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Appendix A. 

THE DQ TRANSFORMATION 

A.1. Definition 

 The constant-power dq transformation for a three-phase system is:  
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 where rθ  is the rotating coordinate angle defined as: 

0
0

θωθ ∫ +=
t

r dt ,                                                 (A.2) 

   ω : coordinate angular frequency. 

   0θ : initial position angle of the coordinate axes. 

 When ω  is constant, such as in applications with direct connection to the utility, 

this transformation can be expressed as follows 
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A.2. Power Conservative Transformation 

 The dq transformation is an orthogonal transformation since it accomplishes the 

propriety T1
dqdq TT =− . The internal product remains invariable under such kind of 

transformation. Thus, given 11 xTx dqr =  and 22 xTx dqr = , the internal product 

>< rr 21 , xx

 

is: 

><=><=><=><=>< 212
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T

12121 ,,,,, xxxTTxxTTxxTxTxx dqdqdqdqdqdqrr .   (A.4) 

 Similarly, the instantaneous power of a set of three-phase voltages and currents is: 
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and applying the dq transformation to the variables: 
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    (A.6) 

 In addition, when the sum of the three currents is zero, the homopolar current 

component (io) is also zero. Therefore, calculation of the instantaneous power is 

simplified as follows:  
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A.3. Transformation of a State-Space-Formulated System 

 A.3.1. General Application 

 A three-phase system in the state-space representation can be transformed into 

the dq components as in the following. The standard state-space notation is: 

uBxAx +=
dt
d ,                                                     (A.8) 

and the relationship with the transformed variables is: 

 rdqrdqdqr xTxTxxTx T1and === − .                                 (A.9) 

 Substituting x from (A.9) into (A.8): 
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rrrrrdt
d uBxAx += ,                                            (A.10) 

 in which: 

.and, 111 −−− =−= dqdqrdqdqdqdqr dt
d BTTBTTTATA                        (A.11) 

 Solving for the term 1−
dqdq dt

d TT  with the definition of Tdq given in (A.3): 
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The new matrices of the transformed system are:  
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 A.3.2. Application to the Three-Level System 

 The three-level system formulated in (2.22) is: 
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in which the matrices can be identified as follows: 
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 Applying (A.9) and (A.13), the vectors and matrices become: 
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 As a result, the new state-space representation of the system is as follows: 
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Appendix B. 

THE TWO-DIMENTIONAL SPACE-VECTOR 
TRANSFORMATION 

B.1. Definition 

 The two-dimensional SV transformation is defined as follows: 

3
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,                                          (B.1) 

in which the variables xa, xb and xc are a set of three-phase components, either 

voltages or currents. 

 This transformation is sometimes multiplied by the coefficient 2/3 in order 

normalize the length of the resulting vector. The coefficient 32  is also used.  

B.2. Influence of Harmonics in the Vector 

 A balanced set of three-phase components with addition of a generic h order 

harmonic and a common component f(t) is given as:  
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which can be also expressed as follows: 
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(B.3) 

 Applying (B.1) to this set of variables the following expression is obtained:  
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 It can be observed that the common component f(t) has disappeared in the 

obtained vector. As a result, in the case of transforming voltages, the reference 

potential of va, vb and vc does not affect the obtained vector. Therefore, the point 

taken as a reference for the three variables can be changed with no effect on the 

voltage-vector representation. 

 Triplen order harmonics, h={3, 6, 9, 12, …}, have neither influence in the vector, 

since 0=hx
r

 for these order of components. 

Triplen-plus-one order harmonics, or h={4, 7, 10, 13, …}, produce direct 

rotational vectors with the same frequency as the harmonic, such that: 

( )hhjh
h eXx ϕθ +=

2
ˆ3r

,                                              (B.6) 

while triplen-minus-one order harmonics, or h={2, 5, 8, 11, …}, produce reverse 

rotational vectors, as follows: 
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B.3. Equivalences in the First Sextant 

 Assuming no distortion in the scalar components 0ˆ =hX  ∀ 1≠h , and 01 =ϕ , the 

resulting vector is represented by: 

θ
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 An equivalent vector in the first sextant can be found for any vector. These 

equivalences are very useful for processing all of the calculations in the first sextant. 

The relationships are described in Table B.1. 

 The equivalent vector in the first sextant can be obtained just interchanging the 

scalar variables when applying the two-dimensional transformation. The rotational 

direction of the equivalent vector depends on the number of variables that have been 

interchanged; thus, if the reference vector is in the 3rd sextant or 5th sextant, the 

equivalent vector in the first sextant is also a direct rotational vector. In contrast, for 

2nd, 4th and 6th sextants, the equivalent vector is a reverse rotational vector. 

 The equivalences given in Table B.1 have the reflexive propriety. Thus, 

interchanging the three-scalar components of the equivalent vector in the first sextant 

in the opposite direction than in Table B.1, the original vector in the corresponding 

sextant is obtained. 



JOSEP POU                                                                                          TECHNICAL UNIVERSITY OF CATALONIA 

 
APPENDIX B: THE TWO-DIMENSIONAL SPACE-VECTOR TRANSFORMATION Page 200 

Table B.1. Equivalent vector in the first sextant 

Reference Vector in the 2nd Sextant:  
3

2
3
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