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ABSTRACT 

Landsliding is an important problem when facing the design, construction and 
operation of dams and reservoirs. Impoundment of the slope toes as well as the rapid 
drawdown may trigger the movement of first-time landslides or reactivate ancient 
landslides often located in reservoir sites. This Thesis deals with the particular case of 
landslides around reservoirs defined as a mobilized mass that slides on a well-defined 
shearing surface without experiencing a major degradation.  

In the first part of the Thesis the mechanism of rapid drawdown is discussed as a 
fully coupled flow-deformation problem for saturated/unsaturated conditions.  

Additional risk appears when landslide accelerates and is able to enter the reservoir 
at high speed creating impulsive waves. The discussion on the different phenomena 
leading to the fast acceleration is today very active. Probably the lack of well-
documented cases makes the advancement of knowledge difficult. The mechanism to 
explain the rapid acceleration of landslides favoured in this Thesis is based on thermal 
effects on the sliding surface that induce the generation of pore water pressure and 
therefore, the reduction of the frictional strength. The governing equations (mass and 
heat balance equations and constitutive equations) formulated in the shear band have 
been written and integrated together with the motion equation of the slide. With the 
aim of finding practical criteria to decide the actual risk of slide acceleration due the 
phenomena analysed, a closed-form solution has been obtained for the case of planar 
landslides under the hypothesis of incompressible water, solid particles and porous 
media. For a rational range of the most relevant parameters, comparison between 
analytical and numerical (relaxing the assumptions introduced in the analytical 
development) solutions shows a remarkable similarity and reveals that the closed-form 
solution is accurate enough for practical applications.  

The thermo-hydro-mechanical approach discussed is applied in the case of Vaiont 
landslide. The stability of this landslide before the failure is first discussed by means of 
a simple explanation introducing the internal strength of the mobilized rock. The 
analysis is consistent with the available data (slide geometry, residual strength, material 
properties and laboratory tests). When the self-feeding mechanism of pore pressure 
generation due to heat resulting from the frictional work is introduced in the dynamic 
analysis of the Vaiont model, the high velocity actually observed is predicted.  

Sensitivity and scale analysis have been performed for the case of a planar landslide 
and for the geometry of Vaiont. Three parameters have been found important to 
explain the acceleration of the motion: the thickness of the shearing band, its 
permeability and its stiffness. In fact, permeability and thickness can be related since 
both depend on the particle size distribution. Calculated results indicate that the 
permeability of the shear band is a key parameter. A threshold of permeability 
established around 10-8 to 10-10 m/s marks the transition for a potentially risky slide 
(when the permeability is lower) to a safe one (for higher values of permeability).  



For very large landslides, critical combinations of band permeability and band 
thickness result in a substantial increase in temperature. At high calculated values of 
temperature (hundreds or even thousands of ºC), the analysis presented is not 
applicable. Evaporation or advance constitutive equations including rock melting 
should be included.  

In a final chapter a recent large landslide located in Canelles reservoir is analyzed. 
The slide is regarded as a potential risk for the operation of the dam and the reservoir. 
Some of the developments made in the Thesis, namely the solution of rapid drawdown 
and the thermal coupled model for fast landsliding, are applied to Canelles. The 
chapter describes the methodology adopted which can be applied in similar cases.  

 

 



RESUMEN 
La ocurrencia de deslizamientos es uno de los principales problemas presentes 

durante el diseño, construcción y explotación de presas y embalses. La inundación del 
pie de los taludes, así como el desembalse rápido, pueden provocar primeras roturas o 
reactivar antiguos deslizamientos, existentes con frecuencia en el entorno de los 
embalses. Esta Tesis se centra en el caso particular de los deslizamientos en las 
márgenes de embalses en los que una masa de terreno desliza sobre una superficie de 
corte bien definida sin que se observe una intensa degradación del material movilizado.  

En la primera parte de la Tesis se discute el desembalse rápido como un problema 
acoplado de flujo y deformación en condiciones saturadas/no saturadas.  

Un riesgo adicional aparece cuando el deslizamiento acelera e invade el embalse a 
gran velocidad, generando una ola. La discusión de los fenómenos responsables de la 
aceleración de los deslizamientos sigue actualmente activa. Probablemente la falta de 
casos bien documentados dificulta el avance en su conocimiento. En esta Tesis se 
considera como fenómeno responsable de la aceleración del deslizamiento el efecto del 
calor en la banda de corte, lo que induce la generación de presión de agua y, por 
consiguiente, la reducción de la resistencia friccional. Se definen las ecuaciones del 
problema (balance de masa y calor y ecuaciones constitutivas) en la banda de corte y se 
integran junto a la ecuación del movimiento. Con objeto de encontrar criterios 
prácticos para cuantificar el riesgo de aceleración debido al fenómeno analizado, se ha 
obtenido una solución analítica para el caso de deslizamientos planos bajo las hipótesis 
de incompresibilidad del agua, partículas sólidas y medio poroso. La comparación entre 
la solución analítica y la numérica (sin considerar las hipótesis impuestas en el 
desarrollo analítico), cuando se varían los parámetros más relevantes dentro de un 
rango razonable, indica que la solución analítica es suficientemente precisa para 
aplicaciones prácticas.  

El desarrollo termo-hidro-mecánico presentado se aplica al caso del deslizamiento 
de Vaiont. En primer lugar se explica la situación de estabilidad previa a la rotura 
introduciendo la resistencia de la roca movilizada. El análisis es coherente con la 
información disponible (geometrías del deslizamiento, resistencia residual, propiedades 
de los materiales y ensayos de laboratorio). Cuando el mecanismo de generación de 
presión de agua debido al calor resultante del trabajo friccional se incluye en el análisis 
dinámico del modelo del deslizamiento de Vaiont, se predice bien la alta velocidad 
observada.  

Se han realizado análisis de sensibilidad y de efecto escala tanto para el caso de 
deslizamiento plano como para la geometría de Vaiont. Se han encontrado tres 
parámetros relevantes para explicar la aceleración del movimiento: el espesor de la 
banda de corte, su permeabilidad y su rigidez. De hecho, la permeabilidad y el espesor 
de la banda de corte están directamente relacionados dado que ambos dependen de la 
granulometría del material. Los resultados obtenidos indican que la permeabilidad de la 
banda es el parámetro clave. Un umbral de permeabilidad establecido entre  10-8 y 10-10 

 



m/s, marca la transición entre deslizamientos potencialmente acelerados (cuando la 
permeabilidad es baja) y deslizamientos seguros (permeabilidades mayores a 10-10 m/s).  

En el caso de deslizamientos de grandes dimensiones, combinaciones críticas de la 
permeabilidad y espesor de la banda de corte resultan en un incremento substancial de 
la temperatura. Los altos valores resultantes de los cálculos (cientos o miles de ºC) 
invalidan el análisis aquí presentado. Fenómenos como la evaporación o la fusión de la 
roca deberían ser incluidos en estos casos.  

En el último Capítulo se analiza el deslizamiento de Canelles ocurrido 
recientemente. El deslizamiento pone en riesgo el buen funcionamiento de la presa y 
del embalse. Algunos de los desarrollos descritos en la Tesis, como son la solución del 
desembalse rápido y el modelo termo-hidro-mecánico para el análisis de la aceleración 
de los deslizamientos se han aplicado al caso de Canelles. El capítulo describe la 
metodología adoptada, que puede ser aplicada en casos similares.  
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CHAPTER 1 

Introduction and Organization of the Thesis 

1.1 INTRODUCTION  
In the design, construction and operation of dams and reservoir sites, instabilities 

of banks and ancient landslides by reservoir impoundment are one of most important 
issue to face. Most of dams and reservoirs are located in natural valleys frequently 
resulting from fluvial or glacial erosion whose banks are potentially instable and there 
is a high risk that engineering projects activate or reactivate landslides. In addition, it is 
common to find valleys whose geologic structure is a syncline involving stratification 
layers parallel or subparallel to the topographic slope. This situation favours the 
motion of landslides into reservoirs. In these cases, potential sliding planes are 
generally located in layers that exhibit smaller shear strength than the surrounding 
strata.   

There is a wide variety of landslides depending on the materials involved, 
morphology, rate of movement, triggering mechanism and type of run-out. Several 
authors have work on their definition and classification (Nemcok, 1972; Varnes, 1978; 
Hutchinson, 1988, among others). A European classification used by Dikay et al., 
(1996) distinguished between: 

- Fall, that usually denotes the free-fall movement of material from a steep slope or 
cliff; 

- Topple, which is very similar to a fall in many respects, but normally involving a 
pivoting action rather than complete separation at the base of the failure; 
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- Slide, in which a mass moves over a well-defined failure surface where relative 
displacements are concentrated; 

- Lateral spreading, characterized by the low-angle slopes involved and its unusual 
form and rate of movement; 

- Flow, that behaves as a fluidised mass in which water or air are significantly 
involved; 

- Complex, which involves changes of behaviour during downslope motion. It may 
be described by two or more of the previously described movements.  

The work presented in this Thesis focuses on the third group of movements: slides 
that move with a relatively light degradation of the mobilized body. In particular, the 
Thesis concentrates on landslides around reservoirs or rivers.   

1.1.1 Direct implication of reservoir operation  
Reservoir operation implies two unfavourable effects for the stability of banks and 

slopes:  

(a) The submergence of the toe of a potential landslide 

(b) The rapid drawdown condition 

 

Figure 1.1 Slope partially submerged.  

Regarding the first point, considerer in Figure 1.1 a slope partially submerged. The 
groundwater profile will be affected by the position of the reservoir water level 
whether the slope is fed by the stored water or the opposite. Considerer a potential 
failure surface and the horizontal free water level within the slope indicated in the 
Figure 1.1. This particular case results in hydrostatic profiles of pore water pressure 
associated to a stationary state due to reservoir level. The progressive inundation of the 
toe of the slope implies an increment of pore water pressure acting along the sliding 
surface that contributes to reduce the effective stress and therefore, to reduce the 
frictional strength. This reduction of effective stress is partially compensated by a total 
stress increment due to the load of the water weight against the slope surface. This 
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total stress increment along the sliding surface can not be easily calculated. However, 
given the geometry of the failure surface and the slope, it can “a priori” be estimated 
that pore water increment may not be completely compensated by the increase in total 
stress induced by water loading on the exposed surface and, therefore, a reduction of 
the effective stress takes place. Under these conditions, resisting forces decrease. 
However, this negative effect may be compensated by the beneficial increment of the 
hydrostatic forces acting on the exposed slope, which oppose the slide motion.   

 

Figure 1.2 Evolution of safety factor (Morgenstern − Price method) when the water level in the 
reservoir increases. hw: water level above the elevation of the exit point of the sliding surface. 
H: maximum value of hw, when the entire slope is submerged. Case (a): geometry of Vaiont 

and (c′ = 0; ′ϕ = 12º); Case (b): geometry modified from Case (a) and (c′ = 0; ′ϕ  = 15º); Case 
(c): conventional slope and circular failure surface (c′ = 0; ′ϕ = 30º). 

In fact, the resulting changes of safety factor, when the external level changes 
depend on a number of factors, including slope and failure surface geometry. More will 
be said on this topic when analyzing reservoir drawdown in Chapter 2. The interesting 
result is that a minimum safety factor is typically calculated for an intermediate water 
level. Consider the simple case represented in Figure 1.2. The three cases shown were 
solved by means of a commercial slope stability program for soil slopes (GEO-SLOPE 
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2004 developed by GEO/SLOPE International Ltd. Calgary, Alberta, Canada). The 
Morgenstern-Price method (Morgenstern and Price, 1965) has been used. In all cases, 
the distribution of pore pressure inside the slide follows a horizontal water table and 
no suction effects have been considered. Minimum safety factors are obtained when 
water level reaches a value varying between 1/3 to 1/2 of the slope height. Note that 
slopes with a lower planar or sub-planar failure surface (cases “a” and “c” in Fig. 1.2) 
are especially sensitive to submerging the toe if compared with a failure surface dipping 
in the direction of the slope itself (case “b”).  

The second critical situation met during reservoir operation, rapid drawdown, is a 
classical scenario in slope stability, which arises when totally or partially submerged 
slopes experience a reduction of the external water level. This is a common situation in 
riverbanks, subjected to changing river levels. Flooding conditions are critical in this 
case because river levels reach peak values and the rate of decreasing water level tends 
to reach maximum values also.  

Rapid drawdown conditions have been extensively analysed in the field of dam 
engineering because reservoir water levels fluctuate widely due to operational reasons. 
Drawdown rates of 0.1 m/day are common. Drawdown velocities of 0.5 m/day are 
quite significant. One meter/day and higher rates are rather exceptional. However, 
reverse pumping storage schemes or dam flow discharges when reservoir level is low 
may lead to such fast water level changes in reservoir levels.  

Sherard et al. (1963) in their book on earth and earth-rock dams describe several 
upstream slope failures attributed to rapid drawdown conditions. Interestingly, in most 
of the reported failures the drawdown did not reach the maximum water depth but 
approximately half of it (from maximum reservoir elevation to approximately mid-dam 
level). Drawdown rates in those cases were not exceptional at all (10 or 15 cm/day). A 
Report on Deterioration of Dams and Reservoirs (ICOLD, 1980) reviews causes of 
deterioration and failures of embankment dams. Thirty-three cases of upstream slips 
were collected and a third of them were attributed to an excessively rapid drawdown of 
the reservoir. A significant case was San Luis dam, in California (USCOLD, 1980). San 
Luis dam is one of the largest earthfill dams in the world (100 m high; 5500 m long; 70 
million m3 of compacted embankment). An upstream slide developed in 1981 after 14 
years of successful operation of the dam because of a drawdown, which was more 
intense than all the previous ones. In this case, the average drawdown rate was around 
0.2 m/day and the change in reservoir level reached 55 m. Lawrence Von Theen (1985) 
described this case.  

There is a long history of contributions, which probably starts with the analysis of 
Casagrande (1940), with the purpose of understanding and providing prediction tools 
for drawdown conditions. The main purpose of those contributions has been the 
prediction of pore water pressures inside the slope. Geotechnical publications place 
also emphasis on the determination of safety factor, although this is generally a 
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relatively straightforward exercise (if the analysis is performed under drained 
conditions) if the spatial and time distribution of pore water pressures are already 
known. 

The drawdown problem is discussed in detail in Chapter 2. The drawdown 
condition in a slope is analysed as a fully coupled flow-deformation problem for 
saturated/unsaturated conditions. Some fundamental concepts are first discussed in a 
qualitative manner and, later, explored in more detail in synthetic examples, solved 
under different hypothesis, including the classical approaches. Some design rules, 
which include a few fundamental parameters for the drawdown problem, have also 
been solved in a rigorous manner to illustrate the limitations of simplified procedures. 
An interesting case history will also be discussed in detail.  

The relevance of rapid drawdown is discussed again in Chapter 7 where a very 
large landslide (35 millions m3 approximately) was triggered by a rapid drawdown on 
the left margin of Canelles reservoir (Catalonia, Spain).  

1.1.2 First-time and ancient landslides 
From a geotechnical perspective, it is important to distinguish between first-time 

failures and reactivation of ancient landslides. The first type develops in “intact” sites. 
These types of slides are difficult to analyze, especially when brittle materials are 
involved in the potential failure surface. It is the case of hard soils or soft argillaceous 
rocks, in particular those having a high plasticity, the strength operating in practice is 
especially difficult to predict. In fact, materials exhibit a shearing softening behaviour 
from a peak value, associated with a low value of shearing displacement, to a low 
residual strength value, reached when clay particles orient in the direction of shearing. 
Drained ring shearing tests and reversal direct shear tests allow the estimation of the 
residual strength, which is mainly determined by particle size and the mineralogy of the 
soil. A simple but wrong conclusion in the analysis of first-time slides in brittle 
materials would be that the available strength is defined by the maximum peak strength 
reached when the slide starts to move. However, field evidence show that the available 
strength is intermediate between peak and residual conditions. Progressive failure 
phenomenon seems to have an important role to explain the failure mechanism. Early 
classical studies on this topic were published by Skempton (1967), Bjerrum (1967) and 
Bishop (1967, 1971). More recent contributions have been published by Cooper 
(1998), Potts et al. (1990), Dounias et al. (1996) and Mesri and Shahien (2003). 

In contrast, in ancient landslides a pre-existing slide surface has been subjected to 
an increasing history of accumulated relative displacement. Hence, it is expected that 
on the sliding surface cohesion will be insignificant and the frictional angle will be close 
or equal to residual values.  

It is widely accepted that ancient landslides exhibit a low safety factor close to 
conditions of strict equilibrium (SF = 1). ICOLD (2002) reports that in at least 75% of 



Chapter 1   

 6 

cases in which old landslides (active or inactive) are disturbed (by an excavation or by 
submerging the slide toe) slide reactivation or an increase in the rates of motion are 
observed. A simple explanation is that once the first slide occurred in the past it 
reached a new but strict equilibrium. Therefore, small changes in the resistant and 
destabilizing actions applied on the landslide body, such as excavation, erosion, 
weathering, changes in pore water distribution within the slope or even chemical 
changes, may induce the reactivation of the slide.  

It is also a frequent observation when dealing with ancient landslides, especially in 
consolidated clayey strata, that a very low value of friction angle, even lower than the 
residual friction determined in ring shearing tests under the relevant effective normal 
stress, is obtained in joints and shearing zones. This low value is determined when 
testing directly the shearing surface and it is consistent with the value required to 
explain the instability by back-analysis.  

 

Figure 1.3 Usual way in which bedding surface faults are formed in mudrocks (Fell et al. 2005). 

Several reasons have been invoked to explain this result. A first explanation is 
provided by previous tectonical or morphological processes. In some situations, 
folding or tilting sedimentary strata having different stiffness leads to relative 
displacement between interbedded contacts. This idea was represented by Fell et al. 
(2005) by means of Figure 1.3. Residual conditions are reached at the interface between 
weak and hard bedding contacts.  

In addition, tectonical processes occurred at a level of stress higher than the 
present stress intensity. Since the residual shearing strength envelope is not linear with 
normal effective stress (Picarelli, 1990; Stark and Eid, 1994), the actual friction angle 
acting on the pre-existing slip surface corresponds to the minimum value previously 
reached, despite the lower current applied normal stress. This concept was 
schematically explained by Alonso (2000) by means Figure 1.4 reproduced here.  
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Another geological process inducing the development of residual strength in weak 
bedding contacts is the valley relief associated with river excavation that especially 
affects dam and reservoirs sites (Burland et at., 1977). 

 

Figure 1.4 Residual strength envelope in residual conditions on sliding surfaces (Alonso, 2000). 

Weathering and changes in mineralogy of the material located in the slide surface 
may also lead to a significant reduction of the available shearing strength. In particular, 
sliding surfaces are prone to exhibit changes in their mineralogy whenever they become 
preferential paths for water flow which leads the dissolution of salts and other 
minerals. Different authors have shown the negative effects of chemical alteration and 
weathering on the friction angle. Hawkins et al. (1988) observed that the loss in calcite 
content leads to a reduction of 25% of friction angle; Rodríguez-Ortiz and Prieto 
(1980) reported the effect of sulphate content when evaluated the stability of natural 
slopes and their mineralogy; Chigira (1989) noted that the oxidation of pyrite in 
mudstone transforming chlorite into smectite was a cause of landslide; Elnaggar and 
Flint (1976) highlighted the mineralogical and geomechanical changes on the shear 
zone of an ancient landslide as a result of groundwater interactions in fissured 
claystone. (The last two mentioned works were provided by Hamel, 2004).  

Another interesting case is the Cortes landslide (Valencia, Spain). It was located on 
the left bank of Júcar River, upstream but very close of the Cortes arch-gravity dam 
(Alonso at al., 1993). The excavation of the upper part of the landslide in order to 
ensure its stabilization allowed the direct observation of the striated shearing zone. It 
was shown to be a few millimetres thick, striated layer of greenish colour in contrast 
with the brown colour of the surrounding marl that constituted the thicker strata 
where the failure surface was located. Mineralogical analyses by X-ray diffraction were 
made on samples of the thin greenish layer and, for comparison, on samples taken a 
few millimetres apart, within the thick marl layer. The main layer was described as an 
argillaceous dolomitic layer (Fig. 1.5a). However, in the thin greenish layer, the 
dolomite was almost absent (Fig. 1.5b). This change in mineralogy affected the 
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mechanical features of the material. Direct shearing tests on the actual sliding surface 
aligned carefully with the middle plane of the shear box provided a friction angle equal 
to 17º, five degrees lower than the residual friction obtained in reconstituted clayey 
dolomitic samples tested in the ring shear test.  

The mentioned considerations about the strength available along the slide surface 
are important because they make it necessary to test the strength on intact samples 
taken on the sliding surface. In the cases mentioned before, the usual ring shear test on 
reconstituted samples of the material around the sliding surface will overestimate the 
residual strength.  

 
(a) 

 

Figure 1.5 Difractograms of two neighbouring samples within the marl layer of Cortes slide: (a) 
main body of the layer, brown and beige; (b) striated sliding surface, grey and green (θ= angle 

of diffracted ray) (Alonso et al., 1993). 
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1.1.3 Consequences of landslides in reservoir sites 
In general, slope instabilities imply a risk that should be prevented for its 

dangerous consequences: damage in roads, buildings, foundations, etc. However, slope 
instabilities around reservoirs, being them induced or not by the stored water, include 
additional risks: 

- Damage to the dam or its foundation with catastrophic consequence 

- s.  

- Partial or complete blockage of the storage water and the formation of natural 
dams that induce a reduction of the volume of the reservoir and a non 
controlled increase in the upstream water level. The failure of such dams can 
be disastrous because of the risk of dam overtopping.  

- Depending on their velocity, they can generate a destructive wave when the 
landslide hits the reservoir water. The wave will propagate and may induce a 
dam failure or a dam overtopping with dangerous consequences.  

1.1.4 Acceleration of landslides in reservoir sites 
The risk associated with landslides in reservoirs attracted wide attention in 1963 

when the catastrophic failure of the left bank slope in Vaiont reservoir in Italy caused 
more than 2000 deaths and a mayor destruction (Hedron and Patton, 1985; Müller, 
1964). The case is reviewed often in the literature mainly because of the difficulty of 
determining the causes of its great acceleration. The slide reached a velocity around 25 
- 30 m/s (100 km/h), an estimation based on the height of the ensuing wave.  

The risk of landslide acceleration may become one of the most challenging 
problems to face for people in charge of reservoir and dam operation. The question of 
what speed can reach a specific landslide and its consequences does not have an easy 
response. The analysis of the whole phenomena requires assessing the following 
phenomena (Fig. 1.6): 

- Triggering of the landslide. 

- Run-out. 

- Impact of the landslide against the reservoir and generation of a destructive 
wave. 

- Wave propagation. 

- Impact on dam and facilities around the reservoir. 

Most of the models developed so far to describe the wave generation and 
propagation take into account the hydro-dynamic of the water body, making 
assumptions on the falling mass, although they do not analyze in detail the landslide 
run-out (Harbitz et al., 1993; Noda, 1970; Biscarini, 2010; Capone, 2009; Walder et al., 
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2003). Pastor et al. (2009) presented a model able to describe all mentioned phases, 
from landslide triggering to wave propagation, considering the coupled interaction 
between the avalanche of a fluidized soil and the water body.   

The risk of a landslide reaching a high velocity depends basically on the differences 
between resistant and destabilizing actions applied on the unstable body. There are 
different factors that may lead to the acceleration of landslides:  

- Resistant actions (shear strength) decrease due to strength softening (typically 
in brittle materials) and rate effects on residual strength. 

- Generation of compressive pore water pressures on saturated sliding surfaces 
in undrained o partially drained conditions. It typically occurs in loose granular 
soils (which are prone to flow liquefaction).  

- Generation of water pressure due to fragmentation or crushing of particles 
formed by shearing in granular materials (Sassa et al., 1996; Wang and Sassa; 
2002).  

- Pore water pressure generation by thermal effects due to frictional shearing at 
the shear band. 

 

Figure 1.6 Principal phases in the phenomenon of landslide-induced wave and consequences 
(Capone, 2009) 

The discussion on the basic phenomena leading to the fast acceleration of a 
landslide is today very active and each case should be analysed separately. In this work, 
the fourth cause mentioned, the relevance of thermal effects on the sliding surface and 
its role to increase the local pore water pressure, has been favoured as a rational 
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mechanism to explain the slide acceleration in clayey materials. Chapter 3 presents an 
introductory explanation of the phenomena with the purpose of developing a 
theoretical model of the problem. The developed formulation is applied in the 
following chapters to synthetic and real cases. A closed form solution for the case of a 
planar landslide is presented in Chapter 4 under some specific assumptions. Numerical 
and analytical solutions will be compared and a sensitivity analysis aiming at practical 
conclusions will also be described.  

Before closing this introductory part, a number of case histories will be briefly 
presented. They illustrate the magnitude and dangerous consequences of landslides 
that accelerate and invade reservoirs and rivers. The occurrence of such events is not 
frequent and there is a lack of well-documented case histories. Most of the cases 
described below may be criticized for being too descriptive but they strongly convey 
the risk of these rare events.  

1.1.5 Case histories 
In this Section, the causes, features and consequences of landslides around 

reservoirs are exemplified by means of the description of some published real cases. 
This section is not intended as an exhaustive review of landslide occurrences in the 
vicinity of reservoirs. Rather, a few representative cases are described.  

Two important cases of non-catastrophic landslides in Spain associated with 
reservoirs, Cortes landslide (Valencia) and Canelles landslide (Catalonia) are not 
mentioned here. They will be described in subsequent chapters. Cortes landslide is 
analysed in Chapter 4. Despite the fact that it was stabilized before it could accelerate, 
an analysis of its potential acceleration under the simplification of a planar motions is 
made in Chapter 4. Canelles landslide is currently a potentially dangerous case for the 
operation of the reservoir. The landslide was first observed in summer 2006. The case 
is presented in Chapter 7. A thermo-hydro-mechanical analysis was developed for this 
case in order to estimate the maximum velocity of the slide. The results have been used 
to estimate the generation and propagation of waves within the reservoir. This part of 
the work, which is outside the scope of this Thesis, has been performed by the 
Instituto de Hidráulica Ambiental of Universidad de Cantabria (Spain).  

In the following description of catastrophic landslides, the most famous and well-
documented Vaiont landslide is not mentioned because two chapters of this Thesis are 
focussed on it. Chapter 5 summarizes the relevant data available and the most relevant 
features of the motion previous to the catastrophic failure. This information allows 
establishing the main hypothesis and assumptions made in the model presented for 
Vaiont Landslide. In Chapter 6, a dynamic analysis of Vaiont landslide is presented. 
The objective was to explain the high velocity reached by including thermal effects. 
However, the most interesting contribution of the analysis performed is the derivation 
of some practical criteria to decide the actual risk of slide acceleration. Results cannot 
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be accepted as a well proven criteria but they are believed to be a first step in that 
direction. 

The landslides collected here are divided in two groups: those which may rationally 
be viewed as potentially dangerous and those which actually failed at high speed and 
resulted in a catastrophic situation.  

Potentially dangerous landslides 

Aknes Landslide, Norway 

Aknes is a large rockslide continuously creeping located above a fjord in Norway, 
in the vicinity of several communities and tourist places (Ganerød et al., 2008) with an 
estimated volume of 35-40 millions of m3 and dimensions of 800 m across-slope and 
1000 m down slope (Fig. 1.7) 

 

Figure 1.7 Overview of Aknes landslides over the fjord in Norway (Ganerød et al., 2008). 
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The unstable mass is defined by a back scarp, a basal shear zone, 50 m deep and a 
toe zone where the basal sliding surface daylights on the slope surface. Figure 1.8 
shows the geological model of the Ankes rockslide presented by Ganerød et al. (2008). 
It was obtained by geological surveys using different techniques (structural maps, 
geomorphologic interpretation, penetrating radar, seismic refraction, 2D resistivity 
profiling and sonic logging of p-waves). The rockslide can be divided into an upper 
part (subdomains 1 and 2, Fig. 1.8) that experience extension and a lower part 
(subdomains 3 and 4) that deforms by compression. The upper boundary zone of the 
rockslide is seen as a back scarp that is controlled by, and it is parallel to, the pre-
existing steep foliation planes of gneiss. The foliation in the lower part seems to 
control the development of the basal sliding surface which daylights at different levels. 
The sliding surfaces are subparallel to the topographic slope and are located along 
mica-rich layers in the foliation. (Ganerød et al., 2008). 

The shear strength of the material involved in the sliding surface of Aknes 
landslides has been reported by Grøneng et al. (2009). Samples from gouge material, 
unfilled rock joints and intact rock were tested. Gouge material (9-19% clay content) 
tested in triaxial test exhibited a friction angle between 18 and 35º depending on the 
mineralogy. Samples containing the lowest percentages of quartz and highest 
percentage of mica shown the lowest shear strength. Rock joints shear strength was 
evaluated by empirical methods (Barton and Choubey, 1978) resulting a friction angle 
of 24º. The tested intact gneiss showed a shearing strength defined by 19-25 MPa of 
cohesion and 57-89º of friction angle.  

 

Figure 1.8 Geological model of Aknes landslides (Ganerød et al., 2008). 
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Maoping Landslide, China 

Maoping landslide is the largest ancient landslide located on the left bank of the 
Qingjiang river (one of the major tributaries of the Yangtze river). It is located 66 km 
upstream of Geheyan dam and it was reactivated by the impoundment of the reservoir 
(2.9 billions m3) in April 1993.  

The Maoping landslide was geologically investigated before reservoir inundation 
and its displacements are being controlled and correlated with reservoir level and 
rainfall. A total of 34 landslides (in total 0.16 billions of m3 in volume) were identified 
on both banks of the reservoir.  

 

Figure 1.9 Overview of Moaping landslide (Qi et al., 2006) 

The reactivation of the Moaping landslide required the relocation of a small village 
located on the valley slope. Qi et al. (2006) is used as a main source for the summary 
presented here. The volume of the landslide is estimated in 23.5 millions m3. Figure 1.9 
shows an overview of the landslide. The thickness of the slides varies from 5 to 89 m, 
increasing from the rear to the front and from the west to the east.  

The mobilized mass includes three main layers. The first layer is constituted by a 
detritic soil (10-20 m thick) occasionally containing limestone blocks. The second layer  
(5-15 m thick) is constituted by quartz sandstone blocks, often overlaid by a layer of 2 
– 8 m thick of coal soil and gray white detritus and fragments. The third layer (20-40 
m) is bedrock-like disintegrated blocks of sandstone. The sliding plane was developed 
along a bedding surface in the sandstone, which is inter layered by shales with a 
dipping angle of 15 – 20º, except for the front part (having a length of 180 m) where it 
is near horizontal. However the sliding zone has a different appearance when one 
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compares the west and eastern parts. This difference seems to be the result of different 
sliding processes and sliding sequences in the history of the landslide. The formation 
process of the Moaping landslide was a result of three major landslides shown in 
Figure 1.10. The landslide previous history is complex but the fundamental 
information is that it is a presently reactivation of an ancient landslide.  

Stability analyses based on strength parameters obtained in the laboratory (Qi et al., 
2006) were carried out before and during the reservoir impoundment. Drained 
strength parameters were obtained in consolidated quick tests on saturated samples 
which gives a doubtful reliability to the results.  

Cracks and settlements were first observed in the ground and houses after 
reservoir impoundment. During the raining seasons, cracks opened. According to 
observations the maximum accumulated horizontal displacement of the slide reached 
2840 mm, in the period March, 1993 to October, 2005. 

 

Figure 1.10 Formation process of the Moaping landslide (after Bureau of Investigation and 
Survey, Changjiang Water resources Commission, 1993. From Qi et al., 2006) 

Catastrophic landslides 

San Juan de Grijalva Landslide, Mexico, 2007 

In November 4, 2007, a catastrophic landslide took place in the left margin of the 
Grijalva river located in the south-eastern province of Chiapas, Mexico. It was a 
translational movement with a length of 1200 m, 610 m wide and a depth of 70 m. The 
volume was around 50 million m3. The run-out of the landslide was about 800 m.  

The impact of the slide against the water of the river generated a wave which was 
reported to be 50 m high (Alcántara-Ayala et al., 2008) or 15 m high (Hernández-
Madrigal et al., 2010) depending on the source. The landslide-generated wave destroyed 
the San Juan de Grijalva village. A lake was formed due to a landslide-induced dam, 
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which flooded 21 villages upstream. The landslide and its subsequent consequences 
killed nineteen people and six more were reported missing.  

The landslide was registered in a seismic station located at a distance of 16 km. 
Such records indicated that the mass movement took place during approximately 80 
seconds (Alcántara-Ayala et al., 2008). Before the slide, the topography of valley was 
characterized by a 5 – 20º slope on the upper hillside, and a 20 – 40º slope  on the 
adjacent right bank of the Grijalva River. At first sight, such geometry of the sliding 
surface leads to the deceleration of the landslide. 

A 80 m high and 1170 m wide dam was created across the Grijalva River. This 
dam created a lake having a surface of 49 km2. Figure 1.11 shows a photograph of the 
natural dam induced by the landslide.  

 

Figure 1.11 San Juan de Grijalva landslide blocking the river (Alcántara-Ayala et al., 2008). 

The geological setting includes alternating conglomerates, sands, silts, clays and 
marls of Eocene and Miocene age, which overlie Jurassic and Cretaceous rocks 
(Hernández-Madrigal et al., 2010) (Fig 1.12). Alcántara-Ayala et al. (2008) mentioned 
that the slide surface was located on a clay strata dipping toward the river.  
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Figure 1.12 Geological cross-section of San Juan Grijalva landslide (Hernández-Madrigal et al., 
2010). 

Three factors are invoked as triggering causes for the landslide (Hernández-
Madrigal et al., 2010): the intense precipitation that took place in the previous months 
(the cumulative rainfall in the preceding 30 days was 67% of the average annual 
rainfall), an earthquake which occurred 5 days before the landslide, and the water level 
drawdown of the Grijalva River due to the release of water from the Peñitas dam 
located 14 km downstream. Figure 1.13 shows the water level at the Peñitas reservoir 
(which controls the level of the river upstream). The landslide occurred almost at the 
end of the final drawdown. The drawdown velocity at the end of drawdown period 
was 1.47 m/day, 4.2 times greater than the average drawdown rate of 0.35 m/day.  

 

Figure 1.13 Water level at the Peñitas dam before San Juan de Grijalva landslide occurred in 
November 4, 2007 (Hernández-Madrigal et al., 2010). 

A channel was excavated in the natural dam to restore partially the natural flow 
conditions of Grijalva river.  

Qianjiangping Landslide, China (2003) 

Qianjiangping landslide occurred after the first impoundment of the Three Gorges 
Reservoir in 14th July, 2003. It was located in the left bank of the Qinggan River, a 
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tributary of the Yangtze River. It happened when the reservoir reached a water height 
of 135 m. Erosion by the river, quarrying of shale in the landslide toe and previous 
heavy rain seem to be additional combined causes leading to the instability (Wang et al. 
2004).  

 

(a) 

 

(b) 

Figure 1.13 View of the Qianjiangping landslide: (a) from the upstream side; (b) front view. 
(Wang et al., 2004). 
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Figure 1.14 shows the landslide form the upstream side and a frontal view of the 
landslide. The landslide had a tongue-like shape and has a length of 1200 m and a 
width of 1000 m. The average thickness of the sliding mass was about 20 m, thinner in 
the upper part and thicker in lower part. The total volume was estimated to be more 
than 20 millions of m3. It displaced forward around 250 m. Figure 1.15 shows a 
representative section of the slide. It was a typical translational rockslide.  

The landslide caused loss of life and serious damage with important economical 
cost. Thirteen people lost their lives on the slope banks and eleven fishermen died 
while working on boats in the nearby area. The casualties on the river were a 
consequence of the high velocity of the slide which triggered a 30 m high wave. 
Witness accounts showed that it took few minutes to complete the whole sliding 
process (Wang et al., 2004). The slide velocity was not given despite the available data 
on the wave height.  

The landslide completely blocked the Qinggan River and formed a lake upstream. 
To prevent that the water level in the impounding area reached a dangerous level with 
possible damage downstream in case of dam breaching, a channel diversion was 
excavated (Dai et al., 2004).  

The displaced block was constituted by layers of weathered sandstone and shale. 
According to Dai et al. (2004), the slip surface was located in a thin layer of clayey soil 
having a thickness of several centimetres. The bedrock below the sliding surface was 
constituted by sandstone and siltstone layers interbedded with intact shale if compared 
with the overlying material.  

Distance (m)Distance (m)  

Figure 1.15 Qianjiangping landslide representative section (Dai et al., 2004).  

The sliding surface could be uncovered in the upper part of the landslide (Wang et 
al., 2004). According with their interpretation, Figure 1.16a shows the original 
situation, previous to the 2003 landslide. The photograph 1.16a shows a striated 
surface which indicates the initial sliding direction (red arrows). Figure 1.16b 
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corresponds to new striations that follows the sliding direction of the 2003 landslide 
(indicated by the blue arrow). The pre-existing shearing surface is associated with an 
older geological event (probably during intense folding in a Cretaceous Period) (Wang 
et al., 2004). The existence of widely distributed striation on the sliding surface as well 
as other geomorphological indications leads to accept that the sliding surface was 
mobilized prior to the landslide in 2003. However, since the “old” and “new” 
directions of sliding are not the same, it would be interesting to evaluate if the shearing 
strength along the mobilized shear surface remains in residual conditions when the 
shearing direction changes.  

 

(a) (b) 

Figure 1.16 Photographs from the same site of the upper part of the Qianjiangping landslide 
sliding surface showing the pre-existing scratches that underlie the sliding surface of the July 
2003 event (blue narrow shows the sliding direction, red arrows show the strike direction of 

the pre-existing scratches) (Wang et al., 2004). 

A more detailed exploration of the sliding zone is presented by Wang et al. (2008). 
Two horizontal tunnels were excavated with the purpose of reaching the sliding zone. 
Two different materials were found: a layer of black silt with calcite blocks (wL = 30%; 
PI = 2) on the top, while the lower strata was a yellow clay (wL = 49%; PI = 40). 
Figure 1.17 shows a photograph of the sliding zone taken in one of the horizontal 
investigation tunnels. Samples of the two types of materials were tested by direct 
shearing imposing different rates of displacement (Wang et al., 2008). A mobilized 
residual friction angles (reached after more than 2000 mm of relative displacement) 
equal to 26º and 20º were obtained for the reconstituted black silt and the yellow clay 
samples, respectively. Undrained rapid ring shear tests indicated that a rate of 
displacement around 10 mm/sec induces a drop of the strength of around 10º on the 
black silty soil. The rate of shearing did not affect the yellow clay.  

A fundamental question rises from the description of Qianjiangping landslide: 
¿What was the cause of the rapid loss of shearing resistance necessary to achieve the 
high rate of acceleration? The representative cross-section shown in Figure 1.15 does 
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not explain the development of a high velocity. Several alternative reasons could be 
possibly advanced, but an accurate analysis and further testing may be required. A drop 
of strength as the displacement increases could explain such acceleration. However, if 
it is true than the sliding surface is in residual conditions, the loss of strength with 
displacement increment is unlikely. Wang et al. (2004) mentioned the presence of 
crystalline calcite on the sliding zone, acting as a cement deposited after the folding of 
sedimentary strata that mobilized the sliding surface. Crystalline calcite is characterized 
by brittle facture and this phenomena could explain the sudden loss of strength.  

 

Figure 1.17 Photographs of sliding zone of Qianjiangping landslide taken from horizontal 
tunnel. (Wang et al., 2004). 

A more complex mechanism is described by Wang et al. (2008). They explain that 
the effect of shearing rate is the actual reason for the strength softening behaviour. 
None of the authors considers the effect of heating induced by frictional work at the 
sliding surface. This approach, developed in this Thesis, explains the build-up of pore 
pressure by the movement of the slide. The shearing displacement generates frictional 
work that dissipates in heat. Temperature increments lead to the dilatation of solid 
particles and water that, in a saturated porous media, and always depending on 
properties such as stiffness and permeability, leads to build-up pore water pressure. As 
a result, the effective normal strength reduces and, accordingly, the available frictional 
strength. Checking this hypothesis requires a specific thermo-hydro-mechanical 
analysis of the landslide.  

La Josefina Landslide, Ecuador (1993) 

On March 29, 1993, a massive rockslide dammed the Río Paute in Cuenca, 
Ecuador. It situation is shown in Figure 1.18. The slide was 1500 m long and 600 m 
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wide. The volume of the moving mass was estimated to be around 20 million m3 
(Harden, 2004) of igneous rocks overlain by colluvial deposits.  

Aerial photographs taken before the failure and the observation of a headscarp 
approximately 80 m high, led to the conclusion that the movement was a reactivation 
of an ancient landslide. It was probably triggered by heavy rain and mine excavations at 
the toe.  

The regions upstream and downstream from the landslide were densely populated. 
Seventy two people were reported killed or missing (Chamot, 1993) and the economic 
losses were devastating.  

 

Figure 1.18 Location map for La Josefina rockslide (Plaza-Netos and Zevallos, 1994). 

The slide formed a 100 m high natural dam on the Río Paute at its junction with 
the Río Jadan (Fig. 1.19). The impoundment behind this dam flooded the upstream 
valley for a length of 10 km, submerging agricultural land, houses and industries. The 
final stored water volume of the natural dam was 200 million m3. The lake reached a 
depth of 83 m. After 33 days, the dam failed, resulting in a peak discharge of 10000 
m3/s. The resulting debris flow and mudflow flooded the valley downstream entering 
into the Amaluza Reservoir behind the dam with the same name. Reservoir authorities 
manage to lower 31 m the reservoir level. In spite of this precaution, severe damage on 
the powerhouse turbines occurred due to the high concentration of suspended soils in 
the water and also on houses and industries located around the affected site (Schuster 
et al., 2002). 

The failure of the landslide-induced dam led to a decrease in the water level of the 
Josefina lake at a relatively high velocity and several landslides occurred on the 
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surrounding slopes due to the rapid drawdown. The most important one was Zhizhio 
slide (Schuster et al., 2002). No additional information on theses landslide has been 
found. 

 

Figure 1.19 The landslide scar and dam in 1994, 1 year after the dam was ruptured. The 
photograph was taken from near the top of the slide, looking southward; the flow of the Paute 
River is from right (west) to left (east). Numbered features are (1) deposits from the March 29, 

1993 landslide, (2) channel excavated to release impounded water, (3) a post-rupture slope 
failure at Zhizhio, and (4) remnant lakes a year after the dam rupture (photo by Harden, 2004). 

Gros Ventre landslide, United States (1925 

The Gros Ventre landslide is located in Bridger-Teton National Forest, Wyoming, 
U.S.A. The landslide occurred on June 23, 1925, after several weeks of heavy rain. The 
landslide created a huge dam across the Gros Ventre River, which stored the water and 
formed a lake. Approximately 38 millions m³ of primarily sedimentary rock slid down 
the north face of Sheep Mountain, crossed over the Gros Ventre river and raced up 
the opposing mountainside a distance of 100 m (Fig. 1.20). The landslide created a 
large dam over 60 m high and 400 m wide across the Gros Ventre River. On May 18 
1927, a portion of the landslide dam failed, resulting in a massive flood that reached a 
height of 2 m 40 km downstream. The small town of Kelly, 10 km downstream, was 
destroyed and six people were killed.  
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Figure 1.20 Gros Ventre landslide overview (Shelton, 1966). 

1.2 THESIS LAYOUT 
The Thesis is organized in eight chapters. Each chapter contains its own summary, 

introduction and conclusions. A common list with the cited references is presented in 
Chapter 8. The main contents of each chapter are introduced here as follows: 

 Chapter 2 presents an analysis of the drawdown problem on slopes as a fully 
coupled flow-deformation problem for saturated/unsaturated conditions.  
Classical procedures developed to determine the flow regime within the slope 
and the resulting stability conditions are reviewed at the beginning of this 
chapter. Later some fundamental concepts are discussed and explored in more 
detail by the analysis of synthetic examples under different hypothesis. 
Sensitivity analyses are presented.  The chapter is closed with the discussion of 
a comprehensive case history. 

 Chapter 3 includes an analysis of rapid landslides using a thermo-hydro-
mechanical approach. Previously an introductory section is presented to discuss 
earlier works published on rapid landslides and their causes. It serves to 
highlight some relevant aspects of direct implication for the analysis described 
later. 

 Chapter 4 applies the theory developed in the previous chapter. The governing 
equations of the thermo-hydro-mechanical problem for landslides are 
integrated conveniently for the case of a planar landslide. A practical closed 
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form is obtained for the case of incompressible fluid, solid particles and soil 
skeleton. A case study, based on a well known translational slide (Cortes slide, 
Spain) has been solved. Numerical and analytical solutions are compared.  

 Chapter 5 focuses in the Vaiont landslide. First, a review and analysis of the 
available information is presented. Once convenient hypothesis are assumed 
according to the previous review, a static and dynamic equilibrium of Vaiont is 
presented. A model of two interacting evolutive wedges represents the 
landslide. The approach gives a simple explanation to the stability of the slide, 
before failure. Rock strength degradation of the mobilized mass as motion 
develops, has also been included. This degradation, even if it is intense, was 
unable to explain the very high estimated landslide velocities. 

 Chapter 6 introduces the thermo-hydro-mechanical formulation in the dynamic 
analysis of Vaiont landslide presented in Chapter 5. The model predicts the 
high velocity observed and is consistent with other data. Sensitivity analyses of 
the more relevant parameters and the issue of scale effects are presented and 
discussed.  

 Chapter 7 presents a study of an ancient landslide reactivated in the left bank of 
the Canelles reservoir. A methodology to analyze the landslide, based on field 
works, laboratory testing and in situ measurements, is described for the case of 
Canelles landslide occurred in summer 2006. The analysis made involves the 
consideration of the drawdown problem (discussed in Chapter 1) and the 
analysis of its potential acceleration taking into account thermal effects 
(Chapter 3).  

 Chapter 8 provides some general conclusions and suggestions for future 
research.   

The fundamental contributions of this Thesis have been published in the following 
journal papers: 

Alonso, E.E. and Pinyol, N.M. (2010) Criteria for rapid sliding I. A review of Vaiont 
case. Engineering Geology. Article in press. Available online, 
doi:10.1016/j.enggeo.2010.04.018   

Pinyol, N.M. and Alonso, E.E. (2010) Criteria for rapid sliding II. Thermo-hydro-
mechanical and scale effects in Vaiont case. Engineering Geology. Article in press. 
Available online, doi:10.1016/j.enggeo.2010.04.017  

Pinyol, N.M. and Alonso, E.E. (2008) Fast planar slides. A closed form thermo-hydro-
mechanical solution. International Journal for Numerical and Analytical Methods in 
Geomechanics 34, 27-52.  
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Pinyol, N.M., Alonso, E.E. and Olivella, S. (2008) Rapid drawdown in slopes and 
embankments. Water Resources Research 44, W00D03, 22pp. Special issues on: 
Hydrology and Mechanical Coupling in Earth Sciences and Engineering: 
Interdisciplinary Perspectives.  

 



CHAPTER 2 

Rapid Drawdown in Slopes and Embankments 

The rapid drawdown condition arises when submerged slopes experience a rapid 
reduction of the external water level. Classical procedures developed to determine the 
flow regime within the slope and the resulting stability conditions are reviewed in this 
chapter. They are grouped in two classes: the “stress-based” undrained approach, 
recommended for impervious materials, and the flow approach, which is specified for 
rigid pervious materials (typically a granular soil). 

Field conditions often depart significantly from these simplified cases and involve 
materials of different permeability and compressibility arranged in a complex geometry. 
The drawdown problem is discussed in this chapter as a fully coupled flow-
deformation problem for saturated/unsaturated conditions. Some fundamental 
concepts are first discussed in a qualitative manner and later, explored in more detail in 
synthetic examples, solved under different hypothesis, including the classical 
approaches. Some design rules, which include a few fundamental parameters for the 
drawdown problem have also been solved in a rigorous manner to illustrate the 
limitations of simplified procedures.  

The last part of this chapter is devoted to the discussion of a comprehensive case 
history. In Shira earthdam pore pressures were recorded at different points inside the 
embankment during a controlled drawdown. Predictions of four calculation procedures 
(instantaneous drawdown, pure flow, coupled flow-elastic and coupled flow-
elastoplastic, all of them for saturated/unsaturated conditions) are compared with 
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measured pressure records. Only the coupled analysis provides a consistent and 
reasonable solution.  

The role of the different soil properties in explaining the phenomena taking place 
during drawdown is finally discussed. 

2.1 INTRODUCTION 
As an introduction to the remaining chapter, consider, in qualitative terms, the 

nature of the drawdown problem in connection with Figure 2.1a, b. 

 

HD 

HD 

wDH γσ =Δ

 

HD 

HD 

wDH γσ =Δ

 
Figure 2.1 The drawdown scenario: (a) Hydrostatic stresses acting against the exposed slope 

surface; (b) Change in applied stresses on the exposed boundaries induced by a drawdown HD. 

The position of the water level MO (height H) provides the initial conditions of 
the slope CBO. Pore water pressures in the slope are positive below a zero pressure 
line (pw = 0). Above this line, pore water pressures are negative and suction is defined 
as s = - pw. A drawdown of intensity HD takes the free water to a new level M’ N’ O’ 
during a time interval tDD. This change in level implies: 

- A change in total stress conditions against the slope. Initial hydrostatic stresses 
(OAB against the slope surface; MNBC against the horizontal lower surface) 
change to O’A’ B and M’N’B C. The stress difference is plotted in Figure 2.1b. 
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The slope OB is subjected to a stress relaxation of constant intensity (Δσ = HD 
γw) in the lower part (BO’) and a linearly varying stress distribution in its upper 
part (O’O). The bottom horizontal surface CB experiences a uniform decrease 
of stress of intensity, HD γw. 

- A change in hydraulic boundary conditions. In its new state, water pressures 
against the slope are given by the hydrostatic distribution O’A’B on the slope 
face and by the uniform water pressure value pw = (H–HD) γw on the horizontal 
lower surface. 

The change in boundary total stresses result in a new stress distribution within the 
slope. This stress change will induce, in general, a change in pore pressure. The sign 
and intensity of these pore pressures depend on the constitutive (stress-strain) 
behaviour of the soil skeleton.  An elastic soil skeleton will result in a drop of pore 
pressure equal to the change in mean (octahedral) stress. If dilatancy (of positive or 
negative sign) is present, due to shear effects, additional pore water pressures will be 
generated. Changes in total stress-induced pore pressures are, in fact, simultaneous to 
the dissipation process due to the new unbalanced hydraulic boundary conditions. A 
transient flow will establish. Therefore, as the permeability of the soil increases (always 
in relation with the speed of water level change), pore pressures will dissipate faster. 
They may dissipate in "real time" if the soil permeability is large enough. Then the 
effect of stress-induced pore pressures apparently disappears. Otherwise, in an 
“undrained” condition (high speed of water level changes or very low permeability) 
changes in pore pressure will be induced exclusively by total stress changes.  

Skempton (1954) and Henkel (1960) provided expressions for the development of 
pore pressures (pw) under undrained conditions before modern constitutive equations, 
based on critical state concepts, were born. The Henkel expression: 

 ( )octoctw aBp τΔ+σΔ=Δ  (2.1) 

in terms of changes in mean ( octσΔ ) and shear ( octτΔ ) octahedral stresses is useful for 
the discussion. Coefficient B is given by: 
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where n is the soil porosity; K’skel, the bulk modulus of the soil skeleton, and Kw, the 
bulk modulus of water. Kw is close to Kw = 2100 MPa and, therefore, in practically all 
cases involving natural or compacted materials in riverbank and embankment dam 
engineering, K’skel << Kw and B = 1. Even for an exceptionally stiff soil material (K’skel ≅ 
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Kw) the value of B is close to 1. This is a well-known result but it is often read, in 
connection with drawdown analysis, that in cases of rigid materials the (stress) 
uncoupled flow analysis is sufficiently accurate, implying that no stress-related changes 
in pore pressures are generated. It is clear that this is never the case in practice. Only if 
the "rigid” material happens to be pervious and for a different reason, the stress 
coupling seems to be absent. This will be discussed further in the paper. 

The change in hydraulic boundary conditions adds a new transient scenario and 
pore pressures will dissipate in time, trying to reach stationary conditions under the 
new boundary conditions. 

Consider three representative points (P1, P2 and P3) of the slope sketched in Figure 
2.1 and their expected evolution of pore pressures in qualitative terms in Figure 
2.2a,b,c. A given time, tDD, in the t axis marks the end of the drawdown operation. It 
will be seen, when reviewing in the next section the available methods for drawdown 
analysis, that two wide classes of procedures have been developed. 

The first class highlights the effect of changing boundary stress in order to 
calculate the pore water pressures immediately after a (sudden) drawdown. The second 
class of procedures uses pure Darcy-type flow, and they are said to be valid for rigid (!) 
and pervious materials. It is also common, at present, to find flow-based stress 
uncoupled analysis in practical applications and, therefore, a distinction of the results 
likely to be found in case of stress coupled or uncoupled (pure flow) analysis is useful 
for discussion. 

A Point P1, close to the upper part of the slope, will experience a limited change in 
stress due to the unloading represented in Figure 2.1. Therefore, no major differences 
should be found when comparing coupled or uncoupled analysis, even if the soil is 
impervious. In a pervious case, it has already been argued, no differences in practice 
will be found. Note also that the upper points in the slope may develop negative pore 
water pressures (suction). 

At the other extreme of the slope, Point P3, “bottom of the sea” conditions exist, 
if the slope face BO is far away. Because of the one-dimensional nature of this 
situation, it is well-known that pore pressures in the soil, at any depth, will follow the 
changing water level and the situation will be always in equilibrium with the new 
hydraulic boundary condition. However, in order to reproduce this elementary result 
with a computational tool, it is necessary to use a fully coupled hydromechanical 
approach. Otherwise, a change in water level will trigger a transient flow condition 
because no information on the instantaneous change in pore water pressure is available 
in an uncoupled model. 
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Figure 2.2 Change in pore water pressures in Points (a) P1; (b) P2; and (c) P3 for coupled or 

uncoupled analysis and pervious or impervious fill. 

Predicting the behaviour of Point P2, near the toe of the slope is more difficult. 
Mean and shear stresses are high and they experience significant gradients. New pore 
pressures generated after unloading are far from being in equilibrium among them and 
with respect to the new hydraulic head imposed at the boundary. In fact, in a fully 
coupled approach, the transient process of pore water pressure dissipation has several 
origins. They are: the rate of water lowering (this is a boundary condition), the 
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heterogeneous distribution of "instantaneous" pore water pressures after drawdown 
and the “source” or “storage” terms provided by both, the changing saturation in some 
parts of the domain and the deformation of the soil skeleton. Figure 2.2b shows that 
the response of Point P2 in a coupled analysis will depend on the permeability of the 
soil. The uncoupled analysis will be unable to introduce stress effects, however. Only 
in a highly pervious soil, both analyses would provide the same answer. The problem 
has, however, an additional difficulty because soil stiffness, which controls the “storage 
or source” term associated with changes in effective stress, will also dictate the rate of 
the process.  

A reference to the usual expression of time to reach a given degree of 
consolidation, U, in one-dimensional consolidation problems, provides a clue on the 
effect of soil stiffness: 

 ( )2

w
m

L T U
t

k E
= γ  (2.3) 

where L is a reference length associated with the geometry of the consolidation 
domain; T is the time factor; k, the soil permeability, Em, the confined stiffness 
modulus, and wγ , the water specific unit weight. 

Soft materials (Em low) will react with high consolidation times, all the remaining 
factors being maintained. Figure 2.3b indicates this effect. Permeability and stiffness 
control the rate of pore pressure dissipation in this case, in the manner indicated. 
However, if more advanced soil models are introduced, the simple trends given in 
Figure 2.3 may change. 

The changing boundary condition and the soil permeability essentially control the 
transient behaviour of the uncoupled model (Fig. 2.3a). Note that a comparison of 
Figures 2.3a and 2.3b does not provide clear indication of the relative position of the 
pressure dissipation curves. Therefore, it is difficult to define “a priori” the degree of 
conservatism associated with either one of the two approaches. Of course, it is 
expected that the fully coupled approach should provide answers close to actual field 
conditions. 

The remaining part of the chapter covers these aspects in more detail. In order to 
do so, a comprehensive formulation for a fully hydro-mechanical coupling, valid for 
saturated and unsaturated conditions will be presented. Soil behaviour will be 
characterised by an elastoplastic critical state model for saturated and unsaturated 
conditions, formulated in the domain of net stresses (excess of total stress over air 
pressure) and suction. This type of model goes beyond previous known attempts to 
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analyse drawdown effects. Then a review will be made of some simple existing rules to 
estimate drawdown effects on slopes. 

Despite the long list of developments and publications associated with drawdown 
analysis, almost no comparison between field measurements and calculations exist. For 
this reason, it was appropriate to perform an analysis of an interesting published field 
case and to compare model results and measurements.  

 
Figure 2.3 Change in pore water pressures in point P2 for (a) uncoupled analysis; (b) coupled 

analysis. 

2.2 HISTORICAL PERSPECTIVE 
The literature describes two approaches to predict the pore water pressure regime 

after drawdown: the undrained analysis and the flow methods. 



Chapter 2   

 
34 

2.2.1 Undrained analysis 
The aim is the determination of pore water pressures immediately after drawdown 

in impervious soils. Skempton (1954) derived first his well-known expression in terms 
of soil parameters A and B, and suggested that the following expression: 
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could be useful in drawdown analysis. In his wording:  

The “overall” coefficient B is a useful parameter, especially in stability calculations involving 
rapid drawdown, and it can be measured directly in the laboratory for the relevant values of stress-
changes in a particular problem. 

Note that in Equation (2.4) if B  is known, the only unknown to determine the 
change in pore pressure is the change in major principal stresses. Bishop (1954) 
followed this recommendation and assumed that the major principal stress in any point 
within the slope is the vertical stress. He proposed also that the change in weight, 
statically computed in a column of soil and water above a reference point, would 
provide 1σΔ . Finally he suggested B  = 1 as an appropriate value in practice. Bishop’s 
approach has been criticized because it may lead to unacceptable large negative pore 
water pressures under the dam (Baker et al., 1992). 

Morgenstern (1962) accepted Bishop’s proposal based on a correspondence 
between Bishop’s method and pore pressures measured in two dams subjected to rapid 
drawdown (Alcova and Glen Shira dams). It is not clear that results of Glen Shira dam 
follow Bishop recommendation, however, and more will be said about this case later. 
Morgenstern published plots providing safety factors after drawdown in terms of 
drawdown ratio (HD/H in Fig. 2.1) for different values of slope angle, effective 
cohesion and effective friction. The dam geometry was simple: a homogeneous 
triangular dam on an impervious base. Much later, Lane and Griffiths (2000) solve a 
similar case in terms of geometry, but failure conditions are calculated by means of a 
(c’, ϕ’) reduction procedure built into a finite element program, which uses a Mohr-
Coulomb failure criterion. They do not solve any flow equation in their program and it 
is not clear how they could derive the pore water pressures induced by total stress 
unloading. 

Lowe and Karafiath (1980) and Baker et al. (1992) performed undrained analyses to 
calculate the safety factors of slopes under rapid drawdown conditions. The analysis is 
applicable to relatively impervious soils and it does not require a determination of pore 
pressures after drawdown (which is required for a drained analysis of the type 
performed by Morgenstern). Instead, the idea is to find the distribution of undrained 
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strengths for the particular stress state just before drawdown. However, the emphasis 
in this paper lies on the determination of pore pressures after drawdown so that 
general effective stress analysis could be performed.  No more reference to this type of 
undrained approach for safety factor calculation will be made here. 

2.2.2 Flow methods 
Casagrande (1940) developed a procedure to find the time required to reach a 

certain “proportion of drainage” of the upstream shell of dams having an impervious 
clay core. By assuming a straight saturation line, he was able to derive some analytical 
expressions. Later Reinius (1954) demonstrated the use of flow nets to solve slow 
drawdown problems. This contribution was based on earlier work published in 
Sweden. The key idea is that: 

[...] the flow net at slow drawdown is determined by dividing the time in intervals and assuming 
the reservoir water level to be stationary and equal to the average value during the interval. 

He also computed, based on the Swedish friction circle method of analysis, safety 
factors during drawdown and plotted them in terms of a coefficient: k nv  which 
integrates the soil permeability (k), the porosity (n) and the velocity of lowering the 
reservoir level, v. He also explained, in the following terms, the pore water pressure 
generation due to rapid drawdown: 

When the reservoir is lowered rapidly, the total stresses decrease. If the soil does not contain air 
bubbles and the water content remains unchanged, the effective stresses in the soil also remains 
unchanged provided that the compressibility of the water is neglected. Hence the neutral stresses must 
decrease. 

A similar statement may be found in Terzaghi and Peck (1948). Examples of flow 
net construction for drawdown conditions may be found in Cedergren (1967). 

Finite difference approximations and, later, finite element techniques were used in 
the 60’s and 70’s to calculate the flow regime under drawdown conditions. The major 
problem was to predict the location of the phreatic surface during drawdown. When 
Dupuit-type of assumptions -horizontal flow- are made (Brahma and Harr, 1962; 
Stephenson 1978) the location of the zero-pressure surface comes automatically from 
the analysis. When solving the Laplace equation by finite elements (Desai, 1972, 1977), 
some remeshing procedures were devised. A more recent example of a determination 
of the free surface is given in Cividini and Gioda (1984). 

In parallel, the liquid water flow equation for unsaturated porous media was being 
solved by means of finite difference or finite element approximations (Rubin, 1968; 
Richards and Chan, 1969; Freeze, 1971; Cooley, 1971; Neumann, 1973; Akai et al., 
1979; Hromadka and Guymon, 1980, among others). These developments made it 
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obsolete the involved numerical techniques required to approximate the free surface 
through the saturated flow equation. Berilgen (2007) published a recent contribution to 
the drawdown problem. The author uses two commercial programs for transient/flow 
and deformation analysis respectively. He reports a sensitivity analysis involving simple 
slope geometry, two saturated values of permeability, two drawdown rates and five 
drawdown ratios (HD/H in Fig. 2.2a). Safety factors are calculated by a (c’, ϕ’) 
reduction method built into the mechanical finite element program. The author 
emphasizes that the undrained rapid drawdown case and the fully drained case (high 
permeability) are rough approximations for other intermediate situations likely to be 
found in practice. 

It turns out that the position of the zero pressure line depends also on unsaturated 
flow properties, such as the water retention curve and the relative permeability, which 
are outside the formulation for saturated conditions. However, few applications of 
these developments have been described in connection with the drawdown problem. 
Pauls et al. (1999) reports a case history. A stress-uncoupled finite element program was 
used to analyse the pore pressure evolution in a river bank as a result of a flooding 
situation. Consistently, predicted pore pressures remained well above the measured 
piezometric data. One possible explanation, not given in the original paper, is the 
uncoupled nature of the computational code used. In fact, no riverbank failures were 
observed in this case despite the calculated safety factors, lower than one.  

Difficulties for the development of consistent, fully coupled hydromechanical 
codes for saturated/unsaturated soils, hampered by the issue of the effective stress 
principle and the development of consistent constitutive equations for unsaturated 
conditions, have prevented a more advanced and realistic analysis of the classical 
drawdown problem. This paper relies on one of the existing complete formulations in 
this regard. The solved cases use the finite element program CODE_BRIGHT (DIT-
UPC, 2002) developed at the Department of Geotechnical Engineering and 
Geosciences of UPC. The code solves in a fully coupled manner thermal, mechanical 
and flow (air and water) problems in porous media. It may handle a variety of 
mechanical constitutive laws but the results presented here correspond either to elastic 
conditions or to elastoplastic constitutive models (BBM; Alonso et al., 1990; Rockfill 
model; Oldecop and Alonso, 2001). The formulation used in CODE_BRIGHT is 
briefly described in the Appendix.  

2.3 DRAWDOWN IN A SIMPLE SLOPE 
Consider the case sketched in Figure 2.1. A fully submerged simple slope will 

experience a drawdown condition when the water level acting against the slope surface 
is lowered. The actual geometry of the slope analyzed is given in Figure 2.4. The figure 
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indicates the position of three singular points used in the discussion: A point at 
midslope (PA), a point at the slope toe (PB) and a point away from the slope (PC) which 
is representative of “bottom of the sea” conditions. Three auxiliary vertical profiles will 
assist in the analysis of results. Critical failures surfaces obtained in drawdown stability 
analysis are typically close to points PA and PB and this provides a motivation to 
analyze the response of those locations. Two cases are considered, either an 
instantaneous drawdown or a drawdown at a reasonable speed in dam engineering 
applications: 0.5 m/day.  

 
Figure 2.4 Geometry of the slope. Labels indicate the position of three singular points 

mentioned in the discussion.  
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Figure 2.5 Retention curve and relative permeability function for the analysis of a simple slope. 
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An elastic constitutive law will characterize the soil. Therefore, stability conditions 
are not an issue here. Concerning the hydraulic description, Figure 2.5 indicates the 
water retention curve and the relative permeability law adopted in calculations. The 
retention curve (Fig. 2.5) has been defined by means of a Van Genuchten model and 
the relative permeability varies with the degree of saturation following a cubic law 
( 3

rsatrel Skk = ). A constant saturated permeability ksat = 10-10 m/s was also used in all 
calculations. This is a low value, typical of an impervious material in engineering 
applications. 

2.3.1 Instantaneous drawdown 
The initial water level in the slope is horizontal and it is located at the maximum 

level in the reservoir. Therefore, the initial pore pressures in the soil follow a 
hydrostatic pattern (Fig. 2.6). Drawdown is then simulated by removing 
instantaneously all the water in the reservoir. The water level (pw = 0) is maintained at 
the level of the toe of the slope. The inclined slope surface maintains a “seepage 
condition”: water may flow out whenever pw > 0 in the soil but it remains impervious 
otherwise. All the remaining boundary surfaces remain impervious.  

 
Figure 2.6 Initial pore water pressure distribution before drawdown 

 
Figure 2.7 Pore water pressure distribution after immediate drawdown in an uncoupled 

analysis. 
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Changes in pore water pressure developed immediately after the drawdown will be 
exclusively due to total stress changes. Therefore, if an uncoupled analysis is run, the 
pore water pressures inside the slope will maintain their initial values immediately after 
drawdown. This is shown in Figure 2.7. The only difference between Figures 2.6 and 
2.7 lies in the boundaries where the new boundary conditions after drawdown were 
imposed.  

In a coupled analysis, the magnitude of pore pressure changes depends on the 
stress – strain behaviour of the soil skeleton. In the analysis presented here several 
elastic soil moduli are considered (E = 10000 MPa, 1000 MPa and 100 MPa). The first 
case corresponds to a stiff material (a soft clayey rock, for instance). The second case is 
an upper limit for a very rigid compacted and low porosity material. The third case is a 
reasonable assumption for a well compacted well graded soil. 
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Figure 2.8 Pore water pressure evolution after instantaneous drawdown in the point PA (see 
Fig. 2.4).  

Figures 2.8 to 2.10 show the calculated time evolution of pore pressure after the 
instantaneous drawdown in the three reference points (Fig. 2.4). At day 1 in the plots, 
instantaneous drawdown is simulated. In the case of uncoupled analysis, no immediate 
effect of the drawdown is obtained, as expected. In the coupled analysis, the 
instantaneous pore pressure drop depends on the compressibility of the soil skeleton. 
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Figure 2.9 Pore water pressure evolution after instantaneous drawdown in the point PB (see 

Fig. 2.4).  
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Figure 2.10 Pore water pressure evolution after instantaneous drawdown in the point PC (see 

Fig.2.4).  
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The stiffer the soil, the more limited the stress-induced change in pore water 
pressure. Immediately after drawdown a dissipation process begins. The rate of pore 
water pressure dissipation is controlled by the initial conditions after drawdown but 
also by the permeability and stiffness of the soil. Note that in an uncoupled analysis the 
calculated dissipation rates are higher, because the implicit assumption is an infinitely 
rigid soil. Eventually, all cases result in the same long term solution.  

Note that the coupled analysis leads systematically to lower water pressures than 
the uncoupled (pure flow) approximation during the first stages of the dissipation. This 
is due to the effect of the initial state after drawdown, controlled by the change in 
stress. However, since pressures dissipate faster the stiffer the soil, this situation 
changes after some time and the water pressure records may cross at some particular 
time, which depends on the position of the considered point in the slope. Note also 
that full steady state conditions were not reached at the end of the simulation period.  
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Figure 2.11 Pore water pressure immediately after instantaneous drawdown along Profile 1 (see 

Fig. 2.4). 

Figures 2.11 to 2.13 show the pore pressure distribution along the three vertical 
profiles indicated in the Figure 2.4 immediately after the instantaneous drawdown. The 
drop of pore pressure due to total stress reduction is practically constant with height, 
especially in Profiles 1 and 2, where stress conditions are more regular. The toe of the 
slope has a more complex stress distribution and this is reflected in a more irregular  
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Figure 2.12 Pore water pressure immediately after instantaneous drawdown along Profile 2 (see 

Fig. 2.4). 
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Figure 2.13 Pore water pressure immediately after instantaneous drawdown along Profile 2 (see 

Fig. 2.4). 
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distribution of pore pressures after drawdown, especially in points close to the slope 
boundary.  

The trends in the three profiles are, however, similar. Note that for a compacted 
soil, typical in earthdam materials (E = 100 MPa), the uncoupled, pure flow analysis 
provides an extremely unrealistic answer.   

2.3.2 Progressive drawdown (v = 0.5 m/day) 
Conditions of the analysis remain unchanged except for the drawdown rate. This 

is, however, an important parameter and results depend markedly of this rate. Consider 
first the case of the “bottom of the sea” conditions (Fig. 2.14). All the coupled analyses 
lead essentially to the same response. This is because variations in the instantaneous 
response are erased by the simultaneous dissipation of pressures. For the stiffer 
materials considered (E = 1000, 10000 MPa), water pressures remain slightly above the 
most common cases in soils. However, the pure flow analysis is far from the correct 
answer. . 

Similar results were obtained for the three reference points. Only the case of the 
mid slope point is plotted in Figure 2.15. 
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Figure 2.14 Pore water pressure evolution after progressive drawdown in the point PC (see Fig. 

2.4).  
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Figure 2.15 Pore water pressure evolution after progressive drawdown in the point PA (see Fig. 

2.4). 

It may be argued that the pure flow analysis is a conservative approach if viewed in 
terms of slope safety against failure. However, this is a result which depends on the 
particular case considered and cannot be generalized, as shown below. 

The set of calculated results in Figures 2.14 and 2.15 correspond to the 
“impervious” case qualitatively shown in Figure 2.2. If the soil permeability is 
increased, the differences between coupled and uncoupled analysis reduce and 
eventually they vanish because the high dissipation rates mask the stress-induced 
response of pore pressure change. However, it is by no means easy to decide “a priori” 
where is the threshold permeability, which justifies the use of an uncoupled analysis. 
The solved cases, presented in the remaining of the paper, provide additional 
information on this issue. 

2.4 SOME DESIGN RULES REVISITED 
Let us consider now the case of relatively pervious materials. Mechanical coupling 

in these cases is not relevant for the reasons mentioned before and the common 
recommendation is to base the analysis on the determination of flow nets by means of 
numerical, analytical or graphical procedures. However, the drawdown implies that an 
initially saturated soil becomes progressively unsaturated. The distribution of pore 
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water pressures in the slope depends now on some key properties of the unsaturated 
soil, and, in particular, on the water retention characteristics.  

 
Figure 2.16 Chart for determining height of saturation at core face. Free draining upstream 

shell subject to drawdown (US Corps of Engineers, 1970). 

Some approximate procedures have been proposed to estimate the pore pressures 
in a slope during drawdown. Figure 2.16 illustrates one case, in connection with the 
stability analysis of earthdams (US Corps of Engineers, 1970). The idea of the chart is 
to facilitate a procedure to locate the position of the free surface after drawdown. This 
is achieved by providing the lowering of the seepage line at the interface between the 
impervious dam core and the upstream shell ( DHΔ ). 

This distance is a function of the total drawdown drop (HD), the soil permeability, 
k, the velocity of drawdown, v, the effective – or “drained”- porosity, ne, and the slope 
geometry, given by the slope angle, β . 

With the purpose of showing the effect of correctly modelling the saturated-
unsaturated transition, a few cases directly inspired in the geometry and conditions 
considered in this design plot have been calculated. The cases analysed correspond to 
the three points marked in Figure 2.16 for the slope angle cot( ) 1.8b β= = . A set of soil 
properties, matching the conditions of these three points are given in Table 2.1. 
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Table 2.1 Soil properties for the analysis of the drawdown of an upstream shell 

Value 
Parameter Symbol 

Case 1 Case 2 Case 3 
Unit 

Young Moduli E 100 100 100 MPa 
Saturated 
permeability κsat 5·10-8 10-6 10-4 m/s 

Retention curve 
parameters (Van 
Genuchten) 

P0 
λ  

Sr max 
Sr min 

2 – 0.05 
0.2 
1 
0 

0.2 – 0.007 
0.2 
1 
0 

0.05 – 0.005 
0.2 
1 
0 

MPa 
- 
- 
- 

Effective porosity ne 0.09 0.18 0.24 - 

 

Drawdown velocity was fixed at 0.5 m/day. A common soil porosity n = 0.2 was 
also selected. Three saturated soil values of permeability, ksat = 5·10-8 m/s,  ksat = 10-6 
m/s and ksat = 10-4 m/s correspond to a relatively impervious shell (typically a mixture 
of gravel, sand, silt and some clay),  a partially draining material (typically a compacted 
well graded mixture) and a free draining material (typically a gravelly sand). The 
effective porosity for these three cases is indicated in Table1. The ne values selected 
reflect the type of soil associated with the three cases analyzed.  The additional soil 
property, not considered in Figure 2.16, is the water retention of the soil. The effect of 
a reasonable variation of this property was investigated. To do so, a Van Genuchten 
representation of the water retention curve is selected. By changing parameter P0, 
associated with the air entry value, different soil retention capabilities are simulated. 
The second parameter of the retention curve, λ , was kept constant at the value given 
in the table. All the calculations have been performed in a coupled mode, using an 
elastic soil modulus E = 100 MPa. 

Figures 2.17 to 2.19 indicate the calculated distribution of water pressures, below 
the saturation line, for the extreme cases analyzed. These plots provide the possibility 
of calculating DHΔ  and the range of calculated values has been indicated in the caption 
of each figure. These values are also plotted on Figure 2.16. 

At first sight, the results in Figures 2.17-2.19 may look contrary to expectations, 
since the height of the phreatic surface decreases when the air entry value increases. 
This is a result valid for the particular permeability selected when comparing the effect 
of alternative water retention curves. Therefore, it makes sense only when the range of 
water retention curves analyzed is limited since all of them should provide essentially 
the same saturated permeability. The calculated result is better explained if one 
considers also the distribution of degree of saturation within the slope. In Figure 2.20, 
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the degree of saturation along a vertical profile in the middle of the slope is 
represented for the two extreme cases having a common saturated permeability ksat = 
10-6 m/s (Case 2). 

 
(a) 

 
(b) 

Figure 2.17 Pore pressure distribution after total drawdown for Case 1: a) P0 = 2 MPa, DHΔ  = 
22 m; b) P0 = 0.05 MPa, DHΔ  = 6 m.  

For a given soil permeability, the amount of water to be drained during drawdown 
is similar for both cases. Above the phreatic line (s > 0), if P0 is low, even for low 
suction (close to the value of P0) the degree of saturation decreases significantly (this is 
determined by the retention curve, Fig. 2.21) and the amount of drained water from 
the unsaturated zone is higher. In the other case (higher P0), the zone above the 
phreatic line is almost saturated (Fig. 2.20) although pore water pressures remain 
negative. Then the phreatic line may reach a lower elevation for the same amount of 
drained water. Therefore, if P0 decreases, the phreatic line (pw = s = 0) remains at 
higher elevation (the saturated zone of the slope is larger). 



Chapter 2   

 
48 

 
(a) 

 
(b) 

Figure 2.18 Pore pressure distribution after total drawdown for Case 2. (a) P0 = 0.2 MPa, 
DHΔ = 29 m; (b) P0 = 0.007 MPa, DHΔ  = 15 m 

 
(a) 

 
(b) 

Figure 2.19 Pore pressure distribution after total drawdown for Case 2. (a) P0 = 0.05 
MPa, DHΔ  = 47 m; (b) P0 = 0.005 MPa, DHΔ  = 45 m. 
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Figure 2.20 Degree of saturation after total drawdown along the profile indicated in the figure 

for the Case 2 (ksat = 10-6 m/s).  
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Figure 2.21 Retention curves considered in Case 2. 
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If only positive pore water pressures are considered in stability calculations, higher 
P0 may lead to higher safety factors against slope failure than the case of a lower air 
entry value. For the particular case of ksat = 10-6 m/s again, the safety factor calculated 
by means of a Morgenstern-Price method against an imposed failure surface through 
the middle of the slope has been calculated. A Mohr-Coulomb failure criterion 
(strength parameters 'φ =28º and c’=0 ) has been considered. For the case of P0 = 0.2 
MPa, a safety factor equal to 1.25 is obtained. If P0 is reduced to 0.007 MPa, the 
calculated safety factor is 1.48. However, this conclusion may change if a more 
comprehensive description of soil strength, valid for saturated and unsaturated 
conditions is introduced in the analysis, a subject that is outside the purpose of this 
Chapter.  

The results obtained have been included in Figure 2.16. The largest discrepancies 
with the Manual recommendations are obtained for low values of the index PD (more 
impervious materials, always with respect to drawdown velocity). Recommendations 
are too conservative in these cases. The fact to be stressed is that the set of parameters 
included in the design procedure implied in Figure 2.16 is incomplete, even if 
couplings effects are disregarded. Only in the case of very pervious materials, 
drawdown predictions of the chart reproduced in Figure 2.16 seem to be accurate. 

2.5 COUPLED ELASTO-PLASTIC ANALYSIS OF DRAWDOWN 
All the coupled analyses reported so far describe the soil by means of an elastic 

constitutive law. In principle, drawdown may be viewed as an unloading scenario. 
However, the particular geometry of the problem and the no uniformity of applied 
boundary stresses may result in significant shearing. In addition, the progressive 
reduction in pore water pressures implies a parallel increase in confining stresses. If 
yielding conditions are reached, plastic deformations will take place and additional local 
sources of water will develop. They will modify the pore pressure response of the 
slope. 

In order to show some aspects of the elastoplastic response of the soil during 
drawdown, the dam geometry analyzed in the previous section was considered again. 
Dam materials (core and shell) are now simulated by means of elastoplastic models. To 
facilitate the selection of parameters and to reproduce, as much as possible, a real 
situation, the mathematical description of the two materials involved were borrowed 
from previous work by the author on Beliche dam (Pinyol, 2004; Alonso et al., 2005). 
The shell material is equivalent to the “inner rockfill” of Beliche whereas the clay core 
of the example analyzed here reproduces also Beliche’s core. The shell will be 
described by a “rockfill model” presented in Oldecop and Alonso (2001) and Alonso et 
al (2005). The clay core is described by means of the BBM (Alonso et al., 1990; 
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Appendix). Code_Bright handles both models. Material parameters were derived from 
the backanalysis of large scale laboratory tests and are given in Tables 2.2 and 2.3. 
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(b) 

Figure 2.22 Stress-suction path followed by point P (indicated in the inset) during: 0-1 
Construction; 1-2 Impoundment; and 2-2 Drawdown. Yield surfaces reached at the end of 
each stage are plotted. (a) Effective mean stress – deviatoric stress path and (b) Effective 

mean stress – suction path. 
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The analysis performed reproduces construction, impoundment and drawdown 
stages. Figure 2.22 shows the stress-suction path followed by a representative point 
located inside of the upstream rockfill shoulder. For the simulation of dam 
construction the weight of the whole dam is applied, in a single stage, in a ramp 
manner. A low initial isotropic yield stress, *

0p , is assumed for the compacted materials. 
Therefore, the weight load applied induces immediately the yielding of the dam. Plastic 
deformations will accumulate during the construction stage (step 0-1 in Fig. 2.22). 
During construction, suction decreases due to the reduction of porosity (from s = 0.5 
MPa, initial value, to the calculated value, s = 0.26 MPa).  

Table 2.2 Mechanical parameters for rockfill. 

Beliche dam
Definition of parameter Symbol Units 

Inner shell 

I. ELASTIC BEHAVIOUR 

Elastic modulus E MPa 150 
Poisson's ratio ν  - 0.2 

II. PLASTIC BEHAVIOUR 

Plastic virgin instantaneous compressibility κλ −i  - 0.025 
Virgin clastic compressibility for saturated 
conditions 

d
0λ  - 0.028 

Parameter to describe the rate of change of 
clastic compressibility with total suction sα  - 0.010 

Slope of critical state strength envelope for dry 
conditions Mdry - 1.75 

Slope of critical state strength envelope for 
saturated conditions Msat - 1.20 

Parameter that controls the increase in cohesion 
with suction ks - 0 

Threshold yield mean stress for the onset of 
clastic phenomena py MPa 0.01 

Parameter that defines the non-associativeness 
of plastic potential α  - 0.2 

III. INITIAL STATE FOR DAM MODEL 

Initial suction 0s  MPa 20 

Initial mean yield stress *
op  MPa 0.02 
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Table 2.3 Parameters for the mechanical models used for the clay core 

Beliche dam
Definition of parameter Symbol Units 

Clay core 

I. ELASTIC BEHAVIOUR 
Elastic modulus E MPa 100 
Poisson's ratio ν - 0.4 

II. PLASTIC BEHAVIOUR 

Virgin compressibility for saturated conditions (λ(0) - κ) - 0.020 

Parameter that establishes the minimum value of 
the compressibility coefficient for high values of 
suction 

r - 0.7 

Parameter that controls the rate of increase in 
stiffness with suction β MPa-1 1.2 

Reference stress pc MPa 0.02 

Slope of critical state strength line M - 0.88 

Parameter that controls the increase in cohesion 
with suction ks - 0.1 

Parameter that defines the non-associativeness 
of plastic potential α - 0.2 

III. INITIAL STATE FOR DAM MODEL 

Initial suction 0s  MPa 0.5 

Initial yield mean net stress *
0p  MPa 0.02 

 

During the impoundment step 1-2, total stresses and pore pressures change. 
Because of saturation a compressive strain (collapse) develops in the rockfill and 
additional irreversible volumetric deformation are accumulated. The final size of the 
yield envelope is determined by the isotropic yield stress reached at zero suction. Path 
1-2 essentially implies an elastic unloading in the deviatoric plane. Mean and deviatoric 
stresses reduce simultaneously, following a path parallel to the initial construction path.  
Water pressures change from negative values (soil under suction) to positive ones. 
Note also that the strength parameter (M) is not constant during this path. In fact 
strength envelopes in the rockfill model depend on the current suction and they are 
defined in terms of two extreme values (Mdry and Mwet) given in Table 2.2. 
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During drawdown (at a velocity of 0.5 m/s) point P experiences a sudden reversal 
in its stress path (Fig. 2.22). Both mean and the deviatoric stresses increase again 
simultaneously and follow a path parallel to the initial construction path (Fig. 2.22). 
The shape of this path depends on the permeability and the compressibility of the 
material. In the case represented in Figure 2.22, when the end of the drawdown is close 
(Point 2), the current yield surface is reached and new plastic deformations take place. 
The plastic reduction of the porosity will release some water, which will be dissipated 
at the expense of an increase in pore water pressure. In the case analyzed this is a 
minor effect because yielding at the final drawdown stage is very limited. The next 
discussion on a case record (Shira dam) will provide additional insight into these 
phenomena. 

2.6 GLEN SHIRA DAM CASE HISTORY 
Glen Shira Lower Dam is a part of a pumping storage scheme in Northern 

Scotland. The reservoir was expected to experience fast drawdown rates and this 
situation prompted the field experience reported by Paton and Semple (1961). 
Probably this is one of the best-documented case histories concerning the effect of 
drawdown on earthdams. The maximum cross section of the dam is presented in 
Figure 2.22. The 16 m high embankment has a centred thin reinforced concrete wall. 
The homogeneous embankment is made of compacted moraine soil. A rockfill shell 
covers the upstream slope of the compacted moraine to increase stability. Published 
grain size distributions of the moraine soil indicate a well-graded material having a 
maximum size of 15 cm. Plasticity is not reported for this soil. It was apparently 
compacted wet of optimum at an average water content w = 15%. The attained average 
dry density was 19.8 kN/m3, which is a relatively high value for a granular mixture. A 
friction angle 'φ  = 26º is reported. 

For the rockfill a porosity of n = 0.4, a dry density of 16.7 kN/m3 and a friction 
angle 'φ  = 45º are mentioned in the paper. 

Five porous stone piezometer disks, previously calibrated against mercury 
columns, were located in the places shown in Figure 2.22. They were connected to 
Bourdon gauges through thin polyethylene tubing. The authors conclude in their paper 
that the possibility of instrumental error are “of minor order and can be neglected”. 

No significant pore water pressures were recorded during construction. Positive 
pore pressures were measured only after reservoir filling. 

A total water level drawdown of 9.1 meters in four days was applied to Glen Shira 
dam. This maximum drawdown was imposed in four stages of rapid (7.2 m/day) water 
lowering followed by short periods of constant water level. Details of changing water 
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level in the reservoir and the measured pore water pressures are indicated in the set of 
figures prepared to analyze this case.  

 
Figure 2.23 Maximum cross section of Shira Dam. The position of Piezometers 1 to 5 is 

indicated (Patton and Semple, 1961).  

Measured pore pressures have been compared with calculated values in Figures 
2.24 to 2.28. The following hypotheses, ordered in the sense of increasing complexity, 
were made to perform calculations: 

1) A pure flow analysis for saturated/unsaturated conditions that follows the 
changing hydraulic boundary conditions actually applied to the upstream slope. 
Table 2.5 provides the hydraulic parameters used in calculations. These 
parameters are common to the remaining analyses described below. 

2) An instantaneous drawdown of the maximum intensity, followed by pore water 
pressure dissipation. This is a coupled analysis which attempts to reproduce the 
classical hypothesis behind the undrained methods, briefly described in the 
introduction of the Chapter. The procedure does not correspond strictly to 
Bishop’s method because in the analyses reported here the correct change in 
total stresses is actually applied. The soil was simulated as an elastic material. 
(Properties are given below, in Table 2.5). 

3) A coupled analysis (saturated/unsaturated), following the applied upstream 
changes in hydrostatic pore pressures. The soil is considered elastic (properties 
are given in Table 2.4). 

4) A coupled analysis (saturated/unsaturated) following the applied upstream 
changes in hydrostatic pore pressures. The soil is considered elasto-plastic 
following the BBM model, Alonso et al. (1990) (properties are given in Table 
2.4). The elastic parameters of this model are taken from the previous elastic 
model. 
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The case of Shira dam is especially interesting because the permeability of the 
compacted moraine fill (around 10-8 m/s; see below) is an intermediate value between 
impervious clay and a free draining material. One may wonder to what extent the 
classical hypothesis for drawdown analysis (undrained or pure flow) approximates the 
actual behaviour. This aspect will be discussed later. 

The following ideas have guided the selection of parameters. The elastic 
(unloading-reloading) elastic moduli of compacted moraine and rockfill are typical of a 
stiff soil. In fact, well graded granular mixtures become rather stiff when compacted. 
The virgin compressibility, ( ) κ−λ 0 , is approximately one order of magnitude higher 
than the elastic compressibility. Parameters r and β  controls the shape of the yield LC 
curve of BBM. The moraine soil is assumed to gain limited stiffness as suction 
increases (parameter r). Also, the increase in stiffness with suction is fast for relatively 
low values of suction and remains fairly constant thereafter (parameter β ).  The slope 
of the critical state strength line reflects the friction angles provided in the paper. Zero 
cohesion is assumed throughout the analysis, irrespective of suction (parameter ks). A 
small reference stress (pc) is assumed. Associated flow conditions were assumed in both 
materials (parameter α =1). Rockfill properties were assumed to be similar to the 
compacted moraine, except for the higher friction angle. 

The dam was built in a single step. A more detailed representation of dam 
construction plays a minor role in the analysis of drawdown. The following “as 
compacted” initial suction and saturated yield stress were imposed: 0s = 0.01 MPa and  

*
op = 0.01 MPa. Given the low value of *

op  , which reflects the isotropic yield state after 
compaction, dam conditions at the end of construction correspond to a normally 
consolidated state. The dam was then impounded until steady state conditions were 
reached. The presence of the impervious concrete membrane results in a simple initial 
state: all points upstream of the concrete wall maintain hydrostatic water pressure 
conditions. This initial state correspond to day 5 in the plots presented later 

The information given in the original paper provided data to approximate 
hydraulic parameters.  Two saturated permeabilities are mentioned for compacted 
specimens in the laboratory (1.6· 10-8 m/s, when compacted at optimum water content 
and 1.6· 10-7 m/s when compacted wet of optimum). However, the dry densities 
reached in the field (19.8 kN/m3) are higher than the optimum laboratory B.S. 
compaction (19.2 kN/m3) and this leads to a reduction in permeability. A saturated 
permeability value ksat = 1.6 x 10-8 m/s was therefore selected for field conditions.  
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Table 2.4 Parameters for the mechanical models used for the analysis of Shira dam. 

Type of soil 
Definition of parameter Symbol Units 

Moraine Rockfill 

I. ELASTIC BEHAVIOUR 

Elastic modulus E MPa 100 100 
Poisson's ratio ν - 0.2 0.2 

II. PLASTIC BEHAVIOUR 

Virgin compressibility for saturated 
conditions ( ) κ−λ 0  - 0.020 0.020 

Parameter that establishes the 
minimum value of the compressibility 
coefficient for high values of suction 

r - 0.8 0.8 

Parameter that controls the rate of 
increase in stiffness with suction β  MPa-1 6.5 6.5 

Reference stress pc MPa 0.01 0.01 
Slope of critical state strength line M - 1.4 (35º) 1.85 (45º) 
Parameter that controls the increase in 
cohesion with suction ks - 0 0 

Parameter that defines the non-
associativeness of plastic potential α - 1 1 

III. INITIAL STATE FOR DAM MODEL 

Initial suction 0s  MPa 0.01 0.01 

Initial yield mean net stress *p0  MPa 0.01 0.01 

Table 2.5 Hydraulic parameters used for the analysis of Shira dam. 

Type of soil 
Definition of parameter Symbol Units

Moraine Rockfill 

I. PERMEABILITY 

Saturated permeability ksat m/s 1.6·10-8 1.0·10-4 
Relative permeability krel - ksat (Sw)2 ksat (Sw)2 

II. WATER RETENTION 

Van Genuchten parameter describing 
air entry value  P0 MPa 0.05 0.01 

Van Genuchten parameter describing 
mid slope of retention curve λ  - 0.2 0.4 
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Water retention properties for the moraine were derived following a simplified 
procedure, which makes use of the grain size distribution. Since the moraine soil is a 
granular material, capillary effects will dominate the water retention properties. On the 
other hand, pore size distributions may be approximated if grain size distributions are 
known. An example is given, for a beach sand, in Alonso and Romero (2002). The idea 
is that the pore size distribution follows the shape of the grain size distribution. 
However, the pore diameter is a fraction of the equivalent grain size. In the sand 
reported by Alonso and Romero (2002) this fraction is approximately 0.25. It is 
probably lower in a well-graded material although this ratio was accepted to derive the 
pore size distribution from the known average value of the grading curve for the 
moraine soil. The next step is to use Laplace equation to derive the suction emptying a 
given pore size. This leads immediately to the water retention curve. The estimated 
curve is given in Figure 2.29. The Van Genuchten expression fitted to the derived 
water retention curve corresponds to parameters (see also Table 2.6): P0 = 0.05 MPa 
and λ = 0.2. The rockfill retention curve was approximated with a significantly lower 
air entry value (lower P0) and an increased facility to desaturate (higher λ ) when 
suction is applied. Finally, a cubic law, in terms of the degree of saturation, defined the 
relative permeability. 

The known history of the final stages of reservoir filling and drawdown history of 
the reservoir levels is indicated in Figures 2.24 to 2.28 
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Figure 2.24 Measured and calculated pore pressures in Piezometer 1 (Coupled 
saturated/unsaturated analysis; elastic soil properties). 
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Figure 2.25 Measured and calculated pore pressures in Piezometer 2 (Coupled 

saturated/unsaturated analysis; elastic soil properties). 
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Figure 2.26 Measured and calculated pore pressures in Piezometer 2 (Coupled 

saturated/unsaturated analysis; elastic soil properties). 
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Figure 2.27 Measured and calculated pore pressures in Piezometer 4 (Coupled 

saturated/unsaturated analysis; elastic soil properties). 
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Figure 2.28 Measured and calculated pore pressures in Piezometer 5 (Coupled 

saturated/unsaturated analysis; elastic soil properties). 

These five figures include a comparison between the calculated evolution of pore 
pressures and the corresponding measurements of the five piezometers. The analysis 
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corresponds to Case 2 of the list of four cases described above: a coupled flow-elastic 
deformation for saturated/unsaturated  conditions. The agreement is satisfactory. The 
pattern of recorded pore pressures and the smoothing effect introduced by the soil 
stiffness and permeability (specially noteworthy in Piezometers 1 and 2) are well 
captured by the model. A better agreement between measurements and calculations 
probably requires the consideration of certain field heterogeneity in permeability 
and/or soil stiffness.  

Paton and Semple (1961) plotted also contours of piezometric head during 
drawdown. Two examples are given in Figures 2.30b and 2.31b. They correspond to 
drawdown drops of 4.85 and 8.8 m. The reservoir level reaches 9.15 and 5.2 m 
respectively (with respect to the zero reference level which in this paper is placed at the 
dam base: point 0 in Fig. 2.30 and 2.31). The authors used the data recorded on the 
five piezometers to interpolate the curves shown in the figure. They made the 
hypothesis of a zero water pressure at the shell-rockfill interphase. The computed 
distribution of heads inside the dam shell, for the same amount of drawdown, is also 
plotted in Figures 2.20a and 2.21a. The agreement is quite acceptable, although some 
discrepancies exist, which, in part could be attributed to the limited accuracy of the 
interpolation made.  

Table 2.6 Shira dam. Instantaneous drawdown. Comparison of coupled and simplified 
(Bishop) analysis 

Piezometer 
Initial pressure 

(horizontal water 
table) (kPa) 

Calculated instantaneous 
pressure drop 

(Code_Bright) (kPa) 

Bishop hypothesis 

( uΔ  = B · VσΔ ) 

B = 1 (kPa) 

1 96 42 42 

2 106 22 12 

2 67 10 1 

4 56 17 12 

5 22 6 0 

 

There was also an interest in comparing the performance of the different methods 
of analysis listed above. Figures 2.32 to 2.36 illustrate this comparison. Consider first 
the hypothesis of instantaneous drawdown (9.5 m of water level drawdown, 
instantaneously). The calculated pressure drop is indicated in the figures by means of a 
vertical bar. A (coupled) dissipation process is then calculated and the progressive 
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decay in pore pressures is also plotted. If compared with the actual pore pressures 
measured at the end of the real drawdown period, the hypothesis of instantaneous 
drawdown leads obviously to an extremely pessimistic and unrealistic situation. (The 
end point of the instantaneous drawdown at t = 9 days is to be compared with the 
pore pressure recorded at the end of the drawdown period at t = 12.4 days). 
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Figure 2.29 Water retention curve derived from average grading of moraine material and Van 

Genuchten approximation. 

It is also interesting to compare the results of the fully coupled analysis of the 
instantaneous drawdown with the approximated method of analysis suggested by 
Skempton/Bishop. Table 2.6 shows the comparison. The change in vertical stress 
( VσΔ ) has two contributions: the change in free water elevation above a given point 
and the decrease in total specific weight of the rockfill material covering the moraine 
shell. An effective saturated porosity of 0.2, after drainage, was assumed to calculate 
the drop in total specific weight.  Bishop hypothesis leads systematically to a higher 
pore pressure drop than the more accurate analysis. This is specially the case for the 
piezometers located deep inside the fill. Discrepancies are due to the simplified stress 
distribution assumed in the approximate method. 
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a)

b)

a)

b)  
Figure 2.30 Distribution of pore pressures inside the shell for a drawdown 14 to 9.15 m. (a) 
Computed results (coupled analysis); (b) Interpolated values plotted by Paton and Semple 

(1961). 

Consider now the opposite calculation method: a pure flow analysis. In this case, 
Figures 2.32 to 2.36 indicate that the predicted pore pressures are the lowest ones if 
compared with the remaining methods of analysis. Calculated water pressures follow 
closely the history of reservoir levels. The “damping” effect associated with soil 
compressibility is absent. When the water level is increased, at the end of the 
drawdown test, the pure flow analysis indicates, against the observed behaviour, a fast 
recovery of pore pressures within the embankment. 

Coupled analyses are closer to actual measurements. This is true in absolute terms 
but also in the trends observed when boundary conditions (changes in reservoir level) 
are modified. 
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a)

b)

a)

b)  
Figure 2.31 Distribution of pore pressures inside the shell for a drawdown 14 to 9.15 m. (a) 
Computed results (coupled analysis); (b) Interpolated values plotted by Paton and Semple 

(1961). 

Construction of Shira Dam leaves most of the embankment under normally 
consolidated conditions. This is a consequence of the low initial yield stress, *

0p , 
adopted in the analysis. *

0p  is related to the energy of compaction, but a detailed 
discussion of this topic is outside the limits of this Chapter. Granular materials, and 
certainly rockfill, tend to yield under low stresses after compaction. Therefore, the 
accumulation of layers over a given point will induce plastic straining. The stress paths 
in points relatively away from the slope surfaces follow K0 – type of conditions. Figure 
2.37 indicates the stress path of points located in the position of Piezometers 1 and 2. 
Plotted in the figure are also the yield surfaces at the end of construction. The 
maximum size of the yield surface corresponds to these construction stages. Once the 
dam is completed, reservoir impoundment leads to a reversal of the stress path, which 
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enters into the elastic zone. Drawdown leads to a new sharp reversal in the stress path 
and the increase in deviatoric stresses. However, the end of the drawdown path 
remains inside the elastic locus in the two cases represented in Figure 2.37. The 
possibility of inducing additional plastic straining during drawdown depends on the 
geometry of the dam cross section and on the constitutive behaviour of the materials 
involved. Shira dam has a stable geometry because of the low upstream slope (2 to 1) 
and shear stresses inside the dam are relatively small. In addition, the granular shell 
material has a high friction angle (45º). However, under different circumstances, plastic 
straining may develop during drawdown, and, in this case, pore pressures will probably 
increase because the yield point, located in the “wet” (compression) side of the yield 
locus (see Fig. 2.37) implies that additional local sources of local are available for 
dissipation.  

Note also the differences in calculated stress paths for Piezometers 1 and 2 during 
drawdown. Piezometer 2 is located deep inside the embankment, at a high elevation 
and therefore pore pressure changes are small: the effective mean stress remains 
constant and the stress path moves vertically upwards. However, the change in 
deviatoric stresses is also small and the final stress point is far from reaching critical 
state conditions. Piezometer 2, on the contrary, is close to the upstream shell, at a 
lower elevation. Changes in pore pressure and deviatoric stress are large in this position 
and the stress path moves approximately parallel to the initial construction path and 
approaches yielding conditions in compression. 
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Figure 2.32 Comparison of measured pore pressures in Piezometer 1 and different calculation 

procedures. 
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Figure 2.33 Comparison of measured pore pressures in Piezometer 2 and different calculation 

procedures. 
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Figure 2.34 Comparison of measured pore pressures in Piezometer 2 and different calculation 

procedures. 
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Figure 2.35 Comparison of measured pore pressures in Piezometer 4 and different calculation 

procedures. 
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Figure 2.36 Comparison of measured pore pressures in Piezometer 5 and different calculation 

procedures. 

There is, however, an additional effect, which leads to a different drawdown 
behaviour when comparing elastic and elastoplastic modelling approaches. If 
permeability is made dependent on void ratio, the construction of the dam will lead to 
lower values of permeability (distributed in a heterogeneous manner). If the dam 
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compacted material yields during construction, plastic volumetric compaction will add 
to the elastic strains. In addition, collapse phenomena upon impounding will reduce 
further the porosity. This effect has also been explored in the case of Shira dam. 
Permeability was made dependent on void ratio, e, following a Kozeny type of 
relationship (permeability depends on 3 /(1 )e e+ ). The calculated records of pore 
pressure evolution during drawdown are also shown in Figures 2.32 to 2.36. The 
reduction in permeability, if compared with the coupled elastic case, leads to a 
systematic increase in pore pressures. The agreement with measurements is now better 
in some Piezometers (1, 2 and 4). 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.02 0.04 0.06 0.08 0.1 0.12

Mean effective stress (MPa)

D
ev

ia
to

ric
 s

tre
ss

 (M
Pa

)

1

2

3

0

 
(a) 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.1

Mean effective stress (MPa)

D
ev

ia
to

ric
 s

tre
ss

 (M
Pa

) 1

2

3

0

 
(b) 

Figure 2.37 Stress path in a (q,p´) triaxial stress space of points located in the position of (a) 
piezometers 1 and (b) piezometer 2 during construction, impoundment and drawdown. 0-1: 
Construction; 1-2: Impoundment; 2-2: Drawdown. Also plotted are the yield surfaces at the 

end of construction. 
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The conclusion, for the particular embankment material of Shira dam and its 
overall geometry and design, is that the classical methods of analysis are far from 
explaining the recorded behaviour. The “instantaneous” or undrained method is 
conservative, but very unrealistic. A fully coupled analysis of the instantaneous 
drawdown results in higher pressure drops than the classical Bishop proposal. At the 
opposite extreme, the pure flow analysis leads to a systematic and unsafe 
underestimation of fill pressures during drawdown. Coupled analysis captures well the 
actual measurements. In the case of Shira dam, plastification during drawdown was 
probably nonexistent, and the simpler elastic approach provides a good approximation 
to recorded pore water pressures. However, the full elastoplastic simulation offers a 
better understanding of the phenomena taking place during construction and 
impounding. This is shown in the stress paths calculated, in the occurrence of yielding 
during construction and in the effect of permeability reduction on the drawdown 
response. 

2.7 CONCLUSIONS 
Pore water pressures in an initially submerged slope and later subjected to 

drawdown depend on several soil parameters and “external” conditions: soil 
permeability (saturated and unsaturated), soil water retention properties, mechanical 
soil constitutive behaviour, rate of water level lowering and boundary conditions. The 
Chapter stresses that a proper consideration of these aspects is only possible if a fully 
coupled flow – mechanical analysis, valid for saturated and unsaturated conditions is 
employed. A review of the literature on the subject reveals that the published 
procedures are plagued with numerous assumptions, which prevent often its use in real 
problems and make it difficult to judge the degree of conservatism -if any- introduced. 

Leaving apart for the moment the issue of the transition from saturated to 
unsaturated conditions which takes place during drawdown, there are two fundamental 
mechanisms controlling the resulting pore water pressure: the change in pore pressure 
induced by boundary changes in stress and the new flow regime generated. Both of 
them require a coupled analysis for a proper interpretation and consistency of results. 
In particular, pure flow models are unable to consider the initial changes in pore 
pressure associated with stress unloading. The intensity of pore pressure changes 
induced by a stress modification is controlled by the soil mechanical constitutive 
equation. In a simplified situation, under elastic hypothesis for the soil skeleton, the 
pore pressure depends on the ratio of soil bulk stiffness and water compression 
modulus. In most situations, this ratio is small and the influence of soil effective 
stiffness is negligible. This implies a maximum response of the saturated material to 
stress changes. Without this coupling, the initial pore pressures do not change during 
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fast unloading. (As an illustration, pure flow models are unable to detect that all points 
in the porous media instantaneously feel a change in water level in a large submerged 
area – the “bottom of the sea” case –). 

Permeability and soil stiffness controls coupled flow. The uncoupled analysis 
implicitly assumes a rigid soil and therefore it leads to a maximum dissipation rate. 
Both effects (the initial change in pore pressure and the subsequent dissipation) should 
be jointly considered for a better understanding of the evolution of pore pressures. In 
addition, the rate of change of boundary conditions is a key information to interpret 
the results. No simple rules can be given to estimate the pore pressures in the slope. 
This is even more certain if due consideration is given to the unsaturated flow regime. 
In this regard, some design rules for earthdam stability calculations, which provide the 
position of the phreatic surface in relatively “free draining” materials, have been 
reviewed with the help of the fully coupled, complete formulation used in this Chapter. 
An interesting result is that, other parameters of the problem being equal, the average 
height of the phreatic line increases as the air entry value of the water retention curve 
decreases. This is a paradoxical result at first sight, but it may be explained if one 
considers the amount of drained water induced by the drawdown. In addition, the 
position of the phreatic line does not provide enough information to calculate safety 
factors against slope failure if due consideration is given to the strength for positive 
suctions, above the zero-suction surface. Therefore, methods for drawdown analysis, 
which concentrate on the determination of the position of the phreatic line, using 
formulations for saturated flow, may lead to significant errors. The evaluation of the 
design chart for dams subjected to drawdown, performed in one of the sections of this 
paper, is a good example. 

The elastoplastic analysis performed on a synthetic example (an earth and rockfill 
dam whose parameters correspond to a real case: Beliche dam) has provided additional 
information on the stress paths that develop inside the dam. Points inside the 
embankment, except for shallow positions, follow a K0 – type of stress path during 
construction. Impounding and drawdown imply strong stress reversals. Drawdown, in 
particular, is characterized by a parallel increase in effective mean stress and deviatoric 
stress. Yield conditions may be approached although it is believed that the drawdown 
paths tend to remain in the elastic domain. 

A well documented case history (Shira dam) was analyzed to provide further 
insight into the drawdown problem. The case is very interesting because the soil 
involved (a compacted moraine) has an intermediate permeability between impervious 
clays and free draining granular materials. It should be added that materials with this 
intermediate permeability are very common in dam engineering. Therefore, the two 
classical procedures to analyze drawdown effects (undrained analysis for clays and pure 
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flow for granular materials) will meet difficulties. In fact, these two methods proved 
quite unrealistic when compared with actual records of pore water pressures in 
different points of the dam. In particular, the pure flow (uncoupled) analysis leads to 
faster dissipation of pore pressures and this is an unsafe result in terms of stability 
calculations. The fully coupled analysis (elastic or elastoplastic) provides consistent 
results.  

The elastoplastic analysis allows a proper consideration of the entire history of 
dam construction, impoundment and drawdown. Since embankment dams experience 
significant yielding during construction, this is an important consideration. It has been 
shown also that the reduction in permeability associated with material volumetric 
compression has a significant effect on the subsequent drawdown behaviour: it leads to 
higher pore water pressures being maintained inside the slope.  

2.8 APPENDIX COUPLED FLOW-DEFORMATION 
FORMULATION FOR SATURATED/UNSATURATED CONDITIONS  
This appendix summarizes the balance equations required for coupled flow-
deformation for saturated and unsaturated conditions.  

In what follows, it will be considered that the state variables (unknowns) are: solid 
displacements, u (three spatial directions) and liquid pressure, Pl. Balance of 
momentum for the medium as a whole is reduced to the equation of stress equilibrium 
together with a mechanical constitutive model which relates stresses with strains. 
Strains are defined in terms of displacements. Small strains and small strain rates for 
solid deformation are assumed. Advective terms due to solid displacement are 
neglected once the formulation is written in terms of material derivatives (in fact, 
material derivatives are approximated as eulerian time derivatives). In this way, 
volumetric strain is properly considered.  

The governing equations for non-isothermal multiphase flow of water and gas 
through porous deformable saline media have been presented by Olivella et al. (1994). 
A derivation is given there, and only a description of the reduced formulation for 
hydro-mechanical problems is presented in this appendix. 

Mass balance of solid present in the medium is written as: 

( )( ) ( )       01 =⋅∇+φ−ρ
∂
∂

sst
j  (A2.1) 

where ρs is the mass of solid per unit volume of solid and js is the flux of solid. From 
this equation, an expression for porosity variation can be obtained if the flux of solid is 
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written as the velocity of the solid multiplied by volumetric fraction occupied by the 

solid phase and the density, i.e. ( )1s s
d
dt

= ρ − φ
uj : 

( )1D D d(1 )
D D d

s s s

st t t
− φφ ρ

= + − φ ∇ ⋅
ρ

u  (A2.2) 

The material derivative with respect to the solid is defined as: 

( ) ( )   
d
d

D
D

•∇⋅+
∂
∂

=
•

ttt
s u  (A2.3) 

Equation (A2.2) expresses the variation of porosity caused by volumetric 
deformation and solid density variation.  

In the formulation required for the analyses in this Chapter, the water component 
and the liquid phase are the same. The total mass balance of water is expressed as: 
   

( ) ( )   w
www fS

t
=⋅∇+φρ

∂
∂ j  (A2.4) 

where Sw is the degree of saturation of water, ρw is the water density, jw is the flux of 
water, and fw is an external supply of water. Water flux is a combination of a Darcy flux 
and an advection caused by the solid motion: 

( ) d  
d

w
w w w w w wS S f

t t
∂ ⎛ ⎞ρ φ + ∇ ⋅ ρ + ρ φ =⎜ ⎟∂ ⎝ ⎠

uq  (A2.5) 

The use of the material derivative leads to: 

( ) ( )
D D d

D D d
s w w ws

w w w w w w

S
S S f

t t t
ρ φ ⎛ ⎞φ + ρ + ρ φ∇ ⋅ + ∇ ⋅ ρ =⎜ ⎟

⎝ ⎠
u q  (A2.6) 

The mass balance of solid is introduced in the mass balance of water to obtain, 
after some algebra: 

( ) ( )1D D D d 1 1
D D D d

ww s w s w s s
w w w w

w s w w

S S S S f
t t t t

− φφ ρ ρ ⎛ ⎞+ φ + + ∇ ⋅ + ∇ ⋅ ρ =⎜ ⎟ρ ρ ρ ρ⎝ ⎠
u q  (A2.7) 

This equation has four storage terms, related to: 

Water compressibility since 
ww

w

w Kp
1

d
d1

=
ρ

ρ
is the volumetric compressibility of water 
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Retention curve storativity since 
w

w

p
S

d
d  is obtained from the retention curve.  

Solid compressibility since 
s

s

s Kp
1

d
d1

=
ρ

ρ
is the compressibility of the soil particles. 

Soil skeleton compressibility since the divergence of solid velocity can be 

transformed into ( ) dd d
d d d

v

t t t
ε⎛ ⎞∇ ⋅ = ∇ ⋅ =⎜ ⎟

⎝ ⎠
u u , and ( )d ',d d d dd

d d d d d d
v wv v v w

w

p p
t t t p t

εε ε ε
= = +

σ σ
σ

 is 

the volumetric strain rate that should be calculated with an appropriate constitutive 
model for the soil. The mechanical model may include effective or net stress terms 
(volumetric or deviatoric) or suction terms. Effective or net stress has to be considered 
here as the total stress minus the water pressure or the air pressure, respectively, for 
saturated or unsaturated conditions. The final terms are left as a function of total 
stress.  

The relative importance of the different terms depends on the conditions of the 
soil. For instance, for saturated conditions the second term disappears. When the 
compressibility of the skeleton is large, the compressibility of the particles is negligible. 
The compressibility of the water may be negligible in some cases but it is not possible 
to neglect it in general for hard soils.   

The final objective is to find the unknowns from the governing equations. 
Therefore, the dependent variables will have to be related to the unknowns in some 
way. Doing this in the last equation leads to: 

( )

( )

d d d dd 1 0
d d d d d

d d d dd 1
d d d d d

w w w w v v w
w w w

w w w w

w w w w v v w
w w w w

w w w w

S p S p pS
K t p t t p t
S p S p pS S

K t p t t p t

⎛ ⎞φ ∂ε ∂ε
+ φ + + + ∇⋅ ρ =⎜ ⎟∂ ∂ ρ⎝ ⎠

φ ∂ε ∂ε
+ φ + + = − ∇ ⋅ ρ

∂ ∂ ρ

σ q
σ
σ q

σ

 (A2.8) 

where the compressibility of the solid particles has been neglected and the source/sink 
term is assumed to be zero. The material derivatives have been approximated as 
eulerian. 

This equation allows the calculation of the pressure development for a soil 
subjected to changes in total stress in the following way: 

( )dd
d

v
w w w

w
w

w w v
w

w w w

tS
p S dS S

K dp p

∂ε
− − ∇ ⋅ ρ

∂ ρ
=

φ ∂ε
+ φ +

∂

σ q
σ  (A2.9) 
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Deformation is assumed negative in compression from these equations, and stress 
is also negative in compression. This implies that dσ is negative in compression 
(loading) and produces positive pressure increments. Note that the general stress 
tensor is maintained because volumetric deformations can be induced by any stress 
variation (not only isotropic). For instance, dilatancy is a volumetric expansion induced 
by shear.  

In Equation (A2.9), the volumetric deformation derivatives v∂ε
∂σ

 and v

wp
∂ε
∂

 should 

be calculated with an appropriate constitutive model. These are volumetric 
deformation terms and can be obtained from a model for unsaturated soils such as the 
elastoplastic model BBM (Alonso et al, 1990). A general equation, including the effect 
of effective or net stresses and the effect of suction, is written as: 

[ ]

1 1

1 1

d ' d
d d ' d
d d ' d

1 1 1 0 0 0

t t t
v

t

d s
s

d s

− −

− −

= +

= −

ε = = −

=

σ D ε h
ε D σ D h

m ε m D σ m D h

m

 (A2.10) 

Where suction can be defined as ( )max ,0a ws p p= −  and effective or net stress as 
( )' max ,a wp p= +σ σ . This is valid for saturated and unsaturated conditions, and 

considers stresses in compression as negative quantities. The model parameters are 
included in D which is the stiffness tensor (6x6) or constitutive matrix for changes in 
net or effective stress and h which is the constitutive vector for changes in suction. 
Both are nonlinear functions.   

Note that the derivatives of volumetric deformation needed in Equation (A2.9) 

can be obtained in the following way '
'

v v∂ε ∂ε ∂
=
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σ σ σ
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v v v

w w w
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p p s p
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comparison with Equation (A2.10), the following terms are obtained: 
1 1   and   

'
t tv v

s
− −∂ε ∂ε

= = −
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m D m D h
σ

.  

The nonlinear elastic part of the BBM model, gives the following volumetric 
deformation: 

d ' dd
1 ' 1 0.1

s
v

p s
e p e s

κκ
ε = +

+ + +
 (A2.11) 
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Where, e is void ratio, κ and κs are material parameters, p’ is the mean net or 
effective stress which is defined as ( ) ( )' / 3 max ,x y z a wp p p= σ + σ + σ + , and s is 

suction.   

 



CHAPTER 3 

Rapid Landslides. Thermo-Hydro-Mechanical 

Approach 

In this chapter an analysis of rapid landslides using a thermo-hydro-mechanical 
approach is developed. The problem analyzed involves sliding on a well-formed failure 
surface in which the sliding mass remains practically inalterated and move as a block. 
Thermo-hydro-mechanical coupling effects in the shear zone are invoked to develop a 
dynamic analysis of rapid landslides. The governing equations are written and they will 
be integrated conveniently in following chapters for the analysis of specific landslides. 
But before, an introductory section is presented to discuss earlier works published on 
the subject and to highlight some relevant aspects of direct implication for the analysis 
described later. Firstly, some aspects of heating effects on saturated soils are 
exemplified by means of some experimental results performed in the laboratory and in 
the field. They show a fundamental aspect: heating under undrained conditions leads to 
a significant increase in pore pressure. The drained response is also briefly presented 
on the basis of published papers. A simple mathematical explanation of such effects is 
then given. In the remaining of the introductory section some relevant aspects for the 
analysis of landslides and its potential acceleration, namely the relationship between 
strength and relative shear displacement and shearing rate, are discussed.   
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3.1 INTRODUCTION 
Many field observations indicate that large-scale translational landslides may move 

at different velocities over long periods of time. A simple consideration of equilibrium 
equations indicates that changes in boundary conditions, such as fluctuations in water 
levels or changes in the stress field due to construction or erosion, will induce the 
acceleration or deceleration of a landslide due to the lack of equilibrium between 
resistant and destabilizing actions applied on the landslide body.   

Whatever causes the triggering, if a slide loses the equilibrium, it will move to a 
new position until equilibrium is reached again. Except for the case of an idealized 
planar landslide, the new position involves a new distribution of weight and forces. In 
practice, it is common to find failure surfaces with a steep inclination in the upper part 
that becomes flatter at the toe of the slide. Consider, for instance, the circular or “open 
L” shape of a failure surface. For these kind of landslide cross-sections, the movement 
of slope leads to a new position that contributes to the stabilization of the slide 
(assuming that the rest of properties and boundary conditions remain constant) and 
therefore, to the deceleration of the slide. However, some case records indicate that 
very high velocities may develop in relatively short sliding distances. The case of 
Vaiont, whose failure surface had an “open L” shape and reached around 100 km/h in 
400 m approximately, is a reference case for fast sliding, which cannot be explained, 
unless the sliding resistance essentially disappears.  

Several reasons have been invoked in earlier works to justify the drop of effective 
shearing strength required to explain the high acceleration of rapid landslides. A 
feasible explanation concerns the loss of shearing strength induced in brittle materials 
from a maximum or peak value to a residual one as the relative displacement increases. 
The drop of the strength involves a reduction of the resistance forces and the slide 
tends to accelerates. This effect can be directly associated with first-time slides and to 
the phenomenon of progressive failure. In pre-existing slide surfaces, resulting from 
ancient landslides or seismic events, the critical displacement associated with the peak 
value of strength has likely been exceeded in previous periods and, hence, a lower 
value of strength close or equal to the residual one is expected to be available along the 
sliding surface. In these cases, the loss of the strength with displacement cannot be 
arguably brought in to justify the acceleration of reactivated slides.  

This discussion assumes that once the residual value of strength is reached, the 
available strength remains essentially constant as the slide moves.  However, according 
to some experimental data, the rate of displacement may have a relevant effect on the 
residual strength. Once a landslide starts to move and residual conditions are reached, 
if the strength increases with the velocity, the slide will decelerate. Then the slide 
velocity decreases as the resisting forces increase and it comes eventually to rest when 



  Chapter 3 

 79

the equilibrium is re-established. On the contrary, if the rate of displacement has the 
opposite effect, the strength drops below the available residual value at rest (or slow 
moving conditions) and the slide accelerates.  

Another explanation given refers to the pore fluid pressure generated within the 
slip zone due to the movement of the slide. The idea, followed by several authors with 
some differences among them, considers the frictional work developed at sliding 
surface. The dissipation of this work into heat involves temperature increments that 
may induce the build up of pore water pressure. Heat-induced pore water pressure 
implies a reduction of effective stress and then, the drop of the frictional strength. 
Details on earlier works published on this subject will be presented later.  

The three main reasons mentioned here for the acceleration of landslides (heating 
effects and loss of shearing strength by increasing relative displacement and shearing 
rate) are developed in more detail in the following sections. Heating effects will be 
highlighted in the work developed because it provides a consistent explanation for the 
rapid loss of strength necessary to accelerate slides. Accordingly, an extended review of 
the analysis of rapid landslides considering these effects will be presented. The 
thickness of shear bands, a relevant parameter in a thermo-hydro-mechanical analysis 
of landslides, is also discussed and a few early bibliographical references are mentioned.  

3.1.1 Previous works on rapid landslide considering thermal effects 
The idea of considering thermal effects in the analysis of rapid landslides was 

apparently presented initially by Habib (1967) who suggested that heat due to sliding 
friction can transform pore water into vapour, creating a gas cushion that lubricates the 
sliding surface. Then the unstable mass slides without friction. An equilibrium state 
between liquid and vapour masses takes place. In fact, this mechanism does not allow 
the evaporation of liquid water because the additional heat needed for evaporation 
cannot be generated without introducing the effect of effective stress (which is 
practically zero due to the excess pore water pressure generated). This idea was 
followed by Uriel Romero and Molina (1977), Goguel (1978) and Nonveiller (1987).  

However, even if evaporation does not take place, heat generation by frictional 
work may also cause enough pore water pressure inside the shear band to induce the 
reduction of shearing strength and then the acceleration of the motion (Anderson, 
1980; Voight and Faust, 1982; Davis and Smith, 1990).  

A similar mechanism is analysed by the geophysics community to explain the 
strength in faults as a result of earthquake slip (Lachenbruck, 1980; Lee and Delaney, 
1986; Andrews, 2002; Rice, 2006; Sulem et al., 2007). 

More recently, Vardoulakis (2000, 2002) presented an interesting contribution in 
this subject based on similar ideas. The case of Vaoint Landslide interpreted as a 
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rotational landslide was analysed. The author focused on the thermo-poro-mechanical 
behaviour of the clayey soil involved in the shearing surface to explain the process of 
pore water pressure generation by heating. Shear strength softening as displacement 
increases and strain rate effects were also considered based on the experimental data 
published by Tika and Hutchinson (1999). 

The analysis presented in Vardoulakis (2002) can be summarized as follows. Once a 
landslide is triggered, the shear strength on the shear band reduces as a function of 
accumulated displacement and the velocity reached by the landslide. The actual value 
of the mobilised frictional strength determines the acceleration of the sliding mass as 
well as the rate of heat production and, as a result, the temperature evolution. If 
temperature remains lower than a critical value, a thermo-elastic expansion of soil 
skeleton takes place and it is compensated by the expansion of soil-water mixture. 
Under this hypothesis, a null value of the pore-pressure-temperature coefficient is 
obtained and hence, no excess pore water pressures due to generated heating are 
calculated. When temperature reaches a critical value, thermoplastic collapse 
(contraction) of the clay inside the shear band takes place causing excess pore 
pressures that feed the acceleration of the landslide. The critical collapse temperature 
and the pore-pressure-temperature coefficient are function of the overconsolidated 
ratio of the soil inside the shear band. The value OCR varies during the landslide 
movement since the pore water pressure depends on the generated heat.  

3.1.2 Heating effects in saturated porous media  

Laboratory testing 

The effect of temperature on the behaviour of soils and rocks has been analysed 
by several authors (Campanella and Mitchell, 1963; Henkel and Sowa, 1968; Paaswell, 
1967; Baldi et al. 1988; Huenckel and Baldi, 1990; Towhata et al., 1993a,b; Tanakata et 
al., 1997; Romero, 1999; Graham et al., 2001; Sultan et al., 2002; Cekerevac and Laloui, 
2004; Ghabezloo and Sulem, 2008; among others).  

The direct effect on volume changes and pore water pressure can be observed in 
early experimental tests shown in Figure 3.1 for a high porosity soil (Campanella and 
Mitchell, 1968). A saturated specimen of illite was subjected to a temperature 
increment from 20ºC to 60ºC followed by cooling to 20º in a triaxial test. Figure 3.1a 
shows the percentage of original pore water volume drained from the sample during a 
temperature cycle under constant all round effective stress ( 3σ′ = 200 kPa) (temperature 
changes were imposed in increments and, after each increment, the sample was allowed 
to drain freely until equilibrium). In the second test (Fig. 3.1b), the same material was 
subjected to the same temperature cycle but in this case under undrained conditions. 
The variation of measured pore water pressures is shown in terms of temperature. It 
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may be seen that a very large pore water pressure is developed as a result of heating 
when the drainage is restricted.  
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(b) 

Figure 3.1 Saturated illite under a cycle of temperature: (a) effect on sample volume under 
drainage conditions (cell pressure = 4 kg/cm2 and constant all round effective stress = 3 

kg/cm2 ); (b) effect on the pore water pressure generated under undrained conditions 
(constant cell pressure = 3 kg/cm2) (Campanella and Mitchell, 1968). 
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In practice, undrained and drained conditions will be mainly determined by the 
permeability of the soil and the rate of temperature changes. In order to examine, in a 
simple way, the effect of permeability on the soil response against changes of 
temperature, simple laboratory tests were performed.  

A piece of saturated clayey rock was heated in a microwave oven (Fig. 3.2). In the 
experiment performed, a thermocouple temperature sensor was inserted into a 
specimen of Opalinus clay, which had been maintained in a humid chamber to ensure 
saturation. Opalinus clay is a low permeability soft clayey rock of marine origin. Clay 
minerals (illite, illite-smectite mixed layers, chlorite and kaolinite) dominate its 
mineralogical composition (40 to 80%). Quartz, calcite, siderite, pyrite, feldspar, and 
organic carbon are also present. Natural porosity varies between 4 and 12% (Bossart et 
al., 2002). Pore water has a concentration of 20 g/l of sodium chloride. 

 
(a) (b) 

(c) (d) 

Figure 3.2 Heating experiment: (a) saturated fragment of Opalinus clay before heating; (b) the 
fragment, highly fissured and partially broken after heating in a microwave (cables indicate the 
position of the inserted thermocouple); (c) saturated porous stone before heating; (d) porous 

stone after heating.  
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Permeability coefficients (Darcy) varying between × -130.8 10  m/s and 
× -137.3 10 m/s, Young’s modulus ranging between 1000 and 7000 MPa, and uniaxial 

compressive strength varying between 9 and 18 MPa have been reported for this clay 
shale by several authors (Thury and Bossart, 1999; Bock, 2001; Muñoz, 2007) on the 
basis of “in situ” and laboratory tests. 

Figure 3.2a shows the piece of rock before heating. A thermal pulse having a 
nominal power of 1400 watts was applied during 40 s. The recorded temperature is 
shown in Figure 3.3. The specimen broke, accompanied by a clearly audible cracking 
noise, shortly before the end of the application of the heating pulse. At that time, the 
temperature reached values in excess of 170ºC (Fig. 3.3). The shale specimen cracked 
in an explosive manner and was reduced to small fragments.  

 
Figure 3.3 Recorded temperature during the two experiments performed in the microwave 

oven. A thermal pulse with a nominal intensity of 1400 watts was applied during 40 s.  

A second experiment, with a totally different material, a discarded highly pervious 
porous stone (Fig. 3.2c), was also run. The measured temperature is shown in Figure 
3.3. No cracking noise was heard during heating and the specimen remained intact 
after heating (Fig. 3.2d). Some water was also seen to escape from the stone. Unlike the 
previous experiment, the temperature record in this case showed an interesting 
behaviour: when the temperature measured by the thermocouple sensor reached 
100ºC, it remained constant at this temperature during the application of the power 
pulse. The water behaved as is to be expected in a free volume of water at atmospheric 
pressure: when the vaporization (boiling) temperature is reached, water evaporates in 
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the pores and the boiling temperature remains constant, at 100ºC, because the heat 
input is “spent” in vaporizing the remaining liquid water.  

It can be observed that the pore water in the shale specimen increased its 
temperature well beyond 100ºC (it reached a peak value of 170ºC (!) with no symptoms 
of decreasing during the power input phase). Pore water in the claystone is adsorbed in 
a significant proportion by clay minerals and this prevents its vaporization. The phase 
diagram of water provides additional information on the conditions leading to the 
vaporization of water (Fig. 3.5). At increasing pressure, the temperature for 
vaporization also increases.  

 
Figure 3.5 Phase diagram of water. Roman numerals indicate different types of ice. M, E and V 

stand for the average atmospheric conditions at the surface of Mars, Earth, and Venus, 
respectively (from London Southbank University website).   

A simple qualitative explanation of thermal effects observed in these laboratory 
tests can be given with the help of Figure 3.6. It shows a saturated pore. The rock or 
soil skeleton around the pore is represented by a thick spherical elastic shell. Holes in 
radial directions connect the inner pore water with neighbouring pores. In this 
representation, the skeleton stiffness is controlled by the thickness and the modulus of 
the shell material. The number and diameter of radial holes define the material’s 
permeability. As a result of heating, pore water pressure tends to increase as far as solid 
particles and water expand and the skeleton restricts such expansion. In parallel with 
the development of water pressure, a dissipation process will start as water begins to 
flow through radial holes. Therefore, for a given rate of increase of temperature, the 
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attained pore water pressure will be the result of two competing mechanisms: the rate 
of increase of volume, directly related to the rate of increase of temperature, and the 
rate of dissipation governed by the permeability of the porous material (and also by the 
rock stiffness, in a process similar to the more familiar consolidation phenomenon).  

For a given rate of temperature increase, the lower the soil or rock permeability and 
the stiffer the soil or rock, the higher the pore water pressure developed. Stiff clays 
and, particularly, clayey rocks are therefore prone to develop significant temperature-
induced pore water pressures.  

Note that the simple model of Figure 3.4 predicts that the pore pressure induced 
by the application of an external load decreases as soil or rock skeleton stiffness 
increases. In classical one-dimensional soil consolidation theory, the implicit 
assumption is that the soil skeleton has very low stiffness compared with the stiffness 
of water, and this implies that the external load is fully resisted by pore water: the 
skeleton spheres in Figure 3.4 are made of a very soft material. 

 
Figure 3.6 A saturated pore develops a positive pressure when temperature increases. The pore 
water pressure was not measured in the simple experiment described but, interestingly, a small 
amount of liquid water – presumably escaped from the specimen – was also observed on the 

floor of the oven after the broken rock fragments were removed. 

Consider now a more accurate explanation. When the temperature of a saturated 
porous material increases, the solid particles, as well as the water in pores, dilates. 
Probably, local equilibrium of temperature is achieved soon and therefore the 
temperatures of water and solid skeleton will be essentially equal. 

The volume of pore water and solid particles will increase in direct proportion to 
their thermal dilation coefficients, βw and βs, respectively. The associated volumetric 
strains, for a common change in temperature, dθ, can be written as 
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 dd dε = − = −β θT w
vw w

w

V
V

 (3.1) 

 dd dε = − = −β θT s
vs s

s

V
V

 (3.2) 

where wV  and sV  are the volumes occupied by water and solid particles, respectively. 
Upper index T indicates that changes in temperature are the cause of the strains.  βw is 
substantially higher than βs. Typical values for βw and βs are -43.4 ×10 (ºC)−1 and 

-53.0×10 (ºC)-1. Water dilates almost one order of magnitude more than solid particles. 
The thermal dilation of water and solid will result in an internal volumetric expansion. 
Compression strains are considered positive.  

In the preceding explanation it was assumed that the soil or rock skeleton does not 
deform as a result of temperature changes. However, changes in temperature may also 
induce changes in the soil skeleton associated to (a) restructuration of the particles; (b) 
changes in interparticle forces which requires some reorientation or relative movement 
of soil grains in order to allow effective stress equilibrium; and (c) physicochemical 
clay-water interactions for the case of clayey soils which are explained by changes in 
thickness of the double layer (Campanella and and Mitchell, 1968). All these effects on 
the rearrangement of the skeleton structure can be introduced by means of a thermal 
coefficient of the porous media, βpm. Then, the total volumetric strain of the porous 
media (‘skeleton’) due to changes in temperature can be expressed as: 

 
d

d dε = − = −β θpmT
vpm pm

pm

V
V

 (3.3) 

where Vpm is the total volume of the porous media, which is, under saturated 
conditions, equal to the sum of solid and water volume. A positive sign of coefficient 
βpm indicates that an increase in temperature causes an increase in volume soil 
structure. In practice, this coefficient may reach positive, null or negative values 
depending on the soil, overconsolidated ratio, range of temperature applied, stress 
level, and other factors. In the case of clayey soils, when temperature is increased, 
highly overconsolidated soils initially exhibit expansion, followed by a contraction at 
higher temperature, whereas a normally consolidated or lightly overconsolidated soil 
only exhibits contraction. More details on this and some experimental observations are 
given later.  

If water can be drained during heating and no pore water pressure builds up, the 
internal volumetric expansion due to thermal dilation of soil particles and water (Eqs. 
(3.1) and (3.2)) minus the total volume changes of the porous media (Eq. (3.3)) should 
be equal to the drained volume of water over the initial volume of porous media. This 
condition can be written for a unit of volume of porous media as follows: 
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 ( )d 1 d dT T T
vw vs vpm drainagen n Vε + − ε − ε =  (3.4) 

where n is the porosity. 

If heating is imposed under undrained conditions, the total change in volume due 
to  temperature increments, previously calculated in Equation (3.4), can not be drained 
and an excess pore water pressures will be generated. Changes in pore water pressure 
(uw) involve changes in effective stress that will induce volume changes in solid 
particles, pore water and porous media. If compressibility of solid particles is neglected 
and total stress is assumed constant (which means that changes in effective stress are 
equal to pore water pressure variations), the following equality can be written for 
undrained conditions: 

 ( )d 1 d d d dε + − ε − ε = − ε − εw wu uT T T
vw vs vpm vw vpmn n n  (3.5) 

where volumetric strains of water (d wu
vwε ) and porous media ( d wu

vpmε ) due to changes in 
pore water pressure (indicated by the upper index uw) can be calculated by   

 d dwu
vw w wuε = α  (3.6) 

 d dwu
vpm v wm uε =  (3.7) 

Parameters αw and mv are the compressibility coefficients of water and porous media, 
respectively.  

If Equations (3.1), (3.3), (3.6) and (3.7) are introduced in Equation (3.5), pore 
water pressure induced by a temperature change under undrained conditions can be 
calculated as  

 (1 )
d dw s pmw

w v

n n
u

n m
β + − β −β

= θ
α +

 (3.8) 

Equation (3.8) supports the discussion made above based on Figure 3.6. In 
particular, Equation (3.8) reveals that the excess pore water pressure generated due to a 
temperature increase will be controlled by to the soil stiffness. In the simple laboratory 
test described before on Oppalinus clay (Fig. 3.2a), which can be considered in practice 
undrained due to the low permeability and the rapid thermal pulse, high values of 
excess pore water pressure were generated due to the low value of compressibility of 
this rock. In the absence of total external stress, as it was the case, tensile effective 
stresses developed and they may be able to overcome the tensile strength of the 
soil/rock and lead to a failure in tension, as observed in the photograph in Figure 3.2b. 

Hueckel and Pellegrini (1991) also reported experimental results showing the 
failure of samples of low porosity (low permeability) heated from 70 to 90ºC under 
undrained conditions under a constant deviatoric stress. The observed failure is 
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associated with a pore pressure build up. An increase in pore pressure leads to an 
effective stress drop under constant total stress conditions until failure is eventually 
reached.  

On the other hand, Equation (3.8) indicates that if the soil expands against changes 
in temperature (βpm positive), the expansion of solid grains and water will be partially 
compensated and a lower excess pore pressure will be generated. Otherwise, if the soil 
exhibits a thermal contraction (βpm negative), the resulting excess pore pressure will be 
higher.  

The more general case in which excess pore pressure are dissipated toward the 
boundaries will be discussed when describing below the balance equations.  

A field heating experiment 

The effect of heating rocks have been analysed in detail the last decades in the 
search of suitable deep geological disposals to store high level nuclear waste. A typical 
design is to locate the heat-emitting nuclear canisters in excavated galleries of massive 
and impervious rock, such as Opalinus clay used in the laboratory test discussed 
previously. A ring of impervious bentonite is placed around the canister to improve 
isolation. One of the issues in this design is to investigate the long-term performance 
of natural rock, exposed to an increase in temperature as a result of the heat generated 
by the nuclear waste. The large-scale Heating Experiment (HE), performed in the 
Monterri underground research laboratory (Switzerland), addresses this aspect of 
nuclear waste disposal research. The experiment is described in detail in EUR (2006) 
and in Muñoz (2007). 

The scheme given in Figure 3.7a summarizes the concept of the experiment. A 
cylindrical heater − which simulates the waste − is located in a centred position in a 
vertical borehole (30 cm of diameter) excavated in Opalinus clay from the floor of a 
tunnel. A ring of compacted bentonite blocks was placed around the heater. 
Piezometers and temperature sensors were located at different radial distances and 
depths below the floor of the niche where the experiment was located (z = 0). The 
temperature response of sensors located at increasing radial distances is shown in 
Figure 3.7b. Maximum temperature at the bentonite-borehole wall contact (r = 0.05m) 
was limited to 100ºC.  

Pore pressure sensors were installed at points A1 and A2 (Fig. 3.7a), located at a 
radial distance of 0.65 m from the axis of the borehole, at two different elevations (z = 
5 m and z = 6.5 m). As temperature increased (at a rate of 0.25ºC/day) until it reached 
a value of 40ºC in sensor A1, pore water pressures also increased at measured rates of 
0.012 MPa/day and 0.007 MPa/day in the two sensors, until they reached maximum 
values of 1.1 and 0.65 MPa respectively. Note that a substantial pressure peak 
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developed before pore pressure began to decrease, when the rate of temperature 
increase slowed down. The low permeability of Opalinus clay explains the continuous 
accumulation of pore pressure due to the relatively slow rate of increase of 
temperature. When the (permeability controlled) dissipation rate of excess water 
pressure dominated the process, the pore water pressure began to drop, at an 
essentially constant temperature.  

 

  

(a) (b) 

 

(c) 

Figure 3.7 Field heating experiment of Opalinus clay: (a) schematic representation of the 
borehole, heater and instrumented points; (b) recorded temperature; (c) recorded pore water 

pressure. Heating HE Experiment, Monterri, Switzerland (Muñoz, 2007). 
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The maximum excess water pressure recorded in this experiment (0.9 MPa) is 
relatively large in absolute terms. Such water pressure is equivalent to the weight per 
unit area of a column of rock with a height of 40 m (if the rock had a bulk specific 
weight of 22.5 kN/m3). The base of such a column of Opalinus clay, if heated in the 
location of Piezometer QB19/3 in Figure 3.7c, will reach a zero vertical effective stress 
and, therefore, it will not be able to develop any frictional shear strength.  

The same interpretation presented for the laboratory experimental data can be now 
applied to interpret the insitu measurements on temperature and pore water pressure 
presented here.  

3.1.3 Additional thermo-mechanical features 
Some relevant features of the mechanical response of soils combining effects of 

stress and temperature are briefly described here.  

Effect on compressibility 

There is some early experimental indication that the compressibility of soils is 
independent of temperature for a limited range of temperatures tested (20-100ºC) 
(Campanella and Mitchell, 1968; Plum and Esrig, 1969). 

Elastoplastic thermal strains 

When a soil or rock is heated, all the constituents (solid particles and water) dilate. 
Even considering such thermal dilations reversible, the soil may exhibit a complex 
behaviour, often contractive and irreversible.  

Figure 3.8 shows the total volumetric strain and drained water volume measured in 
a slow heating test up to 100ºC on intact natural samples of Boom clay (Delage et al., 
2000). Boom clay is a stiff clay with a plasticity around 50%, natural porosity of about 
40% and water content that varies between 24 and 30%. Samples were saturated before 
heating. The slow heating ensured a constant isotropic effective stress of 4 MPa. Four 
tests were carried out to check the repeatability of results.  

It can be observed (Fig. 3.8) that no significant volumetric strains are recorded at 
temperatures lower than 60-70ºC. Referring to the simple constitutive formulation 
presented in the previous section, this lack of strains during heating implies a value of 
parameter pmβ  equal to 0. Beyond this value, the slopes of curves increase significantly 
showing a sample contraction. On the other hand, curves of drained water indicate that 
pore water was expelled when total volumetric strains were practically null at 
temperatures between 40 to 70ºC depending on the test. In that range of temperatures 
tested, no porosity changes were measured. This fact can be interpreted considering 
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the difference between the water and solid thermal dilation coefficients. Solid particles 
may not dilate enough to induce structural changes in the soil skeleton and then 
porosity remains constant. Water, however, which has a higher thermal expansion 
capacity, tends to dilated significantly and then it is expelled. 

At higher temperatures, drained water volume increases significantly to 
compensate not only the volume increment of solid particles and water, but also the 
thermal collapse or contraction of clayey soil. Several reasons for thermal collapse of a 
clayey porous medium have been discussed in Young et al. (1962), Plum and Esrig 
1969, Morin and Silva (1984), Towhata et al. (1993), Paaswell (1967), Habibagahi 
(1977), Robinet et al. (1996) and Sudem et al. (2007). For instance, the thermal dilation 
may produce a decrease in the strength and modify the distance between clay particles. 
Then a change in equilibrium between Van der Waals attractive forces and electrostatic 
repulsive forces takes place which results in a new closer distribution of clay particles.   
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Figure 3.8 Thermal volumetric strain and drained water on Boom Clay: (a) Test 1; (b) Test 2; 
(c) Test 3; (d) Test 4 (Delage et al., 2000). 
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Experimental data indicate that the drained behaviour of soil under heating is 
highly dependent on the stress level measured in terms of the overconsolidation ratio 
(OCR).  

The effect of OCR under different confining stresses on the thermal behaviour of 
Boom clay is illustrated in Figure 3.9 (Delage et al., 2004). Temperature variations from 
22 to 100 ºC and subsequent cooling to 22ºC were applied. Normally consolidated 
samples showed contraction from the beginning, a result which is independent of the 
two mean effective stresses applied. As the OCR increases, thermal contraction 
appears at higher temperatures values (around 80ºC). Below this temperature, linear 
elastic expansion is observed (the slopes of volumetric strain curves in heating and 
cooling are parallel).  
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Figure 3.9 Volume changes under heating and cooling at different OCR on Boom clay Delage 
et al., 2004) 

Other published data (Demars and Charles, 1982; Plum and Esrig, 1969; Baldi at 
al., 1988; Towhata et al., 1993; Cekerevac and Laloui, 2004) on clayey soils show similar 
behaviour to Boom clay.  

Figure 3.9 show that irreversible contractive strains are accumulated after a whole 
temperature cycle specially at low OCR. Soils densify during thermal loading, at 
constant effective stress. This result can be interpreted as an increment in the 
overconsolidation ratio and, in terms of elastoplastic framework, an increment in 
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preconsolidated effective stress. Similar results were also observed by Towhata et al. 
(1993) and Plum and Esrig (1969). 

Data on low porosity indurated claystones is scarcer. Similar tends should be 
expected but the intensity of temperature induced deformations would reduce 
substantially.  

Changes in preconsolidation pressure with temperature 

Loading samples previously heated under a loading smaller than the 
preconsolidation pressure allowed the observation of a decrease in preconsolidation 
pressure with the increase in temperature (Sultan, 1997; Delage et al., 2004).  

3.1.4 Residual shearing behaviour. Shearing rate effects 
Another important aspect necessary for a comprehensible understanding of 

landslides acceleration is the effect of shearing on the available frictional strength.  

It is well known the dependence of frictional strength with relative shear 
displacements at low shearing rate. Stiff and overconsolidated clays, exhibit a peak 
strength associated with low values of displacement. As the magnitude of shear 
displacement increases, under drained conditions, strength may reduce until a 
minimum value called residual strength. This loss of strength is mainly related with the 
gradual realignment of platy particles into a direction parallel to the direction of 
shearing. Peak strength is mainly controlled by soil structure whereas strength during 
sliding shear is directly related to inter-particle friction, which seems to be related to 
the type of clay mineral. The concept and role of residual strength, as well as the 
properties and effects of discontinuities, was discussed in Skempton (1964, 1966), 
Skempton et al.  (1967), Skempton and Hutchinson (1969) and Chandler and Skempton 
(1974).  

The shear strength reduction along slip-surfaces coming from landslides and 
tectonic shear zones has been directly evaluated by several authors (Skempton et al., 
1967; Alonso and Gens, 2006; Wen et al., 2007; Jian et al., 2009). The authors examined 
the shearing behaviour of samples taken from the slip surfaces and, in some cases, 
results were compared with tests on specimens of “intact” clay taken several 
centimetres away from the shear zone where particle re-orientation can not be 
expected. As an example, samples taken in the site of a large landslide in brown 
London clay (LL=83%, PI=51%, CF=55-57%) exhibited a drop of cohesion from 160 
to 3 kPa and of frictional angle from 20 to 12º when intact and natural shearing 
samples were compared (Skempton and Petley, 1967).   

During the last six decades, the drained residual strength has been extensively 
studied at laboratory scale and it has been correlated with soil properties as: 
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mineralogy, grain size and shape (i.e. clay content and the granular void ratio defined 
by Lupini et al. (1981) as the ratio between the volume of platy particles plus water over 
the volume of rotund particles), index properties, and normal stress. A review of 
laboratory works and interesting contributions on this subject was presented by Lupini 
et al. (1981). These authors identified two main modes of shearing related with 
different values of residual strength depending on the quantity of platy particles (Fig. 
3.10): 

Turbulent Mode in soils with a high proportion of rotund particles or with platy 
particles of high interparticle friction. In this kind of soils preferred platy particle 
orientation does not occur and the residual friction is high (although they may show 
brittleness because of stress history);  

Sliding Mode in soils with high proportion of platy, low-friction particles. In this 
case, particles orientate and a polished continuous surface may be formed with a 
low residual friction angle associated. 

A third Transitional Mode was also identified involving both turbulent and sliding 
shearing.  

 
Figure 3.10 Effect of clay fraction on the normally consolidated (or critical state) friction angle 
and on the residual friction angle. Ring shear tests on sand-bentonite mixtures (after Lupini et 

al., 1981 and Skempton, 1985).   

Vaughan et al. (1978) indicated that a useful practical dividing line was provided by 
plasticity index, PI, for a range of typical British clays (Fig. 3.11). Clays having PI less 
than 25% undergo turbulent shear at large strains so that peak and residual angles of 



  Chapter 3 

 95

shearing resistance, pφ′  and rφ′ , are similar. Clays having PI greater than 30% undergo 
sliding shear so that residual angles of shearing resistance are much lower than peak 
angles. And finally, for clays having PI between 25% and 30% behaviour at large 
strains was found to be transitional. The use of plasticity index is of restricted 
applicability and the attained conclusions can not be totally generalized.  

 
Figure 3.11 Peak friction angles and residual friction angles as a function of plasticity index for 

typical UK clays (based on Vaughan et al., 1978)  

Shearing softening of soils and rocks has two direct practical implications in the 
stability problems of landslides. First, the expected available resistance of pre-existing 
shear zones caused by old landslides or tectonic forces will be close or equal to the 
residual strength. In fact, available strength in pre-existing shearing planes may be 
lower than the expected residual strength obtained in the laboratory due to dependence 
on the effective normal stress. Increments in normal effective stress involve a non-
linear reduction of shearing strength (Picarelli, 1990). Shear zones may be formed 
during geological periods under loads higher than the current one due to tectonic 
origin or further erosion. The lower frictional angle previously reached probably 
remains in the reactivation of landslides at current and lower effective normal stress.  

The second practical implication of the shear strength loss with relative 
displacement is the phenomenon of progressive failure. Progressive failure was 
identified as a mechanism leading to instability of first-time slides in overconsolidated 
clays by Skempton, (1964), Terzaghi and Peck (1967), Bjerrum (1967), Bishop (1967) 
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and Bishop (1971). A review of the subject has been presented by Jardine et al. (2004). 
Progressive failure mechanism will not be discussed further here because the cases 
analysed in subsequent chapters are in fact reactivations of ancient landslides. 

All the investigations on the strength of soils mentioned in this section concern to 
drained strength and its minimum value reached at slow rates of relative shearing 
displacement. However, the knowledge of the rate of displacement on the shearing 
strength is necessary if dynamic terms are included in the analysis of landslides. This is 
the case if the run-out of landslide or the effect of an earthquake are examined. 
Skempton et al. (1989), Bacegirdle et al. (1991) and Vardoulakis (2002) considered rate 
effects to analyse reactivated landslides 

Increasing the rate of displacement may involve an undrained shearing response of 
the soil. Significant excess pore water pressure (positive or negative) can be generated 
depending on the dilatant or contractive soil behaviour. Overconsolidated clays tend to 
dilate. At slow rate of shearing water can flow into the zone. If shearing is fast, water 
migration to the shear zone can not be developed and higher peak strengths are 
mobilised. This effect was demonstrated by Atkinson and Richardson (1987) testing 
reconstituted London clay. In the case of contractive response, pore water pressure will 
be generated and lower frictional strength will be achieved.  

However, for the purpose of the work presented here on the acceleration of 
reactivated ancient landslides, it is interesting to focus on observed rate-dependent 
phenomena of shearing strength once residual conditions have been reached rather 
than its effect on peak strength. Figure 3.12 presented by Tika et al. (1996) summarizes 
such effect. Fast shearing is applied after reaching residual conditions at slow rate. Four 
phases could be differentiated: 

(a) There is an initial threshold strength at a negligibly small displacement 
considerably higher than the slow drained residual strength. The threshold 
strength increases with increasing rate of displacement.  

(b) A second stage shows an increase in strength on the shear surface with fast 
displacement up to a maximum value, the fast peak strength, which is generally 
accepted to be higher than the residual one.  

Fast peak strength is again function of the rate of displacement. Tika et al. 
(1996) concluded that a higher value of fast peak strength with respect to the 
threshold was observed mainly in materials showing sliding shear mode. This 
increment was associated with the volume changes (dilation) taking place 
initially within the shear zone due to disorientation of the particles aligned 
during the previous slow shearing because of the higher velocity of shearing.  
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(c) The strength, if further fast displacement is applied, drops to a minimum value 
called fast residual strength. Different behaviours were observed at this stage if 
the magnitude of the fast residual strength was compared with the slow residual 
value (Fig. 3.12). If rapid residual strength is higher, the response is called 
positive; negative if it is lower; and neutral if residual strength does not varies 
with rate of shearing.   

 
Figure 3.12 Observed rate-dependent phenomena for residual strength (Tika et al., 1996). 

The causes that determine the effect of the rate of displacement on the residual 
strength are not clear. Several reasons have been discussed in different cases: 
liquefaction (Terzaghi, 1956; Seed, 1968; Casagrande, 1975; Hutchinson, 1986); 
microstructural changes interpreted as thixotropic phenomena (Seed and Chan, 1957; 
Mitchell, 1960; Osipov et al., 1984); mechanical fluidification (Howard, 1973; Hsu, 
1975; Koerner, 1977); and also the implication of frictional heating generation analysed 
in this Thesis.  

Tika et al. (1996) started at the shearing phenomena described before in order to 
interpret fast shearing response. Soils with turbulent shear mode maintained a value of 
residual strength independently of the rate of displacement, although in some of them 
the response was dependent on the level of normal stress. Soils with transitional shear 
mode showed fast residual strength lower than the slow one (negative effect). And 
finally, soils with sliding shear mode showed either negative or positive effects. The 
negative effect in particular was observed in soils with intermediate clay fraction (CF = 
3-55%) and low to high plasticity (IP = 10-37%). No information on the 
compressibility or permeability of the tested materials is given in the paper.  

It is important to take into account the effect of the applied velocity in the 
laboratory test. The velocity applied in most of fast ring shear tests published reaches a 
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maximum value of 6 m/min. It has been observed in some of the test reported by Tika 
et al. (1996) that a loss in strength at fast residual condition, with respect to the ‘slow’ 
one takes place at rates of displacement exceeding a critical value.  

 
Figure 3.13 Variation of residual strength of cohesive soils with rate of displacement (Tika et al., 

1996).  

This aspect and other experimental observations mentioned by Tika et al. (1996) 
during fast shearing tests could be appropriately interpreted considering the effect of 
frictional heating generation. The idea, mentioned previously, is that friction at the 
shear zone may induce excess pore pressures which can lead to a reduction of the 
residual shear strength with respect to the shear strength measured at slow rate of 
displacement. Figure 3.13 shows the ratio of residual strength measured at different 
rate of displacements over the drained residual strength reached at slow rate of 
displacement (between 0.01 to 0.025 mm/min). Different kind of materials (sandstone, 
siltstone, clayey siltstone, claystone, residual soils, clays) were tested by different 
authors (Lemos, 1986; Tika, 1989; Lupini, 1981). From these results, it can be 
concluded that for rates of displacement lower than 1 mm/min the variation of 
residual strength remains within the range of 10%. For rates of displacements greater 
than 1 mm/min (rapid to extremely rapid movement) the variation of residual strength 
becomes significant. In most cases, high rates of displacement involved a negative 
effect. In particular, positive rate effects were only observed in tests carried out on 
London clay (wL = 57-75%; PI= 36-51%; CF=36-57%) and Kaolin (wL = 66-72%; 
PI= 33-36%; CF=66-74%) presented by Lupini (1981) and Tika (1989) (both authors 
tested both materials). The fact that a critical value of rate of displacement should be 
exceeded to induce a reduction of the available shear strength can be explained as 
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follows considering the effect of frictional heat. Relatively low values of rate of 
displacement applied during relatively short time probably are not enough to generate 
the heat generation required to induce a significant increment of pore water pressure 
and therefore, a significant reduction of the available shear strength.  

Table 3.1 Pore water pressure and temperature measurements during ring shear test at different 
rates of displacement (Tika et al., 1996).  

 Clayey siltstone 

(PI=21%,CF=8%) 

(Lemos, 1986) 

Clayey siltstone 

(PI=24%,CF=25%) 

(Tika, 1989) 

Claystone 

(PI=26%,CF=37%
) 

(Tika, 1989) 

Porosity, n (%) 33 33.5   36.5 

Compressibility coefficient, 
mv (kPa-1) 1.8 2.5 2.1 1.6 2.5 1.8 

Rate (mm/min) 800 6200 380 370 370 400 160 

Normal stress, σn (kPa) 492 512 135 195 385 232 500 

Slow Drained Residual 
Strength over Normal 
Effective Stress, nres σ′τ  

0.274 0.383 0.326 0.262 0.189 0.185 

Residual Strength at 
indicated rate of 
displacement over Total 
Normal Stress, nστ  

0.143 0.140 0.165 0.247 0.082 0.083 

Measured Maximum 
Increment of Temperature, 
θΔ (ºC) 

2.50 2.40 0.71 0.84 2.42 0.59 0.64 

Measured Maximum 
Increment of Pore Water 
Pressure, wuΔ  (kPa) 

- - - 25 - - 75 

 

Tika et al. (1996) also observed the response of soils with negative effect when 
slow shearing was applied after a fast stage. Initially, when the rate of displacement is 
reduced, the mobilized strength was similar to the value of fast residual strength 
reached at high velocity and, in a time period similar to the consolidation time of the 
soils (measured independently from settlement observations), the strength was 
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increasing until reaching the higher slow residual value of the soil. This fact seems to 
indicate that the strength variation is a consequence of the generated and accumulated 
excess pore pressure at the sliding zone. The slow residual strength is recovered when 
the shearing rate is reduced and heat-induced pore pressure generation gives up -
because heating is proportional to the rate of displacement- and excess pore pressure 
dissipation takes place.  

During fast stages, dissipation also takes place. However depending on different 
factors (permeability, compressibility, friction angles and shear velocity) heat induced 
pore pressure can be enough to reduce the effective shear stress even taking into 
account dissipation. Tika et al. (1996) observed that in a test in which a prolonged fast 
shearing was applied, the low strength persisted. This fact was used for the authors as 
argument against the argument that pore water pressure causes the reduction of 
shearing strength at high rate of displacement. However, considering again thermal 
effects, a lower strength may remain during long time of rapid shearing if the excess 
pore pressure generated by frictional heating is higher than its reduction by dissipation. 

Lemos (1986), Tika (1989), and Tika and Hutchinson (1999) measured directly 
pore water pressure and temperature during fast shearing. Soil shearing was imposed 
against an instrumented rough glass interface (more details are given in Tika et al., 
1996). They observed that the behaviour of the tested materials when sheared against 
rough glass interfaces was similar to that observed in the soil-on-soil tests. Obtained 
results in terms of pore water pressure and temperatures measured are given in Table 
3.1.  

Table 3.2 Properties and mineralogy of samples from Vaiont landslide (Tika and Hutchinson, 
1999).   

 Minorology 
 

LL 
(%) 

PI 
(%) % 2 μm

Clay minerals Calcite Quarts 

Sample 1 49 19 27 

50 %: 
25 % smectite 
25 % illite-smectite 
<5 % koalinite 

45 % <5 % 

Sample 2 50 22 30 
50 %: 

50% illite-smectite 
<5% koalinite 

40 % 10 % 

 

Special consideration is now made to the shearing tests carried out on samples 
from the strata where the sliding surface of Vaiont landslide was located. Tests were 
reported by Tika and Hutchinson (1999). Properties and minorology of samples are 
indicated in Table 3.2. Samples were initially sheared at a drained rate of 0.0145 
mm/min and residual conditions were reached. After this stage alternately fast and 
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slow shearing rates were applied. The influence of normal stress and shearing rate on 
the residual strength and rate effects was also assessed applying 250, 500 and 980 kPa. 
Figure 3.14 shows the stress ratio-displacement curve obtained during the slow 
shearing for a reconstituted samples tested at nσ′ =500 kPa. A peak shear strength 
around 26º is exhibited. It reduces to a minimum residual value equal to 10º 
approximately. This low value can be explained by the mineralogy of the soil (Table 
3.2). In the range of normal stress applied, its effect on the residual strength (Fig. 3.15) 
does not seem to indicate a clear tendency.  

 
Figure 3.14 Slow shearing behaviour of a reconstituted sample from Vaiont landslide (Tika and 

Hutchinson, 1999).   

 
Figure 3.15 Effect of normal effective stress on slow residual strength in samples from Vaiont 

landslide (Tika and Hutchinson, 1999).   
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The influence of rate of displacement on the stress ratio at fast shearing rate over 
the stress ratio measured at drained (slow) residual shearing is shown in Figure 3.16. 
Samples exhibited a drop of strength below the slow residual value. A minimum fast 
strength equal to 0.081=στ n , equivalent to º4.6=φ′  was measured at 100 mm/min of 
shearing rate. Temperature was not measured during those tests.  

It is felt that additional testing programs examining the effect of shearing rate on 
residual strength, which include also pore pressure and temperature measurements are 
needed to settle this important issue. 

 

Figure 3.16 Effect of rate of displacement on shearing strength (Tika and Hutchinson, 1999).   

3.1.5 Thickness of shear bands  
A common observation in translational and rotational slides is that deformations 

are confined to a shear zone of very small thickness. In practice, shear zone is 
characterized by the complex set of minor shears and slip surfaces generated during 
the sliding. In some cases a well-defined unique shearing surface may be identified. In 
this worth, the implicit assumption is that a single shear band defines the slide. The 
thickness of the shear band, a relevant property in the analysis presented in this Thesis 
on rapid landslides, is difficult to estimate (Oda and Kazama, 1989). Direct 
observations of sliding surfaces in clayey materials indicate that their thickness is very 
small, typically in the range of a few millimetres. One example is given in Figure 3.17, 
which shows a portion of the sliding surface of Cortes landslide (Alonso et al., 1993). 
The sliding surface was identified, when it was exposed after a large excavation, 
because of its greenish-gray colour, in contrast with the brown tonalities of the marl 
layer, two meters thick, where it was embedded. Massive limestone strata, which 
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essentially slid as a rigid body, covered the marl layer. The thickness of the striated 
layer ranged between 3 and 5 mm.  

 
(a) 

 
(b) 

Figure 3.17 (a) Sliding surface of Cortes landslide showing motion grooves; (b) A view of the 
sliding surface in cross section. The upper layer of gray clay, overlying the brownish lower 

marl, was identified as the sliding surface.  

Several authors also worked on this subject (Morgenstern and Tchalenko, 1967; 
Roscoe, 1970; Vardoulakis, 1980; Bridgwater, 1980; Scarpelli and Wood, 1982; Desrues 
1984; Mühlhaus and Vardoulakis, 1987; Desrues et al. 1996; Oda and Kazama, 1998; 
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Didoignon et at., 2001; Wood, 2002) observing shear bands of granular and fine soils 
by means different laboratory techniques (X-ray photograhs, tomographic methods, 
scaning electro microscope (SEM), transmission electommicroscope (TEM)). 
Morgenstern and Tchalenko (1967) in their study on shear zones from slips in natural 
clays at microstructural scale concluded that shear zones are normally several 
millimetres thick. They analysed directly samples taken from the sliding surface 
involved in natural landslides subjected to different degrees of movement.  

An important conclusion of basic research is that shear band thickness is related to 
a characteristic grain size. Depending on the grain size, several linear relationships 
between the mean particle size (d50%) and shear band thickness have been proposed.  
In sands, thickness of the shear bands is around 6 to 7 times d50%.  In clayey soils, shear 
zones, where the displacement is distributed among many slip surfaces, range between 
0.5 and 5 cm wide, although major concentration of relative displacement seems to be 
concentrated along a principal slip “surface” of 10 to 50 microns wide (Skempton et al., 
1967). Vardoulakis (2002) proposes a value 50%200e d≈ . Rice (2006) presents a 
comprehensive review of the thickness of the slip zone measured in active faults.  

3.2 PROBLEM APPROACH AND GOVERNING EQUATIONS  
For the purpose of analysing landslides including thermo-hydro-mechanical effects 

in the shear zone, consider in the sketch of Figure 3.18a a representative cross section 
of a landslide and in Figure 3.18b a thick clay layer where the sliding surface is located. 
The shear band proper will be located within the clay layer (Fig. 3.18c). Its thickness is 
many orders of magnitude smaller than the horizontal and vertical dimensions of the 
slide. Governing equations for the analysis of rapid landslides are here developed 
referring to this representation.  

3.2.1 Shear strains and heat generation in the shear band 
Consider a detail of a shear band of indefinite length (L) and thickness (2e) (Fig. 

3.19). Since L >> e, the excess pore pressure, uw(z,t), temperature, θ(z,t), and velocity, 
v(z,t) are assumed to be exclusively a function of the position normal to the band 
direction (z) and time (t) (Fig. 3.18b,d). A common temperature is considered for solid 
particles and pore fluid. This is a result of the assumption of local thermal equilibrium 
between both species (solid and water).  

If the slide moves as a rigid body with a velocity vmax, shear straining, which will be 
concentrated on the shear band, will induce an average shearing strain rate of 

 max

2
v

e
=&γ  (3.9) 
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where 2e is the thickness of the shear band. A linear distribution of velocity has been 
assumend.  

Therefore, during the sliding motion all the straining work will be concentrated 
inside the band. The volumetric deformation of the clay material which constitutes the 
band will be very small compared with the extremely large shear deformations induced 
by sliding on a thin clay band. Therefore, the rate of mechanical work input per unit 
volume of band material will be essentially given by 

 max

2
f

f

v
W

e
= =& &

τ
τ γ  (3.10) 

where fτ  is the shear strength offered by the shear band. This work done inside the 
shear band, neglecting elastic strains, will be dissipated entirely into heat, following the 
first principle of thermodynamics. As a consequence, the heat rate generated per unit 
volume, H is:  

 
max

2band

vH W
e

τ
= =&  (3.11) 

(units of Eq. (3.11) in a SI system are Watt/m3 or Joule/s·m3). All dissipation in the 

fluid has been neglected. 

 
Figure 3.18 Translational landslide: a) “in situ” conditions; b) representative element of the 

sliding surface; c) shear band; d) local axis in the shear band. 
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Figure 3.19 Geometry of the planar shear band. 

Therefore, the band will increase its temperature during the motion and, in view of 
the tests discussed before, a pore water pressure in excess of the initially existing one, 
will develop. Note that the work of volumetric deformations is neglected compared 
with the shear work.  

The excess pore pressure is essentially caused by the thermal dilation of the water. 
Therefore, despite its potential large effect in modifying effective stresses, the absolute 
amount of the increment of water volume in the band will be very small. Its dissipation 
will take place in the immediate vicinity of the band. In other words, the band and its 
“zone of influence” will have a small thickness (Fig. 3.18d), similar to the thickness of 
the band itself.  

It then becomes reasonable to assume that, for the purposes of investigating the 
behaviour of pore pressures in the band and its vicinity, the band is essentially a planar 
feature located within an infinite domain. The lateral extent of this band is very large 
compared with its thickness and, in addition, points within the band are similar to each 
other. Water and energy transfer out of the band will take place in a direction normal 
to the band. The problem of the interaction of the band and its surroundings becomes 
a one dimensional problem in which the spatial coordinate (z) is directed normal to the 
band plane (Fig. 3.18d). 

3.2.2 Balance equations inside and outside the shear band 
Consider a point in a shear band (in general of argillaceous material) of thickness 

2e surrounded by the rock substratum. The z-axis follows the direction of the gradient 
of water pressure and temperature generated within the band (Fig. 3.18d).  
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In many landslides, the shear band will be embedded in a clay layer whose 
thickness will be several orders of magnitude larger than the band dimensions. The 
shear band will typically exhibit the same characteristics of the thicker clay layer in 
which it is embedded. In other words, the band only marks the boundaries of the 
strain localization phenomena in an otherwise thicker layer. However, heat will be 
generated exclusively within the localization band. Therefore, in order to formulate the 
balance equations, it is convenient to distinguish two different materials: the narrow 
band itself and the remaining layer where the band has developed (Fig. 3.18). In the 
equations presented later superscripts “b” and “r” refer to the band and to the rest of 
the layer (“rock” for identification purposes).  

Three balance equations should be satisfied in and around the band: the 
conservation of heat and the conservation of solid and fluid mass “flowing” in and 
outside the band. In physical terms, the problem to be solved is described as follows: 
the heat generated inside the band results in an increase of temperature, which is 
controlled by the heat dissipation taking place concurrently. The resulting temperature 
increase in the saturated porous band creates an excess pore water pressure. Water 
flow will immediately develop through the band and into the surrounding “rock”. The 
actual pore pressures in the band are again the result of two competing phenomena: 
heat induced pressure generation and flow induced pressure dissipation. 

Heat balance equation 

If θ is the excess temperature over the initial constant value, the balance of heat in 
a unit volume of the shear band is written (see Olivella et al.,1996) as follows: 

( ) ( )D ( ) div div ( ) div 1
D

            (a)                       (b)                             (c)                               (d)

∂ ∂⎛ ⎞ ⎛ ⎞⎡ ⎤= ρ θ + −Γ θ + ρ θ + + − ρ θ⎜ ⎟ ⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠ ⎝ ⎠
b b b

m w w s sH c c n n c
t t t

u ugrad q
(3.12) 

where D
Dt

 is the material derivative with respect to the time ( t ). The term (3.12a) 

provides the rate of heat storage and mρc  is the average product of density and heat 
capacity of the water-solid mixture. Term (3.12b) accounts for the heat conduction (Γb 
is the conduction coefficient). Terms (3.12c) and (3.12d) provide the advective heat 
transport components. In fact, the stored heat in water (w) and solid (s) is transported 

because of the motion of water and solid. Solid velocity (
t

∂
∂
u ) is expressed as the time 

derivative of the displacement (u). The velocity of water through a cross section of unit 

area will be given by *bn
t

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠
u q , where bn  is the porosity in the band. The term 
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*bn =q q  is the Darcy flow rate of a fluid filtrating through a porous medium. cw and cs 
are the heat capacities of water and solid, and ρw and ρs, the corresponding densities. 

The assumption made now is that terms (3.12b), (3.12c) and (3.12d) provide a 
negligible contribution to change the band temperature during the (fast) sliding 
motion. Terms (3.12c) and (3.12d) will be small because fluid and solid (skeleton) 
velocities will be small, especially in clay-based materials, where fast sliding is relevant. 
The rationale to eliminate term (3.12b) is that conduction phenomena require some 
time to effectively dissipate heat. It will be shown that the time-duration of dangerous 
sliding is only a few seconds, a small time interval for heat conduction to be relevant. 
This hypothesis has been checked numerically in the cases developed later.  

Thus, Equation (3.12) becomes: 

 ( )m mc c H
t t
∂ ∂θ

ρ θ = ρ =
∂ ∂

 (3.13) 

where the average heat storage capacity mρc  is assumed to be constant. 

Mass balance equations 

Only the final conservation equations are given here. A detailed derivation may be 

found in Olivella et al. (1996). The conservation of mass in local form is written: 

 
( ) ( )
1 DD 1 div

D D
− ρ ∂⎛ ⎞= + − ⎜ ⎟ρ ∂⎝ ⎠

bb
bs

s

nn n
t t t

u  (3.14) 

The conservation of water mass is given by 

 D div div( ) 0
D D
ρ ∂⎛ ⎞+ ρ + ρ + ρ =⎜ ⎟∂⎝ ⎠

b bw
w w w

Dnn n
t t t

u q  (3.15) 

Substitution of 
bDn

Dt
 from (3.14) into the water mass balance Equation (3.15) leads to: 

 
( )1D D 1div div( ) 0

D D

−ρ ρ ∂⎛ ⎞+ + + ρ =⎜ ⎟ρ ρ ∂ ρ⎝ ⎠

bb
w s

w
w s w

nn
t t t

u q  (3.16) 

which provides the mass conservation condition for water and solid. 

In order to proceed, constitutive equations should now be considered. Water will 
be characterized by a constant compressibility coefficient, αw, and a constant thermal 
expansion coefficient, βw. Therefore, the volumetric deformation of the water, εvw is 
written, 
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 d dd d dw w
vw w w w w

w w

V p
V

ρ
ε = = = α −β θ

ρ
 (3.17) 

(compression strains are taken as positive). If equation (3.17) is integrated, the change 
in density from a reference state (0), to the current value of pressure and temperature 
(pw, θ) is given by, 

 ( ) ( )0 0 0expw w w w w wp p⎡ ⎤ρ = ρ α − −β θ−θ⎣ ⎦  (3.18) 

Differentiation of Equation (3.18) leads to 

 w w
w w w w

D DpD
Dt Dt Dt
ρ θ

= β ρ +α ρ  (3.19) 

Solid grains will be assumed to be incompressible against stress changes but not 
against temperature (θ ) changes. Therefore, in an analogous manner,  

 ( )0
0exps s s⎡ ⎤ρ = ρ −β θ−θ⎣ ⎦  (3.20) 

where 0
sρ  is the density of solid particles at the reference temperature, θ0. 

Derivation of Equation (3.20) leads to 

 s
s s

D D
Dt Dt
ρ θ

= −β ρ  (3.21) 

If Equations (3.19) and (3.21) are substituted in Equation (3.16), the following 
expression is obtained for the mass conservation of solid and water: 

 DD 1(1 ) div( ) div( ) 0
D D
θ ∂⎡ ⎤β + − β + α + + ρ =⎣ ⎦ ∂ ρ

b b b w
w s w w

w

pn n n
t t t

u q  (3.22) 

The first term is a “source” term due to the thermal expansion of liquid and solid; 
the second term describes the volume changes of water associated with changes in 
water pressure; the third term represents the volume change of the skeleton; and the 
fourth and final term provides the volume changes associated with the flow of water.  

Pore pressure has two components: the hydrostatic pore pressure which depends 
on the position of water table and the excess pore pressure induced by heat (uw). The 
position of the water table probably does not change within the short interval of the 
slide and then the time derivative of pw will depend only on the excess pore pressure: 

 w wDp Du
Dt Dt

=  (3.23) 

Accepting that compressive volumetric deformations are positive, the term  
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 div( )∂
∂t
u  = vol

t
∂ε

−
∂

 (3.24) 

provides the total volumetric deformation rate of the solid skeleton.  

The mass balance equations derived above will be applied to the shear band where 
one-dimensional conditions can be assumed, as explained before. Therefore, the 
volumetric strain due to changes in effective stress can be estimated from the one-
dimensional compressibility coefficient, b

vm , and the increment of (normal to the band) 
effective stress. Volumetric strain may also take place due to changes in temperature. 
Taking into account both effects, Equation (3.25) can be written:  

 div( ) b bvol n w n w
v pm v pm

p um m
t t t t t t t

⎛ ⎞ ⎛ ⎞∂ε ∂σ ∂ ∂σ ∂∂θ ∂θ
= − = − − +β = − − +β⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

v  (3.25) 

where σn is the total stress acting in a direction normal to the shear band. This stress 
will not change during the motion because the slide geometry remains unaffected. 
Again, time variation of hydrostatic pressure can be neglected with respect to changes 
of excess pore pressures. Therefore pw can be replaced by uw in Equation (3.25). The 
last term of Equation (3.25) includes the deformation of porous media due to 
temperature changes at constant effective stress. The term is especially significant in 
normally consolidated clays and to a lesser extent in overconsolidated clays. Potentially 
fast landslides in practice are found in old geological formations and the involved clay 
layers are indurated, heavily over-consolidated, low porosity  materials   

The final term in Equation (3.22) refers to the flow through pores due to the 
gradient of head (Darcy’s law). A generalized Darcy’s law for a compressible fluid 
describes the relative flow velocity q in terms of gradients of pore water pressure and 
the gradient of elevation as follows: 

 ( ) ( ) ∂⎡ ⎤= − +ρ ≈ −⎣ ⎦ρ γ ∂

b b
w

w w g
w w

uk kp g z
g z

q grad grad  (3.26) 

where kb is the hydraulic conductivity, which will be assumed to be constant, and zg is 
the vertical coordinate. Since the analysis is one-dimensional in a direction normal to 
the shear band (z direction), the gradient is simply the derivative with respect to z. The 
flow due to gradients of hydrostatic pressure and gradients of level (zg term) can be 
neglected with respect to changes of pore water pressure. In addition, the spatial 
variation of the hydrostatic pore water pressure can be neglected during the slide and 
pw can be replaced by uw. Therefore, Darcy’s flux depends only on the excess pore 
pressure. 

Introducing Equations (3.23), (3.25) and (3.26) into Equation (3.22) the water and 
solid mass balance equation results in, 
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DD 1(1 ) 0
D D

b
b b b bw n w w

w s w v w pm
w w

u u ukn n n m
t t t t z g z t

⎛ ⎞⎛ ⎞∂σ ∂ ∂θ ∂ ∂θ⎡ ⎤− β + − β + α + − − ρ +β =⎜ ⎟⎜ ⎟⎣ ⎦ ∂ ∂ ρ ∂ ρ ∂ ∂⎝ ⎠ ⎝ ⎠
   
  (3.27) 

A further simplification has been introduced. Under the assumption of small strain 
rate, material derivatives are approximated as eularian derivatives and Equation (3.27) 
becomes 

 
2

2(1 ) ( ) 0
b

b b b b bw n w
pm w s w v v

w

u ukn n n m m
t t t z

∂ ∂σ ∂∂θ⎡ ⎤β − β − − β + α + − − =⎣ ⎦ ∂ ∂ ∂ γ ∂
 (3.28) 

valid for the shear band, z∈[-e,e]. In Equation (3.28) the water specific weight γ = ρw wg  
is introduced.  

Equation (3.28) synthesizes the mass balance equations of solid (grains) and water. 
It is a parabolic second order differential equation with two unknowns: the 
temperature and the excess pore water pressure.  

If the heat balance Equation (3.13) is substituted in (3.28), 

 
2

2(1 ) ( ) 0
b

b b b b w w
pm w s w v

m w

u uH kn n n m
c t z

∂ ∂⎡ ⎤β − β − − β + α + − =⎣ ⎦ ρ ∂ γ ∂
 (3.29) 

A similar expression may be written for the rock, outside the shear band. But, 
since no heat is being generated outside the band, 

 
2

2( ) 0
r

r r w w
w v

w

u ukn m
t z

∂ ∂
α + − =

∂ γ ∂
 (3.30) 

Equations (3.29) and (3.30) summarize the heat, solid and liquid balance equations 
inside and outside the shear band. 

Dynamic equilibrium equation  

In general terms, the approach developed before, following principles of energy 
and mass balance is completed by the momentum balance equation that will describe 
the acceleration of the landslide. A system of differential equations will be then 
obtained in terms of the problem variables: excess pore water pressure, temperature 
and displacement of the slide. The solution is given in Chapter 4 and Chapter 6 under 
different hypotheses for different kinematics of the slide motion. 

 



CHAPTER 4 

Fast Planar Slide. A Closed-Form Thermo-

Hydro-Mechanical Solution 

Heat-induced excess pore pressures on the failure surface of a planar slide have 
been calculated by solving mass and heat balance equations on the shear zone 
developed in Chapter 3. The set of differential equations obtained and the equation of 
motion for a planar slide have been integrated and solved in closed form for the case 
of incompressible fluid and incompressible soil skeleton. The solution describes the 
accelerated motion of the slide. The analytical solution has been compared with the 
numerical one when soil and water stiffness terms are not disregarded. A case study, 
based on a well-known translational slide (Cortes slide, Spain) has been solved. 
Numerical and analytical solutions are compared. Results of a sensitivity analysis 
indicate that the permeability of the shear band is a key parameter to control the onset 
of a rapid motion. For a band permeability above a threshold value, in the vicinity of 
10-9 m/s, fast accelerated motions are very unlikely. 

4.1 INTRODUCTION 
If a planar slide loses the conditions for strict equilibrium an accelerated motion 

will start. A simple dynamic calculation involving the dynamics of rigid block sliding on 
an inclined base shows that, if the equilibrium is barely lost (say the driving force 
exceeds the resisting force by a small amount), the increase of slide velocity develops at 
a relatively slow pace. Some case records indicate, however, that very high velocities 



Chapter 4   

may develop in relatively short sliding distances. The case of Vaiont is a reference for 
fast sliding (Hendon and Patton, 1985; Nonveiller, 1987), which cannot be explained, 
unless the sliding resistance essentially disappears. Vaiont was not a planar slide. In 
fact, the failure surface had an “open L” shape, which makes even more difficult to 
explain why it reached such a high sliding velocity (100 km/hr) in no more than 10-15 
seconds. In Vaiont, equilibrium conditions were close to the critical ones for a long 
time (as the recorded slide motion in the last few months indicate; Nonveiller, 1987). 
In practice, relatively small changes in pore water pressures acting on the sliding 
surface lead probably to the acceleration of the slide motion. 

The governing equations developed in Chapter 3 are now considered together with 
the motion equation for the particular case of a planar landslide. One of the aims of 
the analysis is finding practical criteria to decide when a planar slide may become a 
catastrophic event, due to its high velocity. 

It turned out that, under reasonable assumptions, a closed form solution could be 
found for the sliding velocity. Then, other derived quantities of interest in the band 
(pore water pressure, temperature, available strength) could be easily calculated. The 
derived solution was then used to perform a sensitivity analysis, with the purpose of 
isolating the most relevant factors governing the triggering of a fast sliding motion. 

In addition to this purpose of the work developed, analytical solutions are very 
useful to perform validation exercises for numerical methods. In this regard, the 
solution found corresponds to a highly coupled thermo-hydro-mechanical problem 
which involves the pore water pressure generation and dissipation in a shear band 
being heated by the frictional work induced by the sliding motion.  

4.2 THE MOTION EQUATION FOR A PLANAR LANDSLIDE 
Consider a unit length of shear band (Fig. 4.1) and the element of solid rock (total 

vertical weight, W) resting on it. The element of solid rock is displacing at a velocity, 
vmax, parallel to the slope (inclination: α). The available shear strength to resist the 
motion will be calculated at the midplane ( 0z = ) of the shear band where maximum 
excess pore pressures ( ( ) ( )max 0,w wu t u z t= = ) will develop. This shear strength, which 
will change in time because the pore water, , will also change with time, is given 
by: 

max
wu

 ( ) ( )( )tan - tan′ ′τ = σ ϕ = σ ϕf n n wt p ′t

n

 (4.1) 

where  are the total and effective normal stresses on the band; pw is the water 
pressure at the midband position ( ); is the hydrostatic pressure 
acting on the band before the initiation of the motion, and ϕ’ is the effective friction 
angle of the shear band. 

, ′σ σn

max= +w wh wp p u whp

 114 



  Chapter 4 

 

Figure 4.1 Element of rigid block sliding at velocity v on the shear band  

Newton’s second law, applied to the motion of the rock slice of weight, W, is now 
written as: 

 d dsin
d d

max max

f

W v vW α - τ = = M
g t t

 (4.2) 

where M is the mass of the reference moving block. M can be computed if the depth 
of the sliding surface (D in Fig. 4.1) and the average rock density, ρr, is known. Note 
that Equation 4.2 is valid for constant mass. The equilibrium pore water pressure, , 
can be estimated if the height of the phreatic surface, hw, above the shear band is 
known. 

whp

4.3 NUMERICAL SOLUTION 
Summarizing the results obtained in Chapter 3 and in the previous section, the set 

of equations governing the motion of an infinite planar slide are: 

a) Equilibrium conditions and Mohr-Coulomb strength law  

 ( ) ( )maxcos tan 'f wh wt W P u t⎡ ⎤τ = β− − ϕ⎣ ⎦   (4.3a) 

b) Heat generation in the shear band 

 ( ) ( ) ( )max

2f

v t
H t t

e
= τ for [ ],z e e∈ −  (4.3b) 

c) Mass balance (water and solid) and heat balance in the shear band 
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( ) ( ) ( ) ( )

( ) [ ]
2

2

,
1

,
for ,

wb b b b
s w v w

m

b
w

w

H t u z t
n n m n

c t

u z tk z e e
z

∂⎡ ⎤− − β +β + + α =⎣ ⎦ ρ ∂

∂
= ∈
γ ∂

  (4.3c) 

d) Mass balance (water and solid) in the sliding mass (outside the band) 

 
( ) ( )

]( )

2

2

, ,

for , ,

∂ ∂
⎡ ⎤+ α =⎣ ⎦ ∂ γ ∂

⎡∈ −∞ − ∪ ∞⎣

r
r w wr

v w
w

u z t u z tkm n
t

z e e

z  (4.3d) 

e) Dynamic equilibrium 

 
( ) ( )

maxd 1 sin
d f

v t
W

t M
t⎡ ⎤= β− τ⎣ ⎦  (4.3e).  

In this particular case, a planar landslide, the total stress acting on the shear band is 
constant. No deformations associated with temperature changes are considered here 
(βpm = 0). They are mainly significant in normally consolidated clays. Potentially fast 
landslides in practice are found in old geological formations and the involved clay 
layers are, in general, indurated, heavily over-consolidated, low porosity materials.  

This system of equations can be immediately reduced to three equations if the 
strength (τf) and heat rate (H) expressions are replaced in Equations (4.3c,e). A single 
equation for the dependent variable uw could eventually be found. To solve these 
equations it is also necessary to define the appropriate initial and boundary conditions. 
A natural initial condition for the dynamic problem is a situation in which static 
equilibrium has been slightly exceeded. It would imply the initiation of motion. In such 
situation, the initial slide velocity and excess pore pressure would be zero and no heat 
would have been generated. Therefore, 

 ; ( )0, 0wu z t = ( )0,v z t 0=  and ( )0θ = θreft  (4.4a,b,c) 

where θref is the initial temperature at the beginning of the slide motion. 

It was mentioned before that frictional heat is generated at a constant rate within 
the shear band, between z = -e and z = e. No heat is generated, at any time, outside of 
the shear band. Therefore the excess pore pressure produced by heat is constant in the 
shear band and zero in the rest of the domain. However, the unbalance of water 
pressures between points inside and outside of the shear band induces its dissipation. It 
will be also accepted that the two boundaries of the shear band have identical material 
properties. Since the gradient of hydrostatic pressure may be neglected in the band, 
given its small thickness, it follows that the axis z = 0 is a symmetry axis.  
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Therefore, the solution of the problem will be sought for z ≥ 0 and symmetry 
conditions will be forced at z = 0. This condition implies a zero flow through z = 0: 

 0
0

0
b

w
z

zw

u uk
z z=

=

∂ ∂
= − = ⇒ =

γ ∂ ∂
q 0w  (4.5) 

At the other boundary, z = e, continuity of excess pore pressure and flow rate has 
to be satisfied on both sides of the border: 

 w wz e z e
u u− += =

=  (4.6a) 

 b rw
z e z e

z e z e

u uk k
z z− +

w

− +
= =

= =

∂ ∂
= ⇒ =

∂ ∂
q q  (4.6b) 

Changes in water pressure outside the band will extend to relatively small distances 
because the volume of water expelled by the band is very small. Small changes in 
porosity within a limited distance outside the band will be able to absorb the transient 
flow of water. Therefore, no effect on the calculated pore pressures outside the band 
will be noticed if a zero excess pore water pressure is specified at an infinite distance: 

 0w z
u

=∞
=  (4.7) 

A forward finite difference procedure was used to solve the system of Equations 
(4.3) with the boundary and initial conditions of Equations (4.4)-(4.7). Time derivatives 
were approximated by a forward Euler scheme. First and second spatial derivatives 
were approximated by central difference expressions. The calculation procedure is 
indicated in Appendix 4.1.  

Once the numerical approximations of the derivatives are substituted into the 
system Equations (4.3c,d,e) (Appendix 4.1 for details) the following discrete set of 
equations is obtained: 

 

( ) ( )

( ) ( ) ( )
( )

2

1

1

, ,

, 2 , ,

for ,
+ 1−

Δ
+ Δ = +

Δ
⎡ ⎤− +⎣

+ Δ =

w i w i v

w i w i w i

H e

tu z t t u z t c
z

u z t u z t u z t

c t H t i n n

+⎦  (4.8a) 

 

( ) ( )

( ) ( ) (
2

1

, ,

, 2 , ,

for ,
+ )1−

Δ
+ Δ = +

Δ
⎡ − +⎣

=

r
w i w i v

w i w i w i

e L

tu z t t u z t c
z

u z t u z t u z t

i n n

⎤⎦  (4.8b) 
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 ( ) ( ) ( )max max sin f
tv t t v t W t

M
Δ ⎡ ⎤+ Δ = + β− τ⎣ ⎦  (4.8c) 

where the one-dimensional spatial domain of integration ( ) has been discretized in 0z ≥
Ln  elements.  corresponds to 1n 0z =  and to en z e= , the outside limit of the shear 

band.  In Equations (4.8), 

 
( )

b

v b b
v w

kc
m n

=
w+ α γ

 

is the consolidation coefficient of the shear band material; 

 
( )

r
r
v r r

v w

kc
m n

=
w+ α γ

 

is the consolidation coefficient of the material outside of the shear band; and 

 ( )
( )
1 b

s w
H b b

v w

n n
c

m n cm

− β +β
=

+ α ρ
 

is a parameter which integrates the dilation coefficients of water and solid, the 
compressibility of soil skeleton and water and the mean specific heat of the soil. 

A forward marching procedure has been devised to calculate the independent 
variables (excess pore water pressure and velocity) for points in the shear band and 
outside it.  

The numerical solution of the problem starts at the boundaries where the values of 
the variables are known at any time. The set of discretized equations provides, step by 
step, all the unknowns at any time and position of the domain of integration. Initial 
excess pore pressure at any point was assumed to be zero and the initial temperature 
was assumed to be 10 ºC. 

The Forward Euler Method of integration may be numerically unstable if the tΔ is 
larger than a stability limit which is a function of material parameters and zΔ . 
Convergence of explicit integration schemes of standard parabolic equations (such as 
the consolidation equation) is achieved if the time and spatial increments satisfy the 

condition: 2 0.5vc t
z
Δ

≤
Δ

. 

This condition applies to the homogeneous part of the parabolic equation (Coussy, 
2004) and it may be thought that the field Equation (4.3c) leads to a similar 
relationship. Unfortunately, the “independent” term (proportional to the heat input 
H(t)) in Equation (4.3c) is a function of the pore pressure, through Equations 

 118 



  Chapter 4 

(4.3a,b,e). Nevertheless, the preceding condition has been accepted as a reference in 
the calculations presented below. In general, care has been taken to check that the 
calculated pore pressures did not change for time steps below a certain value used in 
calculations.  

The calculated velocity will increase as long as the sliding mass is unbalanced 
(driving forces exceed resisting ones). This is the case even if the excess pore pressure 
at initial time is zero, because a positive increment of velocity will be calculated. Then, 
the positive value of generated heat, due to the velocity reached at the first time step, 
will result in an increment of temperature and excess pore pressure in the shear band. 
At the following time step, this positive excess pore pressure will reduce the effective 
frictional strength and will accelerate the slide mass. The slide will start to move in an 
accelerated motion. The numerical solution will be used subsequently, as a reference 
calculation, to discuss the analytical solution and the effect of some simplifying 
hypothesis introduced. 

4.4 ANALYTICAL SOLUTION 
Clay layers which include the sliding surface, in practical situations, are often 

indurated materials of relatively high stiffness. Therefore, the storage term associated 
with changes in pore pressure in Equations (4.3c,d) is small compared with the thermal 
dilation effects. Water compressibility, ( wα in Eq. 4.8c) is also a small quantity, 
probably smaller than the soil compressibility, mv. The assumption made is that the 
term 0≈+ wv nm α   (this is achieved if water and porous media are assumed to be 
incompressible). Then the system of Equations 4.3, becomes, 

 ( ) ( )maxcos tan 'f wh wt W P u t⎡ ⎤τ = β− − ϕ⎣ ⎦   (4.9a) 

 ( ) ( ) ( )max

2f

v t
H t t

e
= τ for [ ],z e e∈ −  (4.9b) 

 ( ) ( )
( )

2

2

1, b b
s w ww

b
m

n nu z t
H t

z k c

⎡ ⎤− β +β γ∂ ⎣ ⎦=
∂ ρ

  [ ]for ,∈ −e e  (4.9c) 

 
( )2

2

,
0wu z t

z
∂

=
∂

 ]( )for , ,⎡∈ −∞ − ∪ ∞⎣z e e  (4.9d) 

 
( ) ( )

maxd 1 sin
d f

v t
W

t M
t⎡ ⎤= β− τ⎣ ⎦  (4.9e) 

The differential equations (4.9c) and (4.9d) can be integrated as follows: 
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( )
( )

( ) 2
1 2

1
,

2

b b
s w w

w b
m

n n
u z t H t z K z K

k c

⎡ ⎤− β +β γ⎣ ⎦= − + +
ρ

[ ]for ,∈ −z e e  (4.10)  

( ) 1 2,wu z t C z C= +  ]( )for , ,⎡∈ −∞ − ∪ ∞⎣z e e  (4.11) 

where 1 2 1, ,  and 2K K C C are integration constants that will be found applying the 
following set of  boundary conditions: 

(a) Symmetry conditions:  

 10
0

0
b

w
z

zw

ukq
zγ=

=

∂
= − = ⇒ =

∂
0K  (4.12a) 

(b) Continuity of flow rate at z=e: 

 b rw
z e z e

z e z e

u uk k
z z− +

w

− +
= =

= =

∂ ∂
= ⇒ =

∂ ∂
q q  (4.12b) 

Then constant C1 can be obtained: 

 
( )

( )1

1⎡ ⎤− β +β γ⎣ ⎦= −
ρ

b b
s w w

r
m

n n
C

k c
H t e  (4.12c) 

(c) Hydraulic boundary conditions outside the shear band. Changes in water 
pressure outside the shear band take place in relatively small distances. This 
is a consequence of the small volume of water released by the band itself 
when heated. This comment will reviewed later when discussing the results 
of the numerical calculations. It will be assumed that at a certain distance 
from the shear band ( Yz ≥ ) pore water pressure will not be affected by the 
processes taking place in the shear band. This condition can be considered 
by enforcing that, at  z = Y : 

( ) 1 2, 0wu Y t C Y C= + =  

Therefore, 

 
( )

( )2

1⎡ ⎤− β +β γ⎣ ⎦=
ρ

b b
s w w

r
m

n n
C

k c
H t eY  (4.12d) 

(d) Continuity of excess pore water pressure at z = e: 

 ( ) ( ), ,w wu e t u e t− +=   

In view of previous results, K2 can be expressed as: 
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( )
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1 1
2

⎡ ⎤− β +β γ ⎛ ⎞⎣ ⎦= ⎜ρ ⎝ ⎠

b b
s w w

b r
m

n n eK H t
c k k )− − ⎟e eY  (4.12e) 

Once the integration constants given by Equations (4.12) are substituted into 
Equations (4.10) and (4.11), the analytical expressions of excess pore water pressure 
inside and outside the shear band are given by: 
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The band shearing resistance will be controlled by the maximum pore pressure 
developed, which will occur at the mid plane (z = 0). The excess pore water pressure at 
z=0 is equal to: 
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Consider now Equations (4.9). Modified expressions for the heat (Eq. (4.9b)) and 
for the motion equation (4.9e) can be obtained by substituting in them the equation for 
the shear strength (4.9a):  
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Finally, if Equation (4.15) is substituted into Equation (4.14) and the result is 
introduced into Equation (4.16), the following ordinary differential equation for the 
slide velocity is obtained: 
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are constants. 

Equation (4.17) can be solved, integrating by the method of separated variables 
between ( ) and (t ,v)  max max

0;t t v v= =
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It provides the following explicit relationship between time and sliding velocity: 

 (
max

max max
02 max
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lna cb av b ct
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where is the maximum velocity at initial time ( ).The maximum velocity at any 
time can be obtained implicitly as a root of Equation (4.19).  

max
ov 0t

4.5 SUMMARY OF ASSUMPTIONS  
Several assumptions have been made in the preceding derivations. These 

assumptions are summarized as follows: 
- Velocity of the shear band varies linearly across the band thickness. 
- Heat conduction and heat convection are neglected. 
- Average heat storage capacity of the soil in the band ( cρ ) is assumed to be 

constant. 
- One-dimensional conditions are assumed to relate volumetric strain rate and 

stress rate. 
- Water flow due to gradients of elevation are neglected with respect to the 

changes of excess pore water pressure. 
- Solid particles are assumed incompressible against stress changes. 
- The porous material inside and outside the shear band and the water are 

assumed to be incompressible ( 0≈α+ wv nm  ). 

The last assumption has only been imposed in the derivation of the analytical 
solution leading to the velocity of a planar slide, defined by Equation (4.19). 

4.6 SOLVED CASE 
In this section, the two solutions presented above for a planar slide (analytical and 

numerical) are compared. In one case (numerical) the band and surrounding rock will 
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be considered deformable. In addition, water will be modelled as a compressible fluid. 
This case, described by the set of Equations (4.3a-c) will be solved by a finite 
difference numerical procedure. In the second solution (analytical) the shear band and 
the surrounding rock are assumed to be rigid and the set of equations describing the 
case is given by Equations (4.9a-e). The solution for this case was given in the previous 
section.  

The case analyzed has been inspired in the large translational slide of Cortes (Fig. 
4.2). This slide was described in detail in Alonso et al. (1993) and it has the advantage 
that most of the required parameters are available. An old large translational landslide 
was detected on the left bank of a reservoir built in the Júcar River (in the province of 
Valencia, Spain). It was reactivated by a quarry excavation that provided granular 
material for the dam construction. A problem of concern was the possibility that the 
sliding mass, whose volume was estimated in 5·106 m3, could accelerate and invade the 
reservoir producing a dangerous wave. Cortes landslide was stabilized by a weight-
transfer procedure (designed by conventional limit-equilibrium procedures) and the 
risk of a fast motion was eliminated. However, it has remained as an interesting case 
which had similarities with the Vaiont case although the scale of the slide was 
substantially smaller. Table 4.1 includes all the relevant physical constants of the 
problem and the geotechnical properties are given in Table 4.2. The sliding surface was 
precisely located in a marl layer which didn’t dip uniformly. Three wedges can be 
distinguished. In the upper part, 150 m long, the marl layer dips 25º, in an intermediate 
zone (the longest one, about 250 meters long) the layer dips at a nearly uniform angle 
of 16º and, finally, the lower wedge, only 25 meters long, has a horizontal base. In the 
analysis presented here, this slide geometry is simplified as a planar slide having a 
constant slope of 16º representative of the central and the longest part of the actual 
slide.  

Excavation of the upper wedge allowed the observation of the failure surface. The 
sliding surface was located in a continuous clay layer no more than 3-5 mm thick. Its 
friction angle (17º) was obtained in the laboratory by testing the actual sliding surface 
in the shear box. This value coincided with the friction derived from back-analysis. 
According to the assumption made in the analysis of Cortes landslide an average pore-
water head of 2 m has been imposed in the sliding surface. Under these conditions a 
planar slide 15.3 m thick, having the same slope as the central long stretch of Cortes 
(16º) is in strict equilibrium.  
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Figure 4.2 Representative cross section of Cortes slide Alonso et al. (1993). 

Table 4.1 Physical properties 

Parameter Symbol Value Unit 

Water density wρ  1000 kg/m3 

Solid density sρ  2700 kg/m3 

Coefficient of compressibility of 
water wα  5·10-10 1/Pa 

Water thermal expansion 
coefficient wβ  3.42·10-4 1/ºC 

Solid termal expansion coefficient sβ  3·10-5 1/ºC 

Water specific heat wc  4.186·103 

1.0 
J/kg·ºC 

cal/ kg·ºC 

Solid specific heat sc  8.372·102 

0.20 
J/kg·ºC 

cal/ kg·ºC 

 

The thickness of the shear band has been assumed to be 5 mm. However, a 
sensitivity analysis changing this value will be presented later. No distinction between 
the properties of the shear band and the surrounding material has been made. The 
material is characterized by a porosity of 0.25, by a low permeability 
( ) and by a low coefficient of the one dimensional compressibility 
parameter ( ). These parameters have been chosen 
according with the properties and experimental results presented in Alonso et al. 
(1993). 

17 210 mb rk k k −= = =
9 -3.71 10 Pab r

v v vm m m −= = = × 1
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The slide will be made unstable by imposing a small increase (10 cm of water 
column) of the position of the water table. The response of the slide calculated 
analytically as well as numerically, is shown in Figures 4.3 and 4.9. The temperature and 
the displacement obtained with the assumption of incompressible band material and 
incompressible water was calculated by means of a simple numerical integration due to 
the implicit closed form expression for the velocity.  

Table 4.2 Geotechnical properties 

Parameter Symbol Value Unit 

Porosity n 0.25 - 

Density of sliding mass rρ  2350 kg/m3 

Effective frictional angle 'ϕ  17 º 

Permeability k 10-10 m/s 

Compressibility coefficient vm  3.71·10-9 1/Pa 

Thickness of the shear band 2e 2.5 mm 

Thickness of the slide D 15.3 m 

Slope of the planar slide α  16 º 

Height of phreatic level wh  2 m 

 

The development of pore water pressures in the band is shown in Figure 4.3, 
which shows the isochrones for a few discrete time instants. Water pressures dissipate 
towards the boundaries and the maximum is computed at the band centre. Excess pore 
pressures extend a few millimetres into the surrounding rock in the numerical solution. 
In the analytical case developed the dissipation boundary is maintained at the edge of 
the band (Y ). The effect of changing the parameter is presented later. It will be 
concluded that the assumed hypothesis (Y

e= Y
e= ) leads to the most accurate results 

compared with the numerical solution. Pore pressures develop faster in the analytical 
solution because it does not take into account the storage term associated with band 
and water stiffness.  

In the numerical solution, during the first 5 seconds, the generated heat does not 
have any relevant effect. The excess pore pressure remains negligible because the 
frictional work generated is very small and the heat released is not enough to increase 
sufficiently the pore pressure. Note also that, in the case of the analytical solution, the 
initial slow response of the slide lasts only one second. Eventually, as time increases, 
pore pressure build-up is capable of reducing the resisting shear strength. Then the 
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driving force increases, the slide accelerates, the work input and the temperature in the 
shear band increase and additional pore pressures are generated. This phenomenon is 
illustrated in the remaining plots. It was found that the two approaches lead to very 
similar values of the excess water pressure inside the band.  

 
Figure 4.3 Calculated excess pore water pressures in the shear band: (a) deformable band 

(numerical solution); (b) rigid band (analytical solution). 
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A consequence of the almost equal excess pore pressures calculated with the two 
approaches in the centre of the band is that the development of slide velocity in time is 
very similar for the two cases as Figure 4.4 indicates. The analytical solution predicts a 
shorter time to reach a given velocity (a few seconds) but this is of no relevance in 
practice. Excess pore water pressures develop also with a similar pattern (Fig. 4.5). 
They reach a maximum value (0.30 MPa) within a few seconds. Later, they remain 
constant. As the pore water pressures rise, the effective normal stress against the band 
decreases and the frictional strength decreases to very low values (Fig. 4.6). Then the 
frictional work decreases also and the combined effect of pore pressure dissipation and 
reduced heat generation leads to a constant value of excess pore water pressure. Note 
that the small value of the calculated strength and the increasing sliding velocity 
provides some positive heat input which is capable of maintaining an increase in 
temperature and a generation of excess pore pressures which is compensated by the 
dissipation towards the band boundaries.  

 

 
Figure 4.4 Calculated slide velocities. 
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Figure 4.5 Calculated pore water pressures.  

 
Figure 4.6 Calculated shear strength in the middle plane of the band. 
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Figure 4.7 Calculated band temperature.  

 
Figure 4.8 Calculated displacement records.  
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Figure 4.9 Calculated velocity and displacement of the unstable slide with no consideration of 

thermal effects. 

In the example solved the temperature in the band increases a few degrees during 
the first few seconds of accelerated motion (Fig. 4.7). Again, the analytical solution 
leads to a faster increase in temperature. The displacement history of the slide is quite 
similar in the two cases (Fig. 4.8). The first 100 m of displacement is reached in a few 
seconds (16 s in the numerical solution; 12 s in the analytical case). These are minor 
differences in practice. In fact, if the dynamics of the slide are simply a consequence of 
the purely accelerated motion of the unstable wedge, with no consideration of thermal 
effects, an extremely slow motion is computed for the first few seconds of the slide 
(Fig. 4.9). In fact, higher permeability values of the shear band material lead to 
negligible heating effects and the results are practically equal to those calculated with a 
conventional analysis without heating.  

The heat conduction term of the heat balance was neglected in the formulation 
presented above and in the calculations presented. In order to check this hypothesis, 
additional numerical work was performed, taking into account the heat dissipation 
term. The effect of this term in the results was not relevant for the common values of 
the conduction coefficient for rocks and the results obtained were undistinguishable 
from the numerical results reported here.  
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Figure 4.10 Effect of band permeability on (a) velocity; (b) excess pore water pressure; (c) 

displacement history. All of them calculated for a maximum displacement of 100 m. Analytical 
solution.  
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4.7 SENSITIVITY ANALYSIS 

4.7.1 Effect of permeability and shear band thickness 
The effect of band permeability on slide velocity and pore pressure generation of 

the band, during the interval necessary for the slide to reach a displacement of 100 m is 
illustrated in Figure 4.10.  Increasing the permeability leads to a slower response of the 
pore pressure build-up and a delayed acceleration of the slide. All the cases presented 
in Figure 4.10 correspond to a common band thickness of 5 mm and they were 
calculated though the analytical solution. Figure 4.10 suggests that beyond a critical 
permeability the pore water pressure dissipation within the band is enough to prevent 
any accelerated motion of the slide.  

But, in order to reach a general conclusion it is necessary to combine two 
parameters: band thickness and band permeability. The thickness of shear bands has 
been reported by several authors (Morgenstern, 1987; Roscoe, 1970; Vardoulakis, 1980; 
Scarpelli and Wood, 1982; Desrues, 1984; Vardoulakis, 2002). An important 
conclusion of basic research is that shear band thickness is related to a characteristic 
grain size (see Section 3.1.5).  

 
Figure 4.11 Calculated maximum slide velocity in 100m displacement. 

On the other hand, permeability is also roughly related to the grain size 
distribution. Therefore, band thickness and band permeability are related even if this 
relationship is a first approximation. It could be expected that in low permeability 
materials shearing bands should be narrow. If permeability increases, band thickness 
should also increase. In the sensitivity analysis performed band thicknesses and values 
of permeability were varied in a wide range (10-13 to 10-6 m/s for the band permeability 
and 0.5 to 50 mm for the band thickness). The resulting combinations are collected in 
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Table 4.3. In view of the preceding considerations, only a wide band, centred in the 
diagonal of the band thickness-permeability matrix is really significant. This band has 
been marked in Table 4.3. The cases included in the band probably cover all situations 
likely to be found in practice. The previous planar sliding case has been analyzed for all 
the combinations indicated in the table. In all cases the analytical solution was used.  

 

(a) 

 

(b) 

Figure 4.12 Effect of changing parameter Y on the (a) maximum slide velocity and (b) excess 
pore pressure (in the middle of the shear band). 
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The results, in terms of the calculated maximum velocity for 100 m displacement 
are shown in Figure 4.11. They show that permeability has a dominant effect. In fact, it 
appears that a threshold range of band permeability separates two regions: the high 
velocity region, characterized by values of permeability lower than 10-10 m/s and a 
stable region for values of permeability in excess of 10-7 m/s. This result does not 
depend on the band thickness. This conclusion is strictly valid for the simplified 
conditions of the analysis performed but it points out that a simple practical procedure 
to decide the danger of an active planar slide is to determine the permeability of the 
clay in which the sliding surface has developed and to compare it with the permeability 
values suggested previously for the “fast” and “stable” regions.  

Table 4.3 Effect of band permeability and thickness  

MAXIMUM VELOCITY REACHED IN 100 METERS OF DISPLACEMENT 

Permeability (m2) Thickness 
(mm) 10-20 10-19 10-18 10-17 10-16 10-15 10-14 10-13 10-12 

0.25 23.3 23.2 21.9 13.4 2.4 0.9 0.8 0.8 0.8 
0.5 23.3 23.2 22.6 17.5 4.2 1.1 0.8 0.8 0.8 
2.5 23.3 23.3 23.1 21.9 13.4 2.42 0.9 0.8 0.8 
5 23.3 23.3 23.2 22.5 17.5 4.17 1.1 0.8 0.8 
10 23.3 23.3 23.2 22.9 20.2 7.4 1.4 0.9 0.8 
25 23.3 23.3 23.2 23.1 21.9 13.41 2.4 0.9 0.8 

4.7.2 Effect of the position of dissipation boundary (parameter Y) in the 
analytical solution 

Solving the system of Equation (4.9) involves defining a priori the region outside 
the shear band in which excess of pore pressure are developed ( Y z Y− < < ). A linear 
variation of the excess pore pressure is specified in this zone (Eq. (4.9d)). If the 
compressibility of the water and the porous media are considered (working with the 
numerical solution, Eq. 4.3), the region affected by the heat induced pore pressure is 
part of the solution. It depends on the water storage capacity of the porous media and 
the permeability. In the solved case (analytical solution) presented above no excess 
pore pressure is allowed outside of the band ( 0Y = ). In order to show the effect of 
changing the value of Y , slide velocity and maximum excess pore pressure are plotted 
in time for Y  values ranging from Y e=  to 4Y e=  in Figure 4.12. These values are 
inspired by the results of the numerical solution (Fig. 4.5a). The remaining parameters 
have not been modified with respect to the solved case. Pore pressure develops faster 
if larger values of Y are considered because a higher excess pore pressure is imposed at 
the edge of the shear band.  If the results are compared with the numerical solution, 
also plotted in the figure, limiting strictly the excess pore pressures inside of the band 
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(Y = e) leads to the most accurate analytical solution, which has been used in the 
analysis of Cortes landslide presented in this Chapter.   

 
(a) 

 
(b) 

 
(c) 

Figure 4.13 Effect of slide thickness on the (a) temperature; (b) excess pore pressure; (c) shear 
strength on the mid-band. Analytical solution. Base case is characterized by D = 15.3 m. 
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4.7.3 Effect of depth of sliding surface  
The reference case corresponds to D = 15.3 m. Changing the thickness of the slide 

implies that normal stresses on the failure plane will change also. Therefore, the heat 
generated during sliding will also change. It is therefore expected that temperature, 
pore pressure, and mobilized strength will be controlled by the thickness of the slide. 
This is shown in Figure 4.13. It is easily checked that these variables depend linearly on 
the slide thickness, for any instant of the slide motion. 

However, the motion of the slide is essentially unaffected. The reason is that 
driving and resisting forces are scaled by the same amount when the slide thickness 
changes. The practical conclusion is that the risk, measured in terms of attained 
velocity, is independent of the thickness (size) of the slide. Deep slides, however, are 
capable of generating high temperatures (Fig. 4.13a) which may modify some of the 
basic assumptions made in the formulation of the problem, namely, the constitutive 
behaviour of the shear band material, the possibility of clay melting for very high 
temperatures or the generation of water vapour on the sliding plane. These phenomena 
are of concern for significantly deep landslides (Fig. 4.13). 

4.8 CONCLUSIONS 
A likely reason for the very high velocities reached in some occasions by 

translational slides is the generation of pore water pressures in the basal shear band as a 
result of the frictional heat input induced by the sliding motion. A well-known case in 
this regard is the catastrophic Vaiont slide. Finding the velocity of the slide requires the 
solution of a highly coupled problem which involves thermal, mechanical and flow 
phenomena. In the case of planar slides resting on a narrow shear band (the sliding 
surface itself), the set of balance equations may be solved in closed form under certain 
simplifying assumptions. The solution presented in the chapter does not consider heat 
conduction phenomena and heat advection in the shear band and its vicinity. It also 
neglects the fluid storage term associated with the skeleton deformability and the water 
compressibility. However, these effects are of minor significance compared to the main 
phenomena: heat accumulation in the shear band, pore pressure generation due to 
temperature increase and permeability controlled dissipation of excess pore water 
pressures within the shear band. It has been found that the assumption of full 
dissipation of excess pore pressures at the shear band edge (made in the derivation of 
the analytical solution) leads to a solution remarkably close to the numerical solution of 
the complete problem. The analytical solution found may prove useful to validate 
numerical procedures and it may be used as a fundamental basic solution for other 
sliding geometries not considered here. In addition, a comparison of calculations based 
on the analytical solution with numerical approximation, when soil and water 
compressibility are included, reveals that the closed form solution is accurate enough 
for practical purposes. 
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A sensitivity analysis carried out to investigate the effects of band permeability and 
thickness has shown that the band permeability is the key parameter to judge on the 
risk of having a very fast slide. A threshold permeability around the values 

 separates two regions. For values of 
permeability smaller that the threshold an accelerated fast motion may develop. For 
higher permeability values, the slide motion becomes fully drained and the risk of high 
slide accelerations disappears. 

9 7 16 14
010 10 m/s ( 10 10 m )k k− − − −= − = − 2

It was also found that changes in temperature, excess pore water pressures and 
available shear strength in the shear band depend linearly on the slide thickness. 
However, the development of velocity and run out distances are not affected by the 
depth of the failure surface. 

 

APPENDIX 4.1 FINITE DIFFERENCE APPROXIMATION OF 
SYSTEM OF EQUATIONS (4.3)  

A forward finite difference procedure was developed to solve the system of 
Equations (4.3) together with the initial and boundary conditions given in  Equations 
(4.4) (4.7). Consider in Figure A4.1 the domain of integration. The one-dimensional 
spatial domain is subdivided into n small elements of thickness Δz. The zi coordinate of 
any point is defined by an index i such that zi = iΔz. The following indices define 
singular points: i = n0 corresponds to z = 0; i = ne to z = e. The far boundary is located 
at a distance z = L, where i = nL. The horizontal axis in Figure A4.1 corresponds to 
time. The system of equations will be solved for each time interval Δt. 

−

Time derivatives at any time t, for z = zi can be approximated by (Forward Euler 
Method): 

 ( ) ( ),

i

i

z

,if z t t f z tf
t t

+ Δ −∂
≈

∂ Δ
 (A4.1) 

where ( ),f z t  is a general function of position (z) and time (t). 

The first and second derivative with respect to z will be approximated by a central 
difference 
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Once the numerical approximations of the derivatives (Eqs. (A4.1) and (A4.2)) are 
substituted into the system of Equations (4.3c,d,e), the following discrete set of 
equations is obtained: 
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M
Δ ⎡ ⎤+ Δ = + β − τ⎣ ⎦  (A4.3c) 

In these equations, 

 
( )v

v w

kc
m n

=
w+ α γ

 (A4.4) 

is the consolidation coefficient of the shear band material;  

 
( )

r r
v r

v w

kc
m n

=
w+ α γ

 (A4.5) 

is the consolidation coefficient of the material outside the shear band; and 

 ( )
( )
1 s w

H
v w

n n
c

m n cm

− β +β
=

+ α ρ
 (A4.6) 

is a parameter that integrates the dilation coefficients of water and solid, the 
compressibility of soil skeleton and water and the mean specific heat of the soil.  

Equations (A4.3a,b) are explicit mathematical expressions for the excess of pore 
pressure in a point zi, at a given time (t + Δt), if the old values (at the previous time, t) 
in three points: point zi and the points just above and below (zi−1 and zi+1), are known. 
This calculating procedure is graphically illustrated in Figure A5.1. Equation (A5.3) 
provides the new value of the maximum velocity as a function of the old values 
(previous step) of maximum velocity and excess of pore pressure at z = 0. Heat (H) 
and effective frictional strength (τf) are given by Equations (4.3a,b) at the previous time 
t. It appears, therefore, that a forward marching procedure has been devised to 
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calculate the independent variables (excess pore water pressure and velocity). The 
procedure requires that initial and boundary values are defined. 

Initial and boundary conditions must also be expressed in a numerical way. The 
symmetry condition at z = 0 (Eq. (4.5)), valid at any time, can be approximated by 
extending the domain with an additional interval from z = 0 to z = z−1 = −Δz. Then, if 
the excess pore pressure at z = z−1, ( )1,wu z t−  is forced to be 

 ( ) ( )1,w wu z t u z t− = 1,  (A4.7) 

at any time, the condition 

 0w

t

u
z

∂
=

∂
 in 0z =  

  

is automatically satisfied in view of Equation (A4.7).  

The general expression (A4.3a) for z = 0 can now be written 

 ( ) ( ) ( ) ( ) ( )0 0 1 02, , 2 , 2 ,w w v w w H
tu z t t u z t c u z t u z t t c H t

z
.Δ

⎡ ⎤+ Δ = + − + Δ⎣ ⎦Δ
 (A4.8) 

The numerical expression of the boundary condition at the edge of the shear band 
(z = e) (Eq. (4.6)), is obtained by means of a forward finite difference as follows: 
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z z
− +

− −
=

Δ Δ

,
e  (A4.9) 

This equality allows the calculation of excess pore water in z = e at any time as a 
function of the values of excess pore water in the points just above and below (at the 
same time): 

 ( ) ( ) ( )1, ,
, e

e

r w n w n
w n

r

k u z t k u z t
u z t

k k
+ +

=
+

1e −  (A4.10) 

The numerical expression of boundary condition at the upper limit of the 
discretization (Eq. (4.7)), where the excess of pore pressure must be zero, is simply 

 ( ),
Lw nu z t 0=  (A4.11) 

Regarding the initial conditions (Eqs. (4.4)), the numerical equivalents are given by 

 ( )0, 0w iu z t =  for [ ]1, Li n∈  (A4.12) 
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 ( )0,iv z t 0=  for [ ]1, Li n∈  (A4.13) 

  for ( )0 reftθ = θ [ ]1, Li n∈  (A4.14) 

At the initial time (t0), all values are known. The excess pore water pressure in the 
next time increment can be calculated by means of Equations (A4.3a,b) in [  and )0 , en n

( ],e Ln n , respectively. Note that ne is not included in those intervals. However, the 
continuity condition, expressed in Equation (A4.10), provides the new value of excess 
pore pressure at z = e.  

 
Figure A4.1 Dynamics of a planar infinite slope. Domain of integration. 
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The value of the maximum velocity at the first time step is obtained by means of 
Equation (A4.3c) (with ( )max 0 0v t = ). Once velocity and excess of pore pressure are 
known at the new time step, the new value of heat and effective frictional strength can 
be calculated through Equations (A4.3a,b). Also, the temperature in the shear band can 
be obtained, at each time step, by means of Equation (3.13), writing it in a numerical 
form as follows: 

 ( ) ( ) ( )
m

H t
t t t t

c
θ +Δ = θ +Δ

ρ
 (A4.15) 

Summarizing, the numerical solution of the problem starts at the boundaries where 
the values of the variables are known at any time. The set of discretized equations 
provides, step by step, all the unknowns at any time and position of the domain of 
integration. Since initial conditions of excess pore pressure at any point, as well as the 
initial temperature are zero, the value of pore water pressure at the first time step (t = 
Δt) will be zero.  

These approximations lead to a Forward Euler Method of integration which may 
be numerically unstable if Δt is larger than the stability limit, which is a function of 
material parameters and Δz. If the solution becomes unstable, the calculated values of 
the unknown function display an oscillatory behaviour in time that prevents 
convergence. Convergence of explicit integration schemes of standard parabolic 
equations (such as the consolidation equation) is achieved if the time and spatial 
increments satisfy the condition:  

 2 0.5vc t
z
Δ

≤
Δ

 (A4.16) 

This condition applies to the homogeneous part of the parabolic equation 
(Nakamura, 1990) and it may be thought that our field Equation (4.3c) leads to a 
similar relationship. Unfortunately, the “independent” term (proportional to heat input 

( )H t ) in Equation (4.3c) is a function of pore pressure, through Equations (4.3a,b,e). 
Nevertheless, the preceding condition has been accepted as a reference in the 
calculations presented below. In general, care has been taken to check that the 
calculated pore pressures did not change for time steps below a certain value used in 
calculations.  

The calculated velocity will increase as long as the sliding mass is unbalanced 
(driving forces exceed resisting ones). This is the case, even if the excess pore pressure 
at initial time is zero, because a positive increment of velocity will be calculated. Then, 
the positive value of generated heat, due to the velocity reached at the first time step, 
will result in an increment of temperature and excess pore pressure in the shear band. 
At the following time step, this positive excess pore pressure will reduce the effective 
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frictional strength and will accelerate the slide mass. The slide will start to move in an 
accelerated motion. 

The numerical procedure described above has been programmed in Fortran 90. 
The program is included in Appendix 6.1 to show all the details of the computational 
procedure and to allow the reader to perform its own calculations.  
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CHAPTER 5 

Static Equilibrium and Run-Out Analysis of 

Vaiont Landslide  

Vaiont slide has been represented by a model of two interacting evolutive wedges. 
Mass conservation during the motion implies that the upper wedge transfers mass to 
the lower one through an internal shearing plane. The model respects available in situ 
observations. It was formulated in dynamics terms. Outcomes of the analysis are the 
determination of safety factors of the valley before dam impoundment, and the 
calculation of run-out distance once the motion starts. The approach gives a simple 
explanation to the stability of the slide, previous to failure. Rock strength degradation 
of the mobilized mass as motion develops has also been included. This degradation, 
even if it is intense, was unable to explain the very high estimated landslide velocities. 
This aspect is faced in the next chapter.  

5.1 INTRODUCTION 
Vaiont landslide (Italy) has attracted world wide attention into the causes and 

processes involved in the failure. Interest in Vaiont has never decreased within the 
technical community despite the 45 yrs elapsed since the accident. Papers analyzing the 
failure have been published at a maintained rate in Journals and Conferences. The 
landslide is one of the largest (in terms of volume of mobilized mass) in historic times. 
As stated by Hendron and Patton (1987): 
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“It is likely that more information has been published and more analyses have been made of the 
Vaiont data than for any other slide in the world”.  

This Chapter and the next one are an additional contribution to this long list. Only 
the essentials of the landslide are reported here to justify the models developed. Vaiont 
has been described in many papers. A significant subset is given in the references of 
this Chapter.  

One of the main reasons which explain the interest in Vaiont landslide is the 
difficulty to explain the extremely high velocity of the moving mass. The implication of 
this lack of understanding is that the risk associated with other landslide occurrences of 
similar nature (natural slides affected in its toe by increasing water levels, a common 
situation in dam engineering) cannot be properly evaluated.  

This Chapter presents a review of Vaiont slide. It focuses on the kinematics of the 
slide. Two representative sections have been analysed by formulating a dynamic 
equilibrium highlighting the importance of the internal strength of the mobilized rock. 
The approach gives a simple explanation to the stability of the slide, previous to failure, 
even if it is accepted that the main failure surface remains at residual strength 
conditions. Some authors (Mencl, 1966, Lo et al., 1972, Sitar et al., 2005; Sitar and 
MacLaughlin, 1997) have also suggested that the strength offered by the rock mass 
could explain the stability of the slide before the impounding of the reservoir. This idea 
is also favoured in this work and it will be used in the model developed to analyze the 
slide.  The analysis for the rapid sliding is developed in the next Chapter.   

In the first part of this Chapter the main features of the slide and of the events 
which happened previously to the failure are presented. This information is 
fundamental for the assumptions adopted in the subsequent analysis presented in this 
Chapter and the next one.  

5.2 FUNDAMENTAL INFORMATION ON VAIONT 
Between 1957 to 1967 a double curvature arch dam, 276 m high, was built to store 

water of the Vaiont River in the Italian alps, approximately 80 km north of the city of 
Venice. The dam was built in a narrow canyon cut by the river in massive Jurassic 
limestone. At the end of 1960, once the dam was built and the reservoir partially 
impounded, a long continuous peripheral crack, 1 m wide and 2.5 km in length, 
marked the contour of a huge mass, creeping towards the reservoir in the Northern 
direction (Fig. 5.1). In the following three years the downward motion of the slide was 
monitored by means of surface markers. Some data provided by them is also plotted in 
Figure 5.2. In addition, water pressures in perforated pipes, located in four boreholes 
(location shown in Fig. 5.2), were monitored starting in July 1961. However, all the 
investigation efforts provided limited information on some key aspects of the landslide 
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Figure 5.1 Map of Vaiont sliding area. Note the position of the arch dam on the lower right 

hand corner of the figure (Simplified from Belloni and Stefani (1987) with additional 
information from several authors). 

 
Figure 5.2 Accumulated displacements of surface markers in the period 1960-1963 and its 

correlation with reservoir elevation. Seismic events are marked in the time scale (After 
Nonveiller, 1987). 
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such as the position and shape of the sliding surface and the pore water pressures 
acting on it. The measured rate of displacements of surface markers could be roughly 
correlated with the water level of the reservoir (Fig. 5.3). After two cycles of reservoir 
elevation, which partially filled and emptied the reservoir in the period 1960-1962, the 
water level reached a maximum (absolute) elevation of 710 m, at the end of September 
1963. At that time, the accumulated displacements of surface markers had reached 
values in excess of 2.50 − 3 m (Fig. 5.3). The figure shows a good correlation between 
the increase in water level in the reservoir and the acceleration of landslide 
displacements. Surface velocities of 20 − 30 cm per day were registered in the days 
preceding the final rapid motion which took place on October 9, 1963. An estimated 
total volume of rock of 280·106 m3 became unstable, accelerated, and invaded the 
reservoir at an estimated speed of 30 m/s (around 110 km/hour). The displaced mass 
generated a gigantic wave, 270 m high, which flew over the dam (which stood without 
breaking) and destroyed several villages downstream, causing more than 2000 
casualties.  

 
Figure 5.3 Relationship between water level in the reservoir and sliding velocity (Hendron and 

Patton, 1985). 

5.2.1 Geological setting 
The Vaiont river, which flows from East to West, cuts a large syncline structure 

which folds Jurassic and Cretaceous strata (Fig. 5.4). The syncline created the “open 
chair” shape of the Jurassic strata of the left margin of the river, which can also be seen 
in the figure. The axis of the syncline plunges a few degrees towards the East (normal 
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to the plane of the figure). The syncline shape eventually defined the geometry of the 
failure surface, which is always important information to understand the subsequent 
behaviour of the slide. E. Semenza, an engineering geologist son of the dam designer, 
made important contributions to understand the geology of the site. In his book “La 
Storia del Vaiont raccontata del geologo che ha scoperto la frana (“The story of Vaiont 
told by the geologist who has discovered the slide”, Semenza, 2001), he includes a 
tentative reconstruction of the past history of the slide in a series of representative 
cross-sections which are reproduced in Figure 5.5. 

This reconstruction conveys a clear message from a geomechanical point of view: 
the failure surface, which was probably initiated several tens of thousands of years ago, 
has been subjected to an ever increasing story of accumulated relative displacements. 
The second important point is that the rock mass affected by the 1963 landslide had 
suffered a history of cracking and “damage” during recent geological times. The sliding 
surface is located in strata of the upper Mälm period (upper Jurassic). Clays and marls 
were found in these layers (see below the description of the failure surface). Above the 
sliding surface finely stratified layers of marl and limestone from the Mälm period were 
identified. Below the sliding surface, the Jurassic limestone banks of the Dogger period 
remained unaffected. In the upper part, limestone strata from the lower Cretaceous 
crowned the moving mass. In general, the folded layers of limestone and marl were 
strongly fractured (drilling water was often lost in the exploratory borings performed in 
1960).  

Two representative cross-sections of the slide, located upstream of the dam 
position at distances of 400 m and 600 m, respectively, are reproduced in Figure 5.6 
(Sections 2 and 5; Hendron and Patton, 1985). The two cross-sections will later be 
used to analyze the stability conditions of the landslide. 

 
Figure 5.4 A North (Monte Toc) South (Monte Salta) section showing the general layout of the 
syncline, the Vaiont gorge and the position of the ancient landslide (vertical scale = horizontal 

scale) (after Semenza and Ghirotti, 2000). 
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Figure 5.5 Tentative reconstruction of the paleo-slide of Vaiont. 1: Situation before the first 

motion (end of last glaciation?); 2: First motion of the slope; 3: Process of progressive sliding 
(undulated continuous line) and rotational slides at the toe; 4: Successive erosion phenomena 
on the upper parts; 5: Ancient landslide and intense fracturing of strata. The valley is invaded 

by the gigantic slide. 6: The slide before November 4, 1960, after thousands of years of 
erosion. The river has cut a new, narrow gorge. 7: The profile after a “small” landslide on 

November 4, 1960; 8: The final shape of the cross-section after the slide of October 8, 1963 
(present situation). The inset shows an eroded part of the slide surface by the rapidly moving 

waters displaced by the slide. (Simplified from Semenza, 2001). 
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5.2.2 The sliding surface 
In their comprehensive report of 1985, Hendron and Patton (1985) describe the 

detailed investigation performed to identify the nature of the sliding surface. The 
conclusion is that thin (a few centimeters thick) continuous layers of high plasticity clay 
were consistently found in the position of the failure surface. Samples from these clay 
layers were tested by different laboratories and the results are described in Hendron 
and Patton (1985). 

 
Figure 5.6 Two representative cross-sections of the landslide: (a) Section 2; (b) Section 5. See 

location in Figure 5.5. (After Hendron and Patton, 1985). The position and length of 
piezometers P1 and P2 is shown on cross-section 5. 

The clays were found highly plastic a result explained by their significant Ca-
montmorillonite content. Liquid limits well in excess of 50% were often found. More 
recently Tika and Hutchinson (1999) reported the values wL = 50% and PI = 22% 
(Table 3.2). 

Direct shear tests on remoulded specimens have also been reported by Hendron 
and Patton (1985). In some cases stress reversals were applied in order to find residual 
conditions. In fact, the past history of the landslide indicates that the residual friction 
angle was the relevant strength parameter along the failure surface. Measured average 
values of residual friction angle ranged between 8º and 10º. These values are consistent 
with existing correlations between residual friction angles and clay plasticity (Lupini et 
al. 1981) (Fig. 3.11). Tika and Hutchinson (1999) used the ring shear apparatus to find 
also the residual strength (Fig.  3.14). This test, conducted on remoulded specimens, 
approximates better the large relative shear displacements experienced in nature by the 
actual sliding surface. They also measured a residual friction angle of 10º for a relative 
shear displacement in excess of 200 mm. Tika and Hutchinson (1999) also examined 
the effect of shearing rate (Fig. 3.15). They found a further reduction in residual 
friction which reached low values (5º) for shearing rates around 0.1 m/s, a velocity 
which is still far lower than the estimated sliding velocities of the real failure. This 
aspect is not directly considered in the dynamic equilibrium calculation developed here. 
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As discussed in Chapter 3, the measured reduction in the available frictional strength 
with rate of displacement may be a consequence of thermo-hydro-mechanical coupling 
phenomena taking place  due to heat generation by frictional work at the shear zone, 
which will be included in the analysis developed in the next Chapter.  

Hendron and Patton (1985) estimated that some factors (areas of the sliding 
surface without clay, some localized shearing across strata, irregularities in the 
geometry of the sliding surface) could increase the average residual friction angle 
operating in the field and they estimate that '

resφ =12º is a good approximation for static 
conditions. 

5.2.3 Monitoring data before the slide 
The main purpose behind the limited instrumentation available was to relate the 

level of the reservoir with the measured vertical and horizontal displacements of a 
number of topographic marks distributed on the slide surface. Data on horizontal 
displacements, plotted as a function of position and time in several profiles following 
the South-North direction in Figure 5.1, indicate that surface points in different cross-
sections had essentially the same displacement rates an information which suggest that 
the slide was moving as a rigid body. The direction of the slide is also indicated in the 
figure by several arrows. Some of them (small arrows along the peripheral crack) 
indicate that the moving mass was actually detaching from the stable rock, implying no 
frictional resistance. This is clearly the case of the western side of the slide. In the 
eastern side the lower part of the peripheral crack does not seem to have been fully 
developed at the time of the survey. Some authors (Hendron and Patton, 1985; Hungr 
et al., 1989) have developed three-dimenasional block models which include this lateral 
contribution.   

Seismic (volumetric p-wave) velocities were measured in central parts of the slide 
in December 1959 and again in December 1960. A drop in velocity from pv  = 5-6 
km/s in 1959 to pv = 2.5-3 km/s was recorded. This information may be interpreted as 
an indication of the progressive weakening of the rock mass due to the distortion 
induced by the creeping motion of the slide. The velocities initially recorded at the end 
of 1959 are very high and they correspond to a rock of good quality, Barton (2007). 
This is perhaps surprising in view of the prehistoric landslide motions described above. 
The strong drop in seismic velocity in just one year, which is a tiny fraction of time 
within the complex life of the landslide, seems exaggerated but it is pointing towards 
significant shear distortions within the rock mass, motivated by the first impoundment 
of the reservoir which implied a water level rise of 200 m. The associated increase in 
pore water pressures on the sliding surface is very large and it is unlikely that rainfall 
events in the past could have produced such a strong drop in effective stress, especially 
in the lower part of the slide.  
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It should be emphasized that these p-wave velocities are much higher than the 
velocities measured in soils, even if they are dense and compact. In other words, the 
strength which may be associated with the shearing of the rock mass above the sliding 
surface is orders of magnitude larger than the strength available at the clay-dominated 
thin layers at the base of the slide, being sheared along sedimentation planes of very 
high continuity.  

5.2.4 Water pressures and rainfall 
The position of piezometers (they were open perforated pipes) was indicated, in 

plan view, in Figure 5.1 and in cross-section in Figure 5.6. A perforated pipe only 
provides information on the average water pressures crossed by the tube. Note too 
that the pipes, except Piezometer 2, did not reach the position of the sliding surface. 
Therefore, they did not provide direct information on the water pressures actually 
existing in the vicinity of the sliding surface, which is fundamental information to 
perform a drained stability analysis of the landslide.  

In general, the water level recorded by the piezometers follow closely the changing 
level of the reservoir. The exception was Piezometer 2, at least during the initial part of 
the recording period. The initial readings in this piezometer indicated water pressures 
significantly above (90 m of water column) the reservoir surface. This information has 
been interpreted as an indication of additional factors, other than the level in the 
reservoir, which may control the water pressure at the sliding surface. Since the 
cretaceous limestone, affected by karstic phenomena, is a rather pervious mass, rainfall 
water infiltrating at high elevations may result in artesian pore pressures against the 
impervious Mälm formations located at the base of the landslide. However, no further 
and direct evidence of this possibility was recorded. On the other hand, the 
simultaneous variation of piezometer and reservoir levels is a good indication of the 
high permeability of the rock mass above the sliding surface. 

When water level in the reservoir is plotted against the recorded slide velocity (Fig. 
5.3), an interesting result is obtained. Increasing water level leads to an increase in 
sliding velocity. The relationship is highly nonlinear and it tends towards an asymptotic 
limit which is an indication of failure. The problem with Figure 5.3 is that this 
relationship is not unique, a result which is not expected if the slide motion is thought 
to be governed by the effective normal stresses acting on the sliding surface, which, in 
turn, is controlled by the reservoir level. In fact, the second reservoir filling led to a 
second asymptotic value for the water level in the reservoir.  

This result was probably one important reason behind the decision to increase the 
water level for the third time in search of a higher (but safe) level in the reservoir which 
would allow the normal operation of the dam. The idea behind this decision, 
apparently put forward by Müller (1987), is that the rock reacts in a different way when 
it is wetted for the first time, compared with its reaction when it has already been wet 
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before. There is no fundamental mechanical basis for this proposition, however. The 
fact is that during the third attempt to raise the water level, displacement velocities 
increased continuously and the final attempts to reduce the velocity of the slide by 
lowering the level of the reservoir (Fig. 5.3) did not work. 

An explanation for the apparent inconsistency of results in Figure 5.3 could be 
found if reservoir water level and rainfall are combined in the spirit that the prevailing 
water pressures on the sliding surface, irrespective of their origin, should control the 
stability. Hendron and Patton (1985) found a reasonably good explanation if rainfall, 
averaged over the preceding 30 days, and water level are jointly considered to explain 
the landslide velocity. The actual failure occurred for a 30-day precipitation of 240 mm 
when the reservoir was at elevation 700 m. Leonards (1987) analyzed further the 
rainfall records and the history of reservoir elevation and could not find a satisfactory 
explanation, free of inconsistencies, for the relationship between velocities of the slide, 
reservoir elevation and previous rainfall. The pore pressure regime prevailing at the 
sliding surface remains rather uncertain in the Vaiont landslide. 

5.3 AN EVOLUTIVE TWO-WEDGE STABILITY MODEL 
The two representative cross-sections 2 and 5 in Figure 5.6 have been represented 

in Figure 5.7 in a simplified version, which is, however, close to the original drawings. 
The two plots highlight that the failure surface could be described by two planes: a 
lower horizontal plane daylighting at the river canyon wall and an inclined planar 
surface. A rock wedge whose thickness decreases upwards rests on the inclined plane. 
The rock mass reaches its maximum thickness, 270 m, in the central lower part of the 
slide above the horizontal sliding plane. 

A good proportion of reported stability analyses of Vaiont, especially in the years 
following the failure, have concentrated in the determination of the friction angle 
necessary for stability (Jaeger, 1965a,b; Nonveiller, 1967; Mencl, 1966; Skempton, 1966; 
Kenney, 1967). Classic procedures for stability analysis in soil mechanics using limit 
equilibrium methods were used. The preceding account of the relevant information on 
Vaiont, namely the data presented by Hendron and Patton (1985) indicates, however, 
that the friction angle at the failure surface could hardly be larger than 12º.  

Two main reasons support this statement: the fact that Vaiont was a case of 
landslide reactivation (which implies large previous shearing displacements at the 
sliding surface and hence a clear situation of residual strength conditions) and the small 
residual friction angles (8º-10º) measured in the highly plastic clays (Ca-
montmorillonite rich) found in the clays associated with the sliding surface.  

Therefore a relevant question is: Are the representative cross-sections in Figure 5.7 
stable, given the value of the basal friction angle and the estimated conditions of pore 
water pressure, when the reservoir reached elevations in the range 650 to 700 m? 
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Figure 5.7 Cross-sections 2 and 5 of Vaiont landslide. Initial geometry. 

The cross-sections plotted in Figure 5.6 suggest that the slide may be defined as 
two interacting wedges: an upper one (Wedge 1) sliding on a plane having a dip of 36º-
37º and a lower one (Wedge 2) sliding on a horizontal plane. Since a (common) friction 
angle of 12º is acting at the basal sliding surfaces, the upper wedge is intrinsically 
unstable and will push the lower resisting wedge. The weights of the two wedges and 
the distribution of pore water pressures prevailing on the sliding plane will, as a first 
approximation, dictate the stability conditions. However, the interaction between the 
two wedges plays also a relevant role to explain the stability, as discussed below.  

It is worth at this point to examine the kinematics of the slide. If the motion starts, 
one may imagine the slide as a train sliding downwards, an image which is brought to 
justify that the absolute velocity in the upper and lower parts of the slide are essentially 
the same. Surveying data plotted in Figure 5.1 supports this simple hypothesis. The 
difference in velocity (or displacement) when comparing the upper and lower parts of 
the slide lies obviously in the direction of these vectors: they will be parallel to the 
underlying failure surface. A conflict arises, however, at the kink or junction between 
the two sliding planes. It is hard to imagine that voids will develop in the layered 
sequence of marl and limestone at 270 m depth. The alternative is the bending and 
shearing of strata. In fact, a single shearing plane may be invoked to accommodate the 
sudden change direction of velocity at the kink. This is indicated in Figure 5.8a, where 
sliding velocity vectors v1 (in the direction of the upper inclined surface) and v2 
(horizontal, parallel to the basal plane) are plotted with a common origin. This velocity 
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diagram represents the conditions at the kink (point A), where the rock approaches A 
with velocity v1 and leaves it with velocity v2. The relative motion of the two wedges 
(vector v12) is directed in the direction of the bisector of the angle between the upper 
and lower sliding surfaces. Therefore, the change in the direction of the velocities of 
the two wedges may be accommodated by a relative shear in the direction of the 
bisector plane plotted in Figure 5.8.  

 
Figure 5.8 Kinematics of sliding. Section 5. 

The motion of the slide implies that mass from the upper wedge is transferred to 
the lower block, increasing its volume. Therefore, the weight of the upper unstable 
wedge decreases and, at the same time, the weight of the lower block, resting on a sub-
horizontal surface, increases. The net result is an improvement of stability. In this 
process the sliding resistance along the common plane separating the two wedges has 
to be overcome. If it is accepted, because of the preceding discussion, that the 
common plane of intense shear bounding the two wedges is the bisector plane, the 
evolution of the geometry of the sliding mass may be approximated by the successive 
cross-sections shown in Figure 5.8 for total slide displacements s = 0 m, s = 100 m and 
s = 400 m. Figure 5.8 is a graphical expression of the condition of mass conservation 
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during the landslide motion. It will be used later to perform a dynamic analysis of the 
failure.  

5.3.1 Internal shearing 
Shearing across the common plane AB between the upper and lower wedges (Fig. 

5.8) has a direction approximately perpendicular to the sedimentation planes of the 
marl and limestone layers of the Mälm period overlying the failure surface. The shear 
resistance offered by plane AB is difficult to estimate because of the intricate geometry 
involved at several scales and the limited continuity of joints. Following Hoek (2007), 
the strength of rock masses may be approximated if some basic characteristics are 
determined (rock matrix unconfined strength; degree of jointing and state of the 
surfaces, lithology, etc). Figure 5.9 shows the strength envelope in a Mohr stress plane 
for a rock mass which may approximate the Mälm layers above the sliding surface of 
Vaiont. Details of the defined rock mass are given in the caption of Figure 5.9. It may 
correspond to the Vaiont slide mass, which was described as follows by Müller (1987), 
after the failure: 

“The part of the stratigraphic column exposed in the slide mass consists of beds of partially 
crystalline limestones, limestones with hard siliceous inclusions, marly limestones and marls. Many 
beds are strongly folded and show indications of slope tectonics. Its geological structure but also its 
geological sequence has remained essentially unchanged. The entire rock mass remained intact and 
the sediment facies is nearly unchanged. Apart from some newly formed faults, the only other effects 
of the slide were the opening of existing joints and the development of new joints, resulting in an 
overall volume increase of 4-6% and an associated reduction of the mechanical coherence of the rock 
mass”  

The strength envelope is nonlinear but a Mohr-Coulomb approximation is also 
shown in Figure 5.9 for a range of normal stresses centered at nσ′ = 2 MPa, a stress 
which may represent average conditions on the bisector plane AB (Fig. 5.8). The 
Mohr-Coulomb strength parameters (c’ = 0.787 MPa; ϕ’ = 38.5º) define the linear M-
C approximation.  

The relevant point is that the shear plane AB may offer a substantial resistance to 
be sheared and this resistance has probably a significant role in stability. Shearing 
across a rock mass is typically associated with the release of energy. In fact, in the years 
preceding the failure, when three attempts to fill the reservoir were made, seismic 
events were recorded on the slide surface. Their location has been plotted in Figure 
5.1. They approximately span, in plan view, the position of the shear plane AB plotted 
in Figure 5.8. Nonveiller (1987), quoting a report on these shocks mentions that “…the 
shocks generated in the zone of the slide signify dilation of the material in a zone of sagging of the 
rock.” 
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These events had an increasing frequency in periods of slide acceleration, when the 
reservoir level increased. This is shown in Figure 5.2, where seismic events have been 
plotted as small marks in the time axis (lower part of the figure).  

It was also reported that the rock experienced a global degradation, reflected in a 
substantial drop of p-wave velocities, as a result of the slide motion during the period 
December 1959-December 1960. All this evidence supports the conclusion that a rock 
mass around the position of the ideal shear plane AB was subjected to intense shearing 
during the cycles of filling and emptying the reservoir in the years previous to the 
failure.  

 
Figure 5.9 Strength envelope of a rock mass described as: Strength of intact material: 50 MPa 
(limestone-claystone); Hoek Geological Strength Index (GSI = 50) (very blocky, interlocked, 
partially disturbed, with multifaceted angular blocks formed by four or more joint sets), Hoek 
mi parameter mi = 9 (marls, soft limestones); degradation parameter D = 0.5 (in a scale 0 to 1). 
(According to Hoek-Brown classification of rock masses). Also shown is the Mohr-Coulomb 

approximation for a normal stress of 2 MPa (c’ = 0.787 MPa, ϕ′ = 38.5º) and an arrow 
showing the degradation of cohesive intercept at constant ϕ′  value 

A loss of strength (reduction of mechanical coherence in Müller words) was 
certainly a consequence of this straining. Typically cohesion is first lost but friction 
tends to remain without much change. This drop of cohesion as a result of straining 
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along plane AB has also been shown in Figure 5.9. In the model described below, the 
apparent cohesion in the shear plane AB will be reduced as the slide moves forward. 
Going back again to Figure 5.8, as slide displacement increases, “new” planes of rock 
cross the shearing position AB, which remains fixed at the position of the bisector 
plane, which is independent of the slide motion. The consequence is that the shear 
strength along this plane will not decrease in a sudden and intense manner. Certainly 
the motion of the slide will have some weakening effect, which is difficult to quantify.  

 
Figure 5.10 Geometry and forces on upper Wedge 1. 

 
Figure 5.11 Geometry and forces on lower Wedge 2. 
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5.3.2 Motion equations 
A model based on the interaction of two wedges will now be developed. The main 

assumptions are: The upper and lower wedges change their geometry during sliding, as 
shown in Figure 5.8. The upper wedge looses volume, which is added to the lower one. 
During this process the common plane AB reduces in length. Shearing across AB (or, 
more generally, AB’) is described by a Mohr-Coulomb strength criterion 
( rrc ϕ′σ′+′=τ tan ). In addition, the cohesive intercept, rc′ , is made dependent on the 
slide displacement, s. This is a simplified procedure to introduce strength degradation 
of the rock mass during the slide motion. The friction angle is maintained constant. 
The lower sliding surface is assumed to be in residual conditions with strength 
parameters ( bc′  = 0; bϕ′ = 12º). Pore water pressures are given by a horizontal phreatic 
level.  

Equilibrium conditions are formulated in dynamic terms. In this way it will be 
possible to analyze the effect of strength degradation of the shearing plane AB’ on 
slide motion. Static conditions of equilibrium are a particular case of the dynamic case. 
Only inertia terms are considered. No viscous effects are introduced.  

Equilibrium conditions will be written for the upper and lower wedge and a 
common interaction force across plane AB will be enforced. 

Upper Wedge 1 Consider the wedge geometry and external forces in Figure 5.10. 
Equilibrium parallel to the motion (displacement s; velocity v = ds/dt) reads: 

 ( )1
1 1 int int int

d
sin cos( / 2) sin( / 2) cos( / 2)

dw

M v
W T N Q P

t
′α − − α − α − α =  (5.1) 

where 1M  is the mass of Wedge 1, ( 1 1W M g= ; g: gravity acceleration). The time 
derivative of the right-hand side of Equation (5.1) can be developed as 

 

( )1 1
1

d dd
d d d
M v MvM v
t t t

= +
 (5.2) 

Equilibrium in normal direction to the basal sliding plane leads to: 

 1 1 int int 1 intcos sin( / 2) cos( / 2) sin( / 2) 0w wW N N Q P P′ ′α − + α − α − + α =  (5.3) 

where the interaction effective forces intQ and '
intN are related through 

 int int' tanr rQ c AB N′ ′ ′= + ϕ  (5.4) 

In addition, the shear resistance on the base of the wedge is given by 

 1 1 tan bT N ′ ′= ϕ  (5.5) 

The motion Equation (5.1), in view of (5.3)-(5.5) becomes: 
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 ( )1
1 1 int 2 3 int 4 1

d
' tan

dr w w b

M v
W s N s c AB s P s P

t
′ ′ ′− + − + ϕ =  (5.6) 

where is  are trigonometric constants, given by: 

 1 sin tan cosbs ′= α − ϕ α  (5.7a) 

2 tan sin( / 2) cos( / 2) tan tan cos( / 2) sin( / 2) tanb r b rs ′ ′ ′ ′= ϕ α − α ϕ ϕ + α + α ϕ  (5.7b) 

 3 tan cos( / 2) sin( / 2)bs ′= ϕ α − α  (5.7c) 

 4 tan sin( / 2) cos( / 2)bs ′= ϕ α + α  (5.7d) 

For static equilibrium ( ( )1d
0

d
M v
t

= ), Equation (5.6) provides the normal 

interaction force between the two wedges: 

 ( )int 1 1 3 int 4 1
2

1 ' tanr w w bN W s c AB s P s P
s

′ ′ ′= + − + ϕ  (5.8) 

When the wedge slides a distance s along the basal plane, the length of the shear 
plane reduces from AB to AB’ (Figure 5.8). Since triangles AVB and AV’B’ are similar, 
it is easy to find: 

 0 1

0

/ cos'
/ cos cos( / 2)

L s HAB
L

α −
=

α α
 (5.9) 

where H1 is the thickness of the lower wedge over the sliding plane. The volume of 
Wedge 1 can be expressed as a function of the initial geometric parameters and the 
displacement s as 

 
2

0 1
Wedge 1

0

1 cos
2 cos

L HV s
L

⎛ ⎞= − α⎜ ⎟α⎝ ⎠
 (5.10) 

The mass and weight of the wedge can be now easily calculated by multiplying the 
volume of Equation 5.10 by the density ( rδ ) and unit weight ( rγ ) of the rock, 
respectively. 

Time variation of mass can be obtained as follow: 

 Wedge 1 01 1

0

dd dcos
d d cos dr r

V LM H ss
t t L t

⎛ ⎞= δ = −δ − α⎜ ⎟α⎝ ⎠
 (5.11) 

where the time variation of the displacement (
t
s

d
d ) is equal to the velocity.  

Lower Wedge 2 The wedge geometry and external forces are given in Figure 5.11. 
The wedge is shown displaced forward a distance s. 
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Equilibrium parallel to the direction of motion at a velocity v = ds/dt reads: 

 ( )2
int int 2

d
cos( / 2) sin( / 2)

d
M v

N Q T
t

′ α − α − =  (5.12) 

where M2 is the mass of Wedge 2 (W2 = M2 g; g: gravity acceleration). Note that the 
horizontal components of the water pressure forces Pwint and Pwf are equal and opposite 
in sign. The terms on the right-hand side of the Equation (5.12) can be developed 
following Equation (5.2). Since the total mass of the slide is constant, the time 
variation of M2 will be equal to the time variation of M1 indicated in Equation (5.2) but 
with an opposite sign.  

Under limiting conditions, the base resistance is given by 

 2 2 tan bT N ′ ′= ϕ  (5.13) 

and taking Equation (5.4) into account, 

 ( )2
int 2 int

d
cos( / 2) tan ( ' tan )sin( / 2)

db r r

M v
N N c AB N

t
′ ′ ′ ′ ′ ′α − ϕ − + ϕ α =  (5.14) 

Equilibrium in normal direction to the horizontal sliding plane gives: 

 
( ) ( ) ( )

( )
2

2 2 int int

int

sin 2 tan cos 2

sin 2 0
y

r r

w wf w

W N N c AB N

P P P

′ ′ ′ ′ ′ ′− + α + + ϕ α +

α + − =
 (5.15) 

where 
ywfP is the vertical component of the water pressure force acting on the slope 

surface. Equation (5.15) provides an expression for 2N ′  which is then introduced in 
Equation (5.14). The following expression is then found for the equation of motion in 
the direction of sliding: 

 ( )2
int 5 6 int 7 2 2

d
' ( ) tan

dyr w w wf b

M v
N s c AB s P s P P W

t
′ ′ ′− − + − − ϕ =  (5.16) 

where si are trigonometric constants, given by: 

( ) ( ) ( ) ( )5 cos 2 tan sin 2 cos 2 tan tan sin 2 tanb r b rs ′ ′ ′ ′= α − ϕ α − α ϕ ϕ − α ϕ  (5.17a) 

 ( ) ( )6 tan cos 2 sin 2bs ′= ϕ α + α  (5.17b) 

 ( )7 tan sin 2bs ′= ϕ α  (5.17c) 

The effective interaction force between the two wedges is now found from Equation 
(5.16):  

 ( )2
int 6 int 7 2 2

5

d1 ' ( ) tan
dyr w w wf b

M v
N c AB s P s P P W

s t
⎛ ⎞⎛ ⎞

′ ′ ′= + + − − ϕ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (5.18) 
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A single motion equation may now be found if '
intN , given by (5.18), is replaced in 

the motion equation for the upper wedge (5.6). Rearranging terms, the following 
equation of motion is derived: 

 ( ) ( ) ( )1 2
1 1 2 2 2 3 int 4 1 5 5 2

d d
'

d dyw wf r w w

M v M v
W t W P P t c AB t P t P t s s

t t
′+ − + + − + = +  (5.19) 

where 

 1 1 5t s s=  (5.20a) 

 2 2tan bt s′= ϕ  (5.20b) 

 3 3 5 2 6t s s s s= −  (5.20c) 

 4 4 5 7 2t s s s s= +  (5.20d) 

 5 5tan bt s′= ϕ  (5.20e) 

5.4 STATIC EQUILIBRIUM AT FAILURE AND SAFETY FACTORS 

Under strict static equilibrium conditions, ( d 0
d
v
t

=  and masses of each wedge 

remain constant), Equation (5.19) provides the value of the apparent effective cohesion 
along the shearing plane AB in terms of the friction angle on AB, rϕ′ , the wedge 
weights, the pore pressure forces on their boundaries and the geometrical factors:  

 
( )1 1 2 2 2 int 4 1 5

3'
yw wf w w

r

W t W P P t P t P t
c

AB t

− − − + + −
′ =  (5.21) 

The resultants of water pressure forces entering the above equations are easily 
found as follows: 

 
2

2 tany

w w
wf

hP γ
=

δ
 (5.22a) 

 2 1 2( )w w wP L L s h= + + γ  (5.22b) 

 
2

1 2sin
w w

w
hP γ

=
α

 (5.22c) 

 
2

int 2cos( / 2)
w w

w
hP γ

=
α

 (5.22d) 

Initial (s = 0) wedge volumes, in view of Figures 5.10 and 5.11, are given by 
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 0 1
10 2cos

L HV =
α

 (5.23a) 

 1 2 3
20 12

L L LV H+ +
=  (5.23b) 

which allow the calculation of wedge weights. 

Cross-sections 2 and 5 (Fig. 5.6) are characterized by the geometrical parameters 
given in Table 5.1. The upper wedges of Sections 2 and 5 have a similar volume. 
However, the lower wedge of Section 2 has a significantly lower volume than Section 
5. Therefore, Section 5 is more stable than Section 2, for a common set of strength 
parameters. Conditions for static equilibrium of these two sections will be first 
examined with the help of the set of relationships derived in the previous section. 
Since it has been argued that the residual friction at the basal sliding surface is a 
parameter known with sufficient certainty, the condition of stability may be used only 
to determine the strength parameters on the shear plane AB. In fact, only 
combinations of the pair ( rc′ ; rϕ′ ) may be found since only one condition is available: 
the condition of static equilibrium at the initiation of failure (Eq. (5.21)). 

Table 5.1. Geometrical parameters of cross-sections 2 and 5 

 H0 
(m)

H1 
(m) 

L0 
(m)

L1 
(m)

L2 
(m)

α  
(º) 

δ  
(º) 

V1 
(m3/m) 

V2 
(m3/m)

Section 2 580 245 750 190 260 37.7 43.3 116142 68149 

Section 5 510 260 700 240 320 36 39.1 112590 93000 

 

This is a nonlinear equation relating rc′  and rϕ′ , which has been plotted in Figure 
5.12 for Sections 2 and 5, assuming , bϕ′  equal to 12º and a rock specific weight of 23.5 
kN/m3.  

Forces Pw (Eq. (5.22)), which provides the effect of water pressures on both 
wedges, should correspond to failure conditions. Both water pressure influences, those 
associated with the preceding rainfall (which was shown to have a non-negligible 
effect) and those induced by the reservoir water level, will be lumped into a water level 
height above the lower horizontal sliding surface, hw. Data given by Hendron and 
Patton (1985) provides the estimation of the equivalent value of hw, i.e.: the reservoir 
water level, in the absence of rain in the preceding 30-day period, which explains the 
failure. This height correspond to the elevation 710 m approximately and therefore, in 
Section 5 it implies a value hw = 120 m. This reservoir elevation corresponds, in Section 
2, to water height of hw = 90 m (the failure surface daylights at a higher elevation at 
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Section 2; see Fig. 5.4). The ( rc′ ; rϕ′ ) values plotted in Figure 5.12 correspond to these 
two water elevations over the lower horizontal sliding plane. 

Section 2 is “more demanding” in terms of required rock strength simply because 
of the relative weight of upper and lower wedges. This situation is reflected in the 
higher strength values required for equilibrium calculated for Section 2 (Fig. 5.12). It is 
interesting to check that the ( rc′ ; rϕ′ ) combinations in Figure 5.12 are in fairly good 
agreement with the strength expected in the rock sheared across bedding planes, 
discussed before. Since the variability of rϕ′  values is small compared with the 
expected variation of cohesive intercepts ( rc′ ), a band of expected ( rc′ ; rϕ′ ) pairs, 
centred around rϕ′ = 38º-40º has been plotted in Figure 5.12 as a reasonable estimation 
of the rock strength along the shear plane AB. 

 
Figure 5.12 Strength parameters across shearing plane AB for equilibrium. Sections 2 and 5. 

Basal friction: b′ϕ = 12º. 

If Section 5 is taken as a representative cross-section of the slide, the following 
combinations lead to strict equilibrium of Vaiont slide: ( rc′  = 768.35 kPa; rϕ′ = 38º); 
( rc′  = 561.3 kPa; rϕ′ = 40º). 

The model of two interacting wedges developed before includes two failure 
surfaces: the “basal” surface which bounds the landslide and an internal shear surface 
(AB) which makes it kinematically possible. The nature of both surfaces is quite 
different: the former is located in a high plasticity clay in residual conditions whereas 
the internal shear surface crosses sedimentary planes, distorts a competent rock and 
exhibits a significant strength (however, it is quite possible that shear displacements 
will decrease to some extent the shear strength of this shear plane). For a particular 
situation of the slide (for instance, under natural conditions before dam construction) 
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the two shearing surfaces will most probably not mobilize their shear strength in equal 
proportions. Likewise, if a change in external conditions takes place (reservoir 
impoundment, or rainfall) the available strength will not be mobilized at the same time 
among the two surfaces because the shear stiffness of the shearing surfaces and, 
indeed, of the whole rock mass will also play a significant role.  

Since the problem is complicated, let us accept, to initiate the discussion, that two 
different safety factors, Fb and Fr, are appropriate for the two surfaces. Then, the 
mobilized strength parameters will be defined as follows: 

 'tan tantan ; tan ;b r r
bmob rmob rmob

b r r

cc
F F F

′ ′ ′ϕ ϕ′ ′ϕ = ϕ = =  (5.24a,b,c) 

A relevant issue is to ask for the safety factor, Fr, of the Vaiont slide at the 
beginning of impoundment (i.e.: hw=0) in the hypothesis that the mobilized stress at 
the basal sliding surface remained at the residual value, bϕ′ =12º, (i.e.: Fb=1). It is also of 
interest to know how would Fr change, still under Fb=1, if the slide moves forward 
following the mechanism described in Figure 5.8.  

Alternatively, one may wish to maintain the classic approach and to find a unique 
and global safety factor, F, for the two situations mentioned, (F = Fb =Fr). The two 
possibilities will be examined here. 

The first problem is to decide which are the actual strength parameters on the 
shearing surfaces defined. If Section 5 is accepted as representative of sliding 
conditions, it was found that bϕ′  = 12º, rc′  = 768.35 kPa and rϕ′ = 38º are a reasonable 
approximation to the actual strength prevailing on shearing surfaces. For conditions 
other than those leading to failure (for instance no water pressure acting on the slide) 
the preceding equilibrium conditions are still valid provided the strength parameters 
are substituted by the mobilized values. Then, since the mobilized parameters are 
expressed in terms of the (true) strength parameters through the definition of safety 
factors (Eq. 5.24), the equilibrium equations derived before provide a relationship 
which should be satisfied by the safety factor(s). The equilibrium equation will now be 
a function of Fb and Fr and therefore only one safety factor may be determined - either 
F if it is accepted that F = Fb = Fr , or Fr if Fb is fixed, for instance at Fb =1, or any 
other alternative -.  

If the mobilized strength parameters (Eq. 5.24) are substituted into the equilibrium 
Equation 5.21, the following expression is obtained: 

( )1 1 2 2 2 int 4 1 5

3

( , ) ( , ) ( , ) ( , )

' ( , )
yr b w wf r b w r b w r br

r r b

W t F F W P P t F F P t F F P t F Fc
F AB t F F

− − − + + −′
=

 (5.25) 
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where the dependence of the ti and si expressions on the safety factors has been 
explicitly indicated. If Equation 5.25 is developed it turns out to be a second order 
algebraic equation for Fr, which may be solved, if Fb is assumed to be known.  

Safety factors Fr of Section 5 of Vaiont slide were obtained for: 

- Water pressure conditions prior to failure. As discussed before, pore water 
pressure effects are integrated into the variable  hw, the reservoir level over the 
lower horizontal sliding plane. 

- The changing geometry, as the slide moves forward and the water level 
maintains the maximum elevation, hw=120 m. This is a purely static analysis 
performed on different geometries of the slide as it moves forward. The 
dynamics of the motion will be introduced in the next section and it will be 
discussed in more detail in Chapter 6. 

The effect of hw on safety factor Fr, when Fb = 1, is plotted in Figure 5.13. The 
calculated value for hw=0 (Fr =1.2) is not particularly high and it indicates that the 
mobilized strength in the rock mass before any impounding was quite substantial in 
order to maintain the slope in equilibrium.  

 
Figure 5.13 Section 5. Evolution of safety factors, Fr (if Fb = 1; see text) and global safety 

factor, F, when water level increases in the reservoir. 

The analysis of the changing geometry, sketched in Figure 5.8, leads to the safety 
factors Fr plotted in Figure 5.14. The increase of Fr, again for Fb =1, becomes more 
pronounced as the slide displacement increases. The high values calculated for s =150 
m (Fr = 5), indicate that the mobilized resistance across the shear plane AB is no longer 
necessary to maintain equilibrium. In fact, beyond s = 179 m, the residual friction angle 
at the main sliding surface is able to maintain the slope in equilibrium without any 
contribution from the sheared rock mass across the shear plane AB. 
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Figure 5.14 Section 5; hw = 120 m. Evolution of safety factors, Fr (if Fb=1; see text) and global 

safety factor, F, with slide displacement. 

Let us consider now the determination of a unique global safety factor F. The 
condition F = Fb = Fr has to be introduced in Equation 5.25. The equilibrium 
Equation 5.25 now becomes a fourth order polynomial for the unknown F. Calculated 
global safety factors have been plotted also in Figures 5.13 and 5.14. Computed values 
of F are now significantly lower than the previously reported values of Fr.  

The global safety factors calculated for changing water levels within a very large 
range (0 to 120 m of water column) (Fig. 5.13) look particularly low (F decreases from 
F = 1.07 for hw = 0 m to F = 1 for hw = 120 m). This is a consequence of the very large 
size of the landslide but it also points out that the presence of the reservoir implied a 
relatively minor change in the safety of the slope, always within the perspective of risk 
associated with the classical definition of a global safety factor. Moreover, this result is 
also an indirect indication that in very large landslides, feasible remedial measures are 
expected to lead to relatively low increments of safety factor. 

Figure 5.14 shows that the motion of the slide results in geometries with increasing 
global safety factor. Given the preceding comments, changes are far from being 
negligible. In fact, displacements of 40, 100 and 150 m imply F values of 1.08, 1.22 and 
1.36 respectively.  

5.5 LANDSLIDE RUNOUT 
Equilibrium conditions, when inertia terms are included, result in the motion 

Equation (5.19). This equation has the following form: 

 
0

d ( ) ( )
d

tva f s f vdt
t

= = = ∫  (5.26) 
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At any given time of the motion, slide acceleration ( d
d
va
t

= ) is a function of slide 

displacement, s. Function f includes also information on geometry, specific weights, 
water pressures and strength parameters. Finding a closed form solution for v(t) is a 
hard task but the structure of Equation (5.26) allows to develop a simple explicit 
numerical algorithm of integration. In view of the nature of the problem and the 
simplicity of the underlying mechanical model it is probably not justified in this case to 
look for more sophisticated integration procedures. 

It was argued, when developing the model of two interacting wedges, that the 
effective rock cohesive intercept, rc′ , would be degraded during shear along the plane 
AB. Since relative shear displacements along AB are controlled by displacement s, a 
simple degradation model is to make rc′  dependent on s. For instance, 

 0 exp( )r rc c s′ ′= −Γ  (27) 

where Γ is a constant (units: length-1) which controls the rate of rock degradation and 
0rc′  is the initial cohesion intercept ( 0rc′ = 768.35 kPa for cross-section 5, if rϕ′  =38º, 

accepting bϕ′  =12º). Expression (5.27) was also included in the motion equation in 
order to explore the effect of loss of shear strength on the dynamics of the motion. It 
is not reasonable, however, to expect a strong degradation of cohesion along AB’ and 
the reason is that the rock mass “crosses” the plane AB’ during the motion and 
therefore new –more or less undisturbed- rock is continuously sheared across AB.  

Consider the following scenario: in a situation of strict equilibrium (reservoir 
elevation at hw = 120 m in cross-section 5) the water level is increased by a small 
amount (say hw = 121 m) and it is maintained constant thereafter. It is desired to find 
the motion of the slide until a new situation of equilibrium is reached. Since the slide 
improves its static stability conditions as s increases it should be expected that after 
some displacement, the slide will come to rest.  

The solution to this problem (which is the solution of Equation (5.19) plotted as a 
relationship between the run out (s) and the velocity on the moving mass (v) is shown 
in Figure 5.15 for no degradation of the rock strength (Γ = 0). The result shows that 
the slide stops after a displacement of 0.35 m and reaches a maximum velocity of 1.2 
cm/s. If the water level is increased to hw = 124 m and to hw = 130 m, maximum 
displacements and velocities increase as shown also in Figure 5.15 but the calculated 
values are very far from the actual behaviour of the landslide, which reached velocities 
estimated in 30 m/s, more than two orders of magnitude higher than the maximum 
values found in this calculation. 



Chapter 5   

 168 

 
Figure 5.15 Cross-section 5. Calculated run outs and slide velocities for hw = 121 m, 124 m and 

130 m. No rock strength degradation (Γ = 0). 

 
Figure 5.16 Assumed loss of effective cohesive strength parameter across shearing plane AB 

with slide displacement, for several values of parameter Γ. 

The situation changes if some rock strength degradation is introduced into the 
analysis. Figure 5.16 is a plot of Equation (5.27) for a few values of the degradation 
parameter Γ. It will be used as a reference for the results of run-out calculations. Now 
the scenario is to start the slide motion by increasing the water level (to hw = 121 m) 
and to accept a certain degradation of the rock during the motion. The calculated 
response of the slide, again in terms of velocity versus displacement, is shown in 
Figures 5.17 and 5.18. A moderate degradation of the effective strength parameter of 
the rock (Γ = 0.01, Fig. 5.17) has a limited effect on the maximum sliding velocity and 
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on the travelled distance. However, if the degradation of rock effective cohesion is 
more rapid (Γ = 0.1 and Γ = 1; Fig. 5.18), the slide is able to travel long distances (60-
80 m) although the maximum velocity does not increase beyond 3 m/s (10.8 km/h) 
even if a very rapid and complete destruction of the rock effective cohesion is imposed 
(for Γ = 1¸ see Fig. 5.18). Under the more realistic assumption of moderate rock 
degradation, Γ ≤ 1, the maximum slide velocity is quite small. In all the cases analyzed, 
the mechanism leading to stop the landslide motion is the change in geometry of the 
slide as it moves downwards.  

 
Figure 5.17 Cross-section 5. Calculated run outs and slide velocities for hw = 121 m. Effect of 

rock strength degradation (Γ = 0 and Γ = 0.01). 

 
Figure 5.18 Cross-section 5. Calculated run outs and slide velocities for hw = 121 m. Effect of 

rock strength degradation (Γ = 0.1 and Γ = 1). 

The dynamic analysis developed here maintains unanswered the key question of 
the extremely high velocities reached by the slide. However, it indicates that a loss of 
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internal rock strength, associated to the slide motion itself, is a potential mechanism to 
accelerate the slide. 

 
Figure 5.19 Variation of global safety factor with height of water above horizontal basal plane. 

Two-wedge model. Section 5 of Vaiont. 

5.6 DISCUSSION 
The investigations on the past history of the landslide by Semenza (2001), 

synthesized in Figure 5.5, and the work of Hendron and Patton (1987)  highlight two 
fundamental aspects: Vaiont was a case of a slide reactivation and the sliding surface 
was located in fairly continuous layers of high plasticity clay. Taken together, the 
implication is that the basal sliding surface could not offer, against a new reactivation 
of the slide (essentially induced by an increase in pore water pressures in the lower 
massive passive wedge of the slide), an effective friction angle larger than 10º-12º. A 
good proportion of published back-analyses of Vaiont, which use conventional 
methods of limit equilibrium in order to find the actual friction angle prevailing at the 
sliding surface at the time of failure, lead to an inconsistent situation. In fact, published 
back-analysis leads to friction angles in the range 18º-28º (Kenney, 1967; Hendron and 
Patton, 1985). Vaiont exhibits a safety factor significantly lower than one if a friction 
angle of 10º-12º (and zero effective cohesion) is used in any of the currently available 
methods of slices.  

In order to address this inconsistency, Hendron and Patton (1987) argue that the 
side friction on the Eastern edge of the slide provided the necessary resisting force to 
ensure equilibrium (however, some limited information on the direction of 
displacements on this border -plotted in Figure 5.1-, tends to indicate that the moving 
mass was detaching from the stable rock massif). The alternative explanation 
developed here is that the kinematics of the motion, even in a two-dimensional cross-
section, requires the relative shearing between the two large rock wedges defining the 
slide. Leonards (1987) also pointed out that the motion of the slide required such a 
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rock shearing between the upper and the lower sliding blocks. The estimated shearing 
strength parameters across the common plane are in a reasonable accordance with the 
expected mass strength of cretaceous marls and limestones of Vaiont. 

The acceleration of the motion during the catastrophic failure escapes the 
capabilities of the models presented here. A loss of strength is expected when rock 
masses are sheared, due to its inherent brittleness and the complex development of 
strains within the moving mass. The end result is a loss of the cohesive components of 
strength. Such a loss, when imposed on the strength available on the interacting 
shearing plane between the upper and lower wedges, results in an acceleration of the 
slide, which is, however, unable to explain the high velocities reached by the landslide, 
even if a rapid and complete loss of rock cohesion is imposed. If the mechanism of 
side friction proposed by Hendron and Patton (1985) is accepted as additional resisting 
phenomena, the need for a convincing mechanism for strength loss is even more 
pronounced.  

5.7 CONCLUSIONS 
Some fundamentals aspects of Vaiont slide are invoked to propose a consistent, 

yet simple, kinematic model for the slide. They are: 

- The basal sliding surface was most probably in residual conditions. This is 
explained by the known geologic history of the left bank of Vaiont River. 
Vaiont was a case of reactivation of an ancient slide which experienced several 
large scale motions in the past. 

-  Residual shear tests on Mälm clays found on the sliding surface indicate that 
the basal operative friction angle was close to 12º. 

- The geometry of the cross-section of the slide requires that during the sliding 
motion shearing of rock strata normal to bedding planes take place. The 
strength of this rock mass has been estimated on the basis of available 
descriptions. Other field data, namely the recorded seismic events, support also 
a progressive shearing of rock strata in the years previous to the slide.  

- The rock overlying the failure surface was essentially pervious. Water pressures 
were essentially controlled by reservoir elevation although there are evidences 
which suggest also a contribution of the previous rainfall regime.  

A simple evolutive two-wedge model was developed to accommodate these 
observations. Mass is being transferred from an upper unstable wedge to a lower stable 
one during the motion. A common shearing plane bounds the two wedges.  

Dynamic equilibrium equations are formulated. They incorporate the conditions of 
mass conservation. Internal shearing is approximated by a Mohr-Coulomb failure 
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criterion. The partial motion equations combine into a unique motion equation for the 
entire landslide which can be integrated. 

In a first series of analyses, static conditions were investigated. Safety factors have 
been defined and found for conditions of the slide previous to reservoir water 
elevation. A low global safety factor (equal to 1.07) was calculated for an empty 
reservoir. It was also found, as expected, that the increasing slide displacement, once 
the motion was started, leads to an increase in safety factor (the weight transfer from 
the upper to the lower wedge explains this result).  

In an attempt to explain the increasing velocity of the slide, the possibility of 
internal rock strength degradation was introduced. Under this scenario the strength of 
the internal shearing plane is made dependent on the slide displacement. Only 
cohesion intercepts are degraded. It was found that if no degradation of the rock 
strength is considered, an initial unbalance of forces (say by increasing in one meter the 
reservoir elevation over the situation for strict equilibrium) leads to small 
displacements (30 cm) and very small maximum velocities (1.2 cm/s) before reaching a 
new equilibrium state. These figures change as degradation is assumed to increase. 
However, a full loss of cohesive strength of the rock leads to maximum velocities not 
exceeding 3 m/s (against the estimated value of 30 m/s). Full degradation of strength 
is very unlikely, however, because the internal shearing, as the slide displaces, is 
affecting “new” rock masses in their downhill motion. It is concluded that the internal 
rock strength degradation is a contributing factor to the acceleration of the slide but it 
fails to explain the high velocity reached by the slide. This is the subject of the 
companion paper in which thermal effects are introduced without changing the 
kinematical description of the motion. 

 



CHAPTER 6 

Thermo-Hydro-Mechanical and Dynamic 

Analysis of Vaiont Landslide  

Thermally induced excess pore pressures developed in Chapter 3 have been 
included into the two wedge evolutive model of Vaiont landslide presented in Chapter 
5. The problem requires the solution of a system of four coupled balance equations for 
the shear bands and the surrounding rock as well as the joint equation of motion of the 
entire slide. The model predicts the high velocity observed and is consistent with other 
data (slide geometry, residual strength, conditions on the sliding surface). The 
interpretation of a sensitivity and scale analysis suggests that there exists a threshold 
permeability band, in the range 10-8 to 10-10 m/s, which separates potentially fast 
motions from slow motions (a result also attained in planar landslide analysis presented 
in Chapter 4).  

6.1 INTRODUCTION 
In Chapter 5, an attempt was made to determine the run-out of Vaiont landslide 

taking, as a reference model, an evolutive two-wedge representation of cross Section 5 
(Fig. 5.7). Starting at a condition of near equilibrium at t = 0, it was assumed that the 
strength of the plane separating the two wedges could degrade as shearing 
displacements developed along this plane during the motion. It was found that, even in 
the extreme case of a fast and complete loss of cohesion acting on this plane (an 
unlikely event), the slide maximum velocity did not exceed 3 m/s. In order to explain 
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the estimated high velocities of the slide (30 m/s), a consistent mechanism or physical 
process, leading to a total loss of basal shear strength, has to be found. 

The favourite explanation of a number of published contributions on the subject is 
associated with the development of frictional heat at the sliding surface developed in 
Chapter 3.  

6.2 DYNAMICS OF VAIONT SLIDING GEOMETRY 
The analysis of the infinite slide presented in Chapter 4 is useful to understand the 

thermo-hydraulic process that takes place in a shear band and its effect of the overall 
slide motion. However, the geometry of the Vaiont slide introduces significant changes 
which will be presented here. The slide is now divided in two wedges (1 and 2), 
following the analysis presented in Chapter 5. 

 
(a) 

 
(b) 

Figure 6.1 Cross-section 5 of Vaiont: (a) Initial geometry (b) Geometry after a displacement s.  
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The analysis follows the calculation procedure developed in Chapter 3: mass and 
energy balance have to be written for the shear bands limiting the two wedges and the 
overall dynamic equilibrium of the two wedges has to be satisfied. 

Consider in Figure 6.1 the geometry of Vaiont (also used in Chapter 5) The lower 
wedge (Wedge 2), resting on a horizontal plane, supports (passively) the unstable upper 
wedge (Wedge 1) which slides on an inclined plane.  

 

 
   (a)      (b) 

Figure 6.2 Geometry and forces on wedges: (a) Wedge 1; (b) Wedge 2. 

6.2.1 Balance equations 
Mass and energy balance of the lower shear band and equilibrium conditions for 

the entire moving mass will be written separately for each wedge. Forcing the slide to 
move as a single unit, the governing equations of the movement of the landslide will be 
obtained. 

The effective interaction forces across the common plane (AB’; see Figs. 6.1 and 
6.2) between the two wedges have two components, N ′  and Qint, normal and 
tangential to the plane. Forces due to hydrostatic pore water pressures 

1wP , 
2wP ,  intwP  

and wfP  will be controlled by the reservoir water level which will be assumed to be 
constant during the landslide. 

Since the shear resistant forces of each wedge (T1 and T2) are different (although a 
unique frictional angle is accepted, normal resultant forces on the basal planes, 1N ′  and 

2N ′ , need not to be equal), the work input into the bounding shear bands of the two 
wedges will be different. Therefore, two different values for the shear band 
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temperature (θ1 and θ2) and for the excess pore water pressures ( 1wu  and 2wu ) will be 
developed in the two wedges. Specific balance equations should be written for each 
one of the two wedges. To avoid confusions, each part of the shear band will be 
denoted by Shear Band 1 or 2 according to the wedge involved. The same thickness 
and material properties will be assumed for the two bands.  

Consider first the one-dimensional balance equations already developed for a 
planar band and its vicinity. They will now be directly applied to Wedge 1. The z1-
direction corresponds to the normal direction of the Shear Band 1. The generated heat 
(H1) in the Shear Band 1 is expressed as 

 ( ) ( ) ( )max
1 1 2f

v t
H t t

e
= τ  for [ ]1 ,z e e∈ −  (6.1) 

The frictional strength (τf1) will be derived from equilibrium conditions as done 
previously for the infinite slide.  

Neglecting conduction and diffusion of heat, heat balance in the Shear Band 1 
reads 

 ( ) ( )1
1 m

t
H t c

t
∂θ

= ρ
∂

 for [ ]1 ,z e e∈ −   (6.2) 

Following the procedure developed in Chapter 3, mass balances inside and outside 
of the Shear Band 1 are, (see Eqs. 3.29 and 3.30) 

 
( ) ( ) [ ] ( ) ( )

( ) [ ]

1 1 1 1

2
1 1

12
1

,
1

,
for ,

w v
s w v w v

m

w

w

H t u z t t
n n m n m

c t t

u z tk z e e
z

∂ ∂σ
⎡ ⎤− − β +β + + α − =⎣ ⎦ ρ ∂ ∂

∂
= ∈ −
γ ∂

 (6.3a) 

 

( ) ( )

( ) ]( )

1 1 1

2
1 1

12
1

,

,
for , ,

w v
vr r w v

wr

w

u z t t
m n m

t t
u z tk z e e

z

∂ ∂σ
⎡ ⎤+ α − =⎣ ⎦ ∂ ∂

∂
⎡= ∈ −∞ − ∪ ∞⎣γ ∂

 (6.3b) 

No deformation associated with temperature changes are considered for the over-
consolidated clayey layer where the slide surface were located ( 0=β pm ). In fact no data 
about the thermal drained behaviour of this material is available. However, in view of 
the hard nature of this Cretacic layer, heat effects on the soil skeleton are expected to 
be small.  

Regarding Wedge 2, the generated heat can be expressed as 

 ( ) ( ) ( )max
2 2 2f

v t
H t t

e
= τ  for [ ]2 ,z e e∈ −  (6.4) 
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valid in the normal direction ( 2z ) to the Shear Band 2. The heat balance will be given 
by 

 ( ) ( )2
2 m

t
H t c

t
∂θ

= ρ
∂

 for [ ]2 ,z e e∈ −   (6.5) 

Likewise, mass balance inside and outside of the Shear Band 2 is written as 
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These expressions complete the balance equations for the two shear bands. 

6.2.2 Dynamic equilibrium of the two wedges 
Dynamic equilibrium equations were derived in Chapter 5. They will be written for 

each wedge. For directions parallel and normal to the basal sliding plane  the equations 
for Wedge 1 are (see Fig. 6.2): 

( ) ( ) ( ) ( ) ( )
( ) ( )( )1 max

1 1 int int int

d
sin cos sin cos

2 2 2 dw

M t v t
W t T t N t Q t P

t
⎛ ⎞ ⎛ ⎞ ⎛ ⎞′− − − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
α α αα

  (6.7a) 
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The right-hand term of Equation (6.7a) can be developed as: 

 
( ) ( )( ) ( ) ( ) ( ) ( )1 max max 1

1 max

d d d
d d d

M t v t v t M t
M t v t

t t t
= +  (6.8) 

and the time variation of mass of the wedge can be expressed as a function of the time 
variation of the displacement ( ts dd ), which is equal to the velocity (v): 

 Wedge 1 01 1

0

d dcos
d d cos dr r

V LM H ss
t t L t

⎛ ⎞= δ = −δ − α⎜ ⎟α⎝ ⎠
 (6.9) 
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The shear resistance force on the base of the Wedge 1 (T1) is expressed, following 
Mohr−Coulomb strength criterion, as: 

 ( ) ( )1 1 tan bT t N t′ ′= ϕ  (6.10) 

The mobilized shear force on the common plane between wedges is given by:  

 ( ) ( ) ( )'
int int tanr rQ t c h t N t′ ′= + ϕ  (6.11) 

where b′ϕ  is the effective residual friction angle of the sliding surface, rc′  is the effective 
cohesion of the rock, and r′ϕ  the effective friction angle of the rock. The values of 
these strength parameters are indicated in Table 1. These values have been justified in 
Chapter 5.  

Table 6.1 Strength parameters of the sliding rock mass. 

Parameter Symbol Value Unit 

Cohesion rc′  762.24 MPa 

Friction angle '
rϕ  38 º 

 

The water pressure force due to the presence of a water table of height wh  acting 
against Wedge 1 is:  

 
2

1 2sin
w w

w
hP γ

=
α

  (6.12) 

The water pressure force acting against the right boundary of Wedge 1 (Fig. 6.2b) 
is calculated as: 

 
2
w w

int 2cosw
hP γ

=
α

 (6.13) 

and the value of 2wP  is given by:  

 ( ) ( )2 2w w wP t L t h= γ  (6.14) 

Dynamic equilibrium expressions for Wedge 2 (parallel and normal to the slide 
direction, respectively) are 

 ( ) ( ) ( ) ( ) ( )( )2 max
int int 2

d
cos sin

2 2 d
M t v t

N t Q t T t
t

⎛ ⎞ ⎛ ⎞′ − − =⎜ ⎟ ⎜ ⎟
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α α  (6.15a) 
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  (6.15b) 

The shear resistance on the base of Wedge 2 (T2) is given by 

 ( ) ( )2 2 tan bT t N t′ ′= ϕ  (6.16) 

Note that these equations depend on the displacement, s, travelled by the wedges. 

If Equations (6.7) to (6.16) are properly combined, a single motion equation for 
the total slide mass is obtained as follows: 
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 (6.17) 

where the ti coefficients depend on the section geometry and on the cohesive and 
frictional parameters of the materials involved as indicated in the Appendix 6.2. 

The shear strength acting on the basal sliding surface of the two wedges is found 
as the ratio of the total resistance forces T1 or T2 and the current base lengths L1 or L2. 
They are given by: 
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 (6.18b) 

where coefficients “r” and “s” are function of geometry and of wedge masses. They are 
collected in Appendix 6.2. 

Summarizing the preceding results, the system of equations to be solved includes 
the balance equations for the two shear bands (2+2 equations) and the equation for the 
dynamic equilibrium of the entire landslide (one equation):  
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 (6.19e) 

where the heat generation rates H1 and H2 are given by Equations (6.1) and (6.4) and 
shear stresses 1 1 1f T Lτ =  and 2 2 2f T Lτ = , by Equations (6.18). 

To solve these equations it is also necessary to define the appropriate initial and 
boundary conditions. A natural initial condition for the dynamic problem is a situation 
in which static equilibrium has been slightly exceeded. It would imply the initiation of 
motion. In such a situation, the initial excess pore pressure and slide velocity would be 
zero and no heat would be generated. Therefore, 

 ( ) ( )1 0 2 0, , 0w wu z t u z t= =  (6.20a) 

 ( )0, 0v z t =  (6.20b) 

 ( ) ( )1 0 2 0 0t tθ = θ = θ  (6.20c) 

where θ0 is the reference initial temperature at the beginning of the slide motion. 

It was mentioned before that frictional heat is generated at a constant rate within 
the shear band, between z = −e and z = e. No heat is generated, at any time, outside of 
the shear band. Therefore, the heat generated excess pore pressure is constant in the 
shear band and zero in the remaining of the domain. However, the unbalance of water 
pressures between points inside and outside of the shear band induces its dissipation. It 



  Chapter 6 

 181

will be also accepted that the soil outside the two boundaries of the shear band is 
described by a common set of material properties. Since the gradient of hydrostatic 
pressure may be neglected in the band, given its small thickness, it follows that the axis 
z = 0, in the middle of shear band (Fig. 3.19), is a symmetry axis.  

Therefore, the solution of the problem will be sought for z ≥ 0 and symmetry 
conditions will be forced at z = 0. This condition implies a zero flow through z = 0.  
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At the other boundary, z = e, continuity of excess pore pressure and flow rate has 
to be satisfied on both sides of the shear band-rock interface: 
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Changes in water pressure outside the band will extend to relatively small distances 
because the volume of water expelled by the band is very small. Small changes in 
porosity within a limited distance outside the band will be able to absorb the transient 
flow of water. Therefore, no effect on the calculated pore pressures outside the band 
will be noticed if a zero excess pore water pressure is specified at an infinite distance: 
 

1
1 0.w zu

=∞
=  (6.23a) 

 
2

2 0.w zu
=∞

=  (6.23b) 

The problem, summarized in Equations (6.19) to (6.23), was solved by means of a 
finite difference approximation following the methodology shown in Appendix 4.1 for 
the case of planar landslide. Numerical procedure has been programmed in a Fortran 
code included  in Appendix 6.1. 

6.3 COMPUTED RESULTS 
The system of Equations (6.19) was solved and integrated by finite differences. 

Once in a situation of strict equilibrium the slide was made unstable by rising 10 cm 
the water level in the reservoir. Figures 6.3 and 6.4 presents some results. Calculation 
ended when the slide reached a displacement of 400 m which is approximately the 
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length travelled by Vaiont landslide. The physical explanation of phenomena taking 
place in the shear band and the response of the slide can be summarized as follows. As 
soon as a wedge is unstable the dynamic equilibrium allows the calculation of some 
sliding velocity. This velocity and the current shear stress at the shear band provides 
some heat input which is introduced into the combined thermo-hydro-mechanical 
balance equation of the shear band and its vicinity. The set of partial differential 
equations is solved and a new pore pressure in the shear band is calculated. In the 
calculations made, the pore pressure on the band axis (which is a maximum) is used to 
modify again the equilibrium conditions and to calculate a new sliding velocity. 
Velocity and mobilized strength in the band provide a new work input (heat) and the 
calculation resumes.  

Results for a “base case” are presented first. The constitutive parameters used in 
this case are given in Table 6.2. This set of parameters approximates the case of 
Vaiont. Note that most of the parameters are physical constants. 

No precise laboratory information on the permeability of the clay sliding surface 
seems to be available. Hendron and Patton (1985) use the value k = 1.6⋅10-10 m/s in 
their analysis. Vardoulakis (2002) uses k = 1.1⋅10-11 m/s. The high plasticity values 
consistently measured and the presence of montmorillonite probably favors a low clay 
permeability. A value k = 1.0⋅10-11 m/s was selected here as a base case. Shear band 
permeability is one of the key parameters of the model. It is subjected to high 
uncertainty. A sensitivity analysis, discussed later, was performed to analyze the effect 
of changing clay permeability. An estimated oedometric coefficient of compressibility 
equal to 5·10-10 1/Pa has been used. Band thickness, an important parameter, was 
unknown. However, this point will be discussed at length later.  

Calculated isochrones of excess pore water pressure in the shear band below 
Wedges 1 and 2 are given in Figure 6.3 for the first 10 seconds of motion, when the 
slide velocity was 4 m/s. The average excess pore water pressure reached, at t = 10 s, 
maximum values of 1.6 MPa and 4.8 MPa under Wedges 1 and 2 respectively. Note 
that the unloading associated with the loss of weight of Wedge 1 results in a small pore 
pressure reduction outside the shear band. This has no effect on the motion, which is 
controlled by the maximum pore pressures on the center of the band. At t = 10 s the 
available shear strength in the center of the shear band was already very small and the 
heat generated (and the associated pore pressure build-up) decreased sharply. As a 
result, the pore pressure dissipation towards the surrounding soil dominated the 
following time steps. This explanation can be followed in more detail in Figure 6.4 
where global performance variables for the entire slope have been plotted against time 
for Wedge 1. The slide reaches a displacement of 200 m 30 s after the initiation of the 
motion (Fig. 6.4f). At this time the velocity is 23 m/s (close to 83 km/h). These are 
values consistent with field observations.  
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Figure 6.3 Dynamic analysis of Section 5 of Vaiont. Base case (shear band permeability, k = 
1·10-11 m/s). Excess pore water pressure isochrones in the shear band and adjacent soil. Shear 
band extends from z = 0.0025 m to z = -0.0025 m: (a) Under Wedge 1; (b) Under Wedge 2. 

Further insight is provided by the evolution of temperature, the drop in strength 
and the work (or heat) input into the shear band. The maximum temperature 
calculated in this case is slightly higher than 100ºC. The drop of shear strength is rapid 
from t = 7 s to t = 12 s. The work performed increases fast during this period due to 
the rapid increase in velocity but it later decays because of the very low value of shear 
strength. The entire behaviour of the band and, hence, of the landslide, depends in a 
fully coupled manner on the mass and heat transfer phenomena in the thin shear band 
and its immediate vicinity.  
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Figura 6.4 Dynamic analysis of Section 5 of Vaiont. Base case (shear band permeability, k = 
1·10-11 m/s). Wedge 1. Evolution in time of: (a) Velocity; (b) Excess pore water pressure in the 
middle of the band; (c) Temperature; (d) Shear strength of shear band; (e) Heat generated in 

the band; (f) Slide displacement. 

Changing the permeability of the shear band leads to significant changes in 
behaviour. It can be checked that a more impervious band leads to minor changes, 
when compared with the base case (Fig. 6.5 for k = 10-12 m/s). When it is made more 
pervious pore water pressure dissipation becomes more significant and the effective 
normal stress (and the shear strength) maintains higher values. The slide also 
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accelerates fast and the high velocities coupled with relatively higher shear strengths 
lead to larger heat inputs into the band and to higher temperatures. These effects can 
be followed in Figure 6.5, where the case for k = 10-10 m/s has been represented. 

Table 6.2 Dynamic analysis of Vaiont Parameters for the “Base case”. 

Parameter Symbol Value Unit 

Water 

Density wρ  1000 kg/m3 

Coefficient of compressibility wα  5·10-10 1/Pa 

Thermal expansion coefficient wβ  3.42·10-4 1/ºC 

Specific heat wc  
4.186·103 

1.0 
J/kg·ºC 

cal/ kg·ºC

Solid particles 

Density sρ  2700 kg/m3 

Thermal expansion coefficient sβ  3·10-5 1/ºC 

Specific heat sc  
8.372·102 

0.20 
J/kg·ºC 

cal/ kg·ºC

Shear band material 

Porosity n  0.2 - 

Permeability k  1·10-11 m/s 

Compressibility coefficient vm  1.5·10-9 1/Pa 

Friction angle (residual) ′ϕ  12 º 

Sliding mass material 

Density rρ  2350 kg/m3 

 

The discussion is necessarily more complex because shear band permeability is 
only one of the parameters controlling the development of pore pressures. Relevant 
parameters are also the band thickness and its stiffness. To some extent, permeability 
and band thickness provide the same information: both are related to the grain size 
distribution. Narrow or, alternatively, thick shear bands are expected in impervious or 
pervious materials, respectively. Stiffness is a different type of property and rock-like 
or soil-like materials may be found for the same mineralogy and grain size distribution. 
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An analysis of the combined effect of permeability and stiffness has been made and 
will be discussed immediately. But, before, we will examine a very important practical 
issue, namely, the effect of changing the size of the slide on its dynamic behaviour 
because Vaiont was an extreme case. Landslides are commonly of a much lower 
volume.  

 

Figure 6.5 Dynamic analysis of Section 5 of Vaiont. Shear band permeability, k = 10-10 m/s and 
k = 10-12 m/s. Wedge 1. Evolution in time of: (a) Velocity; (b) Excess pore water pressure in 

the middle of the band; (c) Temperature; (d) Shear strength of shear band; (e) Heat generated 
in the band; (f) Slide displacement. 
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6.4 SCALE EFFECTS 
Vaiont was a very large landslide (a mobilized volume close to 300 million m3 was 

estimated). A slide 100 times smaller is still a very large landslide. For instance, the 5 
million m3 Cortes landslide, described in Alonso et al. (1995) and analysed in Chapter 4, 
posed a significant threat to the 100 m high Cortes concrete arch dam. Its overall 
dimensions (length, height) were roughly 1/10 of Vaiont dimensions. Moreover, many 
dangerous rock and soil slides described in the literature are one order of magnitude 
smaller than Cortes slide. Vaiont was an extreme case, of very rare occurrence, on a 
world basis. Therefore, a relevant question is: Is the velocity reached by Vaiont also a 
common occurrence or, at least, a real possibility in smaller and much more frequent 
landslides? 

A comprehensive answer to this question would require a lengthy analysis of the 
dynamic behaviour of different types of landslides. But a simple answer can be given if 
the main characteristics of Vaiont (a displacement type of motion involving a mass of 
rigid rock, sliding on a clay layer) are maintained and the geometrical dimensions are 
reduced without any further change in material properties or geometrical arrangement. 
In fact, if all the dimensions of Vaiont are reduced by a factor of 10, a landslide very 
similar to Cortes slide is obtained. If this slide becomes (slightly) unstable, how would 
it evolve if heat-induced water pressure develops at the sliding surface? 

A new case has been run, modifying the scale of the Vaiont landslide. The new 
geometry is defined by reducing the dimensions (lengths and heights) of Wedges 1 and 
2 (Fig. 6.1a) by a factor of 10. The water level was located at the same relative position 
and the cohesion of the central shearing plane was reduced to bring the slope to the 
state of strict equilibrium. The remaining properties are also given in Table 6.2. The 
motion was triggered by a slight increase (1 cm) of the water level in the lower wedge.  

The calculated response of this slide is shown in Figure 6.6 for a base case (k = 
1·10-11 m/s). Calculations were run in time until the slide reached a displacement of 50 
m. The calculated heat input into the shear band and the maximum excess pore 
pressures are now one order of magnitude smaller than in the previous case. As a 
result, the temperature increase of the band is very moderate (4ºC). The shear strength, 
however, is lost after a few seconds and the slide is able to reach a significant velocity. 
A maximum value of 8.5 m/s is obtained at the end of the calculation period. The 
implication is that this reduced slide may be also dangerous, if the circumstances of the 
analysis are fulfilled in practice.  
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Figure 6.6 Reduced Vaiont landslide (dimensions x (1/10); volumes x (1/100)). Slide response 
for a base case (shear band permeability, k = 1·10-11 m/s). Wedge 1. Evolution in time of: (a) 

Velocity; (b) Excess pore water pressure in the middle of the band; (c) Temperature; (d) Shear 
strength of shear band; (e) Heat generated in the band; (f) Slide displacement. 
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(a) (b) 

(c) (d) 

 

(e)  

Figure 6.8. Reduced Vaiont landslide (dimensions x (1/10); volumes x (1/100)). Wedge 1. (a) 
Effect of the permeability on the landslide velocity; (b) detail for high band permeability; (c) 
excess pore water pressure in the middle of the band; (d) temperature in the band; (e) slide 

displacement. 
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Band permeability seems to be a key parameter to control the response of the 
slide. This is shown in detail in Figure 6.7. Band values of permeability of 10-9 m/s and 
larger do not trigger any heat-induced effect. This threshold is obviously associated 
with the band thickness used in calculations (5 mm), but a more comprehensive 
analysis is given below. Since the two-wedge mechanism analyzed has a self-
equilibrating mechanism, the small initial triggering effect (increasing water pressure in 
the shear band by 10 cm) is “absorbed” by the changing geometry and the slide comes 
to rest after some small displacement. If the permeability decreases below this 
threshold the coupled thermo-hydro-mechanical processes taking place in the band 
result in a progressive accumulation of pore pressures and in an accelerated slide 
motion. The critical permeability is the same, irrespective of the size of the slide. 
Temperature increase in the band, when the slide accelerates (k < 10-9 m/s) is now 
quite moderate in most cases. However, for the reasons already explained, there exists 
some specific k values (in the vicinity of k = 10-10 m/s) which result in a strong 
dissipation of energy at the band and, accordingly, in a significant temperature increase 
(37ºC are obtained -Figure 6.7d- at the end of the calculation interval). 

Summarizing, smaller slides, similar in shape to the Vaiont case, may also reach 
significant velocities. It appears that band permeability is a key parameter controlling 
slide acceleration. Below a certain threshold value (around k =10-9 m/s for the 
geometry and parameters selected for the case analyzed) the slide may reach a high 
velocity. It appears that this threshold k value of the sliding band is independent of the 
size of the slide. However, when the size of the slide decreases, the generated band 
excess pore pressures and temperatures reduce. In fact, it appears that for slides having 
the size of a “reduced Vaiont” by a factor of 10 in the scale of dimensions, maximum 
temperature increments in the shear band will be no more than a few degrees. It turns 
out that the generated temperature depends also on the thickness of the shear band. 
Before general conclusions are reached in this regard, it is convenient to perform a 
sensitivity analysis of the calculated solution when the thickness, permeability and 
stiffness of the band are varied between acceptable limits. 

6.5 DISCUSSION 
A better insight into the physics of the problem is gained if a sensitivity analysis of 

the main controlling factors is performed. Consider first the issue of the combined 
effect of band permeability and band thickness. In view of previous results, 
permeability values in the range 10-13 to 10-9 m/s and band thickness varying between 
0.5 mm and 50 mm have been selected. Two confined stiffness moduli were selected, 
having in mind that in most cases the shearing surfaces in landslides are located in soft 
clayey rocks: mv = 10-9 Pa-1 (a relatively stiff clayey rock) and mv = 10-8 Pa-1 (a relatively 
soft clayey rock). Then, for each combination (k, 2e, mv) the movement of the slide 
with scaled geometry of Vaiont has been calculated. The calculated maximum 
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velocities and band temperatures, for a maximum run out of 50 m, are given in Figures 
6.8 and 6.9. 

 Consider first the case of a stiff shearing band (mv = 10-9 Pa-1) in Figure 6.8. The 
calculated velocities for varying band thickness remain in a narrow band. Velocities 
reach high values (8 – 9 m/s) when the permeability is low (10−12 to 10−10 m/s). For 
relatively large values of permeability (higher than 10-8 m/s) the velocity of the slide 
drops to zero. In these cases the initially unstable situation is soon counter-acted by the 
self-stabilizing mechanism of the slide (weight transfer from the upper to the lower 
wedge). 

The transition from the “rapid regime” to the “slow” or self-stabilizing situation 
occurs for values of permeability in the range 10−9 to 10−8 m/s. 

 

 

Figure 6.8  Reduced Vaiont landslide (dimensions x (1/10); volumes x (1/100)). Stiff shearing 
band, mv =  10-9 Pa-1. Effect of shear band permeability and thickness on (a) landslide velocity; 
(b) temperature for Wedge 1; (c) temperature for Wedge 1, detail; (d) temperature for Wedge 

2; (e) temperature for Wedge 2, detail.  
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Figure 6.9 Reduced Vaiont landslide (dimensions x (1/10); volumes x (1/100)). mv = 10-8 Pa-1. 
Effect of shear band permeability and thickness on (a) landslide velocity; (b) temperature for 
Wedge 1; (c) temperature for Wedge 1, detail; (d) temperature for Wedge 2; (e) temperature 

for Wedge 2, detail.  

Calculated temperatures for varying band permeability and band thickness are 
represented in Figure 6.8b,c for Wedge 1 and in Figure 6.8d,e for Wedge 2 (stiff band 
material in both cases). The normal effective stress in Wedge 1 against the sliding plane 
is significantly smaller than the value calculated for Wedge 2. Resisting shear stresses 
react in the same manner and the work input for Wedge 1 is smaller if compared with 
Wedge 2. The consequence is that temperatures in Wedge 1 remain at moderate values 
in the “fast” and “slow” ranges of values of permeability. Temperature increases in the 
intermediate “regime” leads to a significant mechanical work input into the band 
because the combination of non-negligible shear strength and a substantial sliding 
velocity.  

Band thickness controls the temperature development. A maximum temperature of 
259 ºC for Wedge 1 is calculated for k = 10−9 m/s and 2e = 0.5 mm. Temperatures are 
higher in Wedge 2 for the reason given before and they reach a peak value close to 800 
ºC for k = 10−9 m/s and 2e = 0.5 mm. These high temperatures would require a more 
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precise formulation of the constitutive model of the band material and, possibly, the 
presence of additional physical phenomena (water vaporization) which are outside the 
limits of this work. But in most cases in practice the maximum temperature calculated 
is moderate and the analysis developed should represent reasonably well the relevant 
physical phenomena. 

Similar qualitative results were obtained for the softer band material (mv = 10-8 Pa-1) 
(Fig. 6.9). In order to explain the results, consider the balance equation for solid and 
water mass (Eq. 6.19), written now in the following form where the rate of pore 
pressure change has been isolated: 

 
[ ] [ ]

( )
[ ]

2
max

2

1
2

s w fw w v n

w v w v w v w m

n n vu u mk
t m n z m n t m n e c

⎡ ⎤− β +β τ∂ ∂ ∂σ ⎣ ⎦= + +
∂ γ + α ∂ + α ∂ + α ρ

 (6.20) 

Use has been made also of Equations (6.1) and (6.2) which provide the relationship 
between temperature and rate of work input into the band. Three phenomena 
contribute to change pore water pressures in the band: the dissipation due to flow of 
water (first term), the variation of total normal external stress (second term), and the 
generation of pore pressures due to water and solid dilation, controlled by heat (or rate 
of work input) (third term). The three terms are affected by the compressibility 
coefficient of the band material, mv (in the denominator). In particular, the rate of heat-
induced generation of pore pressures is reduced when the compressibility of the 
material increases. A softer rock pore accommodates better an increase in water 
dilation, and leads to a lower pore pressure. The remaining terms in Equation 35 are 
also controlled by mv (an increase in mv also results in a decrease in the dissipation rate 
of pressures) and it is difficult to predict the final result in a particular case without 
actually performing the calculations. If the heat-associated term dominates, excess pore 
pressures, other conditions maintained, will decrease when mv increases – softer 
material – and the normal effective force on the sliding surface will increase. This 
implies, in general terms, a higher resistance to sliding and a reduced velocity.  

The plots in Figure 6.8a and 6.9a show the final velocities when the slide has 
displaced 50 m. It indicates that the increase in mv leads to a systematic reduction in 
calculated velocities for any value of permeability. A consequence of this reduction is 
that the transition permeability between the fast and slow regimes now ranges between 
10−10 and 10−9 m/s. Another obvious consequence is that the time to reach a given 
displacement should increase when mv increases. 

Consider finally the effect of mv in the development of temperatures in the shear 
band (compare plots in Figs. 6.8b,c,d, and Figs. 6.9b,c,d). The plotted temperatures 
correspond to the end of the calculation period, when the slide in all cases has reached 
a displacement of 50 m. Therefore, the plot provides an accumulated quantity which is 
proportional (in the absence of any dissipation by conduction and advection, given the 
fast phenomena analyzed) to the total work input during the sliding time. 
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In the “fast” regime (low permeability) the pore pressure generation term for a 
softer soil (third term in Eq. 6.20) is smaller than the same term for a rigid material. 
Therefore, in order to accelerate (pore pressures should increase until effective stresses 
reduce to very low values), heat has to accumulate during a longer time for a softer 
material. The direct consequence is that the time to get the accelerated motion of the 
slide should increase for a softer material, a result already advanced. It turns out that 
the accumulated heat for the softer material (the integrated value of the slide velocity 
times the available shear strength) is higher than the calculated value for the stiffer 
material. As a result, temperatures increase in the case of softer materials. This is 
shown in the plots for the low range of values of permeability. When the permeability 
increases and enters into the “slow" regime, the comparison of the temperature 
calculated for the two mv values cannot be discussed in the preceding terms because the 
slide stops soon after the initial instability because of the fast dissipation of excess pore 
pressures. 

The preceding set of comments illustrates the intricate coupling among the 
different phenomena and the difficulty to make predictions on the basis of a simple 
reasoning.  

6.6 CONCLUSIONS 
A seemingly convincing explanation for the accelerated motion of Vaiont relies on 

the development of excess pore pressures generated by the temperature increase of the 
sliding surface. This is a consequence of the slide motion itself. A key condition to 
explain the phenomenon is the existence of a basal sliding plane located in a layer of 
low permeability high plasticity clay in residual conditions. Then, the self-feeding 
mechanism of pore pressure generation in the sliding surface may eventually lead to 
very high sliding velocities (∼25 m/s) which are reached in a few seconds (∼30 
seconds) even if proper account is given to the self-stabilizing evolving geometry of the 
slide and even if progressive failure mechanisms, potentially acting on internal shearing 
surfaces, are not considered. 

Slide geometry and strength properties of the sliding surface(s) are not enough to 
understand the dynamics of Vaiont. Three parameters have been found important to 
explain the motion: the thickness of the sliding band, its permeability and its (confined) 
stiffness. Permeability is the major player. This is because it includes, in an approximate 
manner, the information provided by the shear band thickness. In fact, shear band 
thickness and permeability are both related to the particle size distribution of the band 
material. The sensitivity analysis performed for a scaled Vaiont slide has also shown 
that below a certain permeability threshold (established around 10-8 to 10-10 m/s 
depending on the clay stiffness), the maximum pore pressure development in the shear 
band, which is the value controlling the shear strength, is not much affected by the 
band thickness, within a reasonable range of values. Above this threshold permeability 
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value, pore pressure dissipation is enough to de-activate the process of pore pressure 
build-up and, therefore, the slide does not accelerate. In other words, the threshold 
permeability identified marks the transition from a potentially risky slide to a safe one. 
Of course, this conclusion is valid for the slide geometry analyzed and it should not be 
extended to other sliding configuration without further analysis.  

In very large landslides (the case of Vaiont), when conditions for accelerated 
motion exist, there are critical combinations of band permeability and band thicknesses 
that result in a substantial and rapid increase in shear band temperature. This is a 
natural outcome of the formulation and it is a consequence of the existence of small –
but not negligible- shear strength in the shear band and an increasing shear strain rate 
as the sliding velocity increases. The permeability of the band in these cases is low 
enough to maintain a significant pore pressure in the band but high enough to 
maintain a non negligible effective normal stress. The calculated temperatures 
(hundreds or even thousands of ºC) are enough to induce water vaporization and rock 
melting. These phenomena are not covered by the formulation developed, which only 
explains water pressure increase as a result of thermal dilation effects. The estimated 
sliding band parameters, in the case of Vaiont, lead to a moderate increase in 
temperature (< 100 ºC), which is not able to vaporize the interstitial pore water of the 
clayey band. 

When the size of the slide decreases the temperature generated in the band 
decreases also because the work input into the band decreases. A reduction of Vaiont 
dimensions by a factor of 1/10 still leads to a very large slide (a few million cubic 
meters), which has been analyzed. Sliding band temperatures are substantially lower in 
this case. For an impervious band (k < 10-9 m/s) maximum temperature increments 
are moderate (a few degrees). Even in extreme cases, for critical k values of the sliding 
band, it is unlikely for the temperature to raise more than 100 ºC. Vaporization (and 
certainly rock melting) is excluded in these cases. Since most slides do not reach, in 
practice, such a volume (a few million cubic meters), water vaporization and rock 
melting are extreme phenomena of rare occurrence.  

The fact that temperature increase will likely remain moderate or low in most 
slides does not prevent, however, the development of significant velocities. The reason 
is that the reduced increase in pore water pressure in those cases is also matched by a 
reduced normal effective stress on the sliding surface. Therefore, the condition of zero 
effective stress may also be reached during motion. However, the smaller the slide is, 
the shorter the sliding path necessary to substantially change its geometry, to evolve to 
another type of motion, or to be affected by another geometrical restriction to its 
motion. These considerations, added to the reduced momentum of the slide, tend to 
limit the danger associated with smaller slides. 

Although the two-wedge analysis described provides a reasonable explanation for 
the final catastrophic motion of Vaiont slide, the previous history of landslide creep-
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like displacements (see Chapter 5) cannot possibly be reproduced with the model 
developed here. Other phenomena such as viscous strength components at the failure 
surface or the strength degradation of the rock mass could be invoked to approximate 
the measured velocities prior to failure. Additional limitations can be identified both in 
the model and in the available information: the geometry has been maintained two-
dimensional and as simple as possible; pore water pressures prevailing at the failure 
surface were never measured; the effect of previous rainfall regime is essentially 
unknown; the actual conditions (in particular, the continuity of the high plasticity clay 
layer) of a significant proportion of the sliding surface remain buried by the slide and 
are essentially unknown, etc. Therefore, complexities and uncertainties around Vaiont 
are far from being resolved. However, it remains as a fascinating case and a permanent 
source of inspiration in the field of landslide analysis. 

APPENDIX 6.1 FLOWCHART AND COMPUTER PROGRAM FOR 
THE DYNAMIC ANALYSIS OF THE INFINITE PLANAR AND TWO-
WEDGE SLIDES  

The numerical procedures described above for the dynamic analysis of the infinite 
slide and the two interacting wedges was programmed in Fortran 90. The complete 
code is included at the end of this appendix.  

The program is subdivided in two main branches (Fig. A6.1) attending to the type 
of slide by means of two subroutines: Infinite_planar_slide and Two_interacting_wedges.  

 

Infinite Planar slide 

START

Input data

Type of slide 

Two interacting wedges
 

Figure A6.1 Flowchart of the main program. 

The main program is structured in three parts. First, all the input parameters that 
can be modified by the user are defined: material parameters, reference temperature, 
type of the slide and its geometry, parameters for the discretization by finite 
differences, and control parameters. Regarding the discretization parameters, the user 
has to define the number of spatial steps in the shear band and in the sliding mass. As 
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the thickness of the shear band is previously defined, the length of spatial increment 
(Δz) and the position of the coordinate of the upper boundary (L) is determined by 
default. The time interval (Δt) is defined, by default, by limiting the value of the 
stability coefficient ( 2

vc t zΔ Δ ) to 0.3 in order to guarantee the stability. 

Second, auxiliary parameters and constants are calculated by the program. In 
general, this part should not be modified by the user. Finally, in the third part of the 
main program, a subroutine is called depending on the type of slide.  

The numerical procedure starts in the subroutines. Results are calculated and 
stored in external files, within the same subroutines. At intervals defined by the time 
frequency (Dtw_time), which is specified by the user in the main program, the values of 
velocity, excess pore pressure in the middle of the shear band, heat, displacement, 
shear strength, and temperature are written in data files. Excess pore pressure profiles 
for z = 0 to z = L are also stored in external files following the time frequency 
(Dtw_profile) specified. The numerical procedure goes on until the maximum 
displacement (displ_max) is reached or until the slide velocity becomes zero (the 
landslide stops) for the case of two interacting wedges.  

The implementation of the numerical procedures in the subroutines follows the 
flow chart diagrams included in Figures A6.3 and A6.4.  
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Figure A6.2 Flow chart diagram of subroutine Planar_slide.
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Figure A6.3 Flow chart diagram of subroutine Two_interacting_wedges. 
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Figure A6.3 (continued) Flow chart diagram of subroutine Two_interacting_wedges. 
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!********************************************************************************! 
!           ! 
!                     PROGRAM      ! 
!           ! 
!          VAIONT LANDSLIDE: DYNAMIC ANALYSIS    ! 
!           ! 
!********************************************************************************! 
 
 implicit real*8 (a-h,o-z)  
 
!********************************************************************************! 
!    PARAMETERS TO BE DEFINED BY THE USER    ! 
!********************************************************************************! 
 pi =3.141592654 
 
! MATERIAL PARAMETERS 
!Water parameters 
 delta_w = 1.e3   !kg/m3; density 
 gamma_w = 9800.0  !N/m3; specific weight 
 alpha_w = 5.e-10  !1/Pa; compressibility coefficient 
 beta_w = 3.4e-4  !1/ºC; thermal dilation coefficient 
 c_w =4186.0   !J/(kg·ºC); specific heat 
!Solid parameters 
 delta_s = 2.7e3  !kg/m3; density 
 beta_s = 3.0e-5  !1/ºC; thermal dilation coefficient 
 c_s = 837.2   !J/(kg·ºC); specific heat 
!Shear band parameters 
 zn_band = 0.2   !porosity 
 zk_band = 1.e-11  !m/s; permeability 
 zmv_band =1.5e-9  !1/Pa;1D compressibility coefficient 
 fib=12.0*pi/180.  !rad; effective frictional angle in the band 
!Sliding mass parameters 
 zn_rock = 0.2  !porosity 
 delta_rock = 2350. !kg/m3; density 
 gamma_rock =23500. !N/m3: specific weight  
 zk_rock = 1.e-11  !m/s; permeability 
 zmv_rock = 1.5e-9  !1/Pa; 1D compressibility coefficient 
 fir = 38.*pi/180.  !rad; effective frictional angle rock-rock 
 coher =762.247e3  !Pa; cohesion rock-rock 
 cc = 0.d0    !1/m; rock cohesión degradation rate with the 

displacement (if it is equal to zero, there is no degradation 
 
! INITIAL CONDITIONS 
!Initial excess pore pressure, velocity and displacement have been !imposed equal to zero 
by default 
 theta_ref =10.0  !ºC; reference temperature 
  
! TYPE OF SLIDE 
 ntype_failure = 2  !1:infinite planar slide  
       !2:two interacting wedges 
 
! GEOMETRIC PARAMETERS AND HYDROSTATIC FORCES 
 e = 2.5e-3    !m; 2e = thickness of shear band 
 if (ntype_failure.eq.1) then 
  zHeight =240.   !m; thickness of planar landslide 
  zHeight_w =120.  !m; height of phreatic level 
  beta_slope = 9.490*pi/180. !rad; slope angle 
 else if (ntype_failure.eq.2) then 
  zH_wedge1 = 510.0 !m; height of upper triangular Wedge 1 
  zH1_wedge2 = 260.0 !m; left height of lower Wedge 2 
  zH2_wedge2 = 260.0  !m; right height of lower Wedge 2  
  Base_wedge1 = 700.0  !m; horizontal length of Wedge 1 
  zL2_0_p1 = 240.   !m; partial base length (1) of Wedge 2 
  zL2_0_p2 = 320.   !m; partial base length (2) of Wedge 2 
  alpha = 36.07*pi/180.  !rad; angle Wedge 1 
  beta = atan(zH2_wedge2/zL2_0_p2) !rad; angle Wedge 2 
  zHeight_w = 120.1  !m; water level 
 endif 
 
! CONTROL VARIABLES 
 displ_max = 400.0 !m; maximum displacement allowed in calculation 
  
! DISCRETIZATION (FINITE DIFFERENCE)  

nze = 500   !num. of spatial intervals between z=0 and z=e 
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zL = 0.02   !m; coordinate of upper boundary 
 sfb = 0.3   !stability factor of the band for difference  

!approximation 
 
! CONTROL PARAMETERS OF OUTPUT DATA 

Dtw_profile=2.   !seconds; Time between successive writings 
!of pore pressure profiles 

 Dtw_time=1.   !seconds; Time between successive writings  
       !of problem variables varying in time 
   
!********************************************************************************! 
!             AUXILIAR PARAMETERS COMPUTED BY THE PROGRAM   ! 
!********************************************************************************! 
 
!Auxiliary material parameter  
 gamma_s = 9.8*delta_s   !N/m3; specific weight 
 c_delta_band = (1.-zn_band)*delta_s*c_s+zn_band*c_w*delta_w   

!Pa/ºC;specif heat*density  
 cv_band = zk_band/(gamma_w*(zn_band*alpha_w + zmv_band))  

!1/s; consolidation coef. of the band 
 c_delta_rock = (1.-zn_rock)*delta_s*c_s+zn_rock*c_w*delta_w 
         !Pa/ºC;specific 
heat*density  
 cv_rock = zk_rock/(gamma_w*(zmv_rock+zn_rock*alpha_w))  

!1/s; consolidation coef. of the  
!sliding mass 

 
!Auxiliary geometric parameters and hydrostatic forces 
 if (ntype_failure.eq.1) then 
  Pw = zHeight_w*gamma_w  !N; hydrostatic force on the base 
  zmass=zHeight*delta_rock*cos(beta_slope) !kg/m; mass per unit of  

!length  
  weight = zHeight*gamma_rock*cos(beta_slope) !N/m;total weight  
        !of the sliding mass per unit of 
length 
 else if (ntype_failure.eq.2) then 
  zL1_0 = sqrt(zH_wedge1*zH_wedge1+Base_wedge1*Base_wedge1)  

!m; base of wedge 1 
  zL2_0 =  zL2_0_p1+zL2_0_p2 !m; total base length of wedge 2 
  delta = 0.5*(pi-alpha) 
  shi = 0.5*alpha 
  Pwint = 0.5*zHeight_w*zHeight_w*gamma_w/sin(delta)  

!N; hydrostatic force on common shearing  
!plane between wedges 

  Pwf = 0.5*zHeight_w*zHeight_w*gamma_w/sin(beta)  
!N; hydrostatic force on the right edge of 
!lower wedge 2 

  zl_shpl0 = zH1_wedge2/cos(shi)  
!m; length of common shearing plane between  
!wedges  

  Area1_0 = 0.5*zL1_0*zl_shpl0*cos(shi)  
!m2; initial area of wedge 1 

  ddd = zH1_wedge2/tan(delta) 
  Area2_0 =0.5*zH1_wedge2*ddd+ 
 . 0.5*(zH1_wedge2+zH2_wedge2)*(zL2_0_p1-ddd)+ 
 . 0.5*zH2_wedge2*zL2_0_p2 !m2: initial area edge 2 
  Pw1_0 = 0.5*zHeight_w*zHeight_w*gamma_w/sin(alpha)  

!N; hydrostatic force on base of wedge 1 
  Pw2_0 = zHeight_w*zL2_0*gamma_w  

!N; hydrostatic force on base of wedge 2 
 endif 
  
!Constants in the balance equations for mass and heat 
 cv_band = zk_band/(gamma_w*(zn_band*alpha_w + zmv_band)) 
 c_heat = -((zn_band*beta_w+(1-zn_band)*beta_s))/ 
 . (c_delta_band*(zn_band*alpha_w + zmv_band)) 
 c_sigma_vertical = zmv_band/(zn_band*alpha_w + zmv_band) 
 cv_rock = zk_rock/(gamma_w*(zn_rock*alpha_w + zmv_rock)) 
 
!Auxiliary parameter for the discretization by finite difference 
 Dz = e/(nze-1)    !length of spatial intervals 

nz = int(zL/Dz)   !num. of spatial intervals  
 Dt = sfb*Dz*Dz/cv_band !seconds; time intervals 
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!Verification stability factor in sliding mass (rock) 
 sfr = cv_rock*Dt/(Dz*Dz) 
 write (6,*) 'Stability factor rock=',sfr !Output data on screen 
 write (6,*) 'Dz=', Dz,' Dt=',Dt !Output data on screen 
 
!Auxiliary parameters of output data 

int_write_profile=Dtw_profile/Dt !Number of time intervals  
  !between successive writings of pore pressure profiles 

 int_write_time=Dtw_time/Dt !Number of time intervals between  
   !successive writings of problem variables varying in time 
 
!********************************************************************************! 
!      CALCULATION STARTS    ! 
!********************************************************************************! 
 
 if (ntype_failure.eq.1) then 
  call Infinite_planar_slide (Dz,Dt,nz,nze,e, 
 .     theta_ref, 
 .     cv_band,c_heat,cv_rock, 
 .     zHeight,Pw,zmass,weight, 
 .     sfb,sfr,zk_rock,zk_band, 
 .     c_delta_band,c_delta_rock, 
 .     fib,beta_slope,displ_max, 
 .     int_write_profile,int_write_time) 
 else if (ntype_failure.eq.2) then 
  call Two_interacting_wedges (Dz,Dt,nz,nze,e, 
     .    nt,tmax, 
     .    v0,Ubt0,teta_ref, 
     .    zL1_0,zL2_0,zh_cha0, 
     .    Area1_0,Area2_0, 
     .    zHeight,Em1,Em2,Pw1_0,Pw2_0, 
     .    gamma_roca,delta_roca, 
     .    alpha,beta,shi,fir, 
     .    coher0,cc, 
     .    cv_band,c_heat,c_sigma_vertical,cv_rock, 
     .    sfb,sfr,zk_rock,zk_band, 
     .    c_delta_band,gamma_w, 
     .    fib_max,fib_min,v_max_fib,a_const, 
     .    displ_max) 

endif 
 
 end 
  
!********************************************************************************! 
!              DYNAMIC ANALYSIS OF INFINITE SLIDE    ! 
!********************************************************************************! 
 
 subroutine Infinite_planar_slide (Dz,Dt,nz,nze,e, 
 .      theta_ref, 
 .      cv_band,c_heat,cv_rock, 
 .      zHeight,Pw,zmass,weight, 
 .      sfb,sfr,zk_rock,zk_band, 
 .      c_delta_band,c_delta_rock, 
 .      fib,beta_slope,displ_max, 
 .      int_write_profile,int_write_time) 
 
 implicit real*8 (a-h,o-z)  
 dimension Utold(nz),Utnew(nz) 
 
! OPEN FILES TO WRITE RESULTS 
  open (unit=2, file='Velocity.dat', status='unknown') 
  open (unit=3, file='Excess_pore_pressure_z0.dat',status='unknown') 
 open (unit=4, file='Temperature.dat', status='unknown') 
 open (unit=7, file='Strength.dat', status='unknown') 
 open (unit=8, file='Heat.dat', status='unknown') 
 open (unit=9, file='Displacement.dat', status='unknown') 
 
! WRITING TITLES IN RESULT’S FILES 
 write (2,*) ' Time(s) ', 'Velocity (m/s) ' 
 write (3,*) ' Time(s) ', 'Excess pressure (MPa) ' 
 write (4,*) ' Time(s) ', 'Temperature (ºC) ' 
 write (7,*) ' Time(s) ', 'Shear strength (MPa) '  
 write (8,*) ' Time(s) ', 'Heat (MJ/s·m3) '  
 write (9,*) ' Time(s) ', 'Displacement (m) '  
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 zero = 1.e-10 
 
! INITIATE COUNTERS 
 iw_profile = 0 !Counter for writing pore pressure profiles  
 iw_time = 0  !Counter for writing problem variables varying in  

!time 
   
! INITIALIZE PROBLEM VARIABLES 
!Excess pore pressure 
 do i=1,nz 
  Utold(i) = 0.0 
 enddo 
!Velocity 
 vtold = 0.0 
!Temperature 
 theta_told = theta_ref 
!Displacement 
 displ_told = 0.0 
!Shear strength 
  tau_failure = (weight*cos(beta_slope)-Pw)*tan(fib) 
!Heat 
 Heat=0.0 
 
! CALCULATION PROCEDURE STARTS 
 DO WHILE (displ_tnew.lt.displ_max) 
 k=k+1 
 t=k*Dt 
 
!Excess pore pressure 
 Utnew(1) = Utold(1)+sfb*(2.*Utold(2)-2.*Utold(1))- 
 .  Dt*c_heat*Heat 
  
 do i=2,nze-1 
  Utnew(i) = Utold(i)+sfb*(Utold(i+1)-2.*Utold(i)+Utold(i-1))- 
 . Dt*c_heat*Heat 
 enddo 
  
 do j=nze+1,nz-1 
  Utnew(j) = Utold(j)+sfr*(Utold(j+1)-2.*Utold(j)+Utold(j-1)) 
 enddo 
 
 Utnew(nz) = 0.0 
 
 Utnew(nze) = (zk_rock*Utnew(nze+1)+zk_band*Utnew(nze-1))/ 
 . (zk_rock+zk_band) 
 
!Velocity 
 Vtnew = vtold+Dt*(weight*sin(beta_slope)- 
 . tau_failure)/zmass 
  
!Temperature 
 theta_tnew = theta_told+Dt* Heat/c_delta_band 
 
!Displacement 
 displ_tnew = displ_told+Dt*vtold 
 
!Shear strength 
  tau_failure = (weight*cos(beta_slope) 
 . -Pw-Utnew(1))*tan(fib) 
 
 if (tau_failure.lt.zero)then 
  write (6,*) 'tau_failure is negative' 
  tau_failure = 0.0 
 endif 
 
!Heat 
 Htnew = tau_failure*vtnew/(2.*e)  
 
! UPDATE VARIABLES 
!Excess pore pressure 
  do m=1,nz 
  Utold(m) = Utnew(m) 
  enddo 
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!Velocity 
  vtold=vtnew 
!Temperature 
  theta_told = theta_tnew 
!Displacement 
  displ_told = displ_tnew 
 
! WRITING RESULTS AT SELECTED TIMES 
  if ((k.eq.1).or.(mm.eq.k)) then  
   iw_profile = iw_profile+1 
   mm = int(int_write_profile)*iw_profile 
   t = k*Dt 
   write (6,*) k,' Excess pore pressure profile has been written' 
   ifile = iw_profile+10 
   write (ifile,*) 'Time(s) ',t 
   do m = 1,nze 
    z = (m-1)*Dz 
    write (ifile,'(2(e15.5,1x))') z, Utnew(m) 
    nmax = m 
   enddo 
   do n=1,nz-nze 
    m = nmax+n 
    z = e+n*Dz 
    write (ifile,'(2(e15.5,1x))') z, Utnew(m) 
   enddo 
  endif 
 
  if ((k.eq.1).or.(nn.eq.k)) then  
   iw_time = iw_time+1 
   nn = int(int_write_time)*iw_time 
   t = k*Dt 
   write (2,'(2(e15.5,1x))') t, vtnew 
   write (3,'(2(e15.5,1x))') t, Utnew(1)*1.e-6 
   write (4,'(2(e15.5,1x))') t, theta_tnew 
   write (7,'(2(e15.5,1x))') t, tau_failure*1.e-6 
   write (8,'(2(e15.5,1x))') t, Heat/1.e6 
   write (9,'(2(e15.5,1x))') t, displ_tnew 
  endif 
 
 ENDDO 
 
! CLOSE FILES OF RESULTS 
 close (2) 
 close (3) 
 close (4) 
 close (7) 
 close (8) 
 close (9) 
 
 RETURN 
 END 
 
 
!********************************************************************************! 
!        DYNAMIC ANALYSIS OF TWO INTERACTING WEDGES   ! 
!********************************************************************************! 
 subroutine Two_interacting_wedges (Dz,Dt,nz,nze,e, 
     .    nt,tmax, 
     .    v0,Ubt0,teta_ref, 
     .    zL1_0,zL2_0,zh_cha0, 
     .    Area1_0,Area2_0, 
     .    zHeight,Em1,Em2,Pw1_0,Pw2_0, 
     .    gamma_roca,delta_roca, 
     .    alpha,beta,shi,fir, 
     .    coher0,cc, 
     .    cv_band,c_heat,c_sigma_vertical,cv_rock, 
     .    sfb,sfr,zk_rock,zk_band, 
     .    c_delta_band,gamma_w, 
     .    fib_max,fib_min,v_max_fib,a_const, 
     .    displ_max) 
 
 implicit real*8 (a-h,o-z) 
 dimension U1told(nz),U1tnew(nz),U2told(nz),U2tnew(nz) 
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! OPEN FILES TO WRITE RESULTS 
open (unit=2, file='Velocity.dat', status='unknown') 

  open (unit=3, file='Excess_pore_pressure_z0.dat',status='unknown') 
open (unit=4, file='Heat.dat', status='unknown') 

 open (unit=7, file='Displacement.dat', status='unknown') 
 open (unit=8, file='Strength.dat', status='unknown') 
 open (unit=9, file='Temperature.dat', status='unknown') 
 
! WRITING TITLES IN RESULTS FILES 
 write (2,*) ' Time(s) ', 'Velicity(m/s) ' 
 write (3,*) ' Time(s) ', 'U1 (MPa) ','U2 (MPa)' 
 write (4,*) ' Time(s) ', 'Heat_Wedge1 (MJ/s·m3) ', 
 . 'Heat_Wedge2 (MJ/s·m3) ' 
 write (7,*) ' Time(s) ', 'Displacement (m) '  
 write (8,*) ' Time(s) ', 'Shear_strength_Wedge1 (MPa) ' , 
 . 'Shear_strength_Wedge2 (MPa)'  
 write (9,*) ' Time(s) ', 'Temperature Wedge1(º) ' , 
 . 'Temperature Wedge2(º)'  
   
 zero=1.e-10 
 
! INITIALITE COUNTERS   
 iw_profile=0 !Counter for writing pore pressure profiles  
 iw_time=0  !Counter for writing problem variables varying in  
     !time 
 
! INITIALIZE VALUES PARAMETERS THAT CHANGE WITH THE DISPLACEMENT 
!Weights 
 W1 = Area1_0*gamma_rock 
 W2 = Area2_0*gamma_rock 
!Mass 
 zM1 = Area1_0*delta_rock 
 zM2 = Area2_0*delta_rock 
!Lengths 
 zL1 = zL1_0 
 zL2 = zL2_0 
 zl_shpl = zl_shpl0 
!Hydrostatic forces 
 Pw1 = Pw1_0 
 Pw2 = Pw2_0  
 
! INITIALIZE PROBLEM VARIABLES 
!Excess pore pressure 
 do i=1,nz 
  U1told(i) = 0.0 
  U2told(i) = 0.0 
 enddo 
!Changes of notation 
 U1 = U1told(1) 
 U2 = U2told(1) 
!Velocity 
 vtold = 0.0 
!Temperatures 
 theta1_old = theta_ref 
 theta2_old = theta_ref 
!Displacements 
 stold = 0.0 
!Total vertical stress increments 
 dSn1 = 0.0 
 dSn2 = 0.0 
!Mass increments 
 dM1dt = 0.0 
 dM2dt = 0.0 
!Heat  
 H1 = 0.0 
 H2 = 0.0 
 
! CALCULATION PROCEDURE STARTS  
 DO WHILE (stnew.lt.displ_max) 
 k=k+1 
 
!Excess pore pressures  
  U1tnew(1) = U1told(1)+sfb*2.*(U1told(2)-U1told(1))- 
 .  c_heat*Dt*H1 + c_sigma_vertical*dSn1 
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  U2tnew(1) = U2told(1)+sfb*(2.*U2told(2)-2.*U2told(1))- 
 .  c_heat*Dt*H2 + c_sigma_vertical*dSn2 
 
 do i=2,nze-1 
  U1tnew(i) = U1told(i)+ 
 .  sfb*(U1told(i+1)-2.*U1told(i)+U1told(i-1))- 
 .  c_heat*Dt*H1 + c_sigma_vertical*dSn1 
  U2tnew(i) = U2told(i)+ 
 .  sfb*(U2told(i+1)-2.*U2told(i)+U2told(i-1))- 
 .  c_heat*Dt*H2 + c_sigma_vertical*dSn2 
 enddo 
 
 do j=nze+1,nz-1 
  U1tnew(j) = U1told(j)+ 
 .  sfr*(U1told(j+1)-2.*U1told(j)+U1told(j-1)) + 
 .  c_sigma_vertical*dSn1 
  U2tnew(j) = U2told(j)+ 
 .  sfr*(U2told(j+1)-2.*U2told(j)+U2told(j-1)) + 
 . c_sigma_vertical*dSn2 
  enddo 
 U1tnew(nz) = U1told(nz)+c_sigma_vertical*dSn1 
 U2tnew(nz) = U2told(nz)+c_sigma_vertical*dSn2 
 
 U1tnew(nze) = (zk_rock*U1tnew(nze+1)+zk_band*U1tnew(nze-1))/ 
 . (zk_rock+zk_band) 
 U2tnew(nze) = (zk_rock*U2tnew(nze+1)+zk_band*U2tnew(nze-1))/ 
 .      (zk_rock+zk_band) 
 
!Changes of notation 
 U1 = U1tnew(1) 
 U2 = U2tnew(1) 
 cg = zh_cha 
 
!Velocity 
  vtnew = vtold + Dt *  
 .((W2 *tan(fib)** 2 * sin(shi) - 0.2D1 * cos(shi) *tan(fir)*  
 #tan(fib)** 2 * Em1 *sin(shi) + cos(shi) *tan(fir)*tan(fib)** 2 * U 
 #1 * zL1 + Pw2 *tan(fib)** 2 * cos(shi) *tan(fir)- W2 *tan(fib)** 2 
 # * cos(shi) *tan(fir)+ U2 * zL2 *tan(fib)** 2 * cos(shi)*tan(fir)  
 #+ cos(shi) ** 2 * Em1 -tan(fib)* cos(shi) ** 2 *tan(fir)* Em1 + 0. 
 #2D1 * sin(shi) * cos(shi) * coher * cg + cos(shi) *tan(fib)* Em1 * 
 # sin(shi) - cos(shi) *tan(fir)* Em1 * sin(shi) -tan(fib)* cos(shi) 
 # *tan(fir)* dM1dt * vtold - dM2dt * vtold *tan(fib)* cos(shi) * ta 
 #n(fir)+ 0.2D1* sin(shi) *tan(fib)** 2 * cos(shi) * coher * cg - Pw 
 #2 *tan(fib)** 2 * sin(shi) - Em2 * cos(beta) *tan(fib)** 2 * cos(s 
 #hi) *tan(fir)+ Em2 * cos(beta) *tan(fib)** 2 * sin(shi) +tan(fib)* 
 # cos(shi) *tan(fir)* W1 * sin(alpha) + sin(shi) *tan(fir)*tan(fib) 
 #* Pw1 - sin(shi) *tan(fir)* dM1dt * vtold + sin(shi) *tan(fir)* W1 
 # * sin(alpha) +tan(fib)* sin(shi) * W1 * sin(alpha) + sin(shi) * t 
 #an(fir)*tan(fib)*U1 * zL1 + sin(shi) *tan(fib)** 2 * U1 * zL1 - U2 
 # * zL2 *tan(fib)** 2 * sin(shi) -tan(fib)* sin(shi) * dM1dt * vtol 
 #d -tan(fib)* Pw2 * sin(shi) *tan(fir)+tan(fib)* W2 * sin(shi) * ta 
 #n(fir)+dM2dt * vtold *tan(fib)* sin(shi) + dM2dt * vtold * sin(shi 
 #) *tan(fir)+ dM2dt * vtold * cos(shi) + W2 *tan(fib)* cos(shi) - P 
 #w2 *tan(fib)* cos(shi) + cos(shi) * dM1dt * vtold - cos(shi) * tan 
 #(fib)*Pw1 -tan(fib)* U2 * zL2 * sin(shi) *tan(fir)+ sin(shi) * tan 
 #(fib)** 2* Pw1 +tan(fib)* Em2 * cos(beta) * sin(shi) *tan(fir)+ Em 
 #2 * cos(beta) *tan(fib)* cos(shi) - cos(shi) *tan(fib)* U1 * zL1 - 
 # U2 * zL2 *tan(fib)* cos(shi) + cos(shi) *tan(fir)*tan(fib)** 2 *  
 #Pw1 - cos(shi) * W1 * sin(alpha) - sin(shi) *tan(fib)** 2 * W1 * c 
 #os(alpha) + cos(shi) *tan(fib)* W1 * cos(alpha) - cos(shi) *tan(fi 
 #r)*tan(fib)** 2 * W1 * cos(alpha) - sin(shi) *tan(fir)*tan(fib)* W 
 #1 * cos(alpha)) / (-zM1 * cos(shi) - zM2 * cos(shi) + zM1*tan(fib) 
 # * sin(shi) + zM2 *tan(fib)* cos(shi) *tan(fir)+ zM1 * sin(shi) *  
 #tan(fir)+zM1 *tan(fib)* cos(shi) *tan(fir)- zM2 *tan(fib)* sin(shi 
 #) - zM2 * sin(shi) * tan(fir))) 
  
 if (vtnew.lt.-zero) then 
  write (6,*) 'The slide stops' 
  stop 
 endif 
 
!Temperature 
 theta1_tnew = theta1_old+Dt*H1/c_delta_band 
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 theta2_tnew = theta2_old+Dt*H2/c_delta_band 
 
!Displacement 
 stnew = stold+vtold*Dt 
!Parameters that change with the displacement 
 zL1 = zL1_0 - stnew 
 zL2 = zL2_0 + stnew  
 zl_shpl = zL1*zl_shpl0/zL1_0 
 Area1= 0.5*zL1*zl_shpl*cos(shi) 
 zInc_Area = Area1_0 - Area1 
 Area2 = Area2_0 + zInc_Area 
 W1 = Area1*gamma_rock 
 W2 = Area2*gamma_rock 
 zM1 = Area1*delta_rock 
 zM2 = Area2*delta_rock 
 Pw2 = Pw2_0 + z_Height_w*stnew*gamma_w 
 coher = coher0*exp(cc*stnew) 
 dM1dt = -delta_roca*zL1*zl_shpl*cos(shi)*vtnew/zL1 
 dM2dt = -dM1dt 
 
!Effective normal force on base of Wedge 1 
  zN1 = -(Pw1*zM1* tan(fib) * cos(shi) * tan(fir)+ U1*zL1*zM1*  
 #tan(fib) * cos(shi) * tan(fir)- 0.2D1*cos(shi)*tan(fir)*zM1 * tan 
 #(fib)*Em1 * sin(shi) + 0.2D1 *sin(shi) *zM1 *tan(fib) * cos(shi)  
 #* coher * cg + U1 * zL1 * zM1 * sin(shi) *tan(fir)+ Em1 * sin(shi) 
 # * zM1 * cos(shi) - cos(shi) *tan(fir)* zM1 *tan(fib)* W2 + cos(sh 
 #i) *tan(fir)* zM1 *tan(fib)* Pw2 - U1 * zL1 * zM1 * cos(shi) - zM2 
 # * coher * cg + zM1 * coher * cg - W1 * cos(alpha)*zM1 *tan(fib)  
 #* cos(shi) *tan(fir)+ sin(shi) * zM1 * dM2dt * vtold - sin(shi) *  
 #zM2 * dM1dt * vtold + sin(shi) * zM1 * tan(fib)*W2 - sin(shi) * zM 
 #1 * tan(fib) * Pw2 + Pw1 * zM1 *tan(fib)* sin(shi) + Pw1 * zM1*sin 
 #(shi) *tan(fir)- Pw1 * zM2 * sin(shi) *tan(fir)+ sin(shi) * zM2 *  
 #W1 * sin(alpha) - sin(shi) * zM1 *tan(fib)*U2 * zL2 + U1 * zL1 *  
 #zM1 * tan(fib)*sin(shi) - U1 * zL1 * zM2 * sin(shi) *tan(fir)- Pw1 
 # * zM1 * cos(shi) - Pw1 * zM2 * cos(shi) - W1 * cos(alpha) * zM1 * 
 #tan(fib) * sin(shi) - cos(shi) *tan(fir)* zM2 * W1 *sin(alpha)+ s 
 #in(shi) * zM1 *tan(fib)* Em2 * cos(beta) + cos(shi) *tan(fir)* zM2 
 # * dM1dt * vtold - 0.2D1 * cos(shi) ** 2 * coher * cg * zM1 - cos( 
 #shi) *tan(fir)* zM1 * dM2dt * vtold - W1 * cos(alpha) * zM1 * sin( 
 #shi) *tan(fir)+ Em1 * zM2 *tan(fir)- cos(shi) *tan(fir)* zM1 * tan 
 #(fib)*Em2 * cos(beta) + W1 * cos(alpha) * zM2 * sin(shi) *tan(fir) 
 #- Em1 * zM1 *tan(fir)+ cos(shi) *tan(fir)* zM1 *tan(fib)* U2 * zL2 
 # - U1 * zL1 * zM2 * cos(shi) + cos(shi) ** 2 * Em1 * zM1*tan(fir)  
 #+ W1 * cos(alpha) * zM1 * cos(shi) + W1 * cos(alpha) * zM2 * cos(s 
 #hi)) / (-zM1 * cos(shi) - zM2 * cos(shi) + zM1 *tan(fib)*sin(shi) 
 # + zM2 *tan(fib) *cos(shi) *tan(fir)+ zM1 *sin(shi)*tan(fir)+ zM 
 #1 *tan(fib) * cos(shi) *tan(fir)- zM2 *tan(fib) *sin(shi)-zM2 * s 
 #in(shi) *tan(fir)) 
 
!Effective normal force on base of wedge 2 
  zN2 =-(-Em2 *cos(beta) *zM2 *tan(fib)* cos(shi)*tan(fir)- Em2  
 #* cos(beta) * zM1 * sin(shi) *tan(fir)+ Em2 * cos(beta) * zM1 * co 
 #s(shi) - W2 * zM2 *tan(fib)* cos(shi) *tan(fir)+ U2 * zL2 * zM2 *  
 #tan(fib)*cos(shi)*tan(fir)+ Em1 * sin(shi) * zM1 * cos(shi) - 0.2 
 #D1 * cos(shi) *tan(fir)* zM2 *tan(fib)* Em1 * sin(shi) + 0.2D1 * s 
 #in(shi) * zM2 *tan(fib)* cos(shi) * coher * cg - zM2 * coher * cg  
 #+ zM1 * coher * cg + cos(shi) *tan(fir)* zM2 *tan(fib)* Pw1 - sin( 
 #shi) * zM2 *tan(fib)* W1 * cos(alpha) + sin(shi) * zM2 *tan(fib)*  
 #Pw1 + sin(shi) * zM1 * dM2dt * vtold - sin(shi) * zM2 * dM1dt * vt 
 #old + Pw2 * zM1 * sin(shi) *tan(fir)- Pw2 * zM2 *tan(fib)* sin(shi 
 #) - Pw2 * zM2 * sin(shi) *tan(fir)- W2 * zM1 * sin(shi) *tan(fir)+ 
 # W2 * zM2 *tan(fib)* sin(shi) + W2 * zM2 * sin(shi) *tan(fir)+ sin 
 #(shi) * zM2 * W1 * sin(alpha) + sin(shi) * zM2 *tan(fib)* U1 * zL1 
 # + U2 * zL2 * zM1 * sin(shi) *tan(fir)- U2 * zL2 * zM2 *tan(fib)*  
 #sin(shi) - U2 * zL2 * zM2 * sin(shi) *tan(fir)- Pw2 * zM1 * cos(sh 
 #i) + W2 * zM1 * cos(shi) - Pw2 * zM2 * cos(shi) + W2 * zM2 * cos(s 
 #hi) + cos(shi) *tan(fir)* zM2 * W1 * sin(alpha) + Em2 * cos(beta)  
 #* zM2 *tan(fib)* sin(shi) + Em2 * cos(beta) * zM2 * sin(shi) * tan 
 #(fir)+ Em2* cos(beta) * zM2 * cos(shi) - cos(shi) *tan(fir)*zM2 * 
 # dM1dt * vtold + cos(shi) *tan(fir)* zM2 *tan(fib)* U1 * zL1 + cos 
 #(shi) *tan(fir)* zM1 * dM2dt * vtold - 0.2D1 * cos(shi) ** 2 * tan 
 #(fir) * zM2 * Em1 + Em1 * zM2 *tan(fir)-cos(shi)*tan(fir)* zM2 * t 
 #an(fib)*W1* cos(alpha) - Em1 * zM1 *tan(fir)+ 0.2D1 * cos(shi) ** 
 # 2 * coher * cg * zM2 - U2 * zL2 * zM1 * cos(shi) - U2 * zL2 * zM2 
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 # * cos(shi) + Pw2 * zM2 *tan(fib)* cos(shi) *tan(fir)+ cos(shi) ** 
 # 2 * Em1 * zM1 *tan(fir))/ (-zM1 * cos(shi) - zM2 * cos(shi) + zM1 
 # *tan(fib)* sin(shi) + zM2 *tan(fib)* cos(shi) *tan(fir)+ zM1 * si 
 #n(shi) *tan(fir)+ zM1 *tan(fib)* cos(shi) *tan(fir)- zM2 *tan(fib) 
 #* sin(shi) - zM2 * sin(shi) *tan(fir)) 
 
 if (zN1_tnew.lt.zero) then 
  zN1_tnew = 0.0 
 endif 
 if (zN2_tnew.lt.zero) then 
  zN2_tnew = 0.0 
 endif 
 
!Total normal forces 
 zN1tot = zN1+Pw1+U1*zL1 
 zN2tot = zN2+Pw2+U2*zL2 
 
!Total vertical stresses 
 Sn1_tnew = -zN1tot/zL1 
 Sn2_tnew = -zN2tot/zL2  
 
!Total vertical stress increments 
 if (k.eq.1) then 
  dSn1_tnew = 0.0 
  dSn2_tnew = 0.0 
 else 
 dSn1 = Sn1_tnew-Sn1_told 
 dSn2 = Sn2_tnew-Sn2_told 
 endif 
 
!Shear strength 
 Tau1 = (zN1/zL1) * tan(fib) 
 Tau2 = (zN2/zL2) * tan(fib) 
 
!Heat  
  H1 = Tau1*vtnew/(2.*e) 
  H2 = Tau2*vtnew/(2.*e) 
 
! UPDATE PROBLEM VARIABLES 
!Excess pore pressure 
 do i=1,nze 
  U1told(i) = U1tnew(i) 
  U2told(i) = U2tnew(i) 
 enddo 
!Velocity  
 vtold = vtnew 
!Temperatures 
 theta1_old = theta1_tnew 
 theta2_old = theta2_new 
!Displacement  
 stold = stnew 
!Total vertical stresses 
 Sn1_told = Sn1_tnew 
 Sn2_told = Sn2_tnew 
 
! WRITING RESULTS AT SELECTED TIMES 
  if ((k.eq.2).or.(mm.eq.k)) then 
   write (6,*) k,' Profile results have been written' 
   iw_profile = iw_profile+1 
   mm=int(int_write_profile)*iw_profile 
   t=k*Dt 
   iarchivo=iw_profile+100 
   write (iarchivo,*) 'Time(s) ',t 
   do m=1,nze+10 
    z=(m-1)*Dz 
    write (iarchivo,'(2(e15.5,1x))') z, U1tnew(m) 
   enddo 
   do m =  nze+11,nz,10 
    z = m*Dz 
    write (iarchivo,'(2(e15.5,1x))') z, U1tnew(m) 
   enddo 
  endif 
  if ((k.eq.1).or.(nn.eq.k)) then  
   iw_time = iw_time+1 
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   nn = int(int_write_time)*iw_time 
   t=k*Dt 
   write (2,'(2(e15.5,1x))') t, vtnew 
   write (3,'(3(e15.5,1x))') t, U1tnew(1)*1.e-6,U2tnew(1)*1.e-6 
   write (4,'(3(e15.5,1x))') t, H1/1.e6,H2/1.e6 
   write (7,'(2(e15.5,1x))') t, stold 
   write (8,'(3(e15.5,1x))') t, Tau1 *1.e-6,Tau2*1.e-6 
   write (9,'(3(e15.5,1x))') t, theta1_tnew,theta2_tnew 
  endif  
 
 ENDDO 
 
 close (2) 
 close (3) 
 close (4) 
 close (7) 
 close (8) 
 close (9) 
  
 return 
 end 

APPENDIX 6.2 PARAMETERS OF THE BALANCE EQUATIONS 
FOR THE DYNAMIC ANALYSIS OF TWO INTERACTING WEDGES 

Parameters which complete the dynamic equilibrium equation of the two wedges 
(Eq. 32) are: 

( ) ( )

( )

1

2

2

tan tan tan sin cos tan tan sin sin
2 2

tan tan tan cos cos tan tan cos sin cos sin
2 2 2

W b r b r b

b b r b r

t α α⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′= − ϕ ϕ − ϕ α + ϕ + ϕ α +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ϕ − ϕ ϕ α + ϕ ϕ α − α⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

( ) ( )
2

2 2tan tan tan cos tan tan tan sin
2 2W b b r b b rt α α⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′= ϕ − ϕ ϕ + ϕ + ϕ ϕ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

( )int

22 tan sin cos 1 tan
2 2wP r bt α α⎛ ⎞ ⎛ ⎞′ ′= − ϕ + ϕ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

( ) ( )

( ) ( )

2

2

tan tan tan sin cos 1 tan tan cos sin
2 2

tan tan tan cos cos tan tan sin sin
2 2

wfP b b r b r

b b r b r

t α α⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′= ϕ + ϕ ϕ β+ − ϕ ϕ β+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
α α⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ϕ − ϕ ϕ β+ ϕ + ϕ β⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

1

2 2tan tan cos tan tan sin tan sin tan cos
2 2 2 2wP b r b r b bt α α α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′= ϕ ϕ + ϕ ϕ + ϕ − ϕ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

2

2 2tan tan cos tan tan sin tan sin tan cos
2 2 2 2wP b r b r b bt α α α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′= ϕ ϕ − ϕ ϕ − ϕ − ϕ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

( ) ( )1

2 2tan tan tan cos tan tan tan sin
2 2wu b r b b b rt α α⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′= ϕ ϕ − ϕ + ϕ + ϕ ϕ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

( ) ( )2

2 2tan tan tan cos tan tan tan sin
2 2wu b r b b b rt α α⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′= ϕ ϕ − ϕ − ϕ + ϕ ϕ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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( )22cos sin 1 tan
2 2rc bt α α⎛ ⎞ ⎛ ⎞ ′= + ϕ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

( )
1

cos tan tan sin tan tan cos
2 2 2dM dt b r b rt α α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′= − ϕ + ϕ − ϕ ϕ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

( )
2

cos tan tan sin tan tan cos
2 2 2dM dt b r b rt α α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′= + ϕ + ϕ − ϕ ϕ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

( ) ( )
1

tan tan sin tan tan 1 cos
2 2M r b r bt α α⎛ ⎞ ⎛ ⎞′ ′ ′ ′= ϕ + ϕ + ϕ ϕ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

( ) ( )
2

tan tan sin tan tan 1 cos
2 2M r b r bt α α⎛ ⎞ ⎛ ⎞′ ′ ′ ′= − ϕ + ϕ + ϕ ϕ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

Coefficients r and s in Equations (33a) and (33b) are given by 

1 1

2

tan cos cos tan sin tan sin tan tan cos
2 2 2 2

tan tan cos sin sin sin tan cos sin cos cos
2 2 2 2

W b r b b r

b r r

r M

M

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

α α α α⎛ ⎞′ ′ ′ ′ ′= ϕ α ϕ − ϕ − ϕ ϕ +⎜ ⎟
⎝ ⎠

α α α α′ ′ ′ϕ ϕ α + α − ϕ α + α
⎞

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2

2
1 tan sin tan cos

2 2W b rr M
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α⎛ ⎞′ ′= ϕ − ϕ⎜ ⎟
⎝ ⎠

 

int 1 2tan sin cos s tan sin 2 tan tan cos tan tan
2 2 2 2wP b r r b r br M M

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

α α α α⎛ ⎞′ ′ ′ ′ ′ ′= ϕ − − ϕ − ϕ ϕ + ϕ ϕ⎜ ⎟
⎝ ⎠

 

2
1 tan cos sin tan cos

2 2wfP b rr M
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α⎛ ⎞′ ′= ϕ β − ϕ⎜ ⎟
⎝ ⎠

 

1 1

2

tan cos tan sin tan sin + tan tan cos
2 2 2 2

tan cos tan sin
2 2

wP b r b b r

b r

r M

M

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α α α⎛ ⎞′ ′ ′ ′ ′= ϕ − ϕ + ϕ ϕ ϕ −⎜ ⎟
⎝ ⎠

α α⎛ ⎞′ ′ϕ + ϕ⎜ ⎟
⎝ ⎠

 

2

2
1 tan tan cos sin

2 2wP b rr M
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α⎛ ⎞′ ′= ϕ ϕ −⎜ ⎟
⎝ ⎠

 

1 1

2

tan tan sin tan sin cos tan tan cos
2 2 2 2

tan tan sin cos
2 2

wu b r b b r

b r

r M

M

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α α α⎛ ⎞′ ′ ′ ′ ′= ϕ ϕ + ϕ − + ϕ ϕ −⎜ ⎟
⎝ ⎠

α α⎛ ⎞′ ′ϕ ϕ +⎜ ⎟
⎝ ⎠
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2

2
1tan tan cos sin

2 2wu b rr M
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α⎛ ⎞′ ′= ϕ ϕ −⎜ ⎟
⎝ ⎠

  

2 2 2
1 2tan sin cos +2 tan sin cos tan cos

2 2 2 2 2rc b b br M M
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

α α α α α⎛ ⎞′ ′ ′= ϕ − ϕ − ϕ⎜ ⎟
⎝ ⎠

 

1 2 tan tan cos sin
2 2dM dt b rr M

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α⎛ ⎞′ ′= ϕ ϕ⎜ ⎟
⎝ ⎠

 

2 1 tan tan cos sin
2 2dM dt b rr M

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

+⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α⎛ ⎞′ ′= ϕ − ϕ⎜ ⎟
⎝ ⎠

 

1

2 2tan cos tan tan sin tan sin tan tan cos
2 2 2 2M r b b rr

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

α α α α′ ′ ′ ′ ′ ′= ϕ − ϕ ϕ − ϕ − ϕ ϕ  

2

2 2
2

tan tan cos +tan sin + tan cos + tan tan sin
2 2 2M b r b b b rr

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟α
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

α α α′ ′ ′ ′ ′ ′= − ϕ ϕ ϕ ϕ ϕ ϕ  

and 

1 2

2 2

tan tan cos sin tan sin sin
2 2

tan sin cos tan tan cos cos
2 2

W r b b

b r b

s M
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

α α⎛ ′ ′ ′= ϕ ϕ α + ϕ α −⎜
⎝

α α ⎞′ ′ ′ϕ α − ϕ ϕ α⎟
⎠

 

2 1

2

tan cos tan sin
2 2

tan tan sin tan tan cos tan sin cos
2 2 2 2

W b r

b b b r r

s M

M

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

α α⎛ ⎞′ ′= ϕ ϕ +⎜ ⎟
⎝ ⎠

α α α α⎛ ⎞′ ′ ′ ′ ′ϕ ϕ − ϕ ϕ + ϕ +⎜ ⎟
⎝ ⎠
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CHAPTER 7 

Canelles Landslide 

During the summer of 2006, after a rapid drawdown (the drawdown velocity 
exceeded to 1 m/day), a very large landslide developed in the left margin of Canelles 
reservoir (Catalonia, Spain). Canelles dam, located in the Noguera Ribagorçana river, is 
150 m high arch dam. This chapter describes the analysis made to define the 
movement and the reasons that led to the instability. The possible evolution of the 
landslide in the future is also discussed in the chapter.  

The geometry of the slide could be established from the detailed analysis of the 
continuous cores recovered in deep borings and from the limited information provided 
by inclinometers. Deep piezometric records provided also valuable information on the 
pressure changes in the vicinity of the failure surface. These data, available for a 
significant time, allowed validating a flow-deformation coupled calculation model that 
took into account the changes in water level of the reservoir and external contributions 
(rainfall). The model indicates that the most likely reason for failure is the rapid 
drawdown that took place during the summer of 2006. 

This chapter studies the causes of the observed failure and analyses the conditions 
that could lead to a rapid acceleration of the slide in the future. 

7.1 BACKGROUND  
During the summer of 2006, a continuous crack was detected in the left margin of 

Canelles reservoir. It was interpreted as the upper limit of a large slide that probably 
began in the submerged area of the reservoir. An analysis of the reservoir level 
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evolution indicated high values of drawdown velocities in the period July-August 2006. 
In fact, during the first days of August 2006, the velocity was greater than 1 m/day 
reaching a maximum value of 1.20 m/day. It is quite likely that the motion that caused 
the crack took place around this date. Water level elevation reduced from 440 m to 430 
m. Never before, from 1986 to 2009, had drawdown velocities reached such high levels 
and neither had the water level elevation been so low.  

 
Figure 7.1 Detail of the tensile crack at the foot of the jump limiting the southern boundary of 
the landslide. The lack of deformation, due, for instance, to surface tilting of the displaced soil 

(left to the crack), suggests an essentially translational movement. The remnants of the old 
village of Blancafort can be seen in the background of the photograph. 

7.1.1 Description of the failure 
The instability of the northern slope of Sierra de Blancafort, which took place 

most probably in the summer of 2006, became evident by the presence of a continuous 
crack, a few decimetres in width (10-20 cm) and more than one kilometre long (in a 
direction parallel to the Noguera Ribagorçana River). The crack (Fig. 7.1) is located at a 
slope foot with an apparent scarp of more than 4-5 m. This jump limits the southern 
part of the landslide (Figs. 7.2 and 7.3). This geomorphologic feature was interpreted as 
an indication that the slide is not a first failure, but the reactivation of a movement 
whose dating is unknown. In fact, it can be observed in aerial photographs taken in 
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1956. The straightness of the upper scar and the fact that the soil near the crack does 
not indicate any surface tilt suggests a translational type of slide.  

In the northern zone of the Blancafort Sierra (Fig. 7.3) neither geological nor 
geomorphological evidence of landslide activity was found. The valley slope is a 
structural surface of Campanian marl and Maastricht sandstone, in which the draining 
network was embedded without anomalies. The development of the drainage network 
took a long-period of time to form (millenary scale), so it can be concluded that the 
slide is limited by the mentioned crack located on the lower part of the valley slope. 

 
Figure 7.2 Overview crown scarp of the slide on the left bank at the foot of the developed 

tension crack 2006. 

Geological setting and location of the sliding plane 

This section describes the stratigraphy and the structure of materials located 
around the reservoir following the study performed by Corominas and Moya (2009). 

The northern slope of the Sierra de Blancafort consists of sedimentary rocks 
whose age ranges from late Cretaceous to Paleocene. Six groups of materials have been 
distinguished in the bedrock. These units have been defined by means of surface 
observation and the statigraphic columns provided by the borings performed. Figure 
7.4 shows the geological map of the area and Figure 7.5-7.7, representative geological 
profiles. 
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Figure 7.3 Orthophotograph of Canelles reservoir, Blancafort Sierra and the slide under study 
(in yellow). To the south of the slide, the northern slope of Blancafort Sierra presents a well-
developed drainage network on a rock substratum (cemented marls and sandstones), showing 
no additional failure scars. A perfect lateral continuity can be observed in the contacts among 

strata. The sliding volume was estimated at 40 millions of m3. 

At the beginning of the field investigation, it was thought that the information 
furnished by deep inclinometers would provide a precise position of the failure surface. 
Under favourable conditions (slide undergoing some movement), the inclinometer data 
should be enough to identify the sliding surface or surfaces. However, inclinometers 
did not provide but slight indications, in some cases, of the existence of movements. 
The slide essentially did not move since the onset of the crack in the summer of 2006. 
As an alternative, the location on the sliding surface was determined by means of a 
detailed analysis of the rock massif quality and the identification of shearing planes in 
boring cores. 

Since the movement corresponds to a translational slide, there exists probably a 
level or layer that favours the development of a failure surface (stratum, fault area, 
etc.). Given the strong dip of strata at the bottom of the valley, the aim of the analysis 
was to search for shearing surfaces, especially in the weakest levels. A priori, the 
lithological formations most likely to produce failure surfaces are the clayey ones.  In 
particular the following two formations, which are favourably orientated and belong to 
the Garumn complex: 

(a) orange sandstone unit with interbedded sandy and clayey silts 
(b) wine-red clay and silt strata 

are good candidates to locate the failure surface. 

Blancafort 
Sierra 

Dam 

N 



  Chapter 7  

 219

The arrangement of the silty and the red-wine clay strata allows defining the initial 
hypothesis: the failure surface develops at those weaker levels without crossing other 
stronger strata.  

In the sliding plane, it is quite usual to find well-developed and continuous 
shearing surfaces. Nevertheless, the shearing surfaces can also have a tectonic origin 
with no direct relationship with the slide. During the alpine orogenesis of Blancafort 
Sierra, the site suffered relative movement among strata, wedging some layers and 
creating progressive discordances. The relative movement among strata generated 
extensive and continuous shearing surfaces (Fig. 7.8). For these reasons, it was 
necessary to search for additional specific criteria to identify shearing surfaces 
associated with the landslide. 

The identification of the sliding plane was based on several indicators:  
- Presence of frequent shearing planes. These planes can be easily identified due 

to the existence of slickensides or polished surfaces. 
- Continuity and parallelism of shearing planes with respect to the potential 

sliding plane. 
- Degree of core recovery and quality of the samples above the shearing plane. In 

case of sliding, the movement can break the most rigid strata and produce a 
massif of less quality when compared with non-slid rock samples. 

- Degree of core recovery and quality of the samples above the shearing plane. In 
case of sliding, the movement can break the most rigid strata and produce a 
massif of less quality when compared with non-slid rock samples. 

- The interpolation of the sliding plane among borings cannot be inconsistent. 
- Finally, the correlation with inclinometric records. 
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(a) (b) 

Figure 7.4 (a) Geological map of the northern slope of the Sierra de Blancafort. Black continuous lines indicate the profiles examined and used in 
the analysis; (b) map legend (Corominas and Moya, 2009). 
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Figure 7.5 Geological Profile I (Corominas and Moya, 2009) 
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Figure 7.6 Geological Profile II (Corominas and Moya, 2009) 
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Figure 7.7 Geological Profile III (Corominas and Moya, 2009) 
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Figure 7.8 Shearing surface in the Maastricht brown sandstone formation located 58.75 deep in 

boring SI-1-1. 

 
Figure 7.9 Sliding surface identified by the presence of frequent shearing surfaces located at 

elevations 66.40 to 68.80 m. Above this depth, the marl levels from the Garumn complex are 
either cracked or completely broken Below this depth, sandstones and marls show a massive 

appearance and high RDQ 

S-2-1b 

S-2-1b 

S-2-1b 
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7.2 LABORATORY TESTS  
This section summarises the results obtained in the laboratory on samples of 

natural and remoulded material taken from the Garumn clayey stratum where the 
failure surface is located. The natural conditions of the samples indicate densities 
ranging from 1.71 to 1.88 T/m3, which correspond to void ratios of 0.96-0.68. Water 
content in most cases is close to 20% (saturation degree of 70%) or more in some 
samples. Garumn clay is quite plastic (wL = 54-57%; PI = 26-31 %)(CH). 40% of the 
particles are smaller than 2 μm. 

Since the landslide is a reactivated slide, the residual strength was measured on 
remoulded samples in the ring shear equipment. The measured angle ( º1312 −=ϕ′res ) is 
consistent with the clay plasticity. 

Taking into account the discussion given as a result of the sensitivity analysis 
presented in Chapters 4 and 6 about the relevant parameter controlling the acceleration 
of a landslide if thermal effects are considered, the permeability to water was also 
measured in two samples subjected to a vertical stress of 300 kPa. Permeability showed 
values of 104.2 10−×  and 114.9 10−×  m/s. The reason for the variation of one order of 
magnitude between these two values can be due to different locations of the specimens 
within the clay stratum. 
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Figure 7.10 Evolution in time of the water level elevation of reservoir. 
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7.3 WATER LEVEL AND PIEZOMETER MEASUREMENTS 

7.3.1 Water level elevation 
Figure 7.10 shows the evolution in time of the water level elevation in the reservoir 

from January 1987 until 2009. The crack in the left valley slope of the reservoir was 
observed at the end of summer 2006, after the water level elevation dropped to 
elevation 430 (absolute minimum value since 1987, according to available data). The 
average daily drawdown velocity, before failure, was around 0.25 m/day and the daily 
maximum velocities were higher than 1 m/day during the last drawdown period. Note 
that the 2006 drawdown followed a long period (1992-2004) in which the level was 
consistently located above elevation 480. This period probably allowed reaching water 
pressures corresponding to high water elevations, even in those strata with lower 
permeability. This previous history should be taken into account when estimating the 
water pressure during drawdown. 

7.3.2 Piezometers 
Figure 7.11 indicates the location in plan view of the piezometers installed. Several 

piezometers (three or four) were installed in each bore hole at different depths. 
Piezometers were installed around the clayey layer where the failure surface was most 
likely located.  

The piezometer records are shown in Figures 7.12–7.16. The recorded water 
pressures in the sandstone stratum follow the water level elevation in the reservoir.  
The response is fast in all the piezometers except for the piezometers located in SI 2-3. 
On the contrary, the piezometers located in the clayey stratum maintain high pressures, 
which in some cases exceed the pressures corresponding to the current water reservoir 
elevation. Note, in particular, the value of the pressures recorded in SI 1-2 and SI 2-2 
in the piezometer located within the clayey Garumn stratum. The pressure in this case 
remains constant and independent to the water level elevation. This result confirms the 
low permeability of the clay stratum, in contrast to the higher permeability of the 
sandstone and marls located below. The pressure in the upper part of the slide (SI 2-3) 
seems not to be directly connected to the reservoir. High pressure values are measured 
in the rock layer (Fig. 7.16). These values of water pressure probably are a consequence 
of direct infiltration from rainfall or perhaps the results of other sources of water no 
well defined, linked to the geological structure of the area.  
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Figure 7.11 Position of piezometers installed after the failure.  
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Figure 7.12 (a) Position of piezometers in borehole SI 1-1 (see Fig. 7.11); (b) piezometer 
records and reservoir elevation.   
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Figure 7.13 (a) Position of piezometers in borehole SI 1-2 (see Fig. 7.11); (b) piezometer 
records and reservoir elevation 
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Figure 7.14 (a) Position of piezometers in borehole SI 2-1 (see Fig. 7.11); (b) piezometer 
records and reservoir elevation 
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(a) (b) 

Figure 7.15 (a) Position of piezometers in borehole SI 2-2 (See Fig. 7.11); (b) piezometer 
records and reservoir elevation 

489.87

480.07

469.87

420

440

460

480

500

520

540

05
-1

0-
07

04
-1

1-
07

04
-1

2-
07

03
-0

1-
08

02
-0

2-
08

03
-0

3-
0

8

02
-0

4-
08

02
-0

5-
08

01
-0

6-
08

01
-0

7-
08

31
-0

7-
08

30
-0

8-
08

29
-0

9
-0

8

29
-1

0-
08

28
-1

1-
08

28
-1

2
-0

8

27
-0

1-
09

26
-0

2-
09

28
-0

3
-0

9

27
-0

4-
09

27
-0

5-
09

26
-0

6-
09

26
-0

7-
09

25
-0

8-
09

Time

Pi
ez

om
et

ric
 le

ve
l (

m
)

Piezometer at elevation 489,87
Piezometer at elevation  480,07
Piezometer at elevation 469,87 

Reservoir level
SI 2-3

489.87

480.07

469.87

420

440

460

480

500

520

540

05
-1

0-
07

04
-1

1-
07

04
-1

2-
07

03
-0

1-
08

02
-0

2-
08

03
-0

3-
0

8

02
-0

4-
08

02
-0

5-
08

01
-0

6-
08

01
-0

7-
08

31
-0

7-
08

30
-0

8-
08

29
-0

9
-0

8

29
-1

0-
08

28
-1

1-
08

28
-1

2
-0

8

27
-0

1-
09

26
-0

2-
09

28
-0

3
-0

9

27
-0

4-
09

27
-0

5-
09

26
-0

6-
09

26
-0

7-
09

25
-0

8-
09

Time

Pi
ez

om
et

ric
 le

ve
l (

m
)

Piezometer at elevation 489,87
Piezometer at elevation  480,07
Piezometer at elevation 469,87 

Reservoir level

489.87

480.07

469.87

420

440

460

480

500

520

540

05
-1

0-
07

04
-1

1-
07

04
-1

2-
07

03
-0

1-
08

02
-0

2-
08

03
-0

3-
0

8

02
-0

4-
08

02
-0

5-
08

01
-0

6-
08

01
-0

7-
08

31
-0

7-
08

30
-0

8-
08

29
-0

9
-0

8

29
-1

0-
08

28
-1

1-
08

28
-1

2
-0

8

27
-0

1-
09

26
-0

2-
09

28
-0

3
-0

9

27
-0

4-
09

27
-0

5-
09

26
-0

6-
09

26
-0

7-
09

25
-0

8-
09

Time

Pi
ez

om
et

ric
 le

ve
l (

m
)

Piezometer at elevation 489,87
Piezometer at elevation  480,07
Piezometer at elevation 469,87 

Reservoir level
SI 2-3

 
(a) (b) 

Figure 7.16 (a) Position of piezometers in borehole SI 2-3 (See Fig. 7.11); (b) piezometer 
records and reservoir elevation 

As a summary, the examination of piezometer measurements leads to the 
following conclusions: 

- The hydraulic behaviour of the Garumn clay stratum seems to be independent 
from the lower sandstone stratum. 
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- The pressures in the sandstone stratum, except for the upper part of the slide, 
follows immediately the water level elevation in the reservoir. This behaviour is 
an indication of the high permeability of the sandstone. 

- Pressures remain essentially constant in the clay and independent from water 
level elevation mainly during the first seven months of measurements when 
reservoir elevation was lower than 460 m. This is an indication of the difficulty 
to dissipate or increase water pressures within clayey layers where the sliding 
surface is located. It also points out the low “in situ” permeability of this clay 
level.  

7.4 PORE WATER PRESSURE CALCULATION 
The characterisation of the slide, the laboratory tests performed and piezometric 

measurements seem to indicate that the cause of the sliding was the high water 
pressures that remained within the low permeability clayey stratum, together with the 
absence of the stabilising effect of reservoir water due to the drawdown. Rapid 
drawdown is a complex problem which integrates unloading of the reservoir’s water 
weight, soil deformation and water flow under saturated/unsaturated conditions. It has 
been discussed in Chapter 2.  

The analysis presented here was carried out by means of the finite element code 
Code_Bright, which can solve coupled flow/deformation problems in 
saturated/unsaturated media.  

The calculation model is shown in Figure 7.18. The figure also shows a linear 
quadrilateral element mesh. Nodes have three degrees of freedom (water pressure and 
vertical and horizontal displacement). The mesh had to be refined mainly in the thinner 
clay stratum to ensure the correct calculation of water flow through materials in direct 
contact having values of permeability widely different among them. In order to 
simplify the model, the sequence of detailed stratification above the Garum clay level 
has not been specified in detail. The mobilised rock above the clay mainly consists of 
sandstone levels. 

 

Figure 7.18 Finite element calculation model. 
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Table 7.1 Parameters for coupled hydro-mechanical calculations 

Parameter and unit Clay Rock 

Young modulus (MPa) 500 2500 

Poisson's coefficient 0.3 0.3 

Saturated permeability (m/s) 4.9·10-11 10-5 

Van Genuchten parameters:           

0P

λ 
Sr max

Sr max

 
0.3 
0.33 

1 
0 

 
0.03 
0.33 

1 
0 

 

The stress-strain behaviour of the materials was characterised by means of a linear 
elastic law defined by Young's modulus and Poisson’s ratio. Elasto-plastic 
considerations have limited effect when estimating drawdown-induced pore water 
pressure. This result was discussed in Chapter 2 and it is explained because the 
drawdown mainly results in an elastic stress path. In addition, the involved materials 
are highly overconsolidated rocks. Thus the elasticity hypothesis seems sufficient in 
this case. Table 7.1 shows the elastic values chosen, as well as the saturated 
permeability. Clay parameters were derived from laboratory tests, while rock 
parameters were estimated according to typical values due of lack of precise data. 

The analysis requires the characterisation of materials under unsaturated 
conditions. The retention curves introduced in the calculations use the Van Genuchten 
model having the parameters indicated in Table 7.1 and plotted in Figure 7.19. Relative 
permeability is defined according to the cubic law ( 3

rsatrelsat Skkkk ==  where ksat is the 
saturated permeability and Sr  is the degree of saturation) for both materials. 

The known history of water level elevation, was modelled during the four years 
prior to the drawdown that probably caused the failure (October, 2002 until July, 2009) 
(Fig. 7.20). This allows establishing the pressures acting on the failure surface with the 
purpose of analyzing the stability at any time. In addition, the measurements taken in 
the piezometers installed in November 2007 could be compared with calculations in an 
effort to validate the numerical model. The initial pore water pressure assumed in the 
calculation is a horizontal hydrostatic profile. 
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Figure 7.19 Retention curves used in calculation. 
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Figure 7.20 Time variation of reservoir level. 

The effect of rainfall has been incorporated in the simulation in order to model the 
water inflow through the upper part of the slope, which is approximately equal to the 
average value of the rainfall recorded in the region (400 l/m2/year). 
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Figures 7.21 and 7.22 show the water pressure contours calculated for the 26th 
September, 2005 and 21st August, 2006, when water elevation of the reservoir reached 
elevations 451 and 431 m. This last elevation corresponds to the minimum values 
reached in the period 1986 – August 2006. The effect of the low permeability of the 
clay layer and its continuity can be observed by the abrupt change of the contours. 
This can be clearly observed in Figure 7.22 that shows the calculated pore water 
pressure along a vertical profile located in the position of SI 2-2. 

 
Figure 7.21 Calculated pore water pressure distribution on September 26, 2005 when reservoir 

elevation was at 451 m (see Fig. 7.20). 

 
Figure 7.22 Calculated pore water pressure distribution on August 21, 2006 when reservoir 

elevation was at 431 m (see Fig. 7.20). 

The pore water pressure distribution given in Figures 7.21 and 7.22 has been 
introduced in the calculation of the safety factors, by means of a limit equilibrium 
procedure to analyse the stability in the most critical situations previous to the failure.  

However, before the analysis the failure is presented, the calculated pore water 
pressure will be compared with piezometer measurement recorded after the failure in 
order to check the reliability of results. Figures 7.24 to 7.26 show such a comparison 
for the piezometers installed in Profile II (see their position in Figs. 7.4, 7.6 and 7.14a – 
7.16a). 

Pore water pressure measured within the lower sandstone in SI 2-1 and SI 2-2, 
which follow precisely the reservoir elevation evolution, are well captured by the 
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calculation. This is a consequence of a correct choice for sandstone permeability. 
Pressure measurements within the impervious clayey layer in SI 2-2, which are 
especially important for the subsequent calculation of safety factor, have been 
simulated quite satisfactorily. Pressures are lightly overestimated when the reservoir 
reaches low levels.  
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 Figure 7.23 Calculated pore water pressure distribution along vertical profile located at the 
position of SI1-2 (see Fig. 7.6) on September 26, 2005 and August 21, 2006 when reservoir 

elevation was at 451 and 431 m, respectively (see Fig. 7.20).   

The major discrepancy appears in piezometers installed in SI 2-3. Reservoir level 
was always below the elevation of piezometers located in SI 1-3. In addition, the high 
sandstone permeability allows a rapid flow of rainfall infiltration towards the reservoir 
level. As a result, no positive pore pressures above the piezometer positions are 
calculated. Field measurements show a totally different response. In fact, water 
columns in excess of 15–25 m over the piezometers location are measured. This is 
probably a consequence of the external infiltration and a different local geological 
structure of pervious/impervious materials at the head of the slide. In subsequent 
stability calculations, this field information will also be considered.  
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(c) 

Figure 7.24 Comparison of calculated and measured pore water pressure in piezometers located 
in boring SI 2-1 at elevation (a) 391.96 m; (b) 381.96 m; (c) 371.96 m.  
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(c) 

Figure 7.25 Comparison of calculated and measured pore water pressure in piezometers located 
in boring SI 2-2 at elevation (a) 429.88 m; (b) 419.88 m; (c) 409.88 m.  
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(c) 

Figure 7.26 Comparison of calculated and measured pore water pressure in piezometers located 
in boring SI 2-3 at elevation (a) 489.87 m; (b) 480.07 m; (c) 469.87 m.  
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7.5 SAFETY FACTOR CALCULATION 
The failure surface seems to be located entirely in the Garumn clay stratum. 

Therefore, the analysis of limit equilibrium only requires the definition of the soil 
densities above the failure surface, the strength properties of clay and the pore water 
pressure acting on the failure surface. The density of the mobilized mass has been 
estimated equal to 21 kN/m3. 

SI 2-3
SI 2-2

SI 2-1

SI 2-3
SI 2-2

SI 2-1

 

Figure 7.27 Calculation section for limit equilibrium analysis and pre-established failure surface 
in yellow.  

The strength available on the failure surface was defined by a Mohr-Coulomb law. 
Since the slide is the reactivation of an ancient slide, the residual angle and a null 
effective cohesion should be used. The ring shear tests carried out in the laboratory 
indicate a residual angle of 12º under vertical effective stresses ranging from 100 to 250 
kPa. Nevertheless, the vertical effective stresses on the failure surface range from 100 
to 1500 kPa (some 800 kPa in average). Generally, the friction angle decreases with 
effective normal stress. On the other hand, during the geological history of the slide 
the failure surface probably underwent larger than current stresses. Later, once 
unloaded until reaching the current initial situation, the remaining friction angle would 
correspond to the lowest value in the past. This hypothesis would lead to a friction 
angle lower than the value measured in the laboratory (12º) and most likely close to 10º 
(Stark and Eid, 1994; Alonso, 2005). Both values will be considered in calculation.  

The water pressures obtained by these calculations were introduced in the 
calculation of safety factor by limit equilibrium with the program GeoSlope. The 
model used is shown in Figure 7.27. The failure surface has been predefined following 
the geological interpretation. It is entirely located within the clay layer. Pore water 
pressure on the failure surface is imposed following the results obtained previously in 
the coupled analysis (results given in Figs. 7.21 and 7.22). The increase in strength due 
to suction was neglected in the unsaturated area. 

The two critical drawdown events (September, 2005 and August, 2006) have been 
analysed. The safety factors obtained are indicated in Table 7.2 for two clay friction 
angles, 10º and 12º. The values obtained for φ′ =10º are very close to 1. Both 
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drawdown situations were quite critical. However, the calculated safety factors are 
higher than 1 in both cases. Several factors can explain this discrepancy. It is uncertain 
if the analysed section is the most critical one. On the other hand, piezometers 
measurements indicate higher pore water pressure values in the upper part of the 
landslide. They were not introduced in the analysis reported in Table 7.2 If these 
measured values are introduced in the limit equilibrium analysis, maintaining the 
remaining values obtained in the calculation of pore water pressure, a safety factor 
equal to 1.01 is obtained for the situation in August.  

Table 7.2 Safety factors calculated by limit equilibrium analysis 

 
September 26th, 2005. 

Reservoir elevation: 451 m 
August 21st, 2006. 

Reservoir elevation: 431 m 

φ′ =12º 1.25 1.31 

φ′ =10º 1.04 1.09 

7.6 ANALYSIS OF RAPID SLIDING 
An additional risk is the possibility of rapid sliding which will result in the impact 

of the sliding mass against the reservoir water and the subsequent generation of 
uncontrolled destructive waves. A clear reference is the Vaiont slide in northern Italy in 
1963 (Chapter 5). Other cases have been described in the Introduction.  

The phenomena that may lead to this rapid acceleration were discussed in Chapter 
3. The coupled thermo-hydro-mechanical problem has been solved in a representative 
cross section of Canelles landslide consisting of two blocks. The failure surface was 
simplified by means of two planes: one under the upper block, which dips 18º, and 
another one under the lower block, next to the reservoir, which is horizontal (Fig. 
7.28). This geometry allows taking into consideration that as the slide progresses 
towards the reservoir, the deformed mass becomes, in principle, more stable. In fact, 
during sliding, the soil mass increases in the more stable lower block and decreases in 
the unstable upper block.  

The analysis requires some thermo-hydro-mechanical properties of the clay 
stratum, where the failure surface is located. Table 7.3 provides the calculation 
parameters. The values selected for water and solid particles correspond to well-
accepted values found in handbooks of physico-chemical constants. The specific 
properties of the shearing band material (Garumn clay) were defined previously. The 
coefficient of compressibility was calculated through the Young modulus used 
previously (500 MPa) and ν = 0.3. 
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Figure 7.28 Calculation section considered for the thermo-hydro-mechanical analysis. 

Table 7.3 Properties of the materials. 

Parameters Symbol Value Unit 

Water 

Density wρ  1000 kg/m3 

Compressibility coefficient wα  5·10-10  

Thermal expansion coefficient wβ  3.42·10-4  

Specific heat wc  
4.186·103 

1.0 
J/kg·ºC 
kg·ºC 

Solid particles 

Density sρ  2700  

Thermal expansion coefficient sβ  3·10-5  

Specific heat sc  
8.372·102 

0.20 
 

cal/ kg·ºC 

Material of the shearing band 

Porosity n  0.2 - 

Permeability k  4.9·10-11 m/s 

Compressibility coefficient vm  2.1·10-9 1/Pa 

Friction angle (residual) 'φ  10  

Slid material 

Density rρ  2200 kg/m3 
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It is difficult to estimate accurately the thickness of the shearing band, even if 
recovered samples are examined. In general, the thickness of the shearing band is 
related to the size of the soil particles. In this case, the failure is located in a clayey soil 
with D50 = 0.01 mm (aperture diameter of the mesh through which 50 % of the 
material passes). For this value, a thickness of 5 mm is estimated for the shearing band.  
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Figure 7.29 Calculated evolution of sliding velocity and displacement considering the thermo-
hydro-mechanical effects.  
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Figure 7.30 Evolution of (a) the frictional effective strength and (b) water pressure in the 
failure surface under the lower block.  

The initial position of the slide considered for calculations corresponds to a water 
level elevation 470 m. For the dynamic analysis performed the water pressures on the 
failure surface are calculated under the simple hypothesis of hydrostatic distribution. 
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The effect of water weight on stresses on the slope is also taken into account. Under 
these conditions, according to limit equilibrium calculations, Canelles slope was strictly 
stable and instability takes place whenever higher pressures develop in the clay stratum. 
The initiation of the movement (safety factor lightly higher than 1) was simulated by 
setting a pressure increase of 0.09 MPa throughout the failure surface of the lower 
block.  

Figure 7.29 plots the evolution of velocity in time during a displacement of 200 m. 
According to calculations, the slide would accelerate, reaching 12 m/s in a few 
seconds, after travelling some 300 m inside the reservoir. At the beginning, the sliding 
velocity remains low, close to a few millimeters per second. During the first seconds, 
the excess pore pressure accumulated in the shear band is not enough to significantly 
reduce the effective frictional strength.  

Figure 7.30 shows the evolution of strength and the excess in water pressure 
during the same period of time. When pore pressure in the shear band increases (up to 
0.5 MPa), shearing strength decreases and drops to values close to 0. This explains the 
high velocities reached by the slide. 

If the effects of heat are neglected, the maximum velocity reached by the slide 
becomes significantly lower (12 cm/s). The velocity at t = 40 s is null, after travelling 3 
m towards the dam.  

7.7 CONCLUSIONS 
This chapter presents the static and dynamic analysis of a 40 millions m3 slide 

which was reactivated as a result of a sharp decrease of the water level in Canelles 
reservoir. A methodology to analyze the landslide, based on field work, laboratory 
testing and “in situ” measurements, is described. The model was based on a 
representative 2D central cross-section, on the shape and position of the failure 
surface, and on the changes in water level elevations during the 4 years prior to the 
development of the crack. 

The intensity and distribution of pore pressures on the failure surface is critical to 
explain the initial failure. 

The studies carried out demonstrate that the failure surface of the slide lies within 
the high plasticity clay stratum, which has a low permeability (5·10-11 m/s). According 
to previous work, this permeability value indicates that the slide can accelerate and 
reach high velocities in case of instability. The potential acceleration of the slide is 
analysed with the help of the theory discussed and developed in Chapter 3 and the 
program developed in Chapter 6. A calculation geometry based on the profile studied 
(Profile II) was defined by means of blocks of variable geometry (a triangular upper 
block and a trapezoid lower one).  
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Due to the low permeability of clay strata, where the failure surface is located, 
Canelles slide is potentially rapid. The slide is estimated to accelerate reaching a velocity 
equal to 12 m/s in 300 m of displacement.  

One of the main limitations of this work, and, in particular, in the model applied to 
Canelles slide, is the difficulty to interpret, by means of the calculation model, slow 
slope movements prior to the accelerated and catastrophic movement. The fact that 
the slope did not accelerate during the August 2006 slide, does not necessary imply that 
it will not become potentially fast. This is also one of the lessons derived from Vaiont 
slide.  

 



CHAPTER 8 

Conclusions and Future Research  

This Thesis deals with a particular class of fast landslides: those which slide on a 
well-defined shearing surface and, at the same time, do not experience a major 
degradation of the moving mass. In addition, the work has concentrated in a triggering 
action associate with the impoundment of the slope toe or rapid drawdown, a situation 
which is common in reservoirs and, to a less extent, in river valleys and fjords.  

The review made in the introductory Chapter 1 reveals that the number of case 
histories described in the literature is quite limited. This is an important drawback to 
validated theories and models and indicates that well documented case studies is 
probably the first requirement for the advancement of knowledge. Ideally, a good case 
history should combine a comprehensive field information and laboratory testing 
program paying special attention to the geometry, mineralogy and shearing behaviour 
of the sliding surface material and knowledge of the past history of the slide. 
Unfortunately, these conditions are rarely met and even the well known reference of 
Vaiont landslide suffers from insufficiently known data for a proper understanding of 
the phenomenon.  

The mechanisms of rapid drawdown are currently well understood. The available 
coupled flow and deformation models are a powerful tool to investigate the slope 
response against fast changes in water level. In practice, the combination of a fully 
coupled code and a procedure to determine the current safety factor would be of 
interest. Again, well documented case histories are not easily available and further 
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validation of existing models against real cases would improve our confidence in 
available tools.  

The discussion on the basic phenomena leading to the fast acceleration of a 
landslide is today very active and far from achieving a consensus. In this work, the 
relevance of thermal effects on the sliding surface and its role to increase fast the local 
pore water pressure has been favoured as a rational mechanism to explain the slide 
acceleration. Other mechanisms leading to a loss of shear strength are the strain 
softening and the rate effects. Unfortunately, some available experiments to 
demonstrate the strain rate effects could also be interpreted a thermal-induced 
mechanism. Strain rate effects lack form a fundamental physical explanation. The 
framework behind thermal effects is perhaps better organized but in both cases there is 
a need for a more complete set of basic experiments at laboratory scale. A major 
difficulty is that the shearing strain rates achieved in reality are difficult to match in the 
laboratory. In addition, a proper understanding would require information on 
temperatures and water pressure being developed in a band where shearing strains 
localize. Testing shearing effects at a rate matching field conditions is still an important 
challenge for future experimental work.  

The models developed may be also extended and developed further for a more 
comprehensive and precise analysis. The following improvements are mentioned: 

- Generalization of the landslide geometry. A relatively straightforward step would be 
to adjust the geometrical description of slides typical of limit equilibrium 
models (slide described by interacting finite blocks) to a kinematically 
acceptable mechanism. Then, thermal effects should be introduced at any 
shearing surface. SPH meshless model (Augarde and Heaney, 2009; Pastor et 
al., 2009) offer an interesting possibility to handle the problem. As well as, 
the developments of mixed finite element-particle method such as the 
Material Point Method (Sulsky and Schreyerb, 1996; Zabala and Alonso, 
2010) offer an interesting potential.  

- Improved consideration of the effect of temperature on soil constitutive behaviour. In this 
Thesis, the role of skeleton reaction to temperature changes was formulated 
in a simple manner through a simple coefficient. It was further argued that 
thermal effects on the skeleton reaction in the case of heavily 
overconsolidated and indurated clayey rocks (typically found in practice) was 
quite limited especially for moderate changes in temperature. In fact, the 
simulation of Vaiont does not require the consideration of thermal effect on 
the skeleton performance to achieve acceptable results.  

But there is certainly a way to improve models by introducing generalized 
constitutive models of thermal behaviour. They would typically require a 
thermo-plastic formulation. Thermo-elastic constitutive models for soils have 
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been reported by: Hueckel and Borsetto, 1990; Hueckel et al (1998), Cui et al. 
(2000), Laloui (2001).  

Available experimental data typically concentrate in temperatures within the 
range 20-90º, which may be insufficient for real cases involving very large 
landslide. In fact, some of the calculations reported indicate that, a under 
specific combination of shear band thickness, permeability and stiffness, 
temperatures may increase to vey high values (hundreds of degrees). Then 
fundamental changes in the mineralogical constituents of the clay shear band 
and its shearing behaviour is to be expected. This is also an open field for 
future research work.  

The question of water vaporization when temperature increase beyond 
100ºC deserves also attention. The simple experiment reported in the 
Chapter 3 of this Thesis heating Opalinus clay indicates that available phase 
diagrams for “free” water are of very limited use in the case of water 
adsorbed in clay minerals. It is felt that more experimental information on 
the behaviour of clays under (high) temperature is needed before appropriate 
models are formulated. 

- Accurate representation of some nonlinearities of dependent variables. The models 
would benefit also from a more accurate representation of some 
nonlinearities which have been simplified to linear relationships. This is the 
case of the thermal expansion coefficient of water (βw) and solids (βs), which 
depend on temperature. Date on the dependence βw on temperature is 
available and could be introduced at a limited computational effort.  
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