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1998





ON THE SLOPE AND GEOGRAPHY

OF FIBRED SURFACES

AND THREEFOLDS

Memoria presentada por Miguel Ángel Barja Yáñez para
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a Fernando





Agradecimientos

Muchas han sido las personas que con su apoyo han hecho posible la rea-
lización de esta memoria.

En primer lugar quiero mostrar mi profundo agradecimiento a los dos di-
rectores de este trabajo. Fernando Serrano Garćıa me introdujo en estos temas
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Introducción1

1. Geograf́ıa de superficies y sólidos

En la clasificación birracional de variedades proyectivas complejas, aparece
un primer invariante discreto que es la dimensión de Kodaira. Si X es una
variedad y KX es su divisor canónico, se define la dimensión de Kodaira de X
como el máximo de las dimensiones de las imágenes de X por las aplicaciones
racionales inducidas por los sistemas pluricanónicos. Tenemos una primera
acotación

0 ≤ kod(X) ≤ dim(X).

Las variedades de dimensión de Kodaira máxima se denominan variedades
de tipo general. La clasificación por dimensión de Kodaira es muy grosera en su
clase superior: la mayoŕıa de las variedades son de tipo general. Para acometer
un estudio más detallado de éstas se puede establecer el siguiente programa.
En primer lugar se identifica un elemento distinguido de la clase de equi-
valencia birracional: es el denominado modelo minimal. Viene caracterizado
por la positividad del divisor canónico (ha de ser nef) y por poseer a lo sumo
una cierta clase de singularidades. Se conoce su existencia para el caso de su-
perficies y sólidos. En segundo lugar, podemos hacer una clasificación fijando
ciertos invariantes numéricos de las variedades. Los primeros candidatos son
los que se pueden calcular a partir de las clases de Chern de la variedad.

1 En cumplimiento de la normativa vigente de la Universitat de Barcelona para la realización

de tesis doctorales en lengua no oficial, incluimos en esta introducción un resumen de los

contenidos de la memoria aśı como una sección dedicada a la descripción de los resultados

originales obtenidos más importantes.
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2 Introducción

El problema de clasificación se divide en dos

1.- Fijados unos productos entre clases de Chern cij = ci(X)cj(X) ∈ Z
(i+ j = dimX) construir un espacio de moduli para las variedades poseyendo
esos invariantes.

2.- Determinar qué invariantes cij son posibles.

En el caso de superficies para el primer problema disponemos del si-
guiente teorema de Gieseker: fijados c21(X) y c2(X), existe un espacio de mo-
duli grosero quasi-proyectivo para las superficies de tipo general minimales con
esos invariantes. A partir de aqúı el estudio de este espacio de moduli (número
de componentes, dimensiones,...) constituye todo un campo dentro del estudio
de las superficies de tipo general.

Nosotros vamos a interesarnos en la segunda cuestión, que básicamente
consiste en decir cuándo el anterior espacio de moduli es no vaćıo. Este pro-
blema es el que se conoce genéricamente como el de la geograf́ıa de las va-
riedades de tipo general. Vamos a hacer una pequeña descripción de la situación
en el caso de las superficies y los sólidos.

En el caso de las superficies los invariantes a estudiar son c21 = K2
X y c2.

Si llamamos pg(X) = h0(X,OX(KX)) al género geométrico de X, q(X) =
h1(X,OX) a la irregularidad y χOX = pg(X)− q(X) + 1, una fórmula clásica
de Noether nos dice que

12χOX = K2
X + c2.

Aśı es indiferente estudiar la pareja (K2
X , c2) a estudiar (K2

X , χOX). En
ocasiones, de hecho, es interesante considerar la pareja (K2

X , pg(X)) o incluso
la terna (K2

X , pg(X), q(X)). Nos va a interesar determinar la región del plano
en la que se mueven estos invariantes (o de R3 en el caso de incluir la irregula-
ridad). Esta región está delimitada por rectas correspondientes a desigualdades
lineales entre los invariantes de X. Entenderemos el problema geográfico, en
un contexto más general, como el problema de encontrar acotaciones entre los
invariantes numéricos de X. Las primeras acotaciones que se tienen para el
caso de superficies de tipo general son

1.- K2
X + c2 ≡ 0 (mod 12) (Fórmula de Noether)

2.- K2
X > 0, c2 > 0

3.- K2
X ≤ 3c2 o bien K2

X ≤ 9χOX (Desigualdad de Miyaoka-Yau)
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4.- K2
X ≥ 2pg(X)− 4 (Desigualdad de Noether).

Se sabe que la mayoŕıa de los puntos de coordenadas enteras en el plano
encerrados por estas desigualdades corresponden a clases de Chern de superfi-
cies minimales.

Podemos restringir el problema a ciertas clases de superficies de tipo ge-
neral. Una superficie de tipo general tiene una aplicación pluricanónica con
imagen de dimensión 2. De hecho, usualmente la aplicación canónica es bi-
rracional. En este caso decimos que X es una superficie canónica. Para éstas
puede mejorarse la cota inferior de K2

X : un resultado clásico de Castelnuovo
afirma que

K2
X ≥ 3pg(X)− 7.

De hecho, si incluimos la irregularidad también tenemos (cf. [21], [52])

K2
X ≥ 3pg(X) + q(X)− 7.

La primera fórmula es fina y existen ejemplos para todos los valores de
pg(F ) (por supuesto, todos ellos con q(X) = 0).

En el caso de los sólidos la situación es similar pero menos conocida. Se
tienen las desigualdades (bajo la hipótesis KX = −c1 amplio):

1.- c1c2 ≡ 0(mod24)

2.- c31 < 0, c1c2 < 0

3.- −c31 ≤
8
3
(−c1c2) (Miyaoka-Yau).

Bajo hipótesis adicionales puede demostrarse que aqúı también se verifica
K3
X ≥ 2pg(X)− 4. Cuando el sólido es canónico tenemos (cf. [43])

K3
X ≥ 4pg(X) + c (c = constante).

El problema geográfico tiene una especial interrelación con el estudio de
las fibraciones. Una fibración entre dos variedades proyectivas f : X −→ Y
es un morfismo exhaustivo con fibras conexas. En el caso de superficies toda
fibración no trivial es necesariamente sobre una curva. En primer lugar hemos
de observar que toda superficie puede ser fibrada birracionalmente sobre P1

simplemente resolviendo los puntos base de un sistema lineal. De todas formas,
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con esta construcción puede perderse la minimalidad de la superficie si hemos
de explotar para resolver algún punto base. Por otro lado, la mayoŕıa de los
ejemplos de superficies de tipo general rellenando el área descrita anteriormente
provienen de superficies fibradas (de hecho Persson cubre prácticamente todo
el área de existencia desde la cota inferior de K2

X hasta K2
X ≤ 8χOX con

superficies fibradas por curvas de género 2). Aśı pues, aparece de forma natural
el problema del estudio de las fibraciones desde un punto de vista geográfico,
que podŕıamos describir aśı: dada una fibración f : X −→ Y con fibra general
F estudiar cómo se relacionan los invariantes numéricos de X, Y y F .

2. Variedades fibradas

Sean X e Y dos variedades proyectivas lisas y f : X −→ Y una fibración.
En el estudio de variedades fibradas juega un papel relevante el haz dualizante
relativo ωX/Y y las imágenes directas de sus potencias Rif∗ω

⊗r
X/Y . Estos últimos

no son en general haces localmente libres, aunque śı lo son bajo hipótesis adi-
cionales sobre la fibración (que el divisor de ramificación sea a cruzamienntos
normales, por ejemplo). En el caso de ser localmente libres, resultan ser nef,
es decir, cualquier cociente suyo es de grado mayor o igual que cero. Si la fibra
general F de f es una variedad de tipo general, entonces además ωX/Y es un
haz inversible nef, lo cual se traduce equivalentemente en que su restricción
a cualquier curva en X es de grado mayor o igual que cero. El caso sobre el
que se tiene más información ocurre cuando la variedad Y es una curva. En
este caso, si i = 0 y r ≥ 2, los fibrados considerados resultan ser amplios (y
por tanto cualquier cociente suyo tiene grado estrictamente positivo). Cuando
i = 0, r = 1 el fibrado E = f∗ωX/Y puede descomponerse segun un clásico
teorema de Fujita

E = f∗ωX/Y = A⊕ E1 ⊕ . . .⊕ Er

donde los fibrados Ei son fibrados estables de grado cero sobre Y y A es un
haz amplio. El número de fibrados triviales en la anterior descomposición
corresponde a la diferencia entre la irregularidad q(X) = h1(X,OX) de X y
el género b = g(Y ) de Y . Hay una conjetura del propio Fujita que afirma que
tales fibrados debeŕıan ser semiamplios, lo cual equivale a decir que con un
cambio de base se converitiŕıan en suma directa de triviales.

La importancia de la positividad del fibrado E aparece en el estudio de
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conjeturas Cn,m que relacionan las dimensiones de Kodaira de X, Y y F , aśı
como en la construcción de espacios de moduli quasiproyectivos para variedades
polarizadas (cf. [89]).

Como ya hemos observado, desde un punto de vista geográfico es interesante
conocer la relación entre los invariantes numéricos de las variedades que apare-
cen en una fibración: la variedad base Y , la variedad de partida X y la fibra
general F . Las técnicas generales disponibles se basan en ciertas propiedades
de positividad (nefitud) tanto de f∗ωX/Y como de ωX/Y y funcionan sólo en
el caso en que Y sea una curva. El caso más estudiado es desde luego el más
sencillo, el de las superficies fibradas sobre curvas. Es también el que más
puede aportar al más desarrollado tema de la geograf́ıa de las superficies de
tipo general. Recientemente se ha dado el primer paso en el estudio de los
sólidos fibrados sobre curvas, si bien la casúıstica se hace más complicada.

3. Superficies fibradas

3.1. Invariantes

Sea S una superficie lisa, B una curva lisa y f : S −→ B una fibración.
Supondremos siempre que la fibración es relativamente minimal, es decir, que
no hay (-1)-curvas contenidas en las fibras. Llamemos F a la fibra general,
g = g(F ) y b = g(B). También llamaremos como arriba E = f∗ωS/B.

Una primera relación sencilla entre los invariantes de la fibración es la
siguiente: si consideramos la irregularidad de S q(S) = h1(S,OS) se tiene que

b ≤ q(S) ≤ b+ g.

Tenemos aún más: las igualdades extremas están completamente caracte-
rizadas. La igualdad b = q(S) ocurre si y sólo si el morfismo de Albanese de S
factoriza a través de B (situación a la que nos referiremos, si b ≥ 1, diciendo
que f es una fibración de Albanese). Por otro lado la igualdad b+ g = q(S) se
verifica si y sólo si S es birracionalmente equivalente a un producto.

La forma más adecuada de estudiar otros invariantes numéricos en esta
situación es considerar los invariantes relativos

K2
S/B = (KS − f

∗KB)
2 = K2

S − 8(b− 1)(g − 1)
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χf = (−1)dimS(χOS − χOBχOF ) = χOS − (b− 1)(g − 1)

ef = e(S)− e(B)e(F ) = e(S)− 4(b− 1)(g − 1)

donde KS/B es el divisor canónico relativo y e es la caracteŕıstica de Euler
topológica. Respecto a ésta, hay un resultado clásico que la determina

ef =
∑

(e(Fi)− e(F ))

donde la suma está tomada sobre todas las fibras singulares de f y donde
e(Fi) − e(F ) ≥ 0 (de hecho e(Fi) = e(F ) ocurre si y sólo si g = 1 y Fi es un
múltiplo de una curva eĺıptica lisa).

Un cálculo inmediato v́ıa Riemann-Roch en S y B y la sucesión espectral
de Leray nos dice que

χf = degE .

El primer resultado que relaciona las cantidades anteriores es la fórmula de
Noether, que en versión relativa afirma

12χf = K2
S/B + ef .

Restrinjámonos a partir de ahora al caso en que F es una curva de tipo
general, lo cual se traduce en pedir que g ≥ 2 (es una condición necesaria,
aunque no suficiente, para que S sea de tipo general). La nefitud de KS/B es
aqúı un resultado de Arakelov que, junto a la fórmula de Noether, nos permite
afirmar que

K2
S/B ≥ 0, χf ≥ 0, ef ≥ 0

y caracterizar la igualdad: si K2
S/B = 0 entonces f es isotrivial (es decir, todas

las fibras lisas de f son isomorfas entre śı), si ef = 0 entonces f es lisa (es
decir, f no tiene fibras singulares) y finalmente si χf = 0 entonces f es a la
vez lisa e isotrivial (en cuyo caso a f se la denomina localmente trivial).

Supongamos que f no es localmente trivial. Entonces podemos definir la
pendiente de la fibración f como el cociente
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λ(f) =
K2
S/B

χf

en términos de la cual las anteriores desigualdades se leen aśı:

0 ≤ λ(f) ≤ 12.

A la vista de los resultado conocidos sobre invariantes de fibraciones que
resumiremos más adelante, el concepto de la pendiente de una fibración aparece
como relevante. Una de las primeras propiedades de la pendiente es que es
estable por operaciones naturales con fibraciones. La pendiente es invariante
por cambios de base

S̃[r]σ̄[d]f̃S[d]f B̃[r]σB

siempre y cuando σ no ramifique sobre la imagen de alguna fibra no semiestable
de f . También es invariante por recubrimientos étales de S.

3.2. Pendiente y moduli

Tal vez la forma más sencilla de entender la adecuación del concepto de pen-
diente al estudio de las superficies fibradas es a través de una interpretación
alternativa de la pendiente en el caso particular en el que la fibración sea
semiestable, es decir, cuando todas las fibras de f son semiestables en el sen-
tido de Deligne-Mumford. Esta interpretación nos sugerirá también el com-
portamiento esperado de la pendiente.

Sea M la compactificación de Deligne-Mumford del espacio de moduli
Mg de curvas lisas de género g, adjuntando las curvas singulares estables.
Dada una fibracion f de curvas semiestables, tras la contracción de (-2)-
curvas contenidas en fibras (que producen singularidades muy sencillas) pro-
ducimos una fibración por curvas estables. Tenemos entonces un morfismo
bien definido de B en M cuya imagen es una curva B si la fibración no es
isotrivial. Rećıprocamente dada una curva B en M podemos producir una
fibración semiestable sobre un cambio de base de una desingularización de B.
Ambas construcciones no son exactamente inversas mutuas, pero están do-
minadas por un cambio de base común. Dado que trabajamos con fibraciones
semiestables y la pendiente es entonces invariante por cambios de base, es in-
diferente trabajar con una u otra fibración. Aśı pues confundiremos en lo que
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sigue B con B y supondremos que la fibración f está directamente inducida
sobre B.

La pendiente tiene una buena interpretación en términos de productos in-
tersección de B con ciertos divisores destacados en M. Hay aśı un trasvase
entre problemas geográficos (acotaciones) de la pendiente y problemas clásicos
sobre la geometŕıa deMg.

Llamemos h a la clase del divisor de Hodge enM y δ a la clase del divisor
que representa curvas singulares enM. En este contexto se tiene que

δB = ef

hB = degf∗ωS/B = χf

y usualmente se define la pendiente de B como

s(B) :=
δB

hB
.

Por tanto se tiene a través de la fórmula de Noether que

λ(f) + s(B) = 12.

Como un ejemplo de la relación de la pendiente con la geometŕıa de M
podemos mencionar el siguiente: es bien conocido que KM ∼Q 13h− 2δ y que

M es de tipo general si g ≥ 24. Tendremos que toda fibración semiestable con
λ(f) < 11

2
(s(B) > 13

2
) verifica

(mKM)B < 0

y por tanto B está en el lugar base de todos los sistemas pluricanónicos deM.

Por un teorema de Xiao para fibraciones arbitrarias (y de Cornalba- Harris
para fibraciones semiestables) se tiene que

s(B) ≤ 8 +
4

g

pero cuyo ĺımite máximo sólo es alcanzado por ciertas fibraciones hipereĺıpticas
(donde la fibra general es una curva hipereĺıptica). Si B pasa por un punto
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general deM esta cota puede mejorarse sustancialmente. Por un resultado de
Mumford, Harris y Eisenbud obtenemos

s(B) ≤ 6 + o

(
1

g

)

y que las fibraciones que no verifican esta desigualdad están contenidas en la
clausura Dk de un cierto lugar k−gonal. Por ejemplo, si g es impar, entonces
se tiene que

s(B) ≤ 6 +
12

g + 1

k =
g + 1

2

que corresponde a la cota λ(f) ≥ 6 g−1
g+1

.

Aparece aśı una pregunta natural: ¿existe una estratificacion J1 ∪ J2 ∪
... ∪ Jl = M tal que J1 es el lugar hipereĺıptico y Jl−1 = Dk (descrito por
el resultado de Mumford, Harris y Eisenbud), Jl = M \ Jl−1 para la cual
tengamos sucesivamente mayores pendientes mı́nimas λj en M \ Jj?. Esta
estratificación debeŕıa de contemplar al menos la gonalidad (o el ı́ndice de
Clifford) de las curvas.

3.3. Resultados conocidos. Problemas

Hemos de tener en cuenta que el problema de estudiar la pendiente de
fibraciones arbitrarias no puede reducirse al problema de estudiar fibraciones
semiestables. En efecto, dada una fibración cualquiera, podemos obtener una
semiestable básicamente a través de un cambio de base. Desafortunadamente
ese cambio de base ramifica necesariamente sobre la imagen de las fibras no
semiestables. En este proceso la variación de K2

S/B, χf y ef es bien conocida
por un trabajo reciente de Tan (cf. [86], [87]) pero esta información no permite
controlar cómo vaŕıa la pendiente durante el cambio de base. De todas formas,
la pregunta anterior sobre la estratificación deM tiene en el contexto de las
fibraciones generales una traducción inmediata: ¿cómo afecta la gonalidad de
la fibra general F a la pendiente de la fibración?.

Estudiar la pendiente λ(f) de las superficies fibradas consiste en dar buenas
cotas para su variación en términos de la geometŕıa de las variedades implicadas
(la propia superficie, la curva base y las fibras). Muy poco se sabe de las cotas
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superiores de λ(f) aparte del mencionado resultado general λ(f) ≤ 12. No se
disponen de técnicas generales y únicamente es conocido que

Xiao ([94]), Matsusaka ([68]). Si f no es lisa y la fibra general de f es
hipereĺıptica de género g, entonces

λ(f) ≤
4(g − 1)(3g + 1)

g2
si g par

λ(f) ≤
4(3g2 − 2g + 2)

g2 + 1
si g impar.

En general se han concentrado los esfuerzos en el estudio de cotas inferiores
de λ(f). El resultado básico en esta dirección es el mencionado anteriormente
y debido a Xiao:

Xiao (cf. [92]). Si g ≥ 2 y f no es localmente trivial

λ(f) ≥ 4
g − 1

g
.

Posteriormente Konno (cf. [63]) demuestra que la igualdad sólo pueden
verificarla ciertas fibraciones hipereĺıpticas. Aśı pues aparece de manera natu-
ral el problema de estudiar las fibraciones no hipereĺıpticas. El paso siguiente
es claramente estudiar las fibraciones en las cuales la fibra general es trigonal.
El resultado es

Konno ([65]). Si F es una curva trigonal y g ≥ 6

λ(f) ≥
14(g − 1)

3g + 1
.

También se tiene en un caso particular

Stankova-Frenkel([85]). Si F es una curva trigonal y f es semiestable

λ(f) ≥
24(g − 1)

5g + 1
;

si, además, la curva F tiene el invariante de Maroni general

λ(f) ≥ 5−
6

g
.
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Un intento de atacar el problema más en general ha sido llevado a cabo
recientemente por Konno (cf. [66]), pero las fórmulas obtenidas contienen
términos no fácilmente calculables y dependen fuertemente de una conjetura
de M. Green sobre las syzygias de las curvas canónicas. De todas formas, cabe
destacar un caso particular que coincide con la cota dada por Mumford, Harris
y Eisenbud en el caso semiestable

Konno([66]). Si F tiene ı́ndice de Clifford máximo (es decir, es general en
moduli), g=g(F) es impar y la conjetura de Green es cierta, entonces

λ(f) ≥ 6
g − 1

g + 1
.

Cabe destacar también los resultados de Konno (cf. [63]) para fibraciones
de género bajo (g = 3, 4 y 5), obtenidos independientemente por Chen ([17])
para g = 4, perfilando la cota general de Xiao. También es importante notar
que apenas se conocen fibraciones no hipereĺıpticas con λ(f) < 4 (sólo para
g ≤ 6).

Todos estos resultados estudian cómo se ve afectada la pendiente de una
fibración por la geometŕıa de la fibra general. Cabe preguntarse también por la
influencia en la pendiente de otras propiedades, globales, de S. En este sentido
tenemos

Xiao ([92]). Si f no es una fibración de Albanese (es decir, si q = q(S) >
b = g(B)), entonces

λ(f) ≥ 4

y la igualdad se verifica sólo si q = b+ 1.

En la misma referencia, Xiao observa tambien que la positividad del fibrado
E = f∗ωS/B influye en la pendiente y da evidencias de que si la pendiente es
menor que 4 entonces E debeŕıa ser amplio.

A la vista de las anteriores consideraciones, cabe plantearse tres problemas
(los dos primeros mucho más generales que el tercero) en el estudio de las
superficies fibradas desde un punto de vista geográfico:
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PROBLEMA 1: Estudio de la influencia de la geometŕıa de la fibra
general en la pendiente. En particular, cómo afecta la existencia de series li-
neales especiales. Aqúı se encuadra el problema de la estratificación planteado
en el conjunto de las fibraciones semiestables. Tal y como ya aparece en el
resultado sobre fibraciones trigonales de Stankova-Frenkel, el comportamiento
no dependerá sólo de la gonalidad, sino de posibles invariantes discretos adi-
cionales.

PROBLEMA 2: ¿Cómo influyen invariantes globales de S (básicamente la
irregularidad) en la pendiente de f?. El resultado anterior de Xiao, sugiere que
la pendiende mı́nima de f depende crecientemente de la diferencia s = q(S)−b.

PROBLEMA 3: ¿Cómo son de especiales las fibraciones con pendiente
baja (λ(f) < 4)?. El comportamiento de estas fibraciones está sugerido por
un estudio más detallado de los resultados anteriores. El fibrado E = f∗ωS/B
debeŕıa ser amplio y la fibra general F no hipereĺıptica para g >> 0.

4. Sólidos fibrados sobre curvas

Sea ahora T un sólido y f : T −→ B una fibración relativamente minimal
sobre una curva lisa B (aqúı el hecho de que la fibración sea relativamente
minimal puede introducir ciertas singularidades en T ). Como en el caso de las
superficies fibradas se pretende relacionar los invariantes numéricos de T , B y
la fibra general F . Aqúı los invariantes relativos a considerar pueden ser

K3
T/B = K3

T − 6K2
F (b− 1)

∆f = degE

χf = (−1)dimT (χOT − χOBχOF ) = χOFχOB − χOT

ef = e(T )− e(B)e(F ).

Tenemos también una desigualdad para la irregularidad

b ≤ q = q(T ) ≤ b+ q(F ).

Aparecen no obstante comportamientos diferentes. Aśı por ejemplo ya no es
cierto que la igualdad q(T ) = b+q(F ) implique la trivialidad de f . Pero lo que
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será más importante para nosotros: no es cierto ahora que χf = ∆f . Además,
aunque ∆f es positivo al ser el grado de un fibrado nef, no es conocido que χf
sea positivo, siendo de los dos el invariante que acarrea información geográfica
más detallada.

El único resultado general conocido en este contexto es el siguiente (damos
una version simplificada del teorema; en Theorem 5.1 podemos encontrar una
versión completa)

Ohno ([73]). Si F es una superficie de tipo general y pg(F ) ≥ 3, entonces

K3
T/B ≥ (4− ε(pg(F )))∆f ≥ (4− ε(pg(F )))χf

donde ε(pg(F )) ∼ o( 1
pg(F )

).

Observemos que la segunda desigualdad no proporciona ninguna infor-
mación si χf < 0 (pues K3

T/B ≥ 0 al ser un divisor nef).

Los tres problemas enumerados en el caso de superficies fibradas pueden
ser trasladados con cambios menores a este contexto. Aparece un problema
añadido: demostrar que χf no es negativo. En ese caso, podŕıamos definir una
pendiente para el caso de sólidos fibrados sobre curvas en términos de la cual
el teorema de Ohno tiene una traducción inmediata.

5. Contenidos y resultados de esta memoria

Esta memoria está dedicada al estudio de la geograf́ıa de superficies y
sólidos canónicos y de las superficies y sólidos fibrados sobre curvas.

5.1. Contenidos

Caṕıtulo 1. Este primer caṕıtulo está dedicado a la exposición y desarrollo
de las principales técnicas que utilizaremos a lo largo de la memoria. Algunos
resultados son originales, otros son técnicas bien conocidas y en otros casos
extendemos métodos o técnicas conocidos y desarrollados en dimensiones bajas
a dimensión superior. La sección §1.4 es fruto de un trabajo conjunto con Juan
Carlos Naranjo.

En §1.1 damos las definiciones y notaciones básicas aśı como como una se-
rie de construcciones elementales y bien conocidas en variedades fibradas sobre
curvas f : X −→ B; en particular se construye el morfismo canónico relativo
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de una fibración. La sección §1.2 está dedicada a explicar el método más im-
portante en el estudio de los invariantes de una variedad fibrada sobre una
curva, debido básicamente a Xiao. Este método permite dar una cota inferior
a la autointersección de un divisor nef D en X usando información de sistemas
lineales en las fibras del morfismo y la información numérica de la filtración de
Harder-Narasimhan del fibrado imagen directa f∗OX(D) en B. En la sección
§1.3 se introduce el método de las hipercuádricas relativas. Se trata de un
método mucho más modesto en cuanto a capacidad de aplicaciones pero que
funciona bien para valores bajos del género geométrico de las fibras (cuando
la imagen canónica de la variedad fibra está contenida en pocas cuádricas).
Introducido inicialmente por Catanese y Ciliberto en [19] y por Reid en [79]
para el caso de superficies fibradas, ha sido utilizado para el estudio de super-
ficies fibradas con género de la fibra bajo por Konno (cf. [63]). Aqúı damos
una construcción general para variedades X de dimensión arbitraria (no nece-
sariamente lisas) y obtenemos las primeras aplicaciones para sólidos fibrados
sobre curvas.

En §1.4 demostramos varios resultados de extensión de aplicaciones definidas
en fibras de superficies fibradas a toda la variedad. Aunque el estudio se divide
en tres partes, considerando el caso de automorfismos, de series lineales y el
resto, debido a métodos diferentes de prueba, la conclusión es básicamente la
misma siempre: tales morfismos extienden a un morfismo global de la variedad
tras un cambio de base (y bajo ciertas hipótesis de unicidad sin necesidad de un
cambio de base). Incluimos también un resultado sobre subesquemas abelianos
relativos que nos permiten extender algunos resultados a sólidos fibrados sobre
curvas en caṕıtulos posteriores.

Finalmente, en la sección §1.5 hacemos un muy breve repaso a la teoŕıa
de Anulación Genérica de Green y Lazarsfeld. En especial remarcamos un
resultado de Simpson sobre la estructura de los lugares excepcionales de no
anulación de la cohomoloǵıa que será clave en el estudio de una conjetura de
Fujita en el Caṕıtulo 3.

Caṕıtulo 2. Este caṕıtulo está básicamente dedicado al estudio de sólidos
canónicos. A partir de una desigualdad general válida en dimensión arbitraria
se obtienen, v́ıa el teorema de Riemann-Roch, desigualdades para superficies y
sólidos canónicos. En el caso de superficies la desigualdad obtenida incluyendo
la irregularidad es bien conocida, pero utilizando un análisis de la caracteri-
zación de la igualdad en el caso ĺımite se demuestra que la cota conocida no
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es fina en la mayoŕıa de los casos. Se demuestran algunas cotas mejores bajo
hipótesis adicionales.

La desigualdad obtenida para sólidos canónicos es (hasta donde sabemos) la
primera conocida que incluye la irregularidad y se obtiene no sólo del anterior
análisis sino de un estudio detallado del caso en el que la variedad está fibrada
sobre una curva, utilizando fuertemente el método de Xiao y el método de las
hipercuádricas relativas del Caṕıtulo 1.

Caṕıtulo 3. En este breve caṕıtulo estudiamos la conjetura de Fujita sobre
la semiamplitud de la imagen directa del haz canónico relativo. Si f : X −→ Y
es una fibración y consideramos el haz (localmente libre bajo ciertas condi-
ciones) E = f∗ωX/Y , el hecho de que este haz sea semiamplio implica que
cualquier cociente suyo con determinante topológicamente trivial ha de tener
determinante de torsión. Nosotros demostramos que este hecho es aśı a través
de la utilización de un resultado clave de Simpson descrito en §1.5. Esto en
particular resuelve completamente la conjetura de Fujita para fibraciones sobre
curvas eĺıpticas (sobre curvas racionales es trivial). Como consecuencia obte-
nemos también en el caso de fibraciones sobre curvas una descomposición de
E , tras un cambio de base no ramificado, con unas propiedades de positividad
ligeramente mejores a las de la descomposición original de Fujita. Observamos
que una repuesta afirmativa a la conjetura de Fujita para fibraciones sobre cur-
vas tendŕıa consecuencias importantes en las cotas obtenidas en los caṕıtulos
4 y 5.

Caṕıtulo 4. En este caṕıtulo estudiamos la pendiente de superficies fi-
bradas sobre curvas, en términos de los problemas 1,2 y 3 relacionados más
arriba. Parte de los resultados contenidos en las secciones §4.2, §4.3 y §4.5 son
consecuencia de un trabajo conjunto con Francesco Zucconi.

En §4.1 y §4.2 estudiamos las fibraciones que son recubrimiento doble de
otra fibración. Hay dos motivos básicos para considerar tales fibraciones. En
primer lugar, cuando se aplica el método de Xiao en el estudio de superficies
fibradas, han de estudiarse ciertos sistemas lineales en la fibra general F . Más
concretamente, interesa dar una cota inferior del grado de estos sistemas
lineales en términos de su rango. Esta cota viene dada aproximadamente por
un factor 2 según el lema de Clifford. Pero en realidad puede mejorarse a un
factor 3 si dejamos de lado los casos en los que la curva F es un recubrimiento
doble de otra curva E. Aśı pues, el estudio detallado del caso en el que la
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superficie es un recubrimiento doble permite dejar de lado esta posibilidad al
atacar situaciones más generales como ocurrirá en la sección §4.3.

El segundo motivo aparece al entender el estudio de los recubrimientos
dobles como una posible generalización del bien conocido caso de las fibra-
ciones hipereĺıpticas (el caso más sencillo de recubrimiento doble). Un estu-
dio detallado del caso bieĺıptico (recubrimiento doble de curvas eĺıpticas) nos
hace observar que posiblemente las fibraciones que son recubrimientos dobles
jueguen un papel especial en el estudio del Problema 1. Las curvas que son
recubrimiento doble tienen gonalidad especial y posiblemente hayan de ser un
caso aparte en el estudio de éstas, de la misma forma que en el estudio de las
fibraciones trigonales aparećıan fibraciones trigonales especiales.

En §4.1 damos una cota inferior fina para la pendiente de las fibraciones
bieĺıpticas. También damos una caracterización de las fibraciones que están
en el caso ĺımite de la desigualdad. En otro orden de cosas, damos un teorema
de estructura para las fibraciones bieĺıpticas y demostramos que toda fibración
bieĺıptica lisa es necesariamente isotrivial, lo que, hasta donde sabemos, sólo
se conoce para fibraciones hipereĺıpticas y eĺıpticas.

En §4.2 damos una cota inferior para la pendiente de las fibraciones que
son recubrimientos dobles. En especial demostramos que estas fibraciones
tienen pendiente al menos 4 bajo hipótesis adicionales muy generales. Ambos
resultados han de entenderse como una contribución a los problemas 1 y 3.

En §4.3 estudiamos el problema de encontrar una cota inferior para la
pendiente en términos de la irregularidad de la superficie (Problema 2) y de
hecho encontramos una cota inferior estrictamente creciente como función de
s = q(S)− b. En particular encontramos una influencia sobre la pendiente de
f de la existencia de otras fibraciones en S sobre curvas de género al menos 2.

La sección §4.4 la dedicamos a estudiar el Problema 3. A partir de los
cálculos anteriores y de los resultados del Caṕıtulo 3 podemos concluir que el
comportamiento conjeturado para las fibraciones de pendiente menor que 4 es
cierto bajo hipótesis adicionales (fibras no hipereĺıpticas o género de la fibra o
de la base bajos).

Finalmente en §4.5 incluimos una serie de familias de ejemplos para con-
trastar las cotas encontradas en las secciones anteriores. No encontramos que
las cotas sean finas, pero śı que son asintóticamente finas (para valores grandes
de los invariantes considerados en cada caso). Éste es un fenómeno que no
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ocurŕıa en cotas ya existentes.

Caṕıtulo 5. En este caṕıtulo consideramos fibraciones de sólidos sobre
curvas f : T −→ B con fibra general F de tipo general, desde un punto
de vista geográfico. En primer lugar en §5.1 demostramos que el invariante
relativo χf = χOFχOB − χOT es ciertamente no negativo bajo hipótesis muy
generales. Esto nos permite definir el concepto de pendiente para una clase
muy general de fibraciones. De hecho definimos dos pendientes diferentes y
estudiamos su comportamiento ante operaciones naturales. Damos también
ejemplos en los cuales χf < 0.

En §5.2 damos una cota inferior para estas pendientes que mejora sub-
stancialmente los resultados de Ohno para valores grandes del género de la
fibra: si en el caso de Ohno las pendientes son asintóticamente 4, en nuestros
caso aparece 9 como valor ĺımite. Aparece también como fenómeno intere-
sante que la existencia o no de sistemas lineales especiales en la fibra general
F (hipereĺıpticos, trigonales o tetragonales) afecta de manera importante a la
pendiente. Este fenómeno ha de entenderse como la manifestación del Pro-
blema 1 a nivel de sólidos fibrados.

En la sección §5.3 estudiamos el problema de dar una cota inferior de
la pendiente en función de la irregularidad del sólido. El resultado es sor-
prendentemente mucho mejor que en el caso de las superficies fibradas. Esa
cota inferior es 4, pero podemos afirmar que en realidad es 9 salvo en un
número muy limitado de casos que son completamente descritos y para los
cuales damos un resultado de estructura. Este fenómeno no aparećıa en el caso
de las superficies fibradas, en el cual ninguna constante superior a 4 parece ju-
gar un papel destacado (las cotas encontradas en el Caṕıtulo 4 son crecientes
y vaŕıan entre 4 y 5, pero no sugieren la existencia de una cota inferior cons-
tante bajo ninguna hipótesis adicional).

En §5.4 estudiamos el análogo al Problema 3 en superficies: el estudio de
sólidos fibrados con pendiente menor que 4. Estas fibraciones existen. De
hecho Ohno da una lista de 7 posibles familias, la primera de las cuales está
formada por fibraciones con fibra general fibrada a su vez por un sistema lineal
de curvas de género 2. Nosotros demostramos que éste es el único caso posible
si pg(F ) ≥ 15 y damos restricciones adicionales a los casos pg(F ) ≤ 14 (en los
cuales aparecen también fibraciones hipereĺıpticas o trigonales). Demostramos
además que estas fibraciones con pendiente baja verifican q(T ) = b (es decir,
si b ≥ 1 son fibraciones de Albanese) y que el haz E = f∗ωT/B es amplio si
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b ≤ 1.

5.2. Resumen de resultados

Pasamos a dar una lista de los principales resultados originales obtenidos
en esta memoria. Los resultados de enunciado largo o necesitados de notación
previa son resumidos y remitidos a los enunciados en la memoria.

Caṕıtulo 1

(i) Teorema. Si f : T −→ B es un sólido fibrado sobre una curva, damos
una cota inferior para la autointersección del divisor canónico relativo en los
casos en los que la imagen canónica de la superficie fibra general esté contenida
en pocas cuádricas o bien el fibrado E = f∗ωT/B sea semiestable (Corollary
1.21).

(ii) Teorema. Sea f : S −→ B una superficie fibrada tal que una canti-
dad no numerable de fibras Ft posee un morfismo sobre otra curva Et; fijemos
uno en cada una de ellas; entonces existe una aplicación racional globalmente
definida en S, tras un cambio de base, sobre otra fibración. Esta aplicación
restringida a una cantidad no numerable de las fibras coincide con los morfis-
mos fijados. En caso de unicidad de los morfismos, fijados invariantes discretos,
el cambio de base no es necesario (teoremas 1.23, 1.27 y 1.30).

(iii)Teorema. Si f : A −→ B es un esquema abeliano sobre B y una can-
tidad no numerable de fibras posee una subvariedad abeliana de dimensión
fijada, entonces tras un cambio de base (evitable si hay unicidad) existe un
subesquema abeliano B ↪→ A sobre B que restringido a una cantidad no nu-
merable de fibras coincide con los previamente fijados (Theorem 1.28).

Aunque no es un resultado propiamente original, también queremos remar-
car

(iv) En §1.3 hacemos una construcción del método de las hipercuádricas
relativas para fibraciones sobre curvas de variedades de dimensión arbitraria,
no necesariamente lisas, y para divisores de Weil. En particular generalizamos
un lema técnico debido a Konno para la acotación de los términos negativos
que aparecen en el método (Lemma 1.20).
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Caṕıtulo 2

(v) Teorema. Si T es un sólido canónico, entoncesK3
T ≥ 4pg(F )+6q(F )−32

(Theorem 2.6).

También obtenemos en el caso de superficies

(vi) No existen superficies canónicas con K2
S = 3pg(S)+q(S)−7 y pg(F ) =

6 o pg(F ) ≥ 8 (Theorem 2.4).

Caṕıtulo 3

(vii) Teorema. Si f : X −→ Y es una fibración con divisor de ramificación a
cruzamientos normales, E = f∗ωX/Y y F es un cociente de E con determinante
topológicamente trivial, entonces det(F) es de torsión (Theorem 3.4).

Como casos particulares se tienen

(viii) Si Y = B es una curva eĺıptica la conjetura de Fujita es cierta (Corol-
lary 3.6).

(ix) Si Y = B es una curva cualquiera, tras un cambio de base no ramificado
el fibrado E es suma directa de un fibrado amplio, un fibrado trivial y un fibrado
estrictamente nef (Corollary 3.7).

Caṕıtulo 4

(x) Teorema. Si f : S −→ B es una fibración bieĺıptica entonces es un
recubrimiento doble de una fibración eĺıptica tras un cambio de base. Si el
género de la fibra es al menos 6, entonces el cambio de base no es necesario.
Si además la fibración es lisa, entonces es isotrivial (Proposition 4.1).

(xi) Teorema. Una fibración bieĺıptica de género al menos 6 tiene pen-
diente mayor o igual a cuatro. Esta cota es fina y las fibraciones que verifi-
can la igualdad son recubrimientos dobles de superficies eĺıpticas localmente
triviales, ramificados sobre divisores con singularidades a lo sumo no esenciales
(Theorem 4.3).

(xii) Teorema. Si f : S −→ B es una fibración de género g que es re-
cubrimiento doble de una fibración de género h, damos una cota inferior para
la pendiente de f en función de h (función estrictamente creciente) si g ≥ 4h+1
(Theorem 4.11).

(xiii) Teorema. Si f es una fibración que es recubrimiento doble como en
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(xii), entonces la pendiente de f es al menos 4 si g ≥ 2h+11 y la fibra general
F no es tetragonal (Theorem 4.13).

(xiv) Teorema. Si f : S −→ B es una superficie fibrada que no es una
fibración de Albanese (es decir, q(S) > b), damos una cota inferior para la
pendiente de f que es una función creciente de s = q(S)− b (Theorem 4.16 y
Theorem 4.19).

(xv) Teorema. Si f : S −→ B es una superficie fibrada, damos una cota
inferior para la pendiente de f en función de la existencia de otras fibraciones
en S sobre curvas de género al menos 2 (Theorem 4.24).

(xvi) Teorema. Si f : S −→ B es una superficie fibrada con pendiente
menor que 4, entonces el haz E = f∗ωS/B es amplio si la fibra general F es
no hipereĺıptica, o el género de F es menor o igual que 3 o el género de B es
menor o igual que 1 (Theorem 4.27).

Además como complemento obtenemos

(xvii) Si f : S −→ B es una superficie fibrada con pendiente exactamente
4, entonces E (como en (xvi)) tiene a lo sumo un cociente de grado cero y
rango uno. Además, si lo tiene, E es la suma directa de ese haz invertible de
grado cero y de un fibrado semiestable (Proposition 4.28).

Por último quisiéramos poner de manifiesto diversas familias de ejemplos
construidas en §4.5 para contrastar las cotas encontradas en fibraciones de
superficies sobre curvas.

También, como complemento a (x):

(xviii) Existe una fibración bieĺıptica en la cual la fibra general tiene exac-
tamente dos involuciones bieĺıpticas y que sólo es recubrimiento doble de una
superficie eĺıptica tras un cambio de base (Example 4.2).

Caṕıtulo 5

(xix) Teorema. Si f : T −→ B es una fibración de un sólido sobre una curva,
con fibra general F una superficie de tipo general, entonces χf = χOFχOB −
χOT es no negativo, bajo hipótesis muy generales, si la dimensión de la imagen
del morfismo de Albanese de T no es 1 (Theorem 5.7).

(xx) Teorema. Si f : T −→ B es una fibración relativamente minimal de
un sólido sobre una cuva, con fibra F de tipo general y pg(F ) ≥ 3 entonces
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la pendiente de f es al menos (9 − ε(pg(F )) (con ε(pg(F )) ∼ o( 1
pg(F )

)) si

F no está fibrada por curvas hipereĺıpticas, trigonales o tetragonales y |KF |
no está compuesto con un pencil. En estos casos excepcionales damos cotas
alternativas que dependen del género de la fibración que posee F (Theorem
5.11).

(xxi) Teorema. Si f : T −→ B es una fibración relativamente minimal de un
sólido sobre una curva, que no es una fibración de Albanese (es decir, q(T ) >
b)), entonces la pendiente de f es al menos 9 salvo que F esté fibrada por
curvas hipereĺıpticas, trigonales o tetragonales y f factorice por un morfismo
de T en una superficie S. Para estos casos excepcionales también damos cotas
alternativas. En particular la pendiente siempre es al menos 4 (Theorem 5.14).

(xxii) Teorema. Si f : T −→ B es una fibración relativamente minimal de
un sólido sobre una curva, con pendiente menor que 4, entonces E = f∗ωT/B es
amplio si b = g(B) ≤ 1. Además q(T ) = b y la fibra general F está fibrada por
un sistema lineal de curvas de género 2 si pg(F ) ≥ 15 (por curvas hipereĺıpticas
o trigonales si pg(F ) ≤ 14, salvo en un caso excepcional) (Theorem 5.20).

Los siguientes resultados son posiblemente bien conocidos, pero descono-
cemos una referencia.

(xxiii) Si F es una curva que es un recubrimiento ćıclico no ramificado de
grado n de otra curva E y posee una única serie lineal g1d, entonces n|d (Lemma
5.12).

(xxiv) Si F y F̃ son superficies de tipo general y F̃ es un recubrimiento
ćıclico no ramificado, de orden primo n >> 0, entonces F̃ no posee fibraciones
hipereĺıpticas, trigonales o tetragonales diferentes de las construidas por cam-
bio de base de fibraciones en F , salvo que la fibración sea de curvas bieĺıpticas
(Lemma 5.13).





Chapter 1

Technical results

The main objects we are interested in along this work are the so called fibrations
between projective varieties. In this chapter we collect the main techniques
and results we will use everywhere.

After some preliminary definitions and constructions in §1.1 we give the
two main methods to study the numerical invariants (geography) of varieties
fibred over curves: the method of Xiao and the relative hyperquadrics method.
The first one is the most powerful and being introduced by Xiao in [92] has
been successfully used and generalized in several works ([65],[63],[73]). The
method of relative hyperquadrics is more modest but is very useful in order to
study lowest cases of the invariants; it appears in the study of fibred surfaces
in several works ([19],[63],[79]). In §1.3 we generalize it to arbitrary fibrations
over curves.

In section §1.4 we prove some facts on the extension of maps defined on
fibres to the whole variety. Although most of the results are stated for fibred
surfaces, we include a result on relative abelian subschemes that allows us to
conclude similar results in higher dimensions (cf. Chapter 5).

Finally we include in §1.5 a brief account of Generic Vanishing theory.
Although it is not a topic directly concerned with fibrations, the basic results
of Green and Lazarsfeld on the structure of exceptional loci allows us to use it
frequently. It is worth to mention the results of Simpson on the torsion nature
of the exceptional locus when it is zero-dimensional; this will be the main tool
we will need in Chapter 3 to study a conjecture of Fujita.

23
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1.1 Preliminaries

1.1.1 Notations, conventions and basic definitions

All throughout this memory we work over the field of complex numbers C.

A variety will be an integral, separated scheme of finite type over C. Unless
otherwise stated, they will be assumed to be projective. We will call it a
curve, a surface or a threefold according to whether its dimension is 1, 2 or 3
respectively.

From now on let X be a normal variety of dimension d. We will set Div(X)
for the set of Cartier divisors and Zd−1(X) for the set of Weil divisors. An
element of Div(X) ⊗ Q will be called a Q − Cartier divisor. We will use the
following notations for the equivalence relations

∼ : linear equivalence in Div(X) or in Zd−1(X)

≡ : numerical equivalence in Div(X) or in Zd−1(X)

∼Q : Q-linear equivalence in Div(X) ⊗ Q (i.e., D1 ∼Q D2 if and only if

there exists r ∈ N such that rD1 ∼ rD2).

We note Pic(X) for the group of line bundles on X. Given a coherent sheaf
F and a divisor D on X we note

F∗ = HomOX (F ,OX)

F(D) = F ⊗OX(D)

If Z ⊆ X is a subscheme, we will denote JZ,X for the ideal sheaf of Z in
X.

Notation f : X −→ Y will stand for morphisms while f : X −−−− → Y
will stand for rational maps. If f is a morphism, the definition of f ∗ for Cartier
divisors is the usual. It can be extended to Q- Cartier divisors by linearity.
For instance, if E ∈ Div(X) ⊗ Q and r ∈ N verifies that rE ∈ Div(X), we
define f ∗(E) = 1

r
f ∗(rE). Given a surjective morphism f : X −→ Y and

D ∈ Div(X)⊗Q we say that D is f−exceptional if codimY (f(D)) ≥ 2.

If X is smooth and D ∈ Div(X), we say that D is a normal crossings
divisor if it is reduced and its irreducible components are smooth, meeting
transversally.
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There is a bijective correspondence between Weil divisors on X mod-
ulo linear equivalence and rank one reflexive sheaves on X modulo isomor-
phism. If D is a Weil divisor we note OX(D) its associated sheaf. Under
this correspondence OX(D1 + D2) ∼= (OX(D1) ⊗ OX(D2))

∗∗. We will note
OX(D)[m] = OX(mD).

There is a well defined Weil divisor on X, the canonical divisor KX , such
that, if X0 ⊆ X is the smooth part of X, KX|X0 = detΩ1

X0
. We note wX =

OX(KX), and w
[m]
X = O(mKX).

X is said to be factorial if Zd−1(X) = Div(X), Q-factorial if Zd−1(X)⊗Q =
Div(X)⊗Q, Gorenstein if X is Cohen-Macaulay and KX ∈ Div(X). X is said
to be Q-Gorenstein if KX ∈ Div(X) ⊗ Q. If X is Q-Gorenstein, the index of
X is the least integer r such that rKX ∈ Div(X).

X is said to have only canonical singularities (respectively terminal sin-
gularities) if X is Q-Gorenstein and there exists a resolution of singularities
f : Y −→ X such that rKY = f ∗(rKX) +

∑
aiEi with ai ≥ 0 (respectively

ai > 0) and Ei f -exceptional.

Let D ∈ Div(X)⊗Q. D is said to be nef if DC ≥ 0 for any curve C ⊆ X.

If F is a locally free sheaf on X and ϕ : P := PX(F) −→ X is the associated
projective bundle, we note LF ∈ Div(P) for a tautological divisor on P, which
is characterized by ϕ∗OP(LF) = F . We will use indifferently the notations
OP(k) and OP(kLF). F is called nef if LF is nef in PX(F). Equivalently, if
and only if for any smooth curve C, and map f : C −→ X, any quotient of
f ∗F has nonnegative degree (cf. [89]).

X is called a minimal variety if X has only terminal singularities and KX

is nef.

1.1.2 General setting on fibrations

We quote here the general setting on fibrations we need for the development
of the methods we are interested in along this chapter. More concrete results
on fibred surfaces and threefolds are postponed to the introduction of Chapters
4 and 5 respectively. Also in Chapter 3 we quote general properties of arbitrary
fibrations. All the results we state here are well known. We refer to [55], [71]
and [73] for references.



26 Technical results

Let W be a smooth projective variety and X any projective variety . We
say that a morphism f : X −→ W is a fibration if f is surjective and has
connected fibres. The branch locus of f is the set of points in W over which
f is non-smooth. If g : W ′ −→ W is a morphism we sometimes will denote
XW ′ = X ×W W ′.

Given a fibration with X normal we have a natural Weil divisor KX/W =
KX − f ∗KW and its associated reflexive sheaf ωX/W , the relative canonical
divisor and sheaf respectively.

Assume from now on that W = B is a smooth curve and that X is a
normal Q-factorial variety of dimension n. Then f∗ωX/B is a nef locally free
sheaf on B (cf. [30])(for more general properties of this sheaf we refer to the
introductions of Chapters 3,4 and 5). If the general fibre F of f is a variety
of general type (see Chapter 2 for definition), KX|Ft is nef for every t ∈ B and
X has only terminal singularities then ωX/B is also nef on X (cf. [73] theorem
1.4).

Let D be a Weil divisor. We can then consider f∗OX(D) which is torsion
free, and hence locally free, on B of rank h0(F,OF (D|F )) (F = f−1(t), t ∈ B,
general fibre of f). Assume h0(F,OF (D|F )) 6= 0, and take a nonzero subsheaf
F ⊆ f∗OX(D). The inclusion induces a natural map f ∗F −→ f ∗f∗OX(D) −→
OX(D). Let D1 ∈ Zd−1(X) be such that Im(f ∗F −→ OX(D))∗∗ = OX(D −
D1). D1 is called the fixed locus of F in X and it is the unique effective Weil
divisor defined by this property.

The map f ∗F −→ OX(D) induces a rational map ψ : X −−− →PB(F) =
P over B which can be resolved in the following way.

Lemma 1.1 ([73] Lemma 1.1) With the above assumptions, there exists a
desingularization µ : X̃ −→ X such that λ = ψ ◦ µ : X̃ −→ P is everywhere
defined and λ∗LF ∼Q µ∗(D − D1) − E where E is an effective µ-exceptional

Q-divisor on X̃.

We call the moving part of F on X̃ to be M = λ∗LF ∈ Div(X̃) (not
necessarily effective) and the fixed part of F on X̃ to be Z = µ∗(D1) + E ∈
Div(X̃)⊗Q. If F = f∗OX(D) we call them the moving and fixed part of D on
X̃, respectively.

If we take D = KX/B, the rational map ψ : X −−− →PB(f∗ωX/B) is
called the relative canonical map of X over B.
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The following are some easy but useful results about fibrations over curves
that we will use frequently.

Lemma 1.2 Let X be a normal variety, B a smooth curve of genus b and
f : X −→ B a fibration. Let Xt be the fibre of f over t ∈ B.

For any coherent sheaf G on X and for any a ∈ Pic(B) let G(a) =
G ⊗ f ∗(a).

Suppose that a is ample enough and that G satisfies the following condition:
for general t ∈ B the sequence

0 −→ G(−t) −→ G −→ G|Xt −→ 0

is exact.

Then, the natural morphism

H0(X,G(a)) −→ H0(Xt,G|Xt)

is surjective for general t ∈ B.

Proof: Consider the exact sequence

0 −→ G(a− t) −→ G(a) −→ G|Xt −→ 0

for general t ∈ B. Taking cohomology we get

0 −→ H0(X,G(a− t)) −→ H0(X,G(a))
mt−→H0(Xt,G|Xt)

If a is ample enough then h1(B, (f∗G)⊗(a− t)) = 0 and then h0(X,G(a− t)) =
h0(B, (f∗G)⊗ (a− t)) does not depend on t by the Hirzebruch-Riemann-Roch
Theorem for coherent sheaves on B.

Furthermore

dim Im (mt) = h0(X,G(a))− h0(X,G(a− t)) =

= h0(B, (f∗G)⊗ a)− h0(B, (f∗G)⊗ (a− t)) =

= d+ r(a+ 1− b)− (d+ r(a− 1 + 1− b)) = r

where

d = deg f∗G

a = deg a

r = rank (f∗G) = h0(Xt,G|Xt) for t ∈ B general
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Lemma 1.3 Let f : X −→ B be a fibration as above. Let L ∈ PicX. If
a ∈ PicB is ample enough, then the natural map

h : f ∗f∗L(a) −→ L(a)

is an epimorphism just except at the base points of the linear system |L(a)|.
Moreover, if for a general fibre F of f , the linear system |L|F | is base-point
free, then such base points are concentrated on a finite number of fibres.

Proof: From the sequence of maps X
f
−→B

ρ
−→ SpecC we can consider

the following natural commutative diagram

f ∗ρ∗ρ∗f∗L(a) = (ρ ◦ f)∗(ρ ◦ f)∗L(a) = H0(S,L(a))⊗C OS[d]k[r]L(a)f
∗f∗L(a)[ur]

h

Since k is surjective for a ample enough, it follows that surjectivity of h
is equivalent to surjectivity of e = h ◦ k. This fails to be an epimorphism
precisely at the base points of |L(a)|. Finally, using Lemma 1.2 one has that
|L(a)| has no base points on a general fibre F of f .

We frecuently will use this results in the following way

Remark 1.4 Let Σ be ψ(X) in P, following the notation of Lemma 1.1. Let
ϕ : P −→ B be the natural projection. Consider the sheaf G = J

Σ,P ⊗OP(k),
where J

Σ,P is the ideal sheaf of Σ in P. For t ∈ B we have G
|Pt

= J
Ft,Pt

(k).
We claim that G verifies the hypotheses of Lemma 1.2 and so that for a ample
enough we have an epimorphism

H0(P,J
Σ,P ⊗OP(k)⊗ ϕ

∗(a)) −→ H0(Pg−1,J
Ft,Pt

(k)) .

Indeed, just consider (we confuse Ft with ψ(Ft) ⊆ Σ)
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0 0 0y

y

y
0 −−−→ J

Σ,P ⊗ ϕ
∗(−t) −−−→ OP(ϕ

∗(−t)) −−−→ OΣ(ϕ
∗(−t)) −−−→ 0y

y

y
0 −−−→ J

Σ,P −−−→ OP −−−→ OΣ −−−→ 0y

y

y
0 −−−→ J

Ft,Pt
−−−→ OPt

−−−→ OFt −−−→ 0y

y

y
0 0 0

with the three rows and the two right columns trivially exact. Then the snake
Lemma makes the left hand side column exact. Now just tensor with OP(k),
which is locally free.

1.2 Xiao’s method

Let X be as in §1.1.2 a normal Q-factorial projective variety of dimension n
and D a nef Weil divisor. If f : X −→ B is a fibration onto a smooth curve,
Xiao’s method consists in giving a lower bound for Dn in terms of degf∗OX(D)
via the use of the numerical information of the Harder-Narasimhan filtration
of E = f∗OX(D), and the numerical invariants of some linear systems on the
fibres of f .

The main idea is given by Xiao ([92]) where he uses the method in the case
of fibred surfaces. Later on Ohno ([73]) gives a version for fibred threefolds,
but not in complete generality. Finally Konno ([65]) gives a general version for
any variety fibred over a curve. We give here an outline of the main results.

First of all we recall two basic results on vector bundles over curves.
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Definition 1.5 Let F be a locally free sheaf over a smooth curve B. The slope

of F is the ratio µ(F) = degF
rkF . F is called stable (respectively semistable) if

for every subsheaf G ⊆ F , µ(G) < µ(F) (respectively µ(G) ≤ µ(F)).

Theorem 1.6 (Harder-Narasimhan [38]) Let F be a locally free sheaf over a
smooth curve B. Then there exists a uniquely determined Harder-Narasimhan
filtration by locally free sheaves

0 = F0 ⊆ F1 ⊆ . . . ⊆ F` = F

such that:

(i) for every i, Fi/Fi−1 is a semistable vector bundle

(ii) µ1 > µ2 > . . . > µ`, where µi := µ(Fi/Fi−1).

Moreover, if G ⊆ F verifies that µ(G) = µ1, then G ⊆ F1.

Remark 1.7 If we put ri = rkFi then degF =
∑̀
r=0

ri(µi−µi+1) where µ`+1 = 0

by definition.

Usually we call {µ1, . . . , µ`} the Harder-Narasimhan slopes of F .

From now on we set µ−(F) = µ`(F) = µ(F/F`−1).

Sometimes is useful to consider the virtual slopes {ν1, . . . , νrkF} of F as
νj = µi for ri−1 < j ≤ ri, j = 1, . . . , rkF .

Theorem 1.8 (Miyaoka, [70]) Let F be a locally free sheaf on B. Let E ∈
Div(PB(F))⊗Q, E ≡ LF − xG, where G is a fibre of PB(F) −→ B. Then E
is nef if and only if x ≤ µ−(F).

In particular, F is semistable if and only if LF − µ(F)G is nef.

Remark 1.9 Let X,D ∈ Zd−1(X), f : X −→ B and F ⊆ f∗OX(D) as in
§1.1.2. The induced map γ

X̃[d]µ[r]γP[ddl]ϕX[d]fB

produces a divisor on X̃, H̃ = γ∗LF such that N = H̃ − µ−(F)F , is a nef
Q-divisor by the previous theorem. We have
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µ∗D ≡ N + µ−(F)F + Z

where Z,N ∈ Div(X̃) ⊗ Q (Z ∈ Div(X̃) if D is Cartier) and Z is effective.
Note that if F1 ⊆ F2 ⊆ f∗OX(D) then by construction we have

N1 + µ−(F1)F + Z1 ≡ N2 + µ−(F2)F + Z2

where Z1 ≥ Z2.

Proposition 1.10 (Xiao, [92]; Konno, [65]) Let Y be a nonsingular projective
variety of dimension n. Let f : Y −→ B be a fibration onto a smooth curve
and let F be the general fibre. Assume that there are rational numbers ν1, ν2,
effective Q-divisors Z1, Z2 and nef Q-divisors N1, N2 on Y such that ν1 ≥ ν2,
Z1 ≥ Z2 and N1 + ν1F + Z1 ≡ N2 + ν2F + Z2. Then for any integer k with
0 < k ≤ n and any nef Q-divisors A1, . . . , An−k,

(
Nk

2 −N
k
1 − (ν1 − ν2)F

k−1∑

i=0

N i
1N

k−1−i
2

)
A1 . . . An−k ≥ 0

holds.

Proof: Note that N k
2 − N

k
1 = (N2 − N1)

k−1∑
i=0

N i
1N

k−1−i
2 and N2 − N1 ≡

(ν1 − ν2)F + (Z1 − Z2). Then use the nefness of Ni, Aj and F and that
(ν1 − ν2)F , (Z1 − Z2) ≥ 0.

Consider as before X a normal variety, D ∈ Zd−1(X), f : X −→ B a
fibration onto a smooth curve and E = f∗OX(D). Let Ei be a piece of the
Harder-Narasimhan filtration of E . Let µ : X̃ −→ X be a nonsingular model
that resolves all the rational maps X −−− →PB(Ei). By Theorem 1.8 and
Remark 1.9 we have a sequence of rational numbers µ1 > µ2 > . . . > µ` and
of effective Q-divisors on Y Z1 ≥ Z2 ≥ . . . ≥ Z` such that if we set

Hi = γ∗LEi

Ni := Hi − µiF̃

then for every i Ni is nef and for every i, j

Ni + µiF̃ + Zi ≡ µ∗(D) ≡ Nj + µjF̃ + Zj
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where F̃ is a general fibre of X̃ −→ B.

Put Pi = N
i|F̃

= H
i|F̃

. Observe that Pi is a Cartier divisor on F̃ and that

|Pi| is a linear subsystem of |Pi+1| of dimension at least ri − 1. Note also that
by construction of X̃ the linear systems |Pi| are base point free.

Observe that if E is a nef vector bundle then µ` ≥ 0. We can define
µ`+1 = 0, Z`+1 = 0, N`+1 = H`+1 = N` coherently with the above properties
for i ≤ l. If furthermore D is a nef Weil divisor in X, we have an alternative:
N`+1 = H`+1 = µ∗D.

We can then apply Proposition 1.10 and get

Proposition 1.11With the above notations, if D and E are nef and {i1, . . . , iq}
is a sequence of indices 1 ≤ i1 < . . . < iq < iq+1 := `+ 1 we have

(i) If n = 2, D2 ≥
q∑
p=1

(dip + dip+1)(µip − µip+1) where di = degPi = NiF .

(ii) If n = 3 and 1 ≤ m ≤ q + 1

D3 ≥
m−1∑

p=1

(Pip +Pip+1)Pim(µip −µip+1)+
q∑

p=m

(P 2
ip +PipPip+1 +P 2

ip+1
)(µip −µip+1)

(iii) If n = 4 and 1 ≤ m1 ≤ m2 ≤ q + 1

D4 ≥
m1−1∑
p=1

(Pip + Pip+1)Pim1
Pim2

(µip − µip+1)+

+
m2−1∑
p=m1

(P 2
ip + PipPip+1 + P 2

ip+1
)Pim2

(µip − µip+1)+

+
q∑

p=m2

(P 3
ip + P 2

ipPip+1 + PipP
2
ip+1

+ P 3
ip+1

)(µip − µip+1)

Proof: All these work in the same way. We prove (iii) . Since D is nef,
so is µ∗(D) and we define µ∗(D) ∼= H`+1 = N`+1. We have

D4 = (µ∗(D))4 = N4
`+1 ≥ N4

im2
+

q∑

p=m2

(P 3
ip+P

2
ipPip+1+PipP

2
ip+1

+P 3
ip+1

)(µip−µip+1)

taking k = 4 in Proposition 1.10.
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Take k = 3 and use that Nim2
is nef to get

N4
im2
≥ N3

im1
Nim2

+
m2−1∑

p=m1

(P 2
ip + PipPip+1 + P 2

ip+1
)Pim2

(µip − µip+1)

and finally take k = 2 and use the nefness of Nim1

Nim2
N3
im1
≥

m1−1∑

p=1

(Pip + Pip+1)Pim2
Pim1

(µip − µip+1)

Remark 1.12 As a matter of convenience for further references we concrete
the formulas of propositions 1.10 and 1.11 in some cases.

Assume f : S −→ B is a fibred surface with fibre of genus g ≥ 2; taking
D = KS/B and {i1, ..., iq} = {1, ..., `} and {1, `} respectively we get

K2
S/B ≥

∑̀

i=1

(di + di+1)(µi − µi+1)

K2
S/B ≥ (d1 + d`)(µ1 − µ`) + (d` + d`+1)µ` ≥ d`(µ1 + µ`) = (2g − 2)(µ1 + µ`)

Assume now f : T −→ B is a fibred threefold as in Chapter 5 with fibres
of general type. Take D = KT/B. If {i1, ..., iq} = {1, ..., `} and 1 ≤ m ≤ `+ 1
we get

K3
T/B ≥

m−1∑

i=1

(Pi + Pi+1)Pim(µi − µi+1) +
∑̀

p=m

(P 2
i + PiPi+1 + P 2

i+1)(µi − µi+1)

In the particular case of m = `+1, P`+1 = τ ∗KF (see notations in Chapter
5) we obtain

K3
T/B ≥

∑̀

i=1

(Pi + Pi+1)(τ
∗KF )(µi − µi+1).
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Finally, taking {i1, ..., iq} = {1, `} we have

K3
T/B ≥ (P1 + P`)P`(µ1 − µ`) + (P 2

` + P`P`+1 + P 2
`+1)µ` ≥ P 2

` (µ1 + 2µ`).

1.3 The relative hyperquadrics method

The method of counting relative hyperquadrics, originated in [79] and [19] was
successfully applied by Konno in [63] to study the slope of fibred surfaces with
small fibre genus. Here we construct the fundamental sequence and prove the
conclusions which are needed in the next chapters.

Proposition 1.13 Let T be a normal, Q-factorial, projective variety of di-
mension n with only canonical singularities and let f : T −→ B be a relatively
minimal fibration onto a smooth curve of genus b. Let D be a Weil divisor on
T and let m ≥ 2. Let E = f∗OT (D) and ϕ : P = PB(E) −→ B. Let Y be
the adherence of the image of T by the natural map over B ψ : T −−− →P.
Then we have a natural exact sequence

0 −→ ϕ∗JY,P(m) −→ Smf∗OT (D) −→ f∗OT (D)[m]

(the generalized Max-Noether sequence associated to f).

Proof: From the exact sequence

0 −→ J
Y,P(m) −→ OP(m) −→ i∗OY ⊗OP(m) −→ 0

we have

0 −→ ϕ∗JY,P(m) −→ Smf∗OT (D) −→ ϕ∗(i∗OY ⊗OP(m))

where i : Y ↪→ P is the natural inclusion.

In order to finish the proof it is enough to prove that there is an inclusion

0→ ϕ∗(i∗OY ⊗OP(m)) −→ f∗OT (D)[m]

Let µ : T̃ −→ T be a desingularization of T such that the map γ =
µ ◦ ψ : T̃ −→ T is a morphism (see Lemma 1.1). Decompose γ = i ◦ γ with
γ : T̃ −→ Y . Then we have

i∗OY⊗OP(m) = i∗i
∗OP(m) ↪→ i∗(γ∗OT̃⊗i

∗OP(m)) = i∗γ∗γ
∗i∗OP(m) = γ∗γ

∗OP(m)
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and hence

0→ ϕ∗(i∗OY ⊗OP(m)) ↪→ ϕ∗γ∗γ
∗OP(m) = f∗µ∗γ

∗OP(m)

So it suffices to show an inclusion

µ∗(γ
∗OP(m)) ↪→ OT (mD)

If U is the open set of smooth points of T (hence T \ U has codimension
2 since T has canonical singularities) and V = µ−1(U), then it is clear from
Lemma 1.1 that γ∗OP(m) and µ∗OT (mD) differ in an effective Cartier divisor
on V. Hence we have an inclusion

γ∗OP(m)|V ↪→ µ∗OT (mD)|V

which gives
µ∗(γ

∗OP(m))|U ↪→ OT (mD)|U

since OT (mD)|U is locally free and hence projection formula holds. If we set
j : U ↪→ T for the natural inclusion then

µ∗(γ∗OP(m)) ↪→ j∗(µ∗(γ
∗OP(m))|U) ↪→ j∗(OT (mD)|U) = OT (mD)

where the first natural map is injective since µ∗(γ
∗OP(m) is torsion free

(γ∗OP(m) is locally free) and the last equality holds since OT (mD) is reflexive
and T \ U has codimension at least two.

In fact the map we have obtained

δ : Smf∗OT (D) −→ f∗OT (D)[m]

comes from the natural map f ∗f∗OT (D) −→ OT (D) which induces

Smf ∗f∗OT (D) = f ∗(Smf∗OT (D)) −→ (OT (D)⊗m)∗∗ = OT (D)[m]

and hence δ by taking f∗ and projection formula. Our approach allows us to
identify Kerδ as ϕ∗JY,P(mLE).

From now on, let T be a Q-Gorenstein threefold and D = KT/B the relative
canonical divisor. The general construction associated to f ∗f∗OT (KT/B) −→
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OT (KT/B) given in §1.1.2 produces here the relative canonical map of f . We
also assume pg(F ) ≥ 2 in order to get a nontrivial relative canonical map.

Corollary 1.14 Under the above hypotheses, if F is a general fibre of f we
have

K3
T/B ≥ (2pg(F )− 4)(χOBχOF − χOT )− 2degK − 2`(2) (1.1)

where K = ϕ∗JY,P(2LE) and `(2) is the Reid-Fletcher second order correction

to the plurigenera of T (cf. [28]).

Proof: Let D = KT/B, m = 2 and take degrees in the generalized
Max-Noether sequence. Use

d = degf∗ωT/B ≥ (χOBχOF − χOT ) ([73] p. 656)

degf∗ω
[2]
T/B =

1

2
K3
T/B + 3(χOBχOF − χOT ) + `(2) ([73] Lemma 2.8)

On the other hand, if F is a rank r, degree d locally free sheaf on B,
standard formulas give rkS2F =

(
r+1
2

)
, degS2F = (r + 1)d and so

degS2f∗ωT/B = (pg(F ) + 1)d

rkS2f∗ωT/B =

(
pg(F ) + 1

2

)
.

Finally note that, if C = Coker(S2f∗OT (KT/B) −→ f∗OT (2KT/B)), degC ≥ 0
since f∗OT (2KT/B) is nef (cf. [53] and Chapter 3).

Remark 1.15 For small values of the invariants pg(F ), q(F ), K
2
F it could be

interesting to consider D = sKT/B for s ≥ 1. We obtain then bounds for K3
T/B

which are better than (1.1).

In general, degK is difficult to be computed or bounded. Note that the
study of K is the study of the relative hyperquadrics that contain the relative
canonical image of T , hence the name of the method.

First of all we need to bound the rank. Note that rkK = h0(J
Σ,Pr(2)),

where Σ is the canonical image of F and r = pg(F )− 1.
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Lemma 1.16 ([77], p. 195; see Lemma 2.2 for a proof) Let W ⊆ PN be an
irreducible variety spanning PN of dimension w. Then

h0J
W,PN (2) ≤

(
N − w + 2

2

)
−min{degW, 2(N − w) + 1}

Then we get

Corollary 1.17 With the assumptions of Corollary 1.14,

h0(J
Σ,Pr(2)) ≤ (r−2)(r−3)

2
if Σ is a non ruled surface

h0(J
Σ,Pr(2)) ≤ (r−1)(r−2)

2
− q(Σ) if Σ is a ruled surface

h0(J
Σ,Pr(2)) ≤ r(r−1)

2
if Σ is a curve

Proof: For this just use the well known fact (cf. [10]) that if Σ ⊆ Pr−1 is a
non degenerate curve, then degΣ ≥ r − 1 and if it is a nondegenerate surface,
then degΣ ≥ r − 2 + q(Σ) if Σ is ruled, degΣ ≥ 2r − 4 otherwise. Apply then
Lemma 1.16

As for the degree of K we have

Proposition 1.18 (i) If pg(F ) ≥ 2 and E = f∗ωT/B is semistable then

degK ≤ 2
rkK

pg(F )
d.

(ii) If K = L1 ⊕ . . .⊕ Ls (s=rkK) then

degK ≤ (rkK)
2

3
d

(in particular this happens if s ≤ 1 or b = 0).

Proof: (i) If E is semistable then so it is S2E . Then we use the natural
inclusion K ↪→ S2E and use the formulas in the proof of Corollary 1.14.

(ii) If xi = degLi then there exists a section s ∈ H0(K ⊗ L−1i ) ∼=
H0(J

Y,P(2LE) ⊗ OP(ϕ
∗(L−1i )) ↪→ H0(P,O(2LE) ⊗ ϕ∗(L−1i )) so there exists
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a relative hyperquadric Qi ≡ 2LE −xiϕ
−1(t). The result follows then from the

following lemma which is a slight refinement of [63] Remark 1.7, and the fact
that for every i, rkQi ≥ 3.

Definition 1.19 Let Q ≡ 2LE −xϕ
−1(t). We say that Q has rank p if Q|ϕ−1(t)

is a quadric in Prk(E)−1 of rank p for t ∈ B general.

Lemma 1.20 Let Q ≡ 2LE −xϕ
−1(t) be a relative hyperquadric of rank p. Let

ν1 ≥ ν2 ≥ . . . ≥ νk the virtual slopes of E = f∗ωT/B. Then

(i) If p > ri−1 then x ≤ µ1+µi (in particular, if Q is smooth, x ≤ µ1+µ`).

(ii) x ≤ min0≤j≤p−1{νj+1 + νp−j} ≤
2
p
degE

Proof: (i) Cf. [63] Lemma 1.4.

(ii) Let µα such that νp = µα (i.e., rα−1 < p ≤ rα). Then by (i) x ≤
µ1 + µα = ν1 + νp which is the case j = 0.

Take now an index j ∈ {1, . . . ,
[
p−1
2

]
}. Assume that there exists a piece Ei

of the Harder-Narasimhan filtration of E such that j = ri (then ri+1 ≤ p−ri).

Consider now the Harder-Narasimhan filtration of E/Ei:

0 ⊆ Ei+1/Ei ⊆ . . . ⊆ E`/Ei

with slopes µt = µi+t (t = 1, . . . , `− i), νs = νs+ri (s = 1, . . . , g− ri). Consider
now

PB(E)[d]ϕPB(E/Ei) =: Bi[l][dl]
ϕiB

and let Qi =: Q|Bi ≡ 2LE/Ei − xϕ
−1(t). We have

p = rkQ|ϕ−1(t) ≥ rkQ|ϕ−1
i

(t) ≥ rkQ|ϕ−1(t) − 2ri = p− 2ri

by [2] p. 143. Then the j = 0 argument for Qi reads

x ≤ ν1 + νp−2ri = νri+1 + νp−ri = νj+1 + νp−j

Assume finally that j 6= ri for every piece Ei of the Harder-Narasimhan
filtration of E . Let α be such that rα−1 < j ≤ rα (i.e. νj = µα). Since by
hypothesis j 6= rα we have νj+1 = νj = νrα = µα.
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Then νj+1+νp−j = νj+νp−j ≥ νrα−1+1+νp−rα−1 ≥ x applying the previous
step, since rα−1+1 ≤ j, p−rα−1 > p−j and the sequence of the νi is decreasing.

We have then x ≤ min0≤j≤p−1{νj+1 + νp−j}. Finally observe that

p ·min0≤j≤p−1{νj+1 + νp−j} ≤
p−1∑

j=0

(νj+1 + νp−j) = 2
p∑

s=1

νs ≤ 2
rkE∑

s=1

νs = degE

We can conclude

Corollary 1.21 With the same notations as above, assume pg(F ) ≥ 2.

(i) If E = f∗ωT/B is semistable then

K3
T/B ≥

(
10− 24

pg(F )

)
(χOBχOF − χOT )− 2`(2) if Σ is a non-ruled surface

K3
T/B ≥

(
6− 12

pg(F )

)
(χOBχOF − χOT )− 2`(2) if Σ is a ruled surface

K3
T/B ≥

(
2− 4

pg(F )

)
(χOBχOF − χOT )− 2`(2) if Σ is a curve

(ii) If h0(J
Σ,Pr(2)) = 0 then

K3
T/B ≥ (2pg(F )− 4)(χOFχOB − χOT )− 2`(2)

(iii) If h0(J
Σ,Pr(2)) = 1 then

K3
T/B ≥ (2pg(F )−

16

3
)(χOFχOB − χOT )− 2`(2)

Proof: Use Corollary 1.17 and Proposition 1.18 in Corollary 1.14.

1.4 Extension of maps

Let S be a surface and let π : S −→ B be a fibration of curves of genus
g ≥ 2 and assume that for non countably many t ∈ B, the fibre Ft is endowed
with a non-constant morphism ϕt : Ft −→ Dt into a smooth curve. The goal
of this paragraph is to show that the existence of these maps ϕt implies the
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existence of another fibration T −→ B and of a rational map over B from S
to T reflecting the properties of many ϕt. In fact we recover the original maps
ϕt only for non countably many values of t (even in the case that one applies
this under the hypothesis of existence of ϕt for a general t, one can not get
better results as simple examples show).

To obtain the surface T we shall need base change in general. However
under some hypotheses of unicity this base change can be avoided.

We consider three cases: first we assume that the maps ϕt are automor-
phisms; secondly we suppose that 1 ≤ g(Dt) < g, and finally we study linear
series. We also obtain a similar result for abelian schemes with abelian subva-
rieties in the general fibres (Theorem 1.28).

1.4.1 Glueing automorphisms

Let π : S −→ B be a fibred surface and denote by Ft the fibre of π in
t ∈ B. The aim of this section is to prove that the existence of automorphisms
on many fibres of π induces, up to base change, the existence of a birational
automorphism of S. To prove this, we shall need some standard facts on
Hilbert schemes that we recall now.

We fix a relatively very ample sheaf OX(1) on X := S ×B S −→ B.
Following Grothendieck ([37]), we can consider the scheme AutS/B as an open
subscheme of HilbS/B representing the functor

Aut : B − schemes −→ Groups
T 7−→ AutT (ST ).

Then, giving a section σ of the natural map AutS/B −→ B corresponds, via
the identification

HomB(B,AutS/B) = AutB(S),

to an automorphism Φ of S over B such that for t ∈ B, Φ|Ft = σ(t) ∈ Aut(Ft).
We recall that AutS/B is a group-scheme over B and, as in the case of Hilbert
schemes, decomposes as a disjoint union of schemes AutS/B obtained by fixing
the Hilbert polynomial p(t) ∈ Q[t].

Choosing a suitable Hilbert polynomial and considering only elements ofm-
torsion one constructs a B-scheme Autm,rS/B parametrizing the automorphisms
of the fibres of π of order m and with r fixed points.
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Definition 1.22 Let F be a smooth curve of genus g ≥ 2 and let ϕ be an
automorphism of F . Assume ϕ 6=Id. Consider the curve G := F/ < ϕ >
and the map f : F −→ G. If n is the order of ϕ we call the type of ϕ to the
following data:

Λ = {(k, ak)}k|n, k 6=1

where ak is the number of ramification points of f of index k. Equivalently
one can give Λ′ = {(k, bk)}k|n, k 6=1 where bk is the number of fixed points of
ϕ
n
k ; notice that

bk =
∑

k|k′|n

ak′ .

Observe that one can consider the B-scheme of automorphisms of type Λ
defining:

AutΛS/B :=
⋂

k|n,k 6=1

H−1
k (Aut

n
k
,bk

S/B ),

where Hk : AutS/B −→ AutS/B sends x to xk.

The main result of this section is the following:

Theorem 1.23 Let π : S −→ B be a fibred surface of genus g ≥ 2. Assume
that for non countably many t ∈ B, Aut(Ft) 6=Id. Then:

(i) There exist a type Λ, a base change B ′ −→ B and a birational auto-
morphism Φ′ of a non singular model S̃ of SB′ such that the restriction of Φ′

to a general fibre of S̃ −→ B′ is an automorphism of type Λ.

(ii) The type Λ of (i) can be chosen previously, provided that for non count-
ably many t ∈ B the fibre Ft has an automorphism of type Λ.

(iii) If, furthermore, for non countably many t ∈ B, the automorphism of
type Λ is unique, then base change is not needed.

Proof: As g ≥ 2, the fibres of AutS/B −→ B are finite. Since B is a
curve, there exists an irreducible component B ′ of AutS/B, dominating B. We
can assume B′ to be complete; otherwise the construction that follows will
extend in a natural way to a compactification of B ′. Since AutS/B is a finite

union of subschemes AutΛS/B, an infinite number of points (and hence a Zariski
open set) of B′ correspond to automorphisms of the same type Λ. Then

AutSB′/B′ −→ AutS/B ×B B
′ −→ B′,



42 Technical results

has an obvious section which produces a relative automorphism Φ′ of SB′ .
Then Φ′ determines a birational automorphism of S̃. This proves (i) .

Observe that the same argument works for (ii) just fixing Λ and AutS/B
from the beginning. Finally, under the hypothesis of (iii) , AutΛS/B −→ B is
generically one-to-one and has a section.

Remark 1.24 In Example 4.2 we give an example of a bielliptic fibration
of genus 5 for which the general fibre has two different bielliptic involutions
and such that a non-trivial base change is needed in order to glue them into
a global birational involution. So, in general, (iii) does not hold without the
hypothesis of unicity.

1.4.2 Glueing morphisms of curves

In this section we consider a fibration π : S −→ B such that for non
countably many t ∈ B, the fibres Ft have a map onto a non-rational smooth
curve. The aim is to produce, perhaps after base change, a rational map over
B, S −− → T , such that for non countably many fibres we recover the original
morphisms, perhaps (if T −→ B is an elliptic fibration) up to automorphisms
on the image curve. The main point of the construction is to observe that
a morphism from Ft onto a curve of genus ≥ 1 induces an endomorphism of
J(Ft), the Jacobian variety of F . Then we prove that endomorphisms on many
fibres of an abelian scheme produce an endomorphism of the abelian scheme
and from this the result follows quickly. As a by-product we find that the
existence of non-trivial abelian subvarieties on the fibres of an abelian scheme
implies the existence of a non-trivial abelian subscheme.

Let π : A −→ U be an abelian scheme and let σ be the zero section.
The theory of Hilbert schemes ensure the existence of a U -scheme EndU(A)
parametrizing the endomorphisms of the fibres of π. By taking the kernel of
the following map of group schemes over U ,

EndU(A) −→ EU(A)× U
Id×σ
−→ EU(A)×A

evaluation
−→ A

one obtains the existence of a U -scheme EndU (A) parametrizing the endomor-
phisms of the fibres of π as abelian varieties. By construction one identifies
the global sections of this scheme with the group of endomorphisms of A over
U as abelian scheme.
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To stay the main Theorem we shall need the following definition:

Definition 1.25 Let f : C −→ D be a non-constant map of complete smooth
curves. We say that f is indecomposable if it does not exist a factorization of
f through a cyclic étale covering of D of degree n ≥ 2.

Now Proposition (4.3) in [14], p. 337 reads:

Proposition 1.26 Let f : C −→ D as above. The map f ∗ : JD −→ JC is
injective if and only if f is indecomposable.

The main result of this paragraph is the following theorem:

Theorem 1.27 Let π : S −→ B be a fibred surface of curves of genus g and
fibres Ft, t ∈ B. Assume that for non countably many t ∈ B there exist a
non-constant map ϕt : Ft −→ Dt on a curve of positive genus q < g. Then the
following statements hold:

(i) There exist a base change B ′ −→ B, an integer q, 0 < q < g, a fibration
T ′ −→ B′ of curves of genus q, and a rational map over B ′

Ψ : SB′ − −− → T ′.

(ii) For non countably many t ∈ B one has Ψt = ϕt (up to automorphisms
of Dt if q = 1).

(iii) If the map ϕt is unique for non countably many t ∈ B, then base
change is not needed.

Proof: After base change and taking a suitable open subset U of B we
can assume the existence of a diagram

S|U [r]
ε[d]π0J [d]U [r]U

where J −→ U is the Jacobian fibration. The map ε is defined with the aid of
a section of π0 and fibre to fibre gives an inclusion of each Ft in its Jacobian
variety.

Let us denote by EJ the U -scheme EndUJ introduced above. It is well-
known that an abelian variety has countably many endomorphisms, hence
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fibres of EJ −→ U are countable. Define ρt : JFt −→ JFt the endomorphism
ϕ∗t ◦ Nmϕt , where Nmϕt is the norm map

Nmϕt : JFt −→ JDt

[
∑
niPi] −→ [

∑
niϕt(Pi)]

By hypothesis one has an irreducible component W ⊂ EJ dominating U .
By using again base change and the functoriality of EJ , we can assume the
existence of a section of EJ −→ U , providing an endomorphism λ of the
U -scheme J .

Define T ′ to be a desingularization of the closure of the image of

S|U
ε
−→ J

λ
−→ J

in some compactification of J . By construction, one has the rational map we
were looking for and part (i) is proved.

Observe that for non countably many t ∈ B, we recover the map Ft −→
ϕ∗t (Dt). If ϕt is an indecomposable map for non countably many t, then (ii) is
clear from above. Otherwise, we can write for a non countably many t ∈ B ′

ϕt = αt ◦ βt, where βt is indecomposable and αt : D
′
t −→ Dt is an étale cyclic

covering of degree nt ≥ 2. For non countably many t the degree nt is constant
and hence we can assume constant the genus of the curves D′

t. Notice that the
morphisms αt are determined by automorphisms on the curves D′

t. Therefore
we can apply the indecomposable case proved above to glue the maps βt and
then the part (ii) of the Theorem 1.23 finishes the proof of (ii) (perhaps after
a new base change).

Assume now that ϕt is unique for non countably many t ∈ B. In par-
ticular the curves Dt have not automorphisms (this forces q ≥ 2) and the
automorphism of Ft permute the fibres of ϕt.

As in (ii) we suppose first that the ϕt is indecomposable. The results of (i)
and (ii) give a base change B ′ −→ B, a fibration T ′ of curves of genus q over
B′ and a rational map from SB′ to T

′. The first step is to observe that there
exists a fibration T −→ B such that T ′ is obtained from T by base change (at
least on an open set of B ′). Indeed, we consider the image B0 of B′ in the
moduli space of curves of genus q. If dimB0 = 0, then the fibration T ′ −→ B′ is
isotrivial and (doing again base change) we can assume that T ′ is the product
B′ ×D. In this case one simply defines T to be B ×D.



Extension of maps 45

If dimB0 = 1, then one can construct a universal family of curves over an
open set of B0 (recall that Dt has not automorphisms). Fix a point t ∈ B
such that ϕt is unique and denote by t1, . . . , tr the preimages in B′. Since the
curves Fti are isomorphic and by the unicity, one obtains that the fibres of
T ′ −→ B′ at t1, . . . , tr are isomorphic. From this one easily proves that the
modular morphism from B ′ to B0 factorizes through the morphism B ′ −→ B.
The pull-back of the universal family over B0 to B allows to construct a surface
T with a fibration over an open set of B. One can assume as usual that T is
fibred over B.

Now, by the existence of such a fibration T −→ B and the hypothesis of
unicity, one checks that the graph of the rational map from S ′ to T ′ descents
to a graph of a rational map from S to T .

As in part (ii) we divide the proof of the general case into two parts. One
glue first the indecomposable maps and after one uses the part (iii) of Theorem
1.23. Observe that the curves D′

t (with the notations of (ii) ) have a unique
automorphism of this type due to the unicity of ϕt.

Consider now a polarized abelian variety (A,L) of dimension a and let B
be an abelian subvariety of dimension b. Let Â be the dual abelian variety of
A (i.e. the Picard variety of A) and call λ : A −→ Â to the isogeny induced
by the polarization. Consider the map

α : A[r]λÂ[r]jB̂

where j is the dual of the inclusion B ⊂ A. It is easy to see that the variety
P := Ker (α)0 ⊂ A is an abelian subvariety of dimension a − b and such that
I := B ∩ P is finite. In other words, the addition map s : B × P −→ A is an
isogeny. Let r ∈ N such that rI = 0. Then for any pair of integers (m,n) such
that r|(m− n) the endomorphism

B × P −→ B × P
(x, y) 7→ (mx, ny)

produces an endomorphism ψm,n ofA. Observe that ψr,0(A) = B and ψ0,r(A) =
P .

The same arguments used above allow to prove the following theorem:

Theorem 1.28 Let A −→ U be an abelian scheme such that dimU=1. Assume
that for non countably many t ∈ U the abelian variety At has a non-trivial
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abelian subvariety Bt of dimension bt. Then there exist a base change U ′ −→ U
and a constant b such that AU ′ has an abelian subscheme B −→ U ′ of relative
dimension a and (B)t = Bt for non countably many t ∈ U ′.

Proof: We fix a relative polarization on A. As above, the existence of an
abelian subvariety in At induces the existence of an endomorphism ψrt,0 of At.
Arguing as in Theorem 1.27 we glue, up to base change, these endomorphisms
to obtain an endomorphism of A over U . The image of this endomorphism
gives the abelian subscheme.

Remark 1.29 One easily checks that base change is not needed if for non
countably many t ∈ U there is a unique abelian subvariety of a given dimen-
sion b. If there is more than one subvariety this is not true: consider the
fibration of bielliptic curves with two bielliptic maps constructed in Example
4.2. The corresponding Jacobian fibration (on an open set of the base) gives
a counterexample.

1.4.3 Glueing linear series

Let π : S −→ B be a fibration such that for non countably many t, the fibre
Ft is d-gonal (i.e. Ft possesses a base point free g1d). As in previous sections we
want to extend, after base change, the corresponding morphisms Ft −→ P1.
More precisely, we want to prove:

Theorem 1.30 Let π : S −→ B be a fibred surface such that for non countably
many t ∈ B, Ft is d-gonal; then

(i) there exist a base change B ′ −→ B, a ruled surface R′ over B′ and a
rational map Φ : S ′ − −− → R′ over B′ such that degΦ = d.

(ii) If for non countably many t ∈ B, Ft has a unique g1d (hence complete),
then base change is not needed.

Remark 1.31 This theorem is classical when d = 2 (cf., e.g., [10]). Recall
that, for hyperelliptic curves, all base point free g1d with d ≤ 2g − 2 are ob-
tained by composing the hyperelliptic map with a Segre embedding of degree
d/2 and then projecting. From this one obtains immediately the theorem for
hyperelliptic curves and d ≤ 2g − 2.
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Proof: We consider the cases d ≥ g + 1, d = g and d ≤ g separately.

Assume d ≥ g + 1. After a base change we obtain a d-section D of π.
By Riemann-Roch h0(Ft, Dt) ≥ 2 for all smooth Ft. We can choose a rank 2
vector bundle F ⊂ π∗OS(D)⊗A generically generated by two global sections,
where A ∈ Pic(B) is of degree big enough. The natural map π∗(F) −→
OS(D)⊗ π∗(A) induces a rational map Φ : S − −− → R = P(E) over B such
that Φ∗OP(1) is the image of π∗E −→ OS(D)⊗ π∗(A). Fixing previously that
Dt0 is base point free for some t0 ∈ B (it is possible by hypothesis) and that
the two sections generating E have no base point at t0, we can conclude that
such image has no horizontal base component (see Lemma 1.3). Hence Φ has
degree d and we are done.

Assume d = g. Note that the same proof of the case above works if we have
a d-section D such that for t ∈ B general h0(Ft, Dt) ≥ 2 and for some t0 ∈ B,
Dt0 is a base point free g1d. Take D′ a (g − 2)-section of π (after base change
if necessary) such that KFt0

− D′t0 is base point free. Then, if A ∈ PicB is
ample enough, take a global section D ∈ |KS −D

′+π∗(A)|. For t ∈ B general
we have h0(Ft, Dt) = h0(Ft, D

′
t) + 1 ≥ 2 by Riemann-Roch.

Assume now that d ≤ g − 1. By Remark 1.31 we can assume that the
generic fibre is not hyperelliptic.

We consider the Brill-Noether loci W r
d (F ) of a fixed smooth d-gonal fibre

F . Since W 1
d (F ) is not contained in W 2

d (F ) (cf. [1],p.182) we can assume
that the linear series g1d is complete. Given a complete L ∈ W 1

d (F ), the
projectivized tangent cone WF,L of W 0

d (F ) at L is a minimal degree variety in
Pg−1 = P(H0(F,KF )

∗) of dimension d−1 ruled by (d−2)-planes generated by
the images of the divisors of |L| by the canonical embedding ([2], p. 241). The
singular locus of WF,L is the linear variety HF,L = P(TLW 1

d (F )) intersection
of such (d − 2)-planes. Let us denote by e(L) − 1 the dimension of HF,L and

call W̃F,L = BlHF,LWF,L. Observe that W̃F,L is a smooth rational scroll ruled

by (d − 2)-planes and with an endowed map βF,L : W̃F,L −→ P1. If L is base

point free we have F ↪→ W̃F,L and the composition of this inclusion with the
map βF,L determines L.

Recall that, being WF,L a scroll of dimension (d− 1), WF,L has more than
one system of (d − 2)-planes if and only if WF,L is a rank 4 quadric (see [6],
pp 49,51) and in this case it has two systems. We have then that d = g − 1
and WF,L = WF,KF−L, L 6= KF −L. Finally we note that every (d− 2)−plane
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contained in WF,L must be a fibre of one of the rulings.

In order to consider the above constructions relatively, we apply base
change. Then we obtain the existence of enough sections and this fills-up the
hypotheses in [88]. Hence, there exists a variety W r

d (π) over B, such that, for
smooth Ft, W

r
d (Ft)

∼= W r
d (π)t. By hypothesis, α : W 1

d (π) −→ B is dominant.

Since the construction of W 1
d (π) is functorial, base change guarantees the

existence of a section η of α such that η(t) is, for t general, a complete base
point free g1d over Ft. Let us call D to the image of η and WD to the pro-
jectivized tangent cone of W 0

d (π) at D. Note that WD contains the relative
canonical image of S − −− → PB(π∗ωS/B) (see [2]).

We can consider that, after some blow-ups, µ : S −→ WD is a morphism
(generically of degree one onto the image). Let

G = Grassd−2B (P(π∗ωS/B)),
B0 = {t ∈ B | π is smooth at t},
ϕ : WD −→ B
U = {(p, [R]) ∈ WD ×B G | p ∈ R, R ⊂ WD, ϕ(p) ∈ B

0},
α1 : U −→ WD, α2 : U −→ G the natural projections,
M = α2(U) and

S̃ = S ×W U .

Note that α1 is birational if d < g − 1 and generically of degree ≤ 2 if d =
g − 1. Moreover, if d < g − 1 and t ∈ B0 then α−11 (Wt) ∼= W̃Ft,η(t). The map

α2 : U −→M is generically a Pd−2-bundle.

Let N be an irreducible horizontal component of a relative multihyperplane
section of WD over B of dimension two. Note that N is a ruled surface, and
meets every (d− 2)-plane of a general fibre of WD exactly at one point. Then,
if Ñ is the pull-back of N in U , we have that α

2|Ñ
: Ñ −→ M is birational.

Then M is a (possibly singular) ruled surface over B if degα1 = 1 or is a ruled
surface over a double cover of B if degα1 = 2.

More precisely, take M a horizontal irreducible component of a desingu-
larization of M and let M −→ B −→ B the Stein factorization of M −→ B.
If we pull-back S̃ −→ U −→ M to S −→ U −→ M we have a rational map
ψ : S − −− →M over a ruled surface over B. If degα1 = 1 then B = B and
for t ∈ B0, the map ψFt corresponds to η(t). If the map B −→ B has degree
2 and t1 and t2 are the preimages of t ∈ B0, then ψF

ti

corresponds to η(t) or
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KFt − η(t). Finally note that, by construction, S is birational to S ×B B.

In order to prove (ii) we only have to prove that the existence of W̃B′ over a
base extension B′ of π implies the existence of W̃ over B when the base point
free linear series is unique.

Let δ be a base change

S̃[r]γ
′

[dr]π̃S
′[r]γ [d]π′S[d]πB

′[r]δB

where S̃ is a minimal desingularization of S ′. Denote by π̃ to π′ γ′. Then, from
[71] 4.10 we get an inclusion

0 −→ π̃∗(ωS̃) −→ δ∗(π∗ωS).

Since both are locally free sheaves of the same rank we get a birational map
given by a sequence of elementary transformations on suitable fibres

PB′(π̃∗ωS̃) − −− → PB′(δ∗π∗ωS),

which produces

ρ : PB′(π̃∗ωS̃/B′) ∼= PB′(π̃∗ωS̃)−− → PB′(δ∗π∗ωS) −→ PB(π∗ωS) ∼= PB(π∗ωS/B).

This map ρ is linear on fibres and restricts to the natural map from the relative
canonical image of π̃ : S̃ −→ B′ onto the relative canonical image of π : S −→
B. Fix a general t ∈ B and consider δ−1(t) = {t1, . . . , tk}. Then ρ(W̃ti) is
a variety of minimal degree containing the canonical image of Ft, ruled by
(d − 2)-planes producing the linear series on Ft. By the unicity we have that
all the images ρ(W̃ti) agree. Hence (ρ(W̃B′))t = W̃Ft for general t ∈ B. Then
ρ(W̃B′) is the variety W̃ we were seeking. Note that, if the g1d is unique we are
not in the case where WF,L is a rank 4 quadric and then no new base change
is needed in the proof of (i) .

Remark 1.32 Observe that the hypothesis of having a unique g1d is general
for small values of d. Indeed, according to [1], Theorem 2.6 a general d-gonal
curve with 2 ≤ d < g

2
+ 1 has a unique g1d.
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1.5 Generic vanishing

We state two fundamental results due to Green-Lazarsfeld and Simpson on the
generic vanishing of cohomology (see also [13]).

Let X be a smooth complex projective variety of dimension n. We set
alb : X −→ Alb(X) the Albanese map of X and a = dim alb(X).

Set
Sim(X) = {L ∈ Pic0(X)|hi(X,L) ≥ m}

Let Y be another smooth projective variety and f : Y −→ X a surjective
morphism. Set

S̃im(X, f) = {L ∈ Pic
0(X)|hi(Y, f ∗L) ≥ m}

Green and Lazarsfeld obtained a very concrete description of the sets
Sim(X), as a translated of tori in Pic0(X). Later, Simpson ([84]) proves part

of the same statement on the more general sets S̃im(X, f) (and others) and,
which is more interesting for our purposes, he proves that the translation is by
torsion points, which was previously conjectured by Beauville and Catanese.

Theorem 1.33 ([35],[36],[84]) With the above hypotheses we have

(i) The sets Sim(X), S̃im(X, f) ⊆ Pic0(X) are closed analytic subvarieties.
If Z is an irreducible component of one of them, then Z is a translation of a
subtorus of Pic0(X) by a torsion point.

(ii) dimSim(X) ≤ q(X)− a+ i.

(iii) If Z is an irreducible component of S im(X) then there exists an analytic
variety W , of dimension less or equal than i and maximal Albanese dimension,
and an analytic dominant map g : X −→ W such that Z ⊆ x + g∗(Pic0(W ))
for x ∈ Pic0(X).

More concretely, in the case of H1 we have

Theorem 1.34 ([13]) Let X be a smooth complex projective variety and
{pi : X −→ Bi}i∈I the finite family of fibrations over curves of genus g ≥ 2.
Then S1(X) = ∪i∈Ip

∗
i (Pic

0Bi) ∪ {finite number of (torsion) points}.





Chapter 2

Numerical Bounds of Canonical

Varieties

Let X be a normal Q-Gorenstein projective variety and let KX ∈ Div(X)⊗Q
be its canonical Weil divisor. A first invariant associated to X is its Kodaira
dimension, which is defined as

kod(X) = max{dimϕm(X)|ϕm is the rational map induced by |mKX |}.

The general behaviour corresponds to those that have maximal Kodaira dimen-
sion, kod(X) = dimX, the so called varieties of general type. We can consider
a classification of these according to the behaviour of the first canonical map
ϕ1. Then we can define

Definition 2.1 Let X be a normal, Gorenstein, projective variety, with canon-
ical Cartier divisor KX ∈ Div(X). We say that X is canonical if the rational
map induced by the canonical system |KX | is birational.

Note that the word canonical is used also as a class of singularities. Nev-
ertheless we always will use canonical variety in the above meaning and so no
confusion will arrive.

We will assume from now on in this chapter that X is minimal. Then, if
σ : Y −→ X is any desingularization, by the definition of terminal singularities
(canonical singularities is enough) we have that H0(X,KX) ∼= H0(Y,KY ) and
hence is equivalent to say that X or Y are canonical.

We are interested in the geography of canonical varieties. More concretely
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in lower bounds of Kn
X depending on birational invariants of X. For this is

necessary to consider X minimal since Kn
X varies in its birational class.

The first known result is related to canonical surfaces. A classical inequality
of Castelnuovo asserts that K2

S ≥ 3pg(S) − 7. After this, Harris ([39]) proves
that, if X is of dimension n and |KX | is very ample, then Kn

X ≥ (n+1)pg(X)+
dn (dn constant) although the proof works without the assumption of very
ampleness (birationality is enough).

In the case of canonical surfaces we can consider inequalities relating also
the irregularity q(S) = h1(S,OS). The first result is that for such surfaces
K2
S ≥ 3χOX (cf. [12]) in the case they are irregular. A classical result of

Jongmans gives the more accurate K2
S ≥ 3pg + q − 7 (cf. [52] and [21]).

Our aim is to give a three-dimensional version of the inequality of Jongmans
as far as an analysis of other possible bounds in the case of surfaces.

First of all we give a general version of the method that produces Jongmans
inequality, relying on a basic result on quadrics containing a variety due to
Reid. From this we analyze the border case K2

S = 3pg + q − 7 and prove that,
in fact, equality holds only when q = 0 (if pg(S) 6= 4, 5, 7). This indicates that
the bound of Jongmans is not sharp for q 6= 0 (surfaces verifying K2

S = 3pg− 7
are known to exist and completely classified ([3], [61])).

The general result given in §2.1 allows, via Riemann-Roch Theorem in X,
to give lower bounds of Kn

X depending on other birational invariants. Unfor-
tunately, this expression is not very interesting for dimX ≥ 4 since it contains
negative terms which are not easy to bound.

Then, in the case of canonical threefolds we prove that K3
X ≥ 4pg(X) +

6q(X) − 32. For this we need not only the basic result of §2.1 but also extra
information on fibred threefolds over curves. The relative hyperquadrics method
of §1.3 and Xiao’s method (§1.2) are essential in the argument.
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2.1 A general inequality

The main ingredient we will use is the result on quadrics containing nondegen-
erate irreducible varieties given in Lemma 1.16 and due to Reid. We include
a brief idea of proof since we will need it later.

Lemma 2.2. ([77], p. 195) Let Σ ⊆ PN be an irreducible variety spanning PN
of dimension w. Then

h0J
Σ,PN (2) ≤

(
N − w + 2

2

)
−min{degΣ, 2(N − w) + 1}.

Proof: Take Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σw = Σ general hyperplane sections.
Then Σ0 is a set of points in uniform position with respect hypersurfaces.

Since for k = 0, . . . , w Σk generates PN−w+k we have an inclusion

H0JΣk(2) ↪→ H0JΣk−1
(2)

and so it is enough to prove the theorem for Σ0. Let d = degΣ = #Σ0 and
consider

0 −→ H0J
Σ0,PN−w(2) −→ H0OPN−w(2)

f0−→ H0OΣ0(2)

By a classical result of Castelnuovo we have that if d ≤ 2(N −w) + 1 then
dim Imf0 = d and that if d ≥ 2(N −w)+3 and dim Imf0 ≤ 2(N −w)+1 then
Σ0 is contained in a rational normal curve, intersection of quadrics containing
it. Since h0J

Σ,PN (2) ≤ h0J
Σ0,PN−w =

(
N−w+2

2

)
− dim Imf0, the result follows

immediately.

Then we have an immediate consequence.

Proposition 2.3. Let X be a normal projective variety of general type and
dimension n. Let L ∈ Div(X), L = OX(L) ∈ PicX and ϕ the rational map
associated to L. Assume ϕ is birational; then

(i) h0(X,L⊗2) ≥ (n+ 2)[h0(X,L)− n+1
2
]

(ii) If equality holds in (i) then
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(a) Σ := ϕ(X) is contained in a minimal degree variety of Ph0(X,L)−1

of dimension n+ 1 obtained as the intersection of quadrics containing Σ.

(b) Σ ⊆ Ph0(X,L)−1 is linearly and quadratically normal.

(c) Bs|L| = Bs|2L|.

(d) If Bs|L| = ∅ and p, q ∈ X then |L| separates p and q if and only
if so does |2L|.

Proof:

We can consider

X[d]σ@>>[dr]
ϕX@−− >[r]ϕΣ ⊆ Pr

where r = h0(L) − 1, X is smooth, σ is birational and ϕ̄ is defined by the
moving part M of the linear system |σ∗(L)|, which has no base point.

By construction we have ϕ̄∗OPr(1) = OX(M) and 2M ≤ moving part of
|σ∗(2L)|. Then, since X is normal and σ has connected fibres

h0(X,OX(2L)) = h0(X, σ∗σ
∗OX(2L)) =

= h0(X, σ∗OX(2L)) ≥ h0(X,OX(2M)) =
= h0(X,ϕ∗OPr(2)) =
= h0(Σ, ϕ∗ϕ

∗OPr(2)) ≥ h0(Σ,OΣ(2))

(2.1)

Now if we consider

0 −→ H0J
Σ,Pr(2) −→ H0OPr(2)

f
−→ H0OΣ(2)

Lemma 2.2 gives

h0(Σ,OΣ(2)) ≥ dim Imf ≥
(
r+2
2

)
−
(
r+2−n

2

)
+min{degΣ, 2(r − n) + 1} (2.2)

If Hi (i = 1, . . . , n) are general hyperplanes in Pr and Σk = Σ ∩H1 ∩ . . . ∩
Hn−k is a general section of Σ of dimension k we have that Σ2 is an irreducible
surface of general type and then ([10], p. 115):

degΣ = degΣ2 ≥ 2(r − n+ 2)− 1 > 2(r − n) + 1

and hence (2.2) reads
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h0(Σ,OΣ(2)) ≥ (n+ 2)[r −
n− 1

2
] = (n+ 2)[h0(OX(L))−

n+ 1

2
].

This proves (i).

Assume from now on that equality holds in (i). In particular equality
must hold at every step of (2.1) and (2.2). Then f is an epimorphism and
h1J

Σ,Pr(2) = 0. Since h1J
Σ,Pr(1) is always zero we have (b). Moreover we

have

S2H0OPr(1) −→ S2H0OΣ(1) ∼= S2H0(X, σ∗L) ∼= S2H0(X,L)
↓ ↓ α

H0OPr(2)
f
−→ H0OΣ(2) ∼= H0(X, σ∗OX(2L)) ∼= H0(X,OX(2L))

and hence α is an epimorphism and (c) follows immediately.

In order to prove (d), consider local trivializations of L at p and q. For
α, β ∈ H0(L) we confuse α, β with their local expressions at these trivializa-
tions.

We need

Claim. If Bs|L| = ∅ then |L| does not separate p and q if and only if for all

α, β ∈ H0(L),

∣∣∣∣∣
α(p) β(p)
α(q) β(q)

∣∣∣∣∣ = 0.

Proof of the Claim:

Let β ∈ H0(L) be such that β(p) = 0. Since p is not a base point of |L|

there exists α ∈ H0(L) such that α(p) 6= 0. Then, from

∣∣∣∣∣
α(p) 0
α(q) β(q)

∣∣∣∣∣ = 0 we

get β(q) = 0 and then β does not separate p and q.

Assume there exist α, β ∈ H0(L) such that α(p) = a, α(q) = b, β(p) = a,
β(q) = b and ab− ba 6= 0. Let σ = aβ−aα ∈ H0(L). Then clearly σ separates
p and q.

If |2L| does not separate p and q then trivially so does not |L|.

Assume |L| does not separate p and q. Since S2H0(L) −→ H0(L⊗2) is
surjective for every α, β ∈ H0(L⊗2), α =

∑
aijsisj, β =

∑
bijsisj, si ∈ H

0(L).
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Since |L| has no base point and does not separate p and q we can take s ∈
H0(L) such that s(p) = a 6= 0, s(q) = b 6= 0. Since by the claim we have∣∣∣∣∣
si(p) a
si(q) b

∣∣∣∣∣ = 0 for every si we can define λi =
si(p)
a

= si(q)
b

. Then α(p) =
∑
aijλiλja

2, α(q) =
∑
aijλiλjb

2, β(p) =
∑
bijλiλja

2, β(q) =
∑
bijλiλjb

2, and
then ∣∣∣∣∣

α(p) β(p)
α(q) β(q)

∣∣∣∣∣ = a2b2
∣∣∣∣∣

∑
aijλiλj

∑
bijλiλj∑

aijλiλj
∑
bijλiλj

∣∣∣∣∣ = 0

and hence, by the claim, |2L| does not separate p and q.

For the proof of (a) we refer again to the proof of Lemma 2.2. If we call
Σ0 = Σ ∩H1 ∩ . . . ∩Hn we have that Σ0 is a set of d = degΣ ≥ 2(r − n) + 3
points in Pr−n. Proof of Lemma 2.2 shows that if we consider

H0OPr(2)
f
−→ H0OΣ(2)

H0OPr−n(2)
f0−→ H0OΣ0(2)

then we have dim Imf ≥
(
r+2
2

)
−
(
r+2−n

2

)
+ dim Imf0 ≥

(
r+2
2

)
−
(
r+2−n

2

)
+

min {d, 2(r − n) + 1}. Under our hypotheses equality holds and then we have
that Σ0 is a set of d points in Pr−n imposing exactly 2(r − n) + 1 conditions
on quadrics. Then Σ0 is contained in a rational normal curve Γ intersection of
the quadrics containing Σ0. Let Tk be the intersection of quadrics of Pr−n+k
containing Σk = Σ ∩ H1 ∩ ... ∩ Hk. We have Tk ⊆ Tk+1 ∩ Hn−k and hence
Γ = T0 ⊆ Tn ∩ H1 ∩ . . . ∩ Hn. Then Tn has an irreducible component W
containing Σ of dimension at least n+ 1. So

h0J
W,Pr(2) = h0J

Σ,Pr(2) =

(
r − n

2

)

since Σ ⊆ W ⊆ Tn. Applying now Lemma 2.2 to W , if w = dimW ≥ n+ 2:

h0J
W,Pr(2) ≤

(
r − n

2

)
− 1.

So dimW = n + 1 and, since W ∩ H1 ∩ . . . ∩ Hn = Γ, W is a variety of
minimal degree in Pr. Since such varieties are always intersection of quadrics
we have in particular W = Tn.
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2.2 Canonical surfaces

As a consequence of Proposition 2.3 we get the following result for minimal
canonical surfaces. The first part is a well known fact (cf. [21], [52]).

Theorem 2.4. Let S be a minimal canonical surface. Then

(i) K2
S ≥ 3pg + q − 7.

(ii) Assume pg(S) ≥ 8 or pg(S) = 6. If K2
S = 3pg + q − 7 then q = 0.

Proof:

(i) Inequality K2
S ≥ 3pg + q − 7 follows immediately from Proposition 2.3

since h0(S, ω⊗2S ) = K2
S + χOS.

(ii) In order to prove the statement we need first some properties of surfaces
lying on the border line; let Σ = ϕ(S) ⊆ Ppg−1, where ϕ is the canonical map
of S.

Claim 1. If K2
S = 3pg + q − 7 and q > 0 then

(i) Σ lies in a threefold Z of minimal degree.

(ii) |KS| is base point free.

(iii) |KS| does not separate p, q ∈ S (possibly infinitely near) if and only if
so does not |2KS|.

(iv) q ≥ 3.

(v) If dimSingΣ = 1 and K2
S ≥ 10 then the one dimensional components

of SingΣ are double lines.

Proof of Claim 1:

(i), (ii) and (iii) are direct consequence of Proposition 2.3 and the fact that
|2KS| has no base points if pg ≥ 4 ([15]).

(iv) If q = 1, 2 and K2
S = 3pg + q − 7, then K2

S < 3χOS and the canonical
map of S can not be birational (cf. [21]).

(v) Assume dimSingΣ = 1. Let D be a one dimensional component of
SingΣ. The canonical map ϕ is not an embedding over D. Since K2

S ≥ 10
and since, by (iii), points which are not separated by |KS| are those which are
not separated by |2KS| we can apply Reider’s Theorem (see [80]). Let q ∈ D
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be a general point of D and let p1, p2 ∈ S (possibly infinitely near) such that
ϕ(p1) = ϕ(p2) = q. By Reider’s Theorem there exists an effective divisor E
passing through p1, p2 and verifying

0 ≤ KSE ≤ 2 − 2 ≤ E2 ≤ 0

Since irreducible curves with trivial intersection with KS are contracted by
ϕ and q ∈ D is general we can consider that irreducible components of E have
positive intersection with KS. Then only two possibilities may occur:

• E irreducible KSE = 2 E2 = 0
• E = E1 + E2 KSE1 = KSE2 = 1 E2 = 0, E2

1 = E2
2 = −3, E1E2 = 3

Note that moving q ∈ D the curve E can not move because then we
would have the surface S covered by curves of genus at most two and this is
impossible since S is canonical. So we must have ϕ(E) = D (set-theoretically)
and degϕ|E = 2 since ϕ contracts at least two points over the general point of
D. Then we have that, in both cases, D is a line in Ppg−1.

Let us check that it is a double line. Assume that for q ∈ D general we have
three points p1, p2, p3 contracted by ϕ over q. For any pair {pi, pj} we must
have Eij passing through them verifying the above conditions. If we consider
the irreducible curves that lie over D by ϕ it is clear that three curves E1, E2,
E3, E

2
i = −3, EiEj = 3 (i 6= j) must exist. Consider a hyperplane in Ppg−1

containing D (it is possible since D is a line) and consider the section C ∈ |KS|
that it produces. We have

C = E1 + E2 + E3 + C.

But

3 = KS(E1+E2+E3) = (E1+E2+E3)
2+C(E1+E2+E3) = 9+C(E1+E2+E3)

which contradicts the conectness of the canonical divisor.

It is a well known fact that the only possibilities for a threefold Z of minimal
degree in Ppg−1 are

(A) Z = P3 (pg = 4).

(B) Z is a cone over the Veronese surface (pg = 7).
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(C) Z is a smooth quadric in P4 (pg = 5).

(D) Z is a scroll of type Pa,b,c, 0 ≤ a ≤ b ≤ c, 2 ≤ a+ b+ c = pg − 3.

The following claim finishes the proof of (ii) in Theorem 2.4.

Claim 2. If K2
S = 3pg + q − 7 and q > 0 then if Case (D) happens, pg ≤ 5.

Proof of Claim 2:

Our argument relies on constructing on (a birational model of) S a rational
pencil of curves of geometric genus at most 4. Then we can apply a fundamen-
tal result of Xiao (cf. [93]) on the irregularity of S: if S has a rational pencil
of curves of genus g, then q(S) ≤ 1

2
(g + 1). If g ≤ 4 then q(S) ≤ 2, impossible

by Claim 1 (iv).

Assume Z is a scroll. Consider

S[d]σ[r]Σ ⊆ Z[d][r]P1S[r]Σ ⊆ Z

where Z is the desingularization of Z. Let α : S −→ P1 be the induced
fibration and G be a general fibre. Note that, by construction (ϕ ◦ σ)|G :

G −→ Ppg−1 induces on G a base point free linear subsystem of |KG| and that
(ϕ ◦ σ)(G) ⊆ P2 ∼= T , where T is a general ruling of Z.

Note that the singularities of (ϕ ◦ σ)(G), for G general, lie on SingZ (pro-
duced by the base points of |α(G)| on S) or on SingΣ ∩ T . If a + b + c ≥ 2
(we only exclude the case Z = P3 which is Case (A)) then pg ≥ 5 and
K2
S ≥ 8 + q ≥ 11 if q 6= 0. Then, if SingΣ has one dimensional compo-

nents, they must be lines by Claim 1. Moreover we can assume that they are
transversal to the general ruling. Since any such line in Z corresponds to an
epimorphism OP1(a) ⊕ OP1(b) ⊕ OP1(c) −→ OP1(1), under the assumption

a+ b+ c ≥ 4 (pg ≥ 7) we have that the lines transversal to the ruling (if there
are more than one) fit in a ruled surface of kind P(OP1(1)⊕OP1(1)) ↪→ Z and
so cut a general plane T in points which are on a line ` ⊆ T , corresponding to
the ruling of P(OP1(1)⊕OP1(1)) in T . Then we can proceed as follows.

Assume first Z is smooth, i.e. 1 ≤ a ≤ b ≤ c. We have then that S = S,
σ(G) = G and ϕ(G) is a plane curve of degree d = 2g(G)− 2 with only double
points as singularities, lying all of them on a line. A simple computation shows
that d ≤ 5 and hence g(G) ≤ 3. By Xiao’s result q ≤ 2, which contradicts
Claim 1.
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Assume dimSingZ = 1, i.e. 0 = a = b < c. Take a general section Γ of Σ
containing SingZ. Γ corresponds to a section |KS| 3 C = cG + L where L is
the component of the linear subsystem containing SingZ (possibly L = 0).

We have then, since pg ≥ 2q − 3 (cf. [12])

7

2
c+ 5 ≥ 3pg + q − 7 = K2

S = cKG+KL ≥ cKG.

Then, using c ≥ 3, cG2 ≤ KSG and evenness of KSG+G2 we get that, in
any case 2pa(G) − 2 = KSG + G2 ≤ 6. Then g(G) ≤ pa(G) ≤ 4. Again by
Xiao’s result q ≤ 2 again a contradiction.

Finally assume dimSingZ = 0, i. e. 0 = a < b ≤ c. Take a general
hyperplane section of Σ and Z. We get an irreducible curve C lying on a
smooth ruled surface V of minimal degree in Ppg−2. Let h, l be the hyperplane
divisor class and the fibre divisor class in V . We have that h2 = degV = pg−3
and that C = αh + βl with α ≥ 1, β ≥ 0. Let C ∈ |KS| be the smooth curve
lying over C. Using that KV = −2h+ (pg − 5)l we get

2K2
S = 2g(C)− 2 ≤ 2pa(C)− 2 = α(α− 1)(pg − 3) + β(α− 2) + α(β − 2)

K2
S = deg(C) = Ch = α(pg − 3) + β

K2
S = 3pg + q − 7

Using that q ≥ 3 and that pg ≥ 2q − 3 one gets that, if pg ≥ 6 and α ≥ 5
then q = 0. Then we have α ≤ 4. But α = Cl is the degree of (ϕ ◦ σ)(G) in
T ∼= P2, so pa(G) ≤ 1

2
(α − 1)(α − 2) ≤ 3 and hence q ≤ 2. We get then that

the only possibilities for S in Case (D) with q 6= 0 occur when pg ≤ 5.

Remark 2.5. Part (ii) of Theorem 2.4 shows that inequality K2
S ≥ 3pg+q−7

is not sharp if pg À 0. Since surfaces with K2
S = 3pg − 7 are known to exist

(and are completely understood, see [3]), it seems that a sharp bound should
look like K2

S ≥ 3pg + aq − 7, with a > 1. Nevertheless probably it is not
possible to find such an easy linear expression for a sharp lower bound. We
can find some linear lower bounds under additional hypotheses. There are
several partial results in this direction:

(i) Let alb : S −→ alb(S) be the Albanese map of S. As a direct consequence of
the study of the slope of fibrations, Konno ([63]) shows that, if dim alb(S) = 1
then K2

S ≥ 3pg + 7q − 7.
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(ii) In the same paper Konno proves that if the cotangent sheaf of S is nef then
K2
S ≥ 6χOS = 6pg − 6q + 6 which is better than K2

S ≥ 3pg + q − 7 if pg À q.

(iii) Note that even if dim alb(S) = 2 but there exists a fibration π : S −→ B
with b = g(B) ≥ 2 we have K2

S ≥ 3pg + 2q − 7. Indeed, for a general fibred
surface (see Chapter 4) we have K2

S ≥ λχOS+(8−λ)(b−1)(g−1) (g = g(F ),
F smooth fibre of π). Note that if S is canonical g ≥ 3. Under our hypothesis
π 6= alb and then Xiao (cf. [92] and §4.3) proves that λ ≥ 4. Finally note that
since b+ g ≥ q ([12]) we have

(b− 1)(g − 1) ≥ (b− 1) + (g − 1) ≥ q − 2 if b ≥ 3
and (b− 1)(g − 1) ≥ (b− 1) + (g − 1)− 1 ≥ q − 3 if b = 2

If b = 2 and (b − 1)(g − 1) = q − 3 we have q = b + g. Again by [12]
we can say that S = B × F with b = g(B) = 2. This is not possible if S is
canonical. Finally we can apply that for a surface of general type pg ≥ 2q − 4
and pg ≥ 2q − 3 if it is canonical ([12]) and we get the desired bound.

(iv) Let C ∈ |KS|; then we have

0→ H0(OS)→ H0(ωS)→ H0(C, ωS |C)→ H1(OS)
ρC→ H1(ωS)→ . . .

Note that the above sequence is self-dual and then we can consider ρC ∈

SymCq. The correspondence H0(S, ωS)
Φ
−→ SymCq is clearly linear since it

is induced by the natural map H0(S, ωS) ⊗ H
1(OS) −→ H1(S, ωS). Then, if

pg ≥
(
q+1
2

)
there must exist C ∈ |KS| such that ρC = 0. For such C we have

h0(C, ωS |C) = pg + q − 1.

Assume we can find such a C irreducible. Since the linear system |KS||C is
birational we can apply “Clifford plus” ([77] p. 195) and get

pg + q − 1 = h0(C, ωS |C) ≤
1

3
(K2

S + 4)

and hence K2
S ≥ 3pg + 3q − 7.

2.3 Canonical threefolds

The case of canonical threefolds is not so straightforward from Proposition 2.3
as the case of surfaces is, since we have an extra numerical invariant which
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is h2OT . Following a classical idea of Castelnuovo-De Francis ([18], [23]) in a
general version ([13]) we reduce the proof to the study of a fibred canonical
threefold over a curve. General results for fibred threefolds are given in [73] and
improved in Chapter 5. Nevertheless we must study with more care the cases
of low values of the invariants. For this we use the relative hyperquadrics
method (see §1.3) and an extra construction of the relative quadric hull of
hyperquadrics containing the relative canonical image of the fibration.

Theorem 2.6 Let T be a canonical threefold. Then

K3
T ≥ 4pg + 6q − 32

Proof: Since T is canonical and minimal, KT is nef and big and hence by
the general Kawamata-Viehweg Theorem ([60] Thm. 2.17), the Reid-Fletcher’s
plurigenera formula ([28], Thm. 2.17) and Proposition 2.3 we get

1

2
K3
T − 3χOT = χ(ω⊗2T ) = h0(T, ω⊗2T ) ≥ 5(h0(T, ωT )− 2) (2.3)

since, being T Gorenstein, the Reid-Fletcher correction `(m) for the plurigen-
era of T vanishes (cf. [28]).

Hence
K3
T ≥ 4pg + 6(h2(OT )− h

1(OT ))− 14

Assume h2(OT ) ≥ 2h1(OT )− 3; then we get

K3
T ≥ 4pg + 6q − 32 (2.4)

and then the Theorem is proved under this hypothesis.

From now on we assume h2(OT ) ≤ 2h1(OT ) − 4. Let T̃ be a desingular-
ization of T . Since terminal singularities are rational, we have h0(T̃ ,Ωi

T̃
) =

hiO
T̃

= hiOT and hence, if we consider the natural map Λ2H0(T̃ ,Ω1
T̃
) −→

H0(T̃ ,Ω2
T̃
) we can apply [10] Lemma X.7 and get the existence of two indepen-

dent sections α1, α2 ∈ H
0(T̃ ,Ω1

T̃
) such that α1 ∧ α2 = 0. We apply then [13]

Proposition 1 and get a fibration π̃ : T̃ −→ B onto a smooth curve of genus
b = g(B) ≥ 2. We observe that π̃ descends to a fibration π : T −→ B since
b ≥ 2 and the exceptional locus of T̃ −→ T is rational.
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Let F be a general fibre of π. Since KT + F|F = KF we have that the
general fibre is a smooth canonical minimal surface (note that KT is nef so in
particular it is nef restricted to any divisor).

Then we can apply the results of Ohno ([73] Main Theorem 2) and state
that (see Theorem 5.19):

K3
T − 6(b− 1)K2

F = K3
T/B ≥ 4(χOBχOF − χOT ) (2.5)

except for a explicit and finite number of exceptions which will be considered
later. Starting from (2.5) we have

K3
T ≥ 2(b− 1)[3K2

F − 2χOF ] + 4pg − 4(h2(OT )− h
1(OT ))− 4 ≥

≥ 2(b− 1)[3K2
F − 2χOF ] + 4pg − 4q + 12

since we are assuming h2OT ≤ 2h1(OT )− 4. Note that being F canonical we
have pg(F ) ≥ 4 and K2

F ≥ 3pg(F ) + q(F )− 7 (se §2.2) and so

3K2
F − 2χOF ≥ 7pg(F ) + 5q(F )− 23 ≥ 5(q(F ) + 1)

and

2(b− 1)[3K2
F − 2χOF ] ≥ 10(b− 1)(q(F ) + 1) ≥ 10(q(F ) + b)− 10

since b ≥ 2, q(F ) ≥ 0.

Note also that from the Albanese maps associated to F ↪→ T −→ B we get
q(F ) + b ≥ q(T ) = q (see §5.1) and so

K3
T ≥ 4pg + 6q + 2

which is stronger than we wanted.

Finally we must deal with the exceptions of Main Theorem 2 in [73] (see
Theorem 5.19). Being pg(F ) ≥ 4 and F canonical we get the following possi-
bilities
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• K2
F ≤ 2pg(F )− 1

• K2
F = 2pg(F ), q(F ) ≤ 1

• K2
F = 9, pg(F ) = 4, q(F ) ≤ 1

By §2.1, K2
F ≥ 3pg(F )+q(F )−7. Moreover, if q(F ) = 1 then the Albanese

map of F produces a fibration onto a curve of genus 1 and hence K2
F ≥

3pg(F ) + 7q(F ) − 7 = 3pg(F ) (cf. [62]). Also note that if q(F ) 6= 0 and
K2
F < 3χOF , F can not be canonical (cf. [21]). Putting all this together we

have that only few cases occur:

(A) pg(F ) = 4, 5

(B) pg(F ) = 6, K2
F = 11 (= 3pg(F )− 7), q(F ) = 0

(C) pg(F ) = 6, K2
F = 12 (= 3pg(F )− 6), q(F ) = 0

(D) pg(F ) = 7, K2
F = 14 (= 3pg(F )− 7), q(F ) = 0

Minimal surfaces of general type with K2
F = 3pg(F )− 7 or 3pg(F )− 6 have

being completely studied and classified in [3], [61]. From there we get that when
pg(F ) = 6, 7 and K2

F = 3pg(F )− 7, the canonical image of F is contained in a
threefold of minimal degree, intersection of the quadrics containing it. When
pg(F ) = 6, K2

F = 3pg(F ) − 6 = 12 the intersection of such quadrics is a
threefold of ∆-genus 0 or 1 (i.e., of minimal degree or of minimal degree plus
one). We divide then case C in two subcases:

(C.1) The canonical image of F lies in a threefold of ∆−genus 0.

(C.2) The canonical image of F lies in a threefold of ∆−genus 1.

We divide the study of the four cases in three different approaches of proof.
In all of them we will prove K3

T/B ≥ 4(χOBχOF − χOT ). Then the argument
started in (2.5) works.
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Case 1.- Case (A)

We use the results of the relative hyperquadrics method of §1.3. Let E =
π∗ωT/B and consider the relative canonical image of T :

T@−− >[r]−ψ[d]Y ⊆ PB(E) = P[dl]ϕB

From now on we confuse F and ψ(F ).

Then Corollary 1.14 gives

K3
T/B ≥ (2pg(F )− 4)(χOBχOF − χOT )− 2degK − 2`(2)

where K = ϕ∗JY,P(2). Note that since T is Gorenstein, `(2) = 0 ([28]).

If pg(F ) = 4, K = 0 since K is locally free (being a torsion free sheaf on a
smooth curve) and rkK = h0(P3,J

F,P3(2)) = 0. Then

K3
T/B ≥ 4(χOBχOF − χOT ).

If pg(F ) = 5 then rkK ≤ 1. If rkK = 0 we are done. AssumeK is invertible
and let degK = x. We have then

H0(B,OB) = H0(J
Y,P(2LE)⊗ ϕ

∗(K−1)) ↪→ H0(P,OZ(2LE)⊗ ϕ∗(K−1))

and so there exists a relative hyperquadric Q ≡ 2LE − xϕ−1(t) containing
Y . Necessarily rkQ ≥ 3 since Yt ⊆ P4 is nondegenerate. Then Lemma 1.20
applies and we get degK = x ≤ 2

3
degE . Taking degrees in the generalized

Max-Noether sequence of Proposition 1.13, with D = KT/B and m = 2 as
in the proof of Corollary 1.14 and using that degE ≥ (χOBχOF − χOT ) we
obtain

K3
T/B ≥ 2(pg(F ) + 1)degE − 6(χOBχOF − χOT )− 2degK ≥

≥ 32
3
degE − 6(χOBχOF − χOT ) ≥

≥ 14
3
(χOBχOF − χOT ) ≥

≥ 4(χOBχOF − χOT ).
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Case 2.- Cases (B), (C.1) and (D)

Consider again the relative canonical image of T .

T@−− >[r]−ψ[d]πY ⊆ PB(E) =: P[dl]ϕB

If A ∈ PicB is ample enough we have, following Lemma 1.2 and Remark
1.4, an epimorphism

H0(J
Y,P(2LE)⊗ ϕ

∗(A))@− >>[r]H0(J
F,Ppg−1(2))

Let W be the horizontal irreducible component of the base locus of the
linear system on P given by the sections of H0(J

Y,P(2LE ⊗ ϕ∗(A))). Since
under our hypotheses the intersection of quadrics containing F is a threefold
of minimal degree (see [3] and [61]) W is a fourfold fibred over B by threefolds
of minimal degree. Let W̃ be a desingularization of W .

We want to relate the invariants of π : T −→ B with those of Φ : W̃ −→ B.
We extend the ideas given by Konno in [65] for studying this situation. Let H
be the pull-back of the tautological divisor of P to W̃ .

Lemma 2.7

(i) Φ∗OW̃ (H) = π∗ωT/B.

(ii) degΦ∗OW̃ (2H) = H4 + 4degπ∗ωT/B.

(iii) K3
T/B ≥ 2H4 + 2(χOBχOF − χOT ).

Proof:

(i) Both are locally free sheaves of the same rank. Consider the following
exact sequences

0 −→ J
W,P(LE) −→ OP(LE) −→ OW (LE) −→ 0

0 −→ OW (LE) −→ σ∗OW̃ ⊗OP(LE) = σ∗OW̃ (H)

where σ : W̃ −→ W is the desingularization. Taking ϕ∗ we have, since
ϕ∗JW,P(LE) = 0, an inclusion

π∗ωT/B = E = ϕ∗OP(LE) ↪→ Φ∗OW̃ (H)
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On the other hand if we consider the induced map on a suitable desingu-
larization of T

T̃ [d]η[r]ψ̃W̃ [ddl]ΦT [d]πB

we have by construction
ψ̃∗(H) ≤ η∗KT/B

and
0 −→ J

ψ̃(T̃ ),W̃
(H) −→ O

W̃
(H) −→ O

ψ̃(T̃ )
(H) −→ 0

Since again Φ∗Oψ̃(T̃ ),W̃ (H) = 0 this produces the opposite inclusion

Φ∗OW̃ (H) ↪→ Φ∗Oψ̃(T̃ )(H)) ↪→ Φ∗(ψ̃∗OT̃ ⊗OW̃ (H)) = Φ∗(ψ̃∗ψ̃
∗O

W̃
(H)) =

π∗η∗(ψ̃
∗O

W̃
(H)) ↪→ π∗η∗η

∗ωT/B = π∗ωT/B

where the last equality holds by projection formula since ωT/B is locally free
being T Gorenstein.

(ii) Note that the formula we want to prove is invariant under the change
of H by H + Φ∗(A), A ∈ DivB. Indeed, let a =degA; then

degΦ∗OW̃ (2H + 2Φ∗(A))− (H + Φ∗(A))4 − 4deg(π∗ωT/B ⊗OB(A)) =

degΦ∗OW̃ (2H)−H4 − 4degπ∗ωT/B + a(2h0(Wt,OWt
(2))− 4degWt − 4h0(Ft, ωFt))

If r = pg(F )− 1 we have

degWt = r − 2 since Wt is a 3-fold of minimal degree in Pr
h0(Ft, ωFt) = pg(F ) = r + 1

h0(Wt,OWt
(2)) =

(
r+2
2

)
− h0(J

Wt,Pr(2)) =
(
r+2
2

)
−
(
r−2
2

)
= 4r − 2

(cf. [2], p. 100) and then the coefficient of a vanishes.

So we can assume |H| is base point free and hence get a smooth ladder
W̃ = W4 ⊇ W3 ⊇ W2 ⊇ W1 ⊇ W0 (i.e., Wi is smooth and Wi ∈ |H|Wi+1

|).
Notice that W2 is a ruled surface over B. By successive induction on i, n and
m (in this order) one easily proves that

∀i ≥ 0 ∀m ≥ 1 ∀n ≥ 0 RmΦ∗OWi
(nH|Wi

) = 0.

For this note first that the result is true for i = 1 and that RmΦ∗OWi
= 0

for every m ≥ 1 and i ≥ 0 since they are locally free ([58]) and hm(O(Wi)t) = 0
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((Wi)t is rational). Then use inductively the following exact sequence after
taking Φ∗

0 −→ OWi
((n− 1)H|Wi

) −→ OWi
(nH|Wi

) −→ OWi−1
(nH|Wi−1

) −→ 0.

Hence

degΦ∗OWi
(2H|Wi

) = degΦ∗OW̃ (H) + degΦ∗OWi−1
(2Hi−1).

Finally note that degΦ∗OW0(2H) = H4 sinceW0 is a reduced 0-dimensional
scheme of degree H4.

(iii) The natural map (as in (i)) 0 −→ Φ∗OW̃ (2H) −→ π∗ω
⊗2
T/B is injective

and has a torsion cokernel since it is an isomorphism at a general fibre. Then
the result follows calculating degπ∗w

⊗2
T/B as in proof of Corollary 1.14 and

applying (ii).

In order to finish Case 2 note that, since part (iii) of lemma holds, it is
enough to prove that H4 ≥ degΦ∗O∼

W
(H).

Claim: Let X be a smooth variety and f : X −→ B a fibration onto a smooth
curve. Let D ∈ Div(X) be a nef divisor and let E = f∗OX(D). Assume E is
nef. Then Dn ≥ degf∗OX(D).

Proof of the Claim: We follow the notations of §1.2. Consider the Harder-
Narasimhan data associated to E = f∗OX(D). For every i = 1, . . . , ` + 1 let
ϕi : F̃ −→ Pri−1 the map induced by the nef base point free linear system Pi
on a birational model F̃ of F = f−1(t).

We construct a partition of {1, . . . , `} in the following way: for
i = 0, . . . , n− 1 = dimF consider the (possibly empty) set

Ai = {k = 1, . . . , `|dimϕk(F̃ ) = i}

and define

ai =

{
minAi if Ai 6= ∅
ai+1 otherwise

Note that if j ∈ Ai, degϕj(F̃ ) ≥ rj − i since ϕj(F̃ ) is a nondegenerate irre-
ducible variety of dimension i in Prj−1. Moreover, since P1 ≤ P2 ≤ . . . ≤ P`+1
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and they are nef, we have that


∏

k>i

Pak




i∑

r=0

P i−r
j P r

j+1 ≥


∏

k>i

Pak


 (i+ 1)P i

j

Finally, since for k > i dimϕak(F̃ ) > i and Pak is base point free, we have
that 

∏

k>i

Pak


P i

j ≥ degϕj(F̃ )

Using then Proposition 1.10 as in Proposition 1.11 we have

Dn ≥
n∑

i=0

∑

j∈Ai


∏

k>i

Pak



(

i∑

r=0

P i−r
j P r

j+1

)
(µj − µj+1)

and hence by the previous remarks

Dn ≥
n∑

i=0

∑

j∈Ai

(i+ 1)(rj − i)(µj − µj+1) ≥
n∑

i=0

∑

j∈Ai

rj(µj − µj+1) = degE

since rj ≥ i+ 1, being ϕj(F̃ ) an i-dimensional variety in Prj−1.

Case 3.- Case (C.2)

In this case (see [61]) the canonical image of F is a complete intersection
of two quadrics and a cubic. We follow the notations of Case 2. Denote
Hi = H|Wi

. Now W̃ = W4 is fibred over B by threefolds of degree four in P5,
complete intersections of two quadrics, and W2 −→ B is an elliptic surface
over B.

Then we have



Canonical threefolds 71

Lemma 2.8

(i) Φ∗OW̃ (H) = π∗ωT/B.

(ii) degΦ∗OW̃ (2H) ≥ 1
2
H4 + 5degΦ∗OW̃ (H).

(iii) K3
T/B ≥ H4 + 4(χOBχOF − χOT ).

Proof:

(i) Follows as in Case 2.

(ii) Note that, as in Case 2, formula (ii) is invariant under changing H by

H+Φ∗(A) so we can construct a smooth ladder of (
∼

W,H). Indeed, as in Case
2, the coefficient of a = degA is

2h0(Wt,OWt
(2))− 2degWt − 5h0(Ft, ωFt) = 2

[(
5 + 2

2

)
− 2

]
− 8− 30 = 0

since Wt is the complete intersection of two quadrics in P5. For i ≥ 2 and
t ∈ B general (Wi)t ⊆ Pi+1, being a complete intersection, is projectively
normal. On the other side R1Φ∗OWi

is locally free for i ≥ 1 (see [58]) and
in fact R1Φ∗OWi

= 0 except for i = 2, for which it is a line bundle of degree
−χOW2 (observe that W2 is an elliptic fibration over B). For this just use the
exact sequences

0 −→ J
(Wi)t,Pi+1 −→ OPi+1 −→ O(Wi)t −→ 0

0 −→ OPi+1(−4) −→ OPi+1(−2)⊕OPi+1(−2) −→ J
(Wi)t,Pi+1 −→ 0

and [7] Proposition 12.2.

Finally we want to prove that R1Φ∗OW2(H) = 0. Let E = (W2)t any fibre
of Φ : W2 −→ B. If E is smooth h1(E,OE(4)) = 0 so R1Φ∗OW2(H) is torsion.
We need to prove that h1(E,OE(4)) = 0 for any fibre E. Since H2 + E is
nef and big on W2 we have from Kawamata-Viehweg vanishing and the exact
sequence

0→ H0(W2,−E−H2)→ H0(W2,−H2)→ H0(E,OE(−1))→ H1(W2,−E−H2)

that h1(E,OE(1)) = h0(E,OE(−1)) = 0 (recall that KE = OE since W2 is
elliptic) and hence that R1Φ∗OW2(H) = 0. Then again by induction as in Case
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2 we have
∀i ≥ 0 ∀n ≥ 1 R1Φ∗OWi

(nH) = 0

∀i 6= 2 R1Φ∗OWi
= 0

Therefore we have exact sequences

0 −→ Φ∗OWi+1
(H) −→ Φ∗OWi+1

(2H) −→ Φ∗OWi
(2H) −→ 0 for i ≥ 0

0 −→ Φ∗OWi+1
−→ Φ∗OWi+1

(H) −→ Φ∗OWi
(H) −→ 0 for i 6= 1

0 −→ Φ∗OW2 −→ Φ∗OW2(H) −→ Φ∗OW1(H) −→ R1Φ∗OW2 −→ 0

Denote d = degΦ∗OW̃ (H) = degπ∗ωT/B. Then we have

d = degΦ∗OW4(H) = degΦ∗OW3(H) = degΦ∗OW2(H) =
= degΦ∗OW1(H)− degR1Φ∗OW2

and then

degΦ∗OW̃ (2H) = 4d+H4 + degR1Φ∗OW2 = 4d+H4 − χOW2 .

Note that, since Φ : W2 −→ B is an elliptic fibration, we have that KW2
∼=

Φ∗(L)+M , whereM ≥ 0 and is contained in fibres and degL = χOW2+2(b−1).
So, Riemann-Roch on W2 and Leray spectral sequence yields

d− 4(b− 1) = χΦ∗OW2(H) = χOW2(H) = χOW2 +
1
2
H2

2 −
1
2
H2KW2 ≤

≤ −χOW2 − 4(b− 1) + 1
2
H4

since H2
2 = H4, H2 is nef and HΦ−1(t) = 4 for t ∈ B. Then −χOW2 ≥ d− 1

2
H4

and hence degΦ∗OW̃ (2H) ≥ 5d+ 1
2
H4.

(iii) The same argument as in Case 2 works.

Now we only have to use H4 ≥ 0 and get K3
T/B ≥ 4(χOBχOF − χOT ) as

needed. Note that using good lower bounds for H4 as in Case 2 we can obtain
stronger bounds for K3

T/B in this case.

Remark 2.9 The bounds obtained in Theorem 3.1 for fibred canonical three-
folds hold when simply |KF | induces a birational map (it is not necessary that
T be canonical).





Chapter 3

On a conjecture of Fujita

Let Y be a smooth projective variety. Let M = OY (D) be an invertible
sheaf. There are several notions of positivity forM. M is said to be nef (or
semipositive) if DC ≥ 0 for every curve C ⊆ Y ; M is said to be strictly nef
(cf. [81]) if DC > 0. On the other hand M is ample if for any dimension k
subvariety E ⊆ Y we have DkE > 0. AlternativelyM is ample if and only if
M⊗r is very ample for some r ≥ 1. From this, the definition of semiampleness
comes naturally. M is said to be semiample if M⊗r is generated by global
sections. Note that the notion of semiampleness is not numerical (for instance,
M = OY is semiample).

Let F be a locally free sheaf on Y . ConsiderM = OP(LF) the tautological
line bundle on P = PY (F). We can extend the above notions of positivity for
line bundles to F viaM. Note that then F is semiample if and only if SrF
is generated by global sections on Y for some r ≥ 1; indeed, just consider the
natural isomorphism H0(Y, SrF) ∼= H0(P,OP(r)).

Remember that given a smooth variety Z is equivalent to give a non con-
stant map f : Z −→ Y and a quotient line bundle f ∗F@− >>[r]L on Z, to
give a map ϕ : Z −→ P such that ϕ∗OP(LF) = L (cf. [43] II.7.12). Then,
when Y is a curve we can give alternative equivalent definitions for the nu-
merical properties. Observe that if Z is a curve then degL = degϕ∗OP(LF) =
ϕ(Z).LF .

Following [26] we can define the lower degree of F as

`d(F) = min{degL |L quotient line bundle of F}

74



75

and the stable lower degree of F as

s`d(F) = inf

{
`d(f ∗F)

degf
| f : Z −→ Y a finite map of nonsingular curves

}

Then it comes out immediately from the definition that F is nef if and only
if `d(F) ≥ 0 and that F is strictly nef if and only if `d(F) > 0. Moreover F
is nef if and only if any quotient of F has nonnegative degree. Obviously if F
is ample any quotient of F has positive degree. A not so trivial fact based on
Seshadri criterion for ampleness is that F is ample if and only if s`d(F) > 0
(cf. [26] 1.2).

We have the obvious relations ample⇒ semiample⇒ nef, ample⇒ strictly
nef ⇒ nef.

Let X, Y be smooth projective varieties of dimensions n andm respectively
and f : X −→ Y a fibration (cf. §1.1). Consider the relative dualizing sheaf
ωX/Y and the relative canonical divisor KX/Y (ωX/Y = OX(KX/Y )). It turns
out that the sheaves Rif∗ω

⊗r
X/Y have certain properties of positivity. In general

these sheaves are only torsion free sheaves but not locally free. The notion
of nefness can be extended to torsion free sheaves and to quasi-projective
varieties, and we get the so called weakly positive sheaves (cf. [89]). Under our
hypothesis both notions coincide and so we will not define this new notion of
positivity.

The following proposition gives a brief account of the properties we need.

Proposition 3.1 Let f : X −→ Y be a fiber space between smooth projective
varieties of dimensions n and m respectively. Assume the branch locus of f is
contained in a normal crossings divisor. Then

(i) ([59] 2.6) Rif∗ωX/Y and Rjf∗OX are locally free.

(ii) ([59] Relative duality) For 0 ≤ i ≤ d = n − m, (Rif∗ωX/Y )
∗ ∼=

Rd−if∗OX .

(iii) ([89]) For k ≥ 1, f∗ω
⊗k
X/Y is nef.

(iv) ([26]) For k ≥ 2, m = 1, f∗ω
⊗k
X/Y is ample.

(v) ([30], [31]) If m = 1, we have a decomposition E = f∗ωX/Y = A ⊕
E1 ⊕ . . . ⊕ Er, where A is ample, for 1 ≤ i ≤ r, Ei are stable, degree zero
and, if s = q(X) − g(Y ), E1 = . . . = Es = OY , Ej 6= OY for s + 1 ≤ j ≤ r.
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Moreover, if F is a stable degree zero sheaf such that there exists a surjective
map E@− >>[r]F , then F is a direct summand of E and hence F = Ei for
some i ∈ {1, . . . , r}.

Note that if Y is a curve, then from (iii) and (v) we get that E = f∗ωX/Y
is nef and not ample, provided q(X) > g(Y ).

In [32] p. 600, Fujita propose the following

Conjecture. Given a fibration f : X −→ Y , is there a birational model
f ′ : X ′ −→ Y ′ such that E ′ = f∗ωX′/Y ′ is semiample?

Observe that given a fibration f we can always get a birational model
f ′ : X ′ −→ Y ′ with branch locus contained in a normal crossings divisor via
Hironaka’s Theorem.

Before giving an alternative interpretation in case Y is a curve let us state
some well known results on semiample sheaves. A good reference is [34].

Proposition 3.2 ([33], [34]) Let F be a locally free sheaf on a smooth variety
Y .

(i) If X is smooth and g : X −→ Y dominating, then F is semiample if
and only if g∗F is semiample.

(ii) If F = F1 ⊕ . . . ⊕ Fk, F is semiample if and only if Fi is semiample
for 1 ≤ i ≤ k.

(iii) If F is semiample then det(F) is semiample.

(iv) If F is semiample and kod(Y, det(F)) = 0 then there exists an étale
cover g : Ỹ −→ Y such that g∗F is trivial.

If Y is a curve, Fujita’s conjecture is equivalent to ask whether the de-
gree zero, non trivial summands {Ei}s+1≤i≤r become trivial after an étale base
change.

X̃[r][d]
f̃
X[d]f Ỹ [r]Y

and hence f̃∗ωX̃/Ỹ = Ã ⊕ O
⊕(q(X̃)−g(Ỹ ))

Ỹ
with Ã ample.

This phenomenon will be useful to us in the study of the slope of surfaces
and threefolds fibred over curves (see Chapters 4 and 5).
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We prove that Fujita’s conjecture is true if Y is an elliptic curve. In fact we
prove much more: for arbitrary X and Y any locally free quotient F of E with
det(F) ∈ Pic0(Y ) verifies that det(F) is a torsion line bundle. In particular,
when Y is a curve detEi are torsion. If Ei has rank one this proves Fujita’s
conjecture for this piece. In any case note that according to Proposition 3.2
(ii) the torsion nature of det(Ei) is a necessary condition in order Fujita’s
conjecture holds.

Let H = OY (H) be an ample line bundle on Y . Recall that a locally free
sheaf F on Y is called H-stable if for any G ⊆ F we have

Hm−1c1(G)

rkG
<
Hm−1c1(F)

rkF

Clearly F is H-stable if and only if it is H⊗r-stable for any r ≥ 1 so we can
assume H is very ample. Then if C = H1 ∩ . . . ∩Hm−1 (Hi ∼ H) is a smooth
curve, it is equivalent to say that F is H-stable to say that F|C is stable in the
usual sense.

Proposition 3.3 Let Y be a smooth curve, X a smooth projective variety of
dimension n and f : X −→ Y a fibration. Let F be a stable, degree zero,
locally free sheaf on Y . Then

(i) A map E = f∗ωX/Y −→ F is non trivial if and only if it is surjective

(ii) There exists a non zero map E = f∗ωX/Y −→ F if and only if
h0(Y, (Rn−1f∗OX)⊗F) 6= 0

(iii) For any 1 ≤ i ≤ n − 1 there exists a finite number of stable, degree
zero vector bundles F on Y such that h0(Y, (Rif∗OX)⊗F) 6= 0

Proof:

(i) Since E is nef by Proposition 3.1, the image of E −→ F has nonnegative
degree. Since F is stable and of degree zero, F can not have any proper
subsheaf of nonpositive degree. Hence if the map is non trivial it is surjective.

(ii) By relative duality we have

HomY (E ,F) ∼= H0(Y, E∗ ⊗F) = H0(Y, (Rn−1f∗OX)⊗F)

(iii) Assume first i = n − 1. From (i) and (ii) we obtain that if
h0(Y, (Rn−1f∗OX)⊗F) 6= 0, then there is an epimorphism E@− >>[r]F . Ac-
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cording to Fujita’s decomposition in Proposition 3.1 (v), we know that there
exists i such that Ei ∼= F .

Assume now 1 ≤ i ≤ n − 2. If we consider Z a general linear section of
codimension i in X and g : Z −→ Y the induced fibration, if follows from
[59] 2.34 that Rn−1−if∗ωX/Y is a direct summand of g∗ωZ/Y . Hence by relative
duality

HomY (R
n−1−if∗ωX/Y ,F) = H0(Y, (Rn−1−if∗ωX/Y )

∗ ⊗F) =
= H0(Y, (Rif∗OX)⊗F) 6= 0

and hence there exists a non trivial map

g∗ωZ/Y@− >>[r]Rn−1−if∗ωX/Y [r]F

and the argument finishes arguing as in the case i = n− 1.

Then we can state the main result.

Theorem 3.4 Let X, Y be smooth projective varieties of dimension n and m
respectively. Let f : X −→ Y be a fibration with branch locus contained in a
normal crossings divisor of Y .

Fix a very ample line bundle H = OY (H) on Y . Let E = f∗ωX/Y and let
F be a H-stable locally sheaf on Y such that det(F) ∈ Pic0(Y ).

If there exists a non-trivial map E −→ F , then det(F) is torsion.

Proof: First of all note that it is enough to prove the theorem for m = 1.
Indeed, let Z ∈ |H| be a general smooth member. By Bertini’s Theorem
T = f ∗(Z) = X ×Y Z is again smooth. Let g = f|T : T −→ Z. By adjunction
we have that g∗ωT/Z = i∗(f∗ωX/Y ), where i : Z ↪→ X is the natural inclusion.

Since F is locally free, Im(E −→ F) is torsion free and non trivial, hence
the induced map g∗ωT/Z = i∗(f∗ωX/Y ) −→ i∗F is non-trivial; we also have
det(i∗F) = i∗(detF) ∈ Pic0(Z) and i∗(F) is H-stable on Z. By induction
we have for some r ∈ N (i∗L)⊗r = i∗(L⊗r) = OZ . Kodaira’s vanishing gives
h0(Y,L⊗r) = h0(Z, i∗(L⊗r)) = 1 and hence L⊗r = OY ; indeed, consider the
exact sequence

0 −→ H0(Y,OY (−Z)⊗ L
⊗r) −→ H0(Y,L⊗r) −→

−→ H0(Z, i∗(L⊗r)) −→ H1(Y,OY (−Z)⊗ L
⊗r)
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and that

H0(Y,OY (−Z)⊗ L
⊗r) = H1(Y,OY (−Z)⊗ L

⊗r) = 0

since OY (Z) ⊗ L
−⊗r is ample (OY (Z) is ample, L is numerically trivial and

ampleness is a numerical condition).

From now on we assume Y to be a smooth curve of genus b and F a stable,
degree zero locally free sheaf on Y . Let d = n − m = n − 1 the relative
dimension of f .

Consider, from Leray’s spectral sequence Ep,q
2 = Hp(Rqf∗F)⇒ Hp+q(f∗F)

0 −→ H1(Y, (Rd−1f∗OX)⊗F) −→ Hn−1(X, f ∗(F)) −→

−→ H0(Y, (Rdf∗OX)⊗F) −→ 0 (3.1)

By Proposition 3.3, h0(Y, (Rd−1f∗OX) ⊗ F) = h0(Y, (Rdf∗OX) ⊗ F) = 0
except for a finite number of such F . We have then that hn−1(X, f ∗(F)) is
constant, say a, except for a finite number of F . Let s = rankF .

If s = 1 then Proposition 3.3 asserts that F ∈ A = {M ∈ Pic0(Y ) |
hn−1(X, f ∗(M)) ≥ a + 1} which is finite. Then we can apply the remarkable
result of Simpson in [84](see Theorem 1.33): the irreducible components of A
are translations of tori by torsion points. Finiteness of A implies that in fact
its points are torsion.

Assume s ≥ 2. Following Viehweg ([89], [71] 4.11) we can consider X (s)

a resolution of the component of Xs = X×Y s). . . ×YX dominating Y and
f (s) : X(s) −→ Y the induced fibration. We have then an inclusion

(
f (s)∗ ωX(s)/Y

)∗∗
↪→

(
s
⊗ f∗ωX/Y

)∗∗

Note that since dimY = 1 both are locally free sheaves (hence reflexive)
and so we have an inclusion of vector bundles of the same rank

j : f (s)∗ ωX(s)/Y ↪→
s
⊗ f∗ωX/Y

Now consider the projection π

s
⊗ f∗ωX/Y@− >>[r]

s
⊗F@− >>[r]detF
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Note that π ◦ j is non trivial since the first two vector bundles have the
same rank and j is injective, and then we can apply the argument of the rank
one case.

Remark 3.5 A similar result is given independently in [95] for the very partic-
ular case of a surface S of Albanese dimension 1, where q(S) = g(Alb(S)) = 1
and the canonical map of S is composed with the Albanese fibration.

Once this memory was written, the author was informed by Professor Takao
Fujita that the result in Theorem 3.4 also follows from an argument of Hodge
Theory following [22] §4.2.

Corollary 3.6 Let f : X −→ B be a fibration of a smooth projective variety
X onto an smooth curve of genus b.

If b ≤ 1 then f∗ωX/B is semiample.

Proof: We just need to apply that on an elliptic curve any stable degree
zero sheaf has rank one.

If Y = B is any smooth curve, Theorem 3.4 says that Fujita’s conjecture
is true for any rank one degree zero summand of E . Hence the only open
question is whether the degree zero summands of rank at least two in Fujita’s
decomposition are semiample. We can not prove this but we prove that if they
are not semiample they are more positive than being nef, they are strictly nef.
More concretely

Corollary 3.7 Let f : X −→ B be as above. Let F be a stable degree zero
vector bundle on B.

If there exists a non-trivial map E = f∗ωX/B −→ F then there is a base

change σ : B̃ −→ B such that σ∗F = F0 ⊕ O
⊕r

B̃
, where F0 is a strictly nef

vector bundle with trivial determinant.

Proof: Assume F is not strictly nef. Then there exists a smooth curve
C and a map σ : C −→ B such that σ∗F@− >>[r]L, degL = 0, where
L = σ̂∗OP(1) and σ̂ is a map σ̂ : C −→ P = PB(F).

Since σ is flat we have ([71] 4.10)

0 −→ f̃∗ωS̃/C −→ σ∗f∗ωS/B
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where S̃ is a desingularization of S ×B C.

Since σ∗E@− >>[r]σ∗F@− >>[r]L and the induced map f̃ω
S̃/C
−→ L

can not be zero (f̃∗ωS̃/C and σ∗f∗ωS/B are of the same rank), by Theorem 3.4

L is torsion and hence, up to a new base change, we can assume is trivial.

Then we argue by induction on the rank of F .

Remark 3.8 If F0 is as in the previous result, note that for every σ̂ : C −→
PB(F0), OP(1)σ̂(C) > 0 but F0 is not ample. In our case s`d(F0) = 0 but we
can not achieve this infimum.



Chapter 4

The slope of fibred surfaces

In this chapter we consider fibrations f : S −→ B from a smooth projective
surface onto a smooth projective curve, a fibred surface for short. We call F
the general smooth fibre of f and b = g(B), g = g(F ). After contracting (-1)-
curves in fibres we can always get a relatively minimal model of the fibration.
From now on we will always assume that the fibration is relatively minimal.

Invariants

From a geographical point of view it is interesting to know how the numer-
ical invariants of F,B and S relate. For this it is useful to define the relative
invariants of f as

K2
S/B = (KS − f

∗KB)
2 = K2

S − 8(b− 1)(g − 1)

χf = (−1)dimS(χOS − χOBχOF ) = χOS − (b− 1)(g − 1)

ef = e(S)− e(B)e(F ) = e(S)− 4(b− 1)(g − 1)

where e denotes the topological Euler characteristic.

It is worth to mention that for ef we have the classical result (cf. [10])

ef =
∑

(e(Fi)− e(F ))

where the sum runs over the singular fibres Fi of f and where e(Fi)−e(F ) ≥ 0

82
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and e(Fi) = e(F ) if and only if g = 1, and Fi is a multiple of a smooth elliptic
curve.

Naturally associated to f we get E = f∗ωS/B, a rank g, nef vector bundle
on B (see Chapter 3). A standard computation via Riemann-Roch on B and
S, and Leray’s spectral sequence shows that

χf = degE .

There are several classical inequalities relating all these invariants. The
first one is Noether’s formula, which in relative version reads

12χf = K2
S/B + ef .

When g ≤ 1 we get ruled and elliptic surfaces. These are well known and
never can be surfaces of general type. From now on we assume g ≥ 2. Then a
classical result of Arakelov and the previous inequalities show that

K2
S/B ≥ 0, χf ≥ 0, ef ≥ 0.

Moreover we have that if K2
S/B = 0 then f is isotrivial (i.e., all smooth

fibres are mutually isomorphic), if ef = 0 then f is smooth (i.e., f has no
singular fibres) and χf = 0 if and only if f is isotrivial and smooth (we will
call this a locally trivial fibration). When f is isotrivial it becomes trivial (a
product) after a birational transformation and a base change (cf. [82]). We
will see that, in fact, if K2

S/B = 0 then f is also locally trivial.

Consider for t ∈ B such that Ft is smooth the natural diagram of Albanese
maps

Ft[r]
albFt [d]itAlb(Ft)[d](it)∗S[r]

albS [d]fAlb(S)[d]f∗B[r]albBAlb(B)

As t varies, the abelian subvariety (it)∗Alb(Ft) remains constant, say A, by
the rigidity property of abelian varieties. Let a = dimA. From this we get

b ≤ q(S) = b+ a ≤ b+ g

Moreover, from the diagram and the universal property of Albanese vari-
eties it is immediate to check that, when b ≥ 1, b = q if and only if albS(S) = B.
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In this case we say that f is an Albanese fibration. On the other hand, q = b+g
if and only if S is trivial (i.e., S = B × F , being S minimal)(cf. [12]).

Slope

When f is not locally trivial, we can define the slope of f as

λ(f) =
K2
S/B

χf

According to the previous results we have

0 ≤ λ(f) ≤ 12

and that if λ(f) = 0 then f is isotrivial (we will see in a moment after a result
of Xiao that λ(f) > 0 whenever f non locally trivial). On the other hand,
λ(f) = 12 if and only if f is smooth.

Given a fixed fibred surface f : S −→ B there are two general ways of
producing new fibrations with the same slope (cf. [92]). The first one is to
consider base changes

S̃[r]σ̄[d]f̃S[d]f B̃[r]σB

such that σ does not ramify on images of non-semistable fibres of f ; in this
case we have λ(f) = λ(f̃). The second one consists in taking a torsion element
or order n L ∈ Pic0(S) such that for 1 ≤ i ≤ n − 1 L⊗i|F 6= OF . Then L

determines an étale cover σ : S̃ −→ S such that f̃ = f ◦σ has connected fibres
and hence is a fibration over B. Again in this case we have λ(f) = λ(f̃).

As for base changes that do ramify over the images of non-semistable fibres
of f , it is worth to mention several works of Tan (cf. [86], [87]). There the
contribution of the non-semistable fibres to K2

S̃/B̃
and χ

f̃
is well understood

but it is not known whether the slope λ(f̃) increases or decreases with respect
to λ(f). We want to stress that hence we can not reduce the study of the slope
of fibred surfaces to the slope of semistable fibrations; indeed, in the process of
semistable reduction (cf. [7]) we must ramify on the images of non-semistable
fibres and hence we lose the control on the slope.
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Slope and moduli

In the particular case of semistable fibrations we can give an alternative
definition of the slope which suggest some nice questions on its behaviour.
Let M be the Deligne-Mumford compactification of the moduli space Mg

of smooth curves of genus g. Then M = Mg ∪ ∆ where ∆ is the divisor
representing stable singular curves of genus g. Let h be the class of the Hodge
bundle inM and δ the class of certain divisor with support on ∆ (we do not
need to concrete this). In the geometry ofM divisors of type ah−bδ (a, b > 0)
play a special role. For instance we have KM ∼Q 13h− 2δ. In [41] Harris and
Morrison define the slope ofMg as

sg = inf
{
a

b
| ah− bδ is effective, a, b > 0

}
.

Observe that the exact value of sg has importance in order to get informa-
tion on the Kodaira dimension ofM (cf. [41]).

Let f : S −→ B be a semistable fibration of genus g. Up to contracting
(-2)-curves (which produce mild singularities) we get a fibration of stable
curves. We consider B ⊂ M its modular image. If f is not isotrivial, then B
is a curve. For simplicity we assume B = B. It turns out that

δB = ef

hB = degf∗ωS/B = χf .

In this context, the slope of f ( or of B) is defined as

s(B) =
δB

hB

and hence, by Noether’s formula we get

λ(f) + s(B) = 12

and the problem of finding a lower bound for λ(f) translates into the problem
of finding an upper bound for s(B). Observe that if B passes through a general
point ofMg and D = ah− bδ if effective, then
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0 ≤ DB = ahB − bδB

and hence we get lower bounds for

a

b
≥
δB

hB
= s(B)

sg ≥ s(B).

Another consequence: using thatM is of general type if g ≥ 24 and that
KM = 13h − 2δ we have that if a semistable fibration verifies that λ(f) < 11

2

(s(B) > 13
2
), then:

(mKM)B < 0

and hence B is in the base locus of all the pluricanonical linear systems inM.

By a general result of Xiao in [92] (and Cornalba-Harris for semistable
fibrations (cf. [20])) we have the general bound

s(B) ≤ 8 +
4

g

which is attained only for some hyperelliptic fibrations. If B passes through a
general point ofM, then Mumford-Harris-Eisenbud ([40], [42], [24]) give

s(B) ≤ 6 + o(
1

g
)

Moreover, fibrations which do not verify this inequality are contained in
the closure Dk of certain k-gonal locus. For instance, if g is odd, then

s(B) ≤ 6 +
12

g + 1

k =
g + 1

2

which corresponds to λ(f) ≥ 6 g−1
g+1

.

Having this description and results in mind, a natural question arises: find
a stratification J1 ∪ J2 ∪ ... ∪ Jl =M (such that J1 is the hyperelliptic locus
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and Jl−1 = Dk,Jl =M\Jl−1 described by Mumford-Harris-Eisenbud result)
for which we have successively bigger minimal slopes λj in M \ Jj. This
stratification should at least consider the gonality (or the Clifford index) of
the curves. Of course this problem, stated for semistable fibrations, has a
natural translation for general fibrations.

Known results on slopes

The study of the slope of a fibred surface consists in giving sharp bounds
for its variation depending on the geometry of the fibration. The upper bound
of λ(f) is not very well known and there is no general techniques. The general
result λ(f) ≤ 12 is improved only in the following result

Xiao ([94]), Matsusaka ([68]). If f is not smooth and the general fibre is
hyperelliptic then

λ(f) ≤
4(g − 1)(3g + 1)

g2
if g even

λ(f) ≤
4(3g2 − 2g + 2)

g2 + 1
if g odd.

The lower bound of the slope has been more studied. The main result is

Xiao (cf. [92]); if g ≥ 2 and f is not locally trivial

λ(f) ≥ 4
g − 1

g
(4.0.1)

Later on Konno (cf. [63]) completes the proof begun by Xiao and proves
that if the lower bound is achieved, then the general fibre F is hyperelliptic.
Then the problem of finding a lower bound for non-hyperelliptic fibrations
appears. Cases of low genus of the fibre have been considered in the literature
(cf. Konno in [63] and independently Chen in [17] for g = 4). There we obtain
that λ ≥ 3 if g = 3, λ ≥ 24/7 or 7/2 (according to whether F has one or two
g13) if g = 4 and that λ ≥ 40/11 or 4 (according to whether F is trigonal or
not) if g = 5.

The next natural step to consider is the case of trigonal fibrations (i.e.,
when the general fibre F is a trigonal curve). We have
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Konno [65]. If F is a trigonal curve and g ≥ 6 then

λ(f) ≥
14(g − 1)

3g + 1
(4.0.2)

although it is not known to be a sharp bound. Independently, and only for
semistable fibrations,

Stankova-Frenkel ([85]). If F is trigonal and f semistable

λ(f) ≥
24(g − 1)

5g + 1
(4.0.3)

Curiously enough this bound can be improved when the general trigonal
fibre F has general Maroni invariant (i.e., the canonical image of F fits in
P1 × P1 or the blow-up of P2 at a point; this is the general behaviour of a
trigonal curve),

Stankova-Frenkel ([85]). If F is trigonal with general Maroni invariant and
f is semistable

λ(f) ≥ 5−
6

g
(4.0.4)

Observe that when g = 4 these bounds coincide with those previously found
by Konno and Chen.

According to Harris-Mumford-Eisenbud result quoted above for stable fi-
brations, it is reasonable to think in lower bounds for the slope depending
on the existence of special linear series on the general fibre. In the case of
stable fibrations this would correspond to the conjectured stratification ofM.
There is a recent attempt to this: in [66] Konno gets a formula for the slope
depending on the Clifford index of the general fibre (which is a measure of the
existence of special linear series). Unfortunately his formula contains a term
which is not easily computed or bounded and depends strongly on a conjecture
of Green on the syzygies of canonical curves. Nevertheless as a particular case
he obtains

Konno ([66]). If F has maximal Clifford index, g = g(F ) is odd and Green’s
conjecture holds then
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λ(f) ≥ 6
g − 1

g + 1
(4.0.5)

Observe that this bound coincides with that of Harris-Mumford-Eisenbud
for stable fibrations.

All the results from (4.0.1) to (4.0.5) study the influence of the geometry
of the general fibre over the lower bound of the slope. Another different kind
of results deal with the influence on the slope of global properties of S. We
have

Xiao ([92]).If f is not an Albanese fibration (i.e. q = q(S) > b) then

λ ≥ 4 (4.0.6)

and equality holds only if q = b+ 1.

According to Fujita’s decomposition of E this problem is very related to
the positivity properties of E . Indeed, in the same paper Xiao proves that E
has no locally free quotient of degree zero and rank at least 2 when F is non
hyperelliptic and λ < 4. In fact he conjectures that E must be ample when
λ < 4.

Problems and results in this chapter

From the previous considerations we can state three general problems in
the study of the slope of fibred surfaces:

PROBLEM 1: How does the special properties of the general fibre influence
over the slope?. In particular, how does the existence of special linear series
influence?.

PROBLEM 2: How does global numerical invariants of S (other than K2
S

and χOS) influence on the slope?. In particular how does the irregularity of S
influence?.

PROBLEM 3: How special are fibrations with low slope (λ(f) < 4)?.

As for the third problem is very clear which is the expected behaviour. Note
that, as mentioned above, f is necessary an Albanese fibration; on the other
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hand only few examples of non-hyperelliptic fibrations with λ < 4 are known:
for g = 4 Chen gives one example (cf. [17]) and for trigonal fibrations, examples
on the border line in Stankova-Frenkel’s bound provide further examples as far
as g ≤ 6. It seems that the only possibility of finding examples for all g arises
only in the hyperelliptic case. Finally, according to Xiao’s conjecture, the sheaf
E should be ample. Summing up we can state

Conjecture. Let f : S −→ B be a non-locally trivial, relatively minimal
fibred surface. If λ(f) < 4 then E = f∗ωS/B is ample and (if g >> 0) F is
hyperelliptic.

Along this chapter we contribute to the study of these three problems. In
§4.1 and §4.2 we study the slope of double cover fibrations. Roughly speaking,
these are fibrations for which the general fibre has an involution inherited from
the surface. The reason for studying this kind of fibrations is twice. The first
one is technical and arises when applying Xiao’s method (see Chapter 1) for
the study of the slope of arbitrary fibred surfaces; this method relies in the
study of certain linear systems on the fibres. If we call d and r the degree
and rank of one of these linear systems, the greatest is the ratio d

r
the best

results we get from the method (see computations in this chapter). The worst
possibility for this ratio, according to Clifford’s lemma, is that it be near 2.
This happens as far as F is a double cover of another smooth curve induced by
the linear system. For this reason it is interesting to deal with this possibility
independently, as will happen specially in §4.3.

The second reason comes out after understanding the case of double covers
as a generalization of the case of hyperelliptic curves ( which are double covers
of curves of genus zero). The first step is to consider bielliptic curves (i.e.,
double covers of elliptic curves). In §4.1 we study the structure and slope of
fibrations with general fibre a bielliptic curve. The structure is very simple:
they are double covers of elliptic fibrations as far as g ≥ 6. Which is more
surprising: they are not necessarily so if g ≤ 5. An example is given for which
a base change is previously needed. Moreover, when a bielliptic fibration is
smooth (i.e., all the fibres are smooth) then it is isotrivial; as far as we know
this is only known to happen for hyperelliptic and elliptic fibrations. As for
the slope we prove that λ ≥ 4 and characterize the border cases; in particular
λ(f) = 4 is attained for any genus. Observe that a bielliptic curve is tetragonal
(it has infinitely many g14 just composing the double cover with the infinitely
many g12 on the elliptic curve). Hence a new phenomenon appears with respect
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to Problem 1: we can always find tetragonal fibrations with slope 4 (which is
less than the lower bound for trigonal fibrations). Certainly bielliptic curves
are very special tetragonal curves. If F is tetragonal and non bielliptic it has
finitely many g14 (in fact only one if g >> 0). Probably what happens is just
the phenomenon described by Stankova-Frenkel for trigonal curves: the gen-
eral tetragonal fibration has a different behaviour from the special (bielliptic)
one. This phenomenon can perfectly happen again when studying fibrations
of higher non-general Clifford index; indeed, if a curve F is a double cover it
never has general gonality. So the double cover fibrations could play an special
role in the study of Problem 1.

In §4.2 we give a lower bound for double cover fibrations as an increasing
function of h (if F −→ E is the double cover, we call h = g(E)), provided
g ≥ 4h + 1. This contributes to Problem 1. As for Problem 3, we also prove
that in fact λ(f) ≥ 4 provided g ≥ 2h+ 11 (and F is not tetragonal).

In §4.3 we study Problem 2. We give bounds λ(f) ≥ H(g, q) in the case
the fibration is not a double cover and λ(f) ≥ H̄(g, q, h) otherwise, such that
the functions H and H̄ are increasing functions of q and which coincide with
Xiao’s bound (4.0.6) when q − b = 2. This is then a generalization of Xiao’s
result for the cases q−b > 1. It is worth to mention that we find through these
inequalities, an influence over the slope of f of the existence of other fibrations
on S over curves of genus at least 2 (see Theorem 4.24 below).

Section §4.4 is devoted to the study of Problem 3. Basically we prove that
the conjectured behaviour for fibrations with low slope holds, provided the
general fibre is non hyperelliptic or b ≤ 1 or g ≤ 3.

Finally in §4.5 we construct several families of fibred surfaces. They provide
examples to check that the bounds we found in §4.2 and §4.3 are, at least,
assimptotically sharp.

4.1 The slope of bielliptic fibrations

4.1.1 Bielliptic fibrations

Let F be a smooth curve of genus g. F is called bielliptic if F admits a
2-to-1 map onto an elliptic smooth curve E. Such a map is always given by
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the quotient by an involution ι ∈ Aut(F ), called a bielliptic involution on F .
It is a well known fact that such an involution is unique if g ≥ 6 (see [2]).

Let f : S −→ B be a fibration of genus g. We say that f is bielliptic if
so it is the general fibre F of f . The following result clarifies the structure of
such fibrations. Recall that the fibration f is said to be smooth if every fibre
is smooth and it is said to be isotrivial if all the smooth fibres are mutually
isomorphic.

Proposition 4.1 Let f : S −→ B be a bielliptic fibration of genus g. Then

(i) Up to base change, S is a rational double cover of an elliptic surface over
the base curve.

(ii) If g ≥ 6 the same is true without base change.

(iii) If f is smooth, then f is isotrivial.

Proof: (i) and (ii) are consequence of general results given in §1.4.

(iii) Isotriviality can be checked after base change. Following §1.4.2 we can
consider after base change

S[dr]f@
(− >[r]iJ(f)[d]@−− >[r]`J(f)[dl]B

where J(f) is the relative Jacobian variety of S over B and ` is a rational
relative endomorphism of J(f) such that ` ◦ i produces a bielliptic map on
the general fibre of f . Let V = (` ◦ i)(S). Note that V is an elliptic surface
over B (possibly singular). Let ε1 : V −→ V be the normalization of V , and
ε2 : V̂ −→ V a minimal desingularization. Classification of singular fibres of
smooth elliptic surfaces (cf. [7]) show that if V̂ −→ B has any fibre which is
non smooth, then either every component of such fibre is rational or the fibre
is a multiple of a nonsingular smooth elliptic curve. The second possibility
can be transformed in a smooth fibre after an étale base change. If the first
possibility holds then any component of the respective fibre of V −→ B and of
V −→ B must be rational, which is impossible since by construction for every
t ∈ B J(π)t = J(Ft) is an abelian variety and hence does not contain any
rational curve. Then V̂ = V and the map τ : V −→ B is smooth. Moreover,
since S is smooth, the map π = ` ◦ i : S−−− →V factors through a map
π : S−−− →V . This can be solved after some blow-ups but then exceptional
curves must be contracted since V has no rational curve on fibres.
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So we have that S is a double cover of a smooth elliptic fibration (perhaps
after base change). In particular every fibre of f is bielliptic.

Consider now the double cover π : S −→ V . Since π has degree two the
branching divisor of π must be smooth and hence it is étale over B. After new
base changes we can assume that the irreducible components of the branching
divisor D are sections of τ . Moreover, since τ : V −→ B is a smooth elliptic
fibration it is isotrivial (cf. [7]) and then, after base change, we can assume
V = B × E (E: elliptic smooth curve, cf. [82]). Let D1 be an irreducible
component of D. If D1 is a trivial section of τ then so must be the other
components (otherwise they must intersect, which is impossible sinceD is étale
over B) and then f is clearly isotrivial. Assume D1 is not a trivial section.
Then D1 = {(b, α(b)) ∈ B × E | α : B −→ E non constant map}. Consider
a fixed structure of group on E = (E, 0) and consider the automorphism of
V over B: β(b, x) = (b, x + α(b)). Note that β−1(D1) = B × {0} and, hence,
β−1(D) is composed of trivial horizontal sections. If we change the base

S@[dr]|⊗[r]'[d]π̃S[d]
πB × E[r]βB × E

the branching divisor of π̃ is just β−1(D) which is trivial. Then any fibre Ft of f
is a double cover of the same elliptic curve with the same ramification locus δ.
Any such double cover is determined by L ∈ Pic(E) such that L⊗2 = OE(δ).
There are obviously a finite number of such L and hence Ft belongs to a finite
number of isomorphism classes. By continuity the isomorphism class of Ft is
constant and hence f is isotrivial.

A bielliptic curve of genus g ≤ 5 can have more than one bielliptic invo-
lution; the number of such involutions are in correspondence with the elliptic
components of W 1

4 (F ), the Brill-Noether locus of linear series on F of type g14
(cf. [2]). We give an example which shows that these involutions do not glue
independently for a general fibration.

Example 4.2 Take a genus five curve F with exactly two bielliptic involutions
σi : F −→ Ei such that E1 6∼= E2, with Ei having no exceptional automor-
phisms. Note that this is always possible. Indeed, consider two different lines
in P2 and a general cubic. Let Q be the quintic they produce. Let W be
the admissible double cover of Q ramified at its double points (cf. [9]). Now
the Prym variety of the admissible double cover (W,Q) is the Jacobian of a
smooth genus 5 curve F (cf. [9]). Moreover W 1

4 (F )
∼= W and hence F has
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exactly two bielliptic involutions corresponding to the two elliptic components
of W (the two double covers of the lines in Q).

We have that σ1 × σ2 : F −→ E1 × E2 embeds F as a smooth curve,
F ∈ |`∗1(2p1)⊗`

∗
2(2p2)|, being `i : E1×E2 −→ Ei the projections and (p1, p2) ∈

E1 × E2. Since Aut (E1 × E2) acts transitively on E1 × E2 we have that for
every (q1, q2) ∈ E1 × E2 there exists F̃ ∈ |`∗1(2q1)⊗ `

∗
2(2q2)|, F̃

∼= F .

Let B be any smooth curve having an involution ι and let h : B −→ B =
B/<ι>. Consider a morphism κ : B −→ P1 with no factorization through B.
Take a fixed t ∈ B such that if h−1(t) = {t1, t2} then κ(t1) 6= κ(t2). After an
automorphism of P1 we can suppose that κ(ti) is the modular invariant of Ei

in C ⊆ P1.

Then, by [7] p.160, there exists an elliptic fibration τ : V −→ B with a
section, such that τ−1(ti) ∼= Ei. Let B′ be the image in V of the section of τ .
Consider the following pull-back

@C = 1.5truecm@R = 1.5truecmZ := V ×B V [d]ξ1 [r]
ξ2 [dr]ξV [d]τV [r]ι◦τB

Then, for t ∈ B we have Zt = ξ−1(t) = Eι(t) × Et, where Em = τ−1(m). The
natural involution on V ×C V induces a commutative diagram

Z[r]ῑ[d]ξZ[d]ξB[r]ιB

and then

@C = 1truecm@R = 1truecmZ[r]h[d]ξZ[d]ξ̄:= Z/<ι>B[r]hB

Note that Z is a threefold fibred over B and the fibre over h(t) ∈ B general is
Eι(t) × Et. We can assume Z is already smooth.

Let B′′ = h(ξ−12 (B′)) and L = OZ(2B
′′). We have that L|Z

t

∼= `∗1(2q1) ⊗

`∗2(2q2) for some (q1, q2) ∈ E1 × E2. Note that if a ∈ Pic(B) is ample enough
we have, by Lemma 1.2, an epimorphism

H0(Z,L ⊗ ξ̄∗(a)) −→ H0(E1 × E2,L|Z
t
) .

Since by hypothesis there exists F ∈ |L|Z
t
| we get S ∈ |L⊗ ξ̄∗(a)| a surface

fibred over B, smooth at a general fibre and such that S t = F . Again, we can

suppose S is already smooth. Let f : S −→ B and Fm = f
−1
(m). For m ∈ B
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general we have that Fm is an smooth curve of genus 5 having at least two
bielliptic involutions given by the inclusion Fm ⊆ Eι(m)×Em (if g(m) = m) as
a (2, 2)-divisor. We claim that for general m ∈ B, Fm has exactly two bielliptic
involutions. Since this is the case for F = Ft we only have to prove that having
at most two of them is an open condition. Consider W 1

4 (f) −→ B, the relative
Brill-Noether locus of f (at least over an open set of B, see [88]), after a base
change if necessary. The number of bielliptic involutions of Fm is given by the
number of elliptic components of W 1

4 (Fm)
∼= W 1

4 (f)m. Then, having at most
two of such components is obviously an open condition.

We claim that S is not a (birational) double cover of any elliptic fibration
τ̄ : V −→ B. Indeed, assume we have a double cover π : S −→ V (we can
suppose π everywhere defined after some blow-ups). Consider the base change
diagram

@C = 1truecm@R = 1truecmZ[r]ZS@(− >[u][r][d]π̃S@
(− >[u][d]πṼ [r][d]τ̃V [d]τ̄B[r]B

For S we have three double covers of elliptic fibrations over B:

π̃ : S −→ Ṽ
πi : S −→ V fi = ξi|S i = 1, 2

Set U = {m ∈ B |Em 6∼= Eι(m); Em, Eι(m) and Ẽm are smooth and Fm has

exactly two bielliptic involutions} (where Ẽm = τ̃−1(m)). We have that U
is a non-empty open set of B. Since π1|Fm , π2|Fm , π̃|Fm are double covers of

Eι(m), Em and Ẽm respectively we have that for every m ∈ U , Ẽm ∼= Eι(m) or

Ẽm ∼= Em.

If h1 = h ◦ ι|U : U −→ P1, h2 = h|U : U −→ P1 and h̃ : U −→ P1 are the
modular morphisms induced by ι◦ τ , τ and τ̃ over U respectively we have that
h̃ = h1 or h̃ = h2. Assume h̃ = h2.

As we have t1, t2 ∈ U and ι(t1) = t2 we get

Et1 = τ−1(t1) = τ̃−1(t1) ∼= τ̃−1(t2) = τ−1(t2) = Et2

since τ̃ is induced by τ̄ : V −→ B and then τ̃−1(m) ∼= τ̃−1(ι(m)) for all m ∈ B.
But this is impossible since by hypothesis Et1 = E1 6∼= E2 = Et2 .
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4.1.2 The slope of bielliptic fibrations

We recall some basic facts about double covers (see [44], [7]).

By a double cover we mean a finite, degree two map between surfaces,
f0 : S0 −→ V0. This map is determined by a divisor R0 on V0 (the branch
divisor) and a line bundle L0 such that L⊗20 = OV0(R0). If V0 is smooth,
S0 is normal (respectively smooth) if and only if R0 is reduced (respectively
smooth).

Consider a double cover as above with S0 normal and V0 smooth. Then
there exists a canonical resolution of singularities for S0 which consists on a
finite sequence of maps

Sk
σk−−−−−−−→ Sk−1 −−−−−−−→ . . . −−−−−−−→ S1

σ1−−−−−−−→ S0

πk

y
πk−1

y
. . .

y
π1

y
π0

Vk −−−−−−−→αk
Vk−1 −−−−−−−→ . . . −−−−−−−→ V1 −−−−−−−→α1

V0

satisfying:

(i) αj is the blow-up of Vj−1 at a singular point pj−1 of Rj−1 (the branching
divisor of πj−1).

(ii) πj is the double cover of Vj defined by L⊗2j ∼= O(Rj), with Rj =
α∗j (Rj−1)− 2mj−1Ej, Lj = α∗j (Lj−1)⊗OVj(−mj−1Ej), where Ej is the excep-
tional divisor of αj and pj−1 is a singular point of Rj−1 of multiplicity 2mj−1

or 2mj−1 + 1.

(iii) σj is a birational morphism induced by the cartesian diagram of αj
and πj−1.

(iv) Rk is smooth and, hence, Sk is a smooth surface.

Now we can use this as follows. Recall from section §4.1.1 that we have ob-
tained π : S̃ −→ V a generically 2-to-1 morphism from a blow-up of S onto an
elliptic fibration V . We can assume the elliptic fibration is relatively minimal.
Suppose also that f is relatively minimal. Then consider

@C = 1truecm@R = 1truecmS̃[dd]σ[drrr]uS = Sk[dl][dd]πk [r] . . . [r]S0[dd]π0S[dd]
f . . . V = Vk[r] . . . [r]V0 = V [dlll]B
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where:

• π = π0 ◦ u is the Stein factorization of π, with u birational, π0 finite (so
it is a double cover) and S0 normal.

• πk : Sk −→ Vk is the canonical resolution of singularities of π0 : S0 −→ V0.

• σ̄ : Sk −→ S is the birational morphism defined by the relative minimality
of f .

Theorem 4.3 Let f : S −→ B be a relatively minimal bielliptic fibration of
genus g ≥ 6. Let V be the relative minimal model of the elliptic fibration
obtained in section §4.1.1. Then

(i) K2
S/B − 4χf ≥ 2(g− 5)XOV . In particular, if f is not locally trivial

λ(f) ≥ 4 +
2(g − 5)XOV

χf
≥ 4

(ii) λ(f) = 4 if and only if S is the minimal desingularization of a
double cover S0 −→ V of a smooth elliptic surface such that

· All the fibres of the elliptic fibration τ : V −→ B are smooth
and isomorphic.

· The branch divisor of the double cover has only negligeable sin-
gularities (i.e., all the multiplicities mj in the above process are
2 or 3 (see [13], [17])).

In particular, the bound is sharp.

Proof:

(i) First of all we have

K2
S/B−4χf = (K2

S−4XOS)−4(b−1)(g−1) ≥ (K2
S
−4XOS)−4(b−1)(g−1) .

(4.1)

For smooth double covers πk : S −→ V we have (see [3] p.183):

XOS = 2XOV +
1

2
LkKV +

1

2
LkLk

K2
S

= 2K2
V
+ 4LkKV + 2LkLk
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so we have
K2
S
− 4XOS = 2[K2

Vk
− 4XOVk ] + 2LkKVk . (4.2)

Moreover, in each blow-up αj : Vj −→ Vj−1 we get

XOVj = XOVj−1
; KVj = α∗jKVj−1

+ Ej; Lj = α∗jLj−1 −mj−1Ej .

Then

2[K2
Vj
− 4XOVj ] + 2LjKVj = 2[K2

Vj−1
− 4XOVj−1

] +

2Lj−1KVj−1
+ 2(mj−1 − 1) ≥ 2[K2

Vj−1
− 4XOVj−1

] + 2Lj−1KVj−1
(4.3)

Finally as τ : V −→ B is an elliptic minimal fibration, numerically we have
KV ≡

[
2(b− 1) + XOV +

∑
i
(ni−1)
ni

]
E ([7] p. 162) where E denotes a smooth

fibre of τ and {ni} are the multiplicities of singular fibres of τ . In particular
K2
V ≡ 0.

As L⊗20 = OV0(R0) and R0 is the branch divisor of π0 we get L0E = (g−1)
by Hurwitz formula. So

2[K2
V0
− 4XOV0 ] + 2L0KV0 = −8XOV0 + 2L0E

[
2(b− 1) + XOV0 +

∑

i

(ni − 1)

ni

]

≥ 4(b− 1)(g − 1) + 2(g − 5)XOV

Then (i) follows from this, (4.1), (4.2), (4.3) and from the fact that XOV ≥
0 for elliptic fibrations.

(ii) Looking at the proof of (i) we see that λ = 4 if and only if XOV = 0
and equality holds in all the above inequalities. So we have λ = 4 if and only
if S is the minimal desingularization of a double cover of an elliptic, relatively
minimal, fibration τ : V −→ B such that:

· τ has no multiple fibres (∀ i ni = 1).

· XOV = 0.

· The branch divisor R0 of the double cover has only negligeable sin-

gularities (see [13], [17]), i.e. all the multiplicities of the singularities
of the branch divisors in the process of canonical resolution are 2 or
3.
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But the first two conditions are equivalent to the fact that τ is smooth and
isotrivial ([83] thms. 6,7 Ch.IV). This allows us to construct examples with
λ(f) = 4 which are essentially the same as in [92] Example 4.3. So the bound
is sharp.

Remark 4.4 Although we cannot use double covers for the case of bielliptic
fibrations of genus 5 we already know that λ ≥ 4 also holds for such fibrations
(see [63] Thm.5.1, [66]).

4.2 The slope of double covers

4.2.1 Slope

Definition 4.5 Let f : S −→ B be a relatively minimal fibration of genus g.
We say that f is a double cover fibration if there exists a relatively minimal
fibration τ : V −→ B and a rational map π : S−−− →V over B which is a
generically two to one map.

We will call F , E the fibres of f and τ respectively and g = g(F ), h = g(E).

Remark 4.6 If f is a double cover fibration of τ , then F is a double cover of
E for general F and E, but the converse is not true as pointed out in Example
4.2. Nevertheless the converse is true if the involution that produces the double
cover is unique for a fixed h (see Theorem 1.23). The following lemma shows
that this always happens if g À h.

Lemma 4.7 Let F be a smooth curve of genus g. Let h ∈ N such that g ≥ 4h+
2. Then F has at most one involution ι such that the genus of E = F/ < ι >
is h.

Proof: Assume there exist two involutions ι1 and ι2 as in the statement.
Let Ei = F/ < ιi >. Consider the natural maps σi : F −→ Ei, σ = σ1 × σ2 :
F −→ E1×E2. Let πi : E1×E2 −→ Ei the projections. Let F = σ(F ). Since
deg(πi ◦ σ) = 2, we have that degσ = 1 or 2.

Assume degσ = 2. Then E1
∼= F ∼= E2 and F is the graph of an automor-

phism ϕ of E1 = E2. Then clearly σ1 = σ2 ◦ ϕ and ι1 = ι2.

Assume degσ = 1. Then F is the desingularization of F . Note that
KE1×E2 ≡ (2h− 2)(L1+L2) where Li = π−1i (ti) for ti ∈ Ei. We have FLi = 2;
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hence

F
2
≤

((L1 + L2)F )
2

(L1 + L2)2
= 8

by [43] V 1.9 (b). Now adjunction yields

2g − 2 ≤ 2pa(F )− 2 = (KE1×E2 + F )F = 8h− 8 + 8 = 8h

which is impossible if g ≥ 4h+ 2.

Let f be a double cover fibration. Following notations of §4.1.2 we have

S̃[r]π̃[d]σṼ [d]ηS[r]π[d]fV [dl]τB

where τ and π exist by definition, π is a generically 2-to-1 rational map and τ is
a relatively minimal fibration; η : Ṽ −→ V and σ : S̃ −→ S are any birational
maps such that the induced rational map π̃ = η−1 ◦ π ◦ σ is a morphism. It is
important to remark that η and σ can be chosen to resolve other maps of S
or V if necessary. Let f̃ = f ◦ σ and τ̃ = τ ◦ η. Note that at general t ∈ B
f−1(t) = f̃−1(t), τ−1(t) = τ̃−1(t).

The map η◦π̃ factorizes by Stein Theorem as η◦π̃ = π0◦u, where π0 is finite
and u is birational. Let D be the branching divisor of π0 and L ∈ Pic(V ) such
that L⊗2 = OV (D). By standard theory of double coverings (cf. [7], p.182) we
have that

E = f∗ωS/B = f̃∗ωS̃/B = τ∗((η ◦ π̃)∗ωS̃/B) = τ∗(ωV/B ⊕ (ωV/B ⊗ L)) =

= τ∗ωV/B ⊕ τ∗(ωV/B ⊗ L)

From now on we set
F = τ∗ωV/B

G = τ∗(ωV/B ⊗ L)

and call {µi, ri, di}1≤i≤`1 , {µi, ri, di}1≤i≤`2 , the Harder-Narshimann data of F
and G respectively (see §1.2). Note that r`1 = rkF = h = g(E), r`2 = rkG =
g − h. Call

χ1 = degF

χ2 = degG.

We have χf = degE = χ1 + χ2.
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The following is a useful result that relates the Harder-Narasimhan filtra-
tions of decompositions as above.

Proposition 4.8 Let F ,G, E locally free sheaves on a smooth curve B. Let
0 = F0 ⊆ F1 ⊆ . . . ⊆ F`1 = F , 0 = G0 ⊆ G1 ⊆ . . . ⊆ G`2 = G, 0 = E0 ⊆ E1 ⊆
. . . ⊆ E` = E its Harder-Narasimhan filtrations. Let {µi}1≤i≤`1, {µi}1≤i≤`2,
{γi}1≤i≤` its Harder-Narshimann slopes. Assume E = F ⊕ G. Then we can
define ψ : {0, . . . , `} −→ {0, . . . , `1}, ϕ : {0, . . . , `} −→ {0, . . . , `2} such that

(i) ψ(0) = ϕ(0) = 0; for 1 ≤ i ≤ ` ψ(i) = ψ(i−1) if µk 6= γi for every k ∈
{1, . . . , `1} (respectively, ϕ(i) = ϕ(i − 1) if µk 6= γi for every k ∈ {1, . . . , `2})
and ψ(i) = k if γi = µk (respectively, ϕ(i) = k if γi = µk).

(ii) Ei = Fψ(i) ⊕ Gϕ(i)

Proof: Call π1 : E −→ F , π2 : E −→ G the natural projections. Let
E11 = π1(E1), E

2
1 = π2(E1); both are locally free since they are torsion free

(E11 ⊆ F , E
2
1 ⊆ G). We have E1 ⊆ E

1
1 ⊕ E

2
1 .

Assume E11 6= 0. Since E1 is semistable and E11 is a quotient, we have
that µ(E11 ) ≥ µ(E1) = γ1. From the inclusions E11 ⊆ F ⊆ E we get γ1 ≤
µ(E11 ) ≤ µ1 ≤ γ1 since F1, E1 are the maximal unstabilizing sheaves in F and
E respectively. Hence γ1 = µ1 and E11 ⊆ F1 ⊆ E1 by the maximality of F1 and
of E1 (see Theorem 1.6). The same argument works if E 21 6= 0.

Assume µ1 6= γ1. Then necessarily E21 = 0 and E11 6= 0. Hence µ1 = γ1,
E1 ⊆ E

1
1 ⊆ F1 and then E1 = F1 = F1⊕G0 by maximality. The same argument

works if µ1 6= γ1.

Assume µ1 = µ1 = γ1. Then E1 ⊆ E
1
1 ⊕E

2
1 ⊆ F1⊕G1 with µ(F1⊕G1) = γ1.

Again by maximality of E1 we conclude E1 = F1 ⊕ G1.

The proof concludes by induction dealing with E/E1 = F/Fψ(1) ⊕ G/Gϕ(1).

Corollary 4.9 With the above notations we have

max{µ1, µ1} = γ1
min{µ`1 , µ`2} = γ`

Proof: Obvious.

We are interested in finding a lower bound of the slope of double covers
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depending on g and h. In order to get this note first that if the cover is étale
λ(f) = λ(τ) (cf. [92]). Since then L ∈ Pic0(V ) and L /∈ τ ∗Pic0(B) (otherwise
the double cover with data (L,OV ) will not have connected fibres over B) we
have q(V ) > b and hence λ(f) = λ(τ) ≥ 4 (see §4.3) and so λ(f) = 4 can
always be achieved. From now on we assume the double cover is not étale.

For h = 0 (hyperelliptic case) the general bound λ(f) ≥ 4 g−1
g

holds and is

attained (cf. [92]). For h = 1 (bielliptic case) we got in §4.1 λ(f) ≥ 4 = 4 g−1
g−1

and also the bound is attained. Note that in both cases formula λ(f) ≥ 4 g−1
g−h

holds. Moreover in both cases fibrations verifying λ(f) = 4 g−1
g−h

are the easiest
ones: they are double covers of isotrivial fibrations ramified along a divisor
with negligeable singularities. In [92] Xiao constructs examples of this easy
double covers for any h and proves that for them, equality λ(f) = 4 g−1

g−h
holds

(see Example 4.29).

From all these considerations it seems natural to ask whether λ(f) ≥ 4 g−1
g−h

holds for double cover fibrations. There is even an additional reason to consider
4 g−1
g−h

. Starting with an arbitrary double cover fibration we can construct a

family of new double cover fibrations with the same general fibre (i.e., the
modular image coincides) and slope as close to 4 g−1

g−h
as wanted. In fact it is

easy to prove that the sequence of slopes {λn} is monotonous, so we could
prove λ(f) ≥ 4 g−1

g−h
if we prove that the sequence is decreasing.

Indeed, consider a double cover fibration

S̃[r]u[d]σS0[r]
π0V [ddll]τS[d]fB

where S0 is normal and π0 finite. Note that ωS0/B = π∗0(ωV/B⊗L) and ωS̃/B =

π̃∗(ωV/B ⊗ L) ⊗ OS̃(E), where E is an effective divisor contracted by u on
the singularities of S0. Remember also that the singularities of S0 lie over the
singularities of the branching divisor D.

Then we have

K2
S/B ≥ K2

S̃/B
= K2

S0/B
+ E2 = 2(KV/B + 1

2
D)2 + E2

χOS = χO
S̃
= χOS0 − h

0(S0, R
1u∗OS̃) = χ(V,OV ⊕ L

−1)− h0(S0, R
1u∗OS̃) =

= χOV + χ(V,L−1)− h0(S0, R
1u∗OS̃)
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where h0(S0, R
1u∗OS̃) depends only on the non-rational contracted curves and

R1u∗OS̃ is torsion, with support on the singularities of S0.

We are going to associate to f a new fibration fn (for nÀ 0) which is again
a double cover of τ . For this take nÀ 0 such that |2np| moves in B (p ∈ B),
and let p1 + . . . + p2n ∈ |2np| a smooth member. Set Ln = L ⊗OV (nEp) and
consider Dn = D+E1 + . . .+E2n such that L⊗2n = OV (Dn). We can consider
that the fibres E1, . . . , E2n cut transversally the divisor D.

We can then consider the surface S0,n which is the double cover of V with
the data (Ln, Dn). Let S̃n be its minimal desingularization and let Sn be a
relatively minimal model over B.

Observe that, by construction, the divisor Dn has the singularities of D
plus the double points produced by the transversal intersection of D with
Ei. Double points are negligeable singularities and hence, they do not have
numerical contribution for K2

S̃n
and χO

S̃n
.

Then we have

K2
Sn/B

≥ K2
S̃n/B

= K2
S0,n/B

+ E2 = 2(KV/B + 1
2
Dn)

2 + E2 =

= 2(KV/B + 1
2
D)2 + E2 + n(2ED + 4KV/BE)

χOSn = χO
S̃n

= χOS0,n − h
0(S0, R

1u∗OS̃) =

= χ(V,OV ⊕ L
−1
n )− h0(S0, R

1u∗OS̃) = χOS + n(1
2
ED + 1

2
KVE)

Let fn : Sn −→ B be the induced fibration. Note that fn and f have the
same general fibre. Hence χfn = χOSn − (b − 1)(g − 1). Assume f is not
locally trivial. Hence fn is not locally trivial and we have a well defined slope
λn = λ(fn). Define

λ∞ = limn→∞λn =
2ED + 4KV/BE
1
2
ED + 1

4
KVE

=
2ED + 4KVE
1
2
ED + 1

2
KVE

Observe that F is a double cover of E ramified over D|E so
DE = 2g − 2 − 4(h − 1) = 2g − 4h + 2. Since KV |E = KE by adjunction
on V we have KVE = 2h− 2. Hence

λ∞ = 4
g − 1

g − h
.
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Unfortunately it is not true that λ(f) ≥ 4 g−1
g−h

as we will see in two families

of examples in §4.5 (see Example 4.30 and Example 4.31). Nevertheless the
counterexamples found seem to be very special, since they are double covers of
double covers and always verify g ≤ 4h. We ignore whether the expected bound
λexp = 4 g−1

g−h
holds under additional (and, of course, general) hypotheses.

Instead, we can get assimptotically sharp bounds (when g >> h) for
double cover fibrations. In general we can at least prove that λ(f) ≥ 4 under
some mild extra hypotheses.

As a first step consider the following result. The first part is due to Konno
(cf. [67]).

Proposition 4.10 Let f : S −→ B be a genus g, relatively minimal, non
isotrivial fibration, which is a double cover of a genus h ≥ 1 fibration τ :
V −→ B. With the preceding notations, we have

(i) K2
S/B ≥ 4χf − 4(µ1 + µ`1) + 2(g − 2h+ 1)max{µ1

h
, µ`1}

(ii) If g ≥ 2h+ 1 then K2
S/B ≥ 8 g(g−1)

g2+g−1
χ1

(iii) If g ≥ 2h+ 1 then K2
S/B ≥ 4 g−1

g−h
χ2

Proof: (i) (Cf. [67]) Keeping the notations of §4.1.2 we have from (4.1),
(4.2), and (4.3) that

K2
S/B − 4χf ≥ 2(K2

V/B − 4χ1) +KV/BR

where R = R0 is the branch divisor of S0 −→ V0 = V .

By Proposition 1.10 we have a nef Q-divisor N1 and an effective divisor Z1

in V such that KV/B ≡ N1 + µ1E + Z1. Let R = Rh + Rv the decomposition
of R in its horizontal and vertical part respectively. Let Rh = C1 + . . . + Cm
the decomposition in irreducible components (note that R is reduced since S0

is normal). Let ni be the multiplicity of Ci in Z1. Then

m∑

i=1

niCiE ≤ Z1E ≤ 2(h− 1) (4.4)

since E is nef and Z1 ≤ KV/B.

Hurwitz formula yields

2(g − 2h+ 1) = RhE =
m∑

i=1

CiE (4.5)
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By construction

(ni + 1)KV/B − µ1E ≡ ni(KV/B + Ci) +N1 + (Z1 − niCi)

an so we have that

((ni + 1)KV/B − µ1E)Ci ≥ 0 (4.6)

since (KV/B + Ci)Ci ≥ 0 (Hurwitz formula), N1Ci ≥ 0 (Ni is nef) and
(Z1 − niCi)Ci ≥ 0 (Ci is not a component of Z1 − niCi).

Claim. KV/BR ≥
2(g−2h+1)

h
µ1

Proof of the Claim. We can assume n1 ≥ n2 ≥ . . . ≥ nm ≥ 0.

If h − 1 ≥ n1 (≥ ni for all i) we have that (hKV/B − µ1E)Ci ≥ 0 by (4.6)
since KV/B is nef.

Assume h ≤ n1. Since n1C1E ≤ 2(h − 1) we must have C1E = 1. Note
that (4.4) gives ni ≤ 2h − 2 − n1 for i ≥ 2. Hence, using (4.5) and (4.6) we
have

KV/BRh ≥ µ1
m∑
i=1

1
ni+1

CiE ≥ µ1
(
C1E
n1+1

+ (Rh−C1)E
2h−1−n1

)
=

= µ1
(

1
n1+1

+ 2g−4h+1
2h−1−n1

)
≥ µ1

2(g−2h+1)
h

since n1 ≥ h. This proves the Claim.

Finally, since KV/B − µnE is nef (Theorem 1.8) we have by (4.5)

KV/BR ≥ 2(g − 2h+ 1)µ`1

In [92] p. 460 Xiao gives the following bound for any fibration

K2
V/B ≥ 4χ1 − 2(µ1 + µ`1)

So

K2
S/B − 4χf ≥ −4(µ1 + µ`1) + 2(g − 2h+ 1)max{

µ1
h
, µ`1}.

(ii) Consider the Harder-Narasimhan decomposition of F = τ∗ωV/B

0 = F0 ⊆ F1 ⊆ . . . ⊆ F`1 = F
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with slopes µ1 > µ2 > . . . > µ`1 ≥ 0 and ranks {ri}. By Remark 1.9, since
F ⊆ E , each Fi induces a nef Q-divisor Ni and an effective divisor Zi on a
suitable birational model σ : Ŝ −→ S, such that for i 6= j,

Ni + µiF + Zi ≡ Nj + µjF + Zj ≡ σ∗KS/B

Every Ni induces a linear system |Pi| on F of degree ei and (projective)
dimension at least ri− 1. Then, by Proposition 1.10 and arguing as in Propo-
sition 1.11 we get

K2
S/B = (σ∗KS/B)

2 ≥
`1∑

i=1

(ei + ei+1)(µi − µi+1) (4.7)

where we define N`1+1 = σ∗KS/B, µ`1+1 = 0, Z`1+1 = 0 and hence e`1+1 =
2g − 2.

By a result of Konno (cf. [64], p.680) we have

K2
S/B ≥

4g(g − 1)

2g − 1
γ1 (4.8)

Let F and E be the general smooth fibres of f and τ respectively (note
that f and f̃ = f ◦ σ have the same general fibre). Let α : F −→ E be the
induced double cover. We have a natural decomposition

H0(F, ωF ) = H0(E, ωE)⊕H
0(E, ωE ⊗ L|E)

For i ≤ `1 every Fi induces as above a linear system |Qi| on E of dimension
greater or equal to ri − 1 and degree di. By construction we have in fact that
|Pi| = |α

∗Qi| and hence that ei = 2di.

Since |Qi| is a linear subsystem of |KE| we can apply Clifford’s Lemma and
get that di ≥ 2ri − 2. Hence, for i ≤ `1 − 1 we have ei + ei+1 ≥ 8ri − 4. For
i = `1, e`1 + e`1+1 ≥ (4r`1 − 4)+2g− 2 = 4h+2g− 6 ≥ 8h− 4 since g ≥ 2h+1
by hypothesis.

Hence (4.7) reads

K2
S/B ≥ 8

`1∑

i=1

ri(µi − µi+1)− 4µ1 = 8χ1 − 4µ1 ≥ 8χ1 − 4γ1
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since µ1 = µ1(F) ≤ γ1. Eliminating γ1 from (4.8) we finally get

K2
S/B ≥ 8

g(g − 1)

g2 + g − 1
χ1

(iii) As in (ii) consider now the Harder-Narasimhan decomposition of G =
τ∗(ωV/B ⊗ L)

0 = G0 ⊆ G1 ⊆ . . . ⊆ G`2 = G

with slopes µ1 > µ2 > . . . ≥ µ`2 ≥ 0 and ranks {ri}. we can reproduce exactly
the same argument since G ⊆ E = f∗ωS/B, and get

K2
W/B ≥ 2

`2∑

i=1

(di + di+1)(µi − µi+1) (4.9)

where di is the degree of a linear system |Qi| on E of dimension greater or
equal to ri − 1. The only difference is that now |Qi| is a linear subsystem of
|KE +LE| (where L|E = OE(LE)). So, in order to bound di, we can not apply
always Clifford’s Lemma. In fact we have

di ≥ 2ri − 2 if ri ≤ h
di = ri + h− 1 if ri ≥ h+ 1

by Clifford’s Lemma and Riemann-Roch on E.

Note that r`2 = rankG = rankE − rankF = g − h. Hence, if g − h ≥ h+ 1
(i.e., if g ≥ 2h+ 1) we get

∀i 1 ≤ i ≤ `2 di ≥
g − 1

g − h− 1
(ri − 1) (4.10)

just looking in the (r, d)-plane the bounds given above. The line
d = g−1

g−h−1
(r − 1) passes through (1,0) and (g − h, g − 1).

Note that in this case we can define N `2+1 = N `2 or N `2+1 = σ∗KS/B. Both
possibilities give ei = 2g − 2. It follows from (4.10) that

di + di+1 ≥ 2 g−1
g−h−1

ri −
g−1

g−h−1
for i ≤ `2 − 1

d`2 + d`2+1 = 2d`2 ≥ 2 g−1
g−h−1

r`2 − 2 g−1
g−h−1
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Hence (4.9) reads

K2
S/B ≥ 2

`2∑
i=1

(di + di+1)(µi − µi+1) ≥
`2∑
i=1

(
4 g−1
g−h−1

ri − 2 g−1
g−h−1

)
(µi − µi+1)

−2 g−1
g−h−1

µ`2 = 4 g−1
g−h−1

χ2 − 2 g−1
g−h−1

(µ1 + µ`2)

Using the indices {i1, i2} = {1, `2} in Proposition 1.11 (see Remark 1.12)
we get

K2
S/B ≥ 2

[
(d1 + d`2)(µ1 − µ`2) + (d`2 + d`2+1)(µ`2)

]
≥ 2d`2(µ1+µ`2) = 2(g−1)(µ1+µ`2)

which produces, eliminating (µ1 + µ`2)

K2
S/B ≥ 4

g − 1

g − h
χ2

Summing up we can give the main result

Theorem 4.11 Let f : S −→ B be a genus g, relatively minimal, non isotrivial
fibration. Assume f is a double cover fibration of a fibration τ of genus h ≥ 1
(if g ≥ 4h + 2 just assume the general fibre F is a double cover of a smooth
curve E of genus h).

(i) If g ≥ 4h+ 1 then

λ(f) ≥ 4 +
4(h− 1)(g − 4h− 1)

(g − h)(g − 4h− 1) + 2(g − 1)h2
≥ 4

(ii) If g ≥ 2h+ 1 and we set δ = 2(λ(τ)− 4) + 2(g−2h+1)
h2 then

λ(f) ≥ 4
(g − 1)

(g − h)

(δ + 4)

(δ + 4 (g−1)
(g−h)

)
.

Proof: If g ≥ 4h + 2, the double cover of F onto curves of genus h is
unique by Lemma 4.7. Hence we have that f : S −→ B is a double cover of a
genus h fibration τ : V −→ B by Remark 4.6.
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(i) From Proposition 4.10 (i), looking independently to the cases µ1

h
≥ µ`1

and µ`1 ≥
µ1

h
we always get

K2
S/B − 4χf ≥

2(g − 4h− 1)

h
µ1 ≥

2(g − 4h− 1)

h2
χ1

since g−4h−1 ≥ 0, µ1 = µ1(F) ≥
degF
rkF = χ1

h
(F1 is the maximal unstabilizing

subsheaf of F).

Using χ1 + χ2 = χf we also have from Proposition 4.10 (ii) and (iii)

K2
S/B ≥ 8 g(g−1)

g2+g−1
χ1

K2
S/B ≥ 4 g−1

g−h
χf − 4 g−1

g−h
χ1

Consider in the (x, y)-plane the three inequalities

y ≥ 4χf +
2(g−4h−1)

h2 x = f1(x)

y ≥ 8 g(g−1)
g2+g−1

x = f2(x)

y ≥ 4 g−1
g−h

χf − 4 g−1
g−h

x = f3(x)

Independently of x we have that y ≥ f1(a) where a verifies f1(a) = f3(a)
and so

a =
4(h− 1)h2

4(g − 1)h2 + 2(g − 4h− 1)(g − h)
χf

Hence

K2
S/B ≥

(
4 +

4(h− 1)(g − 4h− 1)

(g − h)(g − 4h− 1) + 2(g − 1)h2

)
χf

(ii) From the proof of Proposition 4.10 (i) we obtain:

K2
S/B − 4χf ≥ 2(K2

V/B − 4χ1) +KV/BR = 2(λ(τ)− 4)χ1 +KV/BR
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KV/BR ≥
2(g − 2h+ 1)

h
µ1 ≥

2(g − 2h+ 1)

h2
χ1

and from (iii):

K2
S/B ≥ 4

g − 1

g − h
= 4

g − 1

g − h
χf − 4

g − 1

g − h
χ1

and hence the conclusion follows by dividing by χf and eliminating the quotient
χ1/χf .

Remark 4.12 As a particular case of Theorem 4.11 (i), we obtain the bound
λ(f) ≥ 4 for bielliptic fibrations of genus g ≥ 5 of Theorem 4.3. Note that in
fact under the assumption g ≥ 4h + 1 we only can get λ(f) = 4 if h = 1 (so
bielliptic fibrations) or g = 4h + 1. Observe also that from Theorem 4.11 (ii)
we obtain a natural influence of λ(τ) in λ(f).

With a bit more care we can get more information about Problem 3 (see
introduction) in the case of double covers:

Theorem 4.13 Let f : S −→ B be a relatively minimal, non locally trivial
double cover fibration of τ : V −→ B. Let F and E be general fibres of f and
τ respectively and let g = g(F ), h = g(E). Assume h ≥ 1. Then

λ(f) ≥ 4

provided one of the following conditions hold

(i) λ(τ) ≥ 4

(ii)g ≥ 2h+ 11 and F is not tetragonal.

Proof: (i) It follows immediately from (see proof of Proposition 4.10 (i)):

K2
S/B − 4χf ≥ 2(K2

V/B − 4χ1) +KV/BR

and the nefness of KV/B.

(ii) Since g ≥ 2h + 11 then F is not hyperelliptic (cf. [27] V Corollary 2).
We can assume F is not bielliptic since 2·1 + 11 = 13 ≥ 6 and hence Theorem
4.3 applies. We can also assume F is not trigonal otherwise λ(f) ≥ 14(g−1)

3g+1
≥ 4

if g ≥ 9, using [65] Main Theorem.
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Consider the Harder-Narasimhan filtration of E = f∗ωS/B

0 = E0 ⊆ E1 ⊆ . . . ⊆ E` = E

with slopes γ1 > . . . > γ` ≥ 0. The linear systems |Ri| induced by each piece
on F have degree di and projective dimension at least ri− 1 (ri = rkEi). Note
that if |Ri| induces a map ϕi we have

If degϕi = 1 di ≥ 3ri − 4 (if di ≤ g − 1), di ≥
3ri+g−4

2
(otherwise)

If degϕi = 2 di ≥ 2ri + 2 (since F is not hyperelliptic nor bielliptic)
If degϕi = 3 di ≥ 3ri (since F is not trigonal)
If degϕi ≥ 4 di ≥ 4(ri − 1)

Observe that, since Ri ≤ Ri+1, the map ϕi factorizes through ϕi+1 and then
the degree of ϕi+1 must divide the degree of ϕi. Note also that ri+1 ≥ ri+1 and
di+1 ≥ di. Then we can prove that di + di+1 ≥ 4ri + 1 with a few exceptions.
Indeed |Ri| does not define any map only if i = 1 (r1, d1) = (1, 0). Then
d2 ≥ 5 = 4r1 + 1 except if d2 = 2, 3, 4. All these possibilities imply r2 = 2
according to the previous inequalities and hence F would be hyperelliptic,
trigonal or tetragonal, all of these being impossible by hypothesis. From now
on we assume ri ≥ 2.

If degϕi ≥ 2 then di ≥ 2ri and hence di+1 + di ≥ 2di + 1 ≥ 4ri + 1 if
di < di+1; if di = di+1 then ϕi = ϕi+1 and hence di + di+1 ≥ 4ri + 2.

If degϕi = 1 then also degϕi+1 = 1. If di, di+1 ≤ g − 1 then di + di+1 ≥
3ri − 4 + 3ri+1 − 4 ≥ 6ri − 5 ≥ 4ri + 1 since ri ≥ 3 (ϕi is birational). If
di ≤ g − 1, di+1 ≥ g then di + di+1 ≥ 2di + 1 ≥ 6ri − 7 ≥ 4ri + 1 except if
ri = 3. But then di+ di+1 ≥ (3 · 3− 4)+ g = g+5 ≥ 13 = 4ri+1 since g ≥ 11
by hypothesis.

Finally assume di, di+1 ≥ g, being ϕi and ϕi+1 birational maps. Then

di + di+1 ≥
3ri + g − 4

2
+

3ri+1 + g − 4

2
≥ 3ri + g − 4 +

3

2
≥ 4ri + 1

if ri ≤ g − 3 (the case ri = g − 3 needs a bit more care).

Assume ri = g − 2. If ri+1 = g then di+1 = 2g − 2 and we are done. If
ri+1 = g − 1 then the only case to check is di = 2g − 5, di+1 = 2g − 3. Note
that then h0(F,KF − Ri) = 1 since F is not hyperelliptic nor trigonal. By
Riemann-Roch

ri = h0(F,Ri) = 1 + di + 1− g = g − 3
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a contradiction.

Assume ri = g − 1. Then di = 2g − 3, (ri+1, di+1) = (r`, d`) = (g, 2g − 2)
and di + di+1 = 4g − 5 = 4ri − 1.

For ri = r` = g we have d` + d`+1 = 2d` = 4g − 4 = 4r` − 4.

So we conclude from Xiao’s inequality (Proposition 1.11, Remark 1.12)

K2
S/B ≥

∑̀
i=1

(di + di+1)(γi − γi+1) ≥

≥
∑̀
i=1

(4ri + 1)(γi − γi+1)− 2(γ`−1 − γ`)− 5γ`

= 4χf + γ1 − 2γ`−1 − 3γ`

(4.11)

if r`−1 = g − 1, d`−1 = 2g − 3; otherwise

K2
S/B ≥

∑̀

i=1

(4ri + 1)(γi − γi+1)− 5µ` = 4χf + γ1 − 5γ`

Let us consider first the general case. If γ1 ≥ 5γ` we are done. Assume
γ1 < 5γ`. If F = τ∗ωV/B, G = τ∗(ωV/B⊗L) and considering the notations as in
Proposition 4.8 we have that γ` = min{µ`1 , µ`2} ≤ µ`1 , γ1 = max{µ1, µ1} ≥ µ1
by Corollary 4.9. Hence we have µ1 ≤ γ1 < 5γ` ≤ 5µ`1 . Then we get from
Proposition 4.10 (i)

K2
S/B ≥ 4χf − 4(µ1 + µ`1) + 2(g − 2h+ 1)max{µ1

h
, µ`1} ≥

≥ 4χf − 24µ`1 + 2(g − 2h+ 1)max{µ1

h
, µ`1}.

If h ≥ 5 or µ`1 ≥
µ1

h
we have max{µ1

h
, µ`1} = µ`1 and hence

K2
S/B ≥ 4χf + 2(g − 2h− 11)µ`1 ≥ 4χf

when g ≥ 2h+ 11.

If h = 2, 3, 4 and µ`1 <
µ1

h
then

K2
S/B ≥ 4χf − 24µ`1 + 2(g − 2h+ 1)

µ1
h
> 4χf +

2(g − 2h− 11)

h
µ1 ≥ 4χf
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when g ≥ 2h+ 11.

Consider finally the special case r`−1 = g − 1, d`−2 = 2g − 3. Remember
that the Cartier divisor R`−1 on F is induced by a decomposition

(N`−1 + µ`−1F ) + Z`−1 = H`−1 + Z`−1 = σ∗KS/B

so in this case Z`−1 is a section of f , such that Z`−1F = KF −R`−1. The base
point free linear system |H`−1| on S̃ is induced by the piece E`−1 of the Harder-
Narasimhan decomposition of E , which has rank r`−1 = g − 1. According to
Proposition 4.8 E`−1 = Fψ(`−1)⊕Gϕ(`−1). Since rkE`−1 = rkE−1 we only have
two possibilities: either Fψ(`−1) = F`1 , Gϕ(`−1) = G`2−1 and r`2−1 = g − h − 1
or Fψ(`−1) = F`1−1, r`1−1 = h− 1, Gϕ(`−1) = G`2 .

We claim that the second possibility can not occur. Indeed consider the
double cover π : F −→ E. We have that

H0(F, ωF ) ∼= H0(E, ωE)⊕H
0(E, ωE ⊗ L|E)

More concretely, if D is the ramification divisor of π in F and t ∈
H0(F,OF (D)) vanishes along D we have that, given s ∈ H0(F, ωF ), s =
t · π∗(s1) + π∗(s2) where s1 ∈ H

0(E, ωE), s2 ∈ H
0(E, ωE ⊗ L|E).

We have V ⊆ H0(F, ωF ) a codimension one subspace which produces after
taking out the base point the linear series |R`−1| on F . The second possibility
asserts that V = V1 ⊕ V2 in the above decomposition, where V2 = H0(E, ωE ⊗
L|E) and V1 ⊆ H0(E, ωE) is a codimension one subspace.

But then, since V2 has clearly no base point, sections of type π∗(s2), s2 ∈ V2,
can not have a base point in F , a contradiction.

So we have the following decompositions

E` = F`1 ⊕ G`2
E`−1 = F`1 ⊕ G`2−1 r`2−1 = g − h− 1

If E`−2 = Fj⊕Gk we have several possibilities according to Proposition 4.8:

If j = `1, k = `2 − 2 then γ`−1 = µ (E`−1/E`−2) = µ (G`2−1/G`2−2) = µ`2−1
and µ`1 > γ`−1.

If j = `1 − 1, k = `2 − 1 then γ`−1 = µ (F`1/F`1−1) = µ`1 .
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If j = `1 − 1, k = `2 − 2 then γ`−1 = µ`1 = µ`2−1.

In any case we get γ`−1 ≤ µ`1 . Since always happens that γ1 ≥ µ1 and
γ` ≤ µ`1 , (4.11) reads

K2
S/B ≥ 4χf + γ1 − 2γ`−1 − 3γ` ≥ 4χf + µ1 − 5µ`1

If µ1 ≥ 5µ`1 we are done. If µ1 < 5µ`1 we can repeat the argument of the
general case.

Remark 4.14 Observe that both bounds found in Theorem 4.11 are very close
to λexp = 4 g−1

g−h
= 4 + 4h−1

g−h
when h << g. Hence, fixing h and increasing g,

that bound is assimptotically sharp since we have examples with slope equal
to λexp (see Example 4.29).

4.3 The slope of non-Albanese fibrations

We are interested in understanding the behaviour of the slope of a fibration
depending on the irregularity.

Let f : S −→ B be a fibred surface. If F is a general fibre and i : F ↪→ S
is the natural inclusion we can deduce from the natural diagram

F [r][d]iJF [d]i∗S[r]albS [d]fAlb(S)[d]f∗B[r]JB

that b ≤ q(S) ≤ b + g. If q(S) = b + g the fibration is locally trivial (cf.
[12]). On the other hand, from the diagram and considering the universal
property of Albanese varieties it follows easily that q(S) = b if and only if
albS(S) = albB(B). Hence, if b ≥ 1, equality q(S) = b is equivalent to say
that B ∼= albS(S) and to say that S is of Albanese dimension 1. In this case
we say that the fibration is an Albanese fibration. We will say that f is a
non-Albanese fibration if q(S) > b (equivalently, if b = 0, q(S) ≥ 1 or S is of
Albanese general type).

As for the upper bound of the irregularity it is known that when f is not
locally trivial q < 5g+1

6
(cf. [92]; in [64] slightly more accurate bounds are

given). If b = 0 Xiao proves that q ≤ 1
2
(g + 1) and conjectures that in general

q − b ≤ 1
2
(g + 1) (cf. [93]). This conjecture is known to be false (see [75] for a
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counterexample) but the counterexamples suggest that only the constant term
should be slightly increased. We can state

Conjecture (modified Xiao’s conjecture on the irregularity of nonlinear
pencils). There exists a constant c such that if f is not locally trivial then

q(S) ≤
1

2
g + c.

There are two known results on the influence of q(S) on the slope. In [92]
Xiao proves that λ(f) ≥ 4 whenever q(S)− b ≥ 1. In [64] Konno obtains

λ(f) ≥
4g(g − 1)

(2g − 1)(g − (q − b))

Note that this last inequality is an increasing function of q− b but that we
need q − b ≥ 1

2
(g + 1) to have λ(f) ≥ 4. According to Xiao’s conjecture this

range is doubtful to happen. Also note that, as a function on g, this bound
tends to be 2 as g grows.

It is clear from these results that the natural variable to deal with is q(S)−b.

We divide the study in two parts according to whether f is a double cover
fibration or not. When f is a double cover fibration we get a lower bound
when g ≥ 4h + 1 (notations as in §4.2) which is at least four and depends on
the contribution of q(V ) on q(S).

In the general case (when f is not a double cover) we give as a lower bound
an increasing function α(q − b) such that α(2) = 4.

4.3.1 The double cover case

We follow the constructions and notations of §4.2.

Lemma 4.15 Let F = τ∗ωV/B,G = τ∗(ωV/B ⊗ L) as in §4.2. Let s = q(S) −
b, s1 = q(V )− b and s2 = s− s1. Then, if according to Fujita’s decomposition
we set E = H⊕O⊕sB we have

F = H1 ⊕O
⊕s1
B
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G = H2 ⊕O
⊕s2
B

H = H1 ⊕H2

Proof: The decomposition F = H1 ⊕ O
⊕s1
B comes out from Fujita’s

decomposition applied to the fibration τ . Note that according to Theorem 3.1
(v) we have

H0(B,H∗) = H0(B,H∗1) = 0.

Hence we have

s = h0(B, E∗) = h0(B,F∗) + h0(B,G∗) = s1 + h0(B,G∗)

and so there is an epimorphism G −→ O⊕s2B . By composing with the projection
E −→ G and using the splitting property given in Theorem 3.1 (v) we obtain
that in fact

G = H2 ⊕O
⊕s2
B

From this follows that h0(B,H∗2) = 0. Finally note that we have

H⊕O⊕sB = E = H1 ⊕H2 ⊕O
⊕s
B .

Since
HomB(H,OB) = H0(B,H∗) = 0

HomB(H1,OB) = H0(B,H∗1) = 0

HomB(H2,OB) = H0(B,H∗2) = 0

we have that in fact
H = H1 ⊕H2

Theorem 4.16 Let f : S −→ B be a relatively minimal double cover fibration
of τ : V −→ B. Let E, F be the fibres of τ and f respectively. Let h = g(E),
g = g(F ) and s, s1, s2 as in lemma 4.15. Assume f is not locally trivial and
that g ≥ 4h+ 1. Then



The slope of non-Albanese fibrations 117

(i) If g ≥ 2h+ s2 + 1

λ(f) ≥ 4 + 4
(h− 1)(g − 4h− 1)

(g − s2 − h)(g − 4h− 1) + 2h(h− s1)(g − s2 − 1)

(ii) If g ≤ 2h+ s2

λ(f) ≥ 4 + 8
(g − 3)(g − 4h− 1)

(g − 4h− 1) + 4(g − 1)(h− s1)h

Proof:

(i) The same proof as in Theorem 4.11 works with the substitution of g by
g − s2 and noting that µ1 = µ(F1) ≥

χ1

h−s1
in Proposition 4.10.

(ii) Again the proof of Theorem 4.11 works with the following modifications:

In Proposition 4.10 (i) use µ1 = µ(F1) ≥
χ1

h−s1
to get K2

S/B ≥ 4χf +
2(g−4h−1)
h(h−s1)

χ1.

In Proposition 4.10 (iii) we must only consider the possibility di ≥ 2ri−2 in
(4.10), since g−h−s2 ≤ h. Then for every i, 1 ≤ i ≤ `2−1, di+di+1 ≥ 4ri−2;
d`2 + d`2+1 = 4r`2 − 4.

Then we obtain

K2
S/B ≥ 8

g − 1

g + 1
χ2.

Both inequalities give

λ(f) ≥ 4 + 8
(g − 3)(g − 4h− 1)

(g − 4h− 1) + 4(g − 1)(h− s1)h

Corollary 4.17 With the above hypotheses, if q(S) = q(V ) = b + h and
g ≥ 2h+ 1 then

λ(f) ≥ 4
g − 1

g − h

Proof: We have s2 = 0, s1 = s = q(V ) − b = h and Theorem 4.16 (i)
gives the required bound.
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Remark 4.18 Condition s2 = 0 happens in most cases; indeed, observe that
by definition s2 = q(S)− q(V ) = h1(V,L−1). If the ramification locus of π has
some property of positivity then h1(V,L−1) = 0 by Ramanujam or Kawamata-
Viehweg vanishing theorems.

Since g ≥ 2h+1 generically holds (g ≥ 2h−1 holds for any double cover and
equality holds only in the étale case) then Theorem 4.17 under the assumption
s2 = 0 reads

λ(f) ≥ 4 + 4
(h− 1)(g − 4h− 1)

(g − h)(g − 4h− 1) + 2h(h− s)(g − 1)

As pointed out in Corollary 4.17, this bound is sharp as far as h = s.
Although h 6= s we can give an example were this bound is almost sharp.
Indeed in Example 4.32 we found a double cover fibration with s2 = 0, h =
3, g = 4m+ 5 (m arbitrarily large) and slope arbitrarily near to

λ̃ = 4 +
8

g − 3

Observe that with this data the previous bound reads

λ(f) ≥ 4 +
8(g − 13)

(g − 3)(g − 13) + 6(g − 1)
∼ 4 +

8

g + 3
.

Finally note that, for a fixed h, our bounds tend to be 4 when g grows.
This is exactly the real behaviour: see Example 4.29 and Example 4.34 with
α = 2.

4.3.2 The non-double cover case

Theorem 4.19 Let f : S −→ B be a relatively minimal fibration which is not
a double cover fibration. Assume g = g(F ) ≥ 5 and that f is not locally trivial.
Let s = q(S)− b ≥ 1.

Then

(i) λ(f) ≥ 4
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(ii) If s ≥ 2 and g ≥ 3
2
s+ 2 then

λ(f) ≥
8g(g − 1)(4g − 3s− 10)

8g(g − 1)(g − s− 2) + 3(s− 2)(2g − 1)
if F is not trigonal

λ(f) ≥
4g(g − 1)(4g − 3s− 10)

4g(g − 1)(g − s− 2) + (g − 4)(2g − 1)
if F is trigonal

(iii) if g < 3
2
s+ 2 then

λ(f) ≥
4g(g − 1)(2g − 7)

4
3
g(g − 1)(g − 3) + (g − 4)(2g − 1)

Proof:

(i) This is due to Xiao ([92]). We give here an alternative and very short
proof. If q(S) > b then for every n >> 0 there exists a n−torsion element
L ∈ Pic0(S), such that for 1 ≤ i ≤ n− 1 L⊗i 6= OF . The étale cover S̃ −→ S
induced by L induces a fibration f̃ : S̃ −→ B such that λ(f̃) = λ(f), and with
genus of the fibre g̃ ∼ ng. Since this is true for n >> 0 and the general bound
(4.0.1) gives

λ(f) ≥ 4−
4

g

we get λ(f) ≥ 4 by a limit process.

(ii), (iii) Consider Fujita’s decomposition E = f∗ωS/B = A ⊕ Z with Z =
O⊕sB . Consider the Harder-Narasimhan filtration of A:

0 = A0 ⊆ A1 ⊆ . . . ⊆ A` = A

As in §1.2 we produce nef Q-divisors Ni, and effective divisors Zi in a
suitable blow-up of S σ : S̃ −→ S such that

Ni + µiF + Zi ≡ Nj + µjF + Zj ≡ σ∗KS/B

where {µi} are the Harder-Narasimhan slopes of A. Note that we can define
N`+1 = σ∗KS/B, Z`+1 = 0, µ`+1 = 0. Observe also that, if ri = rkAi,
∑̀
i=1

ri(µi − µi+1) = degA = degE = χf .



120 The slope of fibred surfaces

Each Ni induces on F a base point free linear system of degree di and
(projective) dimension greater or equal than ri − 1. Note that Ni + µiF = Hi

is induced by a map ϕi : S −→ PB(Ai) which restricted to fibres induces the
above linear system. By hypothesis ϕi is never a double cover onto the image
and so the induced map ψi on F is not a double cover. Hence we have

di ≥ 3(ri − 1) if degψi ≥ 3

di ≥ 3ri − 4 if degψi = 1 and di ≤ g − 1

di ≥
3ri+g−4

2
if degψi = 1 and di ≥ g

the latest two inequalities being “Clifford plus” Lemma ([11], [77]). Con-
sidering the above inequalities in the (r, d)-plane, we have the following two
possibilities (note that the lines d = 3r−4 and d = 3r+g−4

2
meet exactly at the

point (r = 1
3
(g + 4), d = g)) depending on rankA = g − s.

Case 1.- g − s ≥ 1
3
(g + 4)

In this case note that for every 1 ≤ i ≤ `, di ≥
2g− 3

2
s−5

g−s−2
r − g−4

g−s−2
(this

border line joining the point (2,3) and the point (g − h, 2g − 3
2
h − 2)) except

if (r1, d1) = (1, 0). Note that g − s− 2 > 0 since g ≥ 3
2
s+ 2.

Note also that by definition we have d`+1 = 2g− 2. So for 1 ≤ i ≤ ` we get
(since ri+1 ≥ ri + 1)

di + di+1 ≥
4g − 3s− 10

g − s− 2
ri −

3(s− 2)

2(g − s− 2)
=: Ari +B

except if (r1, d1) = (1, 0) and (r2, d2) = (2, 3). In this exceptional case we get

d1 + d2 − Ar1 −B = 3− A−B = −
g − 3

2
s− 1

g − s− 2

If this happens F is trigonal since has a linear system of degree 3 and
dimension 1.

Applying Xiao’s formula we get, in the general case,

K2
S/B ≥

∑̀
i=1

(di + di+1)(µi − µi+1) ≥
∑̀
i=1

Ari(µi − µi+1) +
∑̀
i=1

B(µi − µi+1) =

= Aχf +Bµ1 =
4g−3s−10
g−s−2

χf −
3(s−2)

2(g−s−2)
µ1
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Applying again Konno’s bound (cf. [64] p. 680):

K2
S/B ≥

4g(g − 1)

2g − 1
µ1

we can eliminate µ1 and get

K2
S/B ≥

8g(g − 1)(4g − 3s− 10)

8g(g − 1)(g − s− 2) + 3(s− 2)(2g − 1)
χf

Note that this bound is a strictly increasing function of s and that K2
S/B ≥

4χf if s ≥ 2.

In the exceptional case (when F is trigonal) we get

K2
S/B ≥ Aχf +Bµ1 −

g − 3
2
s− 1

g − s− 2
(µ1 − µ2) ≥ Aχf +

(
B −

g − 3
2
s− 1

g − s− 2

)
µ1

The same argument using K2
S/B ≥

4g(g−1)
2g−1

µ1 yields

K2
S/B ≥

4g(g − 1)(4g − 3s− 10)

4g(g − 1)(g − s− 2) + (g − 4)(2g − 1)
χf

which is also a strictly increasing function of s. In this case we need s ≥ 4 to
get K2

S/B ≥ 4χf .

Case 2.- g − s ≤ 1
3
(g + 4)

Let s =
[
2
3
g − 4

3

]
. Under our hypotheses s ≥ s, so we can take A =

A ⊕ O⊕(s−s)B instead of A. Hence we get according to whether we are in the
general or in the special case

K2
S/B ≥ 8g(g−1)(4g−3s−10)

8g(g−1)(g−s−2)+3(s−2)(2g−1)
χf ≥

8g(g−1)(2g−7)
8
3
g(g−1)(g−3)+(2g−9)(2g−1)

χf

K2
S/B ≥ 4g(g−1)(4g−3s−10)

4g(g−1)(g−s−2)+(g−4)(2g−1)
χf ≥ 4g(g−1)(2g−7)

4
3
g(g−1)(g−3)+(g−4)(2g−1)

χf

since both expressions are increasing functions of s and s ≥ 2
3
g− 1. Note that

the second bound is slightly smaller than the first one.
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Remark 4.20 In the case (iii) of the Theorem we could consider that for
1 ≤ i ≤ `, di ≥ 3ri − 4 and hence di + di+1 ≥ 6ri − 5 for 1 ≤ i ≤ ` − 1. But
for i = ` we would have d` + d`+1 ≥ 2d` + 1 ≥ 6r` − 7 which produces

K2
S/B ≥ 6χf − (5µ1 + 2µ`)

Hence using Xiao’s inequality with indexes {1, `}

K2
S/B ≥ (d1+d`)(µ1−µ`)+(d`+d`+1)µ` ≥ d`(µ1+µ`) ≥ (3g−3s−4)(µ1+µ`)

we get

K2
S/B ≥ 6

3g − 3s− 4

3g − 3s+ 1
χf

which depends on s and is better than (iii) for some special values of (g, s) but
is a decreasing function of s.

Observe that according to Xiao’s Conjecture on the irregularity quoted
above, the range g < 3

2
(q(S)− b) + 2) (case (iii) of the theorem) is doubtful to

occur.

Remark 4.21 In the above theorem we worked with Z = O
⊕(q(S)−b)
B and

s = rankZ. In most parts of the proof we only use that degZ = 0. Hence,
we get the same bounds in (ii) if we define s to be the rank of the de-
gree zero part in Fujita’s decomposition of E = f∗ωS/B (s ≥ q(S) − b).
Note that then the argument of Theorem 4.19 (iii) does not work since we
do not know whether Z can be cut in pieces of the length we need. In
fact, if Fujita’s Conjecture holds (see §3) Z would became trivial after an
étale base change. Since the slope is invariant under étale base changes we
would have that Theorem 4.19 (iii) also would hold for this new definition
of s.

In any case the bound of the previous Remark holds for the general defini-
tion of s.

Finally if s = 1 (the only case not covered by (ii) and (iii)) we also get
λ(f) ≥ 4 with this new definition of s. Indeed, if L is a rank one, degree zero
summand of E , then by Theorem 3.4 it is torsion and hence it becomes trivial
after étale base change. Using again invariance of the slope we can assume L
to be OB and apply Theorem 4.19 (i).
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Remark 4.22 Remember that if F is trigonal we have (cf. [65])

λ(f) ≥
14(g − 1)

3g + 1

which is better that Theorem 4.19 (ii) (special case) for g À s = q − b and
that gives λ(f) ≥ 4 if g ≥ 9.

Remark 4.23 As a function on g (fixing s) the bounds of Theorem 4.19 tend
to be 4 when g grows (compare [64] Lemma 2.7 where this limit is 2). We have
some more information of the assimptotic behaviour:

Theorem 4.24 Let f : S −→ B be a relatively minimal, non locally trivial
fibration. Let F be a fibre of f , g = g(F ) and q = q(S). Assume f is not
a double cover fibration and that s = q − b ≥ 1 (i.e., f is a non-Albanese
fibration). Let C = {πi : S −→ Ci fibrations, ci = g(Ci) ≥ 2, πi 6= f}i∈I .
Assume C 6= ∅ and let c = max{ci|i ∈ I}. Then

(i) λ(f) ≥ 4 + c−1
g−c

(ii) If, moreover, dim alb(S) = 1 (then necessarily b = 0) we have

λ(f) ≥ 4 +
q − 1

g − q

Proof: Remember that if f is a non-Albanese fibration then either
dim alb(S) = 2 or b = 0 (provided q(S) 6= 0).

Let π : S −→ C be the fibration with maximal base genus c ≥ 2 (if
dim alb(S) = 1, then c = q and π = alb).

Since in any case f ∗Pic0(B) does not contain π∗Pic0(C) we can choose for
n À 0, a n-torsion element L ∈ Pic0(C) such that π∗L⊗i /∈ f ∗Pic0(B) for
1 ≤ i ≤ n− 1. Consider the base change

S̃[r]π̃[d]α̃C̃[d]αS[r]π[d]fCB

and let f̃ = f ◦ α̃. Since L⊗i|F 6= OF for 1 ≤ i ≤ n − 1, f̃ has connected fibres

and so f̃ is again a fibration over B. Let F̃ be the fibre of f̃ . Then if g̃ = g(F̃ ),

g̃ − 1 = n(g − 1).
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Moreover we have

q(S̃) = h1(S̃,O
S̃
) = h1(S,OS) +

n−1∑

i=1

h1(S, (π∗L−i))

From the exact sequence

0 −→ H1(B,L−i) −→ H1(S, π∗L−i) −→ H0(B, (R1π∗OS)⊗ L
−i) −→ 0

and using that h0(B, (R1π∗OS)⊗L
−i) = 0 except for a finite number of sheaves

L−i ∈ Pic0(C) (which can be avoided with the election of L (see Theorem 3.4
and Proposition 3.3)), we get

s̃ = q(S̃)− b = q(S)− b+ (n− 1)(c− 1) = s+ (n− 1)(c− 1)

since h1(B,L−i) = c− 1 by Riemann-Roch. In particular, s̃ ≥ 2 if n ≥ 2.

Note that if F is trigonal then F̃ is not if nÀ 0 (see Lemma 5.12). On the
other hand

lim
n→∞

g̃

s̃
=
g − 1

c− 1
≥ 2

since the map π|F : F −→ C is at least of degree two (if it were of degree 1
clearly F ∼= C and S = B × C). Hence if n À 0 the case g̃ < 3

2
s̃ + 2 can not

occur.

So if nÀ 0 we are under the hypotheses of Theorem 4.19 (ii) (non trigonal
case). Using that the slope is invariant under étale changes of S (cf. [92]) we
get

λ(f) = λ(f̃) ≥
8g̃(g̃ − 1)(4g̃ − 3s̃− 10)

8g̃(g̃ − 1)(g̃ − s̃− 2) + 3(s̃− 2)(2g̃ − 1)

for g̃ = n(g− 1) + 1, s̃ = s+ (n− 1)(c− 1) and n ∈ N arbitrarily large. So we
can take limit as n grows and get

λ(f) ≥ 4 +
c− 1

g − c

In case dim alb(S) = 1 then clearly b = 0 and c = q.

Corollary 4.25 Let f : S −→ B be as in Theorem 4.19. Assume λ(f) <
4 + 1

g−2
. Then S has no other fibration onto a curve of genus greater or equal

than two.
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Corollary 4.26 Let S be a minimal surface with q(S) ≥ 2 and F ⊆ S an
irreducible curve of geometric genus g. Assume h0(S,OS(F )) ≥ 2 and let
f : S̃ −→ P1 be a relatively minimal fibration with fibre F . If F is not a double
cover and λ(f) < 4 + q−1

g−q
then S is of Albanese general type.
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4.4 Fibred surfaces with low slope

As pointed out in (4.0.7), fibred surfaces with slope λ(f) < 4 seem to have
very special properties, as follows basically from the work of Xiao in [92]. We
recall

Conjecture. Let f : S −→ B be a non-locally trivial, relatively minimal
fibred surface. If λ(f) < 4 then E = f∗ωS/B is ample and (if g >> 0) F is
hyperelliptic.

As for this conjecture, as a consequence of previous results in this chapter
and Chapter 3, we can contribute with

Theorem 4.27 Let f : S −→ B be a non locally trivial, relatively minimal
fibred surface. Let F be a general fibre, g = g(F ) and b = g(B). Assume
λ(f) < 4. Then

(i) q(S) = b

(ii) E = f∗ωS/B is ample provided one of the following conditions holds

(a) F is non hyperelliptic

(b) b ≤ 1

(c) g ≤ 3

Proof: (i) Cf. [92] and §4.2, §4.3.

(ii) (a) If F is non hyperelliptic, according to [92] p.463, it only remains
open the case of a degree zero, rank one quotient L of E . By Theorem 3.4 such
L is torsion and then, after an étale base change

S̃[r][d]f̃S[d]f b̃[r]σB

we have f̃∗ωS̃/B̃ = σ∗f∗ωS/B −→ σ∗L = O
B̃
and hence λ(f̃) ≥ 4 since q(S̃) ≥

g(B̃) + 1. As the slope is invariant under étale base changes we have λ(f) =
λ(f̃) ≥ 4.

(b) The same argument works as any stable degree zero locally free sheaf
on an elliptic curve has rank one ([4]).

(c) If g = 2 then E = A⊕L or E = A with A ample and L torsion of rank
one, so we are done. If g = 3 the only non trivial case is E = A ⊕ F with A
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an ample line bundle and F a étale, degree zero, rank two vector bundle. But
then by [64] Lemma 2.7

K2
S/B ≥

4g(g − 1)

2g − 1
χf =

24

5
χf

a contradiction.

In [92] Theorem 3.3, Xiao proves that a non Albanese fibration with λ = 4
verifies that E = f∗ωS/B = F ⊕ OB with F semistable. We can give the
following refinement

Proposition 4.28 Let f : S −→ B be a relatively minimal non locally trivial
fibration. If λ(f) = 4 then E = f∗ωS/B has at most one degree zero, rank one
quotient L

Moreover, in this case E = A⊕ L with A semistable.

Proof: As in the previous theorem L is torsion and hence trivial after
an étale base change. But then

f̃∗ωS̃/B̃ = Ã ⊕ O
B̃
, Ã = σ∗A

.

Hence, applying Xiao’s result quoted above, Ã is semistable. Then A is
also semistable by [70] Proposition 3.2.
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4.5 Examples

We construct here several families of examples of fibred surfaces that we needed
in the previous sections to check the sharpness (at least assimptotically) of the
bounds found. The first one is an example of Xiao.

Example 4.29 (cf. [92] Example 4.3; we refer there for details). Let B,A be
smooth curves of genus b and h respectively. Let δ1 ∈ Div(B), δ2 ∈ Div(A) divi-
sors of big enough degree 2x and 2y respectively. Consider the two projections
π1 : B×A −→ B, π2 : B×A −→ A and a smooth divisor R ∈ |π∗1(δ1)+π

∗
2(δ2)|.

Note that R is even and so we can consider the double cover S ramified along
R. S has an induced fibration f : S −→ B with general fibre F which is a
double cover of A and the following invariants

g = g(F ) = 2h+ y − 1

q = q(S) = b+ h

λ(f) = 4
g − 1

g − h

In particular, if h = 0 we get hyperelliptic fibrations with slope 4 g−1
g
; if

h = 1 we get bielliptic fibrations with slope exactly 4 and g arbitrarily large.

Example 4.30 Our starting point is the previous example. Let A,B be to
smooth curves of genus a and b respectively, and let Z be the double cover of
B × A as in 4.29. Z has natural fibrations over B and A; let E and L be the
respective general fibres. A standard use of formulas for double covers (cf. [7]
p.182) gives

g(L) = 2b+ x− 1

h = g(E) = 2a+ y − 1

KZ/B ∼ ρ∗(KB×A/B +
1

2
R) ∼ xE + (2a− 2 + y)L

χOZ = 2(a− 1)(b− 1) + (a− 1)x+ (b− 1)y + xy
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Let now n,m be big enough integers and consider δ = nE + mL and
∆ ∈ |2δ| a smooth divisor. Let π : S −→ Z be the double cover ramified along
∆ and let f be the natural fibration of S over B. Let F be the general fibre
of f and g = g(F ). Note that F is a double cover of E. Again a standard
computation shows

g = 2h+ 2m− 1

q = q(S) = q(Z) = a+ b

KS/B ∼ π∗(KZ/B + δ) = (x+ n)F + (2a− 2 + y +m)π∗(L)

χOS = 4(a− 1)(b− 1) + 2(a− 1)x+ 2(b− 1)y + 2xy + (2a− 2 + y)n+

+(2b− 2 + x)m+ 2nm

and hence

λ(f) =
8(x+ n)(2a− 2 + y +m)

2(a− 1)x+ 2xy + (2a− 2 + y)n+ (x+ 2n)m

Observe that in this case we have

λexp = 4
g − 1

g − h
=

8(2a− 2 + y +m)

2a− 2 + y − 2m

which certainly coincides with the limit of λ(f) as n grows as proven in §4.2.

A simple computation shows that

λ(f) ≥ λexp ⇐⇒ m ≥ y

Note that our construction allows us to take m ≥ y or m < y as needed.
Hence we can construct families of double cover fibrations such that λ(f) <
λexp. Nevertheless observe that for this examples g < 4h.

Example 4.31 This example deals again with the construction of successive
double covers but the starting point is not so natural. Let G,H be two smooth
elliptic curves with a fixed group structure. Let ε ∈ Div0(G) such that 2ε = 0
and consider the involution σ of G×H such that σ(e, h) = (e+ ε,−h). Clearly
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σ has no fixed points and hence X = G×H/ < σ > is a smooth surface. Note
that G

′

= G/ < σ > is an elliptic curve and that H/ < σ >= P1. The double
cover G −→ G

′

is determined by a two torsion element η ∈ Pic0(G
′

) and the
double cover H −→ P1 ramifies at 4 points. By construction of X we have a
natural double cover

γ : X −→ G
′

× P1

determined by α = π∗
G′
(η) + π∗P1(2p). Hence we have

KX = γ∗(K
G
′
×P1 + α) = g∗1(η)

χOX = 0

where g1 = πG′ ◦ γ, g2 = πP1 ◦ γ.

Let t ∈ P1 be a ramification point of H −→ P1. By construction g∗2(t) is
2-divisible. Let Ḡ = 1

2
g∗2(t), let G1 be a general fibre of g1 and d ≥ 1 (note that

if G is the general fibre of g2, 2Ḡ ∼ G). If δ = dG1+ Ḡ, then 2δ moves without
base points and hence |2δ| has smooth members. We can consider then the
associated double cover ρ : Z −→ X which has two natural fibrations l1 and
l2 onto G

′

and P1 respectively. Let L and E be the respective general fibres.
By construction we have

LE = 4

h = g(E) = 2g(G) + 2d− 1 = 2d+ 1

g(L) = 2

KZ = ρ∗(KX + δ) = l∗(η) + dL+
1

2
E

χOZ = d

Finally let m,n big enough and take a smooth member R ∈ |2mL+ 2nE|.
Consider the associated double cover π : S −→ Z and let f : S −→ P1 be the
induced fibration. Let F be its general fibre. We have

g = g(F ) = 2h+ 4m− 1 = 4d+ 4m+ 1
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χOS = 2d+ 2nd+m+ 4mn

K2
S = 8(d+m)(2n+ 1)

and hence

λ(f) =
8(d+m)(2n+ 1) + 8(4d+ 4m)

6d+ 2nd+ 5m+ 4mn

Note that after a base change of f not ramified on the images of singular
fibres, we can get new fibrations with the same slope and with the base curve
of arbitrarily large genus.

In this case we have

λexp = 4
g − 1

g − h
=

16d+ 16m

2d+ 4m

As n grows, the slope of f tends to be the expected one. Again we can
immediately check that

λ(f) ≥ λexp⇐⇒ 5m ≥ d

Observe that m can be fixed and d arbitrarily increased. Indeed, note that
E is bielliptic and that η : E −→ G ramifies in 2h − 2 = 2d points. Let
p1, p2 ∈ E two of such ramification points. Then |2p1 + 2p2| = |η

∗(q1 + q2)| is
a g14 in E which moves without base points. We can choose then n >> 0 and
a smooth member R ∈ |l∗(q1 + q2) + 2nE| (l∗(q1 + q2) ∼ 4L) and construct
S with m = 2 and d arbitrary. Nevertheless observe that in order to get
λ(f) < λexp we have g ∼ 2h.

Finally observe that S has another fibration g : S −→ G
′

. A similar
computation shows that in this case λ(g) ≥ λ̄exp always holds.

Example 4.32 Let A be an abelian surface with a base point free linear
system |C|, C2 = 4 (an abelian surface with a polarization of type (1,2), for
instance). Then g(C)=3. Take C1, C2 two smooth and transversal members
and let σ : Ã −→ A be the blow-up at the 4 base points. We have then a
fibration τ : Ã −→ P1 with general fibre C̃ a curve of genus 3. Let E =
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E1 +E2 +E3 +E4 be the σ-exceptional reduced and irreducible divisor. Note
that τ(E) = P1. Let n >> m >> 0 and δ = nC̃ +mE; then |2δ| has no base
point (if m >> 0, |2δ|Ct | has no base point for every t ∈ P1; so we can apply
Lemma 1.2 or 1.3).

We can take then a smooth member R ∈ |2δ| and consider the associated
double cover π : S −→ Ã. Let f : S −→ P1 be the induced fibration, and let
F be a general fibre. Then F is a double cover of C̃ and we have (note that
K
Ã
= σ∗KA + E = E)

h = g(C̃) = 3

g = g(F ) = 4m+ 5

K2
S = 2(K

Ã
+ δ)2 = 8(m+ 1)(2n−m− 1)

χOS = 2χO
Ã
+

1

2
δK

Ã
+

1

2
δ2 = 2m(2n−m) + 2(n−m)

Moreover, observe that δ is nef and big since δ2 > 0 and |2δ| moves without
base points. Then we can apply Kawamata-Viehweg vanishing theorem and
get that h1(Ã,O

Ã
(−δ)) = 0; hence

q(S) = q(Ã) = 2

Finally we obtain

λ(f) =
8(m+ 1)(2n−m− 1) + 32(m+ 1)

2m(2n−m) + 2(n−m) + 8(m+ 1)

Fixing m and making n as big as needed we obtain fibrations with g =
4m+ 5, h = 3 and the slope arbitrarily near to

16(m+ 1)

4m+ 2
= 4 +

8

g − 3
.
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Example 4.33

Let Y , B be a smooth surface and a smooth curve respectively. Denote
πY , πB the two natural projections of Y × B. Let C,E ∈ Div(Y ) and γ, η ∈
Div(B) such that there exist smooth divisors L ∈ |2(π∗Y (C) + π∗B(γ))| and
V ∈ |2(π∗Y (E) + π∗B(η))|. Let τ : Z −→ Y × B the double cover branched
on L and let S = τ ∗V . We denote π = τ|S, Φ = πB|V , f = Φ ◦ π. Assume
L|V is a smooth divisor. Then S is smooth and f : S −→ B is a fibration. If
m = deg(η), n = deg(γ), g = g(F ) (F fibre of f) then

λ(f) = 6
4(g − 1)(n+m) + 2m(KY + C + E)2

(3n+ 6m)(g − 1) + 12χOY + 6m(g(C)− 1) + 3nEC

Indeed note that π : S −→ V is ramified on L|V and that π|F : F −→ E is
a double cover verifying g − 1 = E2 +KYE + EC.

We have KV = (KY×B+V )|V , KY×B = π∗Y (KY )+π
∗
B(KB). From standard

formulas of smooth double covers (cf. [7] p.182) we have

χOS = 2χOV + 1
4
LKV + 1

8
L2

K2
S = 2K2

V + 2LKV + 1
4
L2

Then the computation follows by Riemann-Roch on Y ×B.

Let Y be a K3 surface with a genus 2 hyperplane section E. Take E = C
and B = P1, n = m = 1. We get then a double cover fibration with

λ(f) = 4

g = 5

h = 2

Hence, the slope 4 can be achieved by double cover fibrations with h > 1
(note that F can be chosen non-bielliptic).

Example 4.34

A standard example of a fibration f : S −→ B is obtained considering
a smooth divisor S ⊆ Y × B = Z where Y is a smooth surface, B is a
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smooth curve and f is the restriction on S of the natural projection πB :
Y × B −→ B. We consider πY : Y × B −→ Y the other projection and
two divisors F ∈ Div(Y ), η ∈ Div(B) such that there exists a smooth divisor
S ∈ |π∗Y (F )+π

∗
B(η)|. We will call product-type fibration this sort of fibrations.

We will do the computations under the assumption that deg(η) = n > 0, F
is ample and S ∈ Div(Z) is ample; so by the Kodaira vanishing Theorem we
obtain

h1(Z,KZ + S) = h2(Z,KZ + S) = 0

Thus by the adjoint sequence

0 −→ OZ(KZ) −→ OZ(KZ + S) −→ OS(KS) −→ 0

we have:

h0(S,KS) = h0(Z,KZ + S)− h0(Z,KZ) + h1(Z,KZ),

and
h1(S,KS) = h2(Z,KZ)

On the other hand since Z = Y ×B we have:

h2(Z,KZ) = q(Y ) + b h0(Z,KZ) = pg(Y )b h1(Z,KZ) = bq(Y ) + pg(Y )

and
H0(Z,KZ + S) = H0(Y,KY + F )⊗H0(B,KB + η)

Moreover by our assumption

h0(B,KB + η) = b− 1 + n

and

h0(Y,KY + F ) = χOY +
1

2
(KY F + F 2)

In particular we have q(S) = b + q(Y ) so note that s = q(S) − b = q(Y ).
Also

pg(S) =
(
χ(OY ) +

1

2
(KY F + F 2)

)
(b+ n− 1)− pY b+ (pg(Y ) + qY b),

that is:
χ(OS) = nχ(OY ) + (n− 1)(g − 1) + bg − b
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Since

K2
S = (KZ + S)2S = n(KY + F )2 + 2(2b− 2 + b)(KY + F )F

and
χ = nχ(OY ) + n(g − 1)

we get

λ(f) =
6g − 6 +K2

Y +KY F

χ(OY ) + g − 1
.

Let Y be a ruled surface over a curve C of genus h, and let e be the
invariant of Y in the sense of [43] V.2. Take a smooth divisor F ∈ |αC0+βD|,
where D = P1 is a ruling and C0 is a section with C2

0 = −e. Observe that
s = q(Y )−g(C) = h. A simple computation shows that if β grows the induced
fibration f has a slope arbitrarily near to

λ̃ = 6−
2

α− 1
< 6.

For α = 2 we get λ̃ = 4; for α = 3 we obtain λ̃ = 5. Note that in general,
when α = 3, F is not a double cover.





Chapter 5

The slope of fibred threefolds

In this chapter we consider fibrations f : T −→ B from a projective threefold
T onto a smooth curve B. We consider always that T is normal, Q-factorial
with at most canonical singularities and that f is relatively minimal, i.e. the
restriction of KT to any fibre F of f is nef. As in the case of fibred surfaces
we are interested on the cases where F is of general type. Given any fibration
g : T̃ −→ B from a smooth threefold T̃ and with fibres of general type we can
always get its relatively minimal associated fibration by divisorial contractions
and flips (cf. [54], [72]).

As in the case of surfaces our aim is to relate the numerical invariants
of T,B and F . First of all note that under our assumptions KT (and hence
KT/B = KT − f

∗KB) is a Weil, Q-Cartier divisor. We can consider its associ-
ated divisorial sheaves ωT and ωT/B, the canonical sheaf of T and the relative
canonical sheaf of f respectively. Now E = f∗ωT/B is a locally free sheaf on B
of rank pg(F ). We have then the well defined numerical invariants (note that
the first one may be a rational number):

K3
T/B = K3

T − 6K2
F (b− 1)

∆f = degE

χf = (−1)dimT (χOT − χOBχOF ) = χOFχOB − χOT .

From Chapter 3 we know that E is a nef vector bundle and hence that
∆f ≥ 0. From the nefness of direct images of multiples of the relative dualizing

137
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sheaf it follows that KT/B is also nef (see [73], Theorem 1.4) and so that
K3
T/B ≥ 0. Moreover, if K3

T/B = 0 then f is isotrivial (cf. [73] corollary 1.5).
When ∆f = 0 we can also deduce the isotriviality of f under some additional
hypotheses (see Lemma 5.3 below).

As for the irregularity we have in the same way of fibred surfaces

b ≤ q(T ) ≤ b+ q(F )

and that, when b ≥ 1, b = q(T ) if and only if the Albanese dimension of T is
one and f is the Albanese fibration of T . Now is not more true that the upper
equality q(T ) = b+ q(F ) implies the isotriviality of f .

Some other new phenomena appear. In the case of fibred surfaces equality
∆f = χf holds. This is not true in the case of fibred threefolds where in
general ∆f 6= χf (in fact what happens is that ∆f ≥ χf ). Observe that from
the geographical point of view χf is more interesting than ∆f .

With this language we can state the only known general result on the
geography of fibred threefolds over curves, due to Ohno (cf. [73]).

Theorem 5.1 Let f : T −→ B be a relatively minimal fibration of surfaces of
general type over a smooth curve of genus b.

(i) If pg(F ) ≥ 3 and |KF | is not composed of a pencil, then

K3
T/B ≥ (4−

8

pg(F )
)∆f ≥ (4−

8

pg(F )
)χf

(ii) If |KF | is composed of a pencil and F is not a surface with K2
F = 1,

pg(F ) = 2, q(F ) = 0 then

K3
T/B ≥ (4−

4

pg(F )
)∆f ≥ (4−

4

pg(F )
)χf

(iii) If K2
F = 1, pg(F ) = 2 and q(F ) = 0, then

K3
T/B ≥ ∆f ≥ χf
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(iv) If pg(F ) = 1, then

K3
T/B ≥ (K2

F )∆f ≥ (K2
F )χf

(v) If pg(F ) = 0, then

K3
T/B ≥

2

3
l(2) if K2

F ≥ 2

K3
T/B ≥

4

3
l(2) if K2

F = 1

where l(2) is the second correction term in the plurigenera formula of
Reid-Fletcher for T .

We can define two different slopes for fibred threefolds with fibres of general
type

λ1(f) =
K3
T/B

∆f

λ2(f) =
K3
T/B

χf

whenever ∆f , χf 6= 0; the results of Ohno have an easy translation in terms of
these. But there is a new problem: it is not known whether χf ≥ 0. In fact in
[73] this question is avoided. If χf < 0, Theorem 5.1 still holds, since always
K3
T/B ≥ 0 holds, but it gives no information. In §5.1 we prove that χf ≥ 0

holds in most cases and give some examples of χf < 0. We also study in this
section the behaviour of both slopes under certain natural operations.

We consider then fibrations with ∆f 6= 0, χf > 0 and study the two slopes
defined above. We obtain a behaviour of the slope quite analogous to the slope
of fibred surfaces. In fact, and surprisingly enough, the behaviour is better in
some cases.

First of all (cf. Theorem 5.11) we obtain that both slopes verify a consid-
erably better bound than Ohno’s one as far as pg >> 0 and F is not fibred by
hyperelliptic, trigonal or tetragonal curves: Ohno’s bound is assimptotically 4
whereas our bound tends to be 9. Moreover we obtain alternative bounds in
the case F is fibred by hyperelliptic, trigonal or tetragonal curves. Observe
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that the behaviour of the slopes correspond completely to that hoped for fibred
surfaces (see Problem 1 in the introduction to Chapter 4): the non-existence
of certain special pencils on F make the slope bigger.

Then we consider the influence of the irregularity on the slope. It turns
out that λ2(f) is sensible to q(T ) − b. We prove that λ2(f) ≥ 9 whenever
q(T ) − b > 0 and F is not special in the above sense (see Theorem 5.14).
Moreover we can give alternative bounds in the special cases and a structure
result for those non Albanese fibrations with λ2 < 9.

Finally we study fibrations with very low slope (λ2 < 4). These are known
to exist (cf. [73] p.664); in [73], Ohno gives a classification of them in seven
(possible) families (see theorem 5.19 below). We prove that the same phe-
nomena that appears in fibred surfaces hold: if λ2 < 4 then q(T ) = b (i.e.
q(T ) = b = 0 or f is an Albanese fibration), E = f∗ωT/B is ample if b ≤ 1
(in fact for all b provided Fujita’s conjecture holds) and finally the canonical
map of F is not birational in most cases. In fact we prove that F is fibred by
hyperelliptic curves if pg(F ) ≥ 8 (of genus 2 if pg(F ) ≥ 15) and by hyperelliptic
or trigonal curves otherwise, except for one residual case which is doubtful to
exist (see Theorem 5.20 and Remark 5.21).

5.1 Preliminary results

Definition 5.2 Let f : T −→ B be a fibration of a normal, Q-factorial,
projective threefold with only canonical singularities onto a smooth curve. Let
F be the general fibre of f and b = g(B). We define

∆f = deg f∗wT/B

χf = χOBχOF − χOT

Lemma 5.3

(i) ∆f = χf + degR1f∗ωT/B ≥ χf

(ii) ∆f ≥ 0. If ∆f = 0 and |KF | is birational, then f is isotrivial.

(iii) If β : T̃ −→ T is a nonsingular model of T and f̃ = f ◦β, then χf = χ
f̃
,

∆f = ∆
f̃
.
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Proof:

(i) Follows from [73] Lemma 2.4 and 2.5. We sketch briefly a proof. The
equality χf = degf∗ωT/B − degR1f∗ωT/B follows by Leray spectral se-
quence and duality on T (observe that canonical singularities are Cohen-
Macaulay, cf. [78]). The inequality ∆f ≥ χf follows from the nefness of
R1f∗ωT/B (see Chapter 3).

(ii) ∆f ≥ 0 follows from the nefness of E ([30] and chapter 3). If ∆f = 0 and
|KF | is birational we can apply [57] I (see also [71], 7.64).

(iii) Canonical singularities are rational (cf. [25]) and hence Riβ∗OT̃ = 0 for
i ≥ 1 (cf. [56], p.50). Hence χO

T̃
= χOT . The same holds for general

fibres F and F̃ of f and f̃ respectively, so χf = χ
f̃
.

By Grauert-Riemenschneider’s vanishing we have Riβ∗ωT̃ = 0 for i ≥ 1.

Hence using the spectral sequence Ep,q
2 = Rpf∗(R

qβ∗ωT̃ )⇒ Rp+qf̃∗ωT̃ we

obtain that for every i ≥ 0 Rif∗ωT = Rif̃∗ωT̃ holds

Definition 5.4 With the above notations if f is relatively minimal and the
general fibre F of f is of general type we define

λ1(f) =
K3
T/B

∆f

if ∆f 6= 0

λ2(f) =
K3
T/B

χf
if χf > 0

Remark 5.5 In the case of fibrations of surfaces over curves we actually
have ∆f = χOS − χOBχOF = χf ≥ 0. Also we had that vanishing holds
only in the locally trivial case. Then when f is not locally trivial we defined
λ(f) = K2

S/B

/
∆f = K2

S/B

/
χf . Here we have two different possibilities for

the slope of f : K3
T/B

/
∆f or K3

T/B

/
χf . As we will see in §5.2, the natural

methods provide lower bounds for λ1(f) (hence also for λ2(f): see Lemma 5.6
below). Note that from the geographical point of view the most interesting one
is λ2(f). But for this election we do not know whether χf ≥ 0. The aim of
this section is to show that this actually happens for general fibrations.
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Lemma 5.6 Assume χf > 0. Then

(i) λ2(f) ≥ λ1(f).

(ii) If σ : B̃ −→ B is a finite map whose branch locus does not contain the
images of singular fibres of f and f̃ : T̃ = T ×

B
B̃ −→ B̃ is the induced

fibration, then λi(f) = λi(f̃), i = 1, 2.

(iii) If T̃
α
−→T is an étale map such that f̃ = f ◦α has connected fibres, then

λ2(f) = λ2(f̃) (but in general λ1(f) 6= λ1(f̃)).

Proof: (i) is obvious.

(ii) If σ does not ramify over the images of singular fibres of f then T̃ =
T ×

B
B̃ is again a normal, Q-factorial relatively minimal threefold over B̃ with

only canonical singularities (cf. [71], 4.10). Clearly K3
T̃ /B̃

= (degσ)K3
T/B

and degRif̃∗ωT̃ /B̃ = (degσ)Rif∗ωT/B by flat base change. Then n∆f = ∆
f̃
,

nχf = χ
f̃
and we are done.

(iii) From the standard theory of cyclic coverings (cf. [89]) we get that
α∗ωT̃ = ⊕n−1i=0 (ωT ⊗ L

⊗i). Since α is finite we have

Rj f̃∗wT̃ /B =
n−1
⊕
i=0

Rjf∗(wT/B ⊗ L
⊗i)

and
K3
T̃ /B

= n(KT/B + (n− 1)L)3 = nK3
T/B .

Hence

χ
f̃

= deg f̃∗wT̃ /B − deg R1f̃∗wT̃ /B =

=
∑n−1
i=0 (deg f∗(wT/B ⊗ L

⊗i)− deg R1f∗(wT/B ⊗ L
⊗i)) = nχf .

Indeed, to prove this last equality observe first that by relative dual-
ity degR2f∗ωT/B = degf∗OT = degOB. On the other hand for 1 ≤ i ≤
n − 1, h2(F, ωF ⊗ L

⊗i
|F ) = h0(F,L⊗i|F ) = 0 since L⊗i|F is non trivial. Then

rank(R2f∗(ωT/B⊗L
⊗i)) = 0; since R2f∗(ωT/B⊗L

⊗i) is a subsheaf of R2f̃∗ωT̃ /B
(which is locally free, see Chapter 3) it is torsion free and hence R2f∗(ωT/B ⊗
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L⊗i) = 0. Finally note that χ(T, ωT/B⊗L
⊗i) = χ(T, ωT ) (L ∈ Pic

0(T )). Then
from Leray’s spectral sequence and Riemann-Roch on B we get

χ(ωT/B) = χ(T, ωT/B ⊗ L
⊗i) =

2∑
j=0

(−1)jχ(B,Rjf∗(ωT/B ⊗ L
⊗i)) =

=

[
2∑
j=0

(−1)jdegRjf∗(ωT/B ⊗ L
⊗i)

]
+ χ(F, ωF ⊗ L

⊗i
|F )χOB.

Since again χ(F, ωF ⊗ L
⊗i
|F ) = χ(F, ωF ) we obtain that

2∑

j=0

(−1)jdegRjf∗(ωT/B ⊗ L
⊗i) = degf∗(ωT/B)− degR1f∗(ωT/B) = χf .

Then λ2(f) = λ2(f̃).

Note that in general deg f∗(wT/B ⊗ L
⊗i) 6= deg f∗wT/B and hence λ1 need

not be invariant.

The question now is whether χf ≥ 0 holds. This is not always true (see
Remark 5.8). We give criteria for its non-negativity depending on the Albanese
dimension of T . By Remark 5.3 we have that χf = χ

f̃
where f̃ = f ◦ β,

β : T̃ −→ T being a desingularization. Hence we can assume T is smooth.

First of all, consider t ∈ B, such that Ft is smooth, and the Albanese maps

Ft[r]
albFt [d]itAlb(Ft)[d](it)∗T [r]

albT [d]fAlb(T )[d]f∗B[r]albBAlb(B)

and let Σ = albT (T ). We set a = albdim(T ) = dimΣ. Let S −→ Σ be
a minimal desingularization of Σ and π : T̃ −→ S the induced map on a
birational model of T .

Note that by rigidity, Im (it)∗ = A is an abelian variety independent of t,
of dimension q(T )− b.

Consider also the induced map Pic0T
(it)∗

−→Pic0(Ft) which image is Â ↪→
Pic0(Ft). We say that f is special if for general t ∈ B Â ↪→ (ht)

∗(Pic0Ct) ⊆
Pic0(Ft), for some ht : Ft −→ Ct a fibration over a curve of genus g(Ct) ≥ 2.
Otherwise we say that f is general.
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Theorem 5.7 Let f : T −→ B be a fibration of a normal, Q-factorial, projec-
tive threefold with only canonical singularities onto a smooth curve of genus b.
Let F be a general fibre of f . Let a = dim alb(T ).

Then χf = χOBχOF − χOT ≥ 0 provided one of the following conditions
holds

(i) b ≤ 1 and χOT ≤ 0.

(ii) a = 2 and h◦(S, π∗wT̃ /S) 6= 0.

(iii) a = 3, f is special and has no non-reduced fibres.

(iv) a = 3 and f is general.

Remark 5.8 Part (i) of the theorem is trivial since when b ≤ 1 χf ≥ −χOT .
We only want to remark that condition χOT ≤ 0 holds in most cases. Indeed, if
T is smooth and KT ample then χOT = 1

24
c1c2 < 0 by Miyaoka-Yau inequality.

Also, if T is minimal and Gorenstein χOT ≤ 0 holds (cf. [70]). Finally, if
a = 3 then χOT ≤ 0 by a consequence of generic vanishing results (see [35]).
Observe that if a = 0 then necessarily q(T ) = b = 0 and hence this possibility
is included in (i).

Extra conditions included for the cases a = 2, 3 are very mild. This is clear
for the case a = 3. In the case a = 2 observe that if E is a general curve on S
and H is its pullback on T̃ , then h0(S, π∗ωT̃ /S) = h0(E, π∗ωH/E) (see proof of

part (iii) of the theorem). Then, remember that by Proposition 3.1.(v) π∗ωH/E
is nef and contains an ample vector bundle, so condition h0(E, π∗ωH/E) 6= 0 is
not very restrictive.

We want to stress that in the statement of the theorem some hypotheses are
needed since χf ≥ 0 is not always true. Indeed, we can construct counterex-
amples as follows. Let (Ci, τi) (i=1,2,3) be smooth curves with an involution.
Let Di = Ci/τi and gi = g(Ci) ≥ 2, bi = g(Di). Consider X = C1 × C2 × C3

and τ : X −→ X the involution acting on Ci as τi. Consider T = X/τ .
Then T is a threefold of general type with a finite number of (canonical) sin-
gularities, endowed with a fibration f : T −→ D1 =: B with general fibre
F ∼= C2 × C3 (hence it is isotrivial). Since H0(T,ΛiΩ1

T )
∼= H0(X,ΛiΩ1

X)
τ (see

[29]) a standard computation shows that
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χOB = 1− b1

χOF = (1− g1)(1− g2)

h1OT = q(T ) = b1 + b2 + b3

h2OT = b1b2 + b1b3 + b2b3 + (g1 − b1)(g2 − b2) + (g1 − b1)(g3 − b3)+

+(g2 − b2)(g3 − b3)

h3OT = b1b2b3 + (g1 − b1)(g2 − b2)b3 + (g1 − b1)(g3 − b3)b2+

+(g2 − b2)(g3 − b3)b1.

If we take b1 = b2 = b3 = 0 (Ci must be hyperelliptic then) we obtain a = 0
and χf < 0. Any base change of this fibration to a curve of positive genus

produces a new fibration with q(T̃ ) = b̃ ≥ 1 (hence with a = 1) and χ
f̃
< 0.

If we take b1 = b2 = 1, b3 = 0 we obtain again χf < 0 and q(T ) > b (so
a ≥ 2).

Finally we must say that we do not have any reasonable criteria for the
nonnegativity of χf when a = 1, which corresponds to the case when q(T ) =
b, f∗ = Id and albT factors through f (f is, then, an Albanese fibration).
Nevertheless this is precisely the case in which we are not interested in the
main theorem of the chapter (cf. Theorem 5.14).

Proof: (ii) We can assume T smooth. We can also assume, by the same
arguments, that π : T −→ S has ramification locus contained in a normal
crossings divisor and that is flat using a flattening base change ([71], 1.10).

We have now a factorization of f

T [dd]f [dr]
πS[dl]gB

where g need not to be a relatively minimal fibration. Let Ct = g−1(t) be a
general fibre (g(Ct) ≥ 1) and πt : Ft −→ Ct the induced fibration. Let G be a
general fibre of πt. Note that we have (πt)∗ωFt/Ct = π∗ωT/S ⊗ OCt and hence
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(R1πt)∗OFt = (R1π∗OT )⊗OCt by relative duality on Ct (see proof of Theorem
3.4).

Take a n-torsion element L ∈ Pic0(S) verifying that for 1 ≤ i ≤ n − 1
L⊗i 6∈ g∗(Pic0(B)) (this is possible since S is of Albanese general type by
construction) and such that h◦(Ct, R

1(πt)∗OFt⊗L|Ct) = 0 (this is also possible

since {L̃ ∈ Pic0(Ct) |h
◦(Ct, (R

1πt)∗OFt⊗L̃) 6= 0} is a finite set (see Proposition
3.3) and the image of Pic0(S) −→ Pic0(Ct) is a subtorus of positive dimension
otherwise q(S) = b, a contradiction).

Let M = π∗L ∈ Pic0(T ). Since π has a normal crossings ramification
locus we have that R1π∗OT is locally free (cf. [59], Theorem 2.6 and Chapter
3) and hence g∗(R

1π∗OT ⊗L) is torsion free (hence it is locally free since B is
a smooth curve). Then

g∗(R
1π∗OT ⊗ L) = 0

since rk g∗(R
1π∗OT ⊗ L) = h◦(Ct, R

1(πt)∗OFt ⊗ L|Ct) = 0 by election of L.

Using the spectral sequence Ep,q
2 = Rpg∗(R

qπ∗F) ⇒ Rp+qf∗F and that
R2π∗ = R2g∗ = 0 by dimension of fibres we have

R2f∗(M) = R1g∗(R
1π∗(M)) = R1g∗(R

1π∗OT ⊗ L). (5.1)

We observe that R2f∗(M) is locally free. Indeed M = π∗L; since L is
torsion and L⊗i|C 6= OC for 1 ≤ i ≤ n − 1 we can consider the induced étale
base change of π:

T̂ [r][d]π̂T [d]
πŜ[r][dr]ĝS[d]

gB

and get

Rj f̂∗ωT̂ /B =
n−1
⊕
i=0

Rjf∗(ωT/B ⊗M
⊗i) (5.2)

Rj f̂∗OT̂ =
n−1
⊕
i=0

Rjf∗(M
⊗i).

Hence R2f∗(M) is locally free, being a subsheaf of R2f̂∗OT̂ (which is locally
free by Proposition 3.1).

Finally remember that for fibrations of surfaces over curves we have (see
Chapter 4; we do not need for this that the fibration be relatively minimal):

deg (πt)∗ωFt/Ct = χOF − χOCχOG; deg g∗ωS/B = χOS − χOCχOB.
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Now we can compute

χOT = χ(π∗OT )− χ(R
1π∗OT ) =

= χOS − χ(R
1π∗OT ⊗ L) since L ∈ Pic0(S)

= χOS + χ(R1g∗(R
1π∗OT ⊗ L)) by Leray

= χOS + χ(R2f∗(M)) by (5.1)
= χOS + χ(f∗(ωT/B ⊗M

−1)∗) by relative duality
= χOS − deg(f∗(ωT/B ⊗M

−1)) + h0(F, ωF ⊗M
−1
|F )χOB by R.R. on B

By election of L, Serre duality on B and relative duality on B and C we
obtain

h0(F, ωF ⊗M
−1
|F ) = h0(C, π∗ωF/C ⊗ωC ⊗L

−1
|C ) = χ(π∗ωF/C ⊗ωC ⊗L

−1
|C ) (5.3)

= −χ(R1π∗OF ⊗ L) = −χ(R
1π∗OF ) = (χOF − χOCχOG)− g(G)χOC

= χOF − χOC .

Hence:

χf = χOFχOB − χOT = deg(f∗(ωT/B ⊗M
−1))− deg(g∗ωS/B) (5.4)

Now we use the hypothesis: π∗ωT/S has a section and hence we have an
injection

0 −→ OS −→ π∗ωT/S

which gives

0 −→ ωS/B ⊗ L
−1 −→ π∗ωT/S ⊗ ωS/B ⊗ L

−1 = π∗(ωT/B ⊗M
−1)

and so

0 −→ g∗(ωS/B ⊗ L
−1)

τ
−→ g∗(π∗(ωT/B ⊗M

−1)) = f∗(ωT/B ⊗M
−1) (5.5)
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Note that deg(g∗(ωS/B ⊗ L
−1)) = degg∗ωS/B. Indeed, by election of L

we have that h1(C, ωC ⊗ L
−1
|C ) = 0; on the other hand R1g∗(ωS/B ⊗ L

−1) is

locally free, being a subsheaf of R1g̃∗ωS̃/B for the étale cover S̃ −→ S induced

by L. Hence R1g∗(ωS/B ⊗ L
−1) = 0. Then use Leray spectral sequence and

Riemann-Roch on B and S as in the proof of Lemma 5.6 (iii).

In order to finish the proof it suffices to check that f∗(ωT/B ⊗ M
−1) is

nef, since from (5.4) and (5.5) we have that χf = deg Coker(τ) (which will be
positive if f∗(ωT/B ⊗M

−1) is nef). By (5.2) we have that f∗(ωT/B ⊗M
−1) =

f∗(ωT/B ⊗M
⊗(n−1)) is nef since it is a quotient of a nef vector bundle.

(iii) Assume that for general t ∈ B we have a fibration ht : Ft −→ Ct.

Let
◦

B ⊆ B be a non-empty open set such that f ◦ :
◦

T −→
◦

B is smooth and

for every t ∈
◦

B there exists such a ht. We can consider now the fibration

of abelian varieties ψ : Alb ◦
T /

◦

B
−→

◦

B. For every t ∈
◦

B we have an abelian

subvariety Kt = ker(AlbFt −→ AlbCt) ↪→ AlbFt = ψ−1(t). Then we can apply
§1.4 and get, up to base change, a relative abelian subvariety K ↪→ Alb ◦

T /
◦

B

over
◦

B. Let J = Alb ◦
T /

◦

B

/
K. Consider the natural map, up to base change,

ϕ :
◦

T −→ Alb ◦
T /

◦

B
−→ J over

◦

B. For general t ∈
◦

B, ϕt : Ft −→ Jt has as

image Ct by construction. Let
◦

S = ϕ(
◦

T ) and complete the map to get

T̃ [d][dr]πT [d]fT [l]σ̄[r][d]f̄S[dl]BB[l]σ

Note that we are in the same situation for f̄ as in (ii). We have even more
since by construction the hypothesis h0(π∗ωT/S) > 0 holds; indeed, let E be
a general curve on S and let H be its pullback on T . We have as in proof of
Theorem 3.4 that

π∗ωH/E = (π∗ωT/S)⊗OE.

If E is ample enough, we have

h0(S, π∗ωT/S ⊗OS(−E)) = h1(S, π∗ωT/S ⊗OS(−E)) = 0.

Hence h0(S, π∗ωT/S) = h0(E, π∗ωH/E). In the case of fibred surfaces
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h0(E, π∗ωH/E) ≥ q(H)−g(E) according to Fujita’s decomposition (see Chapter
3). Finally note that, by [16], q(H)− g(E) ≥ q(T )− q(S) ≥ 1.

So we can apply the same argument than in (ii) and get χf̄ ≥ 0.

We apply now the hypothesis: f has no non-reduced fibres. In fact, after
some blow-ups in T and T , that do not modify χf and χf̄ , we can assume f
to be semistable, and T smooth. Then we have

T [r]α[dr]f̄T ×
B
B[d]f

′

[r]T [d]fB[r]σB

where α is induced by f and σ. Since f is semistable we can apply base change
theorem ([71], 4.10) and get

f ∗ωT/B = f ′∗ωT×
B
B/B = σ∗(f∗ωT/B) .

In fact we also have the same equality for R1f∗: take H a very ample line
bundle in T and let H be a general smooth member of its associated linear
system. We have in a natural way

0 −→ f∗ωT/B −→ f∗(ωT/B ⊗H) −→ f∗ωH/B −→ R1f∗ωT/B −→ 0

since R1f∗(ωT/B ⊗ H) = 0 (by Kodaira vanishing h1(F, ωF ⊗ H|F ) = 0 and
R1f∗(ωT/B ⊗H) is locally free by the trick of a cyclic cover used in (ii)).

Note that all of them are locally free. Hence we have that after taking σ∗

we still have a long exact sequence. Considering the analogous exact sequence
for f and the natural maps we get

0[r]σ∗(f∗ωT/B)[r]σ
∗(f∗ωT/B ⊗H)[r]σ

∗(f∗ωH/B)[r]σ
∗(R1f∗ωT/B)[r]00[r]f̄∗(ωT/B)[r][u]

∼=f̄∗(ωT/B ⊗H)[r][u]f̄∗ωH/B[r][u]
∼=R1f̄∗ωT/B[r][u]

γ0

where γ is naturally induced and exhaustive. SinceR1f̄∗ωT/B and σ∗(R1f∗ωT/B)

are both locally free sheaves of the same rank over B, γ is an isomorphism.

So we have

0 ≤ χf̄ = degf̄∗ωT/B − deg R1f̄∗ωT/B = n(degf∗ωT/B − degR1f∗ωT/B) = nχf .

(iv) Since T is of Albanese general type, then so is Ft for t ∈ B general.
We can apply then Theorem 1.34 to get that {L ∈ Pic0(Ft)|h

1(Ft,L) 6= 0} is
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the union of subtori h∗i (Pic
0(Ci)) for fibrations hi : Ft −→ Ci with g(Ci) ≥ 2

and a finite number of (torsion) points.

Under our assumptions we can take a n-torsion element L ∈ Pic0(T ) such
that for 1 ≤ i ≤ n− 1, h1(Ft,L

⊗i
|Ft
) = 0.

Hence as in Lemma 5.6 (iii) if we consider the étale cover σ : T̃ −→ T
associated to L, and f̃ = f ◦ σ we have that f∗(ωT/B ⊗ L) is a quotient of

f̃∗ωT̃ /B hence it is nef.

Since h1(Ft,L
−1
|Ft
) = 0 we have R1f∗(ωT/B ⊗ L) = 0 (as above it is locally

free) and hence

χf = degf∗ωT/B − degR1f∗ωT/B =

= degf∗(ωT/B ⊗ L)− degR1f∗(ωT/B ⊗ L) = degf∗(ωT/B ⊗ L) ≥ 0

5.2 Slopes of fibred threefolds

We give here a lower bound for λ1(f) (and hence for λ2(f) provided it is
well defined) in the case of a relatively minimal fibred threefold with fibres of
general type. The bounds we obtain are considerably better than Ohno’s ones
([73] Main Theorem 1; see Theorem 5.1) as far as pg(F )À 0.

First we need some results on linear systems on surfaces of general type.

Lemma 5.9 Let F be a minimal surface of general type such that pg(F ) ≥ 3
and let τ : F̃ −→ F be a birational morphism. Let 0 ≤ P ≤ Q ≤ τ ∗KF be two
nef and effective divisors, such that the complete linear systems |P | and |Q|
are base point free. Let r ≤ s be the ranks of |P | and |Q| respectively. Let Σ
be the image of F̃ through the map ϕ induced by |P |. Then

(i) If ϕ is a generically finite map then we have

• P (τ ∗KF ) ≥ P 2 ≥ 2r− 4+2q(Σ) if ϕ is a double cover of a geomet-
rically ruled surface Σ.

• P (τ ∗KF ) ≥ P 2 ≥ 3r − 7 otherwise
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(ii) If |P | is composed with a pencil of generic fibre D of (geometric) genus
g, D̂ = τ∗D, and |Q| induces a generically finite map then we have

• QP ≥ 2(r − 1)

• QP ≥ 3(r − 1) except if D is hyperelliptic and |Q||D = g12.

• QP ≥ 4(r−1) except if D is hyperelliptic or trigonal and |Q||D = g12
or g13.

• QP ≥ 5(r − 1) except if D is hyperelliptic, trigonal or tetragonal
and |Q||D = g12, 2g

1
2, g

1
3 or g14, or D is of genus 2 or 3.

• P (τ ∗KF ) ≥ (2g − 2)(r − 1) or (2g − 2)r, according to whether the
pencil is rational or not, if the pencil |D̂| in F has no base point.

• P (τ ∗KF ) ≥ (2pa(D̂)−2−D̂2)(r−1) if the pencil |D̂| has some base
point.

(iii) If |KF | is composed with a pencil of generic fibre D as in (ii) then we
have

• P (τ ∗KF ) ≥ (2g − 2)(r − 1) or (2g − 2)r, according to whether the
pencil is rational or not, if the pencil |D̂| in F has no base point.

• P (τ ∗KF ) ≥ max{
√
2(g − 1)

(
1− 1

pg(F )

)
(pg(F )− 1)D̂2,

(2pa(D̂)− 2− D̂2)(r − 1)} otherwise.

Proof: (i) Since P is nef and P ≤ τ ∗KF we obviously have P (τ ∗KF ) ≥
P 2. It is a well known fact that deg Σ ≥ r − 2 + q(Σ) if Σ is geometrically
ruled and that deg Σ ≥ 2r − 4 otherwise (see [10]).

Let a = deg ϕ. If a ≥ 3 then P 2 ≥ 3degΣ ≥ 3(r − 2) > 3r − 7. If a = 2
and Σ is not geometrically ruled P 2 ≥ 2(2r − 4) = 4r − 8 ≥ 3r − 7. If Σ is
geometrically ruled P 2 ≥ 2degΣ ≥ 2r − 4 + 2q(Σ).

If a = 1, let C ∈ |P | be a smooth curve (|P | has no base point). Then
2P|C ≤ (τ ∗KF+P )|C ≤ (K

F̃
+P )|C = KC . So degP|C ≤ g(C)−1. We can then

apply “Clifford plus” lemma (cf. [11]) and get P 2 = degP|C ≥ 3h0(C,P|C)−4 ≥

3h0(F̃ , P )− 7 = 3r − 7.

(ii) Let ϕP (F ) = C ⊆ Pr−1. The map F −→ C may not have connected
fibres; consider the Stein factorization of ϕP , F −→ C̃ −→ C. Note that then
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we have P ≡ αD where D is an irreducible smooth curve such that D2 = 0
and α = α1α2 where α1 = deg(C̃ −→ C) and α2 ≥ r − 1 (and equality holds
only when C is rational). The pencil |P | is said to be rational if C̃ = P1 and
irrational otherwise. Note that in general also α ≥ r − 1 and α ≥ r if the
pencil is irrational.

Since P ≤ Q, the map ϕP factors through ϕQ. Let Σ = ϕQ(F ) and consider
the induced map ψ : Σ −→ C. By construction clearly ϕQ(D) ⊆ ψ−1(t) for
t ∈ C (note that ψ−1(t) does not need to be connected).

We have that QP = α2(α1QD) ≥ (r − 1)(α1QD). Let a be the degree of
ϕQ|D, D = ϕQ(D) and d = degD. Note that a divides degϕQ although we will

not use it. We have then α1QD = α1ad. Note that ad ≥ 2 (otherwise F̃ would
be covered by rational curves) and hence QP ≥ 2(r − 1). If QP < 3(r − 1)
then α1 = 1, a = 2, d = 1 (if a = 1, d = 2 again F̃ is covered by rational
curves). Hence D is hyperelliptic and |Q||D = g12.

If QP < 4(r− 1) then α1ad ≤ 3. If α1ad = 2 the previous argument holds.
If α1ad = 3 then α1 = 1, a = 3, d = 1 (if a = 1, d = 3, F̃ would be covered by
elliptic or rational curves, a contradiction since F is of general type). Then D
is trigonal and |Q||D = g13.

If QP < 5(r − 1) then α1ad ≤ 4 and we only must study the case α1ad =
4. Four possibilities may occur. Either α1 = 2, a = 2, d = 1 (then D is
hyperelliptic and |Q||D = g12) or α1 = 1, a = 4, d = 1 (then D is tetragonal
and |Q|D = g14) or α1 = 1, a = 2, d = 2 (then D is again hyperelliptic and
|Q|D = 2g12) or α1 = a = 1, d = 4 (then D has at most genus 3; in particular
D is also hyperelliptic or trigonal).

Finally note that Dτ ∗KF = 2g − 2 if |D̂| has no base point and Dτ ∗KF =
D̂KF = 2pa(D̂)− 2− D̂2 (by adjunction formula on F ) otherwise. Hence the
result follows from P (τ ∗KF ) = αD(τ ∗KF ) and the previous bound of α.

(iii) The first result is analogous to (ii) having in mind that if P ≤ τ ∗KF

then |P | is composed with a pencil of the same genus than |KF | and with the
same general fibre.

Part of the second statement follows as in (ii). For the rest consider that
from Hodge Index theorem (KF D̂)2 ≥ K2

F D̂
2 and that when |KF | is com-

posed of a pencil of genus zero then K2
F ≥ 2(g − 1)

(
1− 1

pg(F )

)
(pg(F ) − 1)
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([64], Lemma 3.3).

Definition 5.10 We say that a linear pencil |Q| on F is of type (r, g, p),
r ≥ 2, g ≥ 2, p = 0, 1 if |Q| is a complete linear system of r-gonal (but not
s-gonal for s < r) curves of (geometric) genus g, rational if p = 0, irrational if
p = 1. If |Q| is a rational pencil, we call D̂ a generic member and δ = KF D̂ =
2pa(D̂)− 2− D̂2. If |Q| is base point free, then clearly δ = 2g − 2.

Now we can state the main result of this section:

Theorem 5.11 Let T be a normal, Q-factorial, projective threefold with only
canonical singularities and let f : T −→ B be a relatively minimal fibration
onto a smooth curve of genus b. Let F be the general fibre.

Assume F is of general type, pg(F ) ≥ 3 and that χf = χOFχOB−χOT > 0.
Then

(i) If |KF | is not composed with a pencil and |KF | has no hyperelliptic,
trigonal or tetragonal subpencil, then

λ2(f) ≥ λ1(f) ≥ 9

(
1−

17

3pg(F ) + 10

)

(ii) If |KF | is composed with a pencil with generic fibre D̂ of (geometric)
genus g, then

λ2(f) ≥ λ1(f) ≥ 4g − 4 if the pencil is irrational

λ2(f) ≥ λ1(f) ≥
pg(F )
pg(F )+1

(4pa(D̂)− 4− 2D̂2) if the pencil is rational

(iii) If |KF | is not composed, has no hyperelliptic subpencils, and has subpen-
cils {|Qi|}i∈I of type (ri, gi, pi) with ri = 3, or 4 then

λ2(f) ≥ λ1(f) ≥ min
i∈I
{λpiri (Qi)}

where

λ13(Q) = 9− 9
4g−7
− ε13(pg(F ), g)
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λ03(Q) =





9− 9
δ−3
− ε03(pg(F ), δ) if δ ≥ 7,

6
(
1− 17

3pg(F )+10

)
otherwise

λ14(Q) = 9− 3
4g−9
− ε14(pg(F ), g)

λ04(Q) =





9− 3
δ−5
− ε04(pg(F ), δ) if δ ≥ 7,

8
(
1− 17

3pg(F )+10

)
otherwise
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(iv) If |KF | has hyperelliptic subpencils {|Qi|}i∈I of type (2, gi, pi) then

λ2(f) ≥ λ1(f) ≥ min
i∈I
{λpiri (Qi)}

where

λ12(Q) =





6− 2
2g−3
− ε12(pg(F ), g) if g ≥ 3,

4
(
1− 1

pg(F )−1

)
if g = 2

λ02(Q) =





6− 4
δ−2
− ε02(pg(F ), δ) if δ ≥ 4,

4
(
1− 9

2pg(F )+5

)
otherwise

and where εpr ∼ o( 1
pg(F )

) are the following positive functions

ε14 =
(68g − 159)(36g − 84)

(4g − 9)2(3pg(F )− 7) + (68g − 159)(4g − 9)
ε04 =

(17δ − 91)(9δ − 48)

(δ − 5)2(3pg(F )− 7) + (δ − 5)(17δ − 91)

ε13 =
36(g − 2)(68g − 137)

(4g − 7)2(3pg(F )− 7) + (68g − 137)(4g − 7)
ε03 =

(9δ − 36)(17δ − 69)

(δ − 3)2(3pg(F )− 7) + (δ − 3)(17δ − 69)

ε12 =
4(3g − 5)(9g − 17)

(2g − 3)2(pg(F )− 2) + (9g − 17)(2g − 3)
ε02 =

(9δ − 24)(6δ − 16)

(δ − 2)2(2pg(F )− 4) + (δ − 2)(9δ − 24)

Remark 5.12 The statement of Theorem 5.11 looks considerably easier if we
consider the bounds for pg(F ) >> 0 (in which case the functions ε tend to be
zero). This behaviour will play a special role in next section. We also observe
that even if χf < 0 then the bounds in the theorem hold for λ1(f) as far as
∆f 6= 0.

Proof: We consider E = f∗ωT/B and its Harder-Narasimhan filtration

0 = E0 ⊆ E1 ⊆ . . . ⊆ E` = E

with slopes µ1 > µ2 > . . . > µ` ≥ 0 and ranks 1 ≤ r1 < r2 < . . . < r` =
pg(F ). As in §1.2, each piece induces a Cartier divisor Pi on F̃ such that
the linear system |Pi| has projective dimension at least ri − 1. We define as
usual µ`+1 = 0, P`+1 = P`. We remark that following §1.2 we could define,
if necessary, P`+1 = τ ∗KF ≥ P` (|P`| is the moving part of |τ ∗KF |), although
this possibility will only be used in very special computations and will be
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specifically pointed out. We have the inequalities given in Proposition 1.11

and Remark 1.12. Remember that we have ∆f = degE =
∑̀
i=1

ri(µi − µi+1).

Consider first the case |KF | composed. Using Lemma 5.9 (iii) and Remark
1.12 we get, if the pencil is irrational

K3
T/B ≥

∑̀

i=1

(Pi + Pi+1)(τ
∗KF )(µi − µi+1) ≥

≥
`−1∑

i=1

((4g − 4)ri + (2g − 2))(µi − µi+1) + (4g − 4)r`µ` =

= (4g − 4)∆f + (2g − 2)(µ1 − µ`) ≥ (4g − 4)∆f

using that ri+1 ≥ ri+1. If the pencil is rational and D̂ is a generic member of
its moving part then we have

K3
T/B ≥

`−1∑

i=1

((4pa(D̂)− 4− 2D̂2)ri − (2pa(D̂)− 2− D̂2))(µi − µi+1) +

+(4pa(D̂)− 4− 2D̂2)(r` − 1)µ` =

= (4pa(D̂)− 4− 2D̂2)∆f − (2pa(D̂)− 2− D̂2)(µ1 + µ`)

By Remark 1.12 using the indexes {1, `}

K3
T/B ≥ (P1 + P`)(τ

∗KF )(µ1 − µ`) + 2P`(τ
∗KF )µ` ≥

≥ P`(τ
∗KF )(µ1 + µ`) ≥

≥ (2pa(D̂)− 2− D̂2)pg(F )(µ1 + µ`)

And hence eliminating (µ1 + µ`) from the above inequalities

(
1 +

1

pg(F )

)
K3
T/B ≥ (4pa(D̂)− 4− 2D̂2)∆f

which proves (ii).

From now on we assume |KF | not composed. Let

m = min{k | |Pk| induces a generically finite map} ≤ `
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By Remark 1.12 we have

K3
T/B ≥

m−1∑

i=1

(Pi + Pi+1)Pm(µi − µi+1) +
n∑

i=m

(P 2
i + PiPi+1 + P 2

i+1)(µi − µi+1)

Note that for i ≥ m we have P 2
i+1 ≥ PiPi+1 ≥ P 2

i and that if PiPi+1 = P 2
i

then Pi = Pi+1. Indeed, we have Pi+1 = Pi + Di, with Di ≥ 0. Hence
P 2
i+1 = Pi+1(Pi + Di) ≥ Pi+1Pi = (Pi + Di)Pi ≥ P 2

i since Pi and Pi+1 are
nef and Di effective. If PiPi+1 = P 2

i we would have PiDi = 0. Since |Pi| is
base point free and is not composed, Hodge Index Theorem applies and hence
either D2

i < 0 (which is impossible since then P 2
i+1 = P 2

i + 2PiDi +D2
i < P 2

i )
or Di = 0. So we get Pi = Pi+1.

Assume |KF | has no hyperelliptic subpencil (in particular, the maps in-
duced by the linear systems |Pi| are never double covers of geometrically ruled
surfaces). Then

for m ≤ i ≤ `− 1 P 2
i + PiPi+1 + P 2

i+1 ≥ 9ri − 17
for i = ` P 2

` + P`P`+1 + P 2
`+1 ≥ 9r` − 21

(5.6)

Indeed, we call ϕi the map induced by |Pi| and ai = degϕi. Note that ri ≥ 3.
First consider the case m ≤ i ≤ ` − 1. By Lemma 5.9, if ϕi and ϕi+1 are
not double covers of geometrically ruled surfaces we have P 2

i ≥ 3ri − 7 and
P 2
i+1 ≥ 3ri+1− 7 ≥ 3ri− 4; if Pi 6= Pi+1 then PiPi+1 > P 2

i ≥ 3ri− 7 and we are
done. If Pi = Pi+1 then (P 2

i + PiPi+1 + P 2
i+1) = 3P 2

i+1 ≥ 9ri+1 − 21 ≥ 9ri − 12.

If i = ` the result follows immediately from the previous considerations.

Similarly, if |KF | admits hyperelliptic subpencils

for m ≤ i ≤ `− 1 P 2
i + PiPi+1 + P 2

i+1 ≥ 6ri − 9
for i = ` P 2

` + P`P`+1 + P 2
`+1 ≥ 6r` − 12

(5.7)

Indeed, 9ri − 17 ≥ 6ri − 9 (since ri ≥ 3) so we only have to check the case
ai = 2 and ϕi(F̃ ) a geometrically ruled surface. Since ϕi factorizes through
ϕi+1, ai+1 = 1 or 2. In any case P 2

i+1 ≥ 2ri+1−4 ≥ 2ri−2. If Pi 6= Pi+1 we have
PiPi+1 > P 2

i ≥ 2ri−4 and we are done. If Pi = Pi+1 then P
2
i +Pi+1Pi+P

2
i+1 =

3P 2
i+1 ≥ 6ri − 6. For i = ` the assertion is clear.

Observe that since P1 ≤ . . . ≤ Pm−1, all the maps ϕi induced by |Pi| are
composed of the same pencil (with the only exception of r1 = 1, P1 = 0 for
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which we have no defined map ϕ1). Indeed if i < j ≤ m−1 the map ϕi factors
through the map ϕj. Since ϕi(F̃ ) and ϕj(F̃ ) are curves, both maps have, up
to Stein factorization, the same fibre.

Let Pm−1 (and hence Pi for i ≤ m− 1) be of type (r, g, p). Now

If i = m− 1 then (Pm−1 + Pm)Pm ≥





10rm−1 − 10 if r ≥ 5
8rm−1 − 8 if r = 4
6rm−1 − 6 if r = 3
4rm−1 − 4 if r = 2

(5.8)

For this just note that (Pm−1 + Pm)Pm ≥ 2Pm−1Pm since Pm−1 ≤ Pm and
Pm is nef. Then apply Lemma 5.9. Note that even if rm−1 = r1 = 1 (hence
P1 = 0) (Pm−1 + Pm)Pm ≥ 10rm−1 − 10 holds.

Finally, we have

If 1 ≤ i ≤ m− 2 then (Pi + Pi+1)Pm ≥





10ri − 5 if r ≥ 5
8ri − 4 if r = 4
6ri − 3 if r = 3
4ri − 2 if r = 2

(5.9)

which follows immediately from Lemma 5.9, even if Pi = P1 = 0 (r1 = 1).

If ∆f = deg E =
∑̀

i=1

ri(µi − µi+1), call ∆1 =
m−1∑

i=1

ri(µi − µi+1) and ∆2 =

∆f −∆1.

Let us proof first (i) and (iii); we can assume then that |KF | has no hyper-
elliptic subpencil. We get, using (5.6),(5.8) and (5.9)

If r ≥ 5 (5.10)

K3
T/B ≥ 10∆1 + 9∆2 − 5µ1 − 5µm−1 − 7µm − 4µ` ≥ 9∆f − 17µ1 − 4µ`

If r = 4

K3
T/B ≥ 8∆1 + 9∆2 − 4µ1 − 4µm−1 − 9µm − 4µ` ≥ 8∆1 + 9∆2 − 17µ1 − 4µ`

If r = 3

K3
T/B ≥ 6∆1 + 9∆2 − 3µ1 − 3µm−1 − 11µm − 4µ` ≥ 6∆1 + 9∆2 − 17µ1 − 4µ`
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Note that the bound for r ≥ 5 also holds for m = 2, Pm−1 = P1 = 0
(r1 = 1), or m = 1. Using now Remark 1.12 and Lemma 5.9 (i) we have

K3
T/B ≥ P 2

` (µ1 + 2µ`) ≥ (3pg(F )− 7)(µ1 + 2µ`)

and so (we use −17µ1 − 4µ` ≥ −17(µ1 + 2µ`); note that µ` may be zero):

If r ≥ 5

(
1 +

17

3pg(F )− 7

)
K3
T/B ≥ 9∆f (5.11)

If r = 4

(
1 +

17

3pg(F )− 7

)
K3
T/B ≥ 8∆1 + 9∆2

If r = 3

(
1 +

17

3pg(F )− 7

)
K3
T/B ≥ 6∆1 + 9∆2

The first inequality proves (i) and holds also when m = 2, Pm−1 = P1 =
0 (r1 = 1), or m = 1.

In order to prove (iii) we can assume from now on that r = 3 or 4, otherwise
we have (i) which is stronger than (iii).

We can also assume m ≥ 2 and, as pointed out, that |Pm−1| is composed
with a pencil.

We divide the argument according to whether the pencil |Pm−1| is irrational
or not.

If the pencil is rational we use the same notation than in Lemma 5.9 and
Definition 5.10 and set D̂ for the (possible singular) general element of the
linear system |τ∗Pi| = |Qi| in F (with possible base points).

Then using Lemma 5.9 and according to whether the pencil is irrational or
not we have

for i ≤ m− 2 (5.12)

(Pi + Pi+1)(τ
∗KF ) ≥ (4g − 4)ri + (2g − 2) (except if Pi = P1 = 0, r1 = 1)

(Pi + Pi+1)(τ
∗KF ) ≥ (4pa(D̂)− 4− 2D̂2)ri − (2pa(D̂)− 2− D̂2)

for i = m− 1

(Pm−1 + Pm)(τ
∗KF ) ≥ 2Pm−1(τ

∗KF ) ≥ (4g − 4)rm−1

(Pm−1 + Pm)(τ
∗KF ) ≥ 2Pm−1(τ

∗KF ) ≥ (4pa(D̂)− 4− 2D̂2)(rm−1 − 1)

for m ≤ i ≤ `− 1
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(Pi + Pi+1)(τ
∗KF ) ≥ P 2

i + P 2
i+1

for i = `

(P` + P 2
`+1)(τ

∗KF ) ≥ 2P 2
`

Using Remark 1.12 we know

K3
T/B ≥

∑̀

i=1

(Pi + Pi+1)(τ
∗KF )(µi − µi+1)

and so we can conclude

If r = 3, 4, p = 1 (5.13)

K3
T/B ≥ (4g − 4)∆1 + 6∆2 − 11µm − 3µ` ≥ (4g − 4)∆1 + 6∆2 − 11µ1 − 3µ`

Finally,

If r = 3, 4, p = 0 (5.14)

K3
T/B ≥ (4pa(D̂)− 4− 2D̂2)∆1 + 6∆2 − (2pa(D̂)− 2− D̂2)(µ1 − µm−1)−

−(4pa(D̂)− 4− 2D̂2)(µm−1 − µm)− 11µm − 3µ` ≥

≥ (2pa(D̂)− 2− D̂2)∆1 + 6∆2 − 11µ1 − 3µ`

since ∆1 ≥ (µ1 − µm−1) + 2(µm−1 − µm) (this is immediate if m − 1 ≥ 2; if
m = 2, then r1 ≥ 2 and ∆1 = r1(µ1 − µ2) ≥ 2(µ1 − µm)).

Note also that these formulas include the possibility r1 = 1, P1 = 0.

Using now that K3
T/B ≥ (3pg(F )− 7)(µ1 + 2µ`) we get

(
1 +

11

3pg(F )− 7

)
K3
T/B ≥

{
(4g − 4)∆1 + 6∆2 if r = 3, 4, p = 1

(2pa(D̂)− 2− D̂2)∆1 + 6∆2 if r = 3, 4, p = 0

Considering simultaneously this last inequality together with (5.11) and
using that ∆2 = ∆f − ∆1 we get (iii). All the arguments work similarly so
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we only give details of one of them. Assume Pm−1 is a tetragonal irrational
pencil. Then last inequality together with (5.11) give

(
1 +

17

3pg(F )− 7

)
K3
T/B ≥ 8∆1 + 9∆2 = 8∆f +∆2

(
1 +

11

3pg(F )− 7

)
K3
T/B ≥ (4g − 4)∆1 + 6∆2 = (4g − 4)∆f − (4g − 10)∆2

Observe that since |Pm−1| is not an hyperelliptic pencil, then g ≥ 3 and so
we can get a lower bound for ∆2 from the second inequality and we obtain

[
1 +

17

3pg(F )− 7
+

1

4g − 10

(
1 +

11

3pg(F )− 7

)]
K3
T/B ≥

[
8 +

4g − 4

4g − 10

]
∆f

which gives λ14(Pm−1). As for the computation of λ04(Pm−1) or λ
0
3(Pm−1) we only

must be careful when δ ≤ 6 since then the corresponding second inequality
does not give a lower bound for ∆2. If this case happens, then just deduce
from (5.11)

(
1 +

17

3pg(F )− 7

)
K3
T/B ≥ 8∆f if the pencil is tetragonal

(
1 +

17

3pg(F )− 7

)
K3
T/B ≥ 6∆f if the pencil is trigonal

which give the special values of λ0r in (iii).

Of course we must consider all the possibilities for |Pm−1| being trigonal
or tetragonal subpencils of |KF | and so we must consider the minimum of all
such lower bounds.

Finally we must prove (iv). Assume |KF | has hyperelliptic subpencils.
Then it may happens that for some i ≥ m ϕi is of degree two onto a ruled
surface. Also may happen that r = 2. Altogether, Remark 1.12, Lemma 5.9
and inequalities (5.10), (5.11), (5.13) and (5.14) read

K3
T/B ≥ P 2

` (µ1 + 2µ`) ≥ (2pg(F )− 4)(µ1 + 2µ`)
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If r ≥ 3 or m = 1 or m = 2 Pm−1 = P1 = 0

K3
T/B ≥ 6∆1 + 6∆2 − 3µ1 − 3µm−1 − 3µm − 3µ` ≥ 6∆f − 9µ1 − 3µ`

and so

If r ≥ 3

(
1 +

9

2pg(F )− 4

)
K3
T/B ≥ 6∆f (5.15)

If r = 2

K3
T/B ≥ 4∆1 + 6∆2 − 2µ1 − 2µm−1 − 5µm − 3µ` ≥ 4∆1 + 6∆2 − 9µ1 − 3µ`

and so

If r = 2

(
1 +

9

2pg(F )− 4

)
K3
T/B ≥ 4∆1 + 6∆2 (5.16)

If r = 2 p = 0

K3
T/B ≥ (2pa(D̂)− 2− D̂2)∆1 + 4∆2 − 6µ1 − 2µ`

If r = 2 p = 1

K3
T/B ≥ (4g − 4)∆1 + 4∆2 − 2µm − 2µ` ≥ (4g − 4)∆1 + 4∆2 − 2µ1 − 2µ`

This last inequality needs an extra explanation for the coefficient of µm. If
r = 2, we have an hyperelliptic pencil on F̃ . Let D be a general irreducible
member. For i ≥ m, |Pi||D| is a base point free linear subsystem of |KD| by

adjunction and hence maps D onto P1. Hence, Σi = ϕi(F̃ ) is always a ruled
surface. Moreover, ϕi is of degree at least two. Since ϕm−1 factors through Σi

for i ≥ m, then q(Σi) ≥ 1 (the pencil is irrational). Hence for i ≥ m:

Pi(τ
∗KF ) ≥ P 2

i ≥ (degϕi)(ri − 2 + q(Σi)) ≥ 2ri − 2 .

From here we get



The slope of non Albanese fibred threefolds 163

(
1 +

2

2pg(F )− 4

)
K3
T/B ≥ (4g − 4)∆1 + 4∆2 if r = 2, p = 1(5.17)

(
1 +

6

2pg(F )− 4

)
K3
T/B ≥ (2pa(D̂)− 2− D̂2)∆1 + 4∆2 if r = 2, p = 0

If r = 2 (i.e., |Pm−1| is one of the hyperelliptic subpencils of |KF |) then we
can proceed as in (iii) using (5.16) and (5.17) and inequalities in (iv) follow.
Here the exceptional bounds appear in the cases rational and irrational. When
p = 0, δ ≤ 4 (5.16) gives

(
1 +

9

2pg(F )− 4

)
K3
T/B ≥ 4∆f

and so

λ1(f) ≥ 4

(
1−

9

2pg(F ) + 5

)

When p = 1, g = 2 we have

λ1(f) ≥ 4

(
1−

1

pg(F )− 1

)

If r ≥ 3 or |Pm−1| is not composed with a pencil the situation can only
be better; indeed, in this case inequality (5.15) holds, which is better than
inequality (5.16) and hence it is better than any inequalities coming from
(5.16) as (iv) are.

5.3 The slope of non Albanese fibred three-

folds

As in Chapter 4 we say that f : T −→ B is a non-Albanese fibration if q(T ) > b.
We want to analyze the influence of this fact in the slope as in Xiao’s result
for surfaces (cf. [92], Corollary 2.1) and in the results of §4.3. Our main tool
will be Theorem 5.11 together with an argument of étale covers.

First of all we need to control when étale covers of curves are d-gonal.
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Lemma 5.12 Let D be a smooth curve and L ∈ Pic0(D) a n-torsion element.

Let α : D̃ −→ D the associated étale cover of degree n.

Assume D̃ has a unique (base point free) g1d; then

(i) D has a g1d.

(ii) n|d.

Proof: (i) Let ϕ be the automorphism of order n of D̃ such that D ∼=
D̃/<ϕ>. Since D̃ has a unique g1d, ϕ commutes with the map ` : D̃ −→ P1 and
hence there is an order n̄ automorphism ϕ̄ of P1 such that

D̃[d]`[r]
ϕD̃[d]`P1[r]ϕ̄P1

commutes. Clearly n|n and n
n
|d. Hence we have an induced degree d = dn

n

map D = D̃/<ϕ> −→ P1
/<ϕ̄> = P1. Composing with a map P1 −→ P1 of degree

n
n
we have the desired g1d on D.

(ii) Let ψ be the automorphism of P1 given by

(
1 0
0 α

)
with αn = 1,

αi 6= 1 if i < n. Consider the diagonal action of Zn on P1 × D̃ by ψ and ϕ
respectively. Put S = (P1 × D̃)

/Zn
. We have a natural fibration

π : S −→ P1
/Zn

= P1

such that π−1(t) ∼= D̃ for general t ∈ B and π−1((1 : 0)) = n(D̃/<ϕ>) = nD.

Moreover S is smooth along π−1((1 : 0)) (cf. [82] pp. 65, 66), so for our
purposes can be considered smooth.

Then π verifies the hypotheses of Theorem 1.30 (ii) and then one has

Ŝ[d]σ[dr]S[d]π[r]
ΦR[dl]τP1

where R is a ruled surface, Φ is of degree d and σ solves Φ. Notice that Ŝ still
has a fibre of multiplicity n over (1 : 0). Since R is ruled, τ has a section so
π ◦ σ has a d-section Z. Then d = D̃Z = nDZ is a multiple of n.

Lemma 5.13 Let F be a surface of general type and L ∈ Pic0(F ) a n-torsion
element. Let α : F̃ −→ F be the associated étale cover of degree n. Then, if n
is prime and big enough
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(i) F̃ has no rational pencil of d-gonal curves (d = 2, 3).

(ii) If F̃ has an irrational pencil of d-gonal curves (d = 2, 3) of genus g, then
so has F and there exists a base change

F̃ [d]̃
h
[r]αF [d]hC̃[r]C

such that L = h∗(M) ∈ h∗(Pic0(C)) and C̃ −→ C is induced byM.

(iii) If F̃ has a pencil of tetragonal curves then, either so has F and there
exists a base change diagram as in (ii) (and necessarily the pencil is
irrational), or the pencil {D̃} is of bielliptic curves and F has a pen-
cil {D} of bielliptic (hence tetragonal) or hyperelliptic curves such that
α∗(D) = D̃ (and 2g(D̃)− 2 = n(2g(D)− 2)) where

@C = 0pt@R = 1truecmF̃ [dr]̃
h

α
−→F [dl]hC

Proof: Assume first F̃ has a base point free pencil h̃ : F̃ −→ C̃. Let D̃
be a general fibre and let D = (α(D̃))red. Clearly D is smooth since D̃ moves
algebraically.

If L|D 6= OD, then since n is prime L⊗i|D 6= OD for 1 ≤ i ≤ n− 1 and hence

α∗(D) is a connected smooth étale cover of D containing D̃ and so α∗(D) = D̃.

If D2 > 0, by [69], L|D 6= OD and by the previous argument α∗(D) = D̃,

0 = D̃2 = nD2 > 0, a contradiction. So necessarily we have D2 = 0.

If L|D = OD then α∗(D) = D̃1 + . . . + D̃n (D̃1 = D̃), D̃iD̃j = 0, D̃i 6= D̃j

if i 6= j, and hence we have a factorization

F̃ [r]α[d]̃
h
F [d]hC̃[r]βC

such that L ∈ h∗Pic0(C) and β is an étale cover. In particular g(C) ≥ 1.

Now we want to explore the possibility D̃ = α∗(D). Since n is big enough
then so is g(D̃) and hence, if D̃ has a g1d (d = 2, 3, 4) it is unique except if d = 4
and D̃ is bielliptic. So Lemma 5.12 (ii) says that D̃ has no g1d (d = 2, 3, 4) as
far as n does not divide d except when D̃ is bielliptic.

In this case, let σ be the (unique, if g(D̃) ≥ 6) bielliptic involution of D̃.
Let ϕ be the rank n automorphism of D̃ induced by α. Since σ is unique we
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must have that ϕ ◦ σ ◦ ϕ−1 = σ and hence there exists an automorphism ϕ̄ of
the elliptic base curve E such that the following diagram commutes

D̃[r]ϕ[d]2:1D̃[d]2:1E = D̃/<σ>[r]
ϕ̄E

Hence there is an induced degree two map D = D̃/<ϕ> −→ E/<ϕ̄> = E ′, where
E ′ is P1 or an elliptic curve according ϕ̄ has fixed points or not. Then D is
hyperelliptic or bielliptic (hence tetragonal).

Then we can consider which is the influence of the irregularity of T in the
slope of f as in §4.3. We have an exceptional good behaviour:

Theorem 5.14 Let f : T −→ B be a relatively minimal fibration of a nor-
mal, Q−factorial, projective threefold with only canonical singularities onto a
smooth curve of genus b. Let F be a general fibre. Assume F is of general
type, pg(F ) ≥ 3, and that χf = χOFχOB − χOT > 0.

Then, if q(T ) > b we have
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(i) λ2(f) ≥ 4.

(ii) If F has no irrational pencil of d-gonal curves (d = 2, 3, 4) then λ2(f) ≥
9.

(iii) If F has an irrational tetragonal pencil of (minimal) genus g and no
irrational pencil of trigonal curves nor pencil of hyperelliptic curves then
λ2(f) ≥ 9− 3

4g−9
.

(iv) If f has an irrational tetragonal pencil of (minimal) genus g1, an irra-
tional trigonal pencil of (minimal) genus g2 and no hyperelliptic pencil,
then

λ2(f) ≥ min

{
9−

3

4g1 − 9
, 9−

9

4g2 − 7

}
.

(v) If F has an irrational hyperelliptic pencil of (minimal) genus g, then
λ2(f) ≥ 6− 2

2g−3
.

(vi) If F has a rational hyperelliptic pencil and none irrational, then λ2(f) ≥
6.

(vii) If λ2(f) < 9 then either F has a rational pencil of hyperelliptic curves or
there exists, perhaps up to base change, a factorization of f

T@−− >[r]h[d]fS[dl]gB

where S is a smooth surface fibred over B by curves Ct of genus g(Ct) ≥ 1
and h is everywhere defined at the general fibre Ft of f , such that

• for t ∈ B general the image of ((it)
∗ : Pic0(T ) −→ Pic0(Ft)) lies in

h∗t (Pic
0(Ct)) ⊆ Pic0(Ft).

• for s ∈ S general Ds = h−1(s) is hyperelliptic, trigonal or tetragonal
(necessarily hyperelliptic or of genus 3 if λ2(f) < 8).

Proof: Note that (i) follows from (ii), (iii), (iv), (v) and (vi). Since
q(T ) > b then for every n À 0 there exists a n-torsion element L ∈ Pic0T \
f ∗(Pic0(B)) such that for 1 ≤ i ≤ n − 1, L⊗i|F 6= OF . Then we can construct

the associated étale cover α : T̃ −→ T as in Lemma 5.6 (iii) and get f̃ = f ◦α
such that λ2(f) = λ2(f̃).
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If F̃ is the fibre of f̃ , we have an étale cover α1 : F̃ −→ F and hence
pg(F̃ ) ≥ χO

F̃
= nχOF ≥ n (note that q(F̃ ) ≥ q(F ) ≥ 1 since q(T ) > b). Since

we can do this process for n as big as needed, we can take in the bounds of
Theorem 5.11 limit when pg(F ) goes to infinity.

Assume that |KF | is composed. We have pg(F̃ ) ≥ n and either the genus
of the fibre of the pencil or the genus of the base curve increases, except if
q(F ) = 1 and the pencil is elliptic. When |KF | is composed the pencil can
only be rational or elliptic and the genus of the fibre is at most 5 provided
pg À 0 ([11], [91]). So if n is big enough and the pencil is rational |K

F̃
| can

not be composed. Since λ2(f) = λ2(f̃) we can assume |KF | not composed with
a rational pencil.

Finally, if the pencil is elliptic and q(F ) = 1, note that we can apply
Theorem 5.11 (ii) and get that λ2(f) ≥ 12 if g ≥ 4, λ2(f) ≥ 8 if g = 3,
λ2(f) ≥ 4 if g = 2. So we have that (ii), (iii), (iv), (v) and (vi) hold. From
now on we assume |KF | is not composed.

When F has a fibration h : F −→ C we have an induced map h̃ = h ◦ α1 :
F −→ C. This map may not have connected fibres and hence factorizes
through an étale cover C̃ −→ C. We have two possibilities.

It may exist an unbounded sequence {ni}i∈N ⊆ N such that for every i

h̃ni has connected fibres over C (hence it is a fibration) or for every n ≥ n0,
h̃n factorizes through a non trivial étale cover C̃n −→ C.

In any case we have that, if gn is the genus of the fibration F̃n −→ C̃n,
g ≤ gn ≤ n(g − 1) + 1, the border cases being the two extreme possibilities.

If C = P1 (rational pencil) then C̃n = C for all n and the sequence {δn}
is unbounded. If F has a pencil of tetragonal curves which are bielliptic, then
by Lemma 5.13 (iii) again may happen that {gn} is unbounded. Otherwise by
using Lemma 5.13, we have that gn = g holds for all n.

If the sequence {gn} is bounded, since limn→∞ pg(F̃n) =∞, we can consider
Theorem 5.11 (iii), (iv) and get the bounds of (iii), (iv), (v) and (vi) (note that
gn = g is the worst case).

Finally assume {gn} (or δn) is unbounded. We must take limit in the
bounds of Theorem 5.11 when g (or δ) and pg(F ) simultaneously (and linearly)
grow. In all the cases, the limit is 9.
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If F has no irrational d-gonal pencil (d = 2, 3, 4) so has not F̃ by Lemma
5.13. If F has a rational d−gonal pencil (d = 2, 3, 4) we know yet that λ2(f) ≥
9. So we can assume that if F verifies the hypotheses of Theorem 5.11 (i) then
so does F̃ and so we get λ2(f) ≥ 9 in the limit process. This proves (ii).

In order to prove (vii) note that in the previous arguments we always have
λ2(f) ≥ 9 except when there exists ht : Ft −→ Ct with hyperelliptic, trigonal
or tetragonal fibres (such that g(Ct) ≥ 1 when non-hyperelliptic) and for every
L ∈ Pic0(T ) the étale cover F̃t −→ Ft given by L|Ft factorizes through an étale
cover of Ct. This says that Im ((it)

∗Pic0T −→ Pic0(Ft)) lies in the subtorus
h∗tPic

0Ct.

In order to glue all the maps ht we can proceed as in Theorem 5.7 (iii).

Corollary 5.15 With the same notations as in theorem 5.14, if q(T ) > b then

(i) If λ2(f) < 9 then F is fibred by hyperelliptic, trigonal or tetragonal
curves.

(ii) If λ2(f) < 8 then F is fibred by genus 3 or hyperelliptic curves.

(iii) If λ2(f) <
16
3
then F is fibred by genus 2 curves.

Corollary 5.16 With the same notations as in theorem 5.14, if E = f∗ωT/B
has a quotient of rank one and degree zero, then the same conclusions as in
theorem 5.14 hold.

In particular, if b = 0, 1, F is not fibred by d-gonal curves (d = 2, 3, 4) and
λ2(f) < 9 then E is ample.

Proof: The same argument of Theorem 4.27 holds.

Remark 5.17 Although in Theorem 5.11 we only must take care of subpencils
of |KF |, in the proof of Theorem 5.14 we must take care of subpencils of |K

F̃
|

for any étale cover F̃ −→ F , hence corresponding to arbitrary pencils in F .
Hence the hypotheses that appear in the statement of Theorem 5.14 can not
be restricted to subpencils of |KF |.

Example 5.18 In the case of fibred surfaces is not easy to find examples with
low slope to check the sharpness of the bounds. So it is natural that in the



170 The slope of fibred threefolds

case of fibred threefolds natural examples does not lie near the bounds. We
only can give a family of examples of fibred threefolds with F fibred by genus
two curves and with slope arbitrarily near to 6. For this consider a ruled
surface R onto a smooth curve C of genus m, and let B be a smooth curve
of genus b. Let Y = R × B and consider a suitable double cover T −→ Y .
If the ramification locus is suitable chosen, the general fibre F of the induced
fibration f : T −→ B has a genus two fibration. A standard computation
shows that λ2(f) is arbitrarily near to 6 provided m ≥ 1 (in fact equal to 6
if m = 1). Observe that by construction q(T ) − b ≥ m and so f is a non
Albanese fibration. So we can conclude that the bound 6 has certainly some
meaning for fibrations with general fibre fibred by hyperelliptic curves. The
same construction produces examples with arbitrary g ≥ 3 but then λ2(f) is
far from 6.

5.4 Fibred threefolds with low slope

In [73], the following possibilities for fibred threefolds with fibre of general type
and λ2(f) < 4 are listed.

Theorem 5.19 (Ohno, [73] Main Theorem 2).Let f : T −→ B be a relatively
minimal fibred threefold as in Theorem 5.11. Assume F is of general type. If
K3
T/B < 4(χOBχOF − χOT ) then F has one of the following properties:

(i) F carries a linear pencil of curves of genus two.

(ii) K2
F ≤ 2pg(F )− 1

(iii) K2
F = 2pg(F ), pg(F ) ≥ 3, q(F ) ≤ 2 and |KF | is not composed (q(F ) =

2 only if pg(F ) = 3).

(iv) |KF | is not composed and

· K2
F = 8, pg(F ) = 3, q(F ) ≤ 1 or

· K2
F = 9, pg(F ) = 4, q(F ) ≤ 1 or

· K2
F = 7, pg(F ) = 3, q(F ) ≤ 2

(v) K2
F = 4 or 5, pg(F ) = 2 and the movable part of |KF | is a linear pencil

of curves of genus three with only one base point.

(vi) K2
F = 2 or 3 and pg(F ) = 1
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(vii) pg(F ) = 0

Moreover Ohno gives an example of fibration of type (i).

Following the analogous conjectured result for fibred surfaces (see Chapter
4, introduction), fibred threefolds with low λ2(f) should be very special from
the point of view of the canonical map. In the case of fibred surfaces, the
fibration should be hyperelliptic provided g À 0. The analogy in the case of
threefolds is clear: the canonical map ϕ|KF | should not be general. If pg(F ) ≤ 2
the canonical map is clearly very special. We can prove that if pg(F ) ≥ 8, F
is fibred by hyperelliptic curves (in fact of genus 2 is pg(F ) ≥ 15) and hence
ϕ|KF | has at least degree two. In the remaining cases 3 ≤ pg(F ) ≤ 7 we also
prove that the canonical map of F has degree 3 up to some exceptions.

The positivity properties of fibred surfaces with low slope (see Theorem
4.27) hold similarly here.

Theorem 5.20 Let f : T −→ B be a relatively minimal fibration of a nor-
mal, Q−factorial projective threefold T with only canonical singularities onto
a smooth curve B of genus b. Assume that the general fibre F is of general
type, pg(F ) ≥ 3 and χf = χOFχOB − χOT > 0.

Then if λ2(f) < 4 we have

(i) q(T ) = b

(ii) E = f∗ωT/B has no invertible rank zero quotient sheaf (in particular, E
is ample provided b ≤ 1 or Fujita’s conjecture holds).

(iii) If pg(F ) ≥ 15 F has a rational pencil of curves of genus 2.

(iv) If pg(F ) ≤ 14 then one of the following holds

(a) F has a rational pencil of hyperelliptic curves

(b) F has a rational pencil of trigonal curves, q(F ) = 0 and

. either the canonical map of F is of degree 3 and either pg(F ) =
3, 3 ≤ K2

F ≤ 8 or pg(F ) = 4, 5 3pg(F )− 6 ≤ K2
F ≤ 9

. or the canonical map of F is birational and

pg(F ) = 4 5 ≤ K2
F ≤ 9

5 ≤ pg(F ) ≤ 7 3pg(F )− 7 ≤ K2
F ≤ 2pg(F )
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(c) F is canonical, pg(F ) = 4, q(F ) = 0, K2
F = 5.

Remark 5.21 It is doubtful that the cases of fibre F canonical in (iv)(b) and
in (iv)(c) occur. In Chapter 2 we proved that then K3

T/B ≥ 4χf , provided T
is Gorenstein, so any example should necessarily have T non Gorenstein.

Proof:

The first two statements follow from Theorem 5.14 and Corollary 5.16.
Following the list of Ohno in Theorem 5.19, if λ2(f) < 4 and pg(F ) ≥ 3, |KF |
is not composed.

We follow the notations of the proof of Theorem 5.11.

Assume F has a rational hyperelliptic pencil. We must proof that the
pencil is of genus 2 provided pg(F ) ≥ 15. Call δ = KF D̂. If the (geometric)

genus of D̂ is not 2 then we observe that δ ≥ 4 (if D̂2 = 0 then δ = 2g − 2;
if D̂2 > 0 Hodge index theorem gives δ2 ≥ K2

F ≥ 2pg(F ) − 4 ≥ 26). Formula
(5.14) reads for r = 2, p = 0

K3
T/B ≥ 2δ∆1 + 4∆2 − δ(µ1 − µm−1)− 2δ(µm−1 − µm)− 6µm − 2µ`

≥ 2δ∆1 + 4∆2 − 2δµ1

and using that K3
T/B ≥ (2pg(F )− 4)(µ1 + 2µ`) we get

(1 +
2δ

2pg(F )− 4
)K3

T/B ≥ 2δ∆1 + 4∆2

which together with (5.16) gives that K3
T/B ≥ 4∆f provided pg(F ) ≥ 15.

Assume F has no rational hyperelliptic pencil. According to Remark 1.12
we must check when the coefficient of (µi − µi+1) is greater or equal than 4ri.

Take i such that m ≤ i ≤ `− 1. If ai = 2, then P 2
i ≥ 2ri − 2 if the image

is ruled (since F has no hyperelliptic rational pencil, degϕi(F ) ≥ ri − 1) or
P 2
i ≥ 4ri − 8 otherwise. In any case P 2

i ≥ 2ri − 2 (ri ≥ 3 since |Pi| is not
composed), and hence P 2

i + PiPi+1 + P 2
i+1 ≥ 3P 2

i ≥ 6ri − 6 ≥ 4ri.

If ai = 3 then ai+1 = 1 or 3 and hence P 2
i+1 ≥ 3ri+1 − 7 ≥ 3ri − 4. If

Pi 6= Pi+1 then P 2
i + PiPi+1 + P 2

i+1 ≥ 2P 2
i + 1 + P 2

i+1 ≥ 9ri − 15 ≥ 4ri. If
Pi = Pi+1, P

2
i + PiPi+1 + P 2

i+1 = 3P 2
i+1 ≥ 9ri − 12 ≥ 4ri.
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If ai ≥ 4, P 2
i +PiPi+1+P

2
i+1 ≥ 3P 2

i ≥ 12ri−24 ≥ 4ri. Finally if ai = 1 then
ai+1 = 1 and hence, by the same argument as in (5.6), P 2

i + PiPi+1 + P 2
i+1 ≥

9ri − 17 ≥ 4ri (since ri ≥ 4 if ϕi is birational).

Let i = `. As pointed out at the beginning of proof of Theorem 5.11, we can
set P`+1 = τ ∗KF . Hence, if P` = P`+1 = τ ∗KF we have P 2

` + P`P`+1 + P 2
`+1 =

3P 2
` but if P`+1 6= P` we have P 2

` + P`P`+1 + P 2
`+1 ≥ K2

F + 2P 2
` + 1 ≥ 3P 2

` + 2.
Having this in mind we obtain that P 2

` + P`P`+1 + P 2
`+1 ≥ 4r` except when

r` = pg(F ) = 4, P 2
` = K2

F = 3pg − 7 = 5 and F is canonical or r` = pg(F ) = 3,
P 2
` = 3pg − 6 = 3, K2

F = 3pg(F )− 6 or 3pg(F )− 5 and the canonical map
is of degree three. In both cases we have necessarily q(F ) = 0 (see Chapter 2
for the canonical case and [96] for the degree 3 case).

Take i such that 1 ≤ i ≤ m − 1. If ri = 1 (then i = 1 and P1 = 0) we
have (P1 + P2)Pm ≥ 4r1 = 4 except when r2 = 2 and Pm induces a g13 in the
fibre of the rational pencil |P2|. Assume ri ≥ 2. If am = 2, then PiPm ≥ 2ri;
for this we must look at the proof of Lemma 5.9 (ii). Assume 2ri − 1 ≥
PiPm ≥ α2(α1ad) ≥ (α1ad)(ri − 1); we have that |Pm||D = g12, hence a = 2
and necessarily α1 = d = 1; if α2 = ri − 1 the pencil would be rational (since
α1 = 1) which is impossible by our assumptions; hence α2 ≥ ri which is again
impossible. Then (Pi + Pi+1)Pm ≥ 2PiPm ≥ 4ri. If am ≥ 3 then by Lemma
5.9 PiPm≥3(ri − 1) ≥ 2ri except if ri = 2, am = 3. In this exceptional case, if
Pi+1 6= Pm then (Pi+Pi+1)Pm ≥ (3ri−3)+(3ri+1−3) ≥ 6ri−3 = 9 > 8 = 4ri;
if Pi+1 = Pm then (Pi + Pm)Pm ≥ 8 = 4ri except if 4 ≥ P 2

m ≥ 3rm − 6, i.e.,
r1 = 2, r2 = 3, m = 2, am = 3 (which again produces a rational trigonal pencil
in F ). Finally if am = 1 PiPm ≥ 4ri − 4 (Lemma 5.9) and hence PiPm ≥ 2ri,
(Pi + Pi+1)Pm ≥ 4ri.

So we can conclude than either pg(F ) = 4, q(F ) = 0, K2
F = 5 or F has a

rational trigonal pencil.

Note that in the discussion above, when F has a rational trigonal pencil,
|Pm| induces a degree 3 map. Hence the canonical map of F can only be of
degree 1 or 3. In any case K2

F ≥ 3pg(F ) − 7. Hence, applying Theorem 5.19
we have 3pg(F ) − 7 ≤ K2

F ≤ 2pg(F ) (if pg(F ) ≥ 5) and hence pg(F ) ≤ 7,
K2
F ≤ 2pg(F ) ≤ 14.

Finally we must prove that q(F ) = 0. If q(F ) = 1, then K2
F ≥ 3pg(F ) +

7q(F ) − 7 = 3pg(F ) (cf. [62]) which is impossible. Assume q(F ) ≥ 2. If
|KF | is birational we have 3pg(F ) − 4 ≤ K2

F ≤ 2pg(F ) − 1 (by Chapter 2,
if q(F ) ≥ 2 we have K2

F ≥ 3pg(F ) + q(F ) − 7 but if equality holds then
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q(F ) ≥ 3) which is impossible. If |KF | induces a map of degree 3 we have
3pg(F )−3 ≤ K2

F ≤ 2pg(F ) (cf. [96] and Theorem 5.19) or pg(F ) = 3, q(F ) = 2,
K2
F = 7; so in any case we get pg(F ) = 3, K2

F ≥ 6. Following the above
discussion the only possibilities for the Harder-Narasimhan filtration of E are
r1 = 2, r2 = 3 or r1 = 1, r2 = 2, r3 = 3. The first one gives

K3
T/B ≥ (P1+P2)P2(µ1−µ2)+3P 2

2 µ2 ≥ 9(µ1−µ2)+18µ2 ≥ 8(µ1−µ2)+12µ2 = 4∆f

The last one gives

K3
T/B ≥ (P1 + P2)P3(µ1 − µ2) + (P2 + P3)P3(µ2 − µ3) + 3P 2

3 µ3
≥ 3(µ1 − µ2) + 9(µ2 − µ3) + 18µ3 ≥ 4(µ1 − µ2) + 8(µ2 − µ3) + 12µ3 = 4∆f

if µ2 − µ3 ≥ µ1 − µ2; otherwise consider

K3
T/B ≥ (P1 + P3)P3(µ1 − µ3) + 3P 2

3 µ3
≥ 6(µ1 − µ3) + 18µ3 ≥ 4(µ1 − µ2) + 8(µ2 − µ3) + 12µ3 = 4∆f .

So we have necessarily q(F ) = 0.

As for the restrictions for (pg(F ), K
2
F ) when the canonical map is of degree

3, we refer to [76], [96], [61].

Finally we note that in Chapter 2 we prove that if T is Gorenstein and
|KF | is birational, then λ2(f) ≥ 4. Then the last exceptional case and those
verifying 3 ≤ pg(F ) ≤ 7 and |KF | birational only can happen when T is not
Gorenstein.

Remark 5.22 We recall that in §1.3, Corollary 1.21 we also get lower bounds
for the slope λ2(f) whenever E is semistable or the canonical image of F
is contained in few quadrics (hence pg(F ) is necessarily very low), but the
bound contains a negative term which can only be assumed to be zero if T is
Gorenstein.
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Bull. Soc. Math. France 110 (1982), 343-346.

[13] A. Beauville. Annullation du H1 et systèmes paracanoniques sur les sur-
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