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ABSTRACT 

Chitosan is very efficient at removing metal ions, and especially precious metals. Sorption kinetics 

can be improved by the preparation of chitosan gel beads, using a coagulation procedure. However, 

this process leads to the formation of beads containing very high water yields, which prevent 

chitosan from being an economically competitive sorbent for large scale industrial applications, for 

reasons linked to transport costs and handling. The air-drying of chitosan gel beads resulted in a 

decrease in the sorption rate, while the sorption performance at equilibrium was not influenced by 

the drying step. The influence of re-hydration was examined. The drying of beads saturated with 

saccharose was considered a simple alternative treatment, to prevent the restriction of the polymer 

network and improve sorption rate. The influence of these different treatments on both sorption 

kinetics and sorption isotherms was studied for the recovery of platinum and palladium from dilute 

solutions. 
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INTRODUCTION 

 

The increasing industrial demand for precious metals due to their use in catalysis has focused 

research on the development of processes for their recovery from dilute solutions, spent catalysts 

and waste materials (1). Solvent extraction, solvent-impregnated resin, and chelating resin systems 

have been developed for these applications (2-5). However, there is still a need to develop 

alternative sorbents specifically oriented towards the treatment of low-concentration solutions. 

Biosorption has been proposed as an alternative route to recover metal ions from dilute solutions 

and recently some studies have been focused on the sorption of strategic metals using fungal 

biomass (6), or biopolymers (7-9). Chitosan has proved very efficient at removing metal ions and 

especially precious metals (10-11). Chitosan is extracted by deacetylation of chitin, one of the most 

abundant biopolymers. This polymer is characterized by a high content of free amine groups, which 

are responsible for the sorption of metal ions through different mechanisms including chelation of 

metal cations at near neutral pH (12), and ion exchange of metal anions in acid solution (13). 

Indeed, chitosan is a unique material among natural polymers, in acid solution, it is protonated: the 

pKa of chitosan depends on the degree of deacetylation, but it tends towards 6.5 in the 80-90 % 

deacetylation range (14). Metal anions can be adsorbed by ion exchange of counter anions in the 

vicinity of protonated amine groups (15-16). Chitosan is soluble in acid solution, except in sulfuric 

acid solutions. Due to the competitor effect of sulfate and changes in the speciation of metal anions, 

sorption capacities are greatly reduced when treating sulfuric acid solutions (by one order of 

magnitude). For the treatment of hydrochloric acid solutions, it is necessary to reinforce the stability 

of the biopolymer using a cross-linking procedure. Several processes have been proposed for the 

cross-linking of chitosan, but the easiest and cheapest way consists in the Schiff base reaction 



between the aldehyde function of glutaraldehyde (the cross-linking agent) and the amine group of 

chitosan (17). This reaction results in the formation of imine linkages between glutaraldehyde and 

chitosan. These new linkages prevent the hydrolysis of the polymer and increase its stability. 

However, it also results in a decrease in the proportion of free amine groups available for metal 

sorption, and a reduction in the accessibility to internal sites (18). Chitosan is also characterized by 

weak diffusion properties: long contact times are required to reach equilibrium. Sorption capacity 

can be controlled by sorbent particle size (19), especially in the case of the cross-linked material 

(18). However the effect of diffusion properties can be diminished using chitosan gel beads. This 

procedure leads to both an expansion of the polymer network and a decrease in the residual 

crystallinity of the material. Chitosan gel beads can be obtained by a two-step procedure consisting 

in the dissolving the chitosan in acetic acid solution and adding the resulting viscous solution drop-

wise into an alkaline coagulating solution (NaOH, 1-2.5 M) (13,17,20). The main problem for a 

large-scale application using chitosan gel beads is the high water content of the beads (about 94-96 

%), which makes the transport, handling and scaling up of the process economically non-

competitive. 

Optimum sorption of platinum and palladium (in their chloro-complex forms) occurs at pH 2, in the 

presence of selected amounts of chloride anions to form hexachloroplatinate and 

tetrachloropalladate anionic species, which are highly adsorbable on protonated amine groups. 

This work investigated the influence of the drying process on sorption performance (sorption 

isotherms and uptake kinetics). Previous studies have been carried out on the freeze-drying of 

chitosan gel beads (17,21), however this process is expensive for the production of large amounts of 

sorbent, for this reason the study focused on a simple drying process (oven-drying at 60 °C). The 

influences of the re-hydration of the beads and the absorption of saccharose (before drying) were 

studied. Saturating the beads with saccharose was expected to maintain the porous structure of the 

polymer and prevent the collapse of the polymer network. The study also examined the influence of 

bead size and metal concentration on sorption kinetics and isotherms. 



MATERIAL AND METHODS 

 

Material 

Chitosan was supplied by Aber technologie (France) as a flaked material, with a deacetylation 

percentage ca. 87 %, defined by FTIR spectrometry. The mean molecular weight was measured at 

125,000 g mol-1, using a size exclusion chromatography (SEC) method coupled with a differential 

refractometer and a multi-angle light scattering photometer. The moisture content of the chitosan 

was determined at ca. 10 %. 

 

PdCl2, H2PtCl6 were supplied by Chem Pur (Germany), other reagents (Glutaraldehyde (50 % w/w 

in water), saccharose, NaOH, HCl, acetic acid) were purchased from Fluka AG (Switzerland). 

 

Chitosan Gel Bead Preparation 

The procedure for the fabrication of gel beads has been described in previous papers (13,17,20). It 

consisted in a two-step procedure: chitosan flakes were ground and dissolved in acetic acid solution 

(a small of excess of acetic acid was used in order to entirely protonate the amine groups and 

decrease the viscosity of the solution). The viscous solution was then pumped and distributed drop-

wise through a thin nozzle (diameter 0.6 mm) into an alkaline solution (NaOH 2.5 M). In order to 

control the size of particle beads it was possible to inject an airflow, at a controlled flow rate, in an 

appropriate system (made up of a concentric tube around the nozzle to drive air flow towards its 

base. The airflow made the chitosan drops fall down sooner than they would have fallen by their 

own weight. Three different sizes of beads were prepared, referred to as small (S), middle (M) and 

large (L). The chitosan drops coagulated in the alkaline solution and gave perfect spherical beads, 

whose diameter was measured. After 24 hours of contact with the alkaline solution, beads were 

removed and rinsed several times with de-mineralized water till the pH did not vary. Two chitosan 

concentrations were tested, corresponding to w/w proportions of 4 % (referred to as M4, middle 



size, 4% w/w chitosan concentration) and 6 % (referred to as M6, middle size, 6 % w/w chitosan 

concentration).  

The cross-linking was performed by mixing for 16 hours the appropriate amount of chitosan beads 

(calculated using the dry weight) with an aqueous solution of glutaraldehyde at an equimolar 

concentration (compared to the number of free amine groups in chitosan). The beads were then 

rinsed several times with water to remove unreacted glutaraldehyde. At each stage of the 

fabrication, samples (100 or 250 beads, depending on the size of the beads) were collected and dried 

at 105 °C overnight, to compare water content and measure the weight of the bead for each 

fabrication procedure. The mean diameter of the beads was also determined for the final products. 

These measurements were performed in triplicate. The main characteristics of these beads are 

summarized in Table 1. 

 

Drying Procedure 

After cross-linking, the appropriate number of chitosan gel beads (raw chitosan gel beads, B, this 

reference material is also called M4 for beads of medium size with a chitosan content of 4 %) (for 

kinetics and for sorption isotherms) was dried at 60°C in an oven till their weight became constant. 

These samples were referred to as dried samples (DB). Dried samples were also re-hydrated in 

water for 2 days (appropriate number of beads for kinetics and sorption isotherm experiments). This 

sample was referred as re-hydrated chitosan beads (RB). Finally, another kind of sample was 

prepared: an appropriate number of cross-linked beads (10 g L-1, wet weight) was brought into 

contact with a concentrated saccharose solution (145 g L-1) for 30 minutes. The beads were then 

removed from the solution and dried in an oven at 60 °C till their weight was constant. Finally the 

beads were re-hydrated in water for 2 days and the saccharose was released. The beads were then 

used for sorption experiments, and referred to as saccharose samples (Sa). 

 

 



Sorption Procedure 

Previous experiments had shown hat the optimum pH for palladium and platinum sorption on 

chitosan derivatives was ca. pH 2. Consequently precious metal solutions were obtained by direct 

dilution of the salt in water and the pH was maintained at pH 2 with hydrochloric acid. The pH of 

the solutions did not vary significantly during the sorption (by less than 0.1 unit). 

 

For sorption isotherms, increasing known numbers of beads were brought into contact with a fixed 

volume of solution at a known concentration (ca. 20 or 50 mg Metal L-1) for four days. Filtrates 

were collected and analyzed using an inductively coupled plasma atomic emission spectrometer, 

ICP-AES JY 2000 (Jobin-Yvon, France). The metal content in the beads was calculated using the 

mass balance equation, and the sorption capacity was determined in function of the actual mass of 

chitosan in the sample: unless specified, the increase in weight resulting from glutaraldehyde cross-

linking was not taken into account. To take into account the total mass of the sorbent, the sorption 

capacity (on the basis of weight of chitosan) had to be multiplied by 0.68 for small beads and by 

0.73 for medium and large size beads (mg Metal g-1 sorbent). The number of beads used for these 

experiments was adjusted in order to maintain identical amounts of chitosan in each equivalent 

experiment. 

 

For the study of sorption kinetics a standard procedure was applied (13). One liter of solution at pH 

2 was mixed with a constant weight of chitosan (independently of glutaraldehyde cross-linking). 

Consequently, the number of beads was different for each experimental set, depending on chitosan 

concentration (M4 and M6), and chitosan particle size (S, M and L) (reported in Table 1). Unless 

specified, the standard initial metal concentration was 20 mg Metal L-1.  

 

 



RESULTS AND DISCUSSION 

 

Characterization of Chitosan Gel Beads 

Table 1 presents the main characteristics of chitosan beads. Despite an equimolar concentration of 

glutaraldehyde (compared to free amine content of chitosan beads), the cross-linking ratio was 

found to be 0.6, except for small beads for which the cross-linking ratio tended to 0.7 (calculated on 

the basis of weight increase). This indicates that the size of the beads influences the cross-linking 

procedure: small size increases the external surface while large size increases intraparticle diffusion 

resistance. Hsien and Rorrer have modeled glutaraldehyde cross-linking of chitosan using the 

shrinking core model (22). The progressive cross-linking of chitosan beads may lead to the 

formation of a heterogeneous material, in which glutaraldehyde diffusion into the particle may be 

restricted. Since glutaraldehyde is a bi-functional reagent, it can induce linkage with amine groups 

on both sides of the cross-linking molecule, but also single linkage, which leads to the presence of 

reducing ends that are responsible for the reduction of some metal ions (23). Moreover, Hsien and 

Rorrer (22) have highlighted the possibility of glutaraldehyde polymerizing in alkaline media (as 

can occur in beads when the rinsing step has not been sufficient to remove all the sodium hydroxide 

during the coagulation procedure). Consequently, it is difficult to establish an accurate cross-linking 

ratio for the different samples. However it is possible to see that the cross-linking is reproducible 

since the cross-linking ratio was almost constant for M, L and M6 samples. The actual chitosan 

percentage (also measured by dry weight) varied between 3.5 and 4 %. 

 

The drying of cross-linked chitosan beads led to a drastic decrease in the diameter of the particles: 

the final diameter was less than half the initial diameter. Based on the change in diameter, the 

volume of the bead was decreased by 91.6 %, which is comparable to water percentage in the beads 

(before drying): 96%. After re-hydration, the size of the beads was almost unchanged (below the 

level of significance). The drying of chitosan gel beads is irreversible. However, when the beads 



were saturated with saccharose prior to drying, after re-hydration, the final diameter was only 

reduced to 2.69 mm: a 20 % decrease in the diameter, while the volume of the beads was almost 

halved. 

Sorption Kinetics 

Influence of particle size and initial metal concentration 

Figures 1 and 2 show the sorption kinetics for Pd and Pt respectively: the fractional approach to 

equilibrium is plotted versus the square root of time. The fractional approach to equilibrium, FATE, 

is represented by q(t)/qeq, the ratio of the concentration in the sorbent at time t to the equilibrium 

concentration in the solid. Morris and Weber used the plot of q(t) versus the square root of time for 

the calculation of sorption rate in the case of processes that are controlled by intraparticle diffusion 

(24). The curves for large particles are largely linear, except for the initial contact period (within the 

first 30 minutes) and for long contact time (higher than 6 hours). The initial section is concave in 

form, which can be explained by several mechanisms, including the sorption kinetics being 

controlled by external film mass transfer, while the final section may be controlled by a dual rate 

control, i.e. intraparticle diffusion and exchange reaction rate. The slope of the linear part of the 

curve may be used to give a relative sorption rate in order to compare the kinetics under differing 

experimental conditions. In the case of low concentration solutions, the linear section was 

shortened, especially in the case of platinum sorption. 

 

The size of the beads and the initial metal concentration were varied. As expected, sorption kinetics 

for Pd and Pt were faster with small particle size than with the largest beads. However, the 

difference between small beads and large beads increased with the initial concentration. The curves 

for middle and large size beads almost overlapped: the difference in particle diameter was only 0.3 

mm. 

 



In the case of Pd, the affinity of the sorbent for the metal was so high that even with a low 

concentration of sorbent (as low as 0.1 g L-1, dry weight) the residual concentration tended to 0. It is 

thus difficult to compare experiments at different initial concentration, since the surface coverage is 

not the same for each of these experiments. With small beads more than 95 % of the metal was 

adsorbed within the first 4 hours, while increasing the initial concentration resulted in a progressive 

increase in the time required to reach the same level of extraction. 

 

In the case of Pt sorption, small beads obviously reached equilibrium faster than middle and large 

size beads, but the differences were not so marked as they were with Pd sorption. Whatever the 

initial concentration the equilibrium was reached earlier than in the case of Pd sorption. It is also 

noticeable that independently of the initial concentration the residual concentration did not tend to 

0: it seems that under selected experimental conditions a fraction of metal ions is not adsorbable. 

Sorption kinetics may be controlled by several mechanisms, including film mass transfer resistance 

(FDC), intraparticle mass transfer resistance (PDC) or the actual exchange reaction rate. Hellferich 

has listed the influence of experimental parameters on the diffusion control of sorption kinetics 

(25). He showed that the ion-exchange rate (defined by the FATE) varies as a function of the 

reciprocal of squared diameter in the case of PDC, while it varies as a function of the reciprocal of 

particle diameter in the case of FDC. He pointed out that the concentration did not influence the 

FATE in the case of a process controlled by the PDC, while in the case of FDC, the FATE varies as 

a linear function of the concentration. 

 

The linear sections of the curves were modeled using the followed equation (24, 26-27): 
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where k is the rate constant (min-1) and ko (the ordinate intercept) represents a parameter related to 

the concavity of the kinetic curve (the initial phase, which takes into account external diffusion 



resistance). Corresponding parameters are summarized in Tables 2 and 3. The kinetic curves were 

also modeled using the pseudo-first order kinetic equation described by: 

  , βα    )(ln += ttC

where α and β are the equation parameters (β tends to ln Co). The first section of the curves was 

used for the determination of these parameters (i.e. for a contact time up to 4-5 hours): the 

coefficients are also summarized in Tables 2 and 3. This equation was frequently used for the 

determination of the external diffusion coefficient (when only the initial points, corresponding to 

first minutes of contact, are taken into account) (28). More sophisticated models may be used for 

the simulation of experimental kinetic curves (29-31), including the Crank equation for infinite 

volume solution system (13,32). However, it has previously been observed by Ruiz et al., that when 

the sorption rate is very fast (case of Pt and Pd sorption), even this simple model failed to fit the 

kinetic curves for sorption (11). For this reason, the simplified models, described above, were 

preferred.  

 

For Pd and Pt sorption, in each size fraction, increasing the concentration decreased the parameter k 

but the variations were not very large. It is also interesting to observe that for Pt extraction, the 

coefficient was usually slightly higher than for Pd, when coefficients are compared for similar 

initial concentration. It is also true when results are compared on the basis of molar concentrations. 

Indeed, since the molar mass of Pt is close to twice that of Pd, experiments at Co: 20 mg Pd L-1 are 

comparable to those performed with an initial concentration Co: 10 mg Pt L-1. It seems that Pt 

sorption is faster than Pd sorption. The parameters ko, which was related to the external diffusion 

resistance, also decreased when the initial concentration of Pd and Pt was increased. The variations 

were, in the most cases, more marked for small beads than for other bead sizes. For this parameter 

the values were also greater for Pt than for Pd. The parameter α also decreased with increasing 

initial concentration and the variations were not very marked for Pd. In the case of Pt, the variations 

were less marked, and for some experimental conditions the variations were not continuous. The 



parameter β, as expected, tended to constant values representing the logarithm of the initial 

concentration, i.e. 2.3 (10 mg L-1), 3.0 (20 mg L-1), 3.4 (30 mg L-1). 

 

For constant initial Pd and Pt concentrations, the kinetic parameters k and α were larger for small 

than for large beads, while the parameter ko increased with the size of the beads. It appeared that the 

variation in the sorption rates was proportional to the variations in the Sexc (proportional to the 

square of diameter) for these different particle sizes. This indicates that PDC plays a significant part 

in the kinetic control of the sorption. According to Hellferich’s rules, the weak effect of metal 

concentration confirms that sorption kinetics is mainly controlled by diffusion within the polymer 

beads, though the contribution of FDC cannot be totally ruled out. Fick’s Law can be used to 

describe the sorption rate as a function of both the concentration gradients between the surface of 

the sorbent and the film surrounding the particle, and the surface area over which exchange takes 

place. The increase in ko with increasing particle size confirms this assumption. Increasing the 

particle size reduced Sexc and consequently reduced the initial sorption rate. 

 

Influence of chitosan concentration 

Figure 3 compares the sorption kinetics for middle size beads with different concentrations of 

chitosan. The increase in the concentration of chitosan did not change the particle size but, since the 

experiments were performed at constant mass of chitosan, the number, and consequently the Sexc 

were decreased using high chitosan concentration beads. The Sexc was halved. The independence of 

the sorption kinetics from the change in chitosan concentration and Sexc confirms that the FDC was 

not the main controlling step. On the other hand, one would expect a change in the intraparticle 

diffusion characteristics of the sorbent with increasing density of the polymer network (comparable 

volume of the beads for an increase in the dry mass). The porous volume, calculated on the basis of 

water content in the beads, would be almost halved. The increase in the density of the porous 

network would restrict intraparticle diffusion as occurs with increased cross-linking or 



macroreticular structure. Figure 3 invalidates this hypothesis: the PDC was not influenced by this 

density parameter. The coefficients in Tables 2 and 3 confirm these trends: the coefficients k and α 

were of the same order of magnitude as for comparable beads at lower chitosan content. The only 

significant change was observed for the parameter ko, which slightly increased with chitosan 

content. 

 

Influence of drying procedure 

Another way to influence the packing density of the polymer is drying. Figure 4 compares sorption 

kinetics for beads that were submitted to different drying treatments: raw beads (B), dried beads 

(DB) dried beads that were re-hydrated (RB) and re-hydrated saccharose beads (after drying in 

presence of saccharose, Sa). This figure clearly shows that drying, and re-conditioning if it took 

place, strongly influenced palladium and platinum extraction rates. The shape of the sorption kinetic 

curves is radically different for dried beads than raw beads. DB and RB are characterized by a long 

initial period for which the sorbent was almost unable to uptake metal ions. This period lasted 

between 30 and 75 minutes depending on the metal for DB and between 20 and 30 minutes for RB. 

Moreover the slope of the sorption kinetic curve was significantly lower than that of B. The 

intraparticle diffusion resistance was strongly increased after drying. This may be explained by 

several reasons, including (a) a restriction in the porous volume of the beads; (b) a decrease in the 

size of the pores, which may control the diffusion of metal ions, as has been observed for other 

metal ions (18-19); (c) an increase in the crystallinity of the material. Indeed, Piron et al. have 

shown that the dissolving of chitosan results in a decrease in the residual crystallinity of chitosan 

(33-34). The crystallinity parameter is a key-parameter in the accessibility to internal sites for both 

water and metal ions, and many studies have shown that decreasing the crystallinity results in an 

improvement in metal ion sorption properties (35). Kurita et al. (36) studied the cross-linking of 

water-soluble chitin samples with glutaraldehyde and observed that the resulting products were 

amorphous similar to the original water-soluble chitin, while the raw material (uncross-linked), 



submitted to dissolving, developed a high degree of crystallinity on drying. Kurita et al. (37) 

observed similar trends with chitosan cross-linked with glutaraldehyde. These studies correlated the 

copper sorption to the crystallinity of the materials. An optimum in the aldehyde/amine ratio has 

been found: copper sorption increases with the cross-linking ratio up to a maximum and then 

decreases again. The initial increase in metal ion adsorption was attributed to the low levels of 

cross-linking in the precipitate preventing formation of closely packed chain arrangements without 

any great reduction in the swelling capacity. At higher levels of cross-linking the precipitates (for 

the water-soluble chitin samples) had lower swelling capacities, and hence lower accessibilities, 

because of the more extensive three-dimensional network and also of the more hydrophobic 

character with increase in the glutaraldehyde content (38). Piron et al. have also shown that the 

drying step partially restores the original crystallinity of the material, except when the sorbent is 

freeze-dried (33-34). Re-hydration allows the sorption kinetics to be increased, however, under the 

conditions selected for these experiments, it was not sufficient to compensate for the diffusion 

restrictions, especially because the drying, under uncontrolled conditions, is almost irreversible, as 

confirmed by the unchanged bead diameter. For these reasons wettability and intraparticle diffusion 

in the porous network were greatly reduced. This is confirmed by the parameters listed in Tables 2 

and 3. Re-hydration causes the parameters k and α to be almost doubled for Pd and Pt sorption. 

Surprisingly the parameter ko was also increased after re-hydration, though a decrease in the re-

hydration time and external diffusion resistance was expected. The parameters were significantly 

less favorable than for raw beads (B): lower k, lower α and higher ko. Similar behavior was 

observed for Pd and Pt sorption. 

In the case of beads that were pre-treated with saccharose the kinetic curves were significantly 

improved: the shape and the relative position were close to those obtained with raw beads. The lag 

time was reduced and the slope of the kinetic curves was significantly increased. In the case of Pt 

sorption, the sorption kinetic curves almost overlapped for B and Sa sorbents. On the other hand, 

for Pd the diffusion properties were not completely restored: though the equilibrium concentration 



was comparable, the time required to reach the equilibrium was increased. Tables 2 and 3 confirm 

these conclusions. The presence of saccharose during the drying step increased kinetic parameters, k 

and α, while the “time lag parameter”, ko was decreased. It is interesting to observe that the 

parameters for Sa sorbent are comparable to that of B sorbent for Pt sorption, and just slightly lower 

for Pd sorption: but the same order of magnitude was obtained. The incorporation of saccharose 

during the drying step allowed the beads to partly maintain their structure: the network was not so 

shrunk as occurred in absence of the sugar. In the absence of saccharose, new bonds may be formed 

between the chains of the polymer during the shrinking, which made re-hydration impossible. The 

presence of saccharose prevented these linkages becoming established between nearest polymer 

chains, and re-hydration was therefore possible. The bead diameter was increased from 1.49 mm to 

2.69 mm. The rehydration was not complete (in comparison to the initial diameter of the beads) but 

restored a part of the initial volume of the beads: ca. 60 % of the volume of the bead lost during the 

drying step under uncontrolled conditions was restored. 

Sorption Isotherms 

Influence of particle size and chitosan concentration in the beads 

Figure 5 shows the sorption isotherms for Pd and Pt using different bead sizes. Both curves were 

characterized by a steep increase in the sorption capacity at low concentration followed by a 

saturation plateau. Such typical curves can be modeled using the Langmuir equation. However the 

sorption curves were significantly different for Pd and Pt. For Pd sorption, the curve was almost 

vertical at low concentration (below 2 mg Pd L-1), and the plateau was reached at ca. 5 mg Pd L-1, 

while for Pt, at low residual concentration the sorption was very weak and the sorption curve began 

to get steeper for a residual concentration above 1 mg Pt L-1. This is consistent with the above 

results on kinetics, which have shown that the equilibrium concentration was usually higher than 1 

mg Pt L-1. Similar trends have been observed in the case of the sorption of molybdate and vanadate 

(39-40). Depending on the speciation, which in turn depends on metal concentration and pH, the 

metal ions can be present in solutions in either non- or less-adsorbable ionic forms. As a 



consequence, at low metal concentration the predominance of non-adsorbable species leads to a 

very low sorption level, while an increase in the residual concentration results in the formation of 

more adsorbable species, and the sorption capacity increases. A similar interpretation could be 

suggested in the case of Pt sorption using these sorbents. The lower slope of the Pt sorption 

isotherm curve in comparison to Pd sorption isotherm confirmed this hypothesis. The plateau was 

reached at a residual concentration of 10 mg Pt L-1. The sorption isotherms for Pd and Pt can be 

described respectively as almost irreversible and very favorable. The maximum sorption capacities 

for Pd and Pt were ca. 360 mg Pd g-1 (266 mg Pd g-1 sorbent), and 530 mg Pt g-1 (392 mg Pt g-1 

sorbent), respectively. On the basis of molar units, the maximum sorption capacities were 3.4 mmol 

Pd g-1 (2.5 mmol Pd g-1 sorbent), and 2.7 mmol Pt g-1 (2.0 mmol Pd g-1 sorbent). Based on the 

deacetylation degree of the chitosan used in this study (87 %), 1 g of chitosan contained ca. 6 mmol 

of nitrogen and 5.2 mmol–NH2, neglecting the fraction of amine groups involved in imine linkages 

with glutaraldehyde, the maximum molar ratio between Pd / Pt and nitrogen was 0.57 and 0.45, 

respectively, these ratio Pd/Pt versus amine groups were 0.65 and 0.52, respetively. 

It is interesting to observe that for Pd and Pt sorption, the size of the beads did not significantly 

influence the sorption capacity. Particle diameter influenced the sorption kinetics but not the 

equilibrium. For middle size beads, increasing the concentration of chitosan in the beads did not 

change the shape of the sorption isotherms for Pd and Pt. This parameter did not influence the 

kinetics and the equilibrium in the sorption. Potential diffusion restrictions, related to particle size 

and chitosan concentration, did not influence sorption at equilibrium. 

 

Influence of drying process 

Figure 6 compares the sorption isotherms for beads submitted to different drying procedures, with 

those of raw beads (B). The drying of chitosan beads resulted in similar Pd sorption isotherms: the 

same steep increase in sorption capacity was observed as for raw beads, however at large residual 

concentrations (on the plateau) the maximum sorption capacity was slightly decreased (by ca. 10 



%). This decrease can be related to an insufficient contact time to reach the equilibrium, since 

sorption kinetics have already shown that at high concentration for dry beads the time required to 

reach the equilibrium is significantly higher than for raw beads. In the case of re-hydrated beads 

(RB) the same behavior was observed and can be explained by the same reason. On the other hand, 

in the case of saccharose–treated beads (Sa), the sorption isotherm overlapped perfectly with that of 

raw beads (B). Sa beads were less sensitive to diffusion limitations and the equilibrium was reached 

within the contact time selected for sorption isotherms. Drying in presence of saccharose 

significantly improved sorption performance. 

 

For Pt, results were more contrasted. For saccharose-treated beads the sorption isotherm also 

overlapped with that of raw beads. For re-hydrated beads (RB) the sorption capacity was slightly 

lower than that obtained with Sa and B, but the change was not very marked in comparison to dried 

beads (DB). Indeed, for dried beads sorption capacity was halved, even at low residual 

concentration (5-10 mg Pt L-1). This can be explained by the very long sorption kinetics, which 

require a long contact time. Since the contact time for sorption isotherms was limited to 4 days, the 

equilibrium was not really reached but such a - large decrease in sorption capacity may be related to 

difficult access to internal sorption sites, resulting from uncontrolled drying. Indeed, the material 

was more crystalline in comparison with raw beads or beads dried under controlled conditions. 

 

 

CONCLUSIONS 

 

These results confirm that diffusion resistance represents a key parameter in the design of chitosan 

sorbents. Gel bead conditioning is very efficient at increasing sorption kinetics and uptake 

performances. However, for large-scale use, chitosan gel beads containing high water percentage 

cannot be easily handled and transported, it is thus necessary to optimize the drying process. 



Previous studies have shown that the freeze-drying process is an efficient but very expensive 

method to achieve the drying whilst maintaining sorption performance. When uncontrolled 

conditions are selected for the drying, sorption rates are greatly reduced. Preliminary re-hydration 

of the beads partly restores diffusion properties, however since the drying is irreversible, kinetics 

are still affected by intraparticle diffusion limitations. The drying results in a strong irreversible 

reduction in the size of the beads, which may result in a decrease in the porous volume, pore size 

and in an increase in the polymer crystallinity. On the other hand, using saccharose to maintain the 

volumetric structure of the beads significantly improves sorption performance and enhances 

sorption kinetics. The saccharose pre-treatment prevents the collapse of the structure and limits the 

volume variation. Sorption kinetics and isotherms are thus maintained at a level close to that of raw 

beads. 
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Table 1: Characteristics of chitosan gel beads (a). 

Sample WW DW ACP DWC GW CLR D NBK Sexc 

S4 0.356 12.3 3.5 18 5.7 0.77 1.52 (±0.05) 2033 14.8 

M4 1.1 43.7 4.0 59.3 15.6 0.60 3.36 (±0.12) 229 8.1 

L4 1.854 68 3.67 92.4 24.4 0.60 3.82 (±0.11) 148 6.8 

M6 1.16 74.8 6.5 102.4 27.6 0.61 3.30 (±0.13) 134 4.6 

DB(b)       1.47 (±0.04)  1.6 

RB(b)       1.49 (±0.04)  1.6 

Sa(b,c)    469.8   2.69 (±0.02)  2.3 

WW: Wet weight (g) 

DW: Dry weight (mg) 

ACP: Actual chitosan percentage (referred to wet weight) (%) 

DWC: Dry weight of cross-linked beads (mg) 

GW: Glutaraldehyde weight (mg) 

CLR: Cross-linking ratio (mol glutaraldehyde / mol –NH2) 

D: Diameter of beads (mm) (wet for S4, M4, L4, M6, RB – after re-hydration- and Sa – after re-

hydration-; dried for DB). 

NBK:  Number of beads used for kinetic experiments (for 1 L of solution). 

Sexc: External sorbent surface for kinetic experiment (m-1) 

n.d.: not determined. 

(a): For 100 beads, except for small beads (S) – 250 beads. 

(b): Other parameters are similar to M. 

(c): For Sa beads, DWC includes the weight of saccharose absorbed in the polymer network. The 

beads were submitted to re-hydration (saccharose was simultaneous released from the beads) before 

being dried again: the DWC was then 58 mg. 



Table 2: Influence of experimental parameters on kinetic parameters for Pd sorption on chitosan gel 

beads. 

Sample Pd Conc. 

(mg Pd L-1) 

k 102 

(min-0.5) 

ko 102 R2 α 103 β R2 

S4 10 7.81 5.54 0.984 12.01 2.21 0.987 

 20 7.47 5.47 0.987 8.88 2.89 0.976 

 30 6.19 2.15 0.988 6.62 3.27 0.954 

M4 10 4.74 8.17 0.997 3.68 2.23 0.991 

 20 4.42 4.70 0.998 3.64 2.93 0.976 

 30 3.59 3.67 0.997 2.72 3.34 0.968 

L4 10 4.95 9.79 0.995 4.59 2.29 0.998 

 20 3.79 5.23 0.997 3.02 2.95 0.983 

 30 3.54 4.14 0.998 2.46 3.37 0.979 

M6 10 5.61 19.19 0.996 4.90 2.32 0.996 

 20 3.94 5.58 0.998 3.19 2.95 0.980 

 30 3.64 6.88 0.998 2.64 3.36 0.983 

DB 20 1.59 10.50 0.999 0.57 2.99 0.995 

RB 20 3.01 19.79 0.997 1.23 2.99 0.996 

Sa 20 3.38 5.82 0.997 2.28 2.96 0.979 

 



Table 3: Influence of experimental parameters on kinetic parameters for Pt sorption on chitosan gel 

beads. 

Sample Pt Conc. 

(mg Pt L-1) 

k 102 

(min-0.5) 

ko 102 R2 α 103 β R2 

S4 10 9.04 8.26 0.998 11.67 2.21 0.980 

 20 8.75 7.62 0.989 11.83 2.90 0.978 

 30 8.29 6.29 0.989 12.23 3.33 0.979 

M4 10 6.30 10.33 0.993 4.43 2.18 0.951 

 20 5.53 8.22 0.993 4.36 2.93 0.988 

 30 5.39 7.16 0.996 4.52 3.34 0.987 

L4 10 6.20 12.77 0.996 5.90 2.28 0.994 

 20 5.34 7.77 0.983 5.78 2.97 0.977 

 30 4.81 7.14 0.989 4.98 3.39 0.997 

M6 10 5.81 19.62 0.991 4.11 2.27 0.985 

 20 5.46 14.85 0.997 3.90 2.94 0.987 

 30 5.31 8.38 0.998 4.17 3.32 0.989 

DB 20 1.56 9.84 0.995 0.60 3.01 0.990 

RB 20 2.83 11.36 0.997 1.57 3.00 0.987 

Sa 20 5.03 7.82 0.981 4.43 2.96 0.982 
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Figure 1: Influence of bead sizes (4 % w/w concentration) and initial Pd concentration (10, 20 and 

30 mg L-1) on sorption kinetics. 
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Figure 2: Influence of bead sizes (4 % w/w concentration) and initial Pt concentration (10, 20 and 

30 mg L-1) on sorption kinetics. 
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Figure 3: Influence of chitosan concentration in the beads on Pd (top) and Pt (bottom) sorption 

kinetics (initial metal concentration: 30 mg Metal L-1). 
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Figure 4: Influence of drying process on Pd (top) and Pt (bottom) sorption kinetics (initial metal 

concentration: 20 mg Metal L-1). 
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Figure 5: Influence of bead size and chitosan concentration in the beads on Pd (top) and Pt (bottom) 

sorption isotherms. 
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Figure 6: Influence of drying process on Pd (top) and Pt (bottom) sorption isotherms. 
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