
Chapter 2

The Deterministic Location-Routing
Problem∗

Introduction

In this chapter, we introduce the LRP that we study in this thesis and we present both, an upper
and a lower bound.

We assume that we are given a set of customers with associated demands, a set of potential facility
locations, each with a fixed operating cost and a capacity, and the traveling costs between any two
points. The goal is to determine the number and locations of the facilities to be open and to design
one route from each selected location in such a way that each customer belongs to exactly one route,
capacity constraints on the facilities are satisfied, and the total costs (fixed plus routing costs) are
minimized. As we will see later, this problem is an extension of the capacitated VRP.

The problem is modeled in terms of finding a family of paths in an auxiliary graph that satisfy some
side constraints. The solution to a reinforced linear programming (LP) relaxation of this model is used
in a rounding procedure to obtain a first lower bound and as starting point for a TS heuristic. The TS
heuristic consists of a series of intensification and diversification iterations. The diversification phase
operates mainly at the location level and selects new subsets of open facilities. The intensification
phase is a local search phase that is applied to the current routing subproblem. Due to the capacity
constraints feasibility is not easy to ensure in the intensification phase. For this reason we use a
strategic oscillation scheme that allows violation of feasibility and considers a modified objective
function that includes a penalty term associated with infeasible solutions. The weight given to such a
penalty is dynamically updated based on the history of the search as in Dı́az and Fernández (2001).

Additionally, we propose a lower bound that generally provides a major improvement with respect
to the LP bound of the proposed model that, in general, is very weak. The new lower bound has two
terms that are derived from the structure of each of the two main components of the original problem:
The first refers mainly to the location costs and the second to the routing costs. The term of the
location costs is obtained by solving a Knapsack Problem (KP) whereas the term of the routing costs
is obtained by solving an Asymmetric Traveling Salesman Problem (ATSP).

The quality of the upper and lower bounds has been tested in a series of computational experiments.
The results show the good quality of both the new lower bound and the TS heuristic. The required

∗The contents of this chapter are partially included in Albareda-Sambola, Dı́az, and Fernández (2002)
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Deterministic LRP

times are small for problems of this difficulty especially taking into account that most of the test
problems could not be optimally solved by CPLEX 6.5 within 48 hours of CPU time.

The chapter is organized as follows. In Section 2.1 we define the problem and we propose a model
defined in terms of an auxiliary network. Section 2.2 describes the rounding procedure and the TS
heuristic. In Section 2.3 we show how to obtain a new lower bound to the problem. The details of the
computational experiments as well as the obtained results are presented in Section 2.4. We end the
chapter with some conclusions and final remarks.

2.1 A compact model

Let I denote the set of indices of potential locations for the plants and J the set of indices for the
clients. For each i ∈ I, let fi be the cost for opening the plant at site i and let bi be the capacity of
plant i. For each j ∈ J , dj denotes the demand of client j, and D stands for the aggregated demand.
Also let C = (cij), i, j ∈ I ∪ J be the matrix that contains the travel costs from clients to plants, and
between clients. We want to find a set of plants to be opened, and a set of routes to service clients
from the open plants such that the opening costs plus the costs of the routes are minimized. The cost
of a route is defined to be the sum of the costs of each travel in the route. We assume that i) only one
route takes place from each open plant; ii) the routes start and end at the same plant; iii) the vehicles
are uncapacitated (or, equivalently, the capacity of an open plant, also represents the capacity of the
vehicle for the route associated with the plant); and iv) the demand of each client must be satisfied
from one single plant; that is, each client is visited by exactly one route.

Let us note that the LRP considered here can be seen as an extension of the classical Capacitated
Vehicle Routing Problem (CVRP). On the one hand, multiple depots are considered. There are,
indeed, some mentions to the multiple depot CVRP present in the literature but generally they only
refer to extensions of results for the single depot case. On the other hand, in the problem we consider
there is an additional level of decision, since the set of depots to be used has to be selected.

To formulate the problem in terms of a network problem with additional constraints we define the
network N = (V, A). The set of nodes is defined to be V = {s, t} ∪ I ∪ I ′ ∪ J , where I ′ is a copy of
set I, and s and t are, respectively, a pseudo source node and a pseudo sink node (see Figure 2.1a)).
The set of arcs is

A ={(s, i)| i ∈ I} ∪ {(i, j)| i ∈ I, j ∈ J} ∪ {(j1, j2)| j1, j2 ∈ J ; j1 6= j2}∪
{(j, i′)| j ∈ J, i′ ∈ I ′} ∪ {(i′, t)| i′ ∈ I ′} ∪ {(s, t)},

i.e., there are arcs from the source to each plant, from plants to customers, among any pair of cus-
tomers, from customers to the copies of the plants, from the copies of the plants to the terminal, and
also the dummy arc that goes from the source to the terminal.

The cost function c̃ (see Figure2.1b)) defined on the arcs of N is given by:

– c̃si = fi, ∀i ∈ I;

– c̃ij = c̃ji′ = cij ,∀i ∈ I, j ∈ J (i′ denotes the copy of plant i);

– c̃j1j2 = cj1j2 , ∀j1, j2 ∈ J, j1 6= j2;

– c̃i′t = 0,∀i′ ∈ I ′;

– c̃st = 0.

14



Compact Model

Dummy arc

s

t

Potential plant locations (I)

Customers (J)

locations  (I’)

Copy of potential plant

Pseudo source

Pseudo sink

a) Nodes and arcs

fi

c ij

c ji

c 1j

s

l

i

j

0

i’

t 0

b) Arc costs

Figure 2.1: Auxiliar network N(V,A)

We next explain how to use the above network to find a set of paths, one associated with each
potential plant, that will represent the set of plants to be opened together with the routes to service
clients from open plants. Consider any path P from s to t in N . If P = {(s, t)}, P is called trivial
path whereas if P does not contain the arc (s, t), it is a non-trivial path. Let is and i′t denote the
indices of the plants connected with s and t respectively in a non-trivial path P . P can be seen as
a route starting at is and ending at i′t. When is = i′t, the route starts and ends at the same plant.
By definition of the cost function c̃, the cost of P is the sum of the opening cost for plant is plus the
overall cost of the route. On the other hand, trivial paths are related to not opening a plant and, thus,
they have cost 0. The equivalence between solutions to the LRP and paths in the defined network
can be further appreciated in Figure 2.2.

Therefore, the combined LRP can be modeled as the problem of finding a set of paths in the
network that fulfill some additional constraints. Specifically, for v ∈ V , let

A(v)+ = {a ∈ A : a = (v, u)},

A(v)− = {a ∈ A : a = (u, v)}

and let

A(S) = {a ∈ A : a = (u, v), u, v ∈ S}, for S ⊆ I.

We define the decision variables xk
a, a ∈ A, k ∈ I to be 1 if arc a is used in route k and 0 otherwise.

Then, the problem can be modeled as:
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(LR1) minimize
∑

k∈I
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a∈A(s)+
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xk
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(i′,t) ∀i, k ∈ I (2.5)
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a∈A(j)+

djx
k
a 6

∑

i∈I

bix
k
(s,i) ∀k ∈ I (2.6)

∑

k∈I

∑

a∈A(j)−
xk

a = 1 ∀j ∈ J (2.7)

∑

k∈I

∑

a∈A(S)

xk
a 6 |S| −

⌈∑
j∈S dj

vmax

⌉
∀S ⊆ J (2.8)

xk
(s,i) = 0 ∀i, k ∈ I, i 6= k (2.9)

xk
a ∈ {0, 1} ∀a ∈ A,∀k ∈ I. (2.10)

Constraints (2.2)-(2.4) are the flow conservation equations that guarantee that the solution de-
fines |I| s-t-Paths. Equations (2.5) guarantee that the routes start and end at the same plant while
inequalities (2.6) ensure that the capacity of vehicles is not violated and that no client is serviced
from a plant that is not open. Equalities (2.7) require that each client is visited by exactly one route.
Constraints (2.8) forbid routes that are not connected with any plant. They are a generalization of
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Compact Model

the well-known subtour elimination constraints that, additionally, take into account the capacity of
the plants. Here vmax denotes the maximum capacity of all plants. Constraints (2.8) are a variation
of a class of inequalities that were proposed by Laporte and Nobert (1983) in a somewhat different
context of pure routing problems. Note that the aggregation over all plants of the subtour elimination
constraints associated with a given set of clients is valid, given that feasible sets of routes are node
disjoint. Constraints (2.9) are used as a means to associate each path with a specific plant, by only
permitting the path to go through one of the plants.
LR1 is a linear integer program with |I| (2 |I|+ 2 |I| · |J |+ |J | (|J | − 1) + 1) binary variables. How-
ever, (2.9) together with constraints (2.2)-(2.5) imply that xk

(i′,t) = 0 ∀i′ 6= k; i′, k ∈ I, xk
(i,j) =

0 ∀i 6= k; i, k ∈ I; j ∈ J , and xk
(j,i′) = 0 ∀i′ 6= k; i′, k ∈ I; j ∈ J . Therefore, in LR1 the actual

number of variables is reduced by 2|I| (|I| − 1) |J |.
As usual in routing problems, there is a number of subtour elimination constraints (2.8) that is expo-
nential in the number of clients. Additionally, the model has a number of constraints of other types
that is bounded by O(|I| · |J |).

Indeed, the LRP that we consider in this paper can also be modeled without stating the problem
in terms of an auxiliary network. For instance, the most general three index model of Perl and Daskin
(1985) can be adapted to our problem. In this case the set of decision variables necessarily should
include binary variables that indicate if client j is visited immediately after client l in route k, which
are a subset of set of the decision variables used in LR1. Although this could be avoided, typically
one would define additional decision variables to know if a facility is open at site k as well as other
decision variables to indicate if client i is visited by route k. The resulting model that does not differ
essentially from LR1, can also be easily derived from LR1 with a slight transformation.

We use a solution to the LP relaxation of LR1 as a starting point of the heuristic approach that
is described in the next section. The LP relaxation of LR1 is strengthened by including the following
aggregated demand constraint:

∑

i∈I

bix
i
(s,i) > b (2.11)

where b is the solution to the following Subset Sum Problem

b = minimize
∑

i∈I

biyi (2.12)

subj. to
∑

i∈I

biyi > D (2.13)

yi ∈ {0, 1}, i ∈ I. (2.14)

Constraint (2.11) guarantees that the overall capacity of the plants that are open is enough as to
satisfy the overall demand of the clients. Note that (2.11) is at least as good as the classical aggregated
demand constraint where the right hand side is D.

Let RLR1 denote the LP relaxation to model LR1 strengthened with constraint (2.11) and where
the condition that no client is serviced from a plant that is not open implied by constraints (2.6) has
been expressed in its disaggregated form:

xi
a 6 xi

(s,i), ∀i ∈ I,∀a ∈ A \ {(s, t)}. (2.15)

When solving RLR1, in order to have a linear programming problem of a reasonable size, initially
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we relax constraints (2.8). We then apply an iterative LP solver scheme where inequalities (2.8) are
added only when they are violated in the current continuous solution.

2.2 Tabu Search Heuristic

The TS that we apply to obtain solutions for LR1 consists of a series of iterations, each of which
performs an intensification phase followed by a diversification phase. Initially we apply a rounding
procedure to the optimal solution to RLR1 that provides the first binary solution to which the in-
tensification phase is applied. In subsequent iterations, intensification is applied to the result of the
diversification phase. All the solutions that we consider in the TS heuristic satisfy all constraints
(2.2)-(2.10) excepting, possibly, capacity constraints (2.6). Since solutions that violate some capacity
constraint are allowed, the heuristic presents a strategic oscillation behavior.

Rounding Heuristic

The Rounding heuristic is a simple constructive procedure that builds a solution from a solution of
the relaxation RLR1, x̄. As it is described in Algorithm 2.1, it has three parts. At a first step, the set
of open plants O is chosen, as the set of plants that have a positive non trivial flow (overall flow along
non trivial paths) in x̄. A threshold ε is fixed to avoid opening plants that are only marginally used
in x̄. Once the set O is fixed, the allocation phase is entered. In this phase each customer is taken in
turn, and allocated to one plant. Among all the open plants whose flow reaches a given customer (j),
the one with higher ratio

δj
i =

∑
a∈A(j)−

x̄i
a

1− x̄i
(s,t)

(2.16)

is chosen. Note that δj
i is the ratio between the flow that arrives to client j in the route of plant i, and

the actual non trivial flow of the route. Finally, once all the customers have been allocated, unused
open plants are closed, as long as the overall capacity does not go under b.

The result of the rounding procedure is a set of open plants and a set of routes, each of them
associated with one different open plant. Some of the routes may violate the capacity constraints of
their associated plants, since capacity constraints (2.6) are not taken into account in the rounding
procedure. However, by construction, the obtained solution satisfies all other constraints (2.2)-(2.10).
The TS heuristic tries to improve the solutions of the rounding procedure while reducing unfeasibility.
To this end i) we add a penalty term to the objective function that weights the violation of capacity
constraints, and ii) we explore two simple neighborhoods that modify the assignment of at least one
client (this is required to recover feasibility when the solutions violate some capacity constraint). For
any solution x, let

s(x) =
∑

i∈I

max





∑

j∈J

∑

a∈A(j)+

xi
a − bi x

i
(s,i), 0



 =

∑

i∈O(x)

max





∑

j∈J

∑

a∈A(j)+

xi
a − bi, 0



 (2.17)

denote its overall violation of capacity constraints. The modified objective function that we consider
both in the intensification and the diversification phases is:

∑

i∈I

∑

a∈A

c̃i
ax

i
a + P s(x) =

∑

i∈O(x)

∑

a∈A

c̃i
ax

i
a + P s(x), (2.18)
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Algorithm 2.1 Rounding
Initialization: O = ∅, b = 0 {Set of open plants and their overall capacity}
Solve RLR1 −→ x̄
{Selection of the open plants}
for (i ∈ I) do

if (x̄i
(s,t) < 1− ε) then

O ← O ∪ {i}
b ← b + bi

end if
end for
{Allocation of customers to plants}
for (j ∈ J) do

Compute δj
i ∀i ∈ O

Take i(j) ∈ arg min{δj
i , i ∈ O}

Apply nearest insert to place customer j on route i(j).
end for
{Close unnecessary plants}
for (i ∈ O) do

if ( {j|i = i(j)} = ∅ and c− bi > b) then
O ← O \ {i}
b ← b− bi

end if
end for

where P is the weight factor and O(x) denotes the set of indices of open plants for solution x. Note
that for feasible solutions the two objectives (2.1) and (2.18) give the same value. The penalty weight
P is dynamically updated taking into account the history of the search. The strategy that we use
for updating the penalty weight has been previously used in Dı́az and Fernández (2001) for the GAP.
In particular, P is updated according to the expression P := P αβ, where α is dynamically updated
using the information provided by the medium-term memory, and β is also dynamically updated but
using the information of the short-term memory. In our case, β = η

θ1−1 − 1, where η is the number of
infeasible solutions obtained in the last θ1 iterations and α is initially set to the value 2 and updated
every θ2 iterations according to α := min {α + 0.01, 3}. Note that for a given value of α the value of P

varies in
[
α−1 × P, α

1
θ1−1 × P

]
. Thus, the bigger is the value of α, the larger is the range of variation

for P . Additionally, since the values of α are always greater than or equal to one, P will only increase
when all the solutions found in the last θ1 iterations are infeasible.

The Intensification Phase

The intensification phase is basically oriented to look for good-quality feasible solutions. Since the
initial solutions may violate some capacity constraint (2.6), one of the goals in this phase is reducing
unfeasibility when it occurs.

As mentioned previously, in order to recover feasibility it is necessary to modify the assignment
of at least one client. This is achieved by exploring two simple neighborhoods. The first one is
the reassignment neighborhood (denoted N1), and the second one is the interchange neighborhood
(denoted N2). For a given solution x, N1(x) contains all the solutions that only differ from x in the
assignment of one single client, which is visited by a different route (see Figure 2.3).
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Figure 2.3: Neighborhood N1(x). Reassignment of one customer

Similarly, N2(x) contains all solutions that only differ from x in the assignment of exactly two
clients that interchange the routes that visit them (see Figure 2.4). Note that, for a given solution x,

Figure 2.4: Neighborhood N2(x). Interchange the assignment of two customers

moves in N2(x) have a fixed number of clients in each route. On the other hand, moves in N1(x) are
more restrictive in terms of feasibility. For this reason, we chose to explore N1(x) ∪N2(x), which is
a more flexible option. For a given solution x we evaluate all non-tabu moves in N1(x) ∪N2(x) and
select the one with a better value with respect to (2.18). When a client j is reassigned from plant i1
to plant i2 the reverse move is tabu active (and thus, forbidden) for a fixed number of iterations. We
apply the aspiration criterion to bypass tabu restrictions if they result in solutions that improve the
incumbent. As usual, the incumbent solution is the best feasible solution found so far. At the earlier
stages of the search when no feasible solution has been found so far, the incumbent is taken to be the
least infeasible solution (the one with smallest value s(.)) known so far.

Additionally, at some steps of the intensification phase we consider swap interchanges within
the current routes. That is, we consider each route independently and we perform a sequence of
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interchanges of two arcs within the route until we obtain a 2-opt route. In what follows this will be
referred to as exploring N2−opt(x). Algorithm 2.2 outlines the intensification phase. In the algorithm,
a move is considered acceptable if either it is non-tabu, or it satisfies the aspiration criterion. The
algorithm terminates when i) the maximum number of iterations has been reached, or ii) the maximum
number of consecutive iterations without finding an acceptable move has been reached.

Algorithm 2.2 Intensification(x̂)
Initialization: StopCriterion ← false
repeat

Explore N2−opt(x̂) and update x̂
Select the best acceptable move in N1(x̂) ∪N2(x̂) according to 2.18
Update x̂ and StopCriterion

until StopCriterion

The Diversification Phase

The neighborhoods considered during the Intensification Phase may change the assignments of
clients to open plants but, in all cases, the set of open plants remains fixed throughout that phase.
However, for finding good quality solutions it may be necessary to consider different sets of open
plants, in order to explore larger areas of the solutions space. The Diversification Phase performs
moves that affect the set of open plants, so new solutions associated with different sets of open plants
can be generated by the Intensification Phase. The three neighborhoods that are explored in this
phase are the following:

N3 Close plant:
For a given solution x, N3(x) (see Figure 2.5) considers solutions y where the set of open
plants differs from O(x) exactly in one plant that is open in x and is closed in y. That is,
O(y) = O(x) \ {i1} for some i1 ∈ O(x). Plants that are not tabu active are ordered in a list
by increasing values of the ratio used cap/bi. The plant that is closed is the first one from the
list that can be closed without violating the aggregated demand constraint. If such a plant does
not exist, no move is performed. When a plant is closed its assigned customers are reassigned
to the cheapest route (w.r.t. the original objective function) with the nearest-insert criterion.
Customers are reassigned in the same order they had in the route of the closed plant.

i1 i1

Figure 2.5: Neighborhood N3(x). Close a plant and reassign its customers
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N4 Switch plants:
For a given solution x, N4(x) (see Figure 2.6) considers solutions y where the set of open plants
differs from O(x) exactly in one plant that is open in x and is closed in y, plus another plant that
is open in y and is closed in x. That is, O(y) = O(x) \ {i1}∪ {i2} for some i1 ∈ O(x), i2 /∈ O(x).
We consider all non-tabu pairs (i1, i2), i1 ∈ O(x), i2 /∈ O(x) such that: a) O(x) \ {i1} ∪ {i2}
satisfies the aggregated demand constraint (2.11), and b) the total demand of clients assigned
to ii does not exceed the capacity of plant i2.

i1
i1

i2

i2

Figure 2.6: Neighborhood N4(x). Switch open plant i1 and closed plant i2 by
closing i1 and opening i2. Assign to i2 the route of i1.

Condition a) does not guarantee that the selected sets of plants are feasible. The reason is that
a set of plants that satisfies (2.11) may not have any feasible assignment of clients. However, we
use condition a) as a surrogate for the feasibility of the sets of open plants because the decision
problem to know if a given set of plants has a feasible assignment is itself NP-complete. We
select the admissible move with the best value with respect to the modified objective function
(2.18). All clients assigned to i1 in solution x, are reassigned to i2 in solution y. The relative
order of clients on the route of i2 is the same as in the route of i1, although the starting (and
the ending) client of the route has to be decided. This is done by applying the nearest-insertion
criterion to place plant i2 on the route.

N5 Open a plant:
For a given solution x, N5(x) (see Figure 2.7) considers solutions y where the set of open
plants differs from O(x) exactly in one plant that is closed in x and is open in y. That is,
O(y) = O(x) ∪ {i1} for some i1 /∈ O(x). The plant that is opened is the one with the smallest
value fi

bi
among the non-tabu plants.

When a plant i1 is opened, some customers from other routes are assigned to i1 as follows:
Customers j are considered in turn by increasing values of ci1j . While the capacity of plant i1
is not violated clients are reassigned to i1, using the nearest-insert criterion to place clients on
the route of i1.

After exploring the above three neighborhoods, N2−opt is explored to improve the routes if a move
in any of N3, N4, or N5 has been performed. Also, if a plant has been opened or closed it remains
tabu active (cannot be closed if it has been opened, or cannot be opened if it has been closed) for a
fixed number of Diversification Phases. In the case of N4, the aspiration criterion is used to allow
tabu moves that improve the incumbent solution. The order in which the neighborhoods are explored
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Lower Bound

i1

i1

Figure 2.7: Neighborhood N5(x). Open a plant, and assign some customers to it.

is as follows. N3 is first explored. If no admissible move in N3 is found, N4 is explored. N5 is only
explored when no admissible move has been found neither in N3 nor in N4. If no feasible solutions
are known for the current set of open plants at the beginning of the Diversification Phase, N3 is not
explored and the Diversification Phase starts by exploring N4. The algorithm terminates when no
acceptable moves have been found in any of the three neighborhoods. Also, a limit of iterations is
considered. When the algorithm terminates because of that limit, an extra intensification phase is
applied.

The structure of the TS we propose is presented in Algorithm 2.3.

Algorithm 2.3 Tabu Search
Initialization: StopCriterion ← false
Move ← false {true if an acceptable move has been found}
Feasible ← false {true if a feasible solution is known for the last set of plants}
Rounding −→ x̂
repeat

Intensification(x̂)
Update Feasible
{Diversification}
if (Feasible) then

Explore N3(x̂)
Update ŝ and Move.

end if
if (not Move) then

Explore N4(x̂)
Update ŝ and Move.

end if
if (not Move) then

Explore N5(x̂)
Update x̂ and Move.

end if
StopCriterion ← (not Move)

until (StopCriterion)
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2.3 Lower Bound for the Location-Routing Problem

We now describe a lower bound for the considered LRP that is not derived from the model LR1.
The bound consists of two terms. The first one is derived from the costs of the edges that connect
clients among them, as well as the costs for starting the routes (connecting plants with clients). The
second term is derived from the costs incurred when opening the plants, as well as the costs for
terminating the associated routes (connecting clients with plants).

In order to derive the first term we consider an ATSP defined on a complete digraph Km+n where
the set of nodes is given by I ∪ J . That is, there is one node associated with each site for a possible
location as well as one node associated with each client. We define the following cost function on the
arcs of Km+n:

ĉij =
{

cij if i ∈ I, j ∈ J or i, j ∈ J
0 otherwise .

The cost function for the ATSP, ĉ, takes into account the original costs c only for i) the arcs that
connect plants with clients, and ii) the arcs that connect clients among them. The ĉ-costs relative
to the arcs that connect clients with plants and plants among them are defined to be 0. Let zATSP

denote the value of the optimal solution to the ATSP defined on Km+n. As depicted in Figure 2.8
any feasible set of routes to the considered LRP can be transformed into a feasible solution to the
ATSP defined on Km+n, after arbitrarily assigning a direction to the routes of the LRP solution.

a) Solution to the LRP b) Derived feasible solution for the
ATSP

Figure 2.8: Bound on the routing costs

The ĉ-cost of this transformed solution is equal to the c-cost of the arcs of the routes that connect
plants with clients, plus the c-cost of the arcs of the routes that connect clients among them, since
those are the only non zero ĉ-costs. Note that the ĉ-cost of this transformed solution does not take into
account the c-cost of the last stage of the route. That is, it does not consider the cost of connecting
the last client of a route with the plant. Therefore, z

ATSP
is a valid lower bound on the routing costs

24



Computational Results

(if we don’t take into account the costs for terminating the routes) for any set of routes that visits all
clients.

We next obtain the term derived from the cost for opening the plants and for terminating the routes.
For i ∈ I, if plant i were to be open, we would certainly incur a cost fi but, since some non-empty
route should be associated with i, we would also incur the cost for terminating its associated route.
Let j1(i) ∈ arg minj∈J cij denote the index of the closest client to plant i. Therefore, f̃i = fi + cij1(i)

is a lower bound on the cost for opening plant i and terminating its associated route. Let z
KP

be the
optimal value to the following KP:

z
KP

= minimize
∑

i∈I

f̃iyi (2.19)

subj. to
∑

i∈I

biyi > D (2.20)

yi ∈ {0, 1}, i ∈ I. (2.21)

Note that the optimal solution to (2.19)-(2.21) would be the same if the right hand side of constraint
(2.20) were b.

It is clear that LB = z
ATSP

+ z
KP

is a valid lower bound on the value of LR1.

In fact, the term z
KP

can be strengthened by taking into account that possibly not all the capacity
of a given plant can be actually consumed by the clients’ demands. In particular, the profitable
capacity of a plant i ∈ I, b̄i, is the maximum capacity of the plant that can be consumed by the clients
demands. It is given by:

b̄i = maximize
∑

j∈J

djzj

subj. to
∑

j∈J

djzj 6 bi

zj ∈ {0, 1}, j ∈ J.

Now, z
KP

can be strengthened to z
KP

obtained by solving (2.19)-(2.21) after substituting the
coefficients bi by b̄i.

2.4 Computational Results

In order to evaluate the quality of the proposed lower and upper bounds we have performed a series
of computational experiments. To the best of our knowledge there are no available benchmark instances
for the LRP described in this work. For this reason we have obtained a set of 125 test instances
from the data sets for to the Two-Stage Capacitated Facility Location Routing instances of http:
//troubadix.unisg.ch/klose/problems/problems.html\#TSCFLP that where generated according
to Cornuéjols, Sridharan, and Thizy (1991).

Test Instances

Instances are classified in five groups according to their dimensions. Each group consists of twenty
five instances. Groups S1, S2 and S3 contain instances with 5 plants and, respectively, 10, 20 and
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30 clients. Groups M2 and M3 contain instances with 10 plants and, respectively, 20 and 30 clients.
Within each group, we have classified instances according to the ratio between the total capacity and
the aggregated demand. The possible values for this ratio are r = 4.5, 4, 2.5, 2 and 1.5. Therefore,
within each group, there are five subgroups (labeled with a, b, c, d and e) each of which contains five
instances with ratio r = 4.5, 4, 2.5, 2 and 1.5, respectively.

Since the instances of the above URL correspond to the Two-Stage Capacitated Facility Location
Routing Problems, we had to adapt the existing instances to instances for the LRP that we study in
this work. To this end, we have proceeded in the following way. First, we have only considered one
stage. That is, the plants and clients of our instances correspond, respectively, to depots and customers
of the existing instances. Second, when the existing instance had more plants and/or clients than we
needed, we have ignored the data of the exceeding plants and/or clients. Finally, we evaluated the
ratio r̂ between the total capacity and the aggregated demand for each instance, and the demands of
the clients were scaled by the factor r/r̂, so the resulting instance had the desired ratio r.

Algorithms

All the algorithms are coded in C language. Some routines of the CPLEX 6.5 callable library
(?? 1999) are used in the program that solves the LP relaxation RLR1. The exact solution to the
ATSP that is solved to obtain the lower bound presented in Section 4, is obtained with the Toth and
Carpaneto (1995) code for the ATSP.

The KP that has to be solved to complete the above lower bound is solved with the Martello and
Toth (1990) code. This code is also used to obtain the right hand side for constraint (2.11) in the LP
relaxation RLR1. The experiments have been performed on a SUN sparc station 10/30 using one of
its 4 hyperSPARC processors at 100 MHz., SPECint95 2.35. After some tuning the following values
for the parameters were used in the TS heuristic:

– The intensification phase terminates after 2000 iterations or after 1000 consecutive iterations
without finding any feasible solution.

– The tabu tenure for a tabu move is 5 iterations, both in the intensification and the diversification
phases.

– The overall heuristic terminates after |I| diversification phases or if during an intensification
phase no feasible move was found.

– For updating the penalty term P := P × αβ in the objective function, α is initially set to the
value 2 and updated every θ2 = 100 iterations according to α := min {α + 0.01, 3}. The value
of β is initially set to 1 and updated every θ1 = 10 iterations according to β = (η/(θ1 − 1))− 1,
where η is the number of infeasible solutions obtained in the last θ1 iterations.

We have used CPLEX 6.5 to solve exactly the small instances. The value of the optimal solution
provides us with a reference to compare our results, both the lower and the upper bounds. Despite
their small size, the instances in these groups were very difficult to solve exactly for CPLEX 6.5,
especially those in subgroups with smaller value of r (tighter ratio capacity over total demand). For
this reason we added some termination criterion to stop the search for the optimal solution when
optimality could not be proved within some pre-specified limits. Using this termination rule we were
able to optimally solve all instances in group S1, all instances in subgroups S2a and S2b, and three
instances in subgroup S2c. We could not find the optimal solution for the remaining 12 instances. In
particular, the termination criteria used was to stop the procedure after 48 hours of running time.
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Quality of the bounds

Tables 2.1- 2.3 depict a summary of the results obtained with our test instances.

Table 2.1 gives the deviations from the optimal solution for the small instances solved with CPLEX
(Groups S1 and S2, with 5 plants and 10 and 20 customers, respectively). For the instances where
the optimal solution could not be found, the deviations have been evaluated relative to the valid lower
bound provided at termination by CPLEX. In Columns 2-9, each group of two columns under the
same heading gives the average value and the maximum value of the percent deviation of our lower or
upper bounds from the optimal/lower-bound solution obtained with CPLEX (best).

Table 2.1: Percent Deviation from Optimal/Lower-Bound for Small Instances

% dev lb1 % dev lb2 % dev ub1 % dev ub2 # optima
avg max avg max avg max avg max CPLEX ub2

S1a 14.15 23.19 0.88 1.07 12.35 19.03 0.00 0.00 5 5/5
S1b 11.10 18.79 0.89 1.07 8.56 16.36 0.00 0.00 5 5/5
S1c 20.14 23.50 0.71 0.94 20.82 30.13 0.00 0.00 5 5/5
S1d 11.59 21.77 0.69 0.94 3.77 5.75 0.00 0.00 5 4/5
S1e 10.79 13.80 0.56 0.80 11.46 18.24 0.03 0.13 5 4/5
S2a 15.29 26.23 0.69 1.03 9.86 26.66 0.00 0.00 5 5/5
S2b 13.93 29.70 0.67 0.94 2.48 7.24 0.00 0.00 5 5/5
S2c 16.47 18.81 0.46 0.65 21.42 38.56 0.02 0.05 3 1/3
S2d 9.44 13.68 0.45 0.51 8.85 14.64 0.23 0.45 0
S2e 7.40 19.73 1.88 10.30 6.85 10.48 0.88 2.91 0

Columns 2-3 (% dev lb1) give the results of the percent deviation (100(best-lb1)/best) of the lower
bound obtained with the LP relaxation RLR1 (lb1). Columns 4-5 (% dev lb2) give the values of the
percent deviation (100(best-lb2)/best) of the lower bound derived in Section 2.3 (lb2) (this bound
has been calculated without reinforcing the term z

KP
). The next two columns, Columns 6-7, give the

results of the rounding heuristic. In particular, columns under % dev ub1 give the percent deviation
(100(ub1-best)/best) of the upper bound obtained with the rounding heuristic (ub1). The results
of the TS heuristic are presented in Columns 8-9 (% dev ub2) that depict the values of the percent
deviation (100(ub2-best)/best) of the upper bound obtained with the TS heuristic (ub2). Finally,
columns under #optima give the number of instances of each subgroup optimally solved by CPLEX
and with our TS heuristic (ub2), respectively.

As can be seen, the lower bounds derived from RLR1 are quite weak, since the average percent
deviation from the optimal is nearly always above 10 percent. On the contrary, the lower bounds
lb2 derived in Section 4 improve notably on the values of lb1 and give an average percent deviation
from the optimal values which never exceeds 1%, excepting for Subgroup S2e for which the average
deviation is close to 2%. This bad average is due to the effect of one specific instance where the
deviation is as big as 10%. For this instance the term z

KP
of lb2 corresponds to a set of plants with an

overall capacity that is exactly equal to the overall demand. We have checked that this set of plants
is not feasible (there is no feasible assignment of clients within it). However, if for this instance we
calculate lb2 with the reinforced term z

KP
the obtained percent deviation reduces to less than 1%.

It should also be noted that there is one instance in Subgroup S2e for which our lower bound lb2 is
2% better than the lower bound provided by CPLEX at termination. Despite the simplicity of the
rounding heuristic, for all the instances in S1 and S2 a feasible solution was obtained. However, as
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Table 2.2: Percent Gaps Between Upper and Lower Bounds for all Instances

dimension r
% gap ub1-lb1 % gap ub2-lb2 distribution %gap ub2

avg max avg max < 1% [1,1.25) [1.25,5) > 5

S1a 4.5 31.99 48.50 0.99 1.15 1 4 0 0
S1b 4 22.62 41.50 0.98 1.15 1 4 0 0
S1c 5× 10 2.5 51.53 70.10 0.86 1.15 3 2 0 0
S1d 2 17.82 29.45 0.73 0.99 5 0 0 0
S1e 1.5 25.12 37.17 0.65 1.04 4 1 0 0

S2a 4.5 31.64 59.47 0.78 1.15 4 1 0 0
S2b 4 20.90 42.24 0.69 0.94 5 0 0 0
S2c 5× 20 2.5 45.74 70.66 0.58 0.77 5 0 0 0
S2d 2 25.27 43.83 0.66 0.77 5 0 0 0
S2e 1.5 16.33 36.37 3.24 13.17 4 0 0 1

S3a 4.5 43.64 102.85 1.01 1.13 2 3 0 0
S3b 4 50.89 99.75 0.96 1.13 2 3 0 0
S3c 5× 30 2.5 31.27 60.84 0.61 0.68 5 0 0 0
S3d 2 27.51 54.39 0.59 0.71 5 0 0 0
S3e 1.5 14.27 32.05 0.48 0.61 5 0 0 0

M2a 4.5 43.62 76.68 0.91 1.04 4 1 0 0
M2b 4 36.76 59.76 0.94 1.11 3 2 0 0
M2c 10× 20 2.5 24.46 42.16 1.25 2.78 3 1 1 0
M2d 2 13.43 22.45 0.8 1.15 4 1 0 0
M2e 1.5 10.89 10.89 0.84 0.9 5 0 0 0

M3a 4.5 38.64 69.52 0.74 0.82 5 0 0 0
M3b 4 37.91 56.90 1.28 3.34 4 0 1 0
M3c 10× 30 2.5 21.39 32.12 0.78 0.93 5 0 0 0
M3d 2 12.05 24.04 0.57 0.69 5 0 0 0
M3e 1.5 9.81 12.71 0.63 1.02 4 1 0 0

could be expected, the upper bounds obtained with the rounding heuristic are not very good and some
of the average deviations (% dev ub1) are above 20%. This is because the rounding heuristic tends to
open plants with low ratio fi/bi even if their capacity is larger than necessary. On the contrary, the
results obtained with the TS heuristic are very satisfactory, since 34 out of the 38 instances optimally
solved by CPLEX, were also optimally solved with our heuristic. The small values of the deviations
dev ub2 show that for the instances that were not optimally solved the quality of the obtained solution
is always very good.

Columns 2 and 3 in Table2.2, “dimension” and r respectively, give the dimensions of the instances
(plants × customers) and the value of the parameter r. In the main, the results of Table2.1 are
confirmed by those of Table2.2 where we show percent gaps between the upper and lower bounds. In
Columns 4-7 each group of two columns under the same heading gives the average and the maximum
value of the percent deviation of the upper bound from the lower bound. In particular, Columns
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4-5 (% gap ub1-lb1) give the percent deviation (100(ub1-lb1)/lb1) of the upper bound obtained with
the rounding heuristic (ub1) from the lower bound obtained with the LP relaxation RLR1 (lb1).
Similarly, Columns 6-7 (% gap ub2-lb2) give the percent deviation (100(ub2-lb2)/lb2) of the upper
bound obtained with the TS heuristic (ub2) from the lower bound of Section 2.3 (lb2). For instances
in groups S1 and S2 the reader can check that the values of Columns 4 and 6 of Table2.2 are indeed
an upper bound of the sum of the individual deviations of the lower and the upper bounds from the
optimal solution, shown in Columns 2 and 6 of Table 2.1 for % gap ub1-lb1, and in Columns 4 and
8 of Table 2.1 for % gap ub2-lb2. For the instances in Groups S3, M2, and M3 the obtained results
follow the tendency of the smaller instances. More specifically, the rounding heuristic succeeded in
finding a feasible solution in 118 out of the 125 instances although, in general the quality of the upper
bound is quite poor.

The values of % gap ub1-lb1 show again the weakness of both the lower bound lb1 and the upper
bound ub1, whereas the values of % gap ub2-lb2 are in general small, confirming the good results
obtained for the small instances with the lower bound lb2 and the upper bound ub2. Figure 2.9
gives an example of the evolution of % gap ub2-lb2 in the TS heuristic for one instance of dimension
10×20 that was selected arbitrarily for illustration. The thin dotted lines represent the times when
diversification steps took place whereas the thick break points represent the times where the upper
bound ub2 was updated, and the actual values of % gap ub2-lb2.

More insight about the quality of ub2 and lb2 can be obtained from the last columns of Table
2.2 that depict the number of instances of each subgroup for which % gap ub2 is between some fixed
threshold. It can be observed that for 98 out of the 125 instances the gap between ub2 and lb2 is
below 1%. For 24 instances this percent gap is in [1, 1.25), for 2 instances it is in [1.25, 5), and only
for 1 instance this gap is above 5%.
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Figure 2.9: Evolution of ub2 on Problem 3M2b

We have further investigated the instances for which the % gap ub2-lb2 is big. In one case, the
gap reduces from 13.17% to 0.67% when the lower bound lb2 is calculated with the strengthened term
z

KP
. In the remaining cases, it is the bad quality of the upper bound ub2 what causes this big percent

gap. Values of ub2 far from the optimum seem to occur when the TS procedure does not succeed in
finding the optimal set of plants to open.
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CPU Time requirements

The CPU times required to obtain the lower bounds lb1 and lb2, and the upper bound ub2 are
depicted in in Columns 2-7 of Table 2.3. Again each group of two columns under the same heading
gives the average and the maximum values. We have not decomposed “time lb2” in the times required
by each of the two procedures used to obtain lb2 (the time required to solve the ATSP, and the time
required to solve the KP) because the time for solving the KP is negligible with respect to the time for
solving the ATSP. Note that the lower bound lb2 is obtained with a small computational effort, since
the values in “time lb2” are quite small and considerably smaller than the corresponding values in
“time lb1”. As to the times required to obtain the upper bound ub2, again we can conclude that they
are good taking into account i) the difficulty for optimally solving the instances with CPLEX, and ii)
the quality of the bounds obtained with the TS heuristic. Columns 8-9 of Table 2.3, show the times
required by the TS heuristic to obtain the best solution found. This information is also depicted in
Figure 2.10, where each stack bar corresponds to one test instance and represents the total time spent
by the TS heuristic on the instance. The dark part of each bar shows the time required to obtain
the best solution found, so the light part of each bar shows the time spend since the best solution
was found until termination. As can be seen, the times to obtain the best solutions are considerably
smaller than the total times. Thus, we could have adjusted the termination criteria of the heuristic
to obtain similar results in smaller computation times.

As usual, we can observe an increase in the computational times as the size of the instances grows.
We have not performed a rigorous analysis but the times required to solve RL1 seem to increase
approximately quadratically with |I| + |J |. For the TS heuristic, the increase of times seems to be
approximately quadratic with |I|·|J |. As to the times to obtain lb2, they are very small. It is surprising
that for many instances in the group M computation times are smaller than for other instances in
group S, even with the same number of customers. We attribute this to the fact that a code for the
ATSP is used. Note that the only source of asymmetry in the ATSPs that are solved in this work is
related to plants. Thus, instances in group S are much more symmetric than instances in group M.

As expected, we have not appreciated any influence of the value of the parameter r on the difficulty
for solving RL1. For the lower bound lb2 we can appreciate a slight increase on the computational
effort as the value of r decreases (for instances of the same size). In the case of the TS heuristic,
the influence of the value of r on the required times is smaller to what we thought it would be when
designing the computational experiments. Nevertheless, in general terms, instances with intermediate
values of r seem to require higher times.
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Table 2.3: CPU Times and Solutions’ Characteristics

time lb1 time lb2 time ub2 time best found % used cap plants open
avg max avg max avg max avg max avg max avg max

S1a 0.28 0.30 0.02 0.03 4.46 5.68 0.28 0.29 85.49 92.67 1 1
S1b 0.27 0.29 0.03 0.04 5.30 7.02 0.27 0.30 88.45 99.57 1 1
S1c 0.27 0.32 0.02 0.03 5.42 6.64 2.00 2.90 95.79 100 2 2
S1d 0.28 0.31 0.02 0.03 5.28 6.11 1.62 1.82 94.62 98.48 2 2
S1e 0.25 0.26 0.02 0.04 5.43 7.02 1.89 2.04 95.86 98.58 3 3
S2a 1.26 1.37 0.09 0.18 22.90 31.17 1.20 1.37 84.59 94.85 1 1
S2b 1.22 1.37 0.09 0.16 23.54 30.00 1.20 1.38 80.32 92.71 1 1
S2c 1.25 1.42 0.10 0.17 25.13 28.38 8.11 10.50 93.19 99.37 2 2
S2d 1.30 1.43 0.14 0.25 23.43 28.12 9.95 15.77 96.51 99.11 2.2 3
S2e 1.34 1.42 0.14 0.28 20.23 26.52 9.63 17.22 96.75 100 2.8 3
S3a 4.53 4.95 0.24 0.48 52.55 83.72 7.93 21.89 83.47 95.64 1.2 2
S3b 4.77 5.88 0.24 0.51 64.91 97.66 7.06 17.31 72.85 98.56 1 1
S3c 4.69 5.70 0.24 0.51 71.50 86.91 18.23 25.12 87.27 94.35 1.8 2
S3d 4.72 5.50 0.39 0.82 75.11 97.87 11.93 23.76 89.86 99.68 2 2
S3e 5.26 6.14 0.39 0.84 50.86 77.15 26.00 35.23 95.22 99.28 2.8 3
M2a 4.05 4.60 0.04 0.06 68.88 74.95 15.52 28.95 96.57 99.41 2 2
M2b 3.72 4.21 0.04 0.05 74.36 79.08 14.20 31.38 98.13 99.12 2 2
M2c 3.94 4.42 0.04 0.06 89.85 91.42 13.51 16.98 97.82 100 3.2 4
M2d 4.01 4.28 0.08 0.11 93.42 95.64 16.27 37.26 98.82 99.05 3.8 4
M2e 3.98 4.19 0.08 0.09 77.99 94.04 9.46 13.39 99.36 100 5 6
M3a 19.76 27.20 0.13 0.34 203.58 228.16 38.80 46.99 95.85 99.64 2 2
M3b 21.33 25.20 0.14 0.33 215.97 229.12 52.69 88.76 95.87 100 2 2
M3c 17.43 24.82 0.13 0.33 236.97 247.79 41.98 56.22 99.66 100 3 3
M3d 15.52 19.40 0.26 0.52 236.61 241.26 42.10 56.40 98.51 100 3.8 4
M3e 17.47 22.62 0.26 0.53 162.08 229.96 52.26 86.01 98.87 99.82 5.4 6
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Conclusions

The Solutions

Columns 10-13 in Table2.3 give information about the structure of the best solutions found with
the TS heuristic. In particular, Columns % used cap show the percentage of the overall capacity of
the set of open plants that is consumed by the clients’ demands, and Columns plants open show the
number of open plants in the best solutions of the TS heuristic. We can see that the ranges for the
values % used cap are, in general very high and that in some cases, the maximum value of a subgroup
is 100%, which means that the procedure tends to open as few plants as possible. To a large extent
this can be explained by the fact that in the considered instances the opening costs are much larger
than routing costs. We should expect that if the opening costs were smaller, the number of open
plants would increase and the percent of consumed capacity would tend to decrease.

2.5 Conclusions

In this section we have presented a single source LRP with capacitated facilities and one single
vehicle for each open facility. We use an auxiliary network to model this LRP as a network flow
problem with side constraints instead of using the three index model proposed in other works for
general LRPs. The solution to a reinforced linear relaxation of this model is used in the algorithmic
approaches we propose. A deeper study of the model itself as well as the derivation of valid inequalities
for it are envisaged as a subject of future research.

We propose a TS heuristic that provides solutions of high quality. In particular, 34 out of the 38
instances for which the optimal solution is available were solved to optimality, and only in one case the
percent deviation with respect to the optimum went over the 1%. The main features of this TS are
the simple neighborhoods explored and the strategic oscillation scheme that monitors the crossings of
the feasibility border along the search. Time requirements for this heuristic are reasonable taking into
account the quality of the solutions obtained and the difficulty of the problem.

The initial solution for the TS is provided by a simple rounding heuristic that derives a feasible
solution from the solution to the LP relaxation of the model we propose. In spite of being extremely
simple, this rounding heuristic never failed to obtain a feasible solution, even though the quality of
such solutions was often low since, in general, the required overall capacity of the set of open plants
was overestimated.

Finally, we present a lower bound. Broadly speaking, it is obtained from bounding separately
the location and the routing components of the problem. The results obtained with this approach
are satisfactory despite the fast growth of the CPU time requirement as the number of customers
increases. This is due to the fact that an ATSP has to be solved and the only asymmetries the
instances contain are related to the plant sites. So, the lower the proportion between the number of
plants and the number of customers is, the more symmetric the problem becomes, and its resolution
by means of algorithms designed for the ATSP becomes more difficult. For instances with higher
number of customers than those reported in this work we propose to use lower bounds for the TSP
instead of solving it exactly.
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