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Abstract

Industrie 4.0 is the fourth industrial revolution and is related to the application of the
generic concept of cyber-physical systems [30]. The outcome of many projects aligned
with Industrie 4.0 proposal includes multi-robot systems (MRS) for manufacturing
which are more adaptable, decentralised, service oriented and have real-time control
and modularity [37]. One of the most crucial aspects of an MRS is the organization of
the flow of control decisions. The control and planning have to accomplish different
tasks like collaboration and cooperation, order assignment, mitigating collision and
maintaining communication among all the robots [39].

The states of the batteries, robots and environment change often in autonomous
systems like MRS. The time required to complete tasks or performance times vary
according to the change in states of batteries, floor and mechanical parts of the robots.

In most general cases where conditions of the floor, mechanical parts are im-
portant, the relation between performance times and these factors are not directly
derivable, through, performance time has a direct correlation with discharge of bat-
teries. This work focuses on identifying these performance times and model them
so as to reflect the states of the batteries and environment. The inclusion of these
performance times in planning and control decision can produce more cost-efficient
decisions. They are modelled using non-linear state dependent modelling techniques.
Also, they are estimated using the model developed in this work and the values are
used in the decision-making process. This is done to study their efficacy in planning
in an MRS used for internal transportation.

A prototype MRS for logistics is prepared for the experiments where the floor
is described by a topological map with nodes designating ports or junctions and
edges connecting the nodes. The robots carry materials from one port to another.
The paths between ports are composed of different edges. Traversing an edge is
considered as a task. The travel time spent by a robot to traverse an edge is the
designated performance time which indicate the cost involved to traverse the edges.
Thus, travel times reflect continuous changes in robot and environment and influence
to modify decisions which are made without considering them. Travel times for a robot
are made available online through estimation. Online estimation demands a suitable
formalization and model for these travel times. In this work, a state-dependent bi-
linear model from time-series modelling technique is used to model travel times in
each mobile robot in order to estimate them online. The efficacy of these travel times
is studied by complementing them into a planning algorithm. Routes are computed
to find the shortest path from one port to another for each MR. The travel times
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are used as weights of edges into route planning instead of weights derived from
heuristics or other cost factors. In route planning for a single robot, the travel time
for an edge may be required to be estimated for multiple times. The estimated travel
times between any two nodes provide the current and close-to-real cost of traversing
at different instances. These estimated values form a profile of travel costs for edges
through the duration of operation of the robot. These estimated travel times are
different than heuristics costs as they depict the real states which are impossible to
know from heuristics. This facilitates path planning algorithms to choose the edges
with least real travel times or costs to form the path. The experiments show that path
obtained through online estimated travel times are of 15% less total cost compared
to that obtained by heuristics costs.

Nevertheless, a good estimation is dependent on historical data which are close in
time. But, there are situations when all the travel times for one or more edge(s) are
not available for the entire duration of operation of the MRS to an individual robot.
The proclivity of this occurrence lies in the fact that the edge may not have been
travelled even once by the robot, or travel time for that edge have not been recorded
in recent past. Then, it is imperative for that robot to gather the necessary travel
times from others in the system as a reference observation. But, these observations
are from other robots in different battery condition than itself. Still, the bi-linear
model for travel time for the robot itself using other robots’ observation and its own
change or exploration in the travel times till the current instance. The crux of this
process is to predict current travel times in the robot using others’ travel time for the
same edge.

The mechanism of information sharing between one robot to others in the system
has been devised in a form of a common ontology-based knowledge. This ontology
structure is identical in each robot which contains the travel times of edges with
contexts attached to each data about the instances of estimation, the nodes that par-
ticular edge connects and other pieces of information. This ontology helps to fetch
and share information forming a collective knowledge base facilitating a comprehen-
sive control and planning for the system.

This greatly helps the MR to estimate travel times more accurately and precisely.
Also, accurate estimation affects route planning to be more precise with reduced cost.
The total cost of paths generated through the travel times estimated through sharing
is 40% less on average than that of paths generated through travel times without
sharing.

In this work, only a single task is considered whereas in a real industry a robot
needs to do a variety of tasks. This work paves the way to consider all the varieties
of tasks in an automated system and identify different types of cost coefficients, other
than travel times. In that case, estimating and sharing information would be in a
bigger domain with more complexity which demands artificial intelligence to be used
along with re-enforcement learning. The problem domain can be further enhanced
with different kinds of robots in a system like unmanned aerial vehicles, other ground
vehicles, and human agents.
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Chapter 1

Introduction

Flexible manufacturing plants, warehouses and logistic hubs depend on efficient, ro-
bust, adaptable and evolving internal transportation systems [63]. In the recent years,
these systems are built upon mobile robots or automatic guided vehicles (AGVs) or
mobile robots (MRs) which are driver-less carriers used on the factory floor as mo-
bile production platforms or for material transportation. With the use of AGVs, the
production process has become more flexible with a decrease in production time and
costs. With the advent of Industry 4.0, the multi-robot system (MRS) came into
vogue into industries.

In this chapter, the current requirements in MRS for more cost effective decisions
and the problem of this thesis shall be introduced. Also, this chapter elaborates on
the necessity and feasibility of the problem in automated factories.

1.1 Context of the problem
Robotics, both as a research field and an application domain, has come a long way
from traditional singular robots to collaborative or collective robotics termed as multi-
robot systems. In comparison to singular robots, MRS are advantageous for features
like collaborative work, decrease in overall cost, more fault tolerant, capability to
encompass large area et cetera [78]. This kind of autonomous systems in industrial
production facilities are one of the facilitators of Industry 4.0 and smart factory. Thus,
multi-robot systems are extensively investigated for efficient functioning in automated
factories.

Automatic control systems are required to take decisions on real-time based on
the available information, without outside interference to cope up with the challenges
arising out of the above requirements. For such autonomous operation, awareness
about states of robot, charge of batteries and environment play crucial role for real-
time decisions. Decisions in an individual robot based on these states can increase
operational efficiency, which can eventually increase the efficiency of the team [16].
However, these states are not always available to an mobile robot (MR) due to lack of
experience of certain parts of the system or having been experienced quite long back
which may be irrelevant at the time of decision making. Nevertheless, all MRs in the

1



Figure 1.1: Correspondence between discharge of battery and travel time of MR
system can support and help each other to obtain these states through knowledge
sharing mechanism. This paves the way for implementing collective intelligence for
better optimal decisions.

1.2 Travel time as indicator of state of batteries and
environment

The MRS is applied to carry out internal transportation in this work. Generally, the
environment in internal transportation comprises of racks to keep materials which are
marked as ports. There are pathways in between the racks in the floor through which
the MRs traverse to transport the materials. In this context, the time required by
any MR to perform some task of carrying a load depends on various environmental
as well as internal factors of the robot. These travel time to carry a load will be more
if the battery state is exhausting or floor is rough or both. Thus, travel time depicts
the cost incurred due to performance of task.

In an experiment conducted in our laboratory, we observe close correlation be-
tween state of charge and time taken to traverse distances. At the first part of the
experiment, a MR was instructed to travel a particular distance repetitively till the
battery is fully exhausted from state of complete charge. The values of the travel time
was recorded in secs as a function of iteration or time xk. In the next step, the floor
condition was made rough from smooth and again the MR was instructed to travel
that distance repetitively till the battery is fully exhausted from state of complete
charge. Part (a) of Figure 1.1 plots the discharging voltage of Lithion-ion batteries
over time and Part (b) plots the progressive mean of observed values of xk, first only
with the change of state of charge of batteries (left plot) and second with both the
change of state of the charge of batteries and the floor condition (right plot). Analogy
is observed in Part (a) and left part of (b) where travel time is in accordance with
the battery discharge profile where it increases for the first 100 iterations, then again
decrease to a steady value and then increases steadily till full discharge. This behavior
is also present when surface conditions are changed from smooth to rough, where the
increase of travel time is more after 3500 iterations. On the other hand, travel time
increases more in right plot compared to left plot of Part (b) at the same iteration
instance. This happens because at equal battery capacity in both cases, more energy
is required to traverse the same distance with increased roughness in the floor. These
observations shows that travel time taken to cover a particular distance by a MR can
provide a quantitative measure for the state of batteries and state of environment.
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1.3 Problem definition
Quantitative components like travel time can be formalized as cost coefficients or
cost functions to obtain and understand the different environmental, physical and
mechanical factors of any MRS. Our current work involves identifying these cost
coefficients in a MRS specifically used for internal transportation in automated plants.
In this work, traffic network topologies are used instead of geometrical maps as the
floor plan for automated plants usually do not vary over the time. As vehicle speed
depends on friction forces, slope and traffic conditions, state of batteries, the actual
cost of traversing a path is provided by travel time. These travel times are time
dependant as battery exhaustion, surface condition of shop floor, wear and tear of
tyre, et cetera vary along time. An optimal path obtained at certain instance may
not remain to be optimal at some other future instance as the real cost of traversal
is denoted by travel time. Thus, these travel times have the potential to effect the
decisions on optimal path. This work focuses on to model and estimate these travel
time along the progress of time. Moreover, as they can influence decision making,
the problem is to use these travel times as the main parameter for decisions to obtain
more cost efficient paths.

Online estimation of travel times in an MR for an edge need observations of the
same throughout the history of operation time. But all the observations may not
be available to that MR as it may have not traversed the edge before or may have
traversed long back. In later case, the current status of the floor for the edge will not
be known to the MR. During the run-time of MRS, the values of the estimated travel
time will be generated at every instance f control decisions for all MRs, producing
a pool of estimated values. One or more of the other MRs may (one must have)
traversed this edge in the previous instance or close past whose travel time can be
used to estimate the travel time for the MR at current instance. Hence, representation,
accumulation, storage and sharing of these travel times become essential [55] in an
MRS. More significantly, every estimated value of travel time has inherent context
associated with it. Travel time originate from each MR depending on the instance
of travelling, zone of the floor, previously traversed edge, neighboring AGVs, state
of charge, et cetera. All these factors provide context to the estimated values of
travel time. The problem addressed in this work is to form a mechanism to share
the travel times of each MR efficiently to be used for accurate estimation of travel
time for every MR during their decision and control. Also, it is investigated to form a
collective intelligence in the MRS so that the knowledge and intelligence of one robot
can contribute to the formation of knowledge in other robots as well.

1.4 Summary
The contribution of this dissertation include the following:

• Travel time of edges is identified as a type of cost parameter which reflects the
states of charge of battery and floor in case of automated logistics

• Kalman filtering has been identified as a efficient and suitable method for esti-
mation of travel time
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• Dynamic parameter identification and estimation method have been developed
to estimate travel time online

• Standard route planning algorithm has been modified to use travel time as
weights of edges to find minimum cost path

• Collective intelligence have been implemented in MRS with mathematical va-
lidity so that each MR can help and support other MRs in their decision process

• Inside collective intelligence, semantic knowledge sharing mechanism is devised
in each robot to share estimated values of travel times of one robot to others

1.5 Organization of this dissertation
In this introductory chapter, the context and motivation of the current problem are
presented along with the contributions. The second chapter provides insight for the
state of the art works in the problem area and provides a comparison of the approach
of the current solution with state of the art. Chapter 3 explains the study to find
the suitable estimation method for estimation of travel times of an MR. Chapter 4
elaborates on the methods to estimate travel times online and compliment traditional
planning algorithms in order to produce better cost-efficient path. The knowledge
sharing mechanism and formation of collective intelligence are presented in Chapter 5.
Chapter 6 provides the conclusion of this dissertation.
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Chapter 2

Related work

The context of the problem, the problem definition and contribution are elaborated
in the previous chapter. The state of the art and current trends are discussed in this
chapter. The evolution of multi-robot systems for smart factories are discussed in
this chapter. This follows with the discussion of state of the art implementtion of
collective intelligence in industrial automation.

2.1 Growth of distributed multi-robot system
The research of MRS has grown to a multi-dimensional field from the time of its
inception at the late 1980s [7] including biologically inspired multi-robot formations,
communication between robots, architectures, task allocation, motion coordination
and control, localization, mapping and exploration, object transport and manipu-
lation and reconfiguration. Usually, multiple robots cooperate and coordinate to
perform complex tasks which are typically impossible for one single robot powerful
robot to accomplish [34]. After the advent of behavior-based control where the de-
sired behavior in system-level is achieved by distributed, interacting modules, called
behaviors [53], the control techniques of various biological societies like ants, bees,
and birds are deployed to the development of similar behaviors in cooperative robot
systems[7]. Through this concept, robots can cooperate with each other to achieve
complex behaviors [34], which could be impractical and expensive to carry out by a sin-
gle powerful robot [79]. There were algorithms being proposed forming a centralized
multi-robot control system. However, centralized control in MRS makes commander
robot most functional, not only mechanically but computationally which makes the
system more vulnerable to crashing, as the leader becomes the single point of contact.
Thus, decentralized and distributed control in MRS came into vogue to make it fault
tolerance, reliable and robust [6]. A novel flocking algorithm was proposed in [42]
based on the leaderless approach where a large scale swarm of robots could navigate
autonomously trusting on local interactions in an environment, dense populated with
obstacles. Thus a specific robot is not assigned to conduct the group. Coordination
and control become utmost importance in any MRS to achieve the former. This
marks the genesis of swarm intelligence in robotics or swarm robotics systems (SRS)
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[79].

2.2 Advent and propagation of swarm intelligence
in multi-robot systems

Swarm intelligence is a bio-inspired approach, where cumulative behaviors of groups
of organisms, enables the group to solve problems, typically impossible for a single
individual to solve [44]. So, swarm intelligence can be seen as a mechanism which
individuals can use to overcome some of their own cognitive limitations. Swarm
intelligence results in a global emergent behavior to manage complex system using
minimal communication with only local neighbors [79], which do not depend on a
single commander. These operational principles from biological systems of animal
kingdoms are deployed as swarm intelligence in engineering as SRS for some basic
advantages over traditional systems like scalability, flexibility, and robustness [23].
Gradually, the simple and individual behaviors lead to complex and divergent ones in
a MRS. This paved the way to achieve the current concept of collective intelligence
in MRS. [51].

2.3 Collective intelligence in MRS
A set of intelligent entities like experts, agent systems, or simply a set individuals
which are autonomous to make decisions, is termed as a collective [51]. Usually,
each member contains its own knowledge but, the whole amount of knowledge in the
collective is not a sum of knowledge of each member [61]. One possible solution is
proposed in [19] by applying basic data integration techniques in real world applica-
tion. Thus, integration is a method which can produce knowledge of the collective
from knowledge bases of individuals. In the context of swarm robotics, independent
robots function as agents and are acting together to accomplish a big task. Each
robot or member forms a knowledge base in the system or collective while it func-
tions, guided by reacting to the local situations as they encounter. This mechanism
eventually forms a collective intelligence. The whole knowledge base of a collective
is represented as a general world utility which is a function of the state of all agents
across all time [70]. Moreover, a function of only one agent’s state at a single moment
is a specific private utility function. The knowledge of a robot as a member of an
entity is being acquired by the sensors and similar sources. In a collective or group
of individuals, the whole knowledge of the collective or world knowledge is formed in
an utility function. For optimized control and coordination in a MRS using collective
intelligence, world utility function is maximized through the proper selection of pri-
vate utility functions. The principles of collective intelligence and crowdsourcing have
been investigated in [75] to achieve information fusion or integration in multi-robot
search and rescue systems, in cooperation with humans. Although, there are numer-
ous approaches found in the state of the art where the concept of information fusion
is being used to process sensor data and data from other similar sources to accomplish
search or rescue or navigating in unknown environment, there are no investigation
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carried out to use the concept of collective intelligence to improve the efficiency of
performance of a group of MRs. However, the decisions of planning and control for
each robot can be improved when it is based on information about its own state and
the environment. Thus, these information of each robot or each member of the col-
lective have to be gathered through sensor or estimated from previous experience of
performances. Moreover, similar to [75], these information can be used to maximise
the efficiency of the whole MRS using the principles of collective intelligence. Thus,
planning decisions in each member entity or robot can be based on the derived in-
formation about the environment and other robots, which will eventually make the
MRS more cost efficient.

2.4 Information about each robot and environment
In our work we propose to gather on-line information of conditions of robot and
the environment in a MRS through travel time, which is conceptualized a type of
cost parameter. Typically, these cost parameters are time varying as explained in
Section 1.3 in Chapter 1. Although, there are many recent state of the art works
related to multi-robot systems in transportation and automated industry, dealing
with co-operative path-planning, parameter identification of robot dynamics, adaptive
controlling through position control, most related to our work are the followings:

In [54], the authors have proposed a adaptive on-line estimation of system param-
eters which are time-varying. Here, the model parameters of the dynamics of mobile
robot of one robot and then of all the N robots of the system are estimated as system
parameters to arrive at a coherent estimate. Although the time varying aspect of the
model parameters is similar to our work, we are focused on determining to estimate
from performance quality or capability of the mobile robots which are impacted by
the different environmental factors and which determine the cost of doing task. We
call these as cost parameters and these are time-varying in nature.

The work of Confessore, Fabiano and Liotta in [21] has proposed a minimum
cost approach to solve the dispatching problem in an multi-robot system where the
network of mobile robots is represented as a graph. The final goal of their work is
to determine the minimum cost of performing a task through this graphed network.
Like Confessore, Fabiano and Liotta, we are also determining the performing ability
or quality considered as cost, but our final goal is to use these cost parameters of each
AGV in the system to be useful for various decision and controlling purposes.

Though both the above works can be considered most relevant to the current work,
these are not directly comparable as they used different time varying parameters
differently. In current work we estimate traversal time of particular AGV as an
instance of above mentioned cost parameters. There is no research proposal addressing
the same problem as ours. This is the first work to address this type of parameters.

2.5 Summary
Numerous works have been done to form a centralized multi-robot control system.
But, centralized control is prone to crashing as it is dependent on just a single com-

7



mander root. This necessitated the evolution of decentralized and distributed control
in MRS for fault tolerance, reliable and robust performance. With the advent of
swarm intelligence and multi-agent systems, collective intelligence came into vogue
in MRS where any intelligent entity like flock of robots, agents et cetera are termed
as collective. The total knowledge of a collective is maximized than the knowledge
of each member through data fusion technique. Usually, knowledge in a collective
is the data about the surrounding area acquired through various sensor and similar
sources. In most cases, these data are used to enhanced search and rescue operations
in MRS. In our proposal, the travel time is proposed as a type of cost parameter
which represents the states of batteries of robots and floor in automated logistics.
In this work, collective intelligence is used as a method to enhance the knowledge of
these travel times for better cost efficient decisions in each MR in the system. This
eventually enhances the efficiency of whole MRS.
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Chapter 3

Travel time as cost coefficient and
its estimation

The main features and demands of MRS are discussed in the introductory chapter.
Autonomous systems like MRS need to decide for cost efficient planning online based
on the available information about the environment and other robots. In state of the
art, this knowledge has been maximized using data fusion techniques based on sensor
data through collective intelligence. This method has been implemented mostly in
case of search and rescue operations. This work proposes cost parameters which reflect
the current states of battery, mechanical parts of robots, environment et cetera and
finds them suitable to reflect knowledge about robots and environment. They could
be used in decisions for planning to generate cost efficient results. Using collective
intelligence, these cost parameters can be shared and total knowledge about these
can be enhanced in the MRS. This work proposes to increase the cost efficiency of
planning decision through collective intelligence in the MRS. These parameters change
along time, particularly in battery-operated robots, which are very sensitive to battery
level variations. This chapter elaborates on identification and estimation of such a
cost parameter of the individual MRs in context of automated logistics.

3.1 Challenges in planning in MRS
The trend in MRS is to use driver-less diesel or electric powered MRs. In [71] Schmidt
et. al. has investigated the commercial viability of Battery powered robots (B-
MRs) and has concluded that the battery mobility is economically beneficial because
the charging and maintenance costs of a group of B-MRs are significantly lower 1.
Moreover, the cost of maintaining B-MRs can be instrumental in requiting the higher
investment costs of procuring charging infrastructure and spare batteries. Thus, B-
MRs have economic, technical and ecological advantages over diesel-electric powered
ones in applications of transportation and material handling [71]. B-MRs have ushered
in more flexible production process with decrease in production time and costs. So,

1This is explained elaborately in [26]
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B-MRs are gaining more importance.
On the other hand, the control and planning decisions in an MRS are still based

on heuristic computations. But, the states of environment, mechanical parts change
during the progress of time. Moreover, in case of B-MRs, state of charge of batteries
also change over time. Currently, realistic conditions of robots or environment or both
are neither reflected nor instilled in decisions of planning. Hence, the decisions for task
allocation, navigation and movement can eventually lead to increase of overall cost of
performing the tasks. Also, planning decisions for one MR (for individual task) or for a
group (for co-operative tasks) are taken independent of other MRs operating in same
environment. However in automated systems, performance of one MR is not only
dependent on its own mechanical parts but also state of batteries and environmental
factors like floor condition, positions and functioning of other MRs. Thus, planning
decisions in MRs, either deployed as an individual worker or in a group, necessitates
to estimate performing cost in form of parameter from environmental factors and
state of charge of batteries et cetera [72].

For a comprehensive idea, we provide the following example. A prototype internal

Figure 3.1: Collision at crossroad

transportation system is illustrated in Fig 3.1, where two transportation MRs are
about to meet at a crossroad in their respective transportation paths. The illustrated
situation arose due to the lack of knowledge about the current capability of the MRs
based on their battery level at run-time. Thus, decision for movement was based
on incomplete or incorrect prediction about time required by the MRs to reach the
crossroad and to cross it.There are two possible solutions to mitigate the collision
between them. One way is to make A1 wait until A2 passes the crossroad and go
to its path from the crossroad (marked by solid arrow). After that, A1 should pass
and go to its own path (marked by dotted arrow). The other one is to coordinate
the movements of A1 and A2 to pass the crossroad without collision using virtual
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roundabout and go to their respective paths. The first solution is easy and simple,
but it decreases the efficiency of A1 by forcing it to wait and thus incurs more cost
to complete transportation. On the other hand, the second solution is beneficial, in
terms of cost and efficiency, as it utilizes the available resources, yet making the task
less cost consuming by continuing with the movements of both robot in parallel. The
second solution can be implemented when the knowledge of exact time needed to
cross the roundabout by each MR can be obtained. This specific time is based on the
state of charge of batteries, mechanical status of the robot and the conditions of the
environment. Thus continuous real-time knowledge of travel time which reflects state
of charge of batteries helps to make better optimal control decisions.

The above example shows that to obtain better path planning, parameters con-
sidered in existing decision process is not sufficient. In addition, the controller needs
to consider the current speed of individual MR as a parameter in order to correctly
take decisions. As these parameter are time varying in nature and directly influence
the cost of the current task (consequently the whole system), these can be modelled
as cost parameters to the system. As for the above example we model the current
speed by travel time.

3.2 Travel time: a type of cost parameter
Aforementioned travel time is a kind of cost coefficient. These cost coefficients can
be of individual robots in MRS, irrespective of the kind of task the robot needs to
perform. Similar situations can be thought of in other tasks e.g uploading a box or
any material, capacity of carrying a particular load or accuracy of fitting a mechan-
ical part. On one hand, they arise locally at each individual AGV due to action of
actuators, wheels and other mechanical factors. But they are significantly influenced
by environmental factors like battery capacity (in case of battery powered MRs),
conditions of the floor, conditions of material, performance and behavior of other
AGVs, et cetera, as all or most of these factors determine the state of the robot at
every instance of time. The experiments show that these travel time vary over several
environmental factors as mentioned above (Section 1.2 in Chaper 1).

Current research works on control of MRS estimate these parameters at agent
level. The decisions of planning, like the coordinated movements of A1 and A2 to pass
the crossroad in the previous example, can not be taken at lower levels of actuation
and control. Influence of factors like friction forces of floor, slope, mechanical part
can be corrected by local control on individual MR level (lower levels), but factors
like traffic condition, conditions of material, behavior of other MRs are beyond the
scope of control by lower levels. Hence, considering cost coefficient at lower levels of
actuation and control cannot make better control decisions. On the other hand, there
are other research works which consider some heuristic cost for system level decision
making. But these cost do not reflect the real conditions as they are not derived from
the current and real states. In case of planning, the method of achieving a decided
goal in inherent in these cost parameters. But, they are applied in the lower levels.
Thus, planning goals are set in high level but the parameters to achieve them are
available to lower level. This obscures the path to achieve the high level decisions like
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computing optimal path or task allotment. We are trying to bridge this gap where
the correct estimates of cost parameter like travel time, which evolves over time, can
be provided for various purposes of automating the processes and reach the correct
goal at current time. Therefore, we want to apply them at higher levels.

3.3 Contribution
The reported works in the field of MRS are mostly concerned with the following two
categories:

• Problems with the cooperative and collaborative functions like scheduling [57],
task allocation [69], path-planning [2]

• Problems related to individual robots like localization [29], dynamic and physical
parameters identification and estimating [35], position and orientation estima-
tion [24] and obstacle estimation [45]

However, none of these proposed any solution for estimation of travel time as a pa-
rameters, though the current trend and directions of investigations for smart factories
enabling Industry 4.0 are focused on conditioning of available data and states of the
robot [13]. This work focuses on identifying the cost parameters for internal logistics
to reflect the states of robots, their batteries and the environment. In this work,
study is done to form travel time as one kind of cost parameter for traversing tasks
in logistics. Also, the suitable method for online estimation of these travel times is
investigated in this work. 2.

3.4 Insights of experimentation platform
In order to provide elaborate explanation of the problem, the experimentation plat-
form is briefly described in this section.

3.4.1 Environment for the MRs to work
A scaled down prototype of automated indoor logistics system is built for experimen-
tation. An environment has been developed using uniform sized boxes as shown in
Figure 5.7 for the robots to work, first doing single task at a time and then advancing
towards two tasks at a time. Thus, a robot doing one task at a time is named as
single-task robot. Similarly, a two-task robot can finish two tasks at a time. The
boxes create a closed labyrinth path to navigate in a given path. Also designated
ports are marked on the boxes.

3.4.2 Description of shop floor
The description of the floor of the prototype factory is provided in Figure 3.3. The
floor is described by means of a directed graph G = {∨, ε}, where the ports or bifur-
cation points corresponds to a node np ∈ ∨ and each link between any two nodes,

2These are explained elaborately in [25]
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Figure 3.2: Environment of MRS
namely np and nq corresponds to an arc ap,q ∈ ε. In Figure 3.3, notation like na
designates a node and edges are marked as aa,b. In the map, some nodes are not
connected to the neighboring node as there is no connecting edge between them. For
example, nf and ng seems to be neighbors of each other, but physically a robot can-
not go from nf to ng as the space between these two nodes is very little for any AGV
to move. Also, not all ports are accessible by all its neighboring nodes for the same
reason as stated above. This can be observed in case of P19 which is impossible to
access by ns although it seems neighboring to P19.

3.5 Problem formulation
In this work, reaching a particular port by an MR is considered as a task and
route computing is considered as a decision making process. Thus an MR is required
to traverse from one node to another, according to the map, which enables the MR
to perform single task at a time. The travel time of each arc in a map similar to the
floor map given in Figure 3.3 is influenced by energy exhaustion, condition of floors,
physical parameters of robot, among others, which incurs cost. Thus time to traverse
an arc by an MR can be conceptualized as its cost coefficients. Hence, this coefficient
is formalized as Xp,q(k, e, b, f) to denote travel cost from np to nq, where k is the
instance of time of traversing an edge, e denotes state of charge of batteries, b is for
tire condition, f is for frictional force of the floor. Xp,q(k, e, b, f) is time-varying from
the perspective that at a particular instance of the time, the cost of that particular
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Figure 3.3: Shop-floor described by topological map
arc is dependent on battery discharge, condition of the floor, et cetera which changes
over passage of time. Hence, for the arc aa,b in Figure 3.3, travel cost is denoted by
Xa,b(k, e, b, f). Also, travel cost of the same robot is Xf,d(t, e, b, f) for the arc af,d.
The Xf,d(t, e, b, f) is simplified as Xf,d ignoring the terms on which travel time is
dependent. Further, Xf,d is expressed as Xk in a a general form for any edge at time
instance k. This work focuses on finding a suitable method to estimate one such Xk

to get the next prediction on the next time instance on-line and recursively update
all the predicted values of Xk till full discharge of battery in order to pave the path
for exploring its possible utilization in any decision making process.

3.6 Approaches for estimation of parameters
The standard methods usually used for parameter identification and estimation in the
state of the art research proposals include least-square estimator approach [33], least-
square moving window method (LSMW) [73], recursive least square (RLS) method
[73]. Both LSMW and RLS methods are deployed for impedance parameter estimation
of state models for robot control in [73].

In LSMW, the data set (X, Y ) of length L is such that,

Y = Xθ +W (3.1)

where, XT=(x1,x2,x3,......,xL), Y T=(y1,y2,y3,......,yL) and W is the measurement
noise.

Now, with a window size l ∈ N such that l < L, the number of estimations of θ
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will be L− l +1. The estimation is given by,

θ̂i = X#
i Yi (3.2)

where,
X#

i =
(
XT

i Xi

)−1
XT

i (3.3)
and Y T

i = ( yi, yi+1, ........., yi+l−1), XT
i = ( xi, xi+1, ........., xi+l−1), i = 1,2,......,L−

l + 1 with the estimation error

êi = Yi −Xiθ̂i (3.4)

. For our application, set Y is our observed data Yk and set X is the travel cost Xk

to be estimated for every k.
Also, [73] has suggested a RLS algorithm based on both constant and variable

forgetting factor. After the least square method, the estimate obtained at time t is

θ̂t =
(
XT

t Xt

)−1
XT

t Yt (3.5)

where, Y T
t = ( y1, y2, ........., yt), XT

t = ( x1, x2, ........., xt), the estimation of time
t+ 1 is calculated as

ˆθt+1 = θ̂t +Kt+1

(
yt+1 − xTt+1θ̂t

)
Pk+1 =

Pt

λ+ xTt+1Ptxt+1

Kt+1 = Pt+1xt+1

 (3.6)

where, λ, According to [73] is the forgetting factor which needs to be carefully set
which is a design issue. For time-varying λ a good approach is to set it to a function
of estimation error êt as in equation 3.8, which enables more accurate tracking than
constant forgetting factor given in equation 3.7.

λ = 1− α1

(
1

π
arctan (α2 (|êt| − α3)) +

1

2

)
(3.7)

where, α1, α2 and α3 are all design parameters.

λt =

{
1− α3

π arctan(|Rt − 1|), if |Rt − 1| ≥ α2;

α1 +
1
π (1− α1)(arctan(1− |Rt − 1|))else;

Rt =

max(
θij
t−k

θij
t

,
θij
t

θij
t−k

), ifθijt−kθ
ij
t ̸= 0

∞else.
(3.8)

∀i ∈ (1, 2, ..., n), ∀j ∈ (1, 2, ..,m), with k, α1, α2, α3 tunable parameters, 1
3 ≤ α1 < 1,

α2 ≥ 0, 0 ≤ α3 ≤ 2, k ∈ N
Here also, for our application, set Y is our observed data Y (k) and set X is the travel
cost Xk to be estimated.
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The KF is often used when the parameter is linearly time-varying. The system
state vector was measured and the unknown dynamic parameters are estimated using
a Kalman filter (KF) [68]. The equation of the system model which typically uses KF
is given as:

xk+1 = Akxk +Bkuk +Gwk

yk = Ckxk + vk
(3.9)

where, x is the parameter to be estimated and y is the observation of x. Also,
x(k) ∈ Rn, u(k) ∈ Rn, w(k) ∈ Rn, v(k) ∈ Rr and y(k) ∈ Rr. Moreover, w(k) and
v(k) are white, zero mean, Gaussian noise.

In our experiment, x is deployed as our travel cost variable Xk and Yk as the
observation. So, equation 3.9 is transformed to equation 3.10 with Xk and Yk.

Xk+1 = AkXk +Bkuk +Gwk

Yk = CkXk + vk
(3.10)

The KF results from the recursive application of the prediction and the filtering
cycle. Equation 3.11 results from applying the prediction cycle on the model given in
equation 3.10.

X̂k+1|k = AkX̂k|k +Bkuk

P̂k+1|k = AkPk|kA
T
k

(3.11)

Equation 3.12 results from applying the prediction cycle on equation 3.10.

X̂k|k = X̂k|k−1 +Kk[yk − CkX̂k|k−1]

Kk = Pk|k−1C
T
k [CkPk|k−1C

T
k +R]−1

Pk|k = [I −KkCkPk|k−1]

 (3.12)

where, X̂k+1 is the new estimation for the variable Xk. Kk in equation 3.12 is the
KF gain.

3.7 Experiments to find suitable estimation method
3.7.1 Experiment-I
In our previous experiment, described in Section 1.2, a close correlation between
discharge profile of batteries and the travel time is observed. Moreover, dependency
of travel time over smoothness or roughness of floor is observed. We present here
the same plot of observations for better understanding. As explained before, Part (a)
of Figure 3.4 plots the discharging voltage of Li-metal batteries over time and Part
(b) plots the progressive mean of observed values of Xk, first only with the change
of state of charge of batteries (left plot) and second with both the change of state
of the charge of batteries and the floor condition (right plot). The observed data for
Xk in Part (b) start from the high magnitude as the discharge of batteries is more
at the beginning according to plot in Part (a). Then it follows a steady fall as the
discharge decreases and then follows a constant value for a significant span of time as
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Figure 3.4: Correspondence between discharge of battery and travel time
discharge becomes stagnant. Finally, it again rises up to a big magnitude before the
robot finally stops moving as discharge is heavy at the end. Thus travel time varies
with state of charge of batteries, according to the variation of discharge, the condition
of floor remaining the same.

In the right plot of part (b), travel time is initially less as the floor was smooth
with the same discharge level as previous. The travel time increases further to great
magnitude steadily when the floor is made rough from smooth. Despite the decrease
of discharge of batteries, the travel time increases steadily and thus it can be con-
cluded that the influence of roughness plays more on travel time than discharge of
batteries. Also, so travel time is greatly influenced by conditions of the floor, in ad-
dition to the effect of battery power. Also, it was concluded that travel time needed
to traverse a specific distance by an MR reflects a quantitative measure of state of
charge of batteries and conditions of floor. The factors like state of charge of batteries,
conditions of floor are representative cases of utility based factors which determines
cost expended to complete performance. Thus, travel cost serves as a quantitative
measure for expended cost to complete traversal.

3.7.2 Experiment-II
The goal of this experiment is to find a suitable estimating method for time-varying
travel time, among the standard estimation methods typically used for estimations of
state model parameters of a robot in the state of the art. We are estimating the travel
time, which are different from the estimations generally investigated in the state of
the art using these standard methods in order to find the most suitable method to
estimate these travel times online. We deploy LSMW method [73] first because it
is a naive, inexpensive approach to estimate variables on-line. We also deploy the
RLS algorithm proposed in [73] with time-varying forgetting factor (equation 3.8) as
it helps in accurate tracking. Thereafter, we deploy KF method to further enhance
the accuracy.

3.7.3 Results of experiment-II
As discussed in Section 3.7.2, we applied three parameter estimation methods to
estimate one type of cost parameter travel time designated Xk. The plots in this
section shows the estimation result of the methods in upper part and the observation
in the lower part. Also, blue line is for the estimated values, the green line stands
for the error values and the red thick is the mean error value. The Least square
moving window (LSMW) method is implemented first to find the estimation, with
The window size as 5.
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(a) LSMW estimation (b) RLS estimation

Figure 3.5

(a) Kalman Filtering estimation (b) All methods
In the upper part of the plot in Figure 3.5a, the mean of the estimates are observed

to be of the order of 10−1. Secondly, RLS method is tested and the mean error is
being further reduced to 10−2. This estimation results are shown in Figure 3.5b.

The results of estimation done by the Kalman filtering is given by the Figure 3.6a
and the mean of the estimation error is of the order of 10−3. All the computations done
are enough short in time to be obtained in real time. Conclusively, we can observe
in Figure 3.6b, that in LSMW method the first lap of values are well estimated, but
the estimates fall flat to the zone of less variability. Also, the sharp variations are not
estimated well by LSMW method. RLS method is able to mitigate the shortcomings
of LSMW method where the sharp rise zone in the middle is estimated well. Also,
it is evident in Figure 3.6b, that Kalman Filtering provides the best estimates for
estimating the time-varying cost parameter where both the sharp rise and less variable
zones are estimated well.

Henceforth, we can infer that the Kalman Filtering method provides the most
suitable estimation for the cost parameter. These predictions are obtained on-line
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during the run-time of the multi-robot prototype system 3.

3.7.4 Experiment-III
The shop floor is described through a topological map as given in Figure 3.6 for this
experiment. The boxes forms the work cell and creates labyrinth paths. The surfaces
marked by single dotted line was made heavily rough to induce variation in travel
time. There are several arcs connecting different ports and nodes. Decisions for
navigation and coordination are mostly based on heuristics cost. But, in this work
travel time is designated as the cost of performing the task of navigating or traversing.
Thus, we estimate different travel times of these arcs as realistic costs and compare
with fixed heuristics cost like Euclidean distance, which is presented in Section 3.7.3.

Figure 3.6: Floor described with a map

3.7.5 Results of experiment-III
In Table 3.1, the comparison between these heuristics cost and the real estimated cost
are provided. The table shows heuristic costs and real costs of traversing two arcs
whose travel costs are designated as Xg,c and Xj,q. The first shows the arc lengths
in cm and second column shows the corresponding heuristics cost in sec. The third
column shows the real estimated travel time of the same arc in sec. The columns
from fourth and on wards shows the real estimated travel time over different state of
charge of batteries. The arc whose travel time is Xj,q has a part in the rough zones.

3[25] depicts the same discussion as it is the same work
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Table 3.1: Analysis of real costs

No Euclidean Cost 100% Battery Level Costs per Battery Level
Realistic Static Cost

90% 80% 70% 60% 50%
[cm] [s] [s] [s] [s] [s] [s] [s]

Xj,q 24 3.3379 2.8927 3.1015 4.0270 4.1037 4.1158 4.2425
Xg,c 17 2.1717 1.9305 1.9608 1.9867 2.0229 2.195 2.4478

Thus their estimated travel time is slightly more than the heuristic euclidean travel
times which subsequently increases with discharge of batteries. So, due to continuous
performances by the robots in an MRS, performance costs in form of travel time
for traversing tasks varies over the time and correct estimates of them needs to be
utilized as it is evident from the comparison. Therefore, these real estimated costs can
be utilized to make more cost efficient decisions. However, the time-varying nature of
costs over different factors is generally not included in heuristics costs. In Section 2.4
we have presented two works which approach a nearly similar problem [54, 21], but
their work cannot be directly compared to ours because the approaches are different
(also described in Section 2.4). Moreover, to best of our knowledge, there is no other
state of the art research proposal which addresses the same problem as we are solving.
So we cannot present a comparison of our work with state of the art.

3.8 Summary
In this work, unlike the previous work on parameter estimations, we investigate about
cost coefficients to reflect the states of battery and floor in automated logistics. In
that process, travel time is identified as a type of cost parameter. Moreover, the
necessity of estimating these travel times is shown which can help to generate better
control decisions. Kalman filter have been found to be a suitable method to estimate
the travel times. The results show that the heuristics travel time differ from the
estimated ones. Based on the estimates of the cost parameters, more optimal and
cost efficient task allocation decision can be taken at the system level controller.
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Chapter 4

Optimal operation in automated
logistics

Previous chapters were focused on accurate estimation of travel time to traverse dif-
ferent edges of transportation graphs in an MRS using several estimation methods. It
was found that traversal times vary along time due to a variety of factors, including
the state of charge of battery, condition of shop floor, dynamic obstacle etc. Moreover,
the predicted values of travel time are obtained on-line during the run-time of the
MRS, which further predicted the values for the state of costs of tasks in comparison
to heuristics costs varies enough to impact high level control decisions like path plan-
ning, task allocation, scheduling and navigation for each of the mobile robots and for
the system as a whole. From these results, we arrive at a juncture which necessitates
estimating these travel time online and incorporating them in decisions for planning.
In this chapter, we highlight on making decisions based on travel time, which reflects
real-time state of individual parts and also environmental factors. With suitable pre-
dictions of these travel times the current state of cost involved in traversing from
one node to another can be known. Thus suitable state-space model is formulated to
estimate these travel time to use as weights for cost efficient route planning.
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4.1 Travel time in decisions for planning
Control of MRS, used in internal logistics for factories, involves planning at many
levels to achieve robust, fault tolerant, adaptable and cost efficient co-ordination.
Usually, the information about current condition of robot, floor, batteries and other
robots play crucial role in decision making [20, 36, 8]. This is explained in the fol-
lowing example. In Figure 4.1 we refer to the same scaled down automated internal

Figure 4.1: An scenario of planning decision

transportation system as explained in Section 3.4 in Chapter 3. Here, all MRs can
execute only one task at a time. The dotted line illustrates the path computed for
A1 to carry some material to P1 at ti. Again, A1 will use the same path to carry
same material to P1 at time tj (j > i). However, continuous functioning of A1 have
exhausted the battery of A1 along with the deterioration of the condition of the given
path (marked by dotted rectangle). Thus, equal amount of time and energy as pre-
vious would not be sufficient to reach P1 at tj and more cost in terms of energy and
time will be required. The real and current traversal cost to reach P1 needs to be
estimated to produce the most cost effective decision. A new path, if decided, using
this estimated traversal time will enhance optimum resource utilization. For example,
the part of the floor in the zone marked by solid line has not deteriorated. Route
planning done using estimated travel costs resulted in the path marked by solid line.
This path lies in the zone marked by solid line (with no roughness) and so it is more
cost effective.

In our current work, traversing a path from one spot to another is considered as a
task. Travel time reflects the state of charge of batteries (internal factor of a robot)
and environmental factors (Section 3.2 in Chapter 3). Travel time determines the
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cost of such traversal tasks. Path traversal is a sequence of traversal from one spot to
another. So, total travel time of these segments determines the total travelling cost
of a path. The dynamic route or task planning can be improved based on the travel
time as cost expenditure due to different factors can be directly related to time(s)
needed to perform task(s) by individual robots [60] in the system. This can influence
not only the efficiency of each MR but also the whole system [36].

4.2 Planning algorithm and cost estimation
The eminent problem in autonomous robots, used for various purposes, is optimum
planning. This has been solved in two distinctly different approaches for autonomous
robots. General path planning approaches are deployed for implementing path plan-
ning in individually controlled robots like Randomized Potential Planner (RPP),
Probabilistic Roadmap Method (PRM), Rapidly-exploring Random Trees (RRT).
Sampling methods perform reasonably well in solving intricate path planning prob-
lems in static and dynamic environment for single robot [31]. In most of these ap-
proaches, the vehicular dynamics are considered as state of the robot and the minimum
cost path is obtained by spanning the search tree based on the distance between the
current state and goal state. Although Suh and Oh in [67] and Achtelik et. al in [1]
have used Gaussian process as the cost of the path to incorporate environmental pa-
rameter, the search mandates to conceive the vehicular dynamics of the robot. Thus,
these methods rely on precise information gathered from sensors. Also, these methods
are blocked into local minima and uncertainties in the environment hinders successful
results using sampling based methods [31]. Further, heuristic approaches like Artificial
Neural Network (ANN) [27], Genetic algorithm (GA) [3], Particle swarm optimisation
(PSO) [77], Ant colony optimisation (ACO) [17], et cetera can adapt to uncertainties
and changing environment. But, they are computationally expensive which is a ma-
jor concern for robotic control units equipped with limited resources [50]. Usually, in
state of the art works, either for a single robot or a MRS, the cost functions or reward
functions are not from real observation data, to be deployed in various purposes of
coordination and planning, both in centralised and distributed control architecture.
Our approach takes the benefit of single robot path planning and can be enhanced
to multi-robot planning. In our approach, we incorporate the vehicular mechanical
factors and environmental factors in travel times to mitigate the identification of the
vehicular dynamics. We compute the path in system-level of robotic control and paths
are broken down to simple vehicular commands for movements and communicated to
the lower-levels of control. Also, we deploy simple, deterministic and computationally
inexpensive Dijsktra’s algorithm and incorporate travel times with it to decide paths
of minimum cost.

On the other hand, motion planning and task planning in MRS are often treated
as specific coordination problems. Cost coefficients are usually computed heuristically
before hand or being modelled

Like path planning approaches for a single robot, these cost functions are utilized
to estimate states of the individual MRs on-line. However, motion planning and task
planning problems, as a specific case of coordination problem are typically NP-hard
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and are addressed to find tractable and good solutions [28] and are mostly treated
as individual specific problems in field of MRS [10, 64, 32]. Also, cost functions are
heuristically computed for solving both task planning and route planning problems
in MRS at the same time in [43].

In this work, we use travel times as cost parameters and utilize them to obtain
optimal path in a single robot.

4.3 Using travel time to generate cost efficient plan-
ning decisions

This chapter elaborates on investigation conducted on estimation of these travel times
on real-time in MRs working for internal transportation. The path planning has been
considered as an example of decision making. Moreover, we also design experiments
on prototype platform developed mimicking a real automated plant. In this work,
traffic network topology maps are used and spots are marked as nodes in the map.
Traversing between two nodes is considered as a task by any MR and travel time
between any two nodes reflect its cost of traversing. Topological map are used instead
of geometrical maps as simple route planning approaches like Dijkstra’s algorithm are
easy to implement on topological maps (illustrated in Section 4.4.1). The travel time
is calculated considering the difference between the departure from one node and
reaching the next node and thus travel time is not dependent on the shape of the
edge, rather it depends on the time taken to traverse the edge.

The impact of travel time in route planning is shown by calculating total travel
cost between two different paths obtained by heuristically gathered cost and real
travel time using the same route planning method. In Chapter 3, Kalman filter has
been found to be a suitable method to estimate travel times of edges online. The
estimated values of travel time of relevant edges is used as weight of edged in simple
path planning algorithm to compute the optimal path. The problem proposed here
is the one caused by differences of total travelling cost of paths, obtained by real
travel time and heuristic weights as costs of edges, while planning routes for MRs,
irrespective of planning method.

This problem have been highlighted and explained in Section 4.3.1, where P is
defined as an optimal path and Pc as the traveling cost of P . As a path P consists
of different edges, total traversing cost of path Pc can be found by summation of
travel times of all the edges in P . Pc consists of real and estimated travel times
as cost of edges. Dijkstra’s algorithm is deployed to compute P . While computing
P , Dijkstra’s algorithm is complimented with these travel time of edges as cost of
traversing that edge. As these travel times reflect the real cost incurred, Dijkstra’s
algorithm will generate more cost efficient paths using real estimated travel times,
similar to Figure 4.1 in Section 4.1.

We have estimated these travelling times of edges statically (variation of travelling
time over the time is not considered). Then Dijkstra’s algorithm is deployed to com-
pute optimal path using both heuristics cost on distance and edge travelling times
separately. Paths obtained by heuristics on distances are compared with paths ob-
tained by directly using edge travelling times. Total path costs using edge travelling
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times are improved by roughly 5% on average.
On the other hand, in case of battery-operated MRs, observation of the travelling

time of any particular edge till full discharged of batteries depict a close correlation
between state of charge and speed or time to travel or perform an action.Consequently,
travel times of edges vary along time and require to be predicted accordingly during
path planning. A good estimation method to accurately predict travel times requires
histories of edge costs, which can be collected by random walking the traffic network
until it is applicable or progressively built during MR operation. In the latter case,
path planning during the learning phase cannot use best estimation methods. When,
edge travel costs are estimated taking into account this variation along time and path
is computed deploying these estimated costs, total path costs are closer to reality
and might have significant differences with paths obtained by other cost estimation
methods like theoretical, heuristic and experimental. In fact, computing the costs of
paths by using Kalman filtering shows that the former cost estimation methods (using
heuristic edge cost) can underestimate total costs and, thus, generate non-minimal
paths.

4.3.1 Problem formulation
A path P is formed as a series of arcs between connecting nodes for an MR. The ap,q
is defined as a connecting arc between any two nodes, namely np and nq in Section 3.5
in Chapter 3 A path P for a robot is usually defined as,

P = ⟨(na, nb), (nb, nc), (nc, nd), (nd, ne), ...........)⟩ (4.1)

where np is any node. P can be also expressed in terms of connecting edges as

P = ⟨aa,b, ab,c, ac,d, ad,e, ...........⟩ (4.2)

where ap,q is any edge.
Xp,q(e, f) denotes travel cost from np to nq as previous and e denotes dependency

for state of charge of batteries and f denotes dependency for frictional force of the
floor. Now, the cost of traversing P can be written in a form Pc of

Pc =< Xa,b(e, f), Xb,e(e, f), Xe,g(e, f), ..., ... > (4.3)

From now on,Xp,q(e, f) will be written asX for simplicity. Path needs to be computed
again after reaching a destination and Pc for every ith call of path planning is

In equation 4.3, it is shown that a total path cost is dependent on all edge costs
and each edge cost is denoted by its travel time. Thus, the X denotes general travel
time of any edge. Also, travel time of any edge X depends on all the previous edges
the robot has already traversed. The reason being the discharge of batteries and (or
not) possible change of environment. Thus, travel time X becomes a function of k as
Xk where, k = number of time a MR has performed the task of traversing any edge.

Hence, Xk is estimated with respect to increase in k for any edge and used as
weight of edge to compute path. The estimated value of Xk+1 depends only on Xk

and the observation of X at (k+1). These experiments and results are explained in
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Section 3.7.1. Observations of all possible Xk for all possible k needs to be made for
this above estimation for a single MR.

However, this is not only cumbersome but also impractical to gather such huge
amount of observation. This estimation is static asX is estimated without considering
its variation with the total elapse of time from start of system. The static estimation
approach is progressed to a different model. Observations of all possible Xk for all
possible k is not needed in the latter. A window of previous values of X is decided to
form a state vector. This state vector is estimated on every k to find the estimated
value of Xk+1. Thus, the current value of X is estimated depending on the previous
X’s i.e.-travel times of edges which are already being found to form the path, along
with the variation of exploration of X due to elapse of time. Thus, X values are
dynamically estimated considering its variation over elapse of time. Moreover, the
model is allowed to gather the possible values of X itself from the beginning of first
call of path planning and use these values to estimate current value. This experiment
is elaborated in Section 3.7.2.

4.3.2 Contribution
The contribution in this case is twofold. Firstly, we identify edge traveling time
as a suitable cost coefficients considering an analogy to real automated and fully
functional plant. Secondly, we estimate these identified travel times both statically
and dynamically. Further to this, we utilize them in a planning control decision
making process to culminate into better optimal results for each MR in order to
obtain more cost efficient performances of MRs.

Organization of chapter

The rest of the chapter elaborates on prototype platform to conduct experiments
(Section 4.4), gathering real data for static estimation (Section 4.5), static estimation
(Section 4.6.1) and dynamic estimation (Section 4.7.1) of travel time and their results
(Section 4.6.2 and Section 4.7.2). Section 4.8 draws the conclusion.

4.4 Platform for experiment
The internal transportation system is modeled gathering influences from standard
automated logistics and warehouses and adhering to minute details regarding consti-
tuting parts like MRs, tasks, controller architecture, the environment. The environ-
ment has been developed using uniform sized boxes, while small hobby robots are
constructed mimicking the real AGVs used in plants. Figure 4.2 depicts the different
parts of a hobby robot, which is constructed in the laboratory for experiments. It has
all essential constituents of an AGV like camera, controller board, ultasound sensor,
wheels. It is operated by low self-discharge nickel–metal hydride batteries [59], which
is similar to the batteries generally used in factories and DC servo motors drive the
wheels. The controller architecture of the MRS is decentralized [chaile2017running,
47, 4]. Hence each MR has its individual controller with opportunities to communi-
cate information to other MRs in the system. All the robots are single-task and are
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Figure 4.2: Structure of AGV used
equally equipped to perform all the tasks. Also, all the tasks requires only one MR
to be completed.

4.4.1 Layout of the factory floor
Topological maps are used to describe the floor plan so that simple approaches like
Dijkstra’s algorithm are easy to implement. The layout of the factory floor is made in
three representative real life industrial scenarios. All the three scenarios are derived
from the factory floor layout of the automated factory of Coca-Cola Iberian Partners in
Bilbao, Spain as described by the works of Beinschob and Reinke in [9]. The work of [9]
is a part of the PAN ROBOTS project [panRobots] and Coca-Cola Iberian Partners
in Bilbao, Spain are their project partners. The production and warehouse facility of
of the Coca-Cola Iberian Partners in Bilbao, Spain is fully operational with a fleet of
12 AGVs and the total area covered is 130mX100m which is divided into three different
sections. The work of Beinschob and Reinke in [9] deals with Simple Localisation and
Mapping (SLAM) on the measured data at the site of Coca-Cola Iberian Partners in
Bilbao, Spain. In [9], the SLAM results are presented which immaculately describes
the real layout of the production and warehouse facility in a grid map. We use this grid
map as a reference layout to generate the floor layout of our scaled down prototype.
The three representative layouts are developed from three different sections of the
production and warehouse facility of Coca-Cola Iberian Partners in Bilbao, Spain.
We use topological map in our prototype, while the warehouse facility is described in
a grid map in the works of Beinschob and Reinke in [9]. Conversion from grid map to
topological map (CGTM), termed as graph clustering, itself being a deep rooted and
eminent research problem, we introduce a naive method to convert the grid map of the
warehouse facility given in [9] to a topological map. In general, CGTM is done with
a goal to minimise the total number of nodes in the resulting topological map, which
makes the method very complex. In our application, the goal is not to minimise the
total number of nodes in the resulting topological map as the total number of nodes
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are not exuberantly high. In our approach, a simple assumption is considered for
converting the grid map to a topological map where each free cell in the grid map
corresponds to a node in the topological map. The basis for this assumption lies in
the fact that total number of nodes generated as a result of this assumption in the
topological map will be approximately 6000 and this whole topological map will be
again used to extract three sections from three different zones and each section will
result in one floor layout, which results in quite less number of nodes in each layout
map.

The grid map of the production and warehouse facility of Coca-Cola Iberian Part-
ners in Bilbao, Spain provided in [9] has been converted into a topological map and
then three representative maps are extracted from that topological map from three
different zones of the whole map area. In the resulting three maps the average of the
total number of nodes is 900. The resulting three topological maps are provided in
Figure 4.3.

Figure 4.3: Three topology maps

Map 1 in Figure 4.3 is a representative of winding racks in the warehouse facility,
while Map 2 in Figure 4.3 represents randomly placed racks and Map 3 in Figure 4.3
represents racks organized in a hub.

4.5 Real data everywhere
Now, we focus on gathering the observed data for all the realistic costs of the edges
in the three representative floor layouts (Figure 4.3). To achieve this, we made one
MR traverse each edge in each layout repeatedly till the battery exhausts completely.
Figure 4.4 demonstrates three different sections in Map 1. Travel time is recorded to
traverse edges from maximum battery capacity till complete discharge with dynamic
obstacles passing across the edge, during traversal of the MR. For example, travel
time of traversing ah,r in Figure 4.5 is recorded with normal condition of floor, being
intervened by human being sometimes passing across it. The total cost of path is
given by equation 4.4 (Section 4.3.1)

Pc =< Xa,b(e, f), Xb,e(e, f), Xe,g(e, f), ..., ... > (4.4)
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Figure 4.4: Different sections of one topo map
Now, total path cost in ith and jth call of path planning are

P i
c =< ....Xi

h,r, ..., X
i
e,g, ....., X

i
q,r, ..... > (4.5)

and
P j
c =< Xj

d,e, X
i
e,g, ..., X

j
h,r, ....., X

j
w,x > (4.6)

where, Xi
c,d and Xj

h,r are the travel cost of arc between nodes nh and nr at i and j
calls of path planning respectively. Thus, observation data created through the above
process for ah,r produces the observation value of not only Xi

h,r, but also Xj
h,r and

travel cost of arc ah,r for more similar path planning calls at different instances till
complete exhaustion of batteries.

Also, we made the surface on different sections of the floor differently rough and
smooth. For example, the zone marked by solid line in Figure 4.6 is made rough, the
zone marked by single dashed line is made moderately rough and the zone marked
by double dashed line is made highly smooth. But the surface condition of the floor
is changed during the traversal of edge by the MRs. Also, while the edge traversal of
MR, we put unknown dynamic obstacle like human walking across the edge to include
variation. For example, for edge ac,d in Figure4.7, the surface condition was smooth
at the beginning of traversal by an AGV. The AGV was made to start traversing ac,d
from the starting node nc to its ending node nd repeatedly with maximum capacity of
the batteries. After certain interval of time, the surface of the floor is changed to rough
for ac,d. But the MR is made to continue traversing ac,d. Again, after certain interval
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Figure 4.5: An example of an arc
of time the roughness is removed and smoothness of the floor is restored. Still, the MR
is made to continue traversing ac,d till the battery exhausts. This observation data
consists of travel time of an edge ac,d from maximum battery capacity till draining
out of batteries on different floor condition for one MR. We made observation on all
the edges similarly like above, in order to complete the whole set of observation data,
for all the edge costs on each floor layout for a AGV in the MRS in different floor
conditions and state of charge of batteries.

4.6 Using static estimates of travel time in path
planning

We generated measurement data of travel time Xp,q for all edges in three maps (Fig-
ure 4.3) for one MR. It is concluded in Chapter 3 that travel times when estimated
on-line produce the real cost of traversing the edge. These estimated travel times for
each edge are used during decision making process for computing an optimal route.
This can produce a better optimal route and save on cost expenditure.

We have considered reaching a destination as a task to produce the efficacy
of static and dynamic estimates of travel times in decisions for planning. Dijkstra’s
algorithm [22] is used for finding optimal path to reach a destination, as it gives
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Figure 4.6: Different floor condition in three different sections of one topo map
deterministic solutions.

Usually, in Dijkstra’s algorithm, the heuristic cost based on euclidean distance of
edge is considered as the wights of each edge to calculate the optimal path. In our
current attempt, we will use estimated travel time of an edge in the map as the wight
for that edge. Hence, we are using these real estimated cost values to find the optimal
path using Dijkstra’s Algorithm, instead of taking heuristic cost as the edge weight.
Now, the estimation of travel time is made using Kalman filtering method [68], being
found as the most suitable method in Chapter 3.

4.6.1 Experiment I
In Dijkstra’s algorithm, at every new node exploration, weights of all the edges arising
out of that node needs to be known and to be used in computing optimal path. We
propose to use Xk as cost of arcs, instead of using heuristics cost based on distance,
Thus, Xk needs to be estimated during optimal path computation at each new ex-
ploration for every relevant edge. For example, consider Figure 4.8 where a sample
route computation is illustrated. Let na be source and the MR needs to reach P16.
So, path computation starts at na with its neighbors nb, nc and nd. The weights of
connecting edges arising out of na (current explorable node) needs to be computed
to progress exploration. So, Xk needs to be estimated for aa,b, aa,c and aa,d. The
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Figure 4.7: Another example of an arc
variable k provides the instance at which the travel cost of the edge is to be obtained.
Essentially, value of k is one more than number of predecessors of the current ex-
plorable node, the reason being, the number of predecessor provides the number of
times the robot has traversed edges. The battery of the robot gets discharged while
traversing the edges of the path, so the real edge costs need to be considered while
computing optimal path. To account for this factor, Xk has been considered to be
changing after finding each new explorable node. Thus a single variable, denoted as
Xk, is estimated over and over again whenever edge costs are required to be known
to find the optimal route.

Now, k is 1, which is one more than the number of predecessor of na (as na is
source, it has no predecessor). Let, nc be the next node which forms the successor of
na in the formation of optimal path. Again, the connecting edges to the neighbors
of next explorable node, nc, are ac,e, ac,f and ac,g. Now, variable Xk needs to be
estimated for all these edges arising out of nc at current value of k, being 2 (as nc has
1 predecessor). For this purpose, development of a model is essential. The state-space
model provided in equations 4.7 and 4.8 is proposed to estimate edge travel cost in
the above manner.

Xk = Xk−1 + ωk (4.7)
Yk = Xk + ηk (4.8)

The state vector Xk in equations 4.7 consists of a single variable and thus it is a scalar
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Figure 4.8: Sample run of route computation
quantity, depending on k, k being the number of edges already found in the path or
number of nodes found in the path. Hence, X is estimated over and over again for
different connecting edges of every new exploring node. Equations 4.7 also involves
the error term ωk, which is independent and normally distributed. Yk in equation 4.8
is the observation variable for Xk. It has linear relation with the state vector through
the observation equation 4.8 of the system. ηk is another term that could be described
as measurement error, which is also normally distributed.

According to equations 4.7 and 4.8, the variable Xk depends only on the travel
time of the previous edge in the path at the previous k value. For estimating X at
every k instance, the value of previous X is given by travel cost of the connecting
edge between the current node and its predecessor node. As in the above example,
while exploring the node nc, value of X at (k-1) is given by cost of connecting edge
from na (predecessor of nc) to nc. Then the travel cost of this previous connecting
edge can be used as the travel cost at previous iteration to estimate the travel cost
at current iteration. So, essentially the travel time is a series over variable k.

Thus Kalman filtering is applied on the above state-space model, given by equa-
tions 4.7 and 4.8 is used to compute travel time of edges. We obtain equations 4.9
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and 4.10 after applying Kalman filtering method on equations 4.7 and 4.8.

X̂−
k = X̂k − 1

P−
k = Pk−1 + σ2

ω (4.9)
Kk = P−

k

/
[P−

k + σ2
η]

Pk = P−
k − [P−

k

2/
[P−

k + σ2
η]]

X̂k = X̂−
k +Kk ∗ ωk (4.10)

where, ωk = [Yk − X̂−
k ]

X̂−
k produces the apriori value of X and P− produces the associated covariance, σ2

ω

being the covariance of process noise ωk. X̂k provides the predicted estimate of Xk, as
X̂−

k is corrected in equation 4.10 with the help of Kalman Gain Kk the observation
Yk. P−

k provides the associated co-variance matrix, σ2
η being the co-variance of the

observation noise ηk. Thus, Yk is required to obtain X̂k for all k, which is gathered
by the process explained in Section 4.5.

At the beginning, there is no previous edges traversed. So, value of k will be 1 at
the start.

X̂0 = E[X0] (4.11)
P0 = E[(X0 − E[X0)(X0 − E[X0)

T ] (4.12)

We use equation 4.9 to obtain X̂−
1 for Xa,b, Xa,c, Xa,d separately depending on X0

using equation 4.11. Similarly, we get separate P−
1 using equation 4.12. Next, we

obtain X̂1 (estimate) and P1 for Xa,b, Xa,c, Xa,d using equation 4.10. Comparison
of estimated values of Xa,b, Xa,c, Xa,d will provide the least cost edge from na. Let,
the least cost edge be aa,c. So na will become the predecessor of nc, i.e.-to reach nc,
the edge should come from na. When nc will be explored, the value for k is 2 as nc
has 1 predecessor. The next least cost edge from nc in the path is required to be
known. Thus, Xc,e, Xc,f , Xc,g needs to be estimated. Thus, observation Yk of X at
current k is required to estimate X. Thus observation values for travel costs of all
possible Xs for all possible ks were collected. Though, Xk varies only on Xk−1 in
this model, in reality, it depends on Xs for all the previous edges in the path and
its own variation over the time. Thus, this process of estimation is static. Moreover,
as explained in Section 4.3.1, observation of X is required to obtain estimate of X
through this static estimation procedure for any k which is not only cumbersome, but
also unrealistic. However, this static experiment is conducted to verify that weights
of edges can be estimated online during exploration of Dijkstra’s algorithm using a
state-space model. Also, it is verified that the estimated values of X are correct and
real through this experiment, as the values can be compared to real observations. In
subsequent sections, we ill show dynamic estimation of X which does not require the
offline observation procedure of such mammoth intensity.

The process of estimating static travel times and using them as edge costs to
compute optimal path by Dijkstra’s algorithm in Algorithm 1
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Algorithm 1: Dijkstra’s algorithm using static estimation of travel time
Initialise_Single_Source (V,E, s)
Input : V -list of nodes, E-list of edges, s-source node
Output: d[v]-attribute for each each node, π[v]-predecessor of each node
for each xi ∈ V do

π[xi] = infinity
d[xi] = NIL

end
d[s] = 0
Main (V,E,w, s)
Input : V -list of nodes, E-list of edges, w-edge weight matrix, s-source node
Output: π[v]-predecessor of each node
P := NIL
Q := V
j := 0
while Q! =0 do

j = j+1 u := Extract min (Q)
P := P

∪
u

for each v ∈ Adj[u] do
w = findedgedCost(u,v, j)
relax(u,v,w)

end
end
findedgedCost (u, v, j)
Input : u-current node, v- neighbor node
Output: w- estimated travel_time (cost) from u to v
findPredEdge(u)
prevx := x(prevEdge)
w = estimateKF (prevx,j,Yj)
findPredEdge (u)
Input : u-current node
Output: prevEdge-edge connection u and predU
prevEdge = edge between u and predU
estimateKF (prevx, j, Y )
Input : prevx-xj−1, j-instance for estimation, Y - observation variable
Output: xj-travel cost at current j for current edge
Apply KF on state-space model to obtain xj Relax (u, v, w)
Input : u-current node, v- neighbor node, w- estimated travel_time (cost)

from u to v
Output: d[v]-attribute for each each node, π[v]-predecessor of each node
if d[v] > d[u] + w(u, v) then

d[v] = d[u] + w(u, v)
π[v] = u

end
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4.6.2 Results I

Optimal paths are obtained deploying the original Dijkstra’s algorithm in all the three
representative floor plans depicted in Figure 4.3, using heuristics on distances for 20,
40, 60 and 80 repetition. The number of repetition is an indicator of passage of
time. On the other hand, instead of using heuristic edge weights as costs, Dijkstra’s
algorithm was modified to find optimal path using the estimated static edge costs
according to Algorithm 1 in all three floor plans. As previous, paths were computed
for 20, 40, 60 and 80 repetitions. Total path costs of optimal paths produced by
Dijkstra’s algorithm in both cases are compared. This is summarized in Figure 4.9.
The vertical bars of Eucl and SEC in Figure 4.9 represent the average total path
costs for heuristic cost based routes and static estimates based routes respectively. In
Figure 4.9, average total path costs of paths obtained using heuristic weights of edges,
which are represented by Eucl never change with increase in number of repetitive
calls, the reason being heuristic edge weights are static over the passage of time.
Nevertheless, the other vertical bar SEC in Figure 4.9 which represent the average
total path costs for paths produced by Dijkstra’s algorithm using static estimates
of travel time as weights of edges change with increase in number of repetitive calls
of path planning in each map. Average total path costs increases with number of
repetitions as shown by vertical bar SEC, as duration of performance increases with
increase of number of repetition. This happens due to the dependency of current edge
cost Xk on previous edge cost Xk−1 (equations 4.7 and 4.8). Also, vertical bar SEC
shows that average total path costs obtained by Algorithm 1 is 5% less in case of
Map 2 and Map 3 and 2% less in Map 1 than that of heuristic cost based Dijkstra’s
algorithm. Though, average total path costs using Algorithm 1 vary over the time,
this variation does not truly reflect the variation of travel time due to time-varying
factors, as it is not incorporated in Algorithm 1. This variation is observed due to
the dependency of current edge cost on previous edge cost derived from the model
(equations 4.7 and 4.8).However, the increase in average total path costs with number
of repetitions does not truly reflect the variation of travel time due to time-varying
factors as it ignores the inherent increases of travel time with time.

Figure 4.9: Results of static estimation in three maps
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4.7 Obtaining optimal path using estimates of dy-
namic cost

4.7.1 Experiment II
In the experiment explained in Section 4.6.1, travel times of edges is assumed to be
dependent only on the previous travel time. But due to discharge of batteries, change
of floor conditions, change of condition of mechanical parts (explained in Section 4.1)
the travel times of edges vary over all the previous edge travel costs in reality. Hence,
for estimation of these varying travel times the model proposed in equations 4.7
and 4.8 is not sufficient, as it does not incorporate the dynamic nature of the travel
costs. In order to consider the change of travel costs depending upon all the previous
travel costs, a different model is devised. The new factor ξk is introduced which
accounts for the progressive change in travelling time over the time due to batteries
and other factors. Still, X is a time-series on number of explorations, k. The model
to estimate dynamic travel costs is devised based on the bi-linear models [62]. The
bi-linear model, provided in equation 4.13, is used to model the change of travel costs
depending upon all the previous travel costs.

Xk + a1Xk−1 + .....+ ajXk−j (4.13)
= ξk + b1ξk−1 + ...+ blξk−l

+
∑∑

crzξk−rXk−z

The model described in equation 4.13 is a special case of the general class of non-
linear models called state dependent model (SDM) [62]. In equation 4.13, Xk denotes
the edge travel cost at k and ξ at k denotes the inherent variation of the edge travel
cost. In equation 4.13, Xk depends on all the previous values of X and ξ at previous
instances of k, whose number is provided by the variables j and l. However, a fixed
number of previous values of X and ξ is used for estimation of current X like an
window which we progress over the time. From now on wards, this fixed size of this
window will be termed as regression number and it is chosen as a design parameter,
designated by j and l. The regression_no is increased from 2 to 9 and the effects on
total edge travel cost of paths is demonstrated in Section 4.7.2. The double summation
factor over X and ξ in equation 4.13 provides the nonlinear variation of X due to
state of batteries and changes in environment.

The state space form of the bi-linear model is given in equation 4.14.

s(k) = F (s(k − 1))s(k − 1) + V ξk +Gωk−1 (4.14)
Y (k) = Hs(k − 1) + ξk + ηk (4.15)

In equation 4.14, the state vector sj is of the form (1, ξk−l+1, ...., ξk, Xk−j+1, ......, Xk)
T .

The state vector contains the progressive edge costs over time from X(k − j + 1) to
Xk. The variable ξ provides values of innovation of edge costs over the time as the
exploration proceeds. Here, j denote number of previous edge costs to be included
in the state vector among all included edges in the path till kth instance. Also, l de-
notes the number of previous innovations of these edges. In the example provided in
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Figure 4.8 in Section 4.6.1, the computation to find optimal path was done using the
method described in Algorithm 1. In this section also, we will use the same example
to explain the path computation using the new state-space model of equation 4.14
and 4.15. Thus the same example is provided in Figure 4.10.

Figure 4.10: Sample run of route computation

The source is considered as na. Using Dijkstra’s algorithm exploration starts at
na when k is 1. Let us assume values of j and l are equal which is 2. State vector
cannot be formed at k=1 as minimum 2 previous travel costs are needed and thus,
exploration proceeds with average travel cost for the edges arising out of na. When
exploration reaches nc which has 1 predecessor node, value of k becomes 2. Thus, at
this instance, the state vector can be formed with the values of travel cost from na
(predecessor of nc) to nc, denoted by X1 and travel cost from predecessor of na to na,
denoted by X0. In this case, na has no predecessor as it is the source. Thus X0 will
be 0. As exploration grows, k increases and when ng needs to be explored, k becomes
3. Hence, X2 will be travel cost from nc (predecessor of ng) to ng and X1 will be
travel cost from na (predecessor of nc) to nc. Hence, X1 and X2 will be constituting
state vector s(k-1) at k = 3 and s(k) needs to be computed for all the edges arising
out of ng

On the other hand, variable ξ designates the innovation in the travel times of edges
over the time as the robot moves from one node to another. As the robot traverses
one edge after another to reach the destination, the travel time of the edges innovate
due to battery discharge and other factors. Hence, correct estimate of edge costs
considering this innovation on the travel time is necessary to culminate into optimal
routes. Considering the above example, for k=2, state vector s(1) contains ξ0 and
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ξ1. Similarly, for k=3, s(2) contains ξ1 and ξ2. Moreover, at k =2, s(1) takes the
form (1, ξ0, ξ1, X0, X1)

T in order to estimate s(2) which will produce X2. Similarly,
at k =3 , s(2) is required to be formed as (1, ξ1, ξ2, X1, X2)

T and s(3) needs to be
estimated, which will produce X3. The values of j and l are thus to be chosen as a
design parameter. It is shown in Section 4.7.2 that save on total cost with respect to
the paths obtained by the heuristic cost increases with the increase of the value of j
and l, but the values of j and l reaches a threshold after which the save on the total
cost do not increase further. The matrices in the equation 4.14 are described

F =



1 0 0 . . . 0
... 0 0 . . . 0 0

0 0 1 . . . 0
... 0 0 . . . 0 0

0 0 0 . . . 1
... 0 0 . . . 0 0

0 0 0 . . . 0
... 0 0 . . . 0 0

...
...

... . . .
...

...
...

... . . .
...

...

0 0 0 . . . 0
... 0 1 . . . 0 0

0 0 0 . . . 0
... 0 0 1 . . . 0

0 0 0 . . . 0
... 0 0 0 . . . 1

µ ψl ψl−1 . . . ψ1

...− ϕk − ϕk−1 · · · − ϕ1


The number of rows of F depends on the number of regression_no and given by
(2*regression_no + 1). The matrix F contains many new terms like ψ , ϕ , µ. The
ψ terms are denoted as in equation 4.16

ψl = bl +

l∑
i=1

cliXk−i (4.16)

All the ϕ terms in F are constants. The term µ is the average value of X till kth
instance. Thus, the state transition matrix F depends on the travel times of the
previously traversed edges. Also, the matrix V is denoted as

V =
[
0 0 0 . . . 1

... 0 0 . . . 1

]
The number of rows of V is again given by (2*regression_no + 1). The matrix

H is denoted as
H =

[
0 0 0 . . . 0

... 0 0 . . . 1

]
Contrary to the experiment described in Section 4.6.1, in this experiment, a state
vector s is estimated over and over again whenever edge costs are required to be
known to find the optimal route. Kalman filtering is applied on the state-space model
(equations 4.14 and 4.15) resulting in equations 4.17 and 4.18 to estimate s repeatedly
to obtain X for the connecting edges at each node to compute path using Dijkstra’s
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algorithm.

ŝ−(k) = F (s(k − 1))s(k − 1) + V ξ(k) +Gω(k − 1) (4.17)
P̂−(k) = F (s(k))P (k − 1)FT (s(k − 1)) +Q(k − 1)

K(k) = P̂−(k)HT [H ˆP−(k)HT +R(k)] (4.18)
ŝ(k) = ŝ−(k) +K(k)[Y (k)−Hŝ−(k)]

P (k) = [I − (K(k))H]P̂−(k)

In equation 4.17, ŝ−(k) provides the apriori estimate of s. P̂− provides the associated
covariance matrix where Q(k-1) provides the covariance for the process noise ω(k-1).
In equation 4.18, K(k) is the Kalman gain, R(k) being the covariance of observation
noise η(k). ŝ(k) provides the estimated state vector s at k.

ŝ(0) = E[s(0)] (4.19)
P (0) = E[(s(0)− E[s(0))(s(0)− E[s(0))T ] (4.20)

Considering the above example, s(2) = (1, ξ1, ξ2, X1, X2)
T is estimated to find the

travel cost of edges arising out of nc at k =2. Kalman filtering (given in equation 4.17
and 4.18 is used to estimate the travel costs of all 5 edges, one by one. Thus, s(2) is
estimated for ac,b, ac,d, ac,e, ac,r and ec,g separately. In this case, s(1) is formed as
explained earlier. The innovation variable ξ, thus, also influences the estimated travel
cost as observed from the state-space equation of equation 4.14 and 4.15. Hence,
X2 is obtained from s(2) after the estimation for each of the edges arising out of nc.
This process continues with the increase of k until optimal path is computed. After
start of computing a path, the real travel time of edges are recorded when the MR
actually traverses it. This travel times of edges are used as the observation values for
the next call of path planning. Thus observation values of travel times of each edge is
grown during run-time. This approach is different than Algorithm 1 in the method of
obtaining the estimate of Xk only. In case of Algorithm 1, a linear state space model
is used to estimate

4.7.2 Results II
This section comprises of different sets of quantitative verification through our exper-
iments to substantiate our proposal.

Comparison of path costs

Similarly as experiment in Section 4.6.1, original Dijkstra’s algorithm is used to com-
pute optimal route with heuristic cost based on the euclidean distance of the connect-
ing edges for multiple repetitions using in the maps (Figure 4.3), obtained from the
average travel time of the edges which remains the same with progression of time.
Further, we consider change of travel time over time and use estimated values of travel
time as weight of edge to find optimal path. In our verification, we gradually increase
the regression_no in to observe its effect on the total path cost. Along with the
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repetitions of path computations, value of ϕ is increased from -0.4 to 0.4. Negative
values of ϕ produced too high estimates while values greater than 0.2 produced neg-
ative estimates. Thus, 0.2 is found as the suitable value of ϕ. Also, values of the
mean and covariance of distributions b and c in equation 4.16 -0.2 to 0.2 respectively.
Similarly, mean and covariance values less than 0.1 produce high estimates and more
than 0.1 produce negative estimates. N(0.1,0.1) suits for both b and c. In Figure 4.11,

Figure 4.11: Comparison cost

vertical bars marked Eucl plot the average total costs of paths obtained using orig-
inal Dijkstra’s algorithm after multiple repetitions like 20, 40, 60 and 80 repetitions
of consecutive path planning in three different maps (Figure 4.3). Also, the vertical
bars marked from Reg_2 to Reg_9 plots the average total costs of paths obtained
from Dijkstra’s algorithm, using dynamic estimates of travel time as weight of edges
with the increase of regression_no from 2 to 9. The number of repetitions denotes
the span of time for which optimal route planning is conducted repeatedly.

In Figure 4.11, vertical bars of Eucl does not change with the number of repetition
for any map as average total cost of paths does not change with the number of repe-
titions as euclidean cost does not vary time. Hence, it does not reflect the actual cost
in reality, as actual travelling cost is based on different time-varying factors like state
of charge of batteries and other environmental factors. Nevertheless, vertical bars
of Reg_2 to Reg_9 in Figure 4.11, increase with the increase of repetitions. Hence,
average total path cost increases with number of repetitions for all the maps. More-
over, as the number of repetition increases, the time-span for which path planning
is conducted also increases. As the battery gets discharged over the time, the real
cost or real travel time increases for any edge. So, as the time span of path planning
increases with number of repetitions, travel cost of each edge also increases and thus
the average total path cost increases accordingly. Thus, heuristic edge cost does not
reflect the true cost of traversal. On the other hand, vertical bars of Reg_2 to Reg_9
are less than vertical bars of Eucl by 15% in average in value in all three maps. Thus,
the average total path costs of paths obtained using travel time is 15% less in all three
maps than that of heuristic cost based Dijkstra’s algorithm. Moreover, this difference
is increased with the increase of regression_no, though the rate of increase is low
as the data itself is not broadly spread with standard deviation of 0.219 on average.
The observation Yk developed during run-time is considered as signal and the values
of ω are modified to increased the Signal-to-Noise Ratio (SNR) from 10dB to 50 dB
along with the repetitions of path planning. The vertical bars marked 10dB, 25dB
and 50dB in Figure 4.12 plots the average path costs obtained by changing the SNR
for each regression no. which shows that with the increase of SNR, the average travel
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Figure 4.12: The effect of changing Signal-to-noise ratio
cost decreases.

Path comparison

Part (a) of Figure 4.13 plots three single paths PathA, PathB and PathC obtained
using from Dijsktra’s algorithm based on heuristic costs, statically estimated and
dynamically estimated edge travel costs respectively for the same pair of source and
destination nodes in Map 2 including only the variation induced by discharge of
batteries.

Figure 4.13: Paths in Map2

Here, path costs for PathA, PathB and PathC are denoted by PcA, PcB and PcC

stands for the general Pc vector explained in Section 4.3 for PathA, PathB and PathC
respectively. Though all the paths contain the same number of edges and intermediate
nodes, the edges and intermediate nodes are different in three cases. PcA, PcB and PcC

have many common elements, despite having different elements. This is because of the
fact that Dijkstra’s algorithm used three different kinds of weight of edges to compute
the optimal path. When path planning is done using real and estimated travel costs
for each edge, the edge costs of many edges becomes either more or less than the
assumed heuristic cost and thus the path planner compute path with different cost
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values and finds a different minimal cost path than that of heuristic cost based path
planner. Thus the resultant optimal paths are different in three cases. Also, optimal
paths obtained using estimated travel time as weights of edges produce different and
more cost efficient path.

Moreover, the total travel cost in these 3 paths are different. In Figure 4.11 in
Section4.7.2, the average path cost of paths obtained usingtravel times is 15% less
than that of heuristic cost based path planning using Dijkstra. After obtaining the
total travel costs of PcA, PcB and PcC , it can be stated that,∑

PcB <
∑

PcA by 5% and
∑

PcC <
∑

PcA by 15%

This establishes the proposal that heuristics based path planning can underestimate
real edge travelling costs and lead to expensive paths.

On the other hand, Part (b) Figure 4.13 plots the two different paths, PathC
obtained by estimated travel time and PathA, obtained by heuristic weights. Zone
marked with dotted line has moderately rough surface and zone marked with solid
line has little rough surface. As heuristic weights do not reflect the increased travel
cost for the changed status of surface, PathA consists of edges which are inside in both
the two rough zones. As the estimated travel times are used to get PathC, it avoids
the little rough zone. The number of edges in moderately rough zone is 4 PathC and
12 in PathA. Thus, paths obtained using estimated travel time as weights show more
realistic path than that obtained by heuristic costs.

Nevertheless, PathC finds a part of path in the zone with moderate roughness,
because the cost incurred by moderate roughness is still less than the cost incurred
in avoiding that zone and adding more nodes in the path. Thus, the deterministic
robustness of computation by Dijkstra’s algorithm is unchanged by using estimated
travel time as weights of edges.

Similar results are obtained in case of path planning done in Map1, which are
plotted in Part (a) of Figure 4.14. The zone in Map1 marked by dotted line is made
moderately rough and zone marked by solid line is made little rough. PathA is the
path obtained using heuristic cost and PathC is the path obtained by travel times.
The PathC clearly avoids the zone with moderate roughness, but it finds a part of
path in the zone with little roughness, because the cost incurred by little roughness
is still less than the cost incurred in avoiding that zone and adding more nodes in the
path. When this zone is changed to heavily rough floor then PathC clearly avoids
this zone and finds a minimum cost path deviating to other direction and adding
more nodes (PathC in Part(b)). Dijkstra’s algorithm takes nodes in these two zones
to compute PathA, not being aware of the changed floor condition through heuristic
cost and thus incurs more cost than apprehended. But, PathC in both Part (a) and
(b) is realistic it considers the real cost of traversing edges in the form of travel time
to compute path.

Real cost saving for paths

According to Part (a) of Figure 4.13, there are equal number of edges in all the two
paths PathA and PathC in Map 2, but the edges are different. In Table 4.1, under
column Map 2 and Case (a), 19 edges are shown to be different between PathA and
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Figure 4.14: Paths in Map1
PathC of Part (a) in Figure 4.13. The total path cost of PathA is more than PathC

Table 4.1: Calculating real total path cost of PathA

Map2 Map1
Case(a) Case(b) Case(a) Case(b) Case(c)

No. of different edges 19 18 12 12 12
PcA 87.5 87.5 98.125 98.125 98.125
PcC 74.06 74.24 84.52 82 82

Actual cost of PathA 89.4 90.85 100.175 100.975 101.725
Save on path cost 17.15% 18.22% 15.62% 19% 19.39%

due to these 19 edges which are different in these two paths. Moreover, real edge
costs of these 19 edges however is not considered in calculating the total path cost of
PathA as cost of each edge are more in reality than the assumed heuristic cost. PcA

(path cost of PathA in Part (a) of Figure 4.13) is shown as 87.5, according to the
result under column Map 2 and Case (a) in Table 4.1.

We attempt to empirically find the real cost of traversing these edges and total
path cost for PathA to find the real save on costs. Let, a variable δ accounts for the
additional edge costs in each edge. When path cost of PathA is computed considering
the extra cost of these 19 edges in PathA, it becomes (87.5 + 19*δ). Now, The value
of δ can never be zero as changes in environment and batteries will always be present.
Let, value of δ be 0.1 and hence the real PcA becomes (87.5 + 19*0.1) = 89.4 (provided
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in third row under Case (a) under Map 2 in Table 4.1). Thus,

PcC < PcA by 17.15%

Hence, save on total path cost is more than that is tangible enough to calculate. Also,
we conclude that paths computed using heuristic cost may have similar edges with
paths computed using real estimated travel times, but the latter is more cost efficient.

A different aspect is encountered in Part (b) of Figure 4.13, where the edges in
PathA and PathC are completely different. This is depicted in Case (b) under Map
2 in Table 4.1. As, heuristic cost does not reflect the true traversing cost of edges,
path planner has computed an optimal path consisting of edges lying in rough zones.
Thus, PathA consists of 13 edges from moderately rough zone and 5 edges from lightly
rough zone. PcA is 87.5 from the results. Here, PathA and PathC have different edges,
still the actual cost of PathA is not comprehended through heuristic edge weights as
it does not reflect the changed surface conditions. We use two variables δ1 for the
moderately rough zone and δ2 for the lightly rough zone to find the actual PcA. So,
actual PcA = (87.5 + 13*δ1 + 5*δ2). Let, δ1 be 0.2 as it is the coefficient for edges in
moderately rough zone and δ2 be 0.15 as it is the coefficient for edges in lightly rough
zone. So, now, PcA = (87.5 + 13*0.2 + 5*0.15) = 90.85 (provided in third row under
Case (b) under Map 2 in Table 4.1). Thus,

PcC < PcA by 18.22%

Thus, we conclude that heuristic cost not only is incapable of producing the real time
and effort or energy to traverse an edge, but also actual cost savings are not reflected
through it. Moreover, PathC is more cost efficient than PathA, though they consist
of completely different edges.

Similarly, PathA of Part (a) in Figure 4.14. has 12 edges in the two rough zones
in Map 1, where 5 edges in moderately rough zone and 7 edges in lightly rough zone.
PcA is 98.125 from the results. Similar to previous computation, we use two variables
δ1 for the moderately rough zone and δ2 for the lightly rough zone to find the actual
PcA. So, actual PcA = (98.125 + 5*δ1 + 7*δ2). Let, δ1 be 0.2 as it is the coefficient
for edges in moderately rough zone and δ2 be 0.15 as it is the coefficient for edges in
lightly rough zone. So, now, PcA = (98.125 + 5*0.2 + 7*0.15) = 100.175 (provided
in third row under Case (a) under Map 1 in Table 4.1). Thus,

PcC < PcA by 15.62%

In Part (b) in in Figure 4.14, the lightly rough zone is changed to heavily rough zone.
So, now the value of δ2 is changed to 0.3. So, now, PcA = (98.125 + 5*0.2 + 7*0.3)
= 101.225 (provided in third row under Case (b) under Map 1 in Table 4.1). Thus,

PcC < PcA by 19%

Moreover, we change the moderately rough zone to highly rough zone. So, now the
value of δ1 and δ2 both have value as 0.3. So, now, PcA = (98.125 + 5*0.3 + 7*0.3)
= 101.725 (provided in third row under Case (c) under Map 1 in Table 4.1). Thus,

PcC < PcA by 19.39%
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Thus, we conclude that the difference between travel costs of paths obtained by heuris-
tic cost and estimated travel time will always increase with the increase of hostility
in the environment, which will eventually lead to more save on costs of traversing.

4.8 Summary
The travel times are investigated as a cost coefficients for edges for the task of travers-
ing a path. They are modeled first using a linear state-space model and are estimated
online using Kalman filter. These estimated values are used as weights of edges in
route planning through Dijkstra’s algorithm. This method is designated as static
estimation in this work. It was evident from the results that total path costs of path
obtained using travel time is 5% less than that obtained using Euclidean cost. This
shows that the total cost of reaching the particular destination is less by using the
real estimated cost. But this model do not encompass the variation of travel times
with the progress of time. In order to address this, travel times are modeled using the
bi-linear state dependent one and are estimated online using the Kalman filter again.
This method is termed as dynamic estimation here. The results in this case showed
that total path costs of path obtained using travel time is 15% less than that obtained
using Euclidean cost. Hence, it is proved that travel times are better than heuristic
euclidean cost as for deciding optimal path in internal transportation as they reflect
the true and real-time states of battery and floor. Our approach is implemented in
single robot path planning which has the opportunity to be extended to multi-robot
planning. Moreover, we present a scaled platform prototyped and developed in our
laboratory with analogy to real industry scenarios with a purpose of identifying the
travel times and record their suitable observations with an example of real tasks
similar to automated industries. We develop representative scenarios to demonstrate
arrangements and operation conducted in industry into this prototype platform which
will generate accurate industry like observations for these identified traveling time as
costs. These observations are instrumental for feeding into estimation algorithms to
estimate traveling time to be used in decision making. This approach is a repre-
sentative case in the MRS with distributed control architecture. This approach can
be replicated in all robots of the system with the facility of sharing the information
about travel times. Nevertheless, the quantity of observed data essential for generat-
ing on-line estimates in case of static estimation and updated values of the estimates
in both methods of estimation motivates to an obvious concern of data storage space
in the memory devices, efficient data storage and data access mechanisms. In our
work, we focus on a single MR and data for individual MR needs to be stored in
the individual memory devices of the MRs in the decentralized control architecture.
The estimated travel times in each MR can be accessed by other MRs through data
sharing mechanism in the highest level of the individual controller, which enhances
further investigation towards implementing collaborative or collective intelligence in
MRS. The next chapter elaborates in this direction.
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Chapter 5

Collective intelligence based on
travel time in multi-robot system

In the previous chapter, travel times of edges complemented decisions on planning for
a single MR in automated logistic systems. These are influenced by state of charge
of batteries (in case of battery powered MRs), condition of the mechanical parts like
wheel, tyre, et cetera, condition of floor, weight of the load being carried, et cetera. So,
they vary over time and they signify the cost of traversing edges. They were estimated
on for the time instance when they are considered in decision making to find optimal
path using Dijkstra’s algorithm. These online estimated produced better cost efficient
paths, than that of heuristic costs. However, online estimation requires closely packed
historical data over time. In automated system, there are possibilities for a robot not
to have traversed an edge or a zone in the floor at least once or travel time for one
or more edge have been recorded not in recent past by a robot. This brings us to
utilize these estimated travel times for sharing to other MRs in the system which
will eventually enable collective intelligence based on the pool of knowledge gathered
from these estimated values. In this chapter, the knowledge about floor conditions,
battery status, obstacles et cetera are shared among all MRs through a framework of
collective intelligence. This paves the way for the improved decisions for planning in
the MRS which increases the efficiency and utilizes less cost.
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5.1 Necessity of sharing travel time in multi-robot
system

An MRS necessitates robust and cost efficient co-ordination and planning procedures.
For dynamic co-ordination and planning, when all the robots are performing together,
each of them can generate better and accurate estimation of travel time using the
estimated travel times of others. This concept is explained in the following example

(a) Case I:

(b) Case II:

Figure 5.1: Example Scenario for the problem.

The Figures 5.1a and 5.1b illustrates a scaled prototype internal transportation
system for automated factories. Similar to previous cases, route or path traversal by
any MR is again considered as a task. In this example, A2 carries some material to
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port P2 starting at k(0) in X(0) seconds, the computed path being marked by the
single dotted line. Other MRs have crossing points in their paths with that of A2
(marked by arrows). Thus, movements of other two MRs are synchronized according
to the time taken by A2 to reach P2. Starting at k(p), let, A2 is again assigned to
carry some material to port P2. But, the condition of floor in parts of the computed
path has deteriorated (as marked in Figure 5.1b) at k(p). Moreover, the battery
capability of A2 has decreased due to execution of previous tasks. Hence, the equal
amount of time (X(0) seconds) and energy as previous would not be sufficient to reach
port P1. Thus, travel time of edges needs to be estimated correctly to compute the
path of minimum cost. For correct estimation, the information of the changed floor
condition should be known to A2. As explained in Chapter 3, travel time represents
the battery as well as environmental conditions. So, an MR utilizes travel time as an
quantitative factor to get information about the batteries and environment in route
planning (Chapter 4). But, A2 has not traversed this zone in previous instance or
close past. Nevertheless, the other MRs may (one must have) traversed this zone
in the previous instance or close past whose travel time can be used to estimate the
travel time at k(p). The online estimated travel times for edges will give rise to a
new route or a modified route for A2 to reach P2. The resultant path will avoid the
rough zone and have minimum total path traversal cost.

So, it is beneficial to communicate the travel times of one AGV to another to
generate better estimations which will lead to optimal decisions. In our example, the
estimated travel times for A2 must be computed, stored and communicated to other
AGVs when required by an intelligent mechanism. These shared knowledge is to be
used for accurate estimation of travel time during decision and control for each robot.
Thus, the knowledge and intelligence of one robot can contribute to the formation of
knowledge in other robots as well. This will generate better estimation of travel time
for each robot. This essentially forms the foundation of collective intelligence.

5.2 Collective intelligence based on travel time
There are numerous rich and diverse definition of collective intelligence in literature.
Nevertheless, the definition by P. Levy [48] is cited here where collective intelligence
has been defined as a constantly evolving and coordinated system of distributed in-
telligence in real time. This definition is in accordance to the method of application
of collective intelligence in MRS in this work. An MRS is dynamic as its statuses
change over time. Also, it is evolving as it gathers more and more knowledge about
its statuses through the course of its operation. Moreover, the source of knowledge
of an MRS is distributed to each of its constituent robots. Thus, an MRS has the
ingredients suitable for application of collective intelligence. We propose a framework
to apply concepts of collective intelligence into the MRS involving passive crowd
sourcing. The concept of passive crowd sourcing is applied in a conglomeration of
entities or individuals where the individuals do not meet but still their experience
can be mined to extract information in order to implement collective behaviour or
intelligence. In the MRS, the individual robots cannot meet with each other, but the
estimated travel times can be shared through the control architecture in each con-
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troller of the member MRs. Thus, passive crowd sourcing can fetch relevant travel
times to use them in estimation to enable more accurate decisions. This framework
essentially exploits collective intelligence for better optimal decisions. In subsequent
sections, we explain the MRS in light of a collective and its main features which
substantiates its capability to enable collective intelligence.

5.2.1 Multi-robot system: A collective
A collective is a conglomeration of autonomous, intelligent and continuously perform-
ing members.

The MRS implemented in this work is for logistics and manufacturing system
which constitute robots for performing tasks. So these robots are continuously per-
forming. The MRS has a decentralized flow of control, suitable to logistics. The
flow of control is based on the concept of sub-sumption, where each robot has the
same sub-sumption model. This model involves the control structure to be organized
in layers one above the other with increasing level of competencies and each level
can interact with all other levels with messages. This technique of flow of control
is described in Figure 5.2, which consists of two major control layers. The top most

Figure 5.2: Controller architecture

layer is L1 level and the L0 level is below it. The L0 level is divided into two sub
levels L0.1 and L0.0 levels respectively. The L1 level is the agent level control layer
where it functions on all the agents in the transportation system and is engaged in
controlling more complex functions like finding path, organizing task, finding desti-
nation poses, et cetera for each of the robots. The L0 level functions on each of the
agents individually and controls the movements. Each robot has its own L0.0 and
L0.1 levels respectively which controls the movements in each of them. Here, the L0.0
level communicates with the L0.1 level and have no communication with the L1 level.
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The L0.1 level is the intermediate level which communicates both with L0.0 level and
L1 level. The control levels functions in co-ordination with each other to control the
movements of the robots in the environment [56]. Moreover, the top most L1 level
is responsible for intelligent decision making for task assignments and path traversal,
based on the available travel time, which represents knowledge about the individual
robot and the environment. Hence, each robot is capable of taking the decision itself,
with the capability of gathering information about the environment from other MRs.
This sub-sumption model makes each MR autonomous. All these three levels are for
controlling one robot. This three-layered control structure is repeated for each MR.
Thus, the control flow in the MRS is decentralized.

During the run-time of MRS, the estimation of travel time or Xk is conducted
for all necessary edges while finding the optimal path. Thus, estimated values of Xk

will be generated at every instance of control decisions, producing a pool of estimated
values. In previous section (Section 5.1), it was explained that Xk values of one MR
when shared contribute in the estimation of Xks in other MRs. The L level conducts
the planning and it need the Xks values to be used for decisions. So, the knowledge
sharing process is realized in L.

In summary, each member robot in MRS are task followers who are continuously
performing. Each MR has individual layered controllers who make them autonomous.
The top most L1 level controller in each MR is responsible for intelligent decision
making for path traversal, based on the available travel time. Thus, all the basic
features of a collective can be found in an MRS and we can conclude that an MRS is
a collective.

5.2.2 Travel time: knowledge for collective intelligence
The essential feature of a collective which makes it feasible for collective intelligence
is the inconsistency in knowledge of each member [51].

Knowledge in an MRS can be attributed to the status of the MRs regarding
battery and mechanical parts, traffic condition, conditions of floor, behavior of other
MRs at every instance of time. In Chapter 3, it was elaborated that Xk of an edge
can represent one or all of these knowledge of MRS. In our work, Xk represents the
battery status of individual MR and the floor condition. Each estimated Xk of an
edge has inherent contextual information about the floor condition of that edge while
being traversed by an MR at a certain battery level. Hence, these travel times or Xk

values contribute to form the knowledge of the MRS. On the other hand, Xk for an
edge is obtained at non-consecutive times by an MR. Thus, their are inconsistencies
in this knowledge.

Chapter 4 describes the process of estimating Xk to complement the decisions on
path planning for one MR. At the first call of path planning, an MR Ar acquires
estimated Xk for only those edges which are linked to the explored nodes using the
average observation data from the legacy system. This legacy system is built from the
experiences of traversing paths by the robots before implementation of travel times.
The estimated Xk values of first call are subsequently used for further estimation
from second call on-wards. However, estimates and observation data were available
for those edges which the robot has traversed. There are edges whose travel times are
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not estimated in the history of that particular MR’s performance. Hence, there is no
available value of Xk for these edges either in legacy or through estimation. This is
explained in the example in Figure 5.3. The computation starts at different source

Figure 5.3: An example of path computation

nodes at the same time. In Figure 5.3, source node for A1 is na, source node for
A2 is nq and source node for A3 is nw. So, at first call for path planning, all robots
estimate travel times of edges from observation data of legacy system. Let, after
few iterations of path planning, A3 needs to estimate Xc,g, but it has no previous
history of traversing edge ac,g. Similarly, A2 needs to estimate Xa,c without having
any previous experience of traversing it. For a single MR scenario, similar problem
is mitigated by creating observation data from past values. Nevertheless, in case of
MRS, we propose to solve it utilizing integration or fusion of data, which in essence
implements collective intelligence.

5.2.3 Contribution
In the available literature, there are contributions towards using the concepts of data
fusion and integration for multi-robot surveillance and rescue operations. However,
there are no contributions for utilizing data integration enabling collective intelligence
for multi-robot operation in automated factories and warehouse. This work is focused
on developing a framework of collective intelligence for an MRS, typically used for
automated logistics. Moreover, an ontology based knowledge sharing mechanism is
developed to update the estimated values of the travel times during run-time and
store progressively and intelligently. Also, the stored data needs to be shared to
be available for usage by other robots. In other domain like traffic management
system, there are instances where information about the environment and traffic are
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obtained in real-time and shared to form a collaborative real-time traffic information
gathering and sharing framework [46]. In [46], collective intelligence is implemented
through a wiki-like information sharing platform. Similarly, in our work we use an
ontology model to share information of travel time, data fusion methods to resolve the
inconsistency in travel time and produce estimate of travel time whenever required.
All these components in essence form a collective intelligence framework in MRS.

Organization of chapter

The rest of the chapter elaborates on the different aspects of the proposed problem,
where Section 5.3 explains data fusion to enable collective intelligence, feasibility of
travel time for data fusion and achieving four layers of data fusion in MRS. Sec-
tion 5.4 formulates the integration process mathematically which evidences that the
new knowledge obtained using data fusion is more that the knowledge of the MRS.
Section 5.5 describes the process of storing and sharing the data of travel times in
each MR. Section 5.6 explains the process of predicting travel time in a MR using the
travel times of other MRs through behavior forecasting technique. The comparison
of estimates obtained using data integration and ontology with that of without using
them are analyzed and tabulated in Section 5.7.3 with discussion and conclusions.

5.3 Data fusion to enable collective intelligence
Recently, data fusion or integration has spread its wings into many fields which pos-
sess similar problems, though its genesis lies in the field of military operations like
tactical intelligence et cetera. Data integration has been defined in literature [40]
as a bunch of interrelated problems of estimation and prediction of state of entities,
both inside and outside of an operational system like multi-robot systems working in
automated logistics [5], autonomous vehicular traffic network [80], urban search and
rescue (USAR) [76], human-robot interaction [49], et cetera. Data fusion encompasses
the interrelations among functional entities of a system.

In a collective, data originates from different sources, which makes the data incon-
sistent with each other. Hence, a process or mechanism is required which can dissolve
the inconsistency and could provide useful data for further use. This is essentially an
data integration method [51]. This data integration process is fundamentally a tech-
nique of multi-sensor data fusion. This invariably directs towards forming a paradigm
of collective intelligence.

The concepts of multi-sensor data fusion is not new as it is naturally performed
in animal kingdom. However, advancement of different techniques to acquire data
has provided a mileage to this field of study. Multi-sensor data fusion involves trans-
formation of observed parameters, obtained through multiple sources or sensors, into
a inferential stage through hierarchical levels [41]. The sources from which data in
obtained refers to the members of a collective, in the context of collective intelligence.
Moreover, the hierarchical transformation results into some estimation or inference
process, which is the outcome of fusion [41]. This transformation process enables the
collective to dissolve the inconsistency in data from different members and provides
with an inference or estimation, which forms the new knowledge in the collective.
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Thus, the fundamental condition of collective intelligence, being handling inconsis-
tency in data and formation of new knowledge, is carried out using the data fusion
or integration process.

5.3.1 Information fusion using travel time
In this work, we propose to solve the inconsistency in the travel time records in
history for each robot in the MRS, using the process of collective intelligence which
will also enable the MRS to obtain more accurate estimation of travel times for each
robot. In this attempt, data integration is ingrained which is essential to solve the
problem of inconsistency in data of travel time to form the new estimation of travel
time. Thus, data integration has been used to form the knowledge of the whole
MRS. Further, when travel times are estimated, there are cases where one robot
has traversed different arcs, but the list is not exhaustive. But, other mobile robots
have traversed different arcs other than the previous one. In this case, data fusion
and integration provides the mechanism to gather knowledge about the estimated
travel time whose knowledge are not available to any particular robot. In this way,
the gap of experience about the environmental conditions among the MRs can be
bridged. For example in Figure 5.3, when A3 needs to estimate Xc,g, the estimate
or observation can be made available to A3 from A2 at that instance of estimation
to generate the new estimate for A3. Thus, we propose to utilize data integration
techniques to generate new knowledge in MRS [51]. In this context, the different
robot’s record of travel times serve as different sources of data. Through data fusion,
travel time records for any edge over the passage of time can be formed which is useful
to obtain the estimate of travel time at current time. Thus, as a result of data fusion,
the inference as estimation is formed. Also, every new estimation contributes new
knowledge to the MRS. Thus, collective intelligence is fulfilled through data fusion in
the MRS.

5.3.2 Four levels of data fusion in MRS
Data integration is described as a four-level process in literature [], which is termed
as JDL Data fusion model. In this section, analysis and justification is provided for
implementing the same four levels of data integration in the MRS.

• Level-0 involves the hypothesis of the presence of a signal from the sources and
that this signal can be estimated. Moreover, the source of the signal can be a
local sensor associated with the fusion system or a distributed sensor electron-
ically linked with the fusion system [41]. In the process of implementing data
fusion in the MRS, it is hypothesized that these travel time of edges are ob-
servable through the sensors of each robot. Moreover, it is conceived that each
robot’s sensor can observe and record the travel time for each edge while the
robot traverses it. In this case, the sources of data are the robot’s sensors and
they are distributed in the MRS but are connected to the data fusion process
through the controller architecture. In the controller, the data can flow from
the sensor in the lower level (L0.0 in Section 5.2.1) to the system level controller
(L1 in Section 5.2.1) where data fusion system is implemented. On the other
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hand, it is hypothesized that estimation of these travel times are possible during
the operation of MRS, dynamically using previous records of travel times. This
estimation process can start with the average values of data from the legacy
system.

• Level-1 involves selecting the data from the observations in specific tracks. This
process can be thought of as organizing the observations through a specific rule
in groups or clusters or tracks. In the MRS, a set of observations of travel times
are associated together for a particular edge for a particular robot. This set
signifies the travel times of an edge over the operational time of the system.
Thus Level 1 clustering is conducted during estimation of travel time for an
edge, when all the relevant travel time for that edge in previous instances are
associated and grouped. Thus, this clustering of observation reports is trivial in
this implementation of data fusion in MRS. On the other hand, level 1 includes
a hypothesis that a certain set of data from the observations or tracks is to be
considered as the total set of data available to that system regarding a certain
individual entity to which the data is referred. In the MRS, after the relevant
information for an edge is clustered together, it appears to the system level
controller that this set is the total set of values or track in history for the
relevant edge for that robot.

• After Level-1 grouping, a set of data for each robot regarding the travel times of
all the edges it has traversed til the current time is created in level-2 as a result
of accumulating the tracks into assemblage. These tracks are hypothesized as
complete set of reports available to the system in reference to any individual edge
in level-1. Further in level-2, these hypothesized tracks or set of records of travel
time of the edges for are associated into aggregations based on relations. These
relations can be of any variety adhering to the goal of the system. In context
of this work, the goal of the MRS is to decide optimal paths based on the real
and estimated travel times in each robot. As the floor of the plant is described
using topological map, the relations are developed based on the topological
connections. Moreover, the relations between sets of travel time for any two
different edges are built using topological relations. These sets of travel times
serve as the knowledge and are essentially based on contextual information that
can influence the decision making regarding the optimal path at individual and
MRS level. The context of a travel time is developed while a MR traverses an
edge. The travel time depends on various conditions like battery state of charge,
floor condition, movements of other robots, physical condition of the robot, as
explained in details in Chapter 3. Therefore, when a travel time is obtained it
carries within itself several contextual information regarding the status of the
environment and the robot. In Chapter 4, we have demonstrated that using
these travel time as cost of edges can result in less cost consuming path when
compared to heuristic cost. In this chapter, we implement data fusion levels to
incorporate these knowledge of travel time in the whole MRS. In level-2 of the
data fusion model, we develop a semantic relation to convey these contextual
information inherent in travel time so as to communicate enough meaning to
other MRs in the system which eventually directs towards procuring more cost
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efficient paths during their decision making. Level-2 is a general framework of
building the relations among the sets of different travel times for different edges
in each robot. This framework is a representative one which can be replicated
in all the MRs in the system From the system level controller, these relations
are general where only the sets are different in each robot. After the integration
process in the collective or the MRS, a new knowledge is formed contributing
to the pool of knowledge of the MRS. At that time, the relations of the new
knowledge is estimated and given subsequent connections to be a part of the
existing framework. A subset of these relations are considered in level-3

• Level-3 is involved with estimation to infer from the Level-2 association. It is
a method to project the current situation into the future. Level-2 associations
in MRS build the relations among the travel times and form the aggregations.
In level-3, the future is predicted relation through estimating the future travel
time. Thus level-3 is a special case of level-2, where it involves estimating the
travel time for the required future instance of time and building the future
relation. As a result of building the relation of the newly estimated travel time,
the relations of new knowledge of the MRS is built. In this level, filtering is
done using the methods described in Chapter 4 to obtain the new estimated
travel times in each robot.

• Level-4 is solely involved with planning and control based on the newly estimated
travel times.

5.4 Mathematical proof
This section is devoted to establish that a collective intelligence is formed with a
integration function in the MRS and that as a result of integration process some new
knowledge (new travel time) is formed in the collective (MRS) which suffices to be
termed as collective intelligence. Maleszka and Nguyen in [51] have provided the
mathematical description of the integration function to be applied to a collective.
Also, elaborate method has been described to calculate the resulting new knowledge
in the collective in [51]. In this section we will utilize these mathematical formula-
tion to prove the process of integration and new knowledge creation in the collective
intelligence process formed in the MRS.

A set C represents the knowledge of a collective where each member robot has
knowledge c ∈ C. As stated earlier the knowledge of each robot is comprised of the
estimated travel times which it has gathered. Now, we denote the process of integra-
tion using a integration function I(C) which results to produce the new knowledge
in the collective. We denote the new estimate produced from Kalman filtering based
on the available estimates as the new knowledge. Hence, essentially the integration
process is the Kalman filtering in our implementation of collective intelligence.

Maleszka and Nguyen in [51] has defined the postulates which I(C) satisfies. We
will show the proof of each postulate in respect to the integration function for our
application.

56



1. Unanimity:
I(n.c) = c (5.1)

for each n ∈ N and c ∈ U , U being the universal set of knowledge.
The equation 5.1 depicts that the knowledge of each member of the robot re-
mains same after repeating the available knowledge by n. For our application,
the integration of knowledge is executed through Kalman filtering, which pro-
duces new estimate at the current time for the necessary edge. The state-model
for estimation is explained in previous chapter as

s(k) = F (s(k − 1))s(k − 1) + V ξk +Gωk−1 (5.2)
Y (k) = Hs(k − 1) + ξk + ηk (5.3)

The state vector s is composed of a definite number of travel times, which are
estimated at previous instances. Repeating the same travel time means inserting
same elements repeatedly in s. After Kalman filtering is applied on the state-
space model (equations 5.2 and 5.3) using equations 5.4 and 5.5 to estimate s at
current instance, a new estimate of travel time of current edge will be produced.

ŝ−(k) = F (s(k − 1))s(k − 1) + V ξk +Gωk−1 (5.4)
P̂−(k) = F (s(k))P (k − 1)FT (s(k − 1)) +Q(k − 1)

K(k) = P̂−(k)HT [H ˆP−(k)HT +R(k)] (5.5)
ŝ(k) = ŝ−(k) +K(k)[Y (k)−Hŝ−(k)]

P (k) = [I − (K(k))H]P̂−(k)

This process of Kalman filtering is explained in Section 4.7.1 in Chapter 4. How-
ever, when the s vector has repeated elements, the Kalman filter will produce
the same new estimate and no extra estimate is produced. Thus, the knowledge
of the MR remains the same after repeating the available knowledge.

2. Simplification:
I(C) = I(D) (5.6)

where, collective knowledge C is for MRSC , collective knowledge D is for
MRSD and MRSC is a multiple of MRSD.
When one MRS is scaled up to another MRS, keeping the constituents same and
only increasing the magnitude or number, the sources and elements of knowledge
does not change. For example, MRSC has same travel time as the source of
knowledge about the environment and battery status as MRSD, MRSC being
a scaled-up version ofMRSD. Thus, Kalman filtering, when applied to estimate
the same state s with the same number of elements, will produce travel time
and no new extra knowledge in MRSC , given MRSC is a multiple of MRSD

3. Quasi-unanimity:
c /∈ I(C) ⇒ (∃n ∈ N : c ∈ I(E)) (5.7)
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for each c ∈ U
where E = C ·∪ n.c and ·∪ symbol denotes union of multi-sets
This postulate denotes that when some knowledge c from the universal set U is
repeated by a n ∈ N, summed with the collective knowledge C and the resultant
union is integrated, then c which initially did not belong to integration set of
the collective C, becomes a member of the integrated set.
Now, after integrating the collective knowledge C, the resultant set may not
contain the travel time of few edges. This holds true because of the fact that
there can be some edges whose travel times are not estimated by any MR till
current time. There are possibilities that an edge is never traversed even after
repeated operation by all MRs. When the number of MRs are increased to a
certain n, the travel time of these ignored edges can be obtained through these
MRs. The knowledge of the current collective incorporates the travel times
of these newly incorporated MRs, termed as E (let). Hence, the new collective
knowledge essentially becomes a union of previous collective knowledge and new
estimated travel times. Therefore, after integration operation on this collective
E incorporates the estimated travel times by the additional MRs.

Above three postulates are used to define the Integration function I.
On the other hand, Maleszka and Nguyen in [51] have also provided the definition

of Aug(C) which is used to calculate the new and evolved knowledge in the collective
C. Several conditions are defined for function Aug in [51] which we explain here
according to our application.

1. For any C ⊆ U :
Aug(C) ∩ C = ∅ (5.8)

In the MRS, the new estimated travel times are formed as a result of integration
through filtering. Thus, these estimates are not a part the collective C and is
only formed after filtering. So, when collective knowledge C is intersected with
the new formed set of travel times, the resultant is nothing.

2. For any C ⊆ U :
Aug(C) ⊆ I(C) (5.9)

The integration process is executed through Kalman filtering which provides
the required new estimated travel times, which forms the set arising out of
integration on C. On the other hand, Aug(C) denotes these new estimated
travel times. Thus, the resultant set I(C) consisting of all the new travel times
and existing ones, invariably contain Aug(C).

3. If C is inconsistent then
Aug(C) = I(C) \ C (5.10)

The new elements of knowledge form the set Aug(C) and these were not present
in C before estimation process. The elements of Aug(C) has been inferred
through estimation using the elements of C. Hence, these new estimated travel
times are not a member of C, but member of the resultant set I(C) arising out
of integration process through filtering.
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4. Aug(c) = ∅ for any c ∈ U

If C = c, then there is no new element.
Integration process leading to infer data from existing ones is no more required
when there is a single MR in the system. Estimation of travel time for a single
MR needs to be done from its own experience of traversing different edges, as
discussed in Chapter 4. Hence Aug(c) will result to nothing as no data integra-
tion is performed to infer new estimated travel times from existing knowledge
elements as a collective.

5. If I(C) = ∅ then Aug(C) = ∅
The estimated travel times of each MR together for set C. The integration
of data needs to be performed to obtain new travel times. This forms the set
Aug(C). If somehow, this integration cannot be performed on the available
knowledge, then the resultant estimated travel times will either be incorrect or
not available.

6. If Aug(C) = ∅ then there exists such Y ⊆ U that Aug( X ∪ Y ) ̸= ∅.
In an MRS, at the beginning of system operation, the estimation process is
done using average data from the legacy. On this occasion, there are cases when
integrating the knowledge of travel times for relevant edges did not produce new
and accurate estimates of travel times. This occurs due to the fact that these
estimates are not enough to provide accurate future estimates. The accuracy
increases after few iterations as the real observation gathers and it is utilized
through integration. Thus, addition of useful estimates can be enhanced by
incorporating more data from existing MRs or adding more MRs in the system.
When the system can start gathering observations and correct estimates, the
integration process produces more useful estimates, eventually increasing the
accuracy.

All the above postulates are defined as conditions for Aug which holds true in our
application.

It is to be noted here that the new knowledge of travel time formed as a result
of collective intelligence contributes for higher accurate future estimates. These es-
timates eventually reflects more realistic cost of edges. Thus, Dijkstra’s algorithm
decides paths which incur less total cost.

5.5 Mechanism for storing and sharing knowledge
5.5.1 Semantics in travel time
An MRS is dynamic as its states change over time. Also, it is evolving as it gath-
ers more and more knowledge about its states through the course of its operation.
Moreover, the source of knowledge of an MRS is distributed to each of its constituent
robots. The behavior in L1 has the role of finding paths using Dijkstra’s algorithm.
Dijkstra’s algorithm needs to know the estimatedXk for the concerned edges to decide
the path as Xk designates the cost of traveling the edge. Now, there are possibilities
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when an MR has not yet traversed many edges. The estimation of Xk for these edges
depends on the obtained travel cost of them from other MRs. Thus, knowledge shar-
ing mechanism improves the estimation of Xk for accuracy. This will be instrumental
to Dijkstra’s algorithm to produce better optimal paths with minimum path costs.

The Xks originate from each MR depending on the instance of travelling, zone of
the floor, previously traversed edge, neighboring AGVs, state of charge, et cetera. All
these factors provide context to the estimated values of Xk.

Figure 5.4: An example of semantics

For example, in Figure 5.4, the Xk of an edge by A1 at tm will be different than
that at t0 due to discharging of batteries as explained in Chapter 3. On the other
hand, Xk for nth edge (n ̸= m) by A2 in a different zone (marked by double dotted
line) will be different than that of mth edge, though both mth and nth edge can have
same length. This happens due to different states of floor. Moreover, Xk for nth edge
by A1 will be different than that by A2 at any ti because of differently discharged
batteries for different previous tasks. Thus, estimated travel time provides contextual
information representing state of charge, condition of floor, instance of travelling.

These values of Xk at a particular instance for a particular edge of one MR provide
contextual information about cost for that edge to other MRs when communicated.
Hence, semantics can be built from these knowledge of travel time as they have inher-
ent contextual information. They convey information about the costs of traversing
through different edges in the topological map, which describes the factory floor.

5.5.2 Using semantics for knowledge sharing
Semantic relationships are built in this work to form semantic sentences in order to
fetch the values of travel times with the inherent contextual information. This concept
is illustrated in Figure 5.5.

From the above example, a semantic sentence can be derived as
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Figure 5.5: An example of semantic relationship in MRS
• Cost from node Na to node Nb is Xa,b at time instance k

where, k is the instance of estimation. Na and Nb refer to specific nodes, travel time
Xa,b refer to specific kind of cost. Cost refer to specific kind of utility expenditure
while performing the task. Thus, cost establishes the relationship between nodes Na

and Nb and travel time Xa,b. When the system knows the meaning of nodes, cost,
travel time, then the above sentence will convey some meaning to the system. This
is precisely the method of developing semantics in the MRS in order to convey the
contextual meaning instilled in travel time to the L level controller.

5.5.3 Ontology to represent semantics
The most traditional, flexible and useful method of representing knowledge using
semantics is expressions based on subject, predicate and object logic [65]. Positioning
the obtained knowledge is the next progressive step which is defined in philosophical
terms as ontology. Ontology helps to create order and define relationships among
things useful to an application. A domain specific ontology is developed in this work
to efficiently store, access and communicate meaningful semantics across all the MRs
in the system regarding the real-time travel costs of edges.

There are significant advantages of implementing ontology for the already men-
tioned application of this work.

• Conceptualization of information: An ontology is defined explicitly to form
a specification for a shared conceptualization of a pool of knowledge [74], [38],
[66]. Ontologies define the concepts of the domain formally and explicitly mak-
ing further modifications or reversals less cumbersome.
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• Data representation: Ontology is based on dynamic data representation
where a new instance definition is not constrained to a definite rule. Thus
adding new elements is easy and fast as and when required. This virtue of
ontology is essentially beneficial to share the knowledge of travel time in MRS.
The number of travel time grows with the increase of operation time. Moreover,
reasoners in ontology solve the problem of data parity, integrity and adhering to
constraints. When a new element is added to an ontology, the reasoner performs
to check the integrity of the information. This capability of ontology makes the
knowledge sharing method in the MRS flexible yet robust. Data addition in
MRS is not required to be done on all instances and when it is added the rea-
soner checks for data integrity and new information can be added smoothly
without adhering to rules, previously defined.

• Modeling technique: Ontology possesses the capability to express semantic
concepts. In case of MRS, conveying the contextual information inherent to any
cost parameter like travel time requires this semantic expressiveness than just
defining or extracting data. Moreover, the pool of knowledge gathered in the
MRS through travel time or similar parameters need to be reused which is only
possible through the descriptive logic models of ontology.

In nutshell, ontology provide an unrestricted framework to represent a machine
readable reality, which assumes that information can be explicitly defined, shared,
reused or distributed. Moreover, information can also be interchanged and used to
make deductions or queries. Such representation is imperative for representing the
travel time for reasons described above.

5.5.4 Application of ontology
Semantics is an efficient way to communicate enough meaning which can actuate some
action. The focus on representing semantic data is through entities. Semantic models
are property oriented and semantic entities are members of a class. Semantic classes
are defined on properties, it is also possible to define classes in terms of value of a
property. A property type is object property when it signifies some abstract property
like character, contribution, virtue et cetera. A property type is a data property when
it signifies some literal value. On the other hand, classes can have any of the type
of properties. The subclasses are defined which can avail all the properties of the
superclass. The properties have range and domain. Range is the source type of a
property, while domain is the destination type of the property.

Based on these concepts, the ontology stores and shares the knowledge of travel
time (Figure 5.6). An ontology is developed to be implemented in each MR for their
storing and sharing. The ontology is developed using Protégé, available from Stanford
University, USA [58]. The ontology has two types of classes (owl:Class), NS:Edge
and NS:Node, as shown in Figure 5.6. Thus, NS:Edge and NS:Node are subclasses
of owl:Class. There are two properties a class can possess, owl:ObjectProperty
and owl:DatatypeProperty. NS:Origin and NS:Destination are of types of
owl:ObjectProperty, while NS:tt, timeStamped are of types of owl:DatatypeProperty.
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Figure 5.6: Ontology
The range of NS:Origin is subclass NS:Node, being the source type of a prop-

erty, while domain is NS:Edge being the destination type of the property. Similarly,
the range of NS:Destination is subclass NS:Node, being the source type of a prop-
erty, while domain is NS:Edge being the destination type of the property. On the
other hand, the range of NS:tt is a float, being the source type of a property, while
domain is NS:Edge being the destination type of the property. Similar is the case
for timeStamped. The tupled relationships are formed by using these domain and
range connections. For example, let mth edge be between nodes ng and nh. X(k)
for mth edge at k can be formed as NS:tt value at timeStamped value k for the
mth individual of subclass NS:Edge whose NS:Origin is individual ng of subclass
NS:Node and NS:Destination is individual nh of subclass NS:Node. This seman-
tic sentence can be disintegrated into several subject, predicate and object logic to
derive the necessary X(k). For example,

• individual mth edge is of type NS:Edge

• individual ng is of type NS:Node

• individual nh is of type NS:Node

• mth edge has NS:Origin ng

• mth edge has NS:Destination nh

• mth edge has NS:tt X(k)

• mth edge has timeStamped k
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This way the owl:ObjectProperty and owl:DatatypeProperty of the subclass
NS:Edge provides the X(k) for the mth edge. Also, the X(k) gets a context about
its edge (between a pair of nodes) and time stamp. The advantage of this ontology lies
in this formation, as discussed in previous Section 5.5.3, where any new element can
be inserted through these property formations without being restrained semantically.

The structure illustrated in Figure 5.6 shows the formation of ontology which is
replicated in each robot in the MRS. After developing the ontology in Protégé, it is
manipulated in python to accessed for storing and sharing using RdfLib, a python
library for ontology. With the use of ontology, travel time Xk can be efficiently stored
annotated with a pair of nodes demarcating the edge and the time stamp of traversing
it. This process can be accomplished using the modules of RdfLib. Also, when the
information of travel cost for any edge for any time instance is required by any MR,
Xk for that edge at the required time stamp can be retrieved from ontology of other
MRs. The SPARQL query generator can be used to access relevant travel times using
the modules of RdfLib.

The shared information from other MRs can provide as observation or historical
data for those edges which either have not been yet travelled or have been travelled
long back. This helps in achieving accurate estimates of Xk of these edges.

For example, in Figure 5.4, when A2 requires to estimate Xk for edges through
the marked zone (marked by dotted line), the historical observation data of Xk in
that zone can be obtained from the ontology of A1 whi h as traversed those edges
in previous or nearly previous instance. The estimated values at current instance
become more accurate using Xk of the same edges by A1 at previous instances.

This information can be sought by the L1 level behaviors in any MR to other L1
level behaviors in other MRs. Thus, this ontology fulfills the mechanism of knowledge
sharing inside the L level behaviors. A co-operative approach in achieved through
this knowledge sharing for better cost efficient decisions in each MR, which in turn
enhances the cost efficiency of the MRS.

5.6 Retrieval of travel time and using in estimation
The sharing of travel time to all MRs is implemented through ontology in each of
them to generate better estimate of travel time among all (Section 5.1). This section
describes the methodology of using travel time of others in the estimation process of
an MR.

The travel time of an MR is modelled using bi-linear state dependent time series
[62], which is described in Section 4.7.1 in Chapter 4. This is again produced here
for convenience. The bi-linear model, provided in equation 4.13, is used to model the
change of travel costs depending upon all the previous travel costs.

Xk + a1Xk−1 + .....+ ajXk−j (5.11)
= ξk + b1ξk−1 + ...+ blξk−l

+
∑∑

crzξ(k − r)Xk−z

The model described in equation 5.11 is a special case of the general class of non-linear
models called state dependent model (SDM) [62]. In equation 5.11, Xk denotes the
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edge travel cost at k and ξ at k denotes the inherent variation of the edge travel cost.
In equation 5.11, Xk depends on all the previous values of X and ξ, whose number is
provided by the variables j and l. However, a fixed number of previous values of X
and ξ is used for estimation of current X like an window which moves with increase
of time. This fixed size of this window is termed as regression number and it is chosen
as a design parameter, designated by j and l. The double summation factor over X
and ξ in equation 5.11 provides the nonlinear variation of X due to state of batteries
and changes in environment.

The state space form of the bi-linear model is given in equation 5.12 and equa-
tion 5.13.

s(k) = F (s(k − 1))s(k − 1) + V ξk +Gωk−1 (5.12)
Y (k) = Hs(k) + ξk + ηk (5.13)

The equation 5.12 is the state equation which provides the next state from the current
state. In equation 5.12, the state vector s(k) is of the form (1, ξk−l+1, ...., ξk,
Xk−j+1, ......, Xk)

T . The state vector contains the edge costs obtained progressively
over time from Xk−j+1 to Xk. The variable ξ provides values of innovation or evolu-
tion of edge costs over the time as the exploration proceeds. Here, j denote number
of previous edge costs to be included in the state vector among all edges included in
the path till kth instance. Also, l denotes the number of previous evolution values of
these edges. The ξ values are specific for each MR and originate from the changes
in travel time of the particular MR. The values of ξ are obtained by sampling using
the observation data of travel time. This observation data is obtained for the static
online estimation of travel time (Section 4.6.1 in Chapter 4). The ξ values obtained
through this method represents the projection of change of travel time. Though, these
sampling method does not produce the perfect data to represent the change of travel
time, this is suitable to this simple case where cost factor of one task is considered.
This method should be improved for the case where cost factors of two or more tasks
are to be considered.

The matrices of equation 5.12 are F , V and G which are explained in the following.

F =



1 0 0 . . . 0
... 0 0 . . . 0 0

0 0 1 . . . 0
... 0 0 . . . 0 0

0 0 0 . . . 1
... 0 0 . . . 0 0

0 0 0 . . . 0
... 0 0 . . . 0 0

...
...

... . . .
...

...
...

... . . .
...

...

0 0 0 . . . 0
... 0 1 . . . 0 0

0 0 0 . . . 0
... 0 0 1 . . . 0

0 0 0 . . . 0
... 0 0 0 . . . 1

µ ψl ψl−1 . . . ψ1

...− ϕk − ϕk−1 · · · − ϕ1


The number of rows of F depends on the number of regression_no and given by
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(2*regression_no + 1). The matrix F contains many new terms like ψ , ϕ , µ. The
ψ terms are denoted as in equation 5.14

ψl = bl +
l∑

i=1

cliX(k − i) (5.14)

All the ϕ terms in F are constants. The term µ is the average value of X till kth
instance. Thus, the state transition matrix F depends on the travel times of the
previously traversed edges. Also, the matrix V is denoted as

V =
[
0 0 0 . . . 1

... 0 0 . . . 1

]
The number of rows of V is again given by (2*regression_no + 1). The equa-

tion 5.13 is the observation equation which forms the observation for the current
instance. The matrix in equation 5.13 is H which is described as

H =
[
0 0 0 . . . 0

... 0 0 . . . 1

]
The observation is formed by multiplying the H matrix with the state vector s and

added with the innovation at the current instance. In equation 5.13, s(k-1) denotes
the state vector at current instance. Here, s(k) is of the form (1, ξk−l+1, ...., ξk,
Xk−j+1, ......, Xk)

T . The X values in this vector are the travel times obtained for the
edges which are already explored and included in the path. But, the observation for
travel time of the current edge is not available. Thus, the travel times of the required
edge at same instance are gathered from other MRs. In order to gather this data,
the relevant edge costs are queried in the ontology of other MRs. Then after retrieval
of the data they are filled in the position of Xk in s(k) in the equation 5.13. The
equation 5.13 have ξ which corresponds to the innovation or change of travel time.
Thus, this factor plays the role of projecting the travel time of the particular MR at
some particular instance. In equation 5.12, this factor contributes not only to the
formation of state but also forms the state equation to predict the next state. In
equation 5.13, this ξk is added to the product of H and s(k) to form observation. The
product of H and s(k) is Xk. The addition of Xk, ξk and noise term ηk produces
the observation Y (k). In this way, the travel time of other MRs are used in the
model for estimation of travel time. The estimation is done by Kalman filtering. The
equations obtained after applying Kalman filtering this bi-linear model are explained
in Section 4.7.1 in Chapter 4. The same process is continued to obtain the travel time
of relevant edges.

This travel times are used as the edge weights to decide the path using Dijkstra’s
algorithm. This whole process is summarized in Algorithm 2.

5.7 Experiments and results
The experimentation platform is briefly described in this section to provide elaborate
explanation of the experiment. A scaled down prototype MRS for automated logistics
is developed based on the decentralized controller explained in Section 5.2.1.
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Algorithm 2: Dijkstra’s algorithm using dynamic estimation of travel time
Initialise_Single_Source (V,E, s)
Input : V -list of nodes, E-list of edges, s-source node
Output: d[v]-attribute for each each node, π[v]-predecessor of each node
for each xi ∈ V do

π[xi] = infinity
d[xi] = NIL

end
d[s] = 0
Main (V,E,w, s)
Input : V -list of nodes, E-list of edges, w-edge weight matrix, s-source node
Output: π[v]-predecessor of each node
P := NIL
Q := V
j := 0
while Q! =0 do

j = j+1 u := Extract min (Q)
P := P

∪
u

for each v ∈ Adj[u] do
w = findTravelT ime(u,v, j)
relax(u,v,w)

end
end
findTravelTime (u, v, j)
Input : u-current node, v- neighbor node, j-instance
Output: w- estimated travel_time (cost) from u to v
prevx := findTT inOtherMR(u, v, j)
w = estimateKF (prevx,j,X)
findTTinOtherMR (u, v, j)
Input : u-current node, v- neighbor node, j-instance
Output: obsTT -list of travel time between u and v by other MRs
Search for travel time at j in ontology of other MRs
estimateKF (prevx, s, j)
Input : prevX -previous travel time, s-state vector, j-instance for estimation
Output: Xj-travel cost at current j for current edge
Apply Kalman filtering to find sj and return Xj

Relax (u, v, w)
Input : u-current node, v- neighbor node, w- estimated travel_time (cost)

from u to v
Output: d[v]-attribute for each each node, π[v]-predecessor of each node
if d[v] > d[u] + w(u, v) then

d[v] = d[u] + w(u, v)
π[v] = u

end
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Figure 5.7: Environment of MRS

Figure 5.8: Three representative maps
An environment has been developed using uniform sized boxes as shown in Fig-

ure 5.7 for the robots to work, doing single task at a time and is named as single-task
robot. The boxes create a closed labyrinth path to navigate. Also designated ports
are marked on the boxes. The floor is described in three different topological maps.
These maps are provided in Figure 5.8.

The control structure is same in each MR which consists of two layers of sub-
sumption structure (Section 5.2.1). The lowest L0.0 level is implemented in the body
of each MR inside the beagle board which forms the main processor of each robot.
The middle L0.1 level and L1 are implemented in desktop PCs where each level is
separated for each MR. There are four MRs functioning simultaneously in the MRS
using their respective controllers. The MRs carry out the task of pick-up or drop and
carrying materials between different pair of ports. The L1 level controller in each
MR is responsible for planning decisions to make them reach designated ports. The
optimal path between different pair of ports is found out using Dijsktra’s algorithm.
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5.7.1 Experiment -I
The MRs are made to traverse repeatedly between different pairs of nodes. The pairs
are designated previously from a list in order to suit the carriage necessity. This
experiment conducts path planning simultaneously in four MRs for 100 repetitions
using Dijkstra’s algorithm. Dijkstra’s algorithm Xk as weight of an edge at every step
of forming the path (Section 5.6). Xk is estimated on real-time by Kalman Filtering
at required k in each MR using the bi-linear state space model. It was stated in
Section 5.6 that online estimation of Xk requires observation of the same at k-1. In
this experiment, these observations are gathered from the beginning of first decision
making and are used in subsequent calls for estimation. But, an MR may need to
estimate the travel time of one or more edge which it did not traverse previously or
has traversed long back. In this case, the observation of Xk for the concerned edge
is not available. In this experiment, observation of Xk for the concerned edge at k-1
could not be obtained always and thus the available observation for the concerned
edge is used. Thus, Xks are estimated solely based on the historical observation of
the concerned MR. Thus, no ontology and sharing of travel time is involved to obtain
observation. Dijkstra’s algorithm uses the estimated Xks for each edge. Then it
chooses the predecessor node of the current node, from which arrival to current node
becomes least cost consuming. This way the optimal path is formed using Xk. This
experiment is designated as finding paths without sharing travel times. The paths and
their total path costs obtained through this experiment are shown in Section 5.7.3.

5.7.2 Experiment -II
In this experiment, ontological data sharing is incorporated. The route computation
between different pairs of node are done similarly as in Experiment I in Section 5.7.1,
using online estimated values of Xk as weight of edge.

Online estimation of Xk at k requires observation of the same at (k-1). In both
Experiment I and Experiment II, these observations are gathered from the beginning
of first decision making and are used in subsequent calls for path planning. However,
when an MR needs to estimate the travel time of one or more edge(s) which it did
not traverse previously, the available observation of X for the concerned edge is at
some previous instance which may not be (k-1) or close to that in many cases. These
observations of distant past are used in experiment I for estimating Xk at k. Thus,
this will generate less accurate estimates.

This is mitigated in this experiment II by sharing the observation value from other
MR who has travelled that edge in nearly previous instance. This way the observation
of X for the concerned edge at (k-1) or close will be available during estimation at
k. This observation retrieval procedure is explained in Section 5.6. The knowledge
sharing contributes to estimate the travel cost for an unexplored edge at current
instance in an MR. The L1 layer in the controller of each robot can ask the L1 level
of other neighboring robots for observation values of Xk whenever required. Xks are
estimated for the necessary edges using observations either from the own MR or from
neighbors.

On the other hand, estimatedXk values of the relevant edges are used by Dijsktra’s
algorithm as weights of edges. These estimates are the main instrument at every
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step of deciding the predecessor to the current node. Dijsktra’s algorithm makes a
node predecessor to current, when weight or cost from the former to later becomes
minimum. Thus, accurate estimated value of Xk plays a vital role in deciding the
predecessor to current node, in turn deciding the path. More accurate estimates
contributes to generate paths with less total cost. Optimal paths are obtained with
(experiment II) and without (experiment I) sharing the Xk values. These paths are
compared in Section 5.7.3.

5.7.3 Results
5.7.4 Analysis of path costs
This section illustrates the comparison of paths and their costs obtained with and
without sharing the travel times in the MRS. The path planning is done for 100
repetitions while increasing the regressionno from 4 to 7. Figure 5.9 illustrates

Figure 5.9: Average of total path costs

average total path costs of 100 paths obtained in both Experiment I and Experiment II
in four MRs operating in all three maps (Figure 5.8). The average path costs of 100
paths obtained by sharing (Experiment II) and not sharing (Experiment I) travel
times are plotted for each regression, namely Reg4, Reg5, Reg6 and Reg7.

For each regression in Map 1, the average of path costs obtained through collective
intelligence are 40% less than the average of path costs obtained without it. For
each MR, the average of total path costs is almost same or vary in small margin
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with the increase of regression number. The reason of this is the lack of variation
in environmental conditions. The travel times are varying on battery condition and
floor. No other factor for affecting travel time could be incorporated in the laboratory
set-up.

On the other hand, the save of total path costs are same for all MRs in a single
map. This signifies that paths found through collective intelligence in each MR is 40%
more cost efficient than the paths obtained without it. Thus, collective intelligence
using travel time can affect to find more cost efficient paths in MRS. The average path
costs decrease in case of Experiment II as through collective intelligence more relevant
observation of travel times are obtained in each MR. These values are instrumental for
obtaining more accurate estimates of travel time. As a matter of fact, more accurate
estimated values result in more optimal path with less cost than in that of obtained
in Experiment I. Few examples of these paths are discussed in the next section.

Moreover, the save on total path costs is consistent in all the maps. Thus, the
travel time is estimated better due to sharing of travel times from other MRs and
this is true for all the representative structures of the floor. This signifies that more
accurate estimation is possible through collective intelligence and this is independent
of the structure of the floor.

5.7.5 Analysis of obtained paths
This section illustrates few paths obtained in Experiment I and Experiment II under
the same condition of regression no and MR. Figure 5.10 plots two paths, PA and PB

Figure 5.10: Paths found by MR 2 in Map 2

obtained in Map 1 for MR 1. PA and PB both have same source and destination.
PA is obtained in Experiment I in the third iteration of path planning, while PB is
obtained in Experiment II at the same iteration. Thus, they are both obtained at the
same battery level and in the same map. Still, both the paths are different and have
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different total path cost. Similar to Section4.3.1 in Chapter4, Pc denotes the cost of a
path. PcA and PcB denote cost of PA and PB of Figure 5.10 respectively. The results
show PcA = 66.5326 and PcB = 39.5385. Thus,

PcB < PcA by 40%

Figure 5.11 plots two paths, PC and PD obtained in Map 2 for MR 2. PC and

Figure 5.11: Paths found by MR 2 in Map 2

PD both have same source and destination. PC is obtained in Experiment I in the
third iteration of path planning, while PD is obtained in Experiment II at the same
iteration. Thus, they are both obtained at the same battery level and in the same
map. Still, both the paths are different and have different total path cost. Similar to
Section4.3.1 in Chapter4, Pc denotes the cost of a path. PcC and PcD denote cost of
PC and PD of Figure 5.10 respectively. The results show PcC = 58.0729 and PcD =
33.5707. Thus,

PcD < PcC by 42%

From these two comparisons, it is evident that after sharing the travel times among
the MRs, the path obtained in each MR have improved and are of less cost than that
obtained without the sharing.

5.8 Summary
The collective intelligence have been implemented in MRS with the goal to increase
the cost efficiency of planning decisions in each MR. In previous chapter, it was
shown that the decisions in route planning result in less cost path when estimated
travel times are considered as cost or weights of edges. However, this estimation lacks
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observation data from history for some instances of estimation. This occurs when
the robot has no past experience of an edge or the experience is done quite early
which seems irrelevant in the current instance of estimation. In order to mitigate
this, four levels of collective intelligence is implemented in MRS through which this
gap in observation data is filled and new knowledge for the MRS is created. The
observation values of one MR is shared to others to help in the estimation of their
travel times. The travel times of one MR reflects the state of the battery and the
floor condition of the edge. These information produces the time a robot takes to
traverse the edge. In this context, traversing the edge becomes the behavior of the
robot. The travel time quantitatively produce the behavior of the robot to traverse
the edge. This behavior of one robot is used to predict or estimate the behavior of
other robots in the same condition. This technique is called behavior forecasting and
is commonly used in econometric for behavior forecasting for human.

The travel times from other MRs contribute to produce more accurate estimate
for one MR. Thus, estimated values are improved when collective intelligence is im-
plemented. The mathematical proof of implementing collective intelligence is also
derived to show that collective intelligence is functional and fruitful in the MRS. As
a result of collective intelligence, the estimates are improved in accuracy and paths
with less cost are found as optimal ones.
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Chapter 6

Conclusions

6.1 Importance of travel time
The new method to compute cost parameter to be used in transportation and au-
tomation industry is proposed. With this new method, parameters now reflect the
states of individual robots, their batteries and their environment. They usually arise
locally at the robots as a result of performances of task. It is interesting to mention
here that route planning is done in Tesla’s new X 75D model cars according to bat-
tery need. The route planner proposes breaks of variable times to enable recharging
while travellers enjoy recess in driving. Thus, states of battery and environment are
considered for optimal route planning in these models.

In context of automated logistics, the floor is designed in the form of a topology
map. The robot carry out the task of traversing paths in the floor to different spots
or ports. The travel time taken to traverse an edge in the map is identified as the key
parameter. The experiments show that travel time varies with state of batteries and
floor. Thus, travel time can reflect the condition of floor and batteries.

In case of planning, the current state of robots and environment plays crucial role.
The usual practice is to decide path using Euclidean distance and a path is considered
optimal with optimal length or distance. Many industries (like BlueBotics [11]) use
topology maps to describe the floor and employs a depth-first search to generates a
length-optimal path. However, the true cost of traversing a path is not accounted
in this case. The cost involved in traversing the path is generated from condition of
floor, state of batteries, mechanical parts of robots. It is intuitive that an edge of
same length will incur more cost in a rough floor than in smooth one. Thus, travel
time is a better tool to decide a path than heuristics based on Euclidean distance.

6.2 Online estimation of travel time
The necessity of estimating the travel times originates from the fact that they reflect
realistic conditions of robots or environment or both and as the conditions in the
MRS are varying over time these factors should be instilled in decisions of planning.
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Hence, the decisions for task allocation, navigation and movement can eventually
lead to decrease of overall cost of performing the tasks. We have conducted the
experiments to evaluates different estimating methods and Kalman filtering proves to
be the best method for estimating the proposed cost parameters. Also, comparison of
travel times with heuristics ones shows that the former differ enough from the latter,
which is based on euclidean distance to affect in the path planning.

6.3 Using travel time to generate paths
We have modified the Dijkstra’s algorithm to incorporate travel time as edge costs in
route planning to generate better optimized paths with minimal cost. We presented
a scaled platform prototyped and developed in our laboratory with analogy to real
industry scenarios for identifying travel times. We develop representative topology
map to describe the floor and arrange similar situations as real industry. The pro-
posed travel time as cost parameters are timed linked to each arc of the map. In
this way environmental factors are instilled so as to determine true cost of traversing
edges. In state of the art, environmental factors based costs are modeled as Gaussian
process regression from already obtained finite measured data in [67], but it does not
include time-varying changes in batteries and environment. On the other hand, sam-
pling based heuristic path planning [18, 52] requires to explore a significant portion of
the graph to find a suitable path, which is computationally expensive. Nevertheless,
in this work, the cost of traversing every edge is estimated, which facilitates to ap-
ply deterministic path planning algorithms like Dijkstra’s algorithm, Bellmont-Ford
algorithm et cetera. The focus of our work is not proposing a new path planning
method for autonomous vehicles, rather we use path planning as an example to show
the efficacy of cost parameters on decisions required for planning and coordination.

In our work, travel times are estimated online in two ways, once statically and
second dynamically. In static estimation, the change or exploration of travel time
through the progress of time is not considered and travel time is estimated using
a linear state space model. In this case, the observation data are collected offline.
This estimation is done to test whether the online estimation is possible to take place
along with the planning algorithm, though this process involves the cumbersome and
impractical process of collecting data. The dynamic estimation is done to mitigate
this problem. The travel time is modeled using bi-linear state dependent modeling
techniques to include the variation in travel time due to progress of time. In this
process, the observations for travel time are collected during the path planning. Dur-
ing the first few iterations of path planning, the travel time of an edge is estimated
using available observation for it from few legacy data and when the robot actually
traverses the path, the observation is gathered. Thus, the model gradually learns the
observation to be used in future.

These online estimated values, both static and dynamic, are used as weights of
edges to compute path using Dijkstra’s algorithm. The paths in the latter cases are
better and realistic as they use real estimated costs.

There are works in state of the art which consider environmental factor dependent
real costs to obtain optimal path. The results of our work cannot be compared with
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the results of these works as these state of the art works propose a new method of
path planning. We consider one kind of cost parameter like travel time to be used to
decision making like path planning. In our results, we show that incorporating real
and estimated travel time as edge weights in Dijkstra’s algorithm does not disrupt
it’s basic functionality. We do not generate a new path planning method based
on environmental costs to produce optimal path. Hence, we do not use sampling
based or multi-agent system based path planners on elaborate and computationally
expensive grid maps and cost functions. Rather, we introduce a general purpose
concept of cost parameters to be used for automatic decision making. The type of
cost parameters depends on the application. The cost parameters depend on time,
energy and reliability or quality of the autonomous vehicles and these are derived from
different environmental factors. This can be complimentary to the usual navigation
method done in industry (like BlueBotics) where toplogy map is used and paths are
computed using deterministic algorithms based on euclidean costs. This method can
be improved just by deviating the costs from heuristics to travel time, keeping the
original arrangement same. This will not only help to generate better minimal paths,
but also reduce the overhead cost of implementing a new system.

6.4 Support of all MRs to everyone through collec-
tive intelligence

In this work, the decision making of each robot is based solely on the travel costs of
its own. In the dynamic estimation process, there are possibilities of not being able
to learn observation of few edges due to lack of experience. Also, the observation
gathered for a particular edge is too old to be relevant at the current instance of
estimation. To address this, the collective intelligence is incorporated to be able to
share data of travel time from one MR to others. This enables the MR to generate
more accurate estimation for travel times.

6.5 Future directions
Also, cost parameters can be found out in any process and its kind depends on the
task to be performed. Thus, it can implemented in any decision-making process, other
than path planning, for coordination and control, not only in automated logistics but
also other automatic processes.

In most cases, path planning for autonomous robots are solved considering both
static and dynamic environment, separately. Also, there are approaches solving path
planning considering unknown dynamic environment. But, environment for internal
transportation in automated logistics and warehouse facilities are static. Moreover,
we propose cost parameters as a general concept to be used for planning to achieve
increased cost efficiency in case of autonomous robots and we consider path planning
as a specific planning and coordination problem. So, we do not consider unknown and
dynamic environment in this work. Nevertheless, there are scope for further research
to investigate the behavior of cost parameters in case of planning and coordination

77



problems in unknown and dynamic environment.
In our current work, a single task is considered for each MR. Here, ’single task’

means traversing edges over and over again. However, in real industrial scenario, each
AGV is capable of performing multiple tasks. Hence, in the future investigations,
travel times are to be considered in two-task robots where two different tasks will be
interleaved with one another. The nature of these cost parameters will change for
each MR.
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Appendix A

Implementation of decentralized
control

A.1 Implementation
The control technique [14],[15], described in previous section, is achieved using behav-
iors as the building block of both decision-making level (L1 level) and action execution
level (L0 level). Separate sets of behaviors are designed for two layers as illustrated
in Figure A.1, which is based on the control framework proposed by R. Brooks in
[12]. The hierarchical control framework has three behavioral levels and each level
has an objective and a corresponding output, formed as commands or replies. More-
over, the process of execution of all levels start simultaneously. However, the output
in the form of commands from the highest level (L1) need to pass on to the next
priority level (L0.1) for it to start execution, and similar process is followed in L0.0
level. This happens because of the hierarchical framework and the command from
the highest-priority behavioral level is required as input to process the low-priority
behavioral level. On the other hand, the replies from the lower level act as a feed
back to the control rules of the higher level which determines the final decision and
output of the control framework.

The general design of an MR is considered in the prototype system which consists
of servo-motors to rotate wheels and camera. The sensing is conducted with infra-red
sensors and camera. The beagle-bone forms the processor for the robot. Each MR in
the system is autonomous with its own three level of behavioral control framework.
The following are the behaviors developed in each level.

• In L0.0 level, actuation behaviors are developed. This behavior conducts the
starting of motors for wheel rotation, camera movements and infra-red sensor
movements. The commands which refer to target poses are obtained from L0.1
level in this behavior using extended finite state machines to conduct the move-
ment of the individual robots. The sensor readings are transferred to L0.1 for
processing as feedback of commands.

• In L0.1 level, three behaviors are developed. They are generating target poses
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Figure A.1: Behaviors for the layers of control
from high level commands like destination port, finding obstacle and obstacle
avoidance, processing sensor data to be used in planning and decision in L1.
All these behaviors are developed using extended finite state machine.

• In L1 level, decision making behaviors are developed which are finding paths and
assigning tasks. These behaviors are developed using extended finite stacked-
state machine. Also, behavior of maintaining and sharing the knowledge of
travel time is developed. More details about the sharing mechanism is provided
in next sections.
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