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Abstract

Wearable photo-cameras offer a hands-free way to record images from the camera-
wearer perspective of daily experiences as they are lived, without the necessity to
interrupt recording due to the device battery or storage limitations. This stream of
images, known as egocentric photo-streams, contains important visual data about
the living of the user, where social events among them are of special interest. Social
interactions are proven to be a key to longevity and having too few interactions
equates the same risk factor as smoking regularly. Considering the importance
of the matter, there is no wonder that automatic analysis of social interactions is
largely attracting the interest of the scientific community.

Analysis of unconstrained photo-streams however, imposes novel challenges to
the social signal processing problem with respect to conventional videos. Due to
the free motion of the camera and to its low temporal resolution, abrupt changes
in the field of view, in illumination condition and in the target location are highly
frequent. Also, since images are acquired under real-world conditions, occlusions
occur regularly and appearance of the people undergoes intensive variations from
one event to another.

Given a user wearing a photo-camera during a determined period, this thesis,
driven by the social signal processing paradigm presents a framework for compre-
hensive social pattern characterization of the user. In social signal processing, the
second step after recording the scene is to track the appearance of multiple people
who are involved in the social events. Hence, our proposal begins by introducing
a multi-face tracking which holds certain characteristics to deal with challenges
imposed by the egocentric photo-streams. Next step forward in social signal pro-
cessing, is to extract the so-called social signals from the tracked people. In this
step, besides the conventionally studied social signals, clothing as a novel social
signal is proposed for further studies within the social signal processing. Finally,
the last step is social signal analysis, itself. In this thesis, social signal analysis is
essentially defined as reaching an understanding of social patterns of a wearable
photo-camera user by reviewing captured photos by the worn camera over a pe-
riod of time. Our proposal for social signal analysis is comprised of first, to detect
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social interactions of the user where the impact of several social signals on the
task is explored. The detected social events are inspected in the second step for
categorization into different social meetings. The last step of the framework is to
characterize social patterns of the user. Our goal is to quantify the duration, the
diversity and the frequency of the user social relations in various social situations.
This goal is achieved by the discovery of recurrences of the same people across the
whole set of social events related to the user.

Each step of our proposed pipeline is validated over relevant datasets, and the
obtained results are reported quantitatively and qualitatively. For each section
of the pipeline, a comparison with related state-of-the-art models is provided.
A discussion section over the obtained results is also given which is dedicated to
highlighting the advantages, shortcomings, and differences of the proposed models,
and with regards to the state-of-the-art.

Keywords: Social Signal Processing, Egocentric Vision, Low frame-rate wear-
able cameras, Photo-Streams, Multi-Face Tracking, Social Interaction Detection,
Social Interaction Categorization, Face Clustering, Social Pattern Characteriza-
tion, Clothing social signal.
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Resumen

Las cámaras portables ofrecen una forma de capturar imágenes de experiencias
diarias vividas por el usuario, desde su propia perspectiva y sin la intervención de
este, sin la necesidad de interrumpir la grabación debido a la bateŕıa del dispositivo
o las limitaciones de almacenamiento. Este conjunto de imágenes, conocidas como
secuencias de fotos egocéntricas, contiene datos visuales importantes sobre la vida
del usuario, donde entre ellos los eventos sociales son de especial interés. Las
interacciones sociales han demostrado ser clave para la longevidad, el tener pocas
interacciones equivale al mismo factor de riesgo que fumar regularmente. Teniendo
en cuenta la importancia del asunto, no es de extrañar que el análisis automático
de las interacciones sociales atraiga en gran medida el interés de la comunidad
cient́ıfica.

Sin embargo, el análisis de secuencias de fotos impone nuevos desaf́ıos al prob-
lema del procesamiento de las señales sociales con respecto a los videos conven-
cionales. Debido al movimiento libre de la cámara y a su baja resolución temporal,
los cambios abruptos en el campo de visión, en la iluminación y en la ubicación del
objeto son frecuentes. Además, dado que las imágenes se adquieren en condiciones
reales, las oclusiones ocurren con regularidad y la apariencia de las personas vaŕıa
de un evento a otro.

Dado que un individuo usa una cámara fotográfica durante un peŕıodo de-
terminado, esta tesis, impulsada por el paradigma del procesamiento de señales
sociales, presenta un marco para la caracterización integral del patrón social de
dicho individuo. En el procesamiento de señales sociales, el segundo paso después
de grabar la escena es rastrear la apariencia de varias personas involucradas en
los eventos sociales. Por lo tanto, nuestra propuesta comienza con la introducción
de un seguimiento de multiples caras que posee ciertas caracteŕısticas para hacer
frente a los desaf́ıos impuestos por las secuencias de fotos egocéntricas. El sigu-
iente paso en el procesamiento de señales sociales es extraer las señales sociales de
las personas bajo análisis. En este paso, además de las señales sociales estudiadas
convencionalmente, en esta tesis se propone la vestimenta como una nueva señal
social para estudios posteriores dentro del procesamiento de señales sociales. Fi-
nalmente, el último paso, es el análisis de señales sociales. En esta tesis, el análisis
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de señales sociales se define esencialmente como la comprensión de los patrones so-
ciales de un usuario de cámara portable, mediante la revisión de fotos capturadas
por la cámara llevada durante un peŕıodo de tiempo. Nuestra propuesta para el
análisis de señales sociales se compone de diferentes pasos. En primer lugar, de-
tectar las interacciones sociales del usuario donde se explora el impacto de varias
señales sociales en la tarea. Los eventos sociales detectados se inspeccionan en el
segundo paso para la categorización en diferentes reuniones sociales. El último
paso de la propuesta es caracterizar los patrones sociales del usuario. Nuestro
objetivo es cuantificar la duración, la diversidad y la frecuencia de las relaciones
sociales del usuario en diversas situaciones sociales. Este objetivo se logra medi-
ante el descubrimiento de apariciones recurrentes de personas en todo el conjunto
de eventos sociales relacionados con el usuario.

Cada paso de nuestro método propuesto se valida sobre conjuntos de datos
relevantes, y los resultados obtenidos se evalúan cuantitativa y cualitativamente.
Cada etapa del modelo, se compara con los trabajos relacionados más recientes.
También, se presenta una sección de discusión sobre los resultados obtenidos,
que se centra en resaltar las ventajas, limitaciones y diferencias de los modelos
propuestos, y de estos con respecto al estado del arte.
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C H A P T E R 1

Introduction

1.1 Motivation

We are living in interesting times, where Artificial Intelligence is hard wired with

every aspect of our living. Scientists continuously develop better imitation games

for computers to more effectively mimic functions of the human brain. Today,

smart machines are intended to exhibit intelligence in all aspects of the human

intelligence, as it is not only restricted to IQ, but is interlaced with a wide range

of cognitive modalities [5]. Theory of multiplicity of intelligence was first charac-

terized by Howard Gardner in his book Frames of Mind: The Theory of Multiple

Intelligences. Gardner argues that one important modality of intelligence is inter-

personal or social intelligence and explores how human beings react to the world

and interact with it and each other.

The importance of social intelligence is indisputable. It is constantly considered

as an invaluable factor to determine the quality of life and is consistently associ-

ated with better outcomes across the lifespan, ranging from academic achievement

and substance use in adolescence to mental and physical health and longevity in

adulthood [6, 7]. Empirical pieces of evidence from research studies have repeat-

edly shown that stronger social relationships are associated with feeling happier,

better coping with daily and major life stressors, and consequently living a longer

life [8, 9]. As a result, automatic recognition of social interactions from images

and videos has increasingly drawn scientific interest [10]. Recognition of social
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(a) Surveillance perspective (b) Sousveillance perspective

Figure 1.1: Figure of a social interaction from surveillance perspective (a) and
sousveillance perspective (b).

interactions, relying solely on visual cues is a valuable task from the computer

vision perspective that confines the analysis to the visual information, eliminating

the need for acquiring additional information and major privacy concerns. The

emergence of Social Signal Processing (SSP) domain is a consequence of realizing

the importance of the matter by the researchers. In fact, the pursued goal by SSP

community is to provide machines with a naturalistic social intelligence similar to

human social behavior.

Early works on SSP were motivated mainly by video surveillance applications

[11, 12]. Surveillance cameras, however, capture the environment from the fixed

and external third-person perspective and fail in capturing real involvement in

social interactions at the personal level. In contrary to surveillance cameras, wear-

able cameras offer the possibility of capturing social cues from a more intimate

perspective, known as ego-vision. Wearable cameras allow capturing natural pho-

tos of the daily interactions of camera-wearers, where they naturally attempt to

reach a clear view of whom they are engaged in during a social interaction (see

Fig. 1.1).

Vinciarelli et al. [13] suggest to formalize SSP in a four-step pipeline in which,

after having recorded the scene and detected humans (step 1 and 2), in step 3,

feature extraction has to be performed, where features are behavioral cues whose

interpretation brings to individuate social signals. In step 4, social signals have to

be grounded in the scene context, in order to understand social interactions. This

thesis goes in the direction of SSP in egocentric photo-streams, where the scene
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Figure 1.2: A drawing by Steve Mann’s six-year-old daughter, illustrating surveil-
lance versus sousveillance. Both words are French, which means “to watch” (veil-
lance), “from above” (sur), or “from below” (sous). Figure is adapted from [1].

is recorded by a Narrative photo-camera1, people are detected and tracked within

our multi-face tracking proposal, and social signals are extracted and analyzed for

each tracked person in various levels to reach a comprehensive understanding of

the social pattern of the wearable photo-camera user.

SSP in egocentric photo-streams despite being in its initial phase, has already

attracted the attention of the technological community. The MIT Fifth Sense

Project 2 is an example. For people with impaired vision system, performing

activities of daily living that sighted people typically perform without additional

effort is critical. Within this project, researchers use machine learning methods to

detect and model social interactions of a wearable camera user or a robot, aiming

at providing visually-impaired users with better awareness of their social context.

1.2 Background

The concept of using a wearable camera as a monitoring modality dates back to

the WearComp work of Mann in 1998 [14, 15]. However, it was not until the

introduction of Microsoft SenseCam in 2004 that researchers began experimenting

with large scale egocentric recordings of human life (lifelogging) and its health

applications [16]. Since then the topic received some attention until 2012, when

1http://getnarrative.com/
2http://people.csail.mit.edu/teller/misc/bocelli.html
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Kanade and Hebert [17] argued that the egocentric perspective is an inverse to the

traditional surveillance perspective and that it “senses the environment and the

subjects activities from a wearable sensor, is more advantageous [than surveillance]

with images about the subjects environment as taken from his/her viewpoints”. It

was in the same year that TIME magazine reported that wearable cameras “will

transform society because they introduce a two-sided surveillance and sousveil-

lance”3. From 2012 to date, the topic is receiving an exponentially ascending

attention from the science and technology communities [18].

Recording of an activity by the performer of the activity is referred to as

sousveillance. For the facility, sousveillance is typically performed by a small wear-

able or portable camera [19]. The literal translation of the term “sousveillance”

from French is “observation from below”, where below can be either interpreted

physically (mounting cameras on people rather than on height), or hierarchically

(crowd doing the watching, rather than higher authorities) [20]. In this regard, a

subset of sousveillance is defined as inverse surveillance aiming at performing a

watchful vigilance from the perspective of a participant in a society [21]. Although

this subset of sousveillance has its proper applications [22, 23], sousveillance typ-

ically involves recording by ordinary people from first-person perspectives.

Personal sousveillance happens normally out of different purposes such as art,

science, or technology. An example is Alberto Frigo, the conceptual media artist

which is perhaps the most extreme example of lifelogger which under the 2004-

2040 project is continuously documenting 36 aspects of his life to understand

himself at his 60 years of age4. Another example is the company of Nestle which

in a project conceptually designed to reverse the male gaze, used a bra as a point-

of-view for a camera5. In science and technology, Kanade and Hebert for the first

time described a prototypical sousveillance in 2012 that is composed by three basic

components: a localization component to estimate the surrounding, a recognition

component to identify object and people, and an activity recognition component

to provide information about the current activity of the user. Together, these

three components provide a complete situational awareness of the user. Following

the proposed idea by Kanade and Hebert, the first computational techniques for

egocentric analysis focused on hand-related activity recognition [24] and social in-

teraction analysis [25]. Also, given the unconstrained nature of the video and the

3http://techland.time.com/2012/11/02/eye-am-a-camera-surveillance-and-sousveillance-in-
the-glassage/

4http://www.2004-2040.com
5http://time.com/3449830/nestle-bra-cam-breasts/
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huge amount of data generated, temporal segmentation [26] and summarization

[27] were among the first addressed problems. To date, researchers have explored

the use of egocentric vision for diverse topics including: activity recognition [28],

social saliency estimation [29], multi-agent egocentric vision systems [30], pri-

vacy preserving techniques [31], attention-based activity analysis [32], hand pose

analysis [33], Ego graphical User Interfaces (EUI) [34], and understanding social

dynamics, and attention [35].

Today, the wearable cameras are small, lightweight, and thus convenient to use

for digital recording of visual information from daily interactions of the camera-

wearer without the need for the user intervention (see Fig. 1.3). These cameras

depending on the frame-rate commonly can be classified as photo-cameras and

video-cameras. The former (e.g., Narrative Clip and Microsoft SenseCam), are

usually worn on the chest, and are characterized by a low frame-rate (up to 2

fpm) that allows capturing images over a long period of time without the need

of recharging the battery. The sequence of images captured by egocentric photo-

cameras are commonly referred to by photo-streams. Consequently, these cameras

offer considerable potential for inferring knowledge about behavior patterns and

lifestyle of the user. However, due to the low frame-rate and the free motion

of the camera, temporally adjacent images typically present abrupt appearance

changes so that motion features cannot be reliably estimated. The latter (e.g.,

Google Glass, GoPro), are commonly mounted on the head, and due to their high

frame-rate (around 35 fps) allow to capture fine temporal details of interactions.

Consequently, they offer the potential for in-depth analysis of special activities of

the camera-wearer. However, since the camera is moving with the wearer’s head,

global motion estimation of the wearer becomes unfeasible and images can result

blurred frequently due to abrupt movements of the head.

This thesis goes in the direction of SSP in the domain of egocentric photo-

streams to achieve a broad understanding of the social patterns of a wearable

photo-camera user. In SSP, social signals are known as a bunch of non-verbal

behavioral cues that occur over short-time intervals and people usually use them

to express themselves when engaged in a social situation. The term behavioral cue

is typically used to describe a set of temporal changes in neuromuscular and phys-

iological activities that one exhibits in a certain social situation, but the definition

can include a broader context. According to Vinciarelli et al. [13], observable be-

haviors can be classified into four main categories as physical appearance (beauty,

attractiveness, etc.), gesture and posture (reading of sign language, human affect

present in body parts, etc.), face and eye behavior (smile, frown, pain, etc.), and

5
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(a) WearComp - 1988 (b) Narrative - 2017

Figure 1.3: (a) Steve Mann’s Visual Filter for continuous live webcast as well as
viewing, (b) Narrative photo-camera.

space and environment (physical proximity, seating arrangements, etc.). To pro-

vide a sensible example, when people get involved in social interactions, they tend

to stand in determined close positions to other people to avoid occlusions (space

and environment social signal) and organize orientations to naturally place the fo-

cus on the subjects of interest (face and eye behavior). This phenomenon was first

studied in sociology by Kendon in the theory of F-formation [36]. F-formation is

defined as a pattern that people instinctively maintain when interacting and can

be measured based on the mutual distances and orientations of the individuals in

the scene.

Adoption of the F-formation theory by the computer vision community was

a foot-stone in formalizing the problem [37, 38]. As defined by Kendon, “an F-

formation arises whenever two or more people sustain a spatial and orientational

relationship in which the space between them is one to which they have equal,

direct, and exclusive access”. F-formation comprises of 3 spaces: the people in-

volved in an interaction stand in the p-space, where they all look inwards to a

common empty space surrounded by the p-space that forms the o-space. External

people who do not belong to this interaction are not accepted in the p-space and

they belong to any space outside of the p-space known as the r-space (see Fig.

6



1.2 Background

Figure 1.4: Example of the F-formation: people involved in the social interaction
stand in p-space. Common empty space surrounded by the p-space, where every
participant is looking into it, forms the o-space. Any space outside of these two
space is r-space, that is out of the scope of this social interaction.

1.4).

Traditionally, the studied social signals in computer vision were one or more

among the aforementioned observable behavioral cues for further analysis of a

social event. This thesis tackles the problem of social pattern characterization of

a wearable photo-camera user by adopting SSP related technologies in the domain

of egocentric photo-streams. Specifically, due to the lack of a public dataset,

the EgoSocialStyle dataset is recorded to enable design and development of SSP

related techniques for addressing the problem. After recording of the scene which is

considered as the first step in SSP, in the second phase, a multi-face tracking model

is introduced which is designed to cope with the particularly induced challenges

by the domain. The third phase is to extract relevant social signals from the

tracked people and the recorded scene, which enable analysis of the problem in

the following phase. In addition to the conventionally studied social signals in

SSP, the role of some social signals which traditionally received less attention,

such as 3D head pose, facial expression, and clothing of the individuals are also

explored. As in the last step in SSP, social signals are inspected within various

modules, to reach an understanding of the characteristics of social patterns of the

user.

SSP in egocentric vision introduces novel advantages as well as novel challenges

with regards to third-person vision (see Sec. 1.3). Following, we summarize some
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of the offered capabilities by the egocentric vision which classically have been

considered by the community to tackle related problems in this domain:

• Ego-vision provides a continuous paradigm for sampling the visual world of

the camera-wearer. Egocentric videos represent what the user daily sees,

while third-person videos only capture a fraction of the life of the user which

fits within the static and limited camera field of view. In this manner, ego-

vision offers important information about social living of the user as lived.

• An egocentric video is personalized and corresponds to what a particular

person sees. As a result, the algorithms and techniques can be personalized

to the characteristics and preferences of that person.

• Ego-vision actively captures moments that a person might be passively liv-

ing. It records important social life moments of the person where the user

naturally turns to have a clear view of other involved people and objects in

the interaction.

• In ego-vision, the context of the action is firmly present. Perception benefits

from the context and it plays an important role in recognizing the category

of social activities. For example, if an interaction takes place in a conference

room, that interaction is most likely related to a formal meeting. Time of

the day is another source of contextual information. Often individuals follow

a daily routine of interactions in their daily activities where more probably

their informal gatherings occur during the evenings.

With this historical context in mind, throughout this thesis, we study that in

the egocentric photo-stream setting:

• Continuous recording aids in detection, categorization, and characterization

of social interactions of the user.

• The personalized nature of the ego-vision enables personalized characteriza-

tion of social interactions of a camera-wearer.

• Personalization also provides the possibility of predicting social routine of

the user.

• It is possible to extract the context of a social interaction, and social context

is indeed an important factor in characterizing social routines of the camera-

wearer.
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Figure 1.5: Example of a sequence captured by Narrative clip camera inside a
train. Two people are seated in front of the camera-wearer, which one of them the
camera-wearer is interacting with?

1.3 Research Issues

Wearable cameras are small and lightweight. They acquire first-person images

and videos automatically, without the user intervention, with different resolutions

and frame-rates. However, ego-vision besides providing various opportunities that

make SSP tasks simpler, it introduces new challenges (see Fig. 1.5):

• The wearable camera regardless of being head mounted or chest mounted,

is worn in a naturalistic setting. This leads to huge variability in visual

data in terms of background variation, illumination conditions, and object

appearance.

• The camera-wearer is not visible in the image and what he/she is doing has

to be inferred from the information in the visual field of the camera, implying

that important information about the wearer, such for instance as pose or

facial expression estimation, is not available.

• In the case of photo-cameras with low frame-rate, it is common to experience

drastic visual changes in even temporally adjacent photos. This issue leads

to unavailability of the information which traditionally could be extracted

from the temporal coherency among the frames, such as optical flow.

• The field of view of the wearable cameras due to proximity to the scene and

objects is not specifically wide. Therefore, many conventional detection and

recognition algorithms such as those that require seeing the limbs and the

joints of the subject, in practice are not applicable to ego-vision.

• Egocentric field of view is incapable of capturing socializing moments that

do not involve face-to-face interaction (as when walking together).

Besides the aforementioned issues which are consequences of SSP in ego-vision,

there are some issues that are directed to SSP independently from the perspective

of the camera.
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• Despite all the recent advances in SSP, design, and development of auto-

mated systems for unveiling the conveyed meaning by some behavioral cues

such as blinks, smiles, crossed arms, etc. in a social situation remains un-

solved.

• SSP is not standalone and fragmentation of the task over several scientific

communities including those in psychology, computer vision, and signal pro-

cessing, makes it specifically difficult.

• In SSP many issues are still open. For instance, there is a lack of proper

machine vision models to detect and analyze human social behavior in dif-

ferent scales and the appropriate psychological and cognitive theories that

can provide useful concepts for them.

• The legal, ethical, and policy issues surrounding the ego-vision are still ar-

guably unsolved and leave a large room for further exploration.

1.4 Research Contributions

This thesis argues that SSP can be effectively formalized in the domain of egocen-

tric photo-streams. Throughout this thesis, we demonstrate that SSP is dividable

into a set of sub-tasks and each sub-task becomes resolvable through leveraging so-

cial signal extraction techniques and learning descriptive models considering the

continuity of social signals along the photo-streams. These models are generic

models which can be easily adapted to specific scenarios for personalized social

interaction analysis.

Specifically, the contributions of this thesis can be summarized as follows:

• We introduce a new model for multi-face tracking in the domain of egocentric

photo-streams (see chapter 3). In chapter 3, we explain the associated fea-

tures of our extended-bag-of-tracklets proposal for multi-face tracking that

helps to effectively overcome the drastic visual variations of faces and discon-

tinuity that is imposed by the photo-streams. Our proposed method relies

on the deep-matching approach for finding the face correspondences along a

sequence, which is robust against visual variations imposed by the wearable

camera and its low temporal resolution. Our proposed model is robust in

detecting face occlusions and is able to localize them. Within our proposed

model for multi-face tracking, we also proposed to assign to each tracklet
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a confidence value which determines how likely correct is the final tracking

results. This is an important factor in designing trackers as it facilitates

further analysis of tracklets. The main results of chapter 3 are published in

a conference in 2014 [39] and in the CVIU journal in 2016 [2].

• We present new models for social interaction detection in egocentric photo-

stream setting (see chapter 4). In this chapter, we present two models: one is

based on frame-level analysis of social interactions, and the other is based on

event-level analysis. In the development of both of our proposed models, we

adapted the sociological notion of F-formation into machine vision analysis.

In our proposed analysis, we studied the role of considered relevant features

in the psychological studies for detection of social interactions. Specifically,

we studied the role of facial expressions in automatic detection of social

interaction. In this chapter, we prove the importance of the 3D head pose

of individuals in addition to the previously studied yaw head pose in the

social interaction detection. Moreover, we present a comparative discussion

over the obtained results by each frame-level and sequence-level analysis

and report the robustness of the sequence-level analysis over the frame-

level analysis. The main results given in this chapter are published in two

conferences [40, 41], and partially in the CVIU journal 2018 [42].

• We present a new pipeline for categorization of social interactions into two

broad categories of formal and informal meetings (see chapter 5). Our pro-

posed method based on an extensive body of literature suggests to study

high-level features describing the environment where the social interaction

takes place as the most relevant feature in this analysis. In our proposed

model, we also demonstrate the role of facial expressions of the involved peo-

ple in the interaction in the categorization task. For the analysis of features,

we propose a frame-level as well as an event-level method and demonstrate

the advantages of the event-level analysis. We present comparative results

with the state-of-the-art models and report the superiority of our proposed

model. The main results given in this chapter are published in the CVIU

journal 2018 [42].

• We propose a new model for face clustering in the domain of egocentric

photo-streams (see chapter 6). Our proposed method is built upon a multi-

face tracking model and is designed to calculate the similarities between

face-sets instead of face-examples relying on the similarity score obtained
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by applying the deep-matching approach. Upon calculating the similarities

among face-sets and employing both inner-track as well as inter-track con-

straints, the agglomerative clustering with a previously learned threshold is

applied to decide on the final cluster members where each cluster ideally

belongs to the face appearance of one person across the dataset. In the

same chapter, we also provide a wide comparison with the baseline mod-

els to emphasize the importance of each component of our proposed model.

Also, to prove the robustness of our proposed model, a comparison with a

relevant state-of-the-art model is provided. The main results of this chapter

are previously published in a conference [3].

• We propose a new pipeline which aggregates together the findings in the

previous chapters to draw a comprehensive image of the social pattern of

a wearable photo-camera user (see chapter 7). In this chapter, we formally

define the frequency, diversity, social trend, and duration of a social interac-

tion and demonstrate that social interactions of a user can be characterized

according to these four terms, generally and specifically with a certain per-

son. We prove our claim quantitatively and qualitatively and draw a sensible

conclusion out of the temporal map of the social interactions of the user. In

addition to demonstrating the obtained results over our proposed dataset,

EgoSocialStyle, we also report the result of our proposed model over the

public dataset, EGO-GROUP. The main results of this chapter are reported

in the CVIU journal 2018 [42].

• In addition to study conventional social signals, in the format of a position

paper, we outline the main steps of the first systematic analysis towards

relieving the relationship between clothing and social signals, from the SSP

perspective (see chapter 8). In this chapter, in a question answering format,

we propose a framework within the scope of computer vision to measure

the effect of clothing in SSP, as a sender or receiver of the social signals.

Our study is built on top of reviewing a vast amount of related literature in

sociology, psychology, and computer vision. In this chapter, we also mention

that our future goal is to reach an understanding of the human personalities

through observing their clothing patterns and report the results of the first

steps taken by us towards this analysis. The main findings of this chapter

are reported in a conference [43].
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1.5 Thesis Organization

This thesis begins by providing an insight into the background of social signal

analysis in computer vision in the next chapter. Chapter 3 introduces tracking,

the second step towards social interaction analysis in SSP. Chapter 4 is devoted

to social interaction detection and chapter 5 details the proposed approach for

social interaction categorization. Chapter 6 is dedicated to the problem of face

clustering in egocentric photo-streams. Details about the characterization of social

interactions in egocentric photo-streams are discussed in chapter 7. Chapter 8

covers details about the relations between clothing and social signals and, chapter

9 highlights the main conclusions and holds discussions about the possible future

paths.

13





C H A P T E R 2

Previous Work

2.1 Multi-Face Tracking

Despite the importance of tracking in the analysis of social interaction, this prob-

lem received less attention in ego-vision than the same problem in third-person

vision [44]. Tracking in ego-vision is a different problem from the tracking in con-

ventional videos in several aspects. Conventional tracking facilitates itself with

the assumption of temporal coherence among visual information present in the

video frames, while temporal coherence does not hold for egocentric photo-streams.

Moreover, in egocentric photo-streams, the appearance of the target, as well as its

position, may change drastically from frame to frame. In addition, due to changes

in the camera field of view caused by body movement of the camera-wearer, back-

ground modeling becomes a more challenging issue (see Fig. 2.1).

When reviewing the state-of-the-art trackers, two main categories of conven-

tional trackers can be found: offline trackers and online trackers. The former

assumes that object detection in all frames has already been performed and tra-

jectory construction is achieved by linking different detections and tracks in offline

mode [45, 46, 47]. This property of offline trackers allows for global optimization

of the path and thus, makes them potentially suitable for dealing with large vi-

sual variations of the objects among the frames of photo-streams. As an example,

Berclaz et al. [45] reformulate the linking step between detections and trajectories

as a constrained flow optimization approach, which results in a convex problem
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Figure 2.1: Example of a sequence captured by Narrative clip camera during an
interaction. Changes in the target location and appearance due to the changes in
the camera movement can be appreciated.

that can be solved using the k-shortest paths algorithm. In order to overcome the

noisy probabilities of candidates that may be produced by the object detector, the

authors arranged a set of assumptions including the limited motion of the target.

Zamir et al. [47] solve the data association problem for one object at a time, while

implicitly incorporating the rest of the objects using global association by em-

ploying Generalized Minimum Clique Graphs (GMCP). GMCP incorporates both

motion and appearance model over the whole temporal span for optimization. In

the development of aforementioned trackers, the authors assume a rather fixed or

predictable position for targets in the adjacent frames of the video. Although this

assumption is generally applicable in conventional videos, it does not hold in the

egocentric photo-streams setting.

In comparison with offline trackers, for online trackers, the target position

is provided in the initial frame and the tracker needs to establish the state of

the target in the following frames of the video. Among state-of-the-art online

trackers, those that are relatively tolerant to occlusion and drastic appearance

changes, are more suitable for egocentric photo-streams [48, 49, 50, 51]. Kalal

et al. presented a Tracking, Learning, Detection (TLD) framework [52], which

works by training a discriminative classifier over labeled and unlabeled examples.

This method performs well in handling short-term occlusions but strongly relies on

optical flow, which cannot be applied in low temporal resolution sequences. Com-

pressive Tracking (CT) [48], uses an appearance model based on features extracted

in a compressed sensing domain. This method is relatively robust to changes in

appearance and performs favorably in challenging datasets, outperforming TLD.

However, CT is not robust to large displacements of the target, which are very

frequent in egocentric sequences. In Locally Orderless Tracking (LOT) [50], target

and candidates in the new frame are segmented first into superpixels and among

the set of candidates, the one which has the least distance to the target is se-

lected as the target in the new frame. LOT tracker offers adaptation to object

appearance variations by matching with flexible rigidity through measuring the
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distance between superpixels. Similar to LOT, SuperPixel Tracker (SPT) [49]

extracts superpixels of the target. SPT extracts the color histograms of the su-

perpixels from the first 4 frames and based on these features, clusters superpixels

by using mean-shift. A confidence value is assigned to each cluster, from which

the superpixels confidence of all pixels of the cluster is derived. In the next frame,

the candidate window with the highest confidence summed over all superpixels

in the window is selected as the new target. Mei et al. presented L1O [51] as a

tracker which explicitly detects occlusions. In L1O, the candidate windows with

a reconstruction error above a threshold are selected for L1-minimization. When

a certain number of the pixels of the candidate window are occluded, L1O detects

an occlusion, which disables the model updating.

Conventional online trackers usually search for the target in the new frame,

around its previous position in the current frame. These trackers are mostly

dependent on the object appearance in the very first frames and generally require

the feature patches in neighboring frames to be close to each other. However, under

specific conditions of egocentric photo-streams, such presumptions will result in

the gradual departure of the estimated target from the true target state, which

eventually leads to tracking loss.

The trackers in Low Frame Rate (LFR) videos are the most similar to ours

[53, 54]. Li et al. presented a temporal probabilistic combination of discriminative

models of different learning and service period, known as their lifespan [53]. Each

model is learned from different ranges of samples, with different subsets of features,

to achieve varying levels of discriminative power. Different models are fused by a

cascade particle filter, to achieve multiple stages of importance sampling. However,

this work falls into the pre-trained tracking class that its performance also depends

on the training data; an issue that we try to avoid, due to the peculiarity of

our dataset that presents a relatively small number of images in each trackable

segment. A recent work about LFR tracking was presented by Zhou et al. [54].

The authors proposed a Nearest Neighbor Field (NNF) driven stochastic sampling

framework for abrupt motion tracking. In this work, NNF provides candidate

regions, where the target may exist. Smoothing Stochastic Approximate Monte

Carlo (SSAMC) sampling scheme predicts the state of the target more effectively.

Finally, the method refined the result with a sparse representation based template

matching technique.

Although the body of literature regarding tracking is huge, most existing ap-

proaches cannot be directly applied to egocentric photo-streams, either because of

the unpredictability of motion or because of drastic appearance changes that char-
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acterize this data. Furthermore, most of the methods are not able to track multiple

targets simultaneously or require the manual specification of the initial position of

the target. To this end, we proposed the Bag-of-Tracklets (BoT) [39] for tracking

in egocentric photo-streams acquired by Sensecam camera (3 fpm). The underly-

ing key idea of our approach is that detection and tracking can be integrated to

achieve strong discriminative power. This approach belongs to the offline class of

trackers, that allows for general optimization of tracklets. Optimization consists

of generating a tracklet for each detected target and categorizing similar tracklets

into groups, that should correspond to different persons. This approach simply

allows for the rejection of unreliable bag-of-tracklets, and eventually extracts a

single prototype for each reliable bag-of-tracklets. The detailed explanation of

our proposed pipeline for multi-face tracking in egocentric photo-stream setting is

given in chapter 3 of the thesis.

2.2 Social Interaction Detection

2.2.1 Social interaction in computer vision

Microsociology, or social interaction, as defined by Erving Goffman [55] is a process

by which people act and react to those around them. The importance of automatic

analysis of visual data for the purposes of detection of social interactions has been

recognized by the computer vision community within several studies [56, 13]. Most

of the previous studies in social interaction computing were focused on finding

potential groups of interacting people, also known as Free-standing Conversational

Groups (FCG) in conventional still images or videos. In this regard, Groh et al.

[57] proposed to use the relative distance and shoulder orientations between each

pair of people to measure social interactions on small temporal and spatial scales.

This has been done through training a probabilistic classifier which can then be

used for characterizing the social context.

In sociology, the introduction of the F-formation theory by Kendon [36] was

a foot-stone to formalizing social interaction settings. F-formation is defined as

a geometrical pattern that interacting people tend to follow by adjusting their

location and orientation towards each other in the space to avoid mutual occlusion.

The computer vision community later adopted the F-formation theory to detect

groups of interacting people from images and videos [37, 58, 59, 38, 11]. Cristani

et al. [37] proposed to solve the task using a Hough-Voting F-Formation (HVFF)

strategy to find the common area of interaction by accumulating the density of
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the overlapping votes of each interacting person. Built upon a multi-scale Hough-

Voting policy, Setti et al. [59] modeled small FCG as well as large groups of

people, relying on different voting sessions.

The problem of finding F-formations has also been formulated as finding dom-

inant sets and using proxemics by employing the graph clustering algorithm [58],

the graph-cuts framework for clustering individuals [11], heat-map based feature

representation of interacting people [38], and defining an intermediate representa-

tion of how people interact [60].

2.2.2 Social interaction in ego-vision

The boom of interest in ego-vision during the past few years [18], naturally led to

the exploration of social interaction analysis in this setting. For social interaction

analysis in an egocentric scenario, the most exploited features are the face loca-

tion and the pattern of attention of the visible individuals, as well as the head

movements of the first-person when the camera is worn on the head.

Fathi et al. [25], proposed a Markov Random Field model to infer the 3D

location to which a person is looking at during a social interaction, that relies on

the camera intrinsic parameters. They further used this information to classify

social interactions into three classes, namely discussion, dialogue, and monologue,

depending on the active role played by the participants in the interaction. To the

best of our knowledge, this is the only previously introduced work about egocentric

social interaction categorization.

Later, Alletto et al. [61] proposed a method for identifying multiple social

groups from egocentric videos, that do not rely on the camera intrinsic parameters

for 3D projection; hence, the method is applicable to any head-mounted wearable

camera. Park and Shi [62] introduced the concept of social saliency defined as

the likelihood of joint attention from a spatial distribution of social members. A

social formation is modeled as an electric dipole moment allowing to encode a

spatial distribution of social members using a social formation feature. Recently,

[63] proposed to model the dynamics of micro-actions and reactions between two

camera-wearer engaged in a dyadic interaction to reach a deeper understanding

of the ongoing social interaction between them. In this work, the authors demon-

strate that the integration of the first-person perspective of both parties in a dyadic

interaction fosters micro-action recognition task in this setting. In another recent

attempt, [64] offered to analyze social interaction sequences and detect them ap-

plying a Hidden Markov - Support Vector Machine (HM-SVM). Their focus was
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on modeling what they called interaction features, mainly physical information of

head and body.

All the aforementioned works share three main common characteristics. First,

the high temporal resolution of videos (30-60 fps), which allows relying on the

temporal coherence among video frames to robustly estimate the head pose of

appearing people and modeling the foreground. Second, the head-mounted cam-

eras, which permits the modeling of head movements and attention patterns of

the user. Third, the common goal by them, that is restricted to finding potential

social groups of people in the scene, with exception of [25], that goes deeper into

the categorization of social interactions, but strongly relies on the head motion for

that.

2.3 Social Interaction Categorization

An important factor in social pattern characterization of a user is diversity of social

interactions which highlights the density of participation of individuals in various

categories of social interactions, i.e. formal or informal category of meetings [65,

66, 67, 68]. Meetings are defined as gatherings at which humans communicate,

convince, cajole, conspire, and collaborate [69]. In general sociology, a formal

meeting is defined as a pre-planned event where two or more people come together

at a pre-planned place at a particular time to discuss specific matters for the

purposes of achieving a specific goal [69]. An informal meeting is more casual,

requires less planning, and usually can take place at any casual space from a park

to a dinning hall.

Statistical analysis of the social interactions diversity has been considered as

a helpful tool to optimize workspace [67], to minimize the cost of meetings [70],

and to maximize the effectiveness of interactions among of group members and

in the social structure of a broader organization [71]. However, these studies are

carried out in non-automated manners by visually reviewing the images and other

involved signals of interest such as sound.

2.4 Face Clustering

Face clustering is a largely unconstrained problem and rich body of work in the

literature has focused on finding how to exploit characteristics of the dataset or

of the particular application to constrain it. The most common applications are
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interactive tagging of photo albums [72, 73, 74] and video organization [75, 76].

In the context of face discovery in photo albums, Lee et al. [72] introduced a

new constraint known as social context of co-occurring people, following which

people of the same social context often appear together. For example, faces of

the family members usually tend to co-occur even in different photos. The system

first trains a separate detector for each individual and later, uses the detector to

discover novel face clusters by taking advantage of co-occurrence constraints. In

the same scenario, Zhu et al. [73] presented a Rank-Order distance to measure

the dissimilarity between two faces. This work exploits the fact that faces of the

same person usually form close sub-clusters in the feature space. A similar idea

is proposed by Xia et al. [74], who exploited two constraints: an individual only

may appear once in a picture, and the number of instances of the same person

must be lower than the total number of pictures. The problem is then formulated

as a constrained K-Means, which is solved through Minimum Cost Flow linear

network optimization strategy. Imposing constraints to achieve more accurate

clustering is observed in several other works attempting to cluster faces in videos.

Xiao et al. [75] proposed a Weighted Block-Sparse Low Rank Representation

(WBSLRR) which learns a low rank data representation, while considering two

defined prior constraints. First, the inner-track constraint states that any two

faces in the same face track belong to the same person. Therefore clustering is

first performed over face-tracks instead of individual faces. Second, the inter-

track constraint that states face-tracks belonging to faces that appear in the same

frame, does not belong to the same person. A similar idea has been employed

by Cinbis et al. [77], to learn a distance metric for face identification in videos

that pulls close together faces in an inner-track relation, and pushes away those

in inter-track relation. More recently, as in many other computer vision tasks,

deep features proved their efficiency in data representation for face clustering [78,

76]. However, deep learning based approaches are supervised and hence require a

previous learning stage involving identity-labeled faces. Therefore, they are most

suited for face re-identification.

2.5 Social Interaction Characterization

The crucial role of personalized characterization of the social pattern of a user has

been recognized particularly in the medical domain. Related works thoroughly

investigate the feasibility of using a wearable camera for personalized health mon-

itoring that leads to increasing the number of positive clinical outcomes. In this
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line, Aung et al. [79] and Chow et al. [80] pinpoint how mobile technologies

through continuous monitoring, allow precise assessments of human behavior and

ultimately individual mental health. In the same path, Hodges et al. [81] and

Berry et al. [82] suggested to use wearable cameras for detecting relapse in people

affected by depression and Granholm et al. [83] proposed it for ecological momen-

tary assessment of social functioning in schizophrenia. In the context of memory

training of people affected by mild cognitive impairment, pictures of social inter-

actions are specially treated to trigger autobiographical memory [84]. Recently,

Dhand et al. [85] used wearable cameras for monitoring the lifestyle of stroke

survivors and Brown et al. [86] discussed the advantages and disadvantages of

incorporating wearable cameras into social psychological research and reported

data variation on different social situations. In all the aforementioned studies,

the key component is to track social interactions of the user in terms of dura-

tion and frequency and to monitor their possible variation over time. Indeed, the

importance of duration and frequency of social interactions in the study of social

patterns is well recognized in the literature [87, 88]. In chapter 7, we will introduce

a pipeline for automatic analysis of duration, type, frequency, and diversity of so-

cial interactions in the context of social pattern characterization from egocentric

photo-streams.

2.6 Clothing: A Social Signal Processing Per-

spective

Despite the rich body of work on the role of behavioral cues in non-verbal social

signal processing [89], deeper understanding of social signals requires further cues

discovery. In this respect, some visual behavioral cues such as gesture, posture,

gaze, physical appearance, and proxemics have received high attention, while other

possible features such as clothing have been traditionally little studied [13].

This is an important lack in the social signal processing literature since clothing

affects behavioral responses in the form of impression formation or person self-

perception. Several past studies in the social sciences aimed to assess this influence,

showing that formality of the clothing influences impression of others towards a

person [90] as well as the self-perception of people towards themselves [91, 92].

More recently, the influence of clothing on the decision making of individuals has

been investigated [93]. A few studies also have shown that clothing may be an

indicator of ethnicity, culture, socioeconomic status [94, 95], and even surroundings
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of the people [96].

Other studies show that clothing correlates with the personality traits of people

in a way that people with formal clothing perceive actions and objects, the inter-

relationship and the intra-relationship between them in a more meaningful manner

[97]. Clothing can make a person feel comfortable or not in a social situation [98]

and can be considered as a determinant of how long it takes for strangers to

trust one and how much they may trust them [99]. Aforementioned studies are

pieces of evidence of the importance of clothing in social signaling. Arguably,

clothing can be considered as the most evident blueprint of individuals, which is

completely dependent on their conscious choices, is not as transient as a gesture,

and is more evident than any micro-signals such as a sarcastic smile among the

facial expressions.

Various experiments have been previously performed to measure the clothing

effect on human behavior. According to the critical review of Johnson et al.

[100], the effect of clothing on human behavior usually is measured in combination

with other variables. However, despite the rich body of work, to the best of our

knowledge, all of the previous experimental studies were performed and analyzed

manually.
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Multi-Face Tracking in

Egocentric Photo-Streams

3.1 Introduction

People during a full day may often engage in various social events. In a social

event, i.e. a coffee break in a conference, a user by wearing a photo-camera

captures the moments that might be of interest for later retrieval. However, the

first step towards social event retrieval from these photo-streams is to find and

track the appearing people in them. Precisely, people who get engaged in a social

event with the user appear in a number of consecutive frames while irrelevant

people to the camera-wearer only appear occasionally in the photos-streams and

normally do not stay in front of the user for a long time. Hence, by incorporating

additional information about the tracked people, their involvement in the social

interaction with the user can be analyzed.

Extracting relevant information from egocentric photo-streams is not a trivial

task. Indeed, a massive number of unconstrained images can be gathered even

over a relatively limited period of time (up to 3000 images per day using the

Narrative Clip). Moreover, given the unpredictability of the camera motion and

the low temporal resolution of the camera, abrupt changes of the scene occur

frequently. By considering the introduced limitations for people tracking in ego-

centric photo-streams, in this chapter, we present the extended-Bag-of-Tracklets
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(eBoT) approach by introducing several features that help in increasing tracking

robustness in this setting.

The rest of the chapter is organized as follows: in Sec. 3.2, we define the

Confidence-based eBoT for multi-face tracking, by performing seed and tracklet

generation, grouping tracklets, prototypes extraction and occlusion treatment. In

Sec. 3.3, we introduce our experimental setup and discuss comparative results

and finally, in Sec. 3.4, we close the chapter by drawing conclusions and sketching

future work.

3.2 Methodology

Our approach to track multiple faces in egocentric photo-streams consists of four

main steps: seed and tracklet generation, grouping tracklets into Bag-of-tracklets,

prototype extraction, and occlusion treatment.

3.2.1 Seed and tracklet

Prior to any computation, the first step of the proposed method is to organize

the long and unconstrained egocentric photo-streams into homogeneous temporal

segments. To this end, we apply SR-clustering [101], an unsupervised temporal

segmentation method, specifically formulated for egocentric photo-streams. SR-

clustering consists in a Graph-Cut algorithm that finds a trade-off between the

under-segmentation produced by a concept drift detector, and the over-segmentation

resulting from agglomerative clustering. The clustering is performed over both se-

mantic visual concepts and global image features to group temporally adjacent

images into semantically homogeneous segments.

Among the set of created segments from the temporal segmentation step, those

that contain trackable persons are of particular interest for our purpose. To de-

termine if a segment contains trackable persons, the ratio between the number of

frames with detected faces and the number of frames of the segment is measured.

If the ratio is higher than a predefined threshold (0.5 in this work), then the seg-

ment is considered as a segment containing trackable persons. Hereafter, we refer

to a potentially social segment of a photo-stream as a sequence. As the output of

this phase, a set of bounding boxes surrounding the face of each person throughout

the sequence is collected. The collected bounding boxes, hereafter called seeds are

shown in red in Fig. 3.1.
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Due to the nature of the egocentric setting, to detect the visible faces, an in

the wild face detector [102] that substantially outperforms state-of-the-art face

detectors [103] is applied on each frame of the sequence. The detector is based

on a mixture of trees with a shared pool of parts, where, every facial landmark is

defined as a part and a global mixture is used to model topological changes due

to the viewpoint. Different mixtures share part templates that allow modeling a

large number of views with low complexity. Moreover, as shown by the authors,

tree-structured models perform effectively at capturing global elastic deformations,

while being easy to optimize using dynamic programming. The global mixture can

also be used to capture large deformation changes for a single viewpoint, such as

changes in expression. Despite the relatively good performance of the detector,

it sometimes produces some false positives or false negatives due to the blurring

effect that happens frequently in egocentric photos-streams.

Figure 3.1: Detected faces (seeds) are shown by red bounding boxes in a sequence.
An example of false negatives can be observed in frames 8 and 9. Only a sub-
sample of the original sequence is shown.

For each seed, a set of correspondences to it along the sequence is generated,

called a tracklet. The tracklet is generated by propagating the seed in the sequence

forward and backward using a similarity measure to be detailed below. As a result,

a tracklet T i = {tib, ..., tis, ..., tie} associated to the seed i found at time s, begins

in a time b, where the backward tracking ends (first frame in the sequence), and

ends at time e, where the forward tracking ends (last frame in the sequence).

In the rest of this chapter, we will keep the convention of using the variable t

to refer to the bounding box surrounding the faces, the upper-index to identify

the tracklet, and the sub-index to identify the frame. Note that theoretically,

the number of generated tracklets should be of the order of the number of found

seeds. For example, in the ideal case where face detector does not fail, two persons

appearing in all the 100 frames of a sequence, would generate 200 tracklets, each

one of length 100 frames.

To backward and forward propagation of a seed found in the frame s of a

sequence, every other frame of the sequence is inspected to find the most similar
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region in it. In order to deal with the abrupt displacements of the target, the

whole area of the new frame is inspected employing the sliding window approach

where the size of the sliding window corresponds to the size of the seed. This leads

to the generation of a set of sample regions of the same size of the seed in each

new frame. In addition to the sample regions generated by the sliding window, all

the previously detected seeds in that frame are also considered among the set of

sample regions. The intention is to take into consideration the possible face size

variation due to its distance variation from the camera in a different frame.

After generation of the set of sample regions, the next step is to find the most

similar region to the seed. However, to reduce the computational complexity,

a less complex criteria is applied firstly to prune out irrelevant sample regions.

The criteria is to reject those samples whose similarity to the seed in the HSV

color space is lower than a pre-defined threshold. Later, the similarity between

the seed and every remaining sample in a frame of the sequence is measured

by its average deep-matching score [104]. The deep matching is conceived as a

2D-warping, that is able to deal with various kinds of object-induced or camera-

induced image deformations, including scaling factors and rotations. Instead of

using SIFT patches as descriptors, each SIFT patch is split into four so-called

quadrants and, assuming independent motion (to some extent) of each of the

four quadrants, the similarity is computed to optimize the positions of the four

quadrants of the target descriptor.

Figure 3.2: An example of a tracklet generated by deep matching. The red bound-
ing box corresponds to the seed that the tracklet is generated from it. The green
box in each frame corresponds to the sample with the highest deep matching score
to the seed.

For simplicity, let us consider two sequences of R-dimensional descriptors in a

1D warping case: the reference, that corresponds to the seed, say Ps = {ps,i}R−1i=0 ,

and the target, say Pt = {pt,i}R−1i=0 , that corresponds to a sample in a frame. The

optimal warping between them is defined by the function w∗ : {0, . . . , R− 1} →
{0, . . . , R− 1} that maximizes the average value of similarities between their ele-
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ments:

Λ(w∗) = max
w∈W

S(w) = max
w∈W

Mi{sim(Ps(i), Pt(w(i)))}i=0,...,R−1 (3.1)

where w(i) returns the position of element i in Pt, Mi is the average value of

the set of similarity values generate by varying i and sim is the non-negative

cosine similarity between pixel gradients. The deep matching algorithm is built

upon a multi-stage architecture that interleaves convolutions and max-pooling at

three different scales among the feasible warpings between descriptors. The set of

feasible warpings W is defined recursively so that finding the optimal warping w∗

can be done efficiently by a dynamic programming strategy. Fig. 3.2 illustrates an

example of a generated tracklet based on deep matching for one of the seeds in the

sequence shown in Fig. 3.1. The seed is depicted by a red bounding box and the

green bounding boxes correspond to the samples with the highest deep matching

score to the seed in every frame. As can be seen, the tracklet corresponds to the

same person who generated the seed.

3.2.2 Extended-Bag-of-Tracklets

The tracklets generated by the seeds belonging to the same person in a sequence

are likely to be similar to each other; we aim to group them into one eBoTs, where

there is no intersection between eBoTs by definition. Let us consider an eBoT, say

T, as a set containing a tracklet, T = {T i}, where T i does not belong to any other

eBoT. Also, let us consider another tracklet T j that has not been assigned to any

eBoT yet. Let tik and tjk be the bounding boxes, where the person is detected (by

the face detector or by the tracker) at frame k for tracklets T i and T j, respectively.

We define the similarity between two tracklets T i and T j as the average of the

area of the intersection between tik and tjk divided by the area of their union:

S(T j, T i) =
1

|T i|

|T i|∑
k=1

|tjk
⋂
tik|

|tjk
⋃
tik|
.

Given a tracklet T j, it will be added to the eBoT T, if the similarity between

T j and all tracklets in T is high enough. In this work, we experimentally found

that the threshold 0.2 to include a tracklet in an eBoT leads to the best results.

Before adding tracklets to an eBoT, we sort them based on their similarity to the

first tracklet in the eBoT. Since the next tracklets need to be compared to the

existing tracklets in an eBoT, sorting tracklets prior to other computations, helps
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to avoid the aggregation of biased tracklets in the eBoT.

The similarity of tracklet, T j to the eBoT, T is defined as the average of the

similarities to all its tracklets:

S̃(T j,T) =
1

|T|
∑

T i∈T,T i 6=T j

S(T j, T i) (3.2)

where |T| is the number of tracklets in the eBoT. After grouping by similarity, all

tracklets in an eBoT are very likely to correspond to the same person.

However, not all the tracklets in an eBoT are equally reliable. In addition,

some eBoTs may correspond to seeds that are false positive detections. While the

first issue is related to the prototype extraction and will be addressed in the next

subsection, here we detail how to remove unreliable eBoTs that do not correspond

to any person in the video. To this end, we define the density of an eBoT as

d(T) = |T|
|T | , where |T| is the number of its tracklets and |T | is the length of the

sequence.

Ideally, the density value is equal to 1 and corresponds to a situation where

there are as many tracklets in the eBoT, as the number of frames the person

persisted in the sequence and the person appears in every frame of the sequence.

In practice, since the face detection algorithm, as well as the matching algorithm,

holds some errors, the eBoT is looking for the consensus between the different

tracklets to obtain the right tracking outcome. As expected, reliable eBoTs show

different behavior from unreliable ones, the latter having low density. Based on

this observation, those eBoTs that have a density lower than a predefined threshold

are detected as unreliable eBoTs and are discarded. In this work, we empirically

found that a threshold of 0.2 gives good results. By excluding unreliable eBoTs,

we obtain a number of eBoTs as the number of persons in that sequence (see Fig.

3.3).

3.2.3 Prototype extraction

A prototype extracted from an eBoT T, should represent all the tracklets in the

eBoT. Note that the detection of the target in a given frame of the sequence varies

depending on the seed that generated the tracklet. Thus, a prototype should return

the most common location of the face among the tracklets of an eBoT in every

frame. To this end, the bounding box of a prototype in a frame is chosen as the

one which has the biggest intersection with the rest of the bounding boxes of the
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Figure 3.3: Example of a reliable eBoT -after excluding unreliable eBoT- extracted
from the sequence in Fig. 3.1. Each row shows a tracklet in the eBoT which in
total consists of 7 tracklets. The red bounding box in each row indicates the
seed of that tracklet and green bounding boxes are the samples with the highest
average deep matching score to their corresponding seed. As can be appreciated,
all tracklets in the eBoT correspond to the same person.
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(a)

(b)

Figure 3.4: Two Prototypes extracted for the two persons in the sequence.

other tracklets in the same eBoT in that frame, namely:

T̂ = {t̂b, . . . , t̂k, . . . , t̂e}, so that t̂k = arg max
i=1,...|T|

∑
j=1,...,|T|,j 6=i

tik
⋂

tjk,

where |T| is the number of tracklets in the eBoT, (tik, t
j
k)i 6=j are the bounding

boxes of detected faces in the k-th frame of tracklets T i and T j from the eBoT T,

respectively.

Fig. 3.4 shows two prototypes, each of them extracted from a separate eBoT

where only one of them is shown in Fig. 3.3. Note that the prototypes correctly

tracked the persons although the face detector missed the person in several frames.

Missed detections can be seen in Fig. 3.1.

3.2.4 Occlusion treatment

Besides optimizing the localization of the target, a good prototype should also

indicate occlusions or unreliable detections. In order to increase the accuracy of

the proposed method, in the final prototype, those frames where the target is fully

or partially occluded or there is an unreliable detection are detected and removed.

To this goal, a function Λ(tis, t
i
k) is defined that associates to each bounding box

tik of a tracklet T i the value of the deep matching score to its seed tis. The frame

confidence is defined as the average of the normalized deep matching scores of its

bounding boxes of all the tracklets of the same eBoT, in that frame, that is:
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Ck =
1

|T|

|T|∑
i=1

Λ(tis, t
i
k), (3.3)

In Eq. 3.3, Ck is the frame confidence, |T| is the number of tracklets in the eBoT,

tis is the seed of the i-th tracklet of the eBoT and tik is the bounding box of frame

k of the i-th eBoT tracklet. The deep matching scores between bounding boxes

in the eBoT have been normalized between zero and one.

When there is a severe or partial occlusion of the face, or the target is missing,

the confidence of the eBoT on that frame Ck experiences a drop. This phenomenon

can be observed in Fig. 3.6, where, due to partial occlusion of faces in frames 5 and

6 in Fig. 3.6 (a) and frames 6 in Fig. 3.6 (b), the confidence value in these frames

has a minimum and lies under the pre-defined threshold for occlusion estimation.

In all the cases of occlusions that are shown in Fig. 3.6 (a) and (b), the face of the

person is only partially occluded. This fact shows the robustness of the method

in estimating large changes in facial appearance.

The value of the threshold for estimating occlusions, say L, is calculated over

a subset of 15 sequences that constitute the training dataset. Fig. 3.5 shows

the normalized confidence value calculated using Eq. 3.3, for frames where the

target is occluded (left) and for frames where the target is not occluded (right).

For non-occluded frames we used the ground-truth tracklet to compute the confi-

dence values, whereas for occluded frames we generate a fake-tracklet by randomly

defining a bounding box where there is not a face. As a tracklet is generated for

each seed, in Fig. 3.5 we plot on the left the median value and the mean value

of deep matching score over all the generated fake-tracklets and on the right the

median value and the mean value of deep matching score over all the ground-truth

tracklets over a sequence. The threshold L (black line), emerges from the median

of all the median confidence values over occluded frames. We obtained this value

as L = 0.12.

After estimating occlusions, we refine the frame confidence presented in Eq.

3.3, considering it zero for occluded frames, that is:

Ck =

{
1
|T|
∑|T|

i=1 Λ(tis, t
i
k), if 1

|T|
∑|T|

i=1 Λ(tis, t
i
k) ≥ L

0, otherwise
(3.4)
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Figure 3.5: Normalized confidence value for fake tracklets generated from an oc-
cluded target (left) and for ground-truth tracklets (right). The threshold L that
is used to estimate occlusions, is depicted in black.

3.2.5 Confidence of prototypes

A prototype can be very useful as a basis for applications, such as finding the

type of a social interaction and social roles. Thus, confidence estimation of an

extracted prototype is a valuable task. We define the prototype confidence as the

mean confidence over all its frames that do not undergo occlusion weighted by a

term that penalizes occlusions, that is:

C(T̂ ) =
1

|T̂ |

∑
k=1,...,|T̂ |

C(t̂k)×max((1 + β log((|T̂ | − z)/|T̂ |)), 0) (3.5)

where |T̂ | is the length of the prototype, z is the number of frames, where the

face is occluded or missing, and β is a control parameter that depends on the

performance of the detector (we found that β = 1 gives reasonable results). Note

that, in the absence of occlusion, the confidence from Eq. 3.4 and Eq. 3.5 are the

same.

Eq. 3.5 is inspired from the definition of tracklet confidence given by Bae and

Yoon in Multi-Object Tracking based on Tracklet Confidence [105]. The first term

is related to the coherence in the appearance of the target along the tracklet: a

more coherent appearance in a tracklet increases the confidence of the tracklet.
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(a)

(b)

Figure 3.6: Frame confidence of two prototypes shown in Fig. 3.4, as defined
in Eq. 3.3. The occurrence of occlusion for every person in the sequence in the
ground-truth is shown by red stars in the plot. The black line corresponds to L, the
threshold determined to estimate occlusions. As can be seen, the occurrence of the
face occlusion indicated in the ground-truth, highly coincides with the calculated
confidence drop of the face in that frame.
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The second term is related to the continuity of the tracklet: it decreases for oc-

cluded tracklets. Therefore, the final prototype should have a larger confidence

than all the tracklets in an eBoT. After estimating occlusions for the prototypes,

we associate a confidence value to each tracklet of the eBoT by using Eq. 3.5,

and verify that the confidence of the prototype is higher than the highest tracklet

confidence in the eBoT. After evaluation, the average confidence value of all pro-

totypes in our test set has a value of 0.54, which is higher than the average of the

confidence value of all the tracklets in all eBoTs, being 0.32.

3.3 Validation

3.3.1 Dataset

Currently, there is no dataset for person tracking with ground-truth information

in egocentric photo-streams. Hence, to measure the performance of the proposed

model, we created a dataset acquired by the Narrative Clip camera. We manually

annotated the sequences that contain trackable people and localized the position

of their faces. The dataset has been acquired by five users of different ages.

Each user wore the camera for a number of non-consecutive days over an 80 days

period, collecting ∼20.000 images. The images have been acquired in diverse

environments with different illumination conditions while the user was performing

varying activities. Our dataset contains a total number of 108 different trackable

persons along 80 sequences of the average length of 25 frames. Table 3.1 provides

further details of the proposed dataset.

Table 3.1: Detailed breakdown of our dataset made of ∼20.000 images captured
by 5 users

User Days Total Total frames Total frames Average daily
frames with person(s) with occlusion duration

1 30 6478 680 53 8h
2 5 1228 125 17 8h
3 10 3428 220 27 8h
4 28 6894 850 96 8h
5 7 2178 425 22 6h

36



3.3 Validation

3.3.2 Experimental setup

After partitioning a photo-stream captured by the Narrative Clip into segments,

a face detector is applied to exclude non-trackable segments and generate possible

seeds for trackable segments, called sequences. Then, a tracklet is generated for

each seed in a sequence. Finally, the tracklets are grouped into eBoTs and a

final prototype with estimated occlusion is extracted from each reliable eBoT.

These prototypes constitute the final output of our method. In the next section,

quantitative and qualitative comparison between our approach and other tracking

approaches is provided.

We measured the performance of our method using CLEAR MOT [106] on the

resulting prototypes (with and without occlusion estimation). Additionally, we

compared its performance with six other state-of-the-art methods. CLEAR MOT

consists of multiple metrics as follows. The Multiple Object Tracking Precision

(MOTP) evaluates the intersection area over the union area of the bounding boxes:

MOTP =
1

|Ms|
∑
k∈Ms

|tk
⋂
gtk|

|tk
⋃
gtk|

,

where Ms is the set of frames in a sequence in which the tracked bounding box tk
intersects the ground-truth bounding box gtk, and |Ms| is the cardinality of Ms.

MOTP quantifies the accuracy of the tracker by estimating the precise location of

the object, regardless of its ability in keeping consistent trajectories.

On the other side, the Multiple Object Tracking Accuracy (MOTA) estimates

the accuracy of the results by penalizing False Negatives (FN), False Positives

(FP) and IDentity Switching (IDS), namely:

MOTA = 1−
∑l

k=1(FNk + FPk + IDSk)∑l
k=1GTk

,

where k refers to the frame number, l is the length of the sequence, and GTk
states for the number of faces in the ground-truth to be tracked at frame k. FNk

and FPk donate the number of false negatives and false positives in a frame k,

respectively. IDSk is equal to 1 when the detection does not overlap with its

corresponding ground-truth face target, but with another face.

Both metrics intuitively express the overall strength of each tracker and are

suitable for general performance evaluations. Furthermore, the qualitative com-

parative results are also shown over four different sequences in the next section.
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3.3.3 Discussion

Quantitative evaluation: To the best of our knowledge, the only work which

was exclusively introduced for person tracking in egocentric photo-streams is BoT

[39]. Most of the available tracking techniques are not directly applicable to ego-

centric photo-streams, since they follow assumptions such as temporal consistency

between frames or smooth variation in target and background appearance, that do

not hold for egocentric photo-streams. Still, we compared our approach to six dif-

ferent state-of-the-art algorithms that are applicable to egocentric photo-streams

since they do not rely on motion information nor background modeling.

The selected trackers are designed for tracking one object at a time, but in

our dataset, more than one person appears in the sequence. Thus, we applied the

trackers separately for each person to adapt them to our scenario. In this case,

the tracking problem reduces to one object tracking and therefore for evaluation

measurements we do not consider the IDS metric for these methods as proposed by

Smeulders et al. in [44]. In Table 3.2, we show the percentage of MOTP, MOTA,

FP, FN and IDS on the results of AMT [54], BoT [39], CT [48], LOT [50], L1O

[51], and SPT [49]. We also show how the estimation of occlusions improves the

performance of the proposed method in most of the metrics.

Table 3.2: Performance comparison

Methods MOTP↑ MOTA↑ FP↓ FN↓ IDS↓
AMT (Abrupt Motion Tracking) 60.99% 59.65% 16.70% 23.65% -
BoT (Bag of Tracklets) 48.39% 43.44% 22.9% 20.17% 14.30%
CT (Compressive Tracking) 35.05% 15.32% 33.07% 51.61% -
LOT (Locally Orderless Tracking) 42.27% 15.57% 33.12% 51.13% -
L1O (L1 Tracker with Occlusion Detection ) 37.25% 25.87% 31.81% 42.32% -
SPT (SuperPixel Tracking) 40.75% 39.31% 23.56% 37.13% -
eBoT (prototype, occlusions not excluded) 68.32% 72.08% 15.19% 10.60% 2.13%
eBoT (prototype, occlusions excluded) 70.27% 80.23% 5.12% 12.51% 2.13%

As can be observed, the difference among CT, LOT, L1O, and SPT in terms

of precision (MOTP) is small, where CT has the smallest value. This can happen

since this tracker does not change the scale of the bounding box, while other

methods have a relatively good mechanism for scale adaptation. BoT and AMT

have higher precision than other methods, with AMT outperforming BoT. This

can be justified because in AMT the true object is introduced for the tracker in

the initial frame of the sequence, whereas BoT is fully automatic.

In terms of accuracy (MOTA), CT and LOT perform much the same as each
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other. This might be a consequence of regular appearance model updates for both

trackers which leads to object loss when they encounter a large variation between

frames. However, L1O and SPT perform slightly better, since they are able to

estimate occlusions, leading to lower amount of FP. SPT and LOT use superpixel

representation, which is more suited for bigger objects. Thus, they perform better

when the face is closer to the camera and looks bigger. On the other hand,

AMT is designed for tracking on low frame-rate videos and performs quite well

on our dataset, being able to outperform BoT. However, it can easily miscalculate

the position of the target, when there is more than one face in the frame. The

miscalculation may happen due to use of a color-based likelihood model that can

easily get confused by finding a region with similar colors to the target.

As it can be seen in the lower part of Table 3.2, the proposed method in this

paper outperforms the state-of-the-art. The seventh and the eighth lines in the

Table 3.2 show evaluation metrics obtained before and after estimating occlusions.

The estimation of occlusions reduces FP, while slightly increases the FN rate due

to wrongly eliminating some true detections in the final prototypes. The proposed

method for prototype extraction drastically reduces FP, FN, and IDS, since it

optimizes the localization of the detection.

From this evaluation, we can state that the proposed model is able to robustly

track multiple peple faces under challenging conditions. Moreover, this improve-

ment is achieved without relying on any strong assumptions and without the need

of a cumbersome training stage.

Qualitative evaluation: The tracking results of the proposed approach to-

gether with the results of the previously introduced trackers are shown over four

different sequences in Fig. 3.7, Fig. 3.9, Fig. 3.10, and Fig. 3.8. Every sequence

contains multiple persons and tracking result of each tracker is shown by a spe-

cific color in every frame of the sequences. The result of the proposed approach

is shown by a red bounding box around the face of the person. In the frame,

where our method detects an occlusion, no bounding box is shown. For the sake

of visualization, if a sequence contains more than one person, the tracking result

for each person is shown in a separate line. Fig. 3.7 shows the final prototypes

with estimated occlusions of the prototypes shown in Fig. 3.4. Fig. 3.9 and Fig.

3.10 show the result for a sequence of two different persons and Fig. 3.8 shows

them for a sequence of three different persons.

Among the state-of-the-art methods, AMT has the best performance on our

dataset, because it was designed to cope with abrupt motion changes. However,

it can easily produce FP in the presence of multiple persons for not being a multi-
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(a)

(b)

Figure 3.7: Results of applying different methods on an egocentric photo-stream.
Different bounding boxes show the tracking results of the CT, LOT, AMT, SPT,
L1O and our proposed approach. Occlusions can be observed in frame #9 of 3.7a
and frames #4 and #9 of 3.7b.

(a)

(b)

(c)

Figure 3.8: Results of applying different methods on an egocentric photo-stream.
Different bounding boxes show the tracking results of the CT, LOT, AMT, SPT,
L1O and our proposed approach. Occlusions can be observed in frame #5 of 3.8a
and frame #6 of 3.8c.
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(a)

(b)

Figure 3.9: Results of applying different methods on an egocentric photo-stream.
Different bounding boxes show the tracking results of the CT, LOT, AMT, SPT,
L1O and our proposed approach.

(a)

(b)

Figure 3.10: Results of applying different methods on an egocentric photo-stream.
Different bounding boxes show the tracking results of the CT, LOT, AMT, SPT,
L1O and our proposed approach. Occlusions can be observed in frame #3 of 3.10a
and frame #10 of 3.10b.
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tracking method. As can be observed, CT, LOT, L1O, and SPT are unable to

find the target when its location varies largely. In addition, a common drawback

among the AMT, BoT, CT, and LOT is that they are unable to localize target

occlusion. As expected, it can be seen that the tracking results of the proposed

approach closely match the person’s face. However, the method assigns a wrong

region to the track, when a person’s face is occluded, causing the occurrence of

FP or IDS. Still, our method is able to precisely estimate occlusions or wrongly

assigned detection.

Another observation taken from these experiments is that our proposed method

works better when the people are closer to the camera. As the distance of the

people from the camera increases, the resolution of the image on their face region

decays. This phenomenon leads to the generation of fewer seeds by the face detec-

tor and to unreliable matches by the deep matching approach. The illumination

condition is another important factor as well. eBoTs is quite robust to illumination

changes, although it performs better when the images are not too dark.

3.3.4 Complexity analysis

Regarding the complexity of our proposed algorithm, one can easily see that the

most expensive part is the construction of the tracklets, where the deep matching

is applied with a sliding window approach to all the windows with a similar color to

the seed in the HSV color space. The most expensive part of the deep matching

algorithm lies in the computation of the first level convolutions. However, the

computational burden would be mitigated by using a GPU or a faster matching

algorithm [107], that achieves comparable performances. Finding the optimal

matching score among all feasible non-rigid warpings for all square patches at

different scales, from the first image at all locations in the second image can be

done with complexity O(PP ′), where P and P ′ are the numbers of pixels of both

images. Usually, the size of the seed image is between 5000 and 6000 pixels and

the number of samples to be considered is about 2000. On a CPU Intel i5 - 2.53

GHz, with operating system Windows 7 - 64 bit, 4G of RAM, it takes on average

about 1 minute per each pair of images to find the similar candidate to the seed.

It is easy to see that the complexity of the rest of algorithms to construct the

eBoT and extract the prototype is O(M ∗ N2), where M is the number of faces

appearing in the sequence and N is the length of the sequence, taking less than a

minute in the aforementioned computer.
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3.4 Summary

In this chapter, we introduced our novel method to track multiple-faces in egocen-

tric photo-streams that substantially outperforms state-of-the-art. In the following

chapters, the importance of multiple-face tracking in the analysis of social events

in egocentric vision will be thoroughly explained. Extended-bag-of-tracklets ap-

proach, to deal with various types of object-induced or camera-induced image

deformations, tracklets are computed by using the average deep-matching score

between the seed and each sample in different frames. Moreover, in order to extract

the final prototype, eBoT introduces a useful measure of confidence to estimate

and discard occlusions and missed detections. A quantitative comparison between

our model and other six state-of-the-art methods over a dataset of 20,000 images

showed the advantage of the proposed model under drastic changes of poses, scales

and object appearances.

In this chapter, we presented the extended-Bag-of-Tracklets (eBoT) approach

by introducing several features that help in increasing tracking robustness even in

photo-streams acquired by cameras with lower frame-rates (2 fpm) and narrower

fields of view:

The advantages of eBoT approach can be summarized as follows:

• To manage the close appearance of people to the camera, eBoT reliably

detects people characterizing them by their face instead of their body.

• To improve the control over target deformations and scale variations, eBoT

employs a new approach for finding correspondences based on an average

deep matching score instead of the sparse representation of features.

• eBoT presents a more robust way to compute the prototype of the bag-of-

tracklets by trying to extract the most reliable bounding box frame-wise,

instead of tracklet-wise.

• eBoT is tolerant of face occlusions and is able to explicitly localize them

which leads to the higher precision of results.

• eBoT introduces a confidence term to measure the reliability of the proto-

types which facilitates further analysis of final tracklets.
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C H A P T E R 4

Social Interaction Detection in

Egocentric Photo-Streams

4.1 Introduction

Distinct past efforts have been carried out in computer vision to solve the social

interaction detection problem in both conventional and egocentric vision employ-

ing different visual features as discussed in chapter 2. In this chapter, our focus

slightly different from the aforementioned methods is to tackle the problem of

social interaction detection in egocentric photo-streams. We are interested in the

automatic detection of the social events occurred in the real-world setting, such as

coffee breaks, casual work meetings or a sudden encounter in a park. The complex

visual appearance of natural scenes makes the task especially challenging.

In this chapter, we propose two approaches to solve this problem: frame-level

and event-level social interaction detection. In the frame-level approach, social

interaction status of each individual in the scene with the camera-wearer is estab-

lished in every frame of the photo-stream. The presence of a social interaction is

decided in every single frame separately and eventually, if the number of found

interactions with regards to the full length of the sequence is higher than a prede-

fined threshold, then that specific person is considered as socially interactive. In

the event-level analysis, we make use of the temporal evolution of social signals

along a potential social event. We aim to describe how the evolution of the social
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(a)

(b)

Figure 4.1: Examples of two sub-sampled sequences in EgoSocialStyle test set. In
4.1a the user is involved in a social interaction while 4.1b demonstrates a sequence
where although the user is among the crowd, he is not specifically interacting.

signals inferred from human behavior, can be employed to decide if the appearing

people in a sequence are interacting with the camera-wearer or not.

This chapter is organized as follows: Sec. 4.2 is devoted to provide details

about both the frame-level (4.2.2) and event-level (4.2.3) models for social inter-

action analysis in egocentric photo-streams. In Sec. 4.3 we present the employed

methodology for validation of both models and discuss the obtained results. In the

same section, we also compare both frame-level and event-level models for social

interaction detection from a different perspective. Finally, main characteristics of

both models and their performance on the proposed dataset are summarized in

Sec. 4.4.

4.2 Methodology

We, as humans are naturally able to recognize if two or more people are interacting

by simply looking at a sequence of images (see Fig. 4.1). However, this is not

as trivial for a computer program. Let us define a sequence as a potential social

segment of a photo-stream extracted by applying the video segmentation tool of

Dimiccoli et al. [108]. Given a sequence, social signals are first extracted at every

frame and later are analyzed either in frame-level or their evolution is analyzed

over time at sequence-level to detect social interactions.
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4.2.1 Social signal extraction

Tracking the appearance of people is generally considered as the first step prior

to any social behavior analysis in machine vision. In this work for tracking, we

employed the extended-Bag-of-Tracklets (eBoT) [2] as a multi-person tracking

algorithm in the egocentric photo-stream setting. The set of bounding boxes

corresponding to the same face in a sequence, resulting from eBoT, is called a

prototype, where the number of prototypes in a sequence is equal to the number of

tracked people in it as more than one individual may appear in a single sequence.

Both approaches presented in this chapter rely on the F-formation formaliza-

tion for social interaction detection. As the F-formation model assumes a bird’s-

eye view of the scene, we represent each bounding box in a prototype by a (x, d, o)

triplet, so that x denotes the position of the person in the horizontal axis of the

image and with regards to the user, d denotes its distance, and o its head orien-

tation. The tracking process directly provides us with the x position of a face.

Both parameters, d and o should be calculated for all the participants in the so-

cial interaction, being the user and the visible people in a sequence. However, in

our egocentric setting, x is not a reliable feature to be considered as it constantly

undergoes large variations due to the unpredictable movements of the camera and

its low frame-rate (see Fig. 4.1a). Moreover, when it comes to interaction with

the user, the x position of the visible people as far as they do not occlude each

other, does not play a crucial role. Therefore, we only consider the (d, o) pair to

analyze the F-formation.

Distance: In the egocentric setting, the user is obviously located at no distance

from the camera, O. The distance d(O, pj) of the j-th tracked person (pj) from the

camera is estimated based on the camera-pinhole model by learning its relation

with the vertical face height of the person [109]. According to our observations,

the relation between the face height of individuals and their distance from the

camera is best modeled as a second degree polynomial of the face height of the

person [40].

For training the polynomial regression function, we used the height of the face

of 3 different individuals measured in all the following set of distances:

{30, 50, 70, 100, 150, 200, 250} cm.

The distance feature is represented by:

ϕd(pj) = d(O, pj) ∈ R.
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Without loss of generality, in the feature vector, we will omit the reference to the

person pj and the wearable camera O.

Generally, the distance among the interacting people strictly depends on the

type of the interaction and the number of people involved in the interaction as

defined by Hall [110] and has the range [0,120] for casual relationships and no

relationship can occur in a distance further than 350 cm. In our setting, we

empirically discovered that the distance d ≤ 150cm is where social interaction

normally takes place.

Orientation: The head orientation of each individual gives a rough estimation of

where the person is looking at. Yaw head orientation is the most commonly studied

social signal in social interaction detection. However, in this work, in addition to

the yaw (ωz) head orientation, pitch (ωy), and roll (ωx) head orientations are also

studied. Hence, the orientation feature is given by:

ϕo(pj) = (ωx(pj), ωy(pj), ωz(pj)) ∈ R3,

where each of ωx, ωy, and ωz has a value between [-90◦,90◦]. As the camera is

basically worn on the chest of the user, we assume the user possibly looks at

anywhere in the space, but with a higher probability of looking at other engaged

people in the interaction.

Facial expression: During a social interaction, people exhibit a large number of

non-verbal communication cues including facial expressions. Facial expressions as

stated by Hess et al. [111], are often referred to as automatic demonstrations of

affective internal states used as communicative means in interaction with others.

The overlooked importance of facial expressions for social interaction detection is

mostly noticed within the scenes recorded in crowded places where people often

stand in close proximity to strangers with whom they do not necessarily interact

(see Fig. 4.1b). In this situation, relying solely on distance and orientation of the

individuals for social interaction detection may lead to disputable predictions (see

Fig. 4.2). Our observation on real social situations led us to intuitively explore

the role of facial expression in social interaction detection as an additional feature

besides the pure geometrical features imposed by the F-formation.

In this work, facial expressions and face orientation are extracted by making use

of Microsoft Cognitive Service1. Facial expression is presented as a predicted vector

of probabilities for each of 8 different facial expressions consistently associated to

emotions in the occidental culture, being neutral, happiness, surprise, sadness,

1https://azure.microsoft.com/en-us/services/cognitive-services/face/
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(a) (b)

Figure 4.2: A same person is shown in two different social events where facial
expression probabilities of the person are also presented. When the person is not
interacting with the user (4.2b), her dominant facial expression is Neutral, while
when interacting (4.2a) her dominant facial expression varies to Happiness.

anger, disgust, fear, and contempt [112]. For a given person pj, we proposed

to consider the index of the dominant facial expression that is a discrete value

between 1 (neutral) and 8 (contempt):

ϕe(pj) = arg max
k∈1,...,8

ek(pj).

4.2.2 Frame-level analysis

In the frame-level analysis of social signals, our focus is on finding the o-space

and the individuals who are forming it within the F-formation formalization in

every frame of a sequence. To this end, we adopt the Hough-Voting F-Formation

(HVFF) strategy for social interaction discovery in videos recorded by surveillance

cameras introduced by Cristani et al. [37] to the egocentric photo-stream scenario.

HVFF aims at detecting the o-space, taking as input the position of the people and

their head orientations. This algorithm is based on a Hough-Voting strategy, where

weighted local features vote for a location in the image plane and the generalized

Hough procedure does not require the local features to be in a fixed number.

This approach provides the estimation of the circular o-spaces and the index of

the people that form them, thus, enables social interaction detection solely from

visual cues.
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4.2.2.1 Hough-Voting F-formation

In the surveillance setting, to specify the o-space in the image plane, the (yaw)

head orientation ωz and the position of the people in the scene (x, y) is required.

Let us assume a special case where only two individuals, p1 and p2 are interacting

together. These two people are located at positions (x1, y1) and (x2, y2) with head

orientations ωz1 and ωz2 , respectively. Let us assume that the two individuals are

exactly facing each other and are located at a distance where the interaction can

happen (d ≤ 150cm). Given these (hard) constraints, each j-th subject votes for

a candidate center C(j) of the o-space, with coordinates xC(j), yC(j)

C(j) =
[
xC(j), yC(j)

]
=
[
xj + r · cos(ωzj), yj + r · sin(ωzj)

]
, j = 1, . . . , J (4.1)

where the radius r = d/2 = 0.75. However, the condition where people face

each other at a position that enables them to vote in exactly one point is rather

rare. In order to deal with this problem, some uncertainty is injected in the

voting procedure of the proposed HVFF. To this end, primarily, uncertainty in

the positions and the head orientation of the different subjects is modeled by

random Gaussian variables, i.e.,[
xj, yj, ωzj

]T ∼ N (µj,Σj)

where µj =
[
xj, yj, ωzj

]T
and Σj = diag(σ2

x, σ
2
y , σ

2
ωz

). This uncertainty is trans-

ferred in the voting approach by drawing S-1 samples (being µj the S-th sample).

Each generated sample of the j-th subject has associated a weight, which is the

likelihood of being extracted from its generating distribution. Each sample votes

for a candidate position in the same way of Eq. 4.1. The votes given by different

samples from different individuals accumulate in an intensity accumulation space

with an index which associates them to the individuals who generated them. In

this way, the o-space can be localized by finding the maximum values in the

intensity accumulation matrix, and the associated subjects to it can be identified

by inferring the index of individuals who vote for them.

4.2.2.2 Hough-Voting F-formation in egocentric photo-streams

To adapt the Hough-Voting model for social interaction detection to the egocentric

setting, namely ego-HVFF, a set of adaptation is required. Although the x position

of individuals is used to depict them in the scene, the y position is omitted and
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instead the distance d of the individuals is considered. Hence, the parameters σ2
x

and σ2
d are used to project the position of the people in the range of 3σx(d). In

other words, these values allow being flexible about the classes of relations taken

into account by the distance parameter. σ is set to σ2
x = σ2

d = 400cm. For the

appearing people in the scene, the value of σ2
ωz

depends on the quantization of

the head orientation. As we employed 7 head orientations, we kept σ2
ωz

= 0.005.

The head orientation of the camera-wearer is set to 0, with σ2
ωz

= 0.1 to cover

approximately 180 degrees in front of him as his head orientation is not extractable

from the chest-worn wearable camera. The parameter S is empirically chosen

as S = 800 for the visible people and as double for the camera-wearer. These

parameters are chosen empirically over the training set of EgoSocialStyle.

4.2.3 Event-level analysis

Despite most existing methods which make little use of the evolution of the features

over time, in this work we employed Long Short-Term Memory Recurrent Neural

Network (LSTM) which is adapted for learning over sequential data. The proposed

method aims to describe how the evolution of the social clues characterizing the F-

formation theory which inferred from human behavior, can be employed to decide

if the appearing people in a sequence are interacting with the camera-wearer or

not. To the best of our knowledge, this work is first to detect social interactions

with the camera-wearer at sequence level instead of frame-level information in the

domain of egocentric photo-streams.

4.2.3.1 Temporal representation of social signals

In this setting, the problem of social interaction detection is formulated as a bi-

nary time-series classification, where the time-series dimension corresponds to the

number of selected social signals for the analysis as explained in Sec. 4.2.1. The

complete setting is a 5−dimensional time-series representing the time-evolution

of the k-th interaction feature for each prototype. The task is to classify each

time-series as interacting with the user or not. All the aforementioned interaction

features are extracted in every frame of the sequence at time step τ to build the

time-series representation of a prototype:

ϕdetection(τ, pj) = (ϕd(τ, pj), ϕo(τ, pj), ϕe(τ, pj)) ∈ R5, τ = 1, 2, . . . .
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Figure 4.3: Pipeline of the proposed model for event-level social interaction de-
tection.

4.2.3.2 Time-series classification by LSTM

Time-series classification is a predictive modeling problem and what makes this

problem difficult is that the original sequences can vary in length, be comprised

of a very large vocabulary of input symbols and may require the model to learn

the long-term context or dependencies between symbols in the input time-series.

In this context, RNNs with LSTMs showed great promise to learn the informa-

tion hidden among steps of a sequence [113, 114]. LSTM owes its ability to its

incorporated memory cells that use logistic and linear units with multiplicative

interactions with input and output gates. In this way, it overcomes the exponen-

tial error decay problem of RNN and increasing complexity of HMM for learning

long-term dependencies.

For egocentric sequence binary classification purpose, in this paper, we propose

to train an LSTM network by introducing to it the time-series from each sequence

as presented in the previous subsection at each time step. All the aforementioned

features for each sequence are introduced to the network as input. The system

must learn to classify sequences of different lengths to interacting or not by ana-

lyzing the feature vectors associated to each sequence. Hence, the system needs

to learn to protect memory cell contents against even minor internal state drift.

The scheme of the proposed model for the social interaction detection is depicted

in Fig. 4.3.
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Figure 4.4: Examples of images of social interactions from EgoSocialStyle. EgoSo-
cialStyle is the proposed dataset in this work and is captured by 9 different users
in different social contexts using the Narrative Clip camera. In this work, EgoSo-
cialStyle is employed to evaluate the proposed framework for the purpose of social
pattern characterization of a user.

4.3 Validation

In this section, we introduce our dataset for social interaction analysis in egocentric

photo-streams, namely EgoSocialStyle and describe the proposed experimental

setup to validate our proposed approaches. A comprehensive discussion over the

obtained results is also given in this section.

4.3.1 Dataset

EgoSocialStyle has been acquired by 9 users wearing a Narrative clip camera

during the participation in gathering the dataset while they were living their daily

life without any constraints. The camera was set to automatically capture a photo

every 30 seconds once being worn. The participants who gathered the dataset had

different ages and profiles and wore the camera in different and random days and

times of the week. Sequences in our dataset have different lengths, varying from

20 to 60 frames (10 to 30 minutes of interactions).

The training set of EgoSocialStyle is acquired by 8 users; each user wore the

camera for a number of non-consecutive days over a total of 100 days period,

collecting over 100,000 images in total, wherein 3,000 images among them a total

number of 62 different persons appear.

The test set is acquired by a single user, who did not participate in acquiring

the training set as we aimed to study the generalization ability of our model for

social pattern characterization of a person. The user wore the camera for 30

consecutive days collecting 25,200 images, where 2,639 of which correspond to

social events. There are 35 sequences with more than one person appearing in

them over 113, in total. 40 different trackable persons appear in the test set.

Face annotations in the whole dataset are attained using the Microsoft face

annotation tool [112]. Participants were asked to provide a label (interacting/not
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Table 4.1: EgoSocialStyle dataset consists of train set and test set captured by 9
different users. The details about each set is provided in this table.
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Train 8 100 100,000 3,000 62 106 132 102 42
Test 1 30 25,200 2,639 40 113 172 130 25

interacting, formal/informal) for their own sequences. Table 4.1 provides further

details of the proposed dataset.

4.3.2 Frame-level analysis

The efficiency of ego-HVFF on finding the social interactions in EgoSocialStyle

is measured by calculating its accuracy in truly detecting individuals who actu-

ally interacted with the camera-wearer during a sequence. The ground-truth in

this case for each sequence is a binary number for each individual who appears

along the sequence. One is assigned to interacting and zero to non-interacting

individuals with the camera-wearer. From the interaction probability map of each

individual, we decide they interacted with camera-wearer if they are detected as

being interacting in more than half of the frames of a sequence.

Note that ego-HVFF inherently only considers the yaw head orientation, and

make no use of pitch and roll head orientation. Therefore, in the frame-level

analysis employing ego-HVFF, pitch and roll head orientation, as well as facial

expression, are not considered.

4.3.3 Event-level analysis

4.3.3.1 Data augmentation

A large amount of data for better training of deep models is a well-recognized

necessity. However, the required time to acquire and label real data for this

purpose is not negligible and is where artificial data augmentation could have an

impact. A proper data augmentation is one which provides a reasonable set of data

in addition and similar to the already existing data in the training set, but also

slightly different from them to reduce overfitting of the model in learning a task

[115]. Besides the impact of data augmentation in the production of additional

data, it is also considered a helpful tool to provide balance to unbalanced data.
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This especially is of interest in our case where to acquire sequences without any

social interaction is more difficult than sequences with social interaction.

To augment the data at hand, we employed the proposed idea by Krizhevsky

et al. [116]. The principle idea consists of augmenting signals by adding slight

variations to them, which can be done by adding eigen-features on top of each

different feature in a sequence. This has been achieved through applying PCA

and then adding multiples of the found principal components to each sequence.

The magnitude of the principal components is proportional to the corresponding

eigenvalues times a random variable drawn from a Gaussian with mean zero and

small standard deviation (0.01, in this work). This scheme generates more data in

addition to the original training data by applying label-preserving transformations

to them.

Let Φ = (ϕ1,n(τ), ϕ2,n(τ), . . . , ϕK,n(τ)), n = 1, . . . , N is the set of all the N

time series in our training set where τ = 1, . . . , T , is the length of the sequences

and consequently the time-series and, k = 1, . . . , K, is the dimension of the time-

series. In the social interaction detection task, N is equal to the total number of

prototypes in the training set.

The augmentation of Φ from N to N̂ , with N̂ = ∆N , is achieved through

adding the vector Φ̂n(τ) = (φ1,n(τ), φ2,n,(τ), . . . , φK,n(τ)) to the frame τ of the

n-th time-series in ∆ number of attempts. Φ̂n(τ) is obtained as:

Φ̂n(τ) = [P1, P2, . . . , PK ][θ1,n(τ)λ1, θ2,n(τ)λ2, . . . , θK,n(τ)λK ]T ,

where Pk and λk are the k-th eigenvector and eigenvalue of the K ×K covariance

matrix of feature values, respectively, and θk,n(τ) is the aforementioned random

variable. It is worth to mention that in the social interaction detection task,

K = 4. In the social interaction detection, since the facial expression is a variable

with discrete values, we did not consider to alter it in the data augmentation.

Instead, when we generated new samples of time-series from an original time-

series, we only repeated the facial expression signal of the original time-series in

the augmented time-series.

4.3.3.2 Network structure and hyper-parameter optimization

In this work, we used the most commonly used version of LSTM in literature,

known as vanilla LSTM [117] for time-series classification. This architecture is a

three layer network consisting of the input layer, the LSTM hidden layer and a

sigmoid output layer, where the input layer has forward connections to all units
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Figure 4.5: Architecture of a LSTM cell. netc is the combination of present input
and past cell state which gets fed not only to the cell itself, but also to each
of its three gates. The black dots are the gates themselves, which determine
respectively whether to let new input in, erase the present cell state, and/or let
that state impact the networks output at the present time step. Sc is the current
state of the memory cell, and gyin is the current input to it.

in the hidden layer and each LSTM is composed of various numbers of memory

cells. We added a dropout layer between the hidden layer and the output layer to

mitigate the overfitting problem. Vanilla LSTM in contrary to the first introduced

version of LSTM [118], features forget gate in addition to input gate and output

gate. It also incorporates peephole connections and uses full Backpropagation

Through Time (full-BPTT) instead of truncated gradient training. An example

of the LSTM cell is shown in Fig. 4.5.

In vanilla LSTM, the output of the LSTM block is recurrently connected back
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Table 4.2: Best performing hyperparameters for each setting of social interaction
detection analysis.

Learning rate Momentum Dropout rate Batch size Epoch #Cells

SID1 0.001 0.7 0.0 20 50 30
SID2 0.01 0.8 0.0 30 50 35
SID3 0.001 0.7 0.5 50 100 30
SID4 0.001 0.5 0.0 20 100 100

to the block input and all of the gates, but it does not use full gate recurrence

as in the initial version of LSTM. Full gate recurrence means that all the gates

receive recurrent inputs from all gates at the previous time-step which greatly

increases the number of parameters that has been discouraged in the literature

[119]. Stochastic Gradient Decent method (SGD) is used for optimization in full-

BPTT training. As the task at hand is a binary classification problem, we used an

output layer with a single neuron and a sigmoid function to make 0 or 1 predictions

and a log loss as the loss function. Due to the higher computational complexity

of the gate specific dropout techniques in the hidden layer, we did not use any of

them.

We are interested in the best performance that can be achieved for different

settings of features. For this reason, we chose to tune the hyperparameters for each

setting separately. Grid search with 3-fold cross-validation on the training set has

been used in order to obtain best performing hyperparameters. The studied pa-

rameters for the grid-search are learning rate, momentum, dropout rate, batch

size, number of epochs, and number of LSTM blocks per hidden layer. We made

log-uniform sampling over the following interval of hyper-parameters: [0.0001,0.1]

learning rate, [0.1,0.9] momentum, [0.0,0.9] dropout rate, [100,1000] batch size,

[10,100] epochs, and [10,200] number of LSTM blocks. The best performing hy-

perparameters per each setting are given in Table 4.2.

4.3.4 Experimental results and discussion

As mentioned earlier, each dimension of a time-series is a variation of a unique fea-

ture along the sequence. In this section, to prove the importance of each feature

and to discover the optimal combination of features, we train and test individ-

ual networks by introducing time-series composed of a different combination of

features.
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Table 4.3: Social interaction detection results. The best results in terms of preci-
sion, recall, and accuracy are achieved through training and testing the model on
the SID4 setting.

ego-HVFF SID1 SID2 SID3 SID4

Precision 82.75% 80.76% 88.49% 88.59% 91.66%
Recall 55.81% 64.61% 76.92% 77.69% 84.61%
Accuracy 58.38% 61.62% 75.00% 75.58% 82.55%

In this task, four set of settings are explored as:

• SID1: Distance + Yaw

• SID2: Distance + Yaw + Pitch + Roll

• SID3: Distance + Yaw + Facial expression

• SID4: Distance + Yaw + Pitch + Roll + Facial expressions

SID1 is the baseline setting in which only pure geometrical features implied

by F-formation are studied in event-level. In SID2, pitch and roll in addition to

yaw as the main indicator of face orientation in previous works are studied. SID3

follows the same pattern as SID1, but includes facial expression features to observe

the effect of facial expressions in addition to commonly studied features for social

interaction detection. Finally, SID4 includes all the discussed features for social

interaction detection analysis. It is important to note that the data augmentation

is only performed once for the complete 4-dimensional setting (SID4) and data in

other settings is formed by selecting the required dimensions from the complete

setting.

In Table 4.3, we report the obtained precision, recall and accuracy values for

each of the above settings, as well as the obtained results for the frame-level social

interaction detection employing ego-HVFF.

The best obtained results, in all terms of precision, recall and accuracy belong

to the SID4 setting containing all the proposed features (distance, yaw, pitch, roll,

facial expressions) for social interaction detection. Comparing SID1 with each of

SID2 and SID3 shows that the incorporation of each of the other head orienta-

tion information and facial expression in the analysis leads to more robust social

interaction detection, while facial expression shows to have a slightly stronger im-

pact (SID3) than additional head orientations (SID2). Ego-HVFF only considers
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(a) Correctly detected as no-social interaction employing SID3 and SID4, incorrectly
detected as social interaction employing SID1

(b) Correctly detected as no-social interaction employing SID3 and SID4, incorrectly
detected as social interaction employing SID1

Figure 4.6: Two examples to highlight the role of facial expression. We assume
the invariant Neutral facial expression of the individual led to classification suc-
cess employing both SID3 and SID4 settings, and classification failure employing
SID1 setting which does not include facial expression information. For better ob-
servability in the cluttered scene, face examples of the individuals are shown by a
green bounding boxed around them.

distance and yaw orientation (SID1) for social interactions detection. However

as expected, temporal analysis of SID1 in sequence-level leads to more accurate

social interaction detection than frame-level analysis of the sequences as it has

been achieved by ego-HVFF. Our reasoning is that since in this task all the social

signals originate from the face appearance of the third-person, face occlusions due

to movements of the camera or the user itself, lead to social signals discontinuity.

Therefore, analysis of the sequences in frame-level results in the direct exclusion

of occluded frames from the analysis while sequence-level analysis in the format

of time-series mitigates the social signals fragmentation impact by considering the

relation among the rest of the frames of a sequence.

Fig. 4.6 and Fig. 4.7 are visual demonstrations of how facial expressions and

additional head orientations aid in more robust social interaction detection. In Fig.

4.6a and Fig. 4.6b, although the subjects are oriented towards the user and they

are in relatively close proximity to the camera, we assume their invariant neutral

facial expressions were a determinant factor in helping the model to correctly

classify them as not interacting with the user. Another scenario can be observed

in Fig. 4.7a and Fig. 4.7b. In Fig. 4.7b, despite the close proximity of the subject

to the user and although her yaw orientation is inclined towards the user, we

assume the uncommon pitch orientation of her head aided the model to correctly
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(a) Correctly detected as social interaction employing SID2 and SID4

(b) Correctly detected as no-social interaction employing SID2 and SID4

Figure 4.7: Two examples to emphasize the role of pitch and roll head orientation
in social interaction detection. Sequences are correctly classified employing both
SID2 and SID4 settings, and incorrectly classified employing SID1 setting which
lacks pitch and roll head orientation information.

(a) Incorrectly detected as no-social interaction employing any of the settings

(b) Incorrectly detected as no-social interaction employing any of the settings

Figure 4.8: Examples of two sub-sampled sequences in our dataset, where se-
quences could not be correctly detected as interacting employing any of the set-
tings. The uncommon head pose of the individuals in both sequences led to the
model failure.

classify the sequence as not interacting with the user. Two failure cases of the

detection model can be observed in Fig. 4.8. This could happen due to the

uncommon head pose of the interacting people and their dominant neutral facial

expression. Indeed in none of the examples, the interacting people are looking

towards the user.

The observations from the experiments with ego-HVFF reveal that the method

generally performs comparably to event-level analysis within SID1 setting. It

basically fails on the frames where the interacting people are standing farther than
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(a) (b)

Figure 4.9: (a) A frame of a social interaction captured by Narrative clip camera.
The camera-wearer (P1) is indeed interacting with the P2, but not with P3. (b)
the votes given by each individual can be seen by green clouds in front of each
individual. The area of intersection between the clouds of camera-wearer and
P2 can be seen in the right most plot. The colorful pixels are indication of the
discovered F-formation by the ego-HVFF among P1 and P2.

a pre-defined distance for forming an F-formation (150cm) or when they do not

look at the camera-wearer during the interaction. The latter is obserevd among

interacting people with autism disorder or those who look at somewhere else when

they are thinking. An example of the ego-HVFF and the found F-formation for

one frame of the sequence of Fig. 1.5 is shown in Fig. 4.9.

4.4 Summary

In this chapter, we introduced two methods for social interaction detection in the

domain of egocentric photo-streams: frame-level and event-level social interaction

detection. The former approach is intended to decide whether there is a social

interaction between camera-wearer and the other visible people in the scene, sep-

arately in every frame of a sequence. Eventually, the algorithm decides whether

there is a social interaction between the camera-wearer and each individual in the

scene if the number of found interacting frames between them exceeds half of the

length of the sequence. In the latter approach, a set of social signals is extracted

for every person in the scene and its evolution over the sequence is modeled as a

multi-dimensional time-series. LSTM is employed for social interaction detection

through time-series analysis.
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In this chapter, we empirically demonstrated that:

• Each of the social signals studied in this work (distance among the interact-

ing people, their head orientation, and facial expression) is important in the

detection of social interactions.

• Aggregation of all the social signals to form the time-series, leads to the

highest social interaction detection accuracy rate.

• The overlooked importance of facial expressions among the non-verbal social

signals in SSP is brought into consideration. Facial expression is an impor-

tant factor in augmenting the social interaction detection accuracy rate.

• Sequence-level analysis of social signals is preferred over frame-level analysis

of social events. In fact, frame-level analysis has two major drawbacks. First,

the classification precision is highly dependent on the selected threshold for

the task. Second, the interdependency between frames and evolution of

features over the time is not considered.
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C H A P T E R 5

Social Interaction Categorization

in Egocentric Photo-Streams

5.1 Introduction

Social interaction categorization is the task of typifying an occurred social inter-

action. Typification can occur within various scopes: a social interaction can be

internal or external, friendly or hostile, familiar or institutional, formal or informal,

etc. In the literature, three major elements have been typically exploited for social

interaction categorization: the physical setting or place, the social environment,

and the activities surrounding the interaction [120].

In this chapter, following Xiong et al. [69] we propose to categorize the detected

social interactions into two broad categories of meetings as formal meetings and

informal meetings, also known as informal gatherings. In this regard, we propose

a model for categorization of social interactions in the domain of egocentric photo-

streams. We explore the appropriate features as suggested by the relevant studies

in the social science and empirically demonstrate their importance for modeling

the task at hand. We employ a frame-level as well as an event-level analysis of

features and report their differences, advantages, and shortcomings. For the event-

level analysis of features, we made use of LSTMs and also HMMs and provide a

discussion over the obtained results by each of them.
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(a) Formal meeting

(b) Informal meeting

Figure 5.1: Example of two sub-sampled sequences, demonstrating the engagement
of the user in different categories of social interactions; a formal meeting (5.1a),
and an informal meeting (5.1b). The variations in the environment as well as
facial expressions of the person in different events can be appreciated.

This chapter is organized as follows: Sec. 5.2 is dedicated to introducing

the image features extracted for this task and the proposed methods for social

interaction categorization in egocentric photo-streams. In Sec. 5.3 we explain the

pipeline for validation of the proposed method and discuss the obtained results by

different validation settings, in Sec. 5.4 we summarize the proposed method and

pinpoint the key findings of this study.

5.2 Methodology

Looking closely from the computer vision perspective at the definition of each

meeting as given in chapter 2, environmental features show sign of discriminative

power. Therefore, for social interaction categorization, we base our approach on

the use of environmental features. In addition, we also attempt to study the impact

of the facial expressions of involved individuals in the interaction on defining the

category of a social interaction. Fig. 5.1 shows an example of each meeting, where

the differences between the environment and facial expression between two settings

can be easily observed. Our approach takes into account the temporal evolution

of both environmental and facial expression features by modeling them as multi-

dimensional time-series and relies on the classification power of LSTM for binary

classification of each time-series into either a formal or an informal meeting.
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5.2.1 Feature extraction

Global features: As explained earlier, the surrounding environment of an inter-

action is considered among the main indicators for categorizing a meeting. Among

different features for image representation, CNN features showed exceptional re-

sults for global representation of the context in images [121]. In this work, we

represent each image with a feature vector extracted by taking the output of the

last fully connected layer of the VGGNet (VGG16) [122] pre-trained on the Ima-

genet dataset [123]. However, since the image feature vector consists of thousands

of variables, the computational cost becomes significant when it comes to further

processing. In addition, the Hughes phenomenon [124] is inevitable when it comes

to learning a high-dimensional feature space with a limited number of training

samples in machine learning in general and in RNNs, specifically [125].

In this work, to resolve the curse of dimensionality of CNN features we propose

first to apply quantization and then to apply PCA to keep the most important

components of the quantization result. To quantize the CNN features, we propose

to re-write them as discrete words as proposed by Amato et al. [126]. This method

takes advantage of the inverted-index approach to deal with the sparsity of the

CNN features to associate each component of the feature vector with a unique

alphanumeric keyword. This conversion leads to a sparser textual representation

of the CNN features in which the relative term is proportionally related to the

feature intensity. This method showed great promises in retrieval applications.

CNN feature to word conversion essentially represents each component of the

L2-normalized CNN feature vector, fk, k = 1, ..., 4096, as a word:

wk = bQfkc,

where bc denotes the floor function, and Q is an integer positive quantification

factor being Q > 1. For instance, if we fix Q = 2, for fk < 0.5, then wk = 0,

while for fk ≥ 0.5, wk = 1. The factor Q has a regulator effect on the features for

further processing. The smaller the Q the sparser is the new feature vector and it

represents less details about the original feature vector. In this work, Q = 15 is

used which results in highly sparse feature vector representation of integer values:

(w1, w2, . . . , w4096).

Given the high sparsity of the obtained word representation, a PCA is applied

over the so obtained feature vectors extracted from all the images of the dataset

and from the emerging representation, 95% of the most important information

are kept. This process results in a 35-dimensional feature vector, ϕCNN ∈ R35,
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(a) (b)

Figure 5.2: Bar-plot of facial expression variations over 10 randomly selected se-
quences for each of 5.2a formal and 5.2b informal meetings from the training set
in EgoSocialStyle. Each sub-figure shows the mean of the observed facial expres-
sions for each detected face in all the frames of 10 randomly selected sequences.
Within informal meetings, people seem to express more freely their emotions as
more variation can be observed.

while keeping the most important environmental features of the image. Note that

applying PCA on the raw CNN features without conversion to word representation,

does not result in a feature vector dimension smaller than hundreds. We are

interested in keeping the dimensionality of features in the order of tens.

Facial expression: Following our hypothesis that formal and informal meetings

can be characterized by the environmental characteristic as well as the facial ex-

pression of participants, integration of both features is required. A proof for this

hypothesis is illustrated in Fig. 5.2 that shows the bar-plot of eight facial ex-

pressions for both formal and informal meetings. These bar-plots obtained using

ground-truth information, suggest that people express more freely their emotions

in informal meetings. Facial expression features in this task are extracted as the

mean of facial expressions of the total number of J people detected in each frame

of a sequence:

ϕe,k =
1

J

J∑
j=1

ek(pj), k = 1, . . . , 8.

5.2.2 Temporal analysis of representative features

To achieve joint effect of global image features representing the environment and

facial expression features of individuals on social interaction categorization, the

8-dimensional vector of facial expression probabilities (ϕe(τ)) is directly concate-
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Figure 5.3: Pipeline of the proposed model for event-level social interaction cate-
gorization.

nated to the environmental features represented by global image characteristics of

the event (ϕCNN(τ)). Given a sequence, the time-series of interaction sequences

are constructed as follows for the social interaction categorization:

ϕcategorization(τ) = (ϕCNN(τ), ϕe(τ)) ∈ R43, τ = 1, 2, . . .

The scheme of the proposed model for the social interaction detection is de-

picted in Fig. 5.3.

5.3 Validation

We validated our proposed method for social interaction categorization on the

EgoSocialStyle. Time-series classification task into either a formal or an informal

meeting is reached relying on the LSTM power for time-series classification. The

same idea and approach as in social interaction detection task is applied for data

augmentation in this task as well, with the only difference that the total number

of original time-series in this task (N) is equal to the number of sequences in the

training set, and dimension of the time-series is K = 32. For data augmentation,

we did not consider to alter the facial expression signal neither in the social in-

teraction categorization task, since the facial expression feature vector originally
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Table 5.1: Best performing hyperparameters for each setting of social interaction
categorization analysis.

Learning rate Momentum Dropout rate Batch size Epoch #Cells

SIC1 0.001 0.8 0.0 50 50 200
SIC2 0.001 0.9 0.0 50 20 150
SIC3 0.01 0.8 0.5 100 50 200

contains values of probabilities which must sum to 1 and altering them leads to

a change in their essence. Instead, we only repeated the facial expression sig-

nal of the original time-series in the augmented time-series. The best performing

hyperparameters per each setting are given in Table 5.1.

We kindly refer the readers to Sec. 4.3.1 for more details about the EgoSocial-

Style dataset, and Sec. 4.3.3 for a comprehensive review on the data augmentation

process and network structure for time-series classification.

5.3.1 Experimental results and discussion

The following settings of features are considered for the temporal analysis of social

interaction categorization task:

• SIC1: Environmental (VGG)

• SIC2: Environmental (VGG-finetuned)

• SIC3: Environmental (VGG-finetuned) + Facial expressions

We assume that global features of an event, namely environmental features,

have the largest impact on the categorization of it. Therefore in this section,

the first setting (SIC1) studies only environmental features which are extracted

from the last fully connected layer of the VGGNet trained over the Imagenet and

preprocessed as explained in Sec. 5.2.1. VGGNet trained on the Imagenet is highly

capable of grasping the general semantics in an image. However, fine-tuning the

network for a specific task over relevant data for that task adapts the pre-trained

network to that specific purpose. Therefore, we assume the extracted features

from the fine-tuned network ideally lead to better representation of the desired

classification task. In SIC2, the environmental features are extracted in the same

manner as SIC1, but from the fine-tuned VGGNet over the training set of the
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Table 5.2: Social interaction categorization results. The best results in terms of
precision, recall, and accuracy are achieved through training and testing the model
on the SIC3 setting.

HM-SVM VGG-FT SIC1 SIC2 SIC3

Precision 76.82% 86.81% 87.91% 89.01% 91.48%
Recall 63.65% 89.77% 90.90% 92.04% 97.72%
Accuracy 64.87% 82.30% 83.18% 84.95% 91.15%

EgoSocialStyle. The features are preprocessed in the same manner as explained

in Sec. 5.2.1. Fine-tuning the network is achieved through the instantiation of the

convolutional part of the model up to the fully-connected layers and then training

fully-connected layers on the photos of the training set. The last setting to be

studied is SIC3, which explores jointly the effect of facial expressions as well as

the environmental features in social interaction categorization.

In this task, we used VGGNet pre-trained over Imagenet for feature extraction,

while any other CNN architecture suitable for image feature extraction could be

employed and finding the optimal CNN architecture was out of the scope of this

work. Also, due to the narrow field of view of the Narrative camera, the Imagenet

dataset was preferred to a seemingly more relevant dataset such as Places [127]. In

the images captured by Narrative, a scene is better observed by the set of visible

objects in it rather than the wide view of the scene.

In Table 5.2, we report the precision, recall and accuracy values obtained for

each setting of the aforementioned settings. Additionally, we compared our ob-

tained results with HM-SVM [64] which is an applicable state-of-the-art method to

our setting as this model similar to ours makes use of extracted features in the ego-

centric setting and analyzes them in sequence-level but different to our proposed

model employs an HMM to model interaction sequences according to features to

categorize them. To apply HM-SVM, the HMM is trained using our training set

where features follow the SIC3 setting. The HM-SVM is later employed to la-

bel the interaction state. We also report achieved results by a baseline method,

VGG-FT, in which the fine-tuned VGG network on the photos of the training set

in EgoSocialStyle is tested over the pool of photos in the EgoSocialStyle test set.

Thus, it is considered a frame-level modeling of the problem.

The obtained results suggest that temporal analysis of environmental features

extracted from fine-tuned VGGNet in SIC2 setting outperforms temporal anal-
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(a) Correctly detected as informal meeting employing SIC3

(b) Correctly detected as formal meeting employing SIC3

Figure 5.4: Two successful examples employing SIC3 setting, emphasizing on
the role of facial expressions in social interaction categorizations. The method
trained over mere general features employing SIC2 setting did not lead to the
right categorization of each of the sequences.

ysis of environmental features extracted from VGGNet before fine-tuning in the

SIC1 setting. Temporal analysis of fine-tuned features also outperforms frame-

level analysis of fine-tuned features in VGG-FT which is also an indication of the

importance of temporal analysis of features in this task. The combination of envi-

ronmental features extracted through fine-tuned VGG network and feature vector

of facial expressions probabilities leads to the highest performance of the model.

HM-SVM is trained and tested with features in the SIC3 setting. However, the

obtained results suggest that the LSTM demonstrates more power in modeling

the problem at hand than the HMM.

It is worth to note that, due to the extensive amount of data that end-to-end

models need for training (few million data) and to our limited number of image

sequences in the dataset, we did not consider to design our proposed model in

an end-to-end fashion. Indeed, making use of pre-trained networks, like emo-

tion, makes a more effective use of the resources when the available data is small

compared with the amount of data needed to train the individual sub-networks.

In Fig. 5.4, two sequences are shown in which the aggregation of facial expres-

sions with the general environmental features employing SIC3 leads to the correct

categorization of them. In Fig. 5.4a, although the environment is the indicator

of a formal meeting, we assume the variant facial expressions of the subject aids

the model to correctly classify it as an informal meeting. On the contrary, in

Fig. 5.4b despite the scene not implying a formal meeting, we assume the domi-

nant neutral facial expression of the subject leads to the correct categorization of
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(a) Incorrectly detected as formal meeting employing SIC3

(b) Incorrectly detected as formal meeting employing SIC3

Figure 5.5: Two failure examples of the model trained on any of the social in-
teraction categorizations settings. We assume misleading environmental features
in 5.5a and invariant neutral facial expressions of the subject in 5.5b led to these
failure cases.

the sequence as a formal meeting. Fig. 5.5 shows two cases where the model fails

to correctly categorize social interactions due to misleading features transmitted

from the scene. Both Fig. 5.5a and 5.5b are informal gatherings which are classi-

fied incorrectly as formal meetings. Our assumption is that in Fig. 5.5a the model

confuses the menu with a piece of paper which is an important characteristic of a

formal meeting. We also assume in Fig. 5.5b the invariant neutral facial expression

of the person leads the model to fail.

5.4 Summary

In this chapter, we introduced a novel method for social interaction categorization

into formal or informal meetings. Based on an extensive body of sociological lit-

erature, the importance of a set of high-level image features in automatic analysis

of this task is investigated for the first time. We have proposed different mod-

els as well as different settings of features for this analysis, including frame-level

and event-level analysis of features for this analysis. For the event-level analysis

of features, our proposed method for multi-dimensional time-series classification

using LSTM is compared to HMM for time-series classification. Following the val-

idation of the models, a discussion over the obtain results is provided to highlight

the advantages of LSTM over HMM in addressing this problem and differences

among various settings are underlined.

In this chapter, we empirically demonstrated that:
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• Setting and characteristics of the social environment are important factors

for social interaction categorization.

• Facial expression is an important factor in augmenting the social interaction

categorization accuracy rate.

• Sequence-level analysis is preferred over frame-level analysis of social events.

• LSTM is preferred over HMM for sequence-level analysis of time-series in

this task.
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C H A P T E R 6

Face Clustering in Egocentric

Photo-Streams

6.1 Introduction

Face clustering, also known as face discovery, is the task of grouping face images in

a dataset into either known or unknown number of disjoint groups. Face clustering

is a suitable task for cases where the identity of people in the dataset is not

available. Face clustering, has vast number of applications, such as interactive

photo album tagging [72, 73, 74], social media [128], and medical purposes [129,

130, 131, 85, 81, 82]. Face clustering is also useful to unveil less noticed matters

about the social life of the user: with whom does the user interact the most? how

many times did the user meet a friend last month?

In this chapter, we propose a fully unsupervised approach for face clustering

from egocentric photo-streams collected over a long period of time. In this context,

face is the most discriminating feature of a person since, depending mostly on the

clothing, a person appearance may change drastically in different days or even

at different times of the day. To cope with the extreme intra-class variability of

faces, we propose to first track the appearance of multiple faces into the same event

using [2], and then considering both the inner-track and inter-track constraints,

to cluster similar faces across the events into an unknown number of groups.
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Figure 6.1: Each row is the resulting prototype of tracking by eBoT [2] over a
sequence of two people.

This chapter is organized as follows: In Sec. 6.2 we detail our proposed ap-

proach for face clustering in egocentric photo-streams. In Sec. 6.3 we introduce

the dataset used in this paper as well as the experimental setting and we discuss

the experimental results. Finally, in Sec. 6.4, we summarize the content and the

contributions of this approach.

6.2 Methodology

Given a large and unconstrained photo-stream captured by a wearable camera,

we propose a face clustering approach by leveraging inner-class and inter-class

constraints derived from the face tracking of people across the photo-stream.

6.2.1 Face-example vs. Face-set

To overcome the challenges imposed by the free motion of the camera and by

its low temporal resolution, eBoT multi-face tracking [2] is applied on resulted

sequences from segmentation of photo-streams, to extract prototypes (tracklets)

of the appearing people in them. A final prototype keeps the bounding boxes of

face occurrences of one individual along that sequence, so in the case that two

persons appear in a sequence, eBoT outputs two separate prototypes that localize

face occurrences of each individual, separately (see Fig. 6.1).
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Due to the characteristics of the camera, faces appear in a variety of views and

in different ambient conditions even within a sequence. We treat all the observed

occurring variations of the same face in a sequence as a unique representation of

the same face for face discovery in the whole dataset. Hereafter, we refer to each

bounding box in a prototype as a face-example and define all the bounding boxes

of a prototype as a face-set.

6.2.2 Face discovery in egocentric photo-streams

Unlike the majority of face discovery frameworks that solely rely on pair-wise

comparison of face-examples at the time to find face matches, we propose a model

which is built upon a tracking framework that provides us with a set of correct

variations of the same face in one sequence. In this way, the proposed algorithm

reshapes the face discovery challenge from face-example-pair comparison, to face-

set-pair comparison. In our approach, the deterministic factor in deciding whether

two different face-sets belong to the same person is defined through a measure of

dissimilarity. We first calculate the dissimilarity between all the possible pairs

of face-sets, and then, based on these measurements, we employ a hierarchical

clustering technique to discover the most similar face-sets.

6.2.2.1 Dissimilarity between two face-sets

For simplicity, let us suppose that given two face-sets, say R and T , we want

to measure the dissimilarity between target, T , and the reference, R. Let l(R)

and l(T ) be the lengths of R and T , respectively. Let ri ∈ R be the i−th face

example in the R, where i = 1, . . . , l(R) and tj ∈ T be the j−th face example

in the T , where j = 1, . . . , l(T ). To compute the dissimilarity between R and T ,

we first define two similarity matrices: SR representing the similarity between all

possible pairs of face-examples in R, and ST representing the similarity between

face-examples in R and face-examples in T . We compute SR as to build a baseline

about how similar faces inside a face-set are.

The similarity between two face-examples is measured by their average deep-

matching score [104]. The deep-matching is a descriptor matching algorithm, built

upon a multi-stage architecture with interleaving convolutions and max-pooling

layers and uses dense sampling to retrieve correspondences with deformable patches.

More specifically, instead of using SIFT patches as descriptors, each SIFT patch

is split into four quadrants and, assuming independent motion of each of the four

quadrants, the similarity is computed to optimize the quadrant positions of the
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target descriptor. As a consequence, the descriptor is able to deal with various

kinds of image deformations, including scaling factors and rotations. Denoting

by ∆(x, y) the value of the deep-matching between x and y, the elements of

SR are defined as sRi,k = ∆(ri, rk), i, k = 1, . . . , l(R) and the elements of ST as

sTi,m = ∆(ri, tm), with i = 1, . . . , l(R),m = 1, . . . , l(T ). Finally, the dissimilar-

ity δ(R, T ) between R and T is calculated as the absolute difference between the

median value of SR and ST , say ϕR and ϕT , respectively:

δ(R, T ) =
∣∣ϕR − ϕT

∣∣ (6.1)

6.2.2.2 Clustering of face-sets

To cluster face-sets based on their dissimilarity, we used agglomerative clustering,

a hierarchical bottom-up approach that repeatedly merges pairs of clusters based

on a measure of dissimilarity to form larger clusters. In this work, the initial

clusters are face-sets and Eq. (6.1) is used to measure the dissimilarity between

face-set-pairs. All dissimilarity relations between face-set-pairs are encoded by

the matrix D ∈ RN×N , where N is the total number of face-sets. To take into

account the fact that face-sets extracted from the same sequence should belong to

different subjects, we force the dissimilarity between these face-sets to be maximal.

Specifically, we introduce the constraint matrix C ∈ RN×N , where its elements

cm,n = 1 if the face-sets rm ∈ R and tn ∈ T were extracted from the same

sequence and cm,n = 0, otherwise. We then multiply each element of D, say dm,n,

by the weight wm,n = cm,n + 1.

To determine the cut-off threshold, that is, when to stop merging clusters at a

selected precision, we measured δ(R, T ) of various face-sets in two manner: first,

δs(R, T ), where R and T are different face-sets of the same person, and second,

δd(R, T ), where R and T belong to two different people. The cut-off threshold

θ is taken as the median value of all the values of δs(R, T ). These calculations

are performed over a training dataset consisting of 100 face-sets. Fig. 6.2 shows

the δs(R, T ) values on the left and δd(R, T ), values on the right, over the training

dataset, where the vertical is the separating line between them and the horizontal

lines are the median of δ(R, T ) values in each section.
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Figure 6.2: Threshold estimation on a separate training set, different from EgoSo-
cialStyle: left side of the separating line shows δs(R, T ) values, and right side of
it shows δd(R, T ) values. The horizontal lines are the median of δ(R, T ) values in
each section.

6.3 Validation

6.3.1 Dataset

We validated the proposed model for face clustering on the test set of the EgoSo-

cialStyle. Some additional information to those given in Sec. 4.3.1 are that the

25,200 images are captured by one user wearing the Narrative Clip camera during

30 days. It contains 2,033 faces belonging to 40 persons, whose bounding boxes

have been manually annotated in ground-truth. In average, each person appears

in 6 sequences and 3 days. There are 35 sequences with more than one person

appearing on them over 113, in total.

As mentioned earlier, a separate dataset is used to select a cutoff value dis-

cussed in the previous subsection. It is acquired by 8 users; each user wore the

Narrative clip for a number of non-consecutive days over a total of 100 days period,

collecting 30,000 images, where 3,000 images of them contain a total number of

100 different trackable persons. Sequences in both datasets have different lengths,

varying from 10 to 40 frames and they have been acquired in real-world conditions,

including inside and outside scenes.
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6.3.2 Baselines

In this section, we evaluate state-of-the-art methods with different settings over

our dataset. The following is a brief description of each setting.

• M1 (WBSLRR): The proposed method by Xiao et al. [75] is applied on the

face-sets obtained by applying eBoT. This method similar to ours considers

the inner-track and inter-track constraints introduced in Sec. 6.2.2.2 to learn

a more discriminative low rank data representation.

• M2 (Spectral, Open-face, Face-pairs): An implementation of face anal-

ysis tool with deep neural networks based on the work proposed by Schroff

et al. [78], known as OpenFace [132] is employed. First, faces are detected

using a pre-trained model for face detection. Second, they are transformed

in an attempt to make the eyes and bottom lip appear approximately in the

same location on each image. Third, a deep neural network is used to em-

bed the face on a 128-dimensional unit hypersphere. Finally and forth, the

spectral clustering method is used to group faces into groups corresponding

to different subjects.

As the first detection method is common among our proposed model (in

tracking using eBoT) as well as baseline models, we performed it once using

Openface and kept it intact for all the models. In this way, we avoid a

possible bias in the analysis that could be imposed by the differences among

different face detectors.

• M3 (Agglomerative, Open-face+Euclidean, Face-pairs): The same

setting as M2 is employed, despite variations in the forth step. In this setting,

Agglomerative clustering is applied over the pair-to-pair Euclidean distance

between 128-dimensional face features.

• M4 (Spectral, Open-face, Face-set-pairs): As an attempt to validate

the effect of employing the inner-track and inter-track constraints, we used

as the initial clusters the face-sets resulting from applying eBoT. A unique

128-dimensional feature vector as the mean value of all the 128-dimensional

faces feature vectors is representing each face-set.

• M5 (Agglomerative, Open-face+Euclidean, Face-set-pairs): A sim-

ilar setting to M4 for face-set representation is employed. Agglomerative

clustering is then employed to cluster face-sets based on their Euclidean

distance from each other.
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Table 6.1: Percentage of NMI and ARI values for different baseline settings (M1-
M5), and our proposed model (M6-M7)

M1 M2 M3 M4 M5 M6 M7

NMI 24.31 21.18 58.35 68.95 19.21 78.79 83.68
ARI 00.59 00.21 31.66 01.49 00.42 23.44 33.84

6.3.3 Evaluation measurements

To compare our proposed method with the baseline models, we used two distinct

widely known measurement techniques for clustering evaluation with known true-

labels: Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI).

Both measurements have values ranging from 0 to 1, with 1 indicating that the

clustering result perfectly matches the ground-truth.

NMI measures the mutual information between the labels predicted by the

classifier and the true-labels, ignoring permutations. It is calculated based on

entropy and does not need to predefine cluster numbers. NMI utilizes inner-

cluster distinctness and intra-cluster agglomeration to measure clustering results

and needs to relate the labels indicating the clusters acquired by the clustering

algorithm to the labels predefined by the user.

ARI on the other hand measures how similar the labels predicted by the clas-

sifier are to the true-labels. Mathematically, ARI is related to the accuracy. It

evaluates on a pairwise-basis if two sets of labels are incorrectly grouped so its

value is representative of the true clustering result. ARI evaluates how well the

algorithm splits input data into different clusters by looking at the relationship

between clusters and not between clusters and the given labels.

6.3.4 Discussion

Although NMI and ARI validate the results in distinct ways, both follow the same

trend as it can be observed for different methods in Table 6.1. M1 to M5 are the

baselines introduced previously, M6 is the proposed model without considering the

inter-track constraints, and M7 is the complete pipeline of the proposed method,

as described in Sec. 6.2.2.

Open-face is a robust method for extraction of facial features. However, as

it can be observed, the proposed method employing the deep-matching approach

can grasp a more robust idea of the similarity between face-example pairs which is
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Figure 6.3: A few examples of faces belonging to one cluster obtained by applying
our proposed model on the EgoSocialStyle test set. The visual variation among
face examples can be appreciated.

proved by higher NMI and ARI values comparing M2 to M5 with M6 and M7. Ad-

ditionally, WEBSLRR, despite its robust pipeline for face clustering in controlled

environments, performs poorly on our dataset. We consider that this is due to

using only pixel intensities for the image representation. Also, as expected in our

proposed method, constraining the problem by exploiting inter-track constraints

(M7) allows to improve the accuracy up to 10% considering ARI with respect to

the same approach without inter-track constraints (M6).

The experimental results unveil the challenges involved in clustering of appear-

ing faces in photo-streams captured by a wearable photo-camera under free-living

conditions. Indeed, face appearances may change even along the same event since

people take out or put on their accessories such as glasses, a hat, makeup, and so

forth, making the problem very challenging (see Fig 6.3). However, our conclusion

from the experiments is that the unbalanced number of images per individual in

a face-set is the most challenging problem for face clustering. In this work, we

aimed to study only facial attributes, disregarding any additional information.

This analysis is important when the additional features are not either available,

because of the nature of the applications or they are costly to provide.

6.4 Summary

In this chapter, we addressed the face clustering problem in the challenging domain

of egocentric photo-streams. The problem at hand is complex to solve as we rely

solely on face attributes in an image set captured under free-living conditions.

The proposed model, through employing a deep-matching technique grasps robust

representation of the face similarities. Moreover, by applying two inner-track and

inter-track constraints, the proposed model achieves a relatively high performance

while outperforming the state-of-the-art methods and baselines.

Main characteristic and advantages of our proposed model can be summarized

as follows:
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• The proposed method can be considered the first complete pipeline for face

clustering in the domain of egocentric-photo-streams.

• The proposed model relies on the deep-matching method to find various ap-

pearances of the same face that undergoes drastic variations in the egocentric

setting during a long time capturing of images.

• To deal with the aforementioned challenges, our proposed model is built

upon a multi-face tracking to incorporate both the inner-track and inter-

track constraints to improving the robustness of the results.

• A strategy is designed and validated to learn the cut-off threshold of the

agglomerative clustering over a training set.

• Capability of our proposed model, as well as the baselines, is measured based

on two broadly used metrics for calculating the clustering performance with

known labels.
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C H A P T E R 7

Social Pattern Characterization

in Egocentric Photo-Streams

7.1 Introduction

Building upon the previous chapters, this chapter goes beyond event-level social

interaction analysis in egocentric photo-streams, relying on the long-term observa-

tion and analysis of social interactions of a user. Characterizing social patterns of

a camera-wearer requires its identification through quantifying the frequency, the

diversity, and the type of social interactions during the observation period. This

is accessible when social events of the user are previously localized and their type

is categorized. In sociology, interaction frequency is the total number of social

interactions per unit time and interaction diversity indicates how diverse is one’s

social interaction considering two types of formal and informal social interactions.

This is accessible as our proposed model is a hierarchical model that initiates by

segmenting social interactions and indexing them sequentially in time as individual

events.

A visual overview of the proposed pipeline is given in Fig. 7.1. As the first

step, face tracking is employed over the potential social events to localize the po-

sition of an interacting person with the user along it. Later, from the bird’s-eye

view representation of the scene, social signals (social distance, face orientation,

facial expression), as well as environmental features, are extracted for each frame
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and used to represent each sequence as a time-series. An LSTM is employed to

classify each time-series according to the task at hand: social interaction detec-

tion or categorization. On the other side, face clustering enables determination

of the diversity and the frequency of social interactions. Finally, social pattern

characterization requires the integration of all tasks. By leveraging the proposed

framework, we seek to address the following key questions: How often does the

user engage in social interactions? With whom does the user interact most of-

ten? Are the interactions with this person mostly formal or informal? With how

many people does the user interact during a month? How often does the user see

a specific person?

In this chapter, we formalize the common terms used for characterizing a so-

cial interaction and report them numerically over the EgoSocialStyle dataset. We

quantitatively and qualitatively demonstrate that our proposal for social pattern

characterization leads to sensible understandings of social patterns of a wearable-

camera user. To the best of our knowledge, this work is the first comprehensive

social pattern characterization study from a first-person perspective. Social pat-

tern characterization is the ultimate step of our proposed framework for social

signal processing in egocentric photo-streams.

This chapter is organized as follows: Sec. 7.2 is devoted to bringing into details

the proposed methodology for generic as well as person-specific social pattern

characterization in the domain of egocentric photo-streams. In the same section,

we also explain the role of face-clustering in the analysis. In Sec. 7.3 we report

the results of the proposed method on the EgoSocialStyle and the public EGO-

GROUP dataset. Finally, in Sec. 7.4 we summarize the main contributions in this

chapter.

7.2 Methodology

7.2.1 Generic social interaction characterization

Characterizing the social pattern of an individual implies the ability to define

the nature of social interactions of the user from various temporal (frequency,

duration, etc.) and social (type, identity, number of interaction people with the

user, etc.) aspects. Providing a definition within the aforementioned contexts

demands social interaction analysis of the user across several events during a long

period of time. For this purpose, we define four concepts to characterize social

interactions, namely frequency, social trend, diversity, and duration.

84



7.2 Methodology

Social Interaction
Detection

Social Interaction
Categorization

LSTM

LSTM

Temporal Analysis
 of Social Signals

Face Clustering Social Interaction
Analysis

Tracking

Social Pattern
Characterization

Figure 7.1: Complete pipeline of the proposed method. Face tracking is employed
to localize the position of an interacting person with the user along a social event.
From the bird’s-eye view representation of the scene, social signals (social distance,
face orientation, facial expression), as well as environmental features, are extracted
for each frame and used to represent each sequence as a time-series. An LSTM
is employed to classify each time-series according to the task at hand: social
interaction detection or categorization. On the other side, face clustering enables
determination of the diversity and the frequency of social interactions. Finally,
social pattern characterization requires the integration of all tasks.

Frequency (F): Defines the normalized rate of formal (or informal) interactions

of a person by the total number of observation days:

Fformal(informal) = #formal(informal) interactions/#days

Social trend (A): Indicates whether the majority of social interactions of a

person are formal (or informal):

Aformal(informal) = #formal(informal) interactions/#all interactions

Diversity (D): Demonstrates how diverse are social interactions of a person. The

term is defined as the exponential of the Shannon entropy calculated with natural
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logarithms, namely:

D = 1/2 exp

− ∑
i∈{formal,informal}

Ai ln(Ai)


Note that when the person has the same number of formal and informal interac-

tions (i.e. Aformal = Ainformal = 0.5), D = 1.

Duration (L): Defines the longitude of each social interaction of the user. The

duration is the longitude of the sequence corresponding to the i-th social interac-

tion, say L(i) = T (i)r, where T (i) is the number of frames of the i-th interaction

and r is the frame-rate of the camera. Different statistics can be applied to the

duration of interactions like average or median to characterize social interactions

and extract the social pattern.

7.2.2 Person-specific social interaction characterization

In this subsection, we explore the aforementioned concepts for social interaction

characterization of the user within the context of interaction with a specific person.

This firstly requires that all the interactions of the user with a certain person to

be localized. To this goal, the face clustering method introduced in the previous

chapter (6) is employed to find various appearances of the same person among

all the social events of the user. As mentioned in the previous chapter, the face

clustering method is applied on the tracking step to cope with the extreme intra-

class variability of faces. In a single event, tracking gathers a set of different

appearances of the same face in that event, called a face-set in this context, which

allows reshaping the face clustering task in different events to face-set clustering.

7.2.3 Face-cluster analysis

Let C = {cj}, j = 1, . . . , J be the set of clusters obtained by applying the face-

set clustering method on the detected interacting prototypes, where J ideally

corresponds to the total number of people who appeared in all social events of

the user along the whole period of observation (e.g. a month). Each cluster, cj,

ideally contains all the different appearances of the person pj across different social

events, and |cj| is the cardinality of cj which demonstrates the number of social

interactions events of the user with the person pj during the observation period.

As the clustering method and the proposed method for social interaction de-
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Table 7.1: Social pattern characterization results, demonstrating the generic and
person-specific frequency (F), social trend (A), diversity (D), and Duration (L) of
the social interactions of the user.

F-Formal F-Informal A-Formal A-Informal D L

Generic 0.83 2.50 0.25 0.75 0.87 25.191.32
Person-specific 0.25 1.00 0.20 0.80 0.59 18.80 0.96

tection and categorization act at event-level, inferring the interaction state of each

sequence inside a cluster is straightforward. The frequency, the social trend, the

diversity, and the duration of the interactions with a specific person, can be com-

puted in the same manner as explained in 7.2.1, by restricting the considered

interactions to the ones with the person of interest.

7.3 Validation

To illustrate the ability of the proposed framework for social pattern characteri-

zation of an individual, face clustering is applied on the test set. A total number

of 83 clusters is obtained, which is almost double the size of the total number of

prototypes in the test set. The largest cluster contains 77 number of faces from 5

number of sequences belonging to the same person in various social events.

The different statistics of the social interactions of the user, as well as those

related to the most frequently interacted person, are given in Table 7.1. From

our observation, it can be concluded that during the observation interval, the user

most frequently interacts with a specific person 5 times, in 4 different days, and

4 times of which occurs during informal meetings. An interesting observation is

that in a cluster containing different sequences, a sequence may belong to a formal

or informal meeting which implies the user may have different types of interaction

with the same person in various social events. According to the statistics reported

in Table 7.1, generic diversity of social interaction of the user is relatively high

(87%). Specifically, the user is three times more inclined towards having informal

meetings than formal meetings (Generic A-Formal vs. A-Informal, 0.75 vs. 0.25)

and thus, more frequently gets engaged in informal meetings as supported by

the statistics. Interestingly, the generic social trend of the user is correlated to

the person-specific one (0.05 difference in both formal and informal social trends).

The above interpretation is expected when assuming an informal social interaction
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Figure 7.2: Temporal map of social interactions of the user during one week. The
boundaries of an interaction are shown by circles for informal and squares for
formal interactions. Different line colors are the index of interaction with different
people and multiple lines within a boundary are indicative of the interaction with
multiple people.

can occur at any time without any planning, while for formal social interactions

normally planning is involved [69].

The social pattern of the user over one week according to the obtained results

from clustering and inference to their types is visualized in Fig. 7.2. Social inter-

actions are shown by horizontal colored lines, where the interaction boundaries are

shown by circles for informal meetings and squares for formal meetings. Different

colors correspond to different persons. Re-occurring people in one social event

are shown with parallel lines within the same interval. As it can be observed in

Fig. 7.2, informal social interactions of the user are happening at almost any time

of the day and the formal social interactions are normally happening during the

middle of the day.

7.3.1 Social pattern characterization on EGO-GROUP

Despite the lack of available datasets for the purpose of social pattern charac-

terization in egocentric vision, to demonstrate the effectiveness of our proposed

model, we applied the entire pipeline on EGO-GROUP [61], a most adaptable

public dataset to our considered purpose in this work. Despite the fact that EGO-

GROUP is not a designed dataset for computing the statistics of the social style

of a user (social pattern characterization), it offers a benchmark that is directly

suitable for social interaction detection and adaptable for social interaction cate-

gorization in the domain of egocentric vision.
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EGO-GROUP is a social group detection dataset for egocentric vision, which

consists of 18 videos collected in five different scenarios: laboratory, coffee break,

conference room, outdoor, and party. The ground-truth data available with the

dataset in addition to the type of each scenario provides interaction labels for each

individual. To adapt the dataset to the definition of social interaction category in

this work, we labeled the laboratory and the conference room videos as the formal

meeting, and party, coffee break, and outdoor as informal meeting scenarios. As

mentioned before, social pattern characterization purpose requires long-term mon-

itoring of daily life of a person, while EGO-GROUP consists of single detached

by scenario sequences that are captured under controlled, and not free-living con-

ditions. For this reason, in this section, we report the obtained results for social

interaction detection and categorization as well as face clustering.

For the sake of a fair comparison, we down-sample the videos captured in 15 fps

to 1 fps photo-streams. Within the terminology used in this paper, we obtained 21

social events (sequences) and 76 prototypes. For social interaction detection, we

followed the same proposal as explained in Chapter 4, with the only difference that

the distance feature is calculated as it is proposed in the original paper [61]. For

social pattern categorization, we used one event of each scenario for fine-tuning the

network and used the new fine-tuned network to extract the word representation of

training set for training the LSTM. Later, the appropriately trained LSTM is used

for testing the model. For both of social interaction detection and categorization

tasks, we only evaluate the models on the best-performing settings of features on

EgoSocialStyle, being SID4 in the case of social interaction detection and SIC3

in the case of social interaction categorization. We report the obtained results on

EGO-GROUP in terms of precision, recall, and accuracy in Table 7.2.

EGO-GROUP does not provide any clustering ground-truth to validate this

task. However, as part of the entire framework, we also applied the clustering on

this dataset. Examples of the face-examples in the biggest obtained cluster are

shown in Fig. 7.3. This cluster contains 86 face-examples of the same person from

several events across three different scenarios in EGO-GROUP.

7.4 Summary

Social pattern characterization of individuals requires long-term observation of

their social interactions. For this purpose, wearable photo-cameras are specifically

suitable as they allow long-term recording of the life of a user. In this chapter,

we presented a formalized methodology for analysis of the social pattern of a user
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Figure 7.3: A few examples of faces belonging to the biggest cluster obtained by
applying the face clustering clustering method [3] on the EGO-GROUP dataset.
Face-examples in this clusters belong to three different scenarios of EGO-GROUP.

Table 7.2: The obtained results in terms of precision, recall, and accuracy on the
best performing settings for both tasks of social interaction detection (SID4) and
categorization (SIC3) on EGO-GROUP.

Detection Categorization

Precision 86.11% 90.00%
Recall 77.50% 75.00%
Accuracy 81.57% 76.47%

based on frequency, duration, and diversity of social interactions. To demonstrate

the generalization ability of the proposed approach, we tested our proposed models

on the test set of EgoSocialStyle which is acquired by a user who did not participate

in acquiring the training set used for training them. Interpretable quantitative and

qualitative results are a proof of claim. On the other side, we applied the entire

model on EGO-GROUP, the most suitable public dataset for our purpose.

To summarize, in this chapter we demonstrated that:

• Social pattern characterization of a wearable photo-camera user is possible

and can be achieved by closely monitoring the social behavior of the user

through the visual analysis of its egocentric photos.

• A rough idea of the social pattern of an individual can be achieved by its

characterization within four concepts: frequency, social trend, diversity, and

duration of social interactions.

• In a similar way that social pattern of a wearable camera user can be charac-

terized generally, it can be also characterized with one specific person within

the social circle of the camera-wearer.

• Our proposed method for social pattern characterization can be effectively

applied to any other dataset which holds certain characteristics for social
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pattern characterization of a person, i.e. includes long-terms visual record-

ings of their livings.
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C H A P T E R 8

Clothing: A Social Signal

Processing Perspective

8.1 Introduction

In our society and century, clothing is not anymore used only as a means for body

protection. According to evidences studied within the social sciences, clothing

brings a clear communicative message in terms of social signals, influencing the

impression and behaviour of others towards a person. In fact, clothing correlates

with personality traits, both in terms of self-assessment and assessments that

unacquainted people give to an individual. The consequences of these facts are

important: the influence of clothing on the decision making of individuals has been

investigated in the literature, showing that it represents a discriminative factor

to differentiate among diverse groups of people. Unfortunately, this has been

observed after cumbersome and expensive manual annotations, on very restricted

populations, limiting the scope of the resulting claims.

In this chapter, in the format of a position paper we want to sketch the main

steps of the very first systematic analysis, driven by social signal processing tech-

niques, of the relationship between clothing and social signals, both sent and

perceived. Thanks to human parsing technologies, which exhibit high robustness

owing to deep learning architectures, we are now capable to isolate visual patterns

characterising a large types of garments. These algorithms will be used to capture
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statistical relations on a large corpus of evidence to confirm the sociological find-

ings and to go beyond the state of the art. In this chpater, we will sketch the future

steps of the first systematic study on which social signals are conveyed by cloth-

ing, proposing a framework within the scope of computer vision to measure the

clothing effect on the impression that we have on ourselves and that we trigger in

the others. More precisely, in a first phase we will investigate the basic visual cues

that could be associated to social signals; for example, checking how much tight

shirts are associated to the social signal of attractiveness. In a second phase, we

will perform a higher level analysis, investigating the types of behaviors that may

result from a social interaction, in dependence on the type of garments worn by

the interacting people; for example, analyzing interactions between formally ver-

sus casually suited individuals. All of this would be possible since computer vision

technologies are now mature for a fine-grained analysis of the clothing, providing

precise dense segmentations of outfits as results of human parsing algorithms, and

automatically recognizing diverse clothing items [133, 134, 135] and styles [136].

The chapter is organized as follows: in Sec. 8.2, the literature on clothing in

terms of social sciences is reviewed and clothing analysis in terms of human parsing

approaches is reported. The core of the paper is also presented in this section,

where we discuss our ideas related to the study of clothing under the social signal

processing umbrella. The chapter ends with some final remarks in Sec. 8.4.

8.2 Methodology

8.2.1 Clothing and social semiotics

Semiotics, as originally defined by Ferdinand de Saussure, is “the science of the life

of signs in society” [137]. Semiotics investigates signs and analyzes them to provide

significance to a specific problem. There are three main elements in semiotics: the

sign, what it refers to, and the people who use it. The people as social species

and biological entities, instinctively evolved to survive better through facilitating

living in a disciplined society by defining new signs and giving them an appropriate

interpretation. Social semiotics is a subcategory of semiotics that studies how

people design and interpret meanings and how these meanings are shaped by a

specific social situation [138]. In social semiotics, the term resource is preferred

over the term sign and represents a used signifier by the people to produce and to

interpret communicative artifacts. In this respect, social semiotics is particularly

useful in disclosing unnoticed significance and functionality of social resources and
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each individual is a semiotician, since everybody constantly interprets the meaning

of signs around them.

Humans signify specific social context through resources of all type, whether

visual, verbal, or gestural. Clothing is a non-verbal resource that transfers mean-

ings about individuals in the society. Cloths hold a symbolic and communicative

role having the capacity to express style, identity, profession, social status, gen-

der, or group affiliation of an individual. Although the symbolism that clothing

carries on is not always clear, it evidently can be considered as the most desired

personal image that one is willing to project to the society [139]. The study of

how people use and interpret specific social context through dress is known as

clothing semiotics or fashion semiotics, although some believe that clothing is dis-

tinct from fashion [140]. Within their definition, clothing is “any covering for the

human body”, while fashion is “the style of dress that is temporarily adopted by

a discernible proportion of members of a social group, because that chosen style is

perceived to be socially appropriate for the time and situation”. Originally, cloth-

ing semiotics was studied from the fine arts perspective. Later, the perspective

has been expanded and the study covered the human needs in this respect [141].

Subsequently, in the 1960s, the social and psychological implications of clothing

began receiving more attention from scholars. Today, clothing remains a common

topic of study in social psychology [142] as it conveys social meaning about an

individual and groups of people. It is in this way that the semiotics of clothing

can be linked to the social semiotics.

In spite of the fact that clothes have such large potential to convey a message,

it must be noted that clothing semiotics understanding is complex. The social

context affects the interpretation of clothing, thus, having a precise knowledge of

the unconscious symbolism attached to forms, colors, textures, postures, and other

expressive elements that affects the interpretation of clothing in a given culture is

a desired quality in automatic analysis of this information.

8.2.2 Clothing and computer vision

Clothing style is commonly intended in computer vision as the set of visual at-

tributes and category labels that describe an outfit [143, 134]. Examples of visual

attributes are colors (red, green, etc.), clothing patterns (solid, striped, etc.), and

more technical qualitative expressions (skin exposure, placket presence, etc.) [143].

However, it is worth noting that these attribute taxonomies cannot go beyond a

certain level of details, i.e. fine grained details such as the type of hat are not
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Figure 8.1: Parsing example. The input image (left) and the final output of parsing
(right) employing the proposed model by Yamaguchi et al. [4].

listed in the list of attributes; in facts, only generic types of objects are available

in existing dataset annotations. These visual attributes have been used to measure

the similarity between outfits paving the road for the identification and analysis

of visual trends in fashion [133]. The category labels are textual expressions that

individuate a particular type of clothing item (shirt, sweater, etc.) [134]. In most

of the cases, all these textual labels are accompanied by a pixel-wise segmenta-

tion of the outfit, in which each segment is associated to a category label, and to

one [144] or more visual attributes [145] (see Fig. 8.1).

This segmentation is the output of an operation commonly referred as hu-

man [146, 147, 148], clothing [134] or fashion parsing [144]. Clothing style can be

also modeled without referring to a particular outfit, but instead to a larger set of

category labels and visual attributes [136].

Human parsing is usually performed by statistical classifiers, which operate

after a training phase. The training data may consist of fully labeled data, which

means images of individual outfits in which each of the pixels has a label indicat-

ing the category and/or the attribute [134]. This is the most reliable source of

information to train a classifier, but it is extremely cumbersome to get: in facts,

manual annotation is necessary, which requires 15-60 minutes to be carried out

for each single image [149]. Alternatively, weak labeling can be provided, which

means to have training data in which an entire image is associated to a set of

textual labels (in other words, the textual labels are not localized over the pix-

els of the outfit image). This obviously reduces the human labor to get training

samples, but at the same time is less expressive, leading to classifiers which are
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not completely automatic: for example, the model introduced by Liu et al. [144]

requires that the testing image too comes with textual labels that indicate what

to look for in the image.

Most of the techniques for human parsing builds upon a preliminary operation,

which is that of fitting a skeleton on the human body depicted in the input image.

This operation is called pose estimation [150], and helps to introduce a structural

prior for the parsing process, which individuate salient joints (ankles, knees, hips,

shoulders, elbows, wrist, neck). These points are connected by sticks forming

a skeleton, which in turn drive the parsing to align with it, providing anatomi-

cally plausible segmentations [134]. Unfortunately, pose estimation techniques are

prone to errors in the case of missing data, due to occlusions or auto-occlusions;

for this reason, images of single persons where the entire body is portrayed, are

preferred. Images depicting parts of the body (as those ones captured via wearable

sensors, where usually the whole body does not fit) represent a serious issue. In

addition, pose estimation is weak in the case of large and long clothing, covering

the structure of the body for what concerns some of the joints (a person wearing

long dress has its knees completely covered). This issue has been recently faced

by facing human parsing and pose estimation as two intertwined aspects of the

same problem, introducing the concept of semantic part (such as leg, arm, head)

[146]. A semantic part can be iteratively modeled with tools usually employed for

human parsing (as the Parselets [135]) and as an ensemble of joints, taking from

the pose estimation literature.

8.3 Validation

The four-step pipeline of Vinciarelli et al. for SSP [13] suggests that after having

recorded the scene and detected humans (step 1 and 2), in the step 3, feature ex-

traction has to be performed, and in the step 4, social signals have to be grounded

with the scene context, in order to understand social interactions. In this chapter,

we are interested specifically in the last two steps of the pipeline, since we assume

that the scene has been already recorded and the individuals have been properly

detected.

In the rest of this section, we will individuate the research questions (indicated

with the letter Q) that can be inserted in these two steps, providing our intuitions

about possible answers (letter A), driven by the literature of the human sciences

and/or our speculations, together with the type of experiments we would like

to carry out, to provide the community with deeper insight and novel tools for
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clothing social signaling.

8.3.1 Clothing behavioral cues as an individual social sig-

nal

A-Q1 - How much clothing-related cues are independent from other

standard behavioral cues, in the determination of particular social sig-

nals? The question essentially asks how the mapping from visual features related

to clothing (for example, the type and appearance of a particular clothing item,

e.g., a shirt) has to be carried out in dependence from other cues such as the ones

reported in [13] (Table 1, pag.1745). In other words, this question is very prelimi-

nary and asks for a feasible and reliable protocol with which clothing-related cues

can be analyzed without caring of the effects due to other features in determining

social signals.

A-A1 - In social situations a clothing outfit comes with the body that wears

it, so that other cues, in particular related to physical appearances, gesture and

posture, face, emotional expressions and eyes behavior [13, 151] are obviously co-

present and some cues may have different effects depending on the visible human

body. For example, facial expression comes more into vision if only the upper

body is visible. This could be the reason why online shops often present garments

without the human body (Fig. 8.2). Thus, an analysis on these data seems

reasonable and may help for answering A-Q1.

A simple yet important experiment would be that of checking whether the

presence of different types of body appearances will change the nature of the

social signal transmitted. In particular, our first step is to enrich the annotation

of a clothing dataset, for example, the Exact Street2Shop dataset [152]. For a

given garment, the dataset contains some “shop pictures”, where the garment is

usually located on a neutral background, without being worn by a human body.

Together with this, the dataset offers a “street picture”, where the same garment is

worn by a subject among an undefined set of people. The idea is to first annotate

standard semantic information about the people in the street photos (gender,

expressions etc.). Next, different assessors will evaluate the street and the shop

photos, defining the person wearing that particular garment in terms of social

signals and personality traits. In the case of the street photos, the person in the

picture is present and annotated, while in the case of the shop photos, persons

are absent. The goal is to discover whether the presence of the person changes

significantly the judgment of the assessors, and if this correlates with the semantic
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Figure 8.2: The picture shows an example of clothing outfits typical of online
shops.

information associated to the person.

A finer setup, given a particular person, could be that of isolating the most the

cues related to clothing by masking behavioral cues coming from the face (blurring

the face) or hiding the height (removing the background scene). The interrelation

between behavioral cues and other features in terms of social signals has never

been investigated in the literature.

A-Q2 - How to evaluate the nature of a social signal generated by

clothing behavioral cues? For understanding this question, one may consider

the Brunswick’s Lens model. A simplified version of this model is adopted by

Cristani et al. [153] (see Fig. 8.3). In few words, the model says that a social

signal is not necessarily univocally intended. More in the detail, the model assumes

that a social signal is sent by a sender, S, as a consequence of its internal state,

µs, which is assumed to be measurable. For example, S feels himself extrovert (his

internal state), and this awareness is measured by a self-assessment (for example,

using the Big Five questionnaire [154]). S wears some clothing items and as we

are assuming that clothing items are related in some way with the internal state

of S, they can be assumed as an externalization of the internal state. The receiver

R sees the clothing items worn by S, and infers about the internal state of S,

which in this case is µr, to highlight that possibly is not equal to µs. This process,

called attribution, which brings to a perceived state what can be measured itself.

The Brunswick Lens model states that a social signal has high ecological validity

ρEV, if there is a high correlation between the internal state of S and the features.

Viceversa, a social signal has high representational validity ρRV, if the correlation

between the features and the state inferred by R is high. Finally, if the internal

state of S correlates with the inferred state of R, it means that the communication
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through the social signal mediated by the features has high functional validity ρFV.

A-A2 - The Brunswick’s Lens essentially states that the nature of a social

signal should be measured considering the sender of the signal and the receiver.

This opens up to diverse experiments, suggesting a protocol for each one of them.

For example, in order to understand how a particular social signal built upon

clothing behavioral cues is interpreted by a generic receiver, it is necessary to

measure the perceived state of multiple assessors. If the correlation between the

behavioral cues and the perceived state of the assessors is high, we may individuate

the implied meaning of a particular outfit. In more practical terms, to assess

whether an athletic outfit is a behavioral cue that communicates the social signal of

extroversion, this can be asked to a set of assessors. If the features that characterize

the athletic outfit correlate with the extroversion assessment, then this message

can be understood that athletic outfit triggers a certain reaction in a generic

audience in terms of social signals. In order to individuate the attributes that

most consistently originate social signals, deep learning technologies will come into

play. One of the most attractive features of deep architectures is that they can be

“opened” and “visualized”, allowing to easily interpret what is codified into the

internal layers [155, 156, 157, 158]. Exploiting these strategies, once annotations

of social signals have been extracted from garment images, the goal would be

that of feeding them into deep architectures, capturing the most discriminative

visual patterns. In this way, the generic semantic label of “athletic outfit” can be

explained in terms of behavioral cues (in the sense of [13]), like shape, color and

texture attributes.

A-Q3 - Is there an agreement between one’s self-image and the im-

pression conveyed to others through his/her clothing style? It has long

been known that clothing affects how other people perceive us as well as how we

think about ourselves. This question asks whether there is a consistency between

self-perception of an individual and perception of other people towards him/her.

A-A3 - Often people choose what they wear as a means of self-expression. The

individual measurement of the effect of clothing on self-perception and perception

of others, has been studied previously by Heart [159]. However, the question of

whether others perceive the desired message that the person wishes to commu-

nicate, has not been explicitly studied before. An experimental set up should

first facilitate separate investigation of clothing effect over self-perception of an

individual and perception of others over them and then study their correlation.

A-Q4 - Which clothing behavioral cues are related to the social sig-

nal of the attractiveness? This question asks if clothing style influences the
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Figure 8.3: The picture shows a simplified version of the Brunswik Lens Model
adapted to the transmission of a social signal between a Sender and a Receiver.

perception of attractiveness of others. Attractiveness is the main social signal as-

sociated to physical appearance [13] and attractive people tend to be considered

as having high status, good personality, and being extrovert.

A-A4 - Clothing is considered as an indicator of socioeconomic status [94, 95]

and personality traits [97]. According to Johnson et al. [100], the most inves-

tigated concepts using dress manipulations were dress, status, and attractiveness

and listed the most experimented dress manipulation to study the effect of cloth-

ing on attractiveness concept as grooming, tidiness, makeup, and natural physical

appearance such as hair and eye color, height and weight (see [100], Table 3).

Clothing can be strongly related to arise perception of attractiveness in people

towards a person. To prove this hypothesis, a possible experiment would be that

of capturing the influence of single clothing items, or multiple clothing elements

arranged in an outfit towards the definition of an attractive person. In the same

line with A-Q1, other behavioural cues should be considered, selected or masked,

so to avoid explaining away effects. Also in this case, deep learning architectures

and tools to visualize them ([155, 156, 157, 158], see A-A2) will help in segregate

and explicitly individuate visual attributes that convey the impression of attrac-

tiveness.

A-Q5 - How much impact clothing have on the other individuals
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first impression? The importance of first impression comes more into attention

in relation to its effect on the overall lasting impression. The last impression is

what we will remember most about a social situation, however, one probably will

not have a last impression if do not get the right first impression.

A-A5 - “You never get a second chance to make a first impression” as noted

by Oscar Wilde. Although a large amount of cues aggregate together to form a

first impression, we hypothesise clothing is a strong cue that eases the process for

the people [160] to make a first impression. This quick judgment that happens in

less than a minute [161], can lead us towards a set of assumptions about a set of

personal traits of that person, such as attractiveness, likability, competence, and

aggression [162]. Howlett et al. [163] studied the effect of clothing alone on the

first impression and reported that clothing solely influences the first impression of

the others even in limited exposure time. To detect the influence of individuals

first impressions, the labeling of the Exact Street2Shop dataset (see A-A1) can

be performed including the time dimension into play, enforcing the user to give

a quick answer on the impression the clothing does trigger, explaining then by

textual attributes the item(s) that leads him to such an answer.

8.3.2 Grounding clothing related social signals with scene

context

B -Q1 - How much clothing-related cues help in capturing the context

of a social interaction? The idea here is to study how clothing items worn

by people involved in a focused or unfocused interaction [11] can tell about the

interaction itself.

B -A1 - People wearing outfits of a very similar kind, different from that of

the rest of the crowd, are connected with a high chance, and this in turn helps in

individuating the nature of a social interaction. Sport players with the same attire

and supporters with the same t-shirts in a spectator crowd could be considered as

an example of this connection. In this case, simple counting algorithms, specialized

to finding similar items in a scene, may be of a great help [164]. However, the

problem becomes more challenging when it comes to other types of interactions,

namely ordinary exchanges in generic scenarios (waiting in a bus stop, attending

a conference, etc.).

An ideal solution is to develop models capable of first, assigning clothing visual

attributes to social scenarios (learning the most expected garments on the beach,

in a Starbucks, during a conference etc.), and second, individuating similarities
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among outfits, from those very explicit (team outfits that are different only for the

number depicted on the shoulders) to those more insidious to catch (individuating

people that bring the same bag to individuate a social event). The interplay with

social sciences lies in motivating the results from the learning stage of the model,

that is, analyzing and interpreting the most emblematic garments for a particular

interaction. Even in this case, deep learning technology will help, especially those

architectures equipped with region proposal modules [165]. The novel idea here

could be that of assuming the region proposal module as on-line evolving, drifting

towards the detection of people exhibiting similar clothing.

B -Q2 - How the clothing style drive people to socialize? Specifically,

do people with the certain type of apparel socialize with similarly suited

people? This question asks whether our higher tendency to socialize with certain

people is influenced by the clothing they wear, and if people tend to socialize more

with similarly dressed people.

B -A2 - The approach towards answering this question is twofold. On one

side, clothing in the same way as being considered as a flag to make visible a spe-

cific ideology, culture, or ethnicity, it also can be considered as a social catalysts

among similarly dressed people. In an example, Nash [166] studied the influence

of dressing on runners and stated that when two runners are dressed alike they

engaged in an extended conversation as opposed to a short nonverbal greeting that

occurred among runners that dressed differently from each other. On the other

side, the effect of clothing on the people’s self-perception, leads to variations in

their social relations. As an example, feeling comfortable is an important factor in

a social interaction and clothing has the power to make a person feel comfortable

or not. Simply, when clothing can be used as a criterion for judgment, people may

unconsciously feel judged and act according to it. The connection with pattern

recognition here lies in the approaches for detecting gatherings of people, which are

proven to be very robust and versatile to diverse types of scenarios [11, 167]. Ap-

plying pattern recognition techniques for correlating clothing types of interactants

will unveil possible affinities which may facilitate social interactions.

8.3.3 Towards clothing style interpretation

A collage of typical photos during social exchange from EgoSocialStyle are reported

in Fig. 8.4. As visible, people are having different types of interactions (eating

together, discussing, looking at each other). In this setup, the analysis of the

impressions triggered by the clothing can be carried out exploiting a rich set of
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Figure 8.4: Montage of photos from EgoSocialStyle during social interactions.
Fine details about the facial expression, body posture and hand gestures can be
appreciated, but also the clothing can be observed at a fine grain.

fine grained features. In fact, details of the clothing can be observed in the second

row of the figure. The analysis of this kind of details can help in the study of

the relations between a given impression that a subject is producing and his/her

garment. Unfortunately though, this type of analysis has never been performed

so far.

In this regard, we performed an analysis to see whether deep CNN are in

fact capable of providing us with a meaningful interpretation of clothing. More

precisely, in the first step we are interested to answer what makes a clothing to

belong to a certain style? This is important, since if components of an style are

extractable individually or in relation to each other, then further analysis of that

style can be formulated easier. For example, let us consider that Hipster style

can be defined when a person is seen to be wearing sunglasses, a buttoned shirt

with rolling sleeves, a hat, a pair of cotton pants with a leather belt, and possibly

Converse shoes. In this way we are able to describe Hipster style with its i.e. six

main characteristics provides an explanation to the style in the format of social

signals, which simplifies further analysis of the style.

Various works towards extracting interpretable explanation of deep models

have been previously introduced. An state-of-the-art is the model introduced by
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Fong et al. [168]. This model presents an image saliency prediction paradigm by

learning what part of an image if perturbated affects most the output score of

the algorithm for classification task. We employed this model to make an idea

over what are share common characteristics within a certain clothing style. Fig.

8.5 shows some primarily obtained results for four different styles introduced in

Hipsterwars dataset [136]. These results are obtained by using trained GoogleNet

[169] over Fashionista dataset and later fine-tuned over Hipsterwars. The order of

training and fine-tuning is on one hand due to the large size of Fashionista with

respect to shorter size of Hipsterwars. On the other side, Hipsterwars was the only

available dataset with clothing style annotation until very recently.

To the best of our knowledge, understanding over what makes each of these

styles falls mainly within fashion studies and unfortunately there is no official

definition for each of these styles yet available. However, as it can be observed in

Fig. 8.5, salient points from each style share some common characteristics, while

are different from characteristics of other styles. An example is the role of shoes in

Pinup versus Bohemian style. In Pinup style, high-heels are the most determinant

factor, while in recognition of Bohemian style, shoes almost have no importance.

8.4 Summary

In this chapter some research questions that are related to the investigation of

the social signals associated to clothing are presented. The outcome of these

questions, other than filling a gap in the social signal processing literature, may

have important relapses. For example, it could facilitate the design of online

personal stylists able of indicating, on the one side, the type of impressions one’s

outfit may trigger (associated to their particular body or posture), and on the

other side, which are the most suitable outfits for attracting the attention of

others. This has helpful applications in facilitating social interactions.

To summarize, in this chapter we presented:

• A systematic analysis, driven by social signal processing techniques, of the

relationship between clothing and social signals, both sent and perceived.

• For the related analysis from the computer vision perspective, deep learning

technologies seem to be the most convenient analysis tool. Other than being

strongly effective as for classification and regression, one of the most attrac-

tive features of deep architectures is that they can be opened and visualized,

allowing to easily interpret what is codified into the internal layers.
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(a) Hipster (b) Goth

(c) Pinup (d) Bohemian

Figure 8.5: Saliency map for four different style examples employing [168]. As can be
observed, salient areas for each style are different from other one, i.e. salient part in a
Hipster style is hat and sunglasses, while salient part in the Pinup style are the high-heel
shoes and reddish makeup.
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• Despite experiments are in its very initial phase, we are confident that the

intuition is good, that the technology is ready to purse our goals, and that

the results would be of great impact not only in the fashion field, but in

general in all the social signal processing area.
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C H A P T E R 9

Conclusions

In this thesis, a sequential pipeline for automated social signal processing in the

domain of egocentric photo-streams is presented. The thesis begins by charac-

terizing the benefits of using a wearable photo-camera and discusses the involved

challenges in the task. Later, it highlights the importance of this new line of at-

tack on classical SSP related computer vision problems. In continuation, it brings

into details each component of the proposed pipeline in separated chapters and

provides a discussion over the obtained results along the validation phase.

9.1 Findings

Our proposed model for multi-face tracking in egocentric photo-streams, extended-

Bag-of-Tracklets, is designed to cope effectively with induced challenges by the

domain, i.e. motion unpredictability, low frame-rate, and frequent occlusions. Due

to the low temporal resolution of the camera, the model addresses the problem

of tracking by treating it as a matching problem: the most similar patches to a

face example are found by patch-matching analysis and gathered along a sequence.

The set of gathered faces in a sequence which ideally belongs to one person forms a

tracklet. In the next step, a voting strategy is applied to select the most common
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face bounding box in every frame of the sequence. Unreliable bounding boxes

are prone away by introducing and applying a new measure of confidence. In this

chapter, we show that exclusion of occlusions is an important step in increasing the

robustness of a tracking model. Bag-of-Tracklets, in this work, has been applied

to reach a higher performance in tracking that could be achieved singularly by a

simple forward-backward patch matching. However, this idea can be applied in

any other similar scenario where a set of candidates for a patch are available and

the task is to choose the most reliable patch among all.

We proposed two models for social interaction detection in chapter 4. One

model is based on frame-level analysis of social signals, and the other one, based

on their sequence-level analysis. Through comparing the social interaction de-

tection performance achieved by each model, we discovered the importance of

sequence-level analysis of social signals which leads to a higher performance. The

studied social signals in each model according to F-formation formalization are

the mutual distance between interacting people and their head orientation. How-

ever, as an additional social signal, we also studied the role of facial expressions of

the interaction people on the social interaction detection performance and showed

it boosts the social interaction detection robustness. Proving the importance of

sequence-level analysis of social signals, as well as studying the role of facial ex-

pressions in social interaction detection tasks are two main contributions of this

chapter. In addition, it should be noted that related analysis for social interac-

tion detection given in this chapter is the first attempt at solving the task in the

domain of egocentric photo-streams.

The importance of sequence-level analysis of related social cues for social in-

teraction categorization into a formal or an informal meeting is also disclosed in

chapter 5. In this chapter, we brought into machine vision analysis the proposed

determinant factors studied in sociology -mainly environment of the meeting, for

identifying its category. In this regard, we proposed to employ a model for extrac-

tion of compact features representing the meeting environment. We also studied

the role of facial expression of the interacting people in determining the category of

the social interaction. We consider this as the first attempt at automated analysis

of social signals for categorization of social interactions in the domain of egocentric

photo-streams.
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In chapter 6, we proposed a model for face clustering in the domain of egocen-

tric photo-streams. Our proposal is built upon the eBoT, our multi-face tracking

model, to enable calculating the similarities between face-sets gathered along the

sequences, instead of face-examples. In order to deal better with the drastic vari-

ation in face appearances during long time photo acquisition, the similarity score

is obtained by applying the deep-matching approach. Upon calculating the sim-

ilarities among face-sets and employing both inner-track as well as inter-track

constraints, the agglomerative clustering with a previously learned threshold is

applied to decide on the final cluster members where each cluster ideally belongs

to the face appearance of one person in the dataset. We count our proposed

model as the first work to tackle the problem of face clustering in the domain of

egocentric photo-streams.

Our proposed pipeline for social pattern characterization of a wearable photo-

camera user is wrapped up in chapter 7. In this chapter, we formally defined the

principle terminologies to characterize the social style of a user, being frequency,

diversity, social trend, and duration of a social interaction. We demonstrated

that this task is possible by presenting quantitatively and qualitatively the results

and drawing a sensible conclusion out of them. In addition to demonstrating the

obtained results over our proposed dataset, EgoSocialStyle, we also reported the

result of our proposed model over the public dataset, EGO-GROUP, which is a

proof of the generalization ability of the proposed pipeline.

In this thesis, the majority of the experiments are held on our proposed dataset

for social pattern characterization of a user, EgoSocialStyle. As mentioned in

Sec. 4.3.1 of chapter 4, EgoSocialStyle comes with a vast amount of annotations,

including interacting/not interacting flags per each prototype and Formal/informal

meeting flag for each sequence, as well as face clustering annotations.

In chapter 8, we introduced a new branch of research in SSP and presented

first steps towards its formalization. In this chapter, we proposed some research

questions which we believe extrapolating them leads to solving the problem. For

each question and within the SSP scope we suggested a coarse solution to them. In

this chapter, we took an step towards clothing style understanding and reported

the preliminary results of some of our own experiments towards answering it.
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9.2 Future Lines

The contributions and limitations of each of presented methods within the pipeline

for SSP in egocentric photo-streams are opening future research lines:

In this thesis, for SSP in egocentric photo-streams, a set of social signals are

newly analyzed which conventionally were not subject to analysis. However, we

believe there are other social signals which their role is still to be discovered in

future studies. Some of these social signals such as distance among interacting

people, and their clothing style as a clue to categorize the type of a social inter-

action, are previously mentioned in sociology, but has not arrived at automatic

machine vision analysis. We assume further studies in sociology and psychology

are required to reveal more related social signals for more effective social signal

processing.

Moreover, in this thesis, we only expand social interaction analysis with their

categorization into formal and informal meetings. However, we believe further

studies can be taken place to study role of similar features, or other relevant

feature to put social interactions into another set of categories, i.e. indoor and

outdoor activities categorization. We theorize that assigning a different type labels

to a social interaction can have important applications in automatic analysis of

social patterns.

Our main concern about near future expansion of the work is regarding anal-

ysis of clothing from SSP perspective. Indeed, this is a novel area of research

which can be tackled from various aspects, from clothing style analysis to its rela-

tion to personality traits. In this regard, the first-person perspective can also be

useful for the analysis, since they can capture context together with the clothing

and also can provide more visual details about the clothing of others due to their

proximity to the subjects. This indeed is not an easy task and requires integration

of fashion, sociology, psychology, and machine vision studies in one place. How-

ever, this problem once tackled, will activate many potential lines of research and

applications.
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[33] G. Rogez, J. S. Supančič, and D. Ramanan, “First-person pose recognition using
egocentric workspaces,” in Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2015, pp. 4325–4333.

[34] S. Mann, R. Janzen, T. Ai, S. N. Yasrebi, J. Kawwa, and M. A. Ali, “Toposculpt-
ing: Computational lightpainting and wearable computational photography for
abakographic user interfaces,” in Canadian Conference on Electrical and Com-
puter Engineering. IEEE, 2014, pp. 1–10.

[35] V. Bettadapura, I. Essa, and C. Pantofaru, “Egocentric field-of-view localization
using first-person point-of-view devices,” in Winter Conference on Applications of
Computer Vision. IEEE, 2015, pp. 626–633.

[36] A. Kendon, “The f-formation system: The spatial organization of social encoun-
ters,” Man-Environment Systems, vol. 6, pp. 291–296, 1976.

[37] M. Cristani, L. Bazzani, G. Paggetti, A. Fossati, D. Tosato, A. Del Bue,
G. Menegaz, and V. Murino, “Social interaction discovery by statistical analy-
sis of f-formations.” in British Machine Vision Conference, vol. 2, 2011, p. 4.

[38] T. Gan, Y. Wong, D. Zhang, and M. S. Kankanhalli, “Temporal encoded f-
formation system for social interaction detection,” in ACM international con-
ference on Multimedia. ACM, 2013, pp. 937–946.

118



[39] M. Aghaei and P. Radeva, “Bag-of-tracklets for person tracking in life-logging
data.” in Catalan Conference on Artificial Intelligence, 2014, pp. 35–44.

[40] M. Aghaei, M. Dimiccoli, and P. Radeva, “Towards social interaction detection in
egocentric photo-streams,” in Eighth International Conference on Machine Vision.
International Society for Optics and Photonics, 2015, pp. 987 514–987 519.

[41] ——, “With whom do I interact? detecting social interactions in egocentric photo-
streams,” in International Conference on Pattern Recognition. IEEE, 2016, pp.
2959–2964.

[42] M. Aghaei, M. Dimiccoli, C. C. Ferrer, and P. Radeva, “Towards social pattern
characterization in egocentric photo-streams,” arXiv preprint arXiv:1709.01424,
2017.

[43] M. Aghaei, F. Parezzan, M. Dimiccoli, P. Radeva, and M. Cristani, “Clothing
and people-a social signal processing perspective,” in International Conference on
Automatic Face & Gesture Recognition. IEEE, 2017, pp. 532–537.

[44] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and
M. Shah, “Visual tracking: An experimental survey,” IEEE transactions on pat-
tern analysis and machine intelligence, vol. 36, no. 7, pp. 1442–1468, 2014.

[45] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking using k-
shortest paths optimization,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 9, pp. 1806–1819, 2011.

[46] J. F. Henriques, R. Caseiro, and J. Batista, “Globally optimal solution to multi-
object tracking with merged measurements,” in International Conference on Com-
puter Vision. IEEE, 2011, pp. 2470–2477.

[47] A. R. Zamir, A. Dehghan, and M. Shah, “Gmcp-tracker: Global multi-object
tracking using generalized minimum clique graphs,” in European Conference on
Computer Vision. Springer, 2012, pp. 343–356.

[48] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive tracking,” in Eu-
ropean Conference on Computer Vision. Springer, 2012, pp. 864–877.

[49] S. Wang, H. Lu, F. Yang, and M.-H. Yang, “Superpixel tracking,” in International
Conference on Computer Vision. IEEE, 2011, pp. 1323–1330.

[50] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally orderless tracking,” In-
ternational Journal of Computer Vision, vol. 111, no. 2, pp. 213–228, 2015.

[51] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai, “Minimum error bounded effi-
cient 1 tracker with occlusion detection,” in Conference on Computer Vision and
Pattern Recognition. IEEE, 2011, pp. 1257–1264.

119



[52] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE
transactions on pattern analysis and machine intelligence, vol. 34, no. 7, pp. 1409–
1422, 2012.

[53] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade, “Tracking in low frame
rate video: A cascade particle filter with discriminative observers of different life
spans,” IEEE transactions on pattern analysis and machine intelligence, vol. 30,
no. 10, pp. 1728–1740, 2008.

[54] T. Zhou, Y. Lu, and H. Di, “Nearest neighbor field driven stochastic sampling for
abrupt motion tracking,” in International Conference on Multimedia and Expo.
IEEE, 2014, pp. 1–6.

[55] E. Goffman, “The presentation of self in everyday life. 1959,” Garden City, NY,
2002.

[56] X. Alameda-Pineda, J. Staiano, R. Subramanian, L. Batrinca, E. Ricci, B. Lepri,
O. Lanz, and N. Sebe, “Salsa: A novel dataset for multimodal group behavior
analysis,” IEEE transactions on pattern analysis and machine intelligence, vol. 38,
no. 8, pp. 1707–1720, 2016.

[57] G. Groh, A. Lehmann, J. Reimers, M. R. Frieß, and L. Schwarz, “Detecting social
situations from interaction geometry,” in Social Computing, Second International
Conference on. IEEE, 2010, pp. 1–8.
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