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Appendix A.

THE DQ TRANSFORMATION

A.1. Definition

The constant-power dq transformation for a three-phase system is:

| cos(6,) cos(6. —2?7[) cos(6, +2?7z) ]
T, = % —sin(8,) -sin(6, —2?7[) —sin(6, +2?”) : (A.1)
e e Yo
where 6, is the rotating coordinate angle defined as:
t
9, = j w dt 16, (A.2)

w: coordinate angular frequency.

6, : initial position angle of the coordinate axes.

When @ is constant, such as in applications with direct connection to the utility,

this transformation can be expressed as follows

cos(wt +6,) cos(wt+6, —2?”) cos(wt + 6, + 2?”)
Ty = % —sin(wt +6,) —sin(wt +6, —2?”) —sin(wt + 6, +2?7[) : (A.3)
1 1 1
Vi Vi Vs
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A.2. Power Conservative Transformation

The dq transformation is an orthogonal transformation since it accomplishes the

propriety chq1 = TJq . The internal product remains invariable under such kind of

transformation. Thus, given x, =T,Xx; and X, =T,X,, the internal product
< Xy, Xy > IS:

< Xy, Xgp > =< TyoXq, TygXy > =< Xy, TJquqxz > =< Xy, T(;;quxz >=<Xy, X, >. (A4)

Similarly, the instantaneous power of a set of three-phase voltages and currents is:

ia

s Vy Volliy =V i (A.5)

p=V,i,+Vvy i, +Vvsi,=[v o

le

and applying the dq transformation to the variables:
p= V;T)h Ion = V;Tm (Tt;; qu) Ipn = (V;th;t;)(quiph)= (V;TathTq)(quiph) = V;hr ion- - (A.6)

In addition, when the sum of the three currents is zero, the homopolar current
component (iy) is also zero. Therefore, calculation of the instantaneous power is

simplified as follows:

lq

_ T _ . _ . . P . .
P=Vopion = v, Vg v, ] Ig |[=Valg+Vgiqg+Voio=Vgiyg+Vvyiy,- (A7)

lo

A.3. Transformation of a State-Space-Formulated System
A.3.1. General Application

A three-phase system in the state-space representation can be transformed into

the dg components as in the following. The standard state-space notation is:
d
—x=Ax+Bu, (A.8)
dt
and the relationship with the transformed variables is:
X, =Tyx and x=Tgx, =TgX,. (A.9)

Substituting x from (A.9) into (A.8):
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d
Ex, =A,x,+B, u,, (A.10)
in which:
_ d . _
A =T, AT, -T, ETdJ, and B, =T,BT, . (A11)
Solving for the term T, %Tg; with the definition of T4, given in (A.3):
0 -w
d 4 d 1
0
The new matrices of the transformed system are:
0 w 0
A =T,AT; +/-w 0 0| and B, =T,BT,. (A.13)
0O 0 O
A.3.2. Application to the Three-Level System
The three-level system formulated in (2.22) is:
. _R 0 0o |_. 1 0 0 1
d la L R la L 1 €, —Vao %
ic 0 0 _B ic 0 0 _1 €: —Veo _1
i L] L L | L]
in which the matrices can be identified as follows:
_R 0 0 1 0 0
I, L L
R 1
X = Ib’ A: 0 e 0 f B1:B2: 0 - 0 f
; L L
° o o -R 0 o -
L L L L
(A.15)
€2 ~Vao Vno
U =(6,—Vy |, and u,=|Vy |
€ —Veo Vno
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Applying (A.9) and (A.13), the vectors and matrices become:

] _R 0] 0 1 0 0
iy L L
X, =i A =|-w _R 0 B, =B 0 1 0
r— .q ’ r— L ’ r —B2r — L ]
i
° o o -R 0o o -
L L L L]
(A.16)
e, —Vy 0
U, =|€;-Vy |, and Uy = 0
€, ~ Vo \/§VN0
As a result, the new state-space representation of the system is as follows:
] —% 0] 0 ) —% 0 0 0
i i e, -V
dl’ R ? 1 ¢
—lig|=|—@ —— 0 |lig|+| 0 —— 0 ||e;—Vq|+| O _|vyg. (A17)
at| . L . L J3
iy R ||, 111 e, =V, _N2
0 0o —-—— 0 0 —-— L
i L] L L]
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Appendix B.

THE TWO-DIMENTIONAL SPACE-VECTOR
TRANSFORMATION

B.1. Definition

The two-dimensional SV transformation is defined as follows:

27 2T

X=X,+x,e 3 +x.e 3, (B.1)

in which the variables x,, x, and x; are a set of three-phase components, either

voltages or currents.

This transformation is sometimes multiplied by the coefficient 2/3 in order

normalize the length of the resulting vector. The coefficient 1/2/3 is also used.

B.2. Influence of Harmonics in the Vector

A balanced set of three-phase components with addition of a generic h order

harmonic and a common component f(t) is given as:

X, = X, cos(6 + @)+ X, cos(h@ + ¢, )+ f(t),

Xy = )A(1 cos(e—z?ﬁ+(p1)+ )?h cos[h(e—%)+¢h}+f(t), and (B.2)

X, = )A(1 cos(0+2?7[+(p1)+f(h cos[h(9+2?”)+¢h}+f(t),
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which can be also expressed as follows:

n j(6+9,) -j(6+9,) n j(h6+g,) —j(ho+p,)
x, =X~ *€ +x, 8 e (),
2 2
. 2 . 2 . 2 . 2z
) ) )], )]
Xy, = X, + X, +f(t), and
2 2
j9+l+1 —j9+l+1 jh¢9+—”+h —jh¢9+—”+h
e S I S I L G S B LG 2
X, = X, + X}, +1(t).
2 2
(B.3)
Applying (B.1) to this set of variables the following expression is obtained:
R= % 4%, with % = %eﬂﬁ”%) and
(B.4)

%, =20 11 2c0s (h—1)2—7[ e/19*) 1114 2 cos (h+1)2—7z e /(h0+en) |
"2 3 3

It can be observed that the common component f(t) has disappeared in the
obtained vector. As a result, in the case of transforming voltages, the reference
potential of v,, v, and v, does not affect the obtained vector. Therefore, the point
taken as a reference for the three variables can be changed with no effect on the

voltage-vector representation.

Triplen order harmonics, h={3, 6, 9, 12, ...}, have neither influence in the vector,

since x, =0 for these order of components.

Triplen-plus-one order harmonics, or h={4, 7, 10, 13, ...}, produce direct

rotational vectors with the same frequency as the harmonic, such that:

~

- 3X
Xh: 2h

ef(hg*'(ﬂh), (B6)

while triplen-minus-one order harmonics, or h={2, 5, 8, 11, ...}, produce reverse

rotational vectors, as follows:

- %e—j(hew) (B.7)

APPENDIX B: THE TWO-DIMENSIONAL SPACE-VECTOR TRANSFORMATION Page 198



JOSEP POU TECHNICAL UNIVERSITY OF CATALONIA

B.3. Equivalences in the First Sextant

Assuming no distortion in the scalar components )A(h =0V h#1,and ¢, =0, the
resulting vector is represented by:

e 23X,
X =X,(0)+ Xp(0)€ 3 +Xx .00 3 =""1gl? (B.8)
An equivalent vector in the first sextant can be found for any vector. These
equivalences are very useful for processing all of the calculations in the first sextant.

The relationships are described in Table B.1.

The equivalent vector in the first sextant can be obtained just interchanging the
scalar variables when applying the two-dimensional transformation. The rotational
direction of the equivalent vector depends on the number of variables that have been
interchanged; thus, if the reference vector is in the 3" sextant or 5™ sextant, the
equivalent vector in the first sextant is also a direct rotational vector. In contrast, for

2" 4™ and 6™ sextants, the equivalent vector is a reverse rotational vector.

The equivalences given in Table B.1 have the reflexive propriety. Thus,
interchanging the three-scalar components of the equivalent vector in the first sextant
in the opposite direction than in Table B.1, the original vector in the corresponding

sextant is obtained.
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Table B.1. Equivalent vector in the first sextant

Reference Vector in the 2™ Sextant: % <0< 2—

Xg = Xp

3
Translation from the 2™ Sext. into the 1% Sext.: {
Xp = X,

Equivalent Vector in the 1% Sextant:
2 2 s 2
; s exe’s Z3Xi 050
X; =X, t+ X, ° +Xx.e =—e

%
3 Sextant 1* Sextant|
Xa
4" Sextant 6" Sextant

5" Sextant

Reference Vector in the 3™ Sextant: 2?7[ <0<r

X, = X,
Xy = X,
X, = Xy

Translation from the 3™ Sext. into the 1% Sext.:

Equivalent Vector in the 1% Sextant:
.27 .27

A2
- i~ I 3X1 1(9—?”)

2™ Sextant

4" Sextant 6" Sextant

5" Sextant

Reference Vector in the 4" Sextant: 7 <6 < 4?7[

X, — X
Translation from the 4™ Sext. into the 1% Sext.: { a ¢
Xz = X,

Equivalent Vector in the 1% Sextant

27 2r

iy _ 3%, 5o

2" Sextant
Xb

3 Sextant

Xa

= - :
o 3 3 6" Sextant
X, = X, + Xpe +Xx,e >
* 5" Sextant
. 47‘[ 57‘[ N 2™ Sextant
Reference Vector in the 5" Sextant: ? <0< ? i
3" Sextant
X, = Xp
Translation from the 5" Sext. into the 1% Sext.: { X, — X,
X, = X, :
Equivalent Vector in the 1% Sextant:
R jzl _ jzl 35\(1 j(g_4l) 4" Sextant 6" Sextant
X;=X,+X,e % +x,e 3 == ¢ 3
* 5" Sextant
X 2™ Sextant
. th 4r
Reference Vector in the 6" Sextant: — <0 <2rx
3 3 Sextant
) ) X, = X
Translation from the 6™ Sext. into the 1% Sext.: b ¢
Xo = Xp %o
. . .
Equivalent Vector in the 1% Sextant: %
27 27 ~
_ J= = 33X, iop_ - :
X :Xa+xce 3 +xbe 3 — 1ej(27r 0) 4" Sextant

2

5" Sextant
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