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Chapter 1

Introduction

This work concerns some problems in the area of survival analysis that arise in real
clinical or epidemiological studies. In particular, we approach the problem of estimating
the survival function based on interval-censored data or doubly-censored data. We will
start defining these concepts and presenting a brief review of different methodologies to
deal with this kind of censoring patterns.

Survival analysis is the term used to describe the analysis of data that correspond to
the time from a well defined origin time until the occurrence of some particular event of
interest. This event need not necessarily be death, but could, for example, be the response

to a treatment, remission from a disease, or the occurrence of a symptom.

The reason why standard statistical methods are not appropriate in this setting is
that the exact survival times of some subjects are sometimes not observed. The most
common instance of such incomplete observation is right censoring. An individual is
said to have a right-censored survival time when it is only known that his/her survival
time exceeds some specific value. This is usually the case when the data from a study are
to be analyzed at a point in time when some of the subjects have not yet experienced the
event of interest. For example, in the context of a medical research where the end point
is the death of a patient, the variable of interest is literally a survival time; data may be
right-censored because some of the patients are alive at the end of the study period or
because some of them have been lost during the follow-up.

Another form of censoring is left censoring, which is encountered when the actual
survival time of an individual is less than what has been observed. For example, in a study
of children’s ability to perform some task, at the time of recruitment some children may
already know how to perform that task and, therefore, the time from birth to performance
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of the task is, for these children, left-censored. Methods for analyzing right-censored data
can be adapted to deal with left censoring (Csérgo [14], Gmez et alt. [34] and [35]).

In our work we are mainly interested in another type of censoring, the so-called in-
terval censoring. Interval censoring arises when the time variable of interest cannot
be directly observed and it is only known to have occurred during a particular interval
of time. This situation is quite usual in many longitudinal studies where the event of
interest, for example the occurrence of a symptom, can only be observed at the time of a
medical examination. In this case, the time until occurrence of a symptom is only known
to lie in the time interval between the last examination without symptoms and the first
examination with symptoms. Right censoring can be viewed as a special case of interval
censoring. Indeed, when data are right-censored the survival time is either known exactly
or it is known to exceed the follow-up time. In the first case, the censoring interval is
degenerated into a point and in the second case the censoring interval is the time interval
from the end of follow-up to infinity. An example of interval censoring appears in Finkel-
stein and Wolfe [21]. They analyze the data from a breast cancer study where the variable
of interest is time until cosmetic deterioration for a cohort of breast cancer patients who
were treated with two different therapies. This variable is interval-censored because the
status of the patients could only be established when the patient is examined at a medical
visit. Then, the time until cosmetic deterioration is known to be some value between the
time of the last examination without evidence of cosmetic deterioration and the time of

the first examination where the deterioration was observed.

Right censoring has been widely studied and there are several methodologies for dealing
with this kind of data, from completely parametric approaches to completely nonpara-
metric ones. However, the techniques for analyzing interval-censored data have not been
developed to the same extent.

Parametric approaches are often based on the maximum likelihood method. Under
this scenario, a specific parametric model for the survival times is assumed and the esti-
mation of the vector of parameters of the distribution based on a right-censored sample
becomes straightforward. Indeed, after deriving the form of the likelihood function for the
censored sample, the maximization of this function through an iterative procedure, such
as Newton-Raphson method, provides the maximum likelihood estimators of the parame-
ters. Under interval censoring the expression of the likelihood may be more complicated
and, therefore, its maximization more annoying. In this case an alternative approach to
obtain the maximum likelihood estimator of the vector of parameters is the expectation-

maximization (E-M) algorithm [17]. The advantage of this method is that it only requires



computations involving the likelihood function of an uncensored sample that is usually
simpler than the likelihood function based on censored data. However, the parametric
methods require the specification of the functional form that the survival function would
have had in the absence of censoring.

The product-limit estimator developed by Kaplan and Meier [40] in 1958 is the pion-
eer work for estimating a survival curve nonparametrically. This first work, and most
of the papers that followed it, considered the right-censored case. Twenty years later
Turnbull, [56] and [57], proposes an extension of the product-limit estimator to deal with
interval-censored data, among other censoring patterns. The main idea of Turnbull’s new
methodology is to establish the self-consistent equations and to solve them iteratively.
Twenty more years have had to pass since the first proposal of these techniques for the
practical implementation of them, presently fueled by the general availability of powerful

computers.

Most of finite sample and large sample properties of the survival estimators have been
established using a counting process framework. A counting process is a stochastic pro-
cess adapted to a filtration and whose paths are, with probability one, right continuous,
piecewise constant and have only jump discontinuities, with jumps of size +1. The term
counting process suggests their more frequent application, that is, it will almost always
denote the number of events of a certain type occurring in a given interval. Counting
process methodology follows conditional arguments from where the corresponding com-
pensators and subsequent martingales are derived. Martingale theory, mainly the large
sample central limit theorem, provides the tools to derive the asymptotic properties of
our survival estimates (Fleming and Harrington [24]). It is then relevant to be able to
define such a filtration, that is an increasing family of sub-oc—algebras. When we are
under a right censoring scheme the most natural filtration is the history of the stochastic
process, and in this case the filtration at time ¢ contains the information generated by
the process on the interval [0, t]. However, if the random variable is interval-censored, at
a given point in time we might not known whether the event of interest has occurred or
not, and therefore a filtration cannot be defined. Therefore, this powerful methodology
cannot be applied to the interval censoring situation.

In particular, large-sample properties such as weak convergence or strong consistency
have been established for the Kaplan-Meier estimator while the asymptotic behaviour of
Turnbull’s estimator has only been established in special situations. In particular, we
don’t have consistent estimates for the variances of the survival estimates for continuous

data because neither standard maximum likelihood methodology nor counting processes
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theory are directly applicable for interval-censored data. However, if we assume a discrete
time scale, i.e., if data are measured at a fixed number of points, standard maximum
likelihood theory yields a consistent estimate of the variance of the estimator for the
corresponding discrete distribution.

The advantages of these two approaches, parametric and nonparametric, are in gen-
eral difficult to determine. On one hand, the nonparametric approach may represent an
important loss of efficiency versus the use of a parametric method, if there is a scientific
or empirical knowledge of the problem that justifies a model, specially if the variable is
heavily censored. On the other hand, the parametric assumptions are in general difficult
to assess based on a censored sample and, therefore, the use of completely parametric
methodologies involves the risk of obtaining an inconsistent estimator if the parametric
model does not fit suitably the data. An alternative to those opposed points of view is pro-
vided by the nonparametric Bayesian methodology. Susarla and Van Ryzin [51] derived
a nonparametric Bayes estimator of the survival function for right-censored data. Their
estimator is based on the class of Dirichlet processes a priori introduced by Ferguson [19].
They proved that the Bayes estimator includes the nonparametric Kaplan-Meier estima-
tor as a special case and that both estimators are asymptotically equivalent. Furthermore,
they proved that the nonparametric Bayes estimator has better small sample properties
than the Kaplan-Meier estimator. Unfortunately, the extension of this theory to more
complex censoring schemes is in general not straightforward because the corresponding
nonparametric Bayes estimators are not obtainable in an explicit form. In particular, there
is no generalization of the Susarla and Van Ryzin nonparametric Bayes estimator under
interval censoring. For that reason, part of this work will be devoted to the derivation of
a new methodology that provides a solution to this problem. This methodology is imple-
mented by an iterative simulation procedure, the Gibbs sampler. The Gibbs sampler or, in
general, the so-called Markov Chain Monte Carlo methods, provide algorithms to obtain
random samples from a target distribution by simulating iteratively from conditional den-
sity functions. These methods have made a significant impact in practical statistics, since
they provide numerical solution to otherwise intractable problems, specially in Bayesian

analysis.

A special kind of interval censoring is found when the interval-censored variable is
the origin time, and the final time is right-censored. This kind of data is called doubly-
censored since both the initiating and the final times that define the survival or duration
time of interest are censored. The case where the final event is as well interval-censored
follows straightforwardly. This is typically a bivariate problem because the estimation

of the duration time also involves the estimation of the initiating time and, therefore,



standard univariate survival analysis techniques cannot be applied.

The early examples of this kind of censoring are found in the context of the AIDS
epidemic studies. Omne of the most important aspects to understand the nature of the
epidemic is the knowledge of the latency period distribution of AIDS. The estimation of
this distribution is, however, particularly difficult, in part due to the length of the latency
period but specially because the time of infection is usually unknown. Several studies
to estimate this distribution are based on data provided by cohorts of haemophiliacs
infected with HIV. The peculiarity of these cohorts is that, since blood samples were
randomly stored in the hospitals, it is known for each individual the interval of time where
the infection occurred, that is, the interval between the last negative and first positive
antibody test. Therefore, the latency time is doubly-censored since its origin time is
interval-censored and the final time, the time of onset of AIDS, may be right-censored.

In some studies double censoring is forced into a univariate problem by estimating
the initiating time for each subject by the mid-point of the censoring interval. However,
this approach is invalid unless the density of the initiating time is uniform within the
censoring intervals. Other studies, Chiarotti et alt. [9] and [10], obtain a point estimate
of the initiating time for each subject based on different parametric forms of the initiating
time density. This might be a reasonable approach if the lengths of the censoring intervals
are reasonably short, but, if this is not the case, and if the model is inadequate, the

parametric assumption may introduce a significative bias.

A completely nonparametric methodology for analyzing doubly-censored data were
first derived by De Gruttola and Lagakos [16]. They proposed an iterative algorithm
to maximize the joint likelihood function for the origin time and the final time. Some
practical problems related to the bivariate nature of the data were observed. To overcome
these problems Gmez and Lagakos [36] proposed an alternative methodology based on
maximizing two univariate likelihood functions. The method consists of two steps, in
the first step they maximize the marginal likelihood function of the origin time and in
the second step they maximize the conditional likelihood of the duration time given the
estimated distribution of the origin time. Both methodologies are restricted to the case of
a discrete time scale for the origin and the final times and, for this reason, in both cases
nonidentifiability problems could arise, specially with small data sets.

The outline of my Ph.D. Thesis is the following:

Part I concerns the nonparametric approach for estimating a survival function based
on doubly-censored data. In this context we propose a new algorithm for obtaining
the maximum likelihood estimator of the survival function under double censoring that
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extends Gmez and Lagakos methodology to continuous time distributions.

In chapter 2 we first introduce the nonparametric methodologies of De Gruttola and
Lagakos and the alternative two-step algorithm proposed by Gmez and Lagakos. In
section 2.5 we derive the extension of Gmez and Lagakos (GL) algorithm that does not
require a prior discretization of the data. This is done by adapting the self-consistent
methodology for interval-censored data introduced by Turnbull [57] to the case of double
censoring. The first step of the GL algorithm is easily extended to the continuous case.
Indeed, this step corresponds to Turnbull’s algorithm for the marginal likelihood of the
interval-censored origin time. However, Turnbull’s algorithm is not directly applicable for
the estimation of the doubly-censored latency time distribution and, therefore, a specific
procedure for maximizing the conditional likelihood is derived. In section 2.5.4 we prove
that this algorithm includes the Kaplan-Meier estimator when the origin time is exactly
observed for each individual. The methodology is illustrated with a cohort study of
haemophiliacs that were at risk of infection with HIV in France in the early 80’s. In
chapter 3 we present the results of a simulation study that compares the local and global

behaviour for small and moderate sample size of the algorithms studied in chapter 2.

Part Il concerns the nonparametric Bayesian approaches for estimating a survival
function. A new method for obtaining iteratively a nonparametric Bayes estimator of the

survival function under interval censoring is proposed.

In chapters 4 and 5 we review the existing nonparametric Bayesian theory and the
Markov Chain Monte Carlo methods, respectively. In particular, we describe in chapter
4 the works of Ferguson [19] and Susarla and Van Ryzin [51] for the nonparametric esti-
mation of the survival function from complete and right-censored data, respectively, from
a bayesian point of view. In chapter 5 we review the Metropolis-Hastings algorithm and
the Gibbs sampler, and explain some practical techniques of inference and convergence
diagnostic. In chapter 6 we propose a methodology, based on the iterative simulation
method of Gibbs sampling, for obtaining the nonparametric Bayes estimator of the sur-
vival function for the case of interval censoring based on a Dirichlet process prior. The
methodology is illustrated with the analysis of the data corresponding to a breast cancer
study. The results of a simulation study to compare Turnbull’s nonparametric method
and the nonparametric Bayesian method are presented in chapter 7. On the basis of this
simulation study, it appears that the use of the Bayes methodology is preferable, and spe-
cially, when the prior distribution is close to the theoretical distribution. This advantage
is more important as the lenght of the censoring intervals increases. We conclude with a

discussion of the results obtained and considerations on further areas of research.



11

All the computations have been carried out on a personal computer with a PENTIUM-
S CPU at 90 MHz. The algorithms have been programmed using the C-program language.
An appendix is included at the end with the programs to compute the estimators proposed
in this work.
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Chapter 2

Nonparametric Estimation of the
Survival Function from
Doubly—Censored Data

2.1 Introduction

In many longitudinal studies the interest relies on the so—called duration time, that is,
the elapsed time between an originating event and a final event. Most statistical methods
in survival analysis assume that the time to the originating event is known and allow the
final time to be censored. We present here a situation where both the origin time and
the final time are not directly observable. More precisely, we consider a sampling scheme
where the origin time is interval-censored and the final time is right-censored. We refer to
such data as doubly—censored data. This sampling scheme should not be confused with a
different one, also referred to as doubly—censored data, where the final event is observed
within a window for some subjects and left- or right-censored for others. (Turnbull [56],
Chang and Yang [8]).

Doubly—censored data is found in the analysis of survival data which arise when a
disease process is observed at several points in time, in general different for each patient.
This scheme typically occurs in clinical trials or longitudinal studies in which there is
periodic follow—up and the interest is based on both the time when a patient enters a first
stage of a disease and on the elapsed time since this first stage to a second or final stage.
The protocols of many clinical trials require that each patient visits the clinical center at
specified successive times. At each visit, the status of the patient is examined and the

occurrence of either one of two events, for instance, stage 1 and stage 2 of a given disease,

15



16 2. Nonparametric Estimation from Doubly—Censored Data

is recorded. The actual visits, although scheduled in advance, are random because the
patients often miss some of the appointments. As a consequence, the observation for each
patient consist of the two random intervals where the first and second event have occurred.
Thus, the elapsed time between the first and the second event is doubly—censored.

This sampling scheme can also be encountered in some studies of disease progres-
sion, where the only information about the initial event is obtained retrospectively, after
periodical screening, providing for every individual a time-interval where the disease
originated. In the context of the AIDS epidemic, several studies to estimate the latency
distribution of AIDS have been based on data provided by cohorts of haemophiliacs in-
fected with HIV. The retrospective inspection of their HIV infection status was possible
because blood samples had been randomly stored in the hospitals. It was possible, then,
to determine for each individual the interval where the infection had occurred, that is, the
interval between the patient’s last negative and first positive antibody test. Moreover, the
time to AIDS was right—censored because many of the patients had not developed AIDS
at the end of the study. Consequently, the latency time is doubly—censored. Note here
that since the infection times may be censored into overlapping and nondisjoint intervals,
methods for grouped data cannot be applied. This situation may be described, as in
Frydman [25], by a three-state model :

|1 HIV- |—| 2 HIVt | —~[3 AIDS

where state 1 denotes non-infected, state 2 stands for infected and state 3 corresponds to
clinical AIDS. The aim is the joint estimation of both, the distribution of time in state 1
and the distribution of time in state 2.

Nonparametric approaches to this problem have been considered by De Gruttola and
Lagakos [16] and by Gémez and Lagakos [36]. De Gruttola and Lagakos propose a method
(DGL in the sequel) for analyzing doubly—censored survival data in the context of the
study of the progression from HIV infection to AIDS. They jointly estimate the infection
time and the latency period between infection and onset of AIDS, by treating the data as
a special type of bivariate survival data. Gémez and Lagakos approach this problem by
developing a two-step estimation procedure (GL in the sequel). In the first step, they es-
timate the infection time distribution based on the marginal likelihood using the intervals
where the infection is observed. Once a set of estimators for the infection probabilities is
derived, they treat the interval-censored infection times as weighted exact infection times

and estimate the latency distribution based on the corresponding conditional likelihood.
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Other approaches to the problem have been taken by Baccheti [2] who estimates the
latency time of AIDS by using an EM algorithm to maximize a penalized likelihood, by
Frydman [25] who considers a three-state Markov process and develops a nonparametric
maximum likelihood procedure for the estimation of the transition probabilities and the
distribution functions of the times in every state. Brookmeyer and Goedert [4] and Kim,
De Gruttola and Lagakos [41] propose semi—parametric procedures which allow the in-
corporation of covariates. Darby et al [15] adapt Brookmeyer and Goedert’s model to fit
data on the development of AIDS in haemophiliacs in the UK. Chiarotti et alt. [9],[10]
estimates the median incubation time between HIV infection and AIDS, in a cohort of
haemophiliacs in Italy, using different parametric models for the infection time and for

the latency time.

We will focus our attention on the nonparametric approaches derived by De Gruttola
and Lagakos [16] and by Gmez and Lagakos [36]. Gmez and Lagakos present a new
algorithm as an alternative univariate methodology to overcome some of the practical
problems observed with DGL algorithm. The difficulties with DGL method range from
problems of convergence and speed of convergence to nonidentifiability problems. Gmez
and Lagakos state that the two-step univariate methodology, GL algorithm, is more stable
and converges faster than DGL algorithm. However, if the scale on which the origin and
the final time are measured is too fine, problems of unstability and nonidentifiability might
still remain. When this is the case, the standard approach discretizes the data into larger
blocks, although this strategy may produce the lost of part of the initial information,
specially with small data sets. The goal of this chapter is to extend Gmez and Lagakos
methodology to overcome these difficulties. We propose a modification of the GL method
in section 2.5 that makes the dimension of the problem as small as possible and avoids
possible situations of nonidentifiability.

2.2 Data and Statistical Model

Following the notation in Gémez and Lagakos [36], let X and Z denote the chronological
times of the originating and final events. Define the duration time to be T' = Z — X.
We wish to estimate the distribution functions, W(x) and F(t), of X and 7" under the
assumption that X and 7" are independent random variables.

We assume that the time, X, of the originating event is interval-censored and the
time, Z, of the final event is right—censored. That is, we observe the origin time X

in an interval [X, Xg] and V, the minimum between the final time Z and the time
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corresponding to the end of the study or the corresponding follow-up. Thus, for each
subject ¢ of a random sample of size n of a given population the observable data are of
the form (X%, X% d', V' ¢") where d* and ¢ are the censoring indicators of the origin and
final times, respectively. That is, d* = 1{X}% < oo} and ¢! = 1if Z* = V" and ¢' = 0
if Z8 > Vi, We divide the observed data into three groups according to their censoring

patterns:

1. The first group corresponds to those individuals with a right-censored origin time.
In this case, d" = 0 and X}, = 400 and this indicates that the first event had not
yet occurred at the end of the study or at the time of the last follow-up. Thus, we
only know that X* > X! and have no information about the final time Z°.

2. The second group corresponds to those individuals with an interval-censored origin
time and an observed final event, that is, d* = 1 and ¢! = 1. For those individuals
we know that X! < X' < X}z and Z' = V.

3. The last group corresponds to those individuals with an interval-censored origin
time and a right-censored final time, that is d* = 1 and ¢! = 0. For those individuals
we know that X! < X' < X% and that at the end of the study, V?, the final event
had not occurred, that is, Z* > V.

These censoring schemes are outlined in the following diagram:

Xq‘
1) +
13
X! A
2) | - |
Xi X, Vi
X! A
3) I I I
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Thus, under the following assumptions

1. The origin time X and the latency time 7" are independent random variables,

2. the censoring scheme is noninformative in the sense that the censoring times X7y,

Xg and V' do not alter the following probabilities:
Prizy< X <z, |Xp=x,Xgp=2,)=Pr(eyy < X <z,) =W(x,) - W(x,),
Pr(Z >z|lV=2¢=0,X.,Xg)=Pr(Z>z)=1-F(z),

the overall likelihood based on the joint bivariate distribution of (X, T') is proportional
to:

A ﬁl { [1 - W(XE_)] - [ X)? AW (z) - dF (V' = z) dx] "
[ X)jé AW (z) - (1 R - x)) dx] diuci)}

where dW (z) = W(x) — W(z~) and dF(t) = F(t) — F(t7).

2.3 DGL Estimator

In De Gruttola and Lagakos [16] a discrete time scale for the origin time, say 0 < 7 < 9 <
... < xz,, and a possible different scale for the latency time, say 0 < t; <ty < ... < tg,
are assumed. This set of times will essentially induce a parametrization of the underlying
distributions. Define w; = Prob(X = z;), fi = Prob(T = t), w = (wy,...,w,) and
f=(fi s fo)

Under the above assumptions the overall likelihood based on the joint bivariate dis-

tribution of (X, T') is proportional to:

i=1 \j=1k=1

L,= Lo(w,f) =] (Z > aé-kwjfk> (2.1)
where oz?k equal 1 if X! < x; < X}é and V' = xj + t; when ct=1or
if Xj <z; <Xpt,>V"—x; when ¢! =0.

DGL method maximizes the overall likelihood L, by a generalization of the Turnbull’s
[57] self-consistency algorithm to bivariate data. They define o = {a/, : 1 <j <r,1<
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k < s} and set I}, equal to 1 if the true value of (X, T) for the ith individual is (z;, )

and 0 otherwise. Then, the conditional expectation of I}k, given o, is:

i G w; fi
= : , 2.2
Iu]k Zl,m a;mwlfm ( )
and the corresponding marginal probabilities are
w; = Zuék/n and  fy = Zﬂzk/n : (2.3)
ik Y]

A maximum likelihood solution, say (W,f), can be obtained following the iterative algo-
rithm:

A. Choose starting values for w and f.

B. Compute 4, from equation (2.2).

C. Compute refined estimates of w and f from (2.3).

D. Repeat steps (B) and (C) until convergence.

The maximum likelihood estimators of the distribution functions, W and F', are de-

fined as:

W)= Sy, FO=Y fi.

<z te <t

Furthermore, if we define the largest admissible mass points,

x :fgzag};{XR:XR<OO} and ¢ :112%}%{‘/ — X; when d'=1and ¢ =1},

then, W(x) puts all of its mass at values of x no greater than x* provided that

* i,
T zlrgg;{XL},

otherwise, W (z*) < 1 and W (z) is not uniquely defined for z > z*.

A

Similarly, F'(t) puts all of its mass at ¢t < ¢* provided that

t* > max {V' — Xi when ¢’ =0 and d' = 1};

T 1<i<n

otherwise, F'(t*) < 1 and F(t) is not uniquely defined for ¢ > ¢*.
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2.4 GL Estimator

As in 2.3, a discrete time scale for the origin time and for the latency time are assumed.

The approach of Gmez and Lagakos [36] follows a two step procedure. In the first
step, the infection time distribution based on the marginal likelihood is estimated. Once
a set of estimators for the infection probabilities is derived, the latency distribution based

on the corresponding conditional likelihood is estimated.

The marginal likelihood for w, corresponding to the data (X%, X%), i=1,...,n,is

proportional to:

n Xfa dt ] 1—d?
Lmarg(w) = H {|: Z wj:| ’ [1 - W<X2_):| }7 (24)
=1 L "g=X]
and the conditional likelihood for f, given w, is proportional to:
n X4 dict X di(1—ct)
L =T{| 3 woarv-a)| [ X we(-r-m)] L ey
=1 A la=x] zj=X]

FIRST STEP: Define the indicator variables o = 1{z; € [X}, X;]}. A self-consistent
equation for the infection time z;, is given by

n %
1 Q;W;

w; = Z

ni= Xm1 gy (2:6)

and a maximum likelihood solution, say w, can be obtained adapting Turnbull’s univariate

iterative algorithm:

A. Choose starting values for w: w(® = (w§°>7 !

B. Obtain improved estimates for w(!) from equation (2.6).

C. Stop if the required accuracy has been achieved. Otherwise, return to step B with
0)

w( replacing w'
SECOND STEP: A self-consistent equation for the latency time fy is given by
1

n—"no

fe = (N1(k) + Na(k)) for k=1,2,...,s, where (2.7)
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n . . a%/iitkwvi_tk fk
Lo —t : 7
Yy ol dE(VE— )

. Z;:I Otél{vl < Z; + tk}ﬁ)jfk
Yo agwi{l = F(Vi— ;) }

No(k) = zn:ldi (1—=¢")

and ng = 37 ,(1 — d') is the number of individuals with a right-censored origin time.
Ny (k) and Ny(k) represent the expected number of individuals that have developed the
final event at time ¢, among those uncensored and censored individuals, respectively. A
maximum likelihood solution, say f = ( fioon, fs), to the self-consistency equation (2.7)

can be obtained via an iterative method analogous to the one developed in the first step.

The maximum likelihood estimators of the distribution functions, W and F, are de-
fined as in section 2.3.

2.5 Modified GL Estimator

As mentioned in the introduction, the strategy of most nonparametric methods to prevent
from problems of unstability is to discretize the time scale. However, this yields to the lost
of valuable information provided by the data. Even more, two different discretizations of
the time scale may produce significative differences in the conclusions of a study. For this
reason, we propose a modification of GL algorithm (ModGL in the sequel) that provides
more stable nonparametric estimates without the need to make a priori discretization of
the data. The new method makes the dimension of the problem as small as possible and

avoids possible situations of unidentifiability.

ModGL estimator is obtained as the solution of a two step procedure similar to GL
method. The difference between both methods is that in ModGL it is not necessary to
make a priori discretization of the data. The first step of the algorithm corresponds to
the nonparametric estimation of a distribution function when data are interval-censored
based on the self-consistency method proposed by Turnbull [57]. In this step the marginal
likelihood for W based on the censoring intervals [ X, Xg| is maximized by an iterative
algorithm. The estimator obtained is denoted by . In the second step we maximize
the conditional likelihood for F', given W, based on solving the self-consistency equations.
Turnbull’s results are not directly applicable to this conditional likelihood because now
we have doubly-censored and not interval-censored data.
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Definition

The modified GL estimator W for the distribution function W of the origin time X is
given by

A

W(iL‘)Z S14 -4 8§ if P < T < Qk4+1

{0 if z<aq
1 if z>py

and is undefined for = € [g;,p;], for 1 < j < m ; where § satisfies the self-consistent
equations (2.10) and the intervals [g;,p;], j =1,...,m are defined below.

The modified GL estimator F for the distribution function F of the duration time 7 is
given by

A 0 if t<q
Fit)=q fit-+fi if pp<t<qg,
1 if t>pl

and is undefined for t € [q;-, p;.], for 1 < 5 < r ; where f satisfies the self-consistent
equations (2.18) and the intervals [q}, p’], j = 1,...,r are defined below.

2.5.1 FIRST STEP: Estimation of W based on the marginal
likelihood

The marginal likelihood for W, given the observed data (X%, X%) is proportional to
Lunarg(W) = TT [W(XG) = W(X} )] (2.8)
=1

We will prove that the maximum likelihood estimator of W only puts mass in a set of
intervals C' = U™, [g;, pi]:

Construction of the set C

The set C' is constructed from the data {(X%, X%), ¢ = 1,---,n} as the union of

disjoint closed intervals [g;, p;],7 = 1,-- -, m satisfying the following conditions:

1. The left end point ¢; lies in the set {X}, i =1,---,n},
2. the right end point p; lies in the set {X%, i =1,---,n},

3. there is no members of {X}} or {X%} in the intervals [g;,p;],7 = 1,--+,m except

at their end points,
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4. the intervals [g;,p;],7 = 1,---,m are disjoint and ordered: ¢; < p; < g < --- <
¢m < pm. (Note that some of the intervals [g;, p;] may be degenerated to a point).

The algorithm for obtaining this set of intervals is detailed at the end of this chapter.

We define s; = W(p;) — W(g; ) , the probability assigned to the intervals [g;, p;] and
define the vector s = (s1,- -, S ), where ZT:1 s; = 1.

W is the maximum likelihood estimator of W

Applying Turnbull’s results [57] to our special case it can be proved that:

Lemma 2.5.1 Any distribution function W that maximizes the marginal likelihood
Linarg(W) has to be flat outside the set C.

Lemma 2.5.2 For fized values of W (p;) and W(q; ), 1 < j < m, the likelihood Lyarg(W)

is independent of the behaviour of W within each interval [g;, pj].

From these lemmas one concludes that two distributions functions that are flat outside

C and with the same vector of masses s have the same likelihood. Therefore,

Theorem 2.5.3 The mazimization of Lyae(W) reduces to the maximization of the func-

tion:
m

Lx(s1,...,8m) = ﬁ(z als;) (2.9)

—1

where s; = W (p;) =W (q;) and the indicator o is defined as oy = 1{[q;, p;] € [X}, X}]}.

Self-consistent estimation

The maximization of Lx(s) is based on the equivalence between maximum likelihood

estimation and self-consistent estimation:

Theorem 2.5.4 (Turnbull) If§ defines a mazimum likelihood estimator for W, then §
satisfies the self-consistent equations given by

n %o,
QS

L= —J 2 ) =1,... . 2.10
ns; ZZZTLCYfSl or j R 10} ( )

=1

And, conversely, any solution of the self-consistent equations mazximizes Lx(s).
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The left-hand side of expression (2.10) represents the expected number of events that
have occurred in the interval [¢;, p;] while the right-hand side corresponds to the expected
number of events occurred in the same interval conditioned to the observed data.

The solution § of the self-consistent equations (2.10) is obtained by the iterative

procedure detailed in section 2.7.

2.5.2 SECOND STEP: Estimation of F based on the conditional
likelihood

In the second step we maximize the conditional likelihood for F' assuming that the cumu-
lative distribution function for the origin time X is w.

Conditional likelihood for F given W

Up to a proportionality constant, the conditional likelihood of F' given § is:

Lﬂw=1{2¢@amﬂ—w—Fwﬂem>ﬁ -

j=1

m di(1—ct)
{}:cggj(1-—F(vi—-pﬂg‘b)—)} (2.11)
j=1

This likelihood contains two types of factors corresponding to those individuals with
an observed final time and those with a right-censored final time:

e Contribution of an exact observation (¢' = 1) given that X' € [X}, X}]
P(T = Vi X' | X' € X}, X}) =
= P(I"=V'- X', X' € [X], Xp])/P(X" € [X], X}]) =

= Y o P(T'=V' = X', X' € lg;,p;])/ Y. o} P(X" € [q1.p1))
=1

j=1
= > o P(T"=V'=X"| X" € g;,p5]) - P(X" € lgj,p5])/ D) P(X" € a,pi]) =
j=1 =1

= i“é’ P(T" e[V =p;, Vi —q] | X" € g;,p5]) - P(X" € [%Pj])/iaf P(X" € g, p])

j=1 =1
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Using that X* and 7" are independent random variables and that P(X" € [g;,p;]) = §;,
this expression becomes:

i ; P(T' e[V — pJ,Vl s]/Zal 5 =
- i————WNW—%%JWW—mrn

j=1 Zl:l alsl

e Contribution of a right-censored observation (¢ = 0) given that X* € [ X}, X}]

PT'>V' — X" | X" € [X}, XE]) =

= P(I">V'- X", XiE[Xi,XE])/P(Xi (X1, XE]) =

I
Ms

aP(T’>VZ X' X" € [g;,p4]) Zal (X' € [q.p]) =
1

<.
Il

I
Ms

?HW>W—W“WGMMVZ@@ (2.12)
=1

<.
I
—_

We decompose the probability in (2.12) as the sum of two parts:

P(T'>V' = X', X" €qg;,pj]) =
P(T" > V' —q;, X" € g;,p5]) +
(
85

+ PV = X'<T' <V'—q; X' €[qg,p]) =

Sj

1 - F(Vi—q)) + q_(/}_ﬁ dF(t) dW (z) dt do (2.13)

and approximate the integral in (2.13) by

§+ (P(V = gj) = F(vi = BTy (2.14)

(see justification below). Hence, the contribution to the conditional likelihood of a right-

censored observation is given by:

O‘é‘gj < i pj+CIj>_
S (1 (v

j=1 2u1=1 Y Si
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Justification of the approximation (2.14):

The integral in (2.13) can only be computed if the joint distribution of X* and T" is
known explicitly, at least, in the rectangle {(z,t) : ¢; <a <p;, V' —p; <t < V' —g¢;}.
Since X and T are assumed to be independent, it is only necessary to know their marginal
distribution. We assume for simplicity that both X* and T* are uniformly distributed in
lgj, p;] and [V* —p;, V' — q;], respectively. With this assumption, it is easy to see that the
integral in (2.13) is equal to the integral obtained substituting = by the middle point of
the interval [g;, p;] (see the following figure):

q; Dby

Figure 2.1: Justification of the approximation

Thus, expression (2.13) becomes

50 -FV =g+ [

g JVi—zx

= SU-FV —g)+ [ /Vi_qi

a JV?

Vi—qj

dF(t) dW (z) dt do =

dF(t) dW (z) dt do =

_Pj+Qj
2

= (1= F(V = ) + §,(F(V' = qy) — F(v' = B8y =
= & (1= RV =B

This parametric assumption could seem a bit restrictive but it is important to note that

the assumption is only made for the right-censored observations. Furthermore, the inter-
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vals [g;, pj] and [V* — p;, V' — ¢;] tend to be small and in many situations are degenerated
into a point. In the rest of the admissible region, {(z,t) : z € [g;,p;],t € [V* — ¢;, +0)},

there is no parametric assumption.

Construction of the set C’

We now define the set of intervals C' = U]_,[q}, p;] where the maximum likelihood

estimator of F' gives positive mass.

It is useful first to unify the notation of the two factors of the conditional likelihood
F.(t). With this purpose, we define for each individual the regions of its admissible latency
times; that is, we define L;; and R;;, for 1 <¢ <n and 1 < j < m, in the following way:

L. If o) = 1 and the ith observation is exact, ¢ = 1, define L;; = V' — p; and
Rij = Vl — Qj-

2. If &} = 1 and the ith observation is right-censored, ¢’ = 0, define Ly = V' — Litdi

and R;; = +o0.

3. If of =0, R;; and L;; are arbitrarily defined equal to 0.

Thus, the contribution of the ith observation to the conditional likelihood of F' can be

expressed as .

N5 F(Ry;) — F(L;)

; 2051 QS { Y N } ’
that is , the duration time T" lies in [L;;, R;;] with probability o8, /(3" aj$;) of having
the origin X' in the interval [g;,p;]. Therefore, the conditional likelihood of F' is
equivalently given by

Le(F) = ﬁ Sal 8 [F(Ry) - F(Ly)]| (2.15)

We define C” as the union of disjoint intervals [q}, pi], (g5, Ps], - - -, [q., pl.] defined from
{R;;} and {L;;} following similar steps to those used in the construction of C' in the first
step:

1. The left end point g, lies in the set {L;;, i=1,---,n and j=1,---,m},

2. the right end point pj, lies in the set {R;;, i =1,---,n and j=1,---,m} ,
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3. there is no members of {L;;} or {R;;} in the intervals [q;,p}], k = 1,---,r except
at their end points,

4. the intervals [q}, pi], £ =1,---,r are disjoint and ordered:
GE<pPh<ga<--<q<p.

F is the maximum likelihood estimator for F

Let f; = F(p}) — F((qj)~) be the probability of the interval [g}, p] and define o, the
indicator of an origin time in [g;, p;| and a duration time in [g, pj]. That is,

oy = Y=1}-1 {[%»Pj] C [X7, Xp) and [q;, pj] C [V' —p;, V' — qj]} +

1 =0} 1{lggopi) € (X3, X and [ghp] € V= P00 o) |
(2.16)

Theorem 2.5.5 The maximization of the conditional likelihood L.(F') reduces to the maz-
mization of the function

Le(fi - ) =11 {Z > aékéjfk] . 217)

i=1 | k=1j=1

This result follows from the following two lemmas.

Lemma 2.5.6 Any distribution function F that maximizes the conditional likelihood
L.(F) has to be flat outside the set C'.

Proof.

Let F be a distribution function that increases outside C" = U!_,[¢}, pi]. In particular,
suppose that F' increases in the interval [p;,q;,,]. For construction of C’, any R;; in
[0}, q)41] is smaller than any L;; in this interval. Thus, there exist a real number r; €
(D}, q41] that separates the numbers R;; and L;; contained in [p;, ¢;,,]. We consider now
the distribution function F* defined equal to F' outside the interval [p;, ¢;,,] and constant
inside it, that is:

F* (1)
F* (1)

F(ry), Yt € [P}, q44)
F(t), vt & [p}, q141]
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Then, for any R;; € [p;,q1], Rij < r; and since F' increases in this interval, F*(R;;) =
F(r) > F(R;j). And, for any Ly € [p;,qq), Lijy > 1 and then F*(Lyj) = F(r) <
F(Lyj ). Therefore,

n m .
= [T |2 af 5 [F (ki) = F(L;)]
i=1 |j=1 i=1 |j=1

> H [ZO‘ 8 [ Rij) F<L;])i| = L.(F)
and the function F' cannot be a maximum of the conditional likelihood L.(F). O

Lemma 2.5.7 For fized values of F(p}) and F((q;)”),1 < j <r, the likelihood L.(F') is
independent of the behaviour of F within each interval [q;-,p;»].

Proof. The proof of this lemma is straightforward from the expression of L.(F).

Self-consistent estimation

As in the first step, the maximum solution of (2.17) is obtained through the self-
consistent equations. The self-consistent equations for f are given by equating the ex-
pected number of observations with a duration time lying in [q}, p)] and the expected
number of observations with a duration time in the same interval, conditioned to the
observed data; that is

n m % a .
(n . no)fk _ Z l szzlgjk%ifjf
D 2 o85S

di
] for k=1,...,r (2.18)
i=1
with ng = >0 (1 — d") the number of observations with a right-censored origin time.

Now we prove the equivalence between maximum likelihood estimation and self-consistent

estimation:

Theorem 2.5.8 If f is a mazimum of the likelihood function Ly(f) then f satisfies the
self-consistent equations (2.18). And, conversely, any solution f of the self-consistent
equations (2.18) mazimizes Lp(f).

Proof.

The conditional likelihood Lp(f) can also be expressed as

- 11| ek

i€lp Lk=1
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where Iy = {i: d' =1} and a}(8) = X7, };.8;. Then, the log-likelihood is given by
I(f)=> [log (Z (8 )]
i€l
Consider the function
H(u) =I(f) = A(fi+--+ fr —1)
where A is a Lagrange multiplier and u = (fy, -+, f-, A).

We prove that the self-consistent equations (2.18) can be expressed equivalenty as

fr = (dk(H)—l—1> fe;, k=1,---,r (2.19)

n—mno

D) L . ) .
where di(H) = W(H) and therefore a vector £ = (fy, -+, f.), with fi +---+ f, =1, is
k

a solution of the self-consistent equations (2.18) if and only if dy(H) =0, Vk =1,---,r,
which is a necessary and sufficient condition to be a stationary point of I(f).

Indeed, a necessary and sufficient condition for a vector f = (fy,---, f.), with
fi+ -+ f. =1, to be an stationary point of {(f) is that f is a solution of the following
system:
9wy =20y - Mp+ ot f 1)) =0 (2.20)
ou ou "

Expression (2.20) is a system of  + 1 equations of the form:

i ;{Zbgzak Y f—l)}IO; e

i€ly

i€lp

da {Zlog > a0 Alfi e, —1>}=0-

Computing the partial derivatives, one obtains the following equivalent system:

d = L(S) —A=0; [=1,--- '
((H) ;O ST Q@] 0; 1,---,r (2.21)
fl 4+ 4 fr =1 (2.22)

Multiplying each of the m equations in (2.21) by f;, { =1,---,r and adding them up
we have

gfrdz ZZ W Zfl (2.23)

I=11i€lp
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and after exchanging the order of sumation one obtains
S al
Z =1 l Z fl
icTo k=1 O‘k( )fk =
and, since both the first term in the left expression and the sum of all f’s are equal to 1,
we obtain that A = 37,.; 1 =n — ny.

Now, to prove that the solution of the self-consistent equations is a stationary point
of the likelihood function we express the self-consistent equations in terms of the partial
derivative of H with respect to fi, dp(H). The right hand side of (2.18) is

Z{X%fk}Z(dk(H)+n—no)fk; k=1,---,r. (2.24)
i€lp =1

The solution of the self-consistent equations will be obtained by the iterative algorithm
dp(H
flgl) ( k< )+1>fk ; k’zl,"',T'.
n—mn
It can be proved, as in Turnbull [57], that the above algorithm increases the log-likelihood

[(f) = logLrf in each step and thus, the algorithm converges to a maximum or a saddle-
point:

(ED) —159) = SO — £ 2L o — fop)

= af

12

n—mno k=1

where the terms of second and higher order have been neglected.

2.5.3 Estimation of the variance of W and F

When data arise from a continuous time distribution the theoretical study of the asymp-

totic behaviour of the nonparametric estimators becomes very difficult. As a matter of
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fact, distributional theory for the Turnbull’s estimator has only been established in the
case where data consist of left-censored, right-censored and exactly known observations
(Turnbull [56], Samuelsen [48], Chang [8], Groeneboom [37]) while in the general case of
interval censoring there are no results for the asymptotic distribution of the estimator.
To overcome this difficulty Turnbull [57] proposes to use instead, the asymptotic results
for the discrete case. That is, he considers the discretization given by the set of inter-
vals {[gj,p;]; 7 =1,...,m}. We will follow the same approach, that is, we estimate the
covariance matrix of the vectors § and f using the results obtained by Gmez and La-
gakos [36] in the discrete case; that is, we assume that X only puts mass on the intervals
[q1, 1], - -+, [@m, Pm) and that T only puts mass on the intervals [¢, p}], ..., [q., D]].

Covariance matrix of the vector s

The asymptotic covariance matrix of the vector § is approximated by the inverse of

the observed information matrix B(8), where the jk term is given by

for j,k=1,...,m — 1, and Lx(s) is given in (2.9).
Covariance matrix of the vector f

In order to take into account the variability due to the estimation of s we consider the
conditional likelihood Lz (f) as a function of both s and f:

Lp(s,f) = ﬁ {zr: ia?ksjfk]

i=1 | k=1j=1

where o, is defined in (2.16).

Let Z(s) = ZlogLx be the score vector for Ly and
U(s,f)) = [Ui(s, f), Us(s, f)] = [glo L glo L]
) - 1S, 1), Y289, - Os gL, of gL

the score vector for Ly. Let B(s) and I(s,f) be the corresponding information matrices
and Iy = (s, f), Lo = Li(s,f), Iy = Ips(s,f) and Iy = Ifs(s,f) the submatri-
ces of the information matrix I. Define B(8) and Z(8,f) as the corresponding observed

information matrices.
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Gmez and Lagakos [36] proved in the discrete case that \/n(f — f) is asymptotically

normal with mean zero and covariance matrix
2

V == 1231 -+ [521 ([21 - E(UQZ/)> 371[12[2721,
n

and they estimate V' by substituting the information matrices by their corresponding
observed matrices, B, Z1, Zo; and Zys, and replacing F(UsZ’) by its empirical counterpart,
£, that is the matrix with a jk term equal to Ey = (1/n) XL, Ej, where E}, is the
contribution of the i-th individual to the matrix Uy Z’.

We propose to estimate the variance of f by
. 2
V=1 + T (121 - 5) B\T,,T5)
n
where the jk term of £ is given by

£ k) = 2 En: jer (0, — )35 [ af — ap, ]
| niT || Sha D a8 ] L2550 258

foryj=1,...m—1land k=1,...,r—1

and the jk term of the observed information matrices are
" (0 — of Mok — o
B(j,/{:)zz(j m)(k QM),forj,kzl,...,m—l
i=1 (ZTZI a;sj)

T12(3, k) = Iy (k, ) = _Zdz 1o (J, k) '(4) - Py(k)
i=1

(P7)? 7
for j=1,. —1andk:1,...,r—1 and
- Py (k
Tao(j, k) Z:dZ )<)frj,k—1 r—1
where S
k=1j=1
i 9 i i :
Pl() Os.: (P) Z(ajk_amk)fkuforjzla'”am_]-7
J k=1
0

— (P = Z(a;k —al)s; fork=1,...,r—1

and, for j=1,.... m—land k=1,...,r — 1,

- 0 0 - ) ) .
PR = (Wk(m) — (0l — b)) — (0 — aby)
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2.5.4 Relation with the Kaplan-Meier estimator

It is interesting to note that the maximum likelihood estimator F' includes the Kaplan-
Meier estimator [40] as a special case:

Proposition 2.5.9 ModGL estimator for the latency distribution reduces to the usual

product—limit estimator when the origin time s exactly known.

Proof.

If the origin time is known exactly for each individual, then Xt = X% Vi and therefore
the intervals [¢;,p;],j = 1,---m and [q,p)], k = 1,---,r are, all of them, degenerated to
a point. Say [¢;,p;| =x;, j=1,---,mand [q,,p}] =tk, k=1,---,7.

Denoting by Nj(k) the number of individuals with a latency time equal to ¢, and R(k)
the number of individuals at risk of failure at time ¢, we will prove that the product-limit

estimator -
szj\kH(l_S\l)a
=1
where X, = Ny({)/R(l) if R(i) > 0 and A, = 0 if R(i) = 0 is the hazard at time #, is a
solution of the self-consistent equations (2.18) for f

n S Ak,
=1Yk°5/k
(TL — no)fk = [ J —
2 21 21 i85 fu

i=1

di
] for k=1,...,r

These equations can be expressed as the sum of two factors corresponding to those indi-
viduals with known final time and to those individuals with a right-censored final time,
that is,

(n—ng)fe = Ni(k) + Nao(k) , k=1,---,r (2.25)

where the process Ny (k) is defined as above and the process Na(k) represents the expected
number of individuals with latency times equal to ¢, who have not experienced a final
event by the end of the study.

If the origin time is observed for each individual ¢, then ny = 0 and oz}k indicates an origin
time equal to z; and a latency time equal to ¢;. That is, if ¢ =1,

oy = HX' = 2} 1{V" —z; = tx} and, if ¢ =0, o}, = H{X" = 2} 1{V"’ — 2; < t;}.
Then, the process N;(k) reduces to

n

Ni(k) =3 ¢ Y WX =2} 1{V' —2; =t} ,

=1 j=1
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and Ny(k) becomes

N T — i Jr
No(k) =) (1 )]le{X ]}gl{v J tl}l—F(tl)'

i=1
If we define M (1) = 37, (1—¢') XL, H{X* = 2;}1{V"'—x; = t;} the number of individuals
censored at time t;, then Ny(k) can be expressed as

Jr

No(k)=> M(l)———
? Z,; 1—F(t)
and the self-consistent equations become
Ji
nfy = Ni(k)+ > M(l)———, (2.26)
! sz 1— F(t)
or equivalently
M(1)
Ni(k)=(n—> ———| fx - (2.27)
' ( Kz,; 1- F(tl))

We have to prove that fj, satisfies equation (2.27). Using that 1—E(t,) = [IF51(1—\)),
the above equation becomes

RIS (1= A) = MO)TIE (L= A) — ... = M(k— 1)

- - . 2.28
L (1= A) Ji (2:28)

Nl(k?) =

Now, from the fact that R(k) = R(k —1) — Ny(k — 1) — M(k — 1), it is easy to prove by
induction that:

k—1

R(k):an(l—;\l)—M(l)H(l—f\l)—...—M(k—l)

=2

and hence, equation (2.28) reduces to

Ni(k) = - fr
Hfz_ll(l - )‘l)
or, equivalently
k—1
fe=2]1 (1—)\l>

as we wanted to prove.
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2.6 Application to a Cohort Study of Haemophiliacs

To illustrate the methodologies considered in this chapter, we analyze the data given in
De Gruttola and Lagakos [16] of a cohort of haemophiliacs that were at risk of infection
with the human inmunodeficiency virus, HIV. The cohort corresponds to 262 patients
that were treated at the Hpital Kremlin Bictre and the Hpital Coeur des Yvelines in
France since 1978 and were at risk of infection from the contaminated blood factor they
received for their disease. Serum samples were routinely stored and subsequently they
could be tested for presence of HIV antibodies. The data was divided in two subsets:
105 patients in the heavily-treated group, that is in the group of patients who received
at least 1,000 pg/kg of blood factor for at least one year between 1982 and 1985, and
157 patients in the lightly-treated group, corresponding to those patients who received
less than 1,000 pg/kg in each year. By August 1988, 197 patients had become infected
( 97 in the heavily-treated group and 100 in the lightly-treated group) and 43 of these
had developed clinical symptoms of AIDS ( 29 in the heavily-treated group and 14 in
the lightly-treated group). The comparison of the two treatment groups could allow an
indirect evaluation of the effects of different viral doses on the risk of infection and on the
risk of AIDS once infected.

The observations, based on a discretization of the time axis into 6-month intervals, are
of the form (X}, X%, d", V' ¢'). X} and X} are the chronologic times of the patient’s last
negative and first positive antibody test, respectively, d* stands for the infection indicator,
V' denotes the chronologic time of first clinical symptom of AIDS when ¢! = 1 and, for
those individuals who had not developed AIDS at the end of the study (¢ = 0), V* is the
time of the last blood sample tested.

In this example, it is difficult to appreciate the advantages of the modified GL estimator
because the data in this study were reported after a discretization of the time scale.

The estimators for the infection times of seroconversion obtained by the three methods,
DGL, GL and ModGL, are displayed in figures 2.2 and 2.3, corresponding to the heavily-
treated group and the lightly-treated group, respectively. The three estimators for W (x)
are very similar. Comparing these two figures we see that there is a difference between
the distribution of infection times in the two treatment groups. The heavily-treated group
presents shorter times of infection than the lightly-treated group. For instance, while in
the heavily-treated group half of the patients were infected before 1985, in the lightly-
treated group the median is obtained one year later.

Figures 2.4 and 2.5 give the estimated cumulative distribution function of the latency
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Figure 2.2: Estimated cumulative distribution function of time of HIV seroconversion for
heavily-treated group.
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Figure 2.3: Estimated cumulative distribution function of time of HIV seroconversion for
lightly-treated group.



2.6. Application to a Cohort Study of Haemophiliacs 39

1 T T T T T T T T T T T T T T 1
0.8 DGL <— -
GL ><—
ModGL —-—
&
0.6 R

Years

Figure 2.4: Estimated cumulative distribution function of latency time between HIV
seroconversion and onset of symptoms for heavily-treated group.
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Figure 2.5: Estimated cumulative distribution function of latency time between HIV
seroconversion and onset of symptoms for lightly-treated group.
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times for the two groups. The estimators are very similar for the first 5 years and differ
thereafter. We find here again differences between the two treatment groups. The heavily-
treated group seems to have shorter latency times than the other group of patients.
However, the interpretation of these results must be done carefully because of the small
number of patients who developed AIDS. The data, as reported in De Gruttola and
Lagakos [16], and the numerical results obtained with ModGL estimator are presented at

the end of this section.
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Data

Observations for 262 hemophilia patients by amount of blood factor received. Numbers
in parentheses denote multiplicities. Censored times of disease denoted by +.

X, Xg V X, Xg V X, Xg V
Heavily treated

15 oo (2) 16 oo (3) 17 oo (3)
10 11 21+ 1 16 21+ 12 13 21+
13 15 21+ 14 16 21+ 12 14 21+
14 15 21+ 13 16 21+ 14 15 21+
13 15 21+ 9 12 21+ 14 15 21+
1 11 21+ 12 14 21+ 11 12 21+

15 16 21+ 15 16 21+ 1 13 21+
10 11 21+ 5 7T 214 5 7 214
15 15 21+ 14 15 21+ 12 13 21+
12 13 21+ 1 14 21+ 14 15 21+
10 11 21+ 10 11 21+ 8§ 10 21+
15 16 21+ 9 10 21+ 10 12 21+
1 14 21+ 1 15 21+ 1 13 21+

14 15 21+ 3 15 21+ 12 13 21+
14 15 21+ 9 10 21+ 14 15 21+
15 16 21+ 1 15 21+ 1 14 21+
11 13 21+ 10 11 20+ 1 7 214
9 12 21+ 1 11 21+ 12 13 21+

13 14 21+ 10 15 21+ 13 15 21+
1 12 21+ 7 10 21+ 1 15 21+

9 12 21+ 7 15 21+ 14 16 21+

11 13 21+ 11 13 21+ 11 13 21+
1 6 21+ 8 15 21+ 10 11 21+

12 13 21+ 7 9 21+ 12 13 16
9 13 18 13 14 18 9 12 18

3 14 17 10 11 15 14 15 16

7 9 21 1213 20 13 14 16

1 7 13 3 7 17 10 11 16

13 15 18 10 12 19 5 7 12
9 11 18 1 10 11 9 13 15

bt 8 13 10 11 16 13 15 18

1 7 16 10 12 16 10 12 17

10 15 9 12 21 10 12 17
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X, Xg V X, Xg V X, Xg V
Lightly treated
1 15 oo (19) 16 oo (31)
17 oo (10) 18 oo
10 15 21+ 12 14 21+ 1 15 21+
1 15 21+ 1 15 21+ 10 12 21+
1 16 21+ 15 16 21+ 3 10 21+
8§ 15 21+ 8§ 13 21+ 1 12 21+
13 14 21+ 5 11 21+ 14 16 21+
1 11 21+ 9 14 21+ 8§ 16 21+
11 12 21+ 117 21+ 1 18 21+
1 15 21+ 11 16 21+ 8 12 21+
9 13 21+ 1 15 21+ 13 14 21+
9 14 21+ 1 5 21+ 1 16 21+
12 15 21+ 9 12 21+ 13 15 21+
4 11 21+ 1 16 21+ 1 15 21+
14 15 21+ 1 12 21+ 14 15 21+
1 14 21+ 6 13 21+ 13 14 21+
15 16 21+ 712 21+ 12 14 21+
12 14 21+ 1 13 21+ 12 13 21+
13 15 21+ 15 16 21+ 1 15 21+
13 15 21+ 8§ 16 21+ 10 12 21+
14 15 21+ 11 15 21+ 13 15 21+
3 16 21+ 6 8 21+ 15 16 21+
11 14 21+ 13 14 21+ 12 14 21+
7 10 21+ 1 12 21+ 1 15 21+
12 13 21+ 1 15 21+ 10 16 21+
11 14 21+ 1 14 21+ 12 13 21+
9 14 21+ 12 14 21+ 11 12 20+
1 11 21+ 1 16 21+ 12 13 21+
14 15 21+ 1 15 21+ 15 16 21+
11 12 13 13 13 21 13 14 20
10 12 20 6 12 16 1 12 