

Universitat Politècnica de Catalunya Departament d'Enginyeria Elèctrica

TESIS DOCTORAL

APORTACIONES AL ESTUDIO DE LAS MAQUINAS ELÉCTRICAS DE FLUJO AXIAL MEDIANTE LA APLICACION DEL METODO DE LOS ELEMENTOS FINITOS

Eduardo Frías Valero Ingeniero Industrial Año 2.004 PACINA MILLIAN PACINA

	JDIO DE LAS MAQUINAS ELECTRICAS DE FLUJO AXIAL MEDIANTE LA DO DE LOS ELEMENTOS FINITOS.
Tesis Doctoral realizada po en Ingeniería Industrial.	or Eduardo Frías Valero, Ingeniero Industrial, para optar al Grado de Doctor
Dirigida por el profesor Dr.	. Ricard Bosch Tous.
	VERSITAT POLITÈCNICA DE CATALUNYA. Departament d'Enginyeria etrica.
Baro	celona, septiembre de 2.004.

PACINA MILLIAN PACINA

INDICE.

1.	SUMARIO.	9
2.		11
2.1.		16
2.2.	MÁQUINAS LINEALES Y MÁQUINAS DE FLUJO AXIAL.	18
2.2.1.	PRIMERAS DIFERENCIAS MÁQUINA ROTATIVA - MÁQUINA LINEAL Y AXIAL.	18
2.2.2.	EFECTOS ESPECIALES EN MÁQUINAS LINEALES Y AXIALES.	19
2.2.2.	1. EFECTO DE LONGITUD FINITA.	19
2.2.2.	2. EFECTO DE ANCHURA FINITA.	19
2.2.2.	3. EFECTO DE PENETRACIÓN.	21
2.2.2.	4. EFECTO LEVITACIÓN.	21
2.3.	ELEVACIÓN DE LAS F DE TRABAJO Y CAMBIO DE MATERIALES CONSTRUCTIVOS.	22
2.4.	CLASIFICACIÓN DE LAS MÁQUINAS DE FLUJO AXIAL.	24
3.	LA MAQUINA DE FLUJO AXIAL. PARAMETROS DE DISEÑO	30
3.1.	SOLUCIÓN ANALÍTICA DE LAS ECUACIONES DE LA MÁQUINA DE INDUCCIÓN.	30
3.2.	JUSTIFICACIÓN DE LA MÁQUINA DE FLUJO AXIAL.	34
3.2.1.	DENSIDAD DE POTENCIA DE LA MÁQUINA AXIAL.	34
3.2.2.		35
3.2.3.	INFLUENCIA DEL NÚMERO DE POLOS EN EL PAR Y EL RENDIMIENTO.	39
3.2.4.	ECUACIÓN DIMENSIONAL DE LA MÁQUINA GENERAL.	42
3.2.5.	ECUACIÓN DIMENSIONAL DE LA MÁQUINA DE INDUCCIÓN.	45
3.2.6.		46
3.3.		47
3.3.1.		48
3.3.2.		57
3.3.3.	ESTIMACIÓN DE PÉRDIDAS DE LA MÁQUINA.	60
3.4.		62
3.4.1.		62
3.4.2.		64
		65
3.5.		68
3.6.		72
3.6.1.		74
3.6.2.	REDUCCIÓN DE ARMÓNICOS DE PAR EN MÁQUINAS AXIALES DE IMANES PERMANENTES.	77
		83
3.7.1.		83
3.7.2.		84
3.7.3.		85
4.	APLICACIONES DE LA MÁQUINA DE FLUJO AXIAL. ESTADO DEL ARTE	86
4.1.	EL COCHE ELÉCTRICO	87
4.1.1.	CARACTERÍSTICAS DE LA TRACCIÓN EN AUTOMÓVILES	87
4.1.2.		89
4.1.3.		92
4.1.4.		94
4.1.5.		97
		99

Eduardo Frías Valero Departamento de Ingeniería Eléctrica. UPC. Año 2.004

4.2.1. CARACTERÍSTICAS DE LOS ASCENSORES	99
4.2.2. CARACTERÍSTICAS DE LA MÁQUINA Y DRIVERS	100
4.3. AEROGENERADORES	103
4.3.1. APLICACIÓN DE MÁQUINAS AXIALES A LOS GENERADORES	103
4.3.2. CARACTERÍSTICAS DE DISEÑO	104
4.4. APLICACIONES NAVALES	106
4.5. APLICACIONES AERONÁUTICAS	108
4.6. GRUPOS ELECTRÓGENOS	109
5. EL METODO DE LOS ELEMENTOS FINITOS (MEF Ó FEM).	111
5.1. EL MÉTODO GENERAL.	111
5.1.1. DEFINICIÓN DEL MÉTODO.	111
5.1.2. APLICACIÓN DEL MÉTODO.	111
5.1.3. FUNCIONES DE FORMA.	114
5.1.3.1. PROPIEDADES DE LAS FUNCIONES DE FORMA.	114
5.1.3.2. CRITERIO DE LA PARCELA.	115
5.1.3.3. TIPOS DE FUNCIONES DE FORMA.	115
5.1.4. INTEGRACIÓN NUMÉRICA.	117
5.1.5. ESTIMACIÓN DEL ERROR Y MALLADO ADAPTATIVO.	120
5.1.5.1. ESTIMACIÓN DEL ERROR.	121
5.1.5.2. MALLADO ADAPTATIVO.	122
5.1.6. PASOS A SEGUIR EN EL CÁLCULO MEF. FUNCIONAMIENTO DE UN PROGRAMA DE	
ELEMENTOS FINITOS.	123
5.2. EL MEF APLICADO AL ELECTROMAGNETISMO.	124
5.2.1. ECUACIONES DE PARTIDA.	124
5.2.2. MÉTODOS DE RESOLUCIÓN POR EL MEF.	126
5.2.3. SOLUCIÓN EMPLEANDO EL POTENCIAL ESCALAR MAGNÉTICO.	127
5.2.3.1. ESTRATEGIA RSP.	128
5.2.3.2. ESTRATEGIA DSP.	128
5.2.3.3. ESTRATEGIA GSP.	129
5.2.4. SOLUCIÓN EMPLEANDO EL POTENCIAL VECTOR MAGNÉTICO.	130
5.2.5. MÉTODO DE RESOLUCIÓN DE CAMPOS ELECTROSTÁTICOS. POTENCIAL ESCALAR	
ELÉCTRICO.	131
5.2.6. MATRICES DE PARÁMETROS ELECTROMAGNÉTICOS.	131
5.2.6.1. EMPLEANDO EL POTENCIAL ESCALAR MAGNÉTICO.	131
5.2.6.2. EMPLEANDO EL POTENCIAL VECTOR MAGNÉTICO.	132
5.2.6.3. EMPLEANDO EL POTENCIAL ESCALAR ELÉCTRICO.	135
5.2.7. MAGNITUDES RESULTANTES.	135
5.2.7.1. RESULTADO OBTENIDO POR EL MÉTODO DEL POTENCIAL ESCALAR MAGNÉTICO.	135
5.2.7.2. RESULTADO OBTENIDO POR EL MÉTODO DEL POTENCIAL VECTOR MAGNÉTICO.	136
5.2.7.3. CÁLCULO DE FUERZAS.	137
5.2.7.4. CÁLCULO DE PÉRDIDAS POR EFECTO JOULE.	139
5.2.7.5. Fuerzas electrostáticas.	140
5.2.8. FUNCIONES DE FORMA. EL ELEMENTO ANSYS SOLID 117.	140
5.2.8.1. Elemento bidimensional de 8 nodos.	140
5.2.8.2. ELEMENTO TRIDIMENSIONAL DE 20 NODOS.	141
6. MODELOS ANALIZADOS.	145
6.1. PROTOTIPOS DESARROLLADOS EN EL DEE.	145
6.2. DESCRIPCIÓN DEL MODELO TRIDIMENSIONAL.	147
6.3. RECURSOS EMPLEADOS.	154
6.3.1. EQUIPO.	154

Eduardo Frías Valero Página 6 de 352

6.3.2. REFERENCIAS DE SIMULACIONES MEF.	155
6.4. ELEMENTOS Y MALLADO DE LOS MODELOS.	156
6.4.1. ELEMENTOS EMPLEADOS EN EL MALLADO.	156
6.4.2. MALLADO DEL SEMIESTÁTOR.	157
6.4.3. MALLADO DEL DEVANADO INDUCTOR.	159
6.4.4. MALLADO DEL RÓTOR.	160
6.4.5. MALLADO DEL AIRE.	161
6.5. CONDICIONES DE CONTORNO.	163
7. RESULTADOS.	165
7.1. CONSIDERACIONES PREVIAS.	165
7.1.1. ELEMENTOS EMPLEADOS EN LA DISCRETIZACIÓN Y CONDICIONES DE SIMETRÍ.	A. 165
7.1.2. MÉTODO DE RESOLUCIÓN EMPLEADO.	166
7.2. RESULTADOS SIMULACIÓN MÁQUINA 20 PARES DE POLOS.	167
7.2.1. VALORES PARA S=0.05 Y VARIACIÓN DE F	169
7.2.2. VALORES PARA F=50HZ Y VARIACIÓN DE S	175
7.2.3. VALORES PARA F=100 HZ Y VARIACIÓN DE S	179
7.2.4. VALORES PARA F=300 HZ Y VARIACIÓN DE S	184
7.2.5. VALORES PARA F=500 HZ Y VARIACIÓN DE S	189
7.2.6. VALORES PARA F=1000 HZ Y VARIACIÓN DE S	192
7.2.7. VALORES PARA F=3000 HZ Y VARIACIÓN DE S	197
7.3. COMENTARIO Y ANÁLISIS DE LOS RESULTADOS.	202
7.3.1. VARIACIÓN DE F MANTENIENDO EL DESLIZAMIENTO DEL RÓTOR S=0.05.	202
7.3.2. VARIACIÓN DE DESLIZAMIENTO A LA FRECUENCIA DE 50 HZ.	203
7.3.3. VARIACIÓN DE DESLIZAMIENTO A LA FRECUENCIA DE 50 112.	204
7.3.4. VARIACIÓN DE DESLIZAMIENTO A LA FRECUENCIA DE 300 1 3000 HZ.	205
7.3.5. VARIACIÓN DE DESLIZAMIENTO A LA PRECUENCIA DE 1000 HZ.	205
7.3.6. ANÁLISIS DE CONJUNTO.	203
7.4. RESULTADOS EXPERIMENTALES.	200
7.4. RESULTADOS EXPERIMENTALES. 7.4.1. MÁQUINA RB-3.	207
7.4.1. MAQUINA RB-3. 7.4.2. MÁQUINA DASER.	207
7.4.2. MAQUINA DASER.	209
8. CONCLUSIONES Y FUTURAS LINEAS DE TRABAJO	210
8.1. CONCLUSIONES	210
8.2. FUTURAS LÍNEAS DE TRABAJO.	212
A. APENDICE. RESULTADOS GRÁFICOS DE LA MÁQUINA DE 20 PARES DE POLOS.	213
A.1.1. BARRIDO DE FRECUENCIAS DE LAS CORRIENTES ESTATÓRICAS (FE) DE 50 HZ	A 3.000HZ
PARA UN DESLIZAMIENTO S=0.05.	213
A.1.1.1. $FE=50Hz - FR=2.375Hz.$	213
A.1.1.2. $FE=100Hz - FR=4.75Hz.$	216
A.1.1.3. $FE=200Hz - FR=9.5Hz$.	220
A.1.1.4. FE=300Hz - FR=14.25Hz.	224
A.1.1.5. $FE=500Hz - FR=23.75Hz$.	228
A.1.1.6. $FE=1000Hz - FR=47.5Hz$.	229
A.1.1.7. FE=2000Hz - FR=95Hz.	233
A.1.1.8. FE=3000Hz - FR=142.5Hz.	237
A.1.1.9. FE=4000Hz - FR=190Hz.	241
A.1.1.10. FE=5000Hz - FR=237.5Hz.	245
A.1.2. COMPORTAMIENTO DEL MOTOR A UNA FE DE 50 HZ, AL VARIAR EL DESLIZAM	IENTO DE
S=0.05 HASTA S=0.999	249
A.1.2.1. $S=0.05 - FR=2.375Hz$.	249

Eduardo Frías Valero Página 7 de 352

A.1.2.2.	S=0.10 - FR=2.25HZ	249
A.1.2.3.	S=0.20 - $FR=2HZ$	252
A.1.2.4.	S=0.40 - FR=1.5HZ.	256
A.1.2.5.	S=0.50 - FR=1.25HZ.	259
A.1.2.6.	S=0.60 - FR=1HZ.	262
A.1.2.7.	S=0.999 - FR=0.0025HZ.	265
A.1.3.	COMPORTAMIENTO DEL MOTOR A UNA FE DE 100 HZ, AL VARIAR EL DE	SLIZAMIENTO DE
s=0.05 н	ASTA S=0.999.	268
A.1.3.1.	S=0.05 - FR=4.75HZ.	268
A.1.3.2.	S=0.20 - FR=4HZ.	268
A.1.3.3.	S=0.50 - FR=2.5HZ.	272
A.1.3.4.	S=0.999 - FR=0.005HZ.	276
A.1.4.	COMPORTAMIENTO DEL MOTOR A UNA FE DE 300 HZ, AL VARIAR EL DE	SLIZAMIENTO DE
s=0.05 н	ASTA S=0.999.	280
A.1.4.1.	S=0.05 - FR=14.25HZ.	280
A.1.4.2.	S=0.20 - $FR=12HZ$.	280
A.1.4.3.	S=0.50 - FR=7.5HZ.	284
A.1.4.4.	S=0.999 - FR=0.015HZ.	288
A.1.5.	COMPORTAMIENTO DEL MOTOR A UNA FE DE 500 HZ, AL VARIAR EL DE	SLIZAMIENTO DE
s=0.05 н	ASTA S=0.999.	291
A.1.5.1.	S=0.05 - FR=14.25HZ.	291
A.1.5.2.	S=0.20 - $FR=20HZ$.	291
A.1.5.3.	S=0.50 - FR=12.5HZ.	295
A.1.5.4.	S=0.999 - FR=0.025HZ.	299
A.1.6.	COMPORTAMIENTO DEL MOTOR A UNA FE DE 1000 HZ, AL VARIAR EL DI	ESLIZAMIENTO
DE S=0.0	5 HASTA S=0.999.	302
A.1.6.1.	S=0.05 - FR=47.5HZ.	302
A.1.6.2.	S=0.20 - FR=40HZ.	302
A.1.6.3.	S=0.50 - FR=25HZ.	306
A.1.6.4.	S=0.999 - FR=0.05HZ.	310
A.1.7.	COMPORTAMIENTO DEL MOTOR A UNA FE DE 3000 HZ, AL VARIAR EL DI	ESLIZAMIENTO
DE S=0.0	5 HASTA S=0.999.	314
A.1.7.1.	S=0.05 - FR=95HZ.	314
A.1.7.2.	S=0.20 - $FR=120HZ$.	314
A.1.7.3.	S=0.50 - FR=75HZ.	318
A.1.7.4.	S=0.999 - FR=0.15HZ.	321
BIBLIO	GRAFIA.	322
INDICE	DE FIGURAS.	338
INDICE	DE SIMBOLOS.	347

Eduardo Frías Valero Página 8 de 352