. Hence, it could be thought that the electron emits
and absorbs electromagnetic waves at the cyclotron frequency ωce and its harmonics
n, i.e. ω = nωce with (n = 1, 2, 3, ...). Nevertheless, the relativistic dynamics
modify the frequency ω at which the electron emits and absorb waves, due to the
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3. Study of synchrotron power losses in tokamak plasmas

relativistic electron mass effect and to the Doppler effect [Bor83]. For a wave vector
k, it can be then written that

ω =
nωce
γ

+ kkvk

with
γ =

1q
1− (v/c)2

, (3.3)

and the kkvk term describes the parallel Doppler effect.

3.2.2 Radiation emission in the absence of absorption
In the non-relativistic case, the total power radiated by a single electron in the

vacuum [Jac75] is given by the Larmor’s formula

Pe0 =
e2

6π²0c3

µ
dv

dt

¶2
. (3.4)

In the presence of a magnetic field Bt and assuming a Maxwellian distribution
for the electrons, with a density ne and temperature Te, the synchrotron radiation
power emitted “in vacuum” per unit of volume is expressed from Eqs (3.1) and (3.4)
as

dPe0
dV

=
ω2ceω

2
pe

3πc3
kTe, (3.5)

where c is the speed of light and ωpe is the electron plasma frequency, which is
defined as

ω2pe =
e2

²0me
ne. (3.6)

In the relativistic case, an individual electron moving in a magnetic field along
a spiral line emits the following energy taking into account the contribution of all
harmonics

Pe0,γ =
e2

6π²0c3
ω2ce
v2⊥
γ2
. (3.7)

Integrating Eq. (3.7) for a Maxwellian relativistic distribution for the electrons:

f =
µ exp (−µγ)
4πK2 (µ)

(3.8)

with µ = mec
2/kTe, the total emission per unit of plasma volume in the absence of

absorption, and in the relativistic case, can be derived in closed from [Tru58], i.e.

dPe0,γ
dV

=
ω2ceω

2
pe

3πc3
kTe

K3 (µ)

K2 (µ)
, (3.9)
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Figure 3.2: Ratio of vacuum emission power in the relativistic case to the non-
relativistic case versus the temperature, for a homogeneous plasma with ωce/2π =
190 GHz and ωpe/2π = 83 GHz (corresponding toBt ' 6.8 T and ne ' 0.85×1020
m−3).

whereKν (µ) are modified Bessel functions of the second kind (also called MacDon-
ald functions) and µ = mec

2/ (kTe). Note that in the non-relativistic case (γ → 1,
µ→∞) Eq. (3.9) reduces to Eq. (3.5).
Fig. 3.2 compares the total vacuum emission taking into account the relativistic

effects or not, for a temperature interval of 10 to 100 keV.

3.2.3 The radiative transfer equation
The transport of synchrotron radiation is characterized by the specific intensity

Jω, defined as the synchrotron radiation power per unit of solid angle, unit of surface
normal to the direction of propagation and unit of frequency ω. In a tokamak plasma,
Jω, which depends on the local competition between the emission and absorption
phenomena, is a function of local properties such as temperature and refractive in-
dex.
When all these quantities are known, the specific intensity can be deduced from

the following equation of radiative transfer [Bek66]:

N2
r,ω

d

dσ

µ
Jω
N 2
r,ω

¶
= ηω − αωJω, (3.10)

where σ is the co-ordinate along the ray path, Nr,ω is the radiation refractive index,
αω is the absorption coefficient and ηω is the emissivity of the plasma, i.e. the power
radiated away per unit of volume, solid angle and frequency. For frequencies for

51



3. Study of synchrotron power losses in tokamak plasmas

O

d�

�

dS

n

k

s

Figure 3.3: Vector diagram for a ray path of length s crossing the area dS corre-
sponding to the exit point O of the plasma.

which the synchrotron loss is not negligible (ω2/ω2pe À 1), the ray path can be
approximated by a straight line. This approximation will be used throughout this
study.
One of the difficulties in the problem of synchrotron radiation transport is the

calculation of the absorption coefficients at each point of the plasma, for all frequen-
cies and all ray path directions (see Section 3.2.4). The absorption coefficient and
the emissivity of a plasma in thermodynamic equilibrium are related locally by Kir-
choff’s law, which for tokamak plasmas (~ω ¿ kTe), is appropriately described by
the Rayleigh-Jeans approximation:

1

N 2
r,ω

ηω
αω

=
ω2

8π3c2
kTe. (3.11)

The integration of Eq. (3.10) over a ray path of length s,whose origin and end are
placed on the entry and exit points of the plasma, respectively (N 2

r,ω(0) = N
2
r,ω(s) =

1), yields an exponential expression describing the self-absorption of the radiation:

Jω(s) = Jω (0) exp

µ
−
Z s

0

αω dσ

¶
+

ω2

8π3c2
k

Z s

0

Te(σ)αω(σ) exp

µ
−
Z s

σ

αω(σ
0) dσ0

¶
dσ. (3.12)

In the particular case of no reflecting walls around the plasma, we have Jω (0) = 0.
Introducing the non-dimensional optical thickness τ as

τ =

Z s

0

αω dσ,
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the plasma is said to be optically thick when τ À 1. In this case, the plasma emits
like a blackbody. On the contrary, the plasma is said to be optically thin when τ ¿ 1,
in which case the self-absorption is negligible.

3.2.4 Radiation absorption by the plasma
The electromagnetic properties of the plasma are determined from Maxwell’s

equations through the conduction current density j and the space charge density ρ.
The source terms j and ρ, in turn, are determined by the microscopic motions of
the particles under the action of internal and external forces. The response to these
forces is given by the linearized kinetic equation (or Boltzmann equation). Com-
bining this equation with Maxwell equations, a set of wave equations describing
the propagation of the electric field E are obtained. The resulting equations can be
Fourier analysed considering the electric field to be made up locally of a superposi-
tion of plane waves (i.e. ∝ exp (jωt− ik · r)):

k× (k× E) +
³ω
c

´2
² · E = 0, (3.13)

where k is the wave vector and ² is the plasma dielectric tensor defined from the
Ohm’s law as:

² = 1+
1

iω²0

j

E
.

The quantity ² determines the response of the plasma to the electromagnetic
field and therefore describes the physics of the problem. Eq. (3.13) leads to a set of
linear and homogeneous equations for three orthogonal electric field components.
The condition for the existence of a non-trivial solution is that the determinant Λ
of the coefficients of the electric field E vanishes, i.e. Λ = 0. This is the so-called
dispersion relation, which relates the frequency ω and the wave vector k or refractive
index, i.e. N =

¡
c
ω

¢
k.

In the orthogonal frame of reference with the magnetic field along the z axis
direction and assuming the wave vector k propagating in the x− z plane, as shown
in Fig.3.4, the general form of the dispersion relation is found to be:

Λ =

¯̄̄̄
¯̄̄ ²xx −N 2

k ²xy ²xz +N⊥Nk
²yx ²yy −

³
N2
⊥ +N

2
k
´

²yz

²zx +N⊥Nk ²zy ²zz −N 2
⊥

¯̄̄̄
¯̄̄ = 0, (3.14)

Each solution of the dispersion relation is a characteristic mode of oscillation
that the plasma is able to propagate.
Expressing the components of the dielectric tensor as a sum of harmonics by

means of Bessel functions Jn (z), the general expression for the components of the
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Figure 3.4: Magnetic field Bt and wave vector k in the orthogonal (x, y, z) frame.

plasma dielectric tensor for an isotropic distribution function f may be written as
[Gra91]

²jl = δjl +
ω2pe
ω2

n=∞X
n=−∞

n2
Z
1

u

df

du

u2⊥Π
∗
jnΠln

ρ2
¡
γ − nωce/ω − kkukc/ω

¢du
with j, l = x, y, z and

u = pe/ (mec) , ρ =
N⊥u⊥
Y1

, Yn =
nωce
ω
,

Π1n = Jn (ρ) , Π2n = −iρJ
0
n (ρ)

n
, Π3n =

N⊥ukJn (ρ)
Yn

with J 0n (ρ) = dJn/dρ. Taking for the electrons aMaxwellian relativistic distribution
f (Eq. (3.8)), we obtain the following components of the dielectric tensor:

²jl = δjl +
µ2

4πK2 (µ)

ω2pe
ω2

n=∞X
n=−∞

n2
Z

u2⊥Π
∗
jnΠln exp (−µγ)

γρ2
¡
γ − nωce/ω − kkukc/ω

¢du, (3.15)

which obey the additional symmetry relations

²xy = −²yx, ²yz = −²zy, ²xz = ²zx.

They can be split into an Hermitian ²0jl and an anti-Hermitian ²”jl part for a con-
venient calculation,

²jl = ²
0
jl + i²

”
jl. (3.16)

In the range of parameters of interest for the synchrotron losses problem (ω >
2ωce), the Hermitian part of the dielectric tensor is well described by the cold plasma
approximation in the high frequency limit (Appleton-Hartree equation).
For the calculation of the anti-Hermitian part of the dielectric tensor, thermal and

relativistic effects need to be retained. Practical expressions for the anti-Hermitian
and Hermitian parts are reported in Appendix B.
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The absorption coefficient: The absorption coefficient αω may be deduced from
the rate of decay of the electromagnetic wave. Hence, noting that the wave intensity
I (as well as the wave energy) is proportional to the square of the modulus of the
electric field (I ∝ |E|2), the exponential decrease in the intensity is specified by
twice the imaginary part of the wave vector k,

I ∝ exp [−2r Im (k)] .
Assuming a weak absorption (Im k ¿ Re k), which is indeed the only case

where the wave propagation is effectively possible, the absorption coefficient is
given by

α(i)ω = −2 |Im (k)| . (3.17)

In this equation, the absorption coefficient αω refers to a specific fundamental
wave mode (i) corresponding to one solution of the dispersion relation.

3.3 Global synchrotron power losses and transparency
factor

The explicit expression for the global synchrotron power lost through the plasma
surface is obtained by integrating the specific intensity on the exit point of the plasma
Jω(s) over the plasma surface S, frequencies ω, and solid angles Ω corresponding
to the external hemisphere

Psyn,S =

Z
ω

dω

Z
Ω

dΩ

Z
S

Jω k · dS, (3.18)

where k is the direction of the ray path. Using dS = NdS, Eq. (3.18) may be
expressed as

Psyn,S =

Z
ω

dω

Z
S

dS

Z
Ω

Jω cos(k,N)dΩ. (3.19)

As seen in Fig. 3.5, in the presence of wall reflections around the plasma surface,
a fraction r (called the reflection coefficient) ofPsyn,S is reflected towards the plasma,
resulting in a new absorption phase which modifies Jω at each point of the plasma
surface and for all directions. The part which is effectively lost (denoted as Psyn) is
that going through the walls, i.e.

Psyn = (1− r)Psyn,S.

In the present study, we analyse the synchrotron radiation losses in the absence
of wall reflections (the corresponding losses are denoted as Psyn0). In this case, the
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Figure 3.5: Schematic diagram of synchrotron power losses in the presence of wall
reflections.

specific intensity on the entry point of the plasma is Jω (0) = 0 (see Eq. (3.12)),
and we have Psyn0 = Psyn,S . Although the effect of wall reflections is not treated in
this study, a fair estimation of such an effect can be made using the correction factor
obtained in Ref. [Tru79] for cylindrical plasmas:

Psyn = (1− r)1/2 Psyn0 . (3.20)

This correction factor has been checked in Ref. [Tam88] to be found to be valid
also in the case of toroidal plasma geometry.
For a convenient calculation, the synchrotron power loss Psyn is usually ex-

pressed in a dimensionless form. Here Psyn is normalized to the source of syn-
chrotron radiation Pe0, obtained by integrating the non-relativistic Larmor formula
(Eq. (3.5)) over a homogeneous plasma cylinder of finite length 2πR (where R is
the major radius) with a circular cross-section of minor radius a

Pe0 = 2π
2a2R

ω2peω
2
ce

3πc3
kTe. (3.21)

The resulting dimensionless parameter

Φ∗ = Psyn/Pe0 (3.22)

reduces to the real transparency factor Φ (fraction of the total emission which is
effectively lost), in the case of a homogeneous plasma cylinder with circular cross-
section in the non-relativistic limit. In this study, Φ∗ will be called the transparency
factor parameter.
Note that, for present tokamak plasmas as well as for the next step and commer-

cial reactors, the synchrotron radiation (fc = nωce/2π) is predominantly emitted in

56



3. Study of synchrotron power losses in tokamak plasmas

the millimetre or sub-millimetre range (30 < fc < 3000 GHz). For such frequen-
cies, the effective radiation absorption by the plasma itself results in transparency
factors of the order of a few percents (0.1 < Φ < 5%) [Bor83], so that Φ¿ 1.
It can be easily shown that in the absence of self-absorption of the synchrotron

emission magnetic confinement fusion would not be feasible. As an illustration,
the synchrotron radiation power emitted in the absence of self-absorption in a D-T
commercial reactor plasma is typically of 10− 20 GW.

3.4 Review of synchrotron loss studies
The above formulation for the transport of synchrotron radiation was first pro-

posed by Trubnikov [Tru58] and by Drummond and Rosenbluth [Dru63] for ho-
mogeneous plasmas with slab and circular cylinder geometries. Using several ap-
proximations, including a first order saddle-point method for the calculation of the
absorption coefficients, Trubnikov [Tru79] derived a simple fit for the calculation of
the global loss due to synchrotron radiation in the temperature range 10-100 keV, for
a homogeneous plasma cylinder with circular cross-section:

Psyn0(TRU) = 8.20× 10−10Ra3/2T 5/2e B
5/2
t0 n

1/2
e . (3.23)

In this work, the additional effect of the inhomogeneity of the magnetic field due
to toroidal geometry is described using the approximate correction factor

(1 + χ (ε, Te))
1/2

with
χ (ε, Te) ' 18 ε

T
1/2
e

and ε = a/R.

In system studies, the calculation of synchrotron losses in a tokamak plasma is
still generally performed using the above Trubnikov’s fit.
A comparable fit was derived by Tamor [Tam83] for homogeneous plasmas with

slab geometry and temperatures in the range 100-1000 keV, using an exact absorp-
tion coefficient and taking into account the relativistic effects on the vacuum emis-
sion (Eq. (3.9)).
An exhaustive review of synchrotron loss studies for a homogeneous plasma

with cylindrical geometry and circular cross-section was presented by Bornatici et
al. [Bor83]. In this review, a comparison is presented between Trubnikov’s fit and a
complete calculation using the saddle-point formalism to all orders for the calcula-
tion of the absorption coefficients. A reasonable agreement is found in the tempera-
ture range 20-30 keV, for plasma parameters characteristic of present day tokamaks
as well as for plasma parameters relevant for reactors with high magnetic fields and
finite wall reflection coefficients.
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In the case of inhomogeneous plasmas with toroidal geometry, Tamor [Tam88]
uses a Monte Carlo code where a large number of rays are tracked throughout the
plasma. This method allows a rigorous analysis of wall reflections and, associated
with a radial discretization, gives access to the energy redistribution on the plasma
profile, but it is much more demanding in computation time than the method de-
scribed above. In his work, Tamor compares the complete numerical calculation
of synchrotron losses, with the volume integration of a power loss density obtained
by dividing the Trubnikov total power loss by the plasma volume and considering
the result as a local quantity. For a circular plasma cross-section, with a central
temperature of 50 keV, an acceptable agreement is found for both flat and parabolic
profiles. It is, however, important to note that this approach of a local character of
the Trubnikov calculation has no rigorous justification.
Finally, corrections to the Trubnikov’s fit in the range of temperatures of D-T

tokamak plasmas have been proposed by Fidone et al. [Fid92]

Psyn0(FMGG) = 8.20× 10−10Ra3/2E1 (κ) hTei5/2B5/2t0 hnei1/2

× (1 + αn)
1/2 (1 + αT )

5/2¡
1 + 1

2
αn +

5
2
αT
¢ (1 + χ (ε, Te))

1
2 , (3.24)

taking into account the ellipticity of the plasma cross-section through E1(κ) =
2
π
κE[(1−1/κ2)1/2], where E(x) is the complete elliptic integral of the second kind,
and the inhomogeneity of density and temperature, both described with generalized
parabolic profiles as follows:

ne = ne0
¡
1− ρ2

¢αn , Te = Te0
¡
1− ρ2

¢αT , (3.25)

where ne0 and Te0 are the density and temperature at the magnetic axis, αn and αT
are the density and temperature peaking parameters and ρ is the normalized radius
(hnei and hTei are the volume average density and temperature, respectively). Let
us notice that the function E1(κ) is the unity for circular cross-sections (κ = 1).
The latter expression for the calculation of synchrotron losses will be referred to

as the FMGG fit.

3.5 Synchrotron losses in cylindrical plasmas
In a first stage we develop the formalism of synchrotron radiation losses for

cylindrical palsmas of finite length L = 2πR, being R the major radius of the simu-
lated torus.
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3.5.1 Homogeneous plasma with circular cross-section
We consider a circular cross-section of radius a, without wall reflections, and

with flat profiles for density and temperature distributions. The magnetic field is
considered to be homogeneous in the whole plasma and equal to its value at the
magnetic axis Bt = Bt0 , so that the radiation source is uniformly distributed over
the plasma volume.

Bt

x
y

k

z

=N

N
k

�

a

��

s 00

Figure 3.6: Geometrical parameters for the calculation of synchrotron losses in a
plasma cylinder with circular cross-section.

In this special case of a homogeneous and isotropic environment, i.e. ηω and
αω independent from σ, Eq. (3.12) yields to a simple expression for the specific
intensity per unit of frequency:

Jω =
ω2

8π3c2
kTe [1− exp (−sαω)] , (3.26)

and normalizing the global synchrotron power losses (Eq. (3.19)) crossing the sur-
face S = 2πaL by the vacuum emission in the non-relativistic limit (Eq. (3.21)), we
obtain the following explicit expression for the transparency factor parameter per
unit of frequency:

Φ∗ω =
3

4π2pa

ω2

ω3ce

Z
Ω

[1− exp (−sαω)] cos(k,N)dΩ, (3.27)

where pa is a dimensionless parameter called the opacity factor:

pa =
aω2pe
cωce

. (3.28)

Using the above assumptions and according to the plasma geometry illustrated
in Fig. 3.6, the integration over the solid angles Ω may be expressed as a function
of the angle θ between the direction of the ray path and the magnetic field, and the
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angle β between the projection of the ray path on the plane perpendicular to the
magnetic field and the normal to the cylinder surface, asZ

Ω

dΩ = 2

Z π

0

sin θdθ

Z π
2

0

dβ,

as well as
cos(k,N) = sin θ cosβ.

This latter expression is valid for any plasma geometry (circular or elliptical cross-
section, cylindrical or toroidal geometry). The length of the ray path s may then be
expressed as

s = 2a
cosβ

sin θ
,

and Eq. (3.27) becomes

Φ∗ω =
3

2π2pa

ω2

ω3ce

Z π

0

sin2 θdθ

Z π
2

0

cosβ

·
1− exp

µ
−2acosβ

sin θ
α

¶¸
dβ. (3.29)

Introducing ν = ω/ωce, the transparency factor parameter Φ∗ν per unit of nor-
malized frequency is defined as Φ∗ν = ωceΦ

∗
ω, and provided that the absorption co-

efficient αω is calculated differently for the ordinary (o) and extraordinary (x) mode
of propagation and for each frequency (α(i)ω ), the total transparency factor parameter
can be written as

Φ∗ =
3

2π2pa

X
i=o,x

"Z ∞

0

ν2dν

Z π/2

0

sin2 θdθ

×
Z π/2

−π/2
cosβ

·
1− exp

µ
−2aα(i)ν

cosβ

sin θ

¶¸
dβ

#
. (3.30)

For a practical computation of Eq. (3.30), the integration over normalized fre-
quencies ν in the interval ν = [0,∞[, may be avoided by introducing the variable
ν1,

ν =
1

ν1
− 1 with dν = −dν1

ν21
, (3.31)

so that the integration is then performed over the interval ν1 = [0, 1].

3.5.2 Trubnikov’s method for the calculation of the absorption
coefficients

For a simple calculation of the absorption coefficients, Trubnikov [Tru79] pro-
poses an approximation using the following assumptions. First of all, the syn-
chrotron radiation is supposed to be emitted at high enough harmonics for the density
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effect on the real part of the wave vector to be negligible (Re (N) = 1). Secondly,
the absorption coefficients are derived for all directions by neglecting a term which
is small only if the direction of propagation is almost perpendicular to the magnetic
field (where the absorption is indeed maximum). Next, the Bessel functions which
appear in the components of the dielectric tensor are asymptotically expanded for
weakly relativistic plasmas (kTe ¿ mec

2). Finally, the evaluation of the integrals
involved in the calculation of the components of the dielectric tensor is performed
using a saddle-point technique, for which Trubnikov retains only the first saddle-
point.
In fact, Drummond and Rosenbluth [Dru63] and De Barbieri [Bar77] have shown

the existence of an infinite number of saddle-points. Keeping the first one is a good
approximation only in the high frequency limit (ω/ωce À mec

2/kTe). Note that
this condition is much more restrictive for low temperatures (Te < 20 keV), for
which the synchrotron radiation is also mainly emitted at relatively low harmonics
(ω/ωce < 10).
With the above method, which will be referred to as the Trubnikov’s approximate

method, the magnetic field and the electron density appear to be grouped within the
dimensionless parameter pa. In Section 3.6 we investigate whether this approximate
method is or not applicable in plasmas interesting for nuclear fusion.
Trubnikov’s approximate method yields the following expressions of the absorp-

tion coefficients α(i)ν (pa, t, θ, ν) for the (i = o, x) mode of propagation and normal-
ized frequency ν [Tru79]:

aα(i)ν '
³π
2

´1/2
pa

µ
t

τf

¶1/2
sin3 θ

λi
(f 2 − cos2 θ)3/2

× exp
½
−1
t

·
1

sin θ
(f 2 − cos2 θ)1/2 − 1

¸¾
, (3.32)

(
λo = (1 +

f
t
cos2 θ)(f2 − cos2 θ)1/2 + cos2 θ

t sin θ

λx = (1 +
f
t
)(f 2 − cos2 θ)1/2 + f2

t sin θ

and
f(τ) = (cosh y − 1)τ (3.33)

with
sinh y − y = 1

τ
and τ = tν sin2 θ.

In the above expressions, t is the normalized temperature (t = kTe/mec
2) and θ

is the angle between the direction of the ray and the magnetic field.
A fast evaluation of the function f(τ) has been implemented using asymptotic

expansions for small and large values of τ , and approximations by Chebychev poly-
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nomials for the intermediate values. For τ < 0.01, the following asymptotic expan-
sion for τ → 0 is used:

f(τ ) = 1− τ ln τ − (1− ln 2)τ − τ 2 ln τ

+

µ
ln 2 +

1

2

¶
τ2 + τ2ε(τ ). (3.34)

For τ ≥ 10.6, we use the following asymptotic expansion for large τ :

f(τ) =
32/3

21/3
τ1/3 +

34/3

5× 25/3
1

τ1/3
− 27

1400

1

τ
+O

µ
1

τ5/3

¶
. (3.35)

Finally, in the intervals [0.01 − 0.1[, [0.1 − 0.5[, [0.5 − 1.6[, [1.6 − 4.3[, and
[4.3− 10.6[, five order Chebychev expansions are derived using numerical solution
of Eq. (3.33).
The precision of the resulting approximation is better than 7×10−5 for 0< τ <∞.

3.5.3 Reproducing the Trubnikov’s calculation
Trubnikov’s study for the calculation of the synchrotron losses in a tokamak

plasma considers both the set of geometric and profile assumptions detailed in Sec-
tion 3.5.1 (i.e. cylindrical homogeneous plasma with circular cross-section), and the
method for the calculation of the absorption coefficients detailed in Section 3.5.2.
The Trubnikov’s fit (Eq. 3.23), which is still used in system studies, is deduced from
the numerical calculations made by Trubnikov with this model.
Fig. 3.7 compares the transparency factor parameters as reported by Trubnikov

and those resulting from the numerical integration of Eq. (3.30) with α(i)ν given by
Eqs (3.32) and (3.33), using exactly the same set of assumptions. Differences of 0-
30% are observed for the main parameters range for the synchrotron losses problem.
Let us reproduce the fit for the calculation of synchrotron losses in the absence

of reflection walls for a cylindrical homogeneous plasma with circular cross-section,
using two dimensionless fitting variables: the normalized temperature t and the
opacity factor parameter pa. We take the same parameter ranges as those consid-
ered by Trubnikov for deducing his fit. That is a temperature range 5− 100 keV and
a pa range1 102 − 105.
From a dataset made of 225 numerical calculations with a relative error which is

taken to be lower than 10−4, we obtain the following fit:

Φ∗circular(A→∞) = 83t
1.37p−0.54a

1The pa interval is divided in equal-logarithmic parts.
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Figure 3.7: Comparison of the transparency factor contours in the (pa, Te) plane
provided by Trubnikov computations with our results.

with a RMSE ' 25%. This expression is not very different from Trubnikov’s fit
(Eq. 3.23) which, using the dimensionless parameters t and pa, can be expressed as

Φ∗TRU = 60t
1.5p−0.5a

with RMSE ' 50% [Tru72].

3.5.4 Elliptical plasma cross-section: extension of Trubnikov’s
fit

A more realistic elliptical plasma cross-section, with elongation κ, is now con-
sidered. As seen in the cylindrical geometry illustrated in Fig. 3.8, the integration
over the solid angles Ω is not symmetrical with respect to positive and negative an-
gles β, Z

Ω

dΩ =

Z π

0

sin θdθ

Z π
2

−π
2

dβ

The surface of a cylindrical plasma with elliptical cross section is given by:Z
S

dS = 2πaR

Z 2π

0

(sin2 ϕ+ κ2 cos2 ϕ)1/2dϕ. (3.36)
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Figure 3.8: Geometrical parameters for the calculation of synchrotron losses in a
cylindrical plasma with elliptical cross-section.

Note that the right-hand integral can be expressed as 2πE1(κ), where E1(κ) =
2
π
κE[(1− 1/κ2)1/2].
In a similar way to the circular case, the length of the ray path smay be expressed

as
s = 2as?

cos β

sin θ

with s? = s?(κ,ϕ, β),

s? =
κ(sin2 ϕ+ κ2 cos2 ϕ)3/2

κ2 sin2 β − 2κ(κ2 − 1) sinϕ cosϕ sin β cosβ + (sin2 ϕ+ κ4 cos2 ϕ) cos2 β
.

(3.37)
With the above geometrical assumptions and assuming a homogeneous plasma

(flat density, temperature, and magnetic field) with no wall reflections, the useful
expression for the calculation of the transparency factor parameter Φ∗ yields:

Φ∗ =
3

π3pa

X
i=o,x

"Z ∞

0

ν2dν

Z π/2

0

(sin2 ϕ+ κ2 cos2 ϕ)1/2dϕ

Z π/2

0

sin2 θdθ

×
Z π/2

−π/2
cosβ

(
1− exp

"
−2aα

(i)
ω (θ, ν)

sin θ
cosβ s?(κ,ϕ, β)

#)
dβ

#
, (3.38)

Note that there is a symmetry between the poloidal angle intervals ϕ = [0, π/2]
and ϕ = [π/2,π]. Introducing the variable u = sin θ

as? cos β
σ, the plasma normalized

radius ρ is related to the integral variables σ, ϕ, θ and β, by

ρ2 = 1− Su (2− u) (3.39)
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with
S (κ,ϕ, β) =

cos2 β

κ
(sin2 ϕ+ κ2 cos2 ϕ)1/2s?(κ,ϕ,β). (3.40)

Trubnikov’s fit for the calculation of synchrotron losses in cylindrical homoge-
neous plasmas has been extended to elliptical cross-sections, from a dataset made of
512 computations of Eq. (3.38) with the same temperature and pa ranges2 as those
of the circular case (i.e. 5 − 100 keV and 102 − 105, respectively), and a κ range
1− 2.5. Taking an accuracy of numerical calculations lower than 10−4, we obtain

Φ∗elliptic(A→∞) = 82t
1.35p−0.54a κ0.81

with a RMSE ' 28%. Let us notice that, when κ = 1, this expression almost re-
duces to the fit obtained in the circular case Φ∗circular, which means the dependences
of Φ∗ on the normalized temperature t and opacity factor pa are fairly independent
from the value of the elongation κ. Other more subtle forms of elongation depen-
dence have been tested, e.g.

³
1+κ2

2

´x1
κx2 , giving similar t and pa dependences and

comparable RMSE indicators.
Fig. 3.9 shows the Φ∗ dependence on κ calculated numerically using Eq. (3.38)

with α(i)ν given by Eqs (3.32) and (3.33). This dependence is compared in Fig. 3.9
with those obtained using the above fit Φ∗elliptic(A→∞) and using the FMGG fit

3 (given
by Eq. (3.24)), taking flat density and temperature profiles, and without taking into
account the approximate correction factor describing the inhomogeneity of the mag-
netic field (i.e. Φ∗FMGG(A→∞) = 60t

1.5p−0.5a E1 (κ)).
Owing to the fact that the parameter Φ∗ and the synchrotron power loss Psyn0

are related by the Larmor formula integrated over a homogeneous plasma cylinder
with circular cross-section (Eq. (3.21)), the global synchrotron power loss Psyn0 has
exactly the same κ dependence than that of the parameter Φ∗.

3.6 Comparison of the Trubnikov’s method for the
calculation of the absorption coefficients, with a
quasi-exact method

In the present study, we propose a different method for the calculation of the
absorption coefficients. This method uses a compact representation of the anti-
Hermitian part of the dielectric tensor which has been proposed by Granata and
Fidone [Gra91]. This formulation avoids the standard Larmor radius expansions of

2The pa interval is divided in equal-logarithmic parts.
3The FMGG fit keeps the same dependences on normalized temperature and opacity factor as

Trubnikov’s fit.
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Figure 3.9: Comparison of the Φ∗ parameter calculated numerically (solid line),
calculated with the cylindrical fit (dashed line) and calculated wih the FMGG ex-
pression without the inhomogeneity of the magnetic field (dotted line), versus the
elongation κ, for a homogeneous cylinder plasma with pa ' 3870 and Te = 50 keV.

Bessel functions (used, for example, by Tamor [Tam78]) and gives very accurate
values, at least in the temperature range 10-50 keV, for all frequencies. When the
ray path is parallel or almost parallel to the magnetic field, the value of Bessel func-
tions appearing in this theory becomes undefined, in which case we use asymptotic
expansions giving a precision better than 10−6 (see Appendix B for details). This
formalism will be referred to as the quasi-exact method as opposed to Trubnikov’s
approximate method (described in Section 3.5.2).
Summarizing the differences between the two methods, the Trubnikov’s approx-

imate method:

• uses Re (N) = 1,
• introduces an error for ray path directions not perpendicular to the magnetic
field,

• is valid only for weakly relativistic plasmas in the high frequency limit;

whereas the quasi-exact method:

• uses a precise expression for the calculation of the real part of the refractive
index (Appleton-Hartree equation),

• describes all ray path directions correctly,
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• calculates the components of the dielectric tensor using a general representa-
tion which is valid for all the parameters of interest for the problem of syn-
chrotron losses.

On the other hand, the Trubnikov’s approach gives much lower computation
times.
In Fig. 3.10, the Φ∗ parameter per unit of normalized frequency is plotted for

both methods using ITER-FDR parameters [FDR97] for flat electron temperatures
of 10, 20, 30, 40 and 50 keV.
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Figure 3.10: Transparency factor parameter versus normalized frequency for a cir-
cular plasma with flat profiles and an opacity factor pa ' 3870, using Trubnikov’s
approximate method or the quasi-exact method for the calculation of the absorption
coefficients.

We first note that Trubnikov’s approximate method gives the correct asymptotic
behaviour at very high frequencies for each temperature considered. On the other
hand, this calculation produces a continuous spectrum because in the high frequency
limit of the first order saddle-point approximation, the spectral lines overlap as a re-
sult of Doppler broadening. The quasi-exact method instead reproduces the spectral
lines for low temperature and low frequencies.
Relative differences in the total Φ∗ parameter, resulting from the numerical inte-

gration of Eq. (3.30) for each electron temperature, are presented in Table 3.1. Using
Trubnikov’s approach gives a 10% error with respect to the quasi-exact calculation
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at electron temperatures of 20 keV, for which synchrotron losses are no longer neg-
ligible in the power balance of a tokamak plasma. The error keeps non-negligible
values for higher temperatures.

Table 3.1: Relative difference between the total transparency factor parameters cal-
culated using Trubnikov’s approximate method and the quasi-exact one for different
temperatures.

Te (keV) Φ∗Trubnikov (%) Φ∗quasi-exact (%)
³
Φ∗quasi-exact−Φ∗Trubnikov

Φ∗Trubnikov

´
× 100

10 0.42 0.32 30.4
20 0.94 0.85 10.5
30 1.66 1.55 7.4
40 2.59 2.43 6.8
50 3.77 3.52 6.9

We conclude that Trubnikov’s approximate method for the calculation of the
absorption coefficients, though much faster than the quasi-exact method, also intro-
duces non-negligible errors. To obtain accurate results for all plasma conditions,
we will thus retain the quasi-exact method, leading to computation times which are
reasonable with present day computers.
Similar relative differences are obtained for the entire opacity factor pa range.

3.7 Spatial density of the synchrotron power loss in
terms of emission

The spatial density of the synchrotron power loss in terms of emission dPem/dV
is the part of the synchrotron radiation power crossing the last magnetic surface
which has been emitted in a given unit of plasma volume. With the aid of this spatial
distribution, we can determine the plasma region that participates the most to the
global loss due to the synchrotron radiation.
For clarity, let us specify that this spatial distribution dPem/dV is not the local

synchrotron power loss per unit volume dPsyn/dV (i.e. the difference between vac-
uum emission and absorption in the unit volume), which should be introduced, for
example, in a 1D code for the self-consistent calculation of the temperature profile
[Tam88]. Note however that both quantities integrated on the plasma volume give
the same result.
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3.7.1 Formulation of the problem
In order to treat the general problem of the synchrotron power crossing the last

magnetic surface which has been emitted in an infinitesimal volume element dV (in
the form of a pillbox in Fig. 3.11), we consider a ray path whose origin is placed
on the entry point to the pillbox (separated a distance σ from the entry point 0 to
the plasma), so that Jω (σ) = 0. Assuming the ray path to be a straight line, the
radiation specific intensity dJω leaving the pillbox within a solid angle dΩ, is then
given by Eq. (3.10):

dJω (σ) = ηω (σ) dσ, (3.41)
where ηω is the synchrotron emission power per unit of plasma volume dV in the
spectral range dω and per steradian flowing in the ray path direction. According to
Kirchoff’s law (Eq. (3.11)), it can be seen that

ηω (σ) =
ω2

8π3c2
kTe (σ) αω (σ) .

J ( )
0

�
� �

dJ�

dJ�

��


d�

0
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absorption medium ( )��

�

Figure 3.11: Radiation emitted in a small volume of plasma dV and leaving the
medium after having suffered absorption.

From the point A to the exit point B of the plasma (throughout the plasma repre-
sented by an ellipsoid in Fig. 3.11), the medium is supposed only to absorb radiation
(no emissivity, ηω ≡ 0). In this case and denoting the specific intensity of the radia-
tion at the exit point of the absorbing plasma as J (α)ω , Eq. (3.10) leads to

J (α)ω (B) = Jω (A) exp
µ
−
Z s

σ

αω dσ

¶
,
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where s is the distance between the point 0 and B. The substitution of Jω (A) by the
specific intensity dJω (Eq. (3.41)) leaving the unit of volume dV , gives

dJ (α)ω (σ) = ηω (σ) dσ exp

µ
−
Z s

σ

αω dσ

¶
.

With no reflecting walls, the explicit expression for the power loss due to syn-
chrotron radiation emitted in the volume element dV is obtained by integrating the
specific intensity dJ (α)ω per unit of solid angle dΩV over the frequencies ω and over
the last magnetic plasma surface S

dPem,ΩV (σ) =

Z
ω

dω

Z
S

dS cos(k,N) ηω (σ) dσ exp

µ
−
Z s

σ

αω(σ
0) dσ0

¶
(3.42)

with dS = NdS, where k is the direction of the ray path within the solid angle dΩV
crossing dV .
Note that for each unit of plasma surface dS, we only consider the ray path

with a direction k which crosses the volume element dV , i.e. the plasma volume
participating to the investigated emission. A relation between k , N and σ thus
exists.

Similar magnetic surfaces with elliptical cross-section: In the particular case of
a magnetic confinement plasma, we are interested in the radiation emitted between
two consecutive magnetic surfaces. Here we consider that all the magnetic surfaces
are similar to the outer surface (plasma surface), which has an elliptical cross-section
with elongation κ, with a similarity ratio ρ (the normalized radius).
In this case, the volume element is not dV but that formed by the space between

two magnetic surfaces:
dVρ = (∂V/∂ρ) dρ.

Expressing the variable ρ as a function of σ (ρ = f (σ)), the corresponding unit of
normalized radius dρ is given by the relation

dσ = Q (ρ,Ωρ, S) dρ,

and the synchrotron power loss in terms of the emission of such an element of vol-
ume characterized by ρ, is obtained by integrating Eq. (3.42) over the interval of
solid angles Ωρ crossing the volume element dVρ,

dPem (ρ) =

Z
ω

dω

Z
S

dS

Z
Ωρ

dΩρ cos(k,N) (3.43)

×
X
j=1,2

"
ηω (σj)Q (ρ,Ωρ, S) dρ exp

Ã
−
Z s

σj

α(i)ω (σ
0) dσ0

!#
.
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Let us notice that for each ray path crossing dVρ, there are two intersection points
σj (ρ,Ωρ, S) with j = 1, 2. To take into account the total emission of the volume
element dVρ to dPem (ρ) we must add the contribution of both points.
According to Eq. (3.36) for the plasma surface and expressing the interval of

solid angles in the exit point of the plasma as a function of the angle Θ between
the direction of the ray path and the magnetic field, and the angle β between the
projection of the ray path on the plane perpendicular to the magnetic field and the
normal to the plasma surface, we obtain

cos(k,N) = sinΘ cosβ,

dVρ = 4π
2Ra2κρdρ,

and Z
Ωρ

dΩρ = 2

Z π/2

0

sinΘdΘ

Z βmax

βmin

dβ,

with βmin and βmax the beta angle limits for which the ray path is tangent to the
element of volume dVρ, so that

βmin,βmax = f (ρ,Θ,ϕ) .

Finally, the spatial density of the synchrotron power loss in terms of emission,
denoted as dPem/dV , is obtained by dividing Eq. (3.43) by the element of volume
dVρ. For the two modes of propagation and using the normalized frequency ν =
ω/ωce, we obtain

dPem (ρ)

dV
=

k

4π4c2
Te (ρ)

aκ

Z ∞

0

ν2dν

Z π

0

(sin2 ϕ+ κ2 cos2 ϕ)1/2dϕ

×
Z π/2

0

sin2Θ dΘ

Z βmax

βmin

cosβ dβ
X
j=1,2

©
ω3ce,loc (σj)

×
X
i=o,x

"
α(i)ω (σj)

Q (ρ,ϕ,Θ,β)

ρ
exp

Ã
−
Z s

σj

α(i)ω (σ
0) dσ0

!#)
, (3.44)

where ωce,loc is the electron cyclotron frequency at the point σj considered, and
the temperature Te (ρ) is constant over the same magnetic surface ρ, i.e. Te (ρ) =
Te (σ1) = Te (σ2).
This is the general formulation of the spatial density of the synchrotron power

loss in terms of emission. Then, the functions Q, σj ,βmin, and βmax are specific
for each particular configuration: cylindrical geometry, toroidal geometry, circular
cross-section (κ = 1), and elliptical cross-section (κ > 1).
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The volume integral of the quantity dPem/dV gives the global synchrotron power
loss in the absence of wall reflections

Psyn0 =

Z 1

0

µ
dPem (ρ)

dV

¶µ
dVρ
dρ

¶
dρ. (3.45)

3.7.2 Case of a plasma with cylindrical geometry
In the cylindrical case, the angle between the ray path direction and the magnetic

field is constant along the ray path, so that θ = Θ.

Circular cross-section and homogeneous plasma: In a plasma with circular cross-
section (κ = 1) and cylindrical geometry, there is a symmetry with respect to the
poloidal angle ϕ. As shown in Fig. 3.12, for a given ray path direction with a β an-
gle in the interval [βmin, βmax], we obtain two points crossing the element of volume
characterized by the magnetic surface ρ with the following ray path co-ordinates:

σ⊥1,2 = a
h
cosβ ∓ ¡ρ2 − sin2 β¢1/2i ,

where σ⊥i is the perpendicular projection of the ray path,

σj =
σ⊥j
sin θ

.

The ray path is tangent to the volume element dV ρ when

sin (βmax) = ρ,

and βmin = −βmax.
In this case, theQ = dσ/dρ factor due to the introduction of the ρ variable in the

formalism becomes

Q (ρ, θ,β) =
aρ

sin θ
¡
ρ2 − sin2 β¢1/2 .

The explicit expression of the spatial density of the synchrotron power loss in
terms of emission (Eq. (3.44)) for cylindrical and homogeneous plasmas with circu-
lar cross-section (so that κ = 1), can be then written as

dPem (ρ)

dV
=

k

4π3c2
ω3ceTe

Z ∞

0

ν2dν

Z βmax

βmin

cosβ¡
ρ2 − sin2 β¢1/2dβ

×
Z π/2

0

sin θ dθ
X
j=1,2

(X
i=o,x

£
α(i)ω exp

¡−α(i)ω σj
¢¤)

(3.46)

with Te (ρ) = Te, ωce,loc = ωce and α
(i)
ω (σj) = α

(i)
ω .
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Figure 3.12: Geometry of the ray path and ρ magnetic surface intersection in the
perpendicular plane to the cylindrical plasma.

Elliptical cross-section and inhomogeneous plasma: Let us consider now an el-
liptical cross-section plasma with elongation κ. In this case, the intersection of the
ray path with the ρ magnetic surface depends on the poloidal angle ϕ. The β angles
for each magnetic surface obey to the following implicit condition βmin < β < βmax,
with:

(1− ρ2)

(sin2 ϕ+ κ2 cos2 ϕ)2
≤ κ2 sin2 β cos2 β − 2κ(κ2 − 1) sinϕ cosϕ sinβ cos3 β
+ (sin2 ϕ+ κ4 cos2 ϕ) cos4 β,

taking into account that

βmin < β0 and βmax > β0,

where β0 (κ,ϕ) is the β angle made by the ray path when crossing the plasma centre.
It is found that

cosβ0 =
κ

(cos2 ϕ+ κ2 sin2 ϕ)2(sin2 ϕ+ κ2 cos2 ϕ)2
.

The ray path co-ordinates for the intersection points with the element of volume
characterized by the magnetic surface ρ, result in

σ1,2 =
as? cosβ

sin θ

"
1∓

r
1− (1− ρ2)

S

#
,

where s?(κ,ϕ, β) and S (κ,ϕ, β) are defined in Eqs (3.37) and (3.40), respectively.
Introducing the variable u = sin θ

as? cosβ
σ, we obtain

u1,2 = 1±
r
1− (1− ρ2)

S
.
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In the elliptical case, the Qu = du/dρ factor due to the introduction of the ρ
variable in the formalism becomes

Qu (κ,ϕ, β) =
ρ

S
q
1− (1−ρ2)

S

,

and Eq. (3.44) can be written as

dPem (ρ)

dV
=

k

4π4c2
Te (ρ)

Z ∞

0

ν2dν

Z π

0

dϕ

Z π/2

0

dθ

Z βmax

βmin

dβ
sin θq
1− (1−ρ2)

SX
j=1,2

(
ω3ce (uj)

X
i=o,x

"
α(i)ω (uj) exp

Ã
−as

? cosβ

sin θ

Z 2

uj

α(i)ω (u
0) du0

!#)
,

(3.47)

In Eq.3.47, the optical depth for each ray path co-ordinate u0 is calculated using
the local values of plasma parameters, i.e. local density ne (ρ0) and temperature
Te (ρ

0), where the local normalized radius ρ0 is calculated using Eq. (3.39). The
magnetic field Bt (rh) is given by

Bt (rh) =
Bt0

1 + rh/R
, (3.48)

where Bt0 is the magnetic field at the magnetic axis and rh is the horizontal co-
ordinate on the corresponding poloidal cross-section, whose origin is placed at the
centre of such a cross-section,

rh = a

"
cosϕ+ (2− u0) s∗ cosβ (sin β sinϕ− κ cosβ cosϕ)¡

sin2 ϕ+ κ2 cos2 ϕ
¢1/2

#
.

The local electron cyclotron frequency is expressed as ωce (u) = e/meBt (rh).
Fig. 3.13 shows the dPem/dV profile for the European Commercial Reactor

[Coo99] taking flat profiles for the density and temperature and considering the op-
erating point ne = 0.85 × 1020 m−3 and Te = 22.7 keV. If the magnetic field is
also kept constant in all the plasma volume, the spatial density of radiation emis-
sion is homogeneous whereas the plasma self-absorption of the emitted radiation is
much lower in the more external plasma layers. For this reason, the spatial density
of synchrotron power losses in terms of emission is strongly peaked in those exter-
nal layers. The same behaviour is observed when we add the inhomogeneity of the
magnetic field, which makes the emission to increase softly in the outer plasma.
With no wall reflections, the global synchrotron losses corresponding to the ho-

mogeneous and inhomogeneous magnetic field are Psyn0 ' 202 MW and Psyn0 '
248MW, respectively.
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Figure 3.13: Spatial density of synchrotron power losses in terms of emission con-
sidering flat density and temperature profiles with a homogeneous magnetic field
(dashed curve), and with an inhomogeneous magnetic field (solid curve).

3.8 Radiation transport in a toroidal geometry

3.8.1 Explicit expression for the calculation of synchrotron power
loss

Using the co-ordinates and angles defined in Fig. 3.14, one can write the equation
describing the torus surface in the absolute frame xyz asµ

x2 + y2 +
z2

κ2
+R2 − a2

¶2
− 4R2 ¡x2 + y2¢ = 0.

Notice that the angles Ψ, Θ, ϕ , and β are defined at the point of the ray path
emerging from the plasma. Then, the origin of the ray path is located on the opposite
side, i.e. at the entry point of the plasma. The parametric equation of the ray path
line in the same system can be written as x = px + (s− σ) γx

y = py + (s− σ) γy
z = pz + (s− σ) γz,

(3.49)

where px, py, and pz are the co-ordinates of the origin of the relative frame x0y0z0,
i.e. the intersection of the ray path with the torus surface in the exit point (σ = s),
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Figure 3.14: Angle and axis definitions for a toroidal plasma geometry.

which can be expressed in the absolute frame as px = (R + a cosϕ) cosΨ
py = (R+ a cosϕ) sinΨ
pz = aκ sinϕ.

(3.50)

Here, (γx, γy, γz) is the unit vector of the ray path trajectory expressed in the
absolute frame, namely

γx = − γ
0
y sinΨ+

γ
0
x κ cosϕ− γ

0
z sinϕ

(sin2 ϕ+ κ2 cos2 ϕ)1/2
cosΨ

γy = γ
0
y cosΨ+

γ
0
x κ cosϕ− γ

0
z sinϕ

(sin2 ϕ+ κ2 cos2 ϕ)1/2
sinΨ

γz =
γ
0
x sinϕ+ γ

0
z κ cosϕ

(sin2 ϕ+ κ2 cos2 ϕ)1/2
,

(3.51)

where
¡
γ
0
x, γ

0
y, γ

0
z

¢
is the same vector expressed in the relative frame as

γ
0
x = − sinΘ cosβ

γ
0
y = − cosΘ

γ
0
z = − sinΘ sin β.

Considering the axisymmetric geometry, we take Ψ = 0, and Eqs (3.50) and
(3.51) let  px = R+ a cosϕ

py = 0
pz = aκ sinϕ

(3.52)
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γx =
γ
0
x κ cosϕ− γ

0
z sinϕ

(sin2 ϕ+ κ2 cos2 ϕ)1/2

γy = γ
0
y

γz =
γ
0
x sinϕ+ γ

0
z κ cosϕ

(sin2 ϕ+ κ2 cos2 ϕ)1/2
.

(3.53)

We can then derive the length s of the ray path, given by the intersection of the
torus surface with the ray at the entry point. Thus, imposing σ = 0 in Eqs (3.49),
we obtain the following cubic equation for the calculation of s:

As3 +Bs2 + Cs+D = 0, (3.54)

with

A =

µ
γ2x + γ2y +

γ2z
κ2

¶2
B = 4

µ
γ2x + γ2y +

γ2z
κ2

¶³
pxγx +

pzγz
κ2

´
C = 4

³
pxγx +

pzγz
κ2

´2
+ 2

µ
γ2x + γ2y +

γ2z
κ2

¶
×
µ
p2x +

p2z
κ2
+R2 − a2

¶
− 4R2 ¡γ2x + γ2y

¢
D = 4

³
pxγx +

pzγz
κ2

´µ
p2x +

p2z
κ2
+R2 − a2

¶
− 8R2pxγx.

The resolution of the above equation may lead to one of the following three
cases, whose geometrical meaning is illustrated in Fig. 3.15.

Case a: One positive real solution (A) and two imaginary solutions (B and C). The
ray path crosses the torus surface only once (A).

Case b: Three positive real solutions. The ray path crosses the torus two more times
(B and C) but in a different plasma section.

Case c: One positive real solution (A) and two negative real solutions (B and C).
The negative solutions are not taken into account since the ray emerging from
the torus does not enter back at a different point (B).

Hence, the length of the ray path s is always the smallest real positive solution.
Let us now define the horizontal co-ordinate rh, which appears in the calculation

of the radial variation of the magnetic field (Eq. (3.48)). For every point σ of the
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Figure 3.15: Geometrical interpretation of the three solutions of Eq. (3.54) in the
case of a horizontal ray path.

ray path, the horizontal co-ordinate rh on the corresponding poloidal cross-section,
whose origin is placed at the centre of such a cross-section, becomes

rh =
p
x2 + y2 −R, (3.55)

where x (σ) and y (σ) are the horizontal co-ordinates of the parametric equations of
the ray path line.
With the above equations, the calculation of the normalized radius ρ as a function

of the co-ordinate along the ray path σ can be expressed as

ρ2 =
1

a2

·
r2h +

³z
κ

´2¸
, (3.56)

where z (ρ) is the vertical co-ordinate of the parametric equation of the ray path.
In toroidal plasmas, the parallel refraction index Nk varies along the ray path

because the angle θ between the direction of the ray path and the magnetic field is a
function of space. Such a variation must be taken into account in the calculation of
the plasma self-absorption.
The direction of the ray path is fully determined in the absolute frame by the unit

vector u = (γx, γy, γz). In the same frame, the unit vector b = B/B at the point
determined by the space co-ordinate σ along the ray path can be expressed as

b =
(− tanΨ, 1, 0)√
1 + tan2Ψ

,

where
tanΨ =

(s− σ) γy
px + (s− σ) γx

.
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Figure 3.16: Nk variation along the ray path in the equatorial plane, where seq and
σeq are the projections of the ray path length and ray path co-ordinate, respectively,
on the equatorial plane.

Now, since cosθ = u · b, we can derive the following simple relation between
the angles θ and Θ for a given ray path and co-ordinate σ

cos θ = cosΘ
px
R (σ)

, (3.57)

where px is defined in Eq. (3.52) and

R (σ) =
p
x2 + y2 (3.58)

is the horizontal co-ordinate in the equatorial plane, whose origin is placed at the
tokamak centre. Fig. 3.16 shows the equatorial projections of the ray path on the
tokamak plasma. Only positive values of cos θ may be considered, as it can be shown
that α(i)ω (π − θ) = α

(i)
ω (θ).

In such a realistic plasma conditions with no reflecting walls, toroidal geometry,
and an elliptical cross-section with a vertical elongation κ (Fig. 3.14), Eqs (3.22)
and (3.12) including the ordinary (o) and extraordinary (x) modes of propagation
become

Φ∗ =
3R3

2π3pa0

Z ∞

0

ν2dν

Z π

0

(sin2 ϕ+ κ2 cos2 ϕ)1/2dϕ

Z π/2

0

sin2Θ dΘ

×
Z π/2

−π/2
cosβ dβ

Z s

0

FT (ρ)

R3 (σ)

X
i=o,x

½
α(i)ω (σ) exp

·
−
Z s

σ

α(i)ω (σ
0) dσ0

¸¾
dσ

(3.59)

with an arbitrary temperature profile expressed as

Te (ρ) = Te0 FT (ρ) ,
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pa0 is defined using Eq. (3.28) with values at the plasma axis, and where the fre-
quency ω is normalized to the electron cyclotron frequency ωce (σ) corresponding
to the ray path co-ordinate σ, so then ν = ω/ωce (σ). For a given σ (and ωce (σ))
the electron cyclotron frequency corresponding to the co-ordinate σ0 of the optical
depth calculation may be higher or lower than ωce (σ), as discussed in Section 3.8.1.
It can be seen that

ωce (σ)

ωce0
=

R

R (σ)
.

According to the definition of the dimensionless parameterΦ∗ and using Eq. (3.21)
with values at the plasma axis, synchrotron power losses become

Psyn0 =
2πk

3c3
ω2pe0ω

2
ce0
a2RTe0Φ

∗, (3.60)

where ωce0 and ωpe0 are the electron cyclotron and plasma frequencies at the mag-
netic axis. The description of the plasma emission and self-absorption processes
includes the above described phenomena of inhomogeneity of the magnetic field,
toroidal correction to the ray path length and the spatial variation of Nk.
For a practical computation of Eq. (3.59), the interval for the normalized fre-

quency is taken to be ν = [2, 40]. Let us notice that ν = 2 is the minimum value
allowed by the quasi-exact method for the calculation of the absorption coefficient
[Gra91]. In the range of parameters of interest for the synchrotron losses problem,
radiation emitted below the lower ν limit or above the upper ν limit is negligible
with respect to the emission within the ν interval.

Treatment of low frequency waves: As a consequence of the inhomogeneity of
the magnetic field in a poloidal section, the electron cyclotron frequency is no longer
constant along a ray path. Low frequency waves propagating towards the plasma
region with high magnetic field can then reach the cut-off frequency, which we nor-
malize to the electron cyclotron frequency (νcut-off). In such a situation, occurring
mainly in very low aspect ratio plasmas (A < 2), we assume the waves to be re-
flected and finally absorbed by the plasma.
For a given tokamak plasma (R, a, κ) and ray path (ϕ, Θ, β), the point reaching

the highest magnetic field (so that the highest electron cyclotron frequency ωce (σ))
is that with a minimum horizontal co-ordinate rh, as seen in the equatorial projection
of Fig. 3.17. Assuming a constant cut-off frequency along the ray path, this is the
most critical point where the local normalized frequency of the ray path ν = ωce (σ)
is minimum and the cut-off may then occur (ν < νcut-off).
As a first estimation, let us consider the cut-off frequency in the cold plasma

approximation:
νcut-off =

1

2

³
1 +

q
1 + 4ω2pe/ω

2
ce

´
. (3.61)
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Figure 3.17: Ray path trajectory on the equatorial plane of the tokamak in the case
of a low frequency wave propagating towards the high magnetic field region.

For the plasmas of interest we have ωce > ωpe, and then for the above conditions
we obtain νcut-off < 1.62 (lower than the low frequency integration limit).
For the determination of the critical point σcrit through the ray path trajectory, we

perform the ν minimisation (i.e. the rh minimisation) as d
dσ
(rh) = 0, leading to

σcrit = s+ px
γx

γ2x + γ2y
.

Note that if the minimum exists within the ray path trajectory, σcrit must fulfil the
condition 0 < σcrit < s. Therefore, when the unit vector of the ray path points to
the inner plasma (region with higher magnetic field), i.e. γx > 0, the critical point is
always situated at the exit point of the plasma, σcrit = s. On the contrary, when the
unit vector of the ray path points to the outer plasma (region with lower magnetic
field), i.e. γx < 0, a minimum of ν may occur at an intermediate point, as illustrated
in Fig. 3.17.
In both cases, the minimum normalized frequency νmin at the critical point σcrit

can be calculated as a function of the initial co-ordinate and frequency (σ and ν) and
if νmin is lower than the cut-off normalized frequency, we assume the wave to be
totally absorbed by the plasma. In such a case, we will perform the integration of
the radiative transfer equation ( Eq. (3.10)) over the ray path interval [smin, s], where
smin (ν) is the minimum ray path co-ordinate at a given normalized frequency for
which the wave does not reach the cut-off normalized frequency. It can be seen that

smin = s +
pxγx −

q¡
γ2x + γ2y

¢
R2crit (ν/νcut-off)

2 − p2x γ2y¡
γ2x + γ2y

¢
with Rcrit =

q
(px + (s− σcrit) γx)

2 + (s− σcrit)
2 γ2x. In this case, the useful ex-
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pression for the calculation of synchrotron losses is written as

Φ∗ =
3R3

2π3pa0

Z ∞

0

ν2dν

Z π

0

(sin2 ϕ+ κ2 cos2 ϕ)1/2dϕ

Z π/2

0

sin2Θ dΘ

×
Z π/2

−π/2
cosβ dβ

Z s

smin

FT (ρ)

R3 (σ)

X
i=o,x

½
α(i)ω (σ) exp

·
−
Z s

σ

α(i)ω (σ
0) dσ0

¸¾
dσ.

In spite of this assumption in the treatement of low frequency waves and for
plasma parameters of interest, the total synchrotron losses in this case are not sub-
stantially different from the other extreme case, where the waves reaching νcut-off are
neither reflected nor absorbed by the plasma. The reason for this lack of sensitiv-
ity is that plasmas with appreciable total synchrotron losses (the interesting case)
emit mainly in the frequency range above three or four times the electron cyclotron
frequency.

3.8.2 Aspect ratio effect
In Figs. 3.18 and 3.19, we illustrate the aspect ratio (A = R/a) dependence for

a plasma with toroidal geometry choosing the nominal parameters of the European
Commercial Reactor4 [Coo99]: R = 8.1 m, a = 2.7 m, Bt0 = 6.8 T. For the aspect
ratio variation, we assume a constant plasma volume.
In the first plot (Fig. 3.18), we consider a plasma with a circular cross-section

(κ = 1) and flat density and temperature profiles. In such conditions, the results
can be compared with those of Trubnikov’s fit [Tru79] including the correction fac-
tor due to the inhomogeneity of the magnetic field (see Section 3.4). In the sec-
ond one (Fig. 3.19), we consider an elliptical plasma with the nominal elongation
κ = 1.9, and generalized parabolic profiles for density and temperature with the
nominal peaking parameters αn = 0.5 and αT = 1.0 in Eq. (3.25). Here, com-
plete calculations in toroidal or cylindrical plasmas are compared with the FMGG
fit [Fid92], which keeps the same dependences on temperature, density, magnetic
field, and major and minor radii as Trubnikov’s fit, as well as the approximate cor-
rection due to the toroidal inhomogeneity of the magnetic field.
Synchrotron losses in both illustrations increase with increasing aspect ratio

since the plasma becomes increasingly thinner, causing the optical depth of the
emitted radiation in the plasma centre to decrease. As a confirmation, the numeri-
cal calculation for high aspect ratios in toroidal geometry tends towards the one of
the cylindrical approach. As the aspect ratio decreases, the magnetic field strongly
increases in the inner part of the plasma cross-section, resulting in the growth of
synchrotron losses despite a slight attenuation due to the toroidal correction to the
ray path length.

4Note that the synchrotron losses do not take wall reflections into account.
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Figure 3.18: Comparison of the complete calculation of synchrotron losses in a
toroidal or cylindrical plasma geometry with the results of Trubnikov’s fit, for a
circular cross-section and flat density and temperature profiles (Te = 30 keV).

We can see that the numerical results from the complete formulation agree well
with the Trubnikov and FMGG fits, for intermediate aspect ratios in the range 2.5 <
A < 4.5 (for Trubnikov’s fit) and in the range 3.2 < A < 4.2 (for the FMGG
fit). Note that effects of the toroidal correction to the ray path length and of the
spatial variation ofNk are not included in the Trubnikov and FMGG fits. The expla-
nation of the observed agreement is that the errors introduced with the description
simplified phenomena and geometry, and by the approximations in the absorption
calculation, are self-compensating for this aspect ratio interval. However, the results
differ substantially for larger or smaller aspect ratios, which can be of interest for a
commercial reactor.

3.8.3 Effect of temperature profiles
Generalized parabolic profiles: The effect of the shape of temperature profiles
is illustrated by comparing synchrotron power losses for the European Commercial
Reactor parameters [Coo99] with a constant density profile and density averaged
electron temperature hTein,

hTein =
R
V
neTedVR
V
nedV

.

In other words, we compare different shapes of temperature profiles but keeping
the same plasma energy content Wth. Nominal parameters give hTein ' 27.2 keV
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Figure 3.19: Comparison of the complete calculation of synchrotron losses in a
toroidal or cylindrical plasma geometry with the results of the FMGG fit, for a large
interval of aspect ratios (hTei = 22.7 keV).

andWth ' 2190MJ. We consider generalized parabolic expressions (Eq. (3.25)) for
modelling profiles of density and temperature with ne0 = 1.5× 1020 m−3, αn = 0.5.

Fig. 3.20 shows the shape of such profiles for αT = 0, 0.5, 1.0, 1.5, 2.0 (a), and
the corresponding synchrotron losses calculated without wall reflections in toroidal
realistic conditions (b), using Eqs (3.59) and (3.60). Although the plasma energy
content is kept constant for any value of αT , we observe a substantial rise of syn-
chrotron power losses from αT = 0.5 to αT = 2.0. In the latter point, they are about
twice those of a flat (αT = 0) or slightly peaked (αT = 0.5) profiles.
The strong effect of the temperature profile shape on synchrotron losses can

be explained using the spatial density of the synchrotron power loss in terms of
emission dPem/dV (Fig. 3.20 (a)). In contrast to the homogeneous case (Fig. 3.13),
for αT > 0 the plasma layers participating the most to the global synchrotron loss
are not external but central. In consequence, the most sensitive parameters to the
global synchrotron loss are the temperature and density on the plasma axis. The
second observation taken out from these curves is the strong increase of dPem/dV
with the value of the electron temperature.
The effect of the shape of temperature profiles described by generalized parabolic

expressions (Eq. (3.25)), has been shown in Ref. [Tam88]. This effect has also been
included in the FMGG fit [Fid92]. Note that differences between our calculations
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Figure 3.20: (a) On the left side, electron temperature profiles described by gener-
alized parabolic expressions with αT = 0, 0.5, 1.0, 1.5, 2.0, keeping the density
averaged temperature constant; on the right side, the corresponding power loss spa-
tial density in terms of emission; (b) evolution of synchrotron losses with the peaking
parameter αT .
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and those of FMGG fit are lower than 9% for the above profiles.

“Advanced” profiles: Next, we will see that temperature profiles in internal trans-
port barrier (ITB) regimes, which are of considerable interest for a reactor, cannot
be described accurately with such expressions, as far as synchrotron losses are con-
cerned.
In order to quantify the effect of arbitrary profiles for the electron temperature

on the global synchrotron losses, we compare the results considering two different
models for the electron temperature profile. The first one is a simple model for an
“advanced” temperature profile typical of ITB regimes, which is characterized by the
ITB position ρITB expressed in normalized radius (see Fig. 3.21). The temperature
at the magnetic axis is taken to be 40 keV, and the temperature at the plasma edge
is taken to be 1 keV. In this model, the slopes inside the ITB and in the outer part
of the plasma cross-section are fixed to 4.17T0 and 0.45T0, respectively, as well as
the temperature at the inside boundary of the ITB (0.9T0) and the edge temperature
(Tedge = 1 keV).
The second model for the electron temperature profile is a generalized parabolic

model, with the peaking parameter αT giving the best fit5 to the “advanced” model
for the same value of the temperature at the magnetic axis (40 keV). The volume
average temperatures and the energy content obtained with one or the other model
are not significantly different.
We take the European Reactor nominal parameters with a fixed density profile

given by a generalized parabolic profile (ne0 = 1.5 × 1020 m−3, αn = 0.5). In
Fig. 3.21 we can see the substantial difference, around 20-40%, between global syn-
chrotron losses computed with the “advanced” model and the generalized parabolic
one. The absolute value of the power loss decreases for more central barrier posi-
tions owing to a lower plasma thermal energy content. On the other hand, the relative
difference between the two temperature models increases when the ITB position is
more central.
In Fig. 3.21 we see that dPem/dV is peaked at the plasma centre in the case of

an electron temperature profile described by a generalized parabolic model, whereas
the maximum of dPem/dV is displaced to the inside boundary of the ITB in the case
of the “advanced” model. The emission and absorption processes, depending on
the electron temperature, are competing to build the dPem/dV profile: the radiation
emission strongly increases with temperature, which is higher in the plasma centre,
whereas the plasma self-absorption of the emitted radiation is lower in the more ex-
ternal plasma layers. In ITB confinement regimes, however, both conditions are met
since the temperature is maintained at high values up to a non-central plasma layer;
that is the reason why, for a same plasma thermal energy content, the synchrotron

5In the volume averaged least square meaning.
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Figure 3.21: (a) On the left side, the electron temperature profile given by the “ad-
vanced” model with an ITB at 0.7 normalized radius, and the best fit generalized
parabolic profile (αT ' 1.1); on the right side, the corresponding power loss spatial
density in terms of emission; (b) synchrotron losses for different positions of the
ITB for each temperature model.
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losses are higher in such a regime. As a result, the power loss due to synchrotron
radiation plays a more important role in the plasma power balance when the electron
temperature has an “advanced” profile.

3.8.4 New fit for the calculation of global synchrotron losses
In the previous Sections we have shown that present approximate expressions

(in particular the FMGG fit) do not describe correctly either the dependence of syn-
chrotron losses on the aspect ratio or the important effect of temperature profiles
with a shape different from a generalized parabolic one. On the other hand, the
time required for the complete calculation of synchrotron losses with present day
computers is unreasonable for system studies (typically 30 minutes CPU to obtain
one value of Φ∗ with a 2% precision using an Alpha EV6-500 processor). There-
fore, a new fit for a fast calculation of the global synchrotron losses is derived using
multiple non-linear regression, from a database consisting of about 3000 complete
computations of Eq. (3.59).
In order to minimize the execution time required to build the database, the code

(implementing the complete formulation) has been adapted and optimized for mas-
sively parallel processing. Computations have been performed on the parallel ma-
chine Compaq SC232, owning to the Commissariat à l’Énergie Atomique. Using 32
processors (type EV67-667) of such a machine, the calculation time to obtain one
value of Φ∗ has been reduced to typically two minutes CPU with a 2% precision.

Fitting variables: The dimensionless parameter pa0 defined using Eq. (3.28) with
values at the plasma axis, and in which the magnetic field and central density depen-
dences are gathered, is used as a fitting variable. Strictly speaking, this combination
appears only in the frame of Trubnikov’s approximate method for the calculation
of the absorption coefficients. Nevertheless, when the quasi-exact method is used,
the synchrotron losses computed using different sets of magnetic field and central
density resulting in the same central pa0 parameter, differ by less than 5%.
The electron temperature profile is modelled using the following radial depen-

dence:
Te(ρ) = (Te0 − Tea)

¡
1− ρβT

¢αT + Tea , (3.62)

where αT and βT are peaking parameters for the electron temperature profile, and
Tea is the edge electron temperature. Eq. (3.62) allows the description of a large va-
riety of profiles including “advanced” profiles. Here, the edge electron temperature
Tea is fixed to 1 keV for our calculations.
The density profile, on the other hand, is described using a generalized parabolic

profile with peaking parameter αn, since the maximum difference between syn-
chrotron losses computed using an arbitrary density profile or using the correspond-
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Figure 3.22: Synchrotron radiation losses computed with an “advanced” model
(AM) for the density profile against those computed with the best generalized
parabolic model (GM).

ing best generalized parabolic one, is always marginal. As an illustration, we com-
pare the results considering an “advanced” model for the density profile (as that
of Eq. (3.62)), with those considering the best parabolic profile which fits the “ad-
vanced” profile6. Fig. 3.22 shows the good agreement in the 58 pairs of numerical
calculations of synchrotron losses using the first profile (αn = [0, 8] and βn = [1, 8])
or the latter one, with a maximum difference lower than 5%.
The other fitting variables are the temperature Te0 at the magnetic axis and the

plasma vertical elongation κ.

Regression result: After an exhaustive statistical analysis of interdependences be-
tween fitting variables, we propose the following fit for the global calculation of
synchrotron losses, for an aspect ratio A = 3:

Φ∗fit (A=3) = 6.86× 10−5κ0.79 (16 + Te0)2.61

× ¡p0.41a0
+ 0.12Te0

¢−1.51
K (αn,αT ,βT ) , (3.63)

6In the volume averaged least square meaning, and for a given density at the plasma axis.
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where Te0 is expressed in keV and the profile factor K is given by the following
expression:

K (αn,αT , βT ) = (αn + 3.87αT + 1.46)
−0.79

× (1.98 + αT )
1.36 β2.14T

× ¡β1.53T + 1.87αT − 0.16
¢−1.33 . (3.64)

Appendix C contains the description of the multidimensional weighted least-
squares method, which has been used for deriving this fit, as well as the analysis of
different tested models.
For the entire range of fitting variables, i.e. 10 < Te0 < 100 keV, 4 × 102 <

pa0 < 1 × 104, 1 < κ < 2.5, 0 < αn < 2, 0 < αT < 8, and 1 < βT < 8, the
resulting RMSE is found to be 5.8%. Fig. 3.23 illustrates the agreement of the fit
with the complete computation using Eq. (3.60) for different temperature subsets.
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Figure 3.23: Φ∗num (A=3) parameter versus the proposed fit Φ
∗
fit (A=3) for the principal

dataset.

The distribution of regression residuals is consistent with a normal distribution
of standard deviation σ = RMSE, as seen in Fig. 3.24. On the ordinate of this
graph, we have the number of residuals nεi which have a value within the interval
εi ± ∆H/2 normalized both to the box width ∆H and to the total number of data
ndata.
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Figure 3.24: Distribution of regression residuals represented by red boxes, and the
normal distribution N (0,RMSE) represented by the black curve.

In order to take into account aspect ratios different from 3, a correction factor G
is introduced:

Φ∗fit = Φ∗fit (A=3)G (A) . (3.65)

As seen in Fig. 3.19, the power loss due to synchrotron radiation grows as the aspect
ratio decreases, when a is kept constant (in this case, Φ∗fit (A=3) is also constant for
varying values of A). At high aspect ratios (A > 6), although Psyn increases with
R, the normalized synchrotron loss (Φ∗ parameter) saturates. This is due to the fact
that the magnetic field inhomogeneity vanishes for large A. For the above reason an
exponential form is proposed for the G correction factor:

G (A) = 0.93 [1 + 0.85 exp (−0.82A)] , (3.66)

giving an RMSE of 6.2% with respect to a secondary dataset consisting of 640 com-
plete computations of Eq. (3.60), for the same range of fitting variables as the prin-
cipal dataset and for an aspect ratio interval 1.5 < A < 15.
Using engineering plasma parameters, Eq. (3.65) leads to a practical formula

for the synchrotron power loss (expressed in MW) including the estimation of wall
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reflections proposed in Ref. [Tru79]:

Psyn (MW) = 3.84× 10−8 (1− r)1/2Ra1.38κ0.79
×B2.62t0

n0.38e0(20)
Te0 (16 + Te0)

2.61

×
µ
1 + 0.12

Te0
p0.41a0

¶−1.51
K (αn,αT , βT )G (A) (3.67)

with
pa0 = 6.04× 103

ane0(20)
Bt0

,

where units arem for the major and minor radiiR and a,T for the toroidal magnetic
field Bt0, 1020m−3 for the central density ne0(20), and keV for the central electron
temperature Te0 , whileK and G are given in Eqs (3.64) and (3.66), respectively.
The accuracy of the proposed fit for the fast calculation of synchrotron losses in

system studies is acceptable considering the uncertainties in the other terms of the
thermal equilibrium equation (Eq. (2.1)). For example, the RMSE for the IPB98(y,2)
ELMy H-mode thermal confinement scaling [IPB99] is 15.6%. It should also be
noted that the wall reflection coefficient for the synchrotron radiation is poorly
known.
In Fig. 3.25 we compare the behaviour of the numerical transparency factor pa-

rameter, the proposed fit (Eq. (3.65)) and the FMGG fit when varying the values of
the central electron temperature Te0 , the central dimensionless parameter pa0 , the
vertical elongation κ, the density peaking factor αn, the temperature peaking factors
αT and βT , and the aspect ratioA (keeping a constant). In each case, the non-varying
dimensionless variables are taken from the European Commercial Reactor nominal
values. For all variables, the proposed fit shows a very good agreement with the
complete calculation. We also note that the FMGG fit is not accurate at very high
temperatures, does not describe precisely the aspect ratio dependence (as already
mentioned in Section 4), and of course does not include the βT dependence.
The results in Fig. 3.25 confirm the strong increase of the synchrotron losses with

the central electron temperature (a), the drastic decrease with the pa0 parameter (b),
and the high sensitivity of synchrotron losses to the temperature peaking parameters
αT (e) and βT (f). Let us also note the factor 2 of increase between circular and very
elongated plasmas (κ = 2.5), as seen in Fig. 3.25(c).

3.9 Summary
A complete formulation of synchrotron radiation losses without wall reflections

has been performed for realistic plasma conditions, including a toroidal geometry
with arbitrary aspect ratio, arbitrary shapes for density and temperature profiles, and
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Figure 3.25: Comparison of the Φ∗ parameter calculated numerically, calculated
with the proposed fit (Eq. (3.65)) and calculated with the FMGG expression when
varying the values of (a) the central electron temperature Te0 , (b) central opacity fac-
tor pa0 , (c) vertical elongation κ, (d) density peaking factor αn, temperature peaking
factors (e) αT and (f) βT , and (g) aspect ratio A.
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a quasi-exact calculation of the plasma self-absorption. Trubnikov’s approximate
method for the calculation of the absorption coefficients, which gives much faster
calculations, has been shown to introduce non-negligible errors.
The case of cylindrical homogeneous plasmas with circular cross-section has

been analysed using Trubnikov’s approximate method for the calculation of the ab-
sorption coefficients. In this case, we obtain an acceptable agreement between our
numerical results and those reported by Trubnikov. When an elliptical cross-section
is considered, it is found that the synchrotron loss dependences on the temperature
and opacity factor are fairly independent from the value of the elongation. This
behaviour is also observed for toroidal plasmas.
For generalized parabolic profiles, when all toroidal effects are taken into ac-

count, and when we use the quasi-exact calculation of the absorption coefficients,
our results differ significantly from those obtained using the FMGG fit, for aspect
ratios differing from 3.5. The agreement of this fit with our formulation, for aspect
ratios of about 3.5, is explained by a compensation of the errors introduced by the
description simplified phenomena and geometry, and by the approximations made
for the calculation of the plasma self-absorption.
For profiles in which high temperatures are maintained up to a non-central layer

(which is the case of ITB regimes), we see a strong enhancement of synchrotron
losses (around 20-40%) with respect to the result corresponding to the best general-
ized parabolic fit. The strong effect of the temperature profile shape on synchrotron
losses has been explained using the spatial density of the synchrotron power loss in
terms of emission, which shows the plasma region that participates the most to the
global synchrotron losses as a competition between emission and absorption pro-
cesses.
In Chapter 6, we illustrate that synchrotron losses become significant in the ad-

vanced high temperature plasmas envisaged for a continuous D-T tokamak reactor.
Considering the quantitative importance of the above effects, which are not included
in present approximate expressions, and the magnitude of synchrotron losses in the
thermal balance of a D-T tokamak reactor plasma, we propose a new fit for the fast
calculation of this quantity. This fit gives a good accuracy for the entire range of
plasma parameters of interest for the thermonuclear energy problem.
The remaining issue in the study of synchrotron losses is the rigorous analysis

of wall reflections, which cannot be carried out in toroidal geometry using the for-
mulation presented here. To treat this problem, a Monte Carlo approach must be
developed, which would also allow the investigation of the energy redistribution on
the plasma profile.
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