
Appendix A

Fundamentals of Contact Analysis

A.1 Introduction

In this Appendix the basic principles of bi-dimensional contact analysis are described. At

the beginning, the basic equilibrium equations derived from the Continuum Mechanics are

applied for two contacting bodies. The necessary conditions to be fulfilled for the contacting

bodies are derived. Finally, the equation of perfect friction is written to emphasize the

principles of Coulomb’s dry friction, already seen in Chapter 2.

A.2 Bi-dimensional Contact

A particularly difficult nonlinear behavior to analyze is contact between two or more bodies.

Contact problems range from frictionless contact in small displacements to contact with

friction in general large strain inelastic conditions. Although the formulation of the contact

conditions is the same in all these cases, the solution of the nonlinear problems can in some

analyses be much more difficult than in other cases. The nonlinearity of the analysis problem

is influenced not only by the geometric and material nonlinearities considered so far but also

by the contact conditions [48].

Fig. A.1 shows schematically the problem considered. This figure represents two generic

bodies which are arbitrarily denoted as contactor and target.

The basic conditions of contact along the contact surfaces are such that no material

overlap can occur; as a result, the contact forces that are developed act along the region of

contact upon the target and the contactor. These forces are equal and opposite. The normal

tractions can only exert compressive action, and the tangential tractions satisfy a law of

frictional resistance.

Let SIJ and SJI denote the surfaces associated with the contactor and target bodies,

respectively. Also, let n be the unit outward normal to SIJ and let s be a vector such that
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Figure A.1 Schematic representation of the bi-dimensional contact problem
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n, s form an orthogonal right-hand basis (see Fig. A.2). The contact tractions tf IJ acting

on SIJ can be decomposed into normal and tangential components corresponding to n and

s on SJI ,

tf IJ = γn+ τs (A.1)

where γ and τ are the normal and tangential traction components (for brevity of notation a

superscript will not be used). Hence,

γ = tf IJ · n; τ = tf IJ · s (A.2)

To define the actual values of n, s that are going to be used in contact calculations,

consider a generic point X on SIJ and let Y ∗(X, t) be the point on SJI satisfying

¯̄̄−−−−−→
X − Y ∗(X, t)

¯̄̄
2
= min

Y ∈SJI

n¯̄̄−−−−→
X − Y

¯̄̄
2

o
(A.3)

where
−−−−−→
X − Y ∗(X, t) and −−−−→X − Y are the distances from X to SJI at points Y ∗ and Y , re-

spectively.

The (signed) distance from X to SJI is given by

g(X, t) = (
−−−−−→
X − Y ∗) · n∗ (A.4)

where n∗ is the unit ’normal vector’ at Y ∗(X, t) (see Fig. A.2) and n∗, s∗ are used in (A.1)
corresponding to the point X. The function g is the gap function for the contact surface

pair.

With these definitions, the conditions for normal contact can now be written as

g ≥ 0; γ ≥ 0; gγ = 0 (A.5)

where the last equation expresses the fact that if g > 0, then γ = 0, and viceversa. Fig. A.3a

illustrates the conditions given by (A.5) for normal contact.

To include frictional conditions, assume that Coulomb’s law of friction holds pointwise

on the contact surface and that µ is the coefficient of friction. This assumption means of

course that frictional effects are included in a very simplified manner.

Let α be defined as a dimensionless variable given by

α =
τ

µγ
(A.6)
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Figure A.2 Bi-dimensional contact analysis definitions

where µγ is the ’frictional resistance’, and the magnitude of the relative tangential velocity

u̇(X, t) =
£
u̇J
¯̄
Y ∗(X,t) − u̇I

¯̄
(X,t)

¤ · s∗ (A.7)

corresponding to the unit tangential vector s∗ at Y ∗(X, t). Hence, u̇(X, t)s∗ is the tangential
velocity at time t of the material point at Y ∗ relative to the material point X∗. With these
definitions Coulomb’s law of friction states

|α| ≤ 1

|α| < 1 implies u̇ = 0 (A.8)

|α| = 1 implies sgn (u̇) = sgn (τ)

Fig. A.3b illustrates these interface conditions.

A.3 Perfect Friction

As said in Sect. 2.2, the law of perfect friction states that the force of friction is proportional

to the load and is independent of the apparent area of contact and the other state variables.

Combined to the impenetrability condition the criterion of perfect friction takes the form

F = N tanφ+ C contact (A.9)

F = Fmax = N tanφ0 + C = µN + C (φ0 > φ) slip (A.10)
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Figure A.3 Interface conditions for the contact analysis

where F = |F| = p
F 2
1
+ F 2

2
denotes the euclidean norm of F, which is the tangential

component of the contact force, µ = tanφ0 is the coefficient of friction (φ0 is the angle of

rugosity) and C is a constant characterizing adhesion [68]. In geometric terms the criterion

assumes the shape of a truncated cone in the normal-tangential axes attached to the contact

point (see Fig. A.4). It is the analogue of the Drucker-Prager criterion [69] in plasticity and

constitutes the determining ingredient of Coulomb’s law of friction.

For µ = 0 the cone degenerates into a cylinder which corresponds to a force of friction

independent of the load. It is the analogue of the deviatoric energy criterion of Von Mises

[57].

Now, considering the bi-dimensional case, and assuming C = 0, the truncated cone

of Fig. A.4 becomes a planar cone (see Fig. A.5). The directions of the axes are now

along F1 (|F| = F1) and N . This new cone will be set on an inclined plane to get the

relationship between the maximum friction force, Fmax and the normal force N for the case

of bidimensional contact [60].

Fig. A.5 shows the weightW in equilibrium with the resulting forceR of the complex and

unknown stress distribution exerted from the underlying wedge upon the material surface in

the contact zone. Thus, R−W = 0 and the forces act along the same line. The projection

of the force R on the normal surface is N = W cosφ and the tangential component is

F = W sinφ. Experience show that a limitation of the shear component exists when φ

is increasing. A maximum value of φ, the angle of static friction φ0, limits the range of

equilibrium. The condition of static friction may be expressed by the inequality φ < φ0 or

F < F0 = W sinφ0 = N tanφ0. The coefficient of static friction µ = tanφ0 depends on the

smoothness and cleanness of the contacting surfaces and on the materials in contact. The

numerical values for absolutely dry contact are determined experimentally often in connection
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Figure A.4 Perfect friction represented by the Coulomb’s cone
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Figure A.5 A rigid body at rest in contact with an inclined plane: the cone of static friction
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with abrasive testing (a field called tribology) and are available in tabulated form. For reasons

of safety, µ is set equal to the generally smaller value of the coefficient of friction µ in sliding

contact. In such a case Coulomb’s law of dry friction is given by

F = Fmax = µN (A.11)

which is equal to Eq. (A.10). This expression holds with constant coefficient for a limited

range of ’slow’ relative velocities [1, 2, 58, 70]. If it is assumed that µ is known, the condition
of static friction is easily proved by drawing a cone of half aperture φ0, with its axis in the

N -direction and tip at the point of application of R in the zone of contact. Equilibrium is

safe as long as R points into the interior of this cone of static friction. Some average values

of µ are the following: for steel in contact with steel, 0.2; for steel contacting bronze, 0.3; for

metal in contact with glass, 0.5 and so on [35].




