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(ABSTRACT)

Three-phase diode-clamped multilevel topologies are studied in this dissertation.
These static converters can generate three or more voltage levels in each output
phase, and are generally applied to high-power applications because of their ability to
operate with larger voltages than the classical two-level converter. The analysis is
mainly focused on the three-level topology, although there are also some
contributions for converters with a larger number of levels. The main objectives are to
propose new computationally efficient space-vector PWM modulation algorithms, to
analyze the imbalances in the DC-link capacitors and the compensation for their
effects, and to study advanced control loops. The results are obtained from different
models in order to guarantee conclusion reliability. Furthermore, most of the results
have been checked experimentally. The main contributions are summarized in the

following.

A new space-vector PWM scheme is presented. This algorithm takes advantage
of symmetry in the space-vector diagram in order to reduce processing time. The
low-frequency oscillation that appears in the neutral point of the three-level converter
for some operating conditions is analyzed and quantified. The information provided

will help for the calculation of the DC-link capacitors in a given specific application.

The modulation algorithm is extended to converters with more than three levels.
DC current components appear in the mid points of the DC-link capacitors for some
operating conditions that make the system unstable. The unstable operating area of

the four-level converter is revealed.

A novel and efficient space-vector PWM feedforward algorithm in the three-level
converter is presented. This modulation strategy can achieve balanced AC output

voltages despite any imbalance in the neutral point.



The negative effects of unbalanced linear loads and nonlinear loads on the
neutral-point voltage balance are analyzed. A direct sequence of fourth-order
harmonics in the AC currents can produce instability. The maximum allowed

amplitude of these harmonics is shown.

Significant voltage-balancing improvements can be obtained when two
converters are connected back-to-back. The limits in which the low-frequency
neutral-point oscillation in the three-level converter can be removed are revealed. A
practical example of this connection is the AC/DC/AC conversion used in motor drive

applications able to operate with unity power factor.

Finally, an optimal multivariable control loop is applied to a three-level boost
rectifier. Since the task of balancing voltages of the DC-link capacitors is assigned to

the modulator stage, the linear quadratic regulator has been simplified.
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List of Abbreviations and Acronyms

A/D: analog-to-digital (converter)

AC: alternating current

AVG: average

CLK: clock

CPES: Center for Power Electronics Systems

CMOS: complementary metal-oxide-silicon (transistor)
D/A: digital-to-analog (converter)

DC: direct current

DEE: Department of Electronic Engineering

DSP: digital signal processor

EMI: electromagnetic interference

EPE: European conference on Power Electronics and applications
EPLD: erasable and programmable logic device
GTO: gate turn-off thyristor

HVDC: high-voltage direct current

IEEE: Institute of Electrical and Electronics Engineers
IGBT: insulated gate bipolar transistor

IRQ: interrupt request

LQR: linear quadratic regulator

MAX: maximum

MIN: minimum

MIMO: multi-input multi-output (system)

MIPS: million of instructions per second

MP: mid point

MSPS: million of samples per second

MUX: multiplexor

NP: neutral point

NPC: neutral-point-clamped (converter)

NTV: nearest-three-vector (modulation)

PEBB: power electronics building block

PEDS: Power Electronics and Drive Systems

PEMC: Power Electronics and Motion Control

PESC: Power Electronics Specialists Conference

PF: power factor

PH: phase

PI: proportional integral

PIEMC: Power Electronics and Motion Control conference
PLL: phase-locked loop

PROM: programmable read only memory

PWM: pulsewidth modulation
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RMS: root mean square

SAAEI: Seminario Anual de Automatica, Electronica industrial e Instrumentacion
S/H: sample and hold

SMES: superconducting magnetic energy storage
SPWM: sinusoidal pulsewidth modulation

SV: space vector

SVM: space-vector modulation

SV-PWM: space-vector pulsewidth modulation
UPC: Universitat Politécnica de Catalunya

UPS: uninterruptible power system

USA: United States of America

VA: Virginia

VAR: volt-ampere reactive

VSI: voltage-source inverter

ZCT: zero-current transition
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Terminology

Glossary of Generic Terms
dyx: duty cycle

I, : current amplitude of the x-order harmonic

icx: current thought a capacitor

Im(X): imaginary part of x

ix: mid current in the x-point of an n-level converter (x={1, 2, 3, ..., n-1})
p, : vector projection

Re(X): real part of x

U =[1 11 - 17;in which x is the number of ones

Vex: Voltage of a DC-link capacitor (x={1, 2, 3, ..., n-1})

X : generic vector

|X|, x : vector norm or length of vector x

x;: input variables of the back-to-back connection
Xo: output variables of the back-to-back connection
x : local-averaged variable

small-signal variable

X:
X : vector (or matrices) of a state-space-formulated system that includes the control
loop

X~": inverse of square matrix X

X' : transpose of matrix X

X, jy ;1 x j matrix

X' : reference value

X: amplitude of a sinusoidal variable
Xgus - RMS value of a periodic waveform
X(k): sampled variable at period k
X(k): sampled vector at period k

x(t): time-dependent variable

x(t): time-dependent vector

X, - steady-state value of a variable
X, : rotating coordinate variables

X, : rotating coordinate matrices

[X,, X,]: closed interval X, < x < X,
6: angle
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Glossary of Particular Terms and Definitions
2
G=¢ 3
A, B, C and D: matrices of the linear state-space representation of a system
A, By, Cyand Dy matrices of the discrete state-space representation of a system
C: capacitor
Cr. floating capacitor
e,, e, and e, : utility phase voltages

€4, €, and e, : dq transformed utility phase voltages

.
e,=le, e €.

ph

T T
€, = [eab €hc eca] = [ea —€, €6,—€6 € _ea]

E;: RMS line-to-line utility voltage

f: line frequency

fm: modulation frequency

fs: sample frequency and switching frequency

fs mean: Mean switching frequency. Complete turn-on and turn-off cycles in the total
switches of the NPC divided by 12.

G: parameter related to the quadratic error of the voltages in the DC-link capacitors
I: unit matrix
i,, i, and i, : phase currents in the AC side of a converter

Iapy Ipp @Nd i, positive sequence of currents

i and i, : negative sequence of currents

an? Ibn

i0» In @Nd i, : zero sequence of currents

ao’
. . . . 1T

Ion :[Ia Ip Ic]

. . . . T . . . . . 1T
U :[Iab Ibe Ica] :[Ia_lb Ip = 1¢ Ic_la]
iy, iy and i, : dq transformed phase currents

. . . T

lig = [’d Iq]

T T T 71T . .

iyp = [/n_2 Ipg = /1] ; local-averaged mid-point currents

i1min - MiNimum local-averaged NP current

I1ayq : @verage NP current over a line period

| : current amplitude (fundamental)
Irys : RMS value of the phase currents of the converter (fundamentals)

J: LQR quadratic performance index
K: LQR optimal solution matrix
L: inductance

m: modulation index (in the case of linear modulation m = \7LL/VDC and 0<m<1)
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(mg, my): normalized components of the reference vector in the non-orthogonal gh
axes

(my, m,): normalized components of the equivalent reference vector in the first
sextant in the non-orthogonal gh axes

(m'y, m',): components of the equivalent reference vector in the first sextant in the

non-orthogonal gh axes
(Moy1, Moy, ) - Nnormalized components of the equivalent reference vector in the first
sextant in the non-orthogonal gh axes for overmodulation mode

My =2—my—m,

m : reference vector

m,,: normalized reference vector

V3

m, =——(n—-1)m; amplitude of the normalized reference vector

n

M, Q and R: hermitic weighting matrices positively defined for evaluation of the
parameter J in the LQR

n: number of available voltage levels in each leg of a multilevel converter. This
number typifies an n-level converter

N: neutral-point of a three-phase star-connected load. Also, last sample of a discrete
sequence in the definition of the parameter J in the LQR
p: instantaneous power
R: electrical resistance
o , 1 if i is connected to j, and
sj: switching function, Sj = .
0 otherwise.
1 if the reference vector lies in sextant x, and

s, - sextant function, s, = {0 therwi
otherwise.

S : interchanging matrix that depends on sextant functions

S; = quST ; transformed interchanging matrix that depends on sextant functions
t: time

T: line period

Tm: modulation period

T4, : dq transformation or park transformation

u: input vector or control variables in the state-space representation
V.0, Vo @nd v, : output voltages of a multilevel converter refereed to the lower DC-
link voltage

T
Vph:[VaO Voo Vool

T
Vc=[VC(n—1) Ve-2) Vc1]

T
Vea =[Ver Vel

Ve - total DC-link voltage as a variable (in modeling and controlling sections)
Vpc: constant or rated total DC-link voltage
Vpe1: voltage source applied to the lower DC-link capacitor
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Vbez: voltage source applied to the upper DC-link capacitor

VLL : line-to-line voltage amplitude

vao: neutral voltage of a star-connected load refereed to the lower DC-link level
x: state vector in the state-space representation

y: output vector in the state-space representation

o, [ orthogonal axes in a two-dimensional representation

/ : : :
B =—FMS_- nondimensional balancing parameter

fCVpe
v = Ye1 . parameter for the imbalance in the lower DC-link capacitor
Vpe /2
Vo = VVC§2 ; parameter for the imbalance in the upper DC-link capacitor
DC

de
Ape = —C: total instantaneous power in the DC-link capacitors
¢ dt

VDC

Avg =V — , ; voltage error in a DC-link capacitor

Av,p . low-frequency peak-to-peak NP voltage ripple

AVpp, = AVi; normalized low-frequency peak-to-peak NP-voltage ripple

Irms /TC
& - total electric energy stored in the DC-link capacitors

6, : angle of the normalized reference vector (first sextant)

: initial angle

6, : rotating coordinated angle of the dq transformation

n . efficiency

@, ¢,: current phase angle refereed to the voltage phase angle (fundamentals)
w = 2r f; angular frequency
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