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Chapter 7. 

MULTIVARIABLE OPTIMAL CONTROL 

7.1. Applications of Multilevel Converters 

 Multilevel converters can be used for many different medium- and high-power 

applications. Since these converters are reversible, they can operate either as 

inverters or as rectifiers. Some examples of practical applications for these systems 

are: 

- Electricity generation plants. The electric energy produced by these plants must 

be injected into the electrical grid. The DC-link of the converter receives electric 

energy in DC form, and the AC side of the converter is connected to the utility. Some 

practical applications include renewable energies such as photovoltaic panels (Fig. 

7.1) or air generators. Air generators usually produce AC voltages; however, these 

voltages can be converted into DC form, and then into AC form again by means of 

two multilevel converters connected back-to-back. This process allows the blades of 

the mill to rotate asynchronously with respect to the utility frequency; hence, the 

speed can be adjusted such that the generator can achieve maximum efficiency 

according to wind conditions. 

- Boost rectifier. These systems can rectify AC current from the electrical grid 

operating with high PF [B3]. This application includes the rectifier stage of a motor 

drive system. Since the converter is reversible in this application, the rectifier allows 

bi-directional energy flux so that the mechanical energy from the motor can be 

recovered into the utility. 



JOSEP POU                                                                                          TECHNICAL UNIVERSITY OF CATALONIA 

 
CHAPTER 7: MULTIVARIABLE OPTIMAL CONTROL  Page 160 

Solar 
Radiation ec 

eb 

ea La 

C 

vDC 
Three-Level 
Converter 

Lb 

L c 

R

R

R

UTILITYPHOTOVOLTAIC 
PANELS 

Energy Flux 

C 

ia 

ib 

ic 

Lf iDC 

 
Fig. 7.1. Multilevel converter applied to renewable energy. 

 - SMES systems. The reversibility feature is essential for these systems, since the 

energy accumulated into the superconducting coil must be recovered into the AC side 

when it is required [A10]. 

 - High-voltage DC (HVDC) transmission. This alternative becomes economically 

attractive where a large amount of power is to be transmitted over a long distance from 

a remote generating plant to the load center. This breakeven distance for HVDC 

overhead transmission lines usually lies somewhere in a range of 500-600 km and is 

much smaller for underwater cables. In addition, many other factors, such as the 

improved transient stability and the dynamic damping of the electrical system 

oscillations, may influence the selection of DC transmission in preference to the AC 

transmission. It is possible to interconnect two AC systems, which are at two different 

frequencies or which are not synchronized, by means of an HVDC transmission line. 

Multilevel converters are often the suitable solution for synthesizing these systems. 

 In this chapter, the three-level converter is applied to systems in which the 

variables to be controlled are the reactive current (iq) and the DC-link voltage (vDC). 

For unity PF applications, the reactive current will be defined as zero. 
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7.2. Proportional-Integral dq Controller 

 A control diagram for the three-level-based system can be obtained from (2.26). 

This equation can be also expressed as follows: 

dqqLqdd iLvvEiLvv ωω +∆=+−∆= and ,                          (7.1) 

in which q
q

qd
d

d iR
dt
di

LviR
dt
diLv +=∆+=∆ and . 

The control diagram is pictured in Fig. 7.2, in which the blocks that contain ωL 

have the objective of decoupling influences between both current control loops [A56]. 

Nevertheless, due to sensing errors and filtering delays, some practical influences 

between the loops still remain after decoupling the channels. 

The small-signal model of the converter (2.40) can be used for the design of the 

voltage and current controllers, which are based on proportional and integral (PI) 

actuations.  The parameters of this controller can be calculated by classical design 

methods. Poles and zeros of the compensators should be located with the objective 

of achieving good static and dynamic performance of the system, and providing 

sufficient stability margins. 

 The design process of this controller is not carried out in this dissertation. The 

main reason is that it makes use of standard design methods and its discussion 

would not make any important contribution.  
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Fig. 7.2. Decoupled PI-dq controller. 



JOSEP POU                                                                                          TECHNICAL UNIVERSITY OF CATALONIA 

 
CHAPTER 7: MULTIVARIABLE OPTIMAL CONTROL  Page 162 

7.3. LQR Controller 

 An optimal control loop will be used for controlling the three-level converter as a 

boost rectifier. An introduction to the multivariable optimal control is presented in the 

following.  

 7.3.1 Introduction to the LQR 

 Since the multilevel boost rectifier is a MIMO system, an LQR can be applied as a 

control loop. The objective of this control method is to minimize a quadratic 

performance index (J) as follows: 

∫ ++=
N

NN

T
ttttTT dtJ

0
)()(T)()(T)()(T ][

2
1

2
1 uRuxQxxMx ,                    (7.2) 

in which M, Q and R are hermitic weighting matrices positively defined. 

 The optimal quadratic problem consists of finding a control law )(tu  which achieves 

the minimum value for J. The system performance is restricted to its state-space 

equation (7.3), such that:  

)()()( ttt
dt
d uBxAx += ,                                              (7.3) 

which is assumed to be a state controllable system. 

 Because of the digital control used in this application, the analysis will be made 

from the standpoint of a discrete-time system. Thus, (7.2) and (7.3) must be 

transformed into discrete equations, as follows: 
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)()()1( kdkdk uBxAx +=+ ,                                          (7.5) 

where matrices dA  and dB  depend on the discrete time Tm , such that 
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and ττ .                         (7.6) 

 M, Q and R in (7.4) are symmetric weighting matrices which will be selected by the 

designer, who bases the choice on the relative importance of the various states and 
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controls. Some weights are selected according to practical control issues; otherwise 

the solution would include large components in the control gains, which could saturate 

the actuator device. The usually diagonal Q and R matrices require that all elements 

be either positive or zero. 

 Minimizing the quadratic performance index J given in (7.4) also called cost 

function, with the restriction of the discrete state equation (7.5) can be achieved by 

using Lagrange’s multipliers method [B9]. The solution of the optimal control leads to a 

linear closed loop-control law such that: 

 )()()( kkk xKu −= .                                               (7.7) 

 The optimal control problem is reduced to find the coefficients of matrix )(kK . If the 

control actuation time is defined as infinite (N=∞), this matrix becomes constant 

( KK =)(k ). This is a very important issue, since it allows the LQR control to be easily 

implemented in practical systems. 

  All state variables must be available; in other words, the system must be 

observable, and also, it must be state controllable. An important advantage of using an 

LQR strategy is that the system becomes asymptotically stable in the steady-state 

condition [B9, B10]. This is because the objective of this control is to minimize a 

function that includes all the state-space variables in it. 

 7.3.2. Control Actuation Delay 

 Actuation delays are inherent attributes of digital control loops. In general terms, 

any digital control requires the following steps: sensing analog variables and 

converting them into digital, processing them according to an established control law 

and calculation of control signals, and finally, applying those control signals to the 

system. Additionally, for the case of a PWM power electronics system, the modulation 

process imposes a delay of an integer number of modulation periods, which is usually 

one single period in order to guarantee good dynamics for the system. Therefore, all of 

the tasks should be done within a modulation period, which is the same as the 

sampling period. 

 Assuming one single discrete-time delay, the state-space equations can be 

expressed as: 

)()()1()()1( and kkkdkdk CxyuBxAx =+= −+ .                           (7.8) 
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 The system should be reformulated into the standard state-space equations so 

that it can be directly processed by classical analysis and synthesis methods using its 

internal description. Thus, some new state variables should be defined [B11] to include 

the delayed control term: 

)1()( −= kku ux .                                                   (7.9) 

 The new appearance of the state-space formulation is: 
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 Equation (7.10) can be now processed by means of classical methods. Notice that 

this formulation increases the number of state variables by the same number of control 

variables. 

 7.3.3. LQR with Integral Actuation 

 Fig. 7.3 shows a basic diagram of the LQR. Matrix )(kK  can be calculated either for 

a finite process (finite N), or for a steady-state process (N=∞). In any case, this matrix 

can be calculated off-line. 
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Fig. 7.3. Basic LQR diagram. 

  By means of the control loop shown in Fig. 7.3, all of the state variables tend to 

reach zero in accordance with an optimal process. For this case, the references of the 

output variables are intrinsically defined as zero.   

 In the control diagram shown in Fig. 7.4, the state variables and the output 

variables can be defined as non-zero in steady-state conditions. This is achieved 

thanks to a new external control loop. Additionally, due to the introduction of an integral 
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actuation in the direct chain, zero-order errors caused by step references or 

disturbances can be removed in steady-state conditions [A50, B9]. This integral-type 

optimal regulator is called LQR with integral actuation. 
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Fig. 7.4. LQR diagram with integral actuation. 

 The control diagram in Fig. 7.4 includes possible system disturbances that can 

be included in (7.8) as follows: 

)()()(2)1(1)()1( and kkkdkdkdk xCydBuBxAx =++= −+ .                (7.11) 

 In order to formulate the dynamic performance of the whole system, including the 

control diagram, some new state variables should be defined. These variables must 

be inputs of multiplier blocks K, such as the accumulative variables of the integral 

actuation )(kv : 

)1()()()( −+−= kkkk vyrv .                                         (7.12) 

 From (7.11) and (7.12): 

)(2)1()1(1)()()1( kdkkdkkdk dCBruCBvxCAv −+−+−= +−+ .                (7.13) 

 These variables are added to the state-space equation: 
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 For the previous sample period: 
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 Then, (7.15) is subtracted from (7.14), and the following definitions are taken into 

account: 
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)1()()( −−=∆ kkk vvv , 

)1()()( −−=∆ kkk xxx , and                                       (7.16) 

)2()1()1( −−− −=∆ kkk uuu . 

Thus, a new state-space representation is obtained, as follows: 
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In this equation, all of the variables tend to be zero in steady-state conditions. 

The references and disturbances are assumed to be an initial step, and so they 

disappear when dealing with the difference between two consecutive samples. 

 If the period delay of the control actuation is also included, the entire state-space 

formulation is shown according to the standard form: 
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    )()()1( ˆˆˆˆˆ kdkdk uBxAx +  

 The term )(kux∆  in (7.18) is )1( −∆ ku , in accordance with definition (7.9) in the 

previous section. On the other hand, the term )(kv∆  is, in fact, the error )(ke  from the 

references and the output variables: 

)()1()1()()()1()()( kkkkkkkk evvyrvvv =−+−=−=∆ −−− .              (7.19) 

 Equation (7.18) describes the system and the entire control diagram shown in 

Fig. 7.4. Restrictions that must be considered when minimizing the cost function J in 

the LQR problem are: 
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kkkkJ uRuxQx    and                           (7.20) 

)()()1( ˆˆˆˆˆ kdkdk uBxAx +=+ . 

 An optimal K matrix is obtained when the LQR problem is solved, which defines 

all the constants of the control diagram: 

[ ]uxi KKKK = .                                           (7.21) 
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 7.3.4. Three-Level Boost Rectifier with LQR 

 The small-signal state-space model (2.40) is used to solve the LQR problem in 

this section, such that 
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in which the state variables, the control variables and the disturbances are 

[ ] ,~~~ T
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qd vv   and     [ ] ,~~ T
DCL iE  respectively.           (7.23) 

 According to this model, the matrices can be identified as: 
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 The discrete matrices Ad, Bd1 and Bd2 can be obtained by transforming the 

continuous-time description of the system into a discrete-time description by means of 

(7.6). Thus, a new state-space formulation is obtained, as follows: 
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 This equation matches the standard state-space formulation: 

}12{)(}27{}17{)(}77{}17{)1( ˆˆˆˆˆ xkxdxkxdxk uBxAx +=+ .                       (7.26) 

 Therefore, the performance index that must be minimized is: 
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and solving for the optimal problem, the matrix obtained is: 

[ ]}22{}32{}22{}72{ xuxxxix KKKK = .                                (7.28) 

 7.3.5. Simulated Results 

 In this section, some data values are given to the power system (Fig. 7.5) in order 

to obtain simulated results. The values assumed are R=0.1 Ω, L=1 mH, C=1000 µF, 

RMS line-to-line voltage EL=1000 V and frequency f=50 Hz. The DC-link current is 

iDC=-100 A (rectifier operation), and the DC-link voltage reference is *
DCV =1500 V. 

The modulation period and the sample period are Tm=0.2 ms (fm=5 kHz). 

 Two cases are analyzed, unity PF operation ( 0* =qI ) and non-unity PF operation 

( 0* ≠qI ). 
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Fig. 7.5. Three-level system to be controlled. 



JOSEP POU                                                                                          TECHNICAL UNIVERSITY OF CATALONIA 

 
CHAPTER 7: MULTIVARIABLE OPTIMAL CONTROL  Page 169 

 7.3.5.1. Unity PF Operation 

 Making the reference value of the reactive current equal zero, the system operates 

at unity PF. The variables at the operating point are ,1000VEe Ldss ==  ,0Veqss =  

AIi qqss 0* == , and VVv DCDCss 1500* == . The remaining values can be calculated by 

means of (2.37), as follows: 
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 After numerous simulations, the estimated best values for matrices Q and R are: 
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R .           (7.30) 

 These values provide very good performance of the system in terms of achieving 

smooth and short transitory responses and not very strong control actions. 

Solving the LQR problem for K obtains: 









−−−−

−
=

0.63230.01800.30273.1267 0.08610.03250.4733
0.04070.77353.84630.32745.11310.44030.0353

K .    (7.31) 

 This matrix provides all the values required for the LQR control diagram given in 

Fig. 7.4. 









=

0.03250.4733-
0.44030.0353

iK ,  







−−
−

=
0.30273.12670.0861

8463.30.32745.1131
xK ,      (7.32) 

and  







−

=
0.63230.0180
0.04070.7735

uK . 
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 The process starts in steady-state conditions where the load current is iDC=-100 

A. During the interval of time [ ]msms, 4020 , this current is perturbed, so that its value 

suddenly becomes -50 A. 

 Fig. 7.6(a) shows the total DC-link voltage (vDC), the voltages of the capacitors (vC1 

and vC2), the reactive current (iq), and the active current (id). Smooth peaks are 

produced in the voltages during current transitions. Additionally, the voltages of the 

capacitors are kept nearly equal, owing to proper selection of short vectors by the NTV 

modulation strategy. The system operates at unity PF since the reactive current is 

maintained near zero, even during transitions. 

 Utility phase voltages and currents are shown in Fig. 7.6(b). Since the conventional 

direction assigned to the currents is for inverter mode operation (Fig. 7.5), each current 

has a phase opposite to its respective phase voltage. Fig. 7.6(c) shows the trajectory 

of the current vector in the αβ representation. 
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Fig. 7.6. Simulated results for unity PF operation. 
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 7.3.5.2. Non-Unity PF Operation 

 When the system operates with non-zero reactive current (Iq*≠0), a significant NP 

voltage ripple may appear. Therefore, the feedforward modulation can be very useful 

to attenuate the effects of that oscillation. 

 Now, the same data values as in the previous section are used for the simulations, 

but the reactive current is AIi qqss 350* == . Therefore: 

,164.97
22

2*
*2

A
R

EIi
R

V
R

Ei L
qDCss

DCL
dss −=−−+






=  

VLIiREv qdssLdss 873.55* =−+= ω , and                           (7.33) 

. 16.83 * VRIiLv qdssqss −=+= ω  

 Using the same weight matrices Q and R (7.30) and solving the LQR problem for 

K yields: 









−−
−−

=
0.66220.02521.20092.7260 0.44450.20340.4169
0.05470.75195860.31.26904.97640.39470.2088

K .     (7.34) 

  Fig. 7.7 shows some waveforms for non-compensated modulation and 

feedforward modulation. The AC currents do not contain significant low-frequency 

distortion for feedforward modulation, since the αβ representation of those currents is 

clearly circular. 
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Fig. 7.7. Simulated results for non-zero reactive current. 
Left graphics: with non-compensated NTV modulation. 

Right graphics: with feedforward modulation. 
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7.3.5.3. Effects of NP Voltage Oscillation 

 One of the consequences of the NP voltage oscillation is the existence of low-

frequency distortion produced in the AC currents. Feedforward modulation can 

attenuate such distortion; however, when the converter controls the total DC-link 

voltage, it will be impossible to keep this voltage at a constant level. As a 

consequence, the controller will introduce oscillations in the references of the 

transformed currents, and accordingly, distortion in the AC currents. Therefore, 

feedforward modulation cannot completely avoid this distortion, since it is implicit in the 

current references given by the controller. This statement is demonstrated in the 

following.  

 
 

0 
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C 

C 
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iDC i2 
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ib 
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vDC 
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Fig. 7.8. Voltages and currents in the three-level system.  

 Assuming local averaged variables in the analysis, the instantaneous power at the 

DC side and the AC side of the converter is expressed by: 







+=++=

=

.
and

000 qqddccbbaaAC

DCDCDC

ivivivivivp
ivp

               (7.35) 

 If 100% efficiency is taking into account: 

CDCAC ppp ∆−= ,                                                  (7.36) 

in which Cp∆  is related to the variation of energy in the capacitors. This term can be 

expressed as follows: 

112)( iviiv
dt

d
p CDCDC

C
C −−==∆

ε
.                                  (7.37) 
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Case 1: The averaged NP current is zero ( 01 =i ). 

In this case, Cp∆  becomes: 

 
 

C 

C 

iDC i2 

vC2 

vC1 

vDC iDC-i2 dt
vdCviivp DC

DCDCDCC 2
)( 2 =−=∆ .                     (7.38) 

If the DC-link voltage is kept constant, Cp∆  is zero. Thus, in accordance with 

(7.36), the instantaneous power pDC and pAC are equal. Assuming constant iDC in the 

steady-state condition: 

.ctivpp DCDCDCAC ===                                      (7.39) 

As a result, the instantaneous power in the AC side is also constant. Therefore, 

the AC currents will not contain low-frequency distortion. In this case, the controller 

can achieve the constant DC-link voltage and the AC currents with no distortion 

simultaneously. 

Case 2: The averaged NP current is not constant ( 01 ≠i ). 

Assuming that the controller can achieve the constant DC-link voltage, the 

current in the upper capacitor becomes 2/1i . As a result, Cp∆  is: 

 
 

i1

C 

C 

iDC i2 

vC2 

vC1 

vDC 

i1/2 

i1/2 

 

1
1

11
1 2

22
i

dt
idCvivivp DC

CDCC 





 −=−=∆ .                  (7.40) 

In this case, DCp  and ACp  are not equal. Assuming constant DCi  in the steady-

state condition: 





≠=

==

.)(
and.

1 ctifp
ctivp

AC

DCDCDC                                       (7.41) 
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As a result, ACp  is not constant and the AC currents will contain low-frequency 

distortion. Thus, the controller cannot achieve the constant DC-link voltage and the 

non-distortion in the AC currents simultaneously. 

In conclusion, if the local averaged NP current is not zero, it is not possible to 

keep the constant DC-link voltage without introducing fluctuations in the 

instantaneous AC power (i. e., distortion in the AC currents). Therefore, although the 

simulated results obtained by feedforward modulation in the previous section show 

almost constant DC-link voltage and sinusoidal currents, it is impossible to completely 

achieve both objectives when the averaged NP current is not confined to zero. 

7.3.6. Experimental Results 

 The proposed LQR controller has been programmed in the DSP of the SMES 

system. The data used for the experimental results are R=0.1 Ω, L=0.5 mH, C=1650 

µF, EL= 60 V and frequency f=60 Hz. The reference values of the LQR control are 

AIq 0* =  and VVDC 100* = , and the sample and modulation periods are Ts=Tm= 50 µs 

(fs=20 kHz). The DC-link current is AiDC 4−=  (rectifier mode). Therefore, the values 

of the variables at the operating point are: 

,100,0,0,60 ** VVvAIiVeVEe DCDCssqqssqssLdss =======      (7.42) 

,7424.6
22

2*
*2

A
R

EIi
R

V
R

Ei L
qDCss

DCL
dss −=−−+






=  

V.LIiREv *
qdssLdss 325859=−+= ω , and 

.2709.1* VRIiLv qdssqss −=+= ω  

 In this case, the estimated best values for matrices Q and R are  





























=

1000000
0100000
00100000
000100000
000010000
0000010
0000001

Q         and        







=

10
01

R ,            (7.43) 



JOSEP POU                                                                                          TECHNICAL UNIVERSITY OF CATALONIA 

 
CHAPTER 7: MULTIVARIABLE OPTIMAL CONTROL  Page 177 

which results with the following components of matrix K: 









−

=
0124.04792.0
4820.00123.0

iK ,  







−−
−

=
3325.07957.51302.0
8447.121443.04488.6

xK ,       (7.44) 

and 







−

=
5826.00096.0
0090.05725.0

uK . 

  For the experimental results, the process starts with no load connected to the 

DC link. Then, turning on the switch in Fig. 7.9 a 25-ohm resistive load is connected. 

 Fig. 7.10 shows the DC-link voltage (vDC), a utility phase voltage (ea) and a phase 

current (ia). Fig. 7.11 also includes a line-to-line voltage of the converter (vab). The 

controller adjusts the amplitude of the AC currents to achieve constant DC-link 

voltage, and the phase of these currents is such that the system operates at unity PF. 

Besides, the LQR loop provides very good dynamic performance for the system in 

such a transitory process. 

 Fig. 7.12 shows the voltages of the DC-link capacitors (vC1, vC2) and the dq-

transformed currents (id, iq) during the connection and disconnection of the load. The 

variables are quickly stabilized after some smooth oscillation during the connection of 

the load. 

 All of the shown experimental results are also corroborated by simulation. 
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Fig. 7.9. System considered for the experimental results. 
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Fig. 7.10. DC-link voltage (vDC), a utility phase voltage (ea) and a phase current (ia) during the 

transitory process of turning the switch on. 
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Fig. 7.10. 
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7.4. Conclusions of the Chapter 

 In this chapter, an optimal multivariable controller is analyzed, which includes 

integral actuation and considers intrinsic delay of one modulation period in the control 

variables. A similar control diagram is used in [A50]; however, that approach 

performs NP-current control by means of the LQR loop itself. As a result, the model 

of the converter used for the control is more complicated, which eventually generates 

a matrix K of 3x10 elements instead of the matrix K of 2x7 elements obtained in the 

present approach. Additionally, the instantaneous NP current reference given by the 

controller to the modulation stage is not achieved due to nonlinear performance of 

the modulator. This nonlinearity is not considered in the LQR control loop; therefore, 

the NP current is not optimally controlled.  

 In this approach, the NP voltage balance is carried out by the modulation stage 

instead of the controller. Since the best NTVs are selected per each modulation 

period, “optimal” NP balancing results are achieved. 

 Simulated and experimental results validate very good dynamic and static 

performance of the system. Non low-frequency NP voltage oscillation practically 

appears when the converter operates as a boost rectifier with unity PF ( 0* =qI ). 

 When there is NP voltage oscillation due to non-unity PF ( 0* ≠qI ) operation, 

some simulated results show significant improvement in AC current distortion and 

DC-link voltage oscillation thanks to feedforward modulation. However, such 

improvements cannot completely avoid low-frequency distortion, as has been 

mathematically demonstrated. 
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